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málně řešit řaduúloh o řetězcích a jejich vlastností lze téžvyužít k implementacimetod
bezztrátové komprese dat. Cílem práce je prozkoumat možnosti opačného přístupu,
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Preface

The title of this thesis brings together two concepts that were already combined
before. However, while previous work used to select a lossless data compres-
sion method and then a suffix graph to implement the necessary string sorting
and searching, this text reverses the roles and bases new lossless data compres-
sion methods on suffix graphs and their properties. Particularly, the properties
of suffix graph construction algorithms and maintenance of suffix graphs in a
slidingwindow are studied thoroughly. The information gained from this ana-
lysis is subsequently used to formulate and study the concept of suffix graph
based data compression.

The concept of suffix graph baseddata compression is introducedgradually
using the following five steps. Each step has its own dedicated chapter and the
last step is followed by Chapter 6: Epilogue,which concludes this text.

Chapter 1: Fundamentals

reviews the basic building blocks needed in later steps

Chapter 2: Definitions

introduces suffix graphs and describes their basic properties

Chapter 3: Construction

addresses the issues of incremental suffix graph construction

Chapter 4: Sliding

deals with the maintenance of suffix graph for a sliding window

Chapter 5: Compression

finally brings the details of the use of suffix graphs and their construction
algorithms in lossless data compression

These chapters summarise my research on the construction and sliding of
suffix graphs that was driven by the idea of suffix graph based data compres-
sion.The text of these chapters is built aroundan extendedandpolishedversion
of my previously published work which is glued together with a considerable
amount of new text. Here is the list of my contributions,where they were pub-
lished, and how they are integrated into this text:

• On-line suffix tree construction with reduced branching, coauthored by my
supervisor TomášDvořák, published in the Journal of DiscreteAlgorithms
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[39]. Its extendedversion is the base of Section 3.2: Implicit Suffix Link Sim-
ulation.

• Sliding CDAWG Perfection, written in collaboration with my supervisor
Tomáš Dvořák, presented at the 15th International Symposium on String
Processing and Information Retrieval (SPIRE 2008), Melbourne, Australia,
November 10–12, 2008 [40]. An improved version of this paper, which
deals with all four types of suffix graphs, forms Section 4.2: Delete Oldest
Symbol.

• Suffix Tree for a Sliding Window: AnOverview, presented at the 14th Annual
Conference of Doctoral Students (WDS’05), Prague, Czech Republic, June
7–10, 2005 [44]. Most of this work is concerned with edge-label mainten-
ance and its extended version can be found in Section 4.3: Edge Labels.

• Suffix tree based data compression was the first basic version of suffix
graph based data compression which forms the core of Chapter 5: Com-
pression. The genesis and development of this method is documented in
three publications:

• Bezztrátová komprese dat pomocí sufixových stromů (Lossless Data Com-

pression using Suffix Trees), Master’s Thesis [42], explains themain idea
(in Czech).

• Suffix Tree Based Data Compression, presented at the 31st Annual Con-
ference on Current Trends in Theory and Practice of Informatics
(SOFSEM 2005), Liptovský Ján, Slovakia, January 22–28, 2005 [43],
providesa formaldescriptionof both data structuresand compression
algorithms.

• Compressed by the Suffix Tree, presented at the Data Compression Con-
ference (DCC 2006), Snowbird, Utah, March 28–30 2006 [41], supple-
ments the theory with experimental results obtained on large data
corpora.
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1. Fundamentals

The path to the suffix graph based data compression starts in this chapter with
a brief review of a few basic building blocks. As this path leads to the lossless
data compression algorithms based on suffix graph construction, those build-
ing blocks fall mostly into the fields of Stringology, Graph Theory and Lossless
Data Compression.While their description and analysis require concepts from
other fields, these are used in a standardway and are not reviewed here.

1.1 Stringology

The first concepts to be reviewed and the most frequently used are those from
Stringology. Unfortunately, there is no suitable textbook with notation that
could be used directly. Thus, even the most basic concepts and notation are
reviewed below. Nevertheless, most of them can be found in textbooks, like
that of Smyth [47], albeit with a slightly different notation.

String µ is a finite sequence of symbols taken from a nonempty finite set Σ
called alphabet. The length of string µ is denoted by |µ | and the only string of
zero length is called empty string and denoted by λ. Symbols ∗Σ and +Σ stand
for the set of all strings on alphabet Σ and the set of all non-empty strings on al-

phabet Σ, respectively. Note that throughout this text the lower-case latin let-
ters (a, b, . . . , x) are used for individual symbols, lower-case greek letters
(α, β, . . . , ω) for strings, and capital greek letters (Σ) for alphabets.

The concatenation is the only basic operation defined on strings. The result
of its application on a pair of strings is the concatenation of sequences forming
the two strings. For example, the concatenation of strings α = a1 a2 . . . am and
β = b1 b2 . . . bn, denoted by αβ, is the string a1 a2 . . . am b1 b2 . . . bn. Sometimes, a
concatenation of k copies of string α is needed, this is called the k-th power of α
anddenoted by kα .With the helpof concatenation, every string µ can bewritten
as µ = αβγ, a concatenation of three possibly empty strings α, β and γ. In this
situationwe say that α is a prefix of µ, β is a factor of µ and γ is a suffix of µ. If any
of them is not equal to µ, then it is called proper prefix (factor, suffix) of µ. The
sets of all prefixes, factors and suffixes of µ are denoted by Prefix(µ), Factor(µ),
and Suffix(µ), respectively.

While the notions of prefix, factor and suffix certainly helps in analysis
of string properties, it is often desirable to address only some specific sym-
bols of a string. Hence, the i-th symbol of string µ is denoted by µ[i ], for
any i satisfying 1 ≤ i ≤ |µ |. Similarly, the factor of µ consisting of symbols
µ[i ], µ[i +1], . . . , µ[j ] is denotedbyµ[i .. j ],where0 ≤ j ≤ |µ |and 1 ≤ i ≤ j +1. If
α = µ[i .. j ], then we say that α has a (right) occurrence in µ at position j and a left
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occurrence in µ at position i. The casewhen i = j +1ensures that the empty string
hasboth left and right occurrenceat everyposition in every string, including the
empty string itself. The set of all positions of right (left) occurrences of α in µ is
denoted by OccurRµ(α) (OccurLµ(α)).

Onepossibleuse for the concept of occurrence is the categorisationof factors
by occurrence count. String α is called unique in µ if it has exactly one occur-
rence in µ (|OccurRµ(α)| = |OccurLµ(α)| = 1). It is called non-unique if it occurs in
µ at least twice (|OccurRµ(α)| = |OccurLµ(α)| > 1). Note that the empty string is
never unique in a nonempty string. The set of all unique factors of µ is de-
noted by Unique(µ). Its intersection with the set of all prefixes or the set of all
suffixes yields the sets of all unique prefixes and unique suffixes of string µ, de-
noted by UniquePrefix(µ) and UniqueSuffix(µ). On the other hand, the fusion
of non-uniqueness and prefix or suffix leads to the set of non-unique prefixes or
the set of non-unique suffixes. Longest members of those sets are denoted by
LNUP(µ) and LNUS(µ), respectively.

While occurrence counts are useful, sometimes a more information about
the occurrence surroundings is needed. If α = µ[i .. j ] and the symbol µ[i − 1]
(µ[j +1]) exists, then it is called the left context (right context) of this particular
occurrence of α in µ. It might be more intuitive to define contexts as the prefix
preceding the occurrence and the suffix following the occurrence, but here
the single symbol context is preferable. The sets of all symbols that appear as
right and left contexts of occurrences of α in µ are denoted by ContextRµ(α) and
ContextLµ(α), respectively.

The notion of occurrence contexts leads to the concept of branching. When
factor α has at least two distinct symbols as right (left) contexts in string µ,
i.e. |ContextRµ(α)| > 1, then factor α is called right (left) branching in string µ. The
sets of all left and right branching factors of string µ are denoted by BranchL(µ)
and BranchR(µ), respectively.

Finally, the combination of the empty string, the right branching factors
of string µ and the unique suffixes of string µ yields a very special set
Explicit(µ) = {λ} ∪BranchR(µ) ∪UniqueSuffix(µ), whose members are called
explicit factors of µ. The empty string is handled separately as it could be a
member of BranchR(µ) or UniqueSuffix(µ) or none of them. The last two cases
happen only if µ = λ or µ = ka , respectively. This is easy to overlook and make
the definition of suffix graph invalid for these two cases. For all other strings
µ, the empty string is right branching and the definition can be changed to
Explicit(µ) = BranchR(µ)

.
∪UniqueSuffix(µ).The

.
∪ notation stands for theuni-

on of sets with empty intersection, that is BranchR(µ) ∩UniqueSuffix(µ) = ∅.

1.2 Graph Theory

The second to be reviewed is the field of Graph Theory. Here this text mostly
adheres to the well known graph notation and terminology that can be found
in textbooks [11]. Basic graph concepts like graph, vertex, edge, path, incidence or
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cycle are used in a standard way. The same holds for tree-specific concepts like
tree, root and leaf . Also, the use of lower-case latin letters for vertices (v,u, t,…)
and edges (e, f ,…), and capital latin letters for graphs (G) and sets of edges
(E) and vertices (V), is fairly standard as well. However, there are also a few
differences.

All graphs used here are connected directed acyclic graphs. For every vertex, an
incoming edge or an in-edge is any incident edge which has this vertex as its ter-
minal vertex. Similarly, an outgoing edge or an out-edge is any incident edgehaving
this vertex as its initial vertex. This is used to define an in-degree (out-degree) of a
vertex as the number of in-edges (out-edges) this vertex has. Moreover, every
vertex with out-degree larger than one is called branching.

Ourgraphsare further restrictedtohaveexactly onevertexwith no in-edges.
We call this vertex origin in all graphs, but also use the name root in trees and
source in non-tree graphs. Moreover, non-tree graphs are required to have ex-
actly one vertex with no out-edges that we call sink. Subsequently, all maximal
paths from the origin end in leaves in trees and in sink otherwise. Any vertex
that is neither a leaf nor a sink is called inner node or just node.

To further simplify the discussion of suffix graphs, a special type of graph is
used. Throughout this text, graphG is a directedgraphwith edges labelledwith
nonempty strings and separate auxiliary unlabelled edges called links. In other
words, graphG = (V,E,L) consists of vertices taken from the setV, labelled edges
selected from the set E ⊆ V × +Σ ×V, and links chosen from the set L ⊆ V ×V.
To avoid confusion, when there is more then one graph to choose from, V(G),
E(G) and L(G) denotes the vertices, edges and links of graph G, respectively.

The fact that the second component of every edge in such graph is a non-
empty string, isused to introduceseveral specificconcepts. An a-edgeof avertex
is its out-edgewhich has symbol a as the first symbol of its label. Moreover, the
edge labels can be concatenatedalong paths to form path strings.Thepaths start-
ing at the origin are then said to represent their path strings in thegraph. Among
them, the path representing the longest string is called the backbone. Note that
the target vertexof anypath representingstring can represent this string aswell.
However, unlike the path, the vertex may represent several different strings at
the same time, when the graph is not a tree.

The correspondencebetweenverticesand strings they represent can beused
to add constraints on links in the graph. There are two common constraints
in use. One requires the links to be suffix links , while the other one forces links
to be prefix links. In this context, a suffix link (prefix link) is a link that leads from
the initial vertex u to the terminal vertex v, which represents the longest proper
suffix (prefix) of the string represented by u.

The construction algorithmsdiscussed in Chapter 3:Construction are easier
to implement, if the origin has a valid suffix link. To this end, the graph is
augmented with a new vertex called bot, which is the target of a new virtual
suffix link from the origin. Moreover, several new edges leading from the bot
to the origin are added, one for every symbol of the alphabet Σ. Note that these
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Component Basic Active New Active new

bot

root or source

explicit node

implicit node

leaf or sink

implicit edge with label c cc cc cc cc

suffix link

Table 1.1. A summary of visual language used to draw graphs. All listed
components are described in Section 1.2. Active and new component versions
are used for components that are currently used or created.

o

o
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a
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o
c

c

o

o

a
a
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o
c
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o

a
a
o

o
c

c

o

o

a
a

o

o

o

o

a
a

c

c oo aa

Figure1.1. Anexampleof graphdrawnusing symbolicsdescribed inTable 1.1.

new parts of the graph are also used by compression algorithms described in
Chapter 5: Compression.

Interestingly, it is sometimes convenient to imagine a virtual implicit node

positioned between every two symbols of every edge in the graph. Such nodes
are virtually splitting every edge into several implicit edgeswith single symbol
labels. The real vertices and edges are called explicit in this context. Using the
implicit nodes and edges together with their explicit counterparts enables the
definition of an implicit path as a path connecting explicit and implicit vertices
using implicit edges. Like real paths, these implicit paths have their path
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strings and do represent them, if they start at the origin. The same strings are
represented by target vertices of these path, both explicit and implicit.

Concepts introducedhere areused throughout this text and are often shown
graphically to illustrate various graph algorithms and properties. All of these
graph visualisation use common components described in Table 1.1. The use of
the these components is illustrated in the first example presented in Figure 1.1.

1.3 Lossless Data Compression

The last to be reviewed is the field of lossless data compression. In this case,
there are many good textbooks [38] that cover most of the details needed
here. The rest is described in relevant places or may be found in the papers
cited there.
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2. Definitions

Using the building blocks set up in Chapter 1: Fundamentals, this chapter
moves one step forwardon thepath to the suffix graph baseddata compression.
It introduces suffix graphs and studies their basic properties.

There exist many suffix baseddata structureswith various interesting prop-
erties [52, 6, 7, 28, 23, 9, 47]. The most powerful and popular of them today is
the suffix array [28].However, throughout this text, the concept of suffix graph
is limited to just four of them. They are the suffix trie [47], the suffix tree [52],
the directed acyclic word graph (DAWG) [6] and the compact directed acyclic
word graph (CDAWG) [7]. The main reason for this choice is that all of these
structures are closely related to the suffix tree, which motivated the first part of
the research into the suffix graph based data compression. Thanks to their sim-
ilarity, all four structures can be constructed using a slightly adapted versions
of a single construction algorithm [51, 22]. This will play an important role in
Chapter 3: Construction and later.

In a nutshell, a suffix graph for string µ is a connecteddirected acyclic graph
G = (V,E,L), as defined in Section 1.2. Its vertices are taken from the factors of
µ or sets of factors of µ, edges are labelled by factors of µ, and its links are suffix
links. Moreover, maximal paths from the origin represent the set of all unique
suffixes of µ, and the set of strings represented by implicit paths is equal to the
set of all factors of µ. There is also at most one a-edge leading from any vertex,
whichmakes searches for strings represented in the graph deterministic. All of
this is illustrated in Figures 2.1 and 2.2, with two examples of each suffix graph
type.More details about each suffix graph type are given below.

2.1 Suffix Trie
The least complex among the four suffix graph types is the suffix trie, which
also happens to have the most straightforward definition [47].

Definition (Suffix Trie)

The suffix trie for a stringµ is the graph SuffixTrie(µ) = (V,E,L), with the follow-
ing components:

V = {α | α ∈ Factor(µ) } ,

E = { (α, a, αa) | α,αa ∈ V ∧ a ∈ Σ } ,

L = { (aα,α) | aα,α ∈ V ∧ a ∈ Σ } .

9
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(d) CDAWG(cccooo)

Figure 2.1. Suffix graphs for string cccooo. The symbolics used is described in
Table 1.1.

Informally, the suffix trie for string µ is a graph with the vertex set equal to
the set of all factors of stringµ. Each edge is labelledwith a single symbol so that
its terminal vertex is a concatenation of its initial vertex and the edge label. In
otherwords, the initial vertex is the longest proper prefix of the terminal vertex.
Moreover, suffix links are placed between every factor and its longest proper
suffix. All of this is illustrated by suffix tries in Figures 2.1a and 2.2a.

There are several important properties of suffix trie that are worth noting.
All of them are straightforward consequences of the suffix trie definition.
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Claim 2.1 (Shape of the Suffix Trie)

The suffix trie for string µ is a directed tree that is rooted at the empty string and
its leaves are unique suffixes of µ.

Claim 2.2 (Contents of the Suffix Trie)

The set of all strings represented by paths from the root of the suffix trie for
string µ is equal to the set of all factors of µ.

Claim 2.3 (Unique Branching in the Suffix Trie)

Every vertex of the suffix trie for stringµhas atmost one a-edge for every a from
alphabet Σ.

Claim 2.4 (Space Complexity of the Suffix Trie)

The number of vertices of the suffix trie for string µ is bounded byΩ(
2|µ | ) in the

worst case.

As illustrated by Figure 2.1a, suffix tries for strings like kc ko have (k +1 2)
vertices.

2.2 Suffix Tree
While the suffix trie is easy to grasp and handle, its quadratic size is discour-
aging. One of the reasons why the suffix trie can be so big is that it can have a
large number of inner nodes. For example, there are twelve inner nodes in the
suffix trie in Figure 2.1a and eight inner nodes in the suffix trie in Figure 2.2a.
However, only threeof themarebranching in each graph. Thus, paths that start
in the root or a branching node, go through somenon-branching nodes and end
in another branching node or leaf could be simplified. They could be replaced
by a single edgewith label, which is the result of a concatenation of all labels on
edgeson thepath. The resultsof applicationof thismodification to suffix tries in
Figures 2.1a and2.2a can be seen in Figures 2.1c and2.2c, respectively. Thisvery
common technique is calledpath compressionand its applicationon the suffix trie
yields the suffix tree.

The path compression will be introduced into the formal definition of the
suffix tree using the following concept.

Definition (Right Extension)

Let µ ∈ ∗Σ andα ∈ Factor(µ). The right extensionof string α in stringµ is denoted
by 〈α〉Rµ and defined as follows.

〈α〉Rµ =




α α ∈ Explicit(µ) ,
〈αa〉Rµ ,where a ∈ Σ and αa ∈ Factor(µ) otherwise .
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An alternative and more compact definition would say that the right
extension of string α in string µ, denoted by 〈α〉Rµ, is the shortest string
αβ ∈ Explicit(µ).

Nevertheless, both definitions agree that any explicit factor α of string µ is
its own right extension in µ. If it is not explicit, α is a non-empty factor of string
µ that is neither a unique suffix nor a right branching factor. Its right extension
is then the same as the right extension of string αa, which is a one symbol longer
factor of µ.

Informally, the right extension of α in µ is the string obtained by appending
symbols to α until an explicit factor of µ is reached. Note that as no interme-
diate result can be branching, the right extension has the following important
property.

Claim 2.5 (Right Extension Uniqueness)

Every factor of string µ has exactly one right extension in string µ.

The following example illustrates the definition of the right extension on string
cccooo used in Figure 2.1.

Example 2.6 (Right Extension)

To see the results of the application of the right extension to factors of string
cccooo, the explicit factor set Explicit(cccooo)must be known. As it is defined as
{λ} ∪BranchR(cccooo) ∪UniqueSuffix(cccooo), it suffices to find the composition
of the last two sets.

BranchR(cccooo) = {λ, c, cc }

UniqueSuffix(cccooo) = { ooo, cooo, ccooo, cccooo }

The right extensions of all non-explicit factors of string cccooo then look
as follows:

〈o〉R
cccooo

= 〈oo〉R
cccooo

= ooo

〈co〉R
cccooo

= 〈coo〉R
cccooo

= cooo

〈cco〉R
cccooo

= 〈ccoo〉R
cccooo

= ccooo

〈ccc〉R
cccooo

= 〈ccco〉R
cccooo

= 〈cccoo〉R
cccooo

= cccooo

By modifying the definition of suffix trie using path compression through
right extension we obtain the definition of suffix tree.

Definition (Suffix Tree)

The suffix tree for a string µ is a graph SuffixTree(µ) = (V,E,L), which has the
following components:

12



V = {α | α ∈ Explicit(µ) } ,

E = { (α, aβ, αaβ) | α,αaβ ∈ V ∧ a ∈ Σ ∧β ∈ Factor(µ)∧ 〈αa〉Rµ = αaβ } ,
L = { (aα,α) | aα,α ∈ V ∧ a ∈ Σ } .

Compared to the suffix trie, there are some clearly visible changes in sets
of vertices and edges. The vertex set changed from all factors to just explicit
factors of string µ, which is also the set of all right extensions of factors of µ. The
right extension is also used to connect these vertices using edges. Note that this
version of the suffix tree definition, introduced by Ukkonen [51], is adjusted to
enable on-line construction. Originally, the suffix tree was defined for strings
µ$, with a special symbol $ appended to the original string µ [52]. The symbol $
was selected so that is did not occur anywhere in µ and consequently made all
suffixes of µ$ unique.

Like in the case of suffix trie, the definition of suffix tree is followed by a
review of some basic properties. Most of them are shared between the two and
the most important difference lies in space complexity.

Claim 2.7 (Shape of the Suffix Tree)

The suffix tree for string µ is a directed tree rooted at the empty string and its
leaves are unique suffixes of µ.

Claim 2.8 (Contents of the Suffix Tree)

The set of all strings representedby implicit paths from the root of the suffix tree
for string µ is equal to the set of all factors of µ.

Claim 2.9 (Unique Branching in the Suffix Tree)

Every vertexof the suffix tree for stringµhas atmost one a-edge for every a from
alphabet Σ.

Claim 2.10 (Space Complexity of the Suffix Tree)

The are at most |µ |− 1 nodes, at most |µ | leaves, and at most 2|µ |− 2 edges in
SuffixTree(µ) for any string µwith at least two symbols.

Proof: Using Claim 2.7, the number of leaves equals the number of unique
suffixes of µwhich cannot exceed |µ |. Let n andm denote the numbers of nodes
and edges, respectively, and assume that n > 1. Then each node has at least
two out-edges and each vertex except the root has exactly one in-edge. Con-
sequently, 2n ≤ m ≤ n − 1+ |µ |, which implies that n ≤ |µ |− 1 andm ≤ 2|µ |− 2 as
claimed. �

Claim 2.11 (Suffix Links of the Suffix Tree)

There is a suffix link leading from every vertex of SuffixTree(µ), with the excep-
tion of root and possibly the shortest leaf. The root has no suffix link and the
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Figure 2.2. Suffix graphs for string cocoa. The symbolics used is described in
Table 1.1.

suffix link from the shortest leaf exists if and only if the longest non-unique suf-
fix of µ is a branching factor of µ. All other suffix links lead from one branching
node to another branching node or from one leaf to another leaf.

Proof: This is a direct consequence of the definition of suffix tree and the
following two properties of factors of µ. First, any suffix of branching factor is
also a branching factor. Second, any suffix of string µ that is longer than some
unique suffix of string µ is a unique suffix of µ as well. �

2.3 Directed AcyclicWord Graph

The savings introduced by the path compression are impressive. However,
there is another type of redundancy, which it did not remove. As can be seen
on suffix tries and suffix trees in Figures 2.1 and 2.2, there are several identical
subtrees in every graph. For example, subtrees under strings ccco, cco, co are
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OccurRcccooo []R
cccooo

()R
cccooo

{0,1,2,3,4,5,6 } {λ } λ

{1,2,3 } { c } c

{2,3 } { cc } cc

{3 } { ccc } ccc

{4,5,6 } { o } o

{5,6 } { oo } oo

{4 } { co,cco,ccco } ccco

{5 } { coo,ccoo,cccoo } cccoo

{6 } { ooo,cooo,ccooo,cccooo } cccooo

Table 2.1. This table illustrates the right end equivalence concept on string
cccooo. The first column contains the right occurrences shared by the strings
of the right end equivalence classes shown in the second column. The last
column is then used to highlight the longest member of every class.

identical in the first case, and subtrees under strings co and o are identical in
the second. Note that roots of these copies are connected in the deepest first
order via suffix links. Ideally, all such subtrees would be replaced by a single
copy and reused through the redirection of all in-edges terminating in roots
of removed copies. The effect this modification has on the suffix trie can be
seen in Figures 2.1b and 2.2b. This technique is called vertex minimisation and its
application on the suffix trie yields the DAWG.

The vertexminimisation of the suffix trie relies on factorisation of the vertex
set using the right end equivalence. It was originally introduced as “end-set
relation” by Blumer et al. [6].

Definition (Right End Equivalence)

Strings α and β are equivalent under the right end equivalence on string µ, de-
noted by α ≡Rµ β, if and only if OccurRµ(α) = OccurRµ(β). The equivalence class
where strings equivalent to α belong under the ≡Rµ equivalence is called the
right end equivalence class of α on µ and denoted by [α]Rµ. Moreover, the longest

member of this class is denoted by (α)R
µ
, if it exists. Finally, the class containing

all strings that are not factors of µ is called the degenerated class and denoted
by DCR

µ.

In other words, strings α and β are right end equivalent in µ if and only if,
for every occurrence of α, there is a corresponding occurrence of β ending at the
sameposition in µ and vice versa. The effects of this definition are illustrated in
Table 2.1 and the following claim summarises its basic properties.
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Claim 2.12 (Right End Equivalence Properties [6])

Right end equivalence has the following properties.

(i) If α and β are right end equivalent, then αγ and βγ are right end
equivalent for every string γ.

(ii) If two factors are right end equivalent, then one is a suffix of the
other.

(iii) Two factors αβ and β are right end equivalent if and only if every
occurrence of β is immediately preceded by an occurrence of α.

(iv) A factor α of µ is the longest member of [α]Rµ if and only if it is either a
prefix of µ, or it is left branching in µ.

The following observation is a direct consequence of Claim 2.12.

Claim 2.13 (Right End Equivalence Class Properties)

Every non-degenerated class of the right end equivalence on µ has the shortest
member. Moreover, all suffixes of the longest member of this class that are
longer than the shortest member also belong to this class. That is

∀µ ∈ ∗Σ , ∀α ∈ Factor(µ), ∃k ≥ 0 : [α]Rµ = {β | β ∈ Suffix((α)Rµ)∧ |β | ≥ k } .

Consequently, the factors λ and µ are special in that they are always the
longest members of their respective classes under ≡Rµ . The right end equival-
ence and its properties are used to combine similar subtrees as follows.

Definition (DirectedAcyclicWord Graph)

The directed acyclicword graph for a stringµ is a graphDAWG(µ) = (V,E,L),with
the following components:

V = { [α]Rµ | α ∈ Factor(µ) } ,

E = { ([α]Rµ, a, [αa]Rµ) | [α]Rµ, [αa]Rµ ∈ V ∧ a ∈ Σ } ,

L = { ([aα]Rµ, [α]Rµ) | [aα]Rµ, [α]Rµ ∈ V ∧ [aα]Rµ ≠ [α]Rµ ∧ a ∈ Σ } .

The use of the right end equivalence changed the definition very signific-
antly compared to the suffix triedefinition. Thedifferencesare bigger than after
the use of the right extension in the suffix tree definition. However, like in the
suffix trie, all factorsofµare explicitly representedin theDAWG,albeit grouped
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using right end equivalence.While the edges are once again labelled by single
symbols only, the introduction of right end equivalence classes made some of
DAWG’s other properties less obvious.

Unlike the previous two suffix graph types, the DAWG is not a tree.
However, it still shares some properties with both of them.

Claim 2.14 (Shape of the DAWG)

The DAWG for string µ is a directed acyclic graph with source [λ]Rµ and sink
[µ]R

µ
.

Claim 2.15 (Contents of the DAWG)

The set of all strings represented by paths from the source of the DAWG(µ) is
equal to the set of all factors of µ.

Claim 2.16 (Unique Branching in the DAWG)

Every vertex of the DAWG for string µ has at most one a-edge for every a from
alphabet Σ.

Claim 2.17 (Space Complexity of the DAWG [6])

The are at most 2|µ |− 1vertices and at most 3|µ |− 4 edges in DAWG(µ) for any
string µwith at least two symbols.

2.4 Compact Directed AcyclicWord Graph

Naturally, one may ask, what would a combination of the path compression
and thevertexminimisationyield. What happens to the suffix tree after thever-
tex minimisation and what about the DAWG after the path compression? The
answer is the CDAWG, which is defined below and illustrated in Figures 2.1d
and 2.2d.Thefirst figure illustrates significant changes compared to theDAWG,
while the second figure highlights the differences against the suffix tree.

The formal definition of the CDAWG is a straightforward combination of
the definition of the suffix tree and the DAWG.

Definition (Compact Directed AcyclicWord Graph)

The compact directed acyclic word graph for a string µ is a graph CDAWG(µ) =
(V,E,L) that has the following components:

V = { [α]Rµ | α ∈ Explicit(µ) } ,

E = { ([α]Rµ, aβ, [αaβ]Rµ) | [α]Rµ, [αaβ]Rµ ∈ V ∧ a ∈ Σ ∧β ∈ Factor(µ)∧ 〈αa〉Rµ = αaβ } ,
L = { ([aα]Rµ, [α]Rµ) | [aα]Rµ, [α]Rµ ∈ V ∧ [aα]Rµ ≠ [α]Rµ ∧ a ∈ Σ } .
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Note that, like the suffix tree definition, this definition is adjusted to ease
on-line construction. It was introducedby Inenaga et al. [22]anddiffers slightly
from the original definition given by Blumer et al. [7].

When it comes to the properties of the CDAWG, the preceding analysis of
properties of the suffix tree and the DAWG left only a little space for surprise.
The following five claims recall the basic properties of the CDAWG. Note that
the first three are trivial and the other two can be readily obtained from the
properties of suffix tree (Claims 2.7 – 2.11) through vertex minimisation.

Claim 2.18 (Shape of the CDAWG)

The CDAWG for string µ is a directed acyclic graph with source [λ]Rµ and
sink [µ]R

µ
.

Claim 2.19 (Contents of the CDAWG)

The set of all strings represented by implicit paths from the source of the
CDAWG(µ) is equal to the set of all factors of µ.

Claim 2.20 (Unique Branching in the CDAWG)

Every vertex of theCDAWGfor string µhas at most one a-edge for every a from
alphabet Σ.

Claim 2.21 (Space Complexity of the CDAWG)

The are at most |µ | vertices and at most 2|µ |− 2 edges in CDAWG(µ) for any
string µwith at least two symbols.

Claim 2.22 (Suffix Links of the CDAWG)

There is a suffix link leading from every vertex of CDAWG(µ), with the excep-
tion of the source and possibly the sink. The source has no suffix link and the
suffix link from the sink exists if and only if the longest non-unique suffix of µ
is a branching factor of µ.All other suffix links lead from one branching node to
another branching node.

Another interesting point not made by the above claim is that the classes
not containing explicit factors of µ may not be represented by a single im-
plicit vertex. This is illustrated in Figure 2.1d, where the members of classes
[ccco]Rµ = {ccco, cco, co}and [cccoo]Rµ = {cccoo, ccoo, coo}are representedby threedis-
tinct implicit nodes each. A different situation is shown in Figure 2.2d, where
themembers of the class [coco]Rµ = {coco, oco} and [coc]Rµ = {coc, oc} are still repres-
ented by a single implicit node.
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3. Construction

After dealing with fundamentals in Chapter 1: Fundamentals and suffix graph
definitions in Chapter 2: Definitions, it is time for the next logical step on the
path to suffixgraphbaseddata compression:the suffixgraph construction. This
area has seen a lot of research and produced a wide spectrum of construction
methods with various goals and properties [52, 32, 51, 12, 20, 49].

The suffix tree was introduced by Weiner with a right-to-left construction
algorithm which used prefix links to create the suffix tree in time linear in
the length of the input string [52, 18]. Weiner’s work was superseded by Mc-
Creight’smore practical algorithm that works left-to-right and,with the help of
suffix links, achieves the same asymptotic complexity [32].McCreight’smethod
was in turn improvedupon by Ukkonen,who created the first left-to-right con-
struction algorithm that can build the suffix tree one symbol at a time (i.e. on-
line), and is asymptotically as fast as its predecessors [51].Note that all three al-
gorithms are bound by O( |µ |B) in theworst case, where B is the worst-case cost
of the operationwhich finds the requested a-edge leading from the current node
(branching operation).

To remove the branching operation cost, Farach took a different approach
and createda linear timealgorithm thatworks in (Θ( |µ |+ S(|µ |))),whereS(|µ |) is
the time needed for sorting |µ | symbols [12].However, this divide-and-conquer
algorithm needs to know the whole string before it starts and requires the
input alphabet to be indexed, which practically limits the alphabet to be a set
of integers. More practical algorithmswere createdwith large strings and disk
storage in mind [20, 49, 35, 29]. These algorithm strive to reduce the in-memory
storage requirements and eliminate random access introduced by the use of
suffix links and branching operations. Consequently, thanks to the nature of
current virtual memory hierarchies, these algorithms are reported to be faster

than traditional algorithms even in-memory, despite having Θ(
2|µ | ) or worse

worst-case asymptotic bound [20, 49, 35, 29].
Other three suffix graphs have received somewhat less attention. Ukkon-

en devised a quadratic time on-line algorithm for suffix trie construction that
served as a basis for his linear time suffix tree building algorithm [51]. This al-
gorithm proved to be so versatile that it was later adapted to work on DAWG
andCDAWGin linear time aswell [51, 22].However, the same can be said about
McCreight’s algorithm which was altered by Crochemore and Vérin to create
CDAWGs in linear time. Nevertheless, these algorithmswere preceded by lin-
ear time algorithms that were introduced along the definition of both DAWG
and CDAWG [6, 7]. Note that, like in the case of the suffix tree construction,
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these algorithms are bounded by O( |µ |B), again with the burden of the branch-
ing factor.

While there exist so many interesting construction algorithms, only some
are useful in the context of the suffix graph based data compression and sliding
window. To be suitable for this purpose, the construction algorithms need to
work incrementally left-to-right and construct the desired graph directly. If we
add an additional requirement for similarity between construction algorithms
for all four suffix graphs, only two choices remain. As Ukkonen’s and Mc-
Creight’s algorithms are very similar, and even do the same steps in the same
order [18], we prefer the more elegant work of Ukkonen and Inenaga et al. [51,
22].

The body of this chapter is composed of two sections. The first section
gives an overview of Ukkonen-type construction algorithms for all four suffix
graph typesmadeby others,while the secondsection bringsour original results
regarding the implicit suffix link simulation in these algorithms.

3.1 Algorithms

As noted above, all four suffix graph types can be constructed by four variants
of the base algorithm devised by Ukkonen [51]. Ukkonen created the base
algorithm for the suffix trie and modified it to work on the suffix tree. He also
pointed out that it could be easily adapted to construct DAWG and that the
resulting algorithmwould be similar to that given by Blumer et al. [6]. The last
remaining version required to construct CDAWG had to wait to be discovered
by Inenaga et al. a few years later [22].

Like all on-line algorithms, Ukkonen’s algorithm creates the desired data
structure incrementally, while keeping the data structure valid in each step.
This high level step consists of appending a new symbol to the underlying
string and adjusting the suffix graph accordingly. In other words, the step
receives the suffix graph for string µ, a new symbol a, and produces the suf-
fix graph for string µa. This step is performed by function AppendSymbol in
Algorithm 3.1. The complete construction algorithm is then a straightfor-
ward application of symbol appending for every symbol of the input string as
demonstrated by function Build shown in Algorithm 3.1 as well. The rest of
Algorithm 3.1 contains the rest of high-level pseudo-C++ code common to all
four algorithmvariants. All these shared functionsaredescribedbelow inmore
detail, along with notes about version-specific functions they use. The con-
struction process itself is then illustrated in Figures 3.1 and 3.2 for the DAWG,
Figure 5.3 for the suffix tree, and Figure 5.4 for the CDAWG.

Build

This is the the main function, which creates the suffix graph for the input
string. It creates an empty graph using function CreateEmptyGraph
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and then uses the function AppendString to append all symbols of the
input strings.

AppendString

The purpose of this function is to iterate over the input string from the left
to the right andapply the appendsymbol operation, in the formof function
AppendSymbol, to each symbol.

AppendSymbol

The idea behind this function is to follow the so called active point and do
local changes in its vicinity. As pointed out by Ukkonen, all necessary
graph changes happen near suffixes of the original string and the likeli-
hood of change decreases with the length of the suffix [51]. Thus, the suf-
fixes of the original string are traversed in the longest to the shortest order.
Luckily, they are connected by suffix links and form the so called boundary

path. The active point is moved along the boundary path and the changes
needed to modify the graph around its location are made. Most of this
work isdoneby functionMoveActivePointDown, but functionsResetAct-
ivePointPosition,CheckAndSplitActivePointNodeandAddLastSuf-
fixLink are used to prepare and finish the work, respectively.

MoveActivePointDown

This function is moving the active point along the boundary path and
tries to move it down from its current location, along the a-edge dictated
by the new symbol a. The attempt is made using function MoveActive-

PointDownIfPossible. If it succeeds tomove the active point down, then
no shorter suffixes of µ need attention, and the work of function Move-

ActivePointDown is done. On the other hand, if the current implicit or
explicit node does not have such edge, the missing edge must be created
using function CreateEdgeFromActivePoint. After that, the active point
has to be moved sideways, along the boundary path, to the next shorter
suffix location, using function MoveActivePointSideways. Following the
active point move sideways, the function loops back to the beginning to
make another attempt to move the active point down. To avoid having to
handle the origin— which has no suffix link— as a special case, the suffix
graphs used by this algorithm are augmented with a bot vertex, its edges
and suffix link, as described in Section 1.2.This is reflected in function Cre-
ateEmptyGraph as shown in Algorithm 3.1.

CreateEmptyGraph

This function creates the augmented empty suffix graph, which was
described in Section 1.2. It is composed of two vertices, several edges and
one suffix link. Theverticesare thebot vertex and theorigin vertex, and the
single suffix link leads from the origin to the bot. All edges lead from the
bot to the origin and are created using function CreateBotOriginEdges.
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void Build(String & string)

{

CreateEmptyGraph();

AppendString(string);

}

void AppendString(String & string)

{

for (symbol in string)

AppendSymbol(symbol);

}

void AppendSymbol(Symbol & symbol)

{

ResetActivePointPosition();

MoveActivePointDown(symbol);

CheckAndSplitActivePointNode();

AddLastSuffixLink();

}

void MoveActivePointDown(Symbol & symbol)

{

while (! MoveActivePointDownIfPossible(symbol)) {

CreateEdgeFromActivePoint();

MoveActivePointSideways();

}

}

void CreateEmptyGraph()

{

bot = CreateVertex();

origin = CreateVertex();

CreateBotOriginEdges();

CreateSuffixLink(origin, bot);

MoveActivePointTo(origin);

}

void CreateBotOriginEdges()

{

for (symbol in ALPHABET) {

CreateEdge(bot, origin, symbol);

}

}

Algorithm3.1. Outline of Ukkonen’s construction algorithm that works on all
four suffix graph types.
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CreateBotOriginEdges

The only thing this function does is that it creates all edgesneededbetween
the bot and the origin. The bot is the initial vertex, the origin is the terminal
vertex, and exactly one edgewith label c is added for every symbol c of the
input alphabet.

All parts of the algorithm described so far were universal and are shared by all
its versions, however, there are also some graph type specific parts. As these
arenot only graph but also implementation specific,weprovidenopseudocode
and give only a textual description instead.

ResetActivePointPosition

This function moves the active point to the longest suffix of µa, i.e. the µa
itself, before the next append-symbol-step. However, it only does so for
the suffix trie and the DAWG, and leaves the active point where it is for
the other two graph types. The reason is that if it did reset the position for
the suffix tree, the construction algorithmwould not achieve the promised
linear time complexity, as there are too many suffixes to be examined. To
solve this issue, Ukkonen devised the notion of open edges [51]. An open
edge is an edge with a leaf as its terminal vertex and an open label. That is,
the label has only the left end index and its right end index is the end of the
underlying string. This ensures that all leaf edges append the new symbol
to their labels automatically with each append-symbol-step, and do not
need to beupdated separately. A similar approach isused forCDAWGand
sink in-edges.

CheckAndSplitActivePointNode

This function does nothing for trees, but it checks and possibly splits the
current active point node for the DAWG and the CDAWG. The node stays
as it is if the active point has reached the current node by moving down
the primary in-edge [6, 22]. In this context, the primary in-edge is the last
on the longest path from the source to the current node. It can either be
marked as primary on node creation, or identified at any time by checking
whether the sum of the depth of its initial node and the length of its label
equal the depth of its terminal node [6, 22]. The latter approach appears
to be more suitable if there are going to be deletes in the graph, like in the
sliding window application. Note that the examples of node splits can be
seen in Figures 3.2 and 5.4.

AddLastSuffixLink

This simple function updates the suffix link between the vertex represent-
ing the shortest unique suffix and the node representing the longest non-
unique suffix of µa. The former is either the last leaf created or the sink,
while the latter is the current active point node. The situation is simple in
the suffix trie and theDAWG,which only have explicit vertices. However,
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Figure 3.1. Step by step construction of DAWG(cocoao)with action comments
(Part I). The symbolics used is described in Table 1.1.

the implicit active point node case of the suffix tree requires a special treat-
ment. If the current active point node is implicit, no suffix link can be ad-
ded. Moreover, as some append-symbol-steps do not create new leaves,
the suffix link of the last leaf created by preceding stepsmust be removed,
as it is no longer valid. The reason is that the open edges automatically ad-
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Figure 3.2. Step by step construction of DAWG(cocoao)with action comments
(Part II). The symbolics used is described in Table 1.1.

justed all leaves for the new string, but the target of the last leaf suffix link
remained the same. Note that this last suffix link is never needed during
construction. Also, all its versions, with the exception of the last, will be
replaced by suffix links to the next leaf created. For these reasons, it might
be a good idea to ignore this suffix link andonly add thefinal versionwhen
the construction is done. Something similar happens to the last suffix link
in the CDAWG as well, only the sink is used in place of the last leaf. Like
in the case of the suffix tree, the suggested solution is to wait for the final
version, if possible.
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MoveActivePointDownIfPossible

This function tries to move the active point down from its current location
using the desired implicit or explicit a-edge. It has to be able to check the
path down in any of the four suffix graph types and return the implicit or
explicit target vertex, if available. The suffix trie and the DAWG are easy,
as there are only explicit vertices and edges in thesegraphs, and edge labels
are only one symbol long. However, in the suffix tree or the CDAWG,
there are implicit vertices and edges as well as labels specified by a pair of
indexes into the input string.

CreateEdgeFromActivePoint

This function creates a new edge from the current active point node and
labels it with the new symbol a. This is easy in the suffix trie, where the
current node is explicit. Here, a new leaf is created along with a suffix link
from the last leaf created and the required a-edge. The situation is even
simpler in the DAWG, where leaves are replaced by the sink, which needs
to be created only once.

The possibility that the current node might be implicit complicates the
situation in suffix trees. In that case, a new explicit node is created in its
place, and only after that comes the creation of a new leaf and edge. To
create a new explicit node, the current explicit edge has to be split into two
new edges at the current implicit node, and a new explicit node is placed
between them. Moreover, if this append-symbol-step has already created
at least one other new node, a new suffix link has to be added to lead from
the last of them to the node which was just created. Note that like in the
case of suffix trie, a suffix link must be added to lead from the last leaf
created previously to the one just created.

It gets even more complicated in the CDAWG case as illustrated in
Figure 5.4. Not only is there a possibility of an implicit current node, but
there is also a chance that the appropriate explicit node already exists else-
where. The reason is that this new explicit node will from now on repres-
ent a formerly implicit class, which was, up to now, represented by several
implicit nodes. Fortunately, this nodewouldbe the last node created in this
append-symbol-step. Moreover, it suffices to check that the distance from
the nearest explicit vertex below is the same for both the last node created
and the current implicit vertex. If they are the same, the current edge is cut
at the implicit node and redirected to the last node created, while the rest
of the edge is thrown away. Otherwise, the current node is made explicit,
like in the suffix tree case. The rest is the same as for the DAWG.

MoveActivePointSideways

Function MoveActivePointSideways moves the active point to the next
shorter suffix of the input string using a suffix link. This is again simple in
the suffix trie and the DAWG, where all suffix links are explicit. However,
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it is also more complicated in the suffix tree and the CDAWG, where some
suffix linksmight be implicit. As these implicit suffix links are not present
in the graph, they have to be simulated. The methods of their simulation
are studied in detail in the next section.

The remaining functions, e.g. CreateVertex, CreateEdge and Create-

SuffixLink, are implementation dependent and do exactly what their names
suggest.

3.2 Implicit Suffix Link Simulation

As noted in the description of function MoveActivePointSideways in the pre-
vious section, the two path compressed graphs have to use implicit suffix links
for fast boundary path traversal. However, due to their virtual nature, these
implicit suffix linkshave to be simulatedusing objects that are explicitlypresent
in the graph, e.g. explicit vertices, edges and suffix links. Moreover, while the
target of implicit suffix link couldbe easily foundusing a search from theorigin,
the time it would takewould be proportionate to the length of the factor we are
looking for. The sum of these factor lengths over the whole construction pro-
cess is going to be quadratic. Obviously, as this would prevent a construction
in linear time, a more sophisticated solution is needed. This section, which is
based on the original research published previously in the Journal of Discrete
Algorithms [39], describes and analyses three such solutions.

A natural way to approach the problem of implicit suffix link simulation
is to look for some approximation using explicit objects which will be easy to
make exact later. In our situation, a sideways move over the closest explicit
suffix link looks like a good start. However, while the current location of the
active point is in an explicit node, this node is the last node created by function
CreateEdgeFromActivePoint and lacks suffix link. On the other hand, suffix
links are present at both the initial and the original terminal vertex of the edge
that was just split or redirectedby function CreateEdgeFromActivePoint.The
traditional choice in this situation is the suffix link leading from the initial ver-
tex [32, 51, 22].However, aswill be shown shortly, the other choice is sometimes
the better choice. From now on, the traditional approach will be represented
by function ReScan, the new approach will be represented by function Climb,
and their combination by function ClimbScan. To ease the description of these
functions, the edge that was just split or redirected by function CreateEdge-

FromActivePoint is called old in the rest of this section.

ReScan

This function, shown in the pseudo-C++ code in Algorithm 3.2, represents
the traditional top-downapproach to the implicit suffix links simulation. It
starts the simulation bymoving the activepoint up to the initial node of the
old edge and then sideways using the explicit suffix link of this node. This
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void ReScan()

{

String label;

label = GetLabelAboveActivePoint();

MoveActivePointUpToEdgeInitialVertex();

MoveActivePointSidewaysExplicit();

ActivePointBranchAndJumpDownLoop(label);

}

void ActivePointBranchAndJumpDownLoop(String & string)

{

do {

ActivePointBranchAndJumpDown(string);

} while (Length(string) > 0);

}

Algorithm 3.2. Outline of ReScan implicit suffix link simulation.

void Climb()

{

String label;

label = GetLabelBelowActivePoint();

MoveActivePointDownToEdgeTerminalVertex();

MoveActivePointSidewaysExplicit();

ActivePointJumpUpLoop(label);

}

void ActivePointJumpUpLoop(String & string)

{

do {

ActivePointJumpUp(string);

} while (Length(string) > 0);

}

Algorithm 3.3. Outline of Climb implicit suffix link simulation.

void ClimbScan()

{

Size jumpLimit = GetReScanEquivalentJumpLimitEstimate();

SaveActivePoint();

if (! LimitedClimb(jumpLimit)) {

RestoreActivePoint();

ReScan();

}

}

Algorithm 3.4. Outline of ClimbScan implicit suffix link simulation.
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first approximation of the simulated implicit suffix link takes three steps
and uses the following three functions.

GetLabelAboveActivePoint

Thepurpose of this function is to look at thepart of the old edgewhich
is now above the active point and return its label.

MoveActivePointUpToEdgeInitialVertex

This function moves the active point up to the initial node of the
old edge.

MoveActivePointSidewaysExplicit

As its name suggests, this function moves the active point sideways
over an explicit suffix link. The explicit suffix link used is the one
leading from the current active point node.

As the active point was taken up before it was moved sideways, the
target must be somewherebelow the first approximation. It is foundusing
the remembered label string and fast downward search which only has to
check first symbols and lengths of edge labels along the way [32]. As the
first symbol is checked during a branching operation, this search could
be described as branch and jump down loop. It is implemented using the
following two functions.

ActivePointBranchAndJumpDownLoop

ThisfunctionsimplyrunstheActivePointBranchAndJumpDownfunc-
tion until the string which is adjusted by ActivePointBranchAnd-

JumpDown function becomes empty.

ActivePointBranchAndJumpDown

As suggested by its name, this function performs a branching opera-
tion followed by a downward jump to move the active point closer to
its target. The branching operation finds the appropriate edge using
the first symbol of the supplied string in O(B) time. After that, this
function compares the length of the string with the length of the cur-
rent edge label andmoves the active point down along the edge. If the
string is longer than the current edge label, the activepoint ismoved to
the terminal vertex of this edge. Subsequently, a prefix of length equal
to the length of the edge label is removed from the string. Otherwise,
the active point is moved down the current edge so that its distance
from the initial vertex equals the length of the supplied string. After
that, the string is made empty.

Among the advantages of ReScan is the similarity of its top-down ap-
proach to the normal downwardmovement in the graph, and the ability to
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work for both the suffix tree and the CDAWG.On the other hand, its chief
disadvantage is that the simulation requires many branching operations.
These can be relatively complex and costly, when compared to other oper-
ations needed for suffix graph construction. The ratio largely depends on
the choices made for the implementation of branching and suffix links.

Climb

This function is representing the bottom-upapproach. As can be seen from
the pseudo-C++ code in Algorithm 3.3, it first approximates the simulated
implicit suffix link by moving the active point down and then sideways
using explicit edge and suffix link. Like in the case of ReScan, this is done
in three steps. However, the first two function calls are different.

GetLabelBelowActivePoint

Thepurpose of this function is to look at thepart of the old edgewhich
is now below the active point and return its label.

MoveActivePointDownToEdgeTerminalVertex

This functionmoves the active point down to the terminal node of the
old edge.

This time, the first approximation is below the target of the implicit suffix
link being simulated, and the target is found using an upward scan. Note
that due to the way in which the first approximation was found, labels of
edges being traversed do not have to be checked as they are guaranteed to
match the supplied string. Thus, only lengths are important, and the rest
of the simulation is just a jump up loop, implemented using the following
two functions.

ActivePointJumpUpLoop

This function simply runs the ActivePointJumpUp function, until
the string, which is adjusted by ActivePointJumpUp function, be-
comes empty.

ActivePointJumpUp

This function compares the length of the string to be traced with the
length of the label of the in-edge terminating in the active point vertex.
If the string is longer than this label, the active point is moved to the
initial vertex of this edge. Subsequently, a suffix of length equal to the
length of the edge label is removed from the end of the string. Oth-
erwise, the active point is moved up this in-edge, so that its distance
from the terminalvertex equals the length of the suppliedstring. After
that, the string is made empty.

Note that as the number of in-edges entering the sink in theCDAWG is not
bound by any constant, the use of the bottom-up approach is restricted to
the suffix tree.
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ClimbScan

This function combines the bottom-up approach of Climb with the top-
down approach of ReScan, to get the best of both worlds. The idea is to try
the bottom-up approach and fall back to the top-down approach, if it takes
too long. This is illustrated by the pseudo-C++ code in Algorithm 3.4 and
more detail is given below.

GetReScanEquivalentJumpLimitEstimate

This function attempts to estimate the number of jumps that can be
taken during the bottom-up simulation, before a fallback to the top-
down approach is in order. While having one global constant limit
would be the easiest way to achieve amortised constant time per one
implicit suffix link simulation, there is no obvious way to choose it
for all strings. However, as the ReScan is known to have the desired
complexity, we can use an estimate of the number of steps needed for
ReScanas a base for a variable limit. As illustratedby the pseudo-C++
code in Algorithm 3.2, the number of branch and jumpsteps needed is
limitedby the length of the label above the activepoint. If wemultiply
this estimate by some small global constant, say eight, and use it to
limit the bottom-upapproach, the ClimbScan is guaranteed to achieve
the same asymptotic bounds as ReScan.

SaveActivePoint

As suggested by its name, this function saves the information about
theactivepoint, so that it canberestoredlaterusing functionRestore-
ActivePoint.

LimitedClimb

This is a limitedversion of theClimb function. The valueof parameter
jumpLimit is used to limit thenumberof calls toActivePointJumpUp,
in addition to the constraints used in the original ActivePointJum-
pUpLoop.

RestoreActivePoint

As suggested by its name, this function restores the information about
the active point, previously saved by a call to function SaveActive-

Point.

3.2.1 Complexity

Now that we have the description of the three implicit suffix link simulation
methods, it is time to analyse them. This is easy for ReScan, which is well
studied, and known towork in O(B) amortised time per one implicit suffix link
simulation [32, 22]. On the other hand, the bottom-up approach is new and in
need of analysis.
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3.2.1.1 Hidden Costs

A brief look at pseudo-C++ code of functions ReScan and Climb reveals, that,
apart from using two different strategies, they are very similar. Moreover, as
there is no need for branching in Climb, it should be faster and obviously a
better choice. However, there are some costs associated with the bottom-up
approach that may not be apparent from the pseudocode.

Reverse Edges
The first issue is that we have to traverse edges in the opposite direction
then they are defined and used in construction algorithms. Note that,
as pointed out above in the discussion of function GetReScanEquival-

entJumpLimitEstimate, this is not usable in the CDAWGdue to the pos-
sibly large number of in-edges per vertex. Consequently, from now on,
the discussion is limited to suffix trees only. While reverse edges consume
additional resources, they can be integrated into vertices to limit space us-
age and are updated only once per forward edgemodification. Moreover,
some algorithms need them anyway, e.g. to make efficient sliding of the
suffix tree possible [14, 26, 41]. In that case, there is no additional cost for
reverse edges.

Leaf Suffix Links
The second issue which may not be apparent from the pseudocode in
Algorithm 3.3 lies in the need to maintain and use leaf suffix links. Des-
pite the fact that these suffix links appear in our suffix tree definition, they
are not used by many algorithms, including the original construction by
Ukkonen [51]. However, as demonstrated by McCreight [32], there are
ways how to hide them, e.g. by a smart leaf numbering.

3.2.1.2 Correctness

While the idea behind the Climbmethod appears to work, its correctnessmust
be verified. However, it is clear that it moves the active point to the correct
position as long as both the explicit suffix link and all reverse edges that are
used for simulation exist. While the existence of reverse edges is guaranteed,
the situation with the explicit suffix links deserves a clarification. There are
moments during the suffix tree constructionwhen both the last leaf created and
the last node created lack explicit suffix links. However, the simulated suffix
link leads from the last node created and the last leaf created is its newer child
which will not be used during simulation. Thus, when needed, the required
suffix link always exists.

3.2.1.3 Time Complexity

The last open question regarding the bottom-up approach is the one about its
time complexity. As noted above, ReScan works in an O(B) amortised time
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Figure 3.3. Pathological behaviour of Climb demonstrated on adversary
string. The symbolics used is described in Table 1.1.

per simulation, and onewould expect a similar bound for the Climb algorithm.
Unfortunately, it is possible to find an adversary string which forces Climb to
work in a total superlinear time per suffix tree construction.

Lemma 3.1 (Adversary String for Climb)

Let k ≥ m ≥ 1, a ≠ c ∈ Σ and ς = a kc aca 2c a 3c . . .a mc a. Then function Climb per-
forms at leastΩ((2k −m)m) steps during the construction of SuffixTree(ς).

Proof: Let Ti be the suffix tree created by function Build shown in
Algorithm 3.1 after the prefix ςi = a kc aca 2c . . .a ic a of ς is processed for some
0 < i < m. Note that there are two types of root-leaf paths in this tree, which
we name a-path and c-path, respectively. Paths of the former type represent
the suffixes starting with symbol a, e.g. ςi. Similarly, paths of the latter type rep-
resent the suffixes that start with symbol c, e.g. ςi[2 .. |ςi |].While the a-path con-
tains explicit nodes a jc for all 1 < j < i, the c-path contains explicit nodes jc for all
1 < j < k − 1, since all these nodes correspond to right branching factors of ςi.

Now consider the actions performed by function Build to transform Ti into
Ti+1. Note that the call of procedure CreateEdgeFromActivePointmakes the
implicit node a i+1c , which lies on oneof the a-paths, explicit. After that, function
MoveActivePointSideways is called, which has to simulate the implicit suffix
link from a i+1c to i+1c using function Climb. Function Climb then starts by
moving the active point down to the older leaf connected to the new explicit
node a i+1c . The next step then moves the active point using the explicit suffix
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link leading from this a-path leaf to some c-path leaf. After that, vertices jc for
all k − 1 ≥ j ≥ i +1 are visited, until the target i+1c is reached. Hence, at least
k − i steps are required for this simulation. As the construction of SuffixTree(ς)
performs such transformation for all 0 < i < m, it follows that the total number
of steps is bounded from below by

m−1
∑
i=0

k − i = Ω((2k −m)m) .
�

Corollary 3.2 (ClimbLower Bound)

Function Build requiresΩ( 3⁄2n ) time in theworst case,when constructing a suf-
fix tree for a length n string, while using function Climb for implicit suffix links
simulation.

Proof: Let f (i) = 2 + 3
2i(i +1) for every positive integer i. Then, for any ar-

bitrary positive integer n, there exists in such that n = f (in) + r, where
r < f (in+1) − f (in) = 3in +3. Now consider a string µ of length n, whose prefix of
length f (in) equals

ς = a
2

inc aca 2c a 3c . . .a inc a ,

while the remaining symbols are arbitrary. As function Build creates
SuffixTree(ς) during the construction of SuffixTree(µ), the Lemma 3.1 can be
applied. The number T(n) of steps required to construct SuffixTree(ς), while
using function Climb, satisfiesT(n) = Ω((2 2

in − in)in). Since n = Ω( 2
in ), it follows

that T(n) = Θ( 3⁄2n ) as claimed. �

This means that the worst case time complexity of this approach is superlinear.
However, the exact complexity is as yet unknown. Nevertheless, we can
provide the following upper bound estimate.

Proposition 3.3 (ClimbUpper Bound)

The time needed by function Build to construct SuffixTree(µ), while using
function Climb for implicit suffix link simulation, is bounded by

O(nB)+O( n

∑
i=1

|Prefix(αiβi)∩BranchR(µ[1 .. i ]) |) .
Here n = |µ |, B is the complexity of branching, and β

i
(1 < i < n) is the string

defined by 〈αi〉
R
µ
= αiβi, where αi is the active point of µ[1 .. i ].

Proof: The first term covers the complexity of Ukkonen’s algorithm without
implicit suffix link simulation [51]. The second term then bounds the num-
ber of distinct right branching prefixes of β

i
. These prefixes correspond
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to distinct nonleaf vertices visited by function Climb, while transforming
SuffixTree(µ[1 .. i − 1]) to SuffixTree(µ[1 .. i ]). �

Note that the height of SuffixTree(µ[1 .. i ]) can be used as a trivial upper
bound for |Prefix(β

i
) ∩BranchR(µ[1 .. i ])|. Moreover, the height of the suffix

tree has a linear worst case and a logarithmic expected case, assuming random
input strings whose symbols are drawn independently from Σ with a fixed
probability distribution [2]. This leads to O( 2n ) worst case time and O(nlogn)
expected time. However, we believe that these bounds are not tight and can be
improved upon.

In particular, function Build using function Climbworks in O(nB) time for
every strings µ satisfying

n

∑
i=1

|Prefix(αiβi)∩BranchR(µ[1 .. i ]) | = O(|µ |) .

Note that results of experiments in Section 3.2.2 suggest that this may be quite
common case for real-life data.

3.2.2 Experimental Evaluation

Now that we have described and analysed the three simulation techniques, it
is the right time for an experimental evaluation. There are two main areas we
would like to test. Thefirst is the implementation independent number of oper-
ationsused for simulation and the secondone is the implementationdependent
execution time. To this end, we have implemented all three techniques in C++
and compiled them with GNU g++ compiler version 4.5.2 with full optimisa-
tions activated. The experimentswere conducted on an AMDAthlon II X3 445
processorwith a fixed 3.1GHz frequency and 16GiB of mainmemory under the
Ubuntu 11.04 operating system.

Our suffix tree implementation was originally developed with suffix tree
based data compression in mind. Note that it uses linked lists to keep track
of children which appears to be the best choice available if we want to use
techniques like exclusion [26, 41]. All linked lists are used in one the following
twomodes.

Basic
The new child is always prepended to the child list and search operations
do not change the list.

Move-to-front (MTF)
Like in the basic mode, the new child is prepended to the front of the child
list. However, a move-to-front heuristic is used to reorganise this list
during branching searches made by MoveActivePointDownIfPossible.
The move-to-front heuristicmoves the target of a search to the head of the
list so that it can be found faster if it is used frequently.

35



File Description

Pizza&Chili Corpus

SOURCES concatenated source code files

PITCHES human readableMIDI files

PROTEINS protein sequences

PROTEINS.400 400MiB prefix of PROTEINS

PROTEINS.OLD older version of PROTEINS

DNA DNA sequences

ENGLISH English texts

ENGLISH.400 400 MiB prefix of ENGLISH

XML XML formatted bibliography

Lightweight Corpus

CHR22 human chromosome 22

ETEXT99 Project Gutenberg ETEXT99 files

GCC gcc 3.0 source (tarred)

HOWTO Linux Howto text files

JDK13 JDK 1.3 doc (html and java files)

LINUX Linux kernel 2.4.5 source (tarred)

RCTAIL96 Reuters news in XML format

RFC RFC text files

SPROT Swiss prot database

W3C html files fromwww.w3c.org

A pathological string

ADVERSARY a
2ic aca 2c a 3c . . .a ic a, for i = 16721

Table 3.1. Test file descriptions.

Note that the total space used for the suffix tree of string µ is 25|µ | bytes for
the basic version and 33|µ | bytes for version with parent pointers. The latter
version is used by Climb and ClimbScanwhile ReScan can use the former if the
suffix tree is not sliding. These implementations can handle a string of length
up to 302 over a single byte alphabet. However, our tests are limited to strings
400 MiB long to prevent swapping.

Wehave selected the following threedatasets to thoroughly test all three im-
plicit suffix link simulation techniques. All test files and their short descriptions
are listed in Table 3.1.
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Pizza&Chili Corpus
This corpus was constructed by Ferragina and Navarro for compressed
index evaluation [13]. However, as the practical string length limit on our
test machine is 400MiB,we have replaced the two largest files (ENGLISH and
PROTEINS) with their 400 MiB prefixes.

Lightweight Corpus
This corpuswas originally compiled byManzini and Ferragina [30] for the
purpose of evaluation of suffix array construction algorithms [31].

A pathological string
To illustrate the negative results of Section 3.2.1.3, the following adversary
string from the proof of Corollary 3.2 was also included.

a
2
ic aca 2c a 3c . . .a ic a, for i = 16721

The value of iwas chosen as the largest integer such that the string length
does not exceed 400MiB.

Table 3.2 provides more details about all test files and also includes the follow-
ing three statistics for each file.

Inverse probability of matching (IPM)
Thisproperty is definedas the inverseof theprobability that two randomly
chosen symbols match. It was suggested by Ferragina and Navarro as a
measure of the effective alphabet size [13].

Maximum and average LCP

These are defined as themaximumand average over the lengths of longest
common prefixes of pairs of lexicographically consecutive suffixes. They
are included as they appear to affect efficiency of certain suffix sorting
algorithms [36].

3.2.2.1 Operation Counts

As the operations counts are implementation independent, we will examine
them first and leave execution times to the next section. We will count two
types of operations the branching operation and the jump-up operation. The
first operation is usedby both MoveActivePointDownIfPossibleandReScan,
while the latter is used by Climb and ClimbScan. Note that failed branching
attempts are included in the branching operation counts.

As both MoveActivePointDownIfPossible and ReScanuse branching op-
erations, we would like to know how they are split between the two. The an-
swer our experimentsgave to this question lies in Table 3.3.ColumnsMoveDown,
ReScan and Total contain the number of branching operations used by func-
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File Size |Σ | IPM LCP

[MiB] Average Maximum

Pizza&Chili Corpus

SOURCES 201.10 230 24.77 371.80 307 871

PITCHES 53.25 133 39.75 262.00 25 178

PROTEINS.400 400.00 26 17.19 654.36 263 313

PROTEINS.OLD 63.71 24 16.98 33.47 6 380

DNA 385.21 16 3.91 2 420.73 1378 596

ENGLISH.400 400.00 226 15.25 5 771.85 987 770

XML 282.42 97 28.73 44.91 1084

Lightweight Corpus

CHR22 32.95 5 4.24 1979.25 199 999

ETEXT99 100.40 146 15.74 1108.63 286 352

GCC 82.62 150 21.76 8 603.21 856 970

HOWTO 37.60 197 14.29 267.56 70 720

JDK13 66.50 113 35.24 678.94 37 334

LINUX 110.87 256 27.12 479.00 136 035

RCTAIL96 109.40 93 23.27 282.07 26 597

RFC 111.03 120 10.20 93.02 3 445

SPROT 104.54 66 15.41 89.08 7 373

W3C 99.37 256 38.05 42 299.75 990 053

A pathological string

ADVERSARY 399.98 2 1.00 93 197 280.11 279 591840

Table 3.2. Test files properties.

tion MoveActivePointDownIfPossible, function ReScan and both functions
together. The last column then shows the percentage of all branching opera-
tions that was used by calls to ReScan. It appears that the split of branching op-
erations between functions MoveActivePointDownIfPossible and ReScan is
fairly even with between 40.22 to 66.07 percent used by ReScan on all files ex-
cept theADVERSARY.Note that ReScan takes almost all branchingoperationsused
for construction of the suffix tree for ADVERSARY.

The relatively high percentage of branching operation used by ReS-

can shows that there is a lot to be gained by using the bottom-up approach.
However, while the jump-up operation should be much cheaper than the
branching operation, we do not yet know how many jump-up operations are
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File Total MoveDown ReScan ReScan
Total

[%]

SOURCES 300 123 164 139 723 039 160 400 125 53.44

PITCHES 94 522 634 46 777 918 47 744 716 50.51

PROTEINS.400 682 115 039 339 775 135 342 339 904 50.19

PROTEINS.OLD 123 363 893 73 743 357 49 620 536 40.22

DNA 759 666 994 415 812 497 343 854 497 45.26

ENGLISH.400 688 349 505 371960 100 316 389 405 45.96

XML 362 053 458 205 256 107 156 797 351 43.31

CHR22 64 622 549 35 053 371 29 569 178 45.76

ETEXT99 172 578 102 99 131563 73 446 539 42.56

GCC 117 398 104 52 626 042 64 772 062 55.17

HOWTO 61266 618 32 676 237 28 590 381 46.67

JDK13 78 704 428 28 044 490 50 659 938 64.37

LINUX 164 899 266 76 269 756 88 629 510 53.75

RCTAIL96 145 205 087 70 211436 74 993 651 51.65

RFC 166 051160 77 334 572 88 716 588 53.43

SPROT 149 117 731 78 927 702 70 190 029 47.07

W3C 121167 964 41111077 80 056 887 66.07

ADVERSARY 699 054 845 50 166 699 004 679 99.99

Table 3.3. A comparison of total numbers of branch operations used by func-
tionsMoveActivePointDownIfPossible,ReScan, andtheircombination,dur-
ing the construction of suffix tree for each file. Boldface denotes themaximum
andminimum over all files except ADVERSARY.

needed to replaceonebranchingoperation on average. Thenumbersof branch-
ing operations used by ReScan are compared to the number of jump-up oper-
ations used by Climb in Table 3.4. These operations counts are located in the
second and third column, respectively. The last column then contains the re-
lative percentage of jump-up operations used by Climb to replace branching
operations used by ReScan.Note that on all files except ADVERSARY, the numbers
of jumps in Climb and the number of branchings in ReScan are relatively close
and differ by at most 14 percent. The largest excess is reached on CHR22 and
DNA, two fileswith the lowest IPM.On the other hand, a ten percent savingwas
achieved on PITCHES, the file with the largest IPM. As expected, the situation is
much worse for Climb on ADVERSARY where it does almost 3.5 of jump-up oper-
ations per removed branching operation. However, Climb does not show any
signs of pathological behaviour on real-life data.
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File ReScan Climb Climb
ReScan

[%]

SOURCES 160 400 125 152 376 916 95.00

PITCHES 47 744 716 43 081419 90.23

PROTEINS.400 342 339 904 312 477 751 91.28

PROTEINS.OLD 49 620 536 45 447 883 91.59

DNA 343 854 497 389 694 561 113.33

ENGLISH.400 316 389 405 305 930 651 96.69

XML 156 797 351 158 979 917 101.39

CHR22 29 569 178 33 669 019 113.87

ETEXT99 73 446 539 74 097 636 100.89

GCC 64 772 062 61849 248 95.49

HOWTO 28 590 381 27 944 722 97.74

JDK13 50 659 938 49 413 385 97.54

LINUX 88 629 510 83 753 439 94.50

RCTAIL96 74 993 651 72 128 546 96.18

RFC 88 716 588 84 486 767 95.23

SPROT 70 190 029 69 425 197 98.91

W3C 80 056 887 75 904 742 94.81

ADVERSARY 699 004 679 2 410 330 433 344.82

Table 3.4. A comparison of total numbers of branch operations used by
function ReScan and jump-up operations used by function Climb, during the
construction of suffix tree for each file. Boldface denotes the maximum and
minimum over all files except ADVERSARY.

While we know the total operation counts, we do not have any information
about their distribution in individual simulations. Table 3.5 contains more de-
tailed statistics. The second column contains the maximal number of branch-
ing operation used in a single implicit suffix link simulation done by ReScan.
Similarly, the third column has the maximum consecutive number of jump-up
operations done during Climb. The corresponding average values are placed
in the fourth and the fifth column, respectively. Note that the minimum and
median valueswere computed aswell, but were all equal to 1with exception of
median of branching values used on ADVERSARY which was equal to 2. If we ig-
nore the expectedhugedifferenceon ADVERSARY, there is only one rowwhere the
longest sequence of branching operations is much shorter than the the longest
sequence of jump-up operations. Specifically, on file SOURCES, the longest jump-
up sequence is 2858 jumps long, but the maximum for branchings is just 123.
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File Maximum Average

ReScan Climb ReScan Climb

SOURCES 123 2 858 1.21 1.15

PITCHES 1656 3 999 1.33 1.20

PROTEINS.400 447 372 1.26 1.15

PROTEINS.OLD 92 68 1.35 1.24

DNA 128 135 1.25 1.41

ENGLISH.400 60 57 1.30 1.26

XML 24 43 1.10 1.12

CHR22 99 998 199 999 1.26 1.43

ETEXT99 90 80 1.27 1.28

GCC 11078 11064 1.18 1.13

HOWTO 73 69 1.15 1.22

JDK13 62 57 1.07 1.04

LINUX 442 475 1.22 1.15

RCTAIL96 63 62 1.14 1.10

RFC 96 99 1.22 1.16

SPROT 28 36 1.13 1.12

W3C 219 298 1.10 1.04

ADVERSARY 2 279 591840 1.67 5.75

Table 3.5. A comparison of sequences of consecutive branch operations used
by function ReScan and jump-up operations used by function Climb, during
the constructionof suffix tree for each file. Themedian of ReScan forADVERSARY

was equal to 2 while all the remaining median and minimum values were
always equal to 1. Boldface denotes the maximum andminimum over all files
except ADVERSARY.

However, other columns show that this spike is not common and is levelled
out by many shorter jump-up sequences. Like the total operation counts, these
detailed results show that while it is possible to force Climb to perform a large
number of jumps, this is not common on real-life data.

The last question about operation counts that we will try to answer is that
about the balance achieved by ClimbScan. The numbers of branching and
jump-up operations used by ClimbScan are compared to operations used by
the other two techniques in Table 3.6. The second column provides the num-
ber of jump-up operations used by ClimbScan, while the third gives the same
for branching operations. Note that the number of branching operations is
negligible compared to the number of jump-up operations. Hence, like Climb,
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File ClimbScan

Jump Branch

ClimbScan
Climb

[%] ClimbScan
Rescan

[%]

SOURCES 152 291681 23 176 99.96 94.96

PITCHES 42 678 609 26 862 99.13 89.45

PROTEINS.400 312 044 626 53 580 99.88 91.17

PROTEINS.OLD 45 438 450 2 368 99.98 91.58

DNA 389 042 535 127 743 99.87 113.18

ENGLISH.400 305 876 547 26 763 99.99 96.69

XML 158 969 534 5 135 100.00 101.39

CHR22 33 224 531 10 193 98.71 112.40

ETEXT99 74 086 107 5 748 99.99 100.88

GCC 61803 182 8 662 99.94 95.43

HOWTO 27 930 198 5 066 99.97 97.71

JDK13 49 407 831 1852 99.99 97.53

LINUX 83 687 734 14 656 99.94 94.44

RCTAIL96 72 120 830 3 560 99.99 96.17

RFC 84 381579 25 521 99.91 95.14

SPROT 69 420 291 2 036 100.00 98.91

W3C 75 891132 3 149 99.99 94.80

ADVERSARY 419 529 898 16 722 17.41 60.02

Table 3.6. A comparison of total numbers of jump-up and branch operations
used by functions ClimbScan, Climb and ReScan during the construction of
suffix tree for each file. Boldface denotes themaximumandminimumover all
files except ADVERSARY.

ClimbScan removes a lot of branching operations from the construction of suf-
fix tree. Moreover, the total number of operations used by ClimbScan com-
pares favourably to the numbers of operations used by Climb and ReScan as
demonstrated by the last two columns of Table 3.6. The fourth column shows
that ClimbScan never used more operations than Climb does and even does
over 82 percent operations less on ADVERSARY. This is a pleasant surprise which
shows that Climb can handle most situations by itself and only rarely needs a
help from ReScan. As the numbers of operations of Climb and ClimbScan are
so close, it is no surprise that the last column of Table 3.6 is very similar to the
last column of Table 3.4. The only significant difference is in the ADVERSARY row,
where ClimbScan needs almost 40 percent operation less than ReScan.

Beforewe turn our attention to practical speed testswe can estimate the out-
come based on our operation count analysis. As both bottom-up methods re-
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move somany branching operations, they are both expected to be significantly
faster than ReScan. Moreover, as Climb is simpler than ClimbScan and patho-
logical situation are not common, the Climb should prevail on most inputs.

3.2.2.2 Construction Time

While the previous section concentratedon implementation independent oper-
ation counts, this section deals with execution times which are inherently im-
plementation dependent. To put the performance of our implementation into
perspective, we have included an independent alternative implementation in
our tests. We have selected a tuned suffix tree implementation developed by
Kurtz [25] which is available as a part of the MUMmer3 package, a system for
genome alignment [24]. This implementation uses McCreight’s algorithmwith
ReScan for implicit suffix link simulation and an improved linked list imple-
mentation introduced by Kurtz [25], this leads tomemory usage of 12.18n bytes
on average.

The first part of our speed tests was testing construction of the suffix
tree only, while the second part included maintenance of the suffix tree for a
sliding window. Note that execution times presented here are averages of five
independent runs.

The execution times collected for the construction of the suffix tree for each
file are shown in Table 3.7. The two dashes in the last column denote the fact
that Kurtz’s implementation failed on files DNA and ADVERSARY.

In order toverify that our implementationsare competitivewith the state-of-
the-art implementation of on-line construction of suffix trees, the speeds of our
implementations are compared to those of the implementation developed by
Kurtz [25, 24].Observe thatwhile the simpleversionof ReScanneedsasmuchas
28 percent more time for construction than Kurtz’s implementation, the move-
to-front Climb is requires 20 to 35 percent time less. Thus our implementations
are indeed competitive and the rest of this section can focus on the comparison
of our three implementations.

Note that ClimbScanwith the move-to-front heuristic provides the fastest
construction in the majority of cases. With the exception of the ADVERSARY file,
a comparison of the second and the fourth column shows that the reduction of
the number of branching operations described in Section 3.2.2.1 translates into
a 21 to 32 percent shorter construction time. Note that the lowest speed up is
obtained on files with the smallest alphabet (CHR22, DNA) and that files with a
large alphabet size (SOURCES, ENGLISH.400, LINUX, W3C) are close to the maximum
increase. This can be explained by the connection between the alphabet size
and the out-degrees of nodes in the graph that influences the total time needed
for branching.

The third and fifth columns show that the move-to-front version of Climb
saves between 14 and 24 percent of ReScanexecution time. These lower values,
compared to the simple case, may be explained by the speed up of branching
operations brought by the more sophisticated linked lists manipulation, which
diminishes the advantage of climbing.
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File ReScan Climb ClimbScan Kurtz

simple mtf simple mtf simple mtf

SOURCES 196.19 140.42 133.20 113.70 133.40 113.48 175.77

PITCHES 113.54 74.24 78.84 61.53 78.90 61.63 88.47

PROTEINS.400 813.39 714.30 560.57 541.32 562.69 541.00 744.62

PROTEINS.OLD 143.31 120.88 105.13 101.65 104.93 100.54 132.68

DNA 368.00 366.85 279.78 281.79 279.96 281.33 —

ENGLISH.400 605.54 503.61 417.83 389.88 418.28 389.83 575.02

XML 152.08 128.72 111.04 103.41 110.99 103.66 134.09

CHR22 23.91 23.92 18.89 18.88 18.86 19.00 23.67

ETEXT99 132.57 111.28 94.98 88.80 95.12 88.52 122.57

GCC 58.50 42.61 40.74 35.10 40.72 35.14 53.55

HOWTO 46.27 34.50 32.18 27.63 32.09 27.58 40.22

JDK13 13.78 11.47 10.30 9.70 10.26 9.64 13.62

LINUX 101.70 71.83 69.18 58.67 69.36 58.48 89.32

RCTAIL96 66.44 55.33 46.61 43.45 46.62 43.44 61.82

RFC 102.49 79.02 69.98 62.27 69.96 62.16 92.05

SPROT 103.73 87.81 76.84 72.08 76.72 72.12 93.70

W3C 38.40 28.34 27.00 24.48 27.10 24.22 36.83

ADVERSARY 11.24 11.25 22 454.57 22 387.51 11.85 11.68 —

Table 3.7. A comparison of execution times (in seconds) needed for the
construction of suffix tree for each test file. Boldface indicates the maximum
andminimum in each row.

Acomparisonof ClimbScanandReScancolumnsreveals that theadvantage
of ClimbScan over ReScan on real-life data is almost identical to that of Climb,
the difference being within one percent of ReScan execution time. However, as
ClimbScanavoids the pathological behaviour on ADVERSARY, it exceeds the ReS-
can execution time on this file by less than 5 percent.

The end of this section inspects the efficiency of the move-to-front heuristic
using the simple and mtf columns in Table 3.7 for each of the three techniques.
The comparison reveals that this heuristic brings no speedup or even a small
slowdown (by less than 1 percent) when tested on files with the smallest IPM,
e.g. DNA, CHR22 and ADVERSARY. However, it works well on all other test files,
and the highest reduction in construction time happens on PITCHES, the file with
the highest IPM.Here the move-to-front ReScan needs 35 percent less time for
construction, while the move-to-front Climb / ClimbScan saves 22 percent of
execution time.
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File Window ReScan Climb ClimbScan

[KiB] simple mtf simple mtf simple mtf

32 80.29 74.64 69.61 68.70 69.88 69.04

SOURCES 1024 247.72 214.20 200.57 190.94 200.25 191.63

32 768 331.92 275.39 257.01 240.12 256.85 240.74

32 20.84 18.22 17.73 17.00 17.57 16.81

PITCHES 1024 96.57 73.45 76.44 66.84 76.35 67.02

32 768 142.08 99.36 101.90 84.53 101.97 84.57

32 712.72 694.00 635.26 638.36 636.84 637.97

PROTEINS 1024 2 617.50 2 420.66 2 091.66 2 062.04 2 086.25 2 067.95

32 768 3 901.03 3 559.85 3 021.12 2 979.15 3 014.51 2 978.78

32 33.36 31.93 29.17 29.11 29.33 29.46

PROTEINS.OLD 1024 134.61 117.09 105.67 102.98 105.67 102.77

32 768 180.88 154.97 136.03 131.34 135.97 131.26

32 176.26 177.20 156.96 159.74 157.37 159.28

DNA 1024 446.30 441.82 372.67 376.11 372.88 375.74

32 768 683.78 680.88 573.06 576.58 572.32 578.68

32 1 159.61 1108.80 1007.41 1 006.69 1015.78 1007.35

ENGLISH 1024 3 539.73 3 250.21 2 819.08 2 785.70 2 818.41 2 779.35

32 768 5 559.53 5 082.22 4 415.61 4 355.70 4 414.26 4 358.73

32 85.58 83.15 79.18 78.16 78.65 78.05

XML 1024 297.40 273.71 253.23 246.57 252.53 247.04

32 768 349.09 320.78 291.12 285.11 290.29 285.27

Table 3.8. A comparison of execution times (in seconds)needed for the sliding
of suffix tree over each file of the Pizza&Chili Corpus. Boldface indicates the
maximum andminimum in each row.

3.2.2.3 SlidingWindow

The last set of experiments concentrates on the speed of a sliding suffix tree.As
noted in Section 3.2.1.1, the additional leaf suffix links and reverse edges that
are required to enable Climb and ClimbScan are already present in a sliding
suffix tree. Consequently, ReScan no longer has a space advantage over Climb
and ClimbScan and might be even slower. However, as will be explained in
Section 4.1, there are actions required by sliding that take part of the execution
time and disturb the construction algorithm flow. This may result in a some-
what lower gain from the bottom-up approach.
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File Window ReScan Climb ClimbScan

[KiB] simple mtf simple mtf simple mtf

32 15.44 15.54 13.75 13.92 13.77 13.92

CHR22 1024 36.20 35.80 30.42 30.60 30.43 30.57

32 768 34.29 34.06 27.71 27.88 27.71 27.79

32 50.21 47.77 43.45 43.43 43.70 43.68

ETEXT99 1024 161.24 148.86 128.12 126.51 127.76 126.60

32 768 202.66 181.38 157.04 153.01 156.98 153.04

32 31.70 29.89 27.66 27.33 27.25 27.47

GCC 1024 91.18 81.32 75.31 72.58 75.10 72.54

32 768 94.63 77.78 72.46 67.28 72.50 67.47

32 18.32 17.27 15.86 15.59 15.64 15.36

HOWTO 1024 63.42 54.03 50.20 47.23 50.01 47.36

32 768 58.65 46.15 41.79 37.38 41.84 37.36

32 19.98 19.33 17.78 17.60 17.64 17.70

JDK13 1024 46.65 44.34 41.50 40.89 41.41 40.95

32 768 33.28 30.68 28.28 27.65 28.29 27.72

32 43.91 40.60 37.75 37.07 37.45 36.92

LINUX 1024 134.26 116.91 109.20 103.96 109.07 103.95

32 768 160.79 128.07 120.82 110.75 120.81 110.99

32 39.47 37.45 34.97 34.42 34.85 34.43

RCTAIL96 1024 126.33 116.67 105.50 103.77 105.18 103.85

32 768 119.44 107.86 94.50 92.05 94.16 92.17

32 45.96 43.24 39.72 39.70 39.65 39.35

RFC 1024 148.42 131.08 120.85 116.47 120.61 116.37

32 768 167.36 143.03 127.13 120.86 127.43 121.03

32 43.99 41.67 38.28 37.99 38.36 37.84

SPROT 1024 139.93 125.58 115.14 111.81 114.87 112.17

32 768 160.27 142.31 127.67 123.69 127.58 123.82

32 34.17 32.05 29.56 29.17 29.84 29.61

W3C 1024 94.64 87.27 79.84 78.11 79.71 78.51

32 768 77.87 65.19 61.81 58.60 61.83 58.71

Table 3.9. A comparison of execution times (in seconds)needed for the sliding
of suffix tree over each file of the Lightweight Corpus. Boldface indicates the
maximum andminimum in each row.
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To reveal more information about sliding behaviour, three window sizes
were used during these experiments. Similar to window/block sizes used by
the data compression algorithms gzip, bzip2 and xz, the following window
sizes were used: 32 KiB, 1MiB and 32 MiB. Thanks to these limits, the tests on
Pizza&Chilli Corpus files PROTEINS and ENGLISH could be run at their original
sizes, i.e. 1.10 GiB and 2.06 GiB, respectively. Recall that only 400 MiB prefixes
were used in previous experiments. Each experiment involved maintaining a
suffix tree for a perfect sliding window of a given size over the input.

The averages of execution times of three independent runs are shown in
Tables 3.8 and 3.9. Note that Climb with the move-to-front heuristic provides
the fastest sliding in the majority of cases. As the execution time differences
between Climb and ClimbScan are under 2 percent, the rest of this comparison
is limited to ReScan and Climb only.

The advantage of the simple version of Climb over the simple version of
ReScan growswith the sliding window size. Climb saves 7 to 14 percent of ex-
ecution time with a 32 KiB window, 11 to 21 percent with a 1MiB window, and
15 to 28 percent with a 32MiBwindow. This effect is likely connected to the in-
crease in size of sliding suffix trees in combinationwithmore branching choices
in such trees. Nevertheless, theadvantageof ClimboverReScan is alwayssmal-
ler than without sliding, even with the largest window. This is likely the result
of smaller tree sizes and the adverse effect of additional code needed to delete
oldest symbols and maintain edge labels that slows all algorithms down and
uses almost no implicit suffix links.

Finally, note thatwhen themove-to-front variants are compared, the savings
introduced by climbing decrease to 6 to 10 percent for a 32 KiB window, 8 to 15
percent for a 1MiB window, and 10 to 19 percent for a 32 MiB window. These
lowervaluesare consistentwith the resultsof construction tests andsupport the
conclusions on this issue formulated in Section 3.2.2.2.
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4. Sliding

This chapter represents the last step, before we finally get to the details of the
suffix graph baseddata compression.It buildson previous chapters and studies
the problem of suffix graph maintenance for a sliding window.

While certainly interesting, the problem of suffix graph sliding received
much less attention than the construction. Understandably, there appears to be
no interest in sliding of the suffix trie. The other three structures aremuchmore
appealing. Surprisingly, the sliding of the DAWGwas resolved first [8]. Unfor-
tunately, it turnedout that it is impossible tomake it slide in amortised constant
time. Moreover, as we show in Section 4.2, the behaviour of the CDAWG is the
same. Inenaga et al. [21]appeared to have solved this issuewith their approxim-
ate sliding algorithm, but it was later shown to be invalid [15].Hence, the suffix
tree is our last chance for linear time sliding. The first algorithm for suffix tree
sliding was presented by Fiala and Greene in 1989 [14]. However, while they
found the componentsneeded for linear time sliding, their paper had several is-
sues. Thiswas pointed out by Larsson,who tried to clarify the situation and fix
these problems [27].Nevertheless, despite his attempt, the largest issue regard-
ing the correctness of the edge labelmaintenance algorithmwas not resolved in
a satisfactory way. We settle this issue in Section 4.3.

This chapter consists of three sections that deal with the sliding of suffix
graphs in more detail. The first section brings an overview of sliding and slid-
ing algorithm based on the construction algorithm studied in Chapter 3: Con-
struction. It is followedby two sections that analyse the details of two functions
needed to complete the sliding algorithm. Note that all three sections are based
on our previouslypublishedworks [40]and [44].Thefirst two sectionsare based
on the former, while the third section is based on the latter.

4.1 Basics
This section gives an overviewof the suffix graph sliding problem and a sliding
algorithm devised from the construction algorithm described in Chapter 3:
Construction. It starts with the problem definition, using the following two
basic operations.

Definition (SlidingOperations)

Let a, c ∈ Σ and µ ∈ ∗Σ , then the two basic sliding operations are defined as
follows:
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void Slide(String & string, Size windowSize)

{

Build(string[1, windowSize]);

SlideOverString(string[windowSize + 1, Length(string)]);

}

void SlideOverString(String & string)

{

for (symbol in string) {

SlideOverSymbol(symbol);

}

}

void SlideOverSymbol(Symbol & symbol)

{

DeleteOldestSymbol();

AppendSymbol(symbol);

UpdateEdgeLabels();

}

Algorithm 4.1. Outline of sliding window algorithm that works on all four
suffix graph types.

Delete

This operation receives a suffix graph for string cµ and returns a suffix
graph of the same type for µ.

Append

This operation receives a suffix graph for string µ and returns a suffix
graph of the same type for string µa.

The perfect form of sliding is then defined as follows.

Definition (Perfect Sliding)

The input and output of any algorithm implementing the perfect sliding of a
suffix graph must be:

INPUT

A string µ ∈ ∗Σ and an integer w, called window length from now on, such
that 0 < w < |µ |.

OUTPUT

A sequence G1, G2, . . . , G|µ|−w+1, where G1 is a suffix graph for string
µ[1 .. w] andGi+1 = Append(Delete(Gi), µ[i +w]) = µ[i +1 .. i +w].

An obvious solution to the problem of perfect sliding is a trivial “scrap and
build” method. In essence, this algorithm implements operation Delete by
scraping the old graph and operation Append by building a new graph. While
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this works for any suffix graph, it is slow. Moreover, some algorithms, includ-
ing those in Chapter 5: Compression, collect valuable information for vertices
and edges, such as usage statistics. When both vertices and edges are removed,
this information is lost. Even though it could be partially regenerated during
the build phase, this would make the algorithm even slower. Consequently, a
more sophisticated solution is needed.

Such algorithm should be based on one of the left-to-right construction
algorithm mentioned in Chapter 3: Construction. This construction algorithm
would be used for the implementation of Appendoperation and complemented
by someformof Deleteoperation. Apseudo-C++codeof onepossiblesolution
is shown in Algorithm 4.1. It is using parts from the Ukkonen-based algorithm
described in Section 3.1 and shown in Algorithm 3.1. Functions that were not
part of the Build algorithm are described below.

Slide

This is the main function of the sliding algorithm. As required by the
perfect sliding definition, it builds the suffix graph for the first windowSize
symbols of the input string first. After that, it runs the SlideOverString
function to do the actual sliding over the rest of the input string.

SlideOverString

As hinted by its name, this function slides the suffix graph over the sup-
plied string. It simply calls the function SlideOverSymbol for every sym-
bol of this string.

SlideOverSymbol

This function performs the equivalent of application of the combination
of operations Append(Delete) on the suffix graph. It is using the function
DeleteOldestSymbol to perform the Delete operation, and the other two
functions to implement the Append operation. The first part of Append
operation is done using function AppendSymbol and the second part by
function UpdateEdgeLabels.

DeleteOldestSymbol

As described by its name, this function removes the oldest (leftmost) sym-
bol from the underlying string and adjusts the suffix graph accordingly.
While it sounds easy enough, it turns out to be quite a complex matter. It
is studied in detail in Section 4.2.

UpdateEdgeLabels

This function finishes the Append operation by adjusting the edge labels.
As both the suffix trie and the DAWG have only single symbol labels,
which are stored explicitly, there is nowork to be done for these. However,
the longer labels used in both path compressed graphs require the use of
indexes into the underlying string. Consequently, these indexes must be
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regularly updated to stay valid. The details of an efficient implementation
of this function were put into Section 4.3.

It is clear that functions DeleteOldestSymbol and UpdateEdgeLabels are
critical for the performance of this sliding algorithm. As they are nontrivial,
each has its owndedicatedsection. Section 4.2 dealswith thedetails of function
DeleteOldestSymbol, while Section 4.3 handles the obstacles met by function
UpdateEdgeLabels.

4.2 Delete Oldest Symbol

Thepurposeof this section is to findan efficient algorithm that removes theold-
est symbol from a suffix graph, which is suitable for use in function DeleteO-

ldestSymbol. It starts by examining the effects that the removal of the oldest
symbol from the underlying string has on each suffix graph type.

4.2.1 Changes

As all suffix graphs represent the set of all factors of the underlying string, it
is natural to look at differences between sets of factors of strings cµ and µ first.
They are described by the following claim.

Claim 4.1 (Factor Set Changes on Delete)

Let µ ∈ ∗Σ and c ∈ Σ, then

Factor(cµ) = Factor(µ)
.
∪UniquePrefix(cµ) .

Thus, the changes are somewhat similar to those addressed by function
AppendSymbol during construction. However, where function AppendSymbol

dealt with suffixes, function DeleteOldestSymbol has to handle prefixes.
Also, while suffix links had to be added to form a boundary path for easier
movement between suffixes, all prefixes are located on the backbone which is
a natural part of the graph. Moreover, as all prefixes longer than some unique
prefix must be unique as well, all unique prefixes are grouped as explained by
the following observation.

Claim 4.2 (Prefix Blocks)

Let µ ∈ ∗Σ . Then there exists an integer k, 0 ≤ k ≤ |µ |, such that

UniquePrefix(µ) = {α | α ∈ Prefix(µ)∧ |α | ≥ k } .

Hence, the prefixes represented by the end of the backbone should be re-
moved from the suffix graph. This information might be sufficient to devise
a delete algorithm for the suffix trie, but more is needed for other suffix graph
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types. Two of these graph types use the path compression to save space. Re-
call that the path compression depends on the concept of right extension, and
it in turn relies on the set of explicit factors. The set of explicit factors then con-
tains the empty string, all right branching factors and all unique suffixes of the
underlying string. While the empty string will not change, the sets of unique
suffixes and right branching factorsmight. The following two claims are based
on Larsson’s [27] analysis of the problem and show the changes that deletion
introduces into these two sets.

Claim 4.3 (Right Branching Factor Set Changes on Delete [27])

Let µ ∈ ∗Σ and c ∈ Σ, then

BranchR(cµ) = BranchR(µ)
.
∪ {α | ContextRcµ(α) = { a, o }∧ a ≠ o∧αa ∈ UniquePrefix(cµ) } .

Thus, there are either no differences in branching factors or one factor ceases
to be branching. This factor is the longest non-uniqueprefix of cµ, which is also
right branching and has only two right contexts.

Claim 4.4 (Unique Suffix Set Changes on Delete [27])

Let µ ∈ ∗Σ and c ∈ Σ, then

UniqueSuffix(µ)
.
∪ { cµ } = UniqueSuffix(cµ)

.
∪ {α | α ∈ Suffix(cµ)∩Prefix(cµ)∧ |OccurRcµ(α) | = 2 }
= UniqueSuffix(cµ)

.
∪ ({LNUP(cµ) }∩ {LNUS(cµ) }) .

Like in the case of the set of right branching factors, the changes to the set
of unique suffixes are small. One unique suffix is lost and one may be gained.
The lost unique suffix is the string cµ itself. On the other hand, the new unique
suffix must be both the longest non-unique prefix and the longest non-unique
suffix at the same time. As the active point is located at the longest non-unique
suffix afterAppendSymbol, this happens if andonly if the activepoint lies on the
last edge of the backbone.

Changes that result from operation Delete appear to be trivial so far. But
what about the second technique used to reduce the space requirements? The
vertex minimisation depends on the right end equivalence and its classes. As
all prefixes of cµ lose one right occurrence and no other factors do, it is possible
that all right endequivalenceclasseson thebackbonechange. This need further
investigation.

Tomake the discussion easier, all non-degenerated classes are split into sev-
eral distinct class types. These class types and their properties are shown in
Table 4.1. Clearly, Type 0 holds all classes outside the backbone, while the back-
bone classes are split into seven different types. The following lemmawhich is
similar to those of Blumer [8] and Senft andDvořák [40]describes changes to all
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Type of [α]R
cµ

Prefix(cµ) |OccurRcµ(α)| |ContextLcµ(α)| Prefix(µ) |[α]Rcµ |

Type 0 α ∈/ ? ? ? ?

Type 1 α ∈ = 1 ( = 0) (β ∈/ ) > 1

Type 2 = 1

Type 3 > 1 = 1 (β ∈/ ) > 1

Type 4 β ∈/ = 1

Type 5 β ∈ ( = 1)

Type 6 > 1 (β ∈/ ) > 1

Type 7 ? = 1

Table 4.1. Right end equivalence class types for class [α]R
cµ
, where µ ∈ ∗Σ , c ∈ Σ,

α ∈ Factor(cµ), α = (α)R
cµ
and β = α[2 .. |α |]. Parensmark values that are derived

from other properties and question marks stand for unknown values.

eight class types. Note that Blumer’sversionof this lemmadoesnot distinguish
between Type 4 and Type 5, and overall does not handle strings that are prefixes
of both cµ and µwell.

Lemma 4.5 (Right End Equivalence Class Changes on Delete [40])

Let µ ∈ ∗Σ , c ∈ Σ, α ∈ Factor(cµ), α = (α)R
cµ
, β = α[2 .. |α |] , and γ be the longest

suffix of α not in [α]R
cµ
. In this situation, when [α]R

cµ
is of

Type 0 then [α]Rµ = [α]R
cµ

.
∪ {γ} if and only if [γ]R

cµ
is of Type 3 or Type 4.

Otherwise, [α]Rµ = [α]R
cµ
.

Type 1 then [β]R
µ
= [α]R

cµ \ {α} and [α]Rµ = DCR
µ.

Type 2 then [α]Rµ = DCR
µ.

Type 3 then [β]R
µ
= [α]R

cµ \ {α}, Context
L
cµ(α) = {a} and [α]Rµ = [aα]Rµ.

Type 4 then ContextLcµ(α) = {a} and [α]Rµ = [aα]Rµ.

Type 5 then ContextLcµ(α) = {a}, a = c, α = kc and [α]Rµ = [α]R
cµ = {α}.

Type 6 then [β]R
µ
= [α]R

cµ \ {α} and [α]Rµ = {α}.

Type 7 then [α]Rµ = [α]R
cµ = {α}.
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Type [αβ]R
cµ

Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7

Type 1 +

Type 2 + +

Type 3 + +

Type 4 + + + +

Type 5 + + + + +

Type 6 + + +

[α]R
cµ

Type 7 + + + + + + +

Table 4.2. Dependencies between the right end equivalence class types of α
and αβ on cµ. Valid class type combinations are marked using +.

While the lemma above describes what changes happen to each class type,
there is not much information that could be used to identify class types of ver-
tices during operation Delete. The following claim solves part of this prob-
lem as it describes partial ordering of class types on the backbone as shown
in Table 4.2. Note that the first two items are straightforward consequences of
definitions of occurrence and context, while the third item is easily obtained
from Claim 2.12.

Claim 4.6 (Right End Equivalence Class Type Dependencies)

Let αβ ∈ Factor(µ), then

(i) |OccurRµ(α)| ≥ |OccurRµ(αβ)|,

(ii) |ContextLµ(α)| ≥ |ContextLµ(αβ)|,

(iii) |[α]Rµ | ≤ |[αβ]R
µ
|.

Another bit of information useful in the identification of class types is
revealed in the following trivial claim.

Claim 4.7 (Right End Equivalence Class Types of [λ]R
cµ
and [cµ]R

cµ
)

Let µ ∈ ∗Σ , c ∈ Σ, then

(i) [λ]R
cµ
is of Type 5 if and only if cµ = kc , and it is of Type 7 otherwise.

(ii) [cµ]R
cµ
is of Type 1 if there exists another unique suffix of cµ, and it is of

Type 2 otherwise.
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Finally, the following claim describes the detection of class type for vertices
in both the DAWG and the CDAWG. It is a straightforward consequence of
DAWG and CDAWGdefinition.

Claim 4.8 (Right End Equivalence Class Types Detection)

Let µ ∈ ∗Σ , c ∈ Σ, α ∈ Factor(cµ), α = (α)R
cµ
and [α]R

cµ
is a vertex on the backbone of

graph Gwhich is a DAWG or a CDAWG for string cµ, then

(i) |OccurRcµ(α)| > 1 if and only if there exists a ∈ Σ such that [aα]R
cµ
is a

vertex of graph G.

(ii) |ContextLcµ(α)| = 1 if and only if there exists exactly one a ∈ Σ such that
vertex [aα]R

cµ
exists in graph G.

(iii) |ContextLcµ(α)| > 1 if and only if there exist a, o ∈ Σ such that a ≠ o and
vertices [aα]R

cµ
and [oα]R

cµ
exist in graph G.

(iv) α ∈ Prefix(µ) if and only if α = kc and c is the next symbol on the
backbone.

(v) |[α]Rcµ | = 1 if and only if no vertices above [α]R
cµ
on the backbone, includ-

ing [α]R
cµ
itself, have more than one in-edge.

The question of existence of vertices like [aα]R
cµ
can be answered using re-

versedsuffix links in theDAWG[8].However, thiswill notwork in theCDAWG
[40]. This is one of the side effects of the path compression and the resulting
change of many vertices and suffix links from explicit to implicit. For instance,
string aa is both left and right branching in string µ = aaaoaacaa, but vertex [aa]Rµ
hasno incoming suffix link. Thatmeans that tomonitor their existence,wehave
to resort to somethingmore complicate like tracing these strings in parallelwith
the strings on the backbone.

4.2.2 Algorithms

Now that we have enough information about changes made by a single op-
eration Delete, it is time to convert that knowledge into algorithms. The two
simple algorithms for the suffix trie and the suffix tree will be reviewed only
briefly, while most attention will be paid to the other two suffix graph types.

The changes in the suffix trie and the suffix tree are limited to the end of the
backbone. Specifically, they are limited to the part between the node repres-
enting the longest non-unique prefix at one end and the leaf representing the
longest prefix at the other. In the case of the suffix trie, the longest leaf and ver-
tices above are examined, and if they are neither branching nor holding the act-
ivepoint, theyaredeleted. TheworkofDeleteOldestSymbolisdoneassoonas
we reach the first vertex that is not deleted. While wemay also want to update
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the active point bymoving it sideways, the reset made by ResetActivePoint-
Positionmakes this action unnecessary.

The deletion process in the suffix tree starts in the longest leaf as well.
However, due to the path compression, the longest non-unique prefix is right
above it either as an explicit node or an implicit node with the active point. If
the active point is located on the in-edge terminating in the longest leaf, its
current implicit vertex is made explicit and becomes the terminal vertex of the
suffix link leading from the last but one leaf created. Moreover, it is attached
to the parent of the longest leaf using the edge that formerly terminated in the
longest leaf, which is deleted. The last action done by DeleteOldestSymbol in
this case is to move the active point sideways to the location of the new longest
repeated suffix. Otherwise, when the longest non-unique prefix is branching,
then the longest leaf and its in-edge must be deleted. However, the node rep-
resenting the longest non-unique prefix may now have only a single out-edge.
If this is the case, this node is changed from explicit to implicit and its incident
edges are concatenated into a single one. Nomore changes to the suffix tree are
necessary.

The description used above neglects to mention anything about the need
to find the longest leaf to start from. However, it is quite easy to keep track of
its changes during both AppendSymboland DeleteOldestSymbol. The longest
leaf is identical to the root in the empty graph and becomes separate as soon as
the first leaf is created. During AppendSymbol, the longest leaf does not change
in the suffix tree, but needs to be updated to the new leaf under it in the suffix
trie. On the other hand, as DeleteOldestSymbol removes it, its successormust
be found by using its suffix link, before it is removed from the graph. Note that
all actions needed by DeleteOldestSymbol and the longest leaf tracking are
cheapenoughnot to harm the time complexity and the sliding is asymptotically
as fast as the construction for both graph types.

With the simple cases of DeleteOldestSymbolout of theway, wemay turn
our attention to the complex cases of DAWG and CDAWG. As the changes to
these graph types may be quite extensive at times, it might be hard if not im-
possible to implement the perfect sliding in a time linear in the length of the
input string. Indeed, as proved by Blumer [8] for DAWGand Senft andDvořák
[40] for CDAWG, the perfect sliding in linear time is really not possible. The fol-
lowing lemma, adapted from [40], shows one type of stringwhich prevents fast
slidingwhich is illustrated in Figures 4.1and 4.2.Note that unlike previous ver-
sions of this lemma, this version handles both DAWGand CDAWG.Moreover,
as it requires only a binary alphabet, it also improves the result obtained by
Blumer for DAWG [8] that needed an alphabet with four symbols.

Lemma 4.9 (Adversary String for DAWGand CDAWGSliding)

Let k ≥ 2, m ≥ 1, a, c ∈ Σ, a ≠ c, ς = (ac m) a and µ ∈ Factor( kς ) such that
ςa ∈ Factor(µ). Let R = {[α]Rµ | α ∈ BranchR(µ) } and r = |R |, then
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Figure 4.1. CDAWG sliding over adversary string acacacaacacacaacacaca in a
windowof sizew = 14 (Part I).Thefirst three sliding steps after the buildphase
are shown. The symbolics used is described in Table 1.1.

r




= m+1 if µ[1] = a ,

≥ m+ p +1,where 0 ≤ p < m and c
p(ac) aςa ∈ Prefix(µ) if µ[1] = c .

Proof:

Note that R \ {λ} = {(ac i) a | 0 ≤ i ≤ m − 1 } ∪ {c(ac i) a | 0 ≤ i ≤ m − 2 } in either
case. Moreover, (ac i) a≡Rµ (ac

j) a if and only if i = j, and the same holds for

c(ac i) a≡Rµ c(ac j) a.

If µ[1] = a, then we also have c(ac i) a≡Rµ (ac
i+1) a for every 0 < i < m − 2.

Subsequently,R \ {λ} = {[(ac i) a]
R

µ
| 0 ≤ i ≤ m − 1 } and r = m+1, as stated.
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Figure 4.2. CDAWG sliding over adversary string acacacaacacacaacacaca in
a window of size w = 14 (Part II). The first three sliding steps after the build
phase are shown. The symbolics used is described in Table 1.1.

When µ[1] = c, there exists and integer p such that 0 ≤ p < m and
c(ac p) aςa ∈ Prefix(µ). Thus c(ac i) a ∈ Prefix(µ) for every i such that 0 ≤ i ≤ p.Con-
sequently, c(ac i) a≡/Rµ (ac

j) a for any j > i.Moreover, as a j(ac) a ∈ Factor(µ) for every

j satisfying 0 ≤ j < m, string j(ac) a is left branching in these cases. Therefore,
c

i(ac) a≡/Rµ
j(ac) a for every i satisfying j ≤ i ≤ p. On the other hand, equivalence

c
i(ac) a≡Rµ

i+1(ac) a still holds for every i such that p < i < m − 2, as in the previous
case. It follows that

R \ {λ } = { [(ac i) a]
R

µ | 0 ≤ i ≤ m − 1} .
∪ { [c(ac i) a]

R

µ | 0 ≤ i ≤min(p,m − 2) }
is a set of sizem+min(p,m − 2) + 1 ≥ m+ p. Thus, r ≥ m+ p +1, as expected. �
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The following theorem uses the adversary string from the lemma above to
show the impossibility of perfect sliding of DAWG or CDAWG in linear time.

Theorem 4.10 (Perfect Sliding Lower Bound for DAWGand CDAWG)

Let |Σ | ≥ 2, µ ∈ ∗Σ and 0 < w < |µ |. Then any algorithm maintaining DAWG
or CDAWG for a perfect sliding window of size w over string µ requires
AsymptoticLowerBoundIsw(|µ |−w) time in the worst case.

Proof:

Since at least |µ |−w steps of the algorithm are needed to move the sliding win-
dow from the initial to the final position, the lower bound holds for all w ≤ 5.

For w ≥ 6, put m = w−2
4  and ς = m(ac) a for distinct a, c ∈ Σ. Now, con-

sider the input string µ = |µ|ς [1 .. |µ |]where |µ | > w. As w ≥ 4m+2, each string
µ[i .. i +w − 1] contains ςa as a factor, for every i satisfying 1 < i < |µ |−w +1.
Since µ is a power of a string of length 2m+1, it suffices to consider
only i < 2m+1. Let Ri denote {[α]Rµ | α ∈ BranchR(µ[i .. i +w − 1]) }. Then, for
i = 1, 2, . . . , 2m+1, we obtain the following from Lemma 4.9:

|Ri |




= m+1 if i is odd ,

≥ 2m − i
2
+ 1 if i is even .

Subsequently, for every even i, at least m − i
2 branching vertices must be

altered to createRi from Ri−1. Assuming that this modification takes at least one
step of the algorithm, the total number of steps required to create Ri from Ri−1
for every i = 2, 3, . . . , 2m+1 is at least

2m
∑

i=2,i :even
(m − i

2
) =

m

∑
i=1

(m − i) =
2(m −m)
2

.

Thanks to the periodic nature of µ, this is also a lower bound on the number of
steps to construct Ri for every i = t +2, t +3, . . . , t +2m+1, where

t = q(2m+1) and 0 ≤ q <  |µ |−w +1
2m+1  .

Therefore, the total number of steps of the perfect sliding algorithm for DAWG
or CDAWG can be bounded from below by

 |µ |−w +1
2m+1 

2m −m
2

= Ω((|µ |−w)m) = Ω((|µ |−w) w − 2
4  ) = Ω((|µ |−w)w) .

Consequently, the total time complexity is bounded byΩ(w( |µ |−w)). �
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As the trivial scrap and build sliding algorithm reaches the above lower
bound, the exact bound on the complexity of perfect sliding of DAWG or
CDAWG is as follows.

Theorem 4.11 (Perfect Sliding Complexity of DAWGand CDAWG)

The problem to maintain a DAWG or CDAWG for a perfect sliding window of
sizew over a string on an alphabetΣhas the following amortised time complex-
ity per one sliding windowmove:

Θ(w) if |Σ | ≥ 2 ,

Θ(1) if |Σ | = 1 .

This settles thequestion of the complexity,but themotivation to create an in-
cremental algorithmthat doesonly theminimal changesnecessary remains. We
still want to preserve any information collected in the graph during the sliding
process. One possible solution is shown in Algorithm 4.2. Similar to what we
dowith the active point during AppendSymbol, we follow the so called backbone

point, this timedown the backbone. All necessary changes aremade in its vicin-
ity and are finished by eventual cleanup of unreachable part of the graph. The
details of every function used in this implementation of DeleteOldestSymbol
are presented below.

SimpleDeleteOldestSymbol

This function detects the case when the delete operation is simple, and
makes the necessary changes. The simple delete takes place only if there
is exactly one edge leading from the source. This in turn happens only if
cµ = c kα , which means that all vertices on the backbone below the source
are of Type 2. In that case, this functionmodifies the graph and returns true,
while it leaves the graph as is and returns false otherwise. The modifica-
tions needed in the simple case are minor. The sink and its incoming edge
are deleted in DAWG and nothing is done in CDAWG, as the open edge
leading to the sink will shorten automatically. Note that only the source
is left in the graph if cµ = c.Moreover, the active point must be moved one
symbol up from its current position in thenewsink, to thevertex represent-
ing the new longest non-unique suffix.

ComplexDeleteOldestSymbol

This function performs the deletion of the oldest symbol in complex cases,
which the SimpleDeleteOldestSymbol function cannot handle. The de-
lete is performed in four steps, where the first three only do initialisation.
FunctionsInitBackbonePoint,InitLeftContextsandInitClassType-
Flags prepare the backbone point, the left context of the backbone point
monitoring and the class type flags, respectively. The delete itself is then
done using function AdjustBackbonePointVertexLoop.
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void DeleteOldestSymbol()

{

if (! SimpleDeleteOldestSymbol())

ComplexDeleteOldestSymbol();

}

void ComplexDeleteOldestSymbol()

{

InitBackbonePoint();

InitLeftContexts();

InitClassTypeFlags();

AdjustBackbonePointVertexLoop();

}

void AdjustBackbonePointVertexLoop()

{

while ( MoveBackbonePointDown()

&& AdjustBackbonePointVertex())

;

}

Bool AdjustBackbonePointVertex()

{

UpdateLeftContexts();

UpdateClassTypeFlags();

return AdjustBackbonePointVertexByType();

}

Bool AdjustBackbonePointVertexByType()

{

switch (GetBackbonePointClassType()) {

case 1: return AdjustBackbonePointVertexOfTypeOne();

case 2: return AdjustBackbonePointVertexOfTypeTwo();

case 3: return AdjustBackbonePointVertexOfTypeThree();

case 4: return AdjustBackbonePointVertexOfTypeFour();

case 5: return AdjustBackbonePointVertexOfTypeFive();

case 6: return AdjustBackbonePointVertexOfTypeSix();

case 7: return AdjustBackbonePointVertexOfTypeSeven();

default: return true;

}

}

Algorithm 4.2. Outline of DeleteOldestSymbol that works on both the
DAWG and the CDAWG.

InitBackbonePoint

This function initialises the position of the backbone point, which starts in
the source.
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MoveBackbonePointDown

This function moves the backbone point one symbol down the backbone.
It returns false when the backbone point is in the sink before the move is
attempted, and returns true otherwise.

InitLeftContexts

This function initialises the tracing of strings confirming the existence of
left contexts of the backbone point vertex. It also remembers the last non-
unique vertex, i.e. when the backbone point had at least one left context
left for the last time. This is initialised to the source. As the backbonepoint
moves to the empty string at first, all one symbol long strings represented
in the graph are entered into the evidence.

UpdateLeftContexts

This functions updates the information about the existence of left contexts
of the backbone point vertex after it moved down the backbone. It moves
down from all vertices representing strings in its evidence, using the last
symbol used to move the backbone point down on the backbone. If such
move is not possible for some string, it is removed from the evidence.
Moreover, if there is still at least one string in the evidence, the last non-
unique vertex is set to the backbone point vertex.

InitClassTypeFlags

This functions initialises the flags used to detect the type of the right end
equivalence class of the backbone point vertex. There are only two flags
needed and both are initially set to true. One flag is for monitoring if the
class is trivial, i.e. has only a single member. The other flag is for monitor-
ing if the longest member of the backbone point class is a simple string,
i.e. kc .

UpdateClassTypeFlags

This function updates theflagsused todetect the typeof the right endequi-
valence class of the backbone point vertex. The flags are left unchanged
with the exception of the following two cases. If the trivial class flag is
true and the current backbone point vertex has two or more in-edges, then
the trivial class flag is set to false. If the simple string flag is true and the
last symbol used to move the backbone point down differs from the first
symbol of the underlying string, then the simple string flag is changed
to false.

AdjustBackbonePointVertexLoop

This function moves the backbone point down the backbone in a loop and
adjusts backbone vertices as required. It moves the backbone point down
using function MoveBackbonePointDown and then makes the necessary
changes using function AdjustBackbonePointVertex. It stops when
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either of the two function calls returns false, which is when the last vertex
that needed changes was adjusted.

AdjustBackbonePointVertex

This function is responsible for adjustments of the backbone around the
backbone point. It starts by updating the information needed for the de-
tection of the right end equivalence class type of the backbonepoint vertex.
FunctionsUpdateLeftContextsandUpdateClassTypeFlagsareusedfor
this. After that, the call to function AdjustBackbonePointVertexByType
performs the changes required by the detected class type. This function
returns the value returned by AdjustBackbonePointVertexByType.

AdjustBackbonePointVertexByType

This function detects the appropriate right end equivalence class type for
the backbone point using GetBackbonePointClassType and calls the ap-
propriate function to handle that type. These specialised functions are:
AdjustBackbonePointVertexOfTypeOne, AdjustBackbonePointVer-

texOfTypeTwo, AdjustBackbonePointVertexOfTypeThree, Adjust-

BackbonePointVertexOfTypeFour, AdjustBackbonePointVertexOf-

TypeFive, AdjustBackbonePointVertexOfTypeSix and AdjustBack-

bonePointVertexOfTypeSeven.

GetBackbonePointClassType

This function uses the information from flags, left context monitoring and
graph around the backbone point to detect the right end equivalence class
type. It returns 0, if the backbone point is at an implicit node. Otherwise,
it finds final values of properties deciding the class type and uses Table 4.1
to find and return the detected type. While the trivial class flag and the
context count do not need adjustment, the simple string flag does. If the
symbol under the backbone point on the backbone is the same as the first
symbol of the underlying string, the final value of the simple string flag is
true, and it is false otherwise.

AdjustBackbonePointVertexOfTypeOne

This function handles the case when the right end equivalence class at the
backbonepoint is of typeType 1.This is easy inDAWG,where the last expli-
cit edge used to move the backbone point is removed from the graph. The
changes inCDAWGare complicatedby implicit vertices. Like in the caseof
the suffix tree, the deciding factor is the last non-unique vertex,whichmay
be either explicit or implicit. If it is implicit, it is located on the last explicit
edgeused tomove thebackbonepoint down. In that case, this explicit edge
has its label shortened to reach only the last non-unique vertex position.
Moreover, the active point, which was in the last non-unique vertex, must
bemoved sideways, to the vertex representing thenew longest non-unique
suffix. Otherwise, the last explicit edge used to move the backbone point
down is removed from the graph. After that, the last non-unique vertex is
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verified to be either the source or a branching node, and is made implicit
otherwise. This function always returns true.

AdjustBackbonePointVertexOfTypeTwo

This function handles the case when the right end equivalence class at the
backbone point is of type Type 2. Any calls to this function signal a bug, as
all verticesof this typewere already solved in function SimpleDeleteOld-
estSymbol. This function always returns false.

AdjustBackbonePointVertexOfTypeThree

This function handles the case when the right end equivalence class at the
backbone point is of type Type 3. The last explicit edge used to move the
backbone point down is redirected to the location of the vertex confirm-
ing the last existing left context. If this vertex is implicit, the edge being
redirected and its label are adjusted accordingly. This function always re-
turns false.

AdjustBackbonePointVertexOfTypeFour

This function handles the case when the right end equivalence class at the
backbone point is of type Type 4. It performs the same steps as function Ad-
justBackbonePointVertexOfTypeThree does. However, it then contin-
ues by removing all vertices and edges that are no longer accessible from
the source, starting with the backbone point vertex. Note that suffix links
incident with vertices being deleted must be replaced to keep the suffix
graph valid after cleanup. Likely the easiest way to do so is to use reverse
suffix links and change every suffix link terminating in a node before it is
deleted. The terminal node of these suffix links is set to the terminal node
of the suffix link leading from the node that is currently being removed.
Finally, if the active point is encounteredduring cleanup, it must bemoved
sideways to its new location. This function always returns false.

AdjustBackbonePointVertexOfTypeFive

This function handles the case when the right end equivalence class at the
backbone point is of type Type 5. No changes are necessary for this class
type. This function always returns true.

AdjustBackbonePointVertexOfTypeSix

This function handles the case when the right end equivalence class at
the backbone point is of type Type 6. It creates a new explicit vertex with
out-edges that are duplicates of out-edges of the backbone point vertex.
After that, the last explicit edge used to move the backbone point down is
redirected to this new vertex. Also, reverse suffix links of the old node are
used to redirect all suffix links terminating in the old node to the new node
and the suffix link of the new node is terminated in the old node. Finally,
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the backbone point is relocated to the new vertex. This function always
returns true.

AdjustBackbonePointVertexOfTypeSeven

This function handles the case when the right end equivalence class at the
backbone point is of type Type 7. No changes are necessary for this class
type. This function always returns true.

Now that thedescription isfinished, it is time to examine its timecomplexity.
However, the following useful lemmawill be proved first.

Lemma 4.12 (Backbone Left Context Non-Equivalence)

Let a, c ∈ Σ, α, β ∈ Prefix(µ) and aα, cβ ∈ Factor(µ). If aα ≠ cβ, then aα ≡/Rµ cβ.

Proof: Suppose that this is not the case and aα ≡Rµ cβ.Without loss of generality
assume that |aα | ≤ |cβ |. By Claim 2.12 (ii), aαmust be a suffix of cβ and |aα | < |cβ |.
Moreover, since |aα | ≤ |β | < |cβ |, we get β ≡Rµ cβ from Claim 2.13. However, by
Claim 2.12 (iv), βmust be the longest member of [cβ]R

µ
which is a contradiction,

as cβ is a longer member this class. �

The following theorem settles the question of the time complexity of
Algorithm 4.2.

Theorem 4.13 (DeleteOldestSymbolComplexity)

The time required by a single call to Algorithm 4.2 is O(wB) in the worst case.
Herew is the length of the slidingwindowandB is the complexity of branching
in the worst case.

Proof: Since all functions called outside the loop in AdjustBack-

bonePointVertexLoop are called only once, their combined time complex-
ity is within the O(wB) bound in the worst case. On the other hand, func-
tions called from AdjustBackbonePointVertexLoop might be used up to w

times. However, all but UpdateLeftContexts, AdjustBackbonePointVer-
texOfTypeFour and AdjustBackbonePointVertexOfTypeSix are bounded
by O(B) in the worst case. The total time used by these function calls is then
O(wB) in the worst case. Thus the required time complexity in the worst case
ismet so far and the total cost of all calls toUpdateLeftContexts,AdjustBack-
bonePointVertexOfTypeFour and AdjustBackbonePointVertexOfTypeSix
remains to be analysed.

UpdateLeftContexts

This function is tracing vertices confirming the existence of left contexts of
prefixes. However, by Lemma 4.12, no vertex can be used to confirm the
existence of context twice. Moreover, by Claims 2.17 and 2.21, the number
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of vertices is bound by O(w) for both DAWG and CDAWG.Consequently,
the time required by this function is bound by O(wB) in the worst case.

AdjustBackbonePointVertexOfTypeFour

Apart from the cleanup of the no longer accessible part of the graph, this
function is the same as AdjustBackbonePointVertexOfTypeThree and
bound by Θ(B) in the worst case. Moreover, it is called at most once as
the loop in AdjustBackbonePointVertexLoop is terminated after this
function returns. Hence,we only need to verify that a single cleanupmeets
the requiredbound in theworst case. Clearly, there can benoexplicit nodes
of Type 0 to be removed as that would mean that this class changed in a
way not allowed by Lemma 4.5. Consequently, as only the explicit vertices
of the backbone are deleted, the number of vertices, edges and suffix links
changed is bound by O(w) in the worst case. Note that the numbers of
vertices and edges are given by Claims 2.17 and 2.21, while the number of
suffix links is limited by the number of explicit vertices, as there is at most
one suffix link leading from any vertex.

AdjustBackbonePointVertexOfTypeSix

All components of this function with the exception of edge duplication
and redirection easily fit into O(B) in the worst case. Since every edge is
redirected and duplicated at most once, the total time required by these
actions is bounded by O(wB) in the worst case. Note that this is the result
of Claims 2.17 and 2.21 which show that the number of edges is bounded
by O(w) in the worst case.

The preceding analysis confirmed that every component of Algorithm 4.2 is
bound by O(wB) time in the worst case. Therefore, as the number of compon-
ents is constant, the complexity of the entire algorithm is O(wB) in the worst
case, as expected. �

4.3 Edge Labels

While functions AppendSymbol and DeleteOldestSymboldo all the structural
modifications, they would not work if function UpdateEdgeLabels did not
help them. The reason why UpdateEdgeLabels is necessary lies in the path
compression which forces both the suffix tree and the CDAWG to have edge
labels with no constant length bound.

To achieve the desired linear space complexity, the edge labels are identified
by a pair of indexes to the input string. Even though the exact way of storing
these indexesmay differ in each implementation, there is still at least one index
used for every edge label. These indexes might be integrated into vertices and
shared on edge paths or on suffix link paths, but there are still going to bemany
of them.
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Now, when sliding comes into play, the string buffer referenced by label
indexes needs to be reused to conserve memory. However, as the buffer gets
overwritten with new symbols, the label indexes stored in the graph become
outdated and edge labels will change unintentionally. To prevent this undesir-
able effect, a way to keep these indexes up to date is needed.

There are several trivial algorithms that can update these indexes. For ex-
ample, all label indexes in the graph can be updated during a depth-first tra-
versal after every delete or update. Another approach would update all offsets
on the path from the root to the last leaf created following every new leaf cre-
ation. However, these algorithms are slow and update indexesmore often than
necessary. The rest of this section is devoted to the description and analysis of
more efficient techniques that solve this issue. Note that this section is based on
material presented at WDS’05 [44].

4.3.1 Batch Update

Likely themost straightforwardway to keep labels valid in amortised constant
time per update is a batch update algorithm [42, 44] which works for both
the suffix tree and the CDAWG. This algorithm does a simple depth-first full
update throughout the graph, propagating the newest indexes found up. To
achieve the desired time complexity, it does so only once every f w symbols,
where f > 0 is some fixed positive fraction. Consequently, the size of the string
symbol buffer has to grow to at least (1+ f )w symbols, to prevent overwriting of
symbols that are still in use. Moreover, thedata typesused to store indexeshave
to be enlarged to compensate for the value interval enlargement. However, this
approach does not need reverse edges to operate unlike those below.

4.3.2 Fiala’s and Greene’s Percolating Update

While the batch update works, it is quite crude and more sophisticated update
methodsworking in total linear time in the length of string exist, at least for the
suffix tree. The first of themwas devised by Fiala and Greene when they made
the suffix tree slide for the first time [14].

They observed that, due to the heavy use of suffix links during the suffix
tree construction, many nodes are not entered regularly and their indexes and
labels on their edges can become outdated. Also, while it would be possible
to update all ancestors after every new leaf creation, it would be unnecessarily
slow andwould update nodes near the root far too often. To prevent this, they
devised the so called percolating update that employs accounting to prevent
overupdating and achieve a total linear number of updates over the whole
sliding process.

First, the suffix tree is extended to include accounting information. Every
node in the suffix tree gets a credit counter that is initially set to 0 and can only
grow to 1. Moreover, function UpdateEdgeLabels does nothing and functions
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CreateEdgeFromActivePoint and DeleteOldestSymbolmust be adjusted to
do the following actions.

CreateEdgeFromActivePoint

When a new leaf is created, two credits are spent for updates. The first
credit is paid for the update of the leaf’s parent in-edge, while the second
credit is sent to this parent to be used later. After that function UpdateAnd-
Propagate is called on leaf’s parent to continue updates above.

DeleteOldestSymbol

When a node is deleted, the node’s credit counter is ignored, and two new
credits are spent, like on creation. However, this case requires caution, as
the child’s index may not always be more recent than the parent’s index
during this update.

UpdateAndPropagate

When a node receives a credit from one of its children, its credit counter
is checked, and one of the following two actions is taken. When the credit
counter is equal to 0, the counter is just incremented to 1 and update ends
here. Otherwise, the credit in the node’s account is used to update the
index in node’s parent and the second credit is sent to this parent. The
credit counter in the current node is decremented and the update proceeds
to its parent.

Note that an efficient implementation of this technique requires the use of
reverse edges.

The accounting method can be used to verify that this algorithm works in
a total linear time. The total amount of credits used depends on the number of
create-leaf and delete-leaf operations and the credits used for each of them. As
there are at most as many new leaves created and deleted as there are symbols
in the input string, and two credits are distributed during every create or
delete operation, the sum is linear in the length of the input string. Moreover,
every update is paid for by one credit and so the number of updates is also
linear. Consequently, if the update takes only a constant time to perform, this
algorithmworks in an total linear time.

4.3.3 Larsson’s Percolating Update

Building on Fiala’s and Greene’s work, Larsson developed an algorithm that
works differently on vertex deletion. This time the node being deleted only up-
dates its parent if it has a credit in its credit counter. The rest of the algorithm,
as well as the time complexity is shared with the original. Note that a version
of this algorithm adapted for the CDAWG was outlined by Inenaga et al. [21].
However, it is designed for their approximate sliding algorithm and is not
guaranteed to achieve a total linear time in the worst case if used for perfect
sliding.
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Figure4.3. Exampleof a situationwherepercolatingupdateproofs fail. This is
the first step in the transition from the suffix tree for string coco to the suffix tree
for the string cocoa. The full construction is in Figure 5.3. The symbolics used is
described in Table 1.1.

4.3.4 Percolating Update’s Correctness

While the proof of correctness of the batch update is trivial, the percolating
update calls for a detailed analysis.

So far, there were three attempts to prove the correctness of the percolating
update. Thefirst two attemptsweremadeby Fiala andGreene for their original
algorithm [14] and Larsson for his version of the algorithm [27]. Unfortunately,
as was noted by Senft [42, 44], neither of these attempts succeeded, despite
trying two different approaches. The theorem formulated by Fiala and Greene
is too weak to prove the label correctness, while the theorem that Larsson tried
to prove is invalid. The correctness issue was finally settled by Senft, who
proved both versions to be correct [44].

The theorem that Fiala and Greene attempted to prove reads as follows:
“Using percolating update, every internal node will be updated at least once
every w sliding windowmoves.”. However, this index update may update the
index value to a newer, but still relatively old value which turns invalid before
the next update. Moreover, the proof given is invalid for exactly the same
reasons as that of Larsson.

Apparently, Larsson noticed the issues of Fiala’s and Greene’s algorithm,
correctness theorem and its proof. He tried to fix all of these issues by adjusting
the algorithm and providing a new theorem and proof. He used the notion of
a fresh credit to formulate his theorem which reads: “Each node has received a
fresh credit from each of its children.”. The fresh credit is a credit that reached
the current node from a leaf that is still present in the tree. Unfortunately, this
theorem is invalid, as any new node created in the tree does not update its
parent during its creation. Consequently this parent does not receive a fresh
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credit from this child, which is a contradiction. Moreover, the new node breaks
the condition as well, as it does not receive a fresh credit from its older child.
Both issues are illustrated in Figure 4.3.Note that the same situation also breaks
Fiala’s and Greene’s proof of their weak theorem.

Now that the issues of the first two attempts to prove correctness of percol-
ating update are known, it is time to show a solution to the question of its cor-
rectness. To ease the discussion, the concept of ancient node is introduced. A
node is ancient if the leaf it was created with was already deleted from the tree.
Clearly, every ancient node must be older than any non-ancient node or any
leaf. Moreover, all non-ancient nodes and leaves have their indexes up-to-date
and only ancient nodes need to be verified. Also, root node has no in-edge that
needs updating as edges from the bot are handled differently.

Theorem 4.14

Every ancient node with the exception of the root received at least one fresh
credit from every subtree rooted in one of its children.
Proof: To prove the theorem by the way of contradiction, let there be a suffix
treewith ancient nodeα that did not receive a fresh credit from subtreeS rooted
at its child αβ.Moreover, let α be such that all other ancient nodes in its subtree
received all required fresh credits. What happened to fresh credits from each
subtree is analysed below.

1. If the root of the subtree S is a leaf αβ, then the ancient node α received a
fresh credit from it for the following reasons. As the ancient nodeα is older
than any fresh credit, no fresh credit could skip it. Moreover, credits are
never lost during node deletion and if they are used for update, they are
used in pairs, and then the one that is more fresh is sent up. Thus a fresh
credit had to reach the ancient node.

2. If the root of the subtree S is another ancient node αβ, then the situation is
similar to case 1. All ancient nodes were present in the tree before the fresh
credit. Moreover, αβ received at least two fresh credits and subsequently
sent one up, and credits never get lost.

3. If the root of the subtree S is a non-ancient node αβ, then there are two pos-
sibilities:

a. The non-ancient nodeαβ received a fresh credit from at least one child
different from the leaf it was created with. Thus it must have sent
a fresh credit to its parent. Again, the fresh credit from this subtree
reaches α for reasons given in cases 1 and 2.

b. Otherwise, the non-ancient node αβ received a fresh credit only from
the leaf it was createdwith. Due to this, itmust haveonly two children
as any additional out-edge would have to be created with a new leaf,
which would update αβ and give it a second fresh credit. One subtree
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contains the leaf that came with αβ, along with one fresh credit. The
other subtreedid not send a fresh credit toαβ yet. Thus the root of this
subtree αβγ can not be a leaf newer than αβ, but it can be of any of the
following three types.

i. The root αβγ is an ancient node or a leaf older than its parent.
Such vertex sent a fresh credit upbefore theαβγwas created. This
fresh credit was sent from the subtree S up and received by α.

ii. The root αβγ is a non-ancient node that sent a fresh credit up
before the current parent was created. Again, a fresh credit was
sent from the subtree S and received by α.

iii. The root is a non-ancient node that has not yet sent a fresh credit
up. There can be an arbitrarily long, but finite, sequence of such
non-ancient nodes in a parent-child relationship. The last node
in this sequencemust have a child that is covered by case i or case
ii. Thus even in this case the subtree S sent a fresh credit that was
received by α.
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Hence, by every accounting, the ancient node α must have received a fresh
credit from subtree S rooted at αβ, which is a contradiction. �
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5. Compression

The last step on the path to the suffix graph based data compression is made
here. This chapter builds on all previous chapters to derive, describe and
analyse this concept. All material used in this chapter is based on our original
research, but parts of it were already published elsewhere [42, 43, 41].

While both the suffix tree based data compression and the suffix graph
based data compression ideas are novel, suffix graphs were used in data com-
pression long before they were formulated. Specifically, it was the suffix tree
that was used to implement searching and sorting in various compression
methods. These methods include the Ziv-Lempel’77 (ZL77) dictionary com-
pression type [14, 38], the Prediction by Partial Matching (PPM) type [26, 38]
and theBurrows-WheelerCompression (BWC)type [3, 38].Luckily, an apparent
inefficiency that was spotted in the work of Fiala and Greene on ZL77 [14] led
to the idea of the suffix tree based data compression [42, 43, 41]. This idea is ex-
tended here to the idea of suffix graph based data compression.

The first section of this chapter describes the origins of the suffix tree based
data compression.The later sections then elaborate on the idea, add details and
provide both theoretical and practical analysis.

5.1 Suffix Tree and Data Compression

As already noted above, the suffix tree has a long history in data compression
applications [14, 26, 3]. At least three major lossless data compression methods
were implemented using the suffix tree. For example, in 1989 Fiala andGreene
used a depth limited sliding suffix tree to implement the match searching in a
ZL77-type dictionary compression method [14, 38]. Seven years later, Larsson
described a way to use the suffix tree for context searches in a PPM-style com-
pressionmethodwith unbounded context length [26, 38]. Three years after that,
Balkenhol et al.replacedthe string rotation sortingBurrows-WheelerTransform
(BWT) used in BWCwith a similar suffix tree based suffix sorting transform [3,
38]. While these applications certainly proved the versatility of the suffix tree,
they did not take a full advantage of this structure and its properties. It was
mainly because the suffix treewas perceivedonly as a tool for an efficient string
searching and sorting.

The use in the BWC alternative is the best example of this approach among
the three applicationmentionedabove. In this case, the suffix tree is used solely
for suffix sorting and nothing else. On the other hand, the application to the
PPM-style compression is theone closest to realising the full potential of the suf-
fix tree. Here Larsson takes advantage of the natural ability of the active point
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Figure 5.1. ZL77-typematch search as a byproduct of the suffix tree construc-
tion. The input string is cococo and a suffix tree was already constructed for
prefix coco. As the algorithm proceeds to append the next two symbols, a two
symbol long match co is found. The symbolics used is described in Table 1.1.
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Figure 5.2. ZL77-typematch search as a byproduct of the suffix tree construc-
tion. The input string is cocacoac and a suffix tree was already constructed for
prefix cocaco.As the algorithmproceeds to append the next two symbols, a two
symbol long match ac is found. The symbolics used is described in Table 1.1.
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to follow PPM contexts of the current symbol during construction. While the
propertiesof the suffix treearenot usedasmuch in the thirdapplication, the fact
that they are not used helped us to devise the suffix tree based data compres-
sion. Fiala andGreene implementedaZL77-typedictionarymethodwith a slid-
ing window to save space and a depth limited suffix tree to speed up searches
for string matches. Even though they were the first to find a way to make the
suffix tree slide, they did not use its full potential. Whether the depth limit on
the tree was the cause or the effect is not clear. However, they certainly look
for matches using searches starting at the root, while they could have obtained
themas abyproduct of the construction algorithmof thenormal suffix tree. The
details of this match searching approach are revealed in the next section.

5.2 Suffix Tree andMatch Search
When a ZL77-type dictionary compression method looks for a match, it
searches for a prefix of the as yet unprocessed part of the input string in the
already processed part [38]. The match may extend into the unprocessed part
of the string, provided that it starts in the already processed and known part. If
we have a suffix tree built for the already processed part of the input string, we
may search for a match by starting at the root and following the unprocessed
part of the string as far down aswe can. While this is straightforwardandfinds
all matches in a guaranteed linear time, it is not themost efficientmethod avail-
able. A more sophisticated method would employ the properties of the con-
structionalgorithmtofindmatchesdirectlyduring construction,without separ-
ate searches. Obviously, the construction algorithm has to be selectedwith this
application inmind. Fiala andGreeneusedMcCreight’s algorithm,but Ukkon-
en’s algorithm can be used as well. As these construction algorithmsmove the
active point, they search for a prefix of the unprocessed part of the input string
in the suffix tree. The movement of the active point can then be translated into
a match as follows.

As the search for the next match begins, the active point is located some-
where in the tree. Note that this search cannot start while the active point is in
the bot as this signals that the algorithm is dealing with a symbol which is not
in the suffix tree. From the match searching point of view, the only important
property of the active point is its depth in the tree. As soon as the search begins,
any downwardmovement of the active point extends the match length by one
symbol. Note that this works only as long as the number of sideways moves
is lower than or equal to the original depth of the active point. The reason is
that every move sideways brings the vertex where the match starts closer to
the root. Moreover, the root is reached exactly when then number of sideways
moves equals the original depths of the active point. The search for amatch can
be stopped at any time, for instance, when a match length limit is reached or
the match is deemed to be good enough. The offset needed to complement the
match length can then be obtained from a nearby edge label easily.
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Two examples of the conversion of the active point movement to a match
are shown in Figures 5.1 and 5.2. The first one shows a straightforward case,
where the match is found immediately. The second case is more complicated
and requires the active point tomove all theway to the root before anymatch is
found at all. Note that evenmore complex caseswith downward and sideways
movement interleaving are possible.

Apparently, this approach to match search was never published before it
appeared inmyMaster’sThesis [42].However, a similar suffix tree based search
algorithm was already used in an early versions of the Info-ZIP, before it was
replaced by a hash based search algorithm [1]. Nevertheless, this discovery for
ZL77 — in combination with discoveries made by Larsson for PPM — led to
the idea of the suffix tree based data compression, which is described in the
next section.

5.3 Suffix Tree Based Data Compression

The two preceding sections demonstrated that, in a way, both PPM and ZL77
compression methods just replace the input with a description of the active
point movement throughout the suffix tree. While they share this quality, they
represent two very different lossless data compression groups, which brings
an interesting question. If the suffix tree is so versatile that it can do this, what
other compressionmethods can be implemented this way? Or better yet, what
new compression methods can be devised?

The input string determines the behaviour of the suffix tree construction by
influencing the movement of the active point. Consequently, any description
of the input string, or active point movement in general, can be used to drive
the construction algorithm. So, for example, as the output of every losslessdata
compressionmethod fully describes the input string, it can drive the suffix tree
construction. Thus, one extreme view says that every lossless data compres-
sion method falls into the group of suffix tree based data compression meth-
ods. Nevertheless,using the suffix tree construction algorithm to reproduce the
samedatamight be really hard if not entirely impossible. Hence, onlymethods
wherecompressioncan be implementedeasilyusing the suffix treeconstruction
will be included in the new lossless data compression method (STC) family.

The general idea is to use one of the left-to-right construction algorithms,
and, while doing so, somehow save the directions needed to mirror the active
point movement on decompression. However, it may not be clearwhether this
description contains enough information for the decompression of the input
string. The reason why it does is that every time the active point moves down,
a symbolmust be selected through the edge choice. Since these symbols are the
same symbols that made the active point move down during the compression,
they can be used to recover the original string.

While a suitable left-to-right construction algorithm was already described
and analysed, the description of the active point movement needs more atten-
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tion. We have already dealt with two approaches. One uses the conversion to
matches, described in Section 5.2, to create a ZL77-type compression method,
which does not need the suffix tree for the decompression. The other one de-
scribes every single a-edge and suffix link choice separately, to create a PPM-
style compression method as suggested by Larsson [26].

One important differencebetween the twomethods is that one describes the
active point movement in chunks, while the other handles each step separately.
These method types will be denoted by stc_m and stc_u from now on. Here
the last letters are chosen to remindus of the similarity these approacheshave to
thoseused in construction algorithmsbyMcCreight andUkkonen, respectively.
LikeMcCreight’s algorithm,stc_mmethodsappear to beoptimistic andbelieve
that they will be able to move down a long way before a move sideways is
needed. On the other hand, stc_umethods are similar toUkkonen’s algorithm
in that they appear to be more pessimistic and try to move only one symbol at
a time.

Note that stc_m-typemethodsbehave likedictionary compressionmethods
enhancedwith a PPM-styledictionary selection. When compared to the related
LZFG-PMmethod by Hoang et al. [19], the methods introduced heremaintain
more compact dictionarieswith higher level contexts. On the other hand,when
compared to the LZP4 introduced by Bloom [5], the main difference is that our
methods can have more than one phrase in each context.

The following lists several methods that can be created using different
approaches to the active point movement description. To better illustrate how
these methods work, string cocoao is converted to instructions that would be
saved by each respective method. The step-by-step construction of the suffix
tree for string cocoao is displayed in Figure 5.3 to aid in the process.

stc_u

As already noted above, this method saves each edge or suffix link choice
separately. Its instructions are of two types. One type is (a), which signals
that the a-edge was used to move down from the current active point
location. Note that this is used even in implicit nodes, where there is no
choice. The other type then signals the use of the explicit or implicit suffix
link by storing token (esc). The instructions saved by this method for our
example string cocoao read as follows:

(esc)(c)(esc)(o)(c)(o)(esc)(esc)(esc)(a)(o)

stc_m0

This method is a variant of the ZL77 compression method, which uses the
conversion of the active point movement to matches and literals. Literals
are denoted by (a), while matches are described using a pair of integers
(1, 7). Here the first component is the match length and the second is an
index of one of its left occurrences starting in the already processed part
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Figure 5.3. Step by step construction of SuffixTree(cocoao) with action com-
ments. The symbolics used is described in Table 1.1.
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of the input string. The instructions saved by thismethod for our example
string cocoao read as follows:

(c)(o)(2, 1)(a)(1, 2)

stc_m1

This method stores the active point movement description split into max-
imal sequences of downward moves. Such sequence is ended by the first
sideways move. Each sequence is described using its length and all the
edge choicesmade in explicit nodes on the way (2, ao). The sidewaysmove
that followed this sequence is added to the end of every downward se-
quence automatically on decompression and is not saved explicitly. The
instructions saved by this method for our example string cocoao read as
follows:

(0)(1, c)(3, oc)(0)(0)(2, ao)

stc_m2

This method changes its behaviour depending on whether or not the
active point lies in an explicit node. If it does, then the edge choice made
here or a sideways move is saved using tokens used in stc_u. Otherwise,
a flag signalling whether the next explicit node was reached during the
downward movement is saved. If it was not, then the number of moves
down from this implicit node is saved as well. This pair is represented by
tokens like (false, 0), where the first component is the flag. The instructions
saved by this method for our example string cocoao read as follows:

(esc)(c)(esc)(o)(c)(false, 1)(false, 0)(esc)(a)(o)

stc_m3

This method is a modification of method stc_m2. If the target node on the
current edge is not reached, this method falls back to a stc_u-like decision
description. Apart from tokensusedby stc_u, thismethodalsomakesuse
of a flag token type (false). The instructions saved by this method for our
example string cocoao read as follows:

(esc)(c)(esc)(o)(c)(false)(o)(esc)(false)(esc)(esc)(a)(o)

stc_m4

This method is a simple modification of method stc_m1. After a sideways
move places the active point in an explicit node, only the edge or link
choice made here is saved in a stc_u-like fashion. Otherwise, the beha-
viour is the same as that of stc_m1. The instructions saved by this method
for our example string cocoao read as follows:

(esc)(c)(esc)(o)(2, c)(0)(esc)(a)(1, o)
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Figure 5.4. Step by step construction of CDAWG(cocoao) with action com-
ments. The symbolics used is described in Table 1.1.
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stc_m5

This method saves the identification of the implicit or explicit node where
the downward movement sequence stopped. Note that this is similar,
but not identical, to the C2 method described by Fiala and Greene [14]. It
uses tokens of two types used for explicit and implicit node, respectively.
One type stores only the identifier of the explicit node ([coa]). The other
type type has two components ([ao], 2). They are the terminal vertex of the
current edge and the distance from this vertex to pinpoint the active point
location. Note that thismethod has to fall back to an stc_u-like behaviour
in the bot. The instructions saved by this method for our example string
cocoao read as follows:

([λ])(c)([λ])(o)([cocoa], 3)([ocoa], 3)([λ])(a)([o])

5.4 Suffix Graph Based Data Compression

While the preceding section dealt only with the suffix tree, the other three suf-
fix graph types are very similar and might be used in the same way. As de-
scribed in Chapter 3: Construction, all four suffix graph types have construc-
tion algorithms with a common base. Consequently, all important properties
are shared among these algorithms and the active point movement can be used
like in the case of the suffix tree based data compression. However, while the
conversion to the suffix trie is straightforward, somemethods, like stc_m5, are
not convertible to the DAWG or the CDAWG.Nevertheless, while the simpler
edge label of the suffix trie might be useful, the DAWG and the CDAWG are
more interesting alternatives due to their common subtree elimination. One of
the positive effects this can have is that there can be less suffix links to be tra-
versed when an attempt to move down fails. Note that this is not the case in
our examplewith string cocoao, as the subtreemerging happens too late to influ-
ence the outcome. This is illustrated in Figure 5.4. Consequently, the outputs of
all above mentioned methods that can be converted from the suffix tree to the
CDAWG, stay the same. However, if we change the string to cocoacoo, therewill
be one less use of a suffix link.

5.5 Implementation

So far, all descriptions of our compression methods were high level. The
purpose of this section is to fill in the practical details.

As the main memory is not likely to be able to hold a suffix graph for long
input strings, its use must be limited. The are basically two choices, one starts
from scratch after reaching memory limit, while the other tries to free some
space and continue. Since we would like to preserve the information collected
in the graph so far, we prefer the second alternative in the form of a perfect
sliding window algorithm. However, as shown in Chapter 4: Sliding, this is
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FILE Description Size [B]

Calgary Corpus

BIB Bibliography (refer format) 111261

BOOK1 Fiction book 768 771

BOOK2 Non-fiction book (troff format) 610 856

GEO Geophysical data 102 400

NEWS USENET batch file 377 109

OBJ1 Object code for VAX 21504

OBJ2 Object code for AppleMac 246 814

PAPER1 Technical paper 53 161

PAPER2 Technical paper 82 199

PIC Black and white fax picture 513 216

PROGC Source code in C 39 611

PROGL Source code in LISP 71646

PROGP Source code in PASCAL 49 379

TRANS Transcript of terminal session 93 695

Silesia Corpus

DICKENS Collectedworks of Charles Dickens 10 192 446

MOZILLA Tarred executables of Mozilla 1.0 (Tru64 UNIX edi-
tion)

51220 480

MR Medical magnetic resonance image 9 970 564

NCI Chemical database of structures 33 553 445

OOFFICE A dll from Open Office.org 1.01 6 152 192

OSDB Sample database in MySQL format from Open
Source Database Benchmark

10 085 684

REYMONT Text of the book Chłopi by Władysław Reymont 6 627 202

SAMBA Tarred source code of Samba 2-2.3 21606 400

SAO The SAO star catalogue 7 251944

WEBSTER The 1913Webster UnabridgedDictionary 41458 703

XML Collected XML files 5 345 280

X-RAY X-ray medical picture 8 474 240

Linux Kernel

LINUX Tarred source code of Linux kernel 2.4.14 126 566 400

Table 5.1. Test file descriptions.
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easy only for the suffix tree as the time complexity of alternatives is quadratic.
This led us to the decision to initially limit our tests to suffix tree methods.

Methods stc_u, stc_m1and stc_m4were selected for implementation and
practical tests. Theymaintain a suffix tree for the perfect slidingwindowusing
variants of the algorithm described in Chapter 4: Sliding, which employs the
batch label maintenance technique. All three methods also produce the active
point movement description in tokens described above. However, a way to
save these tokens as efficiently as possible is needed. Two components are
necessary to make this possible, one is the probability estimation and the other
is the coding algorithm. The problem of the coding algorithm is solved using
an advanced combination of the Piecewise Integer Mapping arithmetic coder
[48] and Schindler’s Byte Renormalisation [46]. However, the solution to the
probability estimation problem is more complicated.

There are several types of probability estimation contexts to handle. In
stc_u there are two types of contexts, one in an implicit node and another in
an explicit one. The situation in stc_m1and stc_m4 is similar in that there are
also contexts for explicit nodes, but the second context type is used for sequence
lengths. As we aim for simplicity for these proof-of-concept implementations,
we use only a single global context for all lengths. The length frequency coun-
ters used for estimation are stored in aMoffat Tree [33] and any lengthmust ap-
pear at least twice before it is addedwith a count of one. Moreover, to estimate
theprobability of lengths that arenot yet present in this structure,weuse escape
probability estimation technique AX [34]. Note that the match length limit for
stc_m1and stc_m4 is set to the sliding window size.

When it comes to the explicit and implicit node contexts, another simple
solution is used. Edge usage counter is added to every edge. It is incremented
when the edge is chosen during branching and halved during batch edge la-
bel update. The probabilities in an explicit node are then estimated using the
combination of all out-edge counters and method AX. However, the bot node
is a special case as the active point cannot move sideways. In this case all input
symbols and the end-of-file symbol are handled as equiprobable. The end-of-
file symbol is used to signal the endof the compression/decompressionprocess
and is not written out on decompression. In a way similar to the explicit node
case, the implicit node probabilities are decided using the current edge counter
and the use of an implicit suffix link has a fixed frequency of one. To improve
these estimates, the exclusion technique [38, Section 6.3.4] is used to eliminate
edges that cannot be selected from the probability computation.

5.6 Experiments

Following the analysis of both theoretical and practical issues, it is time for
some experiments. Note that the results shown herewere previously presented
at the Data Compression Conference [41].
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File bzip2 ctw gzip stc_m1 stc_m4 stc_u

MOZILLA 2.798 3.049 2.966 3.481 2.944 2.922

MR 1.958 1.827 2.947 2.656 2.104 2.438

NCI 0.432 0.519 0.712 0.641 0.465 0.484

OOFFICE 3.722 3.669 4.018 4.333 3.844 3.853

OSDB 2.223 2.042 2.947 2.978 2.417 2.436

REYMONT 1.504 1.238 2.198 2.131 1.697 1.677

SAMBA 1.684 1.929 2.002 2.140 1.741 1.744

SAO 5.450 5.191 5.876 6.628 5.930 5.923

WEBSTER 1.668 1.331 2.327 2.174 1.772 1.741

X-RAY 3.824 3.562 5.699 4.620 4.030 4.529

XML 0.660 0.643 0.991 0.935 0.704 0.720

Avg. 2.343 2.235 2.976 2.956 2.498 2.567

Table 5.2. Silesia Corpus compression results in stored bits per input byte
(bpB). Boldface numbers denote the best result of all programs tested, while
slanted numbers do the same for STC programs.

Implementations of three different suffix tree based methods, stc_m1,
stc_m4 and stc_u are compared to three distinct compression methods. Spe-
cifically, ZL77, BWC and the Context-Tree Weighting (CTW) [53] methods are
used in this comparison. These compression methods are represented by pro-
gram gzip [17], program bzip2 [45], and program ctw [16], respectively. All
six programswere compiled using theGNUC/C++ compiler version 3.3.6 and
tested under the Gentoo GNU/Linux operating system on a computer with an
Athlon 1.3GHz CPU and 768MBDDR RAM.

To get a good picture of the properties our algorithms have, both speed and
compression were tested on the following three data sets.

Calgary Corpus
The Calgary Corpus is a defacto standard lossless data compression test
corpus [4]. Its biggest advantage is that there are many results for this
corpus available both on-line and in the literature.

Linux 2.4.14
This dataset is a single file, the TAR archive of the source code of the Linux
Kernel version 2.4.14 [50]. It is the largest of all test files in use.

Silesia Corpus
When compared to the Calgary Corpus, the Silesia Corpus is more recent,
much larger andhas awider selection of file types. Another advantage this
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File bzip2 ctw gzip stc_m1 stc_m4 stc_u lzfg-pm lzp4

BIB 1.97 1.82 2.51 2.53 2.11 2.13 2.44 1.92

BOOK1 2.42 2.17 3.25 2.68 2.71 2.79 3.28 2.35

BOOK2 2.06 1.86 2.70 3.16 2.26 2.32 2.78 2.01

GEO 4.45 4.53 5.34 5.62 4.99 5.02 5.63 4.74

NEWS 2.52 2.34 3.06 2.99 2.59 2.65 3.25 2.35

OBJ1 4.01 3.72 3.84 4.59 4.06 4.10 4.32 3.74

OBJ2 2.48 2.36 2.63 2.90 2.52 2.56 3.04 2.39

PAPER1 2.49 2.28 2.79 2.96 2.58 2.64 2.74 2.38

PAPER2 2.44 2.22 2.89 3.04 2.62 2.69 2.80 2.39

PIC 0.78 0.79 0.82 1.22 0.96 0.92 0.93 0.81

PROGC 2.53 2.33 2.68 2.96 2.60 2.66 2.74 2.39

PROGL 1.74 1.59 1.80 2.03 1.74 1.77 1.80 1.59

PROGP 1.74 1.63 1.81 1.97 1.71 1.73 1.81 1.59

TRANS 1.53 1.39 1.61 1.71 1.46 1.46 1.67 1.34

Avg. 2.37 2.22 2.69 2.88 2.49 2.53 2.80 2.28

Table 5.3. Calgary Corpus compression results in stored bits per input byte
(bpB). Boldface numbers denote the best result of all programs tested, while
slanted numbers do the same for STC programs.

corpus has is that results for some of the best methods published so far are
available at the corpus site [10].

The name, description and size of all test files are shown in Table 5.1.
Every program was run with its maximum compression settings available

enabled. The STC methods were set up to use a sliding window of at most 212
bytes, a limit imposed by the memory available for tests.

The compression results for the Silesia Corpus are shown in Table 5.2. Here
the stc_m4 method offers better compression than stc_u method, but the
difference is less then 0.1 bit stored per byte of input (bpB). However, both of
them provide a significantly better compression than the stc_m1, as the gap
is almost 0.5 bpB. When ctw and bzip2 are added into the comparison, their
maturity shows in their results that are 0.263 bpB and 0.155 bpB better than the
best STC result, respectively. Finally, gzip offers the worst compression and is
outperformed by all other compression methods used.

One of the advantages of the Calgary Corpus is that it is a defacto standard
andmany researchers have published their results for this dataset. This makes
it possible to compare the six tested programs with dictionary methods lzfg-
pm [19] and lzp4 [5] that are related to the STC family. The results for these
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File bzip2 ctw gzip stc_m1 stc_m4 stc_u

Compression [bpB] 1.466 1.814 1.814 1.689 1.398 1.406

Compression [KiB/s] 1392 11 2 967 203 205 191

Decompression [KiB/s] 5 902 11 63 450 213 195 173

Table 5.4. Linux 2.4.14 compression and speed results. Boldface numbers
denote the best result of all programs tested, while slanted numbers do the
same for STC programs.

two methods were added to the results of the six programs tested and put into
Table 5.3. Note that results for the six programs tested are very similar to those
for the Silesia Corpus. However, this time stc_m1came 0.1 bpB closer to other
STCmethods, butwas stillworse than gzipby 0.19bpB.The comparisonof STC
methods with the two related methods reveals that while stc_u and stc_m4

significantly outperform lzfg-pm by 0.27 bpB and 0.31 bpB, they lose to lzp4

by 0.25 bpB and 0.21 bpB.
So far we have concentrated on compression performance, but ignored the

compression and decompression speed. This is why the results of the last test
contain both, as can be seen in Table 5.4.These testswere performedon the TAR
archive of the source code of the Linux Kernel 2.4.14 TAR archive. This test
brings a very pleasant surprise, as methods stc_m4 and stc_uwin, and even
the weakest of STC methods, the stc_m1, outperforms both ctw and gzip. It is
likely that the size and structure of this test file favours stablemodelswith slow
adaptation and provides enoughmaterial for STCmethods to learn. Neverthe-
less, the speed results are much less pleasing. Even though our current imple-
mentations of STCmethods are almost twenty times faster than ctw, they are in
turn at least five times slower than both gzip and bzip2 programs.
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6. Epilogue

This thesis combines suffix graphs with lossless data compression which is not
unusual. However,where the traditional approach uses a suffix graph as a tool
to implement the requiredstring sorting and searching for selected losslessdata
compression method, we analyse the suffix graph properties and use them to
create new lossless data compression methods. Specifically, the suffix graph
construction algorithms andmaintenance of suffix graphs in a sliding window
are examinedthoroughly. The information learnt from this analysis is thenused
to formulate and study the concept of suffix graph based data compression.
Note that selectedparts of thisworkwere publishedpreviously and are presen-
ted here in extended and polished versions [42, 43, 44, 41, 40, 39]. Themain con-
tributions of our research may be summarised as follows.

6.1 Suffix Graph Construction

As efficient suffix graph construction is required by both a sliding window
maintenance algorithm and the suffix graph base data compression, it is ex-
amined first. A unified on-line construction algorithm for all four suffix graphs
is described and the implicit suffix link simulation is analysed in detail. This
analysis yields two original alternatives to the traditional simulation approach
that removea significant portion of branching operations from the construction
of suffix tree. Experiments show that asmuch as sixty six percent of potentially
complex and costly branching operations can be removedon real-life data. The
same experiments demonstrate that this reduction in branching can result in
in up to thirty two percent decrease in execution time needed for suffix tree
construction. Nevertheless, both alternatives (Climb and ClimbScan) require
morememory than the traditionalmethod (ReScan)whenused for construction
only. On the other hand, all three techniques need the same amount of space
when used in a slidingwindow setting. Finally,whilewe show that ClimbScan
achieves the same linear time complexity as ReScan, Climbneeds at leastΩ( 3⁄2n )
and at most O( 2n ) time in the worst case. Whether or not can Climb be forced
to a quadratic worst-case time is an open question.

6.2 SlidingWindowMaintenance

Since the suffix graph based data compression requires maintaining string in
a sliding window, an in-depth discussion of sliding window maintenance is
needed. This analysis brings the first unified on-line perfect sliding algorithm
for all four suffixgraphs that includesouroriginal algorithmfor the incremental
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perfect sliding of CDAWG.Moreover, the gaps in previously published proofs
on classical percolating update technique are filled, and the suffix tree is veri-
fied to be capable of perfect sliding in amortised constant time per one input
symbol. On the other hand, the analysis proves that the same cannot be done
for CDAWG as it requires time proportional to the sliding window size, like
DAWG.This closes the question formulatedby Inenaga et al. However,wheth-
er there is an incremental algorithm for approximate sliding which requires
only amortised constant time per symbol is still an open question.

6.3 Suffix Graph Based Data Compression

Building on investigations of construction and sliding window maintenance,
we examine the traditionalway of using suffix graphs in lossless data compres-
sion, where suffix graphs are used like any other string sorting and searching
tool. This analysis reveals a surprising connection between the behaviour of
suffix graph construction algorithms and two different lossless data compres-
sionmethodswhich leadsus to design awhole family of compressionmethods.
These new compression methods are based solely on the description of suffix
graph construction for the string to be compressed. Some of these methods
resemble classical finite context methods like Prediction by Partial Matching
or dictionary techniques like ZL77, while other methods appear to be brand-
new. To evaluate the practical behaviour of these methods, three of them get
proof-of-concept implementations and are tested on standard data corpora.
The experiments show that gzip and bzip2 standards outperform our proof-
of-concept implementations in terms of speed. However, the results on com-
pression efficiency are more appealing. While the compression ratios reached
by our methods on standard corpora are fairly competitive, two of our meth-
ods outperform all other tested methods on the largest test file (a Linux kernel
source code archive).

6.4 FutureWork
There are several promising directions for future work on the topics explored
in thisdissertation. When studying the suffixgraphs construction,wedesigned
an alternative approach to implicit suffix link simulation, called Climb, which
outperforms the traditional solution to this problem in our experimentson real-
life data. However, the theoretical analysis reveals that itsworst-case time com-
plexity is superlinear. The exact time complexity of the Climb procedure is an
open problem. So far only upper bounds O( 2n ) and O(n log(n))were obtained
on the worst-case time and expected time, respectively (Section 3.2.1.3). Nev-
ertheless, these bounds are not proved to be tight and may be improved upon.
Another interesting problem would be to characterise all pathological strings
that force Climb to work in a total superlinear time per suffix tree construction,
like those in Lemma 3.1.
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While investigating the sliding window maintenance, we prove that
CDAWG is incapable of perfect sliding in amortised constant time per input
symbol, unlike the suffix tree. However, it may bepossible to design an approx-
imate incremental algorithm for sliding CDAWG in amortised constant time.
As noted in the introduction toChapter 4: Sliding, there alreadywas an attempt
to solve this issue by Inenaga et al. [21], but it was later proved to be invalid by
Filip [15].

Finally, when considering suffix data structures, one cannot avoidmention-
ing the one recently most popular, the suffix array. While it appears to be an
ideal tool for our purposes due to space efficiency and simplicity, it is not stud-
ied in this work. The reasons are that our data compression applications need
to maintain suffix graphs over a text in a sliding window, but the static nature
of the suffix array has prevented incremental sliding so far. However, this may
change in the future, as there are already attempts tomake suffix arraysdynam-
ic, e.g. Salson et al. [37] suggested ways to allow for edit operations on the un-
derlying string.
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[40] SENFT, Martin and Tomáš DVOŘÁK. Sliding CDAWG Perfection. In:
AMIR, Amihood, Andrew TURPIN and Alistair MOFFAT (Eds.). String
Processing and Information Retrieval: 15th International Symposium, SPIRE

2008, Melbourne, Australia, November 10–12, 2008, Proceedings. Berlin
Heidelberg: Springer-Verlag, 2008, Lecture Notes in Computer Science,
volume 5280, pages 109–120. ISBN 978-3-540-89096-6.Available from: doi:
10.1007/978-3-540-89097-3_12.

[41] SENFT Martin. Compressed by the Suffix Tree. In: STORER, James A. and
Martin COHN, editors. DCC 2006: Data Compression Conference, March

28–30, 2006, Snowbird, Utah, [USA]. Los Alamitos, California: IEEE Com-
puter Society, 2006, pages183–192. ISBN978-0-7695-2545-8.Available from:
doi:10.1109/DCC.2006.11.

[42] SENFT, Martin. Bezztrátová komprese dat pomocí sufixových stromů [Lossless
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List of Notation

Strings

a, b, . . . , x alphabet symbols

α, β, . . . , ω strings

λ the empty string

|µ | the length of string µ

Σ alphabet

∗Σ the set of all strings on alphabet Σ

+Σ the set of all non-empty strings on alphabet Σ

αβ the concatenation of strings α and β

kα the k-th power of α

Prefix(µ) the set of all prefixes of string µ

Factor(µ) the set of all factors of string µ

Suffix(µ) the set of all suffixes of string µ

µ[i ] the i-th symbol of string µ

µ[i .. j ] the factor of µ consisting of symbols µ[i ] µ[i +1] . . . µ[j ]

OccurLµ(α) the set of all positions of left occurrences of α in µ

OccurRµ(α) the set of all positions of right occurrences of α in µ

Unique(µ) the set of all unique factors of µ

UniquePrefix(µ) the set of all unique prefixes

UniqueSuffix(µ) the set of all unique suffixes

LNUP(µ) the longest non-unique prefix of µ

LNUS(µ) the longest non-unique suffix of µ
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ContextLµ(α) the set of all left contexts of occurrences of α in µ

ContextRµ(α) the set of all right contexts of occurrences of α in µ

BranchL(µ) the set of all left branching factors of string µ

BranchR(µ) the sets of all right branching factors of string µ

Explicit(µ) the set of all explicit factors of µ

〈α〉Rµ the right extension of factor α in string µ

≡Rµ the right end equivalence on string µ

[α]Rµ the class of right end equivalence on µ that contains α

(α)R
µ

the longest member of class [α]Rµ

DCR
µ the degenerated class of right end equivalence on µ

Graphs

G = (V,E,L) graph with vertex set V, edges set E and suffix link set L

V(G) the set of vertices of graph G

E(G) the set of edges of graph G

L(G) the set of suffix links of graph G

SuffixTrie(µ) the suffix trie for string µ

SuffixTree(µ) the suffix tree for string µ

DAWG(µ) the directed acyclic word graph for string µ

CDAWG(µ) the compact directed acyclic word graph for string µ

Other

.
∪ the union of two sets that have an empty intersection
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List of Abbreviations

BWC the Burrows-Wheeler Compression method

BWT the Burrows-Wheeler Transform

CDAWG the Compact Directed AcyclicWord Graph

DAWG the Directed AcyclicWord Graph

PPM the Prediction by Partial Matching compression method

ZL77 the Ziv-Lempel’77 compression method
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Companion CDContents

This thesis is accompanied by a CDwith the following contents:

ISLS/ the source code used for experiments with Implicit Suffix
Link Simulation discussed in Section 3.2

STC/ the source code used for experiments with Suffix Tree Based
Data Compression explained in Chapter 5: Compression

README a README file explaining the contents of this compan-
ion CD

Thesis.pdf a PDF version of this thesis
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