
Charles University in Prague

Faculty of Mathematics and Physics

DOCTORAL THESIS

Jozef Mišutka

Mathematical Search Engine

Department of Software Engineering

Supervisor of the doctoral thesis: RNDr. Leo Galamboš, Ph.D.

Study programme: Computer Science

Specialization: Software Systems

Prague 2013

Acknowledgments

I am forever beholden to my wife Jana for her infinite patience and support. I am also

grateful to my daughter Johanka Zoe who gave me the strength to finish this thesis

whenever she smiled at me.

I am also indebted to my mother, father and my sister who have helped me through-

out my academic years. All of them had to endure my absence in our family life.

I am also grateful to my supervisor Leo Galamboš for his sober support.

I declare that I carried out this doctoral thesis independently, and only with the cited

sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act No.

121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Charles

University in Prague has the right to conclude a license agreement on the use of this

work as a school work pursuant to Section 60 paragraph 1 of the Copyright Act.

In Prague on the 21st May 2013 Author’s signature

Title Mathematical Search Engine

Author RNDr. Jozef Mišutka

misutka@ksi.mff.cuni.cz

Department Department of Software Engineering

Faculty of Mathematics and Physics

Charles University in Prague

Supervisor RNDr. Leo Galamboš, Ph.D.

lg@hq.egothor.org

Mailing address Department of Distributed and Dependable Systems

Charles University in Prague

Malostranské náměstı́ 25

118 00 Prague, Czech Republic

Abstract

Mathematics has been used to describe phenomena and problems in many research

fields for centuries. The basic elements used in the description are formulae which

express information symbolically. However, searching for mathematical knowledge

in digital form using available tools is still cumbersome. We address this issue by

presenting the mathematical search engine EgoMath, based on a full text searching,

which can search for mathematical formulae and text. We perform an evaluation over

a large collection of documents showing that our solution is usable. Our approach can

be used with huge document collections by applying one specialised technique. In

order to provide a valuable evaluation of the quality, we built an alternative mathe-

matical search engine using the feature extraction technique proposed by Ma et al. We

propose important improvements to this solution achieving interesting results. We

perform the first ever cross-evaluation of mathematical search engines based on dif-

ferent algorithms. A comprehensive survey of existing techniques available, presented

in this thesis, completes the picture of mathematical searching.

Keywords

Mathematical search engine, Searching in mathematics, Mathematical formulae, Full

text search engine

mailto:misutka@ksi.mff.cuni.cz
mailto:lg@hq.egothor.org

Název práce Matematický vyhledávač

Autor RNDr. Jozef Mišutka

misutka@ksi.mff.cuni.cz

Katedra Katedra softwarového inženýrstvı́

Matematicko-fyzikálnı́ fakulta

Univerzita Karlova v Praze

Vedoucı́ RNDr. Leo Galamboš, Ph.D.

disertačnı́ práce lg@hq.egothor.org

Adresa Katedra distribuovaných a spolehlivých systémů

Univerzita Karlova v Praze

Malostranské náměstı́ 25

118 00 Praha

Abstrakt

Po celá staletı́ se matematika využı́vá k popisu jevů a problémů v mnoha oblastech

výzkumu. Vzorce jsou základnı́mi kameny v jazyce matematiky, ale i přesto je hledánı́

matematických vzorců v digitálnı́ podobě stále těžkopádné. Tato dizertačnı́ práce

navrhuje řešenı́ a představuje matematický vyhledávač EgoMath, založený na fulltex-

tovém vyhledávánı́. Praktická použitelnost je potvrzena testy na velké sbı́rce doku-

mentů. Také představı́me techniku, dı́ky které může být náš přı́stup použit na mno-

honásobně většı́ kolekci dat. Aby bylo možné poskytnout cenné hodnocenı́ kvali-

ty, vybudovali jsme alternativnı́ matematický vyhledávač založený na práci Ma et al.

Přı́slušná rozšı́řenı́ umožňujı́ dosaženı́ zajı́mavých výsledků. Jako prvnı́ provedeme

srovnánı́ dvou matematických vyhledávačů, které jsou postaveny na různých algo-

ritmech. Vyčerpávajı́cı́ přehled stávajı́cı́ch použı́vaných technik doplnı́ obraz stavu

výzkumu v oblasti matematického vyhledávánı́.

Klı́čová slova

Matematický vyhledávač, Vyhledávanı́ v matematice, Matematické vzorce, Textový

vyhledávač

mailto:misutka@ksi.mff.cuni.cz
mailto:lg@hq.egothor.org

Table of Contents

1 Introduction 3

1.1 Research Goals . 4

1.2 Overview of Contribution . 4

1.3 Thesis Organisation . 5

2 Brief Theory on Searching 7

2.1 Indexing Structures . 8

2.2 Relevance and Ranking . 10

2.3 Clustering . 17

2.4 Query . 18

3 Domain Analysis 21

3.1 Searching for Mathematics . 22

3.2 Elementary but Often Unanswered Questions 37

3.3 Case Studies . 38

3.4 Latest Development . 41

4 EgoMath 43

4.1 Answers to Elementary Questions . 45

4.2 Architecture . 46

4.3 Importer Sub-project . 48

4.4 Parsing the Input . 53

4.5 Indexing . 57

4.6 Ranking . 65

4.7 Querying . 68

4.8 UI . 71

4.9 Evaluation . 72

4.10 Stand Up to the Giant . 82

1

4.11 Contribution and Conclusion . 84

5 Feature Based Mathematical Search Engine 85

5.1 Original Algorithm . 86

5.2 Modifications . 88

5.3 Evaluating and Comparing with EgoMath 94

5.4 Contribution and Conclusion . 98

6 Conclusion 101

Bibliography 103

Appendices 115

A Trends in Mathematical Searching Research Field 117

B Mathematical Search Engines Available Online 119

C Click-through Implementation 125

D EgoMath v3 127

E Importer Formula Search Engine 129

F Queries Used in EgoMath’s Evaluation 131

G EgoMath and FBA evaluation queries 135

G.1 Comparison of EgoMath and FBA . 135

G.2 FBA . 137

H Index Formats 141

I EgoMath’s Underlying Mathematical Structure 143

J Extending Full Text Search Engine For Mathematical Content 145

2

CHAPTER 1

Introduction

Mathematics has been used to describe phenomena and problems in many research

fields for centuries. The basic elements used in the description are formulae which

express information symbolically. In the last few decades, many new scientific fields

have emerged and many old ones have flourished. The incredible amount of infor-

mation and knowledge we have produced is often available in digital format on the

Internet. To be able to use this information, methods to locate the relevant pieces of

information must be available.

Retrieving information or knowledge from a collection of resources is examined

by Information Retrieval (IR). However, the search for mathematical formulae and

knowledge in real-world documents has only recently became active. Several basic

building blocks are still missing or are not accepted in this research field, which is

evident for example, in the evaluation process.

Unfortunately, mathematical knowledge is mostly encoded without accurate se-

mantic information. The boom of semantic web and related technologies a few years

ago seems to have changed only very little. There are several techniques which rely

on the strictly defined semantics in curated datasets, but these are not directly applica-

ble. Furthermore, there are only few technologies which are able to cope with the vast

amount of data on the Internet. The well known paradigm of full text search engines

being one of them.

3

CHAPTER 1. INTRODUCTION

1.1 Research Goals

The research goals of this thesis can be divided into three distinct parts.

G1 The first goal is to provide a comprehensive list of proposed techniques and avail-

able solutions with a brief description of the theory behind them. This has not been

done before and should make it easier to orientate in this research field.

G2 The second goal of this thesis is to propose an approach to mathematical searching

which can be used on the Internet and is mature enough for production use. This

approach should be well scalable for extensive collections of documents.

G3 We need proper evaluation to be able to claim that our approach is feasible and

mature. The third goal of this thesis is to provide such evaluation.

1.2 Overview of Contribution

In this thesis we present the mathematical search engine EgoMath capable of searching

for mathematical knowledge and formulae in real-world digital documents.

Because the research field of Mathematical Search Engines is still young, we had

to create several principal parts of an otherwise established research field in order to

include the required parts of a research paper in our thesis.

A comprehensive survey of the mathematical searching research field was com-

piled in order to include a proper domain analysis. The work on the survey fulfils the

first goal (G1) we set up.

Building EgoMath has required the building of several different sub-projects, in-

cluding a parallel framework for resource import and a search engine for different

mathematical format conversions. We reach the second goal (G2) by including a de-

tailed description of the algorithms behind EgoMath, describing performance mea-

surements over large document sets. We include a description of issues encountered

during indexing large collections of documents and the solution of these issues.

In order to meet the last goal (G3), we had to implement another mathematical

search engine. Therefore, the contribution is twofold. Firstly, we reimplement a fea-

ture based alternative solution to mathematical searching by Ma et al. [Ma+10a] and

propose several key improvements, making the solution both suitable for larger col-

lections of data and usable in general. We show that the feature based approach to

mathematical searching, with our improvements, is really feasible by evaluating it on

a large document collection. Secondly, we compare EgoMath to several versions of the

4

CHAPTER 1. INTRODUCTION

feature based approach, verifying that EgoMath is suitable for mathematical search-

ing.

1.3 Thesis Organisation

A brief overview of the theory on searching applicable to mathematical search engines

is presented in Chapter 2. The theory should help to better understand the compre-

hensive survey on mathematical searching presented in Chapter 3. Chapter 4 contains

a description of the mathematical search engine EgoMath and the associative sub-

projects. This chapter also includes the various evaluations. An alternative approach

to mathematical searching developed for cross-evaluation purposes is presented in

Chapter 5. Finally, Chapter 6 summarises the thesis, its contribution and gives an

outlook to future research based on the ideas and methods presented in this thesis.

5

CHAPTER 1. INTRODUCTION

6

CHAPTER 2

Brief Theory on Searching

Searching is an integral part of information retrieval which deals with the representa-

tion, storage, organisation and access to information. The idea of searching for infor-

mation using computers dates back to the 1950s and an immense number of publica-

tions has been written on this subject since [Ma+08, BaRi11, CaCe04]. In the following

text we focus on models, structures and approaches which are, or can be, applicable

to mathematical searching. However, we do not dare claim that this will be a compre-

hensive listing.

The key role of mathematical searching is mathematical formulae . In contrast to

simple words or other objects which are commonly searched for, mathematical for-

mulae can (theoretically) have a well defined set of properties, relations, applications

and often also a “result”. The concept of Information versus Data Retrieval1 has a new

dimension as there are many (mathematically) equal formulae which are textually sig-

nificantly different. It is quite fundamental to ask what information does a user want

when he looks for “a + 7 = 15”. Is it the value of a, all indexed objects which contain

this particular formula, or all indexed objects containing 15 = b + 7? There is clearly

no correct answer. In the following text, we assume that even if we only search for

mathematically equal formulae, we are in fact using similarity searching where the

similarity function would be defined (if it was possible) as a mathematical equality.

One of the main goals of the mathematical search engine (MSE) EgoMath present-

1“Data retrieval, in the context of an IR system, consists mainly of determining which documents of
a collection contain the keywords in the user query which, most frequently, is not enough to satisfy the
user information need.” More details can be found in the book by Baeza-Yates and Ribeiro-Neto [BaRi11].

7

CHAPTER 2. BRIEF THEORY ON SEARCHING

ed in this thesis is to allow for search in digital mathematical content. We claim that

“there is no large mathematical data set including precise semantic information of

mathematical objects publicly available”. Even if there were, the contents would not

be up-to-date, simply because by far the majority of researchers do not include explicit

semantic information for mathematical formulae in their papers. Therefore, the first

assumption we make is on the quality of input data. We will not cover approaches

relying on curated, mathematically precise data. This subject is addressed by specific

research fields including theorem provers and proof checkers. Nevertheless, we will

mention approaches already used in mathematical searching taken from this research

field.

The second assumption we make is that searching should be an interactive and

iterative process where we find and learn. The answer should not necessarily change

the question but it should give means to slightly reformulate or refine the question.

The answer machines in mathematical search engines are also out of the scope of this

thesis.

We will look at the process from the other way around, namely, what needs to

be done for a user to be allowed to enter a query. In the first section, we briefly de-

scribe some of the applicable indexing structures which can be used in MSEs. Index-

ing structure allows the returning of relevant objects, often in no particular order. The

next section will focus on ranking the results, in other words, measuring (dis)similar-

ity between the query and the relevant objects. In the last section we will very briefly

mention the methods used mainly to improve the quality when there are many results

by finding new or by exploiting explicit relations in the data set.

2.1 Indexing Structures

Indexing consists of parsing and storing data to facilitate IR. It is also performed to

improve the search speed over a simple sequential search. A well-known and prob-

ably the most used indexing structure is the inverted index. An inverted index is a

word2-oriented structure which gained popularity because it provides very fast ac-

cess to large data sets if the distribution of occurrences is not extreme. The cost of fast

access is the restriction put on the properties of the similarity function. The advantage

of very fast query processing by an inverted index is possible due to the usage of spe-

2A word is simply a group of characters in this context.

8

CHAPTER 2. BRIEF THEORY ON SEARCHING

cific similarity functions e.g., the cosine similarity. The lists belonging to non-query

words can be skipped because their weights in the query are zero, while the for ex-

ample cosine measure applies multiplication of weights (which would lead to zero for

any weight in the list). Inverted index is the most used also in mathematical search-

ing (see the survey in Chapter 3) and can be used after mathematical formulae are

linearised or for systems which work over textual features extracted from them. It

allows for the retrieval of objects that have specific words, phrases, words within a

specified proximity. Specific functionality e.g., wild-cards can be also used but often

with performance penalty. More queries can be connected using boolean operators to

form one complex query.

Another structure which could be used for indexing mathematical formulae are

signature files. A signature (or hash) represents the indexed item with a constant

number of bits mostly smaller than the indexed item. More formulae could have the

same signatures and the false positives must be discarded in a sequential pass. The

hashing function can be based on features extracted from every formula. However, in

most applications it is inferior to the inverted index [Zo+98].

Many different indexing techniques used in automated reasoning systems are very

nicely described by Graf [Gra96]. A substitution tree indexing structure, introduced

by Graf [Gra96], subsumes several other tree-based structures and is also used by a

few mathematical search engines. If substitutional trees are used to index mathemat-

ical formulae, the result is a tree-like structure with nodes containing substitutions

of its parents. The indexed formula is reconstructed from a root node by applying

one or more substitutions. This indexing structure allows unifiable, generalisations,

instances and variants retrieval. Other types of tree based indexing structures from

automated reasoning include path indexing [Sti89], code trees [RiVo00] and context

trees [Ga+04].

The standard mathematical formats (e.g., MathML and OpenMath) are XML based

and therefore suitable for XML search engines. However, the mathematical semantics

with regards to similar (equal) formulae cannot be indexed directly. XML indexing is

part of the XML retrieval which is a significant research field and is out of the scope of

this thesis.

There are specific indexing structures used when the similarity function is metric.

However, these structures do not contribute directly to the indexing features and char-

acteristics, but speed up the process of searching. For more details about similarity

9

CHAPTER 2. BRIEF THEORY ON SEARCHING

search indexing structures, read the book Similarity Search by Zezula et al. [Ze+06].

2.2 Relevance and Ranking

The notion of object relevance uses different premises to define the relevance function.

Different sets of premises about object relevance yield different retrieval models. In the

following text, we try to cover the basic information retrieval models. The description

of the underlying mathematical models will help us understand and reason about the

behaviour and theoretical applications.

Figure 2.1: Taxonomy of information retrieval models

Objects in information retrieval are often transformed into suitable representations

by appropriate models for the effective retrieving of relevant ones. Figure 2.13 illus-

trates the relationship of several common models categorised according to the mathe-

matical basis and the properties of the model. Models where objects are modelled as

sets are labelled set theoretic. Objects which are represented as n-dimensional vectors

are modelled by algebraic models, and models which use probability theory as its ba-

sis are probabilistic. The traditional representatives of the first two are the standard

boolean model and the vector space model (VSM). The taxonomy further divides the

models to those without term-interdependencies, with immanent term interdepen-

dencies which are defined by the model itself and with transcendent term interdepen-

dencies which do not set any restriction on the definition.
3Translated image from Dominik Kuropka’s book Modelle zur Repräsentation natürlichsprachlicher

Dokumente [Kur12].

10

CHAPTER 2. BRIEF THEORY ON SEARCHING

In several taxonomies, another model is mentioned, namely the feature-based mod-

el which models documents into vectors of features where a feature can be an arbitrary

function. This model does not fit well into the classical categorisation because it can

be used to model almost all the other models. These models do not use information

or properties other than the input objects themselves.

Another taxonomy from a different point of view distinguishes: 1) boolean, 2)

statistical and 3) linguistic and knowledge-based models. The second includes the

VSM and the probabilistic retrieval models mentioned above. The first model is often

referred to as the “exact match” model; the latter ones as “best match” models.

Let us assume that we are indexing documents and we are searching for more gen-

eral information. Summarising the contents of documents and queries with only with

a set of index words directly from the document can result in the missing of relevant

documents which contain synonyms or slightly different words with the same mean-

ing. This problem is often referred to as “the dependence problem” or “the vocabulary

problem”. Latent Semantic Analysis (LSA) addresses this issue by defining relevance,

not by index words, but by automatically derived concepts.

There is no simple representation of mathematical formulae in the models men-

tioned above without pre-processing. Retaining part of the mathematical semantic

information (either extracted or assumed) in textual information retrieval requires in-

dexing more information than the original data. One possible solution is shown by

Mišutka and Galamboš [Miš08b].

There are alternative models which could be exploited for mathematical search-

ing. Mathematical formula can be represented as structured text. The structured text

retrieval models, like the models based on non-overlapping lists [Bu+92] or models

based on proximal nodes [Bae96], give some more power to search for this type of

representation; however, the improvement in the quality of mathematical searching

using this model is questionable. Another model which is interesting is the rule-based

and logic one4.

Another approach which is often mentioned are models for browsing and/or fil-

tering. Though, not easily applicable to mathematical formulae directly, it can greatly

improve the searching experience when browsing is accessible within the result set.

This method is used by EgoMath and is described in Chapter 4. The idea is to explore

the object space directly by iteratively refining the search.

4For more references see Canfore and Cerulo [CaCe04].

11

CHAPTER 2. BRIEF THEORY ON SEARCHING

Several of these models which are used in similarity searching are described in

more detail in the next section. A very good and pragmatic description of the models

can be found in an outstanding textbook by Baeza-Yates and Ribeiro-Neto [BaRi11].

Similarity Searching

Even without proof, we can say that similarity searching has become the most impor-

tant web application today. Similarity is the key principle in (re)cognition, with the

cognitive science research field examining similarity in depth. There are many ways

to perceive objects e.g., visually, auditory; moreover, perception can be influenced by

memory and experience. The meaning of similarity does vary in applications and is

strongly dependent on the description of the objects and the context. Because of this,

it is very difficult to compare the similarity or dissimilarity functions and to create

publicly available testing datasets. More on the general theory behind similarity per-

ception, including an important additional bibliography can be found in an overview

paper from 2012 by Zezula [Zez12].

Many users search for a particular object or information and the expected result

should be an exact match. In reality, neither the description of an object, nor data

stored about the object, nor the user description of the user needs is precise in most

cases. This has been significantly emphasised by the growing complexity of objects

users want to find. Therefore, the relation of objects is not described by exactness but

by (dis)similarity.

In the case of mathematical searching, things get even worse. The perception of

equality in mathematics is complex. According to our internal unpublished survey5,

most people thought that 1 + 2, 2 + 1 and 3 are the same objects, but on the other

hand, most people regarded cos2(x) + sin2(x) and 1 as two different objects. Mod-

elling similarity (which is probably the case with most information retrieval systems)

strongly depends on the background of the particular user. In the case of mathemati-

cal searching, which parts of mathematics (if any) is the user familiar with. Several of

the important models are described in more detail below.

The Vector Space Model

The vector space algebraic model is the most successful and well known represen-

tation of documents with independent words. Several other important models are

5The survey was done with 20 people educated in natural sciences.

12

CHAPTER 2. BRIEF THEORY ON SEARCHING

derived from the vector space model including the generalised vector space model

which can handle word dependencies.

Weight is assigned to each word in an index. The weights are used to compute

the degree of similarity between the objects and a notional object which represents the

query. One of the advantages of this model is that it takes partially similar documents

into account.

The similarity of the documents is used to rank the returned results (not really in

fetching the result set itself). The best known similarity function by far is the cosine

similarity function defined for a document d and a query q both represented by n

dimensional vectors of weights dw and qw respectively as

sim(q, d) =

∑n
i=1 (dwi ∗ qwi)√∑n

i=1 dw
2
i ∗
√∑n

i=1 qw
2
i

. (2.2.1)

An important and interesting question is how to define the weights. One example

is the well known tf-idf (term frequency - inverse document frequency) weighting

scheme [Sa+75] which uses a statistical model of the document set to compute out the

importance of words.

The Metric Model

Metric models have gained popularity in the last several years. They allow for a range

of new similarity measures. Many data collections meet the requirements needed

for metric modelling and therefore, different models can be used and reused. The

abstraction of object proximity into metric space is straight-forward and the well ex-

plored mathematical theory behind metric spaces gave similarity searching using met-

ric models a big boost. From the metric space point of view, the similarity is defined

as dissimilarity and can be imagined as the distance between objects in a coordinate

system.

A metric space is defined as (M,d) where M is a set and d is a metric on M . Func-

tion d is defined as: d : M × M → R such that for any x, y, z ∈ M these proper-

ties must hold: d(x, y) = 0 ⇔ x = y (identity), d(x, y) = d(y, x) (symmetry) and

d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality). The non-negativity property follows

from the other properties. Because of the popularity of the metric models there is sub-

stantial effort to map similarity problems where the postulates above do not hold in

the metric space.

13

CHAPTER 2. BRIEF THEORY ON SEARCHING

A typical use case includes searching for multimedia e.g., images, videos and

sounds where the vector space mode is insufficient in most cases. There are other use

cases where the similarity function is more complicated e.g., biometric identification

(comparing face shapes, fingerprints) and similar sequences in time series.

A common problem connected with similarity searching is the well-known dimen-

sionality curse i.e., the solution uses too much space or the speed performance is sim-

ilar to a simple sequential scan. To predict these situations, the definition of intrinsic

dimensionality of metric datasets was introduced by Chávez et al. [Chá+01] (see Sec-

tion 2.2.1). In many situations, approximate searching can be used to overcome (at

least partially) the curse of dimensionality. The most important questions in similar-

ity searching today can be transformed into well known mathematical problems i.e.,

similarity range and nearest neighbours. The theory and practice behind various da-

ta structures used for indexing and searching in metric models is outside the scope

of this thesis. A thorough description of metric models was done by Zezula et al.

[Ze+06]. We recommend one of the following papers [Chá+01, Ze+06, SkBe+11] for

further reading.

The author believes metric similarity functions could be used to model the similar-

ity of mathematical formulae. Most mathematical formulae can be intuitively repre-

sented by a tree and the majority of digital mathematics is encoded either in MathML-

like (including OMDoc) or TEX-like (including ASCIIMathML) formats which are of-

ten parsed into tree-like structures. The metric space offers tree edit distance as one

of its main representatives which could be exploited exactly for this purpose. There

have been several attempts to do so but these ended up without really exploiting the

offered advantages (see Section 3.1.1).

We briefly select depict selected well known metrics used to measure the (dis)sim-

ilarity of different data structures i.e., vectors with independent components, vectors

with interdependent components, trees, sets. These metrics have been either already

used in several approaches to mathematical searching or could be used.

14

CHAPTER 2. BRIEF THEORY ON SEARCHING

Minkowski Distances

Minkowski Distances are a family of metric functions labelled as Lp metrics where

p ≥ 1 defined for vectors ~x, ~y as

Lp[~x, ~y] = p

√√√√
n∑

i=1

|xi − yi|p

with a few instances well known under different names e.g., L1 as the Manhattan

distance, L2 the Euclidean distance and L∞ is called the maximum distance. The time

complexity is linear (dependent on the dimensionality n). The similarity function can

be used for feature-based MSE.

Quadratic Form Distance

A metric which accounts for simple interdependent components is defined as

dM (~x, ~y) =
√

(~x− ~y)T ∗M ∗ (~x− ~y)

where ~x, ~y are vectors, T is a matrix transposition and M defines how strong the cor-

relation between components is. The definition is equal to the Euclidean distance if M

is an identity matrix. A typical use case is similarity in simplified colour histograms,

but again, it can be used for feature-based MSEs. The time complexity is quadratic.

Tree Edit Distance

The apparent successor to the edit distance metric is the tree edit distance. It is de-

fined as the minimum cost needed to convert the source tree to the target tree using a

predefined set of tree edit operations e.g., insert a node or delete a node. This metric

can also be used to measure the (dis)similarity of XML documents. The time complex-

ity of the original algorithm can be up to O(n4) where n is the number of tree nodes.

Because mathematical formulae can be represented as trees, the tree edit distance can

be directly used to measure the similarity.

15

CHAPTER 2. BRIEF THEORY ON SEARCHING

Jaccard Distance

Another common data structure is a set. The Jaccard distance - trivially derived from

the Jaccard similarity coefficient - for two sets A, B is defined as

d(A,B) = 1− |A ∩B||A ∪B|

and is used as the similarity measure. A use case is finding similarity between user be-

haviour where the behaviour is modelled as a set of actions e.g., visited sites, hobbies

or friends. One important modification of this metric, which can be used for vector

data, is called the Tanimoto distance [RoTa60]. MSE extracting features could benefit

from the advantage that the set of features does not need to be in a particular order.

Non-metric Model

A typical example of a problem with modelling similarity in metric space is the sim-

ilarity of a man to a centaur, a centaur to a horse and then a man to a horse. While

the first two are mostly perceived as similar, the latter is not similar and therefore it is

breaking the triangle property of a metric function.

The more human oriented perception of similarity is provided by this model which

is not limited by the required properties of the metric space. The loose requirements

put on similarity functions cost the model performance. However, other properties

hold in non-metric similarity functions and can be exploited to improve the perfor-

mance. Moreover, domain experts are not burdened with apprehension of non-metric

space and they usually define similarity that is not metric. Possible application do-

main, best practices and further details are described by Skopal and Bustos [SkBe+11].

To be precise, the vector space model with a cosine similarity function should be

in this category but because of specific characteristics and history, it is often presented

separately.

2.2.1 Indexability of Datasets

One way of looking at an algorithm is to precisely describe the properties and condi-

tions with their consequences. Often, researches face the problem from the other way

around. Given a dataset, what is the best way to do something with it? In the exist-

ing techniques, nearest neighbour and range queries have an exponential dependency

on the dimension of the space which the objects are modelled into. This is called the

16

CHAPTER 2. BRIEF THEORY ON SEARCHING

curse of dimensionality. There have been several attempts to formalise this behaviour

and we will describe one of them. A correct general concept of the intrinsic dimension

of a dataset is not clear and probably never will be because of specific characteristics

of various dimensions and the various purposes a dataset is used for. However, it is

common to associate high values of dimension with the curse of dimensionality. The

curse of dimensionality characterises a situation where object features are concentrat-

ed around particular points e.g., means. Many similarity-based information retrieval

algorithm’s performance on high-dimensional datasets is comparable to a simple se-

quential scan. This phenomenon is quite well-known but still there is no mathematical

validation of it [Pes10]. We will quantify this meaning using one of several possible

approaches called intrinsic dimensionality proposed by Chávez et al. [Chá+01]. We

use this approach because it is easy to compute and can be easily understood. The

structure of the document set can be disclosed by its distance distribution showing

clusters of objects and how ”near” they are.

Vector space may suffer from a difference between the representational dimension

and their intrinsic dimension i.e., the real number of dimensions in which the points

can be embedded while keeping the distances among them. The idea is similar to

statistical analysis of data sets in databases for improving performance.

Given a document set D and a metric distance δ the intrinsic dimensionality is

defined as

ρ(D, δ) =
µ2

2σ2

where µ is the mean and σ2 is the variance of distribution in D [Chá+01]. Informally,

if the intrinsic dimensionality is high it means that the data set can not be partitioned

well and that only few elements can be eliminated from the search process. Intuitive

graphical representation can be found in the original paper.

More details of the general concept can be found in several papers [SkBe+11, Pes07,

Pes10].

2.3 Clustering

Cluster based search can be utilised as a tool to improve retrieval performance for in-

formation retrieval tasks. It is based on the cluster hypothesis which claims that docu-

ments in the same cluster behave similarly with respect to the relevance of information

needs. To the best of the author’s knowledge, there is no evaluation of clustering over

17

CHAPTER 2. BRIEF THEORY ON SEARCHING

a significant number of mathematical documents. However, it can be assumed that

scientific documents could be grouped into clusters of documents addressing similar

problems. Clustering can be used at various levels during search. The most intuitive

is clustering of the search results and/or of the whole data set. Instead of a sorted

list, similar documents are grouped. This can be valuable if the query is ambiguous

and has several different meanings. In theory, searching for integral could cluster the

results based on the type of integral e.g., Riemann, Newton or Lebesgue. The clusters

can either be statically or dynamically computed. Another use case can be language

modelling, where instead of using the language model, derived from the whole col-

lection, a specific model for the document’s cluster is used to estimate the occurrence

probabilities more precisely e.g., the tf-idf data set statistics. If the input data can be

reasonably clustered then this approach can be used to speed up searching. Instead of

computing the similarity to every object, only objects from specific clusters are taken

into account.

Clustering can either be flat or hierarchical. Flat clustering is efficient and con-

ceptually simple. Hierarchical clustering outputs a hierarchy, a structure that is more

informative than the unstructured set of clusters returned by flat clustering. More

information about clustering algorithms can be found in Tan et al. [Th+05] and in

Xu and Wunsch [XuWu08]. Clustering is connected with models used for browsing

and/or filtering mentioned above.

2.4 Query

The domain of questions which can be asked depends on the indexing structures and

the retrieval models being used. On the other hand, the query language has to work

with the retrieval unit which defines the smallest element that can be retrieved. User

information need is expressed by a query.

The simplest query is composed of keywords and the expected outputs are objects

containing the keywords. This type of query is intuitive and allows for a very fast

retrieval. The crucial problem is finding the correct unambiguous keywords. Another

type of keyword query takes context into account by allowing phrase and proximity

searches6. Boolean logic can be exploited with boolean queries. Boolean and context

queries are the basic building blocks of queries in EgoMath and are discussed in more

6Proximity search looks for objects where the query word’s positions are within a specified distance.

18

CHAPTER 2. BRIEF THEORY ON SEARCHING

detail in Chapter 4. Pattern matching is usually based on regular expressions7 which

can specify a set of syntactic features that must occur in a text segment in order to

mark it relevant.

The basic structural query types like, overlapped lists and proximal nodes have

only limited expression power. On the other hand, more complex structural mod-

els like the tree matching model involves several NP-Complete problems [KiHe93].

State-of-the-art structural retrieval is mainly XML retrieval. The requirements for

structured retrieval query are content constraints, pattern matching constraints and

structural constraints. XML query languages can be classified as content-only (user

does not know the document structure) and content-and-structure query languages

[BaRi11]. Content-and-structure query further categorises into tag-based, path-based

and clause-based languages. For mathematical search engines, the clause based lan-

guages like XQuery [Ka+04] could be of value.

A more detailed description of single word, context, boolean, natural language

queries, pattern matching and structural queries can be found in Baeza-Yates and

Ribeiro-Neto [BaRi11].

7A regular expression is a specific pattern that provides concise and flexible means to “match” (spec-
ify and recognise) strings of text, such as particular characters, words, or patterns of characters.

19

CHAPTER 2. BRIEF THEORY ON SEARCHING

20

CHAPTER 3

Domain Analysis

Most scientific papers are published electronically and great efforts have been made to

digitise mathematical knowledge in the last few years. The result is that the number of

scientific documents is growing rapidly and the necessity to search these documents

has increased significantly. This happened only a few years ago and we can still con-

sider the mathematical searching research field as one of the younger ones.

There have been several surveys of the mathematical searching research field pub-

lished in journals [MuKh11, ZaBl12] but sadly none of them were really comprehen-

sive. One of the additional contributions of this thesis is to fill this gap with a com-

prehensive survey in the next section. We cover the development in mathematical

information retrieval focusing on search engines till 2013.

Mathematical searching and searching in mathematical documents is an interdisci-

plinary research field. It has been our experience that researchers working in this field

are influenced by their research background without explicitly mentioning it. At the

end of this chapter a list of elementary but often unanswered questions is compiled.

The importance of these rather simple questions has been emphasised while working

on the following survey. Several newer approaches would benefit in answering them

giving strong reasoning instead of using strong claims.

Let us first create a basic taxonomy of mathematical search engines that will be

used in this chapter. Different taxonomies applicable for generic information retrieval

systems could be used to categorise mathematical information retrieval systems but

we will not explicitly repeat these. The input for a mathematical search engine must

21

CHAPTER 3. DOMAIN ANALYSIS

be a mathematical formula in one of many possible formats. The important part is

how the formula is being processed and queried. We define high level taxonomy as

follows:

1. syntactically mathematically aware - search engines which enable search in math-

ematical documents but do not allow to (at least) approximately describe a math-

ematical structure where the particular formula lives. By “approximately de-

scribe” we mean that a certain level1 of mathematical operations must be avail-

able specifically for this structure.

2. semantically mathematically aware - search engines which enable search for

mathematical formulae inside (at least) a partially defined mathematical struc-

ture with a certain level of mathematical operations.

3. strict mathematical model - used by automatic theorem provers and precise com-

putational software where the mathematical model is precisely specified and

adhered to even if the query language can introduce limitations in its expres-

siveness.

We must distinguish between mathematically correct solutions which use curated

input data sets and solutions which can use semantics but the semantics is guessed

or deduced. In the following text, we consider semantically mathematically aware

search engines and also those which somehow guess the semantics.

3.1 Searching for Mathematics

The following section describes the development of this research field and existing

approaches. We have included papers with new contributions and have eliminated

duplicates and simple summaries. We briefly describe the set up used for performance

evaluation (if available) but no conclusions have been made. This is because the vast

majority of the evaluation is not really a performance evaluation but rather a proof of

concept.

We created a graph showing search term popularity connected with mathematical

searching in Appendix A.1. There are several interesting points about the graph. If the

statistics2 used to create this graph are correct then the first notable characteristic is a
1It is not necessary to precisely define the term “certain” at the moment of writing this thesis because

every known mathematical search engine can be easily classified into one of the mentioned categories.
2The data is maintained by Google, Inc.

22

CHAPTER 3. DOMAIN ANALYSIS

decrease in interest in mathematical searching around July every year. The second no-

table characteristic is the decline in popularity of “math search” observable from 2010.

The interpretation is highly subjective but the authors would interpret it as follows.

The decrease every year might be connected with academic summer holidays. The

decline from 2010 could be due to the fact that WolframAlpha3 was launched with a

lot of attention. WolframAlpha can handle several types of mathematical queries very

well and the need to search for another place which offers mathematical searching was

minimal for these types of queries. We can draw basic conclusions about the audience

who are interested in mathematical searching.

We do not describe graphical user interfaces (GUIs) of the mathematical search

systems in the following survey because there are plentiful other mathematical sys-

tems with interesting GUIs available which are outside the scope of this thesis. There

are only a few mathematical search engines publicly available so we include several

screenshots in Appendix A.

Several key terms have been used differently in different papers; therefore, the

meaning is dependent on the context where it occurs e.g., normalisation or normal

form means renaming variables [Gra96] in comparison to ordering of parse tree nodes

[MiYo03] and semantic normalisation [Miš08b].

Many of the works have been presented at one of the conferences related to the

MKM interest group4. However, in the last few years several interesting applications

have been developed; also outside of this principal research community.

In the next section, we do not explicitly refer to ourselves and the main component

of this thesis - EgoMath - to comply with the style of an objective survey.

3.1.1 A Survey

The first non-trivial approach to searching in mathematical structures was published

in Searching Techniques for Integral Tables by T. H. Einwohner and Richard J. Fateman

in 1995 [EiFa95]. The paper describes textual features extracted from formulae used for

searching including a basic sub-formula search. Searching is limited and specialised

to integral tables.

A few other papers had briefly mentioned formula search before 2004. These in-

clude the Archon Digital library description [Ma+02] which allows for the retrieval of

3WolframAlpha Computational Knowledge Engine, available at http://www.wolframalpha.com/.
4Mathematical Knowledge Management, more details at http://www.mkm-ig.org.

23

http://www.wolframalpha.com/
http://www.mkm-ig.org

CHAPTER 3. DOMAIN ANALYSIS

equal LATEX strings from a relational database. The database also contained digital im-

ages of formulae which were displayed to the user in the result list. Peter Graf’s book

[Gra96] and later an updated version by Sekar et al. [Se+01] are related to mathemati-

cal searching in general. Both contain an up-to-date overview of indexing techniques

and describe building indexes for searching in great detail focusing on specific areas

like automated deduction and symbolic computing. Several topics mentioned in the

book including path indexing, substitution trees and unification factoring are used in

several mathematical search engines.

The first important, coherent and publicly available reference of mathematical

searching and searching in mathematical texts was mentioned at the IMA Workshop

Enhancing the Searching of Mathematics in 2004 [Ima04] at the University of Minneso-

ta. The conference was part of the NSF award [Nsf02a] Indexing, Searching&Retrieval

of Mathematical Contents started in 2002 with Abdou Youssef as the principal inves-

tigator. Important points connected with mathematical searching were mentioned in

Robert Miner’s [Mil04] and Youssef’s [You04] talks and papers [MiYo03] e.g., the im-

portance of MathML, TEX in mathematics, important complementary text search to

mathematical searching and creating a document collection for usability testing. Most

of the discussion was done on the theoretical level. However, several important tech-

nical issues were already addressed by Miller and Youssef in DLMF5 (see Figure B.1

in Appendix) namely textualisation and flattening of mathematical formulae (x2 into

“x begin superscript 2 end superscript”), sub-formula searching using the proximity

search, thesaurus abbreviations for formula and normalisation with basic textual or-

dering. The mathematical search was in the ability to parse TEX and MathML and in

the description of simple normalisation. Apart from this, a search for mathematically

equal formulae or a search for variables could not be performed.

2005

In this year, Youssef continues his work and describes the effort with basic perfor-

mance evaluation on 2000 equations from 300 mathematical documents [You05]. Yous-

sef lists several major mathematical search issues he identified: 1) defining an intuitive

yet expressive mathematical query language, 2) bridging the query language with the

language of the content files, 3) making IR systems “understand” mathematical sym-

bols and structures and 4) highlighting matched equations.

5NIST Digital Library of Mathematical Functions, available at http://dlmf.nist.gov.

24

http://dlmf.nist.gov

CHAPTER 3. DOMAIN ANALYSIS

The Wolfram Function Site hosted about 90, 000 mathematical formulae at this

time. Trott underlines the importance of mathematical searching on this site in the The

Mathematica Journal, 2005 [Tro05]. He argues that despite the clear organization of the

formulae in their document set (The Wolfram Functions site could be viewed as a large

table, with more than 250 functions running horizontally and more than 36 properties

running vertically) many formulae can be written in different forms and classified in

different ways. Furthermore, some identities might be given in a more general form

than needed for a concrete purpose. A search engine should be used for quick and

convenient access to the vast amount of knowledge encoded in the identities. The

search UI sent a canonical form of the query to the backend starting a Mathematica6

session. The search process uses a hash table which contains features extracted from

every formula. There are four feature types: functions, constants, numbers and oper-

ations. This correlates with the UI where a user can select whether he wants a feature

or not. It resembles a simple inverted index. There are several very specific operations

related to Mathematica. The result list contained images of the found formulae.

Mišutka started to work on a full text math-aware mathematical search engine

EgoMath in 2005 [Miš05] which was finalised into his diploma thesis [Miš07]. This

work was the foundation of this thesis.

2006

In another paper from Youssef [You06] the motivation and the needs of a math-aware

search system in general, including the fields of applicability is summarised. Yous-

sef updates the basic objectives of mathematical search to: math-awareness, a natural

math-query language, fine granularity of searchable and retrievable information units,

perfect recall, perfect precision, perfect relevance-ranking, useful highlighting and

minimum hit-redundancy. He identified these fields of application of mathematical

searching: discovery of similarities between fields, computer-aided proving, learning

aid and routing (routing was defined in this paper as the process of informing users

of the latest information that match a pre-determined query specified by the user, as

soon as the information becomes available). This was the first time that the similarity

search research field was mentioned in connection with mathematical searching. An

attempt to briefly describe a theoretical similarity function was presented.

In another paper from 2006 [YoSh06] multiple rules are used to pre-process every

6Mathematica is a computational software program.

25

CHAPTER 3. DOMAIN ANALYSIS

formula to get one normalised representation. The description is solely theoretical

and does not go into detail. These papers identify several of the objectives and areas

of applicability similar to Mišutka [Miš07] but are in strong contrast to several others

(compare to the description of [Miš07]).

A new mathematical search engine MathWebSearch (see Figure B.2 in Appendix)

was presented by Michael Kohlhase and Ioan A. Şucan [KoŞu06] which does not use

a full text search engine but uses the substitution tree indexing structure introduced

by Graf [Gra96]. Kohlhase and Şucan built their search engine on these observations:

1) mathematical notation is context-dependent, 2) identical presentations can stand

for multiple distinct mathematical objects and 3) certain variations of notations are

widely considered irrelevant. To cope with the first two observations, the authors

concentrate on the content representations of mathematical formulae. The third one is

addressed by the choice of the substitution trees as the indexing structure. An exten-

sible XML-based query language was developed for their search engine. The biggest

advantage is that it can find unified formulae using complex substitutions. Howev-

er, the substitution tree indexing can neither search for sub-formulae nor any other

available data (e.g., surrounding text), the whole index should be in a fast memory,

for the substitutions to work correctly the indexed formulae must be defined in ap-

propriate mathematical models. The search for sub-formulae is addressed by adding

all sub-formulae to the substitution tree together with the parent expression. They

claim that this leads to a manageable increase in the index size, because many sub-

formulae are shared by the larger expressions. Their evaluation was done on 87, 000

equations resulting in the 770MB index.

Another project with interest in mathematical searching was the learning environ-

ment for mathematics called LeActiveMath (see Figure B.3 in Appendix). The search

functionality has several similar points to the work of Youssef and Miner. Paul Li-

brecht and Erica Melis describe [LiMe06a, LiMe06b] how to index and search for

mathematical formulae with a full text search engine by flattening (similar to textu-

alisation) XML tokens extracted from the formulae. They focus on the mathematical

content items and formulae as opposed to the function orientation of Youssef and

Miner. Ranking is improved by boosting the score of specific queries. This is possi-

ble because LeActiveMath relies on an XML-like markup language for mathematical

formulae called OpenMath. LeActiveMath is learner-oriented and relies on provid-

ed metadata. Performance testing was done on their private collection set encoded

26

CHAPTER 3. DOMAIN ANALYSIS

in OpenMath counting 2, 761 documents with 36, 389 formulae. The implementation

uses the Apache Lucene search engine7. For the first time a survey on user behaviour

connected with mathematical searching was published even if only marginal.

2007

Mišutka presents a full text mathematical search engine which can search for math-

ematical formulae in predefined mathematical structures defined by axiomatic rules.

He presents a new technique of searching for mathematical formulae in real-world

mathematical documents but still offering an extensible level of mathematical aware-

ness. The work is built on the claim that most of these documents do not contain

semantic information; therefore, precise mathematical interpretation is impossible.

A proof of concept implementation is available and was evaluated on two different

datasets containing 32, 306 and 1, 416 formulae respectively. The problems were sum-

marised into these points: 1) no commonly used mathematical format or unitary no-

tation, 2) symbol meaning dependent on context, 3) structured text, 4) no canonical

form, 5) equivalent transformation rules and 6) many mathematical structures with

different axioms. The main idea is a chain of transformation rules producing different

representations (augmentation) which are indexed as synonyms for the original repre-

sentations. Each following representation is a generalisation of the previous one. The

paper contains a comprehensive summary of technologies which are somehow relat-

ed to mathematical search i.e., Citeseer8-like, web directories, XML search engines,

theorem provers and proof checkers, semantic web and Encyclopaedia of Integer Se-

quences. At the end, a brief description of available search engines was presented9.

Several other important issues have been touched upon e.g., the ordering algorithm,

linearisation, formula tokenisation and sub-formula search.

Altamimi and Youssef present their views [AlYo07] on the role of wildcard search-

ing in mathematical search engines which are based on XML. They developed a new

query language that extends the current standard XML query syntax. They claim to

present a mathematical query language that enables general users to express their in-

formation needs intuitively yet precisely. The presented query language is mapped

7Apache Lucene Core, available at http://lucene.apache.org/core/.
8Citeseer was one of the first academic paper search engines focusing on citations.
9These engines were added at the end, after the work was done, because none of them was available

during the actual work on the EgoMath mathematical search engine.

27

http://lucene.apache.org/core/.

CHAPTER 3. DOMAIN ANALYSIS

into standard XPath10/XQuery11 queries.

According to Youssef, the standard text similarity functions turned out to be in-

adequate in mathematical search [You07]. One possible similarity (ranking) function

taking into account additional information (e.g., type of formula, weight of individual

terms) is described in the paper in detail. To be strictly precise and correct, this par-

ticular definition of the similarity function can even assign positive values to objects

whose keyword intersection is zero and therefore, the full text search engine paradigm

cannot be used here. Because of this the similarity function should also be used for

retrieving, which means that all elements would have to be traversed. Youssef is al-

so claiming that although the snippets containing the hit title accompanied by a few

leading sentences from the target document are simple to produce, these often fail

to convey the document’s relevant excerpts to the user. He addresses this issue by

adding sub-hits for each hit into the result list.

An approach to mathematical searching through query formulation and data nor-

malisation is described by Miner and Munavalli [MiMu07]. The main idea is based on

the work of Youssef [MiYo03] but the normalisation process is extended with a multi-

pass algorithm. Encoding errors are corrected in successive stages, character data is

canonicalised and heuristics are applied to disambiguated expressions followed by the

MathML tree structure canonicalisation and finally canonicalisation of mathematical

synonyms and some variable names.

Hijikata et al. describe an approach to mathematical searching also exploiting

XPath [Hi+07]. They support formulae in MathML format. The structure of each

formula is used to generate all the possible XPath expressions using DOM12. Two of

these expressions are selected (the first and the deepest path) and concatenated to

form a textual word characterising the formula. This word can then be indexed (e.g.,

by a full text search engine) and searched, returning all the formulae with the same

characteristic word. Neither the details of building such a similarity function nor the

implications are mentioned. The evaluation was done on 87, 000 formulae but inspect-

ing only two search queries.

Kohlhase continues his work in this research field with Normann by stressing the

importance of pre-processing [NoKo07]. Their motivation comes from the field of

10XPath, the XML Path Language, is a query language for selecting nodes from an XML document.
11XQuery is a query and functional programming language that is designed to query collections of

XML data.
12Document Object Model (DOM) is a cross-platform and language-independent convention for rep-

resenting and interacting with objects in XML-like documents.

28

CHAPTER 3. DOMAIN ANALYSIS

automated reasoning where they propose a normalisation approach to support limited

ε-retrieval13.

Because of the indexing structures used by MathWebSearch it is problematic to di-

rectly integrate the textual search. An indirect solution was outlined by Anca [Anc07].

The matched documents returned from MathWebSearch are joined with results re-

turned from a full text search engine based on Apache Lucene. A similarity (ranking)

function is proposed which ranks documents from the intersection higher than the

other returned documents. Because the similarity functions of the textual and math-

ematical search are independent they cannot use the additional information from the

surrounding of the formulae in the text. The final similarity function consists of the

similarity functions connected with specific weights.

In another paper, Andrea and Michael Kohlhase expressed that the community be-

hind formalising mathematics and mathematics in computer science in general does

not necessarily focus on the real needs of the user [KoKo07]. Several important ques-

tions were raised about the convictions of mathematical search engines authors and

the expectations put on the users and data providers of such systems which follow

from the convictions. Some of the consequences of the design decisions including the

non-trivial ones are summarised.

2008

Mišutka summarises his work in this year focusing on the applicability of the math-

ematical search engine EgoMath (see Figure B.4 in Appendix) trying to make it pro-

duction ready [Miš08b]. More experiments shown that this technique can be used to

build a fully-fledged mathematical search engine focusing on large amounts of data.

The atomic information (grain) showed itself to be very important not only for sub-

formula searching but also for performance. A new document set was created from a

subset of the arXiv [Arch] collection for evaluation purposes containing 852, 388 math-

ematical formulae.

The PhD thesis of Norman [Nor08] gives an up-to-date overview of theorem prov-

ers. The renaming problem (α-equivalence14) and formula equality problem (ε-retrieval)

for formalised libraries described in the thesis is strongly connected with mathemat-

13ε-retrieval is the task of retrieving equal formulae in respect to a theory containing logical equiva-
lences.

14Two formulae are α-equivalent when we can transform one of the formulae by renaming (bound)
variables into the other without changing semantics.

29

CHAPTER 3. DOMAIN ANALYSIS

ical searching. This is proved by the fact that several of the proposed partial solu-

tions are almost equal to the steps in Mišutka’s work on the generalisation of formu-

lae [Miš08b].

A regular expression based feature extraction from MathML is described as the

basic element of a search engine by Adeel et al. [Ad+08] called Math GO!. A dictionary

of regular expressions and mapped keywords is used to extract appropriate keywords

from each formula if the regular expressions match. Then these keywords can be

searched in a traditional text based information retrieval system. Furthermore, they

applied basic clustering to query formulae and the result set. The returned results are

only from the most similar cluster. The performance testing was performed on 1, 400

equations.

The technical decisions about a mathematical retrieval system based on interviews

with 13 participants were published by Zhao et al. [Zh+08]. The surprising out-

come is the suggestion that the math-aware searching is not so much desired and

users would rather benefit from linking formulae to keywords. They also promoted

resource categorisation and used their Support Vector Machine (SVM)-based resource

categorisation prototype implementation as a case study.

The search engine at DLMF with few enhancements was described as a work in

progress by Miller and Youssef [MiYo08] including fine-grained highlighting of search

terms.

2009

One possible similarity function for mathematical formulae is defined by Kamali and

Tompa [KaTo09]. Their algorithm includes normalisation similar to already presented

ones. Despite the formal definition, it does not describe the mathematical properties

of the similarity function e.g., whether the similarity function is a metric or mathemat-

ically equal formulae are always more similar than unequal ones. Moreover, neither

performance evaluation nor implementation is available. The key element in the sim-

ilarity function is finding common subtrees which can be time consuming depending

on additional characteristics of the problem. They extracted 4, 000 mathematical for-

mulae from Wikipedia and Wolfram and showing several characteristics15.

Ştefan Anca continues his involvement in this research field by addressing infor-

mation mining from mathematical documents [Anc09]. The understanding of the se-

15Compare to comprehensive characteristics from this thesis in Figure 4.4 in Section 4.3.

30

CHAPTER 3. DOMAIN ANALYSIS

mantics of formulae inside mathematical texts is improved by extracting fixed-structure

natural language formulations containing both text and mathematics. The results are

integrated with MathWebSearch.

Yokoi and Aizawa define the similarity of mathematical formulae based on set in-

tersections of the formula subpath sets [YoAi09] obtained from their parse trees16. The

Jaccard’s coefficient is used as the basis of the similarity function. The performance

was done on a collection of 155, 607 formulae.

Samarasinghe and Hui propose feature keywords, extracted using specific regu-

lar expressions e.g, MathML matching “<mi[ˆ>]*>\p ...” which is tagged with the

“function” keyword [SaHu09]. Next to the textual keywords, keywords describing

the mathematical expression are also extracted using a predefined set of regular ex-

pressions. Furthermore, the data is clustered with different clustering techniques i.e.,

Kohonen’s self-organizing maps, k-means and agglomerative hierarchical clustering.

The evaluation was performed on 884 formulae.

WolframAlpha (see Figure B.8 in Appendix) is a computation knowledge engine

which can return information about particular mathematical equations. It is an an-

swer engine designed specifically for answering questions over curated data focusing

on mathematics related ones. The system can return information about mathematical

functions but also intermediate steps performed while computing the result. At the

moment, it seems to be the best place to look for precise answers regarding mathe-

matical functions. It has been estimated that this answer machine runs on more than

10, 000 CPUs and that the project has more than 15 million lines of code.

2010

Kamali and Tompa extend their work with tree based indexing and a mathematical

query language based on MathML; a wildcard-like approach [KaTo10]. The work

is based on the observation that many subtrees appear repeatedly in various trees.

Therefore, the index contains unique trees built from subtrees with pointers to the

fragments they are built from. The index keys are the hash signatures of the (sub)trees.

They specify four wild cards i.e., for numbers, variables, operators and expressions.

The evaluation dataset contained 297, 300 formulae.

It is important to mention that an initiative of translating (La)TEX articles from

16A parse tree is an ordered, rooted tree that represents the syntactic structure of a string according to
some formal grammar.

31

CHAPTER 3. DOMAIN ANALYSIS

the Cornell ePrint archive [Arch] to MathML [StKo08] using Bruce Miller’s LaTeXML

[Mil08] was very active in this year. It is connected with Kohlhase’s research [St+10,

Gi+11]. The activity was backed by the arXMLiv project [Arx12].

A completely different approach to the already existing ones is the content-based

image retrieval of formulae using hand-written formulae as the query input described

by Yu [Yu10]. Their algorithm uses X-Y cuts which segments the formulae into small-

er syntactic blocks along the axis (not necessarily semantically correct) by projecting

the bitmap into a space density graph. The (dis)similarity function used for ranking

computes the image similarity using dynamic time warping17. The evaluation dataset

contained 400 pages from CVPR 200818 where 200 were used for training and 200 were

used for testing.

Ma et al. depict a feature extraction algorithm in their work [Ma+10a] for cluster

based retrieval. This work is based on the work by Samarasinghe et al. [SaHu09]. Both

semantic and structural features are extracted using more general algorithms than a

static set of regular expressions. The cosine similarity function is used to rank the

formulae 19. The evaluation was done on 884 formulae.

The first reference to yet another full text mathematical search engine (see Fig-

ure B.7 in Appendix) is by Lı́ška in his bachelor thesis [Lı́š10] supervised by Sojka.

According to Appendix B, the whole indexing phase is an exact rewrite of the algo-

rithm described in detail by Mišutka [Miš07]. This work is the basis for the search

engine used at (eu)DML-CZ. The evaluation was done on 384, 183 formulae.

2011

Mišutka and Galamboš think that another step towards making mathematics in dig-

ital form more accessible was to enable mathematical searching in one of the world’s

largest digital libraries - Wikipedia. A complete rewrite of the frontend and a new ver-

sion of the Egothor backend was used. The EgoMath v2 search engine has been made

easily portable and configurable20. The indexing process exploited the latex2mathml21

17Dynamic time warping (DTW) is an algorithm for measuring similarity between two sequences by
finding an optimal match of feature vectors which allows for stretched and compressed sections of the
sequence.

18Available at http://www.cvpapers.com/cvpr2008.html (seen March, 2012).
19See Chapter 5 for a in-depth description of the algorithm and its reimplementation with improve-

ments done for this thesis.
20Compare with the state-of-the-art EgoMath which had been ported to a new backend without prob-

lems described in Chapter 4.
21Available at http://tex2xml.kwarc.info (seen March, 2012).

32

http://www.cvpapers.com/cvpr2008.html
http://tex2xml.kwarc.info

CHAPTER 3. DOMAIN ANALYSIS

service developed by the KWARC group [Kwa12].

The work on the mathematical search engine at (eu)DML-CZ is extended by Sojka

et al. [Lı́+11, SoLı́11]. The main contribution is the creation of Mathematical Retrieval

Collection - MREC version 2011.4.439 - built on arXMLiv containing 158, 106, 118 for-

mulae. The evaluation was done on the MREC collection. An interesting detail is

using 448GB of RAM for their search engine during evaluation. The document set

contains almost 440, 000 documents.

Another marginal work, built upon a very interesting dataset, is the LATEX search

which indexes papers form the well-known Springer publisher22. It is a simple full text

searching over linearised LATEX fragments. It searches through approx. 8, 223, 13823

LATEX snippets. Even though it is not a real mathematical search engine, it is one of

the very few examples of a commercial company exploiting the demand for searching

for mathematical formulae.

The combination of simple textual search with image based retrieval is described

by Zanibbi and Yuan [ZaYu11a]. The formula was indexed after transforming it to

simple text. The approach was inspired by Miller and Youssef [MiYo03]. Several visual

features were extracted from each formula e.g., pixel density. The evaluation was done

on a data set consisting of 26, 737 mathematical formulae. The conclusion of whether

combining the two different techniques improved the results is unclear.

2012

Kim et al. convert mathematical expression into natural language sentences which are

then indexed using a standard full text search engine [Ki+12]. Two types of features

are extracted: patterns of identifiers, numbers and operators and structures. There

were 1, 800 equations used during evaluation performed by 10 testers who tried to

create queries from 200 given equation.

Birialtsev et al. write about semantic searching of formulae (in Russian) [Bi+12].

The search is based on the extraction of semantically annotated variable names from

formulae. The query contains variable names e.g., volume or charge and the result

includes formulae containing those variable names.

Nguyen et al. describe two additional approaches to mathematical retrieval. In

the first paper Nguyen et al. claim that mathematical search systems adopting con-

22Available at http://www.latexsearch.com/ (seen March, 2012).
23Seen March, 2012.

33

http://www.latexsearch.com/

CHAPTER 3. DOMAIN ANALYSIS

ventional text retrieval techniques are ineffective in searching for mathematical ex-

pressions. Because of this, they uses the Formal Concept Analysis24 for similarity

[Ng+12b]. The FCA works with features extracted from the MathML representation

of a formula. The features are linearised sub-paths, each subpath fragment is concate-

nated into one single word. Some of the features can contain the real values besides

the subpath. Mathematical formulae belonging to one concept are ranked using Jac-

card’s coefficient on the feature sets. The important part of FCA is the soundness of

the underlying attributes which specify the relation, in this case, the extracted features.

In this case, the level of understanding mathematics from the semantic point of view

is not very clear. The performance testing was done on 489 formulae. In the second

approach the search engine searches for keywords and mathematical features. A use

case is a question answering system working over e.g., MathOverflow25. The inter-

esting part is using Passive-Aggressive algorithm26 adapted as a similarity function

[Ng+12a]. The authors created a TREC-like document set with 31,288 mathematical

questions and answers together with 30 manually evaluated queries for their evalua-

tion.

The indexing technique used in MathWebSearch is based on the substitution trees

and for acceptable performance must be available in fast memory e.g., RAM. There-

fore, Kohlhase et al. examine distributable indexes [Ko+12] in their MathWebSearch.

The evaluation was done on 115, 000, 000 expressions. Another paper [KoIa+12] pres-

ents a method for searching the mathematical knowledge space which allows the an-

swering of questions on the properties of symbols if some properties are known (e.g.,

if an associative, unital, idempotent magma structure with an operation is also com-

mutative).

Substitution trees were also used by Schellenberg et al. They focus on semantical-

ly poor data in contrast to Kohlhase et al. The evaluation was performed on 24, 479

mathematical formulae. They compared their solution to the solution by Zanibbi and

Yuan [ZaYu11a]. Different metrics showed different results, keyword based solution

outperformed the substitution trees in the evaluation of the first 5 and 20 results. Sub-

stitution trees achieved better results in comparison of the first result.

24Informally, in contrast to the term independent vector space model the Formal Concept Analysis
(FCA) uses term dependencies to find concepts. The interesting observation is that a certain “closure”
of the relations is implied which can be exploited for similarity search. An important feature is that the
concepts can be easily visualised.

25MathOverflow, available at http://mathoverflow.net/.
26Informally, Passive-Aggressive algorithm is used for online binary classification on learning tasks

where datasets are not linearly separable.

34

http://mathoverflow.net/

CHAPTER 3. DOMAIN ANALYSIS

It is worth mentioning the work by Kamali et al. who try to recognise and classify

mathematical queries from Bing logs [Ka+12]. This can be seen as another step to-

wards the integration of mathematical search engines into traditional search engines

despite the fact that the authors claim that mathematical queries should be computed

in real time. The reason can be that the focus in the paper is specifically on queries

which require simple precise answers.

Marginal Work

There are also the papers [KoFr01, Gui03, As+04, Urb06, Th+06] addressing mathemat-

ical formula search in some way, more related to the theorem provers which is outside

the scope of this survey. Experiments with a natural language processing technique

the LSA27 on a formalised mathematical library were described by Cairns [Cai04]. He

claims that LSA can perform useful retrieval without explicit semantics, find concep-

tual associations between mathematical notions and also that the users themselves are

able to formulate query expressions for which LSA returns useful results. However,

he also identified several issues, the most important being the reliability of the queries.

Despite the author’s poor knowledge of Japanese, the paper by Kishimoto et al.

[Ki+05] is related to the mathematical searching research field. The authors suggest

linking the function of similarity-based retrieval for formulae to the function of word-

related associative search applied to mathematical terms. They try to find interesting

keywords using the LSA method per page and map MathML formulae into the key-

words produced by LSA.

There has been one attempt to address mathematical searching by using MathML in

MySQL [MiIg08].

String features, extracted from formulae indexed as text with edit distance as a

similarity function, form the basics of an algorithm presented by Guan et al. [Gu+12].

Recognising mathematical notation and creating the original mathematical formu-

lae has been an active research field. Performance evaluation is straight-forward and

important. The work by Sain et al. proposes an evaluation framework based on tree

matching [Sa+11]. This work partly overlaps with the mathematical retrieval research

27 Latent Semantic Analysis (LSA) is a theory and method for extracting and representing the
contextual-usage meaning of words by statistical computations applied to a large corpus of text that
uses a mathematical technique called singular value decomposition to identify patterns in the relation-
ships between the terms. Latent semantic indexing (LSI) is an indexing and retrieval method that uses
singular value decomposition in the same way as LSA. It is clear that in most cases the term LSI can be
replaced with LSA.

35

CHAPTER 3. DOMAIN ANALYSIS

field because they need to compare and/or find similar formulae of the recognised

result and of the expected one which Sain et al. do using tree edit distances.

There are several references to Mathdex [Miš07, AlYo07, You07, MiMu07, Zh+08] a

web-based search engine developed by Design Science which should be able to handle

mathematics but no additional up-to-date details could be found by the authors but

non-working references28.

Two citations [Ng+12a, Ng+12b] of another formula search engine available29 have

been found. It seems to do simple textual searching over English Wikipedia.org.

There are at least two commercial projects aimed at mathematical searching. The

first one is Scientific equation search30 (see Figure B.5 in Appendix) which acts like a

meta search engine combining their own search framework with data from e.g., Wol-

framAlpha. This project went online in October 2012. The second project is (uni)-

quation31 (see Figure B.6 in Appendix) which started around the end of 2009 but

has not been updated since 201132. The input is TEX-like and the index contains

several well-known mathematical document providers (e.g., MathOverflow, MathEx-

change33, dxdy34, PlanetMath35 and Wikipedia.org). The underlying technology is not

known but experiments show that both work very similar to e.g., the EgoMath math-

ematical search engine by Mišutka [Miš08b]. They claim to index around 746, 000

mathematical formulae 36.

There are several other search engines which seem to search in mathematics with-

out much information available. Moca
∫∫

in 37 [Zh12] takes a different approach in

mathematical searching. It allows for searching segments (e.g., theorem, proof, axiom,

claim) with operators (e.g., followed by, has part, has text) building a semantic graph.

There is an online demo of Equation search38 which seems to search for mathematics

but no further details are available.

An interesting paper by Trott and Weisstein [TrWe12] summarises several of the

28MathDex references http://www.ima.umn.edu/2006-2007/SW12.8-9.06/activities/Miner-
Robert/index.html, http://www.mathdex.com:8080/mathfind/search (seen March, 2012).

29Available at http://shinh.org/wfs/ (seen March, 2012).
30Symbolab Scientific Equation Search, available at http://symbolab.com/, formerly known as∑

QsQuest.
31(uni)quation mathematical expression search engine, available at http://uniquation.com/en/.
32Seen March, 2012.
33http://math.stackexchange.com/
34http://dxdy.ru/
35http://planetmath.org/
36Seen March, 2012.
37Available at http://cll.niimm.ksu.ru/mocassin/ (seen January 2013).
38Available at http://www.equationsearch.com/, seen January 2013.

36

http://www.mathdex.com:8080/mathfind/search
http://shinh.org/wfs/
http://symbolab.com/
http://uniquation.com/en/
http://math.stackexchange.com/
http://dxdy.ru/
http://planetmath.org/
http://cll.niimm.ksu.ru/mocassin/
http://www.equationsearch.com/

CHAPTER 3. DOMAIN ANALYSIS

mathematical search engines publicly available today and the possible future for math-

ematical searching. According to the statistics in this paper, WolframAlpha is the most

used mathematical search engine today with 1-2∗106 mathematical searches per day.

However, the natural semantic question answer search system in mathematics still has

a long way to go. There are several case studies which question what users really want

from a mathematical search engine.

3.2 Elementary but Often Unanswered Questions

Special Note: One of the basic motivations of this research field is fairly

simple. With the increase in the amount of digital mathematical content

the problem of being able to search through it came along. The list of

possible applications of the results from this research field grew. The

author thinks that some of the solutions are mature enough for pro-

duction use. However, the author also sees a problem with too hetero-

geneous attempts to solve some of the problems. The results are too

fragmented and for people outside the core community it can be diffi-

cult to find useful information about the state-of-the-art of this research

field. It is also difficult to find information about the possible solutions

with their advantages, disadvantages, performance results and hope-

fully demo versions. There have been several discussions about a sort

of competition of mathematical search engines. The first real attempt

to create a dedicated application for creating datasets by the author of

this thesis in 2010 has not been adopted yet39. The following set of ques-

tions should improve the basic information about mathematical search

engines, the motivations and not least the actual implicit assumptions

researchers work with.

To clarify the preconditions, assumptions and goals which the authors of mathe-

matical search engines work with we suggest a list of questions. We helped ourselves

with basic questions which should be asked from the project management point-of-

view before project start even though a mathematical search engine is in fact already a

product. The list of questions which should clearly characterise a mathematical search

39For latest development in this matter see section 3.4

37

CHAPTER 3. DOMAIN ANALYSIS

engine and provide more details about it is:

• What problem(s) does your mathematical search engine solve?

• Who are your prospective visitors (and customers)?

• What do you want visitors (and customers) to do with the search engine?

• Who will benefit from your mathematical search engine?

• How would you define “two equal mathematical” formulae and “two similar

mathematical formulae ” in regards to your search engine?

• How will you evaluate the success of your search engine?

3.3 Case Studies

A more detailed description of mathematical search engines is necessary for a com-

plete picture of the research field and its current state-of-the-art and to understand

which features are important for the authors and which claims the particular search

engine is built upon. The selected search engines are representatives of different ap-

proaches in this research field.

First, we describe the search engine used in DLMF, the oldest one available fol-

lowed by the description of the EgoMath mathematical search engine is also based

on a full text search engine but semantically mathematically aware follows. Then, we

describe MathWebSearch which is unique in the chosen indexing structures and the

community around it which addresses not only issues strictly connected with math-

ematical search but mathematical knowledge in general. The final search engine (an-

swer engine) described in this section is WolframAlpha representing a commercial

product with millions of users per day.

Despite the fact that all four projects can be labelled as mathematical search en-

gines they are different in the target audience, the purpose and goals. DLMF targets

special functions and the user should have good knowledge about what he seeks. Ego-

Math aims for digital mathematical content mainly on the internet (where most math-

ematical content has very little semantic information available) and focuses on simi-

larity incorporating mathematical operations together with up-to-date full text search.

The user should start with a generic query and refine the search. MathWebSearch uses

38

CHAPTER 3. DOMAIN ANALYSIS

special indexing structures giving the ability to use more complex and precise math-

ematical queries relying on the semantics of the input data. MathWebSearch query

language(s) offer several ways to specify different properties of the query but this im-

plies that the user should have a very good picture of what he is going to search for.

WolframAlpha speciality is the huge curated data set including precise mathematical

knowledge offering precise answers including the steps by which the answer was cre-

ated. The user must formulate a precise query with the help of the advanced linguistic

parser.

3.3.1 DLMF

DLMF40 is the oldest mathematical search engine based on a full text search engine.

The project started in 2002 [MiYo03] and the online search functionality was launched

in 200841. The original goal was to replace the Handbook of Mathematical Functions

by Abramowitz and Stegun [AbSt72] with an online version. The mathematical con-

tent was created by a team of experts specifically for DLMF. At the time of preparing

the content the MathML format platform had not been mature enough and that is

why the LATEX format, even though not easily suitable semantics encoding, was cho-

sen. Moreover, using MathML without proper tools - not available at that time - is

very cumbersome. Later, the LATEX format was converted into MathML format [Mil08]

which is used to represent the mathematical formulae.

The Apache Lucene search engine is used as the core engine. The mathematical

content is converted to text in 3 steps: textualisation, linearisation and normalisation.

The first two are trivial converting sin2 x + cos2 x into e.g., sin begin superscript 2

end superscript x + cos begin superscript 2 end superscript x. The normalisation was

mentioned in several papers [MiYo03, YoSh06] and takes care of reordering tokens

(e.g., ˆx y and yˆx) and mapping equivalent forms into a unique format (e.g., x/y to

\frac{x}{y}). Textual search is available as it is based on a full text search engine. The

curated content indexed by DLMF allows for mappings of keywords to functions e.g.,

searching for BesselJ returns one of the definitions as the first result [MiYo08].

The summary of this mathematical search engine based on the questions above

is as follows. The main goal of DLMF is to represent mathematical formulae in the

MathML format in an analogous way to how the user attempts to search for them and

40Available at http://dlmf.nist.gov, see Figure B.1 in Appendix.
41According to http://web.archive.org/web/20080914065211/http://dlmf.nist.gov/ (seen

March, 2012).

39

http://dlmf.nist.gov
http://web.archive.org/web/20080914065211/http://dlmf.nist.gov/

CHAPTER 3. DOMAIN ANALYSIS

which is suitable for a text-based search engine. Another goal is to handle “relaxed”

queries which allow for more matches and provide highlighting of the query terms in

the results. The audience should be primarily applied scientists (physicists, engineers,

mathematicians) interested in properties of special functions and their applications. A

user should be able to discover and/or verify properties of special functions.

3.3.2 EgoMath

A comprehensive description of EgoMath can be found in Chapter 4.

3.3.3 MathWebSearch

MathWebSearch42 is a mathematically aware search engine not based on a full text

search engine. The first version was publicly available at the beginning of 2007.

MathWebSearch is an example of a non-textual approach where expressions are

parsed into a substitution tree [Gra96] (used in symbolic mathematical systems such

as theorem provers). The result is a tree-like structure with nodes containing sub-

stitutions of its parents. The formula is constructed from a root node by applying

one or more substitutions. To allow searching for sub-formulae , it has to add all its

sub-formulae to the index separately. As the only search engine it fully supports α-

equivalence. In the latest version of MathWebSearch several new unification-based

query types were introduced [Ko+12]. The queries can be categorised into instantia-

tion, generalisation, variation and unification queries. These query types try to match

parts of the input formula into formulae which are indexed e.g., by generic substitu-

tion or renaming.

The most imminent problem can be seen in the performance as the search for a

formula must traverse complex substitution trees which must be in fast memory e.g.,

RAM. This was addressed in [Ko+12] and resulted in distributed substitution tree in-

dex. Because MathWebSearch also aims for indexing documents and not only formu-

lae , textual search should be available. However, the core indexing structure does

not support it. This issue was also addressed to some extent by Ştefan Anca [Anc07].

MathWebSearch semantic querying assumes that the indexed content is semantically

rich and that the mathematical structures where indexed formula live have specific

properties.

42Available at http://search.mathweb.org/, see Figure B.2 in Appendix.

40

http://search.mathweb.org/

CHAPTER 3. DOMAIN ANALYSIS

The summary of this mathematical search engine based on the questions above is

as follows. The main goal of MathWebSearch is to make the search for mathematical

formulae available using several different techniques. The audience should be mathe-

matical practitioners and automatic theorem provers who should be able to search for

theorems.

Lately, the authors of MathWebSearch seem to focus on mathematical knowledge

rather than on the indexed mathematical formulae. This has many implications some

of them described in a paper by Kohlhase and Iancu [KoIa+12].

3.3.4 WolframAlpha

The WolframAlpha Computational Knowledge Engine43 is an answer engine designed

specifically for answering questions over curated data focusing on mathematics relat-

ed ones. It went online in 2010. The system can return information about mathemati-

cal functions but also about the steps done in computing the answer. At the moment,

it seems to be the best place to look for exact results regarding mathematical functions

with more than 90% of successfully answered questions44. According to the statistics

[TrWe12], WolframAlpha is the most used mathematical search engine today with 1-

2∗106 mathematical searches per day. It has been estimated that this answer machine

runs on more than 10.000 CPUs and that the project has more than 15 million lines of

code.

The clear disadvantage is that this project works only over selected data with pre-

cise answers so the user must know precisely what he is looking for.

The summary of this mathematical search engine based on the questions above

is as follows. The main goal of WolframAlpha is to answer any question that has a

quantitative answer in different research fields. The audience is practically anybody

who has a concrete question.

3.4 Latest Development

During the writing of the thesis, Math IR happening took place at CICM 201245 which

should be the start point of cross-evaluation of available solutions.

43http://www.wolframalpha.com/.
44Article by Stephen Wolfram available at http://blog.wolframalpha.com/2012/04/17/

overcoming-artificial-stupidity, seen April 2013.
45More details at http://www.cicm-conference.org/2012/cicm.php?event=mir&menu=happening.

41

http://www.wolframalpha.com/
http://blog.wolframalpha.com/2012/04/17/overcoming-artificial-stupidity
http://blog.wolframalpha.com/2012/04/17/overcoming-artificial-stupidity
http://www.cicm-conference.org/2012/cicm.php?event=mir&menu=happening

CHAPTER 3. DOMAIN ANALYSIS

42

CHAPTER 4

EgoMath

The theory and implementation behind the mathematical search engine (MSE) Ego-

Math is described in detail in this chapter. We will cover the latest version (version 3)

of EgoMath by extending and updating the paper published by Mišutka and Galam-

boš [Miš08b] which describes the basic paradigms and algorithms in EgoMath version

1. The original paper is included in Appendix J. It should be read before reading the

next sections in order to understand the important algorithms. It is also recommended

to understand the basic anatomy and operation of a search engine. There are many pa-

pers addressing this issue including the book by Büttcher et al. [Bu+10]. Furthermore,

we mention several implementation details of the underlying Solr1 enterprise search

platform which uses the Lucene2 search library and we recommend a very good in-

depth description of Lucene by McCandless et al. [Ma+10b] which applies to most of

the full text search engines available today.

We start with a brief description of EgoMath’s evolution. Then we describe Ego-

Math by following the workflow of a common search engine. This includes processing

of the input data, indexing, ranking and querying. We also briefly touch on the user

interface. Finally, we summarise the contributions and draw conclusions.

1Project available at http://lucene.apache.org/solr/ (seen March, 2012).
2Project available at http://lucene.apache.org/core/ (seen March, 2012).

43

http://lucene.apache.org/solr/
http://lucene.apache.org/core/

CHAPTER 4. EGOMATH

Evolution of EgoMath

The first version of EgoMath was a proof of concept of the theory based on a pre-

release version of the Egothor v2 search engine3. A custom user interface based on

Struts and Taglib Java web technologies was developed and this version was made

publicly available in 2007.

The main goal of EgoMath version 2 was to offer mathematical searching to a

wider audience on a well known data set containing common knowledge which al-

lows for simple cross-evaluation when a user knows what he is searching for. The

choice was easy and Wikipedia.org was chosen as the main document set. Moreover,

there are many other ways to search for knowledge in this digital encyclopaedia which

could be used to verify the results from EgoMath. Version 2 was made available in

2010 with a new graphical user interface (see Figure D.1). Despite the fact that lat-

er versions of Egothor offered all the needed required components we chose the Solr

enterprise search platform 3.x as the underlying technology for newer versions of Ego-

Math. The upgrade demonstrated that EgoMath’s architecture is well designed and

extensible. The complete upgrade was finished in a few days. A new mathematical

search user interface was developed in PHP as a stand-alone library. Changing imple-

mentations, data sets and evaluating the results was the main motivation for creating

the Importer framework (see Section 4.3).

We chose to tune the performance for large document sets based on the results and

evaluation. In version 3 - the current one - we moved to Solr 4.x which offers more up-

to-date features of full text searching including a mature distributed platform. Howev-

er, instead of horizontal and vertical scaling, we still focus on the performance of non

distributed versions as we think that even larger collections of document sets (e.g.,

arXiv.org4 document collection) should be processed and made available on mediocre

hardware.

Before describing EgoMath in detail, we answer the questions defined in Sec-

tion 3.2. The answers should further clarify our motivation and goals.

3Project available at http://www.egothor.org/ (seen March, 2012).
4Project available at http://arxiv.org/ (seen March, 2012).

44

http://www.egothor.org/
http://arxiv.org/

CHAPTER 4. EGOMATH

4.1 Answers to Elementary Questions

What problem(s) does your mathematical search engine solve?

The main goal of EgoMath is to enable search for mathematical formulae focusing on

real-world documents offering a mathematically aware and deterministic similarity

search.

Who are your prospective visitors (and customers)?

Anyone who has knowledge in natural sciences and has a question which can be en-

coded using formulae.

What do you want visitors (and customers) to do with the search engine?

Users should search for mathematical knowledge by entering mathematical formu-

lae and iteratively refining their search. They should also be able to inspect the result

set and receive more information about it than a simple list of the first N results.

Who will benefit from your mathematical search engine?

People from natural sciences who either search for the newest mathematical knowl-

edge, are interested in cross domain searching or want to find similar formulae or

results.

How would you define “two equal mathematical formulae” and “two similar math-

ematical formulae” in regards to your search engine?

The answer depends on the formula context where the formula is defined or is expect-

ed to be defined e.g., the mathematical structure with its axioms.

We regard all mathematically equal formulae as similar. However, when two for-

mulae are visually completely different but mathematically equal, although they are

similar, the similarity is very low and can be disregarded. We say that two formu-

lae are similar even if they are not mathematically equal but can be easily transformed

into the other by applying simple operations like renaming variables (similar to α-

renaming in λ-calculus), adding items (sub-formula search) or disregarding subscripts

(similarity search).

45

CHAPTER 4. EGOMATH

How will you evaluate the success of your search engine?

Firstly by the number of visitors, then by user feedback, successful queries indicated

by logs and finally by the number of returning visitors.

4.2 Architecture

When speaking about EgoMath v3 MSE, we refer to several different components.

The first one is the visible GUI stand-alone library which interacts with the search

server using REST5 API. The second part is the search server built on the Solr search

enterprise platform with several major modifications and additional libraries. The

most important part surviving throughout all versions is the EgoMath library itself.

Both the search engine and the EgoMath library are written in Java and therefore, the

interaction is straight forward. The library includes parsers for different mathemati-

cal formats, the abstract tree representation of formulae, algorithms creating different

representations, different mathematical tokenisers, postfix and infix converters, stat-

ic and dynamic normalised representations of symbols and operators, and also the

implementation of the feature based approach (described in Chapter 5).

The main part of EgoMath is the web application deployed as a standard WAR6.

Parallel crawling and pre-processing of raw input files in different formats (i.e., html,

XML Wikipedia.org format, raw MathML, LATEX) is done by the Importer framework

described in the next section. The Importer framework uses the EgoMath library

to process the input and convert mathematical notation into different formats i.e.,

MathML to LATEX, MathML to EgoMath’s index format (see Table 4.2) and LATEX to Ego-

Math’s index format. For specific conversion from LATEX into MathML, the Importer

collection of mathematical formulae is used which was created using an external web

service (see Section 4.3). The technical overview of EgoMath is depicted in Figure 4.1.

Let us first define several important technical terms and paradigms used in the rest

of this chapter.

Definition of Important Terms

In the context of full text search engine indexing, a term can either be a normal word

or a group of characters with specific meanings (under specific conditions, terms can
5Representational State Transfer (REST) is a style of software architecture for distributed systems like

the World Wide Web.
6A WAR file (or Web application ARchive) is an archive file used to distribute a web application.

46

CHAPTER 4. EGOMATH

Figure 4.1: System architecture of EgoMath from a search engine point of view

also contain spaces). Terms are the smallest information unit which can be searched

for and cannot be further split. A token is an occurrence of a term from the text. It

consists of a term’s text, the start and end offset of the term in the text and often a

type.

During the indexing phase a document is converted into a dictionary like structure.

Each key-value pair in the dictionary defines a specific field which can be searched for.

Simple full text search engines use only one field which contains all the text. In the

most simple case, a field contains information about the text in a bag-of-words7 model.

More often, the field also contains additional information, like the positions of individ-

ual words or information about words in the same position (e.g., useful for including

synonyms or stems8). When a document is indexed, individual fields are often subject

to tokenising and analysing algorithms. A field usually consists either of one element

or is multivalued, which means it contains an array of elements. The difference be-

tween multivalued fields and simple fields from the search point of view is minimal.

A naive implementation of a field supporting arrays simply increases the position of

the word at the beginning of each element by a very high number, thus keeping the

fields separate for most of the queries (an exception can be proximity queries). The

only mandatory field in EgoMath is an array of EgoMath’s representations of mathe-

matical formulae.

7The bag-of-words model is a simple representation of text where the text (such as a sentence or a
document) is represented as an unordered collection of words.

8In IR, a stem is a base form of a word to which affixes can be attached e.g., one possible the stem of
“friendships” is “friend”.

47

CHAPTER 4. EGOMATH

4.3 Importer Sub-project

The first phase in a typical search engine workflow includes resource parsing and

importing. We designed and implemented a novel framework which enables the con-

necting of different datasets with different search engines. The framework was im-

plemented in the programming language Python. There are several reasons for this

decision: 1) Python allows for building cross platform applications with relatively

easy programming access to applications written in several other languages e.g., Java,

C, C++ (with C front end); 2) datasets are usually files which can be processed in par-

allel and Python offers an easy-to-use library for concurrent code execution; 3) easy to

develop plugin architecture and 4) high quality libraries. The Importer architecture is

depicted in Figure 4.2.

Datasets are usually composed of self-contained objects which are independent of

each other. These objects can be split into reasonably big files. Therefore, the paral-

lelism is based on parallel access to files. See the Wikipedia.org case study below.

Figure 4.2: Importer framework architecture

48

CHAPTER 4. EGOMATH

Importer Formula Database

A formula database sub-project of the Importer framework evolved into a new formu-

la search engine (note, that the “mathematical” adjective was not used). After parsing

two datasets (Wikipedia.org and MREC2011.4.439) in several iterations, it contains

approx. 50 million of different mathematical formulae in LATEX and MML formats

including additional information, like the datasets, and an example document from

each dataset (if applicable) where it was found. The searchable database is used for

multiple purposes. The Wikipedia.org plugin, inside the Importer framework, uses it

for fast LATEX to MML conversion access. The feature based approach search engine

(see Chapter 5) uses it for fast querying of formulae from a particular data set. It is

also used for statistical information and can be used for several other purposes e.g.,

verifying and improving the conversion of the external LaTeXML converter or verify-

ing MML content inside a browser (there have been multiple requests for an extensive

MML test collection e.g., by the WebKit Open Source community).

Adding Support for New Datasets

New datasets are added simply by creating a new Python module9 inside the directory

of datasets and defining the function exported process. The Importer process flow is

depicted in Figure 4.3.

At the moment, there are three indexer backends available i.e., EgoMath, the Im-

porter Formula database and the Feature based search engine. There is support for

LATEX and MathML expressions, MathML to LATEX conversion using EgoMath library

and LATEX to MathML conversion using LaTeXML.

4.3.1 Case Study - Wikipedia.org

The process of indexing Wikipedia.org by EgoMath was automated by the Importer

framework. The only requirement is the availability of the Wikipedia XML dump.

For instance, the latest dataset i.e., enwiki-20130204-pages-articles.xml from the 4th of

February 2013, is almost 43GB and contains 11, 569, 790 pages.

The first step in the process is to split the file into several small ones so we can ac-

cess them in parallel using the Importer framework. We use approx. 4GB files which

are split on the article boundaries and are filled with appropriate headers and foot-

9The simplest Python module is a new directory with one empty file called init .py.

49

CHAPTER 4. EGOMATH

Figure 4.3: Importer workflow

ers so that each file is a valid XML file. The next step is to extract only the articles

containing mathematics. According to our implementation, an article contains math-

ematics when it contains <math>10. We do not consider mathematics encoded using

the texhtml format (less than 0.01% of total unique formulae). However, the Importer

framework also parses Wikipedia mathematical html templates e.g., “{{math|sin π

{{=}} 0}}”11. The next step is to concatenate the output files into one file contain-

ing all the articles with mathematical formulae. This file is almost 550MB containing

32, 662 documents with approx. 490, 500 formulae12, out of which approx. 291, 000 are

unique after normalisation. Out of the 32, 662 articles, around 4, 000 articles use math-

ematics in unsupported parts of the page e.g., comments, summary tables or there is

no formula left after normalisation. The distribution of formula count on a page, and

formula length, is visualised in Figure 4.4.

The next step is to create stand-alone files with LATEX formulae converted into

MML. The files are created using a templating system and are exported to html for-

10Wikipedia’s Manual of Style section, on the Mathematics web page addressing the typesetting of
mathematical formulae, describes several ways of typesetting mathematics on Wikipedia.org.

11Using parallel execution in the Importer framework and using the Importer Formula SE on a 4 core
machine with a max. of 6 concurrent processes, the processing of Wikipedia.org was six times faster than
the sequential one (still, the bottleneck was disk I/O).

12During the processing we removed non mathematical formulae which were typeset using the math-
ematical style e.g., “\;”.

50

CHAPTER 4. EGOMATH

Figure 4.4: Statistics of the English Wikipedia.org dump (enwiki-20130204-pages-
articles.xml)

mat, including meta information available from the Wikipedia markup like id, url, cat-

egories, languages and references. The Wikipedia parser cleans the text before send-

ing it to the templating system (e.g., comments, noincludes, nowiki and tables are re-

moved). Several types of articles are automatically removed e.g., Wikipedia templates

and articles marked for deletion (step 1 to 3 in Figure 4.5).

Figure 4.5: Wikipedia.org indexing process workflow using the Importer framework

The formulae are converted into MathML representation using the LaTeXML’s

Web Server (step 4) created by the arXMLiv project13. The MathML representation

contains the original LATEX formula in annotation. This is the real bottleneck in the

process taking about three days to convert the 290, 000 unique formulae (but using a

sparing approach). To overcome this, we use the Importer formula search engine for

13Available at http://latexml.mathweb.org/about (seen March, 2012).

51

http://latexml.mathweb.org/about

CHAPTER 4. EGOMATH

the conversions if available.

An important advantage of this approach is that each result file can be used sep-

arately and that is why the files can be used to create new smaller datasets. In the

Wikipedia.org case study, LATEX formulae are converted to MathML representation

(containing the original LATEX) which is inserted back into the text at appropriate po-

sitions (step 5). Then, the EgoMath library (written in Java but directly called from

Python using the Java Native Interface - JNI) is used to create mathematical represen-

tations of each formula (step 6). All the information available including the mathe-

matical representations is then sent to the search core which parses and stores it in

its index (step 6). The complete importing workflow for Wikipedia.org is depicted in

Figure 4.514.

4.3.2 Case Study - arXiv.org

Another interesting dataset for mathematical searching are documents from arXiv.org

hosted at the Cornell University Library. Mathematical formulae in the documents

had been converted to MML in the arXMLiv project15. Furthermore, the converted

document set was further processed by Lı́ška et al. [Lı́+11] who included only the

successfully converted ones and polished the document representation16.

Figure 4.6: MREC2011.4.439 statistics

The overall indexing process is similar to the Wikipedia.org case study but with-

out the need to create individual files. There are 439, 423 (432, 943 containing at least

one mathematical formula) with approx. 158, 000, 000 usable formulae. The size of

the document set is 121GB. Each formula is firstly parsed, converted into EgoMath’s

internal tree representation (formula tree) and then converted to LATEX. This process

14Indexing 32, 662 files using 6 parallel processes takes approx. 20 minutes.
15arXMLiv project uses LaTeXML[Mil08] to convert arXiv.org documents into xhtml. More details are

available at https://trac.kwarc.info/arXMLiv/wiki (seen March, 2012).
16The document set is available at https://mir.fi.muni.cz/MREC/ (seen March, 2012).

52

https://trac.kwarc.info/arXMLiv/wiki
https://mir.fi.muni.cz/MREC/

CHAPTER 4. EGOMATH

involves four conversions (arXiv.org LATEX→MML→MREC MML→ EgoMath’s for-

mula tree → normalised LATEX) during which the semantics are guessed at various

levels. The distribution of formula count on a page and normalised LATEX formula

length is visualised in Figure 4.617.

4.3.3 Case Study - Feature Based Approach Search Engine

The last case study is another approach to mathematical searching described in Chap-

ter 5. The Importer Formula search engine is used to perform similarity testing. The

process includes defining the important features used for indexing, indexing the fea-

tures, normalising them and performing the similarity search on test queries. The

whole run on the Wikipedia.org document set (258, 404 formulae) takes approx. 15

minutes.

4.4 Parsing the Input

The first step in a SE workflow is to obtain a data set and to mine the relevant infor-

mation from it. The ingenious indexing and searching techniques are of no use if the

input data are processed incorrectly. Furthermore, pre-processing and normalisation

can improve the search experience and the quality (recall and precision in general) of

the results which was also observed by Normann [NoKo07] and Miner and Munavalli

[MiMu07].

In 2006, the MML format was not widespread and it was clear that without prop-

er tools and development environments, the format will never become widespread18.

Therefore, we chose to support both the LATEX and Presentation and Content MML.

Both parsers are implemented inside the EgoMath library. The MML format consists

of the Content MathML format which can encode semantics of a formula and Presen-

tation MML format which is used to control how a formula is displayed. The frag-

ments for the Content and Presentation MML are shown in Listing 4.1 and Listing 4.2

respectively.

17Indexing 439, 423 files using 6 parallel processes takes around 2 days.
18Sadly, we think that this is still the case.

53

CHAPTER 4. EGOMATH

Listing 4.1: Content MathML

<apply>

<apply >

<apply/>

<plus>

<ci>a</ci>

<ci>b</ci>

</apply >

<cn>a</cn>

</apply >

Listing 4.2: Presentation MathML

<msup>

<mfenced/>

<mi>a</mi>

<mo>+</mo>

<mi>b</mi>

</mfenced >

<mn>2</mn>

</msup>

When inspecting the example, it is clear that Content MML is not strict with the

definition of its identifier elements marked with the ci element. If a simple markup of

<ci>a</ci> is used, no semantic information is given about a at all and a can be e.g., a

vector, a variable or a matrix. However, the element ci can have a type attribute which

can define its meaning e.g., type=”vector”. The usage of type depends on the author-

ing tool used. Lately, the MML parsers have been revisited in the EgoMath library

because the LaTeXML’s converter provides both Content and Presentation MML. The

formula representation in MML is used in parallel to LATEX representation. The MML is

acquired by the Importer formula search library which internally uses the mentioned

converter. Another layer of conversion introduced additional differences between in-

dividual input format representations, but on the other hand, it adds robustness to

the solution. Let us inspect a simple example of different notations of the π symbol.

Several different representations of π are shown in Table 4.1 with their correspond-

ing formula trees. If we choose the semantically poorer representation (e.g., π is a

variable) then we loose important information which we had, which could have been

used in restraining queries. If we choose the semantically richer representation (e.g., π

is a constant) then we would restrain the result list of a loose query (simple querying

for π). EgoMath v3 uses all the different notations creating formula representations

for each of them and using the representation if it is unique. If the semantic meaning

is ambiguous, EgoMath normalises the intermediate format shown in the figure and

uses one predefined meaning as described in Section 4.5.

The power of LATEX and the implicit mathematical typographic consistency (which

we found out many people have a problem with) from the Wikipedia.org dataset was a

complex stress testing for EgoMath’s own LATEX parser. The formulae are input by dif-

54

CHAPTER 4. EGOMATH

<mtext>π</mtext> <pi />

<cn type="constant">π</cn> \pi

Table 4.1: Table shows the parse trees of three different MML and one LATEX notation
of the same mathematical formula π. The important textual representation is shown
above the graphical representation. From top left to bottom right: a parse tree with an
unknown variable named π (π is π’s unicode html entity decimal code), a parse
tree with the well known constant π, a parse tree with a constant named π and a parse
tree with an unknown variable named π (equal to the first parse tree).

ferent users clearly following different rules. The problems encountered ranged from

unclosed math tags to invalid or very ambiguous inputs e.g., ^{} {}, ..., . . ., . . .,

<math><math><math>, various Wikipedia specific TEX tags and spacing issues19.

The pre-processing and normalisation steps contain around a hundred rewriting rules.

The LATEX parser first cleans up the formula string by replacing all LATEX space sym-

bols for real spaces (e.g., “\ ”, “\;”, “\!” “\quad”), multiple spaces are normalised into

one and several unimportant keywords are removed e.g., “\displaystyle”. The input

is split at word boundaries at specific characters e.g., “^ {}()[]=:;?.,” and formatting

markup (e.g., “\mathbf”, “\mbox”, “\textrm”, “\cal”) is ignored. Afterwards, num-

ber elements are parsed from string to numerical values, the fragments which are left

at the end of words like “:;.” are removed and each word is normalised to its base form

(see Appendix J).

A very common semantic abuse in mathematics is to omit the multiplication sign.

19All the corrections have been submitted back to Wikipedia.org.

55

CHAPTER 4. EGOMATH

LATEX notation “a b” (ab) is intuitively understood as a ∗ b. Another very common

and unfortunate habit is to interchange “1/2” (1/2) with “\frac{1}{2}” (12) or even

worse with “1 \over 2” (12). These issues are addressed just before the infix notation

is converted into postfix. The postfix notation removes many (otherwise necessary)

brackets in the infix notation (e.g., a + (b + c) becomes “a b c + +” while (a + b) + c

becomes “a b + c +”). It fails if the operators have varying arity20. The performance

difference between the version using brackets and the one not using them is discussed

in Section 4.9.1.

Then, the input is parsed into a parse tree. A parse tree (internally called a formula

tree) is a tree structure with one root node allowing for easy breadth first and depth

first traversal. Each formula tree can be exported to postfix, infix and LATEX-based tex-

tual representation. There are several types of nodes: leaf, unary, binary and general

n-ary. Currently, more than 200 operators, approx. 500 variables and approx. 50 con-

stants are defined. Each node contains information about its depth. This depth does

not necessarily correspond to the real depth in the tree, but more to the mathematical

operation which can be performed on the same level e.g., leaf nodes in formula a+b+c

have the same depth, but leaves in ab have different depths. The depth of leaves in

index is increased by a predefined high number at every level.

Each node has a type e.g., variable, number, constant and can have additional

properties (internally called decorations) which can be used to specify indices (bounds)

and additional semantics. The arity of operators, the default representation, priority

and whether it can be reordered inside the Ordering algorithm are specified in an

XML file (symbols.xml) together with the symbol alternatives. A simple example of

operator definition is shown in Listing 4.3. A similar format is used for constant and

variable definition.

Listing 4.3: Example of an operator definition

<operator representation="sine" priority="HIGHEST"

arity="1" ordered="0">

<alternative >sinus </alternative >

<alternative >sin</alternative >

</operator >

20Arity of a function or operation is the number of arguments or operands the function or opera-
tion accepts. Let us assume operator O can have arity 1 or 2. Then, the postfix notation “1 2 O O” is
ambiguous and can be correctly represented in infix by O(O(1, 2)) or O(O(1), 2).

56

CHAPTER 4. EGOMATH

Formula trees have normalised textual representations (e.g., “aˆb c” and “a cˆb”

will both be represented in postfix as “a c b ˆ” despite the order of the operators).

Every formula can be exported to postfix, infix and LATEX format.

4.5 Indexing

The indexing phase of EgoMath is a complex process of transforming input objects

into structures which can be used for effective searching for mathematical formulae.

EgoMath can handle not just simple formulae, but also documents containing more

mathematical formulae, processing additional metadata about the document.

We have built our research on several proclamations. The first claim is about the

missing semantics form research documents including mathematics. The second claim

is that the process of searching can be (should be) iterative unless we know precisely

what we are searching for and what the results should be. Even then, unless the user

is a machine, the process can be iterative. If the user is a machine (e.g., a theorem prov-

er), the underlying dataset should have specific characteristics which can be exploited

to create much more precise queries and tune the search engine for precision e.g., by

using the additional semantics technique described below. To improve the search expe-

rience, we make use of additional information retrieval models namely browsing and

filtering. This is possible because research papers and articles follow unwritten con-

ventions and include additional important and interesting information like references,

authors, keywords, categories and cited articles.

Browsing and Filtering

We implement browsing and filtering paradigms with one technique called faceted

search or faceting. Faceting is a technique of accessing information arranged into cate-

gories based on indexed terms. The result list returned by the search is extended with

information, about the counts, of how many documents would be returned if a specif-

ic facet (e.g., name of an author) would be added to the query. Faceting makes it easy

for users to explore search results and to filter exactly the results they are looking for.

Faceting can be easily implemented (not effectively, though) by adding new mul-

tivalued field specific values and extending each query by a boolean sub-query ad-

dressing the particular value. Several other MSEs focused on categorising the for-

mulae using natural language processing techniques like LSA. Faceting is the ideal

57

CHAPTER 4. EGOMATH

technique to use this type of categorisation, but on the search object level which is

usually a document in EgoMath. If the search paradigm is solely focused on formu-

lae (one searchable object is one formula), additional information about each formula

can be directly exploited using the facets.

There is a performance penalty for faceted search depending on the document set.

The performance cost of faceting without any caching is discussed and visualised in

Section 4.9.7. However, facets are often simple numbers optimised for caching which

reduces the performance penalty substantially.

Storing Mathematical Formulae

We omit the details of data mining and filling out the fields of the dictionary men-

tioned above and we will focus only on the field used to store mathematical formu-

lae. The document is split into parts containing mathematical formulae and their sur-

rounding text - snippets - as depicted on the left side of Table 4.2. The identified

formula is sent to the EgoMath library which parses it as described in the previous

section. We continue with the description after obtaining the formula tree.

The formula tree is converted into different representations. The general algorithm

is described by Mišutka and Galamboš [Miš08b] and is depicted on the right side of

Table 4.2. The “egomathh” keyword is used to mark the end of a formula and the

keyword “eegomath” is used to mark the beginning of the first line which is used to

visualise the content. The reason for this is flexibility and extensibility for different

backends and purposes (e.g., the Importer function collection). The first word of each

representation is ego and a number. The number indicates the level of abstraction it

was created with or, more technically, the index of the algorithm in the generalisation

and augmentation process which created the representation. The ego prefix is used to

avoid polluting the space of words (in this case numbers) with words not belonging

to the actual formula.

Let us inspect the technical details from the Solr enterprise search server to fin-

ish the indexing process flow. We will revisit formula representation building at the

end of this section. We will describe important differences in the description of Ego-

Math provided by Mišutka and Galamboš and we will justify the mathematical model

we chose including the reasoning of the impacts it has.

The EgoMath index has an associated structure defined in the schema.xml file (Solr

implementation). Each field must be defined in this file, including the analysis steps

58

CHAPTER 4. EGOMATH

Wikipedia XML article

<page>

<title>Pythagorean

trigonometric identity </title>

<id>535827467 </id>

...

Mathematically , the Pythagorean

identity states:

:<math>\sin^2 \theta +

\cos^2 \theta = 1.\!</

math> This relation between

sine and cosine is sometimes

called the fundamental

Pythagorean trigonometric

identity.

...

The elementary definitions of

the sine and cosine functions

in terms of the sides of a

right triangle are:

:<math>\sin \theta =

\frac{\ mathrm{opposite }}{

\mathrm{hypotenuse }}= \frac{b}

{c}</math>

...

After processing by EgoMath

...

Mathematically , the Pythagorean

identity states:

Tex: eegomath \sin ^{2}\ theta

+\cos ^{2}\ theta =1 egomathh

ego0 : 1 theta sine 2

^ theta cosine 2 ^

+ = egomathh

ego6 : const theta sine

const ^ theta cosine const

^ + = egomathh

ego10 : const id sine const

^ id cosine const ^ + =

egomathh

This relation between

sine and cosine is sometimes

...

...

Table 4.2: There are two mathematical formulae in the Wikipedia XML format, with
parts omitted by “...” on the left side. One possible snippet produced by the first pass
of EgoMath’s indexer is shown on the right side.

associated with it for both the indexing and querying phase. The analysis step trans-

forms and normalises data in the fields to improve the searching experience by e.g.,

removing blank spaces, removing html code, stemming, allowing for wildcard search-

ing or adding synonyms. Note, that the analysis steps defined for indexing can be

(should be) configured for the query process too. The configuration schema for Ego-

Math’s mathematical field is shown in Listing 4.4.

Listing 4.4: EgoMath’s field configuration for Solr 4.2.1

...

<fields >

<field name="math" type="math_text" indexed="true"

stored="true" multiValued="true"

... />

...

</fields >

...

59

CHAPTER 4. EGOMATH

<types >

<fieldType name="math_text" class="solr.TextField"

positionIncrementGap="10000" >

<analyzer type="index">

<tokenizer class="solr.WhitespaceTokenizerFactory"/>

<filter class="solr.ASCIIFoldingFilterFactory"/>

<filter class="solr.LowerCaseFilterFactory"/>

<filter class="egomath.solr.analysis.EgomathTypeFilterFactory" />

<filter class="solr.RemoveDuplicatesTokenFilterFactory"/>

</analyzer >

<analyzer type="query">

<tokenizer class="solr.WhitespaceTokenizerFactory"/>

<filter class="solr.ASCIIFoldingFilterFactory"/>

<filter class="solr.LowerCaseFilterFactory"/>

</analyzer >

</fieldType >

...

The field used to store the mathematics is an array of the mathematical repre-

sentations and the surrounding text. Each item in the array represents one formula

which can be searched for; however, the surrounding text can contain additional for-

mulae but with representation used for visualisation only. The field can be highlighted

and therefore the whole content is stored, not just the individual mathematical tokens.

Each token stores its position in the text. For each formula, we increase the positions

by positionIncrementGap to minimise the possible overlap e.g., by proximity queries.

The EgomathTypeFilterFactory further increases the positions for each representation.

This class is responsible for payloads and for augmenting representations with ego*

keywords described below.

Searching for Types Rather than Real Values

EgoMath defines the index time filter factory, which takes tokens produced by the

white space tokeniser and performs two steps. Firstly, it ensures that the actual search-

able tokens are only those of the mathematical formula or its representation. This is

done simple by skipping over and not indexing words outside of “ego + number”

representations. Secondly, it allows for other types of generalisation queries. Let us

assume we want to search for limn→∞(1 + 1
n)n but we do not care about the value of

the first number 1. We would like to write limn→∞(any number + 1
n)n. We introduce

keywords which are indexed exactly at the same place as specific types: 1) numbers

60

CHAPTER 4. EGOMATH

(egonum), 2) constants (egoconst), 3) variables (egovar), 4) operators (egooper) and 5) any

of the above (egoany). All keywords will be collectively denoted as ego* in the follow-

ing text. Indexing at the same place means that after indexing a + 5, a query of a + 5

will match and so will a query for a+ egonum. The example EgoMath representation

from Table 4.2 is, therefore, further augmented. The result of the index can be seen in

Figure 4.7. There is one significant difference to functionality offered by the transfor-

mation which replaces occurrences of constants and numbers (constants2const) and

variables (unknown2id) with appropriate keywords. It is the fact that the ego* key-

words can be used with real values. For example, if 52 is indexed then searching for

egonum2 would match but searching for const2 would not because the actual repre-

sentation returned by the transformation is constconst.

Figure 4.7: Indexed text processed by appropriate filters (WT - WhitespaceTokenizer,
ASCIIFF - ASCIIFoldingFilter, LCF - LowerCaseFilter, ETF - EgomathTypeFilter, RDTF
- RemoveDuplicatesTokenFilter). The highlighted line contains the actual tokens that
can be searched for. A thick horizontal line indicates token boundaries.

The ego* generalisation is performed only on the top N representations where no

real values were substituted for const or id keywords.

Because of the original algorithm also using ordering on the first representation,

the query does not need to return expected results under specific conditions. Let us

assume we are indexing a + b and the first line is “ego0: a b +”. Searching for “ego-

var+b” is (correctly) reordered to “b egovar +” and does not match with “egovar b

61

CHAPTER 4. EGOMATH

+”. We completely avoid this issue for many formulae by adding the original indexed

formula without ordering to the list of representations. We partly fix it for complex

formulae where the ordering of sub-formulae (using the ego* keyword) is changed by

the ordering algorithm. In this case, if the user does not search in the correct order,

the formula will not be matched. Using the keyword “egoany” is for advanced usage

because the ordering cannot be guaranteed at the basic level only - the exact replaced

item priority is not known in contrast to the other keywords.

The performance evaluation is discussed in Section 4.9.2.

Searching for Additional Semantics

One of the problematic parts of supporting document sets with multiple formulae per

one logical indexed object - document - is including additional information per formu-

la because we store all of the formulae in one field. We store several representations

of one formula including generalisation (“ego*” keywords), but do not explicitly in-

clude additional information e.g., which variables are bound, the actual limits or the

real mathematical model where it was found if available. EgoMath’s latest version

supports additional semantic information. The difficulty is mostly in extracting the

semantics from the real document sets because of the natural language processing but

also the inconsistency where only a fraction of the formulae contains this information

directly.

The problem for EgoMath lies in including local information for each formula

without breaking the formula search. We keep information about the boundaries of

individual representations and if the query is fully matched, the relevance is higher

than if it is matched only partially. The solution is to append the semantic informa-

tion behind the representation in the indexing phase. And also append it in the query

phase to the end of the phrase being searched for. Let us assume that x is a bound

variable in a + x and we want to indicate this fact. If we want to add additional

information we can embed it in the actual representation e.g., ego1 : a x + egosem x

bound egosem abel group egomathh. Sub-formula search will not be affected because of

the egosem keyword but the search for the semantics itself will be matched. Moreover,

we can use the same generalisation technique with the ego* keywords. The interesting

part is the question of how to query for such objects and the technical implementa-

tion. A query cannot be reasonably restricted to match all sub-queries only to one

element in a multivalued field, so a different technique must be used. We use specific

62

CHAPTER 4. EGOMATH

proximity searching which we have implemented in our phrase proximity query and

join operations. A proximity search looks for objects where two or more separately

matching term occurrences are within a specified distance (slop). The implementa-

tion uses additional information stored with each term - in this case the positions of

the terms inside documents. The query searches for the actual mathematical formula

and also for the desired property (properties). For each matched document the posi-

tions are incrementally processed and the distance is compared with the desired slop.

The only issue which remains is how to define the slop because of the sub-formula

search. This parameter can be tuned in accordance with the position increment after

each representation inside one mathematical snippet and the position increment after

each snippet in the array of mathematical formulae of the math index field, defined by

“positionIncrementGap” (see Listing 4.4).

The performance evaluation is discussed in Section 4.9.3.

4.5.1 Justifying the Mathematical Model

One of the most important paradigms in EgoMath is choosing a common mathemati-

cal model for all formulae. If more information is available, it is added to the represen-

tations but does not replace them. The set of transformations including generalisation

and augmentation algorithms is described in Mišutka and Galamboš [Miš08b].

There are several important differences. The current state-of-the-art parser and

indexer module in EgoMath can handle constraints properly (
∑

i=0). Multi-line for-

mulae are split into a set of formulae and are parsed correctly, we take advantage of a

basic mathematical sentence parser. Complex structures like matrices are split into in-

dividual lines to include at least some level of recognition. However, the consequences

in our data sets are minimal e.g., only 0.0017% of Wikipedia formulae are matrices.

Intuitively, every mathematical formula should contain information inside which

mathematical structure it is defined and which axioms hold in it. Contrary, Ego-

Math defines this structure and enables mathematical awareness inside it. This is eas-

ily justifiable because no semantics of this kind are available in real-world documents

and natural language processing is not mature enough for the task of recognising it21.

The definition of the mathematical structure is in an XML file by the means of

executed transformations which result in individual representations. EgoMath’s v3

definition of the first three augmentation algorithms can be found in Appendix I. The

21To the best of the author’s knowledge.

63

CHAPTER 4. EGOMATH

basic transformations are described in the referenced paper.

In the first algorithm, optional operators e.g., unary plus are removed at the be-

ginning. Then, the same transformations are used as in EgoMath v2, including the

well known and probably most common axioms associativity, distributivity and com-

mutativity. We include the additional replace id const not change transformation which

was present in v1 but removed in v2. It allows for a specific α-renaming similarity

of formulae. However, it does not fit well into the abstraction process. It can happen

that there are no results on this particular abstracted level because the numbers do not

correspond but there are matches on other levels. If we indexed the formula 1+π2 and

we search for π2 the indexed formula will not match if we use the abstraction of con-

verting constants to keywords done by the transformation replace id const not change;

however, it will match on other abstraction levels. The reason is, that the indexed for-

mula has one additional number which increases the index of const. Formula 1 + π2

is transformed to const1 + πconst2 but formula π2 is transformed to πconst1 .

The second algorithm removes subscripts and is similar to the first one. The reason

is to support similarity searching over similar notations e.g., E0 = mc2 is similar to

E = mc2. This was inspired by our work on the Feature based approach described in

Chapter 5.

The third algorithm handles equivalences, e.g., eπi = 1 and eπi − 1 = 0 are trans-

formed into equal representations.

In the original paper, the paradigm of mathematical tokenisers is used which are

responsible for defining the smallest searchable unit (the atom of information). If we

define that it can be searched only for whole formulae, indexing a + b would result

in one term a@b@+ (“@” is a glue to overcome default splitting of words) and search

for a would not match. We found that the results from the original paper differ to

results obtained from larger test set and the evaluation is described in Section 4.9.9.

By default, EgoMath v3 intuitively uses the simplest tokeniser which accepts only

single items so the example is indexed as three terms ab+. However, there could be

good reasons, e.g., speed, why to use different tokeniser as described in Section 4.10.

We get to one of the important paradigms used by EgoMath [Miš08b]. When the

correct meaning can not be deduced, the solution is to choose one sole meaning and operate

with the symbol identically in both the indexing and searching phase. We define around 800

symbols and operators including different alternatives and typos in the symbol defini-

tion file. If a symbol is not recognised, it is assumed that it is a variable. Let us assume

64

CHAPTER 4. EGOMATH

that we encounter
∏
x = 1 during indexing and we do not know anything about the

symbol
∏

. During formula parsing, EgoMath inserts multiplication between elements

which do not have appropriate operators. This directly comes from the perception of

ab or a(b+ c) which are (by most users) regarded as a ∗ b and a ∗ (b+ c) respectively. In

the example above, the formula is converted to
∏ ∗x = 1 and is indexed appropriate-

ly. If searching for
∏

(x) is relying on the additional “hint”, that the brackets indicate

that
∏

is a function, the result would be empty. However, we normalise the meanings

and treat both occurrences equally (
∏

(x) → ∏ ∗(x) → ∏ ∗x) the expected result is

returned.

Section 4.9.6 contains the number of returned results for test queries that show the

consistency of the different techniques used.

4.6 Ranking

The ranking of relevant objects does not only depend on the information stored dur-

ing indexing; however, the crucial part lies there. Suppose we have a list of relevant

documents. Documents in this list have exact words or phrases which were queried.

EgoMath allows for querying both the text and mathematical formulae. There are

many ranking functions based on standard information retrieval models or which

utilise the similarity functions as described in Chapter 2. The definition of ranking

functions often differs only in small details, but the impacts are huge. We will follow

up on the well known definition of the cosine similarity used as a ranking function in

Section 2.2. It should be repeated that for exploiting the fast access of relevant docu-

ments in full text search engines, using the boolean model of IR, the ranking function

must meet several requirements (see Chapter 2). In EgoMath, the relevant documents

are obtained using the boolean model of IR and the ranking is based on the well-known

VSM model.

Ranking is used at different levels in EgoMath. Because EgoMath can index docu-

ments which contain multiple formulae, we rely on the ranking function which takes

into account the relevance of particular terms (mathematical tokens) to the document

itself. The transformations are already (logically) ranked by the representation num-

ber and representations with specific numbers are ranked higher. We also prefer for-

mulas which match as whole. All these fragments create the resulting ranking function

described below.

65

CHAPTER 4. EGOMATH

EgoMath exploits the ranking function implemented in Solr. Let us assume that

the cosine similarity is defined as in Equation 2.2.1. The similarity function is extend-

ed to improve the quality and performance. The cosine similarity normalises each

document with
√∑n

i=1 dw
2
i (where dwi is the ith weight in the vector of weights rep-

resenting document d), but this is known to have drawbacks22 and is replaced. The

abstract similarity formula is defined as:

score(q, d) = CF (q, d) ∗QB(q) ∗
∑n

i=1 (dwi ∗ qwi)√∑n
i=1 qw

2
i

∗DLN(d) ∗DB(d) (4.6.1)

where CF is the coordination factor and can be used to boost documents returned

by a multi term query which contains more terms than others, QB is a query boost

factor which can be used during query time preferring some queries to others,DLN is

an improved normalisation factor known at the index time, DB is an index time boost

for a particular document. The Equation 4.6.1 does not properly define the function in

respect to different fields, term boosting and a special boosting technique which uses

payloads as described below. However, the application in these cases is intuitive. It

is also possible to replace the scoring definition, so that the scores are computed from

indexed fields, we use this technique in the browse mode.

EgoMath exploits the query boost factor (QB), index time boosting (DB) and pay-

loads described below.

Index Time Boost

Searching for text and mathematics must be combined together. We chose to boost the

field where mathematics is stored at index time in preference of searching for mathe-

matics23. One obvious reason is that the text should not be the first ranking decision

maker. Imagine we have two (very artificial) documents that contain the word “proof”

and a (sub-)formula a+b. If the word “proof” is very relevant to one of the documents,

it could happen that this score would beat the score of the relevancy of mathematics,

which we want to avoid.

22 Normalisation removes the length information from the vectors. If documents are created from
duplicating sections, then the normalisation avoids boosting the relevance of one of the documents.
However, if the documents have different lengths with different content (although many equal terms)
the normalisation in the original cosine definition performs poorly.

23This approach was also used to boost documents using the reference links iteratively during index-
ing, but was later dropped because the quality improvement was not stable enough.

66

CHAPTER 4. EGOMATH

Payloads

Another technique already employed in 1998 by Brin and Page [BrPa98] is storing ad-

ditional information for each term in addition to information stored for documents.

This allows for different ranking of the same term in different logical parts of the doc-

ument e.g., heading, footer and body by storing information about the font, size and

place24. In Solr, the information stored for each index term is called payload and can be

used for this purpose. We use it for boosting the ranking of particular representations.

As mentioned in the original paper by Mišutka and Galamboš, more specific represen-

tations of one formula (technically, those are representations with lower ego numbers

for each algorithm) are ranked higher, i.e. the terms which are part of a more similar

representation to the original, have payloads with boosts as shown in Figure 4.8.

Figure 4.8: Payloads for the representation (starting from ego1), which are more sim-
ilar to the original one, in contrast to no payloads with less similar representations
(starting from ego8).

In Solr, payloads require custom similarity class which alters the standard way

each document is scored. We chose to use the average of the seen payloads which is

added to the document score and Equation 4.6.1 is applied. EgoMath’s actual imple-

mentation does not boost representation with an index number above 2 for every algo-

rithm used (which technically means that the payloads are used for the first three rep-

resentations modulo 100 e.g., payloads are done for ego0, ego1, ego2, ego100, ego101,

ego102 and ego200). Using payloads in EgoMath makes sense for sub-formula search

in the representations because we use additional query boosting for the whole repre-

sentation. Let us assume that we are searching for πa and we have formulae πa+1 and

π(a+ b) in the index. The first one matches in the first representation, the second one

in the third (applying distributivity). We prefer the first one because of the payloads.

The performance evaluation is discussed in Section 4.9.4.

24It is interesting to mention that the first implementation of storing arbitrary information for each
term occurrence, called payloads in Lucene, is from the middle of 2007 (Lucene 2.2.0).

67

CHAPTER 4. EGOMATH

Additional Techniques

Several types of datasets have internal structure and relations which can be used to

improve the ranking. One typical and most successful example is the PageRank link

analysis algorithm by Brin and Page [BrPa98] for relevance measurement. Our im-

portant document sets include Wikipedia where a similar approach can be used. In-

ternally, EgoMath parses and stores information about the outbound links, but initial

experiments have shown that the ranking scheme is complex enough and a simple

boost of documents, which are often referenced, does not improve the quality in gen-

eral. A much deeper analysis is needed which is out of the scope of this thesis.

4.7 Querying

There are four simple cases (when we omit searching for additional semantics) which

can occur when a user “hits the default search button”. A search for text only, a search

for mathematics only, a search for both or search for none. Searching for none is in-

terpreted as entering the browse mode where we stepwise display a list of all docu-

ments. In this case, the sorting order does not really matter; however, EgoMath index-

ing Wikipedia.org uses “ord(citations count)^0.5” in the query to display documents

referencing more external resources at the top. Searching for text uses the built-in

powerful query parser (query language) in Lucene.

Strictly speaking, the mathematical query language in EgoMath is very simple -

there is none. Everything the user submits as mathematics is sent to EgoMath and is

interpreted as one formula. First, a request handler defines the logic executed for any

request. Every handler can have components which are chained together as reusable

pieces. We define a search component called query math. The user enters a query and

that gets into the query math component. In the pre-processing step, the query is split

into the textual and mathematical one, the default scoring chain is set and several other

default pre-processing steps are taken in order to support e.g., faceting. Splitting the

query is trivial because the fields particular terms belong to are explicitly mentioned.

Let us discuss an example. The user enters a query which is represented in this for-

mat: ”{!edismax qf=’text’ lowercaseOperators=false q.op=OR v=’lt Ja’}AND math:([1]

n*k*a)”. The part inside {} can be interpreted as using a specific query parser called

“edismax”, which queries inside the field “text” with a boolean operator between

multiple terms set to “OR” if missing and, finally, with a value of the textual query

68

CHAPTER 4. EGOMATH

string. The second part (after “AND”) indicates to search inside the field “math” for

“[1]n*k*a” marked by the brackets “()”. Both of the sub-queries must match in order

to mark the document as relevant. The math query is further split into the requested

representation level “[1]” and the actual mathematical formula “n*k*a” (the represen-

tation level is 1 by default because the unordered original formula is at 0th position).

In the next step, the formula is sent to the EgoMath library where it is parsed by

EgoMath’s formula recogniser and different representations are returned (the same

representations as are returned in the indexing phase). The requested representation

index is chosen if available otherwise, the first available after the specified index is

chosen. The top level query is a boolean query into which the textual query is inserted.

In EgoMath v2, three mathematical sub-queries were constructed with one boolean

query which prefers formulae at the beginning of a representation. This query was

removed gaining approx. 25% on the tested queries (see Section 4.9.5). In EgoMath v3,

only the two important sub-queries are used. The first one can be rewritten as math:(”:

a k * n * egomathh”)25 and will match only the whole representation. This query is

boosted with a factor that can be specified by the user interface. This query is added

into the boolean top query as “should” be fulfilled. The second sub-query is full sub-

formula search represented by math:(”a k * n *”).

Finally, the last case is searching for mathematics only, which is intuitively derived

from the more complex case study above.

The iterative approach is ensured by different facets (filters). We use standard in-

dex/query components for faceted searching. We also allow the specifying of equal

search only, which means that searching for equal formulae uses only the first mathe-

matical sub-query returned from the EgoMath library.

Refining Search with Additional Semantic Information

There is one modification to the behaviour of query parsing described above when

using additional semantics feature. The semantics can be entered after the “seman-

tics” keyword in the formula as shown below. Searching for “x = a1 · a2 · · · ak” can

be extended with “x = a1 · a2 · · · ak semantics ai ∈ T”. The mathematical query is

extended with the desired properties in the following way. In Solr there is a concept of

query parsers which create a tree like representation of queries. Query parsers can be

25Based on the usage of payloads it is either a simple phrase query or a specific payload query with
ordered terms which must be exactly beside each other.

69

CHAPTER 4. EGOMATH

concatenated inside one query by specifying the desired parser inside {}. We use prox-

imity searching as described in the previous section and apply it to the phrase queries

which are the core of EgoMath. Semantics are added to the top level boolean query

as a required span26 query, which collects information about phrases. An additional

query parser was implemented to allow for such behaviour. A query for awhere a ≥ 0

could be rewritten as {!egonear df=’math’ apart=5}”egosem a 0 greaterequal”,”egomathh”

AND math:([1]a) which can be interpreted as a search for math a, but the semantics

a ≥ 0 must be very near (not more than five words to the right from a) the keyword

marking the end of a formula (“egomathh”).

Exploiting Similarity Search - the “Abstract math” Feature

One of the important features of the EgoMath querying process is the “abstract math”

feature, helping in the iterative search process. If a query returns 0 results, we suggest

the user to abstract the formula, which means that the next representation is used.

Let us inspect a real example of searching for
∑∞

n=0
fn(a)
n! (x − a)n. Using the

Wikipedia.org dataset, we receive e.g., Recurrence relation and Taylor series result docu-

ments which is correct. However, the UI indicates (displays the actual abstraction level

we are in and the maximum level we can reach) that EgoMath created more different

abstract representations and we can try to search for them. The last representation cre-

ated by EgoMath can be visualised as
∑const

const=id
id∗idid
id∗id ∗ (id− id)id. Because we do not

define the ! operator and therefore, it is converted to id. We treat∞ as a constant and

the ordering algorithm puts it at the beginning (const = id). At last, f(x) is treated as

f ∗ x. Due to these transformations and due to the fact, that we remove subscripts at

the beginning of one of the algorithms, we were able to find two additional matches

i.e., f(z) ≈∑∞k=0
fk(c)
k! (z − c)k and T (x) =

∑∞
n=0

fn(x0)
n! (x− x0)n. Another view on the

abstract math feature is that it allows for wider similarity or search in less complex

mathematical structure.

Using Click-through Data

One of the state-of-the-art features used to improve the quality of search results, in-

cluding personalised ones, is tracking user behaviour. We have installed a click-

through handler which stores information in an external database. We chose to exploit

26A span represents a range of term positions within a document.

70

CHAPTER 4. EGOMATH

Google Analytics (GA)27 for this approach and used code similar to the one listed in

Listing C.1 in the UI to store information where the user navigated to, from which site

and page number, including the position of the result. The screenshot of the informa-

tion in GA is depicted in Appendix C. However, we have not been able to gather a

reasonable amount of data for a proper evaluation of this feature.

4.8 UI

A lot of attention has been put into user interface design in the last few years. We have

addressed this issue throughout the years but the outcome was ambiguous. A brief

survey, including the work in progress, of a new graphical front-end for easy input

of mathematical formulae was described by Mišutka and Klı́ma [MiKl09]. This user

input has not been completely finished and it has never been adopted. Because Ego-

Math is a search engine, we used the paradigm of the giants (Google, Bing and Baidu)

to have the user interface as simple as possible. We created two input fields, one for

the textual and one for the mathematical query. The result list also resembles snippets

from other search engines but they include graphical representations of mathemati-

cal formulae. Furthermore, filtering was implemented as additional information to

the left of the snippets and interesting information e.g., categories belong below each

snippet. Browsing uses pre-processed abstracts stored with each document. Annotat-

ed screenshots are available in Appendix D.

We think that most of the work on the GUI is outside of the scope of this thesis.

Moreover, for a proper evaluation, the feedback of a relevant number of users is need-

ed and we have not been able to obtain this. There are workshops particular for this

research topic (e.g., the Mathematical User Interfaces Workshop at the CICM confer-

ence). However, we mention one technique and one technical detail because we think

these should be obligatory for most of the mathematical UIs.

EgoMath supports highlighting of the found results or sub-formulae. A mathe-

matical query is processed as a phrase, the documents are ranked and then another

search component - highlighting - is executed. For each document from the result

list the particular field (“math” in this case) is retrieved and the highlighter traverses

through the terms, looks for mathematical formulae and tries to find and highlight the

query terms.

27Project available at http://www.google.com/analytics/ (seen March, 2012).

71

http://www.google.com/analytics/

CHAPTER 4. EGOMATH

If documents have many mathematical formulae, the fields can get big and a lot of

processing needs to be done. EgoMath’s highlighter optimises the search for the best

snippet by allowing for partial hits in bigger fields28 which reduces the time by up to

60% (found out by inspecting EgoMath’s logs). If the score of a fragment is non zero,

it is increasing in time. After some time, if no other fragment is found the score can

reach a level where it is accepted. Each found token is highlighted using a predefined

mark up. This is returned to the UI which allows for displaying the precise matched

elements as depicted in Appendix D.

The support for displaying mathematics in application is often very poor. Major

browsers adopted the MML standards with various success but the future is unclear29.

On the other side, the MathJax project30 solves this issue by rendering mathematics

with standard web technologies. We use MathJax for both the immediate visuali-

sation of the entered formula and for visualisation of mathematics inside snippets.

This is exactly the place where the first line of the representations e.g., “Tex: eegomath

\sinˆ2(x)+\cosˆ2(x)=1 egomathh” is used (MML can be in place of the LATEX representa-

tion when the original formula was in MML). The representation is further processed

in UI, changing it to MathJax fragment, which is displayed. For the moment, high-

lighting fragments are done on the postfix notation of each representation. Because

the LATEX representation is available, even for most of the formulae originally encoded

in MML, it would be easy to highlight specific parts. In EgoMath it would require

parsing postfix to infix.

4.9 Evaluation

In this section, we show the results of evaluation of several features and techniques

used in EgoMath. We show either the performance gain or functionality improve-

ments with acceptable performance penalty. We summarise the results in this section

and discuss the implication or justify the key architectural decisions.

28Similar techniques are used by all major full text search engines e.g., by limiting the number of
characters the hit is searched for and when it is not found only a representative sentence is displayed.

29Sadly, the Chrome web browser turned off the MML support around February 2013.
30Project available at http://www.mathjax.org/ (seen March, 2012).

72

http://www.mathjax.org/

CHAPTER 4. EGOMATH

Set-up and Results

The evaluation was performed on a Fujitsu Esprimo E900 with 4 Cores at 3.4 GHz

with 12 GB of RAM running Windows 7/64-bit with Apache Tomcat/7.0.12 (Oracle

Corporation Java HotSpot 64-Bit Server VM/64-bit 1.7.0 15-b03).

The evaluation was done by performing set of selected queries. The complete list

of queries and results can be found in Appendix F. Because Wikipedia.org very like-

ly contains many common knowledge subjects, we tried to compile a list of known

and famous queries not restricted by our own research background. We found a web

page called “Famous Equations and Inequalities”31 which we used as the basis. All

queries have been performed with caching turned off32. There were three warm-up

runs before performing the evaluation itself.

Several figures show the file size of different file types used by the underlying

search engine. The important file types are described in Appendix H. The query times

in the figures below are divided into prep (preparation phase) and proc (processing

phase). The preparation phase usually updated the actual query and the processing

performs the query or the desired functionality. The suffix indicates the component

whose execution time was measured: f means facet, hl means highlighting and qm

means the query math component described in Section 4.7.

We used two datasets during the evaluation. The first one contains mathematical

articles from the English Wikipedia.org as described in Section 4.3.1 and the second

one documents with at least one valid mathematical formula from MREC2011.4.439

as desribed in Section 4.3.2.

4.9.1 Postfix Notation With Brackets vs. Without Brackets

Postfix notation does not need brackets when the arity is known (see Section 4.4) but

they improve readability and reduce the number of matched results when the indexed

or query formula are incorrect (e.g., missing operators or operands). EgoMath v3 does

not use brackets because the performance gain is significant.

The results shown in Figure 4.9 are intuitive. The index with brackets is bigger

because of the additional positions and payloads which must be stored for the bracket

31Available at http://www.math.utah.edu/~pa/math/equations/equations.html (seen March,
2012).

32To be precise, we keep very basic sort of caching which stores fields used during processing of the
same query. However, because we are not contributing absolute numbers we leave out the technical
details.

73

http://www.math.utah.edu/~pa/math/equations/equations.html

CHAPTER 4. EGOMATH

terms and the presence in the inverted index itself. Because the brackets are very

common, the index size with brackets is bigger, approx. by 8.5%. The indexing process

is, also intuitively, slightly slower when using brackets.

The important result is the mean query time improvement which is 32.6%. How-

ever, in queries 73-78 (id + id) we would expect much better results from the version

without brackets. More interestingly, the with brackets version is even faster in queries

73, 75 and 77. The reason is described in Section 4.9.6.

Figure 4.9: Performance of “with” and “without” brackets

4.9.2 Index Term Augmentation With ego* vs. Without ego*

We look at the performance of one of the techniques with great potential used in Ego-

Math version 3.

74

CHAPTER 4. EGOMATH

Figure 4.10: Performance of “with” and “without” ego* augmentation keywords

The results shown in Figure 4.10 are also intuitive. The index with ego* keywords

is bigger because of the same reasons as was the brackets version in the evaluation be-

fore. However, the index size with ego* keywords is bigger, approx. by 27%, which is

significant. One possible solution is not to include payloads for ego* keywords which

saves approx. 10% of the total space.

The indexing process is slower for the version with ego* keywords because addi-

tional processing during the indexing phase must be done.

The query times in queries 61−66 (F = G m1m2
egovar2

) are significantly different because

the queries contain the egovar keyword, which in case of no ego* keywords, has 0

results. Each query is executed with 6 different settings; therefore, every 6th query is

a new one (1, 7, 13, ...). The 4th and 6th setting use highlighting but the 6th searches

only for whole formulae (disabling sub-formula search). The highlighting component

75

CHAPTER 4. EGOMATH

is, in cases where the raw query does not take much time, usually the performance

bottleneck. When looking for the terms to highlight, more terms must be checked

when using the ego* keywords. It can be seen in queries 4,6, 10,12, 16,18, 28,30 etc. The

only difference is query 46 and 48, where almost no highlighting is done. The query

times with ego* keywords are approx. 8.5% slower after removing queries 61-66 which

is acceptable for the additional functionality.

4.9.3 Index With Additional vs. Without Additional Semantics

There are only subtle differences in Figure 4.11.

Figure 4.11: Performance of “with” and “without” additional semantics

One of the reasons is the fact, that only approx. 0.5% of formulae contained ad-

ditional semantics according to our formula semantic parser. The mean query time

76

CHAPTER 4. EGOMATH

difference is approx. 0.5% when removing queries 7-12 which are specific for the ver-

sion containing semantics. We do not expect the performance to drop if the semantics

are single words. However, if they are constructed of many words a simple solution is

to regard them as one token (similar to using tokenisers as described in Section 4.9.9).

4.9.4 Index With vs. Without Payloads

EgoMath uses payloads to improve the quality of ranking. Payloads are stored for the

first two representations for each augmentation algorithm. According to Figure 4.12,

the index differs by 16.3% because most of the formula representations contain the

first two.

Figure 4.12: Performance of “with” and “without” payloads

Starting from the 2nd query, every 6th (queries 2, 8, 14, ...) does not use payloads

and the query times of the with payloads and without payloads are very similar which is

77

CHAPTER 4. EGOMATH

expected. The overall performance using with payloads is slower than without payloads

by 28%.

It is very likely that the performance penalty increases in larger document sets

because more relevant objects would have to be ranked. Better indication whether the

payloads should be used or not in cases where the performance drops significantly

would be to compile the test query set from the actual logs and compare the rankings

too.

4.9.5 Query Time of Two vs. Three Sub-queries

In EgoMath v2, three sub-queries formed the actual mathematical query. Query search-

ing for the whole formula, for sub-formula and query used to rank formulae which

start with the searched query higher. EgoMath v3 removed the last sub-query because

it was not adding anything to the query logic and gained approx. 25% in speed as

shown in Figure 4.13.

Figure 4.13: Query time performance of two vs. three sub-queries

4.9.6 Number of Results of the Evaluation Queries

The evaluation result depicted in Figure 4.14 shows the consistency of the search re-

sults across different settings. There are several important and interesting outcome.

The important outcomes show the effect of different settings. In query 7-12, the

“without semantics” version returns 0 results which is expected because the query

itself is using additional semantics. There are several other queries which return 0

results; queries 29, 30, 71 and 72 because they search only for whole formulae but

there is no such formula in the document set. The last important outcome is that, the

without ego* keywords version returns 0 results in queries 61-66 (F = G m1m2
egovar2

). The

reason is that the query contains the “egovar” keyword which is not present in the

78

CHAPTER 4. EGOMATH

index. EgoMath v3 returned two documents in queries 31 - 36 (
∑∞

n=0
fn(a)
n! (x − a)n))

because the “infin” issue described in Section 5.3 was solved. Queries 55-60 (E = mc2)

show the effect of removing subscripts as described in Section 4.5.1 where EgoMath v3

returned more results.

Figure 4.14: The number of results returned executing queries from Appendix F

An interesting outcome can be seen in queries 73-76 where the with brackets version

returns different results to the others. The reason is already mentioned in Section 4.4

and is the varying number of operators in this case the operator +. Let us analyse

EgoMath representations of the query id + id and an example formula a+b. The rep-

resentation of id + id is simply “id id +”. The representation of a+b is in the “with

brackets” version “ego10 : const id { id + } ^ +” and in the “without brackets” version

“ego10 : id id + ^”. It can be seen that “id id +” matches the latter one but not the

former one. The queries 77 and 78 are not affected because they require the whole

formula match. Possible solutions to this problem include forgetting the implicit +

or using the same technique as with unary − where we represent it with a different

symbol e.g., !+. EgoMath v3 solves it by adding remove optional transformation (see

Appendix I).

79

CHAPTER 4. EGOMATH

4.9.7 Query Time of the Evaluation Queries

The query times of a few specific versions compared to EgoMath v3 are shown in

Figure 4.15. It is obvious that even with additional transformations and additional

functionality, EgoMath v3 outperforms the version “with brackets” and is marginal-

ly slower than the other versions if the result list is similar. The only difference are

queries 73-78 (id + id) where EgoMath v3 returns more results and is slower because

of this.

Figure 4.15: The total query time executing queries from Appendix F using different
settings of EgoMath

4.9.8 Index All Fields vs. Not the Textual Field

The additional functionality of textual search in EgoMath does effect the index size sig-

nificantly as shown in Figure 4.16. Only file types which contained a bigger amounts

of data were included.

The textual field was indexed but also stored for easy retrieval and the highlighting

functionality. The difference between versions with and without storing and indexing

of the textual field was substantial; for the Wikipedia.org document set, the index size

of the all fields was more than double and for the MREC document set, the index size

was almost six times bigger than the version without. For the MREC document set,

80

CHAPTER 4. EGOMATH

the “fdt” file type (stored fields) is 358GB compared to 50GB which is expected.

Figure 4.16: Performance of “with” and “without” the text field

There are several reasons why the difference between with and without the textual

field for MREC document set was so big. Firstly, we store additional information for

each term (e.g. position, offsets). Secondly, documents contain formulae in MML

format which are not removed during indexing phase (which would be reasonable to

do) producing many unique terms.

4.9.9 Revisiting Tokenisers

We revisit the tokenisers from the paper by Mišutka and Galamboš because there are

several differences. Firstly, the original evaluation was done on a much smaller doc-

ument set. Therefore, the distribution of formulae could have been very extreme e.g.,

that only very few formulae were textually similar. Moreover, the indexing structures

did not have to be optimised and/or the difference was minimal.

The evaluation over Wikipedia.org showed that the tokeniser which allowed only

for simple terms resulted in the largest index size. This is exactly the opposite result

as in the original paper where it resulted in the smallest index size. This can be due to

the fact that in EgoMath v3, each term position is stored and the tokeniser produces

most terms. The inverted index row representing one token is big because there are

many (matching) documents.

On the other hand, exactly the opposite holds true for the tokeniser which regard

each formula as one term. This is expected when taking the above result into account.

In general, the difference to the original paper is also very likely due to the different

underlying search servers used (Solr vs. Egothor) and the fact that the originally tested

81

CHAPTER 4. EGOMATH

document sets were much smaller.

Figure 4.17: Revisiting different tokenisers on Wikipedia.org. The names of the to-
kenisers from the original paper are as follows: all (whole formula), alls (whole formu-
la with decor), com (common), simple common (coms), const (const). The num tokeniser
from the original paper was not used because it is very similar to const tokeniser.

4.10 Stand Up to the Giant

One of our goal is to build a mathematical search engine capable of indexing very

large amounts of data. Using state-of-the-art full text search engine gives us a good

change to succeed. Moreover, we could employ horizontal and vertical scaling which

could solve a problem if the performance is not acceptable. However, we do not think

that there is a consistent collection of mathematical documents which really requires

distributed approach in respect to full text search engines. Therefore, horizontal and

vertical scaling outside of the scope of this thesis.

We will describe the problems which can happen and their possible solutions. We

will follow the process of indexing the MREC2011.4.439 document set by EgoMath.

The document set contains 439, 423 files out of which approx. 433, 000 contain at least

one valid mathematical formula. The size of the document set 121GB. We use the test-

ing queries from Appendix F. All tests are performed on the same set up as described

in Section 4.9.

The first approach is to index the document set with EgoMath v3 used to index

Wikipedia.org. The result index size is approx. 660GB with further details shown

82

CHAPTER 4. EGOMATH

in Figure 4.16 (EgoMath v2 used approx. 630GB). Simply said, having large index

requires keeping many pointers and accessing disk randomly. We do not show the

actual results because the queries took from tens of seconds up to minutes. After

investigating, we found the reason to be the extreme distribution of common mathe-

matical elements e.g., simple numbers (0-9), common functions (sin, cos, etc.), common

variables (a, x, i, etc.) and EgoMath ’s specific keywords (id, const, ego∗).
Let us inspect a simplified example. Searching for a+b+c requires that a document

contains a, b, c, +. Documents in MREC collection contain 360 formulae on average.

When a document contains all four terms, the occurrences of those terms must be

fetched for all the 360 formulae and must be compared together. But when a document

has significantly less formulae, it is likely that more documents will be skipped already

in the processing of inverted index which is much faster.

In respect to full text search engines, common words are often discarded in the pre-

processing phase and are called “stop words”. The impact on performance depends

on the document set. One possible solution to this problem, from the full text search

engine world, is to index “shingles” (word n-grams33) instead of simple words.

Figure 4.18: Query times of EgoMath v3 with simple common tokeniser over
MREC2011.4.439

Raw shingles cannot be used directly because they would break the correctness of

sub-formulae; however, we already have the solution in tokenisers (see Appendix J).

Tokenisers are used to defining the basic information units which can be searched.

The results after indexing with simple common tokeniser (see Section 4.9.9) are shown
33A word n-gram is a contiguous sequence of n words from a given sequence of text.

83

CHAPTER 4. EGOMATH

in Figure 4.18. The query times are outstanding (in respect to the document set size)

with only the queries 72-78 (id + id) performing slightly above 2 seconds which is

expected as this token is very frequent.

4.11 Contribution and Conclusion

EgoMath mathematical search engine was presented in this chapter with focus on

algorithms which improve mathematical awareness and the overall quality. While

building EgoMath, we implemented a parallel resource importer framework which

can be also used with other search engines. We have shown that full text search en-

gine can achieve interesting results in respect to mathematical searching using several

novel algorithms and paradigms. The performance was evaluated on a well known and

publicly available document set which represents common mathematical knowledge.

All the tests, including results, are described in detail and can be easily repeated. Fi-

nally, we describe how to index a huge document set without using horizontal or

vertical scaling on a mediocre machine.

EgoMath represents state-of-the-art mathematical searching in real-world docu-

ments offering an extensible level of mathematical awareness using recent improve-

ments in full text searching.

84

CHAPTER 5

Feature Based Mathematical Search Engine

The evaluation of EgoMath has focused on various details and specifics we regarded

or found to be important. There have been several interesting approaches to mathe-

matical searching described in the last few years which are very different to the algo-

rithms used in EgoMath. We think that a proper evaluation of mathematical search

engines (MSEs) should either use an accepted test collection (which is not available)

or be a direct comparison with another approach.

To overcome this restraint1, we decided to implement another search engine, build-

ing on the work by Ma et al. described in the paper “Feature Extraction and Clustering-

based Retrieval for Mathematical Formulas” [Ma+10a]. Ma et al. claim to achieve

“promising results” by proposing an “effective feature extraction approach” and sup-

porting their claims with an evaluation done on 884 formulae. We chose the feature

based extraction algorithms proposed in the paper because we think that feature based

similarity research has potential. We will refer to our implementation of the feature

based algorithm search engine as FBA.

We have extended the original algorithms proposed by Ma et al. and implement-

ed them inside the Importer framework using formula parse trees, normalisation and

ordering algorithms from the EgoMath library. The approach has been studied and

evaluated on a real-world data set. We introduced several improvements and test-

ed three different versions of the original algorithm with several interesting results.

Finally, we compared the performance with EgoMath using a set of test queries.

1It was not possible to use other approaches mainly because they were not mature enough for com-
plete evaluation workflow or the document set was not publicly available.

85

CHAPTER 5. FEATURE BASED MATHEMATICAL SEARCH ENGINE

We will begin with a description of the proposed algorithms by Ma et al. Then, we

will describe our contributions to the original algorithms in detail including evalua-

tion and the actual implementation. We will analyse the comparison with EgoMath in

the last section.

5.1 Original Algorithm

The original proposed solution relies on the Presentation MathML format used for

formulae. Firstly, we describe the important Presentation MathML tags used in the

algorithms:

• <mo> - represents an operator; besides operators in the strict mathematical

meaning, this element also denotes “operators” (e.g., parentheses), separators

(e.g., comma) or specific operators (e.g., “absolute values”);

• <mi> - indicates that the content should be rendered as an identifier such as

function names, variables or symbolic constants;

• <mn> - denotes a numeric literal which is normally a sequence of digits with an

optional separator;

• <msup>,<msub> - is used to bind a superscript or subscript to an expression;

• <mrow> - is used to group sub-expressions, which usually contain one or more

operators with their respective operands such as <mi>or <mn>.

It should be explicitly noted that the semantic meaning of formulae is not necessar-

ily mathematically correct in the original paper, but the meaning is guessed from the

common mathematical markup e.g.,
∫

is considered to be the symbol for integration

and e is a well-known constant. This can lead to the extraction of incorrect features;

however, this correlates with the approach used in EgoMath to normalise the mean-

ing of symbols, arguing that when the same normalisation is performed during the

indexing and searching phase, then the recall measure will either increase or stay the

same.

There are two types of features extracted from a formula: 1) structural and 2) se-

mantic ones. Semantic features are extracted by traversing the formula tree in pre-

order. There are operators (<mo>), functions inside identifiers (<mi>) and nodes

86

CHAPTER 5. FEATURE BASED MATHEMATICAL SEARCH ENGINE

Figure 5.1: Different representation of formula trees. The optimistic Ma et al. raw
DOM MathML representation is on the left. EgoMath’s representation of

∫
5e2x−1

is on the right (un - unary function, bin - binary function, const - constant, decor -
decoration i.e., upper and lower index, var - variable).

(except <mrow>) that have children containing identifiers (<mi>) extracted. Struc-

tural features are obtained from nodes containing semantic features, their depth (in

the formula tree) is ≥ 1. Concatenating the names of its parent nodes represents the

structural meaning.

Let us consider the formula
∫

5e2x−1 with MML representation (shown on the

left side in Figure 5.1) consisting of these tags and their appropriate values mo:
∫
,−,

mn:5, 2, 1, mrow, msup, mi:e, x. We obtain these semantic features by using the seman-

tic feature extraction algorithm from the original paper:
∫

(mo), e (mi + exponential

function2), msup (identifier in children), − (mo). After extracting the semantic fea-

tures, we can use the second algorithm to extract the structural features which are

(“/” is used as a separator between individual node names): msup/mrow/− (− is a

semantic feature and the rest was obtained by concatenating the values by recursively

visiting the parents), msup/e3.

The last set of features represents constants and variables. The original paper

claims that “Unlike operators or functions, both number constants and variables are

not representative, so their semantic features may not be meaningful” and that “It is

obvious that exact value representations are not meaningful, e.g., 12 or x, for formu-

la search purposes”. These are rather strong and subjective claims which we discuss

in more detail below. The real values of the numbers and constants are replaced by

var and cn keywords and the same algorithm as for the extraction of the structural

2This particular guess of the semantic meaning in the original paper is problematic because e is, to
be precise, a constant and not the exponential function which is ex.

3This is incorrectly written in the original paper as e/msup.

87

CHAPTER 5. FEATURE BASED MATHEMATICAL SEARCH ENGINE

features is used. The result features are msup/mrow/cn and msup/mrow/var4.

Extracted features are transformed into a feature vector using the tf-idf weighting

scheme and normalised using cosine normalisation. First, the weights are computed

using the term frequency, defined as

tf(feature, formula) =
of occurences of feature in a formula

max {# of occurences of any feature in a formula}

and the document frequency defined as

idf(feature, formula set) = log
of formulae in a formula set

of formulae which have the particular feature
.

The result vector ~F is normalised to ~Fnorm with

~Fnorm =
1√∑i=n
i=0 f

2
i

~F

where n is the number of features and fi is the feature at a particular position. For

a small data set, the feature vector can contain all distinct extracted features from

all formulae. These normalised feature vectors are used for clustering. The similarity

between a query formula and a formula from the data set represented by a normalised

feature vector is the well-known cosine similarity (see definition Equation 2.2.1). The

original paper evaluated three different clustering algorithms for retrieval: K-means,

self organised maps and agglomerative hierarchical clustering. However, we will not

use clustering because it does not directly add to the mathematical awareness. The

original evaluation was done on 884 formulae with 20 training and 20 test samples.

A more detailed description of the extraction algorithms is available in the original

paper [Ma+10a].

5.2 Modifications

On one hand, the contribution of the original paper by Ma et al. [Ma+10a] is clear. On

the other hand, we must point out several problems we encountered which question

the feasibility of the original approach to larger data sets. We try to solve these issues

and propose a modified version of the algorithms.

4Another mistake in the original paper states thatmsup/mrow/var was produced bymsup/mrow/5
but it could only have been produced either by msup/mrow/2 or msup/mrow/1.

88

CHAPTER 5. FEATURE BASED MATHEMATICAL SEARCH ENGINE

We evaluate the approach on a real-word document set - Wikipedia.org. The

Wikipedia.org document set contains formulae encoded in LATEX. Each formula is

parsed into the formula tree using the EgoMath library and the ordering algorithm is

applied (see Appendix J). Features are extracted from the formula tree.

It should also be noted, that the example in the original paper uses an optimistic

representation of the original formula
∫

5e2x−1 in the MML presentation format. The

“tex2xml” converter service produces a representation with two additional mrow el-

ements making the features different and longer. By using normalised EgoMath’s

formula trees we avoid most of the notation differences which clearly improves the

quality in comparison with the original algorithm. The difference between MML rep-

resentation and the formula tree is illustrated in Figure 5.1.

The original algorithm produced 271, 103 unique features using formula trees over

the whole of Wikipedia.org. The precision of this approach with the evaluation set up

was poor (with most of the evaluated queries having zero precision). The reasons are

that variables and constants were considered unimportant and many relevant features

were missing. This was the motivation to introduce limits on the extraction algorithms

to lower the number of unique features.

The overall idea is the same as in the original paper. The extraction and concate-

nation of the names of parent nodes is replaced by a more complex algorithm which:

skips binary functions with the same node depth (e.g., a + b − c all leaves have only

one parent whose value is extracted), can remove common nodes like ∗, can limit the

number of parents traversed and can replace numbers and variables with keywords.

23 out of the 50 most used features contained “*”. We added many “*” through ab to

a ∗ b normalisation; because of this, and because of the limits set to the feature extrac-

tion depth, we added the option to skip “*” nodes when extracting the values from

parents.

The algorithm for extracting semantic features is in Listing 5.1.

Listing 5.1: Semantic feature extraction implemented in Java

private static boolean has_semantic(INode node) {

// 1. operator => feature

// 2. function => feature

if (INode.is_op(node) || INode.is_fnc(node))

return true;

// 3. node containing variable in children => feature

89

CHAPTER 5. FEATURE BASED MATHEMATICAL SEARCH ENGINE

Iterator <INode > it_inner = new Formula(node).iterator(algorithm.

DEPTH , true);

while(it_inner.hasNext ()) {

if (INode.is_var(it_inner.next()))

return true;

}

return false;

}

private List <String > extract_semantic(Formula f) {

// ...

Iterator <INode > it = f.iterator(algorithm.DEPTH , true);

while(it.hasNext ()) {

INode node = it.next();

if (has_semantic(node)) {

String content = get_normalised_content(node , false);

features.add(content);

}

// ...

The structural algorithm is in Listing 5.2.

Listing 5.2: Structural feature extraction implemented in Java

private List <String > extract_structural(Formula f) {

// ..

while(it.hasNext ()) {

INode node = it.next();

if (node.depth () > 1 && has_semantic(node)) {

String ftr = extract_structural_path(node.parent (), node.depth (),

true);

if (0 < ftr.length ())

features.add(ftr + INode.get_content(node));

}

// ..

We define three algorithms with these settings: 1) FBA 1 - skips ∗ from traversing

and replaces constants and variables; 2) FBA 2 - skips ∗; 3) FBA 3 - neither replaces

any values nor skips ∗.
The final semantic features extracted from

∫
5e2x−1 by FBA 3 are “

∫
, ∗, e, ˆ (upper

index or msup in MML), !− (unary -), +, ∗” (in comparison to “
∫

, e, ˆ, −” from the

original paper). The final structural features extracted are int/∗, int/ ∗ /e, int/ ∗ /e/ˆ,

e/ˆ/ + /!−, ∗/e/ˆ/+, e/ˆ/ + /∗, int/ ∗ /5, int/ ∗ /e, ˆ/ + /! − /1, e/ˆ/ ∗ /2, e/ˆ/ ∗ /x (in

90

CHAPTER 5. FEATURE BASED MATHEMATICAL SEARCH ENGINE

comparison to ˆ/e, ˆ/mrow/−, ˆ/mrow/cn, ˆ/mrow/var from the original paper).

The algorithm for extracting numbers and variables visits all nodes and if the node

is either a constant, a number or a variable extracts a path similar to the structural ex-

traction. The feature is then appended to the feature vector. In contrast to the original

algorithm, we also extract features from nodes with a depth equal to 1 because in the

formula tree, a root node is part of the formula.

We claim that our changes and usage of EgoMath’s formula trees improve the qual-

ity of the extraction algorithms in general. We base our claim on several case studies.

Firstly, for formulae having only one element, like 5, sin would have zero features in

the original algorithm but in our approach they have one feature - the node value (or

replaced keyword) itself. Mathematically equal (in common mathematical structures)

formulae −2 + a and a − 2 have different feature sets in the original algorithm but

equal feature sets in our algorithm because of the ordering algorithm being applied.

The same holds for 2 ∗ x and 2x due to the normalisation algorithms used. Further-

more, 1x and x1 have equal feature vectors in the original algorithm but - correctly -

different ones in FBA because of the more mathematically precise formula trees. We

overcome MML representation which does not respect operator priority, and therefore

introduces additional mrow elements, by using the formula trees an skipping same

priority operators when traversing to the root node.

The main algorithm works with a vector of numbers where each position repre-

sents a different feature. Finding the relevant features which should be used to repre-

sent every formula in the data set requires either the processing of the whole data set

or at least a representative subset. Afterwards, a set of U distinct features is selected

and is used to represent each formula.

According to the statistics of the Wikipedia.org document set in Section 4.3.1, 90%

(approx. 261, 618) of formulae are shorter than 100 characters, including spaces and

brackets etc. and 70% are shorter than 50. Despite this fact, the number of unique

features using the original feature extraction algorithms over EgoMath’s formula trees

was in the hundreds of thousands as shown in Figure 5.2.

In the first run, we try to reduce the number of unique features by processing only

formulae smaller then M characters. Furthermore, the average number of features

extracted for the three feature types were 8.2, 5.8 and 8.5 respectively which gives the

first estimation for the number of the representative feature count. We also limit the

maximum number of extracted features for each type by N . Finally, the maximum

91

CHAPTER 5. FEATURE BASED MATHEMATICAL SEARCH ENGINE

number of parents visited while concatenating the node names was limited by O. The

depth limit set to three means that the formula depth is limited to four nodes in child-

parent relations but they must also have different depths (otherwise, they would be

skipped). All formulae with a bigger depth have some features stripped. A different

depth means that operators on the path to the root node in the formula tree have

different priorities.

The number of features extracted with different parameters is depicted in Fig-

ure 5.2. Finally, we decided to further evaluate M = 100, N = 20 and O = 3 because

the number of features considering all FBA algorithms was acceptable compared to

the others and was more than double the average number of features. The total num-

ber of extracted features using these settings with FBA 3 was 239, 675 (4, 795, 780 fea-

tures were extracted all together) but only 28, 539 using FBA 1. The FBA 1 number of

features (28, 539) is significantly lower than the number of extracted features by the

original algorithm (271, 103).

Figure 5.2: Number of features using different limits

We take the first 10, 0005 features sorted by the count of occurrences in the whole

data set. It is reasonable to do so because the number of occurrences of the first 30 fea-

tures dramatically falls, as can be seen in Figure 5.3, and the features become relevant.

Starting from the 29th feature (sorted by the number of occurrences), the occurrence

count is in the order of thousands. Starting from the 412th, in the order of hundreds

and starting from 3346th, in the order of tens. We have experimented with a lower

feature count (100, 1000, 5000) but the precision of the result was smaller. On the other

5A count of 10, 000 features was used because it is common for the similarity search performance
framework we worked with.

92

CHAPTER 5. FEATURE BASED MATHEMATICAL SEARCH ENGINE

hand, larger feature sets (15, 000, 20, 000) have not improved the evaluated precision.

Using 100, 000 feature count introduced significant performance penalties (and little

precision improvement). Because we focus on applicability we will not consider fea-

ture count above 10, 000.

Figure 5.3: Feature histogram of formulae in the Wikipedia.org document set

Before we discuss the performance of the retrieval system, we should investigate

the underlying data set. The clusters can be either so big that a near sequential scan

is needed or so small that many valid results are skipped. However, clustering algo-

rithms, like those ones mentioned in the original paper, are out of the scope of this

thesis. We focus on the performance of similarity based searching. The following

section briefly describes the data set and its indexability as defined in Section 2.2.1.

5.2.1 Examining the Indexability of the Wikipedia.org Document Set

We want to perform similarity searching of mathematical formulae relying on the ex-

tracted features. A trivial choice is a sequential computation of similarity of all the

items in the document set. However, we want an applicable solution so we investi-

gate the performance limits. Intrinsic dimension theory cannot be directly applied to

our FBA using cosine similarity. The problem is that cosine similarity is not a met-

ric function. However, it is easy to use angular similarity based on cosine similarity

which is already a metric function. Angular similarity for vectors with positive only

values is defined as

1− (2 ∗ cos
−1(similarity)

π
)

93

CHAPTER 5. FEATURE BASED MATHEMATICAL SEARCH ENGINE

where the similarity of two vectors A and B is defined as

similarity = cos(θ) =
A.B

||A|| ||B|| .

Applying the theory of intrinsic dimensionality to the Wikipedia.org document set

with our enhancements and implementation of the feature extraction algorithm gives

us Figure 5.4. Intrinsic dimensionality using FBA 1 on an random subset of 5000 for-

mulae with M = 100, N = 20 and O = 3 is 12.81 which means the distribution should

allow for acceptable separability, and in a general case, using metric indexing tech-

niques should greatly improve the searching speed. Intrinsic dimensionality using

FBA 3 is 10.3.

Figure 5.4: Feature-based angular similarity distribution histogram of formulae from
Wikipedia.org document set from 5000 random formulae. The non-similar values (dis-
tance is 1) are omitted improving the visualisation.

5.3 Evaluating and Comparing with EgoMath

Let us first consider the actual retrieval task we want to cross-evaluate. The outcome

of this evaluation should be the comparison of two approaches used for mathematical

searching. It is not necessary nor feasible to state the absolute performance numbers

because we also think that, for this purpose, we would need one of the user-oriented

measures (or side-by side evaluation) [BaRi11] with a representative number of eval-

uators.

We want to overcome the common problem with trivial or very small evalua-

94

CHAPTER 5. FEATURE BASED MATHEMATICAL SEARCH ENGINE

tion document collections and also with the lack of representative evaluators. We

will use mathematical documents from Wikipedia.org as extracted using the Importer

framework. This data set contains approx. 28, 100 mathematical articles with 290, 872

unique formulae, out of which, 261, 618 are valid for feature extraction having textual

length smaller than 100. Out of these, 258, 404 have non empty feature sets (e.g., “)”

and “d ” have empty features).

The well-known precision and recall measures have been extensively used to eval-

uate the retrieval performance of IR algorithms. However, these measures have sev-

eral shortcomings which apply to our problem as well. First, the proper estimation of

maximum recall requires detailed knowledge of all the documents which is not pos-

sible for our evaluation data set - Wikipedia.org. Secondly, it is desirable to measure

the performance of a single query rather than a whole set, so individual strengths are

visible. We will use P@1 and P@56 measurements and the query rank visualisation

(used by the Spearman Coefficient correlation measure) will be used for visualisation

of behaviour showing the correlation (if any) between the compared algorithms.

Set-up and Results

The evaluation was performed on a Fujitsu Esprimo E900 with 4 Cores at 3.4 GHz

with 12 GB of RAM running Windows 7/64-bit with Python 2.7.2/32-bit (because of

JNI integration problems).

We optimised the solution to work with packed arrays and a numeric index of the

actual features. This reduced the index size by 60% and the query times by 40%. The

performance of all queries using non-parallel execution of the top-k algorithm was

between 4-7 seconds with an average of 5.1 second7.

The evaluation was done by performing a set of queries on both search approaches.

The same arguing was used as in Section 4.9 for the selection of the testing queries. The

complete list of queries and results can be found in Appendix G.1 and G.2.

The result P@1 and P@5 precisions are depicted in Figure 5.5. The decision whether

a result is relevant was made by three people and can be easily verified with the orig-

inal results available in Appendix G.1 and G.2. The table shows the original query,

results returned by EgoMath and the results returned by the individual FBA. The re-

6Precision (|{relevant documents}∩{retrieved documents}|
|{retrieved documents}|) takes all retrieved documents into account, but it can

also be evaluated considering only the topmost results returned by the system.
7Preliminary testing with a similarity search framework, provided by the SIRET research group

[SRG], showed that the framework was more than 3x faster than the sequential scan.

95

CHAPTER 5. FEATURE BASED MATHEMATICAL SEARCH ENGINE

sults are sorted according to the ranking. A horizontal line in the EgoMath results

marks the results returned when searched for higher level of abstraction using the ab-

stract math feature. For the P@5 measurement, the first n results were used where n

is the minimum of the returned results by both approaches without the abstract math

feature (e.g., n = 1 in query 1 and 3). Because EgoMath for Wikipedia.org searches

for documents instead of mathematical formulae, it can happen, that one formula is

returned multiple times in different documents with other results between them. In

this case, the returned result contains multiple occurrences of the same hit (e.g., query

6) but is not considered in computing precision. More importantly, we consider only

the first found (highlighted) formula from each document in EgoMath. This is why

documents which contain more similar formulae can lower the precision for EgoMath.

FBA algorithms returned many equal formulae with the same high similarity at the

beginning, proving that the formula trees improved the quality e.g., “\pi = c /d”, “\pi

= \frac{c}{d}”. Because the same happens in EgoMath, we treat these formulae as

one.

The comparison is shown in Figure 5.5. In P@1, the precision is either 1 or 0. Ego-

Math’s precision is 100%, FBA 1 returned non relevant results in query 2 (π = c/d),

query 4 (ddxe
x), query 6 (Ax = λx), query 9 (E = mc2) and query 10 (cos2(x)+sin2(x)).

The problematic queries are those which rely on the actual values of elements because

there are too many structurally equal ones. The same applies to P@5. This issue is

fixed by FBA 2 and FBA 3, and as can be seen, both outperform FBA 1. Only query 4

proved to be problematic because it is too simple and the relevant features were not

in the selected 10, 000.

As mentioned above, several differences in the returned results between EgoMath

and FBA were because they were in the same document e.g., query 8 FBA found ‖v +

u‖ ≤ ‖v‖+‖u‖which EgoMath did not because it is in the same document as ‖x+y‖ ≤
‖x‖+ ‖y‖.

The results in Figure 5.5 are surprisingly outstanding for FBA 2 and 3 given the fact

that only around 4% of all features were used to characterise each formula. However,

we must stress that there are cases when a formula has important features not present

in the first 10, 000 features like in query 4 (or even that there is none).

Despite the precision penalty put on EgoMath because of the evaluation details,

it is slightly better than FBA 2 and FBA 3. However, it must be noted that the “less”

mathematical approach to searching did perform very well and also found interest-

96

CHAPTER 5. FEATURE BASED MATHEMATICAL SEARCH ENGINE

Figure 5.5: P@1 and P@5 precision comparison between EgoMath and FBA algorithms

ing similarities e.g., query 5 FBA found
∑infin

n=0
fn(a)
n! (x − a)n which EgoMath did

not because “infin”8 was not recognised as a constant (which has been fixed in Ego-

Math version 3 used in final evaluation). Furthermore, several indices were disre-

garded and interesting “similarities” were found e.g.,
∑∞

n=0
fn(a)
n! (x− a)n and T (x) =

∑∞
n=0

fn(x0)
n! (x−x0)n. The last example was a motivation for extending EgoMath with

another abstraction algorithm described in Section 4.5.1.

The EgoMath and FBA 3 correlation based on the query results is shown in Fig-

ure 5.6. In most cases the first returned hit was the same but otherwise, even though

the precisions are almost equal, the returned lists are different. The cause from the

EgoMath point of view is the already mentioned one hit per document in some cas-

es. In FBA, it is caused by disregarding common subscripts because of low weight

(e.g., query 9 E = mc2, E0 = mc2, E0 = m0c
2) and due to missing features (e.g.,

cos2(x) + sin2(x), cos(t)2 + sin(t)2 = 1).

8 Wikipedia.org accpets non standard LATEX commands e.g., \R, \infin, \Alpha. In order to support
these commands, they must be defined in EgoMath’s symbol definition as alternative.

97

CHAPTER 5. FEATURE BASED MATHEMATICAL SEARCH ENGINE

Figure 5.6: Graphical representation of query result correlation between EgoMath and
FBA with values

5.4 Contribution and Conclusion

In this chapter, we have presented an improved implementation of the feature based

search engine originally proposed by Ma et al. which can search for mathematical for-

mulae. We have shown that the original algorithm extracts far too many features and

introduced boundaries which limit the number of extracted features. We found out

that, for our testing queries, using 4% of all features extracted by FBA 3 was enough

for obtaining interesting results on our testing data set. Furthermore, we have shown

that relying on EgoMath’s formula trees rather than on the Presentation MML makes

it possible to find many notationally equal formulae.

To the best knowledge of the author, we have done the first comparison of two

different mathematical search engines; moreover, the comparison was done on a data

set which is not artificial, is big enough to be representative and is intuitive.

We have shown that feature based retrieval can be used for specific mathematical

searching in data sets with a size similar to Wikipedia.org in respect to both perfor-

mance and quality. Additional testing is required for very large document sets. In

parallel to the performance measures used, the actual results showed in a side-by-side

table in Appendix G.2 are very interesting. Some of the results have been the motiva-

98

CHAPTER 5. FEATURE BASED MATHEMATICAL SEARCH ENGINE

tion for improving EgoMath.

We have made several contributions. First, we verified the validity of the feature

extraction approach in mathematical searching by evaluating it on a real word data set.

This was possible due to our improvements which improved the quality and made the

algorithms robust enough. Finally we described the comparison with EgoMath on a

query set of well known mathematical formulae.

99

CHAPTER 5. FEATURE BASED MATHEMATICAL SEARCH ENGINE

100

CHAPTER 6

Conclusion

We have focused on mathematical searching in this thesis. We have described the Ego-

Math mathematical search engine in detail. In order to build a flexible system, we have

created a parallel resource importer framework and built a database of mathematical

formulae, including different representations containing approx. 50 million unique

formulae. EgoMath uses a new indexing technique which creates multiple representa-

tions of one formula according to a predefined set of transformations. These transfor-

mation rules define the mathematical structure where the indexed formulae live and

where they can be searched for. Several novel algorithms and techniques have been

proposed and implemented allowing for mathematical awareness in full text search

engines. We showed various aspects and implications of different techniques and that

our approach has deterministic results. We have used a large representative mathe-

matical knowledge base - mathematical articles from English Wikipedia.org. In this

respect, the goal G2, stated in Chapter 1 has been fulfilled.

There had not been any comprehensive overview of approaches and techniques

used in mathematical searching. We have filled this gap with an extensive survey

which we set as our goal G1.

In order to fulfil the goal G3, we have built another mathematical search engine

based on features extracted from mathematical formulae based on work by Ma et al.

We found out that it is not applicable for large document sets and for real queries.

We have proposed important improvements and were able to obtain interesting re-

sults. Finally, we have compared this approach with EgoMath in the first ever cross-

101

CHAPTER 6. CONCLUSION

evaluation of mathematical search engines based on different approaches, including

the first five results for each tested query.

Future Work

We think that a wider accepted evaluation process flow including larger document

sets should be the next step. It should define the state-of-the-art quality and results

which can be used as the basis for evaluations in the future.

Despite our efforts, we had little success with convincing publishers and other in-

stitutions to grant us access to their document sets. We think that tighter collaboration

in this community is needed to promote the achieved results more effectively.

102

Bibliography

[AbSt72] Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Func-

tions. Dover Publications, New York, 1972.

[Ad+08] Muhammad Adeel, Hui Siu Cheung and Sikandar Hayat Khiyal, Math GO!

prototype of a content based mathematical formula search engine. Journal of The-

oretical and Applied Information Technology, Vol. 4, p. 1002–1012, 2008.

[Ad+12] Muhammad Adeel, Muhammad Sher and Malik S. H. Khiyal, Efficient

Cluster-Based Information Retrieval from Mathematical Markup Documents.

World Applied Sciences Journal Vol. 17(5), p. 611–616, 2012.

[AlYo07] Moody Ebrahem Altamimi and Abdou Youssef, Wildcards in Math Search,

Implementation Issues. Proceedings of the ISCA 20th International Confer-

ence on Computer Applications in Industry and Engineering, p. 90–96, IS-

CA, 2007.

[Anc07] Ştefan Anca, MaTeSearch A combined Math and Text search engine. Bachelor’s

Thesis, Jacobs University Bremen, 2007.

[Anc09] Ştefan Anca, Natural Language and Mathematics Processing for Applicable The-

orem Search. Master thesis, Jacobs University Bremen, 2009.

[Arch] arXiv.org e-print service at Cornell University, available at http://www.

archive.org (seen March, 2012).

[Arx12] Project arXMLiv. Project home page at http://arxmliv.kwarc.info/ (seen

March, 2012).

[As+04] Andrea Asperti, Ferruccio Guidi, Claudio S. Coen, Enrico Tassi and Ste-

fano Zacchiroli, A content based mathematical search engine: whelp. In: Post-

proceedings of the Types 2004 International Conference, LNCS 3839, p. 17–

32, Springer-Verlag, 2004.

103

http://www.archive.org
http://www.archive.org

BIBLIOGRAPHY

[BaRi11] Ricardo A. Baeza-Yates, Integrating Contents and Structure in Text Retrieval.

ISBN: 978-0-321-41691-9, Pearson Education Ltd., 2011.

[Bae96] Ricardo A. Baeza-Yates and Berthier A. Ribeiro-Neto, Modern Information

Retrieval - the concepts and technology behind search, Second edition. ACM SIG-

MOD 25(1), p. 67–79, 1996.

[Bi+12] E. V. Birialtsev, M. R. Galimov, N. G. Zhiltsov and O. A. Nevzorova, A novel

approach to semantic search of mathematical expressions in the scientific docu-

ments. OSTIS, p. 245–256, 2012.

[BrPa98] Sergey Brin and Lawrence Page , The Anatomy of a Large-Scale Hypertextual

Web Search Engine. Computer Networks and ISDN Systems 30, p. 107-–117,

1998.

[Bu+92] Forbes J. Burkowski, An Algebra for Hierarchically Organized Text-Dominate

Databases. Information Processing & Management 28(3), p. 333–348, 1992.

[Bu+10] Stefan Büttcher, Charles L. A. Clarke and Gordon V. Cormack, Information

Retrieval: Implementing and Evaluating Search Engines. ISBN: 9780262026512,

Mit Press, 2010.

[Cai04] Paul Cairns, Informalising Formal Mathematics: Searching the Mizar Library

with Latent Semantics. LNCS 311, p. 58–72, Springer Berlin Heidelberg, 2004.

[CaCe04] Gerardo Canfora and Luigi Cerulo, A Taxonomy of Information Retrieval Mod-

els and Tools. Journal of Computing and Information Technology CIT 12, p.

175–194, 2004.

[Chá+01] Edgar Chávez, Gonzalo Navarro, Ricardo Baeza-Yates and José Luis Marro-

quı́n, Searching in metric spaces. ACM Comput. Surv. 33(3), p. 273–321, DOI:

10.1145/502807.502808, ACM, 2001.

[EiFa95] T. H. Einwohner and Richard J. Fateman, Searching techniques for integral ta-

bles. Proceedings of the 1995 international symposium on Symbolic and al-

gebraic computation, p. 133–139, DOI: 10.1145/220346.220364, ACM, 1995.

[Ga+04] Harald Ganzinger, Robert Nieuwenhuis and Pilar Nivela, Fast Term Index-

ing with Coded Context Trees. Journal of Automated Reasoning 32(2), p. 103–

120, DOI: 10.1023/B:JARS.0000029963.64213.ac, Kluwer Academic Publish-

ers, 2004.

104

BIBLIOGRAPHY

[Gi+11] Deyan Ginev, Heinrich Stamerjohanns, Bruce R. Miller and Michael

Kohlhase, The LaTeXML Daemon: Editable Math on the Collaborative Web.

Intelligent Computer Mathematics, p. 292–294, DOI: 10.1007/978-3-642-

22673-1 25, Springer Berlin Heidelberg, 2011.

[Gra96] Peter Graf, Term indexing. LNAI, 1996.

[Gui03] Ferruccio Guidi, Searching and Retrieving in Content-based Repositories of For-

mal Mathematical Knowledge. PhD thesis, Università di Bologna, 2003.

[Gu+12] Mingjie Guan, Xuedong Tian, Fang Yang and Songqiang Yang, A Mathemati-

cal Formula Retrieval Method Using Structure Sub-tree. Advances in Intelligent

Systems Research, p. 583–586, Atlantis Press, 2012.

[Hi+07] Yoshinori Hijikata, Hideki Hashimoto and Shogo Nishida, An Investigation

of Index Formats for the Search of MathML Objects. Proceedings of the 2007

IEEE/WIC/ACM International Conferences on Web Intelligence and Intel-

ligent Agent Technology - Workshops, p. 244–248, IEEE Computer Society,

2007.

[HjSa03] Gisli R. Hjaltason and Hanan Samet, Index-driven similarity search in metric

spaces (Survey Article). ACM Trans. Database Syst. Vol. 28 (4). p. 517–580,

DOI: 10.1145/958942.958948, ACM, 2003.

[Ima04] Robert Miner, Enhancing the Searching of Mathematics. A position paper

based on the proceedings of the Enhancing the Searching of Mathematics

Workshop, Available at http://www.ima.umn.edu/complex/spring/math-

searching.html (seen March, 2012), 2004.

[Ka+12] Shahab Kamali, Johnson Apacible and Yasaman Hosseinkashi, Answering

Math Queries With Search Engines. Proceedings of the 21st international con-

ference companion on World Wide Web, p. 43–52, ACM, 2012.

[KaTo09] Shahab Kamali and Frank W. Tompa, Improving Mathematics Retrieval. To-

wards a Digital Mathematics Library, p. 37–48, Masaryk University Press,

2009.

[KaTo10] Shahab Kamali and Frank W. Tompa, A New Mathematics Retrieval Sys-

tem. Proceedings of the 19th ACM international conference on Information

105

http://www.ima.umn.edu/complex/spring/math-searching.html
http://www.ima.umn.edu/complex/spring/math-searching.html

BIBLIOGRAPHY

and knowledge management, p. 1413–1416, DOI: 10.1145/1871437.1871635,

ACM, 2010.

[Ka+04] Howard Katz, Don Chamberlin, Denise Draper, Mary Fernandez, Michael

Kay, Jonathan Robie, Michael Rys, Jerome Simeon, Jim Tivy and Philip

Wadler, XQuery from the Experts: A Guide to the W3C Xml Query Language.

ISBN: 9780321180605, ADDISON WESLEY Publishing Company Incorpo-

rated, 2004.

[Ki+12] Shinil Kim, Seon Yang and Youngjoong Ko, Mathematical equation retrieval

using plain words as a query. Proceedings of the 21st ACM international con-

ference on Information and knowledge management, p. 2407–2410, DOI:

10.1145/2396761.2398653, ACM, 2012.

[Ki+05] Sadaya Kishimoto, Takafumi Nakanishi, Tetsuya Sakurai and Takashi Kiti-

gawa An Implementation Method of Composite Association Retrieval System for

Data of Mathematical Formula. DBSJ Letters 4, 2005.

[KiHe93] Pekka Kilpeläinen and Heikki Mannila, Retrieval from hierarchical texts by

partial patterns. Proceedings of the 16th annual international ACM SIGIR

conference on Research and development in information retrieval, p. 214–

222, ACM, 1993.

[KoFr01] Micheal Kohlhase and Andreas Franke, MBase: representing knowledge and

context for the integration of mathematical software systems. Journal of Symbolic

Computation - Calculemus-99: integrating computation and deduction, p.

365–402, DOI: 10.1006/jsco.2000.0468, Academic Press, Inc., 2001.

[KoKo07] Andrea Kohlhase and Michael Kohlhase, Reexamining the MKM Value Propo-

sition: From Math Web Search to Math Web ReSearch. Towards Mechanized

Mathematical Assistants, p. 313–326, DOI: 10.1007/978-3-540-73086-6 25,

Springer Berlin Heidelberg, 2007.

[KoŞu06] Michael Kohlhase and Ioan A. Şucan, A search engine for mathematical formu-

lae. Proc. of Artificial Intelligence and Symbolic Computation, LNAI 4120,

p. 241–253, Springer, 2006.

106

BIBLIOGRAPHY

[Ko+12] Michael Kohlhase, Bogdan A. Matican and Corneliu C. Prodescu, MathWeb-

Search 0.5: Scaling an Open Formula Search Engine. LNCS 7362, p. 342–357,

DOI: 10.1007/978-3-642-31374-5 23, Springer Berlin Heidelberg, 2012.

[KoIa+12] Michael Kohlhase and Mihnea Iancu, Searching the Space of Mathematical

Knowledge. DML and MIR 2012, Masaryk University, 2012.

[Kur12] Dominik Kuropka, Modelle zur Repräsentation natürlichsprachlicher Doku-

mente. Ontologie-basiertes Information-Filtering und -Retrieval mit relationalen

Datenbanken. Advances in Information Systems and Management Science,

10th issue, ISBN: 3-8325-0514-8, Logos Verlag, 2004.

[Kwa12] Project KWARC. Project home page at http://kwarc.info (seen March,

2012).

[Lı́š10] Martin Lı́ška, Searching in mathematical text. Original title is ”Vyhledávánı́ v

matematickém textu”, Bachelor’s Thesis, Masaryk University, 2010.

[Lı́+11] Martin Lı́ška, Petr Sojka, Michal Růžička and Peter Mravec, Web Interface

and Collection for Mathematical Retrieval: WebMIaS and MREC. Towards a

Digital Mathematics Library, 2011.

[LiMe06a] Paul Libbrecht and Erica Melis, Semantic Search in LeActiveMath. Proceed-

ings of the WebALT 2006 Conference, 2006.

[LiMe06b] Paul Libbrecht, Erica Melis, Methods to access and retrieve mathematical con-

tent in ActiveMath. Proceedings of the Second international conference on

Mathematical Software, p. 331–342, DOI: 10.1007/11832225 33 Springer-

Verlag, 2006.

[Ma+10a] Kai Ma, Siu Cheung Hui and Kuiyu Chang, Feature extraction and clustering-

based retrieval for mathematical formulas. Software Engineering and Data Min-

ing (SEDM), p. 372–377, IEEE, 2010.

[Ma+10b] Michael MacCandless, Erik Hatcher and Otis Gospodnetić, Lucene in ac-

tion, Second Edition. ISBN: 9781933988177, Manning Publications Company,

2010.

[Ma+02] K. Maly and M. Zubair and M. Nelson and X. Liu and H. Anan and J. Gao

and J. Tang and Y. Zhao, Archon - A Digital Library that Federates Physics

107

BIBLIOGRAPHY

Collections. Proceedings of the 2002 international conference on Dublin core

and metadata applications: Metadata for e-communities: supporting diver-

sity and convergence, p. 27–34, Dublin Core Metadata Initiative, 2002.

[Ma+08] Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze, Intro-

duction to Information Retrieval. Cambridge University Press. 2008.

[MiIg08] Yoshinori Miyazaki and Yoshihide Iguchi, Development of Information-

Retrieval Tool for MathML-based Math Expressions. ICCE Proceedings, p. 419–

426, 2008.

[Mil04] Robert Miner, Math Searching and MathML in the NSDL. Presentation

available at http://www.ima.umn.edu/talks/workshops/4-26-27.2004/

miner/keynote/ (seen March, 2012), 2004.

[MiMu07] Robert Miner and Rajesh Munavalli, An Approach to Mathematical Search

Through Query Formulation and Data Normalization. Towards Mechanized

Mathematical Assistants, LNCS 4573, p. 342–355, DOI: 10.1007/978-3-540-

73086-6 27, Springer Berlin Heidelberg, 2007.

[Mil08] Bruce R. Miller, LaTeXML: A LATEX to XML Converter. Available at http:

//dlmf.nist.gov/LaTeXML/ (seen March, 2012).

[MiYo03] Bruce R. Miller and Abdou Youssef, Technical Aspects of the Digital Library

of Mathematical Functions. Ann. Math. Artif. Intell. p. 121–136, Kluwer Aca-

demic Publishers, 2003.

[MiYo08] Bruce R. Miller and Abdou Youssef, Augmenting Presentation MathML for

Search. Proceedings of the 9th AISC international conference, the 15th Cal-

culemas symposium, and the 7th international MKM conference on Intel-

ligent Computer Mathematics, p. 536–542, DOI: 10.1007/978-3-540-85110-

3 43, Springer-Verlag, 2008.

[Miš05] Jozef Mišutka, Math Search Engine. http://is.cuni.cz/studium/eng/

dipl_st/index.php?doo=detail&did=44036 (seen March, 2012).

[Miš07] Jozef Mišutka, Math Search Engine. Diploma Thesis, Charles University,

2007.

108

http://www.ima.umn.edu/talks/workshops/4-26-27.2004/miner/keynote/
http://www.ima.umn.edu/talks/workshops/4-26-27.2004/miner/keynote/
http://dlmf.nist.gov/LaTeXML/
http://dlmf.nist.gov/LaTeXML/
http://is.cuni.cz/studium/eng/dipl_st/index.php?doo=detail&did=44036
http://is.cuni.cz/studium/eng/dipl_st/index.php?doo=detail&did=44036

BIBLIOGRAPHY

[Miš08b] Jozef Mišutka and Leo Galamboš, Extending Full Text Search Engine for Math-

ematical Content. Towards Digital Mathematics Library, p. 55–67, Masaryk

University, 2008.

[Miš08b] Jozef Mišutka and Leo Galamboš, System Description: EgoMath2 As a Tool for

Mathematical Searching on Wikipedia.org. p. 307–309, DOI: 10.1007/978-3-642-

22673-1 30, Springer Berlin Heidelberg, 2011.

[MiKl09] Jozef Mišutka and Jaroslav Klı́ma, Mathematical User Interface. p. 56–61, Pro-

ceedings of the 18th Annual Conference of Doctoral Students, MATFYZ-

PRESS, 2009.

[MuKh11] A. Muhammad and M. S. H. Khiyal, Search Systems for Math Information

Retrieval: A Survey. Journal of computing, volume 3, issue 2, p. 203–208,

ISSN 2151-9617, 2011.

[Ng+12a] Tam T. Nguyen, Kuiyu Chang and Siu Cheung Hui, A math-aware search en-

gine for math question answering system. Proceedings of the 21st ACM interna-

tional conference on Information and knowledge management, p. 724–733,

DOI: 10.1145/2396761.2396854, ACM, 2012.

[Ng+12b] Tam T. Nguyen, Siu Cheung Hui and Kuiyu Chang, A lattice-based approach

for mathematical search using Formal Concept Analysis. Expert Syst. Appl., p.

5820–5828, DOI: 10.1016/j.eswa.2011.11.085, Pergamon Press, Inc., 2012.

[NoKo07] Immanuel Normann and Michael Kohlhase, Extended Formula Normaliza-

tion for ε-Retrieval and Sharing of Mathematical Knowledge. Proceedings of

the 14th symposium on Towards Mechanized Mathematical Assistants: 6th

International Conference, p. 356–370, DOI: 10.1007/978-3-540-73086-6 28,

Springer-Verlag, 2007.

[Nor08] Immanuel Normann, Automated Theory Interpretation. Jacobs University Bre-

men, 2008.

[Nsf02a] Indexing, Searching & Retrieval of Mathematical Contents award by NSF. De-

tails available at http://www.nsf.gov/awardsearch/showAward?AWD_ID=

0208818 (seen March, 2012), 2002.

109

http://www.nsf.gov/awardsearch/showAward?AWD_ID=0208818
http://www.nsf.gov/awardsearch/showAward?AWD_ID=0208818

BIBLIOGRAPHY

[Pe+89] Shmuel Peleg, Michael Werman and Hillel Rom, A unified approach to the

change of resolution: space and gray-level. Pattern Analysis and Machine Intel-

ligence Vol. 11 (7), p. 739–742, DOI: 10.1109/34.192468, IEEE, 1989.

[Pes07] Vladimir Pestov, Intrinsic dimension of a dataset: what properties does one ex-

pect?. International Joint Conference on Neural Networks IJCNN 2007, p.

2959–2964, DOI: 10.1109/IJCNN.2007.4371431, IEEE, 2007.

[Pes10] Vladimir Pestov, Intrinsic Dimensionality. SIGSPATIAL Special Vol. 2 (2), p.

8–11, DOI: 10.1145/1862413.1862416, 2010.

[RiVo00] Alexandre Riazanov and Andrei Voronkov, Partially Adaptive Code Trees.

Logics in Artificial Intelligence 1919, p. 209–223, DOI: 10.1007/3-540-40006-

0 15, Springer Berlin Heidelberg, 2000.

[RoTa60] David J. Rogers and Taffee T. Tanimoto, Efficient Cluster-Based Information

Retrieval from Mathematical Markup Documents. Science Vol. 132(3434), p.

1115–1118, DOI: 10.1126/science.132.3434.1115, American Association for

the Advancement of Science, 1960.

[Sa+11] Kunal Sain, Abhishek Dasgupta and Utpal Garain, Efficient Cluster-Based In-

formation Retrieval from Mathematical Markup Documents. International Jour-

nal on Document Analysis and Recognition Volume 14, p. 75–85, DOI:

10.1007/s10032-010-0121-9, Springer-Verlag, 2011.

[Sa+75] Gerard Salton, Andrew Wong and Chung-Shu Yang, A vector space mod-

el for automatic indexing. Commun. ACM Vol. 18 (11), p. 613–620, DOI:

10.1145/361219.361220, ACM, 1975.

[SaHu09] Sidath Harshanath Samarasinghe and Siu Cheung Hui, Mathematical Docu-

ment Retrieval for Problem Solving. In Proceedings of the 2009 International

Conference on Computer Engineering and Technology, p. 583–587, DOI:

10.1109/ICCET.2009.69, IEEE Computer Society, 2009.

[Se+01] R. Sekar, I.V. Ramakrishnan and Andrei Voronkov, Term indexing. Hand-

book of automated reasoning, p. 1853–1964, Elsevier Science Publishers BV,

2001.

110

BIBLIOGRAPHY

[SRG] SIRET (SImilarity RETrieval) research group (SRG). Department of Software

Engineering, Faculty of Mathematics and Physics, Charles University in

Prague, available at http://siret.ms.mff.cuni.cz/.

[SkBe+11] Tomáš Skopal and Benjamin Bustos, On nonmetric similarity search prob-

lems in complex domains. ACM Comput. Surv. Vol. 43(4), p. 34:1–34:50, DOI:

10.1145/1978802.1978813, ACM, 2011.

[SoLı́11] Petr Sojka and Martin Lı́ška, Indexing and Searching Mathematics in Digital

Libraries Architecture, Design and Scalability Issues. In proceedings of Calcule-

mus/MKM 2011, LNAI 6824, p. 228–243, Springer-Verlag, 2011.

[St+10] Heinrich Stamerjohanns, Michael Kohlhase, Deyan Ginev, Catalin David

and Bruce R. Miller, Transforming Large Collections of Scientific Publications to

XML. Mathematics in Computer Science, p. 299–307, 2010.

[StKo08] Heinrich Stamerjohanns and Michael Kohlhase, Transforming the arχiv to

XML. In Proceedings of the 9th AISC international conference, the 15th Cal-

culemas symposium, and the 7th international MKM conference on Intel-

ligent Computer Mathematics, p. 574–582, DOI: 10.1007/978-3-540-85110-

3 46, Springer, 2008.

[Sti89] Mark E. Stickel, The Path Indexing Method for Indexing Terms. Tech. Rep. 473,

Artificial Intelligence Center, SRI International, 1989.

[Th+05] Pang-Ning Tan, Michael Steinbach and Vipin Kumar, Introduction to Data

Mining. Elsevier, 2005.

[Th+06] Frank Theiß, Volker Sorge, and Martin Pollet, Interfacing to computer algebra

via term indexing. In Proceedings of Calculemus, p. 1–15, Elsevier, 2006.

[Tro05] Michael Trott, Mathematical Searching of The Wolfram Functions Site. The

Mathematica Journal, Vol. 9(4), p. 713–726, 2005.

[TrWe12] Michael Trott and Eric Weisstein, Mathematical Search. Presentation from

Wolfram—Alpha LLC available at http://www.cicm-conference.org/

2012/slides/StephenWolfram.mov (seen March, 2012), 2012.

[Urb06] Josef Urban, MoMM - Fast Interreduction and Retrieval in Large Libraries of For-

malized Mathematics. International Journal on Artificial Intelligence Tools, p.

109–130, 2006.

111

http://siret.ms.mff.cuni.cz/
http://www.cicm-conference.org/2012/slides/StephenWolfram.mov
http://www.cicm-conference.org/2012/slides/StephenWolfram.mov

BIBLIOGRAPHY

[XuWu08] Rui Xu and Donald C. Wunsch, Clustering. IEEE, 2008.

[You04] Abdou Youssef, Advanced math search: issues & techniques. Available

at http://www.ima.umn.edu/talks/workshops/4-26-27.2004/youssef/

youssef.html (seen March, 2012), 2004.

[You05] Abdou Youssef, Information search and retrieval of mathematical contents: Is-

sues and methods. Proceedings of the ISCA 14th International Conference on

Intelligent and Adaptive Systems and Software Engineering, p. 100–105,

ISCA, 2005.

[You06] Abdou Youssef, Roles of math search in mathematics. Proceedings of the 5th

international conference on Mathematical Knowledge Management, IS-

BN: 3-540-37104-4, 978-3-540-37104-5, p. 2–16, DOI: 10.1007/11812289 2,

Springer-Verlag, 2006.

[You07] Abdou Youssef, Methods of Relevance Ranking and Hit-content Generation in

Math Search. Proceedings of the 14th symposium on Towards Mechanized

Mathematical Assistants: 6th International Conference, p. 393–406, DOI:

10.1007/978-3-540-73086-6 31, Springer-Verlag, 2007.

[YoAi09] Keisuke Yokoi and Akiko Aizawa, An approach to similarity search for math-

ematical expressions using MathML. Towards digital mathematics library, p.

27–35, Masaryk University, 2009.

[YoSh06] Abdou Youssef and Mohammed Shatnawi, Math Search with Equivalence De-

tection Using Parse-tree Normalization. The 4th ICCSIT, 2006.

[Yu10] Li Yu, Image-based math retrieval using handwritten queries. Master thesis,

Rochester Institute of Technology, 2010.

[ZaYu11a] Richard Zanibbi and Bo Yuan, Keyword and image-based retrieval for mathe-

matical expressions. Proc. Document Recognition and Retrieval XVIII, p. OI1–

OI9, 2011.

[ZaBl12] Richard Zanibbi and Dorothea Blostein, Recognition and retrieval of mathe-

matical expressions. International Journal on Document Analysis and Recog-

nition, p. 331–357, DOI: 10.1007/s10032-011-0174-4, Springer-Verlag, 2012.

112

http://www.ima.umn.edu/talks/workshops/4-26-27.2004/youssef/youssef.html
http://www.ima.umn.edu/talks/workshops/4-26-27.2004/youssef/youssef.html

BIBLIOGRAPHY

[Ze+06] Pavel Zezula, Giuseppe Amato, Vlastislav Dohnal and Michal Batko, Simi-

larity Search: The Metric Space Approach. ISBN: 0-387-29146-6, Springer, 2006.

[Zez12] Pavel Zezula, Future Trends in Similarity Searching. LNCS 7404, p. 8–24, DOI:

10.1007/978-3-642-32153-5 2, Springer Berlin Heidelberg, 2012.

[Zh+08] Jin Zhao, Min-Yen Kan and Yin Leng Theng, Math information retrieval:

user requirements and prototype implementation. Proceedings of the 8th

ACM/IEEE-CS joint conference on Digital libraries, p. 187–196, DOI:

10.1145/1378889.1378921, ACM, 2008.

[Zh12] Nikita Zhiltsov, MocaSSIN: A Mathematical Semantic Search EngINe. avail-

able at http://cll.niimm.ksu.ru/repository/default/content/lab/

posters/Zhiltsov_MocaSSIN_Mathematical_Semantic_Search_EngINe.

pdf (seen March, 2012), 2012.

[Zo+98] Justin Zobel, Alistair Moffat and Kotagiri Ramamohanarao, Inverted files

versus signature files for text indexing. ACM Trans. Database Syst., DOI:

10.1145/296854.277632, p. 453–490, ACM, 1998.

113

http://cll.niimm.ksu.ru/repository/default/content/lab/posters/Zhiltsov_MocaSSIN_Mathematical_Semantic_Search_EngINe.pdf
http://cll.niimm.ksu.ru/repository/default/content/lab/posters/Zhiltsov_MocaSSIN_Mathematical_Semantic_Search_EngINe.pdf
http://cll.niimm.ksu.ru/repository/default/content/lab/posters/Zhiltsov_MocaSSIN_Mathematical_Semantic_Search_EngINe.pdf

BIBLIOGRAPHY

114

Appendices

115

116

APPENDIX A

Trends in Mathematical Searching Research Field

Figure A.1: Compiled on the 1st of Dec. 2012 from http://www.google.com/trends/

explore with these parameters: category=Science (0-174), time=2004-present, loca-
tion=Worldwide, search terms=web search.

117

http://www.google.com/trends/explore
http://www.google.com/trends/explore

APPENDIX A. TRENDS IN MATHEMATICAL SEARCHING RESEARCH FIELD

118

APPENDIX B

Mathematical Search Engines Available Online

Figure B.1: DLMF result page after searching for sin2(x) + cos2(y)

119

APPENDIX B. MATHEMATICAL SEARCH ENGINES AVAILABLE ONLINE

Figure B.2: Math Web Search input of Πb
x=a(

a
b)− b

Figure B.3: Active Math input of 2
3 ∗ x2 ∗ (7 ∗ x3 + 4)

120

APPENDIX B. MATHEMATICAL SEARCH ENGINES AVAILABLE ONLINE

Figure B.4: EgoMath v1 (later release) result page after searching for ab+4 = 7

Figure B.5: Symbolab result page after searching for sin2(x) + cos2(y)

121

APPENDIX B. MATHEMATICAL SEARCH ENGINES AVAILABLE ONLINE

Figure B.6: (uni)quation result page after searching for sin2(x) + cos2(y)

Figure B.7: WEBMIaS result page after searching for x2 + y2

122

APPENDIX B. MATHEMATICAL SEARCH ENGINES AVAILABLE ONLINE

Figure B.8: WolframAlpha result page after searching for sin2(x) + cos2(y)

123

APPENDIX B. MATHEMATICAL SEARCH ENGINES AVAILABLE ONLINE

124

APPENDIX C

Click-through Implementation

Figure C.1: Outbound links information visualisation from Google Analytics

Listing C.1: Click-through implementation in JavaScript

function track_clicks(link , url , referer , page_pos , position){

try {

var pageTracker=_gat._getTracker(’UA -XXXXXX -X’);

pageTracker._trackEvent(’Outbound Links ’, url+"["+referer+"]["+

page_pos+"]["+position+"]");

setTimeout(’document.location = "’ + link.href + ’"’, 100);

}catch(err){}

}

125

APPENDIX C. CLICK-THROUGH IMPLEMENTATION

126

APPENDIX D

EgoMath v3

Figure D.1: EgoMath v3 graphical user interface screenshot after preforming mathe-
matical search for sin2(x) + cos2(x). The input fields used to enter mathematics and
textual queries including the formula preview are marked by number 1. Number 2
shows one returned result including highlighted formula and categories it belongs
to. Number 3 shows the various categorisation of the relevant documents for this
particular query and number 4 shows the precise highlighted formula in postfix rep-
resentation produced by EgoMath.

127

APPENDIX D. EGOMATH V3

128

APPENDIX E

Importer Formula Search Engine

Figure E.1: Importer framework graphical user interface. The input field used to en-
ter words are marked by number 1. Number 2 shows the different datasets the rel-
evant results belong to. Number 3 shows one returned result including LATEX and
MathML visualisation and example documents where it was found.

129

APPENDIX E. IMPORTER FORMULA SEARCH ENGINE

130

APPENDIX F

Queries Used in EgoMath’s Evaluation

Below is the list of 13 mathematical queries which are used in the index evaluation.

Each query is executed with six different settings totalling to 78 different queries. The

first line of each item in the list below is the graphical representation of the query, the

second line is the actual query value and the third one are the query numbers for this

particular query.

1. eiπ = −1

math:([1]eˆ{i\pi}=-1)

queries: 1-6

2. {!egonear df = ”math” apart = 5}”egosem 0 k noteq”, ”egomathh”

{!egonear df=”math” apart=5}”egosem 0 k noteq”,”egomathh”

queries: 7-12

3. π = c/d

math:([1]\pi=c/d)

queries: 13-18

4. e = limn→∞(1 + 1/n)n

math:([1]e=\lim {n\to\infty}(1+1/n)ˆn)

queries: 19-24

5. d
dxe

x

math:([1]\frac{d}{dx}eˆx)

queries: 25-30

6.
∑∞

n=0
fn(a)
n! (x− a)n

131

APPENDIX F. QUERIES USED IN EGOMATH’S EVALUATION

math:([1]\sum {n=0}ˆ{\infty}\frac{fˆ{n}(a)}{n!}(x-a)ˆn)

queries: 31-36

7. Ax = λx

math:([1]Ax=\lambda x)

queries: 37-42

8. zn+1 = z2n + c

math:([1]z {n+1} = z nˆ2 + c)

queries: 43-48

9. |x+ y| ≤ |x|+ |y|
math:([1]|x+y|\ leq |x|+ |y|)
queries: 49-54

10. E = mc2

math:([1]E=m cˆ2)

queries: 55-60

11. F = G m1m2
egovar2

math:([1]F=G\frac{m 1 m 2}{egovarˆ2})
queries: 61-66

12. cos2(x) + sin2(x)

math:([1]cosˆ2(x) + sinˆ2(x))

queries: 67-72

13. id+ id

math:([1]id + id)

queries: 73-78

Each query is executed with several default parameters and four mutable settings.

The default parameters are: search from the beginning and return the contents of the

fields “id” and “title” in the response. The four mutable settings are:

• use payload - if true, the query should use payloads specifying term boosts at

particular positions;

• use facet - if true, the facets for category, citations count, refs count and math count

should be returned;

• use hl - if true, the highlighting is performed returning one highlight occurrence;

• use only equal - if true, no sub-formula search is performed.

Each query is executing with the settings in Table F.1:

132

APPENDIX F. QUERIES USED IN EGOMATH’S EVALUATION

use payload use facet use hl use only equal
1.
2. •
3. • •
4. • •
5. • •
6. • • •

Table F.1: Different settings used for every query. Each row (except the header) repre-
sents one query if concatenated with the mathematical query listed above. Symbol •
indicates the option is set to true.

133

APPENDIX F. QUERIES USED IN EGOMATH’S EVALUATION

134

APPENDIX G

EgoMath and FBA evaluation queries

G.1 Comparison of EgoMath and FBA

Query EgoMath v3 FBA-3

1)

eiπ = −1

eiπ = −1
eiπ + 1 = 0

eiπ = −1

eiπ = −1 + 0i

eξ − 1 = uξ

eiπ + 1 = 0

DAF = 1 + e−cπ

2)

π = c/d

π = c/d
DV/Dt = 0

(pq) = 1
(
D
N

)
= 1

dt
ds = 1

π = c/d

PI = mass
height3

π = 355
113

c/d

π = 3927
1250

3)

e = lim
n→∞

(1 + 1/n)n

e = limn→∞(1 + 1/n)n e = limn→∞(1 + 1
n)n

y = limn→∞(1 + x
n)n

ex = limn→∞(1 + x
n)n

ex ≡ lim
p→infin(1 + 1/p)px

exp(x) = limn→∞(1 + x
n)n

135

APPENDIX G. EGOMATH AND FBA EVALUATION QUERIES

4)

d

dx
ex

d
dxe

x = ex

(∗)e0 = 1, ddxe
x = ex, ex > 0, x ∈ R
k
d · 2d

p
q e
t = pet + 1− p

Hx = L δTδy
TM

+ 1
jωµ

dL
dz

δT
δx

TE
=

L δTδy
TM − kz

ωµL
δT
δx

TE
(30)

ex sin yex cos y

ex cos y

ex sin y

S(ex)

Ef � Ec

5)

∞∑

n=0

fn(a)

n!
(x− a)n

∑infin
n=0

fn(a)
n! (x− a)n

∑∞
n=0

fn(a)
n! (x− a)n

f(z) ≈∑∞k=0
fk(c)
k! (z − c)k

T (x) =
∑∞

n=0
fn(x0)
n! (x− x0)n

∑infin
n=0

fn(a)
n! (x− a)n

∑∞
n=0

fn(a)
n! (x− a)n

∑infin
n=0

fn(0)
n! xn

T (x) =
∑∞

n=0
fn(x0)
n! (x− x0)n

f(z) ≈∑∞k=0
fk(c)
k! (z − c)k

6)

Ax = λx

Ax = λx

B−1Ax = λx

Ax = λx
F = kX

F=f(G)

Ax = λx

[A][x] = [x]λ

y = λx

Λ(x)

Aw = λBw

7)

zn+1 = z2n + c

zn+1 = zn
2 + c zn+1 = zn

2 + c

zk+1 =

zk + hf((zk+1 + zk)/2)

zk+1 = zk + hf(zk+1)

zk+1 = zk + hf(zk)

zk+1 = zk + hf(qk, pk+1)

8)

|x+ y| ≤ |x|+ |y|

|x+ y| ≤ |x|+ |y|
|a+ b| ≤ |a|+ |b|

‖A+B‖ ≤ ‖A‖+ ‖B‖
|z1 + z2| ≤ |z1|+ |z2|

‖x+ y‖ ≤ ‖x‖+ ‖y‖
‖v + u‖ ≤ ‖v‖+ ‖u‖
‖A+B‖ ≤ ‖A‖+ ‖B‖
|a+ b| ≤ |a|+ |b|
|z1 + z2| ≤ |z1|+ |z2|

9)

E = mc2

E = mc2

E0 = mc2

E0 = m0c
2

E0 = mc2 = ~ω0

Ek = 1
2mv

2;E = mc2;E = pv;E =

hc/λ

E = mc2

E0 = mc2

E0 = m0c
2

Erest = mc2

Erest = E0 = mc2

136

APPENDIX G. EGOMATH AND FBA EVALUATION QUERIES

10)

cos2(x) + sin2(x)

sin2(x) + cos2(x) = 1

z = sin2(x) + cos2(x)

(tan(x))′ =
(

sin(x)
cos(x)

)′
=

cos2(x)+sin2(x)
cos2(x)

= 1
cos2(x)

= sec2(x)

cos2 x+ sin2 x = 1 and cos 2x =

cos2 x− sin2 x
A =

2π
∫ π
0 sin(t)

√
(cos(t))2 + (sin(t))2dt

sin2(x) + cos2(x) = 1

z = sin2 x+ cos2 x

cos(z) + sin(z)

cos2 γ + sin2 γ = 1

cos(t)2 + sin(t)2 = 1

11)

F = G
m1m2

egovar2

F = Gm1m2
r2

F = Gm1m2
r2

=
(
Gm1

r2

)
m2

F = G · m1·m2
d2

F = q1q2
r2

r̂

F = Gm1m2
r2

F = Gm1m2
r2

= (Gm1
r2

)m2

F = G · m1·m2
d2

F = GMm
r2

8000m = 120m
15mil × 1000

G.2 FBA

The results for all tested FBA algorithms are below listed side-by-side for better visu-

alisation. FBA 1 is algorithm which uses keywords without multiplication, FBA 2 uses

real values without multiplication and FBA 3 uses real values with multiplication.

FBA 1 FBA 2 FBA 3

1) eiπ = −1

eiπ = −1

eξ − 1 = uξ

eiπ = −1 + 0i

∆ = eD − 1

r = ei − 1

eiπ = −1

eiπ = −1 + 0i

r = ei − 1

r(eiα) = − cot(α/2)

eξ − 1 = uξ

eiπ = −1

eiπ = −1 + 0i

eξ − 1 = uξ

eiπ + 1 = 0

DAF = 1 + e−cπ

2) π = c/d

w/h = 3.3

a
a = 1

dQ/dt=0

div = 0

d/λ = 0.6

π = c/d

PI = mass
height3

π = 355
113

c/d

π = 3927
1250

π = c/d

PI = mass
height3

π = 355
113

c/d

π = 3927
1250

3) e = limn→∞(1 + 1/n)n

137

APPENDIX G. EGOMATH AND FBA EVALUATION QUERIES

e = limn→∞(1 + 1
n)n

exp(x) = limn→∞(1 + x
n)n

y = limn→∞(1 + x
n)n

ex = limn→∞(1 + x
n)n

limN→∞(1 + r
N)Nt = ert

e = limn→∞(1 + 1
n)n

exp(x) = limn→∞(1 + x
n)n

y = limn→∞(1 + x
n)n

ex = limn→∞(1 + x
n)n

ex ≡ lim
p→infin(1 + 1/p)px

e = limn→∞(1 + 1
n)n

y = limn→∞(1 + x
n)n

ex = limn→∞(1 + x
n)n

ex ≡ lim
p→infin(1 + 1/p)px

exp(x) = limn→∞(1 + x
n)n

4) d
dxe

x

1

C
eη1

λk

k! · e−λ
e−λλj

j!

e−λ λ
k

k!

e−cck

k!

ex sin yex cos y

ex cos y

eS(x)

eψ(x)

er1x

ex sin yex cos y

ex cos y

ex sin y

S(ex)

Ef � Ec

5)
∑∞

n=0
fn(a)
n! (x− a)n

∑∞
n=0

fn(a)
n! (x− a)n

∑infin
n=0

fn(a)
n! (x− a)n

∑∞
n=0

xn

n!∑∞
n=0

zn

n!∑∞
n=0

mntn

n!

∑infin
n=0

fn(a)
n! (x− a)n

∑∞
n=0

fn(a)
n! (x− a)n

∑infin
n=0

fn(0)
n! xn

∑∞
n=0

(it)nλn

n! Γ(1 + n/k)
∑∞

n=0
mntn

n!

∑infin
n=0

fn(a)
n! (x− a)n

∑∞
n=0

fn(a)
n! (x− a)n

∑infin
n=0

fn(0)
n! xn

T (x) =
∑∞

n=0
fn(x0)
n! (x−x0)n

f(z) ≈∑∞k=0
fk(c)
k! (z − c)k

6) Ax = λx

M = ∠zcy

V = V (r)

C = Ab(X)

f(m) = n

t = O(ε)

Ax = λx

Ax = λBx

[A][x] = [x]λ

ẋ = Ax

x = aλ

Ax = λx

[A][x] = [x]λ

y = λx

Λ(x)

Aw = λBw

7) zn+1 = z2n + c

zn+1 = zn
2 + c

yk+1 = yk +m

xi+1 = xi + h

tk+1 = tk + h

tn+1 = tn + h

zn+1 = zn
2 + c

zk+1 = zk + hf(zk)

zk+1 = zk + hf(zk+1)

zk+1 = zk+hf((zk+1+zk)/2)

zk+1 = zk + hf(qk, pk+1)

zn+1 = zn
2 + c

zk+1 = zk+hf((zk+1+zk)/2)

zk+1 = zk + hf(zk+1)

zk+1 = zk + hf(zk)

zk+1 = zk + hf(qk, pk+1)

8) |x+ y| ≤ |x|+ |y|

138

APPENDIX G. EGOMATH AND FBA EVALUATION QUERIES

|x+ y| ≤ |x|+ |y|
‖v + u‖ ≤ ‖v‖+ ‖u‖
‖x+ y‖ ≤ ‖x‖+ ‖y‖
|a+ b| ≤ |a|+ |b|

‖A+B‖ ≤ ‖A‖+ ‖B‖

‖x+ y‖ ≤ ‖x‖+ ‖y‖
‖v + u‖ ≤ ‖v‖+ ‖u‖
‖A+B‖ ≤ ‖A‖+ ‖B‖
|a+ b| ≤ |a|+ |b|
|z1 + z2| ≤ |z1|+ |z2|

‖x+ y‖ ≤ ‖x‖+ ‖y‖
‖v + u‖ ≤ ‖v‖+ ‖u‖
‖A+B‖ ≤ ‖A‖+ ‖B‖
|a+ b| ≤ |a|+ |b|
|z1 + z2| ≤ |z1|+ |z2|

9) E = mc2

∇4ψ = 0

l(x2) = 2

V = 0.26×D3

∇2p = 0

E = ±mc2

E = mc2

E0 = mc2

E0 = m0c
2

E = γmc2

Erest = mc2

E = mc2

E0 = mc2

E0 = m0c
2

Erest = mc2

Erest = E0 = mc2

10) cos2(x) + sin2(x)

cos(z) + sin(z)

sin2(X) + cos2(X) = 1

cos2 θ + sin2 θ = 1

sin2(x) + cos2(x) = 1

z = sin2 x+ cos2 x

sin2(x) + cos2(x) = 1

z = sin2 x+ cos2 x

cosx+ i sinx

cos2 x+ sin2 x =

1 and cos 2x = cos2 x−sin2 x

cos(z) + sin(z)

sin2(x) + cos2(x) = 1

z = sin2 x+ cos2 x

cos(z) + sin(z)

cos2 γ + sin2 γ = 1

cos(t)2 + sin(t)2 = 1

11) F = G m1m2
egovar2

F = Gm1m2
r2

q = bn1/n0c
F = Gm1m2

r2
= (Gm1

r2
)m2

F = q1q2
r2
r̂

f(z) = u1(z)
u2(z)

F = Gm1m2
r2

F = Gm1m2
r2

= (Gm1
r2

)m2

F = G · m1·m2
d2

F = GMm
r2

T = 2gm1m2

m1+m2

F = Gm1m2
r2

F = Gm1m2
r2

= (Gm1
r2

)m2

F = G · m1·m2
d2

F = GMm
r2

8000m = 120m
15mil × 1000

139

APPENDIX G. EGOMATH AND FBA EVALUATION QUERIES

140

APPENDIX H

Index Formats

The important file formats used in EgoMath’s index (based on Solr) are described

below:

• doc - frequencies and skip data;

• fdx - field index - contains pointers to field data;

• fdt - field data - the stored fields for documents;

• fnm - stores information about fields;

• pay - stores term payloads;

• pos - stores term positions;

• tim - stores term info in term dictionary;

• tip - the index into the term dictionary;

• tvd - contains information about each document that has term vectors;

• tvx - stores offset into the document data file.

141

APPENDIX H. INDEX FORMATS

142

APPENDIX I

EgoMath’s Definition of the Underlying

Mathematical Structure

Listing I.1: EgoMath’s algorithms.xml

<algorithm name="basic">

<transformation name="remove_optional" />

<output priority="0" />

<transformation name="order" />

<output />

<transformation name="eval" />

<transformation name="approximate" />

<transformation name="order" />

<output />

<transformation name="distributivity" />

<transformation name="multiplying" />

<transformation name="own_denominator" />

<transformation name="order" />

<output />

<transformation name="replace_id_const_not_change" />

<output />

<transformation name="constants2const" />

<transformation name="order" />

<output />

<transformation name="unknown2id" />

<transformation name="order" />

143

APPENDIX I. EGOMATH’S UNDERLYING MATHEMATICAL STRUCTURE

<output />

</algorithm >

<algorithm name="sim_sub" start="100">

<output />

<transformation name="remove_optional" />

<transformation name="remove_simple_sup" />

<output />

...

<algorithm name="sim_eq" start="200">

<output />

<transformation name="remove_optional" />

<transformation name="remove_simple_sup" />

<transformation name="change_eq" />

<output />

...

144

APPENDIX J

Extending Full Text Search Engine For

Mathematical Content by Mǐsutka and Galamboš

145

Extending Full Text Search Engine For

Mathematical Content

Jozef Mi²utka and Leo Galambo²

Charles University in Prague, Ke Karlovu 3, 121 16 Prague, Czech Republic,
jmisutka@gmail.com

Abstract. TheWWWbecame the main resource of mathematical knowl-
edge. Currently available full text search engines can be used on these
documents but they are de�cient in almost all cases. By applying axioms,
equal transformations, and by using di�erent notation each formula can
be expressed in numerous ways. Most of these documents do not con-
tain semantic information; therefore, precise mathematical interpreta-
tion is impossible. On the other hand, semantic information can help
to give more precise information. In this work we address these issues
and present a new technique how to search for mathematical formulae in
real-world mathematical documents, but still o�ering an extensible level
of mathematical awareness. It exploits the advantages of full text search
engine and stores each formula not only once but in several generalised
representations. Because it is designed as an extension, any full text
search engine can adopt it. Based on the proposed theory we developed
EgoMath - new mathematical search engine. Experiments with EgoMath
over two document sets, containing semantic information, showed that
this technique can be used to build a fully-�edged mathematical search
engine.

1 Introduction

There are several ways how to create and publish semantically annotated math-
ematical content. However, these documents are still a minority of the mathe-
matical content on the WWW. Among the commonly used document formats to
exchange mathematics (LATEX, MathML, PDF, PS, Word) only MathML con-
tains support for semantics.

The success of full text search engines has shown that despite missing seman-
tic information satisfactory search results can be produced. Although, currently
available full text search engines can be used on documents containing mathe-
matical content too they are clearly de�cient in almost all cases.

We present a technique how to index and search for mathematical content on
the WWW using full text search engine. Every full text search engine can easily
adopt it because it is designed as an extension. It is primarily intended for real-
world scienti�c documents which do not implicitly contain semantic information.
It still o�ers an extensible level of mathematical awareness supporting also sim-
ilarity search. We developed a new mathematical search engine - EgoMath -

APPENDIX J. EXTENDING FULL TEXT SEARCH ENGINE FOR MATHEMATICAL CONTENT

146

based on Egothor v2 full text search engine [1] using the technique described in
this paper.

The rest of the paper is organised as follows. Section 2 brie�y describes the
state-of-art of mathematical searching. Section 3 gives the general overview of
the design. In Section 4 and Section 5 the proposed technique is described in
detail. Section 6 includes experimental results using EgoMath. It shows how per-
formance is e�ected when changing properties of the search engines. Conclusion
and future directions are discussed in Section 7.

2 Related Work

As described in [2] and [3] there are two main approaches in mathematical search-
ing. MathDex [4,5], LeActiveMath [6] use the �rst mainly "syntactic" approach
and MBase [7], Helm [8] search engine and MathWebSearch [3] use the second
"semantic" approach. There are few search engines which use neither the for-
mula syntax nor semantics but still can be considered as mathematical aware [9].
The closest work to our paper is [5] and [6]. However, they both only take use
of syntax and can not handle mathematics.

3 Design

We think that simple textual search either in meta-data or in raw text is very
important. The proof is the Whelp search engine [9] which relies on meta-data to
describe mathematical formulae. The information retrieval techniques used for
this type of searching do not need to be connected with mathematics. That is
why we did not want to rely on one speci�c full text search engine and designed
our mathematical search engine as an extension to an arbitrary full text search
engine. The architecture is shown in Fig. 1. Both a�ected parts - indexing and
searching - are described in detail in the following sections.

4 Indexing Mathematical formulae

Full text indexing can be thought of as a description of an arbitrary input by
textual words - tokens. Identity function can be used when the input consists
of simple words. However, mathematical formulae are highly structured without
a general canonical form because of equal transformations, di�erent notations
etc. We use linearisation, transformation rules, generalisation rules and ordering

algorithm described below to simplify the complex and highly symbolic mathe-
matical structures into linear structures with well de�ned symbols.

4.1 Parsing Mathematical Formulae

We analysed several formats suitable for mathematical indexing (MathML, LATEX,
TEX, XML, PDF, PS, HTML, Word, OpenMath, OMDoc) capable either of

APPENDIX J. EXTENDING FULL TEXT SEARCH ENGINE FOR MATHEMATICAL CONTENT

147

Figure 1. Architecture of an arbitrary full text search engine

describing the visual presentation of mathematics or describing the semantic
meaning. Because the search engine is designed for WWW, one of the basic re-
quirements is to index PDF document format which does not directly support
description of formula semantics. Even when the source code of the documents
(e.g. TEX, LATEX) is available not all symbols can be parsed unambiguously [10].
Since the majority of input documents does not contain enough semantic infor-
mation they must be expressed in one of the presentation formats. MathML was
chosen as the primary supported format because it can encode both mathemat-
ical visualisation (Presentation MathML) and semantics (Content MathML). In
the following text we mainly focus on parsing Presentation MathML.

Mathematical text is highly structured and symbolic, hence can be easily
recognised from common text. Identi�cation of mathematical formulae is min-
imised to identi�cation of mathematical markup language. This is the task of
document analyser. Mathematical documents are sent to the converter. The con-
version to supported form must be tolerant because the meaning of symbols is
context dependent and there is usually little semantic information to use. Math-
ematical formulae a b resp. a(b+ c) are very likely to be the shorter form of a ∗ b
resp. a∗ (b+c) but on the other hand Π can be either the constant or a function
representing permutation. A multiple characters to one character mapping has
been introduced because many characters look similar or have the same mean-

APPENDIX J. EXTENDING FULL TEXT SEARCH ENGINE FOR MATHEMATICAL CONTENT

148

ing. This phase has shown that is very prone to incorrect symbol recognition
which led to incorrect formulae.

Full text search engine must use a recognition technique which analyses input
and parses it to words, sentences etc. Mathematical search engine must use an
analogous technique and is called formula recogniser. Every document containing
mathematical notation is converted to Presentation or Content MathML. Then,
the MathML document is delegated to the mathematical extension. Afterwards,
it is parsed into a tree-like structure supporting mathematical operations.

There is an important di�erence between parsing Content and Presentation
MathML. Content MathML contains information whether an element is a num-
ber, a constant, a variable or any other type but the Presentation MathML does
not. To remedy this important de�ciency several simple heuristics are applied
together with a paradigm described below. When the correct meaning can not be

deduced the solution is to choose one solely meaning and operate with the symbol

identically in both the indexing and searching phase. We can improve this tech-
nique by indexing formulae in Content MathML also as they would not contain
any semantic information. Each ambiguous symbol is converted to its normal
form with prede�ned semantic meaning, for example π, Π, P i, pi to function π.

This technique can notably increase recall but decrease precision. The user
can re�ne his search by using simple textual query or by applying similar tech-
niques used by full text search engines e.g. ranking algorithm.

4.2 Storing Mathematical Formulae

Full text indexer works only with single linear words whereas mathematical
formulae can be structured into more levels. To adapt the structured notation for
sequential indexer linearisation must be performed [11]. Storing mathematical
formulae using post�x notation has two main advantages: 1) no need to use
parentheses, 2) it enables one special type of similarity searching except similarity
searching provided by the generalisation rules. Consider the following example:
formula (a+ b)− (c+ d) is converted to ab+ cd+−, let's assume that formula
tokens are ab+ and cd+. The resulting index database contains three words in
this order: ab+, cd+, −. This representation allows to search for the subformulae
(ab+, cd+) without knowing the mathematical operation between them.

Augmentation algorithm

Mathematical formulae can be expressed in numerous equivalent ways but full
text search engines can search only for documents containing speci�ed words.
The most important problems include: 1) no commonly used mathematical for-
mat nor unitary notation (1/x = 1

x = (x)−1, π = Π = Pi), 2) symbol meaning
dependent on context, 3) no canonical form (1+1+a = a+2, sin2x = 1−cos2x),
4) structured text (e

x+1
x−1), 5) many mathematical structures with di�erent ax-

ioms.
To fully exploit the full text search engine and reduce the main disadvantages,

an indexed formula is not represented only by one word (or ordered sequences of

APPENDIX J. EXTENDING FULL TEXT SEARCH ENGINE FOR MATHEMATICAL CONTENT

149

words) but by several words (or ordered sequences of words). Generally speaking,
the input is not stored only once but is augmented and stored in various di�erent

synonyms - it is the opposite of stemming1. We call this technique augmentation.
The �rst representation is the ordered input formula. Next representation is
created by applying transformation and generalisation rules together with an
ordering algorithm on the last representation.

Some assumptions are made on the underlying mathematical model which
is simpli�ed in each step of the algorithm. A representation from later iteration
would match more formulae because it is generalised. Augmentation does not
solve the unique canonical form problem completely, but it can reduce the prob-
ability that two equivalent formulae do not match. Storing all of the possible
representations is clearly impossible because unique canonical form of mathe-
matical formulae does not exist.

Many scienti�c �elds use formulae (physics, mathematics, computer science,
medicine, chemistry, etc.) to describe various processes. Many formulae are sound
and valid only in speci�c mathematical structures. In the simplest design, in-
stead of distinguishing between them, all structures are generalised into single
one in which these basic and most common axioms hold: 1) commutativity, 2)
associativity, and 3) distributivity.

From the mathematical perspective, the indexing stage uses a function Q
to create di�erent representations. The domain is the space of all mathemati-
cal formulae (F) and the range is FN := F1 × F2×, ...,×FN . The function Q
produces N formulae f1, f2, ..., fN for one input formula. The number N is a
prede�ned constant dependent on the generalisation and transformation rules.
The function Q is de�ned as Q : F → FN , Q(f) = [f1, ..., fN] and must satisfy
one requirement about its domain FN : ∀i, fi+1 is a generalisation (or identity)
of fi. This algorithm is called generalisation algorithm. There can be more than
one function Q with di�erent specialisations because the number of formulae in
one document is usually negligible comparing to the number of textual words.
This list is an example of transformation and generalisation rules:

1. Partial evaluation: 7 + a+ 5
(converted to)−−−−−−−−−→ 12 + a

2. Approximate numerical constants: 5.82
.
= 6

3. Remove brackets using distributivity: a ∗ (b+ c)→ a ∗ b+ a ∗ c
4. Multiply tokens: a+b

2 ∗Π → Πa+Πb
2

5. Assign each numerator its own denominator: Πa+Πb
2 → Πa

2 + Πb
2

6. Replace constants with const symbol:

74 + a2 + b2 → const+ aconst + bconst

7. Replace unknown constants, variables with id symbol:
a2 − b2 + 2bc→ id21 − id21 + 2id1id2

or→ id21 − id22 + 2id1id2 ...

Another problem which must be addressed is that mathematically equivalent
formulae with the same but permuted operators or operands would be considered

1 Stemming is the process where in�ected or derived words are reduced to their root
form.

APPENDIX J. EXTENDING FULL TEXT SEARCH ENGINE FOR MATHEMATICAL CONTENT

150

as di�erent when compared letter by letter. Ordering algorithm guarantees that
two mathematically equal formulae with the same but permuted operands have
the same canonical representation and that two similar (but not equal) formulae
have a similar (but not equal) unique representations. This can be guaranteed
because of the simpli�cations and assumptions made on the underlying math-
ematical apparatus. The indexer usually recognises several document sections
e.g. title, body, meta-data. To prevent the ambiguous searching, resulting from
collisions between mathematical tokens and simple textual tokens mathematical
section is introduced. A search for a proof of a formula could result in search-
ing for word "proof" in the text section and the formula in the mathematical
section. When the search engine supports the proximity operator it can be even
speci�ed that the word "proof" and the text representation of formula must be
at a distance of maximum N tokens.

One of the most important but less obvious problems is the question of
what exactly the atomic information (grain) in a mathematical search engine
is. In a simple full text search engine the smallest information we can search
for is a word. The grain of a formula should be its reasonably big fragment -
subformula. Formula tokenizer is the part of the system which decides what the
atomic information is. When tokens are small the probability of two being equal
is higher and as a consequence the index database is smaller. Generalisation rules,
like substituting variables for one id or more id1, id2, . . . , idn symbols, can be
applied either on the whole formula at once or subsequently on all formula grains.
All variables must be substituted for one id symbol when applying the rule on the
whole formula. Otherwise, it could break searching for subformulae. Let's assume
that formula a+ b has two grains a and b. After applying the generalisation rule
on the whole formula, we get id1+ id2. The same algorithm used on the indexed
formula is applied on the search formula. Thus, when searching for b we will end
up with searching for id1, but we should be searching for id2. If we apply the rule
on each grain separately, we get id1+ id1 and search for b will be successful. This
is also demonstrated in the list of example rules above. The tokenizer which was
used to create the �rst representation in 7) divided the input into three grains
- a2, b2, 2bc; therefore, it marked both �rst ids with index 1 and the result is
id21−id21+2id1id2. In the second representation, the grain is the whole expression
and ids can be indexed incrementally.

Using di�erent formula tokenizer has a great impact on the performance. The
evaluation of di�erent formula tokenizers can be found in Section 6.

4.3 Ranking Function

Each word in a document has a weight which indicates the relevance to the
document. It is a common practise that words in titles are ranked higher than
words in body of a document because they are considered more important. If two
formulae in di�erent documents match a query (

.
=) but both match with a dif-

ferent representation of the formula (fi
.
= fj but i 6= j, let i < j) then document

containing fi should rank higher. Let R be a ranking function which computes
word rankings then requirement for the ranking of the formula words can be

APPENDIX J. EXTENDING FULL TEXT SEARCH ENGINE FOR MATHEMATICAL CONTENT

151

written: R(f1) ≥ R(f2) ≥ ... ≥ R(fN). The ranking algorithm of mathematical
formulae is based on the similarity search which uses formula distance to rank
each formula. It is clear that the �rst representation should be ranked highest
and that later representation is less similar than the previous one. Currently, the
formula distance is hard coded based on the number of the representation.

5 Searching

Searching phase is the only user interactive phase of a search engine. User enters a
query which is executed and the results are displayed. This includes several steps:
1) query parsing, 2) mapping query operators to supported internal constructs,
3) �nding all words/phrases from the query, 4) evaluating the logic of the query
and collecting suitable documents, 5) sorting them according to their rank, 6)
displaying the result list. The mathematical extension is part of 1), 2) and 6).

User input is separated into simple textual query and mathematical query.
Afterwards, the mathematical query is processed by the same algorithm used
in the indexing phase. The algorithm produces N representations which are ap-
pended to the simple textual query, using the AND boolean operator. The result
are N sequentially executed search queries. Later query have higher probability
of a hit because the mathematical representation is more generalised than the
previous one.

The search page and the displaying of results in commonly used full text
search engines are similar (Google, Live Search, Yahoo). We extend this interface
by adding one or more additional input �elds for mathematical formulae. The
text query must be present in the text section of the document and the formula
in the mathematical section. If there is a match in one step of the algorithm it
is more relevant than that the results obtained by using representations from
following steps. The queries are performed till the �rst match of K di�erent
documents are found. Di�erent similarities of di�erent representations can be
used to limit a search and achieve �ner precision.

5.1 Mathematical Query Language

The most important goal is to have the query language as simple and user-
friendly as possible but with no limits to the expressivity. Many users searching
for mathematics have already made contact with science papers. We can assume
that more users are familiar with LATEX than with any other mathematical doc-
ument format. Therefore, we propose using LATEX language extended with tags
supporting semantic information. According to a simple survey in [2] the pre-
ferred way of inputting mathematical queries is LATEX too. The query language
can be supported by a graphical user interface.

5.2 Displaying Results

There are many ways how to display results. Displaying parts of the text where
word/phrase was found is a common practice which helps users to decide which

APPENDIX J. EXTENDING FULL TEXT SEARCH ENGINE FOR MATHEMATICAL CONTENT

152

document is relevant without the need to open it. There is no e�ective technique
which extracts interesting parts from found documents without big storage over-
head or without undergoing the same process as in the indexing phase which is
very time consuming. Another problem is that the found formula representation
can be di�erent from the original formula and there is no connection between the
original formula and the representation except the position in the document. The
searching phase of a mathematical search engine must display at least a small
abstract of the text extracted from the document together with the original form
of found formulae.

6 Experimental Evaluation

EgoMath is the mathematical extension of Egothor v2 full text search engine. It
contains the indexing and searching techniques described in this paper.

Statistics regarding precision and recall are not included since there is no
accepted evaluation metric designed speci�cally for mathematical searching. We
think that these results are very little informative. Several recall and precision
statistics of EgoMath can be found in [11].

EgoMath uses several simpli�cations: 1) equations are considered as two sep-
arate formulae with equal operator between them, 2) constraints and variables of
known operators are not considered (

∫∞
0
x2dx→

∫
x2), 3) matrix is converted to

a set of formulae. These simpli�cations are not based on any known limitations.
Every formula is stored in �ve representations. It uses a superset of rules

described in Section 4.2. First two representations have relatively high rank
because they are very similar to the original formula. Only basic mathematical
operations are applied together with the ordering algorithm. The remaining three
representations are created by applying more complex transformations rules. The
main intention was to reduce the number of possible representations mapping
very common variations to a single one e.g. constants are not important in
many parts of mathematics so they are substituted by one symbol. The precise
de�nitions can be found in [11].

6.1 Document Sets

Two di�erent document sets downloaded in July 2007 were used for our exper-
iments: 1) Connections2 (referred to as CNX in the remainder) with 421 scien-
ti�c documents (32306 indexed formulae) totalling 99 MB, 2) part of the arXiv3

(referred to as ARXIV in the remainder) with 1915 mathematical documents
(852388 indexed formulae) totalling 252MB. These document sets were chosen
carefully because documents in CNX contain both Presentation and Content
MathML and because the document set is currently indexed by MathWebSearch
and MathDex. ARXIV contains both MathML elements but as was already
mentioned above, the Content MathML can be ambiguous as it was created
automatically by LATEXML [12, 13].

2 http://cnx.org/
3 http://arxiv.org/

APPENDIX J. EXTENDING FULL TEXT SEARCH ENGINE FOR MATHEMATICAL CONTENT

153

all alls com coms num const

CNX

Words per Document

C
ou

nt

0

300

1000

1800

3000

all alls com coms num const

Words per Representation

0

1

2

3

4

5

6

7

8

9

all alls com coms num const

Numbers per Representation

1.00

1.05

1.10

1.15

all alls com coms num const

ARXIV

Words per Document

C
ou

nt

0

2000

5000

9000

13000

18000

all alls com coms num const

Words per Representation

0

1

2

3

4

5

6

7

8

9

all alls com coms num const

Numbers per Representation

0.85

0.90

0.95

1.00

Figure 2. Average characteristics of document sets

Mathematical formula granularity

One of the important observations made is that granularity of formulae has an
considerable impact on index database size, speed and mainly on applicability.
This section provides comparison of di�erent formula tokenizers responsible for
di�erent formula granularity.

We have included 6 di�erent tokenizers. The common used, com, accepts
subformula with small depth di�erence and entity count, coms accepts only really
simple ones, all accepts all formulae, alls accepts all nodes with neither index
nor exponent, num accepts only numbers, and const accepts only constants.

The number of all representations is the same for all tokenizers because the
number does not depend on the algorithm of producing tokens: 1) ARXIV -
4261940, 2) CNX - 161530. The di�erence between the maximum and minimum
number of di�erent representations is very small: 1) ARXIV - max 2121729 with
all, min 2120319 with num and const, 2) CNX - max 78630 with all, min 78518
with num and const.

Average characteristics are shown in Fig. 2. It is interesting that the two
di�erent document sets have similar characteristics. The �rst graph shows that
in both document sets the biggest word count is approximately 8 times the
size of the smallest one. Second graph shows the average number of words per
representation. Tokenizers producing many words have two disadvantages: 1) it
is di�cult to reasonably de�ne similar subformulae, and 2) higher word count
in one formula can theoretically cause performance problems. The last graph

APPENDIX J. EXTENDING FULL TEXT SEARCH ENGINE FOR MATHEMATICAL CONTENT

154

Figure 3. Index database size using di�erent formula tokenizers

shows the number of numerical constants per one formula representation. It can
be seen that there are little formulae with more than one numerical constant.

Index database size

The index database size in this experiment includes the whole index directory
including inverted index, indexed meta-data, term occurrences, indexed normal
text, index-sequential �le for improving performance etc.

Fig. 3 shows the comparison of index database sizes when di�erent formula
tokenizers used. all and alls produced the largest databases because they accept
all resp. almost all formulae making the words representing a formula very long.
Longer words have lower probability that the database already contains them.
Tokenizers num and const accept only formulae with one entity. The probability
that two identical words are produced by these tokenizers is higher. As expected,
the index database size of com is bigger than num and const. Tokenizer coms

produced unexpectedly smallest database. The reason for this behaviour is that
the index database includes inverted index and word occurrences. There are also
other �les but either they are very small or have similar size for all tokenizers.
The size of the inverted index is the smallest using num tokenizer and the size
of word occurrences is the smallest using all. The medium size of all �les is
produced exactly by coms making the index database the smallest.

PDF support

Applicability has been one of the most important goals of our work. Great em-
phasis was put on the ability to index PDF format as it is the most used scienti�c
document format. The Infty application [14] can produce MathML from PDF
documents. The evaluation showed two small issues: 1) speed, 2) accuracy. A
conversion takes tens of seconds and would be impossible to use on a larger
dynamic collection of documents. However, we think that this disadvantage is
not signi�cant because mathematical documents are changed very seldom. It is

APPENDIX J. EXTENDING FULL TEXT SEARCH ENGINE FOR MATHEMATICAL CONTENT

155

assumed that the speed of indexing surpasses the number of new documents.
Another problem was accuracy. It is interesting that the newer version outper-
formed the older one in the number of recognised characters but on the other
hand the newer version sometimes converts single character to a set of characters
(e.g. M was converted to IVI).

7 Conclusion and Future Works

The key contribution of this paper is a description of how to extend an arbitrary
full text search engine to a fully-�edged mathematical search engine. Based on
the principles described in this paper we created EgoMath. On one hand, from
the full text search engine it inherits the advantages which has already proven as
very important in searching, but it also inherits the static index database which
does not directly support dynamic indexing and searching for mathematical
formulae. By exploiting the current state-of-art of full text searching together
with the new described paradigm, searching in real-world scienti�c documents
is possible with an extensible level of mathematical awareness supporting also
similarity searching. It is di�erent from all other "semantic" techniques because
it does not try to �nd a user query formula by concretising it. On the contrary,
at �rst it tries to �nd an exact match. If not successful, the user query formula
is generalised and the search is repeated.

Evaluation showed that �ne granularity does not only in�uence the usability
from the user point of view but also the speed and size of the index database.
The di�erences can be signi�cant and must be taken into consideration. There
are few details which are still missing in EgoMath. One of the most important
parts for a user - result displaying - has to be improved according to this paper.
There are several features worth of further research which can greatly increase
the applicability of EgoMath e.g. searching in meta-data, searching in references,
displaying authors. The main focus is now put on the user interface for making
EgoMath publicly available. Next step in indexing is to include Wikipedia4 in
our index database.

This work shows that there are many possibilities how to address the problem
of mathematical searching opening several questions for future research. How
useful is this method? Another question is tightly connected with the �rst one.
How can we evaluate existing mathematical search engines? One of the challenges
of this research �eld is how to measure the applicability. We think that at this
moment, only an exhaustive cross comparison of available search engine can
produce useful information. We are planning to perform such comparison in the
future. It would be also interesting to �nd out whether the proposed technique
could be easily used on other structured data (e.g. chemical formulae). And
�nally, how can be advanced search operators like proximity operator used to
improve the similarity searching.

4 http://www.wikipedia.org/

APPENDIX J. EXTENDING FULL TEXT SEARCH ENGINE FOR MATHEMATICAL CONTENT

156

Acknowledgement

The work was supported by the project 1ET100300419 of the Program Infor-
mation Society (of the Thematic Program II of the National Research Program
of the Czech Republic) "Intelligent Models, Algorithms, Methods and Tools for
the Semantic Web Realisation".

References

1. Egothor v2 search engine,
http://www.egothor.org

2. Zhao J., Kan M., Theng Y., L.: Math Information Retrieval: User Requirements
and Prototype Implementation. To appear in JCDL'08, Pennsylvania (2008)

3. Kohlhase M., S�ucan, I. A.: A search engine for mathematical formulae. Proceedings
of Arti�cial Intelligence and Symbolic Computation, AISC'06, LNAI 4120, Springer
Verlag, Germany (2006)

4. Miller B., Youssef A.: Technical aspects of the digital library of mathematical
functions. Annals of Mathematics and Arti�cial Intelligence, 121�-136 (2003)

5. Miner R., Munavalli R.: An approach to mathematical search through query for-
mulation and data normalization. In Towards Mechanized Mathematical Assistants,
MKM 2007, 342�355 (2007)

6. Libbrecht P., Melis E.: Methods for access and retrieval of mathematical content
in ActiveMath. Proceedings of ICMS 2006, LNAI 4151, Springer Berlin/Heidelberg,
331�342 (2006)

7. Kohlhase M., Franke A.: MBase: Representing knowledge and context for the inte-
gration of mathematical software systems. Journal of Symbolic Computation, Special
Issue on the Integration of Computer algebra and Deduction Systems, 365�402 (2001)

8. Asperti A., Selmi M.: E�cient retrieval of mathematical statements. In Mathemat-
ical Knowledge Management, LNCS 3119, Springer Verlag, 1�4 (2004)

9. Asperti A., Guidi F., Sacerdoti Coen C., Tassi E., Zacchiroli S.: A content based
mathematical search engine: Whelp. Proceedings of the TYPES 2004, LNCS 3839,
Springer Verlag, 17�32 (2004)

10. Stuber J., van den Brand, M.: Extracting Mathematical Semantics from LaTeX
Documents. LNCS 2901, Springer, Germany, 160�173 (2003)

11. Mi²utka, J.: Mathematical search engine. Master thesis, Faculty of Mathematics
and Physics, Charles University in Prague (2007)

12. Miller, B. R.: Authoring mathematical knowledge. In 2nd North American Work-
shop on Mathematical Knowledge Management, Phoenix (2004)

13. Miller, B. R.: DLMF, LATEXML and some lessons learned. Hot Topic Workshop
on The Evolution of Mathematical Communication in the Age of Digital Libraries
(2006)

14. Suzuki M., Tamari F., Fukuda R., Uchida S., Kanahori, T.: INFTY - An integrated
OCR system for mathematical documents. Proceedings of DocEng, France (2003)

APPENDIX J. EXTENDING FULL TEXT SEARCH ENGINE FOR MATHEMATICAL CONTENT

157

Index

arXMLiv, 51

clustering, 30, 32

content-based image retrieval, 32

cosine similarity, 9, 65, 93

DLMF, 24, 30, 39

EgoMath , 25

faceted search, 57

flattening, 24, 26

Formal Concept Analysis, 34

generalisation, 30

Importer framework, 51, 85

interview, see survey

intrinsic dimension, 14, 17, 93

inverted index, 8

Jaccard, 16, 31, 34

Latent Semantic Analysis, 35

LeActiveMath, 26

linearised, 33, 34

Lucene, 43

Math GO, 30

MathWebSearch, 26, 40

MKM, 23

non-overlapping, 11

normalisation, 23, 24, 30

pre-process, 25, 28, 46, 53, 55, 68

precision, 95

proximal nodes, 11

proximity search, 24

recall, 95

Solr, 43, 44

sub-formula, 24

substitution trees, 24, 26, 34, 40

survey, 30

textualisation, 24, 26

tf-idf, 13, 18, 88

TREC, 34

tree edit distance, 15, 36

Vector Space Model, 10, 65

Wolfram Function Site, 25

158

List of Abbreviations

API Application programming interface

FBA Feature Based Algorithm Search Engine

FCA Formal Concept Analysis

GUI Graphical User Interface

Idf Inverse document frequency

IR Information retrieval

JNI Java Native Interface

LSA Latent Semantic Analysis

MML MathML

MSE Mathematical search engine

SE Search Engine

SVM Support Vector Machine

Tf Term frequency

UI User Interface

VSM Vector space model

159

160

List of Figures

2.1 Taxonomy of information retrieval models 10

4.1 System architecture of EgoMath . 47

4.2 Importer framework architecture . 48

4.3 Importer workflow . 50

4.4 English Wikipedia.org statistics . 51

4.5 Wikipedia.org indexing process workflow 51

4.6 MREC2011.4.439 statistics . 52

4.7 Indexed text processed by filter chain . 61

4.8 Payloads visualisation . 67

4.9 Performance of “with” and “without” brackets 74

4.10 Performance of “with” and “without” ego* keywords 75

4.11 Performance of “with” and “without” additional semantics 76

4.12 Performance of “with” and “without” payloads 77

4.13 Query time performance of two vs. three sub-queries 78

4.14 The number of results returned . 79

4.15 The total query times . 80

4.16 Performance of “with” and “without” the text field 81

4.17 Revisiting different tokenisers on Wikipedia.org 82

4.18 Query times of EgoMath v3 over MREC2011.4.439 83

5.1 Different representation of formula trees 87

5.2 Number of features using different limits 92

5.3 Feature histogram of formulae in the Wikipedia.org document set 93

5.4 Wikipedia.org FBA angular similarity distribution 94

5.5 P@1 and P@5 of EgoMath and FBA . 97

5.6 Query correlation between EgoMath and FBA 98

A.1 Trends in mathematical searching . 117

B.1 DLMF result page after searching for sin2(x) + cos2(y) 119

B.2 Math Web Search input of Πb
x=a(

a
b)− b . 120

161

B.3 Active Math input of 2
3 ∗ x2 ∗ (7 ∗ x3 + 4) 120

B.4 EgoMath v1 result page after searching for ab+4 = 7 121

B.5 Symbolab result page after searching for sin2(x) + cos2(y) 121

B.6 (uni)quation result page after searching for sin2(x) + cos2(y) 122

B.7 WEBMIaS result page after searching for x2 + y2 122

B.8 WolframAlpha result page after searching for sin2(x) + cos2(y) 123

C.1 Outbound links information visualisation 125

D.1 EgoMath v3 annotated GUI . 127

E.1 Importer framework annotated GUI . 129

List of Listings

4.1 Content MathML . 54

4.2 Presentation MathML . 54

4.3 Example of an operator definition . 56

4.4 EgoMath’s field configuration for Solr 4.2.1 59

5.1 Semantic feature extraction implemented in Java 89

5.2 Structural feature extraction implemented in Java 90

C.1 Click-through implementation in JavaScript 125

I.1 EgoMath’s algorithms.xml . 143

163

	Introduction
	Research Goals
	Overview of Contribution
	Thesis Organisation

	Brief Theory on Searching
	Indexing Structures
	Relevance and Ranking
	Clustering
	Query

	Domain Analysis
	Searching for Mathematics
	Elementary but Often Unanswered Questions
	Case Studies
	Latest Development

	EgoMath
	Answers to Elementary Questions
	Architecture
	Importer Sub-project
	Parsing the Input
	Indexing
	Ranking
	Querying
	UI
	Evaluation
	Stand Up to the Giant
	Contribution and Conclusion

	Feature Based Mathematical Search Engine
	Original Algorithm
	Modifications
	Evaluating and Comparing with EgoMath
	Contribution and Conclusion

	Conclusion
	Bibliography
	Appendices
	Trends in Mathematical Searching Research Field
	Mathematical Search Engines Available Online
	Click-through Implementation
	EgoMath v3
	Importer Formula Search Engine
	Queries Used in EgoMath's Evaluation
	EgoMath and FBA evaluation queries
	Comparison of EgoMath and FBA
	FBA

	Index Formats
	EgoMath's Underlying Mathematical Structure
	Extending Full Text Search Engine For Mathematical Content

