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Vedoućı diplomové práce: doc. Mgr. Kolman Petr, Ph.D., KAM
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1. Introduction

Graph-partitioning problems can be generically defined as a family of problems
in which we are asked to partition a graph into two or more components. As we
will see, there are many flavors of these problems, according to what objective we
pursue. In this work, we mostly focus on the graph-partitioning problems that
partition the vertex set of graph to 2 large parts, such that the number of edges
crossing the partition is minimized. Among the other things, the ability to do so
is a useful primitive in divide and conquer algorithms for a variety of tasks.

The graph-partitioning problems consist mostly of NP-hard problems and
thanks to their numerous applications in science and engineering, they are cen-
tral topic of research in the study of approximation algorithms. The graph par-
titioning problems have their place in both theory and practice. Research in
this area has great impact on advances in other fields, such as spectral graph
theory [41], metric embeddings [10, 56], mixing of Markov chains [43] and so
on. As we will see, all the different approaches to graph partitioning problems
use knowledge from all of these fields and by exploring and deepening these ap-
proaches, they bring new results in theory. The graph-partitioning problems are
also connected with clustering problems [47]. Roughly speaking, clustering is
the process of organizing objects into groups whose members are similar in some
way. Practical areas that use the graph partitioning algorithms include image
segmentation [44], social-network analysis [55], PRAM emulation, packet rout-
ing in distributed networks [12], VLSI circuit placement [19, 68], web-data graph
analysis, sparse matrix factorization [17], parallel computing [52] and much more.

As was mentioned above, our focus will be finding 2-part graph partitions
by minimizing the number of edges between the parts. If we denote by E(S, S̄)
the set of edges between the vertex sets S ⊂ V ,S̄ = V \ S we can straightfor-
wardly say, that we want to find a graph partition (S, S̄) such that |E(S, S̄)| is
minimized. This objective would lead to definition of MinCut problem, which
we will describe later. Although this problem has many practical applications as
well, often we want also assure that the size of both parts are about the same.
One way to provide this quality, is to measure the ratio of cardinality of edge
set E(S, S̄) to the size of the vertex set S ( V . There are several standard for-
malizations of this bi-criterion. One commonly used is an expansion. Given an
undirected possibly weighted, graph G = (V,E)1 the edge expansion α(S) of a
set of nodes ∅ 6= S ( V is defined as:

α(S) =
|E(S, S)|

min{|S|, |S|)}
. (1.1)

Where E(S, S̄) denotes the set of edges having one end in S and one end in the
complement S and where | · | denotes the cardinality (or the weight of the set).
The expansion of the graph G is then defined as:

α(G) = min
∅6=S(V

α(S). (1.2)

A graph with the expansion at least c is called c-expander. Usually we call the
graph an expander if c is at least constant. Sometimes we need a balanced version

1In this text we commonly use an undirected graph G = (V,E), |V | = n, |E| = m.
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of the expansion αc(G), where we consider only large subsets of vertices:

αc(G) = min
S(V,c·|V |≤|S|≤1/2·|V |

α(S). (1.3)

Closely related term is sparsity of a graph G denoted by SG and defined as:

SG = min
∅6=S(V

|E(S, S)|
|S||S|

. (1.4)

Observe that the sparsity of graph and the expansion differ only by a constant
factor:

n

2
SG ≤ α(G) ≤ (n− 1)SG. (1.5)

For any n-vertex graph the number of vertices in the big half of a cut must lie
between n

2
and n. Another term used is a conductance of a graph. The graph

conductance Φ(G) is defined as:

Φ(G) = min
∅6=S(V

E(S, S)

min{vol(S), vol(S}
, (1.6)

where
vol(S) =

∑
v∈S

degv. (1.7)

The conductance of a graph is often called the Cheeger constant hG. Observe
that for a d-regular graph H holds α(G)

d
= Φ(G). The sparsity, expansion and

conductance are tightly interconnected. Various results can be cleanly formulated
by using one of these. We mostly refer to the sparsity and expansion in this work.
Although the results in spectral graph theory, mainly the Cheeger inequality, use
the term conductance. Generaly, if we know something about one of these graph
qualities, then we also know the others. More on the interreducibilities between
these qualities will be in the section 1.1.3.

1.1 Graph partitioning problems and definitions

1.1.1 Single-commodity flows and Minimum s-t cut prob-
lem

A definition of a single-commodity flow problem is well known. We use the web
resource [34] for this section.

Definition 1. (Single commodity maximum flow problem and minimum
s-t cut problem) Let G = (V,E) be a directed graph (network) with s, t ∈ V
being the source and sink of G respectively. then

• The capacity of an edge is a mapping c : E → R+, denoted by cuv or c(u, v).
It represents the maximum amount of flow that can pass through an edge.
Graph is directed, so it can have defined the capacity for both direction of
an edge.
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Figure 1.1: For the purpose
of solving Single commodi-
ty maximum flow problem,
undirected edges can be trans-
formed to the directed edges. We
can do it either by simply re-
placing the edge by 2 directed
edges with the same capacity in
both directions or by replacing
the edge by the graph tranfor-
mation 2. The disadvantage of
transformation 1 is the fact, that
it allows the flow for both direc-
tions in the same time, thus cre-
ating possibility for a flow cir-
culation. However, many algo-
rithms for Single commodity
maximum flow problem can
avoid circulations and this is not
a problem.

• A flow is mapping f : E → R+, denoted by fuv or f(u, v), subject to the
following two constraints:

f(u, v) ≤ c(u, v) ∀(u, v) ∈ E capacity constraint∑
u:(u,v)∈E f(u, v) =

∑
u:(v,u)∈E f(v, u) ∀v ∈ V \ {s, t} conservation of flows

• The value of flow is defined by |f | =
∑

v∈V f(s, v), where s is the source
of G. The flow passing from the source to the sink is represented by this
value.

The Single commodity maximum flow problem is to maximize |f | , that
is, to route as much flow as possible from s to t

• An s-t cut C = (S, T ) is a partition of V such that s ∈ S and t ∈ T . The
cut-set of C is the E(S, T ) = {(u, v) ∈ E|u ∈ S, v ∈ T}. Observe, that
if all the edges of the set E(S, T ) are removed, the value of flow comes to
zero; |f | = 0

• The capacity of an s-t cut (S,T) is defined by

c(S, T ) =
∑

(u,v)∈E(S,T )

c(u, v)

The minimum s-t cut problem is minimizing c(S, T ), that is, to determine
S and T such that s ∈ S, t ∈ T and the capacity of the s-t cut C = (S, T ) is
minimal.

Observe that for the problem definition we used directed graphs. In this
work we mostly talk about undirected graphs. So how we can solve Single
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commodity maximum flow problem for undirected graphs? We can do
some simple transformations. As we can see in figure 1.1.1.

The following statement proposes the tight duality between Minimum s-t
cut problem and Single commodity maximum flow problem proved in
1956 independently by Ford and Fulkerson [25] and by Feinstein and Shannon [20].
The theorem can also be proved by an application of the Duality theorem from
the theory of linear programming.

Theorem 2. The maximum value of an s-t flow is equal to the minimum capacity
over all s-t cuts

To see that we formulate it as a linear programming problem

max|f |
subject to: (P)

f(i, j)− c(i, j) ≤ 0 (i, j) ∈ E (a)∑
j:(j,i)∈E

f(i, j)−
∑

j:(i,j)∈E

f(i, j) ≤ 0 ∀i ∈ V, i 6= s, t (b)

|f |+
∑

j:(j,s)∈E

f(j, s)−
∑

j:(s,j)∈E

f(s, j) ≤ 0 (c)

−|f |+
∑

j:(j,t)∈E

f(j, t)−
∑

j:(t,j)∈E

f(t, j) ≤ 0 (d)

f(i, j) ≥ 0 ∀(i, j) ∈ E

The constraints (b) represent a flow conservation for the internal vertices.
The constraints (c) and (d) represent a flow conservation for the source and the
sink vertices respectively. The equalities would be more illustrative but thanks
to the fact that LP maximizes |f |, we can use inequalities only from one side.
Now we formulate dual program to the above linear program. Then we will
see that it corresponds to Minimum s-t cut problem. In dual program, we
provide variable for each row in the primal program. Let d(i, j), (i, j) ∈ E be the
variables corresponding to the constraints (a) and the variables pi, i ∈ V \ {s, t}
be variables corresponding to the constraints (b) and finally let ps and pt be the
variables, that correspond to the constraints (c) and (d) respectively. With that
in mind, you can see the duality between the following linear program and the
one stated above.

min
∑

(i,j)∈E

c(i, j)d(i, j)

subject to: (D)

d(i, j)− pi + pj ≥ 0 ∀(i, j) ∈ E
ps − pt ≥ 1

pi ≥ 0 ∀i ∈ V
d(i, j) ≥ 0

5



Consider a solution of this program, where

d(i, j) ∈ {0, 1}, (i, j) ∈ E (A)

pi ∈ {0, 1}, i ∈ V \ {s, t}
ps = 1

pt = 0

Where an edge (i, j) will be in the cut, if d(i, j) = 1. And if the vertex v can
be reached from the source, then pi = 1. With these additional constraints the
dual LP solves the Minimum s-t cut problem. To see that (D) has an integral
solution, observe that the matrix defining this LP is totally unimodular. Which
tells us that every extreme point of the polyhedron defining the feasible region is
integral and hence the simplex algorithm will return solution satisfying (A).

1.1.2 The formulation of graph partitioning problems

In this section we present the list of NP optimization problems included in
book [11]. First we state the definition of the Sparsest-Cut Problem which
together with the Edge expansion and the Graph conductance are in the
main focus of this work. In the following sections we describe several algorithms
for getting an approximate solution of these problems. In the section 3 we describe
multilevel graph partitioning algorithms for (k, 1 + ε) - balanced partition
problem. The remaining definitions are for readers reference only. Just to see
how wide is the area of the graph partitioning problems and what results are
known to the date.

Definition 3. (Sparsest-Cut Problem)Given and undirected graph G=(V,E)
and a capacity function c : E → R+ that assigns a capacity cE to each edge e ∈ E.
Also given a set of demand pairs (s1, t1), (s2, t2), . . . , (sk, tk) and demand values
d1, d2, . . . , dk such that each demand pair (si, ti) is associated with the demand
value di for 1 < i < k.

Given a set of edges E ′ ⊂ E (a cut). Let c(E ′) =
∑

e∈E′ c(e). Let dem(E ′) =∑
i:(si,ti)is separated byE′ di. Where (si, ti) is separated by E ′ if they are not connect-

ed in G[E\E ′]. Finding the cut E ′ ⊂ E that minimizes ratio c(E′)
dem(E′)

is called
Sparsest-Cut Problem.

This is general definition of Sparsest cut problem. If we choose to have
demand pair between every 2 nodes in graph and set all demands to 1, we get
Uniform sparsest cut problem (UMFP). UMFP can be equally restated as
a problem of finding sparsity ratio of a graph as defined in (1.4). Other related
problems include:

• Edge expansion problem is to find expansion of a graph as defined in
(1.2).

• c-balanced expansion problem is to find balanced expansion of a graph
as defined in (1.3).
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• Graph conductance is problem of finding the graph conductance of a
graph as defined in (1.6).

• Directed Sparsest Cut is directed version of Sparsest cut problem.

Next definition is a very general formulation of graph partitioning problem
where we want to find a decomposition of graph vertex set into k possibly balanced
partition. We refer more on this problem in section 3.

Definition 4. ( (k, 1 + ε) - balanced partition problem) Given a graph
G = (V,E,WV ,WE), where V is set of vertices, E is set of edges, WV : V → R+

is set of weights of vertices.WE : E → R+ is weight of edges. Objective of (k, 1+ε)
- balanced partition problem is to choose a partition V = V1∪V2∪· · ·∪Vk,
such that

• The sum of the vertex weights in each Vi is ”about the same”,

∀i ∈ {1, . . . , k}, Vi ≤ (1 + ε)

∑
v∈V WV (v)

k

• The sum of all edge weights of edges connecting all different pairs (Ni, NJ), i 6=
j is minimized

min|C| = |{WE({u, v}) ∈ E|u ∈ Vi, v ∈ Vj, i 6= j}| =
k−1∑
i=1

k∑
j=i+1

w(Vi, Vj)

where w(Vi, Vj) =
∑

e∈E(Vi,Vj) WE(e)

For example in the parallel computing this way of partitioning of unstruc-
tured graphs is very valuable. In this area graph partitioning is mostly used to
partition underlying graph model of computation and communication. To give
rough description, vertices in the graph represent computation units and edges
denote communication. Particularly, if we want to use k processors we want to
partition the graph into k blocks of about equal size. Some other variants of this
problem are:

• Minimum k-cut is unbalanced version of the problem.

• Minimum C-balanced cut is special case where k = 2 and also known
as Balanced Edge Separator problem. Directed version is recognized
as Directed Balanced Edge Separator problem.

The class of minimization problems follows. These problems are different in
that way, that they focus on finding cuts with minimum edge weight or vertex
weight, but they do not have the ambition to provide balanced partition.

Definition 5. (Minimum vertex k-cut problem) Let G be graph G = (V,E),
and T be a set of terminal vertices T = {s1, t1, . . . , sk, tk}. And let w be a weight
function w : V \ T → R+. Then the problem of finding a subset C ⊆ V \ T of
vertices such that by removing from G we disconnects each si from ti for 1 ≤ i ≤ k
with objective to minimize the sum of the weight of the vertices in the cut, i.e.,∑

v∈C w(v), is called Minimum vertex k-cut problem.
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Other minimization problems are

• Minimum multi-cut problem is analogous to Minimum vertex k-
cut problem, where we have weighted edges, and we are looking for edge
cut E ′ ⊆ E that disconnects all terminal pairs with minimum w(E ′) =∑

e∈E′ w(e).

• Minimum multi-way cut problem is special case of Minimum multi-
cut problem, where we have instead of set of terminal pairs the terminal
set T ⊂ V and we want to disconnect all vertices of T from each other by
minimal weighted edge cut E ′ ⊆ E.

• MinCut problem is defined analogously to the MaxCut problem,where we
want to find partition (S, S̄) , with a minimum number of edges |E(S, S̄)|,
in the weighted version we want to minimize the sum of edge weights∑

e∈E(S,S̄ w(e). In contrary to the other graph partitioning problems, Min-
Cut can be computed in polynomial time, thanks to duality of Single
commodity flow problem and MinCut. This duality is a generaliza-
tion of the duality presented in section 1.1.1.

The last definitions of the section are devoted to maximization problems,
where instead of finding minimal cut or cut with minimal sparsity we want to
maximize edge or vertex weight of the cut. This is something different from all
of the previous problems and also need different approaches.

Definition 6. (MaxCut) Let G = (V,E), then optimization problem where we
want to partition V into disjoint sets S and S̄ to maximize |E(S, S̄| ( in weighted
case w(S, S̄)) is called MaxCut problem.

Related problems are

• Maximum Bisection with additional constraint that the partition must
cut the graph into halves of the same size. Analogous problem is Minimum
Bisection, where the number of edges is to be minimized.

• Maximum directed cut directed version of MaxCut, in partition (S, S̄)
we count number of edges from S to S̄.

• Maximum k-cut problem is version of MaxCut problem, where set of
vertices V is partitioned intp k disjoint sets V1, . . . , Vk and the sum of the
weight of the edges between the sets is maximized.

• Maximum k-section problem is balanced version of Maximum k-cut
problem, where graph must be cut into sets of equal size.

In the end of the section we present the table with the list of graph partitioning
problems together with thr known approximations and complexity classes.
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Complexity Approximation known
Min Cut O(|V |.|E|. log(|V |2/|E|)
Sparsest Cut NP-complete O(

√
log k log log k) [6]

Uniform Sparsest Cut Apx[51] O(
√

log n) [10]
Balanced Edge Separator NP-hard O(

√
log n) [9]

Edge Expansion NP-hard O(
√

log n) [9]
Graph Conductance NP-hard O(

√
log n) [9]

Directed Sparsest Cut NP-hard O(
√

log n) [1]
Directed Balanced
Edge Separator

NP-hard O(
√

log n) [1]

Minimum k-cut O(|V |k2)[30] 2− 2
k
[70]

Minimum Vertex k-cut NP-hard O(log |V |)[27]
Minimum Multi-way Cut Apx-complete[18] 3

2
− 1

k
2[3]

Minimum Multi-cut Apx-hard O(log |S|)[28]3

(k, 1 + ε)-balanced
Partitioning Problem

NP-hard ε > 0, log2 n [5]

Max Cut Apx-Complete [65] 1.1383[29]
Maximum Bisection Apx-Complete [65] 1.431[75]

Minimum Bisection NP-hard O(log1.5 n)[22]
Max Directed Cut Apx-Complete[65] 1.165[21]
Max k-cut Apx-complete 1/(1− 1/k + 2 ln k/k2)[26, 58]
Maximum k-section Apx-complete 1/(1− 1/k + ε.k3)[4]

Table 1.1: Graph partitioning problems

1.1.3 Interreducibilities among graph partitioning prob-
lems

There are some well-known interreducibilities among graph partitioning prob-
lems. The following reductions are described in ARV paper [10]. As was men-
tioned above for sparsity and expansion holds inequlity (1.5). The Conduc-
tance problem can be reduced to the Sparsest cut problem by replacing
each node with a degree d with a clique on d nodes; any sparse cut in the trans-
formed graph does not split cliques; and the sparsity of any cut (that does not
split cliques) in the transformed graph is within a constant factor of the conduc-
tance of the cut. The sparsest cut problem can be reduced to the conductance
problem by replacing each node in graph G with a large (say sized C = n2 size)
clique. Cut of conductance Φ in the transformed graph Ḡ corresponds to a cut
in the original graph of sparsity Φ

C2 .
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2. Ideas and approaches for
solving graph partitioning
problems

In this introduction we present a broad overview of section 2. After the intro-
ductory first section follows the main part of this work where we present various
ideas and approaches to graph partitioning problems. First we start by the intro-
duction of multi-commodity flows. It leads us to work of Leighton and Rao [53],
which captures the duality between multi-commodity flows and sparsest-cut prob-
lem. As we will see, this duality allows us to construct O(log n)-approximation
algorithm for the sparsest cut problem. The formulation of this duality is often
referenced as the Leighton-Rao theorem. There are two main directions how to
prove this theorem and both can be found in the presentation of Shmoys [72].
One is region-growing algorithm which was presented in the original paper of
Leighton and Rao.The other one uses geometric embeddings. In the beginning of
the section 2.2 we introduce basic terms and definitions about metric spaces and
embeddings. We continue by above mentioned geometric proof of Leighton-Rao
theorem. We also choosed to implement and test this algorithm.

In the section 2.2.3 we move our attention to the groundbreaking paper of
authors Arora, Rao and Vazirani [10]. This paper as first brought O(

√
log n)-

approximation to the sparsest cut problem and other related graph partitioning
problems. In the ARV paper are presented 2 algorithms. One based on SDP
programming and geometric embeddings and a second one based on expander
flows. We present SDP algorithm in section 2.2.3. Although a time complexity
of this algorithm is polynomial, a number of constraints in SDP relaxation is too
high. The algorithm thus is not practical. But it has great theoretical impact
in both graph partitioning theory and theory of geometric embeddings. The
second algorithm in ARV paper introduces the expander flows and starts the new
branch of research, which we refer to as flow-based approach and present it in
section 2.4. Further exploration of the flow-based approach gave a rise to so called
cut-matching game, which was introduced in the work of Khandekar, Rao and
Vazirani [50]. We further focus on the cut-matching game and present something
from work of Orecchia, who together with other authors further develops ideas of
this framework in work [63] and his dissertation thesis [62]. A description of the
cut-matching game finishes the section.

The last part of section 2 presents a spectral graph theory and its connections
to graph partitioning. We present the connection between eigenvectors of graph
matrices and good partitions. Main idea of this section is presented in the proof
of the Cheeger inequality, which provides basis for spectral algorithm for graph
partitioning. Spectral theory has connection to both geometric approach and flow
based approach. We also introduce a random walks in this section and how the
mixing time of random walks is connected with a spectral gap and the expansion
of a graph. As we will see a strategy of the Cut player in the Cut-Matching
game uses concepts of the random walks and the spectral theory and thus whole
cut-matching framework merges the flow-based approach with the spectral graph

10



Figure 2.1: Overview of Section 2

partitioning ideas. We can also look at a spectral graph partitioning as an em-
bedding of graph vertices to a one-dimensional space. Thus all these approaches
are connected and the best algorithms use ideas from all of them. The figure 2.1
presents diagram with ideas presented in section 2.

2.1 Multi-commodity flows

A multi-commodity flow problem (MFP) can be seen as a generalization of the
more known single-commodity flow problem we presented in section 1.1.1. In-
stead of trying to route the flow only between one pair of vertices we want to
route the flow between set of pairs of vertices, each with its own commodity.The
MFP comes in many flavours. As we will see in this section, there is a sim-
ilar connection between Multi-commodity flow problem and Sparsest-
cut problem as we have seen between Single-commodity maximum flow
problem and Minimum s-t cut problem. Unfortunately, duality between the
MFP and the Sparsest-cut is not tight. Main result in this area is Leighton-Rao
theorem.We will see it later in this section. The definition of MFP we use is based
on the one from web resource [35].

Definition 7. Given a graph of flow network G = (V,E), where edge (u, v) ∈ E
has capacity c(u, v). There are k commodities K1, K2, . . . , Kk defined by Ki =

11



(si, ti, di), where si is the source and ti is the sink of commodity i, and di is the
demand. The flow of commodity i along edge (u, v) is fi(u, v). Object is to find
an assignment of flow which satisfies the constraints:

• Capacity constraints:
k∑
i=1

fi(u, v) ≤ c(u, v)

• Flow conservation:

∀v, u, u, v 6= si, ti
∑
w∈V

fi(u,w) = 0, fi(u, v) = −fi(v, u)

In the maximum multi-commodity flow problem, there are no demands di on
each commodity, but the total throughput is maximized:

max
k∑
i=1

∑
w∈V

fi(si, w)

In the maximum concurrent flow problem, we want to maximise the minimal
fraction of the flow of each commodity to its demand:

max min
1≤i≤k

∑
w∈V fi(si, w)

di

In this work we exclusively refer to the maximum concurrent flow problem. To
use the MFP to solve Uniform sparsest-cut problem, we can use the Uniform MFP
(UMFP). For which holds that each unordered pair of vertices (u, v) ∈ V × V
there is separate commodity K(u, v) = (u, v, 1). We denote f the minimal fraction
we want to maximize.

f = min
1≤i≤k

∑
w∈V fi(si, w)

di

Observe that when we have a cut (S, S) of the graph G, we need to take f |S||S|
of the flow across a cut. We assume ∅ 6= S ( V . We can say that the capacity
of the cut C(S) is simply the sum of the edge capacities

C(S) =
∑

e∈(S,S)

C(e).

In case all the capacities are equal, the capacity of the cut is proportional to the
number of edges of the cut so we can see

f |S||S| ≤ |E(S, S)| ⇒ f ≤ min
∅6=S(V

∑
e∈E(S,S) C(e)

|S||S|
= min
∅6=S(V

|E(S, S)|
|S||S|

= S. (2.1)

Which is the same as the sparsity defined above (1.4). Although we have in-
equality f ≤ S, there is no max-flow min-cut theorem for UMFP which would
always guarantee equality as in the case of single commodity flow problem. We
formulate this fact as a lemma with a proof from another work of Leighton and
Rao [54].

12



Lemma 1. ([54])There is a graph G for which SG > f , where SG is the sparsity
of G and f is the size of solution of uniform multi-commodity problem.

Proof. We begin by showing that the max-flow and the min-cut of a UMFP are
separated by a Θ(log n) gap whenever the underlying graph has certain expansion
properties. Let G be a 3-regular n-node c-expander, for some constant c > 0.
Families of such graphs are well known to exist provided that c is sufficiently
small constant [59].

So we have already seen (1.5) that

SG ≥
c

n− 1
.

In the following text we show:

f ≤ 6

(n− 1)(log n− 1)
,

which is a Θ(log n) smaller than sparsity S.
Since G is 3-regular, there are at most n/2 nodes within the distance log n−3

of any particular node v ∈ V . Hence for at least half of the
(
n
2

)
commodities

the shortest path connecting the source and the sink in G has at least log n − 2
edges. In order to sustain a needed flow for such commodity at least f(log n− 2)
capacity of edges must be used by the commodity. Thus, when we consider a flow
for all

(
n
2

)
commodities, the capacity of edges in the graph must be at least

1

2

(
n

2

)
f(log n− 2).

Since the graph is 3-regular and has unit capacity edges, the total capacity is at
most 3n

2
. Hence,

f ≤ 3n(
n
2

)
(log n− 2)

=
6

(n− 1)(log n− 2)
≤ 6SG
c(log n− 2)

= O

(
SG

log n

)
.

The preceding example is as bad as things can get, however. This fact is
summarized in the following theorem, which is one of main results of Leighton
and Rao paper [53].

Theorem 1. (Leighton Rao Theorem) ([53]) There is a feasible flow with with

Ω
(
S

logn

)
for any n-vertex UMFP.

The preceding result provides an approximate max-flow min-cut relationship
for UMFPs that is tight in the worst case. In particular, we know that

Ω

(
S

log n

)
≤ f ≤ S

for any UMFP. Therefore we can say that maximum flow is always within a
Θ(log n) factor of the minimum cut and as we showed, the approximation is
existentially tight. Now we can introduce a notion of demand graph.

13



Definition 8. In an instance of MFP let

{s1, s2, . . . , sk, t1, t2, . . . , tk} = T

be set of the source and the sink vertices and let F to be F = {(si, ti)|i ∈
{1, . . . , n})}. Then H = (T, F ) is the demand graph.

Since the source and the sink vertices can overlap, the demand graph can be
any graph, not only 2-factor. In case of UMFP the demand graph is a complete
graph on n vertices. In a way we can see the solving UMFP problem as an
embedding of a complete graph. Later we will see that we can embed other
expander than complete graph to solve graph partitioning problems.

2.2 Geometric approach

The geometric approach to the graph partitioning problems introduces an idea
of embedding graph to some geometric space. Main goal is to effectively embed
the graph vertices into some abstract space in such way that we keep distances
between adjacent vertices as small as possible and let distance between average
pair of vertices be some constant, say 1. The point is that the proximity in a
geometric space rougly reflects a connectivity in a graph.Well-connected graph
components stay close in and clusters of nodes that are connected only with few
edges are more separated. There is good chance that even a random cut of such
geometric space will also be a good cut of graph.

2.2.1 Basic definitions

Definitions in this section are from the web resource [39]. We start with the
definitions of the metric spaces and the normed spaces.

Definition 9. Let X be a set, and let d : X × X → R+
0 . The pair (X,D) is a

metric space if for all x, y, z ∈ X,

1. d(x, y) = d(y, x)

2. d(x, y) = 0⇔ x = y

3. d(x, y) + d(y, z) ≥ d(x, z) (triangle inequality)

Definition 10. A normed space is Rk for some finite k with an associated map-
ping a→ ||a|| from Rk to R+

0 such that:

1. For all λ ∈ R, ||λa|| = |λ|||a||

2. ||u+ v|| ≤ ||u||+ ||v||

3. ||u|| = 0⇔ a = 0 (the zero vector)

By removing 3rd property we gain so called seminorm.

Observe that (Rk, d) with d(u, v) = ||u− v|| is metric space. The examples of
norms follows:
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1. l2 is the normal Euclidean norm. For vector v ∈ Rk:

||v||2 =

√√√√ k∑
i=1

|vi|2.

This gives the ordinary distance from the origin to the point v, a conse-
quence of the Pythagorean theorem.

2. l1 norm is often called Taxicab norm or Manhattan norm. The name relates
to the distance a taxi has to drive in a rectangular street grid to get from
the origin to the point v. Norm of a vector v is simply the sum of absolute
values of its coordinates.

||v||1 =
k∑
i=1

|vi|.

Note that in contrast
∑k

i=1 vi is not a norm because it may yield negative
results.

3. We can talk about p-norm, which is generalization of above 2 norms. For
p = 1 we get the taxicab norm and for p = 2 we get Euclidean norm. The
p-norm of vector v is defined as:

||v||p = (
k∑
i=1

|vi|p)1/p.

As p approaches infinity the value is dominated by the largest coordinate.
Such norm is called infinity norm or maximum norm and is referred as l∞
norm.

||v||∞ = max(|v1|, |v2|, . . . , |vn|).

4. l22 norm is further used in Section 2.2.3 and is defined as squared Euclidean
distance

||v||22 = (||v||2)2 =
k∑
i=1

|vi|2.

As we will see later, we often want to embed points from one normed metric space
to another in such way that lengths between points do not change much. How
well we can do that is captured by property called distortion.

Definition 11. Let (X1, d1) and (X2, d2) be metric spaces. An embedding f :
X1 → X2 has distortion C if there is an r > 0 such that ∀x, y ∈ X1,

r · d1(x, y) ≤ d2(f(x), f(y)) ≤ Cr · d1(x, y).

Research of geometric embeddings recognize 3 main types of problems

1. Can we embed metric space of class I into class II with distortion at most
C? (Upperbound)

2. Show an example of a metric space in class I that does not embed into any
metric space of class II with distortion at most C. (Lowerbound)
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3. Determine the minimum distortion required to embed X1 into X2 within
metric spaces (X1, d1) and (X2, d2).

Now follows famous result, the theorem of Bourgain from 1985 [14].

Theorem 2. ([14]) For p > 1, every n-point metric embeds into lp with distortion
O(log n).

We use this theorem in the proof presented in following section.

2.2.2 The Embedding algorithm and proof of Leighton-
Rao duality theorem

In this section we give a proof of the Leighton-Rao theorem from the section (2.1).
We describe more general result provided by subsequent work in this area. We
first formulate MFP as a linear programming (LP) problem. We use information
from online materials and lecture notes [36]. Let have MFP as in definition 2.1,
with a graph G = (VG, EG) and capacities c(u, v). With collection of source
and sink pairs with demands (s1, t1, d1), . . . , (sk, tk, dk) our objective will be that

of the MFP The value y = min1≤i≤k

∑
w∈V fi(si,w)

di
will be maximized. Lastly,

HG = (VH , EH) will be the demand graph. We consider both G and H to be
undirected.

max y

subject to (P1)

Flow conservation
∑
u∈VG

fi(u, v) =
∑
w∈VG

fi(v, w) ∀i ∈ {1, . . . , k},∀v ∈ V − {si, ti}

Capacity constraints
k∑
i=1

fi(u, v) ≤ c(u, v) ∀(u, v) ∈ EG

Optimization constraints
∑
v∈VG

fi(si, v) ≥ y.di ∀i ∈ {1, . . . , k}

fi(u, v) ≥ 0 ∀i ∈ {1, . . . , k},∀(u, v) ∈ EG

Linear program formulated this way contains linear number of k|EG| + 1 vari-
ables. It is possible to give a formulation that involves an exponential number of
variables, but for which it is easier to derive the dual.

In the following formulation Pi is the set of all paths from si to ti in G. We
have a variable xp for each path in Pi, for each i ∈ {1, . . . , k} corresponding to
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how many units of flow from s to t are routed through the path p.

max y

subject to: (P2)∑
p∈Pi

xp = y.di ∀i ∈ {1, . . . , k}∑
p:(u,v)∈p

xp = c(u, v) ∀(u, v) ∈ EG

xp ≥ 0 ∀p
y ≥ 0 .

Now to see the dual of P2, we provide a variable wi for each i ∈ {1, . . . , k} and
one variable z(u, v) for each (u, v) ∈ EG. It looks as follows:

min
∑

(u,v)∈EG

z(u, v)c(u, v)

subject to: (D2a)

k∑
i=1

wi.di ≥ 1 (e)

−wi +
∑

(u,v)∈p

z(u, v) ≥ 0 ∀i ∈ {1, . . . , k}, p ∈ Pi (f)

wi ≥ 0 ∀i ∈ {1, . . . , k}
z(u, v) ≥ 0 ∀(u, v) ∈ EG .

Now consider the graph G with the weights z(u, v) on the edges (u, v) ∈ EG.
From the constraints f we see that wi is less than shortest path from si to ti and
equality holds for the optimum solution. To see that, observe that if some wi is
strictly smaller than the length of the shortest path, we can make it equal to the
length of the shortest path without sacrificing feasibility and without changing
the cost of the solution (By incrementing wi we do not break the first constraint
(e) and do not change the objective function). The other observation is that, in
an optimal solution we have

∑k
i=1 wi.di = 1. To see it, realize that if we had∑k

i=1wi.di = c > 1, then we could divide all the wi and all the z(u, v) by c, and
obtain a solution that is still feasible and has a smaller cost. This means that
we can formulate the following version of the linear program equivalent to (D2a).
We have a variable l(x, y) for every pair of vertices in EG ∪ EH :
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min
∑

(u,v)∈EG

l(u, v)c(u, v)

subject to: (D2b)

k∑
i=1

l(si, ti).di = 1 (g)∑
(u,v)∈p

l(u, v) ≥ l(si, ti) ∀i ∈ {1, . . . , k}, p ∈ Pi (h)

l(u, v) ≥ 0 ∀(u, v) ∈ EG ∪ EH

Now we use the fact that G and H are undirected. In such case we have a vari-
able l(u, v) for each unordered pair u,v. The constraints (h) can be equivalently
restated as the triangle inequalities

l(u1, u3) ≤ l(u1, u2) + l(u2, u3) ∀(u1, u3), (u1, u2), (u2, u3) ∈ EG ∪ EH

Now we can see that we require l(u, v) to be non-negative, symmetric and to
satisfy the triangle inequality, and so it is a metric over V. (Technically, it is a
semi-metric because we can have distinct vertices at distance zero, and l(., .) is
not defined for all pairs) So one way to look at this formulation is to see it as
embedding vertices to some abstract space with l(., .) metric in such way that
average distance between vertices is constant as we mention in the beginning
of this section. This is provided by constraint (g). The minimization objective
function is to keep the distances between the neighboring vertices short. To see
it more clearly, consider the UMFP version of the problem. The demand graph
H is the complete graph on n vertices and weights on both the graph G and H
are ones on all edges. This would translate to the following LP:

min
∑

(u,v)∈EG

l(u, v)

subject to: (D2bU)

k∑
i=1

l(si, ti) =
∑

(u,v)∈V×V,u6=v

l(u, v) = 1 (i)

∑
(u,v)∈p

l(u, v) ≥ l(si, ti) ∀i ∈ {1, . . . , k}, p ∈ Pi (j)

l(u, v) ≥ 0 ∀(u, v) ∈ EG ∪ EH .

This way vertices of well connected component in such abstract space will be
tightly together and it will be easier to find a sparse cut. In the following section
we elaborate on this idea some more.

These observations give us one more alternative formulation:

min
l(.,.)metric

∑
(u,v)∈EG

c(u, v).l(u, v)∑
(si,ti)∈EH

di.l(si, ti)
. (D2c)
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In the case of UMFP:

min
l(.,.)metric

∑
(u,v)∈EG

l(u, v)∑
(u,v)∈V×V,u6=v l(u, v)

. (D2cU)

The rest of this section is from presentation of Shmoys [72]. Suppose that
this length function was derived from an embedding of the input graph G into
some low-dimensional space with l1 norm; that is, there is a function h : V → Rd

such that l(u, v) = ||h(u)− h(v)||1 for each edge (u, v) ∈ EG ∪EH . We first shall
show that if such embedding is achievable, then we could find a cut of sparsity
at most

∑
(u,v)∈EG

l(u, v)c(u, v); that is, if the optimal fractional solution (x, y)
has the property that it can be derived from such an embedding, then given the
embedding, we can find an optimal sparsest cut.

The problem is of course that optimal length function does not have to admit
such an embedding. So main problem is to find algorithm which finds graph
embedding where distances roughly corresponds to the length function.

Lemma 2. ([72]) Let l :
(
V
2

)
→ R+

0 be a feasible solution to the linear program
(D2c) of objective function value α such that there exists a function h : V → Rd

with the property that

l(u, v) = ||h(u)− h(v)||1,∀(u, v) ∈ EG ∪ EH . (2.2)

Then, given h one can find a cut S of sparsity ratio SG at most α in polynomial
time.

Proof. First we present some simple consequences of the existence of the embed-
ding h. This embedding defines a metric µ:

∀(u, v) ∈ VG, µ(u, v)
def
= ||h(u)− h(v)||1.

These values satisfy the triangle inequality. We can also derive a metric corre-
sponding to each subset S ⊆ V : let

µS(u, v) =

{
1 if |{u = v} ∪ S| = 1
0 otherwise

Observe that for any u, v, w ∈ VG, if (u,w) crosses the cut defined by S, then
exactly one of (u, v) and (v, w) must cross this cut too. Such defined metric is
often called cut metric. The cut cone is the convex cone formed by taking all
non-negative combinations of cut metrics. The property of µ that we need is that
it is in cut cone: that is, there exists λS ≥ 0 such that

µ(u, v) =
∑
S⊆V

λS.µS(u, v),∀u, v ∈ VG (2.3)

To prove this we start by considering just the contribution of the first coordinate
of our d-dimensional space to µ, |h1(u) − h1(v)|. Consider such ordering of the
vertices VG, (v1, . . . , vn)such that

h1(v1) ≤ f1(v2) ≤ · · · ≤ h1(vn).
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Then for each pair of vertices vj, vj′ , j > j′ we can rewrite the contribution of the
first coordinate to µ(vj, vj′) as

h1(vj)− h1(vj′) =

j−1∑
l=j′

h1(vl+1)− h1(vl).

Now let S(l) = {v1, . . . , vl}, l = 1, . . . , n. Observe that the term h1(vl+1)− h1(vl)
is included in this sum precisely when the distance with respect to the metric
µS(l), between vj and vj′ is 1. So we can see:

h1(vj)− h1(vj′) =
n∑
l=1

(h1(vl+1)− h1(vl)).µS(l)(vj, vj′).

Note that if j < j′, then the right side of this equation still gives |h1(vj)−h1(vj′)|.
This way we have shown that the contribution of the first coordinate to µ can be
expressed in the claimed form. By iterating this construction for each coordinate
and putting them together, we have a decomposition of µ as proposed above
(2.3). At the first glance, it looks like we need exponential number of sets for

Algorithm 1 Function returning sparsest cut from graph embedding

function Embed-Cut(G,h) . Each vertex v ∈ VG is embedded at
(h1(v), . . . , hd(v))

MinSparsity =∞
S(i, γ) = {v|hi(v) ≤ γ}
SparsestCut
for all v ∈ VG do

for j = 1→ d do
S = S(j, hj(v))

Sparsity ← |E(S,S)

|S||S|
if Sparsity < MinSparsity then

MinSparsity ← Sparsity
SparsestCut← S(j, hj(v))

end if
end for

end for
return SparsestCut
end function

decomposition 2.3, but we have just shown decomposition that uses at most
nd sets. From shown construction we can derive efficient algorithm to produce
the decomposition (Algorithm 1). Finally, we shall see that decomposition (2.3)
implies the lemma. Let µ =

∑
S∈Q λSµS as in (2.3), where Q = {S|S ⊆ V, λS >

0}. Then by substituting µ(u, v) for l(u, v) and recalling that l(. . . ) is feasible we
see that

α =

∑
(u,v)∈EG

c(u, v).l(u, v)∑
(si,ti)∈EH

di.l(si, ti)
=

∑
(u,v)∈EG

c(u, v)
∑

S∈Q λS.µS(u, v)∑
(si,ti)∈EH

di
∑

S∈Q λS.µS(si, ti)
.
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By realizing the fact that µS(u, v) = 1 holds exactly when (u, v) crosses the cut
defined by S we see that

α =

∑
S∈Q λS

∑
(u,v)∈(S,S) c(u, v)∑

S∈Q λS
∑

(si,ti)∈(S,S) di
≥ min

S∈Q

∑
(u,v)∈(S,S) c(u, v)∑

(si,ti)∈(S,S) di
= min

S∈Q

E(S, S)

|S||S|
≥ SG.

The first inequality follows from the simple observation that an average cannot
be less than the minimum of its components.

Observation 1. ([72]) For any non-negative integers, a1, . . . , an, and positive
integers, b1, . . . , bn,

min
i∈{1,...,n}

ai
bi
≤
∑n

i=1 ai∑n
i=1 bi

From duality we have α = SG. Therefore inequalities are equalities and we
can find sparsest cut just by trying nd cuts.

The O(log k)-approximation algorithm for the sparsest cut problem is an im-
mediate corollary of the following result: given any feasible solution l(. . . ) to
(D2b) we can construct an embedding h which induces a feasible fractional solu-
tion l′(. . . ) such that∑

e∈EG

l′(u, v)c(u, v) = O(log k)
∑
e∈EG

l(u, v)c(u, v).

The embedding is constructed by a randomized algorithm. So for any input the
solution induced by the embedding is sufficiently good with high probability. The
probability depends only on the random choices made by algorithm and not on
any assumption about the input.

To describe this algorithm, assume that |VH | is power of 2, i.e., |VH | = 2τ . We
use l(. . . ) as a distance function. Furthermore, for any set of vertices A ⊆ V let
l(u,A) = minv∈A l(u, v). Now we let L = q log k where q is a constant that will
be determined later. The dimension of the embedding is d = τL = O(log2 k).
For l = 1, . . . , L t = 1, . . . , τ , construct the set Atl by choosing 2τ−t = k

2t
points

from VH uniformly at random with replacement. The embedding function h is
then defined to be

htl(v) = l(v, Atl),∀v ∈ VG. (2.4)

We first state 2 key lemmas and show how they imply that the embedding is good.
Than we will prove both of the lemmas according to presentation of Shmoys [72].

Lemma 3. ([72]) For each edge (u, v) ∈ EG, ||h(u)− h(v)||1 ≤ d.l(u, v).

Lemma 4. ([72]) With probability at least 1/2

||h(si)− h(ti)||1 ≥
L.l(si, ti)

88
, ∀i ∈ {1, . . . , k} (2.5)

In a polynomial time we can check if a particular embedding h satisfies (2.5).
Therefore we can arbitrarily increase the probability of success by repeatedly
constructing independent embeddings. We can obtain a Las Vegas-style algorithm
where the performance is guaranteed and the expected running time is polynomial
by iterating the procedure until an embedding satisfying (2.5) is found.
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Observe that Lemmas 3 and 4 can be easily combined. In case h satisfies
(2.5):

k∑
i=1

di||h(si)− h(ti)||1 = Ω(log k
k∑
i=1

dil(si, ti)) = Ω(log k).

On the other hand, Lemma 3 implies that∑
(u,v)∈EG

c(u, v)||h(u)− h(v)||1 = O(log2 k)
∑

(u,v)∈EG

c(u, v)l(u, v).

Combining these two equations we get the following theorem:

Theorem 3. ([72]) With probability at least 1/2 the embedding h induces a fea-
sible solution l′(. . . ) of objection function value:∑

(u,v)∈EG

c(u, v)l′(u, v) = O(log k)
∑

(u,v)∈EG

c(u, v)l(u, v).

([72]) By applying this theorem starting with the optimal solution l(u, v) to
the linear program (D2b) ( and thus the optimal solution to (D2c) as well) we
obtain the following corollary.

Corollary 4. There is a randomized polynomial-time algorithm that with prob-
ability at least 1/2 computes a cut of sparsity ratio within an O(log k) factor of
the optimal solution.

Now we show the proofs of needed lemmas.

Proof of Lemma 3. For any set A ⊆ V and edge (u, v) ∈ EG

l(u,A) ≤ l(u, v) + l(v, A)
l(u,A)− l(v, A) ≤ l(u, v).

Symmetrical argument leads to

l(v, A)− l(u,A) ≤ l(u, v).

By combining these two we get

|l(v, A)− l(u,A)| ≤ l(u, v).

By definition :

||h(u)− h(v)||1 =
τ∑
t=1

L∑
l=1

|htl(u)− htl(v)| =
τ∑
t=1

L∑
l=1

|l(u,Atl)− l(v,Atl|.

Finally when we put everything together, we see that

||h(u)− h(v)||1 ≤
τ∑
t=1

L∑
l=1

l(u, v) = τLl(u, v) = d.l(u, v).
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Now comes the hardest part, the proof of Lemma 4.

Proof of Lemma 4. Firstly, we focus on one particular commodity i and prove
that with probability at least 1− 1

2k
holds ||h(si)−h(ti)||1 = Ω(L.l(si, ti)). To see

that this claim implies the lemma observe that probability

Pr(∀i ∈ {1, . . . , k}, ||h(si)− h(ti)||1 = Ω(L.l(si, ti))) ≥
k∑
i=1

1− (1− 1

2k
) =

1

2
.

Where inequality holds from unions bound. For v ∈ {si, ti} let

Bl(v, r) = {w ∈ VH : l(v, w) ≤ r}
B◦l (v, r) = {w ∈ VH : l(v, w) < r}.

Let r0 = 0 and let rt be the minimum of the set {r|2t ≤ |Bl(si, r)| ∧ 2t ≤
|Bl(ti, r)|}. Furthermore, we denote by t̄ the minimum of the set {t|rt ≥ l(si,ti)

4
}

and reset rt̄ = l(si,ti)
4

. Observe that thanks to triangle inequality we have ensured
that Bl(si, rt̄) and Bl(ti, rt̄) are disjoint.

We wish to prove that h embeds si and ti in such way that they are reasonably
far apart as compared to l(si, ti). Since in l1 norm we compute distances by
summing distances over all coordinates, we can prove this by showing that with
sufficiently high probability each coordinate of h contributes a certain distance to
the total distance between si and ti. To be more accurate, we will show that each
of the coordinates htl is likely to contribute distance rt − rt−1. So by summing
this, we get

||h(si)−h(ti)||1 =
τ∑
t=1

L∑
l=1

|htl(si)−htl(ti)| ≥
t̄∑
t=2

L(rt−rt−1) = Lrt̄ = Ω(Ll(si, ti)).

Which we wish to prove.
Observe that for a set A ⊆ VH we have A ∩ B◦l (si, rt) = ∅ if and only if

l(si, A) ≥ rt.Thus if we denote by Etl, t = 1, . . . , t̄, l = 1, . . . , L the event:

Atl ∩B◦l (si, rt) = ∅ ∧ Atl ∩Bl(ti, rt−1) 6= ∅,

then Etl implies that

|htl(si)− htl(ti)| = |l(si, Atl)− l(ti, Atl| ≥ rt − rt−1.

And this is exactly what we want. Now we only need to show that Etl is likely to
occur. To bound this probability though, we need to calculate some preliminaries.

Consider the following illustrative example. Suppose that we are given a
ground set X. We specify the set G,G ⊆ X to be a good set and additionally we
specify a bad set B,B ⊆ X,B ∩G = ∅. Now A is formed by selecting p elements
of X independently and uniformly at random from X (with replacement). Then

Pr[(A ∩G 6= ∅) ∧ (A ∩B = ∅)] = Pr[A ∩G 6= ∅|A ∩B = ∅]Pr[A ∩B = ∅]
≥ Pr[A ∩G 6= ∅].P r[A ∩B = ∅].

(2.6)
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To see the last inequality observe that knowing the elements of A are not selected
from B can only increase the probability that they are selected from G. For any
set Y, Y ⊆ X we have

Pr[A ∩ Y = ∅] =

(
1− |Y |
|X|

)p
.

If p = |X|
|Y | , then this bound approaches 1

e
as p goes to infinity and is always within

[1/4, 1/e] if |X||Y | ≥ 2. If we take a constant β and p = β( |X||Y | ), then holds:(
1

4

)β
≤ Pr[A ∩ Y ] ≤

(
1

e

)β
. (2.7)

Now we go back to the event Etl, t = 1, . . . , t̄, l = 1, . . . , L. Without loss of
generality the radius rt was determined by the ball around si. To apply the
previous calculations set

A = Atl
X = VH
B = B◦l (si, rt)
G = Bl(ti, rt).

Now we have
p = 2τ−t

|X| = 2τ

|B| < 2t

|G| ≥ 2t−1.

Which implies p < |X|
|B| and p ≥ (1/2) |X||G| . Moreover, observe that |X||B| > 2. Now

we can use (2.7) in following way:

Pr[A ∩B = ∅] ≥ 1
4

Pr[A ∩G 6= ∅] ≥ (1− (1
e
)
1
2 .

By plugging it to (2.6) we have

Pr[Etl] = Pr[(A∩G 6= ∅)∧(A∩B = ∅)] ≥
1− (1

e
)
1
2

4
≥ 1

11
, t = 1, . . . , t̄, l = 1, . . . , L.

Notice that the above calculation also apply in case t = t̄.
Now we would like to apply Chernoff bounds, where we would like to have the

sum of 0 − 1 variables. Consider the following, fix the particular t ∈ {1, . . . , t̄}
and define Xl, l = 1, . . . , L as:

Xl =

{
1 if Etl occurs
0 otherwise

Now we can apply the Chernoff bound to the sum
∑L

l=1Xl, to show that it does

not deviate too much from its expectation E[
∑L

l=1Xl] =
∑L

l=1 E[Xl] ≥ L
11

. We
use following statement of Chernoff bound: let E[

∑
lXl] = µ, then

Pr[
∑
l

Xl <
µ

2
] ≤ e−µ/8.
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(This follows, for example, from Theorem 4.2 from work of Motwani and Ragha-
van [61]) Now we can see that, if

∑L
l=1 Xl ≥ L/22, then it means that at least for

L/22 of the coordinates htl, l = 1, . . . , L the event Etl occurs. Which leads to

L∑
l=1

|htl(si)− htl(ti)| ≥ (rt − rt−1)
L

22
. (2.8)

Since µ ≥ L
11

= q log k
11

, we can let q to be 200 and resulting probability will be less
than 1

(2k) log(2k)
. Inequality (2.8) fails to hold with probability at most 1

2k log(2k)
.

We know that t̄ ≤ log(2k). It follows that (2.8) holds for every t = 1, . . . , t̄
with probability at least 1 − ( 1

2k
). And this finally leads to the fact that with

probability at least 1− ( 1
2k

),

t̄∑
t=1

L∑
l=1

|htl(si)− htl(ti)| ≥
t̄∑
t=1

(rt − rt−1)
L

22
= rt̄

L

22
= l(si, ti)

L

88
. (2.9)

Which completes the proof. This also completes the part where we used the
presentation of Shmoys [72].

2.2.3 ARV algorithm

In this section we present results and techniques from the work of Arora, Rao,
Vaziriani [10]. In this fundamental work they give a O(

√
log n)-approximation

algorithms for Sparsest cut, Expansion, Balanced separator and Graph
conductance problems. Which is improvement over O(log n)-approximation
provided in work of Leighton and Rao [53]. Expander flows as interesting and
natural certificates for graph expansion were introduced in this paper. A lot
of later research in the area of graph partitioning refers to this work and uses
its results. Introduction of the expander flows led to work of Khandekar, Rao
and Vaziriani [50], where they used expander flow approach to develop the Cut-
Matching game framework. This framework was again further explored by others.
We especially recognize the work of Orecchia et al [49, 62]. In this paper Arora
et al. give two versions of algorithm. One uses SDP and results in theory of
geometric embeddings. The second version uses the expander flows approach.

As was mentioned in the beginning of section 2.2 from geometric approach
the key idea of underlying algorithms for graph partitioning is to spread out the
vertices in some abstract space while not stretching the edges too much. Finding
a good graph partition is then accomplished by partitioning this abstract space.
In this view, spectral algorithms are mapping the vertices to the points on the real
line in such way. Intuitively speaking, snipping this line at a random point should
cut few edges leading to a good cut. In section 2.2.2 we described embedding
which uses linear programming approach.

Arora et al. in their paper [10] present approach, which maps the vertices
to points in an n dimensional space such that the average squared distance be-
tween vertices is a fixed constant, but the average squared distance between the
endpoints of edges is minimized. Furthermore, they show that these squared
distances form a metric referred as l22 metric.

l22(u, v) = (||u− v||2)2
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.
We achieve embedding of vertices with this metric by mapping the vertices

to the points on the unit sphere in Rn such that the squared distances form a
metric. Mainly we need to choose these point in such way that triangle inequality
holds within l22 metric. We refer to this embedding as an l22-representation of the
graph.

Definition 12. (l22 Representation) An l22-representation of a graph G = (V,E)
is an assignment of a point (vector) to each node, say vi, i ∈ V , such that for all
i, j, k hold:

|vi − vj|2 + |vj − vk|2 ≥ |vi − vl|2 (triangle inequality).

An l22-representation is called a unit-l22 representation if all points lie on the unit
sphere. Equivalently can be said that all vectors have unit length.

Alternative descriptions and remarks:

• Geometrically speaking, the above triangle inequality says that every vi and
vk subtend a nonobtuse angle at vj.

• Every positive semidefinite n×n matrix has a Cholesky factorization, name-
ly, a set of n vectors v1, v2, . . . , vn such that Mij =< vi, vj >. Thus a
unit-l22 representation for an n node graph can be alternatively viewed as
a positive semidefinite n × n matrix M whose diagonal entries are 1 and
∀i, j, k,Mij +Mjk −Mik ≤ 1.

When the average l22 distance among all vertex pairs is some fixed constant %,
we say that it is well-spread. The sum of the l22 distances between the endpoints of
edges will be the value of such representation. Now observe that every c-balanced
cut in the graph corresponds to a l22-representation in a natural way: map each
side of the cut to the one of two antipodal points on the unit sphere. It is easy to
see that l22 distance between these points is 4. Then it is clear that value of such
representation is 4 times the cut capacity, since only edges contributing to the
value are those that cross the cut and each of them contributes 4. Next consider
case when on the one side of such cut there are at least cn vertices and on the
other side there are (1 − c)n vertices. Then the average l22 distance between the
vertices is at least:

4cn(1− c)n(
n
2

) ≥ 4c(1− c)n2

n2
= 4c(1− c).

Now it should be clearly seen that following SDP is relaxation for αc(G)
(scaled by cn).
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min
1

4

∑
(i,j)∈E

||vi − vj||2 (k)

subject to:

||vi||2 = 1 ∀i ∈ V (l)

||vi − vj||2 + ||vj − vk||2 ≥ ||vi − vl||2 ∀i, j, k ∈ V (m)∑
i<j

||vi − vj||2 ≥ 4c(1− c)n2 . (n)

Objective function (k) corresponds to the number of edges crossing the cut, di-
viding this value by cn we get αc(G). Constraints (l, m) provide unit-l22 represen-
tation. Thanks to the last constraint (n) the average l22 distance between vertices
is high. Constraint (n) in above SDP also motivates following definition:

Definition 13. An l22-representation is c-spread if equation (n) holds.

Similarly the following is SDP for sparsest cut, scaled by n.

min
∑

(i,j)∈E

||vi − vj||2 (o)

subject to:

||vi − vj||2 + ||vj − vk||2 ≥ ||vi − vl||2 ∀i, j, k ∈ V (p)∑
i<j

||vi − vj||2 = 1 (q)

For Sparsest Cut Problem we give different relaxation. For any cut (S, S̄)
consider a vector representation that places all nodes in S at one point of the
sphere of radius 1/(|S||S̄|) in l22 metric and all nodes in S̄ at the diametrically
opposite point. Distance between these 2 points is then 1/|S||S̄|. To see how this
representation of a cut is feasible solution to the above SDP consider following.

Objective function (o), corresponds to sparsity ratio and is exactly E(S,S̄)

|S||S̄| when

using the above representation. Constraint (p) provide triangle inequality. We
do not have requirement to assign unit-length vectors to vertices as in (l). The
last constraint (q) again keep average squared distance between vertices to be

constant and is |S|·|S̄||S||S̄| = 1 considering above representation. And thus, this SDP

is a relaxation of Sparsest Cut Problem.
Of course, optimal solution will not in general correspond to a cut. To provide√

log n-approximation algorithm for Sparsest cut and Expansion we need to
prove

√
log n integrality gap of these relaxations is O(

√
log n). The crux of ARV

paper is to extract a low-capacity cut from this embedding.
The key to this is following result about the geometric structure of well-spread

l22-representations.

Definition 14. ( ∆-Separated) If v1, v2, . . . , vn ∈ RD, and ∆ ≥ 0, two disjoint
sets of vectors S,T are δ − separated if for every vi ∈ S, vj ∈ T, ||vi − vj||2 ≥ ∆.
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Theorem 5. ([10]) For every c > 0, there are c′, b > 0 such that every c-spread
unit-l22-representation with n points contains ∆-separated subsets S,T of size c′n,
where ∆ = b√

logn
. Furthermore, there is a randomized polynomial-time algorithm

for finding these subsets S,T.

These sets S and T can be used to find a good cut as follows: consider all points
within some distance δ ∈ [0.∆] from S, where δ is chosen uniformly at random.
The value of a representation determines the quality of this cut. Starting with a
representation of minimum value, the expected number of edges crossing such a
cut must be small, since the length of a typical edge is short relative to ∆.

More formally this can be described as corollary to Theorem 5.

Corollary 6. ([10]) There is a randomized polynomial-time algorithm that with
high probability finds a cut that is c′-balanced and has size O(W

√
log n). Where

W = 1
4

∑
(i,j)∈E ||vi − vj||2 is the optimum value of SDP defined by equations

(k)-(n).

Proof. Thanks to Theorem 5 we have algorithm that produces ∆-separated sub-
sets S,T , for ∆ = b√

logn
. To each edge e = {i, j} associate its scaled l22 length

we = 1
4
||vi − vj||2. Now we have W =

∑
e∈E we. Sets S and T are at least ∆

apart with respect to this distance. Let Vs denote the vertices whose vectors are
contained within distance s of S and V0 be the vertices in S. To produce cut we
pick random number r between 0 and ∆. Then we output the cut (Vr, V \ Vr).
We know that S ⊆ Vr, T ⊆ V \ Vr and |S|, |T | ≥ c′n, thus this is c′-balanced cut.

Let Es be the set of edges leaving Vs. Each edge e = {i, j} only contributes to
Es for s in the open interval (s1, s2), where s1 = d(i, V0) and s2 = d(j, V0) where
d(i, V ) = minj∈V

1
4
l22(i, j). From the triangle inequality follows that |s2−s1| ≤ we.

Hence

W =
∑
e∈E

we ≥
∫ ∆

s=0

|Es|.

And thus the expected value of X = |Es| over the interval {0,∆} is

E[X] =

∫ ∆

s=0

|Es|
1

∆
≤ W

∆
.

Thanks to Markov inequality:

P (X ≥ 2E[X]) ≤ 1/2.

The algorithm thus produces a cut of size at most 2W/∆ = O(W
√

log n) with
the probability at least 1/2.

The value of ∆ can be improved only by constant factor [10].
The following algorithm is the realization of Corollary 6. For a given a c-spread

l22 representation (which we can obtain by SDP program described above), it finds
∆-separated sets of size Ω(n)

The proof that SET-FIND works for ∆ = Ω(1/
√

log n) can be find in ARV pa-
per [10] and we will not cover it here. To sum up, ARV algorithm for Balanced
Separator first computes SDP relaxation for αc(G) which results in c-spread
unit-l22-representation v1, v2, . . . , vn ∈ Rd. This representation is the input for
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SET-FIND:
Input: A c-spread unit-l22-representation v1, v2, . . . , vn ∈ Rd.
Parameters: Separation parameter ∆, balance to be achieved c′, and projection
gap, δ.

1. Project the points on a uniformly random line u passing through the origin,
and compute the largest value m where half the points v, have 〈v, u〉 ≥ m.
Then, we specify that

Su = {vi : 〈vi, u〉 ≥ m+
δ√
d
},

Tu = {vi : 〈vi, u〉 ≤ m}.

If |Su| < 2c′n, HALT.

2. Pick any vi ∈ Su, vj ∈ Tu such that |vi − vj|2 ≤ ∆, and delete vi from Su
and vj from Tu. Repeat until no such vi, vj can be found and output the
remaining sets S, T .

Figure 2.2: SET-FIND

the SET-FIND algorithm, which produces Ω(1/
√

log n)-separated sets S and T.
Finally Corollary 5 gives us the desired cut.

Algorithm for achieving approximation O(
√

log n) for Sparsest cut is sim-
ilar. Let β be the optimal solution of SDP (o)- (q). Then following holds.

Theorem 7. ([10]) There is a polynomial-time algorithm that, given a feasible
SDP solution with value β, produces a cut (S, S̄) satisfying

|E(S, S̄|
|S|

= O(β · n ·
√

log n).

The proof branches into two cases. One uses SET-FIND procedure from bal-
anced version of a problem. The other case must satisfy prerequisites of following
lemma

Lemma 5. For every constant c, τ where c < 1, τ < 1/8 there is a polynomial-
time algorithm for the following task. Given any feasible solution β =

∑
{i,j}∈E ||vi−

vj||2 to SDP (o)- (q), and node k such that the geometric ball of squared-radius
τ/n2 around vk contains at least cn vectors, the algorithm finds a cut (S, S̄) with
expansion at most O(βn

c
).

We just give the algorithm that provides the above result. Full proof as well
as this lemma can be find in the work ARV [10]. Consider a geometric ball of
squared radius τ

n2 around vertex vk as stated in lemma. Let X be the subset of
nodes that corresponds to the vectors in this ball. Now let Vs be the set of nodes
whose distance from X is at most s, for s ≥ 0. And let Es be the set of edges
leaving Vs. The algorithm consists of doing a breadth-first search on the weighted
graph starting from X. We find s for which the cut (Vs, V̄s) has the lowest sparsity
and output this cut.
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In case the conditions of Lemma (5) do not hold, we run SET-FIND.
This concludes section about ARV algorithm using SDP. In section 2.4 wel

introduce the notion of expander flows as approximate certificates of expansion.

2.3 Spectral graph theory

In this section we first introduce some facts from the spectral graph theory, es-
pecially different kinds of matrices assiociated with graphs and their eigenvalues
and eigenvectors. Very important is the introduction of spectral gap. We want
to present the connection between conductance and spectral gap by showing the
proof of the Cheeger inequality in the subsection 2.3.5. Thanks to the tight re-
lation of conductance, expansion and sparsity (see section 1.1.3) the inequality
really shows the relation of spectral gap with the other two criteria as well. This
leads to the straightforward spectral algorithm for graph partitioning presented
in the section 2.3.7.

The other concepts we want to point out are the introduction of random walks,
relation of spectral gap with random walks and mixing of random walks in the
section 2.3.6. Together with the Cheeger inequality we also get the connection
of random walks with expansion graph properties. This will be important in the
section 2.4.2 about the Cut-Matching game, where we use these connections and
use some ideas from the spectral graph theory.

2.3.1 Background from linear algebra

Int this subsection we present well-known facts from linear algebra, mainly with
focus on eigenvalues. We used the publication of Jukna [45] for this section.

A scalar λ is an eigenvalue of a square real matrix A if the equation Ax = λx
has solution x ∈ Rn, x 6= ~0. This can be also expressed by stating that λ is a root
of characteristic polynomial pA(z) = det(A−zI), with I being a unit matrix with
ones on the diagonal, and zeros elsewhere. A non-zero vector x with Ax = λx
is called an eigenvector corresponding to the eigenvalue λ. Observe that pA has
degree n, so we can have at most n (complex) eigenvalues. If the matrix A is
symmetric that is Aᵀ = A, then all its eigenvalues are real numbers. We state
some standard facts about eigenvalues of a real symmetric n×n matrix A = (aij):

1. A has exactly n (not necessarily distinct) real eigenvalues λ1 ≥ · · · ≥ λn.

2. There exists a set of n eigenvectors x1, . . . , xn, one for each eigenvalue that
are normalized and mutually orthogonal that is, ||xi||2 = 1 and 〈xi, xj〉 = 0
over the real numbers. Hence, vectors x1, . . . , xn form an orthonormal basis
of Rn.

3. The rank of A is equal to the number of its nonzero eigenvalues, including
multiplicities: rank(A) = |{i : λi 6= 0}|.

4. The sum of all eigenvalues
∑n

i=1 λi is equal to the trace tr(A) =
∑n

i=1 =∑n
i=1 aii.

5. The product
∏n

i=1 λi of all eigenvalues is equal to det(A).
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6. Perron-Frobenius theorem: If A = (aij) is a real n × n matrix with non-
negative entries aij ≥ 0 and irreducible, then there is a real eigenvalue r of
A such that

min
i∈{1,2,...,n}

n∑
j=1

aij ≤ r ≤ max
i∈{1,2,...,n}

n∑
j=1

ai,j

and any other eigenvalue λ satisfies |λ| ≤ r. A matrix is reducible if there
is a subset I ⊆ {1, 2, . . . , n} such that aij = 0 for all i ∈ I and j /∈ I. In
particular, an adjacency matrix of a graph is irreducible iff the graph is
connected. The Perron–Frobenius eigenvalue r is simple. Both right and
left eigenspaces associated with r are one-dimensional.

Important characteristic of matrices, which is connected to eigenvalues is whether
given matrix is semidefinite. A symmetric n × n matrix A is called positive
semidefinite, if all of its eigenvalues are nonnegative. This property is often de-
noted by A � 0. The matrix is positive definite, if all of its eigenvalues are
positive. There are many equivalent ways of defining positive semidefinite matri-
ces some of which we state in the list below, which we have from the publication
of Lovasz [57].

Lemma 6. ([45]) For a real symmetric n× n matrix A, the following are equiv-
alent:

1. A is positive semidefinite.

2. The quadratic form xᵀAx is nonnegative for every x ∈ Rn.

3. A = UᵀU for some matrix U.

4. A is nonnegative linear combination of matrices of the type xxᵀ.

5. The determinant of every symmetric minor of A is nonnegative.

Observe that from 2 follows that the diagonal entries of any positive semidef-
inite matrix are nonnegative. The sum of two positive semidefinite matrices is
again positive semidefinite, this follows from 2 again.

Definition 15. Let A ∈ Rn×n, x ∈ Rn. The quantity

rA(x) =
xᵀAx

xᵀx
∈ R

is called a Rayleigh quotient.

Observe that if x is an eigenvector of A, then Ax = λx and

rA(x) =
λxᵀx

xᵀx
= λ.

In generality one can show that ∀x ∈ Rn, λmin ≤ r(x) ≤ λmax.

Theorem 8. For the k-th largest eigenvalue λk of a symmetric n × n matrix A
holds
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1.
λk ≤ rA(x), for x ∈ 〈u1, . . . , uk〉 (2.10)

and
λk ≥ rA(x) for x ∈ 〈u1, . . . , uk−1〉⊥ (2.11)

where u1, . . . , uk are eigenvectors associetad with eigenvalues, λ1, . . . , λk.

2.

λk = max
dimU=k

min
x∈U

xᵀAx

xᵀx
= min

dimU=k−1
max
x⊥U

xᵀAx

xᵀx
. (2.12)

In terms of Rayleigh quotient it is

λk = max
dimU=k

min
x∈U

rA(x) = min
dimU=k−1

max
x⊥U

rA(x), (2.13)

where the maximum/minimum is over all subspaces U of a given dimension
and over all nonzero vectors x in the respective subspace. In particular, this
leads to:

λ1 = max
x 6=0

xᵀAx

xᵀx
= max
||x||2=1

xᵀAx

and

λ2 = max
x⊥~1

xᵀAx

xᵀx
= max

x⊥~1,||x||2=1
xᵀAx,

where ~1 is the all-1 vector and the second equality follows since we can
replace x by x/||x||, since the first maximum is over all nonzero vectors x.

Proof. We only prove the first part of an equation (2.12). The proof of the
second one is analogous. First note that the Rayleigh quotient is the invariant
under replacing x by any nonzero multiple of cx. Thus we can without loss of
generality assume that x is a unit vector that is ||x||2 = 1 and hence xᵀx = 1 (by
replacing x→ cx with c = 1/||x||2, if necessary).

Now we can take an orthonormal basis of eigenvectors u1, . . . , un. As this
is the basis of Rn x can be written as x =

∑n
i=1 aiui and the expression xᵀAx

reduces to

xᵀAx = (
n∑
i=1

aiui)
ᵀA(

n∑
i=1

aiui) =
n∑

i,j=1

〈ui, λjuj〉 =
n∑
i=1

λi,

where the last equality follows from the fact that the scalar product of vectors ui

and uj is 1 if i = j, and is 0 otherwise. Similarly we have that xᵀx =
∑n

i=1 a
2
i , and

for unit vector x we get
∑n

i=1 a
2
i = 1. Consequently, the Rayleigh quotient rA(x)

of unit vector x can be interpreted as the weighted average of the eigenvalues.
Now let U be the subspace ofRn generated by the first k eigenvectors u1, . . . , uk.

We get xᵀAx =
∑k

i=1 a
2
iλi and

∑k
i=1 a

2
i = 1 for any unit vector x ∈ U . Observe

that weighted average rA(x) of the eigenvalues λ ≥ · · · ≥ λk is at least the
smallest of the first k eigenvalues, so minx∈U rA(x) ≥ λk holds for this special
k-dimensional subspace U. This proves 1. Because U = 〈u1, . . . , uk〉 and

∀x ∈ U λk ≤
xᵀAx

xᵀx
= rA(x).
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This also proves that exists U ⊆ Rn with dim U = k, for that holds λk ≤
minx∈U rA(x) and thus it also holds that

λk ≤ max
dimU=k

min
x∈U

xᵀAx

xᵀx
.

On the other hand, consider any subspace U of dimension k and subspace V
of dimension n−k+1 generated by the last n−k+1 eigenvectors uk, uk+1, . . . , un.
Since rA(z) is a weighted average of the last n−k+1 eigenvectors uk, uk+1, . . . , un
and the largest of these eigenvalues being λk, this proves

∀x ∈ V = 〈u1, . . . , un〉⊥ λk ≥ rA(x).

We know that these two subspaces must have a nontrivial intersection. There
must exist a nonzero vector z ∈ U ∩ V . Without a loss of generality we can
assume that z =

∑n
j=k bju

j is a unit vector, thus zᵀz =
∑n

j=k b
2
j = 1 and we

obtain rA(z) =
∑n

j=k b
2
jλj ≤ λk, since rA(z) is a weighted average of the last

n − k + 1 eigenvalues and the largest of these eigenvalues being λk. So we have
that minx∈U rA(x) ≤ rA(z) ≤ λk holds for any k-dimensional subspace. This
proves that

λk ≥ max
dimU=k

min
x∈U

xᵀAx

xᵀx
.

2.3.2 Introduction to spectral graph theory

In this section we introduce some concepts and methods of spectral graph theory.
The spectral graph theory has a connection to virtually all methods of the graph
partitioning. The spectrum of matrix is the collection of its eigenvalues. By
analysing spectrum of matrices associated with a graph, we can figure out lot of
information about the graph itself. Now we introduce some of these matrices, see
how they relate to each other. We will follow the publication of Laszlo [57]. We
introduce the adjacency matrix, the Laplacian and the transition matrix of the
random walk and their eigenvalues.

Let G be a finite, undirected, simple graph G = (V,E) with a node set
V = {1, . . . , n}. The adjacency matrix of G is defined as the n × n matrix
AG = (Aij) in which

Aij =

{
1, if i and j are adjacent,
0, otherwise.

This definition can be extended to the weighted case and to the graphs with
multiple edges. We just let Aij be the weight of the edge (i, j) or the number of
edges connecting i and j in case of multigraph. Information about loops can be
on the diagonal.

We define Laplacian of the graph as the n× n matrix LG in which:

Lij =


di if i = j
−Aij if i and j are adjacent
0 otherwise

(2.14)
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Here di denotes the degree of the node i. In the case of weighted graphs we define
di =

∑n
j=1 Aij. So it holds

LG = DG − AG,

where DG is the diagonal matrix of the degrees of G.
One commonly used matrix which is derived from the Laplacian is the nor-

malized Laplacian of Graph L(G) defined as:

Lu,v =


1 if u = v and dv 6= 0
− 1√

dvdu
if u and v are adjacent

0 otherwise

(2.15)

Let DG denote the diagonal matrix with the (v, v)-th entry having value dv. Then
we can write:

L = D
−1/2
G LGD

−1/2
G .

Because the order of L(G) equals to the number of graph vertices and L(G) is
symmetric, we have n nonegative eigenvalues and their corresponding eigenvec-
tors. Let λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of L and w1, . . . , wn associated
eigenvectors. We use them in the following sections. Observe that the vector

w1 =
1√
2m
·~1D1/2 (2.16)

is associated with the eigenvalue λ1. As we will see, the second eigenvalue λ2 is
often referred as the spectral gap λG. We further introduce the spectral gap in
the section 2.3.3.

The transition matrix of the random walk on G is defined as the n×n matrix
PG = (Pij) in which

Pij =
1

di
Aij. (2.17)

So PG = D−1
G A. We use the transition matrix in the section 2.3.6 about random

walks.
The matrices AG and LG are symmetric thus their eigenvalues are real. The

matrix PG is not symmetric, but it is conjugate to a symmetric matrix. Let

NG = D
−1/2
G AGD

−1/2
G ,

then NG is symmetric and

PG = D
−1/2
G NGD

1/2
G .

The matrix NG is symmetric, so its eigenvalues are real. The matrices PG and
NG have the same eigenvalues and so all eigenvalues of PG are real as well. We
denote the eigenvalues of our matrices

AG : β1 ≥ β2 ≥ · · · ≥ βn,
LG : µ1 ≤ µ2 ≤ · · · ≤ µn
PG : ν1 ≥ ν2 ≥ · · · ≥ νn,
LG : λ1 ≤ λ2 ≤ · · · ≤ λn.
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To complete the list of common matrices associated with graph, we also use the
incidence matrix of G. It comes in two flavors. Let G = (V,E) and V = {1, . . . , n}
and E = {e1, . . . , em}, and let BG be the n×m matrix for which

(BG)ij =

{
1 if i is an endpoint of ej
0 otherwise

The following matrix similar to this and many times is more useful. In graph G
fix an orientation of each edge and let vec(G) be the resulting graph. Then let
B ~G be the n×m matrix for which

(B ~G)ij =


1 if i is the head of ej in ~G

−1 if i is the tail of ej in ~G
0 otherwise

Now to relate the incidence matrix to the Laplacian LG, observe that indepen-
dently of chosen orientation of edges holds:

LG = B ~GB
ᵀ
~G
.

It is worth while to express this equation in terms of quadratic forms:

xᵀLGx =
n∑

(i,j)∈E)

(xi − xj)2. (2.18)

2.3.3 The largest eigenvalue and the spectral gap

In this section we continue to follow the publication of Laszlo [57] and explore
the properties of the largest eigenvalue βmax associated with Adjacency matrix
and introduce the notion of the spectral gap. Thanks to the Perron-Frobenius
Theorem we immediately see that if G is connected, then the largest eigenvalue
βmax of AG has multiplicity 1. This eigenvalue corresponds roughly to the average
degree of the graph. More precisely, let dmin denote the minimum degree of G, let
d̄ be the average degree, and let dmax be the maximum degree. Then the following
lemma holds [57].

Lemma 7. ([57]) For every graph G,

max{d̄,
√
dmax} ≤ βmax ≤ dmax.

On the other hand, for the Laplacian LG this corresponds to the smallest
eigenvalue, which is really uninteresting, since it is 0.

Much more interesting value is the gap between the second and the first eigen-
value. If the graph is connected, then the largest eigenvalue of the adjacency
matrix as well as the smallest eigenvalue of the Laplacian have multiplicity 1.
The gap between this and the nearest eigenvalue is called the spectral gap or the
eigenvalue gap λG. As the spectral gap is also referred the second smallest eigen-
value λ2 of the normalized Laplacian L of G and we use it in this form. In this
form we prove the Cheeger inequality in the section 2.3.5 and the relation of the
spectral gap to the speed of random walk convergence in the section 2.3.7.

35



2.3.4 Expanders and eigenvalues

We have already mentioned the expanders in the previous sections. Now we
explore the connection between the expanders and the eigenvalues. We still follow
the publication of Laszlo [57] in this section. Expanders play an important role
in many applications of the graph theory, in particular in the computer science.
The most important expanders are d-regular expanders, where d ≥ 3 is a small
constant. It is relatively easy to prove that such graphs exist by the ways of
probabilistic method. But an explicit construction of such graphs is not easy.
Besides the random construction methods the first deterministic construction was
found by Margulis [59]. Most of these constructions are based on deep algebraic
facts. An example of random construction is to pick d random perfect matching
on 2n nodes (independently, uniformly over all perfect matchings) and let G be
the union of them. Then after some moderately difficult analysis we deduce that
with positive probability for sufficiently small c is G d-regular c-expander. Now we
want to state and prove spectral characterization of d-regular expanders. Since
we consider only regular graphs, the adjacency matrix, the Laplacian and the
transition matrix are easily expressed and so we shall only consider the adjacency
matrix.

Theorem 9. ([57]) Let G be a d-regular graph.

1. If d− β2 ≥ 2cd, then G is an c-expander.

2. If G is an c-expander, then d− β2 ≥ c2

5
.

Proof of this statement can be found in Lovasz paper [57]. We present the
connection between the graph expansion properties and the spectral gap in the
section 2.3.5 by proving the Cheeger inequality. The Cheeger inequality expresses
this connection in terms of conductance, but expansion and conductance are
closely related and for d-regular graphs holds α(G)

d
= Φ(G).

2.3.5 The proof of the Cheeger inequality using eigenvec-
tors

In this section we follow the publication of Chung [42] and present the proof of
the Cheeger inequality in the form

2Φ(G) ≥ λG ≥
α2
G

2
≥ Φ2

G

2
,

where αG is the minimum conductance of all sets associated with the largest i
coordinates of the eigenvector w2 which is associated with λG. This way we can
focus on a linear number of choices for the cut, using the order determined by the
eigenvector instead of trying the exponential number of possibilities. The above
Cheeger inequality guarantess that the cut resulting from this efficient algorithm
has the conductance within quadratic factor of the optimum. This inequality
provides connection between the eigenvectors and the good cuts. As we have
seen in the section 2.3.1, the eigenvalue can be expressed in terms of the Rayleigh
quotient. First observe that to the first eigenvalue λ1 = 0 of L is associated
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eigenvector v1 = DG
~1. This is n-th largest eigenvalue of L and λG = λ2 is the

n− 1-largest eigenvalue, so thanks to the equation (2.11) it holds that

λG ≤ rL(x) for x ∈ U = {x ∈ Rn, x ⊥ w1} = 〈wn, . . . , w2〉.

From characterization of Rayleigh quotient we know that, rL(vk) = λk. So it
holds

λG = min
x⊥w1

rL(x) = min
x⊥1/

√
2m·D1/2

G
~1

xᵀLx
xᵀx

.

Recall the equation (2.16) from the section 2.3.2 for that w1 is the first eigenvector
of the normalized Laplacian. Now we show the inequality

λG ≤ 2Φ(G).

Consider

xᵀLx
xᵀx

=
xᵀD−1/2LD−1/2x

xᵀx
=

(D−1/2x)ᵀL(D−1/2x)

xᵀx
.

Now substitute y = D−1/2x and use quadratic form of Laplacian (2.18). Observe
that effectively the substitution can be written as yi = xi√

di
for i-th coordinate.

This leads to
(D−1/2x)ᵀL(D−1/2x)

xᵀx
=

∑
i∼j(yi − yj)2∑n

i=1 y
2di

, (2.19)

where we denote by i ∼ j the adjacency between vertex i and j in G. Thus the
sum goes over all edges of G. Let define another form of rayleigh quotient RL as:

RL(y) =

∑
i∼j(yi − yj)2∑n

i=1 y
2di

. (2.20)

Now let S be the set of vertices, such that Φ(G) = |E(S,S̄)|
min{vol(S),vol(S̄)} , then let x̃ be

the vector

x̃i =

{ √
di(1− vol(S)

vol(G)
) i ∈ S

√
di(− vol(S)

vol(G)
) i ∈ S̄

You can see that x̃ ⊥ w1:

x̃ᵀw1 = x̃ᵀ · 1√
2m
D

1/2
G
~1 see (2.16)

= 1√
2m
· (
∑

i∈S
√
di(1− vol(S)

vol(G)
)
√
di +

∑
i∈S̄
√
di(− vol(S)

vol(G)
)
√
di)

= 1√
2m
·
(
vol(S)(1− vol(S)

vol(G)
) + vol(S̄)(− vol(S)

vol(G)
)
)

= 1√
2m
·
(
vol(S)vol(G)−vol(S)(vol(S)+vol(S̄)

vol(G)

)
= 1√

2m
·
(
vol(S)vol(G)−vol(S)(vol(G))

vol(G)

)
= 0.

Now we substitute to equation (2.19) (Let ỹi = x̃i√
di

). For numerator we get∑
i∼j

(ỹi − ỹj)2 =
∑

i∼j,i∈S,j∈S̄

1 = |E(S, S̄)|.
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For denominator we get∑n
i=1 y

2
i di =

∑
i∈S(1− vol(S)

vol(G)
)2 +

∑
i∈S̄(− vol(S)

vol(G)
)2

= vol(S)(1− 2vol(S)
vol(G)

+ vol2(S)
vol2(G)

) + vol(S̄) vol
2(S)

vol2(G)

= vol2(S)(vol(S)+vol(S̄))+vol(S)vol2(G)−2vol(S)vol(G)
vol2(G)

= vol2(S)vol(G)+vol(S)vol2(G)−2vol(S)vol(G)
vol2(G)

= vol(S)(vol(S)+vol(G)−2vol(S))
vol(G)

= vol(S)(vol(S̄))
vol(G)

≥ 1/2 min{vol(S), vol(S̄)}.

Putting everything together, we have

λG ≤ rL(x̃) =
(D−1/2x̃)ᵀL(D−1/2x̃)

x̃ᵀx̃
=

∑
i∼j(ỹi − ỹj)2∑n

i=1 ỹ
2di

≤ 2|E(S, S̄|
min{vol(S), vol(S̄)}

≤ 2Φ(G).

Already in this part of the proof you can see how the eigenvectors relate to the
good cuts. Now we focus on the second part of the inequality, namely

λG ≥
α2
G

2
≥ Φ2(G)

2
,

where αG is the minimum conductance of subsets Si consisting of vertices with the
i largest values in the eigenvector associated with λG, over all i. Now let f denote
an eigenvector achieving λG. Then let g = D−1/2 · f , speaking of coordinates it
is gi = fi√

di
. Recall equation (2.19) to see that

λG =
(D−1/2f)ᵀL(D−1/2f)

fᵀf
=

∑
i∼j(gi − gj)2∑n

i=1 g
2di

= RL(g). (2.21)

As we have seen, λG = minx⊥w1 rLG(g) and 1√
2m
·
∑

i∈V
√
di · fi = 0. From this

and from the definition of g follows:∑
i∈V

gidi = 0 . (2.22)

We order the vertices so that

gi1 ≥ gi2 ≥ · · · ≥ gin .

Let Sj = {i1, . . . , ij} and define

αG = min
j

Φ(Si).

Now let r denote the largest integer such that vol(Sr) ≤ vol(G)/2. This together
with (2.22) this leads to∑

i∈V

g2
i di = min

c

∑
i∈V

(gi − c)2di ≤
∑
i∈V

(gi − gir)2di .

Now we let g+ and g− be the positive and negative part of g − gir as follows:

g+
i =

{
gi − gir if gi ≥ gir
0 otherwise
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g−i =

{
|gi − gir | if gi ≤ gir
0 otherwise

We consider

λG =

∑
i∼j(gi − gj)2∑

i∈V g
2
i di

≥
∑

i∼j(gi − gj)2∑
i∈V (gi − gir)2di

≥
∑

i∼j((g
+
i − g+

j )2 + (g−i − g−j )2)∑
i∈V ((g+

i )2 + (g−i )2)di

We can assume, without loss of generality that RL(g+) ≤ RL(g−) and therefore
we have λG ≥ RL(g+) since

a+ b

c+ d
≥ min{a

b
,
b

d
}.

We here use the notation

ṽol = min{vol(S), vol(G)− vol(S)},

so that
|E(Si, V \ Si)| ≥ αG · ṽol(Si).

Than we have

λG ≥ RL(g+)

=

∑
i∼j(g

+
i − g+

j )2∑n
i=1(g+

i )2di

=
(
∑

i∼j(g
+
i − g+

j )2)(
∑

i∼j(g
+
i + g+

j )2)

(
∑n

i=1(g+
i )2di)(

∑
i∼j(g

+
i − g+

j )2)

≥
∑

i∼j((g
+
i )2 − (g+

j )2)2

2(
∑n

i=1(g+
i )2di)

2 by the Cauchy-Schwarz inequality,

=
(
∑n−1

j=1 |(g
+
ij

)2 − (g+
ij+1

)2| · |E(Si, V \ Si)|)2

2(
∑n

i=1(g+
i )2di)

2 by counting,

≥
(
∑n−1

j=1 |(g
+
ij

)2 − (g+
ij+1

)2| · |αG|ṽol(Si))2

2(
∑n

i=1(g+
i )2di)

2 by the def. of αG

= αG
2 ·

(
∑n−1

j=1 (g+
ij

)2(|ṽol(Sj)− ṽol(Sj+1)|))2

(
∑n

i=1(g+
i )2di)

2

= αG
2 ·

(
∑n

j=1(g+
ij

)2dij)
2

(
∑n

i=1(g+
i )2di)

2

= αG
2 .

Which finally proves

2Φ(G) ≥ λG ≥
αG
2
≥ Φ2(G)

2
.

2.3.6 Spectral gap and random walks

In this section we introduce the notion of random walks and how they are con-
nected to the spectral gap and expansion properties of graphs. In this section we
use monology of Chung [41] and work of Lovasz [57].
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A random walk on a graph G = (V,E) is a random sequence (v0, v1, . . . ) of
nodes constructed as follows: We specify some initial distribution σ on vertex
set V. We choose a vertex v0 ∈ V according to the distribution σ as a starting
point. Now we select a vertex v1 from the neighbors of v0. Probability of selecting
each neighbor is 1/d(v0). Then we select v2 from the neighbors of v1 uniformly
at random and so on. The probabilities P [vk = v], v ∈ V form the distribution
denoted by σk. Important feature of the random walk is the fact that it is
independent of its history. It does not matter how many times you get to some
vertex v ∈ V . The probability P [vi+1 = v|vi = u] of getting from the vertex u to
the vertex v is always the same. It is independent of the number of steps or the
number of visits. Observe the simple fact that

∀u ∈ V,
∑
v∈V

P (u, v) = 1,

where P is the transition probability matrix introduced in section 2.3.2 and Puv =
P (u, v). We can see the distribution σ : V → R as a non-negative real vector
with

∑
v∈V σ(v) = 1. It also holds that σk = σ · P k. The random walk is said to

be ergodic if there is a unique stationary distribution π satisfying

lim
s→∞

σP s = lim
s→∞

σs = π.

Observe that the necessary conditions for the ergodicty of P are

1. irreducibility, i.e., for any u, v ∈ V , there exists some s such that P s(u, v) >
0. This means that the graph is connected. Every vertex v ∈ V is reachable
from every vertex u ∈ V .

2. aperiodicity, i.e., gcd{s : P s(u, u) > 0} = 1. This means that random walk
does not repeatedly alternate between 2 or more parts of graph. This holds
for any non-bipartite graph.

As it turns out, these are also sufficient conditions (see e.g. [16] ). Our major
concern is to determine number of steps for P s to be close to its stationary
distribution, given an arbitrary initial distribution. It is easy to check that the
distribution πi = di

2m
is stationary. Algebraically, this means that π is a left

eigenvector of P with eigenvalue 1:

πᵀP = πᵀ.

We recall the observation that

P = D−1A = D−1/2(I − L)D1/2 . (2.23)

It is important to realize the connection of eigenvalues of the transition matrix
P and the normalized Laplacian L. Consider the following: let wi, 1 ≤ i ≤ n be
orthonormal eigenvectors of L, then define vectors ∀i, 1 ≤ i ≤ n, νi = wi · D1/2.
Now by multiplying the P by νi from the left we get:

νi · P = wi ·D1/2D−1/2(I − L)D1/2 = wi − wiLD1/2

= wi − λi · wiD1/2 = (1− λi)wiD1/2 .
(2.24)
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Now we want to show how quickly f · P k converges to the stationary distri-
bution for any initial distribution f : V → R. Suppose that

f ·D−1/2 =
n∑
i=1

aiwi,

thus also holds

f =
n∑
i=1

aiwiD
1/2.

Recall the equation (2.16) from the section 2.3.2 for vector w1. This leads to:

a1 =
〈
∑n

i=1 aiwi, w1〉 ·
√

2m√
2m

=
〈f ·D−1/2,~1 ·D1/2〉
||~1 ·D1/2||2

=
〈f,~1〉√

2m
=

1√
2m

.

The first equality can be checked by realizing that vectors wi, 1 ≤ i ≤ n are
orthonormal. The second equality should be clear from discussion above. The
last equality follows from the fact that:∑

v∈V

f(v) = 〈f,~1〉 = 1. (2.25)

The stationary distribution can be expressed as:

π =
1

2m
~1D.

Then putting all together we get

||f · P s − π||2 = ||f · P s − 1
2m
~1D||2 see (2.25)

= ||f · P s − a1w1D
1/2||2 see (2.16)

= ||fD−1/2(I − L)sD1/2 − a1wiD
1/2||2 see (2.23)

= ||
∑n

i=2(1− λi)saiwiD1/2||2 see (2.24)

=
√∑n

j=1

(∑n
i=2(1− λi)saiwji

√
dj
)2

≤ (1− λ′)s maxx∈V
√
d(x)

√∑n
j=1

(∑n
i=2 aiw

j
i

)2

≤ (1− λ′)s maxx∈V
√
d(x)||fD−1/2||2

= (1− λ′)s maxx∈V
√
d(x)

√∑n
i=1(fi

1√
di

)2

≤ (1− λ′)smaxx∈V

√
d(x)

miny∈V

√
d(y)
||f ||2

≤ (1− λ′)smaxx∈V

√
d(x)

miny∈V

√
d(y)

≤ e−sλ
′ maxx∈V

√
d(x)

miny∈V

√
d(y)

,

where

λ′ =

{
λ2 if 1− λ2 ≥ λn − 1
2− λn otherwise

Or in another words:
|1− λ′| = max

i
|1− λi|.
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After substituting ε for ||f · P s − π||2 and expressing s we get

s ≥ 1/(λ′ log

(
maxx∈V

√
d(x)

εminy∈V
√
d(y)

)
),

where the l2 distance between fP s and stationary distribution is at most ε. So
we see that (up to logarithmic factors), s is the reciprocal of the spectral gap that
governs the mixing time.

The appearance of the smallest eigenvalue λn is usually not important in most
applications. In fact, only λ2 is crucial in the following sense. Note that λ′ is
either λ2 or 2− λn. Suppose the latter holds i.e., λn − 1 ≥ 1− λ2. Then we can
modify our random walk as follows. At each step we flip a coin and move with
a probability 1/2 and stay where we are with a probability 1/2. The stationary
distribution of this modified random walk (called lazy random walk) is the same
and the transition matrix P is replaced by 1/2(P + I). This corresponds to
the random walk on graph G′ formed by adding dv loop edges to each vertex
v. The eigenvalues of the normalized Laplacian L(G′) are half of the original,
λ̄i = λi/2 ≤ 1. Therefore,

1− λ̄2 ≥ 1− λ̄n ≥ 0,

and the convergence bound in l2 distance for the modified random walk becomes

2/λ2(log

(
maxx∈V

√
d(x)

εminy∈V
√
d(y)

)
).

Together with the Cheeger inequality we have the relation between the spec-
tral gap (recall that λ2 = λG), the conductance and the mixing time of the
random walks:

||f · P s − π||2 ≤ (1− λG)s
maxx∈V

√
d(x)

miny∈V
√
d(y)

≤ (1− Φ(G)2/2)s
maxx∈V

√
d(x)

miny∈V
√
d(y)

.

2.3.6.1 Mixing of random walks

In this section we want to intuitively describe the connection between the random
walks and the expansion properties of graphs which we proved in section 2.3.6. If
the random walk on a graph converges to the stationary distribution rapidly, then
the graph has high expansion. On the other hand, slow convergence implies the
low graph connectivity and the expansion. Why is it so? The initial distribution
can be seen as the spread of particles on the vertices, each particle doing its own
random walk. There is a good chance that in well connected components the
number of particles at each vertex will be about the same after small number of
steps. But when there is bridge or small cut between two graph parts, then it
is hard for particles to get from one side to another. Another way to illustrate
the concept is to spread the negative and positive charge on vertices. Negative
charge will have value −1/n and positive charge 1/n. It will be given by function
f : R → V , which can also be seen as a vector. We suppose that 〈f,~1〉 = 0,
where ~1 is the vector of all ones. That is, the sum of all charges is zero. We mix
the charge by application the random walk by multiplying the vector of charges
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Figure 2.3: Charge spreading

f by transition matrix P . Let ft be the assignment of charge values after t steps
of the random walk. Then f0 = f, ft = Pft−1. After few steps, we can expect
that the distribution of charge in well connected components will be about the
same. Look at figure 2.3 for the graphic illustration.

Now thanks to the vector ft we can identify these components and find a
sparse cut. This principle is used to find good partitions by random walks. In
spectral theory the spectral gap is connected to the mixing time of random walk
and its eigenvector roughly resembles the vector ft.

2.3.7 Spectral graph partitioning

In the previous sections we have seen the connection of the spectral gap λG and
its associated eigenvector to the conductance Φ(G) of graph G. We can use this
to formalize the spectral algorithm for graph partitioning. The key is computing
the eigenvector associated with λG sometimes called Fiedler eigenvector named
after the Czech mathematician Miroslav Fiedler who initiated the study of the
algebraic graph theory [23]. The algorithm 2 is pseudocode of the simple version
of spectral algorithm.
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Algorithm 2 Spectral partitioning

function SpectralPartitioning(G = (V,E))
w:=second eigenvector of L
Sort the entries of w = (w1, . . . , wn) as wi1 ≤ · · · ≤ win/2

≤ win
Sj = {i1, . . . , ij}
Sj = V \ Sj
k = arg minni=1Φ(Si) return (Sk, Sk)

end function

2.3.7.1 The analogy of spectral partitioning with a vibrating string

This section and its subsection are inspired by work of Demmel [38]. Another way
to find the intuition behind it, is to consider the knowledge from either physics
or music. We know that taut string when plucked has certain modes of vibra-
tion or harmonics. Snapshot of such modes can look like this: Surprisingly, the
eigenvectors of graph posses similar qualities. Especially, the second eigenvector
of L(G) corresponds to partition of graph to two parts effectively. Half of the
string is labeled +, and half is labeled -, bisecting the string into two equal sized
connected components. First eigenvector cant say anything about the structure
of the graph, but the 3rd, 4th and following eigenvectors can be used for parti-
tioning on more parts. Although, best results are achieved with 2nd eigenvector.
Physical model that lies behind this analogy consist from a finite identical masses
(nodes) connected by identical springs (edges). For G being the chain of nodes,
by writing down Newton’s Laws of motion for the masses and solving for the fre-
quencies and shapes of the vibrational modes we will get precisely the eigenvalues
and eigenvectors of the Laplacian L(G) of the graph G. Therefore, the second
eigenvector of L(G) is the shape of second mode of vibration, and divides the
graph in half.

Same intuition applies also in the of more complicated graphs. For example
on planar graphs, we can think of them as a kind of trampoline, again, the second
mode of vibration divides the graph (trampoline) into two halves. More about
physical model behind it and about this intuition, can be again found as web
resource [38].

2.3.7.2 Lanczos algorithm

The question remains, how to calculate this Fiedler vector. We do not need the
exact numbers, so we can use some approximation. By treating L(G) as a dense
matrix, common tools as routine in Matlab, or dsyevx in LAPACK can compute
the Fiedler eigenvector in time O((4/3) · n3) [38]. For sparse graphs this clearly
is not cost effective.

For this problem we can choose the Lanczos algorithm. Given any n×n sparse
symmetric matrix A, Lanczos algorithm computes a k× k symmetric tridiagonal
matrix T , whose eigenvalues are good approximations of the eigenvalues of A,
and whose eigenvectors can be used to get the approximate eigenvectors of A.
Typically the most expensive part of the algorithm are k matrix-vector multipli-
cations with A. We hope to achieve good enough approximation with k much
smaller than n. This way we approximate only small subset of A’s n eigenvalues.
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Fortunately, the smallest and the largest eigenvalues converge first, including λ2.
There are many flavors of Lanczos algorithm, we present the one, from work of
Kabelikova [46].

Algorithm 3 Lanczos algorithm

function Lanczos( Matrix L ∈ Rn×n, ε as tolerance)
v := random vector v ∈ Rn

u = L · v
j = 0
while |βj| > ε do

αj = vᵀu;
u = u− αj · v;
βj = ||u||2;
for i=0 To n do

tmp = vi;
vi = ui

βj
;

ui = −tmp · βj;
end for
u = u+ L · v;
j = j + 1

end whilereturn Tj ∈ Rj×j

end function

At each step j, the algorithm produces tridiagonal matrix

Tj =


α0 β0 0 . . . 0
β0 α1 β1 . . . 0
. . . . . . . . . . . . . . .
0 . . . βj−3 αj−2 βj−2

0 . . . 0 βj−2 αj−1


Whose eigenvalues approximate the eigenvalues of L. Let z be the second eigen-
vector of Tj. Then the corresponding approximate eigenvector of L is

w2 =

j∑
i=0

zi · vi

Where vi are stored vectors produced at each step of the algorithm. For more
implementation details see the work of Kabelikova [46] and the work of Parlett,
Simon, Stringer [66].

2.4 Flow based approach

2.4.1 Expander flows

As we stated before, the time complexity of most graph partitioning problems
is such that we do not hope for any polynomial time algorithm to solve them.
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Problem of deciding whether a given graph G has expansion at least α is coNP-
complete [13]. This means it has no short certificate unless the polynomial hier-
archy collapses. Although, we can work with “approximate” certificates. In the
section 2.1 we have seen the introduction of MFP and the notion of the demand
graphs. Note that every multicommodity flow in graph G can be viewed as an
embedding of a weighted demand graph H. As we have seen in the section 2.1
Leighton and Rao [53] used the approximate duality of Uniform Multicommodi-
ty Flow Problem and Sparsest cut problem to provide approximation algorithm.
UMFP can be viewed as a embedding of complete graph into the underlying graph
which provide approximate certificate for expansion. Not only we can tell if we
can embedd such demand graph into the underlying graph, but we can measure
how successfully we can do it. The measurement of success is called congestion.
We say that H can be embedded (or routed) in G with congestion γ if flow of ce
units can be routed in G between the end-points of e simultaneously for all e ∈ H
without violating the edge-capacities of G by a factor more than γ. To provide
the certificate of expansion we need to construct graph H which is well-connected,
i.e. it has large expansion and can be routed with small congestion γ in the input
graph G. If we succeed in building such graph, we can use it as a proof that
α(G) > α(H) · 1

γ
. To see this, consider arbitrary cut (S, S̄), 0 < |S| ≤ n/2 on

vertices of G (and H as well, since vertices of G and H coincide). We know that
to route H in G, we need to take at least α(H).|S| amount of traffic across the
cut. The fact that we can do it with the congestion γ means that we can route
at least 1

γ
· α(H).|S|, so we know

E(S, S̄) ≥ 1

γ
· α(H).|S|, (2.26)

thus

α(G) = min
∅6=S(V

α(S) ≥ E(S, S̄)

|S|
=
α(H)

γ
.

This leads to generalization and improvement over Leighton-Rao approach, where
we basically routed complete graph into G. Complete graph has indeed great
expansion, but is routed with high congestion as well. As we have seen, It could
approximate the expansion within an Θ(log n). In ARV paper [10] there are
results representing a continuation of that work but with a better certificate; for
any graph α(G) = α they can exhibit a certificate to the effect that the expansion
is at least Ω(α/

√
log n). But how effectively find such expander and how to

route it? This is the main focus of research of flow-based approach to graph
partitioning. One interesting way how to do it gave autors Arora, Hazan and
Kale [7]. They creatively formulated problem as zero-sum game and used Freund-
Shapire framework to effectively solve it. They achieved O(n2) time and retained
O(
√

log n) approximation of Sparsest cut problem. Next section is devoted to
another creative way of computing expander flows.

2.4.2 The Cut-Matching game

Further exploration of the flow based approach gave a rise to so called Cut-
Matching game framework, introduced in the work of Khander, Rao and Vazi-
rani [50]. The goal of the game is to build a graph with a high expansion which
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can be embedded into the underlying graph with the low congestion. The result
of the game is either such expander proving lower bound on the expansion or the
algorithm finds a sparse cut that proves upper bound on the expansion. Thus
in its original form the algorithm approximately solves the decision problem of
Expansion. The Cut-Matching game also uses the spectral theory ideas and
concepts of random walks. Before reading this section we recommend reader to
review the section 2.3.6. The key is the connection of spectral gap, mixing time
of random walks and the graph expansion.

Following description of the Cut-Matching game is from the work of Orec-
chia [62] and we also use information from the paper on the Cut-Matching
game [49] and the KRV paper [50]. Orrechia in his dissertation explored and
further developed this framework. An instance of the Cut-Matching game can
be defined as a triple (H(n), f(n), g(n)) with an input graph G = (V,EG), where
H(n) is a multi-round game between players C, the Cut player andM, the Match-
ing player. f(n) and g(n) are positive functions. The strategy C identifies the
Cut player and the strategy M identifies the Matching player. In the beginning
of the game we have an empty weighted graph H1 on the V , the vertex set of
G. We assume |V | to be even. Let Ht = (V,Et, ωt) be the weighted graph as
a result after t − 1 rounds of the game. Every round t ≥ 1 starts by the Cut
player C choosing a bisection (St, St) of V . How the Cut player C chooses this
bisection may depend on Ht and also on the actions of the players in the previous
rounds. The Matching player then picks a perfect matching Mt across the bisec-
tion (St, St) of V . The Matching player can choose any matching between St and
St. The graph Mt of perfect matching is then added to the graph Ht resulting in

the graph Ht+1. Thus Ht+1
def
= Gt+Mt, where the sum denotes edgewise addition

of the weights. As Mt is unweighted, the weights of Mt are assumed to be one

on each matching edge. The game terminates after T
def
= g(n) rounds. There are

2 possible winning criteria. First one, the Expansion criterion was introduced
by KRV and it says that the Cut player C wins if α(GT+1) is at least f(n).g(n).
Otherwise the winner is the Matching playerM. The Gap criterion (or Spectral
gap criterion) introduced in work of Orrechia, says that the Cut player C wins if
λHT+1

≥ f(n). Otherwise the Matching player M wins.
The following figure further summarizes framework of the Cut-matching Game,

figure is based on the one from work of Orecchia [62].
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Cut-Matching Game (H(n), f(n), g(n)) with input graph G = (V,EG):

• H1 := (V, ∅, 0) be an empty weighted graph, where |V | = n, n is even.

• Fix the Cut player C and the Matching player M.

• For t = 1, . . . , T = g(n),

1. C chooses a bisection (St, S̄t) of V.

2. M chooses a perfect matching Mt = (V,E(Mt)) across (St, S̄t).

3. Gt+1 = Gt +Mt

• Winning criteria:

– Gap criterion: C wins if λHT+1
≥ f(n). Otherwise M wins.

– Expansion criterion: α(HT+1) ≥ f(n) · g(n)

Figure 2.4: Cut-matching game, with Gap criterion and Expansion criterion

The goal of the Cut player is to eventually build the expander graph H and
prove the lower bound on expansion of G. The goal of the Matching player is to
prove that such graph could not be built and to find a sparse cut that provides
upper bound on the expansion. The Cut player gives a bisection (S, S̄) as a
suggestion to the Matching player. The Matching player either finds a cut with
a low expansion that is somewhere “near” the the bisection (S, S̄) or it fails to
do so and outputs matching M that can be routed in G with low congestion.
And thanks to the choice of bisection, the addition of matching M to the graph
H increases expansion of H by a constant factor. We explore more about the
strategies of the Matching player and the Cut player in next 2 sections. Consider
the following lemma of KRV [50].

Lemma 8. ([50]). Consider an instance graph G = (V,EG) with |V | = n, |EG| =
m. Assume there exists a winning the Cut player strategy C for (H(n), f(n), g(n))
under the Expansion criterion and that this strategy runs in time T (n) per round.
Let Tflow = Õ(m+n3/2). Then, there is an O( 1

f(n)
)- approximation algorithm for

the Expansion problem on G that runs in time Õ(g(n) · (T (n) + Tflow)).

The idea behind the proof is the one from the beginning of the chapter. Sup-
pose we are trying to decide whether the graph G has the expansion larger then
β. We gradually build graph H. It takes g(n) rounds of the algorithm. In each
round the Matching player performs a flow computation that attempts to find a
cut of expansion less than β that is well-correlated to the bisection given by C.
The Matching player either finds such cut and game stops and outputs a cut of
expansion less than β or the Matching player finds a perfect matching M between
(St, S̄t) that is routed with congestion 1

β
in graph G. Matching M then serves as

a certificate that no low-expansion cut exists “near” (St, S̄t). If the Cut player
wins, then we end up with expander H with expansion α(H) ≥ f(n)g(n) by the
Expansion criterion or by spectral gap λG ≥ f(n) in case of the Spectral gap

criterion. The expander H can be routed in G with congestion g(n)
β

. From 2.26
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we see that

α(G) ≥ f(n)g(n)β

g(n)
≥ f(n) · β.

Hence, we can distinguish between α(G) < β and α(G) ≥ β · f(n) which implies
1

f(n)
-approximation algorithm for Expansion. Moreover, to solve this decision

problem we only require g(n) maxflow computations. Using binary search to guess
the optimal value for the expansion increases the running time by a logarithmic
factor, so the total running time is Õ(g(n) · (T (n) + Tflow)).

From the above discussion can be clearly deduced that we are ideally look-
ing for the Cut player strategies that achieve large f(n) and small g(n), as they
yield better approximations in lower running time. KRV strategy and all other
strategies presented in work of Orecchia [62] are randomized and provably suc-
cessful with high probability. These strategies achieve g(n) = O(Polylog(n)) and
f(n) = Ω(1/polylog(n)). For us will be the most important the main result of
KRV [50], which is the existence of the cut strategy yielding f(n) = Ω(1/ log2 n)
and g(n) = O(log2 n) under the Expansion criterion. This leads to O(log2 n)-
approximation for Expansion. We denote the strategy for the Cut player of
this game CKRV . Orecchia [62] in his work presents other 2 Cut player strategies
denoted by CNAT and CEXP . Following table sumarizes results for different Cut
player strategies:

Strategy f(n) g(n) Running time Approximation achieved

CKRV Ω(1/(log2 n)) O(log2 n) Õ(n) O(log2 n)

CEXP Ω(1/(log n)) O(log2 n) Õ(n) O(log n)

CNAT Ω(1/(log n)) O(log2 n) Õ(n) O(log n)

Table 2.1: the Cut player strategies results according to Expansion criterion

The Matching player strategy is the same for all variants of the Cut-Matching
game. One of the main results of Orrechia [62] regarding the Cut-Matching
game is the first lower bound on the performance of any Cut player under the
Expansion criterion. It implies that no approximation algorithm for Expansion
designed following the Cut-Matching framework can achieve an approximation
ration better than Ω(

√
log n). Curiously this is also the best approximation known

for any polynomial-time algorithm for Expansion [10]. This result we formulate
in the following theorem according to Orrechia [62]:

Theorem 10. ( [62]) There is a Matching player M∗ that is successful against
any Cut player on the game (G(n), O(1/

√
log n), g(n)) for all g(n) under the Ex-

pansion criterion.

This lower bound is tight as there is a Cut player strategy, albeit inefficient
one that is successful under the Expansion criterion. This strategy requires the
use of multicommodity flows and is mentioned in various papers [71, 7, 8]. Thus
this lower bound settles the question of the power of the Cut-Matching game.

2.4.2.1 The Matching player strategy

The Matching player in the Cut-Matching game framework takes the bisection
(S, S̄) of the vertex set V, which is the same for both graph G and graph Ht.
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The Matching player uses single-commodity flow procedure to either find perfect
matching between S and S̄ or to find a sparse cut. In figure 2.5 we can see the
procedure.

Input: A bisection (S, S̄) of the vertex set of graph G = (V,EG) and expansion
estimate α

1. Construct flow network as follows: Assign each edge in G a capacity of 1/α
(which can be assumed to be integral), add a source node with an outgoing
unit-capacity arc to each vertex in S, and add a sink node with an incoming
unit-capacity arc from each vertex in S.

2. Compute maximum flow between the source and the sink.

(a) If the flow-value is n
2
, then compute matching M on (S, S̄). Matching

is obtained by decomposing the flow into flow-paths in a standard
manner (see [2]) and output a M .

(b) If flow value is less then n
2
, find a minimum cut (C, C̄) separating the

source and the sink in the flow network and output (C \ {source}, C̄ \
{sink}) and End.

Figure 2.5: The Matching player strategy

If a maximum flow of value n/2 is found, then the procedure finds a matching
between S and S̄ that can be embedded in G with the congestion 1/β. If not, then
the following lemma with proof from KRV [50] paper ensures that the procedure
outputs a cut of expansion at most β.

Lemma 9. ([50]) (The Matching player lemma) If the maximum flow between
the source and the sink has value less than n/2, then the procedure outputs a cut
in G of expansion less than β.

Proof. Recall the max-flow min-cut theorem for single commodity flows presented
in the section 1.1.1. If the flow has value less than n/2, then the minimum cut
separating the source and the sink has a capacity less than n/2. Let the number
of edges in the cut incident to the source (resp. sink) be ns (resp. nt). The
remaining capacity of the cut is less than n/2 − ns − nt and thus uses at most
β · (n/2−ns−nt) edges in the original graph G. Furthermore, the cut consisting
of the edges in the graph separates at least n/2− ns vertices in S from n/2− nt
vertices in S̄. The expansion of this cut is at most β·(n/2−ns−nt)

min(n/2−ns,n/2−nt)
which is at

most β.

2.4.2.2 The Cut player strategies

In this section we give an explicit algorithmic formulation of the above mentioned
cut strategies and describe CKRV strategy in more detail. At rounds t, given
graph Ht which is the union of perfect matchings M1, . . . ,Mt−1 and a transition
probability matrix Pt on Ht, the Cut player runs the procedure described in the
figure 2.6 to output the bisection. The matrix Pt depends on used Cut player
strategy. We focus mainly on random walk of CKRV player. It is a sequential
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Input:Ht as union of matchings {M1, . . . ,Mt}

1. Choose r, a random unit n-dimensional vector orthogonal to ~1.

2. Perform random walk on Ht, random walk is dependent on strategy chosen
by the Cut player. Let Pt be the probability transition matrix on Ht

3. Let yt = Pt · rt

4. Sort the entries of yt = (y1, . . . , yn) as yi1 ≤ · · · ≤ yin/2
≤ yin/2+1

≤ · · · ≤ yin

5. Let St = {i1, . . . , in/2} and return (St, S̄t)

Figure 2.6: The Cut player algorithmic template

composition of the lazy random walks across each matching M1, . . . ,Mt−1. This
random walk proceeds as follows: in step i the particle stays put with probability
1/2 and traverses the incident matched edge in Mi with probability 1/2. More
formally, for t ∈ {1, . . . , T} given Ht we define:

PKRV
t+1 =

(
I + A(Mt)

2

)
· · · ·

(
I + A(M1)

2

)
=

1∏
i=t

(
I + A(Mi)

2

)
.

The goal of the random walk is to find a cut (S, S̄) in Ht with a low number of
edges and thus with a low expansion. Then there si a guarantee that any match-
ing that could the Matching player add to Ht improve its expansion. To find such
a cut we use the concept described in the section 2.3.6.1. We generate distribu-
tion of “charge” by generating vector r. It is orthogonal to ~1, thus the sum of its
coordinates is 0, generating equal amount of “positive” and “negative charge”.
As we described in the section 2.3.6.1, applicating the random walk on the graph
with charges, charges rapidly achieve their average within each “well-connected”
component. These average weights are typically non-zero (either positive or neg-
ative) because of the random initial assignments. Now selecting n/2 vertices
with the lowest “charges” should help separate some of these “well-connected”
components from the rest (say the negative from the positive).

Our goal in CKRV strategy is to either build 1/2- expander or find a sparse
cut. How do we know that Ht has already expansion 1/2? We measure the
progress of the algorithm by so called potential function. It provides information,
how well the random walk on Ht mixes. It is a measure of how far from uniform
the resulting distribution of the associated random walk is when starting from a
random vertex. We call Ht mixing if for any starting position of the particle the
probability that the particle reaches an vertex v is at least 1/2n. This definition
implies that the Ht forms a graph with edge expansion at least 1/2. Formally

φ(t) =
∑

i,j∈{1,...,|V |}

(P t
i,j − 1/n)2 =

∑
i∈V

||P tei −
1

n
~1||22 = ||P t − π||2F ,

where ei is vector of all-zeros except 1 at i-th coordinate. Last equality leads t
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the form of Frobenius norm. Frobenius norm is defined on matrices as:

A ∈ Rm×n, ||A||F =

√√√√ m∑
i=1

n∑
j=1

|aij|2.

Observe that for the empty graph φ(0) = n − 1. If φ(t) < 1
4n2 , then the graph

Ht is mixing. The KRV algorithm starts with the empty graph H0 and while the
graph is not mixing, it tries to find a new matching to add to the graph, which
is embeddable in G with congestion 1/β and which reduces potential by a factor
of (1−Ω(1/ log n)). If it succeeds in doing this, t = O(log2 n) iterations suffice to
produce a mixing graph Ht with expansion α(Ht) = 1/2 and embedded in G with
a congestion O(log2 n/β). The proof that the potential function is sufficiently
reduced in every iteration of algorithm can be found in KRV paper [50]. Detailed
description of other Cut-player strategies with detailed analysis can be found in
work of Orecchia [62].
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3. Multilevel graph partitioning

In this section we briefly introduce methods of solving graph partitioning prob-
lems, that includes partitioning of graph to more than 2 parts. In this section
we follow the presentation of Sanders and Schulz [69] and continue with section
about Kernighan-Lin algorithm from Demmel [38]. Formal definitions we gave
in the section 1.1.2, namely in definition 4. A successful heuristic for partition-
ing large graphs is the multilevel graph partitioning (MGP) approach, where the
graph is recursively contracted to achieve smaller graphs which should reflect the
same basic structure as the input graph. To the smallest, and the most coarsened
graph an initial partitioning algorithm is applied. The contraction is undone and
at each level a local refinement method is used to improve the partitioning by the
coarser level.

First we introduce some basic preliminaries. In a graph G = (V,E) a matching
M ⊆ E is set of edges that do not share any common nodes, i.e., the graph (V,M)
has maximum degree one. By contracting an edge {u, v} we mean replacing
the nodes u and v by a new node z connected to the former neighbors of u
and v. For vertex weighted case we can set c(z) = c(u) + c(v) so the weight
of a node at each level is the sum of weights it is representing in the original
graph. For unweighted case it can still be useful to provide mere number of such
vertices. If replacing edges of the form {u, v}, {v, w} would generate two parallel
edges {z, w}, we insert a single edge with the weight being the sum of the two,
w({z, w}) = w({u,w}) + w({v, w}). To undo the contraction of an edge, we
uncontract it.

As we have already mentioned the multilevel approach to graph partitioning
consists of three main phases.

1. The contraction (coarsening) phase.

2. The initial partitioning.

3. The uncoarsening with local refinement phase.

In the contraction phase algorithm iteratively identifies matchings M ⊆ E and
contract edges in M . This way the size of the original graph should be quickly
reduced while maintaining the global structure of the input. Different types of
heuristics can be used to choose good matching M . In the initial partitioning
phase conventional algorithm for partitioning is chosen.

In the uncoarsening phase the matchings are iteratively uncontracted. To im-
prove the quality of a cut, after uncontracting matching, the refinement algorithm
moves nodes between blocks. One of this refinement methods is Kernighan-Lin
algorithm.

3.0.3 Kernighan-Lin

In this section we briefly describe the Kernighan-Lin algorithm following the web
resource [33]. It is used in MGP approach implemented in software packages
METIS, Chaco and others. It is used to the uncoarsening with local refinement
phase. The main idea is to find 2 nodes between initial partitions and swap them.
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The main problem is to identify which pair of nodes improves the partition. First
we define a few terms. Consider partition (P1, P2) of a graph G(V = P1 ∪P2, E).
For each vertex u ∈ V lets define the external cost Eu and the internal cost Iu
of u as follows. If u ∈ P1 then Iu =

∑
v∈P1,v∼uw(u, v), that is the sum of the

weights of edges between u and other nodes in P1. The external cost of u is the
sum of the costs of edges between u and the nodes in P2. Furthermore, let

Du = Eu − Iu

be the difference between the external and internal costs of u. Let T be the
weights between P1 and P2, we want to minimize. If the vertices u ∈ P1 and
w ∈ P2 are swapped, then the reduction in cost is

Told − Tnew = Du +Dw − 2w(u,w),

where w(u,w) is the weight of the edge between u and w. If there is no edge,
then w(u,w) = 0. The algorithm is trying to find and execute optimal series of
swapping, which maximizes Told− Tnew. The output is the partition of the graph
to P̃1 and P̃2. The general scheme for K-L follows:

Algorithm 4 Kernighan-Lin

function Kernighan-Lin((G = (V,E), Initial partition V=P1 ∪ P2)
A1 := P1, B1 = P2

For all values a ∈ A1 and b ∈ B1 determine Da and Db respectively.
repeat

for i := 1 to |V |
2

do
gi = maxai∈A1,bi∈B1 Dai +Dbi − 2 · w(ai, bi)
swap(ai, bi) between A1 and B1

remove ai and bi from further consideration in this pass
update D values for the elements of A1 = A1\{a1} and B1 = B1\{bi}

end for
Find k which maximizes gmax =

∑k
i=1

if gmax > 0 then
Exchange a1, . . . , ak in P1 with b1, . . . , bk in P2

P̃1 = P1, P̃2 = P2

end if
until gmax ≤ 0
return (P̃1, P̃2)

end function

3.1 Additional materials and software

The area of graph partitioning is of great interest and huge amount of research
has been done on the subject. The reader can explore the works [24, 74] for
more material on MGP. In year 2011, started prestigious DIMACS Implementa-
tion Challange on the subject graph partitioning and graph clustering [37]. It
had ambition to test state of the art implementations of graph partitioning al-
gorithm on real world graph data. The main publication result is a book Graph
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partitioning and Graph clustering [31]. The most general purpose methods, that
are able to obtain good partitions for large real world graphs are based on the
multilevel principle outlined in this section. Well known software packages based
on this approach include, Jostle [74], METIS [48, 73] and Scotch [67]. Another
graph partitioner, based on the central idea to (un)contract only a single edge
between two levels is KaSPar [64]. We can also mention packages KaPPa [32]
and DiBaP [60] with different flavors of multilevel partitioning algorithm.
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4. Implementations of algorithms

In this section we presentl implementations of Leighton-Rao algorithm using the
geometric embeddings described in the section 2.2.2 and the Cut-Matching game
with the KRV Cutting-Player strategy described in the section 2.4.2. We used ex-
ternal libraries for finding single-commodity flows [15] in the Cut-Matching game
and for solving linear program (The GNU Linear Programming Kit (GLPK)) in
Leighton-Rao algorithm.

Although we knew it has high time complexity in theory, we also tried to
implement SDP algorithm from ARV paper [10]. However, the number of con-
straints in SDP was too much and we stopped the implementation after realizing,
that on the current hardware we can solve SDP relaxation for graphs with maxi-
mum of 20-30 vertices. This algorithm is important for theory, but is not usable
in practice, at least not in this form. More practical SDP based approach is given
in the work of Arora, Hazan and Kale [7] and Orecchia [62].

Solving linear program relaxation in Leighton-Rao algorithm is the most time
consuming part of the algorithm. Solving linear program with O(n3) variables
and constraints is too much for graphs with more than 100 vertices. On the
other hand, our implementation of Cut-Matching game is usable on graphs up
to thousends vertices. One limitation that our implemantation of Cut-Matching
game has, is the fact that algorithm can not find cuts in graphs with expansion
greater than 1. It follows from the fact, that in the decision problem version
of Cut-Matching game we expect the inversion 1/β of input expansion β to be
integral. Typically this is not a problem, because graphs usually have much lower
expansion, but it is constraint for denser graphs. Scaling the algorithm for the
higher expansions and solving the demand of integrality can be subject of the
future work. Pseudoalgorithms for Cut-Matching game are in Appendix 1.

Solving single-commodity flow problem proved to be much less time-consuming.
Of course, we must note that although we tried our best to implement these al-
gorithms efficiently, there is plenty of room for optimization. We closely followed
the theory, while there are known techniques that could improve the running
times. We consider these implementations as a proof-of-concept prototypes. Fur-
ther research and optimization could lead to more practical implementations. We
tested the algorithms on manually generated graphs. We generated them in such
way, that for most of them we know what is the optimum expansion. First set of
graphs consist of grid networks with different number of nodes.

Cut-Match 30 Cut-Match 200 Leighton-Rao Opt
Grid 5× 10 0.25 0.2 0.66667 0.2
Grid 10× 10 0.302326 0.2 1.06 0.2
Grid 20× 10 0.142857 0.196721 NA 0.1
Grid 20× 25 0.083333 0.083333 NA 0.083333
Grid 40× 25 0.0725 0.0725 NA 0.05
Grid 40× 50 0.04 NA NA 0.04

Table 4.1: The expansions found in grid graphs.
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Cut-Match 30 Cut-Match 200 Leighton-Rao
Grid 5× 10 130 130 792350
Grid 10× 10 600 6140 3921578
Grid 20× 10 1550 23320 NA
Grid 20× 25 65180 208500 NA
Grid 40× 25 313040 747100 NA
Grid 40× 50 2619430 NA NA

Table 4.2: The time results for grid graphs in ms.

We can see, that algorithm Cut-Matching game was pretty successful in find-
ing sparse cuts, while Leighton-Rao algorithm was not that efficient. We tested
2 versions of Cut-Matching algorithm with parameter Iterations being 30 first
time and 200 second time. As was described in the section 2.4.2, the Cut player
with KRV strategy wins, when the graph HT has expansion at least 1/2. In our
implementation we give the Matching player more chances to find a sparse cut.
The parameter expresses how many iterations Cut-Matching game tries to do
after it build 1/2-expander graph HT .

Leighton-Rao algorithm has 2 parameters. One specifies time which is used
to solve LP relaxation. In our test we set it always to 1200 seconds. If algorithm
does not find optimal solution in this time, it provides best feasible solution it
found. The second parameter is the number of trials to do geometric embeddings.
The solution of LP relaxation is used to generate random embedding as was
described in section 2.2.2 and which eventually produces desired cut. Leighton-
Rao algorithm outputs best cut from all trials. We set this parameter to 100 in
all tests.

The next class of graphs consist of so called planted bisections. Graph with
planted bisection consists of two random, relatively dense graphs connected by
a small number of randomly picked edges . We describe the planted bisection
graph by 3 numbers. For example the graph PB 8× 8× 3 has 2 components each
with 8 nodes and it has exactly 3 edges connecting these two parts.

Cut-Match 30 Cut-Match 200 Leighton-Rao Opt
PB 8× 8× 3 0.375 0.375 0.375 0.375
PB 25× 25× 10 0.4 0.4 2.70833 0.4
PB 50× 50× 5 0.1 0.1 0.1 0.1
PB 100× 100× 10 0.1 0.1 NA 0.1
PB 500× 500× 40 0.08 0.08 NA 0.08

Table 4.3: Expansion found in plant bisection graphs.

We can see that Cut-Match KRV algorithm found bisection in all cases in
relatively short time, whlie LR algorithm found only the first and third bisection
and it took some time. Now we present the performance of both algorithms for
paths and cycles.
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Cut-Match 30 Cut-Match 200 Leighton-Rao
PB 8× 8× 3 < 1 460 15440
PB 25× 25× 10 100 2210 381680
PB 50× 50× 5 930 9830 3759441
PB 100× 100× 10 420 35290 NA
PB 500× 500× 40 70110 805330 NA

Table 4.4: Time results for plant bisection graphs in ms.

Cut-Match 30 Cut-Match 200 Leighton-Rao Opt
Cycle 10 0.4 0.4 0.4 0.4
Cycle 50 0.08 0.08 0.285714 0.08
Cycle 100 0.0434783 0.04 0.181818 0.04
Cycle 200 0.037037 0.02 NA 0.02
Cycle 500 0.008 0.008 NA 0.008
Cycle 1000 0.004 0.004 NA 0.004
Cycle 2000 0.002 0.002 NA 0.002

Table 4.5: Expansion found in the cycles.

Cut-Match 30 Cut-Match 200 Leighton-Rao
Cycle 10 10 230 3040
Cycle 50 270 2900 1474853
Cycle 100 1040 11050 3251559
Cycle 200 5230 39300 NA
Cycle 500 129350 296030 NA
Cycle 1000 630100 1358849 NA
Cycle 2000 4275735 8998491 NA

Table 4.6: Time results for cycles in ms.

Cut-Match 30 Cut-Match 200 Leighton-Rao Opt
Path 10 0.2 0.2 0.2 0.2
Path 50 0.05 0.04 0.25 0.04
Path 100 0.0212766 0.02 0.142857 0.02
Path 200 0.0106383 0.01 NA 0.01
Path 500 0.004 0.004 NA 0.004
Path 1000 0.002 0.002 NA 0.002

Table 4.7: Expansion found in the paths.

Cut-Match 30 Cut-Match 200 Leighton-Rao
Path 10 10 220 3030
Path 50 390 3480 1476136
Path 100 1040 10600 3258634
Path 200 10940 436900 NA
Path 500 136370 320680 NA
Path 1000 776940 1783203 NA

Table 4.8: Time results for paths in ms.
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Results for cycles and paths confirm the trend. The Cut-Match KRV algo-
rithm is relatively faster and finds lower expansion cuts than the Leighton-Rao
algorithm. We must consider also the fact, that the Leighton-Rao algorithm de-
pends on the solution of LP relaxation for which we can obtain only approximate
solution. In theory Leighton-Rao embedding algorithm also has high constant
in the approximation factor. On the other hand the Cut-Match KRV algorithm
performs suprisingly well. We find most amusing, that it found planted bisection
in PB graphs.

Our conclusion from the above performance results is that while Cut-Matching
game performs well in prototype implementation the LR embedding algorithm
does not seem scalable. The solving of LP relaxation is rather cumbersome and
can not be radically optimized or avoided. The Cut-Matching game seems to be
elegant and exciting framework which can be further developed into algorithms
for the practical use.
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Conclusion

We have seen how rich is the area of graph partitioning problems. We introduced
various flavours of the problems and presented the known results in the area. We
focused our attention on three closely related qualities of the graph partitioning:
the sparsity, the expansion and the conductance. We have seen the various ideas
and ways how to approach the graph partitioning problems. First we started by
the duality of multi-commodity flow problem and sparsest cut problem due to
work of Leighton and Rao [53]. We gave the proof of this theorem by presenting
algorithm of geometric embeddings from the presentation of Shmoys [72]. We also
implemented this algorithm and presented its performance. As we have explained
in the previous section, solving the LP relaxation used in the algorithm seems
to be a problem to the algorithm being practical. Moreover, the constant in the
approximation factor appeared to be high in our implementation.

After presenting Leighton-Rao embedding algorithm in the section 2.2.2 we
moved to the work of Arora, Rao Vazirani (ARV [10]). They were first who in-
troduced O(

√
log n)-approximation to the most of graph partitioning problems.

We presented their algorithm based on SDP relaxation and geometric embedding.
Although we knew it has high time complexity in theory, we tried to implement
it. But after implementing the SDP relaxation part, we realized it can not suc-
cessfully compute sparse cuts for graphs with more than 20-30 nodes. The SDP
algorithm presented in ARV paper has its place in theory, but it was not meant to
run on the current real hardware. Further exploration of SDP approach, which
could be more practical was given in the work of Arora, Hazan and Kale [7].
They used techniques from the game theory and solving of zero-sum games. The
further exploration of SDP approach was also given in the work of Orecchia [62].

In the section 2.3 we introduced ideas and concepts of the spectral graph
theory. We have seen various matrices related to graphs and how their spectrum
relates to the expansion qualities of graph. We explained the relations between
the conductance, the spectral gap and the random walks. We formulated basic
spectral algorithm for graph partitioning and gave some intuition behind it.

The spectral approach concepts and expander flows are connected in the
framework of the Cut-Matching game we presented in the section 2.4.2. We
also implemented one version of this algorithm and tested on our data. For some
sets of graphs it performed suprisingly well. On all data sets it performed bet-
ter than Leighton-Rao embedding algorithm in both running time and expansion
approximation. As expected, solving of single-commodity flow problem proved
to be faster than solving LP relaxation and the algorithm is promising candidate
for more practical implementations.

We also took a notion of Multilevel graph partitioning in section 3, which
has its use in the most algorithms partitioning graph to more than 2 parts. The
concept is used in widely used software packages like METIS [48], KaPPa [32],
Jostle [74] and others.

We hope that we have provided a compact overview of graph partitioning
problems and have comprehensibly presented the main concepts and ideas behind
various approaches.
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Appendix 1 - Pseudo-codes for
the Cut-Matching Game

Algorithm 5 Cut strategy template

function CutStrategy(Gt) . Gt is union of perfect matchings
M1, . . . ,Mt−1

rt = Random({x|x ∈ Rn, ||x||2 = 1, < x,~1 >= 0})
Pt = RandomWalkC(Gt)

. Pt is probability transition matrix on Gt dependent on used
cut-strategy C

yt = Pt.rt
Sort the entries of yt = (y1, . . . , yn) as yi1 ≤ · · · ≤ yin/2

≤ yin/2+1
≤ · · · ≤ yin

St = {i1, . . . , in/2}
St = V \ St
return (St, St)

end function

Algorithm 6 Matching Player strategy

function CutOrFlow(G, (St, St), α)
(Gα, s, t) =ConstructFlowNetwork(G, (St, St), α)
(Gflow, F lowV alue) =SingleCommodityMaxFlow(Gα, s, t)
if FlowV alue = n/2 then

Matching Mt =FlowToMatching(Gflow) return Mt

else
MinCut=FlowToMinCut(Gflow) return MinCut

end if
end function
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Algorithm 7 Cut-Matching game for EXPANSION decision problem, α(G) <
α?

function CutMatchGame(G = |V,E|, α)
n = |V |
f=f(n)
g=g(n) . functions g and f depends on Cutting player strategy
V = {1, . . . , n}
G1 = (V, ∅, 0) . G1 is empty weighted graph on n vertices, n is even
for t = 1→ g do

(St, St) =CutStrategy(Gt)
Result = CutOrF low((St, St), α)
if TypeOf(Result) is Cut then

SparseCut = Result
return (YES, SparseCut) . Matching player wins, α(G) < α,

else
Mt = Result
Gt+1 = Gt +Mt

end if
end for
return (NO,GT+1) . Cutting player wins α(G) ≥ α.f

end function

Algorithm 8 Cut-Matching EXPANSION optimalization algorithm

function ExpansionCutMatch(G)(G, a, b)
α = a+b

2

(IsExpLower, certificate)=CutMatchGame(G,α)
if IsExpLower = true then

b = α
else

a = α
end if
if b− a ≤ f(n) then

if certificate is not Sparse cut then
(IsExpLower, certificate)=CutMatchGame(G, b)

end if
SparseCut=certificate
return (SparseCut)

else
return ExpansionCutMatch(G,a,b)

end if
end function
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Appendix 2 - User Manual for
program Partition

Program partition was compiled for Linux and Unix-like systems. It is used from
command line interface. Its only paramater is graph input file. The format of
the graph file is simple. In unweighted case on the first line there is the number
of nodes followed by number of edges. Then each i + 1-th line represents list of
neighbors of vertex i. The example of representation of unweighted graph is in
figure 4.1. Format of input is simplification of the one that use METIS [48, 73],
Jostle [74] and other partitioning programs. The format is well-known and its
variant was also used on the DIMACS 10th implementation challange [37].

In weighted case on the first line there is again the number of nodes followed
by number of edges and then followed by number 1. List of neighbors is the same,
but each neighbor is followed by the weight of the edge that leads to him. The
example of weighted graph is in figure 4.2.
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10 19
3 5 7
3 4 8 9
1 2 4 5 7
2 3 6 8 9
1 3 7
4 7 9 10
1 3 5 6
2 4 9
2 4 6 8 10
6 9

Figure 4.1: Unweighted graph example.
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7 11 1
5 10 3 20 2 10
1 10 3 20 4 10
5 30 4 20 2 20 1 20
2 10 3 20 6 20 7 50
1 10 3 30 6 20
5 20 4 20 7 60
6 60 4 50

Figure 4.2: Weighted graph example.
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