
Charles University in Prague
Faculty of Mathematics and Physics

DOCTORAL THESIS

Viliam Šimko

From textual specification to formal
verification

Department of Distributed and Dependable Systems

Supervisor of the doctoral thesis: RNDr. Petr Hnětynka, Ph.D

Study programme: Computer Science

Specialization: 4I-2 – Software Systems

Prague 2013

I would like to thank all those who supported me in my doctoral study and the work
on my thesis. I very appreciate the help and counseling received from Petr Hnětynka,
Tomáš Bureš, František Plášil and Petr Kroha.

I would also like to thank all my colleagues at the Department of Distributed and
Dependable Systems who have contributed valuable feedback, ideas and advice. To
avoid any possible bias, the following list is ordered randomly1: Petr Tůma, Michal
Malohlava, Tomáš Pop, Pavel Jančík, Andrej Podzimek, Alena Koubková, František
Plášil, Pavel Parízek, Lubomír Bulej, Jan Kofroň, Petr Hnětynka, Pavel Ježek, Michal
Kit, Martin Děcký, Tomáš Kalibera, David Hauzar, Ilias Gerostathopoulos, Jaroslav
Keznikl, Petr Kroha, Eva Mládková, Rima Al Ali, Tomáš Bureš, Vojtech Horký, Petra
Novotná, Lukáš Marek, Peter Libič.

Regarding the statistical and NLP methods, I would not have been able to employ
them in my thesis without the guidance of Martin Holeňa, Zdeněk Žabokrtský, Alena
Koubková and the brilliant Stanford on-line courses on Machine Learning and NLP
that are freely available at http://opencourseonline.com/playlist.

Regarding the FOAM method, I appreciate the help of Jiří Vinárek and David
Hauzar and also the two other members of the REPROTOOL team – Ondřej Fiala and
Rudo Tomori. All the prototyping and brainstorming sessions made FOAM a usable
tool.

My thanks also go to the institutions that provided financial support for my research
work. Through my doctoral study, my work was partially supported by the Charles
University institutional funding and by the Grant Agency of the Czech Republic.

Last but not least, I would like to thank my wife, L’ubka, for her support. I could
not have completed this work without her tolerance and patience.

1 Using a true random number generator that utilizes quantum vacuum fluctuations [105]. A block
of random samples, downloaded from http://photonics.anu.edu.au/qoptics/Research/qrng.php, was used
in the following way: # sort -R -random-source=qrsamples.txt people.txt

http://opencourseonline.com/playlist
http://photonics.anu.edu.au/qoptics/Research/qrng.php

I declare that I carried out this doctoral thesis independently, and only with the cited
sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act No.
121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Charles
University in Prague has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 paragraph 1 of the Copyright Act.

In Prague, May 31, 2013 Viliam Šimko

Název práce: Z textové specifikace k formální verifikaci

Autor: Viliam Šimko

Katedra: Katedra distribuovaných a spolehlivých systémů

Vedoucí práce: RNDr. Petr Hnětynka, Ph.D

Abstrakt: Běžný způsob popisu funkčních požadavků při vývoji softwaru je tvorba textových
případů použití (use-cases). Jejich úlohou v úvodních fázích projektu je zachytit for-
mou přirozeného jazyka způsob fungování systému z pohledu koncového uživatele.
Protože jde o text psaný v přirozeném jazyce, není možné správnost textových pří-
padů použití přímo formálně ověřovat. Obdobně významným artefaktem při vývoji
software je doménový model. Jde o popis nejdůležitějších konceptů a vztahů, které
jsou pro vyvíjenou aplikaci důležité. Tvorba doménového modelu běžně probíhá it-
erativně od prvního prototypu z textu až po výsledný formální model. Tato práce se
zabývá dvěma souvisejícími tématy – formální ověřování případů použití a odvozování
doménového modelu z textu. První část je věnovaná metodě FOAM, která umožňuje
pomocí jednoduchých anotací vložených do textu případů použití formálně ověřovat
jejich správnost (model-checking). Anotace umožňují zachytit větvení kroků v pří-
padech použití a uživatel má možnost vyjádřit časové závislosti mezi různými částmi
specifikace, zároveň je však zachovaná srozumitelnost původního textu. Druhá část
práce popisuje tzv. Prediction Framework, který pomocí lingvistické analýzy textu a
statistických klasifikátorů (log-linear Maximum Entropy models) umožňuje predikování
doménového model z textu.

Klíčová slova: Verifikace, Požadavky, Formální metody, Modelování

Title: From textual specification to formal verification

Author: Viliam Šimko

Department: Department of Distributed and Dependable Systems

Supervisor: RNDr. Petr Hnětynka, Ph.D

Abstract: Textual use-cases have been traditionally used at the design stage of the software
development process to describe software functionality from the user’s perspective. Be-
cause use-cases typically rely on natural language, they cannot be directly subject to for-
mal verification. Another important artefact is the domain model, a high-level overview
of the most important concepts in the problem space. A domain model is usually not
constructed en bloc, yet it undergoes refinement starting from the first prototype elicited
from text. This thesis covers two closely related topics – formal verification of use-cases
and elicitation of a domain model from text. The former is a method (called FOAM) that
features simple user-definable annotations inserted into a use-case to make it suitable for
verification. A model-checking tool is employed to verify temporal invariants associat-
ed with the annotations while still keeping the use-cases understandable for non-experts.
The latter is a method (titled Prediction Framework) that features an in-depth linguistic
analysis of text and a sequence of statistical classifiers (log-linear Maximum Entropy
models) to predict the domain model.

Keywords: Verification, Requirements, Formal Methods, Modeling

Contents

1 Introduction 1
1.1 Specification of functional requirements 1

1.1.1 Problem of sequencing demonstrated on an example 2
1.2 Textual use-cases . 3
1.3 Problem statement and goals . 4
1.4 Summary of contribution and publications 5
1.5 Structure of the thesis . 8
1.6 Note on conventions used . 8

2 History of the FOAM method 9
2.1 The Procasor tool . 9
2.2 Generating code from use-case specifications 9
2.3 Generic component model from use-cases 10
2.4 The REPROTOOL project . 12
2.5 Further development . 13

3 Verification of use-cases 15
3.1 Overview of the FOAM method . 16

3.1.1 Flow annotations . 16
3.1.2 Temporal annotations . 18

3.2 Construction of labeled transition systems 19
3.2.1 Formalizing the Input Use-Case Model 21
3.2.2 Formalizing the Use-Case Behavior Automaton 24
3.2.3 Building Use-Case Behavior Automaton – step #1 24
3.2.4 Building Use-Case Behavior Automaton – step #2 28
3.2.5 Temporal properties . 29

3.3 Verification using NuSMV . 30
3.4 Expressiveness of FOAM . 32
3.5 Evaluation of scalability . 34

3.5.1 FOAM scalability experiment 1 36
3.5.2 FOAM Scalability Experiment 2 37
3.5.3 FOAM Scalability Experiment 3 37
3.5.4 FOAM Scalability Experiment 4 37
3.5.5 Summary of the Experimental Results 38

3.6 Evaluation of learning curve . 38
3.6.1 Selection of use-cases for the test 39
3.6.2 Method applied by independent testers 40

i

3.6.3 Feedback from testers . 40
Adding flow annotations . 40
Adding temporal annotations 41
Summary . 41

3.7 Evaluation of the FOAM tool . 42
3.8 Implemented FOAM tool . 43
3.9 Summary of Chapter 3 . 44

4 Domain model elicitation 47
4.1 Domain modeling . 47

4.1.1 Iterative development and refinement 48
4.1.2 Grammatical Inspection . 48

4.2 Natural language processing techniques 49
4.2.1 Linguistic pipeline and common analysis structure 49
4.2.2 Tokenization . 49
4.2.3 Part-of-speech tagging . 50
4.2.4 Lemmatization . 50
4.2.5 Sentence detection . 50
4.2.6 Named entity recognition . 51
4.2.7 Hand-written rules and patterns 51
4.2.8 Parsing : constituency . 51
4.2.9 Parsing : dependency . 52
4.2.10 Coreference resolution . 52
4.2.11 Sentence analysis example 52

4.3 Statistical classification related to our method 54
4.3.1 Features . 54
4.3.2 Feature extractors and context generators 54
4.3.3 Statistical classifier . 55
4.3.4 Training samples . 55
4.3.5 Training samples in our method 55
4.3.6 Maximum entropy models for classification 56
4.3.7 Maximum entropy Markov models 57

4.4 From text to domain model in 4 phases 57
4.4.1 Preprocessing phase . 58
4.4.2 Feature selection phase . 59
4.4.3 Training phase . 60
4.4.4 Domain model elicitation phase 61

Step: Identifying words forming a domain entity 61
Step: Identifying multi-word entities 61
Step: Deriving names for entity links 61
Step: Creating classes in the domain model 62
Step: Merging duplicate classes in the domain model 62
Step: Predicting relations 62

4.5 Evaluation . 63
4.5.1 Training vs. testing data . 63
4.5.2 Cross-validation . 63
4.5.3 Evaluation metrics in the experiment 63

ii

4.5.4 Data used in the experiment 64
4.5.5 Classification in the experiment 65
4.5.6 Results of the experiment . 66

4.6 Summary of Chapter 4 . 68

5 Related work 71
5.1 Systematic reviews . 71
5.2 NLP in requirements engineering . 72
5.3 Controlled natural languages . 72
5.4 Use-case templates . 73
5.5 Extended use-case models . 74
5.6 Modeling static structures from requirements 75
5.7 Modeling dynamic structures from requirements 76
5.8 Formal semantics of requirements specification 77
5.9 Consistency of computational models 78
5.10 Use of ontologies . 79

6 Conclusions 81
6.1 Future work . 82

A FOAM case study 95
A.1 FOAM case study : Answers . 96

B Measured prediction performance 101

C Training data used for the evaluation 105

iii

iv

Chapter 1

Introduction

Formal methods in the recent years have slowly become applicable to industry-size sce-
narios. More powerful hardware, more sophisticated software made model-checking
feasible. However, the main challenge remaining is the involvement of less skilled
users. In practice, analysts and software engineers usually avoid advanced techniques
in favor of simpler approaches. Widely adopted is the specification of requirements
using just natural language, even though it is ambiguous and difficult to be verified
for errors. For many year, researches in the field of requirements engineering have
tried to tackle challenges of natural language, yet no silver bullet has been found and
(probably) never will be.

The simple grammatical inspection approaches from the early days of requirements
engineering gradually evolved into sophisticated statistical methods. The advances in
computational linguistics played a great role, because it allowed researchers to apply
more accurate linguistic taggers, parsers, classifiers and other useful tools that some-
times even surpass the performance of humans as demonstrated by the intriguing IBM
Watson project. However, even without a supercomputer at hand, a natural language
specification can be semi-automatically transformed into formal models with the aim
of minimizing ambiguity and inconsistency of natural language.

1.1 Specification of functional requirements

Specification of functional requirements using textual use-cases is a well-established
technique in requirements engineering [17]. Neill et. al. [78] reported that over 50%
of projects use scenarios or use-cases for requirements elicitation (see Figure 1.1).

A use-case captures a particular functionality of the system textually, as a scenario
of actions and responses written in a natural language. The use of the natural language
makes textual use-cases an ideal approach for consulting the intended behavior of a
developed system, i.e. System Under Discussion (SuD), with the users/stakeholders.
Natural language is actually the most widely used form of specification, as can be
seen in Figure 1.2. The aforementioned survey [78] also reported that only 7% of re-
quirements are specified formally. The majority of them are rather captured informally
(51%) or semi-formally (27%), i.e. in natural language. Another supporting claim
for this comes from the survey [64]. Here the authors reported that natural language
make 79% of the specifications, 16% is semi-formal or structured language, such as

1

Quality Function Deployment

6050403020100

Figure 1.1: Techniques used for requirements elicitation. Courtesy of Neill et al. [78].

templates or forms, and only 5% of the requirements are formal.

According to Neill et al. [78] According to Luisa et al. [64]

Figure 1.2: Requirements formality of modeling notation.

However, the natural language brings the risk of ambiguity or contradiction in spec-
ification documents which can negatively impact later phases of the system develop-
ment. With the increasing complexity of a use-case specification it becomes hard to
ensure its validity. Additionally, in a changing environment, the original specification
can easily get out-of-sync with the implementation artefacts. Thus a formalization
and automated validation of use-cases is desirable. In particular, correct sequencing of
use-case actions is a universally relevant property.

1.1.1 Problem of sequencing demonstrated on an example
The problem of correct sequencing of actions is demonstrated by the use-cases given in
Figure 1.3. The use-cases u1, u2 and u3 operate with the "location", which in this case

2

is relevant for the sequencing of their actions. In u2 (step 2), the "location" is provided
by the server and later being referred in u3 (step 3). Later, during evolution of the
specification, new branching conditions can be added changing the normal execution-
flow, e.g. by terminating a use-case. In our example (Figure 1.4), the branch Variation
2a in u2, leading to an abort, has been introduced in a later project phase. However, in a
case this branch executed, the "location" is not provided and it would result in problem
inside the use-case u3. Thus, in order to avoid the inconsistency the Extension 1a has
been added into u3 (Figure 1.5). Even from such a small example, it is obvious that
manual detection of such inconsistencies is almost impossible (especially in projects
where the use-cases are prepared by a group of analysts). Therefore, an automated
verification mechanism is in fact a necessity.

UseCase:u1 Select city on map
1. The user opens the map web page.
2. The system generates a map with available cities.
3. The user selects a city on the map.

UseCase:u2 Generate city
Preceding:u1 "Select city on map"
1. The system asks MapServer to provide city information.
2. MapServer provides the requested information. (providing the location)
3. The system generates the map with default zoom settings.
4. User adjusts zoom settings.

UseCase:u3 Generate restaurant map for city
Preceding:u1 "Select city on map"
1. Include use−case "Generate city".
2. System validates the zoom settings.
3. System asks RestaurantServer for restaurants. (near the given location)
4. RestaurantServer generates the restaurant layer information.
5. System generates restaurant map.

Figure 1.3: Example of use-cases sharing an artefact relevant for the sequencing of actions.

1.2 Textual use-cases
A use-case describes a particular functionality of a system in natural language. This
makes use-cases a very advantageous asset for communicating software specification
with customers as well as with developers, however the use of natural language is
also the main obstacle in automated processing and verification of use-cases. This is
not just because of the intricacies interpreting the text in the natural language, but also
because, to date, there is no standardized form of use-cases. To overcome the latter, we

UseCase:u2 Generate city
Preceding:u1 "Select city on map"
1. The system asks MapServer to provide city information.
2. MapServer provides the requested information. (providing the location)
3. The system generates the map with default zoom settings.
4. User adjusts zoom settings.

Variation: 2a. MapServer error occurred.
2a1. Use-case aborts.

Figure 1.4: An inconsistency introducing variation added to the specification.

3

UseCase:u3 Generate restaurant map for city
Preceding:u1 "Select city on map"
1. Include use−case "Generate city".
2. System validates the zoom settings.
3. System asks RestaurantServer for restaurants. (near the given location)
4. RestaurantServer generates the restaurant layer information.
5. System generates restaurant map.

Extension: 1a. There was an abort in "Generate city".
1a1. Use-case aborts.

Figure 1.5: An inconsistency resolving extension added to the specification.

adhere to the widely accepted format proposed in [17]. The former is however much
more serious problem, which we tackle in our method by introduction of annotations
as explained further in the text. For the reader’s convenience, we briefly summarize
this use-case format below.

Typically the system under discussion is specified as a set of use-cases (further
denoted as UCM, i.e. Use Case Model). A single use-case always specifies the main
scenario and a (potentially empty) set of branching scenarios. Each scenario com-
prises a sequence of use-case steps. A use-case step, written as a simple sentence in
a natural language (English in our case), expresses an interaction between SuD and
actors (typically users and stakeholders). A use-case step is identified by its sequence
number. The main scenario (also called success scenario) defines the sequence of in-
teractions for achieving the goal of the use-case (e.g. steps 1-3 in Figure 1.5). A
branching scenario is either variation or extension of a particular use-case step. An ex-
tension enhances specification of the particular step while a variation is an alternative
to the step’s specification. The correspondence of a variation or an extension to a step
is given by referring to the step’s sequence number (e.g. variation 2a is an alternative
to step 2 in the use-case u2).

Use-cases can also be involved in a precedence relation [11, 3, 29], which con-
straints their sequencing (e.g. in Figure 1.5, before the use-cases u2 or u3 can be
executed the use-case u1 has to be executed first).

1.3 Problem statement and goals
Requirements engineering is about managing artefacts during the software develop-
ment process and to facilitate change requests. Artefacts such as textual specification,
models or code, are interconnected. If we capture these relations in a consistent and
accessible way, we can easily extract valuable statistical information to predict new
artefacts. If we build appropriate formal models out of these artefact, we can also
verify certain consistency properties.

The focus of this thesis is to propose methods that leverage existing formal methods
(verification of behavior of a system) to requirements engineering (in particular use-
cases and domain models) by using existing linguistic tools (text analysis, coreference
resolution, relation extraction). The emphasis is on practical usability of the designed
method. The main goals are:

4

G1 Formalize behavior of textual use-cases.
Design a lightweight method for capturing behavior of use-cases and expressing
temporal constraints in their control flow. The method should integrate well with
specifications written in natural language. Even users not familiar with temporal
logic should be able to describe temporal constraints among use-case steps in
an intuitive way, while at the same time, the formalism should be extensible
enough so that advanced users can define their own consistency constraints using
temporal logic.

G2 Design a method for Verification of use-cases.
Define mapping from the formalism mentioned above to a model which can be
verified by existing model-checkers. The method should be also evaluated from
the scalability and usability point of view.

G3 Combine linguistic and software engineering artefacts.
Design a model and method for: (i) automated linguistic analysis of textual spec-
ifications, (ii) combining the extracted linguistic information with other software
engineering artefacts, (iii) automated extraction of features, training a statistical
classifier and evaluation of the prediction performance. (iv) use the classifier to
derive a prototype domain model from natural language. This thesis is focused
only on specification texts written in natural language, domain models (similar
to class diagrams) and textual use-cases.

1.4 Summary of contribution and publications
All topics discussed within this thesis are supported by peer-reviewed publications
published on international conferences or submitted to a journal/conference. In all
of the papers listed below, I carried out most of the work covering the initial design,
experiments, coding and case studies with the help of the co-authors. Part of the imple-
mentation was also carried out by students in the REPROTOOL [89] software project,
which I supervised. Moreover, I also supervised the master thesis of Jiri Vinarek, who
substantially contributed to the implementation of the FOAM tool.

My very first motivation for verification of use-cases was formed during my partic-
ipation in projects OASIS1 and GAMA2 [32, 63, 28]. These EU-funded projects were
focused on the establishment of a central platform to enable multilingual, facilitated
and user-orientated access to a significant number of media art archives and their dig-
italised contents. The architecture was basically a network of independent database
adapters connected through a central repository which aggregates metadata from the
archives into a common schema. The projects followed an iterative approach – re-
quirements specification, coding, testing and other phases of the project’s lifecycle
were revisited multiple times in order to support an open user-centric design. Interac-
tion among the components was specified as scenarios. However, no formal approach

1http://oasis-archive.eu/
2http://gama-gateway.eu

5

was employed to verify the correctness of such a specification. Although we made a
great effort to inspect the scenarios visually, we always felt unsure about the correct-
ness of the system’s behavior. An example could be a process of populating the central
repository with fresh data from the remote databases. The process involved coopera-
tion among multiple components described using scenarios. However, we could not
tell whether the specification permits any unforeseen/undesirable states.

After successfully finishing the GAMA project, I started the Ph.D. studies focus-
ing on verification of use-cases. First, the theoretical concepts of the FOAM method
were drafted in the papers [92, 91]. Later, based on the experience with the tool im-
plementation, I decided to redefine the original UCM→LTS transformation. The new
transformation was published in [93]. However, the approach still needed a proper
evaluation of scalability and a case study which was finally carried out in [94]. More-
over, the implementation of the FOAM tool was finished and refactored into cleanly
separated modules. As a next step, the approach was extended to the realm of machine
learning and information extraction. The paper [96] describes a method for deriving
prototype domain model from textual specification using statistical classification ap-
proach. A substantial part of the work was the implementation of a framework for
automated evaluation of the tool’s classification performance.

Reviewed publications:
[93] V. Simko, P. Hnetynka, T. Bures, and F. Plasil. “FOAM: A Lightweight Method

for Verification of Use-Cases”. In: Software Engineering and Advanced Appli-
cations (SEAA), 38th EUROMICRO Conference on. 2012, pp. 228–232. DOI:
10.1109/SEAA.2012.15

[91] V. Simko, D. Hauzar, T. Bures, P. Hnetynka, and F. Plasil. “Verifying Tempo-
ral Properties of Use-Cases in Natural Language”. In: Postproc. of FACS’2011.
LNCS. Springer, 2011. DOI: 10.1007/978-3-642-35743-5_21

[92] V. Simko, P. Hnetynka, and T. Bures. “From Textual Use-Cases to Component-
Based Applications”. In: Proc. of SNPD’10. Vol. 295. Studies in Computation-
al Intelligence. Springer, 2010, pp. 23–37. ISBN: 978-3-642-13264-3. DOI: 10.
1007/978-3-642-13265-0

[32] A. Glowacz, M. Grega, M. Leszczuk, Z. Papir, P. Romaniak, P. Fornalski, M.
Lutwin, J. Enge, T. Lurk, and V. Simko. “Open internet gateways to archives of
media art”. In: Multimedia Tools and Applications (Mar. 2011), pp. 1–24. ISSN:
1380-7501. DOI: 10.1007/s11042-011-0784-3

[63] A. Ludtke, B. Gottfried, O. Herzog, G. Ioannidis, M. Leszczuk, and V. Simko.
“Accessing Libraries of Media Art through Metadata”. In: 2009 20th Interna-
tional Workshop on Database and Expert Systems Application. IEEE, 2009,
pp. 269–273. ISBN: 978-0-7695-3763-4. DOI: 10.1109/DEXA.2009.93

[28] J. Enge, A. Glowacz, M. Grega, M. Leszczuk, Z. Papir, P. Romaniak, and V.
Simko. “OASIS Archive – Open Archiving System with Internet Sharing”. In:
Future Multimedia Networking. Vol. 5630. LNCS. Springer, 2009, pp. 254–259.
ISBN: 978-3-642-02471-9. DOI: 10.1007/978-3-642-02472-6_28

6

http://dx.doi.org/10.1109/SEAA.2012.15
http://dx.doi.org/10.1007/978-3-642-35743-5_21
http://dx.doi.org/10.1007/978-3-642-13265-0
http://dx.doi.org/10.1007/978-3-642-13265-0
http://dx.doi.org/10.1007/s11042-011-0784-3
http://dx.doi.org/10.1109/DEXA.2009.93
http://dx.doi.org/10.1007/978-3-642-02472-6_28

Technical reports:
[96] V. Simko, P. Kroha, and P. Hnetynka. Implemented Domain Model Generation.

Tech. rep. 2013/3. D3S, Charles University in Prague, Apr. 2013. URL: http :
//d3s.mff.cuni.cz/publications/download/D3S-TR-2013-03.pdf
A paper based on this work was recently submitted to a conference.

[94] V. Simko, P. Hnetynka, T. Bures, and F. Plasil. Formal Verification of Annotat-
ed Use-Cases (FOAM Method). Tech. rep. 2012/2. D3S, Charles University in
Prague, 2012. URL: http://d3s.mff.cuni.cz/publications/download/D3S- TR-
2012-02.pdf
A paper based on this work was recently submitted to a journal.

[95] V. Simko, P. Kroha, and P. Hnetynka. Domain Model Generation With the Help
of Supervised Machine Learning. Tech. rep. 2012/6. D3S, Charles University in
Prague, 2012. URL: http://d3s.mff.cuni.cz/publications/download/D3S- TR-
2012-06.pdf

[12] T. Bures, P. Hnetynka, P. Kroha, and V. Simko. Requirement Specifications Using
Natural Languages. Tech. rep. 2012/5. D3S, Charles University in Prague, 2012.
URL: http://d3s.mff.cuni.cz/publications/download/D3S-TR-2012-05.pdf

[90] V. Simko. Patterns In Specification Documents. Tech. rep. 2011/6. D3S, Charles
University in Prague, 2011. URL: http://d3s.mff.cuni.cz/publications/download/
D3S-TR-2011-06.pdf

Implemented tools:
FOAM tool: This is a command-line tool that performs verification of use-case mod-

els annotated with FOAM annotations. The architecture of the tool is modular
and extensible. Each transformation phase is clearly separated with well-defined
meta-models describing its inputs and outputs. The demo application shows how
a valid specification and also an invalid specification is verified. At the time of
writing this text, the tool is available for download at:

http://vlx.matfyz.cz/Projects/FoamTool

Prediction Framework: The framework is a headless Eclipse-based product com-
posed of multiple OSGi bundles. Some of the bundles contain linguistic and
statistical models. The application demonstrates 4 phases: (1) preprocessing,
(2) feature selection, (3) training, and (4) elicitation. At the time of writing this
text, the implementation is available for download at:

http://vlx.matfyz.cz/Projects/PredictionTool

7

http://d3s.mff.cuni.cz/publications/download/D3S-TR-2013-03.pdf
http://d3s.mff.cuni.cz/publications/download/D3S-TR-2013-03.pdf
http://d3s.mff.cuni.cz/publications/download/D3S-TR-2012-02.pdf
http://d3s.mff.cuni.cz/publications/download/D3S-TR-2012-02.pdf
http://d3s.mff.cuni.cz/publications/download/D3S-TR-2012-06.pdf
http://d3s.mff.cuni.cz/publications/download/D3S-TR-2012-06.pdf
http://d3s.mff.cuni.cz/publications/download/D3S-TR-2012-05.pdf
http://d3s.mff.cuni.cz/publications/download/D3S-TR-2011-06.pdf
http://d3s.mff.cuni.cz/publications/download/D3S-TR-2011-06.pdf
http://vlx.matfyz.cz/Projects/FoamTool
http://vlx.matfyz.cz/Projects/PredictionTool

1.5 Structure of the thesis
The next Chapter 2 summarizes the history of the FOAM method presented in the rest
of the text. Afterwards, the text continues by the core Chapters 3 and 4.

Chapter 3 is based on publications [91, 93, 94]. It focuses on verification of textual
use-cases using the FOAM tool. The chapter starts by explaining what kind of textual
use-cases we consider for verification (Section 1.2). Then, in Sections 3.1 and 3.2,
the theoretical background of FOAM method is explained. In Section 3.4 we provide
proofs about expressiveness and correctness of the proposed method. In Sections 3.5,
3.6 and 3.7 discuss the scalability, learning curve and applicability in practice.

Chapter 4 is based on publications [12, 90, 92, 95, 96]. It elaborates on the ap-
proach to predicting software engineering artefacts using a Maximum Entropy (MaxEnt)
statistical classifier. In particular, we demonstrate the idea on a method for predicting a
prototype domain model from English text. Sections 4.2 and 4.3 provide an overview
of the theory and tools regarding NLP and statistical classification. Section 4.4 de-
scribes all phases: (1) Preprocessing, (2) Feature selection, (3) Training, (4) Elicitation.
Section 4.5 summarizes the experimental results of 3 classification models selected for
the demonstration.

The thesis then continues by Chapter 5, which summarizes the related work for
both main topics together. Finally, Chapter 6 concludes the thesis.

It should be noted that the reviewed papers [28, 32, 63] mentioned above are not
included to the following chapters because they merely motivated the research around
FOAM.

1.6 Note on conventions used
In order to distinguish between a text included verbatim from the aforementioned pub-
lications, a colored vertical bar on the right or left side of the text is used. Where
appropriate, I have slightly modified and unified the original text (in a way not chang-
ing the meaning) to make the thesis coherent and easy to read.

Here is an example of how paragraphs are marked to indicate a verbatim copy. It means
that from this point, the text appeared in the papers [X] and [Y].[X]

[Y]

8

Chapter 2

History of the FOAM method

2.1 The Procasor tool
The Procasor tool (elaborated in [73, 25, 74]) was previously developed in our research
group. It was an attempt to support the analyst while specifying functional require-
ments in the form of textual use-cases. Procasor takes use-cases in plain English and
transforms them into a formal behavior specification called procases [82]. The procase
is a variant of a behavior protocol [81] which is a process algebra precisely describing
the behavior of a system or components.

The central part of the Procasor tool is an interactive use-case editor [74] integrated
with linguistic tools to give an immediate feedback to the writer. The tool can generate
two types of formal specification – behavior protocols and UML state machines. A
typical textual use-case analyzed by Procasor together with its corresponding procase
is depicted in Figure 2.2.

When writing use-case steps, each sentence is linguistically analysed. The tool ac-
quires information about the action expressed by the sentence together with the com-
municating parties involved in the action. To do that, Procasor needs a domain model
to be specified manually beforehand. Domain model describes entities appearing in
the system being developed, in Procasor it is captured as a simple list of entities.

The linguistic analysis employed in Procasor uses COLLINS statistical parser [18]
developed by M. Collins at the University of Pennsylvania in 1996. The parser pro-
duces constituency parse trees that break the sentence into phrases. An example of
such a parse tree is depicted in Figure 2.1. Procasor expects a uniform sentence struc-
ture as suggested by well known use-case approaches [17], [55], [58]. It uses a fixed
set of rules for matching patterns in the generated parse tree.

2.2 Generating code from use-case specifications
In the work [30], the Procasor tool has been further extended by a generator that can
produce an executable application from use-cases. Input to the generator were procases
from Procasor and domain model of the designed system, prepared manually, encoded
as a UML class diagram (see Figure 2.3). The domain model consists of: (i) conceptual
classes, (ii) attributes of conceptual classes, and (iii) associations among conceptual
classes.

9

Padding Verb

Sentence

Verb Phrase

Verb Phrase

Verb Phrase

Noun Phrase

Noun Phrase

Noun Phrase

Sentence

the/DT

the/DT

Asks/VBZ

Indirect Object
Supervisor/NNP

Subject
System/NNP

Main Verb
Validate/VB

to/TO

Representative Object
Seller/NN ./PUNC.

Figure 2.1: Example parse tree for the sentence "System asks the Supervisor to validate the
Seller." as used by the Procasor tool. It is a constituency parse tree, where non-
terminals are the phrase types (such as Noun Phrase, Verb Phrase) and terminals
are individual words.

Outputs from the generator were1 (i) objects capturing the work-flow of each use-
case (Controller), (ii) web pages acting as GUI to the user (View), and (iii) objects
representing the business objects (Model). The intended use of the generated imple-
mentation was to let users test the traces expressed by the use-cases. Only a secondary
goal was to generate code skeletons for the actual implementation.

The created application can be used for three purposes as depicted in Figure 2.4:
(i) to immediate evaluation of completeness of the use-cases, (ii) to obtain first impres-
sion by application users, and (iii) as a skeleton to be extended into the final applica-
tion.

In the MDD terminology, the use-cases and domain model serve as a platform
independent model (PIM), which are transformed via intermediate models into an ex-
ecutable code, i.e. platform specific model (PSM).

2.3 Generic component model from use-cases
[92]

The aforementioned generator targeted Java Enterprise Edition (JEE) applications only.
Therefore, we aimed at solving this limitation in the paper [92]. We proposed a trans-
formation pipeline (Figure 2.5) which generates a generic component-based architec-
ture from use-cases. In our approach, we proposed an intermediate component-model,
independent of any particular component framework, from which multiple back-ends
could generate platform specific code. Our pipeline had two extension points. (i) The
input filters in the front-end that allow for a different input format, (ii) the transforma-
tions in the back-end in order to add support of different programming languages and
platforms, in which the final application can be produced.

The front-end consisted of the Procasor tool, however, modified in order to ac-
cept different formats. The following transformation steps were executed based on the
generated procases and the domain model:

1. Procedures were identified in the generated procases. A procedure is a sequence
of actions, which starts with a request receive action and continues with other

1Using the terminology of the Model-View-Controller design pattern

10

UseCase: Clerk submits an offer on behalf of a Seller

Scope: Marketplace
SuD: Computer System
Primary actor: Clerk
Supporting actor: Trade Commission
Supporting actor: Supervisor
Supporting actor: Seller

Main success scenario specification:
1. Clerk submits information describing an item
2. System validates the description
3. Clerk adjusts/enters price and enters seller’s

contact and billing information
4. System validates the seller’s contact information
5. System asks the Supervisor to validate the seller
6. Supervisor permits the seller to operate on the

marketplace
7. System validates the whole offer with the Trade

Commission
8. System lists the offer in published offers
9. System responds with an uniquely identified

authorization number
Extensions:

2a. Validation performed by the system fails
2a1. Use case aborted

7a. Trade commission rejects the offer
7a1. Use case aborted

Sub−variations:
2b. Price assessment available

2b1. System provides the seller with a price
assessment

PROCASE: Clerk submits an offer on behalf of a Seller

?CL.submitItemDescription;
#validateDescription;
#validationPerformedSystemFails;
%ABORT
+
(

?CL.submitItemDescription;
#priceAssessmentAvailable;
!Sl.providePriceAssessment
+
?CL.submitItemDescription;
#validateDescription

);
?CL.enterPriceContactBillingInformation;
#validateContactInformation;
!SU.validateSeller;
?SU.permitSeller;
!TC.validateOffer;
(

#listOffer;
!Sl.respondUniqAuthNumber
+
#tradeCommissionRejectsOffer;
%ABORT

)

Figure 2.2: Example input and output format used by the Procasor tool. Input is a textual use-
case. Output is a behavior protocol describing the use-case formally. Both of them
were taken from the Marketplace System case study by Plasil et al. [82])

action than request receive. In the final code, these procedures correspond to the
methods of generated objects.

2. Arguments of identified procedures and data-flow among them were inferred
from the domain model. These arguments eventually result into methods argu-
ments in the final code and also into objects’ allocations.

3. The generic component model was generated.

4. Finally, executable code is generated from the generic component model.

The generic component model consists of:

Entity Data Objects representing entities from the domain model. Because the do-
main model and the use-cases do not provide enough information to generate
the internal logic of the domain entities (e.g. validation of an item), we generate
only skeletons that log their activity. This means that the generated application
can be launched without manual modification and by itself provides traces, that
give valuable feedback.

11

Offer

+authorizationNumber: String
+price: int
+status: int

Item

+description: String

Payment

+method: String
+detail: String

Buyer

+shippingInfo: String
+billingInfo: String

Seller

+billingInfo: String
+contactInfo: String
+history: String

1..*

0..* 0..*1 1

Figure 2.3: Example domain model used as an input to the JEE generator, taken from [30].
The domain model had to be created manually.

Use-cases

Domain model

Procasor

Generator

 Procases

Requirement
engineers

Programmers

Customers

Testers

feedback

testing

first
impression

continue with
implementation

input

work with

generated output
Implementation

Figure 2.4: System usage overview of the J2EE generator.

Use-Case Objects that contain the business logic of the corresponding use-cases, i.e.
the sequence of actions in the use-case success scenario and all possible alterna-
tives.

User Interface Objects that represent the interactive part of the final application. The
users can interact via them with the application, set required inputs, and obtain
computed results.

Procedure Signatures that represent the interface to Entity Data Objects.

2.4 The REPROTOOL project
In 2010, we decided to improve the Procasor tool in the following ways:

1. We wanted to refactor the implementation into separate components featuring
explicitly-defined interfaces. We decided to build the new framework on Eclipse,
where each component would become an OSGi bundle (Eclipse plug-in).

2. We wanted to refresh the Procasor’s old linguistic tool-set. Each linguistic task
would be implemented by a separate component. We also wanted to devel-
op multiple components implementing the same functionality, such as Part-of-
speech tagging. Users would be able to arbitrarily switch between alternative
implementations.

3. We aimed at improving the use-case editor.

12

Frontend

Run
Procasor Tool

Procase
Preprocessor

Applying
Input Filters

Input Text

Procasor
Input Format

Infer Arguments
of Procedures

Generate
Meta-Model from

Procase

Domain
Model

Generic
Component

Model

Multiple
Frontends

Raw Procase

Pre-processed
Procases

Procedure
Arguments

Component-based
Application

BackendCore

Generate
Application

Multiple
Backends

Figure 2.5: Architecture of the uc2comp generator. The architecture supported multiple front-
ends and back-ends.

4. Finally, we wanted to integrate verification with the editor. For this task, we
chose the NuSMV model checker.

These ideas were implemented within the REPROTOOL [89] software project2.
The developed tool covered almost all the points above. However, it was only usable
as a proof-of-concept that model-checking can be successfully integrated with textual
use-cases. The strongest part of the developed application was the verification aspect
which integrates NuSMV model-checker. The weakest part was the graphical use-case
editor. Eventually, it turned out that users preferred their favourite textual editor for
writing use-cases instead of the developed graphical editor. The main ideas employed
in REPROTOOL were outlined in our paper [91].

While the main focus in Procasor was on the transformation of natural language
into a formal model, in our new method, we focused more on the verification aspect.
Even so, we still wanted to preserve the advantages of natural language specification.
Therefore, we introduced annotations that can be unobtrusively inserted into the text to
capture the behavior expressed by sentences of a use-case. Another important concept
that we introduced, and which Procasor did not consider, were the precedence and
include relations among use-cases. Correct sequencing of actions suddenly became a
non-trivial problem; naturally a task for a model-checker.

2.5 Further development
Based on the experience with REPROTOOL implementation, we decided to concen-
trate our effort on verification, which, as demonstrated in the following chapter, paid
off later in the FOAM project. We have further improved the transformation pipeline
from annotated textual use-cases to the formal model. The new transformation was
published in [93]. Recently, after finishing the implementation of the FOAM tool,
we also conducted an evaluation of scalability, learning curve and applicability of the
method. The results were published in [94].

2"Software project" is a mandatory requirement for undergraduate students at our university. They
have to implement a working application collaboratively in teams of 4-6 people.

13

The last remaining part was to reintroduce the linguistic aspect to the pipeline. Our
FOAM method presumes that the input text is already annotated. From the FOAM’s
point of view, all the information is encoded in the annotations and the text acts only
as a carrier of annotations.

The next logical step was to design a mechanism that would semi-automatically
make predictions from the text, such as suggesting where the annotations should be
placed. Also remember that Procasor and the JEE generator mentioned above required
a domain model, usually prepared manually by the user. To tackle these issues, we
designed a framework for predicting software engineering artefacts using statistical
classification. Since this is a rather broad task, we decided to focus on the prediction
of a domain model from text, which is summarized in the paper [96]. However, the
developed framework can be easily extended in order to predict other artefacts, such
as FOAM annotations.

The next two chapters describe in detail both the FOAM method (Chapter 3) and
the elicitation of a domain model (Chapter 4).

14

Chapter 3

Verification of use-cases

This chapter elaborates on a method allowing for verification of correct sequencing
of actions in use-cases (The FOAM method – Formal Verification of Annotated Use-
Case Models). The FOAM method works with use-cases in their natural language
form requiring only a few basic annotations to be inserted in the use-cases to capture
the semantics.

In [91], we have introduced the use of annotations to formalize the use-case se-
mantics and to select properties that are subject to verification. The approach was
further elaborated in [93], where we included user-definable properties (as opposed to
pre-defined set of properties that could have been verified by [91]). The majority of the
text within this chapter is taken from [94]. We extended the ideas and corrected former
drawbacks in the following way:

1. All transformations are now formally defined which is necessary for a correct
implementation. The transformation is defined as a set of inference rules, inde-
pendent on any particular implementation – Section 3.2.

2. We proved that the method has a sufficient expressive power to encode a suf-
ficiently general Kripke structure and a related temporal logic formula – Sec-
tion 3.4.

3. We improved the scalability with respect to real-life use-cases Section 3.2.1.
Now the method scales linearly with the number of use-cases.

4. We evaluated the scalability of FOAM and explored its theoretical limits with
respect to the NuSMV model-checker – Section 3.5.

5. We evaluated the usability of FOAM in a case study – Section 3.7.

6. And finally, we finished the implementation of the FOAM tool1 – Section 3.8.

1Example output from the tool: http://foam-tool.appspot.com/overview/overview.html

15

http://foam-tool.appspot.com/overview/overview.html

3.1 Overview of the FOAM method
[94]
[93] As discussed above, ensuring the correctness of an evolving specifications is hard. It

would be a mistake to understand requirements documents as final and unchangeable
as emphasized in [58]. Automation is required especially for large and complex spec-
ifications where manual reviewing becomes tedious. As a first step in the automation
process, it is necessary to extract the control flow from the use-cases. Next, we need
to formally define conditions to be verified. All this information is available in the
use-cases but it is “hidden” in the natural language of the text. To overcome this, we
propose to enhance the use-cases with annotations, which are short tags appended to a
particular use-case step sentence (blue tags #(a:s) in Figure 3.2).

These annotations can be divided into two groups:

(1) flow annotations expressing control flow of use-cases, and

(2) temporal annotation expressing conditions to be verified.

In an ideal case, these annotations are also automatically added to the use-case, but, for
now, our method expects that they are manually added by the analysts and automation
of this step is left for future work.

The verification itself then takes the annotated use-cases and automatically trans-
forms them into Labeled Transition System (LTS). This LTS (i.e., an automaton)
encodes the execution of all scenarios expressed by the use-cases. The process fur-
ther continues by transforming LTS into the input for NuSMV model checker [15],
which verifies the use-cases. Transformations are transparent to the user; the poten-
tial errors reported by NuSMV are presented in a natural language by translating the
counter-example to the steps of the flawed use-case. The whole process is sketched in
Figure 3.1. In the rest of this section we describe the used annotations in detail.

Use-Cases
LTS

with guards SVM model
Counter-
example

Figure 3.1: Overview of the verification method

3.1.1 Flow annotations
Execution of a use-case starts with the first step of its main scenario and then continues
till the end possibly visiting optional branches. However, the control flow of the execu-
tion can be further altered by: (1) aborts which prematurely end the scenario – typically
as a reaction to an error; (2) includes which incorporate (inline) another use-case in the
place of a particular step, (3) jumps which move execution to a specified use-case step,
and (4) conditions of extensions and variations.

All these constructs are written in a natural language. FOAM considers them the
core concepts influencing the control flow and captures them formally using annota-
tions of the following form:

#(abort) : This annotation expresses abort of the scenario.

16

UseCase:u1 Select city on map
1. The user opens the map web page.
2. The system generates a map with available cities.
3. The user selects a city on the map. #(create:city)

Variation: 2a. No cities available.
2a1. System displays an empty map with message.
2a2. Use−case aborts. #(abort)

UseCase:u2 Generate city
Preceding:u1 "Select city on map"
1. The system asks MapServer to provide city information. #(use:city)
2. MapServer provides the requested information. #(create:location)
3. The system generates the map with default zoom settings.
4. User adjusts zoom settings.

Variation: 2a. MapServer error occurred.
2a1. Use−case aborts. #(abort)

UseCase:u3 Generate restaurant map for city
Preceding:u1 "Select city on map"
1. Include use−case "Generate city". #(include:GenerateCity)
2. System validates the zoom settings.
3. System asks RestaurantServer for restaurants. #(use:city), #(use:location)
4. RestaurantServer generates the restaurant layer information.
5. System generates restaurant map.

Extension: 1a. There was an abort in "Generate city". #(guard:abort)
1a1. Use−case aborts. #(abort)

Extension: 2a. Zoom settings are invalid.
2a1. System display an error message to the user.
2a2. System uses the default zoom settings.

The elements denoted as #(a:s) are examples of annotations in FOAM.
− ”a” is the name of the annotation
− ”s” is the qualifier of the annotation

Figure 3.2: Example of a consistent specification using annotated use-cases.

#(goto:s) : This annotation represents a jump within the use-case. The parameter s
indicates the target use-case step of the jump.

#(include:u) : This annotation specifies inclusion (inlining) of another use-case u.

The following annotations #(mark) and #(guard) assume existence of boolean
variables b1, . . . , bn initialized to false (globally accessible in UCM).

#(mark:bi) : This annotation sets bi to true.

#(guard:f(b1, . . . , bk)) : The f parameter of this annotation is a propositional logic
formula over the boolean variables b1, . . . , bk. The annotation serves as a guard
for extensions and variations. That is, a variation/extension can be followed only
if the formula is true. Notice how guard annotations are used in Figure 3.2. As
a syntactic sugar, we support the definition of #(guard:P), where the pattern
P is used for matching other annotations in the specification (including wild-
cards). In our example the #(guard:abort) annotation implies that #(mark) is
automatically added to step 2a2 in u1, step 2a1 in u2 and step 1a1 in u3.

17

3.1.2 Temporal annotations

Temporal annotations allow expressing temporal invariants among use-case steps in the
whole Use-Case Model (UCM) without requiring an in-depth knowledge of the under-
lying temporal logic (CTL or LTL). In Fig. 5 these annotations are: #(create:city),
#(use:city), #(create:zoom), #(use:zoom). FOAM allows these annotation to be user-
defined. In particular, it distinguishes two types of users:

(a) experts in temporal logic who prepare templates of annotations in the FOAM’s
Temporal Annotation Definition Language (TADL), i.e. our language for template
definition (for an example of it see Figure 3.3),

(b) domain engineers who refer to the names of these templates when associating use-
case steps with annotations (Figure 3.2). For this activity detailed knowledge of tem-
poral logic is not necessary.

Specifically, when an annotation #(x:y) appears in a specification, the TADL defi-
nition for x is used to convert it into a set of temporal formulae (where x is substituted
by xy). The transformation is described in detail in Section 3.2.5.

TADL defines a group of related temporal annotations along with their semantics
expressed as a set of temporal logic formulae in CTL, LTL or PLTL, which is a con-
venient LTL extension related to the past rather than future. These formulae can be
connected with usual propositional logic operators such as ¬ϕ (Negation), α | β (OR),
α & β (AND), α → β (Implication). Temporal constraint expressed by the formula
is also written down in a human-readable form for error reporting (when showing a
counter-example to the user). The formulae need to be transformed into a representa-
tion supported by the particular model-checking back-end, in our case to NuSMV. (see
Section 3.3) Here is the complete list of all the temporal operators supported by the
FOAM verification tool:[94]

Supported CTL operators:

AX(ϕ) : ϕ holds on all paths in the next state.

AG(ϕ) : ϕ holds on all paths in all states.

AF (ϕ) : On all paths there is some state in future where ϕ holds.

A[α U β] : On all paths, at some point β holds while in the meantime α holds.

EX(ϕ) : There is a path on which ϕ holds in the next state.

EG(ϕ) : There is a path on which ϕ holds globally.

EF (ϕ) : There is a path with a state in future where ϕ holds.

E[α U β] : There is a path where at some point β holds while in the meantime α
holds.

18

Supported LTL operators (related to future):

X(ϕ) : "Next", i.e. ϕ holds in the next state.

G(ϕ) : "Globally", i.e. ϕ holds in all states.

F (ϕ) : "Future", i.e. there is a state in future where ϕ holds.

[α U β] : "Until", i.e. at some point β holds while in the meantime α holds.

[α R β] : "Release", is equivalent to ¬[¬α U ¬β].

Supported PLTL operators (related to past):

Y (ϕ) : "Yesterday", i.e. ϕ holds in the previous state.

H(ϕ) : "Historically", i.e. ϕ holds on all states in the past.

O(ϕ) : "Once", i.e. ϕ holds in some state in the past.

α S β : "Since" is a temporal dual of U (until), so that β holds somewhere in the past
and α is true from then up to now.

α T β : "Triggered" is the temporal dual for R, which means that: [α T β] ≡
¬[¬α S ¬β]

Let us now examine the example in Figure 3.3 in more detail. There are three tem-
poral annotation groups defined here. The "create, use" annotations allow expressing
constraints on ordering the use-case steps. For instance, in Figure 3.2, the step 1 of the
use-case u2 annotated with #(use:city) should be executed only if there was a previ-
ously executed step with the #(create:city) annotation. Additionally, there should not
be an execution with several #(create:city) annotations. The transformation of these
annotations would result in the following set of formulae:
LTL G(usecity → O(createcity)) "There must be create before use"
CTL AG(createcity → EF(usecity)) "At least one branch with use required after create"
CTL AG(createcity → AX(AG(¬createcity))) "Only one create"

The templates "open, close" and "init, process, release" in Figure 3.3 illustrate how
more complex annotations can be defined in TADL (a strict ordering of 2 phases and
then of 3 phases with the possibility to be extended to N phases).

3.2 Construction of labeled transition systems
In this section we explain details of the transformations from annotated textual use-
cases into formal structures that can be automatically verified. The whole process is
depicted in Figure 3.4. The input is the Use-Case Model (UCM) – a collection of
annotated textual use-cases.

Some use-cases are selected by the analyst as "primary", which means that they
can be directly executed. An example would be the use-case MOD1_UC1 (Figure A.2)
from our case-study describing how users register to the system. The behavior of this
use-case is self-contained and it makes perfect sense to execute it as a separate scenario.

19

Annotations: create, use
LTL G(use→ O(create)) "There must be create before use"
CTL AG(create→ EF(use)) "At least one branch with use required after create"
CTL AG(create→ AX(AG(¬create))) "Only one create"

Annotations: open, close −− strict ordering of 2 phases
LTL G(close→ O(open)) "There must be open before close"
CTL AG(open→ AF(close)) "After open, close is required on all branches"
CTL AG(open→ AX(A[¬open U close])) "No multi−open without close"
CTL AG(close→ AX(¬E[¬open U (close & ¬open)])) "No multi−close without open"

Annotations: init, process, release −− strict ordering of 3 phases
−− init→ process
LTL G(process→ O(init)) "There must be init before process"
CTL AG(init→ AF(process)) "After init, process is required on all branches"
CTL AG(init→ AX(A[¬init U process])) "No multi−init without process"
−− process→ release
LTL G(release→ O(process)) "There must be process before release"
CTL AG(process→ AF(release)) "After process, release is required on all branches"
CTL AG(process→ AX(A[¬process U release])) "No multi−process without release"
CTL AG(release→ AX(¬E[¬init U (release & ¬init)])) "No multi−release without init"

Annotations: phase1, phase2, ..., phaseN −− strict ordering of N phases
−− phasei → phasei+1 for i=1, 3, ..., N
LTL G(phasei+1 → O(phasei))
CTL AG(phasei → AF(phasei+1))
CTL AG(phasei → AX(A[¬phasei U phasei+1]))
−− phaseN → phase1

CTL AG(phaseN → AX(¬E[¬phase1 U (phaseN & ¬phase1)]))

Figure 3.3: Examples of custom annotations (templates) defined in TADL.

However, UCM may also contain non-primary use-cases intended only for inclusion
from other use-cases. As an example, see the use-case MOD2_UC12 (Figure A.9)
which describes a shared behavior just included by other use-cases in the system – it
cannot be executed separately.

Another important assumption in FOAM is that use-cases not related by prece-
dence relation are considered independent. It is up to the analyst to progressively
define the precedence relation where needed, e.g. in case of data-dependency encoded
as a #(create) – #(use) annotation pair.

Each use-case is specified as a set of steps, variations and extensions. Addition-
ally, UCM specifies precedence constraints among use-cases in the model. Based on
precedence and inclusion, we define for each primary use-case u a restricted version
of UCM (here denoted as rUCM) containing only such use-cases that can influence
u. This decomposition is possible due to our "independence" assumption mentioned
in the previous paragraph. For each rUCM we build a non-deterministic automaton –
called Use-Case Behavior Automaton (UCBA). All UCBAs together represent the
overall behavior of the whole UCM.

UCBA is essentially an LTS with guards over boolean variables; thus it can be
straightforwardly encoded in specification languages of modern model-checkers (we
discuss such an encoding for the NuSMV model-checker in Section 3.3). The verifica-
tion of UCBA is performed with respect to temporal logic formulae coming from the
definition of temporal annotations.

20

UCBA
LTS with guards

Counter
Example

SMV
Model

Temporal
Annotations

Flow
Annotations

Relevant
Use-Cases

Precedence
Relation

U
s

e
 C

a
s

e
 M

o
d

el
p

ri
m

a
ry

 u
s

e
-c

a
s

es

u
1

…
 u

n

TADL
annotation
templates

Note: rUCM is a restricted version of UCM

rU
C

M
 c

re
a

te
d

fr
o

m
 u

n

CTL / LTL
Formulae

rU
C

M
 c

re
a

te
d

fr
o

m
 u

1

Figure 3.4: Verification method in detail

3.2.1 Formalizing the Input Use-Case Model

We start the formalization with definition of an annotated textual use-case. This struc-
ture represents a use-case as close as possible to the way it is usually written down
(e.g. as in Figure 3.2). This means that we explicitly capture use-case steps (along
with annotations attached to them), extensions and variations.

21

Def.1 (Annotated textual use-case). An annotated textual use-case is a tuple:

u = (Su,Wu, w
m
u , Extu, V aru, F lowu, T empu)

where:

• Su is a set of all steps (sentences written in English);

• Wu = {w|w ⊆ Su} is a set of all scenarios of u where each scenario is a linearly
ordered set with its total order ≤w such that scenarios do not share steps, i.e.
∀w,w′∈Wu(w

′ 6= w)⇒ (w ∩ w′ = ∅).

• wmu ∈ Wu is the main scenario;

• Extu : Wu 7→ Su is a mapping function which assigns extensions to steps, i.e.
w′ ∈ Wu is an extension of w ∈ Wu from step s ∈ w if Extu(w′) = s;

• V aru : Wu 7→ Su is a mapping function which assigns variations to steps, i.e.
w′ ∈ Wu is a variation of w ∈ Wu from step s ∈ w if V aru(w′) = s;

• Flowu : Su 7→ 2F is a function that assigns a set of flow annotations to each step
(F denotes a set of all flow annotations);

• Tempu : Su 7→ 2T is a function that assigns a set of temporal annotations to
each step (T denotes a set of all temporal annotations).

Further, we say that a use-case is well-formed if the following structural constraints
below are not violated. These rules follow the common practice of writing use-cases to
help keep use-cases well-separated, comprehensible and of well understood semantics.

1. The annotations #(abort) and #(goto) can only be attached to the last step of a
variation or extension.

2. The annotation #(guard) is attached only to the first step of an extension or
variation.

3. The main scenario of a primary use-case does not contain any #(goto), #(abort)
or #(guard) annotations.

Now, we define UCM as a collection of use-cases accompanied with a precedence
relation over use-cases. UCM thus represents the textually specified overall behavior
of a system.

Def.2 (Use-Case Model). A Use-Case Model (UCM) is a tuple:

M = (UM, U
p
M, P recM)

where:

• UM is a set of use-cases;

• Up
M ⊆ UM is a set of primary use-cases;

• PrecM : UM × UM is a precedence relation on use-cases.

In the rest of the text, we assume only UCMs with well-formed use-cases.

22

Def.3 (Restricted Use-Case Model for a use case to be verified).

Let Prec∗M : UM × UM be a transitive closure of Prec.

Let IncM : UM × UM be defined as:

(u1, u2) ∈ Inc ⇐⇒ ∃s ∈ Su1 , #(include: u2) ∈ Flowu1(s)

Let Inc∗M : UM × UM be a transitive closure of Inc.

The Restricted Use-Case Model for a use case to be verified (rUCM) M for the partic-
ular use-case u ∈M is defined as follows:

M = (UM , U
p
M , P recM)

where:

• UM = Up
M ∪ {Inc∗M(up),∃up ∈ U

p
M};

• Up
M = Prec∗M(u) ∪ {u};

• PrecM = PrecM/U
p
M .

Each rUCM M is used for verification of a single use-case u. It is a restricted ver-
sion of the UCM M, which (i) contains only primary use-cases and use-cases that are
(transitively) included in these primary use-cases, (ii) the set of primary use-cases Up

M

contains the use-case u and those use-cases which (transitively) precede the use-case
u, all orderings of the use-cases from Up

M will be explored during the verification,
(iii) rUCM has a restricted version of the precedence relation in UCM M.

As explained above, use-cases not related by precedence or inclusion do not have
data dependencies and can be verified independently. Moreover, we require that if a
use-case ui is included in a use-case u, the use-case u must satisfy all dependencies of
the use-case ui. That is, the set of use-cases that must precede the use-case ui must be
a subset of the set of use-cases that must precede the use-case u. Thus precedences of
included use-cases need not to be taken into the account explicitly.

The notion of rUCM is needed for better scalability of FOAM. Instead of building
a single automaton from the whole UCM (as presented in [91] and [93]), we construct
multiple restricted versions of UCM for each primary use-case. Without this restric-
tion, the constructed automaton would take into account also ordering of use-cases
which do not depend on each other. These orderings are redundant for the verification
and would slow down the verification. As our tests show (see Section 3.5), the veri-
fication complexity grows exponentially with the number of use-cases. Unlike UCM,
each rUCM is small for real-life specifications as it grows only with the number of
preceding use-cases, which typically does not go over 4 (see the example 3.8) Thus
the method scales linearly with the size of UCM. Moreover, the verification can run in
parallel.

23

3.2.2 Formalizing the Use-Case Behavior Automaton[94]
[93] We can now focus on the verification of a single rUCM. In FOAM, we transform

rUCM into UCBA, which has well-defined semantics and can be rather directly used
as an input to standard model-checkers. UCBA is defined as follows:

Def.4 (Use-Case Behavior Automaton). An Use-Case Behavior Automaton (UCBA)
is a tuple:

A = (V, init0, τ, B,AP, V al, Lab,Guards)

where:

• V is a set of states.

• init0 ∈ V is the initial state.

• τ ⊆ V × V are transitions.

• B is a set of boolean variables.

• AP is a set of atomic propositions.

• V al : τ 7→ 2(B×{true,false}) are actions (valuations) on transitions which assign
values to boolean variables in B.

• Lab : V 7→ 2AP is labeling of states by temporal properties.

• Guards : τ 7→ 2L are guards on transitions (a guard g ∈ L is a propositional
logic formula with variables from B).

The semantics of UCBA is the following:

• the execution starts in state init0,

• the transition to another state is by non-deterministic choice among outgoing
transitions, whose all guards are satisfied,

• upon the transition, the boolean variables of the automaton are updated based on
the actions associated with the transition,

• for the sake of model-checking, the function Lab gives the atomic propositions
that hold in a particular state.

3.2.3 Building Use-Case Behavior Automaton – step #1
Having provided the definition of rUCM and UCBA, we now show UCBA construc-
tion from rUCM. This process is performed in two steps. In the first step below, we
describe the automaton with the help of inference rules (in the form premise

conclusion
). The

rules put logical constraints on UCBA based on the input rUCM. In other words, the
inference rules provide a logical theory, the model of which is UCBA. In FOAM, we
take the minimal model (with respect to inclusion) as the resulting UCBA.

The basic UCBA structure constructed from use-cases u1, . . . , un is depicted in
Figure 3.5. There is an initial state init0 with branches to particular sub-automatons,

24

each corresponding to one of the use-cases u1, . . . , un. The transitions to the sub-
automatons are guarded by formulae that reflect the precedence constraints. This way,
UCBA captures the non-determinism in sequencing the use-cases. After the sequence
is completed, UCBA proceeds to the final state succ0, where a cycle is formed to
generate infinite traces as typically required by model-checkers.

In the inference rules, we use for brevity reasons the notation s→ s′ to denote the
existence of states s and s′ and the existence of transition between them, i.e. s, s′ ∈
V ∧ (s, s′) ∈ τ . Additionally we use the notation s

[G]−→ s′ to additionally state that the
G ∈ 2L is a subset of guards on transition t = (s, s′) ∈ τ , i.e. that G ⊆ Guards(t);

and we use the notation s
{V }−−→ s′ to additionally state that the V ∈ 2(B×{true,false}) is

subset of actions on t, i.e. that V ⊆ V al(t).

[exec
1
 & … & exec

n
]

init
0

succ
0

init
u

succ
u

{ exec
u
←true }

...

[¬exec
u
& G

u
prec]

U
u

U
1

U
n

...

Figure 3.5: UCBA constructed from use-cases u1, . . . , un

The rules are as follows; each of them accompanied with an explanation. [94]
(Rule 1) Representing steps: Every use-case step x is represented in the automaton
A as a fixed number of states connected with transitions:

• xin represents the state before x has been executed.

• xvar is the source state of all variations attached to x.

• xjump is the target state of a #(goto:x) annotation.

• xext is the source state of all extensions attached to x.

• xout represents the state after x and all its branching scenarios have been execut-
ed. Therefore it is the target state when continuing the execution from extensions
and variations.

u ∈ UM , x ∈ Su
xin → xvar → xjump → xext → xout

(Rule 2) Representing scenarios: Let w ∈ Wu be a scenario containing steps x1 ≤w
. . . ≤w xn linearly ordered using the total order ≤w∈ Ordu. Then in A we connect the
individual steps according to the order imposed by the ≤w relation.

u ∈ UM , w ∈ Wu, x1 ≤w . . . ≤w xn
(xout1 → xin2), . . . , (x

out
n−1 → xinn)

25

(Rule 3) Connecting variations to parents: Let w ∈ Wu be a variation from step x
which contains steps y1, . . . , yn. Then we connect w (state yin1) to its parent (state xvar).
If the variation is conditioned by a #(guard) annotation, we add this as a guard.

u ∈ UM , w ∈ Wu, w = {y1, . . . , yn}, V aru(w) = x,
GV = {g | #(guard:g) ∈ Flowu(y1)}

xvar
[GV]−−→ yin1

(Rule 4) Connecting extensions to parents: Let w ∈ Wu be an extension from step
x which contains steps y1, . . . , yn. Then we connect w (state yin1) to its parent (state
xext). If the extension is conditioned by a #(guard) annotation, we add this as a guard.

u ∈ UM , w ∈ Wu, w = {y1, . . . , yn}, Extu(w) = x,
GE = {g | #(guard:g) ∈ Flowu(y1)}

xext
[GE]−−→ yin1

(Rule 5) Continuation from scenarios: Let w be a branching scenario (variation/ex-
tension) from step x, which continues the execution in its parent scenario. Then we
connect yn (state youtn) – the last step of w – to x (state xout).

u ∈ UM , w ∈ Wu, x = V aru(w) ∨ x = Extu(w),
w = {y1, . . . , yn}, #(abort) /∈ Flowu(yn),

∀s∈Su#(goto:s) /∈ Flowu(yn)
youtn → xout

(Rule 6) Handling goto annotations: Let x be a use-case step annotated with an an-
notation #(goto:y), where y is another step in the same use-case. We handle the anno-
tation by jumping to the yjump location. This means that variations of the step y will be
skipped, however extensions are still executed.

u ∈ UM , x ∈ Su, #(goto:y) ∈ Flowu(x)
xout → yjump

(Rule 7) Handling abort annotations: For each use-case step annotated with an an-
notation #(abort), we add a transition which introduces an infinite loop. The loop is
skipped only when returning from an included use-case (see Rule 10).

u ∈ UM , x ∈ Su, #(abort) ∈ Flowu(x)
xout → xout

(Rule 8) Handling mark annotations: For each use-case step annotated with an an-
notation #(mark:bi), we add an action on the transition xjmp → xext that assigns true
to the variable bi which is a boolean variable accessible globally within UCM. These
boolean variables are used in guards on transitions within the automaton.

u ∈ UM , x ∈ Su, #(mark:bi) ∈ Flowu(x)

xjmp
{bi←true}−−−−−−→ xext

26

(Rule 9) Resolution of includes (calling a procedure): In FOAM, the include rela-
tionship among use-cases is expressed using #(include) annotations. In order to im-
plement include operations within UCBA, we add a set of boolean variables inclx,c,
where inclx,c = true if a use-case c has been called directly from a step x of a use-
case u.

Let x be a use-case step annotated with #(include:c). We disable execution of the
transition xjump → xext by adding a [false] guard (because the use-case cwill be called
instead). Then we connect xjump to the initial state yin1 of the use-case c using a new
transition, which sets the variable inclx,c to true.

u, c ∈ UM , x ∈ Su, #(include:c) ∈ Flowu(x),
wmc = {y1, . . . , yn}

xjump {inclx,c←true}−−−−−−−−→ yin1 , x
jump [false]−−−→ xext

(Rule 10) Resolution of includes (return): The last step of the included use-case c is
connected back to the calling use-case u, assuming that c does not end by looping (i.e.
does not contain the #(goto) annotation). Also all the abort-states have to be connected
back to u. These newly added returning transitions revert the variable inclx,c back to
false. The same use-case c can be included into multiple use-cases (even multiple
times into the same use-case). Therefore we use the guard [inclx,c] on each returning
transition, so that the transition is enabled just within the scope of a particular inclu-
sion. We also need to add [¬inclx,c] guards for all the existing unguarded transitions
that start in the same state as the newly added returning transitions.

u, c ∈ UM , x ∈ Su, #(include:c) ∈ Flowu(x),
w ∈ Wc, w = {y1, . . . , yn},

(w = wmc ∧ #(goto) /∈ Flowc(yn)) ∨ #(abort) ∈ Flowc(yn),
G1 = Guards(youtn → z1), . . . , Gk = Guards(youtn → zk),

∀i ∈ {1, . . . , k} : youtn

Gi
⋃

[¬inclx,c]−−−−−−−−−→ zk,

youtn

[inclx,c],{inclx,c←false}−−−−−−−−−−−−−−→ xext

(Rule 11) Scheduling of use-cases: The execution of use-cases may be arbitrarily se-
quenced with respect to the precedence relation PrecM . In this rule, we create a mech-
anism that non-deterministically executes each use-case exactly once, while obeying
the precedence relation. To do so, we introduce a boolean variable execu for each
u ∈ UM , where execu = true indicates that u has already been executed. Further-
more, we introduce a global initial state init0 with a transition to the initial state and
from the final state of each primary use-case. Each transition to the initial state is
guarded by a predicate over execu variables, which reflects the precedence relation (a
conjunction of exec variables). The variable execu is set to true when entering the
use-case, i.e. on the first transition xin1 → xvar1 within the first step of the use-case u.
(The variable is also set to true when the use-case is called by inclusion from other
use-case.)

27

u ∈ UP
M , w

m
u = {x1, . . . , xn},

Gprec
u = {execv|∃v∈UP

M
(v, u) ∈ PrecM}

init0
[Gprec

u ,¬execu]−−−−−−−−→ xin1
{execu←true}−−−−−−−−→ xvar1 , xoutn → init0

(Rule 12) Final state: After the sequence of all primary use-cases has been executed
successfully (indicated by ∀u∈UP

M
execu = true), UCBA ends up in its final state succ0

in an infinite cycle.

G = {execu|u ∈ UP
M}

init0
[G]−→ succ0 → succ0

(Rule 13) Atomic propositions: Temporal annotations attached to use-case steps are
translated to UCBA as atomic propositions attached to a corresponding xjump state.
Note that xjump is a state that is always visited when a step in the use-case is taken (it
is circumvented only when variation is used instead of the default step).

x ∈ Su, u ∈ UM
Lab(xjump) = Tempu(x)

3.2.4 Building Use-Case Behavior Automaton – step #2[94]
[93] In this step, we address an issue in semantics of guards on variations and extensions.

The typical interpretation, which we also stick to, is the following:

(i) A non-deterministic choice is assumed among the default step and its unguarded
branches (i.e. variations and extensions without guards).

(ii) A non-deterministic choice is assumed among guarded branches that contain
non-disjunctive guards.

(iii) Mutual exclusivity is assumed among the default step and unguarded branches
on one hand and the guarded branches on the other hand.

The UCBA constructed in step #1 follows the semantics in terms of (i) and (ii), but not
of (iii). To address (iii), we need to additionally introduce the guards for the default
step and the unguarded variations and extensions so as the mutual exclusivity holds.
This is done in the following way:[94]

For each step x, we compute the union of guarding formulae on variations as:

Gx
V =

⋃
∀t=(xvar,y)∈τ

∧
Guards(t)

28

If Gx
V is a non-empty set, we add to each unguarded transition from xvar a guard com-

puted as:
¬
∧

Gx
V

We apply a similar addition for unguarded extensions by computing:

Gx
E =

⋃
∀t=(xext,y)∈τ

∧
Guards(t)

if Gx
E 6= ∅, we add to each unguarded transition from xext a guard:

¬
∧

Gx
E

It should be noted that after applying this operation, there is no non-deterministic
branching in the automaton which would mix guarded and unguarded transitions. Ei-
ther there are no guards or all transitions have a properly defined guard.

3.2.5 Temporal properties [94]
[93]

Now we show the instantiation of temporal logic formulae based on the rUCM and
TADL (user-defined temporal annotations). Each temporal annotation used in rUCM
has the form #(a:s), where ”a” is the name of the annotation and ”s” is the qual-
ifier of the annotation in the use-case. Let tadl be a TADL definition for the an-
notation name a. Such annotation therefore contributes a set of formulae F#(a:s) =⋃n
i=1 F

tadl
i [_/#(a:s)], where F tadl

i is the i-th logical formula defined in the template
tadl and where [_/#(_:s)] denotes renaming of each variable (represented by place-
holder _) in the formula to the form "_:s".

In other words, whenever an annotation ”a” appears in the text with the parameter
”s”, we need to instantiate all the corresponding formulae from the tadl template by
replacing the template variables with new variables containing s as a qualifier.

The temporal properties to be verified by the model-checker are obtained as union
over all the sets F#(a:s) contributed by annotations used in rUCM.

[94]
Example: Assuming the following TADL template with annotations #(a) and #(b).
Annotations: a, b
LTL G(b→ O(a))
CTL AG(a→ EF(b))

Now, if the textual specification contains annotations #(a:x), #(a:y) and #(b:y) the
set of formulae will be constructed as a union of:
LTL G(bx → O(ax))
CTL AG(ax → EF(bx))
LTL G(by → O(ay))
CTL AG(ay → EF(by))
LTL G(by → O(ay))
CTL AG(ay → EF(by))

. . . which yields the formulae:
LTL G(bx → O(ax))
CTL AG(ax → EF(bx))
LTL G(by → O(ay))
CTL AG(ay → EF(by))

29

3.3 Verification using NuSMV
[94]
[93] We have implemented a verification of UCBA using the NuSMV model checker [15]

(as UCBA is defined as an LTS structure, it is easy to employ any other state-of-the-art
model checker for this task). NuSMV supports analysis of synchronous and asyn-
chronous systems using Computational Tree Logic (CTL) and Linear Temporal Log-
ic (LTL), thus we allow for both in defining temporal annotations.

Transformation of UCBA into the NuSMV input language is straightforward (Fig-
ure 3.7). There is a NuSMV variable state, which corresponds to the current state.
Transitions of UCBA are reflected as NuSMV rules setting the state variable based on
the source state and guarding formulae.

varin ext out

#a

tadl
a
: 0 0 0 0 0

#b

tadl
b
: 0 0 1 0 0

TADL Formula: a & X(b)

NuSMV CTL Formula: a & X[¬jmp U (jmp & b)]

0 0 0 0jmp : 1

Use-case steps

LTS states

N
u

S
M

V
 v

a
ria

b
le

s

varin ext out

0 1 0 0

0 0 0 0

0 1 0 0

0

0

0

jmp

Step x

jmp

Step y

Figure 3.6: Transformation of TADL Formulas to NuSVM LTL/CTL specification. This
demonstrates the increase in granularity when moving from a use-case to an LTS.
Each step in a use-case corresponds to multiple LTS states. Model-checking vari-
ables that represent temporal annotations are only set to 1 in jmp states. Moreover,
the temporal formulae have to also translated.

[94]
Boolean variables: The transformation from LTS to NuSMV generates variables
that represent: (i) temporal annotations (set to true at some point and immediately to
false in the next state), (ii) variables controlling inclusion of use-cases (inclx,c) and
scheduling (execu), (iii) #(mark) annotations (set to true at some point, remaining
true until the final state).

Non-deterministic guards: NuSMV does not support a guarded non-deterministic
choice between rules. However, an unguarded non-deterministic choice is supported
(e.g. state = s0 : {s1, s2, s3}) Therefore we emulate non-deterministic guards in the
following way:

1. Target state is non-deterministically chosen among all target states (regardless of
the guards).

2. Transition to the selected target state is taken if the guard holds, if it does not,
transition back to the source is taken and the process is repeated.

30

TADL NuSMV LTL/PLTL/CTL
X(ϕ) ≡ X[¬jmp U (jmp & ϕ)]
G(ϕ) ≡ G(jmp→ ϕ)
F (ϕ) ≡ F (ϕ)
α U β ≡ (jmp→ α) U β
α R β ≡ α V 2 (jmp→ β)
Y (ϕ) ≡ Y [¬jmp S (jmp & ϕ)]
H(ϕ) ≡ H(jmp→ ϕ)
O(ϕ) ≡ O(ϕ)

(α S β) ≡ (jmp→ α) S β)
(α T β) ≡ α T (jmp→ β)
AX(ϕ) ≡ AX A[¬jmp U (jmp & ϕ)]
AG(ϕ) ≡ AG(jmp→ ϕ)
AF (ϕ) ≡ AF (ϕ)

A[α U β] ≡ A[(jmp→ α) U β]
EX(ϕ) ≡ EX E[¬jmp U (jmp & ϕ)]
EG(ϕ) ≡ EG(jmp→ ϕ)
EF (ϕ) ≡ EF (ϕ)

E[α U β] ≡ E[(jmp→ α) U β]

Table 3.1: Translated temporal operators from TADL to NuSMV. Notice that the only opera-
tors unaffected by the refinement are F (ϕ), O(ϕ), AF (ϕ), EF (ϕ).

Such operation requires splitting the original transition x → y into x → xguard → y
and also adding the back-transition xguard → x. The new state xguard is used in
NuSMV to deterministically check a negated version of the original guarding condi-
tion. In order to avoid infinite loops, fairness is enforced using a dedicated FAIRNESS
condition featured by NuSMV.

Temporal formulae: A formula defined in TADL describes a temporal constraint on
top of use-case steps. Obviously, the Rule 1 causes an increase in the granularity of
states. An event that would normally have occurred in UCM as a continuous sequence,
becomes discontinued in UCBA, occurring only in jmp states that are surrounded by
the other states where the event does not occur. That is, a single use-case step on
which an event occurs is decomposed to multiple states containing one jmp state and
the event occurs only in that state. This can be demonstrated using the Figure 3.6. The
variables tadla and tadlb, corresponding to annotations #(a) and #(b), are set to true
only in the jmp states (in xjump and yjump corresponding to steps x and y).

To preserve the semantics of TADL formulae in NuSMV, we need to translate the
temporal operators to a slightly longer form as defined in Table 3.1. In our example
from Figure 3.6 the TADL formula (a & X(b)) is transformed to NuSMV as CTL
formula (a & X[¬jmp U (jmp & b)]). The variable jmp becomes true in every state
xjump
1 , . . . , xjump

n corresponding to all use-case steps x1, . . . , xn and also in all looping
states s1, . . . , sm such that ∀si ∈ {s1, . . . , sm} : ∃(si → si).

31

MODULE main
VAR state : {s1, ..., sn} −− all states of UCBA
ASSIGN init(state) := init_0; −− initial state of UCBA

next(state) := case
state=x : {y1, ..., yn}; −− transitions x→ y1, ..., x→ yn

state=yi & !(g) : x; ... −− guarded transition x
g−→ yi

esac;

−−We need to highlight states relevant for checking temporal formulae.
DEFINE jmp := s in { xjmp

1 , . . . xjmp
n , s1, . . . , sm };

FAIRNESS ! guardloop −− avoids infinite loops when testing guards
DEFINE guardloop := state in {x1, ..., xm} −− states in guards

−− variable v from UCBA (for simplicity, this includes variables for mark
−− annotations, actions on transitions and temporal annotations
VAR v : boolean;
ASSIGN init(v) := FALSE;

next(v) := case
state = sv : TRUE/FALSE; ... −− assigns value in state sv
TRUE : v; −− preserves the current value of v

esac;

−− LTL/CTL formula f ∈ FA which uses variables t1, . . . , tj
LTLSPEC f(t1, . . . , tj) ... CTLSPEC f(t1, . . . , tj)

Figure 3.7: A simplified template for NuSMV code used in the transformation from UCBA.

3.4 Expressiveness of FOAM

To reflect the common guidelines in creating use-cases, FOAM features a number of
restrictions on the control flow annotations – rules regarding the placement of #(goto),
#(abort) and #(guard) (e.g. guards allowed only at the beginning of variations and
extensions). In this section we show that these restrictions do not actually impact the
overall theoretical expressive power of the formalism. We show this by proving that a
sufficiently general Kripke structure [16] and a related temporal logic formula, which
form a typical input used in model-checking theory, can be transformed into a use-
case and an annotation group while keeping the semantics. In particular, we show
this for Kripke structures that have one initial state and one state in which all com-
putation eventually ends in an infinite cycle. The first assumption does not cause any
loss of generality, as we can always add a single initial state. The second assumption
restricts us to describing functionality that eventually ends, which is one of the main
characteristics of scenarios that are being described by use-cases.3

The claim showing the expressive power is formalized by the theorem below:

Theorem 1. Let K be a Kripke structure without unreachable states such that it has
only one initial state i and one state f , in which all computations eventually end in an
infinite cycle. Let F be an LTL or CTL formula. Then there exists a UCM M and a set

2The "Release" temporal operator in NuSMV is denoted as "V"
3Allowing for valid use cases with infinite cyclic functionality would be also possible (along with

transformation from the Kripke structure), but it would make no sense to speak about a set of use-
cases and use-case precedences; also the UCBA would have to be constructed differently, thus we treat
use-cases to be valid only when they have finite execution.

32

of related annotation groups G such that F is satisfied in K if and only if M is correct
with respect to G.

Proof. To prove the theorem, we construct UCM with one primary use-case u and with
no precedence constraints. Further we construct G with just one annotation group g.
We introduce a synthetic step sstart as the first step of the main scenario of u. We
define the remaining steps of u as the edges in K (note that we treat K as an oriented
graph). We add a particular path pm in K, which starts in i and ends in f (such path
has to exist due to our assumptions), as the remaining steps of the main scenario.

Now we iterate the following steps until all vertices and edges in K have been
processed (we deem vertices and edges in pm and the edge forming the infinite cycle
f → f as already processed): We select the path p = v1 → . . . → vn in K such that
(i) it starts in some of the processed vertices, (ii) when not considering the last vertex
of p, the vertices of p are disjunctive, (iii) when not considering the first and last vertex
of p, the vertices have not yet been processed, (iv) the path cannot be made longer
without violating (i)–(iii).

We define the path p as a variation and the last edge of the path as a step annotated
with goto. The variation is attached to the already processed edge (i.e. step) which
originates in v1 and which is not the first step in its scenario.

The annotation group g is constructed as follows. Formula F is used as the tem-
poral logic formula in g. An annotation is introduced to the group for each distinct
atomic proposition in the formula. A temporal annotation is attached to a step in the
use-case u, on condition that a corresponding atomic proposition has been associated
with a vertex in K such that the vertex was the target of the step.

Project Description # of UCs
Web and standalone application for managing members of organization 17
Web-based Customer Relationship Management (CRM) system 37
UK Collaboration for a Digital Repository (UKCDR) 39
Web-based e-government Content Management System (CMS) 77
Web-based Document Management System (DMS) 41
Web-based invoices repository for remote accounting 10
Protein Information Management System (PIMS) 90
Integration of two sub-system s in ERP scale system 16
Banking system 21
Single functional module for the web- based e-commerce solution 9
Web-based workflow system with Content Management System (CMS) 75
Polaris - Mission Data System (MDS) process demonstration 16
Vesmark SmartwareTM - Financial decission system 26
Photo Mofo - Digital images management 18
iConf - Java based conference application 16
One Laptop Per Child - Web-based Content Management 16

Table 3.2: Analysed projects before creating the referential use-case specification. Based on
the work of Alchimowicz et al. [5].

33

3.5 Evaluation of scalability
In this section, we discuss scalability of FOAM with respect to industrial-size spec-
ifications. Obtaining industrial specifications is difficult due to intellectual property
issues. Thus we used freely available reference specifications to get a better idea about
the size and complexity of the specification usually encountered. In particular, we have
relied on the benchmark conducted in [5] and [6]. The authors derived a referential
specification based on the common characteristics of such specifications.

The benchmark covers 16 industrial specifications with together 524 use-cases (see
Table 3.2). The purpose of the analysis was to create a referential specification reflect-
ing typical patterns found in software projects. According to the authors, such specifi-
cation can be used for presenting, testing, and verifying methods and tools for use-case
analysis. The published referential specification is available on-line4.

Relevant properties are listed in Table 3.3 from which we focused on the following
4 properties: the average number of steps in the main scenario is 4.8, the average
number of branches in a use-case is 1.6, the average size of a branch is 2.5 and the
number of steps of validation nature is 4%.

Analysed Property Result
Number of analysed use-cases 524
The average number of steps in main scenario 4.82, stdev=2.41
Use cases with extensions 72.1%
Number of extensions in use-case 1.57, stdev=1.88
Number of steps in extension 2.46, stdev=1.61
Steps with validation actions 3.4%
Use cases with pre-conditions 37.4%
Number of steps with reference to use-cases 6.4%

Table 3.3: Selected properties from the quantitative UCDB analysis. Based on the work of
Alchimowicz et al. [5].

The main factors influencing the complexity of a use-case specification can be
characterized by the following 5 parameters:

• u the number of use-cases in rUCM,

• m the number of steps within the main scenario

• bc the number of branches

• bl the length of a branch,

• a the number of temporal annotations to be verified (e.g. create-use pairs) in the
rUCM,

We conducted 4 experiments, each highlighting the dependency between the verifi-
cation time t and two of the parameters. Each dependency is rendered as a 3D surface
plot accompanied with a 2D projection. In other words, our experiments show 3D
projections of the 6-dimensional space:

(t× u×m× bc× bl × a)
4http://ucdb.cs.put.poznan.pl/benchmark/2.f.n/srs/

34

http://ucdb.cs.put.poznan.pl/benchmark/2.f.n/srs/

As our experiments indicate, the time required for the verification depends expo-
nentially on the size of the specification (with respect to every parameter). Fortunately,
real specifications, such as [29] depicted in Figure 3.8, tend to be divisible into fairly
small rUCM chunks. The complexity of the precedence relation within these chunks
is usually very low. Typically, the use-cases are linearly ordered. Therefore, in our
experiments, we decided to order our use-cases linearly with just a single cluster of 3
parallel use-cases within the rUCM (3! = 6 possible orderings in every experiment).

For the end user, it is crucial to obtain the verification results quickly, especially
when FOAM is expected to be used iteratively in the development process. Therefore,
we have chosen a one-minute deadline to which the verification should yield a result –
either the specification is consistent or there is a violation with a counter-example. A
NuSMV process running more than one minute was terminated and such measurement
was not included into the result diagram.
For a given tuple of parameters (u,m, bc, bl, a) in an experiment, we generate rUCM
with the following properties:

1. All generated use-cases are identical, i.e. the same number of states, transitions
and branches. The number of steps within a use-case is therefore: bc× bl +m

2. All branches are attached to the step #2 in the main scenario.

3. Each branching scenario continues its execution in the main scenario instead of
aborting.

4. Each temporal annotation added to the rUCM is either #(create) annotation in
the step #1 of use-case #1 or #(use) annotation in the last step of a randomly
picked use-case. This way, the model-checker has to verify both consistent and
inconsistent specifications which should mitigate the bias towards one of these
alternatives.

5. We presume a precedence relation which yields min(3, u)! ≤ 6 possible order-
ings of use-cases within the rUCM.

We used the following hardware setup for our test: CPU: Core2 Duo CPU P9600
2.53GHz; RAM: 4GiB RAM; OS: 64bit Linux Mint 14 Nadia with kernel 3.5.0-17-
generic; NuSMV version: NuSMV-zchaff-2.5.4-x86_64.

The following commands were used to run a single NuSMV instance:

read_model −i generated−nusmv−code.smv
flatten_hierarchy
encode_variables
build_model
print_usage
check_ctlspec
quit

35

The generated NuSMV code is similar to the following example:
MODULE main −− NuSMV code generated automatically from an annotated specification

FAIRNESS !guardloop; −− prevent infinite loops in the following states
DEFINE guardloop := s in {init_0, succ_0, init_1, init_2, init_3};

VAR exec_1 : boolean;
ASSIGN

init(exec_1) := FALSE;
next(exec_1) := case

s=succ_1 : TRUE;
TRUE : exec_1;

esac;

VAR exec_2 : boolean; ...

VAR s : {init_0, init_1, init_2, init_3, u1_s0, u1_s1 ... u3_s2_b0_s3, succ_1, succ_2, succ_3, succ_0};
ASSIGN

init(s) := init_0;
next(s) := case

s=init_0 : {succ_0, init_1, init_2, init_3}; −− initial state
s=succ_0 & !(exec_1 & exec_2 & exec_3) : init_0;
s=succ_0 : succ_0; −− final state
−− UC1
s = init_1 & !(!exec_1) : init_0;
s = init_1 : u1_s0;
s = u1_s0 : u1_s1; ... s = u1_s18 : succ_1;
−− UC2
s = init_2 & !(!exec_2) : init_0; ...
−− UC3
s = init_2 & !(!exec_2) : init_0; ...

esac;

VAR v_create0 : boolean; −− temporal annotations create−use
ASSIGN

init(v_create0) := FALSE;
next(v_create0) := case

s = u1_s0 : TRUE;
s = u1_s1 : FALSE;
TRUE: v_create0;

esac;

VAR v_use0 : boolean;
ASSIGN

init(v_use0) := FALSE;
next(v_use0) := case

s = u2_s3 : TRUE; −− u2 picked randomly
s = u2_s4 : FALSE;
TRUE: v_use0;

esac;

CTLSPEC AG(v_create0 −> EF(v_use0)) −− Branch with use required after create
CTLSPEC AG(v_create0 −> AX(AG(!v_create0))) −− Only one create
CTLSPEC A[!v_use0 U v_create0 | !EF(v_use0)] −− First create then use

3.5.1 FOAM scalability experiment 1
This experiment shows how the verification time depends on the number of use-cases
in rUCM (parameter u) and the number of states within the main scenario (parameter
m). We set the parameters as follows: bc = 2, bl = 3 (according to [6]) and a = 5. The
surface plot depicted in Figure 3.9 shows an exponential growth in both axes. NuSMV
is hitting the limits at rUCMs with more than 15 use-cases. The size of the main
scenario within use-cases is, however, not an issue. FOAM can deal with scenarios
of more than hundred steps. Only after 10 use-cases, increase of verification time is
noticeable.

36

User Displays
General

Information

User Displays
Own Feedback

History

User Obtains
User Email

Address

User Reviews
His Account

Status

User Inquires
Regarding His

Account

User Registers
User Account

User Logs On

User Maintains
User Account

User Logs Off

Bidder Reads
Bidder

Instructions

Bidder
Registers For
Notification of

Future Auctions

EAS Notifies
Bidder of
Relevant
Auction

Bidder Reviews
Bid History

Bidder Searches
For Item

Bidder Reviews
Seller's

Feedback
History

Bidder Places
Bid On Item

EAS Notifies
Bidder of Being

Outbid

Bidder Modifies
Bid On Item

EAS Notifies
Winning Bidder

of Auction
Results

Bidder
Registers

Feedback About
Seller

Seller Reads
Seller

Instructions

Seller
Registers
Auction

Seller Reviews
His Bidder's
Feedback
Histories

EAS Notifies
Seller of

Auction Results

Seller Cancels
Sale

Seller Reviews
His Auctions

Seller Selects
Winning Bidder

Seller
Registers

Feedback About
Winning Bidder

Figure 3.8: Precedence relation of 28 use-cases in our FOAM scalability experiment taken
from the GPM Specification [29].

3.5.2 FOAM Scalability Experiment 2

In this experiment (Figure 3.10), we measured how FOAM deals with temporal an-
notations within the specification. We set the parameters as follows: m = 5, bc = 2
and bl = 3 (according to [6]). The surface plot again shows an exponential growth in
both axes u and a. It should be noted that the amount of temporal annotations is not
a limiting factor because FOAM verifies even 50 create-use pairs in a reasonable time
(under 10 seconds). We don’t expect to find more temporal annotations in real-life
specifications.

3.5.3 FOAM Scalability Experiment 3

The goal of this experiment was to estimate how FOAM deals with use-cases contain-
ing multiple branches. The surface-plot in Figure 3.11 shows that even large rUCMs
(10+ use-cases) may contain more than 30 branches.

3.5.4 FOAM Scalability Experiment 4

For a firm number of use-cases (u = 8 in this experiment), we measured the verification
time depending on the number of steps. Therefore, we combined parameters m and

37

5

10

15

20
40

60
80

100
120

140

0

10

20

30

40

50

60

use−cases
steps in the main scenario

(in each use−case)

tim
e

[s
]

5

10

15

20

25

30

35

40

45

50

55

2

4

6

8

10

12

14

16

20 40 60 80 100 120 140
steps in the main scenario

(in each use−case)

us
e−

ca
se

s

Figure 3.9: X-Y Axes: u, m; Fixed parameters: bc = 2, bl = 3, a = 5

5

10

15

20
40

60
80

100

0

10

20

30

40

50

60

use−cases
temporal annotations

tim
e

[s
]

5

10

15

20

25

30

35

40

45

50

55

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

temporal annotations

projeced use−cases 1..13

tim
e

[s
]

Figure 3.10: X-Y Axes: u, a; Fixed parameters: m = 5, bc = 2, bl = 3

bc into a single surface plot (Figure 3.12). It is interesting how steep the curvature
becomes when reaching approximately 160 steps per use-case.

3.5.5 Summary of the Experimental Results
To summarize all 4 experiments, an exponential growth in verification time on all axes
in the diagrams can be seen. However, the results show that:

1. Up to 15 use-cases can be verified in a single rUCM if not more than 3 parallel
use-cases are present in the precedence relation.

2. The number of temporal annotations is not a limiting factor (50+ create-use
pairs).

3. FOAM can handle lot of branches (30+) and large scenarios (100+ steps).

3.6 Evaluation of learning curve
In the previous section, we focused on exploring the limits of the FOAM method such
as the maximum number of use-cases to be handled, the amount of annotations that

38

5

10

15

10
20

30
40

50
60

70
80

0

10

20

30

40

50

60

use−cases
number of branches
(in each use−case)

tim
e

[s
]

5

10

15

20

25

30

35

40

45

50

55

5

10

15

10 20 30 40 50 60 70 80
number of branches
(in each use−case)

us
e−

ca
se

s

Figure 3.11: X-Y Axes: u, bc; Fixed parameters: m = 5, bl = 3, a = 5

10

20

30

40

50

20

40

60

80

100
0

10

20

30

40

50

60

number of branches
(in each use−case)

steps in the main scenario
(in each use−case)

tim
e

[s
]

5

10

15

20

25

30

35

40

45

50

55

10 20 30 40 50

10

20

30

40

50

60

70

80

90

100

number of branches
(in each use−case)

st
ep

s
in

 th
e

m
ai

n
sc

en
ar

io
(in

 e
ac

h
us

e−
ca

se
)

Figure 3.12: X-Y Axes: m, bc; Fixed parameters: u = 8, bl = 3, a = 5

can be verified etc. On the other hand, this chapter focuses on the ease of use in terms
of learning curve.

We asked three unbiased testers to annotate a set of use-cases. We measured the
time required to learn the basic concepts of FOAM and the time required for annotat-
ing a typical use-case. Before performing the experiment, one of the FOAM authors
selected a set of suitable use-cases and created an annotated referential specification
which was then compared with the testers’ answers.

3.6.1 Selection of use-cases for the test
Just like in Section 3.5 on page 34, we chose the specification [6] (Admission System
version 2.0F quantitative) because it represents 16 industrial specifications distilled
into 34 use-cases. The goal was to demonstrate all important aspects of the FOAM
method using a minimal set of use-cases. Therefore, our selection criteria were as
follows:

• The set of use-cases should be closed on precedence and inclusion (transitively).

• At least one use-case should contain the include relation.

39

• There should be extensions or variations in most of the use-cases.

• Some branches should contain aborts and jumps (goto).

• Some scenarios should demonstrate the use of the open-close and create-use
annotations.

For the sake of simplicity, we selected the following nine use-cases:
UC1: Login to the system
MOD1_UC1: Register in the system
MOD1_UC2: Provide personal and education information
MOD1_UC3: Choose a major
MOD1_UC4: Assign an application fee to a major
MOD1_UC5: Check application status
MOD2_UC1: Create a new admission
MOD2_UC8: Add a new user
MOD2_UC12: Import admissions fees

Each of them can be found in Appendix A.1. Comparing to the original specifica-
tion [6], we slightly updated the use-cases based on the verification results from our
FOAM tool. Further details about the inconsistencies identified are discussed in Sec-
tion 3.7.

3.6.2 Method applied by independent testers
Three testers (TesterA, TesterB, TesterC) without any prior knowledge of the method
were asked to apply FOAM on the set of use-cases selected in Section 3.6.1 but without
any annotations and precedence relation specified. Additionally, they received another
already annotated use-case5 as an example and an explanation of the flow and temporal
annotations (Appendix A).

Then, each of them was exposed to an oral explanation session about the method.
The explanation was held without the presence of the other testers so that they can-
not influence each other by questions, etc. Finally, the testers applied the method and
we measured the time spent on each of the following stages: (1) reading the use-cases,
(2) ordering the use-cases according to the precedence relation, (3) adding flow annota-
tions, (4) adding temporal annotations, and (5) reporting on identified inconsistencies.

3.6.3 Feedback from testers
Table 3.4 summarizes the measured time spent by each tester on different stages of the
use-case analysis.

Adding flow annotations

As can be seen from the table, there are minor differences between the testers. When
we compared the annotations from all the testers, we noticed significant similarities in
their choice and placement of annotations. As expected, the precedence relation and
flow annotations were the same for all of them and also the same as in the reference
specification.

5The use-case MOD2_UC6 is not part of the evaluated specification. It just served as an example for
the testers.

40

There were slight differences in the use of the #(include) annotation (it is actu-
ally ambiguous whether the extension "user decided to contact admin" in UC1 is an
inclusion of MOD2_UC2 or an abort).

Adding temporal annotations

More interesting are the results of temporal annotations. The #(create) - #(use) pair
was the most challenging one while almost all #(open) - #(close) annotations matched
the referential solution. For example, comparing to the referential solution, none of
the testers identified the #(create:chosenMajor) annotation. It seems that the notion
of "transactions" was more natural to them than a slightly vague notion of "data de-
pendency". The testers obviously avoided capturing data dependencies across multiple
use-cases. Since a transaction does not usually cross boundaries of a single use-case,
it was easier for them to correctly identify the #(open) and #(close) annotations.

We think that the accuracy of the testers’ answers could have been improved had
we provided more examples demonstrating the use of temporal annotations on more
than one use-case. In our case study we showed them only MOD2_UC6 (Appendix A)
without demonstrating data dependencies across multiple use-cases.

Summary

In general, all the testers gave a positive feedback. They claimed that the process of
annotating use-cases forced them to think about the dependencies from a different per-
spective comparing to just simple reading. After annotating the text, they could easily
spot important places in the text with respect to the temporal dependencies among
use-case steps.

According to the testers’ responses, the time invested in learning FOAM can be
considered negligible. Table 3.4 shows that annotating a single use-case takes approxi-
mately 6 minutes. This number is based on our sample-set of 36 use-cases (9 use-cases
analyzed by 4 people). Unfortunately, we cannot compute the standard deviation, be-
cause we did not measure the required time for each use-case individually.

Author TesterA TesterB TesterC AVG(A,B,C)
Reading n/a 10 min 30 min 7 min 16 min

Precedence 12 min 6 min 5 min 13 min 8 min
Flow annot. 7+3 min 11 min 8 min 17 min 12 min

Temp. annot. 25 min 23 min 24 min 23 min 23 min
Total Analysis 47 min 50 min 67 min 60 min 59 min

Analysis per UC 5 min 5 min 7 min 6 min 6 min
Learning n/a 13 min 15 min 18 min 15 min

Total 47 min 63 min 82 min 78 min 74 min

Table 3.4: Results of the FOAM case study.

41

3.7 Evaluation of the FOAM tool
After collecting the responses from testers, we compiled a new version of the specifi-
cation. Using our verification tool, we were able to detect inconsistencies that slipped
through our manual review. (The referential specification in the Appendix A.1 already
contains the updated version together with markings showing the fixes applied after
the verification.)

Inconsistencies detected by visual inspection:

1. Extensions 1a and 1b from MOD1_UC2 had to be attached to a different step
compared to the original. Also the sequencing of actions in MOD1_UC2 had to
be redefined properly by adding variations 4a2a and 4b2a. (Figure A.3).

2. MOD1_UC4 (Figure A.5) – Instead of variation 5a, the original specification
defined an extension 5a. It is obvious that the "money transfer" scenario is a
variation of the "credit card payment" scenario because either the former or the
latter is executed, never both.

Inconsistencies detected by the tool:

1. MOD1_UC1 (Figure A.2) – The tool detected the missing #(close:registration)
which is necessary due to the infinite loop introduced by the #(goto:4) annota-
tions in Extensions 5a, 5b, 5c. This type of errors are not very serious. Howev-
er, this way, FOAM framework guides us to explicitly state the boundaries of an
"open-close" transaction which increases the clarity of the specification.

2. MOD1_UC3 (Figure A.4) – We identified that this use-case is not a primary
use-case because the token "chosenMajor" was created in step 3 and never used.
This finding however relies on the particular annotations attached to the use-
case. We may also think of a different scenario, when this use-case might be
primary. However, due to the current data dependencies, MOD1_UC3 is not a
primary use-case. This nicely shows a type of inconsistency which can be easily
spotted by verification but may get undetected when inspecting visually.

3. MOD1_UC4 (Figure A.5) – A missing Extension 5a3a was identified. The
problem was that the money transfer may fail due to the included MOD2_UC12
(Extension 2a). If it fails, the #(create:registeredMoney) will not be visited
and therefore the subsequent #(use:registeredMoney) will cause a verification
error.

It can be assumed that such a pattern is common in large specifications if the
structure of use-cases changes over time (e.g., the Extension 2a in MOD2_UC12
might have been added later in the project; by a different analyst). When the
dependencies are captured formally, such issues can be spotted easily.

4. MOD2_UC1 (Figure A.7) – This use-case also contained an interesting type of
error. The main goal of this use-case is to perform a transaction concerning
the "admissionForm". However, there were two Extensions 3a, 4a introducing

42

an infinite loop. When writing a use-case specification, we normally assume
that the execution eventually reaches either success state or some abort state.
Sometimes, however, we would like to limit the number of executions of a given
loop. (e.g. a password may be entered maximum N times.) In FOAM, this can
be achieved with a guard that can disable the execution of an already visited
branch.

In MOD2_UC1, the first problem spotted by the verification tool was the missing
annotation #(close:admissionForm) in case the execution loops forever. How-
ever tempting it might seem, we cannot just add this annotation to steps 3a1 and
4a1. In that case, #(close:admissionForm) would be visited repeatedly, which
is forbidden by the semantics of "open-close". The best option here was to break
the infinite loop by introducing a guarded variation for each of the looping ex-
tensions.

5. MOD2_UC12 (Figure A.9) – Here, we also detected that this use-case is not
primary, similarly to the use-case MOD1_UC3 (due to data dependency). This
case is, however, more obvious because MOD2_UC12 does not act as a prece-
dence of any other use-case, whereas MOD1_UC3 precedes MOD1_UC4 and
MOD1_UC5.

6. MOD2_UC8 (Figure A.8) – Again, the tool identified that an "open-close" trans-
action needs to be properly closed in a looping extension 3a.

3.8 Implemented FOAM tool
The FOAM tool is implemented in Java as a collection of Eclipse plugins. The imple-
mentation is based on the EMF framework through which we designed all our meta-
models. All transformations between models are implemented in Xtend6 language.
Xtend is a statically-typed programming language which translates to comprehensible
Java source code and due to its powerful features, it is suitable for model-to-model and
model-to-text transformations.

A high-level overview of the tool’s pipeline is depicted in Figure 3.13. Input of
the transformation are (i) textual use-cases containing annotations represented as one
file per use-case, (ii) definition of temporal annotations defined in TADL syntax, one
file per annotation group. All use-cases are aggregated in a single UCM model, which
is stored as a file in XMI format. At this point, all the annotations within UCM are
treated as "unknown" annotations, without any specific semantics assigned.

The resolution of annotations starts by resolving all flow annotations. Then, using
TADL definitions, temporal annotations are resolved. Optionally, we support custom
resolvers to be implemented in future. This allows users to assign semantics to cus-
tom annotations which can be leveraged by other external tools. Most importantly, our
framework ensures that the traceability links will be preserved throughout transforma-
tion phases. For example, we can trace back the custom annotations from the generated
UCBA automaton or even from the generated counter-example.

6http://www.eclipse.org/xtend/documentation.html

43

http://www.eclipse.org/xtend/documentation.html

Parse annotated
textual use-cases

Textual
use-cases

Create LTS
from UCM

Custom
Resolvers

User Input
(TADL code)

UCM

Temporal
Annotations

TADL
XMI

Parse
TADL

Resolved
UCM

Resolve
Annotations

UCBA
(LTS)

Render LTS
using Graphviz

Run NuSMV
Verification

NuSMV
code

Counter-
Example

DOT XMI DOT

PDFSVG

Generate
HTML Report

User Input
(annotated text)

Output
HTML
Report

For custom
annotations

Intermediate Models
Inputs/output artefacts

Figure 3.13: Transformation pipeline of the FOAM tool.

Next, the "Resolved UCM" is converted to UCBA. We also preserve traceability
links between the states of the newly created automaton and the original use-cases
in UCM. The automaton is converted into NuSMV code and passed to the NuSMV
model checker. When a counter-example is produced by NuSMV, it is converted to an
HTML report depicted in Figure 3.16 that shows the sequence of use-case steps causing
the validation errors. A visual representation of the UCBA automaton is rendered
using Graphviz. For each use-case, we obtain a single HTML web page (Figure 3.15
that shows the steps in textual form together with a flow graph. The generated report
also contains overview of all the use-cases – the precedence relations and inclusions
depicted in Figure 3.14. Each group of related temporal annotations is explained on a
separate web page of the generated report.

3.9 Summary of Chapter 3
In this chapter we have presented a method for verifying correct sequencing of actions
in use-cases. The main advantage of the method is its ease of use, in particular it works
with use-cases in their natural language form and requires only a few basic annotations
to be inserted in the use-cases. Thus, it can be easily integrated with existing develop-
ment processes. By allowing for user-defined annotations, it can be further customized.
For instance to verify domain-specific properties or to inject custom meta-data.

44

Figure 3.14: This is a screenshot from the HTML report generated by FOAM tool. The
page visualizes the precedence relation (→) and include relation (99K) among all
use-cases in the specification. On-line example is available at http://foam-tool.
appspot.com.

The idea of encapsulating complex temporal properties behind a simpler interface
was successfully applied by many researchers. For example, authors of [19] and [26]
proposed property specification patterns to capture the essential structure of some as-
pect of a system’s behavior.

Implementation: We have developed a command-line-based tool that performs ver-
ification of use-case models annotated with FOAM annotations. The architecture of
our tool is modular and extensible. Each transformation phase is clearly separated with
well-defined meta-models describing its inputs and outputs. At the time of writing this
text, the tool can be downloaded from http://vlx.matfyz.cz/Projects/FoamTool.

45

http://foam-tool.appspot.com
http://foam-tool.appspot.com
http://vlx.matfyz.cz/Projects/FoamTool

Figure 3.15: This is a screenshot from the HTML report generated by FOAM tool. The page
shows a single use-case with all its steps (the main scenario and a variation).
There are several annotations visible – flow, temporal and a custom "assert" anno-
tation. The sequencing of actions in the use-case is visualized in a flow diagram.
On-line example is available at http://foam-tool.appspot.com.

Figure 3.16: This is a screenshot from the HTML report generated by FOAM tool. The page
shows the generated counter-example. We can see the temporal formula causing
the error – "at least one branch with use required after create". The trace shows
a sequence of use-case steps that lead to the violation of the temporal constraint.
On-line example is available at http://foam-tool.appspot.com.

46

http://foam-tool.appspot.com
http://foam-tool.appspot.com

Chapter 4

Domain model elicitation

The second part of this thesis is focused on statistical classification and prediction of
software engineering artefacts. In particular, we introduce an automated approach to
elicitation of a domain model directly from natural language. We have summarized
this idea in the papers [12, 90, 92, 96, 95]. The method described in this chapter acts
as a proof-of-concept of a broader idea. Here, we show, how we have combined arte-
facts such as textual documents, domain models in a model which supports statistical
inference. We formulate the problem as a supervised machine-learning classification
task.

Our approach combines:

• linguistic features gathered from text by existing Natural Language Processing
(NLP) tools and

• features related to software engineering, such as relations between domain model
entities.

The contribution consists of 2 important parts:

1. Method for elicitation of the domain model from text.

2. A tool that automates all phases – elicitation, training, evaluation. Most im-
portantly, the tool automates the evaluation of classifiers’ performance which is
necessary for designing new features and also for adapting existing features to a
new specification domain.

We show evaluation results from our experiment on a Library System specification.

4.1 Domain modeling [96]
[95]

At the very beginning of software development, there should be a document containing
a detailed textual description of requirements. The software analyst writes it in coop-
eration with other stakeholders of the project, i.e. with the customer, the end users, and
the domain experts.

47

To solve the semantic gap between stakeholders, software engineers adopted do-
main modeling as a mandatory part of their work. The domain model serves as a
common vocabulary in the communication among technical and non-technical stake-
holders throughout all project phases. This helps them come to an agreement on the
meaning of important concepts. In [85] (p. 23), the domain model is defined as "a live,
collaborative artefact which is refined and updated throughout the project, so that it
always reflects the current understanding of the problem space".

From the modeling point of view, the domain model consists of classes, associa-
tions (aggregation, inheritance) and other elements commonly found in UML class-
diagrams. The main difference is that a domain model focuses on entities in the
problem-space and should always be independent of any particular implementation
technology. On the other hand, UML class-diagrams are tight to the solution space and
may therefore entail elements such as caching- or UI-related classes.

4.1.1 Iterative development and refinement

A domain model is usually not constructed en bloc, yet it undergoes refinement starting
from the first prototype elicited from text. By reading the specification documents, the
analyst tries to identify important concepts that may be included to the domain model.
The analyst has to read the text multiple times while each time focusing on a certain
aspect of the domain model, e.g. naming of entities, aggregation or dependencies.

Naturally, due to the vagueness of a textual specification, it is not uncommon that
two analysts may derive significantly different models from the same input texts. How-
ever, this is not an issue since the prototype domain model is further refined as the
project development progresses. Even the original specifications may be changed when
inconsistencies are identified during the elicitation process.

It would be desirable that an initial prototype can be derived automatically to some
extent. Apart from the creative nature of the refinement phase, which involves humans,
the initial prototype can be derived automatically to some extent. The motivation for
the automation is to save the initial effort of the analyst ranging from a couple of hours
to a couple of days. Instead of starting from a plain text, the analyst can already start
from a model which points to specific locations in the source text.

4.1.2 Grammatical Inspection

Grammatical inspection [1] is an approach commonly used by practitioners and ex-
traction tools to get a quick start. The text is scanned for nouns, adjectives, verbs or
other linguistic units. For example, the book [85] suggests that 80% of domain classes
can be discovered in the initial domain modeling session. 1 The analyst should:

1. Create a list of candidates for domain entities by scanning the text for nouns
and noun phrases as a representatives of classes/objects. (The simplest approach
would be to consider a simple equivalence noun=class)

1It is advised that the analyst does not spend too much time in this phase and that the rest of the
objects are identified during the robustness analysis, i.e. when analyzing the textual use-cases.

48

2. Identify named entities such as places, addresses, names of organizations, years,
etc. This is important since these entities should usually be excluded from the
domain model.

3. Remove obviously duplicate terms, such as the "User Account" might be a dupli-
cate of "Customer Acount", or "Book Review" might be a duplicate of "Review
Comment".

4. Remove generic terms (e.g. "Internet") and UI-related terms. (e.g. "Password")

Due to the complexity of the natural language, such approach requires human inter-
vention.

4.2 Natural language processing techniques
In this section, we briefly summarize several concepts from computational linguistics
that are related to our statistical approach explained below. Natural language process-
ing plays an important role in tasks such as requirements elicitation, extracting formal
models from text (static or dynamic), enforcing constraints imposed on the specifica-
tion language etc.

4.2.1 Linguistic pipeline and common analysis structure

Existing NLP frameworks, such as Stanford CoreNLP 2, Apache OpenNLP 3 or Apache
UIMA 4, are conveniently based around a central data structure (in CoreNLP it is called
"Annotation", in UIMA it is the Common Analysis Structure or CAS). Usually, a lin-
guistic pipeline consists of multiple components focused on a specific linguistic task
(annotators) that enrich the common data structure. Most of the tasks are conditionally
dependent, forming a lattice. Some pipelines, such as the CoreNLP is able to automat-
ically resolve dependencies using topological ordering. For example, the POS-tagger
component requires that the text is already converted into tokens by the Tokenizer
component.

4.2.2 Tokenization

One of the first steps in linguistic analysis is tokenization. The source text is trans-
formed into a stream of tokens that represent individual words, numbers, punctuation
marks or other special tokens. For example, the sentence "A librarian is able to create,
edit and delete a medium (manage medium)." will be transformed into the following
tokens:

[A] [librarian] [is] [able] [to] [create] [,] [edit]
[and] [delete] [a] [medium] [(] [manage] [medium] [)] [.]

2http://nlp.stanford.edu/software/corenlp.shtml
3http://opennlp.apache.org
4http://uima.apache.org

49

http://nlp.stanford.edu/software/corenlp.shtml
http://opennlp.apache.org
http://uima.apache.org

4.2.3 Part-of-speech tagging
Another important linguistic task is part-of-speech tagging which assigns a single POS-
tag for each token. Standard POS-tags are defined by the Penn Treebank Project [70],
as depicted in Table 4.1. In our implementation, we use the POS-tagger shipped as a
part of the Stanford CoreNLP package. As a POS-tagging model, we use a relatively
fast model english-left3words-distsim.tagger with the reported accuracy of 96.97%.

Even though the state-of-the-art taggers claim over 97% accuracy in POS-tagging,
the trick is that the accuracy is computed for individual tokens, including punctuation
marks. If we consider the POS-tagging accuracy of a whole sentence, as reported by
Manning in [67], we immediately drop at modest 55-57%, mostly due to differences
between training and real texts in terms of topics and writing style.

Tag POS-tag description
CC Coordinating conjunction
CD Cardinal number
DT Determiner
EX Existential there
FW Foreign word
IN Preposition or subordinate conjunction
JJ Adjective

JJR Adjective, comparative
JJS Adjective, superlative
LS List item marker
MD Modal
NN Noun, singular or mass

NNS Noun, plural
NNP Proper noun, singular

NNPS Proper noun, plural
PDT Predeterminer
POS Possessive ending
PRP Personal pronoun

Tag POS-tag description
PRPS Possessive pronoun

RB Adverb
RBR Adverb, comparative
RBS Adverb, superlative
RP Particle

SYM Symbol
TO to
UH Interjection
VB Verb, base form

VBD Verb, past tense
VBG Verb, gerund or present participle
VBN Verb, past participle
VBP Verb, nonrd person singular present
VBZ Verb, rd person singular present
WDT Whdeterminer
WP Whpronoun

WPS Possessive whpronoun
WRB Whadverb

Table 4.1: POS-tags as defined by the Penn Treebank Project [70]. Also used by the Stanford
POS-tagger.

4.2.4 Lemmatization
The goal of lemmatization is to transform inflectional and derived form of a word into
its basic form. For example, all the forms "presents", "presenting", "presented" would
be lemmatized into a single word "present". This operation is useful if we want to
search in a collection of words. Also, we use it in our approach when deriving names
of entities based on their original form in the text. The lemmatization task requires that
the words are already POS-tagged.

4.2.5 Sentence detection
Another important linguistic task is to identify sentences within a continuous block of
text. It is because many linguistic components expect the input text to be divided into

50

individual sentences. In fact, the task can be reduced to binary classification which
decides whether a punctuation character terminates a sentence or not. For example,
in the text "The frequency 2.4MHz is used for transmission.", the sentence should not
be terminated in the middle of "2.4MHz" but after the "transmission" word. Another
frequent mistake would be to treat a title of a section as a part of the first sentence of
the following paragraph.

In our framework, we needed a sentence splitter which would operate on HTML
document rather than on plain text files. In HTML, the XML tags introduce additional
evidence for the classifier. For example, the terminating </p> tag indicates a high
probability of sentence termination if it is placed before a punctuation character.

Similarly to the sentence detection component5 available in the Apache OpenNLP
framework, we have built a sentence splitter which uses MaxEnt classification model
and we plugged it to the Stanford CoreNLP linguistic pipeline.

4.2.6 Named entity recognition [96]
[95]

In computational linguistics, the term Named Entity Recognition (NER) represents a
variety of tasks related to extracting relevant entities and their relations from unstruc-
tured or semi-structured text. (known as Relation Extraction)

Historically, the task was focused on the identification of real-world entities such
as places, organizations or person names, hence the term "Named". Our method, dis-
cussed in this paper, also belongs to the NER/RE family. In particular, we use the
supervised machine learning approach. Rather than identifying places or names, we
identify entities and their relations forming a potential domain model. The NER task
must also executed before the coreference resolution task (see below).

4.2.7 Hand-written rules and patterns
Early approaches to NER and Relation Extraction (RE) were using hand-written ex-
tractors (first proposed by Hearst in [35]). These include (i) regular expressions,
(ii) special query languages, such as PMLTQ [104], TPL [109], LPath [57], Tregex [61],
NetGraph [77], XPath, etc. (iii) or simply a general-purpose programming language
such as Perl or Java.

The main drawback of these approaches is their inability to cope with unexpected
variations. That is why the state-of-the-art NER techniques are based on some form of
statistical approach. Our method also uses a statistical classification technique to learn
the patterns from training data. Instead of enumerating all the possible patterns, which
at some point becomes unmanageable, we just feed the classifier with more training
data.

4.2.8 Parsing : constituency
The goal of a constituency parser is to obtain phrase structure of a sentence as depicted
in Figure 4.3 on page 53 and Figure 2.1 on page 10. Non-terminals (inner nodes) are
the phrase types (such as Noun Phrase, Verb Phrase). Terminals (leaves) are individual

5http://opennlp.apache.org/documentation/manual/opennlp.html#tools.sentdetect.detection

51

http://opennlp.apache.org/documentation/manual/opennlp.html#tools.sentdetect.detection

words. The parse tree contains unlabeled edges. The generated tree is built on top of
the original sentence preserving word order.

Instead of the constituency parse trees, we use dependency representation in our
approach.

4.2.9 Parsing : dependency
Dependency parsing is a method of deriving the syntactic structure of a sentence as
a dependency graph (depicted in Figure 4.1 and 4.4) which, apart from the phrase
structure, does not contain any non-terminal nodes (i.e. no noun-phrase or verb-phase
nodes). Nodes of the dependency graph represent individual tokens while the edges
represent grammatical dependencies between the tokens. Figure 4.2 shows all depen-
dency relations as defined by the Stanford typed dependency representation. Depen-
dency structure of a sentence can be deterministically derived from its constituency
structure.

"The library system contains a user administration
and a media administration"

the system

library

administration

media

contains

administration

user

a
det

nsubj dobj dobj

nn nn nn

det

Figure 4.1: Stanford typed dependencies representation of a sentence.

4.2.10 Coreference resolution
Coreference resolution, also known as anaphora resolution, is the task of identifying
which expressions in the text refer to the same entity. The Stanford CoreNLP frame-
work contains a sieve-based deterministic anaphora resolution system6 described in
[60, 59], with the reported average accuracy of F1 ' 58%, to this date the best achieved
performance. Therefore, we decided to include the "dcoref" annotator to our frame-
work as a part of the linguistic pipeline. The identified coreferences are extracted into
out specification model ready to be used for further prediction of software engineering
artefacts.

4.2.11 Sentence analysis example
The results in the following example were obtained using the on-line version of the
Stanford parser7 and CoreNLP8. We use the same linguistic models in our framework.

6Deterministic Coreference resolution system is described in http://nlp.stanford.edu/software/dcoref.
shtml

7Stanford parser web demo is available here: http://nlp.stanford.edu:8080/parser/
8CoreNLP web demo is available here: http://nlp.stanford.edu:8080/corenlp/

52

http://nlp.stanford.edu/software/dcoref.shtml
http://nlp.stanford.edu/software/dcoref.shtml
http://nlp.stanford.edu:8080/parser/
http://nlp.stanford.edu:8080/corenlp/

root − root
dep − dependent

aux − auxiliary
auxpass − passive auxiliary
cop − copula

arg − argument
agent − agent
comp − complement
acomp − adjectival complement
attr − attributive
ccomp − clausal complement with internal subject
xcomp − clausal complement with external subject
complm − complementizer
obj − object

dobj − direct object
iobj − indirect object
pobj − object of preposition

mark − marker (word introducing an advcl)
rel − relative (word introducing a rcmod)

subj − subject
nsubj − nominal subject

nsubjpass − passive nominal subject
csubj − clausal subject

csubjpass − passive clausal subject
cc − coordination
conj − conjunct
expl − expletive (expletive "there")

mod − modifier
abbrev − abbreviation modifier
amod − adjectival modifier
appos − appositional modifier
advcl − adverbial clause modifier
purpcl − purpose clause modifier
det − determiner
predet − predeterminer
preconj − preconjunct
infmod − infinitival modifier
mwe − multi−word expression modifier
partmod − participial modifier
advmod − adverbial modifier

neg − negation modifier
rcmod − relative clause modifier
quantmod − quantifier modifier
nn − noun compound modifier
npadvmod − noun phrase adverbial modifier

tmod − temporal modifier
num − numeric modifier
number − element of compound number
prep − prepositional modifier
poss − possession modifier
possessive − possessive modifier (’s)
prt − phrasal verb particle

parataxis − parataxis
punct − punctuation
ref − referent
sdep − semantic dependent

xsubj − controlling subject

Figure 4.2: Hierarchy of Stanford Typed Dependencies. Further information can be found
in [72],[71].

The analyzed input sentence is "A user has only access to his own user account by
using his user number." Figure 4.4 shows (i) Tokenization of the sentence including
the POS-tags. (ii) Resolved coreferences where the phrase "A user" is the represen-
tative mention and the two "his" words are the other mentions. (iii) Basic and col-
lapsed dependencies, where the collapsed version transformed the "to" preposition
into "prep_to" dependency. The constituency parse tree is depicted in Figure 4.3.

ROOT S

NP

VP

./.

A/DT
user/NN has/VBZ

NP

PP

PP

only/JJ

access/NN

to/TO

NP

his/PRP$

own/JJ

user/NN

account/NN
by/IN

S VP

using/VBG

NP

his/PRP$

user/NN

number/NN

Figure 4.3: Generated consitituency parse tree for the sentence: "A user has only access to his
own user account by using his user number."

53

A user has only access to his own user account by using his user number .

DT NN VBZ RB NN TO PRP$ J J NN NN IN VBG PRP$ NN NN .

Part-Of-Speech

A user has only access to his own user account by using his user number .

Mention M M
Coref Coref

Coreference

A user has only access to his own user account by using his user number .

DT NN VBZ RB NN TO PRP$ J J NN NN IN VBG PRP$ NN NN .
det

pc
om

p

nsubj advmod nnnn
possdobj amod

possprep dobj
pobj

prep

Basic Dependencies

A user has only access to his own user account by using his user number .

DT NN VBZ RB NN TO PRP$ J J NN NN IN VBG PRP$ NN NN .
det nsubj advmod nnnn

possdobj amod
poss dobj

prep_to
prepc_by

Collapsed Dependencies

Figure 4.4: Sentence parsed using the Stanford CoreNLP framework.

4.3 Statistical classification related to our method
[96]

Before we present our method, we outline important concepts related to statistical
classification and used in our method.

The task of statistical classification, in general, is to estimate the probability of
category c ∈ C occurring in the context of observed data d ∈ D. This can be written
as a function φ(c, d) with a bounded real value, i.e. φ : C ×D 7→ R

4.3.1 Features

In practice, it is useful to restrict the function φ to a particular form – a boolean match-
ing function where f1, . . . , fn are features extracted from the data point d and cj is
some category.

φ(c, d) ≡ [f1(d) ∧ f2(d) ∧ . . . ∧ fn(d) ∧ c = cj] (4.1)

4.3.2 Feature extractors and context generators

We use the term feature extractor for an algorithm that computes the value of a single
fi(x) from an input x.

Each feature extractor expects a particular type of the input x. For example, in case
of the feature fflet (which extracts the first letter of a given word), the input x must be
a word. The purpose of a context generator is to prepare a stream of objects that are
passed to feature extractors.

54

4.3.3 Statistical classifier

A statistical classifier (binary, multi-class or probabilistic) is able to learn what data
(context) leads to what category (outcome). The classifier performs the classification
using a trained classification model which models the function φ. In our method, we
use a classifier which chooses the outcome value of the highest probability estimated
using the trained model.

4.3.4 Training samples

When we train a classifier, we need to encode the Formula (4.1) above as training
samples for the classifier.

In machine learning, samples are also called feature-vectors that encode relevant
information about a given data-point x. In our case, this would be a tuple ~y composed
of n+1 values (n features encoding the context and 1 feature for encoding the outcome)
representing a single data-point x:

~y = (f1(x), . . . , fn(x), c(x))

Then, for k data-points x1, . . . , xk, the training samples form a matrix:~y1...
~yk

 =

f1(x1) . . . fn(x1) c(x1)
...

...
f1(xk) . . . fn(xk) c(xk)


Each column in the matrix represents a single feature, whereas rows represent indi-

vidual samples. By convention, the last column is regarded as the "outcome" while the
rest is the "context". A typical input required by the OpenNLP MaxEnt API conforms
to the following format:

pos=NN indep=agent true
pos=VBZ indep=auxpass false
...

Here, the "outcome" is a boolean value depending on the "context" represented by fpos
and findep features.

4.3.5 Training samples in our method

To experiment with the classification performance, we need experimental samples.
Therefore, we manually prepared annotated texts and domain models9. Our annota-
tions represent links between a sequence of words and some element from the domain
model as depicted in Figure 4.5. In this example, the words "media administration"
are linked to the MediaAdministration domain entity. Annotations are encoded in the
training data as HTML hyperlinks:
The media administrationcontains an entry for each medium

 in the library.

55

MediaAdministration

Medium

 mediaEntries
0..*

Library

 mediaEntries
0..*

The media administration contains
an entry for each medium in the library.

Figure 4.5: Links between manually annotated text and domain model

When parsing the annotated text, each sentence is enriched with automatically gen-
erated data from the Stanford parser applied on each sentence found in the input text
(Figure 4.1). All the information is stored together in a single graph we call the specifi-
cation model. Our context generators can then traverse the graph and generate training
samples using feature extractors (see Figure 4.6 showing its meta-model)

Specification

SpecSentence

SpecWord

original : EString
lemma : EString
posTag : EString

isRepresentativeCoref() : EBoolean

SpecDocument

WordDependency

label : EString

EntityLink

entLabel : EString
entType : DomainEntityType

EPackage

DomainEntity

Loaded EMF
model

DomainModel

Domain Model

<<enumeration>>
DomainEntityType

other
class
reference
attribute
operation

documents
0..*

words
0..*

linkedEntity
1

sentences
0..*

typedDependencies
0..*

semanticParent
0..1

entityLinks
0..*

linkedWords
1..*

domainModel
1

modelPackage
1

linkDep
1

linkGov
1

invLinkDep
0..*

semanticParentRelation
0..1

corefRepMention
0..1

corefMentions
0..*

relatedEntityLink
0..1

sentence
1

sentence
1

semanticRootWord
1

semanticChildren
0..*

invLinkGov
0..*

corefRepOrSelf
1

Figure 4.6: Specification meta-model (input data for feature extraction).

4.3.6 Maximum entropy models for classification

Inspired by the state-of-the art NLP tools, such as the Stanford POS-tagger [106] or
other approaches, such as [79], [37], [14], we utilized MaxEnt models [69] for the
classification. However, the ideas presented in our contribution should also work with
other classifiers such as Bayes classifiers [68], Support Vector Machines (SVMs) [68],
Perceptrons [76], Conditional Random Fields (CRFs) [56], each having their specific
strengths and weaknesses.

9We use EMF ecore meta-model for encoding domain models.

56

We opted for the MaxEnt approach because it is well suited for classification tasks
comprising vast amount of dependent binary features. This has been demonstrated by a
number of MaxEnt implementations in field of NLP, e.g. [14]. To understand the term
Maximum entropy modeling, we quote the book [69], page 589: "Maximum entropy
modeling is a framework for integrating information from many heterogeneous infor-
mation sources for classification. The data for a classification problem is described as
a (potentially large) number of features. These features can be quite complex and al-
low the experimenter to make use of prior knowledge about what types of informations
are expected to be important for classification. Each feature corresponds to a con-
straint on the model. We then compute the maximum entropy model, the model with
the maximum entropy of all the models that satisfy the constraints. . . . If we chose a
model with less entropy, we would add ‘information’ constraints to the model that are
not justified by the empirical evidence available to us. Choosing the maximum entropy
model is motivated by the desire to preserve as much uncertainty as possible."

In our implementation, we use the Apache OpenNLP framework10 which allows us
to easily integrate MaxEnt classification to Java applications.

4.3.7 Maximum entropy Markov models

As we show later in the text, we use multiple dependent classification tasks. Unknown
values to be classified are connected in a Markov chain rather than being conditionally
independent. This approach is called Maximum Entropy Markov Model (MEMM).
Since MaxEnt models support potentially large number of features, with MEMMs we
can easily make use of lexicalization. It means that the features are constructed from
an unrestricted set of all words rather that from a restricted set of classes. Comparing
to the unlexicalized approach, we gain better prediction performance at the expense of
time- and space efficiency.

4.4 From text to domain model in 4 phases

Figure 4.7 provides an overview of our method divided into 4 phases: (1) Preprocess-
ing, (2) Feature Selection, (3) Training, (4) Domain Model Elicitation.

The Elicitation phase is a common usage of the method, however, it depends on
classification models that are trained in the Training phase. To train a classifier, we
need to find features suitable for a particular classification task which is done in the
Feature Selection phase.

Each phase involves a different type of user. While the Elicitation Phase is intended
for the analyst, who does not have a deep knowledge of the specification domain,
the Training Phase involves domain experts, who can prepare training data. Feature
Selection phase requires a scientist to design, implement and measure the performance
of features.

10http://opennlp.apache.org/documentation/manual/opennlp.html

57

http://opennlp.apache.org/documentation/manual/opennlp.html

Feature
Selection

Training Elicitation

Preprocessing

<<include>>

<<precede>>

<<include>>
<<include>>

<<precede>>

Scientist Domain Expert Analyst

Figure 4.7: Usage Overview - main phases of our method.

4.4.1 Preprocessing phase
A specification model is the central data structure in our method (the model’s meta-
model is depicted in Figure 4.6). It captures relations between sentences, words, lin-
guistic features and domain model elements. We can either build the specification
model from scratch or use an existing model as a source of training samples.

Figure 4.8 shows our preprocessing pipeline in detail. The process starts by cre-
ating an empty container for the specification model. Then, an input document is
processed by a series of annotators from the Stanford CoreNLP framework11 on top of
a common data structure, here depicted as the Annotated Structure.

Annotators reused from CoreNLP are the following:

• Tokenizer,

• POS-tagger,

• Lemmatizer,

• a set of NER classifiers,

• Lexicalized parser that produces dependency graphs for sentences (mentioned in
Section 4.2.9),

• Deterministic Coreference Resolution System (mention in Section 4.2.10)

Additionally, we added:

• Tidy HTML Cleaner (for filtering faulty HTML),

• XML preprocessor for extracting hyperlinks and evidence for splitting sentences,

• Sentence Splitter, implemented as a MaxEnt classifier, for identifying tokens that
may terminate a sentence (mentioned in Section 4.2.5).

After running the linguistic pipeline, we transform useful linguistic information
into Specification Model. Optionally, if the pipeline is executed as a part of the training
process, we load an existing domain model and resolve links from the text.

11http://www-nlp.stanford.edu/software/corenlp.shtml

58

http://www-nlp.stanford.edu/software/corenlp.shtml

Tokenizer

XML Preprocessor

MaxEnt Sentence Splitter

MaxEnt POS Tagger

Lemmatizer

NER Classifier

Lexicalized Parser

Deterministic Coreference
Resolution System

Tidy HTML Cleaner Basic Linguistic Info

Semantic Graph
(Typed Dependencies)

Coreferences

Resolution of
Entity Links

Stanford CoreNLP tools

Input
Document

Annotated
Structure

Specification
Model

Other tools

Create Empty Specification

Load Existing
Domain Model

Domain
Model

Transfomation to
Specification Model

Linguistic
Pipeline

Optional

Figure 4.8: Preprocessing phase : Linguistic pipeline and transformation to the specification
model.

4.4.2 Feature selection phase
The goal of the Feature Selection phase is to identify the best feature set Sbest among al-
ternative feature-sets S1, . . . , Sc for each classification task in terms of their prediction-
performance (the number c is usually lower than the number of combinations of all
features). An example of a feature set could be S = {flemma, fflet} which contains
two features flemma (the linguistic lemma-form of a given word) and fflet (first letter
of a given word).

Feature Selection involves (i) designing features, (ii) implementing their feature ex-
tractors and (iii) measuring the performance of combinations of these features. There-
fore, as depicted in Figure 4.7, we expect that only scientists are participating in this
phase. It is a hill-climbing process guided by our intuition when we measured the
prediction-performance of candidate feature-sets:

Sbest = argmax
x

Perf(Sx) (4.2)

The function Perf is a suitable statistical measure (selection discussed in Section 4.5.3
on page 63).

The activity diagram depicted in Figure 4.9 shows steps involved in the feature
selection phase. First, the input document containing experimental training data is

59

preprocessed (as already mentioned in Section 4.4.1). Based on a configuration file,
we generate random combinations of feature sets.

We do not need to exhaustively evaluate all combinations. We just want to find a
reasonably good combination by exploring a representative sample. Suppose, we have
n features. The number of all possible combinations is:

n∑
k=1

(
n

k

)
To reduce the amount of measurements, we choose a parameter m ∈ N and pick a
normally distributed random subset of size:

c =
n∑
k=3

min

(
m,

(
n

k

))
For example, suppose we have n = 20 features, we might want to set m = 30, which
reduces the amount of combinations from c = 1048575 down to c = 551.

Each feature set is measured as follows. Training samples are generated from the
specification model, the MaxEnt model is trained and evaluated using the k-fold cross
validation (see Section 4.5) which yields a number of statistical measures defined in
Section 4.5.3. The results of the "Feature Selection" phase are: (i) feature extractors
and (ii) ranking of feature-sets according to the aforementioned statistical measures.

Generate Random
Combinations

of Feature Sets

Feature Selection
Config

Feature Sets

Specification
Model

Extract Samples

Train
MaxEnt Model

Trained
Model

Samples

Prepare Context
Generator

Context
Generator

[next feature set to evaluate]

k-fold
cross-validation

Evaluation
Results

[no more feature sets]

Prepared in the
Preprocessing
Phase

Figure 4.9: Feature-selection phase

4.4.3 Training phase
Knowing the Sbest from the feature selection phase, the classifier can be automatical-
ly retrained with new input samples, for instance training data from already finished

60

projects. For the purpose of our experiment, we prepared manually annotated experi-
mental data. Figure 4.10 shows the activity diagram for the training phase. As an input,
the training phase uses an existing specification model filled with training data, and a
configuration file which defines feature sets S1

best, . . . , Snbest for training the classifier.
As a result we get n trained MaxEnt models.

Specification
Model

Extract Samples

Train
MaxEnt Models

Trained
Models

Samples

Config
Prepare Context

Generators
Context

Generators

Prepared in the
Preprocessing
Phase

Figure 4.10: Training phase

4.4.4 Domain model elicitation phase
Figure 4.11 shows all the steps involved in the elicitation process. Several steps are
classification tasks that use the trained classification models. The order of steps is im-
portant because each classification task uses the information generated in the previous
step, i.e. the steps are conditionally dependent and form a Markov chain.

Step: Identifying words forming a domain entity

The first step is a classification task that aims at identifying words that may represent
domain entities. For every positively identified word we add an instance of a new
domain entity to the specification model. Some multi-word entities will be represented
as multiple entities. For example, words "User Account" will be represented as "User"
and "Account" entities at this point. Since this phase acts as a first element of the
Markov chain, we have an empty domain model. Therefore we can only leverage
"linguistic" features.

Step: Identifying multi-word entities

Here, we merge selected candidate entities into a single entity using a sequence clas-
sification model. We process words from left to right within each sentence and predict
the features of the current word depending on the previously classified words. After the
classification, a continuous sequence of labeled words is merged into a single entity.

Step: Deriving names for entity links

In this step, we construct the name of an entity by taking lemma forms of the words.
This straightforward approach is planned to be improved in future versions of our tool.

61

Trained
MaxEnt Models

Specification
Model

Predict Multi-Word
Entities

Derive Names for
Entity Links

Predict Candidates
for Domain Entities

"linktype"
maxent model

"roleInLink"
maxent model

Convert Entity Links
to Classes

Merge Classes
by Name

Predict Relations

Save Results

"relcl"
maxent model

Domain Model

Prepared in the
Preprocessing
Phase

Figure 4.11: Elicitation phase

Step: Creating classes in the domain model

We transform one-to-one entity links to classes in the domain model.

Step: Merging duplicate classes in the domain model

Currently, we perform merging of classes based solely on the literal equivalence of
names. This will also be improved in future version.

Step: Predicting relations

At this point, we have a number of classes in the domain model linked to the sentences
in the specification document. For each sentence s, we take all the linked classes and
generate all n(n − 1) combinations of ordered pairs of these classes. For a given pair
(a, b), we ask the classifier to predict whether there is a relation in the domain model
from a to b in the context of the sentence s. (See the paragraph "relations" context
generator in Section 4.5.5)

After the Elicitation phase, the specification model contains the predicted domain
model which can be further refined by the analyst. Finally, when the project is finished,
the refined version of the specification model can be used as a source of training data
to improve the classification performance in a next project.

62

4.5 Evaluation
It is not possible to use a classifier without a proper evaluation of its performance. A
classifier can perform badly even though its design may look reasonable. Moreover,
since we have a number of alternative combinations of features, we want to rank them
in a systematic way. The evaluation should be automated and well understood.

We have implemented an automated tool for evaluating our method and used the
Library System specification (Appendix C) for the evaluation.

4.5.1 Training vs. testing data
In general, a supervised machine learning approach requires a representative corpus
containing labeled relations between entities (usually labeled by hand) divided into
(i) training set, (ii) development test set and (iii) test set. To achieve good perfor-
mance, the classifier should be trained on a training set which sufficiently captures
the variability of data. During the development process, when the features are de-
signed, the development test set is used to assess the performance of selected features
by computing statistical measures such as F1 explained below. To avoid overfitting,
the classifier’s performance is evaluated against the unseen test set.

4.5.2 Cross-validation
When the training data is scarce (as in our experiment), "hold out" methods are used
for evaluation. The most popular is the k-fold cross validation. The data is divided into
k subsets (folds) of equal size. Then, we can perform k measurements where one fold
is considered as the test set and the other folds are considered as the training set. It
means that in every iteration, one of the folds is unseen to the classifier. Although, this
approach is slightly biased, because we saw all the samples when designing the fea-
tures, we expect that in practice the classifiers will be reevaluated on domain-specific
training data and a new feature set can be selected to suit the new environment.

4.5.3 Evaluation metrics in the experiment
The standard approach to evaluate the performance of a classifier is to construct a
confusion matrix (or contingency table) by comparing the answers from the classifier
and manually labeled answers:

correct wrong
selected TP FP

not selected FN TN

true positives (TP) are elements correctly selected by the classifier;

false positives (FP) are elements incorrectly selected by the classifier;

true negatives (TN) are elements correctly not selected by the classifier;

false negatives (FN) are elements incorrectly not selected by the classifier.

63

From these 4 numbers, we can compute a variety of useful statistical measures as
suggested by e.g. [110]:

Precision =
TP

TP + FP
(4.3)

Recall =
TP

TP + FN
(4.4)

F1 =
2× Precision×Recall
Precision+Recall

(4.5)

Specificity =
TN

TN + FP
(4.6)

FallOut = 1− Specificity (4.7)

MCC (Matthew’s correlation coefficient) =

TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(4.8)

The number Precision represents the probability that the predicted elements are
relevant. Recall represents the probability that all relevant elements were predicted.
For our purposes, Recall is more important, because we can manually delete redun-
dant elements from the predicted domain model. However, in machine learning, the
F1 measure is used because it represents both Precision and Recall in a balanced
way. It is also possible to compute MCC (Matthew’s correlation coefficient) which is
a balanced measure usable in situations when sizes of classified categories differ sig-
nificantly. Lastly, we also compute FallOut (and thus also Specificity) to be able to
represent our results using the ROC diagram explained below.

Due to the k-fold cross validation, we obtain k values for each of these measures.
Thus, we compute the mean, median, standard deviation and confidence interval (α =
95%, assuming a normal distribution of the measured results). Confidence intervals
obtained this way are shown in the diagrams in Figure 4.12.

4.5.4 Data used in the experiment
For the experiment, we chose a software specification describing a Library System.
The input document was an HTML file (see the annotated document in Appendix C).

As a first step, one person was reading the document several times while drawing
the diagram on a sheet of paper. Detected ambiguities were resolved by the analyst
according to his understanding of the domain.

When the prototype model was ready, we used the standard Ecore Diagram edi-
tor available in Eclipse to design the model formally in EMF. The final model entails
(1) classes, (2) relations, including inheritance, containment and cardinality, (3) at-
tributes, including types and cardinality, (4) methods.

A simplified version of the domain model is depicted in Figure C.1. Not all visible
elements were used for our experiment, we focused only on classes and relations. After
polishing the domain model, we annotated the text with links to the domain model. by
adding hyperlinks.:
sequence of words

Finally, we designed two context generators and a number of features.

64

4.5.5 Classification in the experiment
In this text, we show 3 cases of classification used in our tool, where we predicted the
"outcome" feature given a set of "context" features.

List of context generators

words : A stream of all words in all sentences in all documents within the spec-
ification. This context generator is used for classification of linktype and
roleInLink outcomes and is compatible with features:

linktype wprefix:n wminlen:n sprel

roleInLink:n wsuffix:n whascl:n sppos

pos:n lemma:n whasdigit

relations : A stream of triples (s, a, b), each representing a relation from class a to
class b within the scope of a single sentence s. In other words, for a given
sentence, we take all words that are linked to some class in the domain model.
Then, we take the set of all linked classes C, and generate all combinations of
pairs, which yields in total

(|C|
2

)
relations. This context generator is used for

classification of relcl and is compatible with features:

relcl relivf:lemma reldepOnRoot:src

relpassroot relivf:pos reldepOnRoot:dest

relsemrootlemma

All features related to the "words" context generator [96]

linktype This outcome feature extracts one of the values {class, operation, at-
tribute, reference, other, none} depending on the type of the domain entity the
given word is linked to.

roleInLink:n is also a multi-class outcome feature whose purpose is to identify
multi-word entities, i.e. whether a given word is the starting word of an entity
(head), a word in the middle of the entity name (cont), the last word (last),
or not linked to any entity (none). The parameter n defines the word-offset in
the sentence. This feature is intended to be used in a sequence classifier, which
makes decision based on the previously classified outcomes, e.g. we can use the
feature roleInLink:-1 when processing words from left to right.

pos:n Part-of-speech tag of a word. The optional parameter n defines the word-offset
within the sentence. For example, pos:-1 represents POS-tag of the previous
word.

lemma:n Lemma-form of a word with n being the word-offset within the sentence.

wminlen:n This feature decides whether the lemma-form of the given word has at
least n characters.

whascl:n Decides whether the word contains a capital letter, parameter n is the
word-offset within the sentence.

65

whasdigit Decides whether the word contains a digit.

wprefix:n Prefix of the word (n is the prefix length)

wsuffix:n Suffix of the word (n is the suffix length)

sprel Returns the label of the semantic relation between the given word and its parent
in the dependency graph generated by the Stanford Parser.

sppos Returns the POS-tag of the parent word in the dependency graph.

Features related to the "relations" context generator

relcl This is the outcome feature which decides whether classes A and B are related
regardless of the sentence S.

relsemrootlemma Extracts the lemma-form of the semantic root word from the sen-
tence, i.e. the root of the Stanford typed dependencies graph. This word is usu-
ally a verb, e.g. "contain", "manage", . . .

relpassroot Decides whether the sentence uses a passive voice. At the moment,
we just check if there is a "nsubjpass" relation in the dependency graph from the
semantic root word.

reldepOnRoot:x Assuming the input triple (S, A, B) as a relation, this feature de-
cides whether the semantic root word of the sentence S has a direct dependant
that is linked to the class x ∈ {A,B}.

relivf:x Assuming the input triple (S, A, B) as a relation, we find an intersection
of paths PA

⋂
PB in the dependency graph, where PA, PB are paths from words

(linked to classes A, B) to the semantic root word of the sentence S. Then we
take the first verb from the intersection and return its lemma form or POS-tag
depending on the parameter x ∈ {lemma, pos}.

4.5.6 Results of the experiment
[96]

Finally, we measured the performance of our classifiers. The results are depicted in
Figure 4.12. We use two types of diagrams to graphically represent the classification
performance. The first type is a line plot showing Precision, Recall and F1 measure.
The second is a scatter plot representing the ROC-curve (relative operating characteris-
tic) that illustrates the true positive rate (Recall) vs. the false positive rate (FallOut).

In the ROC diagram, an ideal classifier would be placed in the upper left corner,
while the worst classifier would be placed on the y = x diagonal.

In both diagrams, we also show the confidence intervals to better illustrate the
distribution of multiple measurements.

66

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Ideal Classifier

P(FP) = Fall Out = 1-Specificity

P
(
T
P
)

=

R
e
c
a
l
l

se
t5

1

se
t4

9

se
t4

6

se
t1

4

se
t3

se
t1

5

se
t1

se
t2

se
t3

6

se
t2

0

se
t2

8

se
t1

3

se
t2

9

se
t5

6

se
t3

1

se
t1

9

se
t2

5

se
t5

3

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
F1 Precision Recall

Best Feature Sets

P
e
r
f
o
r
m
a
n
c
e

se
t1

2
se

t1
9

se
t3

0
se

t4
8

se
t7

4
se

t8
3

se
t5

0
se

t6
9

se
t2

3
se

t3
3

se
t4

0
se

t2
1

se
t8

6
se

t6
se

t6
4

se
t1

04
se

t1
00

se
t7

se
t5

8
se

t6
0

se
t7

6
se

t2
0

se
t5

se
t8

8
se

t1
06

se
t1

3
se

t3
2

se
t9

7
se

t1
17

se
t3

6
se

t4
se

t1
1

se
t8

1
se

t2
8

se
t4

1
se

t1
10

se
t9

se
t0

60%

65%

70%

75%

80%

85%

90%

F1 Precision Recall

Best Feature Sets

P
e
r
f
o
r
m
a
n
c
e

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Ideal Classifier

P(FP) = Fall Out = 1-Specificity

P
(
T
P
)

=

R
e
c
a
l
l

se
t6

7
se

t4
1

se
t3

se
t6

4
se

t8
se

t5
5

se
t1

2
se

t5
8

se
t3

7
se

t4
5

se
t3

5
se

t2
9

se
t1

0
se

t3
6

se
t0

se
t5

1
se

t8
0

se
t2

6
se

t6
0

se
t3

0
se

t3
8

se
t1

3
se

t6
se

t4
se

t1
6

se
t6

2
se

t8
2

se
t1

1
se

t1
4

se
t2

5

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

F1 Precision Recall

Best Feature Sets

P
e
r
f
o
r
m
a
n
c
e

Ideal Classifier

P(FP) = Fall Out = 1-Specificity

P
(
T
P
)

=

R
e
c
a
l
l

Classifier: linktype (ordered by F
1
)

linktype (ROC)

Classifier: roleInLink (ordered by Recall)

roleInLink (ROC)

Classifier: relcl (ordered by Recall)

relcl (ROC)

set67

set51

set12

Figure 4.12: Evaluation results for classification of "linktype", "roleInLink" and "relcl" out-
come features.

67

"linktype" classifier: For the classification of linktype, we chose 19 context fea-
tures (denoted as "set12") with the performance Recall = 80.9%, Precision = 73%,
F1 = 76.7%. The chosen context features are:

lemma wminlen:2 wprefix:1 wsuffix:2 pos

sprel wminlen:3 wprefix:2 wsuffix:3 pos:1

sppos wminlen:4 wprefix:3 wsuffix:4

whascl wminlen:5 wprefix:4

whasdigit wminlen:6

"roleInLink" classifier: For the classification of roleInLink, we chose 20 con-
text features (denoted as "set67") with the performance Recall = 90%, Precision =
86.3%, F1 = 88%. Although, there was a result with higher F1, we chose "set67" due
to its higher Recall. The chosen context features are:

lemma wprefix:1 wminlen:2 roleInLink:-1 pos

sprel wprefix:2 wminlen:4 roleInLink:-2 pos:-1

whasdigit wprefix:3 wminlen:6

wsuffix:4 wprefix:4

"relcl" classifier: For the classification of relcl, we chose 2 context features (de-
noted as "set51") with the performance Recall = 55%, Precision = 14.6%, F1 =
22.4%. The chosen context features are:

reldepOnRoot:src

relivf:pos

Media

User

Library

Staff

Librarian

Terminal

User Administration

Media Administration

User AccountUser Number

Card

Scanner

Instance

manage

contain

manage

manage

operate

operate

register

Figure 4.13: Domain model automatically predicted in our experiment without redundant en-
tities and relations deleted manually.

4.6 Summary of Chapter 4
To summarize the results, the performance of linktype and roleInLink classifica-
tion models is impressive. It is because we implemented a wide range of useful features
from which the evaluator could pick the best combination. In case of the relcl, we
only implemented 5 features so far which did not give much choice to the evaluator.

68

Media

UserLibrary

Library System

StaffLibrarian

Library User

Terminal

User Administration

Media Administration

Administration

User Account

System

User Number Identification

Card

Code

Scanner

Medium

Instance

Media Instance

Account

Criterion

manage

register

manage

operate

operate

operate

operate

operate

contain
manage

manage

operate

operate

operate

operate

operate

operate

operate

operate

operate

operate

register
borrow
borrow

register

scan

scan

register

Figure 4.14: Domain model automatically predicted in our experiment as generated by the
tool, without manual editing.

Moreover, only 2 features were actually useful for predicting relcl. Even with these
constraints, we achieved a relatively high Recall = 55% performance. We expect that
the accuracy will be dramatically increased by implementing more features and using
larger training set.

After applying the selected classification model to our example specification, our
tool finally generated the prototype domain model depicted in Figure 4.14. Due to
the low precision of the relcl we had to clean the generated model manually (Fig-
ure 4.13). However, we only deleted redundant elements from the model without
adding any new elements. The similarity to the manually prepared model (Figure C.1)
is obvious.

The elicitation process can be further improved as follows:

1. By designing more features for the relcl classification task.

2. When deriving names for entity links, a more sophisticated normalization can be
employed.

3. We can also improve the identification of duplicate entities, e.g. by defining an
appropriate hashing function.

4. The pipeline can be extended with the following steps:

• identification of the aggregation relation,

• identification of attributes and their types,

• identification of the inheritance relation.

Implementation: The implemented framework, titled Prediction Framework, is a
headless (command-line-based) Eclipse-based product composed of multiple OSGi
bundles. Some of the bundles contain linguistic and statistical models. The application
demonstrates all 4 phases mentioned above: (1) preprocessing, (2) feature selection,

69

(3) training, and (4) elicitation. At the time of writing this text, a demo application
running on Linux is available for download at:

http://vlx.matfyz.cz/Projects/PredictionTool

When started, without any arguments, the application shows available tools:

$./eclipse
Available tools are:
- FeatureSelectionPhase
- CreateEmptySpec
- ExportDomainModel
- TrainingPhase
- ResolveLinks
- MaxentTrainer
- ShowExtractors
- ElicitationPhase
- CleanAnnotatedDoc
- ExtractSamples
- LoadDomainModel
- LoadDocument

The domain model elicitation can be executed using the following commands (prepro-
cessing + elicitation):

$./eclipse CreateEmptySpec spec.xmi
$./eclipse LoadDocument spec.xmi document.html
$./eclipse ElicitationPhase spec.xmi

Feature selection and training also requires loading of the existing domain model and
resolution of links:

$./eclipse CreateEmptySpec spec.xmi
$./eclipse LoadDocument spec.xmi document.html
$./eclipse LoadDomainModel spec.xmi dmodel.ecore
$./eclipse ResolveLinks spec.xmi

$./eclipse TrainingPhase spec.xmi train.properties

. . . or optionally for feature selection:

$./eclipse FeatureSelectionPhase eval.properties

70

http://vlx.matfyz.cz/Projects/PredictionTool

Chapter 5

Related work

This chapter summarizes existing work in areas of requirements engineering that are
related to the verification of use-cases and NLP. Some of the referenced papers below
are listed in multiple sections depending on the topics they cover.

5.1 Systematic reviews

To get a high-level view on some area of research, it is always worth looking at system-
atic reviews. Here, we would like to mention two papers that conducted such reviews
in the area of requirements engineering.

In 2009, the authors of [20] found 5198 publications about requirement engineering
spanning the years from 1963 through 2008. In 2010, the authors of [113] conducted a
systematic review of transformation approaches between user requirements (in textual
form) and analysis models (mostly UML-based). The authors searched for publications
in electronic databases (i) IEEE Xplore, (ii) ACM Digital Library, (iii) Compendex,
(iv) Inspec, and (v) SpringerLink.

Next, they searched in peer-reviewed journals (i) IEEE Transactions on Software
Engineering, (ii) Automated Software Engineering, (iii) Requirements Engineering
Journal, (iv) Journal of Natural Language Engineering, (v) ACM Transactions on
Software Engineering and Methodology, (vi) Journal of Systems and Software, Soft-
ware and Systems Modeling, (vii) Information and Software Technology, and Data
and Knowledge Engineering and conference proceedings (i) ACM/IEEE International
Conference on Software Engineering, (ii) IEEE International Conference on Software
Maintenance, (iii) IEEE/ACM International Conference on Automated Software Engi-
neering, (iv) IEEE International Conference on Model Driven Engineering Languages
and Systems and the former UML workshops, (v) IEEE International Requirements
Engineering Conference, and finally, in several software engineering textbooks.

After applying the inclusion/exclusion criteria they identified 16 different approach-
es from 20 studies out of which (i) 12 were focused on deriving structural elements,
(ii) 9 focused on deriving behavioral elements, (iii) 5 focused on generating complete
analysis models. These approaches were then compared using multiple criteria, such
as: (i) Level of automation. (ii) The way, how requirement were represented. (iii) Dif-
ficulty of documentation for users. (iv) Tool support. (v) Intermediate models used
during the transformation. (vi) Analysis models that can be generated (structural /

71

behavioral) (vii) Efficiency of the transformation (how many steps) (viii) Traceability
management support.

The papers [10], [24], [42], [62], [103] evaluated in the aforementioned systematic
reviews are further discussed in the rest of this chapter and compared to our FOAM
method and prediction framework.

5.2 NLP in requirements engineering
One of the most important areas in requirements engineering is the application of Nat-
ural Language Processing (NLP) techniques. The literature discusses various NLP
approaches ranging from classification of documents to semantic analysis of their con-
tent. Here is a list of approaches closely related to the topics of this thesis:

• Classification of documents and detection of parts containing requirements (e.g.
[107] discussed in detail in Section 5.6 on page 75).

• Elicitation of requirements (e.g. [115] discussed in detail in Section 5.7),

• Semantic analysis of requirements documents (e.g. [107, 48, 10, 24] discussed
in the following sections).

• Establishing of traceability links between formally specified requirements and
the text (e.g. [42] discussed in detail in Section 5.4 on the facing page).

• Detection of ambiguities in requirements documents and filtering of duplicates
(discussed in detail in [31] below).

The work of Gleich et al. [31] focuses on automated ambiguity detection in require-
ments documents. By performing only the lexical and syntactic analysis, they reported
to have detected four times as many ambiguities than an average human analyst while
keeping the number of false positives low. Their tool can also provide an explanation
for each detected ambiguity. From the NLP point of view, the tool uses only the POS-
tagger. Then, a set of hand-crafted regular expressions operate on the POS-tagged
sentence to detect potential ambiguities. No concept extraction is used, the approach
focuses just on ambiguity detection. It would be interesting to use this tool as a prepro-
cessing step in our linguistic analysis of specification documents. Our pipeline already
extracts a much richer model of the natural language, not just POS-tags. Moreover,
it would then be possible to improve the performance of [31] by employing statistical
classification alongside the regular expressions approach.

5.3 Controlled natural languages
Controlled language, also called restricted languages, stand in the middle between the
unrestricted natural language and a formal models. They use a subset of the natural
language that can be described by a grammar similarly to programming languages. Not
only they avoid ambiguity of natural language, they are also easier to process, requiring
simpler parsers or other linguistic tools. The tools usually provide a context-aware
assistant that simplifies manual writing of text conforming to the defined grammar.

72

Controlled languages can be divided into three groups by their purpose:

• CLs intended to present technical documents in an unambiguous way to human
readers, e.g. [2],

• CLs making multilingual machine translation of technical documents more ef-
fective and efficient, e.g. [45],

• CLs helping authors write specifications from which machines can acquire knowl-
edge and build models, e.g. [84, 21, 51, 108].

Grammar restrictions and the language expressiveness should be well balanced. In
[114], the authors described a set of restriction rules and a modified use-case template
with the aim of reducing ambiguity and facilitating manual derivation of initial analysis
models. The proposed restriction rules have been evaluated in a case-study, where
the specifications conforming to the rules were compared to the same specifications
without applying the rules.

The paper [108] describes ProjectIT-RSL, a controlled language based on a set of
common linguistic patterns found in requirements documents, in particular, describ-
ing interactive systems. By applying the patterns, it is possible to extract concepts
and their relations from the text which are then stored in a model as actors, entities,
properties (attributes) or operations (activities). The method is focused on keeping the
specification consistent with a derived model in order to support model-driven devel-
opment. The method is implemented within a CASE tool ProjectIT workbench that
supports various software engineering activities, such as project management, analysis
and design, code generation. The paper describes an interactive text editor, similar to
a word processor, that warns the writer about possible violations of rules for writing
requirements. The tool is implemented as a set of Eclipse plugins.

5.4 Use-case templates
To simplify the analysis of use-cases and to avoid ambiguities, various templates have
been proposed in the past to structure textual use-cases. The comparison of several
approached has been nicely presented in the paper [114] from which we have taken
the Table 5.1 and added two additional columns to highlight how FOAM tool (the last
column [94]) and the older Procasor tool (column [25]) relate to these approaches.

The relation between the approaches in Table 5.1 and FOAM can be summarized
as follows:

• FOAM does not rely on use-case descriptions when capturing the behavior of a
use case. It is an optional field which is preserved during the transformation and
may be a subject for further linguistic analysis, e.g. in our prediction framework.

• Instead of preconditions and postconditions, FOAM utilizes just the explicitly
defined precedence relation.

• In Procasor, the notion of actors was used during the linguistic analysis to extract
parameters of an action from a sentence. FOAM, on the other hand is focused
on sequencing of actions without considering actors. The necessary semantics of

73

actions is encoded by the use-case template and annotations attached to use-case
steps.

• Custom annotations can be defined in FOAM and attached to use-case steps.
They are also preserved during all stages of the transformation. This way, it is
possible to capture cross-references to high-level requirements, which is useful
when external tools are involved in the verification process.

Field a b c d e f g h i j k
Use case name * * * * * * * * * * *
Description * * * * * * * * *
Precondition * * * * * * * *
Postcondition * * * * * * * *
Basic flow * * * * * * * * * * *
Alt. flow * * * * * * * * * * *
Primary actor * * * * *
Secondary actor * * * *
Scope * *
Level of abstraction *
Stakeholders and interests *
Special requirements * *
Ext. points * *
Exc. path1 * *
Crossref. to high-level req. * *
Extension * * *
Variation * * *
Precedence *

Table 5.1: Summary of use-case templates based on the work of Yue et al. [114]. Each column
in this table represents a single paper: a = [17], b = [43], c = [54], d = [55], e = [58],
f = [62], g = [103], h = [42], i = [114], j = [25], k = [94].

5.5 Extended use-case models

The UML standard defines "include", "extend" and "generalize" relations between use-
cases. However, we can also find other relations in literature that makes use-case spec-
ification clearer. For example, Doug Rosenberg proposed in [85] to use "precedes"
and "invoke" relations in requirements specifications. The precedence was also adopt-
ed in the paper [83] and in the example specification [29]. In the papers [11] and [3],
authors discuss the control-flow of common use-cases, variant use-cases, component
use-cases, specialized use-cases, ordered use-cases and their relations such as the us-
es-relation, the extends-relation and the precedes-relation. In their terminology, our
FOAM method can be characterized as using variant and ordered use-cases because
we focus on verification of use-cases that are related using the "include" and "precede"
relations and allow extension and variation of use-case scenarios.

1Exception paths are distinguished from alternative flows since they are taken when errors occur.

74

5.6 Modeling static structures from requirements
An automated extraction of object and data models from a broad range of textual re-
quirements is outlined in [65]. The extraction is based on a set of predefined rules (pat-
terns encoded as context-free grammar) that are used against the constituency parse
trees (as opposed to dependency parsing in our linguistic pipeline). This approach also
requires a manual specification of domain entities prior to the actual language process-
ing. Another difference, comparing to our domain model elicitation process, is that
[65] does not attempt to resolve coreferences. The outcome of [65] is a list of facts
about entities, attributes and operations, such as:
(OBJECT (:TYPE FUNCTION) (:VALUE "entry"))
(OBJECT (:TYPE ENTITY) (:VALUE "patient"))
(OBJECT (:TYPE ATTRIBUTE) (:VALUE "age"))

A similar approach can also be found in the TESSI tool [53]. TESSI utilizes hand-
written grammatical templates for matching patterns inside the constituency parse trees
of a sentence. The pattens were designed to identify potential classes, attributes and
relations. The TESSI tool can semi-automatically build a UML use-case model from
text. It is also possible to verify consistency and completeness of the model with
the help of a domain ontology prepared manually by the user, as described in [52].
The verification employs description logic reasoners (Pellet, RacerPro and Jess) that
verify the constraints imposed by the given ontology. Moreover, the TESSI tool can
generate textual description from use-cases, sequence diagrams and state machines for
the purpose of reviewing the requirements analysis models.

Apart from our statistical approach, TESSI utilizes hand-written rules for identify-
ing domain entities. These manually fine-tuned rules work well for a particular style
of writing or a particular domain. However, they require redefinition when applied to
a new domain. In contrast, our approach requires just retraining of the classification
models using data from the new domain. Surely, it can be argued that the selection of
features would require reevaluation as well. Thus, we designed our prediction frame-
work to simplify the reevaluation in an automated way.

Another example of an approach that extracts class diagram out of textual require-
ments written in natural language is [36]. The linguistic pipeline is implemented using
the GATE framework2. Using a set of predefined rules, the tool can extract candidate
elements of the class diagram. In this process, a domain ontology, prepared before-
hand manually by the user, is used. Again, in contrast to our statistical approach, the
aforementioned method uses a hand-crafted set of rules and heuristics to extract the
domain model. Even though the paper claims a Performance and Recall of more than
80%, there is no explanation in the paper of what these figures actually mean. On the
other hand, in this thesis, we have discussed in detail the design and performance of
each classification model employed in the pipeline.

In [107], the Requirements Analysis Tool (RAT) is introduced that supports wide
range of syntactic and semantic analyses of requirements documents. Using a con-
trolled syntax and a use-defined glossary, the tool allows the user to write documents
in natural language that are easier to read and understand. RAT performs a syntactic
analysis of sentences and potential problematic phrases are highlighted to the user. As
a set of "best practices", the tool considers the following points: (1) Writing complete

2http://gate.ac.uk

75

http://gate.ac.uk

sentences that have proper spelling and grammar. (2) Using of active voice instead of
passive voice. (3) Using terms consistently and as defined in the glossary, avoiding
multiple phrases that refer to the same concept. (4) Writing sentences in a consistent
fashion starting with the agent/actor, followed by an action verb, followed by an ob-
servable result. (5) Clearly specifying the trigger condition that causes the system to
perform a certain behavior. (6) Avoiding the use of ambiguous phrases. An experi-
mental version of RAT also performs semantic analysis using domain ontologies and
structured content extracted from requirements documents during syntactic analysis.
The semantic analysis, based on semantic Web technologies, detects conflicts, gaps,
and interdependencies between different sections (corresponding to different subsys-
tems and modules within an overall software system) in a requirements document. The
ontology (model) created this way contains relations between entities of the domain
model, requirements and relations among them. The model shares some similarities
with the specification model in our prediction framework. However, instead of cap-
turing the relationships among whole requirements, we focus on relationships among
linguistic artefacts and entities in the domain model. It is because, we aim at extracting
statistical information for our classifiers from these artefacts.

In [46], a semi-automated approach was proposed that learns which grammatical
constructs represents which model elements. Within an interactive tool, the user marks
word sequences and assigns the element type and its container. The tool relies on the
document structure represented as a tree of sections/subsections/sentences (discourse
model), whereas our method uses relations between entities across the whole specifi-
cation.

Other approaches that, at some point in their pipeline, generate static structures
similar to our method, are [34, 86, 10, 108, 41, 115, 22, 4, 23]; most of them are
discussed in the following sections.

5.7 Modeling dynamic structures from requirements
In [48], a method for deriving message sequence charts (MSCs from International
Telecommunication Union similar to UML sequence diagrams) from textual scenarios
is described. The process has been extended by the same author in [47] with the aim
of avoiding sentences that should not be translated into MSC messages. Further, in
[49] the author also tackled the issue of sentences in passive voice. He showed on a
case study (Instrument Cluster 3), how to treat compound sentences and passive voice.
These studies aim at extracting the formal model of the behavior encoded in textual
form, but not the actual verification of its consistency. On the other hand, we decided
to capture the behavior using FOAM annotations and rather focus on the verification
aspect.

Authors of [87] elicit user requirements from natural language and create a high-
level contextual view on system actors and services – Context Use-Case Model. Their
method uses the Recursive Object Model (ROM) [115] which basically captures the
linguistic structure of the text. Then, a metric-based partitioning algorithm is used to
identify actors and services using information from the domain-model. The method
generates two artefacts – (1) a graphical diagram showing actors and services and (2)

3http://www.empress-itea.org/deliverables/D5.1_Appendix_B_v1.0_Public_Version.pdf

76

http://www.empress-itea.org/deliverables/D5.1_Appendix_B_v1.0_Public_Version.pdf

textual use-case descriptions. Unlike [87], where every sentence is transformed to a
use-case, we divide the text into use-cases and further into use-case steps. Such a
granularity is necessary when identifying components and modeling the dependencies
among them.

In [10], an environment for analysis of natural language requirements is presented.
The result of all the transformations is a set of models for the requirements document,
and for the requirements writing process. Also the transformation to ER diagrams,
UML class diagrams and Abstract State Machines specifying the behavior of mod-
eled subsystems (agents) is provided. Unlike our generator, however, CIRCE does not
generate an executable applications, just code fragments.

Authors of [24] proposed an approach (called Metamorphosis) for transforming
textual use-cases to interaction models (sequence diagrams). They represent specifi-
cations as 3 models describing their syntactic, semantic and conceptual aspects. The
transformation is driven by predefined patterns applied on the models. Each sentence
yields an "interaction fragment". When these fragments are combined together, the
complete interaction diagram is constructed. The paper, however, does not mention
any specific NLP tools employed in the sentence analysis.

In [101], a notation for representing use-case specification is presented. This model
is more complicated than what we use in FOAM. Similarly to FOAM, the notation de-
scribes use-cases, their scenarios with steps and branching, inclusion and sequencing
constraints. However, it also models lifelines, messages, pre/post-conditions, activi-
ties, actors and other elements that are commonly used in requirements specifications.
The main focus of [101] is to capture various use-case specification in a single model
while FOAM focuses on verification of the control flow in use-cases.

5.8 Formal semantics of requirements specification

In [98], a formal semantics based on Labeled Transition Systems (LTSs) is proposed
for use-cases containing extensions and include steps. The authors utilize LTSs to au-
tomatically detect livelocks. They also propose a method for verifying refinement of
use-case models, namely checking their equivalence and deterministic reduction. A
tool Use-Case Model Analyzer is mentioned which assists the developer in the au-
tomated verification. All of the checks are focused on global properties of use-case
models. The same authors also wrote a number of papers about mapping use-cases in-
to different formalisms – POSETs [100], finite state machines [97] and LTS+POSETs
[99]. As opposed to FOAM, the properties to be verified are pre-defined (FOAM allows
for user-defined properties) and branching scenarios are not considered.

In [102], textual use-cases are formalized via reactive Petri nets, taking into ac-
count the include and extend Unified Modeling Language (UML) relationships and
sequencing constraints using pre/post-conditions. The method assumes that use-case
steps comply with a restricted English grammar. The approach does not allow express-
ing other relationships and constraints. This is similar to our FOAM method because
we use an explicitly modeled precedence relation as a sequencing constraint. Instead
of verifying petri-nets, we verify LTSs using a model-checker (currently a symbolic
model-checker).

Related to FOAM are also the methods that map use-cases into the UML activity

77

or sequence diagrams [8, 111, 114, 112, 9]. These works focus on the generalization,
include, and extend relationships in UML. However, to verify temporal constraints
within these diagrams, they would need an additional transformation to a model un-
derstood by a model-checker, which in FOAM is already provided.

There are also many approaches aiming at formalizing UML models in general.
For instance in [27] the authors propose an automated method for translating UML
sequence diagrams into Petri nets for evaluating reliability of software architectures.
Their method uses annotations in the form of stereotypes based on the UML profile for
QoS and Fault Tolerance [80]. In contrast to FOAM, these approaches rely on a model
in UML that already provides a semi-formalized input in the form of annotations.

In [51], a toolkit SPIDER for analysis of UML models is presented. The authors
designed a method for verifying temporal properties in UML activity diagrams using
the SPIN model-checker. The temporal properties are specified in natural language
which is mapped by the tool to a predefined set of patterns (as proposed by Dwyer et
al. [26]) representing LTL properties to be verified. The tools aims at novice users who
are not experts in temporal logic. If they follow the presented controlled language, the
tool can automatically derive and verify the properties. In FOAM, we use formally de-
fined temporal properties. We assume that experts in temporal logic would encapsulate
semantics of temporal constraints into a simpler FOAM annotations.

Authors of [84] demonstrate a MDA-compliant approach to development of au-
tonomous ground control system for NASA directly from textual requirements, called
Requirements-to-Design-to-Code (R2D2C) approach. Their method relies on a special
English-like syntax of the input text defined using the ANTLR grammar. User require-
ments are first transformed to CSP (Hoare’s language of Communicating Sequential
Processes) and then Java code is generated. The R2D2C is more suitable for modeling
the behavior of autonomous agents while FOAM targets directly the specification and
verification of textual use-cases.

5.9 Consistency of computational models

Model-checking of the UML use-cases using SPIN is proposed in [88]. This method
assumes that pre/post-conditions of use-cases are expressed in first-order predicate log-
ic. A graph representing the possible sequences of use-cases is constructed from the
pre/post-conditions similarly to our precede relation. Even though the method supports
branching in scenarios, it is restricted to extensions only. Also the include relation is
not supported. Moreover in contrast to FOAM, the method assumes that use-cases
are already provided in a formal notation (predicates). Also the LTL formulae to be
verified by SPIN are constructed from the pre/post-conditions only.

Several languages and formalisms for behavior modeling of software systems have
been proposed. They range from very generic ones (e.g., process algebras [38, 75]), to
those specific to components (e.g., Darwin [66], Interface automata [7], or Threaded
Behavior Protocols [50]).

78

5.10 Use of ontologies
Many authors, for instance [107, 52, 36] already mentioned in previous sections, pro-
posed to use ontologies in areas of requirements engineering to capture relations among
various artefacts and to represent domain knowledge. (A review of similar approaches
can be found in [13]). An ontology can then be used for word sense disambiguation,
detection of entities and relations.

The approach is not limited to requirements engineering. For example, the authors
of [39] applied semantics-based information extraction for detecting economic events.
Instead of an ontology, we use just a fixed meta-model for representing all linguistic
information and domain model elements.

Authors of [22] employed dependency parsing and graph query patterns to extract
information about traffic accidents from newspapers to a predefined ontology. For
the linguistic analysis, the authors used tectogrammatical (deep syntax) dependency
trees similar to the Stanford typed dependencies we use in our tool. In this aspect,
their approach is very similar to our linguistic pipeline. When mapping the linguistic
representation to the ontology, they employed a fixed set of rules expressed in the
Netgraph [77] syntax. When the ontology is filled, it is possible to run various queries
such as how many people were injured. They also trained the tool with examples of
relevant and irrelevant sentences from the perspective of the traffic accidents ontology.

79

80

Chapter 6

Conclusions

Recent studies, such as [33], confirmed a well known principle that clear requirements
and specifications are the critical success factors in software engineering. If the first
phases of a project are not handled correctly, the project will probably fail or go over
budget. From all the relevant artefacts, textual use-cases and domain models are the
most important ones. They belong together; describing static structure and also the
dynamic aspect of the developed system in a platform independent way.

This thesis aimed at designing an approach that would play well with specifica-
tion documents written in natural language, to allow analysts to capture dependen-
cies among use-case steps and also precedence among use-cases. Second, we wanted
to support statistical inference of software engineering artefacts, such as the domain
model. Looking back at the goals from Section 1.3, this thesis can be summarized as
follows:

G1 Formalize behavior of textual use-cases,

G2 Design a method for Verification of use-cases,

G3 Combine linguistic and software engineering artefacts.

Fulfilling the goals G1 and G2: We introduced the FOAM method/tool that attempts
to help analysts write use-case specifications. The main advantage of the method is
its ease of use. In particular, it works with use-cases in their natural language form
and requires only a few basic annotations to be inserted into the text. The flow an-
notations formally capture the behavior of use-cases, while the temporal annotations
capture dependencies among use-case steps. We showed that the quality of a use-case
specification annotated this way can be improved to support the iterative development
process. At the same time, the way we designed the system of temporal annotations
gives a sufficient variability for different application domains. Users can define their
own temporal constraints relevant just in their own problem space.

Using the presented tool, we can quickly generate a HTML report describing the
whole use-case model. The report also explains the detected errors when temporal
constraints are violated. The architecture of our tool is modular and extensible. Each
transformation phase is clearly separated with well-defined meta-models describing its
inputs and outputs.

81

Before implementing the tool, we formalized all the involved transformations using
platform-independent inference rules. In FOAM, we transform the text of annotated
use-cases into a use-case model which is further transformed into an automaton with
a precisely defined semantics. This structure is then converted to the input language of
the NuSMV model checker which finally verifies the specification.

Fulfilling the goal G3: In the second part of the thesis, we also presented our frame-
work for statistical classification of software engineering artefacts combined with lin-
guistic features. We demonstrated the approach on a tool that can predict a prototype
domain model from text. An integral part of our prediction framework is the automated
evaluation of prediction performance of the design classification models. We evaluat-
ed 3 models employed in the domain model elicitation process and showed how this
approach can be extended in future. We demonstrated two classification models with a
very high prediction performance and one suboptimal model. The particular measured
performance figures are not that important as the principle itself. We showed that by
designing a wide range of features, our feature selection component is able to identify
the best performing classification model.

6.1 Future work
Currently the FOAM annotations have to be added manually during the preparation
of a specification. We plan to extend our prediction framework to semi-automatically
predict flow and temporal annotations.

The usual verification speed we encountered so far has always been just few sec-
onds. Most of the time is spent in JVM initialization, model-to-model transformations
and serialization/deserialization of models. The actual NuSMV verification time has
been negligible so far. However, we plan to implement other model-checking back-
ends, such as SPIN [40] (namely its Java reimplementation – Spinja [44]). Then we
would be able to compare the speed of those model-checkers. The NuSMV model-
checker we are currently using cannot utilize multiple CPU cores, whereas SPIN-based
implementation might benefit from SPIN’s multi-core model checking algorithm.

Sentences of use-case steps in FOAM can be written in unrestricted natural lan-
guage as long as they are organized in scenarios of a defined structure. The current
implementation does not focus on handling freely formatted input text which is some-
thing we would like to tackle in future. The input should be a HTML document con-
taining annotated use-cases together with other text. We already work with this kind
of specification in our prediction framework.

At the moment, we have two separate tools – first is the FOAM tool for verification
of use-cases, second is the prediction framework containing the component for predict-
ing domain models from text. We want to integrate both tools into a single framework
with an Eclipse-based GUI. At the same time, we still want to keep the pure command-
line interface available. Such integration should be straightforward, since both tools
are already modularized into OSGi bundles.

82

List of Tables

3.1 Translated temporal operators from TADL to NuSMV. 31
3.2 Analysed projects before creating the referential use-case specification 33
3.3 Selected properties from the quantitative UCDB analysis 34
3.4 Results of the FOAM case study. 41

4.1 POS-tags as defined by the Penn Treebank Project 50

5.1 Summary of use-case templates . 74

List of Figures

1.1 Techniques used for requirements elicitation 2
1.2 Requirements formality of modeling notation 2
1.3 Example of use-cases sharing an artefact relevant for the sequencing

of actions. 3
1.4 An inconsistency introducing variation added to the specification. . . 3
1.5 An inconsistency resolving extension added to the specification. . . . 4

2.1 Example parse tree as used by the Procasor tool 10
2.2 Example input and output format used by the Procasor tool 11
2.3 Example domain model used as an input to the JEE generator 12
2.4 System usage overview of the J2EE generator. 12
2.5 Architecture of the uc2comp generator. 13

3.1 Overview of the verification method 16
3.2 Example of a consistent specification using annotated use-cases. . . . 17
3.3 Examples of custom annotations (templates) defined in TADL. 20
3.4 Verification method in detail . 21
3.5 UCBA constructed from use-cases u1, . . . , un 25
3.6 Transformation of TADL Formulas to NuSVM LTL/CTL specification. 30
3.7 A simplified template for NuSMV code used in the transformation

from UCBA. 32
3.8 Example: precedence relation in GPM specification. 37

83

3.9 FOAM Scalability Experiment 1 . 38
3.10 FOAM Scalability Experiment 2 . 38
3.11 FOAM Scalability Experiment 3 . 39
3.12 FOAM Scalability Experiment 4 . 39
3.13 Transformation pipeline of the FOAM tool. 44
3.14 Screenshot from FOAM HTML report – overview. 45
3.15 Screenshot from FOAM HTML report – single use-case. 46
3.16 Screenshots from an HTML report generated by the FOAM tool. . . . 46

4.1 Stanford typed dependencies representation of a sentence. 52
4.2 Hierarchy of Stanford Typed Dependencies 53
4.3 Generated Constituency Parse Tree 53
4.4 Sentence parsed using the Stanford CoreNLP framework 54
4.5 Links between manually annotated text and domain model 56
4.6 Specification meta-model (input data for feature extraction). 56
4.7 Usage Overview - main phases of our method. 58
4.8 Preprocessing Phase . 59
4.9 Feature-selection phase . 60
4.10 Training phase . 61
4.11 Elicitation phase . 62
4.12 Evaluation results in the Experiment 67
4.13 Predicted domain model in the experiment 68
4.14 Predicted domain model (before editing) 69

A.1 UC1: Login to the system . 96
A.2 MOD1_UC1: Register in the system 97
A.3 MOD1_UC2: Provide personal and education information 97
A.4 MOD1_UC3: Choose a major . 98
A.5 MOD1_UC4: Assign an application fee to a major 98
A.6 MOD1_UC5: Check application status 99
A.7 MOD2_UC1: Create a new admission 99
A.8 MOD2_UC8: Add a new user . 100
A.9 MOD2_UC12: Import admissions fees 100

B.1 Results for the "relcl" classification 101
B.2 Results for the "linktype" classification 102
B.3 Results for the "roleInLink" classification 103

C.1 Training domain model of the Library System 105

84

Bibliography

[1] R. J. Abbott. “Program design by informal English descriptions”. In: Commun.
ACM 26.11 (1983), pp. 882–894. ISSN: 0001-0782. DOI: 10.1145/182.358441.

[2] AECMA (The European Association of Aerospace Industries). AECMA Sim-
plified English. Issue 1, Revision 1. A Guide for the Preparation of Aircraft
Maintenance Documentation in the International Aerospace Maintenance Lan-
guage. Jan. 1998.

[3] M. Aksit and K. v. d. Berg. “Use Cases in Object-Oriented Software Develop-
ment”. In: Language (1999).

[4] L. A. E. Al-safadi. “Natural Language Processing for Conceptual Modeling”.
In: International Journal of Digital Content Technology and its Applications
3.3 (2009), pp. 47–59. ISSN: 19759339. DOI: 10.4156/jdcta.vol3.issue3.6.

[5] B. Alchimowicz, J. Jurkiewicz, J. Nawrocki, and M. Ochodek. “Towards Use-
Cases Benchmark”. In: Proc. of CEE-SET’08. Vol. 4980. LNCS. Springer,
2008, pp. 20–33.

[6] B. Alchimowicz, J. Jurkiewicz, M. Ochodek, and J. Nawrocki. “Building Bench-
marks for Use Cases”. In: Computing and Informatics 29.1 (2010), pp. 27–44.

[7] L. de Alfaro and T. A. Henzinger. “Interface Automata”. In: SIGSOFT Softw.
Eng. Notes 26.5 (2001), pp. 109–120. ISSN: 0163-5948. DOI: 10.1145/503209.
503226.

[8] J. M. Almendros-Jimenez and L. Iribarne. “Describing Use-Case Relationships
with Sequence Diagrams”. In: TCJ 50.1 (2006), pp. 116–128. ISSN: 0010-
4620. DOI: 10.1093/comjnl/bxl053.

[9] J. M. Almendros-Jimenez and L. Iribarne. “Describing Use Cases with Activity
Charts”. In: Proc. of MIS’04. Springer, 2004, pp. 141–159. DOI: 10 . 1007 /
11518358_12.

[10] V. Ambriola and V. Gervasi. “On the Systematic Analysis of Natural Language
Requirements with CIRCE”. In: Automated Software Engineering (2006).

[11] K. v. d. Berg. “Control-Flow Semantics of Use Cases in UML”. In: Science
(1999), pp. 1–18.

[12] T. Bures, P. Hnetynka, P. Kroha, and V. Simko. Requirement Specifications Us-
ing Natural Languages. Tech. rep. 2012/5. D3S, Charles University in Prague,
2012. URL: http:/ /d3s.mff.cuni.cz/publications/download/D3S- TR- 2012-
05.pdf.

85

http://dx.doi.org/10.1145/182.358441
http://dx.doi.org/10.4156/jdcta.vol3.issue3.6
http://dx.doi.org/10.1145/503209.503226
http://dx.doi.org/10.1145/503209.503226
http://dx.doi.org/10.1093/comjnl/bxl053
http://dx.doi.org/10.1007/11518358_12
http://dx.doi.org/10.1007/11518358_12
http://d3s.mff.cuni.cz/publications/download/D3S-TR-2012-05.pdf
http://d3s.mff.cuni.cz/publications/download/D3S-TR-2012-05.pdf

[13] V. Castaneda, L. Ballejos, M. L. Caliusco, and M. R. Galli. “The Use of On-
tologies in Requirements Engineering”. In: Global Journal of Research Eng.
10.6 (2010), pp. 2–8.

[14] E. Charniak. “A maximum-entropy-inspired parser”. In: Proc. of NAACL’00.
2000, pp. 132–139.

[15] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella. “NuSMV Version 2: An OpenSource Tool for
Symbolic Model Checking”. In: Proc. of CAV 2002, Copenhagen, Denmark.
Vol. 2404. LNCS. Springer, 2002, pp. 359–364. ISBN: 3-540-43997-8.

[16] E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. Cambridge,
MA: MIT Press, 1999. ISBN: 0262032708.

[17] A. Cockburn. Writing Effective Use Cases. Boston, MA, USA: Addison-Wesley,
2001, p. 270. ISBN: 0201702258, 9780201702255.

[18] M. J. Collins. “A new statistical parser based on bigram lexical dependencies”.
In: Proc. of ACL’96. Morristown, New York, USA: Association for Computa-
tional Linguistics, 1996, pp. 184–191. DOI: 10.3115/981863.981888.

[19] J. Corbett, M. Dwyer, J. Hatcliff, and Robby. “A Language Framework for Ex-
pressing Checkable Properties of Dynamic Software”. In: SPIN Model Check-
ing and Software Verification. Vol. 1885. LNCS. Springer, 2000, pp. 205–223.
ISBN: 978-3-540-41030-0. DOI: 10.1007/10722468_13.

[20] A. Davis and A. Hickey. “A Quantitative Assessment of Requirements Engi-
neering Publications – 1963-2008”. In: Requirements Engineering: Foundation
for Software Quality. Vol. 5512. LNCS. Springer, 2009, pp. 175–189. ISBN:
978-3-642-02049-0. DOI: 10.1007/978-3-642-02050-6_15.

[21] J. L. De Coi, N. E. Fuchs, K. Kaljurand, and T. Kuhn. “Controlled English for
Reasoning on the Semantic Web”. In: Semantic Techniques for the Web — The
REWERSE Perspective. Ed. by F. Bry and J. Maluszynski. Vol. 5500. LNCS.
Springer, 2009, pp. 276–308. ISBN: 978-3-642-04580-6.

[22] J. Dedek and P. Vojtas. “Computing Aggregations from Linguistic Web Re-
sources: A Case Study in Czech Republic Sector/Traffic Accidents”. In: 2008
The Second International Conference on Advanced Engineering Computing
and Applications in Sciences. IEEE, 2008, pp. 7–12. ISBN: 9780769533698.
DOI: 10.1109/ADVCOMP.2008.17.

[23] D. K. Deeptimahanti and R. Sanyal. “Semi-automatic generation of UML mod-
els from natural language requirements”. In: Proc. of ISEC’11. ACM Press,
2011, pp. 165–174. ISBN: 9781450305594. DOI: 10.1145/1953355.1953378.

[24] I. Diaz, O. Pastor, and A. Matteo. “Modeling Interactions using Role-Driven
Patterns”. In: Proceedings of the 13th IEEE International Conference on Re-
quirements Engineering. RE ’05. Washington, DC, USA: IEEE Computer So-
ciety, 2005, pp. 209–220. ISBN: 0-7695-2425-7. DOI: 10.1109/RE.2005.42.

[25] J. Drazan and V. Mencl. “Improved Processing of Textual Use Cases: Deriving
Behavior Specifications”. In: Proc. of SOFSEM ’07. Harrachov, Czech Repub-
lic: Springer, 2007, pp. 856–868. ISBN: 978-3-540-69506-6.

86

http://dx.doi.org/10.3115/981863.981888
http://dx.doi.org/10.1007/10722468_13
http://dx.doi.org/10.1007/978-3-642-02050-6_15
http://dx.doi.org/10.1109/ADVCOMP.2008.17
http://dx.doi.org/10.1145/1953355.1953378
http://dx.doi.org/10.1109/RE.2005.42

[26] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. “Property specification patterns
for finite-state verification”. In: Proc. of FMSP’98. New York, USA: ACM
Press, 1998, pp. 7–15. ISBN: 0897919548. DOI: 10.1145/298595.298598.

[27] S. Emadi. “Mapping annotated sequence diagram to a Petri net notation for
reliability evaluation”. In: Proc. of ICETC’10. Vol. 3. 2010, pp. 57–61. ISBN:
9781424463701. DOI: 10.1109/ICETC.2010.5529597.

[28] J. Enge, A. Glowacz, M. Grega, M. Leszczuk, Z. Papir, P. Romaniak, and V.
Simko. “OASIS Archive – Open Archiving System with Internet Sharing”. In:
Future Multimedia Networking. Vol. 5630. LNCS. Springer, 2009, pp. 254–
259. ISBN: 978-3-642-02471-9. DOI: 10.1007/978-3-642-02472-6_28.

[29] D. Firesmith. GPM SRS. 2003. URL: http : / / www. it . uu . se / edu / course /
homepage/pvt/SRS.pdf.

[30] J. Francu and P. Hnetynka. “Automated generation of implementation from
textual system requirements”. In: Software Engineering Techniques (2011),
pp. 34–47. DOI: 10.1007/978-3-642-22386-0_3.

[31] B. Gleich, O. Creighton, and L. Kof. “Ambiguity Detection: Towards a Tool
Explaining Ambiguity Sources”. In: Requirements Engineering: Foundation
for Software Quality. Ed. by R. Wieringa and A. Persson. Vol. 6182. LNCS.
Springer, 2010, pp. 218–232. ISBN: 978-3-642-14191-1. DOI: 10.1007/978-3-
642-14192-8_20.

[32] A. Glowacz, M. Grega, M. Leszczuk, Z. Papir, P. Romaniak, P. Fornalski, M.
Lutwin, J. Enge, T. Lurk, and V. Simko. “Open internet gateways to archives
of media art”. In: Multimedia Tools and Applications (Mar. 2011), pp. 1–24.
ISSN: 1380-7501. DOI: 10.1007/s11042-011-0784-3.

[33] M. Hairul, N. Nasir, and S. Sahibuddin. “Critical success factors for software
projects : A comparative study”. In: 6.10 (2011), pp. 2174–2186. DOI: 10.5897/
SRE10.1171.

[34] H. M. Harmain and R. Gaizauskas. “Cm-builder: A natural language-based
case tool for object-oriented analysis”. In: Automated Software Engineering
(2003), pp. 157–181. DOI: 10.1023/A:1022916028950.

[35] M. A. Hearst. “Automatic acquisition of hyponyms from large text corpora”.
In: Proc. of COLING’92. 1992. DOI: 10.3115/992133.992154.

[36] H. Herchi and W. B. Abdessalem. “From user requirements to UML class dia-
gram”. In: CoRR abs/1211.0713 (2012).

[37] H. Heyan and Z. Xiaofei. “Part-of-speech tagger based on maximum entropy
model”. In: Proc. of ICCSIT’09. 2009. DOI: 10.1109/ICCSIT.2009.5234787.

[38] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall Int. (UK)
Ltd., 1985. ISBN: 0-13-153289-8.

[39] A. Hogenboom, F. Hogenboom, F. Frasincar, K. Schouten, and O. Meer. “Se-
mantics-based information extraction for detecting economic events”. English.
In: Multimedia Tools and Applications 64.1 (2013), pp. 27–52. ISSN: 1380-
7501. DOI: 10.1007/s11042-012-1122-0.

87

http://dx.doi.org/10.1145/298595.298598
http://dx.doi.org/10.1109/ICETC.2010.5529597
http://dx.doi.org/10.1007/978-3-642-02472-6_28
http://www.it.uu.se/edu/course/homepage/pvt/SRS.pdf
http://www.it.uu.se/edu/course/homepage/pvt/SRS.pdf
http://dx.doi.org/10.1007/978-3-642-22386-0_3
http://dx.doi.org/10.1007/978-3-642-14192-8_20
http://dx.doi.org/10.1007/978-3-642-14192-8_20
http://dx.doi.org/10.1007/s11042-011-0784-3
http://dx.doi.org/10.5897/SRE10.1171
http://dx.doi.org/10.5897/SRE10.1171
http://dx.doi.org/10.1023/A:1022916028950
http://dx.doi.org/10.3115/992133.992154
http://dx.doi.org/10.1109/ICCSIT.2009.5234787
http://dx.doi.org/10.1007/s11042-012-1122-0

[40] G. J. Holzmann. “The Model Checker SPIN”. In: IEEE TSE 23 (5 May 1997),
pp. 279–295. ISSN: 0098-5589. DOI: 10.1109/32.588521.

[41] M. G. Ilieva and O. Ormandjieva. “Models Derived from Automatically An-
alyzed Textual User Requirements”. In: Fourth International Conference on
Software Engineering Research, Management and Applications (SERA’06).
IEEE, 2006, pp. 13–21. ISBN: 0-7695-2656-X. DOI: 10.1109/SERA.2006.51.
URL: http : / / ieeexplore . ieee . org / lpdocs / epic03 / wrapper. htm ? arnumber =
1691356.

[42] E. Insfran, O. Pastor, and R. Wieringa. “Requirements engineering-based con-
ceptual modelling”. In: Requirements Engineering (2002), pp. 61–72. URL:
http://link.springer.com/article/10.1007/s007660200005.

[43] I. Jacobson. Object-Oriented Software Engineering; A Use Case Driven Ap-
proach. New York: Addison-Wesley, 1992. ISBN: 978-0201544350.

[44] M. de Jonge and T. C. Ruys. “The SpinJa model checker”. In: Proceedings
of SPIN 2010, Enschede, The Netherlands. Vol. 6349. LNCS. Springer, 2010,
pp. 124–128. ISBN: 978-3-642-16163-6. DOI: 10.1007/978-3-642-16164-3_9.

[45] C. Kamprath, E. Adolphson, T. Mitamura, and E. Nyberg. Controlled Lan-
guage for Multilingual Document Production: Experience with Caterpillar
Technical English. 1998.

[46] L. Kof. “From Requirements Documents to System Models: A Tool for Inter-
active Semi-Automatic Translation”. In: Proc. of RE’10. 2010, pp. 391–392.
DOI: 10.1109/RE.2010.53.

[47] L. Kof. “From Textual Scenarios to Message Sequence Charts: Inclusion of
Condition Generation and Actor Extraction”. In: Ieee, 2008, pp. 331–332. IS-
BN: 978-0-7695-3309-4. DOI: 10.1109/RE.2008.12.

[48] L. Kof. “Scenarios: Identifying Missing Objects and Actions by Means of
Computational Linguistics”. In: 15th IEEE International Requirements Engi-
neering Conference (RE 2007) (2007), pp. 121–130. DOI: 10.1109/RE.2007.
38.

[49] L. Kof. “Treatment of Passive Voice and Conjunctions in Use Case Docu-
ments”. In: Natural Language Processing and Information Systems. Ed. by Z.
Kedad, N. Lammari, E. Métais, F. Meziane, and Y. Rezgui. Vol. 4592. LNCS.
Springer Berlin Heidelberg, 2007, pp. 181–192. ISBN: 978-3-540-73350-8.
DOI: 10.1007/978-3-540-73351-5_16.

[50] J. Kofron, T. Poch, and O. Sery. “TBP: Code-Oriented Component Behavior
Specification”. In: Proc. of SEW’08. Washington, DC, USA: IEEE CS, 2008,
pp. 75–83. ISBN: 978-0-7695-3617-0. DOI: 10.1109/SEW.2008.14.

[51] S. Konrad and B. H. C. Cheng. “Automated Analysis of Natural Language
Properties for UML Models”. In: Satellite Events at the MoDELS 2005 Confer-
ence. Vol. 3844. LNCS. Springer, 2006, pp. 48–57. ISBN: 978-3-540-31780-7.
DOI: 10.1007/11663430_6.

88

http://dx.doi.org/10.1109/32.588521
http://dx.doi.org/10.1109/SERA.2006.51
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1691356
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1691356
http://link.springer.com/article/10.1007/s007660200005
http://dx.doi.org/10.1007/978-3-642-16164-3_9
http://dx.doi.org/10.1109/RE.2010.53
http://dx.doi.org/10.1109/RE.2008.12
http://dx.doi.org/10.1109/RE.2007.38
http://dx.doi.org/10.1109/RE.2007.38
http://dx.doi.org/10.1007/978-3-540-73351-5_16
http://dx.doi.org/10.1109/SEW.2008.14
http://dx.doi.org/10.1007/11663430_6

[52] P. Kroha, R. Janetzko, and J. E. Labra. “Ontologies in Checking for Inconsis-
tency of Requirements Specification”. In: 2009 Third International Conference
on Advances in Semantic Processing. IEEE, Oct. 2009, pp. 32–37. ISBN: 978-
1-4244-5044-2. DOI: 10.1109/SEMAPRO.2009.11.

[53] P. Kroha and M. Rink. “Text Generation for Requirements Validation”. In:
Enterprise Information Systems. Vol. 24. LNBIP. Springer, 2009, pp. 467–478.
ISBN: 978-3-642-01346-1. DOI: 10.1007/978-3-642-01347-8_39.

[54] P. Kruchten. The Rational Unified Process: An Introduction. The Addison-
Wesley Object Technology Series. Addison Wesley Professional, 2004. ISBN:
201707101.

[55] D. Kulak and E. Guiney. Use cases: requirements in context. ADDISON WES-
LEY Publishing Company Incorporated, 2004. ISBN: 9780321154989. URL:
http://books.google.cz/books?id=qOjxBo7gTLwC.

[56] J. D. Lafferty, A. McCallum, and F. C. N. Pereira. “Conditional Random Fields:
Probabilistic Models for Segmenting and Labeling Sequence Data”. In: Proc.
of ICML’01. 2001, pp. 282–289. ISBN: 1-55860-778-1.

[57] C. Lai and S. Bird. “LPath+ : A First-Order Complete Language for Linguistic
Tree Query”. In: Proc. of PACLIC’05. Academia Sinica, 2005, pp. 1–12.

[58] C. Larman. Applying UML and patterns: An introduction to object-oriented
analysis and design and iterative development. Upper Saddle River, NJ, USA:
Prentice Hall PTR, 2004. ISBN: 0131489062.

[59] H. Lee, A. Chang, Y. Peirsman, N. Chambers, M. Surdeanu, and D. Juraf-
sky. “Deterministic coreference resolution based on entity-centric, precision-
ranked rules”. In: Computational Linguistics (2012), pp. 1–54. ISSN: 0891-
2017. DOI: 10.1162/COLI_a_00152.

[60] H. Lee, Y. Peirsman, A. Chang, N. Chambers, M. Surdeanu, and D. Jurafsky.
“Stanford’s multi-pass sieve coreference resolution system at the CoNLL-2011
shared task”. In: Proc. of CoNLL’11. Stroudsburg, PA, USA: Association for
Computational Linguistics, Sept. 2011, pp. 28–34. ISBN: 9781937284084.

[61] R. Levy and G. Andrew. “Tregex and Tsurgeon: tools for querying and manip-
ulating tree data structures”. In: Proc. of LREC’06. 2006.

[62] D. Liu. “Automating transition from use-cases to class model”. MA thesis.
UNIVERSITY OF CALGARY, 2003. URL: http://homepage.usask.ca/~dol142/
Files/ThesisDLiu.pdf.

[63] A. Ludtke, B. Gottfried, O. Herzog, G. Ioannidis, M. Leszczuk, and V. Simko.
“Accessing Libraries of Media Art through Metadata”. In: 2009 20th Interna-
tional Workshop on Database and Expert Systems Application. IEEE, 2009,
pp. 269–273. ISBN: 978-0-7695-3763-4. DOI: 10.1109/DEXA.2009.93.

[64] M. Luisa, F. Mariangela, and N. I. Pierluigi. “Market research for requirements
analysis using linguistic tools”. In: Requirements Engineering 9.1 (Feb. 2004),
pp. 40–56. ISSN: 0947-3602. DOI: 10.1007/s00766-003-0179-8.

89

http://dx.doi.org/10.1109/SEMAPRO.2009.11
http://dx.doi.org/10.1007/978-3-642-01347-8_39
http://books.google.cz/books?id=qOjxBo7gTLwC
http://dx.doi.org/10.1162/COLI_a_00152
http://homepage.usask.ca/~dol142/Files/ThesisDLiu.pdf
http://homepage.usask.ca/~dol142/Files/ThesisDLiu.pdf
http://dx.doi.org/10.1109/DEXA.2009.93
http://dx.doi.org/10.1007/s00766-003-0179-8

[65] S. G. MacDonell, K. Min, and A. M. Connor. “Autonomous Requirements
Specification Processing Using Natural Language Processing”. In: Proceed-
ings of the ISCA 14th International Conference on Intelligent and Adaptive
Systems and Software Engineering (IASSE-05). Toronto, Canada: ISCA, 2005,
pp. 266–270.

[66] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. “Specifying Distributed Soft-
ware Architectures”. In: Proc. of ESEC’95. 1995. URL: http://pubs.doc.ic.ac.
uk/SpecifyDistributedArchitectures/.

[67] C. Manning. “Part-of-Speech Tagging from 97Linguistics?” In: Computational
Linguistics and Intelligent Text Processing. Vol. 6608. LNCS. Springer, 2011,
pp. 171–189. ISBN: 978-3-642-19399-6. DOI: 10 .1007/978- 3- 642- 19400-
9_14.

[68] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information
Retrieval. New York, NY, USA: Cambridge University Press, 2008. ISBN:
0521865719, 9780521865715.

[69] C. D. Manning and H. Schutze. Foundations of statistical natural language
processing. MIT Press, 1999. ISBN: 0-262-13360-1.

[70] M. Marcus and M. Marcinkiewicz. “Building a large annotated corpus of En-
glish: The Penn Treebank”. In: Computational linguistics (1993). URL: http:
//dl.acm.org/citation.cfm?id=972475.

[71] M.-c. D. Marneffe and C. D. Manning. “Stanford typed dependencies manual”.
In: 09 (2011), pp. 1–24. URL: http://nlp.stanford.edu/software/dependencies_
manual.pdf.

[72] M.-c. D. Marneffe and C. D. Manning. “The Stanford typed dependencies
representation”. In: Proc. of the Workshop on Cross-Framework and Cross-
Domain Parser Evaluation. 08. Stroudsburg: Association for Computational
Linguistics, 2008, pp. 1–8. URL: http://dl.acm.org/citation.cfm?id=1608858.
1608859.

[73] V. Mencl. “Deriving Behavior Specifications from Textual Use Cases”. In:
Proc. of WITSE’04. Linz, Austria, 2004.

[74] V. Mencl, J. Francu, J. Ondrusek, M. Fiedler, and A. Plsek. Procasor Envi-
ronment: Interactive Environment for Requirement Specification. 2005. URL:
http://dsrg.mff.cuni.cz/~mencl/procasor-env/.

[75] R. Milner. Communication and Concurrency. Hertfordshire, UK, UK: Prentice
Hall International (UK) Ltd., 1995. ISBN: 0-13-115007-3.

[76] M. Minsky and S. Papert. Perceptrons: An Introduction to Computational Ge-
ometry. MIT Press, 1988.

[77] J. Mirovsky. “Netgraph - Making Searching in Treebanks Easy”. In: Proc. of
IJCNLP’08. 2008, pp. 945–950.

[78] C. Neill and P. Laplante. “Requirements engineering: The state of the practice”.
In: IEEE Software 20.6 (Nov. 2003), pp. 40–45. ISSN: 0740-7459. DOI: 10 .
1109/MS.2003.1241365.

90

http://pubs.doc.ic.ac.uk/SpecifyDistributedArchitectures/
http://pubs.doc.ic.ac.uk/SpecifyDistributedArchitectures/
http://dx.doi.org/10.1007/978-3-642-19400-9_14
http://dx.doi.org/10.1007/978-3-642-19400-9_14
http://dl.acm.org/citation.cfm?id=972475
http://dl.acm.org/citation.cfm?id=972475
http://nlp.stanford.edu/software/dependencies_manual.pdf
http://nlp.stanford.edu/software/dependencies_manual.pdf
http://dl.acm.org/citation.cfm?id=1608858.1608859
http://dl.acm.org/citation.cfm?id=1608858.1608859
http://dsrg.mff.cuni.cz/~mencl/procasor-env/
http://dx.doi.org/10.1109/MS.2003.1241365
http://dx.doi.org/10.1109/MS.2003.1241365

[79] K. Nigam, J. Lafferty, and A McCallum. “Using maximum entropy for text
classification”. In: IJCAI-99 Workshop on Machine Learning for Information
Filtering. Stockholm, Sweden, 1999, pp. 61–67. URL: http://www.cc.gatech.
edu/~isbell/reading/papers/maxenttext.pdf.

[80] OMG. UML for Modeling QoS and Fault Tolerance Characteristics and Mech-
anisms. OMG document formal/2008-04-05. 2008.

[81] F. Plasil and S. Visnovsky. “Behavior Protocols for Software Components”. In:
IEEE TSE 28.11 (2002), pp. 1056–1076. ISSN: 0098-5589.

[82] F. Plasil and V. Mencl. “Getting ’Whole Picture’ Behavior In A Use Case Mod-
el”. In: Journ. of Integrated Design and Process Sci. 7.4 (2003), pp. 63–79.
ISSN: 1092-0617.

[83] J. A. Pow-Sang, A. Nakasone, R. Imbert, and A. M. Moreno. “An Approach
to Determine Software Requirement Construction Sequences Based on Use
Cases”. In: Proc. of ASEA’08. Washington, DC, USA: IEEE, 2008, pp. 17–22.
ISBN: 978-0-7695-3432-9. DOI: 10.1109/ASEA.2008.33.

[84] J. L. Rash, M. G. Hinchey, C. A. Rouff, D. Gracanin, and J. Erickson. “A
requirements-based programming approach to developing a NASA autonomous
ground control system”. In: Artificial Intelligence Review 25.4 (2007), pp. 285–
297. ISSN: 0269-2821. DOI: 10.1007/s10462-007-9029-2.

[85] D. Rosenberg and M. Stephens. Use Case Driven Object Modeling with UML:
Theory and Practice. Springer, 2007, p. 471. ISBN: 9781590597743.

[86] N. Samarasinghe and S. Some. “Generating a domain model from a use case
model”. In: 2005, pp. 5–10. URL: http : / / www . csi . uottawa . ca / ~ssome /
UCEdWeb/publis/domainGen.pdf.

[87] M. Seresh S. and O. Ormandjieva. “Automated Assistance for Use Cases Elic-
itation from User Requirements Text”. In: Proc. of WER’08. 16. Barcelona,
Spain, 2008, pp. 128–139.

[88] Y. Shinkawa. “Model Checking for UML Use Cases”. In: SERA. Vol. 150.
Studies in Computational Intelligence. Springer, 2008. ISBN: 978-3-540-70774-
5. DOI: 10.1007/978-3-540-70561-1_17.

[89] V. Simko, J. Vinarek, O. Fiala, J. Krajicek, R. Tomori, P. Hnetynka, T. Bures,
and D. Hauzar. Requirements Processing Tool. Project hosted at Google Code,
http://code.google.com/a/eclipselabs.org/p/reprotool/. 2011.

[90] V. Simko. Patterns In Specification Documents. Tech. rep. 2011/6. D3S, Charles
University in Prague, 2011. URL: http://d3s.mff.cuni.cz/publications/download/
D3S-TR-2011-06.pdf.

[91] V. Simko, D. Hauzar, T. Bures, P. Hnetynka, and F. Plasil. “Verifying Temporal
Properties of Use-Cases in Natural Language”. In: Postproc. of FACS’2011.
LNCS. Springer, 2011. DOI: 10.1007/978-3-642-35743-5_21.

[92] V. Simko, P. Hnetynka, and T. Bures. “From Textual Use-Cases to Component-
Based Applications”. In: Proc. of SNPD’10. Vol. 295. Studies in Computa-
tional Intelligence. Springer, 2010, pp. 23–37. ISBN: 978-3-642-13264-3. DOI:
10.1007/978-3-642-13265-0.

91

http://www.cc.gatech.edu/~isbell/reading/papers/maxenttext.pdf
http://www.cc.gatech.edu/~isbell/reading/papers/maxenttext.pdf
http://dx.doi.org/10.1109/ASEA.2008.33
http://dx.doi.org/10.1007/s10462-007-9029-2
http://www.csi.uottawa.ca/~ssome/UCEdWeb/publis/domainGen.pdf
http://www.csi.uottawa.ca/~ssome/UCEdWeb/publis/domainGen.pdf
http://dx.doi.org/10.1007/978-3-540-70561-1_17
http://code.google.com/a/eclipselabs.org/p/reprotool/
http://d3s.mff.cuni.cz/publications/download/D3S-TR-2011-06.pdf
http://d3s.mff.cuni.cz/publications/download/D3S-TR-2011-06.pdf
http://dx.doi.org/10.1007/978-3-642-35743-5_21
http://dx.doi.org/10.1007/978-3-642-13265-0

[93] V. Simko, P. Hnetynka, T. Bures, and F. Plasil. “FOAM: A Lightweight Method
for Verification of Use-Cases”. In: Software Engineering and Advanced Appli-
cations (SEAA), 38th EUROMICRO Conference on. 2012, pp. 228–232. DOI:
10.1109/SEAA.2012.15.

[94] V. Simko, P. Hnetynka, T. Bures, and F. Plasil. Formal Verification of Annotated
Use-Cases (FOAM Method). Tech. rep. 2012/2. D3S, Charles University in
Prague, 2012. URL: http://d3s.mff.cuni.cz/publications/download/D3S-TR-
2012-02.pdf.

[95] V. Simko, P. Kroha, and P. Hnetynka. Domain Model Generation With the Help
of Supervised Machine Learning. Tech. rep. 2012/6. D3S, Charles University
in Prague, 2012. URL: http://d3s.mff.cuni.cz/publications/download/D3S-TR-
2012-06.pdf.

[96] V. Simko, P. Kroha, and P. Hnetynka. Implemented Domain Model Generation.
Tech. rep. 2013/3. D3S, Charles University in Prague, Apr. 2013. URL: http:
//d3s.mff.cuni.cz/publications/download/D3S-TR-2013-03.pdf.

[97] D. Sinnig, P. Chalin, and F. Khendek. “Consistency between Task Models and
Use Cases”. In: EIS’08. Vol. 4940. LNCS. Springer, 2008, pp. 71–88. ISBN:
978-3-540-92697-9.

[98] D. Sinnig, P. Chalin, and F. Khendek. “LTS semantics for use case models”.
In: Proc. of SAC’09, Honolulu, Hawaii. ACM, 2009, pp. 365–370. ISBN: 978-
1-60558-166-8. DOI: 10.1145/1529282.1529362.

[99] D. Sinnig, F. Khendek, and P. Chalin. “Partial order semantics for use case
and task models”. In: FAC 23.3 (2010), pp. 307–332. ISSN: 0934-5043. DOI:
10.1007/s00165-010-0158-z.

[100] D Sinning, P Chalin, and F Khendek. “Towards a Common Semantic Founda-
tion for Use Cases and Task Models”. In: ENTCS 183 (2007), pp. 73–88. ISSN:
15710661. DOI: 10.1016/j.entcs.2007.01.062.

[101] M. Smialek, J. Bojarski, W. Nowakowski, A. Ambroziewicz, and T. Straszak.
“Complementary Use Case Scenario Representations Based on Domain Vo-
cabularies”. In: Model Driven Engineering Languages and Systems. Ed. by
G. Engels, B. Opdyke, D. Schmidt, and F. Weil. Vol. 4735. LNCS. Springer,
2007, pp. 544–558. ISBN: 978-3-540-75208-0. DOI: 10 . 1007 / 978 - 3 - 540 -
75209-7_37.

[102] S. S. Somé. “Formalization of Textual Use Cases Based on Petri Nets”. In:
International Journal of Software Engineering and Knowledge Engineering
20.05 (2010), p. 695. ISSN: 0218-1940. DOI: 10.1142/S0218194010004931.

[103] S. S. Somé. “Supporting use case based requirements engineering”. In: In-
formation and Software Technology 48.1 (2006), pp. 43–58. ISSN: 09505849.
DOI: 10.1016/j.infsof.2005.02.006.

[104] J. Stepanek and P. Pajas. “Querying diverse treebanks in a uniform way”. In:
Proc. of LREC’10. 2010.

92

http://dx.doi.org/10.1109/SEAA.2012.15
http://d3s.mff.cuni.cz/publications/download/D3S-TR-2012-02.pdf
http://d3s.mff.cuni.cz/publications/download/D3S-TR-2012-02.pdf
http://d3s.mff.cuni.cz/publications/download/D3S-TR-2012-06.pdf
http://d3s.mff.cuni.cz/publications/download/D3S-TR-2012-06.pdf
http://d3s.mff.cuni.cz/publications/download/D3S-TR-2013-03.pdf
http://d3s.mff.cuni.cz/publications/download/D3S-TR-2013-03.pdf
http://dx.doi.org/10.1145/1529282.1529362
http://dx.doi.org/10.1007/s00165-010-0158-z
http://dx.doi.org/10.1016/j.entcs.2007.01.062
http://dx.doi.org/10.1007/978-3-540-75209-7_37
http://dx.doi.org/10.1007/978-3-540-75209-7_37
http://dx.doi.org/10.1142/S0218194010004931
http://dx.doi.org/10.1016/j.infsof.2005.02.006

[105] T. Symul, S. M. Assad, and P. K. Lam. “Real time demonstration of high bitrate
quantum random number generation with coherent laser light”. In: Applied
Physics Letters 98.23, 231103 (2011), p. 231103. DOI: 10.1063/1.3597793.

[106] K. Toutanova, D. Klein, C. D. Manning, and Y. Singer. “Feature-rich part-of-
speech tagging with a cyclic dependency network”. In: Proc. of NAACL’03.
2003. DOI: 10.3115/1073445.1073478.

[107] K. Verma and A. Kass. “Requirements analysis tool: A tool for automatical-
ly analyzing software requirements documents”. In: The Semantic Web-ISWC
2008 (2008), pp. 751–763. DOI: 10.1007/978-3-540-88564-1_48.

[108] C. Videira, D. Ferreira, and A. Rodrigues da Silva. “A Linguistic Patterns Ap-
proach for Requirements Specification”. In: Proc. of EUROMICRO’06. Wash-
ington, DC, USA: IEEE, 2006, pp. 302–309. ISBN: 0-7695-2594-6. DOI: 10.
1109/EUROMICRO.2006.8.

[109] K. Wenzel. A language for searching tree-like structures. Project hosted at
Tigris.org, http://tpl.tigris.org. 2007.

[110] Y. Yang. “An Evaluation of Statistical Approaches to Text Categorization”.
In: Information Retrieval 1.1-2 (1999), pp. 69–90. ISSN: 1386-4564. DOI: 10.
1023/A:1009982220290.

[111] T. Yue and L. Briand. “An automated approach to transform use cases into ac-
tivity diagrams”. In: Modelling Foundations and Applications (2010), pp. 337–
353.

[112] T. Yue, S. Ali, and L. Briand. “Automated Transition from Use Cases to UML
State Machines to Support State-Based Testing”. In: MFA. Vol. 6698. LNCS.
Springer, 2011, pp. 115–131. ISBN: 978-3-642-21469-1.

[113] T. Yue and L. Briand. “A systematic review of transformation approaches be-
tween user requirements and analysis models”. In: Requirements Engineering
(2011), pp. 1–41.

[114] T. Yue, L. C. Briand, and Y. Labiche. “Facilitating the Transition from Use
Case Models to Analysis Models:Approach and Experiments”. In: Transac-
tions On Software Engineering And Methodology (2011).

[115] Y. Zeng. “Recursive object model (ROM)-Modelling of linguistic information
in engineering design”. In: Comput. Ind. 59.6 (2008), pp. 612–625. ISSN: 0166-
3615. DOI: 10.1016/j.compind.2008.03.002.

93

http://dx.doi.org/10.1063/1.3597793
http://dx.doi.org/10.3115/1073445.1073478
http://dx.doi.org/10.1007/978-3-540-88564-1_48
http://dx.doi.org/10.1109/EUROMICRO.2006.8
http://dx.doi.org/10.1109/EUROMICRO.2006.8
http://tpl.tigris.org
http://dx.doi.org/10.1023/A:1009982220290
http://dx.doi.org/10.1023/A:1009982220290
http://dx.doi.org/10.1016/j.compind.2008.03.002

94

Appendix A

FOAM case study

MOD2_UC6: Transfer Candidates’ data
Summary: When the admission is finished, data of qualified candidates should be transferred to the Students

management system.

Preconditions:
− Administrator is logged in to the system.→ Preceding: "UC???..."

Trigger
− Admission end date has passed and Selection committee has qualified Candidates.→ Preceding: "UC???..."

Main Scenario:
1. Administrator chooses all qualified Candidates who provided paper version of their application form.
2. Administrator chooses the transfer option. #(create:transferOption)
3. System transfers Candidates data to the Students management system. #(open:transfer)

Extension: System is unable to transfer some of the accounts.
− System informs that some accounts have not been transferred.
− Administrator selects detailed information about the error.
− System presents details concerning errors during transfer process.
− Use case finishes. #(close:transfer), #(abort)

Variation: Is a recoverable error.
− System tries the transfer operation again in step 3. #(goto:3)

4. System authorizes in the Students management system. #(include:UC???...)
5. System sends Candidates data. #(use:transferOption)
6. Students management system verifies the data.
7. Students management system sends an acknowledge message to the System.
8. System displays information about a successful transfer. #(close:transfer)

"Flow Annotations"
#(abort)
− This annotation expresses abort of the scenario. It can only be added to the last step of a variation or an

extension.
#(goto:s)
− This annotation represents a jump within the use−case.
− The parameter s indicates the target use−case step of the jump.

#(include:u)
− This annotation specifies inclusion (inlining) of another use−case u.

"Temporal Annotations"
#(open:x) ... #(close:x) − something like a transaction:
− there open−close has to be properly paired
− when x is opened, it has to be closed
− x cannot be closed before being opened first

#(create:x) ... #(use:x) − useful for marking data dependency:
− x cannot be used before being created
− x can be used multiple times
− if x is created, there has to be at least one branch where x is used

(some branches can well be without it)

95

A.1 FOAM case study : Answers

UC1: Login to the system

Summary: In order to use system one has to authenticate.

Preconditions:
− User is not logged in.

Main Scenario:
1. User opens main page.
2. System presents main page with a login form.
3. User fills the login form with the authentication data.
4. System verifies the given data.
5. System welcomes Candidate.

Extension: 4a. Not all obligatory data was given.
4a1. System points which data is missing.
4a2. Go back to step 3. #(goto:3)

Extension: 4b. No account with the certain login exists in the system.
4b1. System informs the User that there is no account with the given user name in the system.
4b2. System suggests the User to register in the system as a Candidate or contact Administrator to create new

account.
4b3. Go back to step 3. #(goto:3)

Extension: 4b2a. User decided to register as a Candidate.
4b2a1. Include MOD1_UC1. #(include:MOD1_UC1)

Extension: 4b2b. User decided to contact admin.
4b2b1. Include MOD2_UC8. #(include:MOD2_UC8)

Figure A.1: UC1: Login to the system

96

MOD1_UC1: Register in the system

Summary: Candidate has to register in the system in order to apply for studies.

Preconditions:
− Candidate is not logged in

Main Scenario:
1. Candidate opens system main−page.
2. Candidate chooses registration option.
3. System presents a registration data form and asks to enter the registration data.
4. Candidate fills the registration data form and submits the registration data form. #(open:registration)
5. System verifies if data is correct.
6. System informs that account has been created. #(close:registration)

Extension: 5a. Some obligatory fields were not filled.
5a1. Systems highlights the missing fields. #(close:registration) · · · · · · · · ·FIXED
5a2. Back to step 4. #(goto:4)

Extension: 5b. Account with the given user name already exist.
5b1. System informs that the user name is in use. #(close:registration) · · · · · · · · ·FIXED
5b2. Back to step 4. #(goto:4)

Extension: 5c. Given passwords don’t match.
5c1. System informs Candidate that passwords don’t match. #(close:registration) · · · · · · · · ·FIXED
5c2. Back to step 4. #(goto:4)

Figure A.2: MOD1_UC1: Register in the system

MOD1_UC2: Provide personal and education information

Summary: Candidate has to provide personal information as well as some facts concerning his/her previous
education.

Preconditions:
− Candidate is logged in to the system.

Preceding: "UC1: Login to the System"

Triggers:
− Either Candidate has logged to the system for the first time or has chosen to enter his/her application data.

Main Scenario:
1. Candidate provides personal information.
2. Candidate chooses to provide information concerning former education.
3. System presents the education data form.
4. Candidate fills the education data form and confirms.
5. System stores the data.
6. System displays a confirmation message.

Extension: 4a Some obligatory data was not provided.
4a1 System informs that required some data was not provided and highlights the missing fields.
4a2 Go back to step 2. #(goto:2)

Variation: 4a2a Candidate logged to the system for the first time
4a2a1 Go back to step 1. #(goto:1)

Extension: 4b. Some data was provided in wrong format.
4b1. System informs that some data was not provided correctly and highlights the fields that were consider as

wrongly formatted.
4b2. Go back to step 2. #(goto:2)

Variation: 4b2a. Candidate logged to the system for the first time
4b2a1. Go back to step 1. #(goto:1)

Figure A.3: MOD1_UC2: Provide personal and education information

97

MOD1_UC3: Choose a major

Primary: FALSE · · · · · · · · ·FIXED

Summary: Candidate would like to choose one or more majors he/she would like to apply for.

Preconditions:
− Candidate is logged in to the system

Preceding: "UC1: Login to the System"
− Candidate provided personal and education information

Preceding: "MOD1_UC2: Provide personal and education information"

Main Scenario:
1. Candidate chooses the adding−new−major option.
2. System presents a list of majors for which admission is available.
3. Candidate chooses a major. #(create:chosenMajor)
4. System presents a list of majors chosen by Candidate.

Extension: 3a. Candidate would like to apply for more majors.
3a1. Candidate chooses many majors.
3a2. Continue with step 4. #(goto:4)

Figure A.4: MOD1_UC3: Choose a major

MOD1_UC4: Assign an application fee to a major

Summary: Candidate has to pay an application fee for each major he/she chooses.

Preconditions:
− Candidate is logged in to the system

Preceding: "UC1. Login to the System"
− Candidate has chosen at least one major

Preceding: "MOD1_UC3: Choose a major"

Main Scenario:
1. Candidate proceeds to the chosen−majors view.
2. System presents list containing chosen majors.
3. Candidate chooses a major that he/she wants to pay for. #(use:chosenMajor)
4. System presents a payment form and asks about the method of payment. #(open:payment)
5. Candidate chooses to use a credit card.
6. Candidate provides credit card data and confirms payment. #(close:payment)
7. System presents updated list of the chosen majors.

Variation: 5a. Candidate chooses to pay by money transfer.
5a1. System presents Candidate’s individual account number.
5a2. Candidate performs money transfer (outside the system).
5a3. Money is registered by the System (MOD2 UC12) #(include:MOD2_UC12)
5a4. After money is registered candidate assigns the payment to a major. #(use:registeredMoney)
5a5. Use cases finishes. #(abort), #(close:payment) · · · · · · · · ·FIXED

Extension: 5a3a. Error occurred while registering. #(guard:!create:registeredMoney) · · · · · · · · ·FIXED
5a3a1. Transaction terminated. #(abort), #(close:payment) · · · · · · · · ·FIXED

Variation: 5a4a. If he/she don’t do that
5a4a1. the payment will be assigned automatically according to priorities.

Figure A.5: MOD1_UC4: Assign an application fee to a major

98

MOD1_UC5: Check application status

Summary:
System should provide information about current status of the Candidate’s application.
For example Candidate can check whether his/her application is being processed or was accepted by Selection

committee.

Preconditions:
− Candidate is logged in to the system

Preceding: "UC1. Login to the System"
− Candidate has chosen at least one major

Preceding: "MOD1_UC3: Choose a major"

Main Scenario:
1. Candidate chooses an option of presenting current status of his applications.
2. System presents a chosen−major list with information concerning current status of each application.

#(use:chosenMajor)

Figure A.6: MOD1_UC5: Check application status

MOD2_UC1: Create a new admission

Summary: Administrator has to create a new admission in the system and configure it before whole process can
start.

Preconditions:
− Administrator is logged in to the system

Preceding: "UC1. Login to the System"

Main Scenario:
1. Administrator chooses the creating−new−admission option.
2. System presents the new−admission form. #(open:admissionForm)
3. Administrator provides basic information concerning the admission.
4. Administrator chooses starting and ending dates of the admission.
5. System stores the admission. #(close:admissionForm)
6. System informs that admission has been stored.

Extension: 3a Some obligatory data was not provided. #(guard:!visited(3a)) · · · · · · · · ·FIXED
3a1 System informs that some required data is missing. #(close:admissionForm) · · · · · · · · ·FIXED
3a2 Go back to step 3. #(goto:3)

Extension: 4a Given dates is not valid. #(guard:!visited(4a)) · · · · · · · · ·FIXED
4a1 System informs that starting or ending dates are not valid. #(close:admissionForm) · · · · · · · · ·FIXED
4a2 Go back to step 4. #(goto:4)

Extension: 3b. Catching an infinite loop. #(guard:visited(3a)) · · · · · · · · ·FIXED
3b1. Use case aborted. #(abort) · · · · · · · · ·FIXED

Variation: 4b. Catching an infinite loop. #(guard:visited(4a)) · · · · · · · · ·FIXED
4b1. Use case aborted. #(abort) · · · · · · · · ·FIXED

Figure A.7: MOD2_UC1: Create a new admission

99

MOD2_UC8: Add a new user

Summary: Administrator can add users.

Preconditions:
− Administrator is logged in to the system.

Preceding: "UC1. Login to the System"

Main Scenario:
1. Administrator chooses an option to add user.
2. System presents the new−user form.
3. Administrator fills the form. #(open:newUserForm)
4. Administrator grants roles to the user in the system.
5. System stores the user data. #(close:newUserForm)
6. System grants the user roles.
7. System displays confirmation message.

Extension: 3a. Not all obligatory data was given.
3a1. System informs that some data is missing. #(close:newUserForm) · · · · · · · · ·FIXED
3a2. System highlights the missing fields.
3a3. Go back to step 3. #(goto:3)

Figure A.8: MOD2_UC8: Add a new user

MOD2_UC12: Import admissions fees

Primary: FALSE · · · · · · · · ·FIXED

Summary: Information about payments which are done via money transfer procedure (outside the system) have to
be imported from the Bank system.

Preconditions:
− Administrator is logged in to the system.

Preceding: "UC1. Login to the System"

Main Scenario:
1. Administrator chooses an option to import payments from the bank system.
2. System imports payment entries from the bank.
3. System displays a list containing information about all imported admission fees.

#(create:registeredMoney)

Extension: 2a. Error occurred during the import.
2a1. System displays error message with the detailed information concerning the source of the failure.
2a2. Use case finishes. #(abort)

Figure A.9: MOD2_UC12: Import admissions fees

100

Appendix B

Measured prediction performance

FsetID FallOut F1 Precision Recall SP MCC Context #ctx

set51 34.7% 22.4% 14.6% 55.0% 65.3% 1.02E-03 rel_depOnRoot:src rel_ivf:pos 2

set3 2.9% 20.7% 30.0% 19.2% 97.1% 4.56E-03 rel_depOnRoot:src rel_depOnRoot:dest rel_ivf:lemma rel_ivf:pos rel_passroot 5

set15 2.8% 16.2% 25.3% 15.3% 97.2% 2.80E-03 rel_depOnRoot:src rel_depOnRoot:dest rel_ivf:lemma rel_passroot 4

set49 32.8% 15.7% 10.1% 42.3% 67.2% 3.88E-04 rel_depOnRoot:src rel_ivf:lemma 2

set2 2.7% 15.2% 40.0% 9.5% 97.3% 2.59E-03 rel_depOnRoot:src rel_depOnRoot:dest rel_semrootlemma rel_ivf:lemma rel_passroot 5

set20 1.8% 14.5% 35.0% 9.2% 98.2% 2.49E-03 rel_depOnRoot:src rel_depOnRoot:dest rel_semrootlemma rel_ivf:lemma 4

set46 26.4% 14.4% 10.8% 27.7% 73.6% 1.81E-05 rel_depOnRoot:src rel_depOnRoot:dest 2

set36 1.0% 14.2% 35.0% 9.3% 99.0% 2.41E-03 rel_depOnRoot:src rel_depOnRoot:dest rel_ivf:pos 3

set28 1.8% 11.7% 23.3% 8.3% 98.2% 1.19E-03 rel_depOnRoot:src rel_depOnRoot:dest rel_ivf:lemma 3

set14 28.8% 11.6% 8.2% 20.8% 71.2% -2.20E-04 rel_depOnRoot:src rel_depOnRoot:dest rel_ivf:lemma rel_ivf:pos 4

set1 2.8% 9.8% 17.5% 13.7% 97.2% 1.59E-03 rel_depOnRoot:src rel_depOnRoot:dest rel_semrootlemma rel_ivf:lemma rel_ivf:pos 5

set13 1.8% 7.3% 13.3% 5.8% 98.2% 7.96E-04 rel_depOnRoot:src rel_depOnRoot:dest rel_semrootlemma rel_ivf:pos 4

set29 1.1% 6.7% 10.0% 5.0% 98.9% 1.32E-03 rel_depOnRoot:src rel_depOnRoot:dest rel_passroot 3

set31 2.5% 5.0% 10.0% 3.3% 97.5% 5.08E-04 rel_depOnRoot:src rel_depOnRoot:dest rel_semrootlemma 3

set19 0.7% 3.3% 10.0% 2.0% 99.3% 4.28E-04 rel_depOnRoot:src rel_depOnRoot:dest rel_semrootlemma rel_passroot 4

set25 1.8% 2.5% 5.0% 1.7% 98.2% -1.27E-04 rel_depOnRoot:dest rel_semrootlemma rel_ivf:lemma 3

set53 1.5% 2.2% 3.3% 1.7% 98.5% -1.35E-04 rel_depOnRoot:dest rel_ivf:lemma 2

set56 7.0% 1.6% 1.0% 5.0% 93.0% -9.70E-05 rel_ivf:lemma rel_ivf:pos 2

Figure B.1: Measured results for the "relcl" classification. The table contains top 50 results
sorted by F1.

101

F
s
e
tI
D

F
a
llO
u
t

F
1

P
re
c
is
io
n

R
e
c
a
ll

S
P

M
C
C

C
o
n
te
x
t

#
c
tx

se
t1

2
1

0
.3

%
7

6
.7

%
7

3
.0

%
8

0
.9

%
8

9
.7

%
3

.9
5

E
-0

4
p

o
s

p
o

s:
1

 le
m

m
a

 w
m

in
le

n
:2

 w
m

in
le

n
:3

 w
m

in
le

n
:4

 w
m

in
le

n
:5

 w
m

in
le

n
:6

 w
h

a
sc

l w
h

a
sd

ig
it

w
p

re
fix

:1
 w

p
re

fix
:2

 w
p

re
fix

:3
 w

p
re

fix
:4

 w
su

ff
ix

:2
 w

su
ff

ix
:3

 w
su

ff
ix

:4
 s

p
re

l s
p

p
o

s
1

9

se
t1

9
1

1
.0

%
7

6
.4

%
7

1
.1

%
8

3
.1

%
8

9
.0

%
4

.0
0

E
-0

4
p

o
s

p
o

s:
1

 le
m

m
a

 w
m

in
le

n
:2

 w
m

in
le

n
:3

 w
m

in
le

n
:4

 w
m

in
le

n
:5

 w
m

in
le

n
:6

 w
h

a
sc

l w
h

a
sd

ig
it

w
p

re
fix

:1
 w

p
re

fix
:2

 w
p

re
fix

:4
 w

su
ff

ix
:1

 w
su

ff
ix

:2
 w

su
ff

ix
:3

 w
su

ff
ix

:4
 s

p
re

l s
p

p
o

s
1

9

se
t3

0
1

1
.7

%
7

5
.9

%
7

0
.1

%
8

3
.4

%
8

8
.3

%
3

.8
5

E
-0

4
p

o
s

p
o

s:
1

 le
m

m
a

 w
m

in
le

n
:2

 w
m

in
le

n
:3

 w
m

in
le

n
:4

 w
m

in
le

n
:6

 w
h

a
sc

l w
h

a
sd

ig
it

w
p

re
fix

:1
 w

p
re

fix
:3

 w
p

re
fix

:4
 w

su
ff

ix
:1

 w
su

ff
ix

:2
 w

su
ff

ix
:3

 w
su

ff
ix

:4
 s

p
re

l s
p

p
o

s
1

8

se
t4

8
1

0
.8

%
7

5
.6

%
7

1
.6

%
8

1
.0

%
8

9
.2

%
3

.9
1

E
-0

4
p

o
s

p
o

s:
1

 le
m

m
a

 w
m

in
le

n
:2

 w
m

in
le

n
:3

 w
m

in
le

n
:4

 w
m

in
le

n
:6

 w
h

a
sd

ig
it

w
p

re
fix

:1
 w

p
re

fix
:2

 w
p

re
fix

:3
 w

p
re

fix
:4

 w
su

ff
ix

:2
 w

su
ff

ix
:3

 w
su

ff
ix

:4
 s

p
re

l
1

6

se
t7

4
1

0
.8

%
7

5
.2

%
7

1
.2

%
8

0
.2

%
8

9
.2

%
3

.8
1

E
-0

4
p

o
s:

1
 w

m
in

le
n

:2
 w

m
in

le
n

:3
 w

m
in

le
n

:4
 w

m
in

le
n

:5
 w

p
re

fix
:1

 w
p

re
fix

:2
 w

p
re

fix
:3

 w
p

re
fix

:4
 w

su
ff

ix
:2

 w
su

ff
ix

:3
 w

su
ff

ix
:4

 s
p

re
l

1
3

se
t8

3
1

0
.4

%
7

5
.1

%
7

1
.7

%
7

9
.1

%
8

9
.6

%
3

.8
1

E
-0

4
p

o
s:

-1
 le

m
m

a
 w

m
in

le
n

:4
 w

m
in

le
n

:5
 w

h
a

sc
l w

h
a

sd
ig

it
w

p
re

fix
:1

 w
p

re
fix

:2
 w

p
re

fix
:4

 w
su

ff
ix

:1
 w

su
ff

ix
:2

 w
su

ff
ix

:4
1

2

se
t5

0
1

2
.4

%
7

5
.1

%
6

9
.2

%
8

3
.0

%
8

7
.6

%
3

.8
7

E
-0

4
p

o
s

p
o

s:
1

 p
o

s:
-1

 w
m

in
le

n
:3

 w
m

in
le

n
:4

 w
m

in
le

n
:5

 w
m

in
le

n
:6

 w
h

a
sc

l w
p

re
fix

:1
 w

p
re

fix
:3

 w
p

re
fix

:4
 w

su
ff

ix
:1

 w
su

ff
ix

:2
 w

su
ff

ix
:4

 s
p

re
l s

p
p

o
s

1
6

se
t6

9
1

2
.1

%
7

5
.0

%
6

8
.8

%
8

2
.6

%
8

7
.9

%
3

.8
0

E
-0

4
p

o
s

p
o

s:
-1

 w
m

in
le

n
:2

 w
m

in
le

n
:5

 w
m

in
le

n
:6

 w
h

a
sc

l w
h

a
sd

ig
it

w
p

re
fix

:1
 w

p
re

fix
:2

 w
p

re
fix

:3
 w

su
ff

ix
:2

 w
su

ff
ix

:3
 w

su
ff

ix
:4

 s
p

re
l

1
4

se
t2

3
1

1
.9

%
7

4
.9

%
6

9
.0

%
8

2
.3

%
8

8
.1

%
3

.7
9

E
-0

4
p

o
s

p
o

s:
1

 le
m

m
a

 w
m

in
le

n
:2

 w
m

in
le

n
:3

 w
m

in
le

n
:4

 w
m

in
le

n
:5

 w
m

in
le

n
:6

 w
h

a
sc

l w
p

re
fix

:1
 w

p
re

fix
:3

 w
p

re
fix

:4
 w

su
ff

ix
:1

 w
su

ff
ix

:2
 w

su
ff

ix
:3

 w
su

ff
ix

:4
 s

p
re

l s
p

p
o

s
1

8

se
t3

3
1

2
.1

%
7

4
.9

%
6

9
.3

%
8

2
.2

%
8

7
.9

%
3

.7
5

E
-0

4
p

o
s

p
o

s:
1

 p
o

s:
-1

 w
m

in
le

n
:3

 w
m

in
le

n
:4

 w
m

in
le

n
:5

 w
m

in
le

n
:6

 w
h

a
sc

l w
h

a
sd

ig
it

w
p

re
fix

:1
 w

p
re

fix
:2

 w
p

re
fix

:3
 w

p
re

fix
:4

 w
su

ff
ix

:2
 w

su
ff

ix
:3

 w
su

ff
ix

:4
 s

p
re

l
1

7

se
t4

0
1

1
.5

%
7

4
.9

%
7

0
.1

%
8

2
.2

%
8

8
.5

%
3

.9
1

E
-0

4
p

o
s

p
o

s:
1

 le
m

m
a

 w
m

in
le

n
:3

 w
m

in
le

n
:5

 w
m

in
le

n
:6

 w
h

a
sc

l w
h

a
sd

ig
it

w
p

re
fix

:1
 w

p
re

fix
:2

 w
p

re
fix

:3
 w

p
re

fix
:4

 w
su

ff
ix

:1
 w

su
ff

ix
:2

 w
su

ff
ix

:3
 w

su
ff

ix
:4

 s
p

re
l

1
7

se
t2

1
1

2
.7

%
7

4
.9

%
6

8
.2

%
8

3
.8

%
8

7
.3

%
3

.8
0

E
-0

4
p

o
s

p
o

s:
1

 p
o

s:
-1

 le
m

m
a

 w
m

in
le

n
:2

 w
m

in
le

n
:4

 w
m

in
le

n
:5

 w
m

in
le

n
:6

 w
h

a
sc

l w
h

a
sd

ig
it

w
p

re
fix

:1
 w

p
re

fix
:2

 w
p

re
fix

:3
 w

p
re

fix
:4

 w
su

ff
ix

:2
 w

su
ff

ix
:4

 s
p

re
l s

p
p

o
s

1
8

se
t8

6
1

2
.2

%
7

4
.6

%
6

9
.4

%
8

1
.8

%
8

7
.8

%
3

.7
4

E
-0

4
p

o
s

p
o

s:
-1

 le
m

m
a

 w
m

in
le

n
:2

 w
m

in
le

n
:3

 w
m

in
le

n
:5

 w
h

a
sc

l w
h

a
sd

ig
it

w
p

re
fix

:1
 w

p
re

fix
:2

 w
su

ff
ix

:1
 w

su
ff

ix
:3

1
2

se
t6

1
2

.1
%

7
4

.5
%

6
8

.8
%

8
2

.4
%

8
7

.9
%

3
.7

8
E

-0
4

p
o

s
p

o
s:

1
 p

o
s:

-1
 le

m
m

a
 w

m
in

le
n

:2
 w

m
in

le
n

:3
 w

m
in

le
n

:4
 w

m
in

le
n

:5
 w

m
in

le
n

:6
 w

h
a

sc
l w

h
a

sd
ig

it
w

p
re

fix
:1

 w
p

re
fix

:2
 w

p
re

fix
:3

 w
p

re
fix

:4
 w

su
ff

ix
:1

 w
su

ff
ix

:3
 w

su
ff

ix
:4

 s
p

re
l s

p
p

o
s

2
0

se
t6

4
1

1
.6

%
7

4
.4

%
6

9
.4

%
8

0
.6

%
8

8
.4

%
3

.7
8

E
-0

4
p

o
s

p
o

s:
1

 le
m

m
a

 w
m

in
le

n
:3

 w
m

in
le

n
:4

 w
m

in
le

n
:6

 w
h

a
sc

l w
p

re
fix

:2
 w

p
re

fix
:3

 w
p

re
fix

:4
 w

su
ff

ix
:1

 w
su

ff
ix

:2
 w

su
ff

ix
:3

 s
p

re
l

1
4

se
t1

0
4

1
1

.5
%

7
4

.4
%

6
9

.1
%

8
1

.2
%

8
8

.5
%

3
.8

9
E

-0
4

p
o

s
p

o
s:

1
 w

h
a

sc
l w

h
a

sd
ig

it
w

p
re

fix
:1

 w
p

re
fix

:2
 w

p
re

fix
:4

 w
su

ff
ix

:3
 w

su
ff

ix
:4

 s
p

re
l

1
0

se
t1

0
0

1
1

.3
%

7
4

.4
%

7
1

.0
%

7
8

.9
%

8
8

.7
%

3
.7

5
E

-0
4

p
o

s:
-1

 le
m

m
a

 w
m

in
le

n
:3

 w
m

in
le

n
:4

 w
m

in
le

n
:5

 w
m

in
le

n
:6

 w
h

a
sc

l w
p

re
fix

:1
 w

p
re

fix
:3

 w
su

ff
ix

:2
 w

su
ff

ix
:4

1
1

se
t7

1
1

.2
%

7
4

.3
%

6
9

.7
%

8
0

.2
%

8
8

.8
%

3
.7

4
E

-0
4

p
o

s
p

o
s:

1
 le

m
m

a
 w

m
in

le
n

:2
 w

m
in

le
n

:3
 w

m
in

le
n

:4
 w

m
in

le
n

:5
 w

m
in

le
n

:6
 w

h
a

sc
l w

h
a

sd
ig

it
w

p
re

fix
:1

 w
p

re
fix

:2
 w

p
re

fix
:3

 w
p

re
fix

:4
 w

su
ff

ix
:1

 w
su

ff
ix

:2
 w

su
ff

ix
:3

 w
su

ff
ix

:4
 s

p
re

l s
p

p
o

s
2

0

se
t5

8
1

2
.9

%
7

4
.3

%
6

7
.7

%
8

3
.3

%
8

7
.1

%
3

.7
3

E
-0

4
p

o
s

p
o

s:
1

 p
o

s:
-1

 w
m

in
le

n
:3

 w
m

in
le

n
:5

 w
m

in
le

n
:6

 w
h

a
sc

l w
p

re
fix

:1
 w

p
re

fix
:2

 w
p

re
fix

:3
 w

su
ff

ix
:1

 w
su

ff
ix

:3
 w

su
ff

ix
:4

 s
p

re
l s

p
p

o
s

1
5

se
t6

0
1

2
.8

%
7

4
.3

%
6

7
.7

%
8

4
.2

%
8

7
.2

%
3

.8
0

E
-0

4
p

o
s

p
o

s:
1

 p
o

s:
-1

 le
m

m
a

 w
m

in
le

n
:2

 w
m

in
le

n
:4

 w
m

in
le

n
:5

 w
m

in
le

n
:6

 w
h

a
sc

l w
p

re
fix

:1
 w

p
re

fix
:4

 w
su

ff
ix

:1
 w

su
ff

ix
:2

 w
su

ff
ix

:3
 s

p
p

o
s

1
5

se
t7

6
1

1
.2

%
7

4
.3

%
6

9
.6

%
8

0
.2

%
8

8
.8

%
3

.8
0

E
-0

4
p

o
s:

-1
 le

m
m

a
 w

m
in

le
n

:2
 w

m
in

le
n

:5
 w

h
a

sc
l w

h
a

sd
ig

it
w

p
re

fix
:1

 w
p

re
fix

:2
 w

p
re

fix
:3

 w
p

re
fix

:4
 w

su
ff

ix
:3

 s
p

re
l s

p
p

o
s

1
3

se
t2

0
1

1
.7

%
7

4
.1

%
6

9
.6

%
7

9
.9

%
8

8
.3

%
3

.7
6

E
-0

4
p

o
s:

1
 p

o
s:

-1
 le

m
m

a
 w

m
in

le
n

:2
 w

m
in

le
n

:3
 w

m
in

le
n

:4
 w

m
in

le
n

:5
 w

m
in

le
n

:6
 w

h
a

sc
l w

h
a

sd
ig

it
w

p
re

fix
:2

 w
p

re
fix

:3
 w

p
re

fix
:4

 w
su

ff
ix

:1
 w

su
ff

ix
:2

 w
su

ff
ix

:3
 w

su
ff

ix
:4

 s
p

re
l s

p
p

o
s

1
9

se
t5

1
1

.9
%

7
4

.0
%

6
8

.2
%

8
1

.7
%

8
8

.1
%

3
.8

0
E

-0
4

p
o

s
p

o
s:

1
 p

o
s:

-1
 le

m
m

a
 w

m
in

le
n

:2
 w

m
in

le
n

:3
 w

m
in

le
n

:4
 w

m
in

le
n

:5
 w

m
in

le
n

:6
 w

h
a

sc
l w

h
a

sd
ig

it
w

p
re

fix
:1

 w
p

re
fix

:2
 w

p
re

fix
:3

 w
su

ff
ix

:1
 w

su
ff

ix
:2

 w
su

ff
ix

:3
 w

su
ff

ix
:4

 s
p

re
l s

p
p

o
s

2
0

se
t8

8
1

0
.6

%
7

3
.9

%
7

0
.5

%
7

8
.7

%
8

9
.4

%
3

.8
1

E
-0

4
p

o
s:

-1
 le

m
m

a
 w

m
in

le
n

:3
 w

m
in

le
n

:4
 w

m
in

le
n

:5
 w

h
a

sc
l w

p
re

fix
:1

 w
p

re
fix

:2
 w

p
re

fix
:3

 w
p

re
fix

:4
 w

su
ff

ix
:1

 w
su

ff
ix

:3
1

2

se
t1

0
6

1
0

.5
%

7
3

.8
%

7
1

.1
%

7
7

.3
%

8
9

.5
%

3
.7

8
E

-0
4

p
o

s:
-1

 le
m

m
a

 w
m

in
le

n
:2

 w
m

in
le

n
:4

 w
m

in
le

n
:5

 w
h

a
sc

l w
h

a
sd

ig
it

w
p

re
fix

:2
 w

p
re

fix
:3

 s
p

re
l

1
0

se
t1

3
1

1
.7

%
7

3
.8

%
6

8
.4

%
8

0
.8

%
8

8
.3

%
3

.7
8

E
-0

4
p

o
s

p
o

s:
1

 le
m

m
a

 w
m

in
le

n
:2

 w
m

in
le

n
:4

 w
m

in
le

n
:5

 w
m

in
le

n
:6

 w
h

a
sc

l w
h

a
sd

ig
it

w
p

re
fix

:1
 w

p
re

fix
:2

 w
p

re
fix

:3
 w

p
re

fix
:4

 w
su

ff
ix

:1
 w

su
ff

ix
:2

 w
su

ff
ix

:3
 w

su
ff

ix
:4

 s
p

re
l s

p
p

o
s

1
9

se
t3

2
1

2
.2

%
7

3
.7

%
6

8
.5

%
8

0
.4

%
8

7
.8

%
3

.7
7

E
-0

4
p

o
s

p
o

s:
-1

 w
m

in
le

n
:2

 w
m

in
le

n
:3

 w
m

in
le

n
:4

 w
m

in
le

n
:5

 w
m

in
le

n
:6

 w
h

a
sc

l w
p

re
fix

:1
 w

p
re

fix
:2

 w
p

re
fix

:3
 w

p
re

fix
:4

 w
su

ff
ix

:1
 w

su
ff

ix
:2

 w
su

ff
ix

:3
 w

su
ff

ix
:4

 s
p

re
l

1
7

se
t9

7
1

1
.9

%
7

3
.7

%
7

0
.2

%
7

9
.6

%
8

8
.1

%
3

.7
8

E
-0

4
p

o
s:

-1
 w

m
in

le
n

:2
 w

m
in

le
n

:6
 w

h
a

sc
l w

p
re

fix
:1

 w
p

re
fix

:3
 w

p
re

fix
:4

 w
su

ff
ix

:1
 w

su
ff

ix
:2

 w
su

ff
ix

:3
 w

su
ff

ix
:4

1
1

se
t1

1
7

1
3

.5
%

7
3

.7
%

6
7

.2
%

8
1

.9
%

8
6

.5
%

3
.6

3
E

-0
4

p
o

s:
-1

 w
m

in
le

n
:3

 w
m

in
le

n
:4

 w
m

in
le

n
:6

 w
p

re
fix

:1
 w

p
re

fix
:4

 w
su

ff
ix

:2
 w

su
ff

ix
:3

 w
su

ff
ix

:4
9

se
t3

6
1

3
.2

%
7

3
.7

%
6

7
.0

%
8

2
.6

%
8

6
.8

%
3

.6
9

E
-0

4
p

o
s

p
o

s:
1

 p
o

s:
-1

 le
m

m
a

 w
m

in
le

n
:2

 w
m

in
le

n
:4

 w
m

in
le

n
:5

 w
h

a
sc

l w
h

a
sd

ig
it

w
p

re
fix

:1
 w

p
re

fix
:3

 w
p

re
fix

:4
 w

su
ff

ix
:1

 w
su

ff
ix

:2
 w

su
ff

ix
:3

 s
p

re
l s

p
p

o
s

1
7

se
t4

1
3

.1
%

7
3

.7
%

6
6

.8
%

8
3

.0
%

8
6

.9
%

3
.7

1
E

-0
4

p
o

s
p

o
s:

1
 p

o
s:

-1
 le

m
m

a
 w

m
in

le
n

:2
 w

m
in

le
n

:3
 w

m
in

le
n

:4
 w

m
in

le
n

:5
 w

m
in

le
n

:6
 w

h
a

sc
l w

p
re

fix
:1

 w
p

re
fix

:2
 w

p
re

fix
:3

 w
p

re
fix

:4
 w

su
ff

ix
:1

 w
su

ff
ix

:2
 w

su
ff

ix
:3

 w
su

ff
ix

:4
 s

p
re

l s
p

p
o

s
2

0

se
t1

1
1

3
.9

%
7

3
.7

%
6

5
.8

%
8

4
.0

%
8

6
.1

%
3

.7
3

E
-0

4
p

o
s

p
o

s:
1

 p
o

s:
-1

 le
m

m
a

 w
m

in
le

n
:2

 w
m

in
le

n
:3

 w
m

in
le

n
:4

 w
m

in
le

n
:6

 w
h

a
sc

l w
h

a
sd

ig
it

w
p

re
fix

:1
 w

p
re

fix
:2

 w
p

re
fix

:3
 w

p
re

fix
:4

 w
su

ff
ix

:1
 w

su
ff

ix
:2

 w
su

ff
ix

:3
 s

p
re

l s
p

p
o

s
1

9

se
t8

1
1

1
.2

%
7

3
.6

%
6

9
.7

%
7

9
.6

%
8

8
.8

%
3

.8
1

E
-0

4
p

o
s:

1
 w

m
in

le
n

:2
 w

m
in

le
n

:3
 w

m
in

le
n

:6
 w

p
re

fix
:1

 w
p

re
fix

:2
 w

p
re

fix
:3

 w
p

re
fix

:4
 w

su
ff

ix
:1

 w
su

ff
ix

:3
 w

su
ff

ix
:4

 s
p

re
l

1
2

se
t2

8
1

3
.7

%
7

3
.6

%
6

6
.6

%
8

3
.4

%
8

6
.3

%
3

.7
2

E
-0

4
p

o
s

p
o

s:
1

 p
o

s:
-1

 le
m

m
a

 w
m

in
le

n
:2

 w
m

in
le

n
:4

 w
m

in
le

n
:5

 w
m

in
le

n
:6

 w
h

a
sc

l w
h

a
sd

ig
it

w
p

re
fix

:1
 w

p
re

fix
:2

 w
p

re
fix

:3
 w

p
re

fix
:4

 w
su

ff
ix

:1
 w

su
ff

ix
:2

 w
su

ff
ix

:4
 s

p
p

o
s

1
8

se
t4

1
1

2
.9

%
7

3
.6

%
6

6
.8

%
8

2
.6

%
8

7
.1

%
3

.7
6

E
-0

4
p

o
s

p
o

s:
-1

 le
m

m
a

 w
m

in
le

n
:3

 w
m

in
le

n
:6

 w
h

a
sc

l w
h

a
sd

ig
it

w
p

re
fix

:1
 w

p
re

fix
:2

 w
p

re
fix

:3
 w

p
re

fix
:4

 w
su

ff
ix

:1
 w

su
ff

ix
:2

 w
su

ff
ix

:3
 w

su
ff

ix
:4

 s
p

p
o

s
1

6

se
t1

1
0

1
4

.0
%

7
3

.5
%

6
6

.1
%

8
3

.9
%

8
6

.0
%

3
.7

3
E

-0
4

p
o

s:
1

 w
m

in
le

n
:2

 w
m

in
le

n
:3

 w
m

in
le

n
:5

 w
m

in
le

n
:6

 w
p

re
fix

:1
 w

p
re

fix
:2

 w
su

ff
ix

:1
 w

su
ff

ix
:2

 s
p

re
l

1
0

se
t9

1
1

.7
%

7
3

.5
%

6
8

.6
%

8
0

.3
%

8
8

.3
%

3
.7

9
E

-0
4

p
o

s
p

o
s:

1
 p

o
s:

-1
 le

m
m

a
 w

m
in

le
n

:2
 w

m
in

le
n

:3
 w

m
in

le
n

:4
 w

m
in

le
n

:5
 w

m
in

le
n

:6
 w

h
a

sc
l w

h
a

sd
ig

it
w

p
re

fix
:1

 w
p

re
fix

:2
 w

p
re

fix
:3

 w
p

re
fix

:4
 w

su
ff

ix
:1

 w
su

ff
ix

:2
 w

su
ff

ix
:4

 s
p

re
l s

p
p

o
s

2
0

se
t0

1
2

.9
%

7
3

.5
%

6
7

.1
%

8
2

.1
%

8
7

.1
%

3
.7

3
E

-0
4

p
o

s
p

o
s:

1
 p

o
s:

-1
 le

m
m

a
 w

m
in

le
n

:2
 w

m
in

le
n

:3
 w

m
in

le
n

:4
 w

m
in

le
n

:5
 w

m
in

le
n

:6
 w

h
a

sc
l w

h
a

sd
ig

it
w

p
re

fix
:1

 w
p

re
fix

:2
 w

p
re

fix
:3

 w
p

re
fix

:4
 w

su
ff

ix
:1

 w
su

ff
ix

:2
 w

su
ff

ix
:3

 w
su

ff
ix

:4
 s

p
re

l s
p

p
o

s
2

1

se
t7

8
1

0
.0

%
7

3
.4

%
7

1
.8

%
7

5
.8

%
9

0
.0

%
3

.8
5

E
-0

4
p

o
s

le
m

m
a

 w
m

in
le

n
:2

 w
m

in
le

n
:4

 w
m

in
le

n
:5

 w
h

a
sd

ig
it

w
p

re
fix

:2
 w

p
re

fix
:3

 w
p

re
fix

:4
 w

su
ff

ix
:2

 w
su

ff
ix

:4
 s

p
re

l s
p

p
o

s
1

3

se
t5

3
1

2
.4

%
7

3
.4

%
6

8
.0

%
8

0
.3

%
8

7
.6

%
3

.7
3

E
-0

4
p

o
s

p
o

s:
1

 w
m

in
le

n
:2

 w
m

in
le

n
:3

 w
m

in
le

n
:4

 w
m

in
le

n
:6

 w
h

a
sc

l w
h

a
sd

ig
it

w
p

re
fix

:1
 w

p
re

fix
:2

 w
p

re
fix

:3
 w

p
re

fix
:4

 w
su

ff
ix

:2
 w

su
ff

ix
:3

 s
p

re
l

1
5

se
t2

4
1

2
.0

%
7

3
.4

%
6

7
.9

%
8

0
.4

%
8

8
.0

%
3

.7
9

E
-0

4
p

o
s:

1
 p

o
s:

-1
 le

m
m

a
 w

m
in

le
n

:2
 w

m
in

le
n

:3
 w

m
in

le
n

:4
 w

m
in

le
n

:5
 w

m
in

le
n

:6
 w

h
a

sc
l w

h
a

sd
ig

it
w

p
re

fix
:1

 w
p

re
fix

:2
 w

p
re

fix
:3

 w
p

re
fix

:4
 w

su
ff

ix
:2

 w
su

ff
ix

:4
 s

p
re

l s
p

p
o

s
1

8

se
t2

2
1

2
.9

%
7

3
.4

%
6

7
.5

%
8

1
.7

%
8

7
.1

%
3

.7
2

E
-0

4
p

o
s

p
o

s:
1

 p
o

s:
-1

 le
m

m
a

 w
m

in
le

n
:2

 w
m

in
le

n
:5

 w
m

in
le

n
:6

 w
h

a
sc

l w
h

a
sd

ig
it

w
p

re
fix

:1
 w

p
re

fix
:2

 w
p

re
fix

:3
 w

p
re

fix
:4

 w
su

ff
ix

:1
 w

su
ff

ix
:2

 w
su

ff
ix

:4
 s

p
re

l s
p

p
o

s
1

8

se
t1

8
1

0
.8

%
7

3
.4

%
7

0
.1

%
7

7
.9

%
8

9
.2

%
3

.7
2

E
-0

4
p

o
s

p
o

s:
1

 le
m

m
a

 w
m

in
le

n
:2

 w
m

in
le

n
:3

 w
m

in
le

n
:4

 w
m

in
le

n
:5

 w
m

in
le

n
:6

 w
h

a
sc

l w
h

a
sd

ig
it

w
p

re
fix

:1
 w

p
re

fix
:2

 w
p

re
fix

:3
 w

p
re

fix
:4

 w
su

ff
ix

:1
 w

su
ff

ix
:2

 w
su

ff
ix

:3
 w

su
ff

ix
:4

 s
p

p
o

s
1

9

se
t1

4
1

3
.2

%
7

3
.4

%
6

6
.4

%
8

2
.4

%
8

6
.8

%
3

.7
0

E
-0

4
p

o
s

p
o

s:
1

 p
o

s:
-1

 le
m

m
a

 w
m

in
le

n
:2

 w
m

in
le

n
:3

 w
m

in
le

n
:4

 w
m

in
le

n
:6

 w
h

a
sc

l w
h

a
sd

ig
it

w
p

re
fix

:1
 w

p
re

fix
:2

 w
p

re
fix

:4
 w

su
ff

ix
:1

 w
su

ff
ix

:2
 w

su
ff

ix
:3

 w
su

ff
ix

:4
 s

p
re

l s
p

p
o

s
1

9

se
t6

8
1

0
.5

%
7

3
.3

%
7

0
.2

%
7

7
.4

%
8

9
.5

%
3

.8
2

E
-0

4
p

o
s

le
m

m
a

 w
m

in
le

n
:3

 w
m

in
le

n
:4

 w
m

in
le

n
:5

 w
m

in
le

n
:6

 w
h

a
sc

l w
h

a
sd

ig
it

w
p

re
fix

:1
 w

p
re

fix
:3

 w
p

re
fix

:4
 w

su
ff

ix
:2

 w
su

ff
ix

:3
 s

p
re

l
1

4

se
t2

6
1

3
.4

%
7

3
.3

%
6

6
.4

%
8

2
.2

%
8

6
.6

%
3

.6
3

E
-0

4
p

o
s

p
o

s:
1

 p
o

s:
-1

 w
m

in
le

n
:2

 w
m

in
le

n
:3

 w
m

in
le

n
:4

 w
m

in
le

n
:5

 w
h

a
sc

l w
h

a
sd

ig
it

w
p

re
fix

:1
 w

p
re

fix
:2

 w
p

re
fix

:3
 w

p
re

fix
:4

 w
su

ff
ix

:1
 w

su
ff

ix
:3

 w
su

ff
ix

:4
 s

p
re

l s
p

p
o

s
1

8

se
t1

0
5

1
1

.0
%

7
3

.2
%

7
0

.2
%

7
6

.8
%

8
9

.0
%

3
.6

4
E

-0
4

p
o

s:
-1

 le
m

m
a

 w
m

in
le

n
:2

 w
m

in
le

n
:3

 w
m

in
le

n
:6

 w
h

a
sd

ig
it

w
p

re
fix

:3
 w

su
ff

ix
:1

 w
su

ff
ix

:2
 w

su
ff

ix
:3

1
0

se
t1

5
1

3
.2

%
7

3
.1

%
6

6
.3

%
8

2
.6

%
8

6
.8

%
3

.7
2

E
-0

4
p

o
s

p
o

s:
1

 p
o

s:
-1

 le
m

m
a

 w
m

in
le

n
:3

 w
m

in
le

n
:4

 w
m

in
le

n
:5

 w
m

in
le

n
:6

 w
h

a
sc

l w
h

a
sd

ig
it

w
p

re
fix

:1
 w

p
re

fix
:2

 w
p

re
fix

:3
 w

su
ff

ix
:1

 w
su

ff
ix

:2
 w

su
ff

ix
:3

 w
su

ff
ix

:4
 s

p
re

l s
p

p
o

s
1

9

se
t1

6
1

1
0

.5
%

7
3

.1
%

7
0

.7
%

7
6

.4
%

8
9

.5
%

3
.7

5
E

-0
4

p
o

s:
-1

 w
p

re
fix

:4
 w

su
ff

ix
:2

 w
su

ff
ix

:4
4

se
t1

0
2

1
2

.1
%

7
3

.1
%

6
7

.7
%

7
9

.9
%

8
7

.9
%

3
.7

0
E

-0
4

p
o

s:
-1

 le
m

m
a

 w
m

in
le

n
:3

 w
m

in
le

n
:4

 w
h

a
sd

ig
it

w
p

re
fix

:1
 w

p
re

fix
:2

 w
p

re
fix

:4
 w

su
ff

ix
:3

 s
p

p
o

s
1

0

Figure B.2: Measured results for the "linktype" classification. The table contains top 50 results
sorted by F1.

102

F
s
e
tI
D

F
a
ll
O
u
t

F
1

P
re
c
is
io
n
R
e
c
a
ll

S
P

M
C
C

C
o
n
te
x
t

#
c
tx

se
t1

2
5

.2
%

8
8

.1
%

8
7

.3
%

8
9

.6
%

9
4

.8
%

4
.7

5
E

-0
4

ro
le

In
L

in
k:

-1
 r

o
le

In
L

in
k:

-2
 p

o
s

p
o

s:
-1

 le
m

m
a

 w
m

in
le

n
:2

 w
m

in
le

n
:3

 w
m

in
le

n
:4

 w
m

in
le

n
:5

 w
h

a
sc

l w
h

a
sd

ig
it

w
p

re
fix

:1
 w

p
re

fix
:2

 w
p

re
fix

:3
 w

p
re

fix
:4

 w
su

ff
ix

:1
 w

su
ff

ix
:2

 w
su

ff
ix

:3
 w

su
ff

ix
:4

 s
p

re
l

2
0

se
t9

6
4

.9
%

8
8

.1
%

8
8

.6
%

8
8

.0
%

9
5

.1
%

4
.7

5
E

-0
4

ro
le

In
L

in
k:

-1
 r

o
le

In
L

in
k:

-2
 p

o
s:

-1
 w

m
in

le
n

:4
 w

m
in

le
n

:5
 w

m
in

le
n

:6
 w

p
re

fix
:1

 w
p

re
fix

:2
 w

p
re

fix
:3

 w
p

re
fix

:4
 w

su
ff

ix
:1

 w
su

ff
ix

:2
1

2

se
t6

7
5

.9
%

8
8

.0
%

8
6

.3
%

9
0

.0
%

9
4

.1
%

4
.6

5
E

-0
4

ro
le

In
L

in
k:

-1
 r

o
le

In
L

in
k:

-2
 p

o
s

p
o

s:
-1

 le
m

m
a

 w
m

in
le

n
:2

 w
m

in
le

n
:4

 w
m

in
le

n
:6

 w
h

a
sd

ig
it

w
p

re
fix

:1
 w

p
re

fix
:2

 w
p

re
fix

:3
 w

p
re

fix
:4

 w
su

ff
ix

:4
 s

p
re

l
1

5

se
t2

9
5

.6
%

8
7

.4
%

8
6

.3
%

8
9

.1
%

9
4

.4
%

4
.5

9
E

-0
4

ro
le

In
L

in
k:

-1
 p

o
s

p
o

s:
-1

 le
m

m
a

 w
m

in
le

n
:2

 w
m

in
le

n
:3

 w
m

in
le

n
:4

 w
m

in
le

n
:5

 w
m

in
le

n
:6

 w
h

a
sc

l w
h

a
sd

ig
it

w
p

re
fix

:1
 w

p
re

fix
:2

 w
p

re
fix

:3
 w

p
re

fix
:4

 w
su

ff
ix

:1
 w

su
ff

ix
:2

 w
su

ff
ix

:3
 s

p
re

l
1

9

se
t2

6
6

.1
%

8
7

.3
%

8
6

.2
%

8
9

.0
%

9
3

.9
%

4
.6

0
E

-0
4

ro
le

In
L

in
k:

-1
 r

o
le

In
L

in
k:

-2
 p

o
s:

1
 p

o
s:

-1
 le

m
m

a
 w

m
in

le
n

:2
 w

m
in

le
n

:3
 w

m
in

le
n

:5
 w

m
in

le
n

:6
 w

h
a

sc
l w

h
a

sd
ig

it
w

p
re

fix
:1

 w
p

re
fix

:2
 w

p
re

fix
:4

 w
su

ff
ix

:1
 w

su
ff

ix
:2

 w
su

ff
ix

:3
 w

su
ff

ix
:4

 s
p

re
l

1
9

se
t1

1
5

4
.7

%
8

7
.3

%
8

7
.6

%
8

7
.5

%
9

5
.3

%
4

.7
0

E
-0

4
ro

le
In

L
in

k:
-1

 r
o

le
In

L
in

k:
-2

 p
o

s:
-1

 w
m

in
le

n
:2

 w
h

a
sd

ig
it

w
p

re
fix

:1
 w

p
re

fix
:3

 w
p

re
fix

:4
 w

su
ff

ix
:1

 w
su

ff
ix

:4
1

0

se
t5

5
5

.9
%

8
7

.3
%

8
5

.5
%

8
9

.6
%

9
4

.1
%

4
.6

2
E

-0
4

ro
le

In
L

in
k:

-1
 r

o
le

In
L

in
k:

-2
 p

o
s

p
o

s:
-1

 le
m

m
a

 w
m

in
le

n
:2

 w
m

in
le

n
:3

 w
m

in
le

n
:4

 w
m

in
le

n
:5

 w
p

re
fix

:1
 w

p
re

fix
:3

 w
p

re
fix

:4
 w

su
ff

ix
:2

 w
su

ff
ix

:3
 w

su
ff

ix
:4

 s
p

re
l

1
6

se
t4

1
6

.8
%

8
7

.1
%

8
4

.8
%

8
9

.9
%

9
3

.2
%

4
.5

6
E

-0
4

ro
le

In
L

in
k:

-1
 r

o
le

In
L

in
k:

-2
 p

o
s

p
o

s:
-1

 le
m

m
a

 w
m

in
le

n
:4

 w
m

in
le

n
:5

 w
m

in
le

n
:6

 w
h

a
sc

l w
p

re
fix

:1
 w

p
re

fix
:2

 w
p

re
fix

:3
 w

p
re

fix
:4

 w
su

ff
ix

:1
 w

su
ff

ix
:3

 w
su

ff
ix

:4
 s

p
re

l
1

7

se
t1

9
5

.6
%

8
7

.1
%

8
6

.3
%

8
8

.4
%

9
4

.4
%

4
.6

1
E

-0
4

ro
le

In
L

in
k:

-1
 r

o
le

In
L

in
k:

-2
 p

o
s

p
o

s:
1

 p
o

s:
-1

 le
m

m
a

 w
m

in
le

n
:3

 w
m

in
le

n
:4

 w
m

in
le

n
:5

 w
m

in
le

n
:6

 w
h

a
sc

l w
h

a
sd

ig
it

w
p

re
fix

:2
 w

p
re

fix
:3

 w
p

re
fix

:4
 w

su
ff

ix
:1

 w
su

ff
ix

:2
 w

su
ff

ix
:3

 w
su

ff
ix

:4
 s

p
re

l
2

0

se
t6

0
6

.0
%

8
7

.1
%

8
5

.8
%

8
9

.0
%

9
4

.0
%

4
.6

5
E

-0
4

ro
le

In
L

in
k:

-1
 r

o
le

In
L

in
k:

-2
 p

o
s:

-1
 le

m
m

a
 w

m
in

le
n

:3
 w

m
in

le
n

:5
 w

m
in

le
n

:6
 w

h
a

sc
l w

h
a

sd
ig

it
w

p
re

fix
:1

 w
p

re
fix

:2
 w

p
re

fix
:3

 w
p

re
fix

:4
 w

su
ff

ix
:2

 w
su

ff
ix

:3
 s

p
re

l
1

6

se
t8

6
.6

%
8

7
.0

%
8

4
.7

%
8

9
.7

%
9

3
.4

%
4

.6
2

E
-0

4
ro

le
In

L
in

k:
-1

 r
o

le
In

L
in

k:
-2

 p
o

s
p

o
s:

1
 p

o
s:

-1
 w

m
in

le
n

:2
 w

m
in

le
n

:3
 w

m
in

le
n

:4
 w

m
in

le
n

:5
 w

m
in

le
n

:6
 w

h
a

sc
l w

h
a

sd
ig

it
w

p
re

fix
:1

 w
p

re
fix

:2
 w

p
re

fix
:3

 w
p

re
fix

:4
 w

su
ff

ix
:1

 w
su

ff
ix

:2
 w

su
ff

ix
:3

 w
su

ff
ix

:4
 s

p
re

l
2

1

se
t6

2
6

.4
%

8
6

.8
%

8
5

.4
%

8
8

.7
%

9
3

.6
%

4
.6

1
E

-0
4

ro
le

In
L

in
k:

-1
 p

o
s

p
o

s:
1

 p
o

s:
-1

 w
m

in
le

n
:2

 w
m

in
le

n
:4

 w
h

a
sc

l w
h

a
sd

ig
it

w
p

re
fix

:1
 w

p
re

fix
:3

 w
p

re
fix

:4
 w

su
ff

ix
:1

 w
su

ff
ix

:2
 w

su
ff

ix
:3

 s
p

re
l

1
5

se
t6

4
6

.2
%

8
6

.8
%

8
4

.8
%

8
9

.7
%

9
3

.8
%

4
.5

9
E

-0
4

ro
le

In
L

in
k:

-1
 r

o
le

In
L

in
k:

-2
 p

o
s

p
o

s:
-1

 le
m

m
a

 w
m

in
le

n
:2

 w
m

in
le

n
:4

 w
m

in
le

n
:5

 w
m

in
le

n
:6

 w
h

a
sd

ig
it

w
p

re
fix

:1
 w

p
re

fix
:4

 w
su

ff
ix

:2
 w

su
ff

ix
:3

 s
p

re
l

1
5

se
t5

0
5

.6
%

8
6

.8
%

8
6

.0
%

8
8

.1
%

9
4

.4
%

4
.6

4
E

-0
4

ro
le

In
L

in
k:

-1
 r

o
le

In
L

in
k:

-2
 p

o
s

p
o

s:
-1

 w
m

in
le

n
:3

 w
m

in
le

n
:4

 w
m

in
le

n
:5

 w
m

in
le

n
:6

 w
h

a
sc

l w
h

a
sd

ig
it

w
p

re
fix

:1
 w

p
re

fix
:2

 w
p

re
fix

:3
 w

p
re

fix
:4

 w
su

ff
ix

:2
 w

su
ff

ix
:4

 s
p

re
l

1
7

se
t5

5
.8

%
8

6
.8

%
8

6
.0

%
8

7
.9

%
9

4
.2

%
4

.5
7

E
-0

4
ro

le
In

L
in

k:
-1

 r
o

le
In

L
in

k:
-2

 p
o

s
p

o
s:

1
 le

m
m

a
 w

m
in

le
n

:2
 w

m
in

le
n

:3
 w

m
in

le
n

:4
 w

m
in

le
n

:5
 w

m
in

le
n

:6
 w

h
a

sc
l w

h
a

sd
ig

it
w

p
re

fix
:1

 w
p

re
fix

:2
 w

p
re

fix
:3

 w
p

re
fix

:4
 w

su
ff

ix
:1

 w
su

ff
ix

:2
 w

su
ff

ix
:3

 w
su

ff
ix

:4
 s

p
re

l
2

1

se
t4

6
.3

%
8

6
.8

%
8

4
.9

%
8

8
.8

%
9

3
.7

%
4

.5
5

E
-0

4
ro

le
In

L
in

k:
-1

 r
o

le
In

L
in

k:
-2

 p
o

s
p

o
s:

-1
 le

m
m

a
 w

m
in

le
n

:2
 w

m
in

le
n

:3
 w

m
in

le
n

:4
 w

m
in

le
n

:5
 w

m
in

le
n

:6
 w

h
a

sc
l w

h
a

sd
ig

it
w

p
re

fix
:1

 w
p

re
fix

:2
 w

p
re

fix
:3

 w
p

re
fix

:4
 w

su
ff

ix
:1

 w
su

ff
ix

:2
 w

su
ff

ix
:3

 w
su

ff
ix

:4
 s

p
re

l
2

1

se
t1

3
6

.6
%

8
6

.6
%

8
4

.7
%

8
8

.9
%

9
3

.4
%

4
.5

9
E

-0
4

ro
le

In
L

in
k:

-1
 r

o
le

In
L

in
k:

-2
 p

o
s

p
o

s:
1

 p
o

s:
-1

 le
m

m
a

 w
m

in
le

n
:2

 w
m

in
le

n
:4

 w
m

in
le

n
:5

 w
m

in
le

n
:6

 w
h

a
sc

l w
h

a
sd

ig
it

w
p

re
fix

:1
 w

p
re

fix
:2

 w
p

re
fix

:3
 w

p
re

fix
:4

 w
su

ff
ix

:2
 w

su
ff

ix
:3

 w
su

ff
ix

:4
 s

p
re

l
2

0

se
t4

0
5

.7
%

8
6

.6
%

8
6

.6
%

8
7

.1
%

9
4

.3
%

4
.5

6
E

-0
4

ro
le

In
L

in
k:

-1
 p

o
s

p
o

s:
1

 p
o

s:
-1

 w
m

in
le

n
:2

 w
m

in
le

n
:3

 w
m

in
le

n
:4

 w
m

in
le

n
:5

 w
m

in
le

n
:6

 w
h

a
sc

l w
h

a
sd

ig
it

w
p

re
fix

:2
 w

p
re

fix
:3

 w
p

re
fix

:4
 w

su
ff

ix
:1

 w
su

ff
ix

:3
 w

su
ff

ix
:4

 s
p

re
l

1
8

se
t3

7
6

.4
%

8
6

.6
%

8
4

.2
%

8
9

.5
%

9
3

.6
%

4
.6

2
E

-0
4

ro
le

In
L

in
k:

-1
 r

o
le

In
L

in
k:

-2
 p

o
s

p
o

s:
-1

 le
m

m
a

 w
m

in
le

n
:2

 w
m

in
le

n
:3

 w
m

in
le

n
:4

 w
m

in
le

n
:5

 w
h

a
sc

l w
h

a
sd

ig
it

w
p

re
fix

:1
 w

p
re

fix
:2

 w
p

re
fix

:3
 w

su
ff

ix
:1

 w
su

ff
ix

:3
 w

su
ff

ix
:4

 s
p

re
l

1
8

se
t5

9
5

.5
%

8
6

.5
%

8
6

.0
%

8
7

.5
%

9
4

.5
%

4
.6

5
E

-0
4

ro
le

In
L

in
k:

-1
 r

o
le

In
L

in
k:

-2
 p

o
s:

-1
 le

m
m

a
 w

m
in

le
n

:3
 w

m
in

le
n

:4
 w

m
in

le
n

:5
 w

m
in

le
n

:6
 w

h
a

sd
ig

it
w

p
re

fix
:1

 w
p

re
fix

:2
 w

p
re

fix
:4

 w
su

ff
ix

:1
 w

su
ff

ix
:3

 w
su

ff
ix

:4
 s

p
re

l
1

6

se
t3

0
6

.4
%

8
6

.5
%

8
4

.4
%

8
9

.0
%

9
3

.6
%

4
.6

1
E

-0
4

ro
le

In
L

in
k:

-1
 r

o
le

In
L

in
k:

-2
 p

o
s

p
o

s:
1

 p
o

s:
-1

 le
m

m
a

 w
m

in
le

n
:2

 w
m

in
le

n
:4

 w
m

in
le

n
:5

 w
m

in
le

n
:6

 w
h

a
sc

l w
p

re
fix

:1
 w

p
re

fix
:2

 w
p

re
fix

:4
 w

su
ff

ix
:1

 w
su

ff
ix

:2
 w

su
ff

ix
:3

 w
su

ff
ix

:4
 s

p
re

l
1

9

se
t1

3
2

4
.4

%
8

6
.5

%
8

7
.9

%
8

5
.6

%
9

5
.6

%
4

.7
0

E
-0

4
ro

le
In

L
in

k:
-1

 p
o

s:
-1

 le
m

m
a

 w
m

in
le

n
:2

 w
m

in
le

n
:4

 w
m

in
le

n
:6

 w
h

a
sc

l w
p

re
fix

:4
8

se
t3

4
5

.7
%

8
6

.5
%

8
6

.1
%

8
7

.1
%

9
4

.3
%

4
.6

2
E

-0
4

ro
le

In
L

in
k:

-1
 r

o
le

In
L

in
k:

-2
 p

o
s:

-1
 le

m
m

a
 w

m
in

le
n

:2
 w

m
in

le
n

:3
 w

m
in

le
n

:4
 w

m
in

le
n

:5
 w

m
in

le
n

:6
 w

h
a

sc
l w

h
a

sd
ig

it
w

p
re

fix
:1

 w
p

re
fix

:3
 w

p
re

fix
:4

 w
su

ff
ix

:1
 w

su
ff

ix
:2

 w
su

ff
ix

:3
 s

p
re

l
1

8

se
t8

0
6

.2
%

8
6

.5
%

8
4

.4
%

8
9

.0
%

9
3

.8
%

4
.5

3
E

-0
4

ro
le

In
L

in
k:

-1
 p

o
s

p
o

s:
1

 p
o

s:
-1

 w
m

in
le

n
:3

 w
m

in
le

n
:6

 w
h

a
sd

ig
it

w
p

re
fix

:1
 w

p
re

fix
:2

 w
p

re
fix

:3
 w

su
ff

ix
:1

 w
su

ff
ix

:2
 w

su
ff

ix
:3

 w
su

ff
ix

:4
1

4

se
t3

5
6

.7
%

8
6

.5
%

8
4

.1
%

8
9

.4
%

9
3

.3
%

4
.5

2
E

-0
4

ro
le

In
L

in
k:

-1
 r

o
le

In
L

in
k:

-2
 p

o
s

p
o

s:
1

 p
o

s:
-1

 le
m

m
a

 w
m

in
le

n
:2

 w
m

in
le

n
:3

 w
m

in
le

n
:5

 w
h

a
sd

ig
it

w
p

re
fix

:1
 w

p
re

fix
:2

 w
p

re
fix

:4
 w

su
ff

ix
:1

 w
su

ff
ix

:2
 w

su
ff

ix
:3

 w
su

ff
ix

:4
 s

p
re

l
1

8

se
t3

6
.8

%
8

6
.5

%
8

3
.8

%
8

9
.8

%
9

3
.2

%
4

.5
4

E
-0

4
ro

le
In

L
in

k:
-1

 r
o

le
In

L
in

k:
-2

 p
o

s
p

o
s:

1
 p

o
s:

-1
 le

m
m

a
 w

m
in

le
n

:2
 w

m
in

le
n

:3
 w

m
in

le
n

:4
 w

m
in

le
n

:5
 w

m
in

le
n

:6
 w

h
a

sc
l w

h
a

sd
ig

it
w

p
re

fix
:1

 w
p

re
fix

:2
 w

p
re

fix
:4

 w
su

ff
ix

:1
 w

su
ff

ix
:2

 w
su

ff
ix

:3
 w

su
ff

ix
:4

 s
p

re
l

2
1

se
t1

1
6

.0
%

8
6

.4
%

8
5

.1
%

8
8

.7
%

9
4

.0
%

4
.5

5
E

-0
4

ro
le

In
L

in
k:

-1
 r

o
le

In
L

in
k:

-2
 p

o
s:

1
 p

o
s:

-1
 le

m
m

a
 w

m
in

le
n

:2
 w

m
in

le
n

:3
 w

m
in

le
n

:4
 w

m
in

le
n

:5
 w

m
in

le
n

:6
 w

h
a

sc
l w

h
a

sd
ig

it
w

p
re

fix
:1

 w
p

re
fix

:2
 w

p
re

fix
:3

 w
p

re
fix

:4
 w

su
ff

ix
:1

 w
su

ff
ix

:2
 w

su
ff

ix
:3

 w
su

ff
ix

:4
2

0

se
t5

7
6

.4
%

8
6

.4
%

8
4

.7
%

8
8

.6
%

9
3

.6
%

4
.4

8
E

-0
4

ro
le

In
L

in
k:

-1
 p

o
s:

1
 le

m
m

a
 w

m
in

le
n

:2
 w

m
in

le
n

:4
 w

m
in

le
n

:5
 w

m
in

le
n

:6
 w

h
a

sc
l w

h
a

sd
ig

it
w

p
re

fix
:1

 w
p

re
fix

:2
 w

p
re

fix
:4

 w
su

ff
ix

:1
 w

su
ff

ix
:2

 w
su

ff
ix

:4
 s

p
re

l
1

6

se
t4

9
6

.4
%

8
6

.4
%

8
4

.6
%

8
8

.5
%

9
3

.6
%

4
.5

0
E

-0
4

ro
le

In
L

in
k:

-1
 r

o
le

In
L

in
k:

-2
 p

o
s

p
o

s:
1

 p
o

s:
-1

 le
m

m
a

 w
m

in
le

n
:2

 w
m

in
le

n
:3

 w
h

a
sc

l w
h

a
sd

ig
it

w
p

re
fix

:1
 w

p
re

fix
:2

 w
p

re
fix

:3
 w

p
re

fix
:4

 w
su

ff
ix

:1
 w

su
ff

ix
:3

 s
p

re
l

1
7

se
t7

7
5

.2
%

8
6

.4
%

8
6

.7
%

8
6

.6
%

9
4

.8
%

4
.5

9
E

-0
4

ro
le

In
L

in
k:

-1
 r

o
le

In
L

in
k:

-2
 p

o
s

p
o

s:
-1

 le
m

m
a

 w
m

in
le

n
:3

 w
m

in
le

n
:5

 w
m

in
le

n
:6

 w
h

a
sd

ig
it

w
p

re
fix

:3
 w

p
re

fix
:4

 w
su

ff
ix

:1
 w

su
ff

ix
:2

 w
su

ff
ix

:4
1

4

se
t5

8
6

.9
%

8
6

.3
%

8
3

.7
%

8
9

.5
%

9
3

.1
%

4
.5

0
E

-0
4

ro
le

In
L

in
k:

-1
 r

o
le

In
L

in
k:

-2
 p

o
s

p
o

s:
1

 p
o

s:
-1

 w
m

in
le

n
:2

 w
m

in
le

n
:3

 w
m

in
le

n
:4

 w
m

in
le

n
:5

 w
h

a
sd

ig
it

w
p

re
fix

:1
 w

p
re

fix
:4

 w
su

ff
ix

:1
 w

su
ff

ix
:2

 w
su

ff
ix

:3
 s

p
re

l
1

6

se
t4

4
6

.7
%

8
6

.2
%

8
4

.5
%

8
8

.4
%

9
3

.3
%

4
.5

3
E

-0
4

ro
le

In
L

in
k:

-1
 p

o
s

p
o

s:
1

 p
o

s:
-1

 le
m

m
a

 w
m

in
le

n
:2

 w
m

in
le

n
:6

 w
h

a
sc

l w
h

a
sd

ig
it

w
p

re
fix

:1
 w

p
re

fix
:2

 w
p

re
fix

:3
 w

su
ff

ix
:1

 w
su

ff
ix

:2
 w

su
ff

ix
:3

 w
su

ff
ix

:4
 s

p
re

l
1

7

se
t2

5
6

.7
%

8
6

.2
%

8
4

.2
%

8
8

.7
%

9
3

.3
%

4
.4

6
E

-0
4

ro
le

In
L

in
k:

-1
 p

o
s

p
o

s:
1

 p
o

s:
-1

 le
m

m
a

 w
m

in
le

n
:2

 w
m

in
le

n
:3

 w
m

in
le

n
:4

 w
m

in
le

n
:5

 w
m

in
le

n
:6

 w
h

a
sc

l w
h

a
sd

ig
it

w
p

re
fix

:1
 w

p
re

fix
:2

 w
p

re
fix

:3
 w

p
re

fix
:4

 w
su

ff
ix

:1
 w

su
ff

ix
:3

 w
su

ff
ix

:4
1

9

se
t2

8
6

.4
%

8
6

.2
%

8
4

.6
%

8
8

.3
%

9
3

.6
%

4
.4

8
E

-0
4

ro
le

In
L

in
k:

-1
 r

o
le

In
L

in
k:

-2
 p

o
s

p
o

s:
1

 p
o

s:
-1

 le
m

m
a

 w
m

in
le

n
:2

 w
m

in
le

n
:3

 w
m

in
le

n
:4

 w
m

in
le

n
:5

 w
m

in
le

n
:6

 w
h

a
sd

ig
it

w
p

re
fix

:1
 w

p
re

fix
:2

 w
p

re
fix

:3
 w

p
re

fix
:4

 w
su

ff
ix

:2
 w

su
ff

ix
:3

 w
su

ff
ix

:4
1

9

se
t4

6
6

.0
%

8
6

.2
%

8
5

.3
%

8
7

.5
%

9
4

.0
%

4
.5

6
E

-0
4

ro
le

In
L

in
k:

-1
 p

o
s

p
o

s:
-1

 le
m

m
a

 w
m

in
le

n
:2

 w
m

in
le

n
:3

 w
m

in
le

n
:4

 w
m

in
le

n
:5

 w
m

in
le

n
:6

 w
h

a
sc

l w
h

a
sd

ig
it

w
p

re
fix

:1
 w

p
re

fix
:3

 w
p

re
fix

:4
 w

su
ff

ix
:1

 w
su

ff
ix

:4
 s

p
re

l
1

7

se
t8

4
6

.0
%

8
6

.2
%

8
5

.8
%

8
6

.9
%

9
4

.0
%

4
.5

2
E

-0
4

ro
le

In
L

in
k:

-1
 r

o
le

In
L

in
k:

-2
 p

o
s

p
o

s:
-1

 le
m

m
a

 w
m

in
le

n
:2

 w
m

in
le

n
:3

 w
m

in
le

n
:5

 w
m

in
le

n
:6

 w
h

a
sc

l w
h

a
sd

ig
it

w
su

ff
ix

:1
 w

su
ff

ix
:3

1
3

se
t1

1
9

6
.9

%
8

6
.2

%
8

4
.3

%
8

8
.4

%
9

3
.1

%
4

.5
8

E
-0

4
ro

le
In

L
in

k:
-1

 p
o

s
p

o
s:

-1
 le

m
m

a
 w

m
in

le
n

:3
 w

h
a

sc
l w

p
re

fix
:1

 w
p

re
fix

:2
 w

su
ff

ix
:1

 w
su

ff
ix

:4
1

0

se
t5

2
6

.0
%

8
6

.1
%

8
4

.7
%

8
7

.9
%

9
4

.0
%

4
.5

2
E

-0
4

ro
le

In
L

in
k:

-1
 p

o
s

p
o

s:
-1

 le
m

m
a

 w
m

in
le

n
:3

 w
m

in
le

n
:4

 w
m

in
le

n
:5

 w
m

in
le

n
:6

 w
h

a
sc

l w
h

a
sd

ig
it

w
p

re
fix

:2
 w

p
re

fix
:3

 w
su

ff
ix

:1
 w

su
ff

ix
:2

 w
su

ff
ix

:4
 s

p
re

l
1

6

se
t3

3
6

.2
%

8
6

.1
%

8
4

.9
%

8
8

.1
%

9
3

.8
%

4
.5

9
E

-0
4

ro
le

In
L

in
k:

-1
 r

o
le

In
L

in
k:

-2
 p

o
s:

1
 p

o
s:

-1
 le

m
m

a
 w

m
in

le
n

:2
 w

m
in

le
n

:3
 w

m
in

le
n

:4
 w

m
in

le
n

:5
 w

m
in

le
n

:6
 w

h
a

sd
ig

it
w

p
re

fix
:1

 w
p

re
fix

:3
 w

p
re

fix
:4

 w
su

ff
ix

:2
 w

su
ff

ix
:3

 w
su

ff
ix

:4
 s

p
re

l
1

8

se
t3

6
7

.4
%

8
6

.1
%

8
3

.7
%

8
9

.1
%

9
2

.6
%

4
.4

7
E

-0
4

ro
le

In
L

in
k:

-1
 p

o
s

p
o

s:
1

 p
o

s:
-1

 le
m

m
a

 w
m

in
le

n
:3

 w
m

in
le

n
:4

 w
m

in
le

n
:5

 w
m

in
le

n
:6

 w
h

a
sc

l w
h

a
sd

ig
it

w
p

re
fix

:1
 w

p
re

fix
:2

 w
p

re
fix

:3
 w

p
re

fix
:4

 w
su

ff
ix

:1
 w

su
ff

ix
:2

 s
p

re
l

1
8

se
t8

6
5

.7
%

8
6

.1
%

8
6

.9
%

8
5

.7
%

9
4

.3
%

4
.6

9
E

-0
4

ro
le

In
L

in
k:

-1
 r

o
le

In
L

in
k:

-2
 p

o
s:

-1
 le

m
m

a
 w

m
in

le
n

:2
 w

m
in

le
n

:3
 w

m
in

le
n

:6
 w

h
a

sc
l w

p
re

fix
:2

 w
su

ff
ix

:1
 w

su
ff

ix
:2

 w
su

ff
ix

:3
 w

su
ff

ix
:4

1
3

se
t4

2
6

.5
%

8
6

.0
%

8
4

.4
%

8
8

.0
%

9
3

.5
%

4
.5

0
E

-0
4

ro
le

In
L

in
k:

-1
 r

o
le

In
L

in
k:

-2
 p

o
s:

1
 p

o
s:

-1
 le

m
m

a
 w

m
in

le
n

:3
 w

m
in

le
n

:4
 w

m
in

le
n

:5
 w

h
a

sd
ig

it
w

p
re

fix
:1

 w
p

re
fix

:2
 w

p
re

fix
:3

 w
p

re
fix

:4
 w

su
ff

ix
:2

 w
su

ff
ix

:3
 w

su
ff

ix
:4

 s
p

re
l

1
7

se
t9

7
5

.3
%

8
5

.9
%

8
7

.2
%

8
5

.5
%

9
4

.7
%

4
.5

8
E

-0
4

ro
le

In
L

in
k:

-1
 r

o
le

In
L

in
k:

-2
 p

o
s

w
m

in
le

n
:2

 w
m

in
le

n
:3

 w
m

in
le

n
:5

 w
m

in
le

n
:6

 w
h

a
sc

l w
h

a
sd

ig
it

w
p

re
fix

:2
 w

p
re

fix
:4

 w
su

ff
ix

:4
1

2

se
t5

1
7

.1
%

8
5

.9
%

8
3

.2
%

8
9

.0
%

9
2

.9
%

4
.4

6
E

-0
4

ro
le

In
L

in
k:

-1
 r

o
le

In
L

in
k:

-2
 p

o
s

p
o

s:
1

 p
o

s:
-1

 le
m

m
a

 w
m

in
le

n
:4

 w
h

a
sc

l w
p

re
fix

:1
 w

p
re

fix
:2

 w
p

re
fix

:3
 w

p
re

fix
:4

 w
su

ff
ix

:2
 w

su
ff

ix
:3

 w
su

ff
ix

:4
 s

p
re

l
1

6

se
t4

5
7

.2
%

8
5

.9
%

8
3

.4
%

8
9

.5
%

9
2

.8
%

4
.4

9
E

-0
4

ro
le

In
L

in
k:

-1
 r

o
le

In
L

in
k:

-2
 p

o
s

p
o

s:
1

 p
o

s:
-1

 le
m

m
a

 w
m

in
le

n
:2

 w
m

in
le

n
:3

 w
m

in
le

n
:4

 w
h

a
sc

l w
h

a
sd

ig
it

w
p

re
fix

:1
 w

p
re

fix
:3

 w
p

re
fix

:4
 w

su
ff

ix
:2

 w
su

ff
ix

:3
 s

p
re

l
1

7

se
t9

4
6

.3
%

8
5

.9
%

8
4

.9
%

8
7

.1
%

9
3

.7
%

4
.5

2
E

-0
4

ro
le

In
L

in
k:

-1
 r

o
le

In
L

in
k:

-2
 p

o
s

p
o

s:
1

 le
m

m
a

 w
m

in
le

n
:3

 w
m

in
le

n
:4

 w
m

in
le

n
:5

 w
m

in
le

n
:6

 w
p

re
fix

:2
 w

p
re

fix
:3

 w
su

ff
ix

:4
1

2

se
t9

9
5

.8
%

8
5

.9
%

8
5

.7
%

8
6

.3
%

9
4

.2
%

4
.5

4
E

-0
4

ro
le

In
L

in
k:

-1
 r

o
le

In
L

in
k:

-2
 p

o
s:

-1
 le

m
m

a
 w

m
in

le
n

:4
 w

m
in

le
n

:5
 w

m
in

le
n

:6
 w

h
a

sd
ig

it
w

su
ff

ix
:2

 w
su

ff
ix

:3
 w

su
ff

ix
:4

 s
p

re
l

1
2

se
t3

9
6

.5
%

8
5

.8
%

8
3

.8
%

8
8

.4
%

9
3

.5
%

4
.5

0
E

-0
4

ro
le

In
L

in
k:

-1
 r

o
le

In
L

in
k:

-2
 p

o
s

p
o

s:
1

 p
o

s:
-1

 le
m

m
a

 w
m

in
le

n
:2

 w
m

in
le

n
:3

 w
m

in
le

n
:4

 w
m

in
le

n
:5

 w
h

a
sd

ig
it

w
p

re
fix

:1
 w

p
re

fix
:3

 w
p

re
fix

:4
 w

su
ff

ix
:1

 w
su

ff
ix

:2
 w

su
ff

ix
:4

 s
p

re
l

1
8

se
t1

0
7

.0
%

8
5

.8
%

8
3

.2
%

8
9

.1
%

9
3

.0
%

4
.5

0
E

-0
4

ro
le

In
L

in
k:

-1
 r

o
le

In
L

in
k:

-2
 p

o
s

p
o

s:
1

 p
o

s:
-1

 le
m

m
a

 w
m

in
le

n
:2

 w
m

in
le

n
:3

 w
m

in
le

n
:4

 w
m

in
le

n
:5

 w
m

in
le

n
:6

 w
h

a
sc

l w
h

a
sd

ig
it

w
p

re
fix

:1
 w

p
re

fix
:2

 w
p

re
fix

:3
 w

p
re

fix
:4

 w
su

ff
ix

:1
 w

su
ff

ix
:2

 w
su

ff
ix

:3
 s

p
re

l
2

1

se
t8

2
7

.2
%

8
5

.7
%

8
3

.0
%

8
8

.7
%

9
2

.8
%

4
.5

0
E

-0
4

ro
le

In
L

in
k:

-1
 r

o
le

In
L

in
k:

-2
 p

o
s:

1
 p

o
s:

-1
 le

m
m

a
 w

m
in

le
n

:2
 w

m
in

le
n

:6
 w

h
a

sc
l w

p
re

fix
:1

 w
p

re
fix

:2
 w

p
re

fix
:4

 w
su

ff
ix

:3
 s

p
re

l
1

3

Figure B.3: Measured results for the "roleInLink" classification. The table contains top 50
results sorted by F1.

103

104

Appendix C

Training data used for the evaluation

Medium

partialShelfmark : EString
identificationCode : MediumCode
title : EString
additionalTitle : EString
publicationYear : EDate
authors : EString
keywords : EString

Instance

shelfmark : EString
status : InstanceStatus
returnDate : EDate
location : EString
rentalPeriod : EString
comments : EString
components : EString

reserveInstance()
extendRentalPeriod()
borrowInstance()
returnInstance()

User

registerAtSystem()
identifyToSystem()

UserAccount

userNumber : EInt
userClassification : EString
userName : EString
telephoneNumber : EString
emailAddress : EString
validUntilDate : EDate
postallAddress : EString
unpaidFeeAmount : EInt
lockIndication : EBoolean
userData : EString

Librarian

UserAdministration

manageUserAccount()

MediaAdministration

addNewMediaInstance()
removeMediaInstance()
searchMedium()
manageMedium()

Terminal

<<enumeration>>
InstanceStatus

AcquisitionProcess
ReadingRoom
Available
Borrowed
ReservedAndAvailable
ReservedAndBorrowed
Missing
Overdue

SearchCriterion

StatusSignal

ExtensionTime

UnpaidFee

amount : EInt
reason : EString

IdentificationCard

userNumber : EInt

BarCodeScanner

readUserNumber()

Library

<<enumeration>>
MediumCode

book
magazine
CD
video

BorrowedEntry

returnDate : EDate

ReservationEntry

Book

publisher : EString
placeOfPublication : EString
editor : EString
ISBN : EString

Magazine

publisher : EString
articles : EString

CD

genres : EString
tracks : EString
artists : EString

Video

genres : EString
actors : EString

reservationList
0..*

userAccount
1

instances
0..*

userAccounts
0..*

mediaEntries
0..*

media
0..*

borrowedInstances
0..*

reservationList
0..*

borrowingList
0..*

user

1

user

1

librarians
0..*

users
0..1

Figure C.1: Domain model for the Library System used for training in our experiment.

105

Library System Specification

1. Objective
Some Media and user of a library are managed by the library system.

2. Operational Area
The library system is operated by the library staff (librarian) and library user (user) through terminals.

3. Product overview
The library system contains a user administration and a media administration.

3.1 User administration
The user administration contains a user account for each user which contains all user data. A librarian is able to create a
new user account, to edit and to delete an existing user account. A user is able to register at the system with his user
number, to manage his user account, and to extend the media's rental period. A password is not necessary because the
user number on the identification card is read with a bar code scanner.

3.2 Media administration
The media administration contains an entry for each medium in the library. Several instances of each medium may be
available, and they may have different locations. A librarian is able to add a new media instance to the media
administration, change the status of an instance and remove an instance from the media administration. A user is able to
search for a medium by specifying one or more features of the media. User can choose and reserve a found instance. To
this end, the user number on the identification card is scanned. If a user borrows an instance, it is added to his account
and will only be deleted when it is returned.

4. Product function
A user account must be available for each user. A librarian has access to all accounts of all users. A user has only access
to his own user account by using his user number.

• A user is able to search a medium (search medium).
• A user is able to reserve one or more instances (reserve instance).
• A user is able to borrow one or more instances (borrow instance).
• A user is able to extend the rental period of one or more instances (extend instance).
• A user is able to return one or more instances (return instance).

• A librarian is able to create, edit and delete a user account (manage user).

• A librarian is able to create, edit and delete a medium (manage medium).

4.1. Use Case: Search medium

The user specifies one or more titles and obtains a list of media which contain the titles. The search can be restricted
to designated media types and attributes.

Procedure:

• 1. The user specifies one or more search criteria.
• 2. It is searched for matching media in the media administration.
• 3. The user receives a list of media that match the search criteria.

4.2 Use Case: Reserve instance

The user specifies an instance which he would like to reserve (e.g. by selection after a search) and has to identify
himself to the system. The instance is registered in the reservation list of his user account. The status of the instance

is set to “available and reserved” or to “borrowed and reserved”.

Procedure:

• 1. The user enters the shelfmark of the requested medium.
• 2. The user receives a list of instances of the medium.
• 3. The user chooses an instance.
• 4. The user identifies himself to the system.
• Extension: if the user account is not valid any more or closed
• The procedure is terminated with a status signal.
• 6. The status of the instance is set from “available” to “available and reserved” or from “borrowed” to “borrowed

and reserved”.

4.3. Use Case: Borrow instance

The user has to identify himself to the system and specifies a list of instances he wishes to borrow. The instances are
listed in the borrowing list of his user account. Only instances can be borrowed which are “available”, or “available
and reserved” and the user is the first on the reservation list.

Procedure:

• 1. The user identifies himself to the system and chooses the ’borrow’ menu.
• Extension: If the user account is not valid any more or closed.
• 1. The procedure is terminated.
• 3. The user specifies an instance which should be borrowed (shelfmark of the instance is scanned).
• 4. If the instance’s status is “available” or “reserved and available”, and the user is the first on the reservation

list, the instance can be borrowed otherwise borrowing the instance is rejected.
• 5. The instance is registered in the list of borrowed media of the user account.
• 6. The user is registered in the list of users who have/had borrowed the instance.
• 7. The status of the instance is changed to “borrowed” or “reserved and borrowed”.
• 8. The instance is unlocked.
• Extension: If a further instance shall be borrowed
• 1. Continue at step 3.
• 10. The user receives a receipt for the newly borrowed instance.

	1 Introduction
	1.1 Specification of functional requirements
	1.1.1 Problem of sequencing demonstrated on an example

	1.2 Textual use-cases
	1.3 Problem statement and goals
	1.4 Summary of contribution and publications
	1.5 Structure of the thesis
	1.6 Note on conventions used

	2 History of the FOAM method
	2.1 The Procasor tool
	2.2 Generating code from use-case specifications
	2.3 Generic component model from use-cases
	2.4 The REPROTOOL project
	2.5 Further development

	3 Verification of use-cases
	3.1 Overview of the FOAM method
	3.1.1 Flow annotations
	3.1.2 Temporal annotations

	3.2 Construction of labeled transition systems
	3.2.1 Formalizing the Input Use-Case Model
	3.2.2 Formalizing the Use-Case Behavior Automaton
	3.2.3 Building Use-Case Behavior Automaton – step #1
	3.2.4 Building Use-Case Behavior Automaton – step #2
	3.2.5 Temporal properties

	3.3 Verification using NuSMV
	3.4 Expressiveness of FOAM
	3.5 Evaluation of scalability
	3.5.1 FOAM scalability experiment 1
	3.5.2 FOAM Scalability Experiment 2
	3.5.3 FOAM Scalability Experiment 3
	3.5.4 FOAM Scalability Experiment 4
	3.5.5 Summary of the Experimental Results

	3.6 Evaluation of learning curve
	3.6.1 Selection of use-cases for the test
	3.6.2 Method applied by independent testers
	3.6.3 Feedback from testers
	Adding flow annotations
	Adding temporal annotations
	Summary

	3.7 Evaluation of the FOAM tool
	3.8 Implemented FOAM tool
	3.9 Summary of Chapter 3

	4 Domain model elicitation
	4.1 Domain modeling
	4.1.1 Iterative development and refinement
	4.1.2 Grammatical Inspection

	4.2 Natural language processing techniques
	4.2.1 Linguistic pipeline and common analysis structure
	4.2.2 Tokenization
	4.2.3 Part-of-speech tagging
	4.2.4 Lemmatization
	4.2.5 Sentence detection
	4.2.6 Named entity recognition
	4.2.7 Hand-written rules and patterns
	4.2.8 Parsing : constituency
	4.2.9 Parsing : dependency
	4.2.10 Coreference resolution
	4.2.11 Sentence analysis example

	4.3 Statistical classification related to our method
	4.3.1 Features
	4.3.2 Feature extractors and context generators
	4.3.3 Statistical classifier
	4.3.4 Training samples
	4.3.5 Training samples in our method
	4.3.6 Maximum entropy models for classification
	4.3.7 Maximum entropy Markov models

	4.4 From text to domain model in 4 phases
	4.4.1 Preprocessing phase
	4.4.2 Feature selection phase
	4.4.3 Training phase
	4.4.4 Domain model elicitation phase
	Step: Identifying words forming a domain entity
	Step: Identifying multi-word entities
	Step: Deriving names for entity links
	Step: Creating classes in the domain model
	Step: Merging duplicate classes in the domain model
	Step: Predicting relations

	4.5 Evaluation
	4.5.1 Training vs. testing data
	4.5.2 Cross-validation
	4.5.3 Evaluation metrics in the experiment
	4.5.4 Data used in the experiment
	4.5.5 Classification in the experiment
	4.5.6 Results of the experiment

	4.6 Summary of Chapter 4

	5 Related work
	5.1 Systematic reviews
	5.2 NLP in requirements engineering
	5.3 Controlled natural languages
	5.4 Use-case templates
	5.5 Extended use-case models
	5.6 Modeling static structures from requirements
	5.7 Modeling dynamic structures from requirements
	5.8 Formal semantics of requirements specification
	5.9 Consistency of computational models
	5.10 Use of ontologies

	6 Conclusions
	6.1 Future work

	A FOAM case study
	A.1 FOAM case study : Answers

	B Measured prediction performance
	C Training data used for the evaluation

