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jsou také zmı́něny slabé orbity a orbity C0-semigrup.
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I. Introduction

The thesis consists of three topics from functional analysis and operator
theory, all connected by the notion of orbit of an operator. An orbit is a se-
quence T n x for n running from 0 to infinity, where T is a fixed bounded linear
operator on a Banach space, and x is a fixed vector in the Banach space. Orbits
have been present in mathematics for a long time, but they were systemati-
cally studied first by Beauzamy [15] and received an enormous attention from
that time on. The study of orbits is of course related to dynamics of linear sys-
tems and semigroup stability in particular, but also to the invariant subspace
problem and local spectral theory.

After Part I, which is this introduction, Part II of the thesis deals with reg-
ular orbits, that is orbits whose norm tends either to zero (stable orbit) or to
infinity. To prepare the ground, in Chapter 1 we begin with the study of the
problem how is the asymptotic behaviour of the sequence ‖T n‖ related to the
asymptotic behaviour of the sequence ‖T n x‖, where again T is a bounded lin-
ear operator and x a vector. Then, mainly for the sake of completeness, in
Chapter 2 we briefly touch the stability theory. Chapter 3 tries to develop a
theory of orbits tending to infinity, in particular we use the results from Chap-
ter 1 to obtain some conditions under which an operator has an orbit tending
to infinity. Finally, Chapter 4 switches from “normal” orbits to weak orbits, that
is the sequences x∗(T n x)where x∗ is a functional.

Part III is titled Irregular orbits and in fact deals with the notion of hyper-
cyclicity and some closely related notions. An operator is called hypercyclic if
it has an orbit norm dense in the whole space, and the notion is introduced
in Chapter 5. The usual way of showing that a given operator is hypercyclic is
the Hypercyclicity criterion, which is studied in Chapter 6, together with a few
examples of hypercyclic operators. Next we look at how the set of hypercyclic
vectors of a fixed operator looks like – this is done in Chapter 7. Chapter 8
on the other hand studies the set of hypercyclic operators. Finally the topics
of Chapters 9 and 10 are notions closely related to hypercyclicity, namely ε-
hypercyclicity and weak hypercyclicity.

Finally Part IV is devoted to the concept of orbit reflexivity, which is an
orbit-wise analogue of the well studied notion of reflexivity, primarily defined
for operator algebras. Orbit reflexivity was introduced some 25 years ago but
until very recently it has received almost no attention. Perhaps one of the rea-
sons is that, as we show in Chapter 11, many of the known classes of “nice”
operators are orbit reflexive, and only a few examples of non orbit reflexive
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operators are known. The first constructed is the famous Read’s counterex-
ample to the invariant subspace problem on Banach spaces. However, there
are some simpler ones even in Hilbert spaces, and we exhibit some of them in
Chapter 12.

Some definitions and notation

We will denote the sets of positive integers, non-negative integers, inte-
gers, rational numbers, real numbers and complex numbers by N, N0, Z, Q, R
and C, respectively. The letter T denotes the set of unimodular complex num-
bers, i.e. T = {z ∈ C: |z| = 1}.

Let X be a real or complex Banach space, that is, a complete vector space
over the field F of real or complex numbers, with a norm ‖ · ‖. If not stated
otherwise, the letter X will always denote such a Banach space without explicit
mention. We will use the notation BX := {x ∈ X : ‖x‖ ≤ 1}, and SX := {x ∈ X :
‖x‖ = 1} to denote the closed unit ball, and the unit sphere in X , respectively.

The closure of a set A is written either as A or as A−, and the diameter of A
is denoted by diam A := sup {‖x − y‖ : x, y ∈ A}. Given x ∈ X and x ∈ X ∗,
we sometimes use the notation 〈x, x∗〉 := x∗(x) to emphasize the duality of
the evaluation of x∗ at the point x. If M ⊂ X ∗ then the pre-annihilator of M
is denoted by M⊥ := {x ∈ X : 〈x, x∗〉 = 0 for every x∗ ∈ M}. The notation
X = Y ⊕ Z always denotes the direct sum (not the orthogonal sum).

The algebra of the bounded linear operators acting on X will be denoted
by L(X ). If not stated otherwise, the letter T will always denote an operator
from L(X ) without explicit mention. For T ∈ L(X ), ‖T ‖ denotes the operator
norm, ‖T ‖ess the essential norm, σ(T ) the spectrum, σp (T ) the point spec-
trum, σess(T ) the essential spectrum, r (T ) the spectral radius, and ress(T ) the
essential spectral radius. The strong operator topology on L(X ) is often abbre-

viated by SOT , e.g. for A ⊂ L(X ) the symbol A
SOT

denotes the strong closure
of A.

If T ∈ L(X ) and x ∈ X , the orbit of x under T is the sequence of iterates
Orb(T, x) := {T n x : n ∈ N0}. We will also use the symbol Orb(T ) := {T n : n ∈
N0}.

The orbits can behave regularly. For instance, it may happen that:

(i) the orbit is stable: ‖T n x‖ → 0,

(ii) the orbit tends to infinity: ‖T n x‖ → +∞,

(iii) the orbit stays inside (or outside) a given ball: there is a point y ∈ X and r >
0 such that for all n we have ‖T n x−y‖ ≤ r (or ‖T n x−y‖ > r , respectively),

(iv) the orbit is periodic: there is n ∈ N such that T n x = x.

On the other hand, the orbits can be also irregular. For instance, it may
happen that:

(i) inf ‖T n x‖ = 0 and sup ‖T n x‖ = +∞,
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(ii) the orbit is dense in the whole space: {T n x : n ∈ N0}− = X ; such a vector
is called hypercyclic vector.

Given T ∈ L(X ), we will examine the sets of vectors in different categories
mentioned above, and use the notation X s(T ), X∞(T ) and Xh(T ) to denote the
set of points with stable orbit, points with orbit tending to infinity, and hyper-
cyclic points, respectively. We call T hypercyclic, if there is a hypercyclic orbit
(in that case there is even a dense set of hypercyclic points, since all iterates
T n x are also hypercyclic).

It is natural to consider a sequence of (possibly independent) operators
Tn instead of the sequence of powers of a single operator T n . All the above no-
tions extend to this setting, so that for instance the sequence (Tn)n∈N is called
hypercyclic if there is a point x ∈ X such that the set {Tn x : n ∈ N} is dense in
X . We will use such notions without explicit definition if it cannot be confus-
ing.

Throughout the text, we will sometimes encounter the weighted shift op-
erators. First, let X be one of the sequence spaces `p , 1 ≤ p ≤ ∞, or c0,
and denote by (ek )

∞
k=0

the standard basis of X . Given a bounded sequence
of nonzero complex weights (wk )

∞
k=0

, the unilateral backward shift is defined
as Tek := wk ek−1 if k > 0 and Te0 := 0, while the unilateral forward shift is
defined as Tek := wk ek+1 if k ≥ 0. Second, let X be one of the spaces `p (Z),
1 ≤ p ≤ ∞, or c0(Z), and denote by (ek )

+∞
k=−∞ the standard basis of X . Given a

bounded sequence of nonzero complex weights (wk )
+∞
k=−∞, the bilateral back-

ward shift is defined as Tek := wk ek−1 for all k ∈ Z, the bilateral forward shift
is defined as Tek := wk ek+1 for all k ∈ Z. (Note that the difference between the
bilateral backward shift and the bilateral forward shift is just formal – there is
a one-to-one correspondence between them.)

It is also interesting and useful to study the C0-semigroups, which are the
continuous analogues of the discrete semigroup (T n)n∈N of a single operator T .
Since we will encounter this notion in the text from time to time, let us briefly
summarize the basic notions and theorems.

A C0-semigroup, or a strongly continuous one-parameter semigroup, is
a family (T (t))t≥0 of bounded linear operators acting on X , indexed by non-
negative real numbers, which satisfies the following three conditions:

(i) T (0) = I ,

(ii) T (t)T (s) = T (t + s) for any t, s ≥ 0 (the semigroup property),

(iii) limt→0+ ‖T (t)x − x‖ = 0 for all x ∈ X (strong continuity).

Note that such a family indeed forms a strongly continuous semigroup.
The generator of the semigroup is the linear operator A defined as

Ax := lim
t→0+

1

t
(T (t)x − x),

for all x in the domain D(A) ⊂ X consisting of those points where the above
limit exists. The generator can be a bounded operator, and then T (t) = e t A ,
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t ≥ 0, in the Dunford functional calculus sense, but the important case is when
D(A) 6= X and the generator is unbounded. The generator is always a closed,
densely defined operator, commuting with all T (t), t ≥ 0, with the spectrum
contained in some left half-plane. The reason why the definition is useful lies
in the following theorem.

Theorem 0.1. Operator A with domain D(A) on X is the generator of a
C0-semigroup (T (t))t≥0 if and only if the associated abstract Cauchy problem
(ACP)

du

dt
(t) = Au(t), t ≥ 0,

u(0) = x,

is well-posed (for each initial value x ∈ D(A) there is a unique solution u sat-
isfying the equation), A is densely-defined, and there is a continuous depen-
dence on the initial value: if zn → z with zn , z ∈ D(A), then un(·)→ u(·) locally
uniformly on [0,∞), where u and un denote the solutions of (ACP) with respect
to the initial value x = z and x = zn , respectively.

In this context, the orbits (T (t)x)t≥0 are called the mild solutions of (ACP)
provided x ∈ X , and classical solutions provided x ∈ D(A).

The asymptotic behaviour of the semigroup (T (t))t≥0 can be roughly de-
scribed by its growth bound defined as

ω0(T ) := inf {ω ∈ R: there is C > 0 such that for all t ≥ 0, ‖T (t)‖ ≤ Ceωt }

If ω0(T ) < 0 we say that the semigroup is uniformly exponentially stable.

Original versus adopted results

The thesis consists of Parts II, III and IV. Part II and Part IV are more or less
based on an original research, Part III is more or less a compilation of known
results. A rule of thumb is also the difference between a Theorem, which con-
tains basically an already known statement, and a Proposition, which is basi-
cally a new result, either at least partially published in one of the papers [61]
and [62] (below denoted just Papers) or unpublished.

In Part II, the statements Proposition 1.3, Proposition 1.5 and Proposition
1.9 are generalisations of results published in the Papers. Example 3.1, Propo-
sition 3.2, Example 3.4, and Example 4.1 appeared in the Papers; Proposition
3.5 and Proposition 4.2 also, but in weaker forms. The simple statements Ob-
servation 3.6 and Example 3.8 are new.

Part III consists of a summarisation of known results, with the initial aim
of providing an introduction to hypercyclicity, which hasn’t appeared in the
subject since [38]. However, during the preparations the monography [11]was
published and provided a much broader insight into the subject. The only
original, unpublished statements are: Proposition 9.2 and Theorem 9.3 which
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generalise results from [5], Corollary 10.4 which improves the result from [33],
and according to my knowledge, condition (iv) in Theorem 5.1.

Part IV is based mainly on the first Paper [61], which already contains
roughly partially Theorem 11.3, Proposition 11.4, Corollary 11.5, Example 12.3,
and Example 12.5. The trivial yet new proof of part (iv) in Theorem 11.6 was
also used independently in [42]. Part (ii) in Observation 11.1 is new and un-
published. (Lemma 11.2 and most of Theorem 11.6 and partially Theorem 11.3
were published already in [44].)



II. Regular orbits

1. Rate of convergence

Let T ∈ L(X ). The subject of this part will be the question, under what
circumstances there is x ∈ X such that ‖T n x‖ ∼ ‖T n‖ in a sense? For instance,
is there always x ∈ X such that ‖T n x‖ ≥ 1

2
‖T n‖ · ‖x‖ for all n ∈ N?

We will use the following solution to the affine plank problem asked by T.
Bang [9], which was (in case of symmetric bodies) answered positively by K.
Ball [8]. The name comes from the definition of plank to be a subset of points
between two parallel hyperplanes in a Banach space, that is a set of form

¦

x ∈ X :
�

�〈y − x, f 〉
�

� ≤ w/2
©

where f ∈ X ∗ is a unit functional, y ∈ X a fixed vector, and w ≥ 0 the so-
called width. We formulate also a dual version of Ball’s theorem. For a survey
of similar results see Ball’s article on the subject [6].

Theorem 1.1. (Ball’s plank theorem) Let X be a Banach space and fn ∈ X ∗,
n ∈ N. Let (αn)

∞
n=1 be a sequence of nonnegative real numbers such that a :=

∑∞
n=1

αn < 1; in case X is reflexive, it is sufficient to assume a ≤ 1. Then for
any y ∈ X there is a point x ∈ X of norm 1 such that for all n ∈ N

�

�〈y − x, fn〉
�

� ≥ αn‖ fn‖.

Theorem 1.2. (dual version) Let X be a Banach space and xn ∈ X , n ∈ N. Let
(αn)

∞
n=1 be a sequence of nonnegative real numbers such that a :=

∑∞
n=1

αn ≤
1. Then for any g ∈ X ∗ there is a functional f ∈ X ∗ of norm 1 such that for all
n ∈ N

�

�〈xn , g − f 〉
�

� ≥ αn‖xn‖.

It is possible to generalize the theorem from functionals to operators, us-
ing a proof similar to that in [62].

6
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Proposition 1.3. (plank theorem for operators) Let X and Y be Banach
spaces and Tn ∈ L(X, Y ), n ∈ N. Let (αn )

∞
n=1 be a sequence of nonnegative

real numbers such that a :=
∑∞

n=1
αn < 1. Then for any y ∈ X there is a point

x ∈ X of norm 1 such that for all n ∈ N

‖Tn(y − x)‖ ≥ αn‖Tn‖.

Moreover, in every ball of radius c > 0 there is a point x ∈ X such that for all
n ∈ N we have ‖Tn x‖ ≥ cαn‖Tn‖. In particular, the set

M := {x ∈ X : ∃c > 0 ∀n ∈ N ‖Tn x‖ ≥ cαn‖Tn‖}

is dense in X .

If the space Y is the scalar field the theorem becomes the ordinary plank
theorem for functionals. If the operators Tn are powers of a single operator,
that is, if Tn = T n for given T ∈ L(X ), the proposition gives an interesting
statement about how the growth of ‖T n‖ can be realized by a single orbit. Note
that there is no dual version of the theorem, but of course it is possible to apply
the theorem to the adjoints T ∗

n to obtain a statement about the existence of a
functional satisfying certain conditions.

Proof of Proposition 1.3. Consider the adjoint operators T ∗
n ∈ L(Y ∗, X ∗).

Then for any n ∈ N there exists gn ∈ Y ∗ such that ‖gn‖ ≤ 1 and ‖T ∗
n gn‖ ≥

a‖T ∗
n ‖ = a‖Tn‖.
Let y ∈ X . Applying the plank theorem 1.1 to the functionals T ∗

n gn and
coefficients αn/a, we obtain a point x ∈ X with ‖x‖ = 1 such that for every
n ∈ N

�

�〈y − x, T ∗
n gn〉
�

� ≥
αn

a
‖T ∗

n gn‖ ≥ αn‖Tn‖,

and therefore

‖Tn(y − x)‖ ≥ ‖Tn(y − x)‖ · ‖gn‖

≥
�

�〈Tn(y − x), gn〉
�

� =
�

�〈y − x, T ∗
n gn〉
�

�

≥ αn‖Tn‖.

For the additional assertion, let z ∈ X and c > 0. There is x ∈ X with
‖x‖ = 1 satisfying ‖Tn(

z
c
− x)‖ ≥ αn‖Tn‖ for all n ∈ N, thus z − cx belongs to

M while its distance from z is not more than c.

For complex Hilbert spaces, Ball proved in [7] that a similar assertion holds
even if the sum of coefficients is just square summable, with the necessary
restriction to the case when y = 0.



8 1. Rate of convergence

Theorem 1.4. (complex plank theorem) Let X be a complex Hilbert space
and fn ∈ X ∗, n ∈ N. Let (αn)

∞
n=1 be a sequence of nonnegative real numbers

such that a :=
∑∞

n=1
α2

n ≤ 1. Then there is a point x ∈ X of norm 1 such that
for all n ∈ N

�

�〈x, fn〉
�

� ≥ αn‖ fn‖.

(Note that in [62], we wrote
∑∞

n=1
α2

n < 1 instead of the non-strict inequal-
ity. The non-strict inequality is used in [7] and is formally stronger, we thus
rather write the non-strict inequality here.) It is again possible to extend this
complex plank theorem to operators. Although the complex plank theorem
holds just if y = 0, we are anyway able to obtain the density of the set M , by
introducing an additional plank that places the point to any given open set.

Proposition 1.5. (complex plank theorem for operators) Let X be a complex
Hilbert space, Y be a Banach space and Tn ∈ L(X, Y ), n ∈ N. Let (αn)

∞
n=1 be

a sequence of nonnegative real numbers such that a :=
∑∞

n=1
α2

n < 1. Then
there is a point x ∈ X of norm 1 such that for all n ∈ N

‖Tn x‖ ≥ αn‖Tn‖.

Moreover, the set

M := {x ∈ X : ∃c > 0 ∀n ∈ N ‖Tn x‖ ≥ cαn‖Tn‖}

is dense in X .

Proof. Consider the adjoint operators T ∗
n ∈ L(Y ∗, X ∗). Fix n ∈ N. As in

the previous proposition, there is gn ∈ Y ∗ such that ‖gn‖ = 1 and ‖T ∗
n gn‖ ≥

a‖Tn‖.
Applying the complex plank theorem 1.4 to the functionals T ∗

n gn and co-
efficients αn/a, we obtain a point x ∈ X with ‖x‖ = 1 such that for every n ∈ N

�

�〈x, T ∗
n gn〉
�

� ≥
αn

a
‖T ∗

n gn‖ ≥ αn‖Tn‖,

and therefore
‖Tn x‖ ≥ ‖Tn x‖ · ‖gn‖

≥
�

�〈Tn x, gn〉
�

� =
�

�〈x, T ∗
n gn〉
�

�

≥ αn‖Tn‖.

For the density assertion, let u ∈ X with ‖u‖ = 1 and ε be a real number
with 0 < ε < 1. By linearity, it is sufficient to prove that there is x ∈ X and c > 0
such that ‖u − x‖ ≤ ε and ‖Tn x‖ ≥ cαn‖Tn‖ for all n ∈ N.

Let δ := 1 − ε2

2
and c :=

p
1 − δ2 so that δ2 +

∑∞
n=1
(cαn )

2 ≤ 1. Apply-
ing the complex plank theorem to the functionals 〈·, u〉, T ∗

1 g1, T ∗
2 g2, . . . and

coefficients δ, cα1, cα2, . . ., we obtain a point x ′ ∈ X with ‖x ′‖ = 1 such that
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�

�〈x ′, u〉
�

� ≥ δ and
�

�〈x ′, T ∗
n gn〉
�

� ≥ cαn‖T ∗
n gn‖ for every n ∈ N. Therefore for all

n ∈ N
‖Tn x ′‖ ≥ ‖Tn x ′‖ · ‖gn‖

≥
�

�〈Tn x ′, gn〉
�

� =
�

�〈x ′, T ∗
n gn〉
�

�

≥ cαn a‖Tn‖.

Moreover,
�

�〈x ′, u〉
�

� ≥ δ. Therefore, for a special choice of complex number

τ of modulus 1, the point x := τx ′ satisfies ‖x − u‖ ≤ ε, while ‖T n x‖ = ‖T n x ′‖
for all n ∈ N. More precisely, set τ := 〈x ′,u〉

|〈x ′,u〉| , so that

〈τx ′, u〉 =
〈x ′, u〉
|〈x ′, u〉|

〈x ′, u〉 =
�

�〈x ′, u〉
�

� ≥ δ,

and therefore

‖x − u‖2 = 〈τx ′ − u,τx ′ − u〉 = ‖τx ′‖2 − 2 Re〈τx ′, u〉+ ‖u‖2

≤ 1 − 2δ+ 1 = ε2.

Given a Banach space X , an interesting question is, what is the maximal
possible exponent in the condition on the sequence (α)∞n=1 in Theorem 1.1 and
Theorem 1.4. More precisely, let X be a Banach space. The plank number of X
is the supremum of all p > 0 such that for any unit functionals fi ∈ X ∗, i ∈ N,

and coefficients αi ≥ 0, i ∈ N, satisfying
∑∞

i=1
α

p

i
< 1, there is x ∈ X , ‖x‖ ≤ 1,

such that
�

�〈x, fi 〉
�

� ≥ αi for all i ∈ N. By Theorem 1.1, the plank number of
any Banach space is at least 1, and by Theorem 1.4, the plank number of any
complex Hilbert space is at least 2.

Example 1.6. ([7]) The plank number of the real Hilbert space X := R2 is 1.
In other words, Theorem 1.4 is no more valid in real Hilbert spaces.

Proof. Suppose the plank number is p > 1, let q ∈ R such that 1 < q < p and
fix an arbitrary constant c ∈ (0; 1). Let n ∈ N be so large that n1/q−1 < c/2. Let

yi ∈ R2 be unit vectors evenly distributed along the circle: yi := (sin iπ
n

, cos iπ
n
)

for i = 1 . . . 2n. Let αi := c · n−1/q .
For a contradiction, suppose that there is x ∈ X , ‖x‖ ≤ 1 such that
�

�〈x, yi 〉
�

� ≥ αi for all i = 1 . . . 2n. But by the choice of yi , there is i for which
�

�〈x, yi 〉
�

� ≤ sin π
2n

. But this means that for this particular i

c · n−1/q = αi ≤
�

�〈x, yi 〉
�

� ≤ sin
π

2n
<

2

n
,

a contradiction.

An intriguing open problem is to determine the plank number of complex
`p spaces for p ∈ (1;∞), p 6= 2. Numerical experiments, as well as other evi-
dence (cf. [50], or [11, section 10.1]) suggest that in these complex `p spaces,
the plank number could be strictly bigger that 1, namely it is justified to for-
mulate the following conjecture.
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Conjecture 1.7. Let X := `p (X ), 1 ≤ p ≤ ∞, over the field of complex
numbers. Then the plank number of X equals min{p, q} where 1

p
+ 1

q
= 1.

In the case of finite number of planks of the same width, we have at least
one inequality.

Theorem 1.8. ([74, Proposition 1]) Let p > 1, and let X be a complex Lp (µ)-
space, 1

p
+ 1

q
= 1, m ∈ N, and fn ∈ X ∗ for n ∈ {1, . . . , m}. Then there is a point

x ∈ X of norm 1 such that for all n ∈ {1, . . . , m}
�

�〈x, fn〉
�

� ≥ m−1/ min{p,q}‖ fn‖.

Proof. Since X is reflexive there are points xn , n = 1, . . . , m, of norm 1 such
that 〈xn , fn〉 = ‖ fn‖ for all n.

For isomorphic Banach spaces Y and Z , let d (Y, Z ) denote the Banach-
Mazur distance

d (Y, Z ) := inf{‖T ‖ · ‖T −1‖: T : Y → Z is an isomorphism}.

Let Z := Span{x1, . . . , xm} be a subspace of X of dimension d ≤ m and let
Y := `2(d ) be the d-dimensional complex Hilbert space. By a result of F. John

[49], we have d (Y, Z ) ≤ d |1/2−1/p|.
First we show that this means there is an isomorphism T : Y → Z of norm

1 with 0 < ‖T −1‖ ≤ d |1/2−1/p|. Indeed, let C := d |1/2−1/p| and consider the set

K := {T ∈ L(Y, Z ): T is an isomorphism, ‖T ‖ = 1, ‖T −1‖ ≤ C + 1}.

By the above result of F. John, for each k ∈ N there is Tk ∈ K with ‖T −1‖ ≤ C+ 1
k

.
Since K is a compact set in L(Y, Z ), the sequence (Tk )k∈N has an accumulation
point, say T , which is an isomorphism and satisfies ‖T ‖ = 1 and ‖T −1‖ ≤ C .

Now consider the functionals T ∗( fn |Z ) ∈ Y ∗, n ∈ {1, . . . , m}, and m coeffi-
cients m−1/2. By the complex plank Theorem 1.4, there is y ∈ Y of norm 1 such
that
�

�〈Ty, fn |Z 〉
�

� =
�

�〈y, T ∗( fn |Z )〉
�

� ≥ m−1/2‖T ∗( fn |Z )‖

≥ m−1/2 ‖ fn |Z‖
‖T −1‖

≥ m−1/2‖ fn‖d−|1/2−1/p|,

since ‖ fn‖ = ‖ fn |Z‖ by the choice of points xn . For x := Ty ∈ BZ ⊂ BX we thus
have

�

�〈x, fn〉
�

� =
�

�〈x, fn |Z 〉
�

� ≥ m−1/2d−|1/2−1/p|‖ fn‖ ≥ m−1/2−|1/2−1/p|‖ fn‖

=m−1/ min{p,q}‖ fn‖.

On the other hand, Example 3.1 and Proposition 3.2 will show that the
plank number of `p cannot be greater than p.
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It is also possible to formulate a version of the plank theorem for certain
continuous families of operators, namely strongly continuous one-parameter
semigroups and groups. However, we formulate a more general version. We
will use two ad-hoc notions. A function φ : [0;∞) → [0;∞) is said to have
uniformly bounded decline (UBD) if there is δ > 0 and M ≥ 1 such that for all
t, s ∈ R, 0 ≤ t < s < ∞ with s − t < δ we have φ(s) > M−1φ(t). Similarly, it has
uniformly bounded growth (UBG) if under the same circumstances we have
φ(s) < Mφ(t). Note that if (T (t))t≥0 is a C0-semigroup and ω0(T ) its growth
bound then for any ω > ω0(T ) there is M > 0 such that for all t, s ∈ [0;∞) we
have ‖T (t)‖ ≤ Meω|t−s|‖T (s)‖, so the function t 7→ ‖T (t)‖ has UBG. Moreover,
for any x ∈ X the norm of the orbit, i.e. t 7→ ‖T (t)x‖ has UBG as well, even
uniformly, i.e. the numbers δ > 0 and M ≥ 1 can be chosen the same indepen-
dently on x ∈ X .

Proposition 1.9. Let X and Y be Banach spaces and let (T (t))t≥0 be a family
of operators T (t) ∈ L(X, Y ) such that the function ‖T (·)‖ has UBG and the
norm of every orbit ‖T (·)x‖, x ∈ X , has also UBG, all uniformly with the same
δ and M . Suppose that the function φ : [0;∞) → [0;∞) has UBD and φ ∈
L1[0;∞), in case X is a complex Hilbert space just φ ∈ L2[0;∞). Then for every
ε > 0 there is δ0 ∈ (0; ε] and a dense set of x ∈ X such that there is c > 0 such
that ‖T (t − δ0)x‖ ≥ cφ(t)‖T (t)‖ for each t ≥ δ0.

Proof. In case X is a complex Hilbert space, set p = 2, otherwise set p = 1.
By assumption there is a common δ > 0 and M ≥ 1 from the definitions of

uniform UBD and UBG of φ, ‖T (·)‖, ‖T (·)x‖. Let δ0 := min{ε, δ
2

}. Consider

the points tn := nδ0 for n ∈ N0. Since φ(s) > M−1φ(tn ) for each s ∈ (tn , tn+1),
n ∈ N0, we have

δ0

∞
∑

n=0

φ(tn)
p ≤ M p

∫ ∞

0

φ(s)p ds,

so (φ(tn ))
∞
n=0 ∈ `p .

Applying the plank theorem for operators 1.3, or 1.5 in case of complex
Hilbert space, to the sequence of coefficients (φ(tn+1))

∞
n=0 and the sequence of

operators (T (tn ))
∞
n=0, we obtain a dense set of points x ∈ X for each of which

there is c0 > 0 such that for all n ∈ N0 we have ‖T (tn )x‖ ≥ c0φ(tn+1)‖T (tn )‖.
Note that the indices used for the function φ and for the family of operators T
differ by 1.

Let tn ≤ t ≤ tn+1, n ∈ N. That is, 0 ≤ t − δ0 ≤ tn ≤ t ≤ tn+1, and
the differences between each two of these subsequent positive numbers are
strictly less than δ. We have

‖T (t − δ0)x‖ > M−1‖T (tn )x‖
≥ M−1c0 ·φ(tn+1) · ‖T (tn )‖
> M−1c0 · M−1φ(t) · ‖T (tn )‖
> M−1c0 · M−1φ(t) · M−1‖T (t)‖
= M−3c0 ·φ(t)‖T (t)‖.
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Indeed, the first, strict inequality follows from the UBG property of ‖T (·)x‖:
since tn − (t −δ0) < δ it yields ‖T (tn )x‖ < M‖T (t −δ0)x‖. The second is the in-
equality obtained from the plank theorem. The third, strict inequality follows
from the UBD property of φ: since tn+1 − t < δ it yields φ(tn+1) > M−1φ(t).
Finally the last, strict inequality follows from the UBG property of ‖T (·)‖: since
t − tn < δ it yields ‖T (t)‖ < M‖T (tn )‖.

Unfortunately the proof does not provide the control of the norm of the
obtained point (as will be in Corollary 1.14) – the norm of the vectors x depends
on δ. Moreover, we have to “skew” the inequality “‖T (t)x‖ ≥ Cφ(t)‖T (t)‖”
to “‖T (t − δ0)x‖ ≥ Cφ(t)‖T (t)‖” where δ0 > 0. This is because whereas the
C0-semigroups have a limited growth, they do not have necessarily a limited
decline (consider e.g. a nilpotent shift semigroup on [0; 1]). The formulation is
however sufficient for applications to orbits tending to infinity in Chapter 3.

We can also examine other possible definitions of “largeness” of the or-
bit. Let X be a Banach space and (αn)

∞
n=1 be a sequence of nonnegative real

numbers such that limn→∞ αn = 0. Define

M := {x ∈ X : ‖Tn x‖ ≥ αn‖Tn‖ for infinitely many n’s}

It is easy to see that the plank theorem for operators implies that M is a
dense set. However, using a different technique with Baire theorem as a core,
it is possible to prove that M is even a residual set. (Or even a complement of
a σ-porous set, as was shown recently in [4], cf. end of Chapter 7.) Recall that
a set is called residual if its complement is a first category set or, equivalently,
if it contains a Gδ subset dense in the whole space. Again, we formulate the
result generally for any sequence of operators Tn ∈ L(X, Y ).

Theorem 1.10. ([59]) Let X, Y be Banach spaces, Tn ∈ L(X, Y ) and (αn)
∞
n=1 be

a sequence of nonnegative numbers such that limn→∞ αn = 0. Then the set M
of those x ∈ X satisfying ‖Tn x‖ ≥ αn‖Tn‖ for infinitely many n’s, is residual.

Proof. If there are infinitely many n’s such that Tn = 0 then the assertion is
obviously true. Otherwise, fix k ∈ N and let

Mk := {x ∈ X : ∃n ≥ k ‖Tn x‖ > αn‖Tn‖}.

Clearly Mk is open. We shall prove it is also dense. Let z ∈ X and ε > 0 be
arbitrary. There exists n ≥ k such that αn < ε and Tn 6= 0. Hence there exists
x ∈ X of norm 1 such that ‖Tn x‖ > αnε

−1‖Tn‖. Since

2αn‖Tn‖ < ‖Tn(2εx)‖ ≤ ‖Tn(εx + z)‖ + ‖Tn(εx − z)‖,

either ‖Tn(z + εx)‖ or ‖Tn(z − εx)‖ is bigger than αn‖Tn‖, so one of the points
z + εx and z − εx is in Mk , while its distance from z is at most ε.

Now by the Baire theorem, the intersection

∞
⋂

k=1

Mk ⊆ M

is a dense Gδ set.
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Corollary 1.11. The set of x ∈ X for which the local spectral radius

rx(T ) := lim sup
n→∞

‖T n x‖1/n

is equal to the spectral radius r (T ), is residual in X .

If we have a single operator and want to find an orbit which is big with
respect to the spectral radii r (T n) instead of the norms ‖T n‖, there is a similar
result restricting the sequence of coefficients not to `1 as in the plank theo-
rems, but again just to c0.

Theorem 1.12. ([15], [57]) Let X be a complex Banach space, ε > 0 and
(αn)

∞
n=1 be a sequence of nonnegative numbers such that limn→∞ αn = 0.

Then there is a point x ∈ X , of norm at most supαn + ε, such that ‖T n x‖ ≥
αnr (T n) for all n ∈ N.

In case of real Banach spaces, it was proved in [58, Theorem 2.3] using
complexification techniques that under the same conditions there is a dense
set of x ∈ X such that for some c > 0, for all n ∈ N we have ‖T n x‖ ≥ cαn r (T n).

There exists also a version of the above theorem for the C0-semigroups
which offers an alternative to Proposition 1.9. Recall that ω0(T ) denotes the
growth bound of the semigroup. We will just state the version without proof.

Theorem 1.13. ([64, Lemma 3.1.7]) Let (T (t))t≥0 be a C0-semigroup with
ω0 ≥ 0, ε ∈ (0; 1) and α : [0;∞) → [0; 1] be a non-increasing function such
that limt→∞ α(t) = 0. Then there is a point x ∈ X , of norm 1, such that
‖T (t)x‖ ≥ (1 − ε)α(t) for all t ≥ 0.

Corollary 1.14. Let (T (t))t≥0 be a C0-semigroup, ε > 0 and α : [0;∞) →
[0;∞) be a bounded non-increasing function such that limt→∞ α(t) = 0. Then
there is a point x ∈ X , of norm at most supt≥0 α(t) + ε, such that ‖T (t)x‖ ≥
α(t)eω0 (T )t for all t ≥ 0.

Proof of Corollary 1.14. If α(0) = 0 then just take x := 0. If α(0) > 0 we
rescale the semigroup, function α and ε to apply Theorem 1.13 in the following
way. Define T̃ (t) := e−ω0(T )t T (t), α̃(t) := α(t)/α(0) and ε̃ := ε

ε+α(0)
. From

Theorem 1.13 we obtain x̃ such that ‖T̃ (t)x̃‖ ≥ (1 − ε̃)α̃(t) for all t ≥ 0 so
x := (α(0) + ε)x̃ satisfies ‖T (t)x‖ ≥ α(t)eω0 (T )t for all t ≥ 0.
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2. Stable orbits

The operator T is called (strongly) stable if every orbit is (strongly) stable,
that is if ‖T n x‖ → 0 for all x ∈ X . We will denote X s(T ) = {x ∈ X : lim T n x =
0}.

Stability of both discrete and continuous systems has been thoroughly
studied for a long time. It is closely connected not only to the evolutionary dif-
ferential equations but also ergodic theory, harmonic analysis etc. For some
recent results we refer for instance to monographs [29] and [64].

Now let us turn to the Datko-Pazy theorem, first formulated in [26] and
[66]. The first implication shows how the semigroup property immediately
leads to an integrability condition sufficient for stability. (In fact, instead of
the semigroup property, a UBG of the orbits is sufficient.)

Theorem 2.1. Let (T (t))t≥0 be a C0-semigroup and let x ∈ X . If for some
p ∈ [1;∞)

∫ ∞

0

‖T (t)x‖p dt < ∞

then T (t)x → 0 as t → ∞.

Proof. To obtain a contradiction, suppose that the orbit of x is not sta-
ble. Hence there is ε > 0 and a sequence (tn )n∈N0

of real numbers such that
‖T (tn )x‖ ≥ ε, tn+1 > tn + 1 for n ∈ N, and t0 > 1. Let M := sup0≤t≤1 ‖T (t)‖ > 0.
Then for t ∈ (tn − 1, tn), n ∈ N0, we have ‖T (t)‖ ≥ M−1ε by the semigroup
property, so

∫ ∞

0

‖T (t)x‖p ≥
∞
∑

n=0

(M−1ε)p =∞.

If the assumption holds for all x ∈ X with a single p ∈ [1;∞), by the closed
graph theorem applied to the map x → Lp (R, X ) : x 7→ T (·)x, there is a con-
stant C > 0 such that for every x ∈ X

∫ ∞

0

‖T (t)x‖p dt ≤ C‖x‖p .

In this case there is a quantitative strengthening of the Datko-Pazy theorem,
based on Corollary 1.14.
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Theorem 2.2. ([64, Lemma 3.1.8]) Let (T (t))t≥0 be a C0-semigroup. If for
some p ∈ [1;∞) there is C > 0 such that for all x ∈ X

∫ ∞

0

‖T (t)x‖p dt ≤ C‖x‖p ,

then ω0(T ) ≤ −1/(pC ).

Proof. Let ω := ω0(T ). By Theorem 2.1, every orbit is stable so it follows from
the uniform boundedness principle that ω ≤ 0. Let δ > 0 and 0 < ε < 1 and
define α(t) := e−δt . By Corollary 1.14, there is a point x0 ∈ X of norm at most
1+ ε such that

‖T (t)x0‖ ≥ α(t)eωt = e (ω−δ)t .

Integrating the p-th power of this inequality and using the assumption of the
theorem, we obtain

C (1+ ε)p ≥ C‖x0‖p ≥
∫ ∞

0

‖T (t)x0‖p dt ≥ −
1

p(ω − δ)
.

The numbers δ > 0 and ε > 0 can be chosen arbitrarily small, so ω ≤ −1/(pC ).

Corollary 2.3. A C0-semigroup (T (t))t≥0 is uniformly exponentially stable, if
and only if there is p ≥ 1 such that for every x ∈ X

∫ ∞

0

‖T (t)x‖p dt < ∞.

Proof. If ω0(T ) < 0 then for some ω < 0 and C > 0 we have ‖T (t)‖ ≤ Ceωt → 0
exponentially so for every x ∈ X , ‖T (·)x‖ ∈ Lp for any p ≥ 1. The oppo-
site implication follows from the closed graph theorem mentioned above, and
Theorem 2.2.

One could ask if it is possible to use Proposition 1.9 instead of Corollary
1.14. In such a case, there is unfortunately no control of the constant M so the
method yields nothing apart from the classical, non-quantitative Datko-Pazy
theorem.

There are other more general results of Datko-Pazy type, see [79], [76], [63],
[65].
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3. Orbits tending to infinity

An operator T ∈ L(X ) is said to be power bounded if there is C > 0 such
that for all n ∈ N we have ‖T n‖ ≤ C . By uniform boundedness principle, T
is power bounded, if and only if all its orbits are bounded. In other words, the
sequence ‖T n‖ is unbounded if and only if the sequence ‖T n x‖ is unbounded
for some x ∈ X .

Analogously, one could ask whether the following equivalence holds: ‖T n‖
tends to infinity if and only if ‖T n x‖ tends to infinity for some x ∈ X . Of
course if there is a point x ∈ X with orbit tending to infinity then ‖T n‖ ≥
‖T n x‖/‖x‖ → ∞, so the crucial question lies in the other implication.

If X is finite dimensional then ‖T n‖ → ∞ implies 1 < ‖T ‖ = r (T ) so there
is λ ∈ σp (T ) with |λ| > 1 and the corresponding eigenvector x ∈ X satisfies
‖T n x‖ = |λ|n · ‖x‖ → ∞. In the infinite dimensional spaces, the implication
doesn’t hold anymore, as the following example shows. Recall the notation
X∞(T ) := {x ∈ X : ‖T n x‖ → ∞}.

Example 3.1. ([62, Example 4]) On the space X = `p , 1 ≤ p < ∞, there is an
operator T ∈ L(X ) satisfying ‖T n‖ = (n + 1)1/p for all n ∈ N but X∞(T ) = ;.

Proof. Let (ek )
∞
k=1

be the standard basis in the space X = `p (real or complex).
Let T ∈ L(X ) be the weighted backward shift defined by

Tek :=

¨

�

k
k−1

�1/p
ek−1 for k > 1,

0 for k = 1.

Hence

‖T n‖ =
n+1
∏

k=2

�

k

k − 1

�1/p

= (n + 1)1/p

for all n. For the contradiction, suppose that there is x =
∑∞

k=1
ck ek ∈ `p such

that ‖x‖ =
�
∑∞

k=1
|ck |p
�1/p ≤ 1 but ‖T n x‖ → ∞ as n → ∞. Consequently,

1

n

2n−1
∑

j=n

‖T j x‖p → ∞, as n → ∞.

Let us estimate the above arithmetic mean. First we have

‖T j x‖p = ‖
∞
∑

k= j+1

�

k

k − j

�1/p

ck ek− j‖p

≤
2 j
∑

k= j+1

|ck |p
k

k − j
+

∞
∑

k=2 j+1

|ck |p
k

k − j
,
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where the second sum can be estimated by 2‖x‖p ≤ 2 since for k > 2 j we have
k

k− j
< 2. If we sum up the inequalities we get

2n−1
∑

j=n

‖T j x‖p ≤ 2n +

2n−1
∑

j=n

2 j
∑

k= j+1

|ck |p
k

k − j

≤ 2n +

4n
∑

k=n+1

|ck |p
k
∑

i=1

k

i

≤ 2n +

4n
∑

k=n+1

|ck |p 4n (1 + log 4n),

so that

2+ 4(1+ log 4n)

4n
∑

k=n+1

|ck |p ≥
1

n

2n−1
∑

j=n

‖T j x‖p → ∞.

Hence, for all n large enough, the left hand side is greater than 6, i.e., if we write

sn :=
∑4n

k=n+1
|ck |p then

sn ≥
1

1+ log 4n
.

But this is a contradiction since for such n we have

1 =

∞
∑

k=1

|ck |p ≥ sn + s4n + s4·4n + s4·4·4n + . . .

≥
∞
∑

j=1

1

1+ log 4 j n
=

∞
∑

j=1

1

1+ log n + j log 4
=∞.

It is possible to obtain a slightly faster growth: defining T to be the back-
ward shift with weights

�

(k + 1) log(k + 1)

k log k

�1/p

instead of

�

k

k − 1

�1/p

,

a similar proof shows that T has no orbit tending to infinity, but

‖T n‖ =
�

1

2 log 2

�1/p
�

(n + 2) log(n + 2)
�1/p

.

In particular, there is an operator T ∈ L(`1) with ‖T n‖ ∼ n log n without an
orbit tending to infinity.
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However, the example is in a sense the best possible, as can be proved
using the plank theorem for operators: if the norms of the operator satisfy
‖T n‖ ≥ Cn1+ε for some ε > 0, C > 0, than there is a dense set of points whose
orbit tends to infinity. In the complex Hilbert space the same conclusion holds
if ‖T n‖ ≥ Cn1/2+ε for some ε > 0, C > 0. (The situation in the real Hilbert
spaces, or in complex `p spaces, is not clear as far as we know.) We will formu-
late the proposition in a more general form, including a technical detail in the
conclusion which will be used in Part IV.

Proposition 3.2. Let (Tn)n∈N ⊂ L(X ) be a sequence of operators satisfying

∞
∑

n=1

1

‖Tn‖
< ∞, or when X is a complex Hilbert space

∞
∑

n=1

1

‖Tn‖2
< ∞.

Then there is a dense set of vectors x ∈ X such that ‖Tn x‖ → ∞ and
infn∈N ‖Tn x‖ > 0.

Proof. Set p := 2 in the case when X is a complex Hilbert space and p := 1
otherwise. Let (βn)

∞
n=1 be a sequence of real numbers tending to infinity such

that
∞
∑

n=1

βn

‖Tn‖p
< ∞

so that (β
1/p
n /‖Tn‖)∞n=1 ∈ `p . By the plank theorem for operators 1.3 or 1.5,

respectively, there is a dense set of points x ∈ X for which there is c > 0 such
that

‖Tn x‖ ≥ c
β

1/p
n

‖Tn‖
‖Tn‖ → ∞.

Note that for some particular classes of operators, a slower growth rate
could ensure the existence of an orbit tending to infinity, for instance in [67]
the following is proved.

Theorem 3.3. Let

T =
�

N1 M
0 N2

�

be a 2-normal operator, i.e., N1, M and N2 are normal, commuting operators.
If the polar decompositions can be written as N1 = UP1 and N2 = UP2 (U
unitary, P1, P2 positive) and if there exist ρ,δ > 0 such that ‖T n‖ess > ρnδ for
each n ∈ N, then any compact perturbation of T admits an orbit tending to
infinity.
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J.-M. Augé recently in [4] defined a quantity q(X ) as the supremum of all
q > 0 such that for every non-nilpotent T ∈ L(X ) there is x ∈ X such that

∞
∑

n=1

�‖T n x‖
‖T n‖

�q

=∞.

Denote the plank number of X by π(X ). The proof of Proposition 3.2 in fact
shows that π(X ) ≤ q(X ). If we consider the complex `p spaces, Proposition
3.2 together with Example 3.1 proves that q(`p ) ≤ p if p ∈ [1;∞) – and Augé
in [4] uses Banach space geometry tools, namely the modulus of asymptotic
uniform smoothness, to show the other inequality, so that q(`p ) = p. His re-
sults however doesn’t seem to be strong enough to show that π(`p ) = p for
p ∈ [1; 2].

There is also a version of both Example 3.1 and Proposition 3.2 for C0-
semigroups of operators.

Example 3.4. On the space X = Lp (1;∞), 1 ≤ p < ∞, there is a C0-
semigroup (T (t))t≥0 satisfying ‖T (t)‖ = (t + 1)1/p for all t ≥ 0 but X∞(T ) = ;.

The semigroup can be constructed as a weighted backward unilateral
shift:

(T (t) f )(z) :=
�z + t

z

�1/p

f (z + t)

for f ∈ X = Lp (1;∞), t ≥ 0, z ≥ 1. The argument is analogous to that in
Example 3.1.

Proposition 3.5. Let (T (t))t≥0 be a C0-semigroup satisfying

∫ ∞

0

1

‖T (t)‖
dt < ∞,

or when X is a complex Hilbert space

∫ ∞

0

1

‖T (t)‖2
dt < ∞.

Then there is a dense set of vectors x ∈ X such that ‖T (t)x‖ → ∞.
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Proof. Let p := 2 in case of complex Hilbert space, p := 1 otherwise. Let
β: [0;∞)→ [0;∞) be a nondecreasing Lebesgue measurable function tending
to infinity, such that

∫ ∞

0

β(t)

‖T (t)‖p
dt < ∞

so that the function φ(t) := β(t)1/p /‖T (t)‖ for t ≥ 0 satisfies φ ∈ Lp [0;∞).
Moreover, φ satisfies the UBD condition. Indeed, let ω0 be the growth bound
of T . By the definition there is M ≥ 1 and ω ≥ ω0 such that ‖T (t)‖ ≤ Meωt

for all t ≥ 0. Without loss of generality, suppose that ω > 0. Set δ := 1
ω

> 0.
Then for any s, t ∈ R such that 0 ≤ t < s < ∞ and s − t < δ, we have ‖T (s)‖ ≤
Meω(s−t )‖T (t)‖ < Me1‖T (t)‖. Hence

φ(s) =
β(s)1/p

‖T (s)‖
≥

β(t)1/p

Me‖T (t)‖
= M−1e−1φ(t).

By Proposition 1.9, for ε := 1 there is δ0 ≤ ε = 1 and a dense set of x ∈ X such
that for some c > 0

‖T (t − δ0)x‖ ≥ cφ(t)‖T (t)‖ = cβ(t)1/p → ∞.

An interesting problem is a characterization of the sets which can be writ-
ten as X∞(T ) := {x ∈ X : ‖T n x‖ → ∞} for some T ∈ L(X ).

Observation 3.6. The set X∞(T ) of x ∈ X such that ‖T n x‖ → ∞, is a homo-
geneous Fσδ set (in the norm topology). Moreover, X∞(T )∩SX is either empty
or infinite.

Proof. Clearly if x ∈ X∞(T ) then λx ∈ X∞(T ) for each λ ∈ F \ {0} and

X∞(T ) =

∞
⋂

k=1

∞
⋃

n0=1

∞
⋂

n=n0

{x ∈ X : ‖T n x‖ ≥ k}

where the inner sets are closed. Moreover, suppose that the set X∞(T ) ∩ SX is
nonempty and finite. If x ∈ X∞(T ) then T n x ∈ X∞(T ) so there are n, m ∈ N,
n < m, such that T m x = λT n x for some λ ∈ F. For each k ∈ N we have

‖T n+k(m−n)‖ · ‖x‖ ≥ ‖T n+k(m−n)x‖ = |λ|k ‖T n x‖.

Since x ∈ X∞(T ) the middle term tends to infinity as k → ∞ so |λ| > 1 and
the whole sequence ‖T n‖ tends to infinity exponentially. Hence by Proposi-
tion 3.2, X∞(T ) is dense in X and we have a contradiction since X∞(T ) is also
homogeneous.

Prăjitură [69] conjectured that if X∞(T ) 6= ; then X∞(T ) is even dense
in X . However, in all the infinite dimensional separable Banach spaces, the
conjecture turned out to be false, as was shown by first by P. Hájek and R. Smith
for spaces with symmetric basis and later by J.-M. Augé in general.
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Theorem 3.7. ([45], [3]) Let X be an infinite-dimensional separable Banach
space. Then there is T ∈ L(X ) such that X∞(T ) is non-empty but not dense,
and T can be written as Id +K with K a compact operator. Moreover, if X has
a symmetric basis then there is T ∈ L(X ) such that X∞(T ) is non-empty and
nowhere dense in X .

The set X∞(T ) is also far from being linear. Obviously if x ∈ X∞(T ) then
−x ∈ X∞(T ) but x + (−x) = 0 /∈ X∞(T ). However, even X∞(T ) ∪ X s(T ) is not
necessarily a linear set, as the following example shows.

Example 3.8. There is a Hilbert space X , an operator T and vectors x, y ∈ X ,
such that x, y ∈ X∞(T ) but x + y /∈ X∞(T )∪ X s(T ).

Proof. Let X be the orthogonal sum of the Hilbert spaces with standard bases
(ek )k∈N, and ( fk )k∈N, respectively. Let the operator T be defined as

T (kek ) := (k + 1)ek+1 and T fk := fk+1, k ∈ N

so that for x := −e1, y := e1 + f1 we have ‖T n x‖ = n + 1 and ‖T n y‖ =
p

(n + 1)2 + 1, while ‖T n(x + y)‖ = 1. Clearly T is bounded.

We finish by relating the sets X∞ for different operators, the main part was
noted in [67, Proposition 2.2], as a supplement to former Ansari’s theorem on
hypercyclic operators – see Theorem 8.6.

Theorem 3.9. Let m ∈ N and λ ∈ T. Then X∞(T ) = X∞(T
m ) = X∞(λT ).

Proof. Suppose that the sequence ‖T n x‖ does not tend to infinity so that
M := 1 + lim infn→∞ ‖T n x‖ < ∞. Then there is a sequence nk of positive
integers tending to infinity such that ‖T nk x‖ ≤ M . Let m ∈ N be arbitrary.
Then for nk > m the number nk can be uniquely written as nk = m jk − ik

where jk , ik ∈ N0 and 0 ≤ ik < m. Note that limk→∞ jk =∞. Since

‖(T m ) jk x‖ = ‖T ik+nk x‖ ≤ ‖T ‖ik · ‖T nk x‖ ≤ ‖T ‖m · M

the orbit of x under T m is not tending to infinity. The rest of the statement is
easy.
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4. Weak orbits

Results analogous to the “normal” orbits (T n x)n∈N, x ∈ X , can be some-
times also obtained for the weak orbits (〈T n x, x∗〉)n∈N, x ∈ X , x∗ ∈ X ∗. For
instance, on `2(N) there is an analogy of Example 3.1, only with a linear growth
of ‖T n‖.

Example 4.1. ([62, Example 8]) There is a Hilbert space X (real or complex)
and an operator T ∈ L(X ) satisfying ‖T n‖ = n + 1 for each n ∈ N, such that

there is no pair x, y ∈ X with
�

�〈T n x, y〉
�

�→ ∞ as n → ∞.

Proof. Let X be the Hilbert space with orthonormal basis {ek, j : k ∈ N, 1 ≤
j ≤ k}. Let T ∈ L(X ) be defined by

Tek, j :=

¨

�

j+1

j
· k− j+1

k− j

�1/2
ek, j+1 for j < k,

0 for j = k .

We have T nek, j =
�

j+n

j
· k− j+1

k− j+1−n

�1/2
ek, j+n for j ≤ k − n. It is easy to see

that
�

j+n

j
· k− j+1

k− j+1−n

�1/2
≤ n + 1. Moreover, T nen+1,1 = (n + 1)en+1,n+1, and so

‖T n‖ = n + 1 for each n.
Let x =
∑

k, j
αk, j ek, j ∈ X , y =

∑

k, j
βk, j ek, j ∈ X with real or complex

coefficients αk, j ,βk, j . Suppose on the contrary that
�

�〈T n x, y〉
�

� → ∞. Without
loss of generality we may assume that ‖x‖ = ‖y‖ = 1.

For each n large enough we have

2n−1
∑

r=n

�

�〈T r x, y〉
�

� ≥ 7n.

On the other hand, we have

2n−1
∑

r=n

�

�〈T r x, y〉
�

� =

2n−1
∑

r=n

∞
∑

k=r+1

k−r
∑

j=1

� j + r

j
·

k − j + 1

k − j + 1 − r

�1/2 �
�αk, jβk, j+r

�

�

≤ A + B +C +D,
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where

A =

2n−1
∑

r=n

4n
∑

k=r+1

k−r
∑

j=1

� j + r

j
·

k − j + 1

k − j + 1 − r

�1/2 �
�αk, jβk, j+r

�

� ,

B =

∞
∑

k=4n+1

2n−1
∑

r=n

k−r−n
∑

j=n+1

� j + r

j
·

k − j + 1

k − j + 1 − r

�1/2 �
�αk, jβk, j+r

�

� ,

C =

∞
∑

k=4n+1

2n−1
∑

r=n

n
∑

j=1

� j + r

j
·

k − j + 1

k − j + 1 − r

�1/2 �
�αk, jβk, j+r

�

� ,

D =

∞
∑

k=4n+1

2n−1
∑

r=n

k−r
∑

j=k−r−n+1

� j + r

j
·

k − j + 1

k − j + 1 − r

�1/2 �
�αk, jβk, j+r

�

� .

We have:

A ≤
4n
∑

k=n+1

k
∑

j=1

k
∑

i=1

k
p

i j

�

�αk, jβk,k−i+1

�

�

≤
4n

2

4n
∑

k=n+1

k
∑

i , j=1

�

�

�αk, j

�

�

p
i

�2
+
�

�

�βk,k−i+1

�

�

p

j

�2

≤ 2n(1 + ln(4n))

4n
∑

k=n+1

k
∑

j=1

(
�

�αk, j

�

�

2
+
�

�βk, j

�

�

2
),

B ≤
∞
∑

k=4n+1

2n−1
∑

r=n

k−r−n
∑

j=n+1

3
�

�αk, jβk, j+r

�

�

≤
3

2

∞
∑

k=4n+1

2n−1
∑

r=n

k−r−n
∑

j=n+1

(
�

�αk, j

�

�

2
+
�

�βk, j+r

�

�

2
)

≤
3n

2

∞
∑

k=4n+1

k
∑

j=1

(
�

�αk, j

�

�

2
+
�

�βk, j

�

�

2
) ≤

3n

2
,
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C ≤
∞
∑

k=4n+1

2n−1
∑

r=n

n
∑

j=1

�3n − 1

j
· 3
�1/2 �
�αk, jβk, j+r

�

�

≤ 3
p

n

∞
∑

k=4n+1

n
∑

j=1

�

�αk, j

�

�

p

j

3n−1
∑

i=n+1

�

�βk,i

�

�

≤ 3
p

n ·
p

2n

∞
∑

k=4n+1

n
∑

j=1

�

�αk, j

�

�

p

j

�

3n−1
∑

i=n+1

�

�βk,i

�

�

2�1/2

≤
3n
p

2

∞
∑

k=4n+1

n
∑

j=1

��

�αk, j

�

�

2
+

3n
∑

i=n

�

�βk,i

�

�

2

j

�

≤
3n
p

2
+

3n
p

2
(1 + ln n)

∞
∑

k=4n+1

3n
∑

i=n

�

�βk,i

�

�

2
.

Since the terms C and D are symmetrical, we have

D ≤
3n
p

2
+

3n
p

2
(1 + ln n)

∞
∑

k=4n+1

k−n
∑

i=k−3n

�

�αk,i

�

�

2
.

Thus for n large enough we have

7n ≤
2n−1
∑

r=n

�

�〈T r x, y〉
�

�

≤
3n

2
+ 3n

p
2+ 2n(1 + ln(4n))

4n
∑

k=n+1

k
∑

j=1

(
�

�αk, j

�

�

2
+
�

�βk, j

�

�

2
)

+
3n
p

2
(1+ ln n)

∞
∑

k=4n+1

3n
∑

j=n

(
�

�βk, j

�

�

2
+
�

�αk,k− j

�

�

2
)

≤ 6n + n(1 + ln(4n))
�

2

4n
∑

k=n+1

k
∑

j=1

(
�

�αk, j

�

�

2
+
�

�βk, j

�

�

2
)

+ 3

∞
∑

k=4n+1

3n
∑

j=n

(
�

�βk, j

�

�

2
+
�

�αk,k− j

�

�

2
)
�

.

Thus for all n ≥ n0 we have

2

4n
∑

k=n+1

k
∑

j=1

(
�

�αk, j

�

�

2
+
�

�βk, j

�

�

2
) + 3

∞
∑

k=4n+1

3n
∑

j=n

(
�

�βk, j

�

�

2
+
�

�αk,k− j

�

�

2
) ≥

1

1+ ln(4n)
.
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In particular, for n = 4sn0, s = 1, 2, . . ., we have

10 = 5

∞
∑

k=1

k
∑

j=1

(
�

�αk, j

�

�

2
+
�

�βk, j

�

�

2
)

≥ 2

∞
∑

s=1

4s+1n0
∑

k=4s n0+1

k
∑

j=1

(
�

�αk, j

�

�

2
+
�

�βk, j

�

�

2
)

+ 3

∞
∑

s=1

∞
∑

k=4s n0+1

3·4s n0
∑

j=4s n0

(
�

�βk, j

�

�

2
+
�

�αk,k− j

�

�

2
)

≥
∞
∑

s=1

1

1+ ln 4s+1n0

=

∞
∑

s=1

1

1+ ln n0 + (s + 1) ln 4
=∞,

a contradiction. Hence there are no x, y ∈ X with
�

�〈T n x, y〉
�

�→ ∞.

The example is in a sense the best possible.

Proposition 4.2. Let (Tn)n∈N ⊂ L(X ) be a sequence of operators satisfying

∞
∑

n=1

1

‖Tn‖1/2
< ∞,

or when X is a complex Hilbert space

∞
∑

n=1

1

‖Tn‖
< ∞.

Then there is a dense set of pairs x ∈ X, x∗ ∈ X ∗ such that |〈Tn x, x∗〉| → ∞.

Proof. Set p := 2 in the case when X is a complex Hilbert space and p := 1
otherwise. Let (βn)

∞
n=1 be a sequence of real numbers tending to infinity such

that
∞
∑

n=1

βn

‖Tn‖p/2
< ∞

so that the sequence of coefficients αn := β
1/p
n /‖Tn‖1/2 belongs to `p and sat-

isfies the limit condition α2
n‖Tn‖ → ∞.

Now we apply one of the plank theorems for operators 1.3 or 1.5, respec-
tively, to the operators (T ∗

n )n∈N and coefficients (αn)n∈N. By the theorems, there
is a dense set of x∗ ∈ X ∗ such that there is c1 > 0 such that

‖T ∗
n x∗‖ ≥ c1αn‖T ∗

n ‖.
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Next we use one of the plank theorems 1.1 or 1.4, respectively, to the func-
tionals T ∗

n x∗ and the coefficients (αn)n∈N. There is a dense set of vectors x ∈ X
such that there is c2 > 0 such that

�

�〈Tn x, x∗〉
�

� =
�

�〈x, T ∗
n x∗〉
�

� ≥ c2αn‖T ∗
n x∗‖.

In sum, we have a dense set of pairs x ∈ X , x ∈ X ∗ such that for some c1, c2 > 0

�

�〈Tn x, x∗〉
�

� ≥ c1c2α
2
n‖Tn‖ → ∞.

Since Example 4.1 works only in Hilbert spaces, the situation for other do-
mains, namely `p spaces, or the class of Banach spaces in general, is currently
not clear.
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5. Hypercyclicity

The notion of hypercyclicity and related topics received a broad attention
in the past two decades. However, as noted in a wonderful survey by Grosse-
Erdmann [38], a more general concept of universality goes back at least to the
year 1914, when Pál Fekete discovered a formal real power series on [−1; 1]
such that every continuous function g on [−1; 1]with g (0) = 0 is uniformly ap-
proximable by partial sums of the series. The first explicit example of a hyper-
cyclic operator on a classical Banach space appeared in an article by Rolewicz
[75] – his example is just a multiple of the backward shift on `p , 1 ≤ p < ∞.

Recall that an operator is called hypercyclic if there is a vector with dense
orbit; such a vector is then called hypercyclic vector; the term orbital vector
also appeared in the literature in the same meaning. Similarly, a sequence
(Tn)n∈N of operators is called hypercyclic if there is x ∈ X such that (Tn(x))n∈N
is dense. Usually it is supposed that the underlying space is separable – oth-
erwise obviously, there cannot be a hypercyclic vector. There are two other
similar notions which are not subject of the thesis but will be briefly touched:
an operator is called cyclic if for some x ∈ X the linear subspace Span Orb(T, x)
is dense in the whole space, and supercyclic if the cone F · Orb(T, x) = {λT n x :
λ ∈ F, n ∈ N} is dense in the whole space, where F ∈ {R,C} is the underlying
field.

Hypercyclicity is connected to many different branches of mathematics
and there are many interesting problems concerning hypercyclicity; we will
briefly mention some of the connections and some of the problems in this
chapter. For a much broader study about the subject we can refer to a recent
monograph of Bayart and Mathéron [11].

The key concept in the field is a theorem now attributed to Birkhoff, which
states that in the case of separable Banach spaces, hypercyclicity is equivalent
to the so-called topological transitivity. The first result of this type appeared
already in [20] (thus the name), and later in [51], [35], [19]. In addition to the
important statements (i) and (iii), we also state two other, under usual condi-
tions equivalent statements.

27
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Theorem 5.1. (Birkhoff’s transitivity theorem) Let X be a separable complete
metric space with metric %. Let fn : X → X , n ∈ N, be a sequence of continu-
ous mappings. Then the following assertions are equivalent:

(i) ( fn)n∈N is topologically transitive, that is, for any non-empty open sets
U, V ⊂ X there is n ∈ N such that fn(U )∩ V is non-empty,

(ii) there is a dense set of hypercyclic points, i.e. of those points x ∈ X such
that the set { fn(x): n ∈ N} is dense.

Moreover, if fn = f n
1 for all n ∈ N then the above assertions imply the

following assertion (iii). If in addition to that, X is perfect (i.e. without isolated
points) then all the four assertions are equivalent.

(iii) f1 is hypercyclic, that is, there is x ∈ X such that the set { f n
1 (x) : n ∈ N} is

dense,

(iv) there is a dense sequence (yi )
∞
i=1

in X such that for each i, j ∈ N and k ∈ N

there is n ∈ N such that %( f n
1 (yi ), y j ) < 1

k
.

Proof.
(i)⇒(ii) Suppose ( fn)n∈N is topologically transitive and let M ⊂ X be any

nonempty open set, without loss of generality of diam M ≤ 1. We will show
that M contains a hypercyclic point. Let (zk )

∞
k=1

be dense in X and define Vk :=

{y ∈ X : %(zk , y) < 1
k

}. Set U1 := M . By assumption, there is n1 ∈ N such

that fn1
(U1) ∩ V1 is nonempty so that U1 ∩ f −1

n1
(V1) is a nonempty open set.

Choose any s1 ∈ U1 ∩ f −1
n1
(V1) and define U2 := U1 ∩ f −1

n1
(V1) ∩ B1/2(s1) so that

diam U2 ≤ 1/2. Like this, we inductively construct nonempty open sets Uk

such that Uk ⊃ Uk+1 and diamUk ≤ 1/k, so that there is x ∈
⋂∞

k=1
Uk , since

X is complete. The point x is hypercyclic. Indeed, let U be any open set. For

some k ∈ N, we have Vk ⊂ U so that

fnk
(x) ∈ fnk

(Uk+1) ⊂ fnk
(Uk+1)

− ⊂ Vk ⊂ U,

while x ∈ U1 ⊂ M and the implication is proved.
(ii)⇒(i) Let U, V be nonempty open sets in X . By assumption, there is a

hypercyclic point x ∈ U so there is n ∈ N such that fn(x) ∈ V , that is fn(U ) ∩
V 6= ;.

(ii)⇒(iii) Trivial.
(iii)⇒(ii) Suppose that fi = f i

1 and let x be a hypercyclic point. For any

i ∈ N, the point fi (x) is hypercyclic since f j ( fi (x)) = f
i+ j

1 (x) and X is perfect.
Hence there is a dense set of hypercyclic points.

(ii)⇒(iv) Suppose that fi = f i
1 and let x be a hypercyclic point, set yi :=

fi (x). Since X is perfect, each yi is hypercyclic and thus its orbit comes arbi-
trarily close to any given y j .
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(iv)⇒(i) If U, V ⊂ X are nonempty open sets then yi ∈ U , y j ∈ V for some

i, j ∈ N. There is k ∈ N so that the ball with diameter 1
k

and center y j is also

contained in V . By assumption, there is n ∈ N such that %( fn (yi ), y j ) < 1
k

so
fn(yi ) ∈ V . Thus ( fn)n∈N is topologically transitive.

In particular, if X is a Banach space and fn = T n for a single bounded
linear operator T , we have the following equivalence.

Corollary 5.2. Let T ∈ L(X ). Then the following are equivalent:

(i) T is topologically transitive, i.e. for any non-empty open sets U, V ⊂ X
there is n ∈ N such that T n(U )∩ V is non-empty,

(ii) T is hypercyclic,

(iii) T has a dense set of hypercyclic points.

6. The Hypercyclicity criterion

A first version of a powerful sufficient condition for hypercyclicity which
is now known as the Hypercyclicity criterion was first proposed by C. Kitai [51].
We rephrase a generalized version of it as follows [19], [39]: T ∈ L(X ) satisfies
the Hypercyclicity criterion iff there are dense sets D , D ′ ⊂ X and a sequence
(nk )k∈N of positive integers such that:

(i) T nk z → 0 for all z ∈ D ,

(ii) for each z ′ ∈ D ′ there is a sequence (xk )k∈N ⊂ X such that xk → 0 and
T nk xk → z ′.

In such a case we will also say that T satisfies the Hypercyclicity criterion
with respect to the sequence (nk )k∈N. The original condition of Kitai is now
usually referred to as Kitai’s criterion, and it requires the sequence to be nk :=
k, and D = D ′.

It is not difficult to prove that if T satisfies the Hypercyclicity criterion then
it is hypercyclic – see the part “(i)⇒(ii)” of the next theorem. A natural question
is the opposite implication: whether all the hypercyclic operators satisfy the
Hypercyclicity criterion. Independently in 1992, Herrero [48] asked another
question: whether T ⊕ T is hypercyclic whenever T is hypercyclic. In fact, the
two questions turned out to be equivalent.
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Theorem 6.1. ([19]) The following are equivalent:

(i) T satisfies the Hypercyclicity criterion,

(ii) T is hereditarily hypercyclic,

(iii) T is (topologically) weakly mixing, that is, the direct sum T ⊕ T acting on
X ⊕ X is topologically transitive.

Here T is called hereditarily hypercyclic with respect to a sequence of non-
negative integers (nk )k∈N if for all subsequences (nk j

) j∈N, the sequence of oper-

ators (T
nk j ) j∈N is hypercyclic. T is called hereditarily hypercyclic if it is heredi-

tarily hypercyclic with respect to some sequence (nk )k∈N.

Proof.
(i)⇒(ii) First we will prove that T is topologically transitive. Let U and V

be nonempty open sets in X . Let D , D ′ be the dense sets from the Hypercyclic-
ity criterion so there are z ∈ U ∩ D and z ′ ∈ V ∩ D ′. Let ε > 0 be such that
B (z, ε) ⊂ U and B (z ′, 2ε) ⊂ V and let (xk ) be the sequence from the Hyper-
cyclicity criterion.

There is k ∈ N such that

‖T nk z‖ < ε

‖xk‖ < ε

‖T nk xk − z ′‖ < ε

and therefore
‖(z + xk )− z‖ < ε

‖T nk (z + xk )− z ′‖ < 2ε.

This means that z + xk ∈ U and T nk (z + xk ) ∈ V , so T nk U ∩ V 6= ;.
Furthermore, it is easy to see that if T satisfies the Hypercyclicity criterion

with respect to (nk ) then it is satisfied also for any subsequence of (nk ) and we
can proceed as above. Therefore T is hereditarily hypercyclic with respect to
(nk ).

(ii)⇒(iii) Suppose that T is hereditarily hypercyclic with respect to the
sequence (nk )k∈N, we will prove that T ⊕ T is topologically transitive. Let
U1, V1,U2, V2 be nonempty open sets in X . The sequence (T nk ) is hypercyclic,
so there is a dense set of hypercyclic points. By Theorem 5.1, there is nk1

∈ N

such that T nk1 (U1)∩V1 6= ;. However, the sequence T nk1+1 , T nk1+2 . . . is also hy-
percyclic, so by again, there is nk2

∈ N such that T nk2 (U1)∩V1 6= ;. Proceeding
by induction, we obtain a subsequence (nk j

) j∈N of (nk ) such that

T
nk j (U1)∩ V1 6= ; for each j ∈ N.

Finally since (T
nk j ) still forms a hypercyclic sequence of operators we can

apply Theorem 5.1 once more again, so there is m ∈ (nk j
) j∈N such that

T m(U2)∩ V2 6= ;. So T ⊕ T is topologically transitive and thus hypercyclic.
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(iii)⇒(i) Let (x, y) be a hypercyclic vector for T ⊕ T , let D = D ′ := {T n x :
n ∈ N}. Fix k ∈ N for a moment. We will prove that the vector (x, T k y) is
also hypercyclic for T ⊕ T . First note that Rng T k is dense. Second, given any
(u, v) ∈ T ⊕ T , v ∈ Rng T k and ε > 0, let ε0 := (1 + ‖T k‖)ε and take any n ∈ N

larger than k such that ‖(T n x, T n y) − (u, T −k v)‖ < ε0. Then

‖(T n x, T nT k y) − (u, v)‖ ≤ ‖T n x − u‖ + ‖T nT k y − v‖

≤ ε0 + ‖T k‖‖T n y − T −k v‖ ≤ ε.

Hence (x, T k y) is hypercyclic for T ⊕T , so that there is a dense set M of vectors
u ∈ X such that (x, u) is hypercyclic for T ⊕ T . In particular, given k ∈ N there
is a vector uk ∈ M of norm at most 1/k, so that ‖T nk (x, uk ) − (0, x)‖ < 1/k for
certain exponent nk ∈ N. In other words, for each k ∈ N there is uk ∈ X and
nk ∈ N such that

‖uk‖ < 1/k,

‖T nk x‖ < 1/k,

‖T nk uk − x‖ < 1/k.

First, this means that for any z = T m x ∈ D , m ∈ N, we have T nk z = T mT nk x →
0 as k → ∞. Second, let z ′ = T m x ∈ D ′, m ∈ N. Then for xk = T muk we have
xk → 0 and T nk xk = T mT nk uk → T m x = z ′ as k → ∞.

If we restrict the Hypercyclicity criterion to the case when nk = k, we can
obtain an analogous result regarding stronger notions. The proof is similar.

Theorem 6.2. The following are equivalent:

(i) T satisfies the Hypercyclicity criterion with respect to nk = k,

(ii) T is hereditarily hypercyclic with respect to nk = k,

(iii) T is (topologically) mixing, that is, for any nonempty open subsets U, V ⊂
X there exists m ∈ N such that for all n ≥ m the set T n(U ) intersects V .

The natural question whether every hypercyclic operator satisfies the Hy-
percyclicity criterion (or equivalently, whether for all T hypercyclic, T ⊕T is hy-
percyclic as well), turned out to be one of the most important problems on the
notion of hypercyclicity. In 1991, it was proved by Salas [77] and Herrero [47]
that even in the Hilbert space setting, there are hypercyclic operators which
do not satisfy the Hypercyclicity criterion with respect to the sequence nk = k.
However, the general case remained open until 2006 when De La Rosa and
Read constructed a counterexample.
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Example 6.3. ([27]) There is a Banach space X and a hypercyclic operator
T ∈ L(X ) such that T ⊕ T is not hypercyclic, that is, T does not satisfy the
Hypercyclicity criterion.

In the sequel, Bayart and Mathéron [10] showed that such an operator can
be constructed in every Banach space with an unconditional basis such that
the forward shift corresponding to the basis is continuous, which includes the
spaces c0 and `p , 1 ≤ p < ∞.

In the opposite direction, in some broad classes of operators the Hyper-
cyclicity criterion is equivalent to hypercyclicity. In particular, the equivalence
holds for operators T with dense generalized kernel

⋃

n≥1
Ker(T n), for instance

generalized backward shifts.

Theorem 6.4. ([19]) Let T be hypercyclic with dense generalized kernel, i.e.

⋃

n≥1

Ker(T n)− = X.

Then T satisfies the Hypercyclicity criterion.

Proof. Let x be any hypercyclic vector. Since T is topologically transitive, for
each k ∈ N there is nk ∈ N and yk ∈ X such that ‖yk‖ < 1/k and ‖T nk yk −
x‖ < 1/k. Obviously we can suppose that (nk )k∈N is increasing. The set D :=
⋃

n≥1
Ker T n is dense in X ; for each z ∈ D we have T nk z = 0 for sufficiently big

k so point (i) of the Hypercyclicity criterion holds. Let D ′ := {T n x : n ∈ N}. If
z ′ = T m x ∈ D ′ then xk := T m yk satisfies ‖xk‖ < ‖T m‖ · 1/k → 0 as k → ∞,
as well as T nk xk = T mT nk yk → T m x = z ′ as k → ∞. Thus the point (ii) of the
Hypercyclicity criterion also holds.

Using the Hypercyclicity criterion, it is not hard to prove that several op-
erators are hypercyclic, for instance it allows us to reprove the classical result
of Rolewicz in just a few lines.

Example 6.5. ([75]) Let S : `p → `p , 1 ≤ p < ∞, be the backward shift
operator, and λ ∈ C satisfy |λ| > 1. Then the operator T := λS satisfies the
Hypercyclicity criterion and is thus hypercyclic.

Proof. Take nk := k and D = D ′ := c00(N) be the subspace of all finitely
supported sequences. Let z ∈ D , then T k z → 0. Set xk := λ−k S′k z where S′ is

the forward shift operator, so that ‖xk‖ = |λ|−k ‖z‖ → 0 and

T k xk = λk Sk (λ−k S′k z) = z.
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7. Set of hypercyclic vectors

If x is a hypercyclic vector then for any n ∈ N the points T n x are also hy-
percyclic, that is, there is a dense set of hypercyclic points. Moreover, it is easy
to determine the topological complexity of the set, and the linear structure al-
lows us to prove even more.

Theorem 7.1. Let T be a hypercyclic operator. The set Xh of hypercyclic
points under T is a dense Gδ set. If x ∈ Xh then p(T )x ∈ Xh for any nonzero
polynomial p, so that Xh ∪ {0} contains a dense linear manifold and Xh is a
connected set.

The assertion about the linear manifold was proven in [47, Proposition
4.1] and independently [21], for real Banach spaces the proof was given by Bès
[17]. The proofs gave a surprising answer to a question whether there is an
operator whose set of hypercyclic points contains a nontrivial vector space: in
fact every hypercyclic operator has such a property. We show the proof only
for complex Banach spaces.

Proof. Let (x j )
∞
j=1

be dense in X . Observe that

Xh =
⋂

j∈N

⋂

k∈N

⋃

n∈N

{y ∈ X : ‖T n y − x j ‖ <
1

k
}.

The inner sets are open so the whole set is a Gδ.
Let T be a hypercyclic operator. We will first prove, that the adjoint T ∗

has no eigenvalue, so that for each λ ∈ C, the operator T −λI has dense range.
Suppose on the contrary that T ∗x∗ = λx∗ for some λ ∈ C and x∗ ∈ X ∗, x∗ 6= 0.
Let x ∈ X be a hypercyclic vector. Then

C = {〈T n x, x∗〉: n ∈ N}− = 〈x, x∗〉{λ̄n : n ∈ N}−,

but the sequence {λ̄n : n ∈ N} cannot be dense in C (it is monotone in modu-
lus) so we have a contradiction.

Now let x ∈ Xh and p be a polynomial. Then

{T n p(T )x : n ∈ N} = α(T − β1I )(T − β2I ) · · · (T − βk I ){T n x : n ∈ N}

where k ∈ N0, α,β1,β2, . . . ,βk ∈ C, α 6= 0, are fixed. The set {T n x : n ∈ N} is
dense and all the operators T − βi I have dense ranges, so the set {T n p(T )x :
n ∈ N} is also dense.

Note that in the proof we showed an assertion which is interesting in itself:
if T is hypercyclic then λp (T

∗) = ;. In particular, on a finite dimensional space
there is no hypercyclic operator.

Montes-Rodrı́guez [56] found conditions, sometimes called the Strong
Hypercyclicity Criterion, ensuring the existence of even infinite-dimensional
closed subspace consisting of hypercyclic points.
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Theorem 7.2. ([56]) Let X be a separable Banach space and let T satisfy the
Hypercyclicity criterion. Moreover suppose, that there is a closed infinite-
dimensional subspace X0 ⊂ X consisting of stable vectors. Then there is a
closed infinite-dimensional subspace consisting of vectors hypercyclic under
T .

The famous invariant subspace problem asks, whether each bounded lin-
ear operator has a nontrivial closed invariant subspace. The question can be
reformulated in terms of closed linear span of the orbits: if T is a bounded
linear operator, is there a nonzero orbit, whose linear span is not dense in
the whole space? Similarly, the invariant subset problem asks, whether each
bounded linear operator has a nontrivial closed invariant subset, that is, if T is
a bounded linear operator, is there a nonzero orbit which is not dense in the
whole space?

In the case of Banach spaces, the questions have been solved negatively by
Enflo (solved in the 1970s, published in [30], see also Beauzamy [13]) and Read
([71], [72] for `1, [73] for c0). However, in reflexive spaces, especially Hilbert
spaces, the questions are still open. In particular, it is unknown whether
there is a hypertransitive operator on a Hilbert space, i.e. an operator with all
nonzero points hypercyclic, i.e. without a nontrivial closed invariant subset.
There is also the following open conjecture: if T is a bounded linear operator
on a Banach space then its adjoint T ∗ has a nontrivial closed invariant subset.

In the past twenty years there have been several attempts to construct an
operator on a separable Hilbert space with a big set of hypercyclic points, gen-
erally using techniques similar to that of Read. Beauzamy in [16] (see also [14])
constructed an operator with hypercyclic point x, such that for any nonzero
polynomial p, the point p(T )x is also hypercyclic. Later it was discovered that
such a property is satisfied for every hypercyclic operator – see Theorem 7.1.
Grivaux and Roginskaya [37] constructed an operator, such that the set of non-
hypercyclic points is in many senses “small”, but the operator has also other
interesting properties:

(i) X \ Xh(T ) is Gauss-null, i.e. for every non-degenerate Gaussian measure
µ on X , we have µ(X \ Xh(T )) = 0,

(ii) in particular, X \ Xh(T ) is Haar null, i.e. there exists a Borel probability
measure such that any translate of X \ Xh(T ) has measure 0,

(iii) X \ Xh(T ) is σ-porous, i.e. it is a countable union of porous sets; a set A is
called porous if there is λ ∈ (0; 1) such that for any x ∈ A and ε > 0 there
exists y ∈ X \ A, with ‖y − x‖ < ε, such that A ∩ B (y,λ‖y − x‖) = ;,

(iv) each orbit forms a linear manifold,

(v) T is orbit-unicellular, i.e. the family of the closures of all orbits is totally
ordered with respect to the inclusion relation,

(vi) T is not orbit reflexive, i.e. there is an operator A such that it is not in the
closure of {T n : n ∈ N} in the strong operator topology, but Ax ∈ {T n x :
n ∈ N}− for each x ∈ X ; the notion is thoroughly studied in Part IV.
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8. Set of hypercyclic operators

Fact 8.1. The set HC(X) of all hypercyclic operators on X is a Gδ set in the
operator norm topology.

Proof. Hypercyclicity is equivalent to the topological transitivity. Therefore,
given any sequence (yi )i∈N dense in X , an operator T is hypercyclic iff for any
i, j ∈ N and k ∈ N there is n ∈ N and u ∈ X such that ‖u − yi‖ < 1/k and
‖T nu − y j ‖ < 1/k. Hence

HC (X ) =
⋂

i∈N

⋂

j∈N

⋂

k∈N

⋃

n∈N

⋃

u∈X
‖u−yi ‖<1/k

{T ∈ L(X ): ‖T nu − y j ‖ < 1/k}.

The inner sets are obviously open in the operator norm topology, while all the
intersections are countable, so HC (X ) is a Gδ set.

It is a long time ago since the first explicit hypercyclic operators were con-
structed, however, until recently it was not clear whether hypercyclic operators
can be found in all Banach spaces.

Theorem 8.2. ([2], [53], [46], [36]) On any infinite dimensional separable Ba-
nach space, there is an operator of the form “identity plus compact” which
has a closed infinite dimensional subspace of hypercyclic vectors. Moreover,
given any sequence (vn )n∈N of linearly independent vectors, there is an oper-
ator T such that the set vn precisely coincides with orbit of some vector (not
necessarily in the same order).

It became clear that being hypercyclic is definitely not a rare and obscure
phenomenon: on the contrary, the set HC (X ) is big. However, the set of hy-
percyclic operators cannot be dense in the norm topology, since a hypercyclic
operator must obviously have norm strictly greater than 1. On the other hand,
the following holds.

Theorem 8.3. ([23]) Let X be a separable infinite dimensional Hilbert space.
Then the closed linear span of the set of hypercyclic operators is dense in the
norm topology.

On a separable complex Hilbert space, the norm-closure of the set of hy-
percyclic operators was characterized already by Herrero in [47] in spectral
terms, and later Müller proved the following generalization. Note that the full
statement does not hold in a general Banach space setting.
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Theorem 8.4. ([60]) Let X be a separable complex infinite-dimensional
Hilbert space. Then the norm-closures of the following sets coincide: hyper-
cyclic operators, weakly mixing operators, mixing operators, chaotic opera-
tors, frequently hypercyclic operators and finally the operators which are at
the same time mixing, chaotic and frequently hypercyclic.

Here T is called frequently hypercyclic if there exists x ∈ X such that for
any non-empty U ⊂ X the set M := {n ∈ N : T n x ∈ U } has positive lower
density, i.e.

lim inf
n→∞

|M ∩ {1, . . . , n}|
n

> 0.

For the notion of chaotic operators see Chapter .
If one turns to the strong operator topology (SOT), for “nice” Banach

spaces the set of hypercyclic operators is dense – in particular, perhaps surpris-
ingly, the zero operator is an SOT-limit of hypercyclic operators. The theorem
was first proved by K. Chan in [23] for the Hilbert spaces, and then simplified
in [18] and [68], using the result from [43].

Theorem 8.5. Let T be an operator such that for any n ∈ N there are vec-
tors x1, . . . , xn such that all the vectors x1, . . . , xn , T (x1), . . . , T (xn) are linearly
independent; e.g., let T be a hypercyclic operator. Then the similarity orbit
{JTJ−1 : J ∈ L(X ) invertible} of T is SOT-dense in L(X ). In particular, if X is
a separable infinite dimensional Banach space then HC (X ) is SOT-dense in
L(X ).

Proof. Suppose T satisfies the assumption. Let A ∈ L(X ) be arbitrary opera-
tor and let

U := {S ∈ L(X ): ‖Se1 − Ae1‖ < ε, . . . , ‖Sen − Aen‖ < ε}

be its SOT-neighborhood, where e1, . . . , en ∈ X are linearly independent. The
space is clearly infinite dimensional, so there are f1, . . . , fn ∈ X such that
‖ fi − Aei‖ < ε for all i = 1, . . . , n, and all the vectors e1, . . . , en , f1, . . . , fn are
linearly independent. By assumption, there are x1, . . . , xn such that x1, . . . , xn ,
Tx1, . . . , Txn are linearly independent. Therefore, there is an invertible opera-
tor J ∈ L(X ) mapping each xi to ei and each Txi to fi . Thus JTJ−1ei = fi so
JTJ−1 ∈ U . This proves that the similarity orbit of T is SOT-dense in L(X ).

If T is hypercyclic, then for any hypercyclic x, the points (T 2k+1x)∞
k=0

and

its images (T 2k+2x)∞
k=0

are linearly independent, so T satisfies the assumption
of the theorem. By Theorem 8.2, every separable infinite dimensional Banach
space admits a hypercyclic operator T ; the hypercyclicity is preserved under
similarity, so the similarity orbit of T is dense in L(X ) and consists purely of
hypercyclic operators.

An important result is the Ansari theorem relating the hypercyclicity of T
and T n for any fixed n ∈ N. The Ansari theorem also follows from the result of
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Bourdon and Feldman, which states that a somewhere dense orbit is necessar-
ily everywhere dense, i.e. that if the closed orbit has a nonempty interior then
it is already dense in the whole space, see [22, Theorem 2.4]. We however show
the original argument.

Theorem 8.6. ([1]) Let x ∈ X be a hypercyclic vector for operator T ∈ L(X ).
Then for any n ∈ N, x is hypercyclic for T n .

Proof. Denote Y the dense linear manifold {p(T )x : p is a polynomial}, so
that Y is invariant under T and every nonzero element of Y is hypercyclic for
T , by Theorem 7.1. In the rest of the proof all the sets lie in Y , and closures are
taken also relatively to Y . Fix n ∈ N.

Let S := {x, T n x, T 2n x, . . .}. We are going to prove that S = Y . For any k,
1 ≤ k ≤ n, define

Sk :=
⋃

i1,...,ik

T i1 S ∩ . . . ∩ T ik S

where the union runs over all k-tuples satisfying 0 ≤ i1 < i2 < . . . < ik < n. In

particular, we have S1 =
⋃n−1

i=0
T i S = Y and Sn =

⋂n−1

i=0
T i S. In general, every

Sk is closed and we have Sn ⊂ Sn−1 ⊂ . . . ⊂ S2 ⊂ S1 = Orb(T, x)− = Y .
Every Sk is invariant under T . To see this, let 0 ≤ i1 < . . . < ik < n, then for

each j ∈ {1, . . . , k} we have T (T i j S) ⊂ T i j+1S if i j < n − 1, or T (T i j S) ⊂ T nS ⊂
T 0S = S if i j = n − 1. In any case, T (T i1 S)∩ . . . ∩ T (T ik S) ⊂ Sk so TSk ⊂ Sk .

Note that 0 ∈ Sn . Indeed, 0 ∈ Y = S1 so that 0 ∈ T i S for some i and thus

0 ∈ T n−i T i S ⊂ T nS ⊂ S. Since 0 ∈ S also 0 ∈ Sn .
Now suppose that for some k, Sk = Y but Sk+1 6= Y . We will show that this

leads to a contradiction. Since Sk+1 is invariant under T , and every nonzero
vector in Y is hypercyclic under T , necessarily Sk+1 = {0}. This means that for

any l > k and any l-tuple (i1, . . . , il ) we have T i1 S ∩ . . . ∩ T il S = 0. Therefore,
the sets in the union

Y \ {0} = Sk \ {0} =
⋃

i1,...,ik

T i1 S ∩ . . . ∩ T ik S \ {0}

are pairwise disjoint: if (i1, . . . , ik ) 6= ( j1, . . . , jk ) then

(T i1 S ∩ . . . ∩ T ik S)∩ (T j1 S ∩ . . . ∩ T jk S) ⊂ {0}.

But Y \ {0} is a connected set so just one of the sets mentioned in the union is
nonempty, say it is the one with indices i1, . . . , ik . Then, arguing as above, for
some j1, . . . , jk we have

T (Y ) \ {0} = T (T i1 S)∩ . . . ∩ T (T ik S) \ {0} ⊂ (T j1 S)∩ . . . ∩ T (T jk S) \ {0}

and the latter set is empty by the connectedness argument above. But T (Y )
clearly can’t be nor empty set nor {0}, and we have a contradiction.
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Corollary 8.7. If T satisfies the Hypercyclicity criterion then its any power
does as well.

Proof. If T ⊕ T is hypercyclic then (T ⊕ T )n = T n ⊕ T n is also hypercyclic
by Theorem 8.6. So by Theorem 6.1, T n satisfies the Hypercyclicity criterion as
well.

Observation 8.8. If T is hypercyclic and invertible, then T −1 is hypercyclic
as well.

Proof. Let U , V be any nonempty open sets in X . Then there is n ∈ N such
that T nU ∩ V 6= ; so U ∩ T −nV = T −n(T nU ∩ V ) 6= ; and T −1 is thus topo-
logically transitive. Now use Corollary 5.2.

Note that Theorem 8.6 implies that for any rational λ ∈ Q, the operators
T and e2πiλT share the same set of hypercyclic points, i.e. hypercyclicity is
preserved under rational rotations. León-Saavedra and Müller proved that the
statement in fact holds for any rotations.

Theorem 8.9. ([54]) Let x ∈ X be a hypercyclic vector for T and let λ ∈ T.
Then x is a hypercyclic vector for λT as well.

9. ε-hypercyclic operators

Let ε > 0 and p ≥ 0. Vector x is called ε-hypercyclic with exponent p iff for
any y ∈ X there is n ∈ N such that ‖T n x−y‖ < ε‖y‖p ; if p is not mentioned p =
1 is assumed. An operator is called ε-hypercyclic if it admits an ε-hypercyclic
point. Feldman [32] showed that if an operator is ε-hypercyclic with exponent
0 for some ε > 0, then the operator is already hypercyclic. Later Badea, Grivaux
and Müller [5] showed that a natural setting for the notion of ε-hypercyclicity
would be rather p = 1: they proved that in `1, Feldman’s theorem is no longer
true for p = 1, but that an operator is hypercyclic if it is ε-hypercyclic for all
ε > 0. We generalize the arguments in the following three theorems.

Theorem 9.1. Let p ≥ 0 and ε > 0. Moreover, if p ≤ 1 then suppose that
ε < 1, if p > 1 then suppose that ε < 5−p . Then if T is ε-hypercyclic with
exponent p then σp (T

∗) = ;.

Proof. Suppose that T ∗x∗ = λx∗ for some λ ∈ C and x∗ ∈ X ∗, ‖x∗‖ = 1.
Let x ∈ X be ε-hypercyclic under T with exponent p. We distinguish three
possibilities.

(a) Consider the case when 〈x, x∗〉 6= 0, |λ| > 1 and p = 0. Let m ∈ N be so
big that |λ|m (|λ| − 1) > 2ε/ |〈x, x∗〉| and put α := 1

2
(|λ|m + |λ|m+1), so that

α− |λ|m >
ε

|〈x, x∗〉|
and |λ|m+1 − α >

ε

|〈x, x∗〉|
.
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Since (|λ|n)n∈N is an increasing sequence, for any n ∈ N we have

�

�|λ|n − α
�

� >
ε

|〈x, x∗〉|
.

Now let y = αx. The point x is ε-hypercyclic with exponent 0 so there is n ∈ N

such that

ε > ‖T n x − y‖ ≥
�

�〈T n x, x∗〉 − 〈y, x∗〉
�

�

=
�

�〈x, T ∗n x∗〉 − α〈x, x∗〉
�

� =
�

�〈x, x∗〉
�

� ·
�

�|λ|n − α
�

�

and we have a contradiction.
(b) Next suppose that still 〈x, x∗〉 6= 0 and |λ| > 1 but p > 0. Then choose

y ∈ X so small that ‖y‖ < 1, ‖y‖ < |〈x, x∗〉| /(1+ ε) and ‖y‖p < |〈x, x∗〉| /(1+ ε).
Since x is ε-hypercyclic vector with exponent p, there is n ∈ N such that

ε‖y‖p >
�

�〈T n x − y, x∗〉
�

� =
�

�〈x, T ∗n x∗〉 − 〈y, x∗〉
�

�

≥
�

�λn
�

�

�

�〈x, x∗〉
�

�−
�

�〈y, x∗〉
�

� ≥
�

�〈x, x∗〉
�

� − ‖y‖‖x∗‖.

If 0 < p < 1 then ‖y‖ ≤ ‖y‖p so we have ε‖y‖p > |〈x, x∗〉| − ‖y‖p and thus
‖y‖p > |〈x, x∗〉| /(1 + ε), a contradiction. If p ≥ 1 then ‖y‖ ≥ ‖y‖p so we
have ε‖y‖p ≥ ε‖y‖ > |〈x, x∗〉| − ‖y‖ and thus ‖y‖ > |〈x, x∗〉| /(1 + ε), also a
contradiction.

(c) The remaining possibility is when either |λ| ≤ 1 or 〈x, x∗〉 = 0. In case
p ≤ 1 we choose α > 0 so that α > (‖x‖ + 1)/(1 − ε), in case p > 1 we choose
α > 0 so that α > 2(‖x‖ + 1). Let y ∈ X satisfy 〈y, x∗〉 > 1 − ε/α and ‖y‖ = 1.
Since x is ε-hypercyclic with exponent p, there is n ∈ N such that

εαp = ε‖αy‖p > ‖T n x − αy‖ = ‖T n x − αy‖ · ‖x∗‖

≥
�

�〈αy, x∗〉 − 〈x, T ∗n x∗〉
�

� ≥ α− ε− |λ|n
�

�〈x, x∗〉
�

�

≥ α− 1 − ‖x‖.

Therefore α − εαp < 1 + ‖x‖. If p ≤ 1 then α was chosen so that 1 + ‖x‖ <
α− εα ≤ α − εαp , and we have a contradiction. If p > 1 then α was chosen so
that 1+ ‖x‖ < α/2, so εαp > α/2, but by assumption ε < 5−p ≤ 1/

2
α1−p , and we

have also a contradiction.

Proposition 9.2. Let p ≥ 0. If T is ε-hypercyclic with exponent p for every
ε > 0, then T is hypercyclic.
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Proof. By Theorem 9.1, X is infinite dimensional. Now observe that if U is a
non-empty open set then there is ε > 0 such that inside U , there is an infinite
number of pairwise disjoint open balls, all with radius ε > 0. Indeed, let B ⊂ U
be a closed ball of radius ε0 and let 0 < ε < ε0/2. Suppose that inside B , there
are disjoint open balls B (u1, ε), . . . , B (un , ε) such that any other open ball of
radius ε inside B would intersect one of them. This means that B (u1, 2ε), . . . ,
B (un , 2ε) form a finite open covering of B with balls of radius 2ε < ε0 – but this
is impossible in an infinite dimensional space.

We will prove that T is topologically transitive. Let U and V be any non-
empty disjoint open sets in X . Without loss of generality, we can suppose that

α := max{sup
u∈U

‖u‖, sup
v∈V

‖v‖} < ∞.

By the previous observation, there are pairwise disjoint open balls of diame-
ter ε, infinite number of them in U , with central points denoted (ui )i∈N, and
infinite number of them in V , with central points denoted (vi )i∈N. Since x
is (ε · α−p )-hypercyclic with exponent p, for each i ∈ N there are exponents
ni , mi ∈ N such that

‖T ni x − ui‖ < εα−p‖ui‖p ≤ ε‖ui‖−p‖ui‖p = ε,

‖T mi x − vi‖ < εα−p‖vi‖p ≤ ε‖vi ‖−p‖vi‖p = ε.

This shows that the orbit of x intersects both U and V infinitely many times,
so in particular, there is k, l ∈ N, k < l , such that T k x ∈ U and T l x ∈ V . Thus
T l−k (U )∩ V 6= ;.

Theorem 9.3. Let p ≥ 0, p 6= 1. Suppose that for a single ε > 0, T is ε-
hypercyclic with exponent p. Then it is ε-hypercyclic with exponent p for all
ε > 0, and thus hypercyclic.

Proof. Suppose that T is δ-hypercyclic with exponent p. Let ε > 0 be arbi-
trary and set

c := (ε/δ)
1

p−1 .

Let y ∈ X . By assumption applied to cy ∈ X instead of y , there exists a point
x ∈ X and n ∈ N such that ‖T n x − cy‖ < δ‖cy‖p . Now if we divide the inequal-
ity by c, we have

‖T n( 1
c

x)− y‖ < δcp−1‖y‖p = ε‖y‖p ,

so 1
c

x is an ε-hypercyclic point with exponent p.

Note that the theorem does not assert that any ε-hypercyclic vector with
exponent p is hypercyclic – in fact it’s not true in general. The above results
show that the only interesting case is when p = 1. In such a case the notion
really differs from the notion of hypercyclicity – see the following result which
was first obtained for `1 in [5], and consequently by Bayart for Hilbert spaces
in [12].

Theorem 9.4. There is a Hilbert space such that for any ε > 0 there exists an
operator which is ε-hypercyclic but not hypercyclic.
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10. Weakly hypercyclic operators

Up to now we dealt with orbits dense with respect to the norm topology. In
[24], the notion of weak hypercyclicity was broadly studied for the first time. An
operator T is said to be weakly hypercyclic if it admits an orbit which is dense
in X with respect to the weak topology. Weakly hypercyclic operators share
some of the properties with hypercyclic operators, there are however many
pitfalls: only one of two implications of the Birkhoff transitivity theorem 5.1
holds, there is no known version of the Hypercyclicity Criterion valid for the
weak topology etc.

Clearly, if x ∈ X is a (norm) hypercyclic vector then it is weakly hyper-
cyclic, but the converse is not true. However, if x is weakly hypercyclic then
Span Orb(T, x) is weakly dense so, as a convex set, it is norm dense. In other
words, every weakly hypercyclic vector is weakly cyclic and thus cyclic.

Theorem 10.1. ([24, Corollary 3.3]) Let 2 ≤ p < ∞. There exists a bilateral
weighted shift on `p (Z), that is weakly hypercyclic, but bounded from below
by 1 and thus not hypercyclic.

In fact, the constructed shift operator admits a strictly norm increasing,
weakly dense orbit. In particular, in the space `p (Z), there is a weakly dense
sequence which is strictly norm increasing. However, S. Shkarin showed that
the growth of such a sequence has certain limits.

Theorem 10.2. ([78, Proposition 5.2 and 5.4]) Let (xn)
∞
n=1 be a sequence in X

satisfying

C :=

∞
∑

n=1

‖xn‖−p < ∞

where p = 2 if X is a Hilbert space, or p = 1 in general. Then (xn) is weakly
closed.

Proof. Let z ∈ X be such that for no n ∈ N is z = xn . Observe that the
sequence xn − z satisfies the same growth assumption as xn .

Applying Theorem 1.2, or Theorem 1.4 in the complex Hilbert space case,
to the sequence (xn − z)/‖xn − z‖ and to the coefficients (C 1/p‖xn − z‖)−1, we
get a functional f ∈ X ∗ such that

�

�

�
〈

xn − z

‖xn − z‖
, f 〉
�

�

�
≥

1

C 1/p‖xn − z‖

and so
�

�〈xn − z, f 〉
�

� ≥ C−1/p . Therefore z is not in the weak closure of (xn)
∞
n=1.

For a real Hilbert space, consider its complexification XC = X ⊕ iX .
Proceeding as above for the complex Hilbert space XC, we get a functional
fC = f ⊕ i f ′ ∈ X ∗

C
, such that

C−1/p ≤
�

�〈xn ⊕ ixn − z ⊕ iz, fC〉
�

� =
�

�〈xn − z, f 〉
�

�+
�

�〈ixn − iz, f ′〉
�

�
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and thus max(
�

�〈xn − z, f 〉
�

� ,
�

�〈xn − z, i f ′〉
�

�) ≥ C−1/p/2 for each n ∈ N. Therefore
z is not in the weak closure of (xn )

∞
n=1.

In [11], an intermediate result is obtained for Banach spaces with the dual
space of (Rademacher) type p – even though an intermediate plank theorem is
unknown for `p spaces.

The following corollary is a strengthening of a result of Kitai [51]. It imme-
diately implies that no compact operator can be weakly hypercyclic (and the
more so hypercyclic) since the infinite-dimensional compact operators have
always one component of the spectrum consisting of a single point with mod-
ulus less than 1.

Corollary 10.3. ([28]) If T is weakly hypercyclic then every component of its
spectrum intersects the unit circle.

Proof. Let σ ⊂ D be a non-empty component of the spectrum of T , Pσ the
corresponding spectral projection onto the spectral subspace Xσ and Tσ =

T |Xσ
. If x ∈ X is a weakly hypercyclic vector for T then y = Pσx is a weakly

hypercyclic vector for Tσ, since the orbit of y is an image of weakly dense orbit
of x under the weakly continuous projection Pσ.

Without loss of generality, ‖y‖ = 1. Clearly, σ cannot be a subset of {λ :
|λ| < 1}: in such a case r (Tσ) < 1 and T n

σ y → 0. On the other hand, if σ ⊂ {λ :
|λ| > 1} then Tσ is invertible and by the spectral mapping theorem r (T −1

σ ) < 1.
Hence for some a < 1 we have ‖T −n

σ ‖/an → 0, so that ‖T −n
σ ‖ < an for all

sufficiently large n ∈ N. This yields

1 = ‖y‖ = ‖T −n
σ T n

σ y‖ ≤ an‖T n
σ y‖,

so ‖T n
σ y‖ ≥ an for large n ∈ N. By Theorem 10.2, Orb(Tσ, y) is weakly closed –

a contradiction.

We finish the chapter with the following corollary, which is a slight im-
provement of [33, Theorem 4.1].

Corollary 10.4. Let T be a weakly hypertransitive operator, i.e., an operator
which has no nontrivial weakly closed invariant subset. Then the sum

S :=

∞
∑

n=1

‖T n‖−1/2

diverges. When X is a complex Hilbert space, even the sum

S′ :=

∞
∑

n=1

‖T n‖−1

diverges. In particular, r (T ) = 1.
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Proof. In the general Banach space case, putting αn = S−1‖T n‖−1/2 we ob-
tain by Proposition 1.3 a vector x ∈ X such that ‖T n x‖ ≥ αn‖T n‖ so

∞
∑

n=1

‖T n x‖−1 ≤ S−1

∞
∑

n=1

(‖T n‖−1/2‖T n‖)−1 = S−1

∞
∑

n=1

‖T n‖−1/2 = S2.

Therefore by Theorem 10.2, the orbit of x is weakly closed in X , so T is not
weakly hypertransitive. In the complex Hilbert space case, we proceed simi-
larly, using Proposition 1.5 instead of Proposition 1.3.

In particular every weakly hypertransitive operator satisfies r (T ) ≤ 1.
However, if r (T ) < 1 then for each x ∈ X we have ‖T n x‖ → 0, so the oper-
ator is even not weakly hypercyclic.



IV. Orbit reflexivity

11. Introduction and some conditions

The notion of orbit reflexivity is a natural analogue of the well-known no-
tion of reflexivity. It is connected to the invariant subset problem in the same
way as is the reflexivity connected to the invariant subspace problem (both
problems were already mentioned in the end of Chapter 7). The notion was
introduced in [44] and studied e.g. in [55] and [42]; for a wider context see [40],
and for another similar notions see [41] and again [42].

Recall that we say that T ∈ L(X ) is reflexive if every A ∈ L(X ) be-
longs to the closure of the set {p(T ) : p polynomial } in the strong opera-
tor topology, whenever for each u ∈ X , Au belongs to the closure of the set
{p(T )u : p polynomial }. This is the same as saying that the only operators,
which leave invariant all the closed subspaces invariant under T , are those in
the SOT closure of the span of the powers of T . In fact the term comes from
operator algebras: an operator algebra A is called reflexive if it is equal to the
algebra of operators, which leave invariant all the subspaces invariant under
all the operators from A. The definitions coincide: operator T is reflexive iff
the strongly closed algebra generated by I and T is reflexive.

An analogous notion exists for the invariant subsets in place of invariant
subspaces. We say that T is orbit reflexive if every A ∈ L(X ) belongs to the clo-
sure of Orb(T ) in the strong operator topology, whenever for each u ∈ X , Au
belongs to the closure of Orb(T, u). Again, in human language this means that
the only operators, which leave invariant all the subsets invariant under T , are
those in the SOT closure of the powers of T . Note that the term “hyperreflexiv-
ity” is already reserved for a different notion derived from reflexivity.

To shed some light on the definition, consider the following simple exam-

ple. Let X = R2 and T be the diagonal matrix
�

a
0

0

b

�

, a, b > 1. In this case for

u ∈ X and a matrix A, the statement Au ∈ {T nu : n ∈ N0} means Au = T k u for
some k ∈ N0 dependent on u ∈ X . Therefore T is orbit reflexive just if the expo-
nent k is independent on u ∈ X . With the help of linearity it is thus sufficient to

prove that the exponent is the same for a vector u =
�

c
0

�

and a vector v =
�

0

d

�

,

where c, d 6= 0. To prove this statement, suppose that Au = T nu = anu and

44
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Av = T m v = bm v for some n, m ∈ N0; moreover there is k ∈ N such that
A(u + v) = T k (u + v) = ak u + bk v . But

anu + bm v = Au + Av = A(u + v) = ak u + bk v,

while u and v are linearly independent. Hence an = ak and bm = bk , so n = k
and m = k. In other words, there is a common exponent k ∈ N such that for
any u ∈ X , we have Au = T k u, so A = T k and T is orbit reflexive.

A few similar notions were also considered, for instance recently in [42],
the notion of null-orbit reflexivity was defined: T is null-orbit reflexive iff every
A belongs to the closure of {0} ∪ Orb(T ) in SOT, whenever Au belongs to the
closure of {0} ∪ Orb(T, x) for each u ∈ X .

However, let us focus on the orbit reflexivity itself.

Observation 11.1.

(i) If T is orbit reflexive and S is invertible then STS−1 is also orbit reflexive.

(ii) If T is orbit reflexive then T ⊕ T is also orbit reflexive.

Proof.
(i) Similarity preserves both the norm topology on X and the strong op-

erator topology on L(X ). Hence “S AS−1x ∈ Orb(STS−1, x)− for all x ∈ X ” is
equivalent to “Ax ∈ Orb(T, x)− for all x ∈ X ”, which is by assumption equiva-
lent to “A ∈ Orb(T )−SOT ”, which is equivalent to “S AS−1 ∈ Orb(STS−1)−SOT ”.

(ii) Let A ∈ L(X ⊕X ) and suppose that Au ∈ Orb(T⊕T, u)− for all u ∈ X ⊕X .
In particular, for any x ∈ X we have

A(x, 0) ∈ Orb(T ⊕ T, (x, 0))− ⊂ X × {0}

and similarly for the second component, so that both copies of X are A-
invariant. Hence A can be written as B ⊕ C where B, C ∈ L(X ).

Moreover, if x ∈ X then (Bx, Cx) = A(x, x) ∈ Orb(T ⊕ T, (x, x))− ⊂ {(y, y) :
y ∈ X }, so B = C . Now since T is orbit reflexive and Bx ∈ Orb(T, x)− for all
x ∈ X , we have B ∈ Orb(T )−SOT , and therefore A = B ⊕ B ∈ Orb(T ⊕ T )−SOT .

However, orbit reflexivity is in general not preserved under scaling: we will
see in Corollary 11.5 that if T is not orbit reflexive and c ∈ C with |c| 6= 1, then
cT is orbit reflexive.

Many known classes of operators turn out to be orbit reflexive. Most of the
results were obtained for Hilbert spaces in [44] and in fact the original proof
applies to the Banach space setting as well, as was shown in [61]. We’ll need
the following Baire category argument.
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Lemma 11.2. Let A, T1, T2, . . . ∈ L(X ). If the set of vectors u ∈ X for which
Au ∈ {T1u, T2u, . . .} is of second category, then A ∈ {T1, T2, . . .}.

Proof. Denote the above mentioned set of second category by U , so U ⊂
⋃∞

n=1
Ker(A − Tn). By Baire category theorem, there exists m ∈ N such that

Ker(A − Tm) has a nonempty interior. Since Ker(A − Tm) is a linear subspace,
we have Ker(A − Tm) = X , and so A = Tm .

Theorem 11.3. T is orbit reflexive in any of the following cases:

(i) there is a nonempty open subset U ⊂ X such that for each x ∈ U , the
orbit Orb(T, x) is closed,

(ii) there is a nonempty open subset U ⊂ X such that for each x ∈ U ,
‖T n x‖ → ∞,

(iii) for each x ∈ X , ‖T n x‖ → 0,

(iv) the set T := Orb(T )−SOT is countable and strongly compact,

(v) σ(T ) ∩ T = ;.

Proof.

(i) Follows from Lemma 11.2.

(ii) Follows from (i).

(iii) Apply Lemma 11.2 to operators 0 = limn→∞ T n , and I, T, T 2, T 3, . . ..

(iv) Let u ∈ X and suppose Au = lim T nk u for some sequence (nk )k∈N of non-
negative integers. Since T is strongly compact, the sequence (T nk )k∈N has
a strongly convergent subsequence. Therefore Au ∈ T u for each u ∈ X ,
and we can use Lemma 11.2.

(v) By the Riesz functional calculus, we can decompose X = Y ⊕ Z , T =

TY ⊕ TZ such that r (TY ) < 1 and the spectrum of TZ lies outside the unit
disc. If Z 6= {0} then there is a nonempty open set U ⊂ X with U ∩ Y = ;
such that the orbit of every point in U tends to infinity and by (ii), T is
orbit reflexive. On the other hand, if Z = {0} then ‖T n‖ → 0 so by (iii), T is
orbit reflexive.
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Proposition 11.4. ([61]) T is orbit reflexive if

∞
∑

n=1

1/‖T n‖ < ∞,

or when X is a complex Hilbert space

∞
∑

n=1

1/‖T n‖2 < ∞.

Proof. Let
∑∞

n=1
1

‖T n‖ < ∞. Let A ∈ L(X ) be such that Au ∈ Orb(T, u)− for

each u ∈ X . Suppose that A 6= T n for all n ∈ N0, otherwise there is nothing to
prove. Observe that

∞
∑

n=1

1

‖T n − A‖
< ∞.

Indeed, since ‖T n‖ → ∞ we have ‖T n − A‖ ≥ ‖T n‖ − ‖A‖ ≥ 1
2
‖T n‖ for all n

large enough. So for certain n0 ∈ N we have

∞
∑

n=n0

1

‖T n − A‖
≤

∞
∑

n=n0

1

‖T n‖ − ‖A‖
≤

∞
∑

n=n0

2

‖T n‖
< ∞.

Therefore, the operators Sn := T n−A satisfy the conditions in Proposition
3.2. So there exists (in fact a dense set of points) x ∈ X with ‖(T n − A)x‖ > 0
for all n ∈ N0 and ‖(T n − A)x‖ → ∞. Thus there is a constant C > 0 such that
infn ‖(T n − A)x‖ ≥ C > 0 and we have a contradiction with the assumption
that Ax ∈ Orb(T, x)−.

The Hilbert space case can be proved similarly.

Corollary 11.5. Let r (T ) 6= 1. Then T is orbit reflexive.

Proof. Either r (T ) < 1 so limn→∞ ‖T n‖ = 0 and we can apply Theorem 11.3
(iii), or r (T ) > 1 so ‖T n‖ > n2 for all n ∈ N large enough since otherwise we
would have r (T ) = infn→∞ ‖T n‖1/n ≤ limn→∞(n

2)1/n ≤ 1, and we can apply
Proposition 11.4.

For Hilbert spaces, it was proved in [44] that many classes of operators are
orbit reflexive. The crucial tool for the following statements is the spectral the-
orem for normal operators, so the method does not extend to Banach spaces
in general.

We also obtain an easy proof that any operator with r (T ) = ‖T ‖ is orbit
reflexive. This applies to subnormal operators (for which orbit reflexivity was
shown recently in [41, Theorem 8] using a different proof ), and compact oper-
ators (for which orbit reflexivity was shown in [44] also using a different proof ).
The same easy proof was independently used in [42] to prove null-orbit reflex-
ivity of operators T satisfying r (T ) = ‖T ‖. Recall that an operator is called
weakly stable if every weak orbit tends to zero.
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Theorem 11.6. ([44]) Let X be a Hilbert space. Then T is orbit reflexive in
any of the following cases:

(i) T is normal,

(ii) T is a direct sum of a normal operator and a weakly stable operator,

(iii) ‖T ‖ ≤ 1,

(iv) r (T ) = ‖T ‖, in particular, T is subnormal or compact or algebraic (that is,
p(T ) = 0 for some non-zero polynomial p),

(v) T is a unilateral or bilateral weighted shift with positive weights.

Proof.
(i) Let T be normal and suppose that S ∈ L(X ) satisfies Sx ∈ Orb(T, x)−

for all x ∈ X . Let y1, y2, . . . , yn ∈ X and ε > 0. Since S leaves invariant all
the invariant subspaces of T , it is in the von Neumann algebra A generated by
T . Without loss of generality, X can be identified with the smallest reducing
subspace of A containing y1, y2, . . . , yn .

In particular, X is separable so by the spectral theorem (cf. e.g. [70, Theo-
rem 1.6]), there is a finite measure space (X,µ) such that all the operators in A

are unitarily equivalent to a multiplication operator by a function from L∞(µ),
acting on L2(µ). Let ỹk , k = 1 . . . n, be the representations of yk in L2(µ) and

let x̃ :=
�

�ỹ1

�

� + . . . +
�

�ỹn

�

� ∈ L2(µ) be the representation of certain x ∈ X . By

assumption, there is j ∈ N0 such that ‖(S − T j )x‖2 < ε.
If S and T j are represented by multiplication by φ and ψ j ∈ L∞(µ), re-

spectively, we have for k = 1 . . . n

‖(S − T j )yk‖2 =

∫

�

�(φ −ψ j )ỹk

�

�

2
dµ ≤
∫

�

�(φ −ψ j )x̃
�

�

2
dµ = ‖(S − T j )x‖2 < ε.

Therefore S ∈ Orb(T )− so T is orbit reflexive.
(ii) Let the direct sum T = TY ⊕ TZ correspond to the decomposition

X = Y ⊕ Z , where TY is normal and TZ is weakly stable. Suppose that
Ax ∈ Orb(T, x)− for all x ∈ X . As in Observation 11.1 (ii), we see that A can
be also written as a direct sum AY ⊕ AZ corresponding to the decomposition
X = Y ⊕ Z . Since T n

Z → 0 weakly, for any z ∈ Z we have Orb(TZ , z)− ⊂
{0, z, TZ z, T 2

Z z, . . .} so by Lemma 11.2, AZ ∈ {0, I, TZ , T 2
Z , . . .}.

By assumption, 〈T n
Z z, z∗〉 → 0 for all z ∈ Z and z∗ ∈ Z ∗, so TZ is power

bounded by the uniform boundedness principle applied twice. Now let z ∈ Z
satisfy 0 ∈ Orb(TZ , z)−. Then limn→∞ T n

Z z = 0. Indeed, let M := supn∈N0
‖T n

Z ‖
and let ε > 0. Then there is m ∈ N such that ‖T m

Z z‖ < ε/M , so for any n ≥ m

‖T n
Z z‖ ≤ ‖T n−m

Z ‖ · ‖T m
Z z‖ ≤ M‖T m

Z z‖ < ε.

Now let us turn to the subspace Y . As in (i) we can suppose that X is
separable and use the spectral theorem to find a finite measureµ and represent
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TY and AY , on L2(µ) by multiplication by φ and ψ ∈ L∞(µ), respectively. Let
h ∈ Y be the vector which is represented by the constant 1 function on L2(µ)
and suppose that AY h = limk→∞ T

nk

Y h for some sequence nk of nonnegative
integers. Either nk is bounded, or unbounded. In the former case there is p ∈
N0 such that nk = p for infinitely many k’s, so AY h = T

p

Y h which means ψ1 =

φp 1 a.e., so AY = T
p

Y . In the latter case there is a subsequence of nk tending to

infinity – denote this subsequence again nk . We have AY h = lim T
nk

Y h which

means ψ = limφnk in L2(µ), so there is a subsequence, denote it again nk , such
that ψ = limφnk almost everywhere. In particular ‖φ‖∞ ≤ 1. Therefore we can
use the dominated convergence theorem: if y ∈ Y is represented by ỹ ∈ L2(µ)
then

‖AY y − T
nk

Y y‖2 =

∫

�

�ψỹ − φnk ỹ
�

�

2
dµ ≤
∫

�

�ỹ
�

�

2
dµ ·
∫

�

�ψ− φnk

�

�dµ → 0

so AY = lim T
nk

Y in SOT.
We distinguish three possibilities.
(a) Suppose that AZ = 0 and AY /∈ Orb(TY ). By (i), there is a sequence

nk tending to infinity such that T
nk

Y → AY strongly. Since AZ = 0 we have
0 ∈ Orb(TZ , z)− for each z ∈ Z , so as was shown in the first paragraph, T n

Z →
0 = AZ strongly. In sum, T

nk

Y ⊕ T
nk

Z → AY ⊕ AZ strongly.
(b) Suppose that AZ = 0 and AY = T m

Y for some m ≥ 0. Either TZ = 0
so A = T m , or TZ 6= 0 so that we can choose z ∈ Z such that T m

Z z 6= 0.
Let h be the vector mentioned above. By assumption, A(h, z) ∈ Orb(T, (h, z))−

so there is a sequence nk of nonnegative integers such that limk→∞ T
nk

Z z =

AZ z = 0, and limk→∞ T
nk

Y h = AY h. We already know that the latter means

that for some subsequence (nk j
) we have T

nk j

Y → AY strongly. Now there are
two possibilities: either lim sup nk j

= ∞ so for some subsequence (nk ji
) we

have T
nk ji

Z → 0 = AZ by the above power boundedness argument, and we

are done. Or lim sup nk j
< ∞, so there is s ∈ N such that T m+s

Y = T m
Y so

T m+ks
Y = T m

Y → T m
Y = AY strongly as k → ∞, while T m+ks

Z → 0 = AZ strongly
as k → ∞.

(c) Finally if AZ 6= 0 then AZ = T m
Z for some m ≥ 0. Choose z ∈ Z

such that T m
Z z 6= 0 and let h be again the vector mentioned above. Similarly

as in (b), since A(h, z) ∈ Orb(T, (h, z))− there is a sequence nk of integers such
that limk→∞ T

nk

Z z = AZ z = T m
Z z 6= 0, and limk→∞ T

nk

Y h = AY h and thus

T
nk j

Y → AY strongly for some subsequence (nk j
). But by assumption T n

Z z → 0
as n → ∞ so the sequence (nk j

) is necessarily bounded, i.e. there is p ∈ N such

that nk j
= p for infinitely many j ’s. Hence T

p

Y = AY and T
p

Z z = AZ z = T m
Z z.

This implies that m = p: if not then T
|m−p|
Z z = z but this contradicts that

TZ → 0 weakly. Hence A = T m .
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(iii) By a classical theorem by Langer [52] and Sz.-Nagy and Foiaş [34], T
can be written as a direct sum of a unitary operator A, and a completely non-
unitary contraction B which is weakly stable (c.n.u. means that any restriction
to a reducing non-null subspace is not a unitary operator). Hence we can apply
(ii).

(iv) Let r (T ) = ‖T ‖. Either r (T ) > 1, so T is orbit reflexive by Corollary
11.5. Or ‖T ‖ ≤ 1, so T is orbit reflexive by (iii). The subnormal operators
satisfy ‖T ‖ = r (T ), cf. [25, Theorem 30.12], as do the compact, and algebraic
operators.

(v) Let either X := `2(N) and T be a unilateral weighted shift on X , or
`2(Z) and T be a bilateral weighted shift on X . Suppose that A ∈ L(X ) satisfies
Ax ∈ Orb(T, x)− for all x ∈ X . For all types of shifts we first show that

(1) A ∈ {0, I, T, T 2, . . .},

and afterwards we eliminate the possibility that A = 0.
First, if T is a unilateral forward shift then fix any x ∈ X . The set {y ∈ X :

〈T n x, y〉 → 0} is dense in X so Ax ∈ {0, x, Tx, T 2x, . . .} for all x ∈ X . Now (1)
follows from Lemma 11.2. Assume that A = 0. Let T be given by Tei := αi ei+1,
i ∈ N. Since the weights (αi )i∈N are nonzero, 0 = Aei ∈ Orb(T, ei )

− happens
exactly when the sequence of products (αi ·αi+1 · . . . ·αi+n−1)n∈N has 0 among
its accumulation points. Thus the commuting family (Sn)n∈N0

of normal oper-
ators, defined by

Snei := αiαi+1 . . .αi+n−1ei , n ∈ N0, i ∈ N,

satisfies 0 = Ax ∈ {Sn x : n ∈ N0}− for each x ∈ X . Now a proof similar
to the case (i) of a single normal operator yields that A ∈ {Sn : n ∈ N0}−, so
A ∈ Orb(T )−.

Second, if T is a bilateral shift then there is an increasing sequence of in-
variant subspaces Y1 ⊂ Y2 ⊂ . . . ⊂ X whose union Z is dense in X and such
that for each j ∈ N the restriction T |Y j

is a unilateral forward shift. For each

j ∈ N we thus already know that A|Y j
∈ {0, I |Y j

, T |Y j
, T |2Y j

. . .}. Since the se-

quence of the subspaces is increasing we have A|Z ∈ {0, I |Z , T |Z , T |2Z . . .} and

thus (1) holds on X = Z as well. The rest now follows from almost the same
proof as in the case of the unilateral forward shift, only the normal operators
Sn are indexed by Z instead of N0.

Finally if T is a unilateral backward shift then there is an increasing se-
quence of invariant subspaces Y j := Ker T j , j ∈ N, whose union Z is dense
in X . Fix j ∈ N and consider the restriction T |Y j

. As in the unilateral forward
shift case, the set {y ∈ Y j : 〈T n x, y〉 → 0} is dense in Y j so by Lemma 11.2 we

have A|Y j
∈ {0, I |Y j

, T |Y j
, T |2Y j

. . .}. As in the bilateral shift case, the sequence of

the subspaces is increasing so we have A|Z ∈ {0, I |Z , T |Z , T |2Z . . .} and thus (1)

holds for X = Z as well. The rest is similar as in the first two cases.
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12. The operators that are not orbit reflexive

Whereas there are many operators known not to be reflexive, until recently
the only non-orbit reflexive operators discovered were those without a nontriv-
ial closed invariant subset, i.e. basically the Read operator constructed on `1

in [72]. In particular, no such operator was known in the setting of reflexive
Banach spaces.

Observation 12.1. Let X be an infinite dimensional separable Banach space,
and T ∈ L(X ) a hypertransitive operator, that is an operator without a non-
trivial closed invariant subset. Then T is not orbit reflexive.

Proof. Suppose that T is orbit reflexive, we will show that this leads to a con-
tradiction. Any bounded linear operator A leaves invariant all the closed sub-
sets invariant under T , so that necessarily Orb(T )− = L(X ). But Orb(T )− is
contained in the commutant of T , hence even all the one dimensional projec-
tions must commute with T , so T must leave invariant all the one dimensional
subspaces. This means T is a scalar multiple of identity – and a scalar multiple
of identity on at least two dimensional space obviously has a non-trivial closed
invariant subset.

Recently, Grivaux and Roginskaya [37]modified the construction of Read
to obtain an operator with a very small set of vectors which are not hypercyclic;
the properties of the operator were mentioned in the end of Chapter 7. They
proved that a slight modification of their example leads to a non-orbit reflexive
operator. Consequently, Esterle [31] showed that the above mentioned modi-
fication is not necessary since every “Read type operator” on a Hilbert space is
non-orbit reflexive itself.

Theorem 12.2. ([31]) Let X be a separable Hilbert space. Then an operator
T 6= 0 is not orbit reflexive if it is Read type, i.e. it satisfies the following two
conditions:

(i) for every x ∈ X , the closed orbit Orb(T, x)− is a closed linear subspace,

(ii) the closed orbits are totally ordered, i.e. if x, y ∈ X then

either Orb(T, x)− ⊂ Orb(T, y)− or Orb(T, y)− ⊂ Orb(T, x)−.

Proof. For a contradiction, suppose that T is orbit reflexive and satisfies both
conditions. If for any x ∈ X \ {0} the orbit is dense then T has no nontriv-
ial closed invariant subset and T is not orbit reflexive by Observation 12.1.
Hence suppose there is a nonzero y ∈ X such that Y := Orb(T, y)− 6= X .
Let P be a projection to Y ; we will show that PT 6= TP . Let x ∈ Ker P \ {0}.
Since x /∈ Orb(T, y)− and the closed orbits are totally ordered, we know that
y ∈ Orb(T, x)−. Hence y = limk→∞ T nk x for some sequence (nk )k∈N of posi-
tive integers, so 0 6= y = Py = limk→∞ PT nk x. However, T nPx = 0 for each
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n ∈ N0 by the choice of x ∈ X , so PT 6= TP . But the closure of Orb(T ) in
the strong operator topology is contained in the commutant of T so we have a
contradiction.

Another, simpler construction than that of Grivaux and Roginskaya was
shown by V. Müller and the author in [61]. It is perhaps of interest, that the
operators obtained by this construction are null-orbit reflexive, whereas the
operator of Grivaux and Roginskaya is not null-orbit reflexive, cf. [42].

The first example is an operator on a Hilbert space which is not orbit re-
flexive.

Example 12.3. ([61]) There exists a Hilbert space X and an operator T ∈ L(X )
such that

(i) for all x ∈ X , we have infn∈N ‖T n x‖ = 0,

(ii) there are vectors e0, f0 ∈ X such that

inf
n∈N

max {‖T ne0‖, ‖T n f0‖} > 0.

Thus T is not orbit reflexive.

In the proof we use the following approximation lemma. Denote by m the
normalized Lebesgue measure on the unit circle T. Denote by ‖ · ‖2 and ‖ · ‖∞
the norms in the Hardy spaces H 2(m) and H∞(m), respectively.

Lemma 12.4. Let p, q be complex polynomials, ‖p‖2 ≤ 1, ‖q‖2 ≤ 1 and
let 0 < ε < 1/3. Then there exist polynomials r, s such that ‖rp + sq‖2 < ε,
‖r‖∞ ≤ 1, ‖s‖∞ ≤ 1 and max {‖r‖2, ‖s‖2} ≥ 1/3.

Proof. Let M1 := {z ∈ T :
�

�p(z)
�

� ≥
�

�q(z)
�

�}, M2 = T \ M1. Without loss of

generality we can assume that m(M1) ≥ 1/2. Define functions g, h : T → C by

h(z) :=
n−1 (z ∈ M1)

0 (z ∈ M2)

g (z) :=

�

q(z)

p(z)
(z ∈ M1)

0 (z ∈ M2)

(if p(z) = q(z) = 0 then set g (z) := 0). Note that ‖g‖∞ ≤ 1, ‖h‖∞ ≤ 1 and
pg + qh = 0.

Let K = max {1, ‖p‖∞, ‖q‖∞}. There exist continuous functions g1, h1 :
T → C such that ‖g1 − g‖2 < ε

4K
and ‖h1 − h‖2 < ε

4K
. Define g2, h2 : T → C by

g2(z) :=
g1(z)

max {1,
�

�g1(z)
�

�}
,

h2(z) :=
h1(z)

max {1, |h1(z)|}
.
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Clearly g2, h2 are continuous, ‖g2‖∞ ≤ 1, ‖h2‖∞ ≤ 1, ‖g2 − g‖2 < ε
4K

and
‖h2 − h‖2 < ε

4K
.

There exist trigonometric polynomials g3, h3 such that ‖g3 −g2‖∞ < ε/4K ,
‖h3 − h2‖∞ < ε/4K . Moreover, we may assume that ‖g3‖∞ ≤ 1, ‖h3‖∞ ≤ 1.

Choose l ∈ N such that r := z l g3 and s := z l h3 are polynomials. Then
‖r‖∞ ≤ 1, ‖s‖∞ ≤ 1 and

‖rp + qs‖2 = ‖z l g3p + z l h3q‖2

≤ ‖z l gp + z l hq‖2 + ‖z l (g3 − g )p‖2 + ‖z l (h3 − h)q‖2

≤ K ‖g3 − g‖2 + K ‖h3 − h‖2

≤ K (‖g3 − g2‖2 + ‖g2 − g‖2) + K (‖h3 − h2‖2 + ‖h2 − h‖2)

< ε.

Finally,

‖s‖2 = ‖h3‖2 ≥ ‖h‖2 − ‖h3 − h‖2 ≥
1

2
−

ε

2K
≥

1

3
.

If m(M1) < 1/2 then m(M2) ≥ 1/2 and we can proceed similarly. At the end we
obtain ‖r‖2 ≥ 1/3.

Proof of Example 12.3. For N = 1, 2, 3 . . . let εN := N−1/3.
The underlying Hilbert space will be

X = Z ⊕
∞
⊕

k=1

Yk ,

where Z is the Hilbert space with an orthonormal basis {e j , f j : j = 0, 1, 2 . . .}
and Yk are finite-dimensional Hilbert spaces which will be determined in the
construction.

We construct inductively integers kN , N = 0, 1, 2 . . ., integers ak , spaces Yk

and elements wk ∈ Z , k = 1, 2, 3 . . ., in the following way. Set formally k0 := 0
and a0 := 0. Let N ≥ 1 and suppose that the integers kN−1, ak , spaces Yk and
elements wk ∈ Z have already been defined for 1 ≤ k ≤ kN−1. Write for short
bN−1 := akN−1

. Let ZN := Span{e j , f j : j = 0, . . . , bN−1} and let wkN−1+1, . . . , wkN

be an ε2
N -net in the closed unit ball of ZN .

For k = kN−1 + 1, . . . , kN we can write wk =
∑bN−1

i=0
(α
(k)
i

ei + β
(k)
i

fi ) with

complex coefficients α
(k)
i

, β
(k)
i

. We define numbers µi , 0 ≤ i ≤ bN−1 in the
following way. If 1 ≤ M ≤ N − 1, kM−1 < l < kM and al < i ≤ 2al then set

µi = ε−1
M . If 2al < i < 3al then µi = ε

−(3al−i )/al

M . Set µi = 1 otherwise.

Consider the polynomials pk , qk defined by pk (z) :=
∑bN−1

i=0
µiα

(k)
i

zi and

qk (z) :=
∑bN−1

i=0
µiβ

(k)
i

zi . We have ‖pk‖2 ≤ ε−1
N−1 and ‖qk‖2 ≤ ε−1

N−1.
By Lemma 12.4 for the polynomials εN−1pk , εN−1qk , there exist mk ∈ N

and polynomials rk (z) =
∑mk

i=0
γ
(k)
i

zi , sk (z) =
∑mk

i=0
δ
(k)
i

zi such that ‖rk‖∞ ≤ 1,
‖sk‖∞ ≤ 1, max {‖rk‖2, ‖sk‖2} ≥ 1/3 and ‖rk pk + sk qk‖2 < εN .
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Choose numbers ak , kN−1 + 1 ≤ k ≤ kN , such that a j+1 > a2
j
+ 3a j +m j ,

j = kN−1, . . . , kN − 1. Let Yk be the finite-dimensional Hilbert space with an
orthonormal basis uk, j , j = 0, . . . , mk + 2ak − 1.

Using induction, we continue the construction as described above.
Now we define the operator T ∈ L(X ) by:

Tuk,i := uk,i+1 (k ∈ N, 0 ≤ i ≤ mk + 2ak − 2),

Tuk,mk+2ak−1 := 0,

Teak
:= εN eak+1 +

mk
∑

i=0

γ
(k)
i

uk,i (kN−1 < k ≤ kN ),

T fak
:= εN fak+1 +

mk
∑

i=0

δ
(k)
i

uk,i (kN−1 < k ≤ kN ),

Te j := ε
−1/ak

N e j+1 (kN−1 < k ≤ kN , 2ak ≤ j < 3ak ),

T f j := ε
−1/ak

N f j+1 (kN−1 < k ≤ kN , 2ak ≤ j < 3ak ),

Te j := e j+1 and T f j = f j+1 otherwise.

That is, T acts on the standard basis of Z as a pair of weighted shifts, up
to the points of the form eak

and fak
. It is easy to see that T defines a bounded

linear operator on X . It is easy to check that ‖T ‖ ≤ 2. Note also that for each
k ∈ N, we have T ak−ak−1 eak−1

= eak
and T ak−ak−1 fak−1

= fak
.

Let E := Span{ei : i = 0, 1, . . .}, F := Span{ fi : i = 0, 1, . . .} and
Y :=
⊕∞

k=1 Yk . For a closed subspace M ⊂ X denote by PM the orthogonal
projection onto M .

To prove (ii), let j ∈ N. If j /∈
⋃∞

k=1
{ak + 1, . . . , 3ak } then ‖T j e0‖ ≥

‖PZ T j e0‖ = ‖e j ‖ = 1. So we may assume that ak + 1 ≤ j ≤ 3ak for some
k. Then

max {‖T j e0‖, ‖T j f0‖}

≥ max {‖PYk
T j e0‖, ‖PYk

T j f0‖}

=max {‖PYk
T j−ak eak

‖}, ‖PYk
T j−ak fak

‖}

=max {‖PYk
Teak

‖, ‖PYk
T fak

‖}

=max {‖
mk
∑

i=0

γ
(k)
i

uk,i‖, ‖
mk
∑

i=0

δ
(k)
i

uk,i ‖}

=max {‖rk‖2, ‖sk‖2} ≥ 1/3.

So max{‖T j e0‖, ‖T j f0‖} ≥ 1/3 for all j .

To prove (i), suppose that x ∈ X is of norm 1 and 0 < ε < 1
2

.
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There exists M ≥ 1 such that ‖(PZ −PZM
)x‖ < ε

18
. There exists N > M such

that

ε1/2
N <

ε · εM

9
,







∞
∑

k ′=kN−1+1

PYk′ x






<
ε

9
,

‖PZN+1
x − PZN

x‖ < ε3/2
N .

Indeed, the first two conditions are satisfied for all N sufficiently large. Sup-
pose on the contrary that ‖PZN+1

x − PZN
x‖ ≥ ε3/2

N for all N ≥ N0. Then

1 = ‖x‖2 ≥
∞
∑

N=N0

‖PZN+1
x − PZN

x‖2 ≥
∞
∑

N=N0

ε3
N =∞,

a contradiction. Fix N with these properties.
Find k, kN−1 < k ≤ kN such that ‖PZN

x − wk‖ ≤ ε2
N . Set j = 2ak + 1. We

have

‖T j x‖ ≤






kN−1
∑

k ′=1

T j PYk′ x






+







∞
∑

k ′=kN−1+1

T j PYk′ x






+ ‖PZ T j PZM

x‖

+ ‖PZ T j (PZN
− PZM

)x‖ + ‖PZ T j (PZN+1
− PZN

)x‖+ ‖PZ T j (PZ − PZN+1
)x‖

+ ‖PY T j (PZ − PZN+1
)x‖ + ‖PY T j (PZN+1

− PZN
)x‖

+ ‖PY T j (PZN
x − wk )‖+ ‖PY T j wk‖.

We estimate all the terms in the previous formula.

Since k > kN−1 and j > ak > 2akN−1
+mkN−1

, we have
∑kN−1

k ′=1
T j PYk′ x = 0.

For k ′ > kN−1 we have ‖T j |Yk′‖ ≤ 1, and so







∞
∑

k ′=kN−1+1

T j PYk′ x






≤






∞
∑

k ′=kN−1+1

PYk′ x






<
ε

9
.

It is easy to see that

‖PZ T j PZM
‖ = sup{‖PZ T j ei‖: i ≤ bM−1} ≤ ε−1

M εNε
−i/ak

N < ε−1
M ε1/2

N <
ε

9
,

and so ‖PZ T j PZM
x‖ ≤ ε

9
‖PZM

x‖ ≤ ε
9

.
Similarly,

‖PZ T j (PZN
− PZM

)‖ = max {‖PZ T j ei‖: bM−1 < i ≤ bN−1} ≤ 2,

‖PZ T j (PZN+1
− PZN

)‖ =max {‖PZ T j ei‖: bN−1 < i ≤ bN } ≤ ε−1
N
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and
‖PZ T j (PZ − PZN+1

)‖ =max {‖PZ T j ei‖: bN < i } ≤ 2.

Thus

‖PZ T j (PZN
− PZM

)x‖ ≤ 2‖(PZN
− PZM

)x‖ <
ε

9
,

‖PZ T j (PZN+1
− PZN

)x‖ ≤ ε−1
N ε3/2

N = ε1/2
N <

ε

9

and

‖PZ T j (PZ − PZN+1
)x‖ ≤ 2‖(PZ − PZN+1

)x‖ <
ε

9
.

We show that ‖PYk
T j PZ ‖ ≤ 2ε−1

N . Clearly ‖PYk
T j PE‖ = ‖PYk

T j PEk
‖

where Ek = Span{e0, . . . , eak
}. Let y =
∑ak

i=0
λi ei , ‖y‖ = 1. Note that the

numbers µi mentioned in the construction satisfy 0 < µi ≤ ε−1
N , 0 ≤ i ≤ ak and

T ak−i ei = µi eak
. We have

‖PYk
T j y‖ =





rk (z) ·

mk
∑

i=0

λiµi zi







2
≤ ‖rk‖∞ ·






mk
∑

i=0

λiµi zi







2

≤
�

mk
∑

i=0

�

�λiµi

�

�

2�1/2
≤ ε−1

N

�

mk
∑

i=0

|λi |2
�1/2

= ε−1
N .

So ‖PYk
T j PE‖ ≤ ε−1

N and similarly, ‖PYk
T j PF ‖ ≤ ε−1

N . Hence

‖PYk
T j PZ ‖ ≤ ‖PYk

T j PE‖+ ‖PYk
T j PF ‖ ≤ 2ε−1

N .

It is easy to show that for k ′ > k we have ‖PYk′ T
j PZ ‖ ≤ 2, and so

‖PY T j PZ ‖ = supk ′≥1 ‖PYk′ T
j PZ ‖ ≤ 2ε−1

N . Furthermore,

‖PY T j (PZ − PZN+1
)‖ = sup

k ′>kN

‖PYk′ T
j (PZ − PZN+1

)‖ ≤ 2.

So

‖PY T j (PZ − PZN+1
)x‖ ≤ 2‖(PZ − PZN+1

)x‖ ≤
ε

9
,

‖PY T j (PZN+1
− PZN

)x‖ ≤ 2ε−1
N ‖(PZN+1

− PZN
)x‖ < 2ε−1

N ε3/2
N = 2ε1/2

N <
ε

9

and

‖PY T j (PZN
x − wk )‖ ≤ 2ε−1

N ‖PZN
x − wn‖ ≤ 2ε−1

N ε3/2
N = 2ε1/2

N <
ε

9
.
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Finally,

‖PY T j wk‖ = ‖rk pk + sk qk‖2 ≤ εN <
ε

9
.

Hence ‖T j x‖ < ε.
Consequently, T is not orbit reflexive since the zero operator is not in the

strong operator topology closure of polynomials of T but 0 ∈ Orb(T, x)− for
each x ∈ X .

Moreover on `1, there is an operator which is reflexive but not orbit reflex-
ive. The existence of a Hilbert space operator with such properties seems to be
an open question, in particular it is not clear whether the operator constructed
above is reflexive.

Note that there are many operators which are orbit reflexive but not reflex-
ive, for instance the Volterra operator V on the Hilbert space L2[0; 1], defined

as (V f )(x) :=
∫ x

0
f (t)dt . Indeed, it is well-known that V is compact, and hence

it is orbit reflexive, and that the lattice of invariant subspaces of V consists of
subspaces of the form L2[α; 1]where α ∈ [0; 1], cf. [25, §28]. The multiplication
operator (T f )(x) := x f (x) leaves all these subspaces invariant, but does not
commute with V since for f := 1 we have (VT f )(x) = x2/2 6= x2 = (TV f )(x).
The Volterra operator is thus not reflexive.

Example 12.5. ([61]) There is an operator T on `1 which is reflexive but not
orbit reflexive.

Proof. For N = 1, 2, 3 . . . let εN := 1/
p

N . Let ak , k = 1, 2, 3 . . ., be an increas-
ing sequence of positive integers such that ak+1 > 6a2

k
.

The underlying space will be the `1-direct sum

X = Z ⊕
∞
⊕

k=1

Yk

where Z is the `1 space with standard basis {e j , f j : j = 0, 1, 2 . . .} and Yk are

the `1 spaces with standard bases {uk,i , vk,i : i = 1, 2, . . . , 5a2
k

}.
We construct inductively integers kN , N = 0, 1, 2 . . ., and elements wk ∈

Z , k = 1, 2, 3 . . ., in the following way. Set formally k0 := 0 and a0 := 0. Write
for short bN := akN

. Let N ≥ 1 and suppose that the integer kN−1 and ele-
ments w1, . . . , wkN−1

have already been defined. Let ZN := Span{e j , f j : j =

0, . . . , bN−1} and let wkN−1+1, . . . , wkN
be an ε2

N -net in the closed unit ball of ZN .
Using induction, we continue the construction in the above described

way.
Now we define the operator T ∈ L(X ) by:

Teak
:= eak+1 +

1

a2
k

∑a2
k

i=1
uk,i , T fak

:= fak+1 +
1

a2
k

∑a2
k

i=1
vk,i ,

Teak+3a2
k

:= εN eak+3a2
k
+1, T fak+3a2

k
:= εN fak+3a2

k
+1
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if (kN−1 < k ≤ kN ),

Te j := ε
−1/a2

k

N e j+1, T f j := ε
−1/a2

k

N f j+1

if (kN−1 < k ≤ kN , ak + 3a2
k

< j ≤ ak + 4a2
k
),

Te j := e j+1, T f j := f j+1

otherwise.

Thus T acts on the standard basis of Z as a pair of weighted shifts, up to
the points of the form eak

and fak
.

Further, let

Tuk,5a2
k

:= 0,

Tuk,i := uk,i+1 ,

Tvk,5a2
k

:= 0,

Tvk,i := vk,i+1 (1 ≤ i < 2a2
k

or 2a2
k

< i < 5a2
k
).

It remains to define T on Span{uk,2a2
k

, vk,2a2
k

}. Since wk ∈ ZN for kN−1 <

k ≤ kN , we have wk =
∑bN−1

i=0
(α
(k)
i

ei + β
(k)
i

fi ) for some complex coefficients

α
(k)
i

,β
(k)
i

. For i = 0, . . . , bN−1 we have T ak−i ei = µi eak
and T ak−i fi = µi fak

for some µi ∈ C satisfying
�

�µi

�

� ≤ ε−1
N . Set α(k) =
∑bN−1

i=0
µiα

(k)
i

and β(k) =
∑bN−1

i=0
µiβ

(k)
i

. Without loss of generality we may assume that
�

�α(k)
�

� 6=
�

�β(k)
�

�.

If
�

�α(k)
�

� <
�

�β(k)
�

� then set Tuk,2a2
k

:= uk,2a2
k
+1 and Tvk,2a2

k
:= −α(k)

β(k)
uk,2a2

k
+1.

If
�

�α(k)
�

� >
�

�β(k)
�

� then set Tvk,2a2
k

:= vk,2a2
k
+1 and Tuk,2a2

k
:= −β(k)

α(k)
vk,2a2

k
+1. Note

that in both cases we have T (α(k)uk,2a2
k
+ β(k)vk,2a2

k
) = 0.

Let Y =
⊕∞

k=1 Yk . Denote by PZ , PY , PZN
and PYk

the natural projections
onto the corresponding subspace of X .

It is easy to check that ‖T ‖ ≤ 2. Note also that for each k ∈ N, we have the
identities T ak−ak−1 eak−1

= eak
and T ak−ak−1 fak−1

= fak
.

We prove that
max {‖T ne0‖, ‖T n f0‖} ≥ 1

for all n = 0, 1, 2 . . ., and for each x ∈ X and ε > 0 there is a j ∈ N such that
‖T j x‖ < ε. As in Example 12.3, this gives automatically that T is not orbit
reflexive.

To prove the first statement, let n ∈ N. If n /∈
⋃∞

k=1
{ak + 3a2

k
+ 1, . . . , ak +

4a2
k

} then PZ T ne0 = en , and so max {‖T ne0‖, ‖T n f0‖} ≥ ‖PZ T ne0‖ = 1.

Let ak + 3a2
k

< n ≤ ak + 4a2
k

for some k. Recall that wk =
∑bN−1

i=0
(α
(k)
i

ei +

β
(k)
i

fi ), α
(k) =
∑bN−1

i=0
µiα

(k)
i

and β(k) =
∑bN−1

i=0
µiβ

(k)
i

, where T ak−i ei = µi eak
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and T ak−i fi = µi fak
. First suppose that

�

�α(k)
�

� <
�

�β(k)
�

� so that T is a shift on
uk,i . It is then easy to show that

PYk
T ne0 =

1

a2
k

n−ak+a2
k
−1
∑

i=n−ak

uk,i ,

and so ‖T ne0‖ ≥ 1. If
�

�α(k)
�

� >
�

�β(k)
�

�, then we obtain in the same way that

‖T n f0‖ ≥ 1. Hence max {‖T ne0‖, ‖T n f0‖} ≥ 1 for all n ∈ N.

To prove the second statement, suppose that x ∈ X is of norm 1 and 0 <
ε < 1.

There exists M ≥ 2 such that ‖(PZ −PZM
)x‖ < ε

18
. There exists N > M such

that

(2)

ε1/2
N <

ε · εM

9
,

bN−1εN >
18

ε
,

∞
∑

k ′=kN−1+1

‖PYk′ x‖ <
ε

9
,

‖PZN+1
x − PZN

x‖ < ε2
N .

Indeed, the first three conditions of (2) are satisfied for all N sufficiently large.
Suppose on the contrary that ‖PZN+1

x − PZN
x‖ ≥ ε2

N for all N ≥ N0. Then

1 = ‖x‖ ≥
∞
∑

N=N0

‖PZN+1
x − PZN

x‖ ≥
∞
∑

N=N0

ε2
N =∞,

a contradiction. Fix N with properties (2).
Find k, kN−1 < k ≤ kN such that ‖PZN

x − wk‖ ≤ ε2
N . Set j = ak + 3a2

k
+ 1.

We have

‖T j x‖ ≤






kN−1
∑

k ′=1

T j PYk′ x






+







∞
∑

k ′=kN−1+1

T j PYk′ x






+ ‖PZ T j PZM

x‖

+ ‖PZ T j (PZN
− PZM

)x‖ + ‖PZ T j (PZN+1
− PZN

)x‖+ ‖PZ T j (PZ − PZN+1
)x‖

+ ‖PY T j (PZ − PZN+1
)x‖ + ‖PY T j (PZN+1

− PZN
)x‖

+ ‖PY T j (PZN
x − wk )‖+ ‖PY T j wk‖.
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Since k > kN−1 and j > ak > 5a2
kN−1

, we have
∑kN−1

k ′=1
T j PYk′ x = 0. For

k ′ > kN−1 we have ‖T j |Yk′‖ ≤ 1, and so







∞
∑

k ′=kN−1+1

T j PYk′ x






≤






∞
∑

k ′=kN−1+1

PYk′ x






<
ε

9
.

The following four terms can be estimated by ε/9 similarly as in the Hilbert
space case. We omit the details.

We have

‖PY T j (PZ − PZN+1
)‖ =max {‖PY T j ei‖, ‖PY T j fi‖: i > bN }

≤ max {‖PZ T j ′ei‖, ‖PZ T j ′ fi‖: j ′ ≤ j, i > bN } ≤ ε
− j /a2

kN+1

N+1
≤ 2

and similarly

‖PY T j PZN+1
‖ ≤ max {‖PZ T j ′ei‖, ‖PZ T j ′ fi‖: j ′ ≤ j, i ≤ bN } ≤ ε−1

N .

Thus

‖PY T j (PZ − PZN+1
)x‖ ≤ 2‖(PZ − PZN+1

)x‖ ≤
ε

9
,

‖PY T j (PZN+1
− PZN

)x‖ ≤ ε−1
N ‖(PZN+1

− PZN
)x‖ < ε−1

N ε2
N = εN <

ε

9

and

‖PY T j (PZN
x − wk )‖ ≤ ε−1

N ‖PZN
x − wk‖ ≤ ε−1

N ε2
N <

ε

9
.

It remains to estimate ‖PY T j wk‖. We have

‖PY T j wk‖ = ‖PYk
T j wk‖

=






T 3a2

k

bN−1
∑

i=0

�µiα
(k)
i

a2
k

a2
k
∑

i ′=1

uk,i+i ′ +
µiβ

(k)
i

a2
k

a2
k
∑

i ′=1

vk,i+i ′
�







=
1

a2
k






T 3a2

k

�

µ0α
(k)
0 uk,1 + µ0β

(k)
0 vk,1 + (µ0α

(k)
0 + µ1α

(k)
1 )uk,2

+ (µ0β
(k)
0 + µ1β

(k)
1 )vk,2 + · · ·+

a2
k
∑

s=bN−1+1

(α(k)uk,s + β(k)vk,s ) + · · ·

· · ·+ µbN−1
α
(k)

bN−1
uk,a2

k
+bN−1

+ µbN−1
β
(k)

bN−1
vk,a2

k
+bN−1

�







≤
1

a2
k

· 2ε−1
N (bN−1 + 1)‖wk‖ ≤

2

εN ak

≤
2

εN bN−1

<
ε

9
.
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Hence ‖T j x‖ < ε. This implies that T is not orbit reflexive.

We show now that T is reflexive. Suppose that an operator A ∈ L(X ) leaves
invariant all the closed subspaces which are invariant for T . Without loss of
generality we may assume that ‖A‖ = 1. We have to show that A is a limit of
polynomials of T in the strong operator topology.

Let k ∈ N and let y ∈ Yk , y 6= 0. Let s satisfy T s y 6= 0 and T s+1 y = 0. Since
Span{y, Ty, . . . , T s y} is invariant for A, there are numbers λ0, . . . ,λs ∈ C such

that Ay =
∑s

i=0
λi T i y .

Fix any natural numbers l > k such that
�

�α(l )
�

� <
�

�β(l )
�

� (so that T is a shift
on ul ,i ; such a number certainly exists) and consider the spaces invariant for T
generated by the vectors ul ,1 and y + ul ,1, respectively. Since these subspaces
are invariant for A, there are complex numbers ξi and ηi such that

Aul ,1 =

5a2
l
−1
∑

i=0

ξi T i ul ,1

and

A(y + ul ,1) =

5a2
l
−1
∑

i=0

ηi T i (y + ul ,1).

Thus
s
∑

i=0

ηi T i y +

s
∑

i=0

ηi T i ul ,1 +

5a2
l
−1
∑

i=s+1

ηi T i ul ,1

=

s
∑

i=0

λi T i y +

s
∑

i=0

ξi T i ul ,1 +

5a2
l
−1
∑

i=s+1

ξi T i ul ,1.

Since the vectors T i y , 0 ≤ i ≤ s, and T i ul ,1, 0 ≤ i ≤ 5a2
l
− 1, are linearly

independent, we have λi = ξi = ηi , 0 ≤ i ≤ s, and Ay =
∑5a2

k
−1

i=0
ξi T i y . Note

that this equality does not depend on y ∈ Yk . Note also that
∑5a2

k
−1

i=0
|ξi | ≤







∑5a2
k
−1

i=0
ξi T i ul ,1






≤ ‖Aul ,1‖ ≤ ‖A‖ = 1. Moreover, if Ay =

∑5a2
l
−1

i=0
ξ′i T j y for

all y ∈ Yl then ξi = ξ′i , 0 ≤ i ≤ 5a2
k
− 1.

Thus there are numbers ξ0, ξ1, . . . such that
∑∞

i=0
|ξi | ≤ 1 and Ay =

∑5a2
j−1

i=0
ξi T i y for all j ∈ N and y ∈ Y j .

For k ∈ N let pk (z) :=
∑5a2

k
−1

i=0
ξi zi . Then ‖pk (T )|Y ‖ ≤ 1, and so we have

Ay = limk→∞ pk (T )y for all y ∈ Y .
Let E := Span{e j : j ≥ 0} and F := Span{ f j : j ≥ 0}. Let x1, . . . , xn ∈ E

and xn+1, . . . , xm ∈ F be unit vectors, q ∈ N and let 0 < ε < 1. It is sufficient to
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show that there is a k ≥ q such that ‖pk (T )xi − Axi‖ < ε, i = 1, . . . , m. This will
show that A belongs to the closure of polynomials of T in the strong operator
topology.

As above, it is possible to show that there is an N such that

(3)

εN <
ε

8
,

kN+1
∑

j=kN+1

�

�ξ j

�

� < ε2
N ,

‖(I − PZN+1
)xi‖ <

ε

16
(i = 1, . . . , m),

‖(PZN+1
− PZN

)xi‖ < ε2
N (i = 1, . . . , m),







�

I − PZN
−

kN
∑

k ′=1

PYk′

�

Axi






<
ε

4
(i = 1, . . . , m).

Set k = kN . Fix i ∈ {1, . . . , n} (for n + 1 ≤ i ≤ m the proof will be similar).
Let xi =
∑∞

j= j0
γ j e j with γ j0

6= 0. Clearly j0 ≤ bN−1. Let s = 5a2
k
+ ak − j0.

Let Q be the natural projection onto the space Span{e0, . . . , e5a2
k
+ak

, Yk ′ (k ′ ≤
k), vk+1,1 , . . . , vk+1,s+1}.

Consider the vectors xi , vk+1,1 and xi + vk+1,1. We have

QAvk+1,1 =

s
∑

j=0

ξ j T j vk+1,1

and there are complex numbers ν j ,η j such that

QAxi = Q

s
∑

j=0

ν j T j xi

and

QA(xi + vk+1,1) = Q

s
∑

j=0

η j T j (xi + vk+1,1).

As above, we have ν j = ξ j = η j , 0 ≤ j ≤ s. So QAxi = Q
∑s

j=0
ξ j T j xi .

We have

‖(A − pk (T ))xi ‖ ≤ ‖(I − Q)Axi ‖+ ‖Q(A − pk (T ))xi ‖+ ‖(I − Q)pk (T )xi‖.
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By (3), ‖(I − Q)Axi ‖ < ε/4 and

‖Q(A − pk (T ))xi ‖ =





Q

s
∑

j=5a2
k

ξ j T j xi






≤






s
∑

j=5a2
k

ξ j T j xi







≤
s
∑

j=5a2
k

�

�ξ j

�

� · max {‖T j‖: 5a2
k ≤ j ≤ s} ≤ ε2

N · 2ε−1
N = 2εN < ε/4.

Furthermore, since (I − Q)pk (T )PZN
xi = 0, we have

‖(I − Q)pk (T )xi ‖
≤ ‖(I − Q)pk (T )(I − PZN+1

)xi‖+ ‖(I − Q)pk (T )(PZN+1
− PZN

)xi‖
≤ ‖pk (T )(I − PZN+1

)xi‖+ ‖pk (T )(PZN+1
− PZN

)xi‖,

where

‖pk (T )(I − PZN+1
)xi‖ =






5a2
k
−1
∑

j=0

ξ j T j (I − PZN+1
)xi







≤
�

5a2
k
−1
∑

j=0

�

�ξ j

�

�

�

max {‖T j (I − PZN+1
)‖: 0 ≤ j ≤ 5a2

k − 1} · ‖(I − PZN+1
)xi‖

≤
4ε

16
=

ε

4

and
‖pk (T )(PZN+1

− PZN
)xi‖ ≤ ‖pk (T )‖ · ‖(PZN+1

− PZN
)xi‖

≤ max {‖T j ‖: 0 ≤ j ≤ 5a2
k − 1} · ε2

N ≤ 2ε−1
N ε2

N = 2εN < ε/4.

Hence ‖(A − pk (T ))xi ‖ < ε for each i , 1 ≤ i ≤ n, and similarly, for n + 1 ≤
i ≤ m. This implies that A is a limit of polynomials of T in the strong operator
topology and hence, T is reflexive.

It was suggested in [44] that it’s possible to extend the definition of orbit
reflexivity from Banach spaces to arbitrary topological spaces, passing from
operator theory to topological dynamics. Let X be a topological space and let
f : X → X be a continuous map. Then f is called orbit reflexive if the only
maps that leave invariant all the closed subsets invariant under f , are those in
the pointwise closure of Orb( f ) = { f n : n ∈ N0}.

In such a setting, it is very easy to find a map which is not orbit reflexive.
For instance let X := {a, b, c} with a discrete topology and let f be defined as
a 7→ b, b 7→ c, c 7→ a. Then f 2 = f −1 and f 3 = Id , so there is no nontrivial
invariant subset. But g defined by a 7→ a, b 7→ c, c 7→ b is not in the pointwise
closure of Orb( f ). Hence f is not orbit reflexive. Analogously if X = T and
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λ ∈ R \Q then the map x 7→ e iλx has no nontrivial closed invariant subset and
is not orbit reflexive.

We finish the chapter by posing several open questions related to orbit
reflexivity:

(i)Does the orbit reflexivity of T imply orbit reflexivity of T n? Or perhaps
conversely?

(ii) Let T be orbit reflexive and λ ∈ C, |λ| = 1. Is then λT orbit reflexive?

(iii) Is any Banach space contraction orbit reflexive? Is every mean ergodic
operator orbit reflexive?

(iv) Is “identity plus a quasinilpotent” always orbit reflexive? Does there exist
space where all operators are orbit reflexive?

(v) Is there a Hilbert space operator, which is not orbit reflexive, but is reflex-
ive? In particular, is the operator from Example 12.3 reflexive?

(vi) Are there semigroups which are not orbit reflexive?
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[4] Augé, Jean-Matthieu, Orbits of linear operators and Banach space geome-
try. preprint, arXiv:1204.2046v1. (Cited on pp. 12, 18.)

[5] Badea, Catalin – Grivaux, Sophie – Müller, Vladimı́r, Epsilon hypercyclic
operators. Ergodic Theory and Dynamical Systems 30 (2010), 1597–1606.
(Cited on pp. 4, 38, 40.)

[6] Ball, Keith M., Convex geometry and functional analysis. In W. B. Johnson,
J. Lindenstrauss (editors). Handbook of the geometry of Banach spaces,
Vol. 1. 2001, pp. 161–194. (Cited on p. 6.)

[7] Ball, Keith M., The complex plank problem for symmetric bodies. Bull.
London Math. Soc. 33 (2001), 433–442. (Cited on pp. 7, 9.)

[8] Ball, Keith M., The plank problem for symmetric bodies. Invent. Math.
104 (1991), 535-543. (Cited on p. 6.)

[9] Bang, Thøger, A solution of the “plank problem”. Proc. Amer. Math. Soc. 2
(1951), 990-993. (Cited on p. 6.)

[10] Bayart, Frédéric – Matheron, Étienne, Hypercyclic operators failing the
Hypercyclicity Criterion on classical Banach spaces. J. Funct. Anal. 250
(2007), 426–441. (Cited on p. 31.)

[11] Frédéric Bayart, Étienne Matheron, Dynamics of linear operators. Cam-
bridge Tracts in Mathematics 179, Cambridge University Press, 2009.
ISBN 978-0-521-51496-5. (Cited on pp. 4, 9, 27, 41.)

[12] Bayart, Frédéric, Epsilon-hypercyclic operators on a Hilbert space. Proc.
Amer. Math. Soc. 138 (2010), 4037–4043. (Cited on p. 40.)
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[41] Hadwin, Don – Ionaşcu, Ileana – McHugh, Michael – Yousefi, Hassan, C-
orbit reflexive operators. preprint, arXiv:1005.5202. (Cited on pp. 44, 47.)
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[68] Prăjitură, Gabriel T., The density of hypercyclic operators in the strong op-
erator topology. Integr. Equ. Oper. Theory 499 (2004), 559–560. (Cited
on p. 36.)
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