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Abstract 

Male-limited hybrid sterility restricts gene flow between the related species, an important pre-

requisite of speciation. The F1 hybrid males of PWD/Ph female (Mus m. musculus subspecies) 

and C57BL/6J or B6 male (Mus m. domesticus) are azoospermic and sterile (PB6F1), while the 

hybrids from the reciprocal (B6PF1) cross are semi fertile. A disproportionately large effect of 

the X chromosome (Chr) on hybrid male sterility is a widespread phenomenon accompanying the 

origin of new species. In the present study, we mapped two phenotypically distinct hybrid 

sterility loci Hstx1 and Hstx2 to a common 4.7 Mb region on Chr. X. Analysis of meiotic 

prophase I of PB6F1 sterile males revealed meiotic block at mid-late pachynema and the TUNEL 

assay showed apoptosis of arrested spermatocytes. In sterile males over 95% of pachytene 

spermatocytes showed one or more unsynapsed autosomes visualized by anti SYCP1, 

HORMAD2 and SYCP3 antibodies. The phosphorylated form of H2AFX histone, normally 

restricted only to XY chromosome containing sex body decorated unsynapsed autosomes while 

abnormal sex body engulfed one or two univalents in 90% of the mid-late pachynemas. The 

unsynapsed chromosomes were additionally decorated by ATR and RAD51/DMC1 indicating the 

persistence of unrepaired DNA double-strand breaks (DSBs).The analysis of expression of X-

linked genes in individual cells by RNA FISH and genome-wide expression profiling by 

Affymetrix GeneChips revealed the failure of MSCI in mid-pachynema of PB6F1 sterile hybrids. 

We have also demonstrated that the above mentioned phenotypes are strongly linked to 4.7 Mb 

Hstx2PWD locus on Chr X. Oocytes of F1 hybrid females showed the same kind of synaptic 

problems but with the incidence reduced to half. Most of the oocytes with pachytene asynapsis 

were eliminated before birth. In contrast to the hybrid males of the same genotype, the incidence 

of oocytes with asynapsis was not changed by the Prdm9 or Hstx2 genotype. We also found that 

F1 hybrid females carrying homozygous Hstx2PWD allele are fertile contradicting Muller’s 

dominance theory that attempts to explain Haldane's rule. To analyze the possible cause of 

meiotic asynapsis we compared genome-wide meiotic recombination rate by counting MLH1 

nodules in the parental strains, a set of partially overlapping B6.PWD-Chr X. # sub-consomics 

and their sterile and fertile hybrids. Strikingly, we found the recombination rate-controlling locus 

in the same 4.7Mb interval as the Hstx1/2 hybrid sterility gene. Overall, we dissected the genetic 

and mechanistic basis of F1 hybrid sterility and its possible interconnection with genetics of 

meiotic recombination. 
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Abstrakt 

Samčí hybridní sterilita je překážkou v přenosu genů mezi příbuznými druhy, což je významným 

předpokladem pro vznik nových druhů. F1 hybridní samci vzniklí křížením samice PWD/Ph 

(poddruhu Mus m. musculus) a samce C57BL/6J nebo B6 (Mus m. domesticus) mají azoospermii a 

jsou sterilní (PB6F1), zatímco hybridi z recipročního (B6PF1) křížení jsou částečně fertilní. 

Nadměrně převládající vliv chromosomu (Chr) X na sterilitu samčích hybridů představuje jev, který 

je při vzniku nových druhů široce zastoupen. V této studii jsme mapovali dva fenotypově odlišné 

lokusy pro hybridní sterilitu Hstx1 a Hstx2 do společné oblasti o délce 4,7 Mb na Chr X. Analýza 

meiotické profáze I odhalila u sterilních samců PB6F1 meiotický blok ve střední fázi pozdního 

pachytenu a testem TUNEL byla prokázána apoptóza blokovaných spermatocytů. U sterilních 

samců byla v 95 % pachytenních spermatocytů vizualizací protilátkami anti SYCP1, HORMAD2 a 

SYCP3 zjistěna asynapse jednoho či více autosomů. Fosforylovaná forma histonu H2AFX, 

normálně pozorovaná pouze v pohlavním tělísku obsahujícím chromosomy XY, barvila 

nespárované autosomy, zatímco abnormální pohlavní tělísko v 90 % chromosomů střední fáze 

pozdního pachytenu absorbovalo jeden či dva univalenty. Nespárované pachytenní chromosomy 

byly navíc obarveny ATR a RAD51/DMC1, což poukazuje na přetrvání neopravených 

dvouvláknových zlomů DNA (DSB). Analýza exprese X-vázaných genů v jednotlivých buňkách 

pomocí RNA FISH a celogenomového expresního profilování na Affymetrix GeneChips prokázala 

u sterilních hybridů PB6F1 poruchu meiotické inaktivace sex chromozomů (MSCI) ve středním 

pachytenu. Prokázali jsme také silnou souvislost výše uvedených fenotypů s lokusem 4.7 Mb 

Hstx2PWD na Chr X. U oocytů F1 hybridních samic se vyskytoval stejný typ problémů párování 

chromosomů, avšak s poloviční frekvencí výskytu. Většina oocytů s pachytenní asynapsí byla před 

porodem eliminována. Na rozdíl od hybridních samců téhož genotypu, genotyp Prdm9 či Hstx2 

frekvenci výskytu oocytů s asynapsí nezměnil. Zjistili jsme také, že F1 hybridní samice 

s homozygotní alelou Hstx2PWD jsou fertilní, což je v rozporu s Mullerovou teorií dominance, která 

by měla představovat vysvětlení Haldanova pravidla. S cílem analyzovat možnou příčinu meiotické 

asynapse jsme porovnali výskyt rekombinace v celém genomu kvantifikací MLH1 nodulů 

v parentálních kmenech, v souboru částečně se překrývajících subkonsomických kmenů B6.PWD-

Chr X.# a v jejich sterilních a fertilních hybridech. Překvapivě jsme zjistili, že lokus kontrolující 

frekvenci rekombinace se nachází ve stejném 4,7Mb intervalu jako gen pro hybridní sterilitu 
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Hstx1/2.  Souhrnně lze říci, že jsme odhalili celkové genetické a mechanistické základy sterility F1 

hybridů a její možné souvislosti s genetikou meiotické rekombinace. 
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Introduction 

1. Speciation: Understanding the concept of reproductive isolation. 

The diversity in the living world demonstrates a key evolutionary process called speciation. The 

concept is under investigation since mid-19th century, when many evolutionary biologist 

including Charles Darwin and Alfred R Wallace, found that species begin to diverge in due 

course of evolution giving rise to new species. As per accepted definitions, the formation of new 

and independent species from common ancestor under the influence of evolutionary pressure is 

viewed as speciation. The evolved species cannot merge and phenotypic differences such as 

physical differences, ecological adaptation, viability and sterility are distinguishable. The genetic 

loci that influence reduction in hybrid fitness are called “speciation genes”. These genes help the 

diverged species to become separate organisms. 

The genetics involved in these phenotypic differences are largely unknown. The answer to 

speciation related questions might be explained by dissecting genetic basis of reduced fitness in 

hybrids between the two species. The main influence on theory of speciation came from the 

concept of reproductive isolation. According to Mayr (Mayr, 1963) , species are “groups of 

interbreeding natural populations that are reproductively isolated from other such groups”. As per 

Wu and Ting (Wu and Ting, 2004)  “Reproductive isolation is defined as the non-exchange of 

genes between two species that are in contact with each other. The cessation of gene flow is the 

result of the genetic properties of the two species in question, and not the result of extrinsic 

barriers that prevent the contact”. 

The reproductive isolation is divided into two categories namely pre-mating and post-mating 

isolations. In Pre-mating isolation, interspecific hybrids are absent between two species due to 

ecological or behavioural factors. In Post-mating isolation, hybrids between two species are 

inviable, sterile or lack ecological adaptation. Reproductive isolation leads to evolution of distinct 

genetic organism under independent selective pressure. Dobzhansky and Muller explained the 

problem that how evolution as a gradual process, leads to the formation of discrete 

morphologically and genetically incompatible species (Dobzhansky, 1937; Muller, 1940). 

Dobzhansky-Muller model of speciation underline the epistasis between genetic loci and its 

contribution in development of reproductive isolation mechanism (explained later). After 

remaining dormant for four decades in 1980’s evolutionary biologist found new interest in 

genetic basis of reproductive isolation especially with focus on hybrid sterility and inviability. 
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Using newly available genetic techniques and Drosophila as model organism, the most 

comprehensive data on genetic architecture of reproductive isolation was discovered (Orr and 

Coyne, 1989; Coyne, 1989; 1992). Drosophila as a model organism has lots of advantage like 

short generation time, knowledge of its genetic map and the existence of large number of closely 

related species which could be used for breeding experiments. The most extensive studies on 

reproductive isolation such as hybrid sterility and inviability was studied using hybrids between 

D. simulans and D. mauritiana and D. simulans and D. melanogaster respectively (Sawamura et 

al., 1993b; Sawamura, 1996; Ting et al., 1998; Barbash et al., 2003; Brideau et al., 2006; Ferree 

and Barbash, 2009; Presgraves et al., 2003; Sun et al., 2004b; Bayes and Malik, 2009; Phadnis 

and Orr, 2009; Tang and Presgraves, 2009). In recent two decades there were significant 

breakthroughs in speciation studies. With the emergence of new molecular methods, high 

throughput sequencing technology and free available whole genome sequencing data of many 

organisms; it is possible to identify the individual genes involved in reproductive isolation and 

possible to dissect the Dobzhansky-Muller interactions involved with it (Orr and Presgraves, 

2000). In the last decade numbers of genes involved in reproductive isolation were discovered in 

fish, Drosophila and mouse. The Xmrk-2 gene involved in melanoma formation in Xiphophorus 

species hybrids (Wittbrodt et al., 1989), OdsH, Ovd and JYAlpha genes are involved in hybrid 

male sterility in Drosophila species (Ting et al., 1998; Masly et al., 2006; Phadnis and Orr, 

2009), Hmr and Nup96 are involved in hybrid inviability in Drosophila species (Barbash and 

Ashburner, 2003; Barbash et al., 2003; Presgraves et al., 2003) and desat-2 is determining 

ecological/behavioural characters in Drosophila melanogaster (Dallerac et al., 2000; Takahashi 

et al., 2001). Recently the first mammalian hybrid sterility gene Prdm9 was mapped in mouse 

(Mihola et al., 2009). With the advancement of molecular and genetics tools new questions arise 

on horizon. With significant leap in speciation studies in recent years identification of full genetic 

architecture of reproductive isolation is far from reality. Answers to questions like “what are the 

causes of genetic incompatibilities? What types of genes are involved in such incompatibilities? 

How many of them are involved? What mechanisms have led to the divergence of these genes? 

What is the role of non-coding genome in such incompatibilities? What is the role of epigenetics 

in reproductive isolation mechanism? ” are still unknown. The answer to these questions will give 

us a better understanding of the quest for the “origin of species”. 
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2. Introduction to hybrid sterility. 

The concept of speciation is under scientific discussion from the times of Charles Darwin. While 

its concepts were well discussed in his book “The origin of species” but actual breakthroughs 

were very recent. Understanding of genetic basis of speciation is scarce and very few studies 

were done to get an insight of this phenomenon. The major problem in understanding the genetic 

basis of speciation has been the studying of exact patterns occurring in nature under laboratory 

conditions. The phenotype such as sexual isolation or behavioral pattern which occurs in nature is 

hard to emulate in laboratory. Moreover, some speciation genetics experiment conducted in 

laboratory is absent in nature (Barbash et al., 2003; Brideau et al., 2006; Presgraves et al., 2003; 

Masly and Presgraves, 2007).Though the above studies increase our understanding the genetics 

of speciation, the actual relevance to natural phenomena is hard to establish (Harrison, 1990; Orr 

and Presgraves, 2000). 

Reproductive isolation is a population genetics term that refers to non-exchange of genes between 

two species due to their genetic properties and not because of extrinsic barriers (Wu and Ting, 

2004). The major contribution in understanding the genetics of speciation came from 

reproductive isolating barriers of different species like Drosophila and mouse (Tucker et al., 

1992; Dod et al., 1993; Coyne et al., 2002; Payseur et al., 2004; Macholan et al., 2007). 

Importantly these species were reproductively isolated in nature and form hybrids which are 

sterile and can be emulated in laboratory. The post zygotic reproductive isolation in hybrids 

between different species is a contributing factor to speciation and termed as “Hybrid sterility”. It 

is defined as a condition where two fertile parental forms produce hybrids which are sterile and 

can’t breed (Dobzhansky, 1951; Maheshwari et al., 2008). Hybrid sterility is studied in both 

animal and plant kingdom. Though it was studied for the last 90 years; the genetics and underline 

molecular mechanism still remain vague. Genetic element that can contribute to reproductive 

isolation can be broadly categorized as extra-chromosomal, chromosomal and genic. In recent 

times some breakthroughs were made with discovery of 3 hybrid sterility gene in Drosophila 

namely OdsH, JYAlpha, Ovd and one mouse speciation gene called Prdm9 (Ting et al., 1998; 

Masly et al., 2006; Mihola et al., 2009; Phadnis and Orr, 2009). Knowledge of genetic and 

molecular mechanism’s involved in hybrid sterility is limited due to its oligogenic complexity. 

The genetic studies involving mouse and Drosophila hybrid models showed post zygotic 

reproductive isolation restricts gene flow between different species (Coyne and Orr, 2004; 
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Moehring et al., 2006; Slotman et al., 2004). With the discovery of more speciation genes we 

might be able to understand the epistasis involved between the genes contributing to the 

reproductive isolation mechanism. It is far different from the knockout models as each epistasis 

involved in hybrid sterility is unique to its prerogative.  

2.1 The Dobzhansky–Muller model. 

The best explanation for hybrid sterility are the epistatic incompatibilities involving two or more 

genes between diverged species called the Dobzhansky–Muller incompatibilities (henceforth, D-

M incompatibilities (Muller and Pontecorvo, 1942; Dobzhansky, 1951). The model explains 

when an ancestral population with genotype AA BB split into two, A allele mutated into a allele 

in one population and B allele mutated into b allele in other. The a and b allele are epistatically 

incompatible with each other. But in pure species a-b interaction never happens and the 

incompatibility continues to evolve. But the problem appears when these diversely evolved 

species mate to produce hybrids. In hybrids a-b incompatibility causes the manifestation of 

different reproductive isolation related phenotypes (Figure 2.1).  

 

Figure 2.1: The Dobzhansky–Muller incompatibility model. From (Wu and Ting, 2004). 

D-M incompatibilities can be of two types. In first type the diverged alleles are unable to have a 

functional interaction termed as “loss of function”. Alternatively, when one mutated allele starts a 

new interaction with another allele which is earlier absent in parental background leads to 
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condition called “gain of function” (Figure 2.2). In hybrids either or both of them can contribute 

to reproductive isolation mechanism.  

 

Figure 2.2: Model explaining the possible D-M incompatibilities. a) Model explaining the loss 

of function. b) Model the explaining gain of function. From (Maheshwari and Barbash, 2011). 

2.2 The Haldane’s rule of hybrid sterility. The hybrid sterility in mouse and Drosophila is 

male limited, following Haldane’s rule which states “when in the F1 offspring of two different 

animal races one sex is absent, rare, or sterile; that sex is the heterozygous [heterogametic] sex” 

(Haldane, 1922). This rule is applicable to both XY heterogametic males found in mammals and 

Drosophila and ZW type heterogametic female in birds, Lepidoptera and dioecious plants like 

Silene. Different explanations have been given explaining Haldane’s rule. Some of the most 

prominent among them are discussed below. 

2.3 The Muller’s dominance theory (Muller and Pontecorvo, 1942; Orr, 1987; Orr and Coyne, 

1989) explains that the Haldane’s rule is applicable to homogametic hybrids when the new allele 

is recessive. Then the original dominant allele can compensate for it under hybrid genetic 

condition. In heterogametic sex; because of its hemizygous genetic status the recessive mutated 

allele can affect the phenotype in the absence of dominant allele. It is mainly linked to recessive 

X-linked D-M incompatibilities (Turelli and Orr, 1995; 2000; Muller and Pontecorvo, 1942). The 
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X-linked recessive mutations present in single copy in hemizygous genome can explain the male 

limited hybrid sterility.  

 

2.4 Rapid evolution of male limited traits (Wu and Davis, 1993; Wu et al., 1996; Presgraves 

and Orr, 1998) or “faster male” effect states that the male genes evolved faster in sexual selection 

than female. So, male limited sterility is much more evident in heterogametic sex i.e. XY males. 

The major limitation of this hypothesis is that it does not explain the Haldane’s rule in 

reproductive isolation of heterogametic female’s i.e. ZW females.  

2.5 Positive selection on X chromosome (Chr) (Charlesworth et al., 1987) were proposed as 

possible explanations contributing to male limited hybrid sterility. The hypothesis explains that 

the X-linked genes are evolving much faster than autosomes, causing a larger effect on 

reproductive isolation. 

2.6 The large X effect. 

Genetic studies on different hybrid models of post zygotic reproductive isolation from 

Drosophila and mouse showed the central role of Chr X  in male limited hybrid sterility (Coyne 

and Orr, 2004; Moehring et al., 2006; Slotman et al., 2004). While, hybrid sterility is polygenic in 

nature, abundance of these genes are X-linked (Presgraves, 2008; Lu et al., 2010). The 

chromosome substitution experiments in Drosophila have shown that X chromosome 

introgression have higher effect on hybrid sterility compare to autosomes (Orr, 1987; Orr and 

Coyne, 1989; Masly and Presgraves, 2007). Genetic experiments involving consomics 

(chromosome substitution strains) showed that introgression of Chr X  from M. m. musculus or 

M. m. molossinus subspecies on the M. m. domesticus genetic background causes sterility of 

males effecting post-meiotic process (Oka et al., 2007; Oka et al., 2004; Storchova et al., 2004). 

Alternative models studying F1 hybrid male sterility between M. m. musculus and M. m. 

domesticus also shows a strong role of Chr X in hybrid sterility between interspecific F1 hybrids 

(Good et al., 2008a; Good et al., 2008b; Dzur-Gejdosova et al., 2012; White et al., 2011). The X 

chromosome showed low level of gene flow in European hybrid zone compare to autosomes 

(Tucker et al., 1992; Dod et al., 1993; Besansky et al., 2003). The disproportionate contribution 

of Chr X on hybrid sterility was called “the large X effect” (Turelli and Orr, 1995; 2000). 
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3. Hybrid sterility in mouse: Brief overview 

Mouse is the most successfully studied hybrid sterility model after Drosophila. The only known 

mammalian speciation gene Prdm9 was discovered recently on mouse chromosome 17 (Mihola 

et al., 2009). The presence of considerable amount of genetic resources made it a preferred model 

for genetic research (Dietrich et al., 1996; Waterston et al., 2002; Shifman et al., 2006; Su et al., 

2004). Three species of house mouse (M. domesticus, M. musculus, and M. castaneus) evolved 

from a shared common ancestor about 0.5 million years ago (She et al., 1990; Boursot et al., 

1993). Hybrid sterility involving M. m. musculus and M. m. domesticus (hereafter, Mmm and 

Mmd) mouse species emerged as a preferred model for studying mammalian speciation. The two 

subspecies diverged from common ancestor around 0.3 to 0.5 million years ago (Boursot et al., 

1996; Geraldes et al., 2008; She et al., 1990) and widely spread on both sides of hybrid zone 

across Europe (Dod et al., 1993; Macholan et al., 2007; Payseur et al., 2004; Tucker et al., 1992) 

(Figure 3.1). Wild trapped hybrids between these two subspecies from within hybrid zone 

showed significant genetic variation, but fail to provide high resolution genetic maps. 

Alternatively, representative strains of Mmm and Mmd were crossed in laboratory for high-

resolution genetic dissection. Crossing experiments in laboratories between Mmm and Mmd 

showed they are reproductively isolated (Forejt and Ivanyi, 1974; Forejt et al., 1991; Forejt, 

1996; Vyskocilova et al., 2005). In recent studies models involving Mmm and Mmd subspecies 

were widely used to get further insight into X-linked hybrid sterility. In first, Mmm (PWD or 

PWK/PhJ) Chr X was introgressed onto Mmd genomic background (B6 or LEWES/EiJ) 

(Storchova et al., 2004; Good et al., 2008a). The consomic males generated from these 

experiments were sterile with low testis weight, low sperm count and higher sperm abnormality. 

Multiple overlapping X-linked quantitative trait loci (QTL) contributing to hybrid sterility were 

mapped in these models) (Storchova et al., 2004; Good et al., 2008a). An introgression hybrid 

sterility model involving of M. m. molossinus (MSM) chromosome X into the B6 strain i.e. 

B6.MSM-ChrX males showed incomplete block of spermatogenesis and presence of some sperm. 
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Figure 3.1: The mouse hybrid zone in Europe. From (Macholan et al., 2008). 

 

The authors showed the elimination of germ cells at pachytene stage and at first meiotic division. 

On the other hand introgression of M. m. molossinus (MSM) chromosome X into the wild derived 

Mmd PGN strain i.e. PGN.MSM-ChrX, the male meiosis was affected in pachytene and meiosis I 

(Oka et al., 2010). 

The second model evaluated F1 hybrid sterility involving Mmm (PWD; CZECHII/EiJ or 

PWK/PhJ) and Mmd (B6; WSB/EiJ or LEWES/EiJ) (Forejt et al., 1991; Gregorova et al., 1996; 

Mihola et al., 2009; Trachtulec et al., 2008; Good et al., 2008a; Good et al., 2010; White et al., 

2011). Crosses between the above mentioned Mmm and Mmd subspecies resulted in asymmetric 

F1 hybrid male sterility, linked to maternal strains of Mmm origin (White et al., 2011; Mihola et 

al., 2009; Good et al., 2010; Good et al., 2008b). Strong QTL’s were mapped between PWD and 

WSB using F2 cross in multiple autosome and X chromosome (White et al., 2011). Moreover, 

using F2 hybrids between wild-derived inbred strains from Mus musculus castaneus and M. m. 

domesticus many autosomal and X-linked QTL associated with a range of hybrid male 

sterility phenotypes were identified (White et al., 2011). The pseudoautosomal region was found 
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to be associated with hybrid sterility between Mus musculus castaneus and M. m. domesticus. 

Three autosomal hybrid sterility linked QTLs were found to be common between Mus musculus 

castaneus and M. m. domesticus and Mus musculus musculus and M. m. domesticus mapping 

experiments (White et al., 2012). Recently using PWK (wild derived Mmm) and LEWES (wild 

derived Mmd) hybrid sterility model, the role of Y chromosome in hybrid sterility was reported. 

The authors found evidence for a negative interaction between the M. m. domesticus Y and an 

interval on the M. m. musculus X that resulted in abnormal sperm morphology (Campbell et al., 

2012). New M. m. musculus inbred strains STUF and STUS producing only fertile and only 

sterile males with B10 mice, respectively were established. Using the (STUS × STUF) × B10 

cross, the authors found that 90% of genetic variance between STUF and STUS is due to a QTL 

in the proximal part of chromosome 17 and 10% by another QTL in the central part of 

chromosome X (Pialek et al., 2008; Vyskocilova et al., 2009). 

 

4. Introduction to the model. 

 

The present study is focused on hybrid sterility model involving PWD/Ph and C57BL/6J 

(henceforth PWD and B6) inbred strains representing Mmm and Mmd subspecies respectively. 

The genetic and genomic tools available with this model are an advantage for studying genetic 

and molecular mechanisms associated with hybrid sterility. The full genomic sequence of B6 and 

17 other strains comprising of Mmm and Mmd subspecies are freely available (Keane et al., 

2011). A panel of 28 mouse intersubspecific consomic (chromosome substitution) strains with 

PWD chromosome in B6 background (Gregorova et al., 2008) can be used for high resolution 

mapping experiments to dissect oligogenic complexity. B6 is the model of choice for generating 

majority of mouse mutants for protein coding genes useful for functional analysis (Skarnes et al., 

2011). 

Earlier it has been published that F1 hybrids between PWD female and B6 male (hence forth 

PB6F1) were sterile with low testis weight and azoospermic whereas reciprocal F1 hybrids 

between B6 female and PWD male were fertile (Figure: 4.1) (Trachtulec et al., 2008). The first 

mammalian speciation gene Prdm9/Hst1 was mapped in PB6F1 hybrid sterility model (Mihola et 

al., 2009). The hybrid sterility model involving PWD and B6 can be a great tool to do genetic and 

molecular dissection for understanding the complex nature of F1 male sterility. Even there are 
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overwhelming advantages with the model but the sort comings cannot be ignored. The model is 

after all a representative artificial model, perhaps not the most quintessential for the two 

subspecies. 

 

 

 

 

 

 

 

 

 

Figure 4: Cartoon explaining the hybrid sterility model involving PWD and B6. 

4.1. Hybrid sterility 1 (Hst1) speciation gene in mouse. 

While studying new H2 histocompatibility polymorphism, Ivanyi and co-workers first time 

described infertility of hybrids between wild and laboratory mice (Ivanyi et al., 1969). They 

reported that hybrid mice between wild trapped mice with different laboratory strains like B10 

and A/Ph were sterile, while they were fertile with C3H/Di strain. They associated the phenotype 

to H2-histocompatibility linked locus and considered it as the effect of an incomplete t-haplotype. 

Later the phenomenon was recognized as interspecific hybrid sterility and the locus was mapped 

between T and H2 markers on chromosome 17 (Forejt and Ivanyi, 1974). This locus was named 

Hybrid sterility 1 (Hst1) locus. Afterwards high resolution genetic mapping experiment was 

carried out using test crosses between wild trapped mice × (B10 × C3H) or PWD × ((B10 × C3H) 

× B10) (Forejt et al., 1981; Forejt, 1985; 1996). To further reduce the interval and to identify 

Hst1 gene; haplotype associated mapping was carried out (Trachtulec et al., 2008). Three 

B6PF1 PB6F1 
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haplotypes were found within 252 Kb region. Next the candidate genes were screened across the 

region in terms of sequence polymorphism, expression label, isoforms and tissue specific 

expression. Out of 7 candidate genes only Prdm9 differed in the number of zinc finger repeats 

between B6 and C3H which also have germ cell specific expression (Hayashi et al., 2005). Using 

BAC transgenesis it was concluded that Prdm9 is Hst1 gene which encodes H3K4 

methyltransferase (Mihola et al., 2009). The Prdm9 gene also controls hotspot of meiotic 

recombination which is an important component of meiosis (Baudat et al., 2010; Parvanov et al., 

2010). The dual role of Prdm9 in hybrid sterility and control of the meiotic recombination also 

inspired us to look at the mechanistic basis of hybrid sterility in mice. Recent study on interallelic 

and intergenic incompatibilities of the Prdm9 gene was published (Flachs et al., 2012). The 

authors showed upon removal of Prdm9B6 allele (sterile allele) from PB6F1 male, the animals 

regain partial fertility. These results directs towards Prdm9 independent incompatibility also 

contributes in PB6F1 hybrid sterility (Flachs et al., 2012). The research work concluded in the 

present dissertation thesis will further contribute to the knowledge regarding genetic and 

mechanistic aspects of hybrid sterility. 
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5. Brief introduction to the meiotic prophase I in mouse. 

The formation of haploid cells from their pluripotent progenitors is conserved in most eukaryotic 

species; subsequently these haploid gametes fuse to form new zygote. The process of gamete 

formation goes through a distinct process called meiosis, which leads to two-fold reduction in 

chromosome number and help maintaining the ploidy from one generation to the other. The 

prophase I of meiosis ensures the correct segregation of chromosomes to each haploid gamete. 

This phase includes the pairing, synapsis and recombination of homologous chromosomes. The 

chromosomal abnormalities, such as translocations and inversions complicate these processes 

causing failure of synapsis process. Asynapsis of homologous chromosome activates the meiotic 

check points, which lead to cells cycle arrest and apoptosis. The sexual dimorphism of involved 

pathways leads to different reproductive outcomes between male and females. For example, 

spermatogeneic cells appear to be more vulnerable to pachytene checkpoint leading to infertility, 

but oocytes can bypass the checkpoint and thus affecting different stages of oogenesis. In this 

section we will discuss the prophase I in meiosis in both male and female which will be relevant 

for the different aspects of the thesis. 

5.1 Initiation and regulation of meiotic program in mouse. 

The entry to the meiotic process is sexually dimorphic during male and female gametogenesis. 

The decision to exit proliferative state and begin meiosis starts the differentiation of progenitor 

cells into gametes. In mammalian females this process initiates in the embryo while in males it 

starts only after birth. As in different developmental processes gamete formation requires unique 

transcriptional program. In yeast the genes activated in the first wave include NDT80 and IME2 

(Kassir et al., 1988; Kassir et al., 2003; Handel and Schimenti, 2010). Mammals have no clear 

orthologs of either of these genes. The germ cell specific male-germ-cell-associated kinase (Mak) 

gene showed sequence homology to IME2 but further experimentation found it non-essential for 

fertility in mouse (Shinkai et al., 2002). Though the transcriptome during male meiosis is well 

studied, the regulators of meiotic program are far from clear. A major discovery showed that 

beginning of meiosis is regulated by retinoic acid (RA) and mediated by the product of gene 

stimulated by retinoic acid 8 (Stra8) (Bowles et al., 2006; Bowles and Koopman, 2007; Koubova 

et al., 2006). The effect of RA and Stra8 is sexually dimorphic. In fetal ovaries RA induces Stra8 

to enter meiosis, which can be detected by expression of meiotic markers such as disrupted 
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meiotic cDNA 1 homologue (Dmc1) and synaptonemal complex protein 3 (Sycp3). In fetal testis 

Stra8 is not induced due to RA degrading enzyme CYP26B1 (a member of the cytochrome P450 

family), expressed in Sertoli cells, so male germ cells don’t enter meiosis during this time 

(Anderson et al., 2008). Another meiotic inhibitor gene Nanos2 is specifically expressed in fetal 

male germ cells (Suzuki and Saga, 2008). The regulation of  meiotic inception by RA is mediated 

by germ cell initiation factor such as deleted in azoospermia-like (DAZL) RNA-binding protein, 

which acts before Stra8 in pathway of meiotic induction (Lin et al., 2008). It is still unclear 

whether meiotic entry failure underlies any case of human infertility. The questions associated 

with initiation and specifications of female’s germ cells are still unresolved.   

5.2 Chromosome dynamics associated with pairing and segregation of homologous 

chromosome. 

Once the cells enter meiosis; the nuclear envelop (NE) plays a critical role in early event of 

mammalian meiosis. Meiotic processes like non-homologous centromere coupling, telomere 

bouquet formation, homolog alignment, pairing and initiation of synapsis and double strand 

breaks are facilitated by NE (Yanowitz, 2010). Knowledge about early events of pairing and 

synapsis is still unclear in mammals. The most frequent assumption is that the single strand 

overhangs at DSBs mediate the search of homologous chromosomes. This assumption may hold 

for final stages of homologous synapsis but unlikely to be affective for large compacted DNA. 

Alternatively, some suprachromosomal components might play a role of important facilitators in 

homology recognition process. There are two such components in mammalian germ cells, the 

clustering of telomeres and the assembly of chromosomal axis to form the synaptonemal complex 

(SC). These two processes are absolutely essential for mammalian fertility. The early meiotic 

events are highly conserved among various species. In early prophase the telomeres attach to the 

nuclear envelop and form a chromosomal bouquet (Scherthan, 2001; Alsheimer, 2009), which 

facilitates the homologous alignment of chromosomes axis. In mammals the suprachromosomal 

component of bouquet formation by telomeres clustering involves an inner nuclear membrane 

protein called SuN1 (also known as UNC84A). SuN1 acts as an anchoring protein in nuclear 

membrane. SuN1 protein also localizes at the telomeres of the spermatocytes. The knockout of 

the SuN1 gene in mouse causes sterility in both males and females by disruption of bouquet 

formation and homologous synapsis (Ding et al., 2007) (Figure 5.1). As there is differential 
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expression of reproductive genes and Piwi-interacting RNAs (piRNAs) in SuN1 mutant mice, it 

was difficult to pinpoint the cause of phenotypic defects (Chi et al., 2009). Moreover, the 

telomeric sequences might have a role in meiotic recombination, as the rate of recombination is 

higher in subtelomeric sequences in the male germline (Paigen et al., 2008). In telomerase 

deficient mice; impaired homologous synapsis and decreased recombination’s were observed 

(Liu et al., 2004). Therefore, structural and functional components of telomeres are required for 

initiation of meiosis in mammals. 

 

 

Figure 5.1: The process of chromosome pairing. (a) A SuN1 complex binds to nuclear envelop 

connected with dynein on cytoplasmic side. Chromosomes attached via telomeres or special 

pairing centers with the nuclear membrane (b) The SuN1 complex’s binds together into large 

patches. In patches dynein mediated forces lead to detachment of non-homologous attachment 

followed by homologous synapsis. (c) The process of homologous synapsis synchronized with 

DSB repair and initiation of pachytene stage. From (Yanowitz, 2010). 
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5.3 Understanding the dynamics of meiotic prophase I in mouse. 

After meiotic pairing the homologous chromosomes get synapsed by a unique meiotic scaffold 

called the synaptonemal complex (SC).The process of meiotic pairing and synapsis initiates are 

leptotene and zygotene stages respectively. The process of synapsis is completed by pachytene 

stage and desynapsis of SC’s occurs at diplotene stage. These processes of synapsis and 

desynapsis are intricately linked with the process of meiotic recombination. In leptonema, the 

homologous chromosomes are aligned but not paired. The cohesin proteins such as REC8, 

STAG3 and SMC1β and SC proteins as SYCP3, HORMAD1, HORMAD2 and SYCP2 from a 

chromosomal scaffold around axial elements (AEs) (Revenkova et al., 2004; Xu et al., 2005; 

Prieto et al., 2001; Yuan et al., 2000; Yang et al., 2006; Shin et al., 2010; Fukuda et al., 2010; 

Wojtasz et al., 2012). At this stage initiation of recombination starts with formation of double 

strand breaks (DSB’s) on chromatids catalyzed by SPO11 transesterase (Romanienko and 

Camerini-Otero, 2000) (Figure 5.2).  

 

Figure 5.2: Dynamics of meiotic synapsis. From (Handel and Schimenti, 2010). 

The DSB’s are recognized by homologous recombination repair proteins like phosphorylated 

H2AX (γH2AX), ataxia telangiectasia mutated (ATM) machinery and recombinase A (RECA)-
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related proteins like RAD51 and DMC1 which co-localize with densely stained foci called 

recombination nodules along the axial elements (Bishop et al., 1996; Mahadevaiah et al., 2001; 

Handel and Schimenti, 2010). At zygonema sister homologs find each other; pairing is 

established and synapsis begins where the axial elements of sister homologs started to zip 

(Mahadevaiah et al., 2001). In this process axial elements become lateral elements of the SC’s 

and central element proteins like SYCP1, SYCE1, SYCE2 and TEX12 (de Vries et al., 2005; 

Bolcun-Filas et al., 2007; Bolcun-Filas et al., 2009; Hamer et al., 2006) form the central zone of 

synapsed structure. By the pachytene stage maturation of meiotic recombination sites is 

established by MutL protein homolog 1(MLH1) and MLH3 (Edelmann et al., 1996; Holloway et 

al., 2008). Only <10% of sites previously marked by RAD51 and DMC1 are marked by MLH1 

(Plug et al., 1998). After recombination completion desynapsis initiates diplotene stage of 

meiosis I. The SC’s look condensed and the homologs are held together only at recombination 

sites.  Figure 5.2 explains the dynamics of the process. 

5.4 The structure and function of synaptonemal complex (SC). 

The SC structure is multiprotein complex formed during meiotic prophase. It is mainly composed 

of three basic structures called axial element (AEs), transverse element (TEs) and central element 

(CEs)(Figure 5.3).The AEs elements along sister chromatids are made up of core proteins called 

cohesins. In mammalian meiosis different variants of cohesion proteins like structural 

maintenance of chromosome 1B (SMC1β), REC8 (related to RAD21) and STAG3 (related to 

STAG1) form the core of AEs (Figure 5.3) (Revenkova et al., 2001; Eijpe et al., 2003; Prieto et 

al., 2001). The knockout of SMC1β and REC8 genes in mouse causes meiotic disruption and 

sterility in males as well as females. Moreover meiotic chromosomes in those knockout animals 

are shorter with longer chromatin loops. When AEs of one pair of sister chromatid get associated 

with its homologous counterpart; they are called lateral elements (LE). The LEs are mainly 

composed of SYCP2 and SYCP3 (Figure 5.3) (Yang et al., 2006; Yuan et al., 2000).Recent 

discoveries showed LEs are also made up of axis-associated HORMA domain protein 

HORMAD1 and HORMAD2 which are required to prevent non-homologous synapsis during 

meiotic prophase (Shin et al., 2010; Wojtasz et al., 2012; Wojtasz et al., 2009). 

 In mice null allele of SYCP3 leads to male sterility and reduced female fertility with oocytes 

showing higher rate of aneuploidy (Yuan et al., 2002; Yuan et al., 2000; Pelttari et al., 2001; 
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Kolas et al., 2004). Similar phenotype was observed in SYCP2 mutants (Yang et al., 2006). 

HORMAD1 mice mutants showed defective DSB formation and/or repair and SC formation in 

both male and female and hence both sexes are sterile (Shin et al., 2010). But in HORMAD2 

mouse mutant’s sterility is male limited. Though the males are infertile no major defects were 

observed in DSB formation and/or repair and SC formation. It was also found HORMAD1 can 

perform the function of HORMAD2 in the mutant mice (Fukuda et al., 2010; Wojtasz et al., 

2012; Wojtasz et al., 2009). In these mice the male limited sterility was linked to failure of 

meiotic sex chromosome inactivation check point (discussed later). The difference in phenotypes 

between male and female shows different sensitivity of spermatocytes than oocytes in relation to 

meiotic checkpoints. The transverse element (TEs) is mainly composed of SYCP1, which 

connects to central element (CEs) composed of synaptonemal complex central element protein 1 

(SYCE1), SYCE2, SYCE3 and testis expressed sequence 12 (TEX12) (Figure 5.3). Mice with 

SYCP1 null allele form normal AE or LEs, which align to homologs, but do not synapse (de 

Vries et al., 2005). Both sexes are sterile. Similar sterility phenotypes were observed in SYCE1, 

SYCE2, SYCE3 and TEX12 mutant mice (Bolcun-Filas et al., 2007; Bolcun-Filas et al., 2009; 

Schramm et al., 2011; Hamer et al., 2008). In spite of detailed studies on SC formation and its 

constituents, their role in meiosis is still far from clear. 

5.5 Importance of meiotic checkpoints in mouse meiosis. 

The error free execution of meiotic process during meiotic prophase is essential for proper 

chromosomal segregation and preventing aneuploidy. To assure the quality of healthy egg and 

sperm quality control mechanisms are in place during meiosis. Any kind of defects linked to 

meiotic recombination, homologous pairing and repair of DSBs are under surveillance systems or 

checkpoints. Any kind of unresolved defects results in elimination of the meiocytes. An 

additional checkpoint monitors the crossover frequency in each chromosome. In mammals 

checkpoint linked genes are yet to be identified (Hochwagen and Amon, 2006). Mouse orthologs 

of yeast meiotic checkpoint genes ataxia telangiectasia mutated (ATM) and thyroid hormone 

receptor interceptor 13 (TRIP13) do not show any checkpoint activity, instead null alleles of this 

genes show severe recombination defects causing meiotic arrest and infertility (Handel and 

Schimenti, 2010). 
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Figure 5.3: Cartoon showing nomenclature and major components of synaptonemal 

complex. From (Costa and Cooke, 2007). 

The known mitotic DNA damage checkpoint may have a role in meiosis too but it needs further 

investigation to prove its meiotic function. The molecular dissection related to synapsis 

checkpoint is still unclear and its sensitivity is still debated between male and female meiosis. 

Some recent studies on ataxia telangiectasia and RAD3-related (ATR) show that this 

serine/threonine kinase checkpoint protein has a role in mammalian pachytene checkpoint. In 

particular it is supposed to trigger transcriptional silencing of unsynapsed autosomes or 

autosomal segments at pachytene stage during male and female meiosis commonly known as 

meiotic silencing of unsynapsed chromatin or MSUC (Schimenti, 2005). However, direct 

evidence on ATR role in MSUC is still missing. ATR null allele in mouse is lethal (Schimenti, 

2005; Turner et al., 2005).  

One interesting aspect of male germline control is the meiotic sex chromosome inactivation or 

MSCI originally proposed 30 years ago by Forejt (Forejt, 1984; 1996). According to McKee and 

Handel (McKee and Handel, 1993) transcriptional silencing of X and Y chromosomes takes place 

during the pachytene substage of male meiosis. MSCI is MSUC effecting on X and Y 
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chromosome (Figure 5.4). In mammals silencing of sex chromosomes is an important 

prerequisite for gamete viability in heterogametic sex. The repair proteins ATR and BRCA1 

recognize unsynapsed X and Y and lead to phosphorylation of H2AX and 

heterochromatinization, compartmentalization and silencing in sex body (Kouznetsova et al., 

2009; Mahadevaiah et al., 2008; Mahadevaiah et al., 2009). In mice with XYY genotype 

pachytene arrest and sterility is due to failure of MSCI (Royo et al., 2010). The expression of Y-

linked Zfy2 gene promotes apoptosis of germ cells (Vernet et al., 2011). Other than that 

HORMAD2 male mutants show failure of MSCI causing pachytene block (Wojtasz et al., 2012). 

Chromosomal translocation model of meiotic checkpoint showed chromosomal asynapsis 

interference with MSCI process leading to male limited sterility (Homolka et al., 2007). Thus 

silencing of sex chromosome in mammalian males is an essential step for proper completion of 

meiosis and most probably acts as a meiotic checkpoint.   

 

Figure 5.4: Overview of XY transcriptional activity during meiotic prophase I. From 

(Turner, 2007). 
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5.6 Failure of homologous synapsis and sex-specific phenotypic manifestation. 

Sexual dimorphism in the manifestation of phenotypes in mutants of meiotic genes and 

translocation models showed that spermatogenic cells are more vulnerable to the pachytene 

checkpoint then female meiocytes. Females oocytes tend to bypass these checkpoints generating 

other problems such as metaphase arrest, aneuploidy and pregnancy loss. Mouse experiments 

have demonstrated the presence of MSUC in both males and females (Turner et al., 2005). The 

explanation for male specific infertility might be that the MSUC itself inactivates essential 

meiosis genes leading to the elimination of the cells. Otherwise inactivation of autosomal 

segments might interfere with sex body formation leading to male specific sterility. Alternatively 

MSCI failure means the abnormal expression of sex chromosome genes like Zfy2 resulting in 

apoptosis (Mahadevaiah et al., 2008). Also heterosynapsis between autosome and sex 

chromosomes might interfere with the MSCI process causing expression of sex chromosomal 

genes in males. MSCI failure is only possible in males which can explain the sexual differences 

between male and female gametogenesis. The failure to eliminate oocytes with extensive 

asynapsis in HORMAD1 mutant females give rise to speculation that HORMAD1 might itself act 

as checkpoint protein (Kurahashi et al., 2012). Both SPO11 knockout males and females are 

sterile. The HORMAD1/SPO11 double knockout males show pachytene arrest due to MSUC and 

subsequently effecting MSCI, but the block is relaxed from zygonema in SPO11 knockout mice 

to pachytene in HORMAD1/SPO11 double knockout males (Kurahashi et al., 2012). SPO11 null 

females are sterile with small number of follicles but the HORMAD1/SPO11 double knockout 

females demonstrate same number of follicles as that of wild type controls. Thus the HORMAD1 

might work in pachytene checkpoint pathway (Kurahashi et al., 2012). Further investigation of 

meiotic checkpoint proteins is essential to understand these sexual differences in the 

manifestation of meiotic phenotypes. 
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Aims and motivation 

A. Dissecting the genetic basis of F1 hybrid sterility. Male-limited hybrid sterility 

contributes to speciation by restricting gene flow between related taxa. The only known 

mammalian speciation gene Prdm9 was mapped in mouse (Mihola et al., 2009). One of the 

aims of this thesis was to investigate the genetic basis of hybrid male sterility in F1 hybrids 

between PWD female and B6 male. Using F1 hybrids between PWD and B6.PWD-Chr# 

consomic panel we tried to answer basic questions such as how many genetic loci control 

F1 hybrid sterility? Where in the genome are hybrid sterility loci located? Genetic studies 

in Drosophila species showed disproportionate contribution of Chr X on hybrid sterility. 

In our study we decided to genetically map the loci on Chr X contributing to F1 hybrid 

sterility. Using positional cloning strategies and expression profiling experiments we 

wanted to identify candidate genes that might be responsible for F1 sterility. 

B. Understanding the mechanistic basis of F1 hybrid sterility. The mammalian speciation 

gene Prdm9 perform dual role in hybrid sterility and in control of the meiotic 

recombination hotspots (Mihola et al., 2009; Parvanov et al., 2010; Baudat et al., 2010). 

The dual function of Prdm9 prompted us to analyze the mechanistic basis of hybrid 

sterility, asking three specific questions: (a) which subcellular and molecular processes are 

involved in the spermatogenic breakdown? (b) Are the meiotic defects leading to hybrid 

male sterility indeed male specific (Haldane’s rule)? (c) What can we learn about hybrid 

sterility by manipulating the individual components of its genetic architecture? 

C. Dissecting Muller’s dominance theory as explanation for Haldane’s rule. The F1 

hybrid sterility is male limited as explained by Haldane’s rule (Haldane, 1922).The 

generally accepted explanation of Haldane´s rule is the dominance theory proposed by 

Herman Muller (Muller and Pontecorvo, 1942) stating that the sex dependent effect on 

hybrid fitness is due to recessive nature of X-linked mutations effective in hemizygous XY 

males but not in XX females. Here we asked whether the homozygosity of X-linked hybrid 

sterility gene in F1 hybrid females influences the fertility and meiotic phenotype similar as 

that of F1 hemizygous males. The results will show the results of the first experimental 

testing of dominance theory in mammals. 
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Materials and Methods 

6.1 Ethics statement. The principles of laboratory animal care obeyed the Czech Republic Act 

for Experimental Work with Animals (Decree No. 207/2004 Sb. and Acts Nos. 246/92 Sb. and 

77/2004 Sb.) was fully compatible with the corresponding EU regulations and standards, namely 

Council Directive 806/609/ EEC and Appendix A of the Council of Europe Convention ETS123. 

6.2 Mice. The PWD/Ph and PWK/Ph inbred strain were created from a single pair of wild  mice 

of the Mus musculus musculus subspecies trapped in 1972 in Central Bohemia, Czech Republic 

(Gregorova and Forejt, 2000). The C57BL/6J (B6), C3H/HeJ (C3H) and BALB/cByJ (BALB/c) 

inbred strains were imported from The Jackson Laboratory, USA. The congenic strain B6-Hst1f 

carrying the Hst1f allele of C3H origin on the B6 background was prepared in our laboratory 

(Mihola et al., 2009; Flachs et al., 2012). The conplastic B6.PWD-Mt, consomic B6.PWD-Chr # 

strains and sub-consomic strain B6.PWD-Chr X. # (Gregorova et al., 2008) have been maintained 

in the Specific Pathogen Free barrier facility on a 12 h light/12 h dark cycle. The mice had ad 

libitum access to a standard rodent diet (VELAZ, ST-1, 3.4% fat) and acidified water. All males 

were sacrificed at the age of 60 to 70 days. Heterozygous consomic females designated here as 

B6-XPWDXB6 on B6 genetic background were prepared by repeated backcrossing of (PWD x B6) 

F1 females with B6 males (Storchova et al., 2004). The B6-XPWDXB6 heterozygous consomic 

females were crossed in two independent experiments with PWD males to generate F1 

recombinant male progeny and with B6 males to get B6.PWD-Chr.X1s sub-consomics for 

mapping experiments. The B6.PWD-Chr. # homozygous male and females were crossed with 

PWD/Ph male and females to dissect the genetic basis of F1 hybrid sterility phenotypes. F1 

hybrid females from different hybrid experiment were mated with PWD males as per 

experimental requirements. 

 

6.3 Fertility test, histology and apoptotic assay. To test the fertility of hybrid males, two males 

were mated with two C57BL/6J females at the age of 8 weeks for 3 months. Similarly, F1 hybrid 

females were tested by mating with PWD males. Wet weight of both testes was estimated to the 

nearest mg immediately after dissection. The periodic acid Schiff and hematoxylin-eosin stained 

testicular sections were observed under a Nikon Eclipse 200 microscope. The images were 

captured by a Penguin 150CL CCD color camera (Pixera) and processed with Adobe Photoshop 
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(Adobe Systems). Identification of apoptotic cells was done on paraffin embedded testis sections 

using DeadEnd Fluorometric TUNEL System (Promega; G3250). At least 15 tubules were 

counted for TUNEL positive cells. For sperm head abnormality analysis we stained sperms with 

eosin Y (Otubanjo et al., 2007) and observe them under light microscope. 

Eight weeks old (B6.PWD-Chr XPWD/B6 x B6) recombinant males were genotyped using SSLP X-

linked markers listed in the Table below. Position for "SR" markers was computed using 

http://cgd.jax.org/mousemapconverter/. Genomic DNA for genotyping was obtained from the 

mouse tail by HotSHOT method (Truett et al., 2000) and phenol-chloroform isolation method 

(Homolka et al., 2011) respectively.  

 The 8 weeks old recombinant male progeny was then genotyped and tested for the following 

fertility parameters (1) testes weight (TW), (2) sperm count (SC) and (3) percentage of abnormal 

spermatozoa (SA) as was described in (Storchova et al., 2004). We determined the following 

borderlines between the subfertile and fertile phenotype: testes weight 185 mg and proportion of 

normal spermatozoa 80 %. Males with higher values of these parameters were considered as 

fertile and males with lower values as subfertile/fertile. Due to a high variance in the number of 

spermatozoa, we did not use this parameter for the determination of sterile/fertile phenotype. For 

(PWD x consomic) F1 hybrids, the testis weight up to 70 mg with no sperm in cauda 

epididymides were counted as sterile and above 70 mg with sperm as semisterile/fertile. 

For mapping the borders of PWD sequence in X Chr consomics B6.PWD-Chr X# we used high 

density genotyping platform called Mega Mouse Universal Genotyping Array. The MegaMUGA 

genotyping platform carries 77000 markers on Illumina Infinum platform 

(http://csbio.unc.edu/CCstatus/index.py). 

 

 

 

 

 

 

 

 

 

http://csbio.unc.edu/CCstatus/index.py�
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SSLP marker Forward primer Reverse primer 

SR-09 AAGCCTTTTTCTTATCTCAG TCATTTTATCAGAGCCTAGA 

SR-12 ATATAGCACAATAGCCAAGA TTAGCTCAAATATGATGCC 

SR-22 GAGCTCCCAAAGTGTCAAAT TCATCTTGTTCAGAACAGCC 

SR-38 TTGCTTGAACTAAAACAGTG AGGTTTGTTCTTTGATCAGT 

SR-51 CAGGAGAAGATGGCACAATA TAACCCTTTCACCATGTTTC 

SR-62 GTCTTTTTACCCTAAATGTT GACTGGGACCAATTTGT 

DXMit55 CTGCTTCCAGAATATTATCACTACTCC AAAACATCCATTTATGTTAACACACA 

DXMit81 GAGGAGCATCAACCTTCTCG GAGGTGGGGAGAAACAGAGG 

DXMit49  TTGGGACGAGTCTGAGCAC TTGTCACATTTGTCTTGAAGGC 

DXMit166 GAGATAAACCTGACTAACCCTTTCC GGATTTTCCCAAAAAAGAAACC 

DXMit140 ACATGAAAGTTAGAAAGAGACCCG GTGCACATTTGTGTGTGTATGC 

DXMit92  GTATATCTTGCAGCAATAGAAACCC TCCTCTATATCTGTGCTGTAAGATGC 

DXMit76  CCTCCAACCACCAAGACCTA ATAACACAGACACACATAGATACACCA 

DXMit87 TGAGAAAAGTGGTGTGTTTCTAGC CATTACCTAGGCCTACTTGTAGATCC 

DXMit143 AGGAAATGTGTGTACTCTGTATCTATG TGCTGCCTTGGCATGTATAG 

DXMit109 AAGTGGTCAGGTCTAATGGCA CCTCATAGCCTTCAAACCCA 

DXMit142 TGGTGGATGTTTGCCTATCA GCAGGCAACTGTGAGCCTC 

DXMit25 TTCCCAAGCTGCTGTTTCTT TGGCAGCACTTTAAGCATTG 

DXMit119  CTTTAACCATAATAATGGCCTTGC GGGTTCTGTGATCGCAAGTT 

DXMit60 AATGCCTGGTTCTTAGAGGATG CAGCAACAAGAGAGTTTCATGC 

DXMit93 TTGTCAGAATGATCGATTCTTATATC CACCCAAAGTAGTTAGATCTTATCATT 

DXMit114 ATGGCATCCACAGTACCACA GTAAAATCAATTTGTGAATAAGGAAGC 

DXMit16  CTGCAATGCCTGCTGTTTTA CCGGAGTACAAAGGGAGTCA 

DXMit170 TGCAGGCACTAACAGTGAGG TAGTTTCACTGTGCCATTGTATACA 

DXMit173  ATTTGATGTCCTCGTCTGGTG TAATTATACTGGGGACTAGAACTCAGG 

DXMit234 ATTTATGTGTCAGTGGTGGGG AAACTGGGACATAGTCTATAAGACCG 

DXMit31 TTATGTGCTTATTAGCCAAGGTG AAAATAGAACTTCAGCAGCATGC 

 

Table 6.1. Primer sequences of SSLP markers used for finer Hstx1/2 mapping. 
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6.4 QTL analysis 

QTL mapping on the recombinant males from (B6-XPWDXB6 x PWD) was performed using the R 

12.1 (R_Development_Core_Team 2008) and its qtl package (Broman, 2003; Sen et al., 2009) to 

perform statistical analysis. Marker positions were taken from MGI mouse genetic map (Bult et 

al., 2008). Standard interval mapping was implemented using scanone function. TW and logSC 

were modeled as continuous variables, fertility/sterile group as a binary variable. Genotype 

probabilities between the markers were calculated at a grid size of 5 cM and with genotyping 

error rate of 0.01%. Genome-wide significance was calculated by 1000 permutations and 

compared to α=5% threshold. 

6.5 FACS isolation of spermatogenic populations  

Three spermatogenic populations (early-mid pachytene, late pachytene-diplotene and spermatids) 

were isolated using fluorescence activated cell sorting (FACS) as described earlier (Bastos et al., 

2005; Homolka et al., 2007) from PWD and B6 testis. Spermatogenic tubules of mice euthanized 

by cervical dislocation were incubated in enriched Krebs-Ringer bicarbonate medium (EKRB) 

and protocol was followed as described below. 

 

10 x KRB (dil. and filtered) 30 ml 
1M CaCl2 0.39 ml 
200mM  1.5 ml 
L-Glu+antibiotics     
MEM AA (50x) 6 ml 
MEM non.ess.AA (100x) 3 ml 
NaHCO3 4.54 ml 
Lactate Na+ (1.31g/ml) 0.114 ml 
Sodium pyruvate  0.216 g 
1M HEPES pH 7.25 6 ml 

 

pH adjusted to 7.2 – 7.25 by NaOH, water added to 300ml EKRB 

• The tunica was removed and the pair of testis was put into 10 ml EKRB with 100µl 

collagenase (50mg/lml; Sigma) and 50µl DNAse (1mg/ml; Sigma). Incubate in a shaker 

incubator at 32°C for 20min at120rpm. 
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• After incubation, tubules were pipetted with cut tip for 15 to 20 times and filtered using 

BD cell Strainer (40 micron mesh). Tubules were washed using 10 ml EKRB with 100µl 

collagenase (50mg/lml) and 50µl DNAse (1mg/ml) and incubated in a shaker incubator at 

32°C for 20min at120rpm.  

• After incubation, tubules were pipetted with cut tip for 15 to 20 times and filtered using 

BD Falcon cell Strainer (40 micron mesh).EKRB was added to single cell suspension to 

vol. 20ml, centrifuged at 1000rpm for 10min at  room temperature on Jouan centrifuge. 

The process was repeated twice. 

• The supernatant was removed and the cells were resuspended in 1 ml EKRB containing 

1%Fetal calf serum (FCS; invitrogen) and transferred  to an  Eppendorf tube (20µl 

remove from the total 1 ml volume and added to 380µl EKRB for cell counting; kept at 

4°C ). 

• The cell suspension was diluted to 1.5 ml using EKRB with 1%FCS.To the diluted single 

cell suspension, 7.5µl Hoechst (1mg/ml; invitrogen) and 7.5µl DNAse (1mg/ml) were 

added and incubated in dark at 32°C for an hour on a shaker.  

• Before sorting, another 7.5µl of DNAse (1mg/ml) was added. Just before loading the cells 

for sorting 3µl propidium iodide (1mg/ml; invitrogen) was added and maintained at 32°C. 

• The cells were directly sorted into QIAzol lysis reagent of the miRNeasy Mini isolation 

kit (QIAGEN). 

• Small aliquots of cells were sorted in Krebs-Ringer bicarbonate medium (EKRB) for 

Immunofluorescence analysis. Population composition was determined based on anti-

SYCP3, anti-SYCP1, anti-γH2AFX antibodies (details below) and cellular morphology 

stained by DAPI (Vectashield) .All sorted populations showed 85-90% purity of desired 

cell types.  
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6.6 Isotonic protocol for immunostaining of spread spermatocytes. 

Isotonic protocol (Mahadevaiah et al., 2009) with modifications. 

This part of the experiment has to be carried out very carefully to avoid any contamination. 

Autoclaved bottles were to be used for ddH2O or MilliQ H2O, falcon tubes, gloves, lab coat etc. 

Slide preparation: Prepare following chemicals 

 

CSK buffer 

for 1000 µl: 
100 mM NaCl   
300 mM Sucrose   
3 mM MgCl2   
10 mM PIPES   
0.5% triton X-100 Add just before use 

 

1000 µl per slide needed; store at 4 °C 

 

EKRB buffer 

10 x KRB (dil. and filtered) 30 ml 
1M CaCl2 0.39 ml 
200mM  1.5 ml 
L-Glu+antibiotics     
MEM AA (50x) 6 ml 
MEM non.ess.AA (100x) 3 ml 
NaHCO3 4.54 ml 
Lactate Na+ (1.31g/ml) 0.114 ml 
Sodium pyruvate  0.216 g 
1M HEPES pH 7.25 6 ml 

 

300ml for 4 mice; store at 4 °C. pH adjusted to ~7.20 (770 ul 1M NaOH) . Volume made to 300 

ml using MilliQ water. 
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0.5 x MAH-binding buffer 

400 µl per slide (200 µl for blocking, each 100 µl for staining with primary and secondary 

antibodies 

for 400 µl: 
1.5%  BSA   
5 % Goat serum   
0.05% triton X-
100   

0.2 x Protease 
Inhibitor Add just before use 

1 x PBS Make the volume 
Preparing single cell suspension:  

Tunica was removed from pair of testis and put into 10 ml EKRB + 100µl collagenase 

(50mg/lml) + 50µl Dnase (1mg/ml). Incubate at 32°C for 20min at 120rpm  

• Pipette it with cut tip for 20-25 times and filter it by 40 micron nylon cell Strainer. 

• Put tubules in 10 ml EKRB + 100µl collagenase (50mg/lml) + 50µl Dnase (1mg/ml). 

Incubate at 32°C for 20min at 120rpm 

• Pipette it with cut tip for 20-25 times and filter it by 40 micron nylon cell Strainer. 

• Filter by 40 micron nylon cell Strainer and remove clumps. 

• EKRB was added to single cell suspension to vol. 20ml, centrifuged at 1000rpm for 

12min at room temperature on Jouan. Remove the  supernatant 

• 20 ml of EKRB was added, centrifuged at 1000rpm for 12min at room temperature on 

Jouan, supernatant removed. 

• Cells were resuspended in 1ml EKRB for future use. 

Slide preparation: 

• Few drops of cell suspension was placed on clean slides (boiled in distilled water for 10 

minutes; Silane-prep slides from Sigma S 4651 work well) and allowed to sink for 30 

minutes at 4°C in a humidified chamber. 
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• The cells were permeabilised using 1ml ice cold CSK buffer for 10 minutes (Adjustable 

according to the requirement) at 4°C in a humidified chamber. 

• CSK was drained off placing paper towels and cells were fixed by flooding the slides with 

ice-cold 1 ml of freshly prepared 4% PFA (in 1X PBS) and left for 10 minutes at 4°C in a 

humidified chamber. 

• Wash the fixed cells by dipping the slide(s) into the coplin jar with PBS twice for 7 

minutes or thrice for 5 minutes. 

• Block the cells by 200ul 5%goat serum in 1x PBS (fresh) or 0.5x MAH for 1 hour  at 4°C 

- cover the slides with 60mm cover slip . 

• Incubate over night with primary antibodies at 4°C (covered with a cover glass). On the 

next day, wash the slides thrice in 1 x PBS, 5 minutes each. Add secondary antibodies in 

required dilution. Incubate for 2 to 3 hours (covered with a cover glass) in the dark at 4°C. 

Wash slides 3 times for 5 minutes each in the dark at room temperature (in 1 x PBS). Air 

dry the slides in the dark at room temperature and add vectashield DAPI (cover the slides 

with cover glass).  

• Store at -20°C until observation.   

 

6.7 Hypotonic protocol for immunostaining of spread spermatocytes. 

Hypotonic protocol (Anderson et al., 1999) with modifications. 

This part of the experiment has to be carried out very carefully to avoid contamination. 

Autoclaved bottles were to be used for ddH2O or MilliQ H2O, falcon tubes, gloves, lab coat etc. 

Slide preparation: Prepare following chemicals 
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1% PFA Solution  

for 1000 µl: condition 
50 mM NaBorate 
(pH 9.2) 927 µl   

32 % PFA 34 µl   
15% triton X-100 10 µl   
7 x Protease 
Inhibitor 29 µl Add just 

before use 
 

200 µl per slide needed; store at 4 °C 

Sucrose 0.1 M 

for 500 µl    condition  
1000 mM sucrose  50 µl    

millipore water  378.6 
µl    

7 x Protease Inhibitor  71.43 
µl  

Add just 
before use 

 

1000 µl per animal needed; store at 4 °C 

 

 

0.5X MAH-binding buffer 

 

400 µl per slide (200 µl for blocking, each 100 µl for staining with primary and secondary 

antibodies) 

for 400 µl: 
1.5%  BSA   
5 % Goat serum   
0.05% triton X-
100   

0.2 x Protease 
Inhibitor Add just before use 

1 x PBS Make the volume 
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• Dissect the testes from killed mouse, remove the tunica. Resuspend the tubules in RPMI 

buffer by vigorous shaking in hand for 3minutes. Let to sediment them, remove the 

supernatant.  Resuspend the sedimented tubules again, and repeat as before. Macerate 

tubules in 200µl of RPMI.  

• Allow to settle the cell clamps and large tubule clamps for 2min. Pipet the overlying cell 

suspension and aliquot equally into 2 microtubules.  

• Centrifuge the cell suspension for 5 min at 2000 x g = 4600rpm (Eppendorf microfuge). 

During this time, arrange 7 new slides (boiled clean) in a level plastic dish that contained 

a damp paper towel.  

• Drop 200 µl of an aqueous solution of 1% paraformaldehyde (pH 9.0) and 0.15% Triton 

X-100 with a cocktail of protease inhibitor and EDTA (Roche 1836153) was dropped 

onto each slide.  

• The supernatants were removed, and the cell pellets in both microtubes were resuspended 

in 1000 µl of 0.1 M sucrose with the same protease inhibitor cocktail. A 100-µl aliquot of 

cell suspension was placed on each of 7 slides, and a cover was placed over the plastic 

dish so the slides would not dry. Incubate for 3 hours at 4°C. 

• Rinse the slides gently in Millipore clean water and air dry. Unstained slides were 

examined using phase microscopy, and only slides on which the cells were well spread 

were immunostained. 

• Slides were washed twice in PBS, 5 min each. Blocking: incubate the slides at room 

temperature with 200 µl 0.5 x MAH for 1 hour (covered with a cover glass). Go ahead for 

immunostaining using 0.5 x MAH for diluting the antibodies.  

• Incubate over night with primary antibodies at 4°C (covered with a cover glass). On the 

next day, wash the slides thrice in 1 x PBS, 5 minutes each. Add secondary antibodies in 

required dilution. Incubate for 2- 3 hours (covered with a cover glass) in the dark at 4°C. 

Wash slides 3 times for 5 minutes each in the dark at room temperature (in 1 x PBS). Air 

dry the slides in the dark at room temperature and add vectashield DAPI (cover the slides 

with cover glass).  

• Store at -20°C until observation. 
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6.8 Protocol for staining of RAD51, DMC1, MSH4 and MLH1 in spermatocytes. 

Immunostaining protocol (Dumont and Payseur, 2011) with modifications. 

This part of the experiment has to be carried out very carefully to avoid any contamination. 

Autoclaved bottles were to be used for MilliQ water, falcon tubes, gloves, lab coat etc. 

Slide preparation: Prepare following chemicals 

Hypo Extraction Buffer  

 

3 ml per genotype is needed (prepare extra); pH has to be adjusted to 8.2 - 8.4 with NaOH and/or 

HCl (use immediately). Stable for 2 hours (watch out: 45 min incubation time!). 

 

stock solution final 
concentraion condition 

1000 mM Tris, pH 8.2 30 mM   
1000 mM sucrose 50 mM   
1000 mM citric acid 17 mM   
500 mM EDTA 5 mM   

500 mM DTT 2.5 mM Add just 
before use 

100 mM PMSF 0.5 mM Add just 
before use 

Tissue culture H2O fill up to final 
volume   

 

 

1% PFA Solution  

 

200 µl per slide needed; store at 4 °C 

for 1000 µl: condition 
50 mM NaBorate 
(pH 9.2) 927 µl   

32 % PFA 34 µl   
15% triton X-100 10 µl   
7 x Protease 
Inhibitor 29 µl Add just 

before use 
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Sucrose 0.1 M 

for 500 µl    condition  
1000 mM sucrose  50 µl    

millipore water  378.6 
µl    

7 x Protease Inhibitor  71.43 
µl  

Add just 
before use 

 

1000 µl per animal needed; store at 4 °C 

 

 

0.5 x MAH-binding buffer 

 

400 µl per slide (200 µl for blocking, each 100 µl for staining with primary and secondary 

antibodies) 

for 400 µl: 
1.5%  BSA   
5 % Goat serum   
0.05% triton X-
100   

0.2 x Protease 
Inhibitor Add just before use 

1 x PBS Make the volume 
 

Slide preparation:  

• Remove testes from the mouse, weigh them, remove tunica and place in a PBS-filled 

watch glass. Rinse in PBS (2 times PBS for washing).  

• Transfer to a new watch glass containing 3 ml hypo extraction buffer. Gently tease apart 

tubules to expose them to the hypo extraction buffer. 

• Use two forceps only to push the tubules apart without destroying them. Incubate for 

approximately 45 minutes in hypo extraction buffer at room temperature. 

• After Incubation, macerate the tubules in ~ 50 µl of cold 0.1 M sucrose solution. Make the 

volume up to 450 µl by using 0.1 M sucrose solution. Remove cell clumps by the 40 µm 

dense mesh filter into new eppendorf tubes. (Measure the number of cells using a 
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Neubauer chamber and dilute it to 3000 cells/µl using 0.1 M sucrose solution.)  

• Add 180 µl of cold 1% PFA on (boiled cleaned) dry slides in humid chambers to form a 

thin layer of PFA on the slides. Add 90 µl of diluted cells from a height of ~ 10 cm onto 

the slides as drops at 3 different spots. Cover the humid chamber to avoid drying of the 

slides. Incubate at 4 °C for 2 hours (whole step carried out in the cold room at 4°C). 

• Rinse the slides gently in millipore clean water and air dry for 15-20 minutes. Wash twice 

in 1 x PBS, each 5 minutes (rehydration step). Blocking: incubate the slides at room 

temperature with 200 µl 0.5 x MAH for 1 hour (covered with a cover glass). Go ahead for 

immunostaining using 0.5 x MAH for diluting the antibodies.  

• Incubate over night with primary antibodies at 4°C (covered with a cover glass). On the 

next day, wash the slides thrice in 1 x PBS, 5 minutes each. Add secondary antibodies in 

required dilution. Incubate for 4 - 6 hours (covered with a cover glass) in the dark at 4°C. 

Wash slides 3 times for 5 minutes in the dark at room temperature (in 1 x PBS). Air dry 

the slides in the dark at room temperature and add vectashield DAPI (cover the slides with 

cover glass). 

• Store at -20°C until observation. 

• The images were adjusted with Adobe Photoshop CS (Adobe Systems) and the 

RAD51,DMC1, MSH4 and MLH1 foci were counted using Image J software 

(http://rsbweb.nih.gov/ij/). 

 

6.9 Staging the first meiotic prophase of oocytes.  To determine the developmental stages of 

PB6F1, B6PF1, B6 and PWD oocytes, we took an advantage of the synchronous development of 

oocytes in embryonic ovaries(Dietrich and Mulder, 1983). We visualized chromosomal axes and 

centromeric regions in oocytes derived from 17.5 dpc (postcoitum), 19.5 dpc and 1 dpp 

(postpartum) hybrid ovaries and wild-type controls. The meiocytes found mainly in 17.5 dpc 

ovaries were classified as pachynema and those prevalent in 19.5 dpc ovaries as diplonema. 

6.10 Immunostaining of spread meiocytes.  

Meiocyte spreads were prepared by isotonic or hypotonic protocol (Anderson et al., 1999; Turner 

et al., 2005). For immunocytochemistry, the spread nuclei were immunolabeled with the 

following antibodies: rat polyclonal anti-SYCP3 (Abcam, #15092), mouse monoclonal anti-

http://rsbweb.nih.gov/ij/�
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SYCP1 (Abcam, #15087), guinea pig anti-histone linker H1t (Inselman et al., 2003), mouse 

monoclonal anti-γH2AX (Upstate, #05-636), human autoantibody anti-centromere (AB-

Incorporated, #15-235), mouse monoclonal antibody anti-SYCP3 (Santa Cruz, D-1, #74569), 

rabbit polyclonal antibody anti-Rad51 (Santa Cruz, H-92, #8349), rabbit polyclonal antibody 

anti-DMC1 (Santa Cruz, H-100, # 22768), rabbit polyclonal antibody anti-MSH4(Abcam, 

#58666), rabbit polyclonal antibody anti-ATR (Santa Cruz, H-300, # 28901), mouse monoclonal 

anti-MLH1 (Abcam; #14206), rabbit polyclonal antibody anti-HORMAD1 and HORMAD2 

(kind gift from Attila Toth), rabbit polyclonal antibody anti-STAG3 (gift from Rolf Jessberger) 

and the secondary antibodies: goat anti-Rabbit IgG-AlexaFluor488 (Molecular Probes, A -11034 

), goat anti-Mouse IgG Alexa Fluor 568 (Molecular Probes, A-11031), goat anti Rabbit IgG-

Alexa Fluor 568 (Molecular Probes, A-11036), goat anti-Mouse IgG-Alexa Fluor 350 (Molecular 

Probes, A- 21049), goat anti Mouse IgG-Alexa Fluor 647 (Molecular Probes, A-21236), goat anti 

Rabbit IgG-Alexa Fluor 647 (Molecular Probes, A-21245) and goat anti-Guinea pig IgG-Cy3 

(Chemicon,  #AP108C). The immunocytochemistry was performed directly after RNA FISH, and 

the images were acquired and examined in a Nikon Eclipse 400 (Tokyo, Japan) microscope with 

motorized stage control using Plan Fluor objective, 60x (Nikon, MRH00601) and captured using 

a DS-QiMc monochrome CCD camera (Nikon) and NIS elements program. The images were 

adjusted with Adobe Photoshop CS software (Adobe Systems). 

6.11 RNA Fluorescence In-Situ Hybridization (FISH). 

RNA FISH Protocol (Mahadevaiah et al., 2009); Methods in Molecular Genetics with 

modifications. 

This part of the experiment has to be carried out very carefully to avoid any contamination. 

Autoclaved bottles were to be used for ddH2O or MilliQ H2O, falcon tubes, gloves, lab coat etc. 

Probe preparation. 

The BAC’s were obtained from Source BioScience LifeSciences (http://www.imagenes-bio.de/). 

Individual probes for RNA FISH were prepared from BAC DNA carrying the genomic region of 

interest, namely RP23-234F8 for Scml2; RP23-70P13 for Ott; RP23-34L18 for Ndufa1 and 

RP23-364L1 for Egfl6, and CITB-288D7 (a gift from Paul S Burgoyne) for Zfy2. 

http://www.imagenes-bio.de/�
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• BAC-containing bacteria were streaked onto LB broth (500 ml) containing relevant 

antibiotic (usually 12.5 μg/mL chloramphenicol) and grown overnight at 37°C in a shaker 

incubator. 

 

• BAC-DNA was isolated using NucleoBond Xtra Maxi kit (Macherey-Nagel) as per the 

provided protocol. 

• 1 µg of BAC DNA was labeled using BioNickTM DNA Labeling System for biotin 

labeling or the DIG-Nick Translation Mix for digoxigenin labeling exactly according to 

manufacturer’s instructions (16µl of BAC DNA + 4 µl of mix; Roche). 

• The mix was incubated at 15°C for 45 minutes in water bath then store on ice. 

• 2µl of the reaction mix was loaded on 2% agarose gel to check the size of the smear. If 

too large the mix was incubated for 37°C for various time intervals until probes were 

200bp long. 

• 4µl of the labeled DNA were combined with 2µl of salmon sperm (invitrogen) and 6µl of 

mouse Cot1 DNA. Precipitate by adding 2.5 volume 100% EtOH. Flicked and spanned 

(13000 rpm at 4°C for 5 minutes). 

• Pellet was washed twice with 70% EtOH, air dried for 5 minutes and later resuspended in 

10 µl Formamide. The probe was stored at -20°C. 

 

Meiocyte spread preparation and hybridization. 

• Single cell suspensions from the testis were prepared in ice-cold RPMI including L-

glutamine. 

• Few drops of cell suspension was placed on clean slides (boiled in distilled water for 10 

minutes) and allowed to sink for 20 minutes on an ice cold-frozen platform. 
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• The cells were permeabilised using 1ml ice cold CSK buffer (100mM NaCL, 300mM 

Sucrose, 3mM MgCL2, 10mM PIPES) with supplements (0.5% Triton X-100 and 2 mM 

Vanadyl Ribonucleoside) for 10 minutes. 

• CSK was drained off placing paper towels and cells were fixed by flooding the slides with 

ice-cold 1 ml of freshly prepared 4% PFA (in 1X PBS) and left for 10 minutes. 

• In meantime, the  labeled probes were denatured at 80°C for 10 minutes and 10 µl 

hybridization buffer (4X SSC,50% dextran sulphate,2mg/ml BSA, 2mM Vanadyl 

Ribonucleoside) was added into it. Later the mix was vortexed and pre-hybridized at 37°C 

at least for 30 minutes. 

• Slides were dehydrated through ice-cold ethanol series (70% twice, followed by 80%, 

95% and100%) for 3 minutes each. Air dried slides were used for probe hybridization. 

• Pre-hybridized probe was directly added onto slide centre avoiding air bubble. Cover slip 

was placed and sealed with rubber cement. Slides were hybridized overnight at 37°C in a 

Formamide filled chamber. 

• Next day cover slip were carefully removed washed twice in wash solution A (50% 

Formamide in 1 X SSC, pH 7.2-7.4, warmed to 42°C) for 5 minutes with gentle shaking. 

• Next slides were washed 3 times in wash solution B (2 X SSC, pH 7.0-7.2, warmed to 

42°C) for 5 minutes each with gentle shaking. 

• The slides were washed with wash solution C (4XSSC, 0.1% Tween-20, pH 7.2-7.4) for 5 

minutes. 

• Slides were placed in the humidified chamber (H2O) and 200 µl of blocking buffer 

(4XSSC, 4mg/ml BSA, 0.1% Tween-20) was added, cover slip was placed and incubated 

at 37°C for 30-45 minutes. 

• Cover slip was removed and 50 µl of diluted (1:10) anti-biotin or anti-DIG secondary 

antibody conjugated with FITC (Roche or Millipore) in detection buffer (4XSSC, 1mg/ml 
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BSA, 0.1% Tween-20) was added to the slide. Cover slip was placed and incubated at 

37°C for 90-120 minutes. 

• After incubation, slides were washed for 3 times in wash solution C for 2 minutes each 

with shaking. 

• For Immunostaining 100µl of diluted primary antibody in detection buffer was added onto 

the slide and incubated overnight at 4°C. 

• Next day slides were washed thrice in wash solution C and diluted secondary antibody 

was added. Cover slip was placed and incubated at 4°C for 2 hours. 

• Later slides were washed thrice in wash solution C for 5 minutes each and mounted in 

vectashield mounting media with DAPI. The slides were stored at -20°C until 

observation. 

6.12 DNA Fluorescence In-Situ Hybridization (FISH). 

DNA FISH Protocol (Kauppi et al., 2011) with modifications. 

This part of the experiment has to be carried out very carefully to avoid any contamination. 

Autoclaved bottles were to be used for ddH2O or MilliQ H2O, falcon tubes, gloves, lab coat etc. 

Probe source: MetaSystems and Cambio (ready to use-50µl). 

Slide preparation: Testicular nuclear spreads were prepared as per Anderson et.al 1999 with brief 

modifications described above. Slides were immunostained as described earlier and treated for 

DNA FISH. All steps to be carried out in dark with little exposure to light. 

• Immunostained slides were washed twice in 1x PBS (5 minutes each). 

• Slides were dehydrated gradually in 70%, 90% and 100% ethanol (ethanol /water) for 3 

minutes each. 

• Slides were air dried at room temperature (15-20 minutes) and incubated at 65°C for 1 

hour (Ageing). 
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• The slides were denatured in 70% Formamide in 0.6 x SSC at 72°C (+1°C increase per 

slide) for 7 minutes. 

• After denaturation slides were immersed in 70% ethanol (-20°C; ice-cold) for 3 mins. 

Afterwards slides were dehydrated gradually in 70%, 90% and 100% ethanol (ethanol 

/water) for 3 minutes each. 

• Slides were air dried at room temperature (15-20 minutes). 

• Probes (MetaSystems and Cambio) were prepared as per manufactures instruction (10µl 

ready to use probe + 1.1 µl mouse cot1 DNA; Invitrogen). 

• Probes were denatured at 75°C for 5 minutes and renatured (Pre-annealed) it at 37oC 

between 30min to 1 hour. 

• 10 µl Pre-hybridized probes were directly added onto slide centre avoiding air bubble. 

Cover slip (24 x 24) was placed and sealed with rubber cement. Slides were hybridized 

over the weekend (72 hours) at 42°C in a water filled (saturated) chamber. 

• Hybridized slides were washed in 4x SSC at 42°C (3 times; 5 minutes each) and mounted 

in a vectashield mounting media with DAPI. The slides were stored at -20°C until 

observation. 

6.13 In vitro culture, MI and MII spreads and video microscopy of oocytes. We used fully 

grown germinal vesicle (GV) oocytes from both inter-subspecific hybrids together with C3B6F1 

intra-specific oocytes isolated from the ovaries of animals 10–16 weeks old without prior 

hormonal stimulation. The cells were harvested and processed for chromosome spreads 7 hours 

after releasing into maturation media. Techniques used for oocyte culture, micromanipulation, 

microinjection as well as for chromosome spreads and kinetochore counting assay were described 

previously (Sebestova et al., 2012). Images were scanned with Leica SP5 confocal microscope 

equipped with AOBS and HCX PL APO 40x/1.3 OIL CS objective. For detection of DAPI, 

Alexa Fluor 488 and Alexa Fluor 555 excitation wavelengths 405nm, 488 nm and 561nm were 

used. Spreads were scanned using Leica AF6000 inverted fluorescence microscope equipped 

with HCX PL APO 100x/1.4-0.7 OIL objective. Live imaging experiments were performed on 

Leica SP5 confocal microscope equipped with EMBL microscope incubator allowing prolonged 
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time-lapse experiments in 5% CO2 and 37ºC. For detection of EGFP and mCherry fluorescent 

proteins inside live oocytes; 488 and 561 nm excitation wavelengths, HCX PL APO 20x/0.7 

IMM CORR λBL and HCX PL APO 40x/1.3 OIL CS objectives, tandem scanner and internal 

PMTs or HyDs were used. The 9-11 stacks were captured every 10–12 min for 18 hr. 

Quantification and data analysis was performed using ImageJ (http://rsb.info.nih.gov/ij/), Imaris 

(http://www.bitplane.com) and Huygens (http://www.svi.nl) software. For measuring securin 

signal the mean fluorescence intensity was normalized to the value at the time of GVBD. Mean 

and standard deviation values were calculated using MS Excel, statistical significance of the 

difference between the control and experimental groups were tested using Student’s t-test 

(GraphPad Prism software for Macintosh).  

6.14 Microarray analysis and real time PCR 

RNA was isolated from the sorted cells and 14.5 dpc testes using the miRNeasy Mini isolation kit 

(QIAGEN) as per recommended protocol. RNA concentration was determined 

spectrophotometrically at A260nm by NanoDrop (NanoDrop Technologies) and the integrity was 

checked on Agilent 2100 bioanalyzer - RNA Lab-On-a-Chip (Agilent Technologies).  The Total 

RNA (20–30 ng for gene expression and 120 ng for miRNA expression) was converted in cRNA 

using the Affymetrix Two-Cycle Target Labeling kit according to the manufacturer’s instructions 

or using the Affymetrix 3′ IVT Express Kit. Affymetrix GeneChip Mouse 1.0ST and Affymetrix 

GeneChip miRNA 1.0 Array was hybridized with cRNA. The data obtained from the experiments 

were analyzed using Bioconductor (Gentleman et al., 2004) (http://www.bioconductor.org/) and 

the R project for statistical computing (version 2.12; http://www.r-project.org/). The probes were 

annotated to Entrez gene identifiers using the custom chip description file, which is based on 

NCBI build 37. The data were normalized using gcRMA. We used Linear Models for Microarray 

Data Package, limma version 3.6 (Smyth, 2004) for statistical evaluations of expression 

differences. A linear model was fitted for each gene in a given series of arrays by using the lmFit 

function. To rank the differential expression of genes, we applied the eBayes function of the 

empirical Bayes method. A correction for multiple testing was performed using the Benjamini 

and Hochberg false discovery rate method. Genes were considered to be expressed if average 

expression in all samples was ≥100. The microarray dataset is deposited in the NCBI Gene 

Expression Omnibus (GEO) with series accession number GSE41707 (Bhattacharyya et al., 

http://rsb.info.nih.gov/ij/�
http://www.bitplane.com/�
http://www.svi.nl/�
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2012). Expression of different X-linked protein coding genes on spermatogenic populations were 

derived from NCBI GEO profiles or NCBI GEO database GSE7306 (Homolka et al., 2007). 

For real time PCR of protein coding genes, reverse transcription of isolated RNA sample was 

carried out using Applied Biosystems (ABI) high-capacity cDNA reverse transcription kit. The 

quantification of mRNAs was performed using FastStart DNA Master SYBR Green I kit (Roche) 

and cycled in the LightCycler 2000 (Roche). Reactions without reverse transcriptase were 

utilized as negative control. The assays were done in biological and technical triplicates. Data 

were analyzed using LightCycler Software version 3.5.3 (Roche).For miRNA expression 

revalidation we used ABI TaqMan MicroRNA assays and followed the manufacturer’s 

instructions. The reactions were cycled in Applied Biosystems 7300 Real-time PCR system and 

associated software was used for data analysis. The reactions were also carried out using 

biological and technical triplicates and proper negative controls. Most high and stable expressed 

miRNA (U6 non-coding RNA for sorted cells and Mir152 for 14.5 dpc testis) were used as a 

reference for the data normalization. The primers are designed using primer 3 software 

(http://frodo.wi.mit.edu/) and sequences of primers are in table 5.2 

6.15 Sequencing and SNP analysis. 

A whole genome exome sequence analysis was carried out for PWD mice at BGI Europe using 

Illumina HiSeq 2000 sequencers. The reads where aligned against published B6 genome 

(http://www.sanger.ac.uk/resources/mouse/genomes/).  The sequence specifically aligned to the 

region of interest was discussed in the manuscript. All the non-synonymous mutations between 

PWD and B6 for 4.7 Mb Hstx2 locus were tabulated. Resequencing experiments on PWD cDNA 

(for protein coding genes) and BACs (for miNRAs) (Jansa et al., 2005) were carried out as 

described (Mihola et al., 2007) using sequencing capillary machine ABI310 (Applied 

Biosystems). The sequences of primers are listed in the table 5.2 Brief sequencing protocol is 

described below.  

Initial PCR 

Total: 20ul per reaction: 

2.1ul 10X buffer with MgCl2, MBI Fermentas (without ammonium sulfate) 
0.35ul 10mM dNTPs 

http://frodo.wi.mit.edu/�
http://www.sanger.ac.uk/resources/mouse/genomes/).�


55 
 

0.2ul of each primer (0.4 total) 
0.4ul Taq polymerase, MBI Fermentas 
1ul DNAmQ H2O to 20 ul (15.75) 

PCR I: 94°C 1.15, 37X (94°C 0.30, annealing Temperature 0.15, 72°C according to expected 
length) 10°C forever.  

- HOT START: 80-85°C → pause → put samples for 20-25 sec → resume 

Band quantification 

(On the plate) pipet 0.8ul of 10X loading buffer add 6 or 7 ul of amplificated DNA and load on 
the 1.5 to 2 % agarose gel with marker-ladder (5ng/ul-load 3 ul) 

Run the gel for at least 1 hour, on the imager export the photo to GeneSnapTool and do the 
manual band quantification. 

Calculate quantity – comparison with marker band as a standard (15ng), background adjustment. 

ExoSapIt 

(Exonuclease I for removing primers, Sap-alcalic phosphatase for removing dNTPs) 

At least 1ul of ExoSapIt was added to 4ul of sample and mix with tip. 

Reaction : 37°C – 20:00 min, 80°C – 15:00 min, 25°C  - 55:00 min. (stop first after reach 25°C) 

 Sequencing PCR 

Total: 10ul per reaction: 
2ul of RR mix * 
1ul of 5X seq buffer * 
0.3ul of one sequencing primer (20uM) 
DNA after ExoSapIt (calculated volume) † 
mQ H2O to 10 ul (also calculated) 

* General Mix; 

 - For more than 1kbp pcr product add 4 ul of RR and no seq buffer 

 - For less than 0.3kbp pcr product add 1ul of RR and 1.5ul of seq buffer 

 

† Quantity of DNA per one 10ul-reaction 



56 
 

100 – 200 bp:  1 – 2 ng 
200 – 500 bp:  2 – 5 ng 
500 – 1000 bp: 5 – 10 ng 
1000 – 2000 bp: 10– 20 ng 
more than 2000 bp: 20 – 50 ng 

 

PCR II: 96°C 0.05, 28X (96°C 0.10, 50.0°C 0.05, 60°C 4.00) 10°C forever 

    - HOT START: 80-85°C → pause → put samples for 20-25 sec → resume 

Repurify/condensation 

Condensation with 1/10 of sodium acetate (pH 5.2) plus ethanol (2.5 times of reaction volume). It 
means 1ul of NaAc and 25ul of ethanol 

Add 26 ul of mixture to all new marked tubes needed  

Add 10 ul of final pcr reaction – above the surface (because of condensation) and mix by finger 
flicking  

Incubate 15 min in room temperature and microfuge 13200rpm (max) for 20 min in defined 
orientation (expecting location of invisible pellet) 

Remove supernatant and add 80 ul of 75% EtOH and microfuge 10 min (13200rpm) 

Remove supernatant and dry in 80-85°C for 1 min. 

Dissolve in 20ul of formamide (vortex and spin-slightly), denaturate in 95°C for 1-2 min and 
quickly transfer on ice (let it on ice at least 5 min) 

Some of the SNPs were also confirmed using Mouse phenome database 

(http://phenome.jax.org/).  

6.16 Statistical analysis 

Multiple biological replicates of each genotype were analyzed for cellular phenotypes and RNA 

expression. Significance of BW, TW, sperm morphology and breeding phenotypes was computed 

using Welsch’s t-test. Differences between cellular phenotypes were determined with χ2 test, 

ANOVA, and Mann-Whitney U test. All computations were done using R 2.15.0 or Graphpad 

prism. The dN:dS ratio (an indicator of  evolutionary selective pressure on genetic processes) of 

http://phenome.jax.org/�
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different X-linked protein coding genes between rat and mouse was calculated using ensemble 

(http://www.ensembl.org/biomart/martview/bcc06f42e7f96c64c420679e0520676e). 
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RTPCR primers   
Sequence Name 
GGCTGTATTCCCCTCCATCG RT-Actb1-F 
CCAGTTGGTAACAATGCCATGT RT-Actb1-R 
ATCCAGCAGCAGCAAGTGAT RT-Ctag2-ex2-3-CF 
AGGATCTTCTGTGGTCCACCT RT-Ctag2-ex2-3-CR 
GCTCAGGTAACATTGACTCCAA RT-4930447F04Rik-F1 
TCTGTCTTGATTCTTGTCCTTTGT RT-4930447F04Rik-R1 
TTCAAAGGCTGACCCCTACA RT-Slitrk2-F1 
TGGCTTTTGGAGCTCTGGT RT-Slitrk2-R1 
AGGGACCTTACTTAGGTT RT-4933436I01Rik-F1 
GAGGCTTCACAATGGAC RT-4933436I01Rik-R1 
GTGAGGATGATAAAGGGTGAG RT-Fmr1-ex5-6F 
CATAAGTTACAGAGAAGGCAC RT-Fmr1-ex5-6R 
GAGGAGGAAGAGGATGAACAG RT-Fmr1nb-ex5-6F 
TTTCAATGGGACAGTAAAGCTC RT-Fmr1nb-ex5-6R 
Re-sequencing primers   
ATCGAAGGCCAAGTCAGAGA SEQ-Fmr1nb-ex1to3-F 
ATCGAAGGCCAAGTCAGAGA SEQ-Fmr1nb-ex1to3-R 
AGGTGGTGGTGGCATGTAAT SEQ-Fmr1nb-ex3to6-F 
GCATGCAATGGAACTTTAATTTG SEQ-Fmr1nb-ex3to6-R 
CGTGGATATGTGCAAGCTCATCCATAAT SEQ-MiR465b-LRP-F1 
ACAGCAGGCCTTAAACCCATTGAGAGAT SEQ-MiR465b-LRP-R1 
AACAAGCGGCAGAAAAAGAA SEQ-4933436I01Rik-F1 
ATTGTCCCAGCTATGCATCC SEQ-4933436I01Rik-R1 
GGCCCTTAACGGCTATGATT SEQ-Pri-Mir-465b-F  
GAAAGGCCCTGATCAATTTTT SEQ-Pri-Mir-465b-R 
TGACCCTTTACTTGGCCATT SEQ-Mir-465a-F 
TGTGGATATGTCCAAGCTCATC SEQ-Mir-465a-R 
AGTAGTAGGATTCTGTATGACCCTTT SEQ-Mir-465b-F  
AAGAATGTGGCCATGTGGA SEQ-Mir-465b-R 
AAGTTTGTAGAGCAGGTGGTGAA SEQ-Ctag2A-F 
ATGAAATGCCTTTGCCTTGT SEQ-Ctag2D-R 

 

Table 6.2: Primer sequences for RT-PCR and sequencing of candidate genes. 
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Results 

7. Genetic basis of hybrid sterility 

7.1 Asymmetry of reciprocal F1 hybrid male sterility is controlled by the middle part of 

Chr X. 

The asymmetry in hybrid sterility was reported in Drosophila (Zeng and Singh, 1993; Turelli and 

Moyle, 2007; Reed et al., 2008) and in experimental mouse crosses (Pialek et al., 2008; Mihola et 

al., 2009). In our model, hybrids between PWD female and B6 male (henceforth PB6F1) were 

sterile with testis weight (TW)  62.8 mg and no sperm in ductus epidydimis, while males from the 

reciprocal cross between B6 female and PWD male (henceforth  B6PF1) were affected only by a 

partial spermatogenic arrest compatible with fertility (TW 112.6 mg and 13.7 million sperm). The 

asymmetry in F1 sterility could be explained by one of the following five mechanisms: (1) X-

autosomal interaction, (2) Y-autosomal interaction, (3) X-Y incompatibility, (4) mitochondrion-

nuclear incompatibility, or (5) by incompatibility of the imprinted autosomal gene(s). To 

experimentally validate these options, we crossed B6.PWD-Chr X.1, X.2 or X.3 consomic 

females identical with B6 but carrying the proximal, middle or distal part of  Chromosome (Chr) 

X of PWD origin (Gregorova et al., 2008) with PWD males. In all three crosses the offspring 

received B6 and PWD autosomal sets from the opposite parents compared to original PB6F1 

males, but the Chr Y was of PWD origin. The F1 male progeny of B6.PWD-Chr X.2 females and 

PWD male (henceforth DX.2PF1) showed typical F1 hybrid sterility phenotype with small testes 

(TW 60.9mg) and no sperm, while crosses of B6.PWD-Chr X.1 or X.3 consomic females with 

PWD males (henceforth DX.1PF1 and DX.3PF1 respectively) yielded fertile males with testis 

weighing more than 110 mg and 10 to 15 million sperm (Figure 7.1). Based on the known distal 

PWD border of B6.PWD-Chr X.1 and proximal border of B6.PWD-Chr X.3, the region carrying 

the PWD-specific incompatibility locus was delimited to 61.0 Mb – 94.3 Mb interval (Gregorova 

et al., 2008). The X-Y interaction as one of the possible causes of asymmetry was tested using 

hybrids between PWD female and B6.PWD-Chr Y consomic male. The (PWD x B6.PWD-Chr 

Y)F1 males carried both sex chromosomes of PWD origin but were sterile (Figure 7.1). 

Moreover, the effect of PWD mitochondria was excluded because fertility parameters of F1 

hybrids of B6.PWD-Mit conplastic females and PWD males were not significantly different from 

fertile B6PF1 hybrids (Figure 7.1).  In conclusion, we can exclude the X-Y interaction, the 
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autosome-Y or mitochondrial incompatibility and monoallelic expression of imprinted autosomal 

genes as the cause of asymmetry of the F1 hybrid fertility, leaving the Dobzhansky-Muller (D-M) 

incompatibility (Dobzhansky, 1951) of the middle part (61.0 Mb – 94.3 Mb; NCBIM37) of the 

XPWD (M. m. musculus) chromosome with the heterospecific hybrid autosomal genome as the 

sole cause of the asymmetry in reciprocal F1 hybrids. 

7.2 Estimating the number of F1 hybrid sterility gene: major locus on Chr.17 and 19. 

The actual number of hybrid sterility gene participating in reproductive isolation mechanism in 

PB6F1 hybrid sterility model was not known. In an experiment to test the role in hybrid sterility 

of each autosome separately, we checked the fertility parameters of F1 male progeny of PWD 

females and B6.PWD-Chr# consomic males genes (Gregorova et al., 2008). The hybrid sterility 

phenotype is a culmination of D-M interactions of recessive to underdominant or dominant 

alleles in hybrid background. None of the 17 autosomes PWD/PWD homosomic on F1 

background revealed recessive PWD hybrid sterility genes. Out of all F1 hybrids between PWD 

females and B6.PWD-Chr# males analyzed only (PWD x B6.PWD-Chr 17)F1 and (PWD x 

B6.PWD-Chr 19)F1 males resulted in full (TW 198mg, SC 33.9 million) and partial fertility (TW 

73 mg, SC 0.193 million) rescue respectively ( Figure 7.2). The action of hybrid sterility gene at 

Chr 17, most probably Hst1/Prdm9, was clearly underdominant because both its homozygous 

forms, PWD/PWD and B6/B6, rescued hybrid sterility when situated on F1 hybrid background or 

in N2 hybrids (Dzur-Gejdosova et al., 2012). The effect of Chr 19PWD homosomy can be 

interpreted as the action of a dominant B6 hybrid sterility locus in PB6F1 sterile hybrid. In 

contrast introgression of the X PWD chromosome into the B6 genetic background resulted in male-

limited sterility associated with incomplete postmeiotic arrest and production of abnormal sperm 

unable to fertilize eggs (Storchova et al., 2004). Further, the Hstx1 hybrid sterility locus 

responsible for the X-linked male sterility was localized to the middle region of the XPWD. Its 

phenotype depends on epistatic cis-interaction with at least one proximal and one distal region on 

Chr X (Storchova et al., 2004). This work was done in collaboration with Dr.Sona Gregorova. 

 

7.3 Fine-scale genetic mapping of X-linked F1 hybrid sterility locus- Hstx2 

In the section 7.1 we have shown that asymmetry in male limited hybrid sterility phenotype 

between PWD and B6 is controlled from the middle region of chromosome X (61.0 Mb – 94.3 
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Mbp, NCBIM37). To further dissect the role of X–linked genes in F1 hybrid sterility, we 

produced 124 F1 males by crossing heterospecific consomic female B6-XPWDXB6 with PWD 

male. The hybrid males produced from such a cross have the same heterospecific PWD/B6 

autosomes, Chr YPWD, and mitochondrialB6 DNA while recombinant Chr X loci were either PWD 

or B6. Eight-weeks-old hybrid males were tested for reproductive phenotypes such as testis 

weight (TW) and sperm count (SC) and genotyped using 27 X-linked SSLP markers (see 

materials and methods). Single QTL analyses were performed using the TW and SC phenotypes. 

The cross yielded males with a wide range of TW (from 56 to 186 mg) and SC (from zero to 13.5 

million) in cauda epididymis. The QTL analysis of the TW phenotype of the F1 progeny revealed 

a 1.5-LOD support interval between 62Mb - 66.5 Mb (NCBIM37), located at the middle of Chr X 

(Figure 7.3A). The maximum LOD score of 30 was at 63.9 Mb (NCBIM37) marked by DXMit87 

(Figure 7.3B). The QTL analysis for SC detected a 1.5-LOD-support interval mapped also 

between 62 Mb and 66.5 Mb (Figure 7.3C) with peaks on 63.9Mb (NCBIM37) with LOD score 

of 20 again localized at DXMit87 (Figure7.3D). The region from 62 and 66.5 Mbp (NCBIM37) 

segregates with male fertility phenotypes was named as hybrid sterility X 2 locus or Hstx2. 

7.4 Preparation of consomic mice carrying F1 hybrid sterility locus- Hstx2 

To further refine the position of Hstx2, a new subconsomic strain B6.PWD-Chr X.1s was created. 

We crossed heterospecific consomic females B6-XPWDXB6 with B6 male to specify the position 

of X-linked locus (loci) controlling the sterility phenotype. We analyzed 38 PWD/B6 single-

recombinant males between 62 and 66.5 Mb (NCBIM37) to further narrow down the critical 

region. For genotyping 27 SSLP markers uniformly covering the X chromosome were used. 

Genotyping data revealed two very short recombination intervals around the borders of the 

4.5Mb critical region harboring Hstx2 locus. Further breeding experiment failed to narrow the 

region. Thus, the suppression of recombination inside the critical region prevented further 

reduction of the Hstx2 interval. For functional studies on Hstx2, two homosomic subconsomic 

strains carrying recombinant Chr X of PWD origin on otherwise B6 genetic background were 

established. Using high resolution Mouse Universal Genotyping Arrays we found that the strain 

B6.PWD-Chr.X.1 carries the PWD segment from 5.4Mb – 64.8Mb (GRCm38), while other 

subconsomic strain B6.PWD-Chr.X.1s harboring Hstx2 locus carries the PWD segment from 

5.4Mb – 69.5 Mb (GRCm38). The difference between the two subconsomic strains was 
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remapped to 4.7Mb (GRCm38) harboring the Hstx2 locus. This work was done in collaboration 

with Dr. Radka Reifova. 

7.5 Asymmetry of reciprocal F1 hybrid male sterility is controlled by Hstx2PWD locus. 

To further localize the Hstx2 region B6.PWD-Chr.X.1s subconsomic females were crossed with 

PWD males (henceforth (B6.PWD-Chr.X.1 x PWD)F1 or DX.1sPF1). The (B6.PWD-Chr.X.1 x 

PWD)F1 and (B6.PWD-Chr.X.2 x PWD)F1 (henceforth DX.1PF1 and DX.2PF1 respectively)  

hybrid males were used as controls. The crosses are explained in Figure 7.4. The DX.1PF1 hybrid 

males were fertile with 113 mg TW and 10.9 million sperm in cauda epididymis. But DX.1sPF1   

hybrid males were sterile with 61mg TW (p < 0.0001, Welch’s t-test) and no sperm (Figure 7.4). 

Meanwhile DX.1sPF1 hybrid males were similar to DX.2PF1 male hybrids with no significant 

difference in sterility phenotype (Figure 7.4). Thus, DX.1sPF1 hybrids fully reconstructed the HS 

phenotype of PB6F1 hybrid males, showing azoospermia in both hybrid males. The position of 

Hstx2 was localized to 4.7 Mb interval delineated by UNC30904273 for the distal end of 

B6.PWD-Chr X.1 PWD sequence and UNC30934795 for the distal end of B6.PWD-Chr X.1s (X: 

64,880,641-69,581,094 bp; GRCm38).Hence, using DX.1PF1 and DX.1sPF1 F1 hybrids, the 

asymmetry in F1 hybrid sterility phenotype was mapped back to 4.7-Mbp Hstx2PWD Chr X 

region.  

7.6 Hstx2 locus also harbors Hstx1 hybrid sterility locus. 

Previously, it has been shown that introgression of the proximal part of chromosome XPWD on B6 

background can causes male limited infertility (Storchova et al., 2004). In contrast to F1 hybrid 

sterility phenotype of reduced TW and azoospermia, the males with introgressed XPWD showed 

teratozoospermia and failure to produce offspring (Storchova et al., 2004). To further dissect the 

region and to acquire a high resolution genetic map we crossed heterospecific consomic females 

B6-XPWDXB6 with B6 male. Seventy one single recombinant males with recombinant PWD/B6 X 

chromosome on mixed PWD/B6 genetic background from 4-9 backcross generations of 

(PWDxB6) x B6-BC4-9 cross were genotyped and considered for various male reproductive 

phenotypes (Figure 7.5). The recombinant males with the PWD segment encompassing the 

proximal 64.8 Mb (GRCm38) were fertile (except for 2 out of 20 no offspring, but other fertility 

parameters similar to fertile males). When the recombination breakpoint moved 4.7 Mb distally 

to 69.5 Mb (GRCm38) the males became sterile or sub-fertile (Figure 7.5) indicating the region 
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harboring X-linked hybrid sterility 1 (Hstx1) gene. The 4.7 Mb Hstx1 locus overlaps same 

interval on chromosome X carrying Hstx2. To further localize Hstx1, four homosomic 

subconsomic males (Gregorova et al. 2008 and B6.PWD-Chr.X.1s ) carrying recombinant Chr X 

of PWD origin on otherwise B6 genetic background were studied for reproductive phenotype ( 

Figure 7.4). In pair- wise comparison with all the three subconsomics and B6 controls, the 

B6.PWD-Chr.X.1s strain displayed a significant low TW (171mg) and higher sperm abnormality 

(62%; SA; P < 0.05, Welch’s t-test; Figure 7.4). The 4.7 Mbp locus between 64.8Mb to 69.5 Mb 

(GRCm38) overlaps with the region containing Hstx2 mentioned above. However, in spite of the 

presence of Hstx1PWD allele, the B6.PWD-Chr X.2 subconsomic males showed significant 

difference in reproductive phenotypes to that of B6.PWD-Chr X.1s. Such divergence in the 

phenotypes between B6.PWD-Chr.X.1s and B6.PWD-Chr.X.2 (both carrying Hstx1) indicates 

epistasis between Hstx1 loci with another locus on the proximal region of Chr XPWD. This work 

was done in collaboration with Dr.Radka Reifova. 

7.7 Dissecting epistasis between Hstx2 and Prdm9.  

To understand the consequence of epistasis between two major hybrid sterility loci, Hstx2PWD and 

Prdm9PWD/B6, we crossed B6.PWD-Chr.X.1s female with B6.PWD-Chr.17 male. The resulting F1 

hybrids represent a unique model to evaluate the interaction between Hstx2PWD and Prdm9PWD/B6 

on B6 genetic background. As controls, we used (B6.PWD-Chr.X.1 x B6.PWD-Chr.17)F1 and 

(B6x B6.PWD-Chr.17)F1 hybrid males both lacking Hstx2PWD. The (B6.PWD-Chr.X.1s x 

B6.PWD-Chr.17)F1 hybrids were sterile with TW 127.7 mg, SC 13.9 million and SA of 88.3% in 

ductus epididymis whereas (B6.PWD-Chr.X.1 x B6.PWD-Chr.17)F1 and (B6x B6.PWD-

Chr.17)F1  hybrid males had TW above 212 mg, SC above 42 million and 13 to 15% SA 

(P<0.05; Welch’s t-test; Table 7.1).These results suggest that the epistasis between Hstx2 and 

hetrozygosity of Chr 17 (may be due to Prdm9) does contribute to the manifestation of the 

teratozoospermia phenotype in a homogenous genetic environment. The data suggest other weak 

recessive interacting loci on other autosomes or background heterozygosity must be 

complementing the D-M interactions of major hybrid sterility genes in PB6F1 sterile hybrids to 

produce F1 sterility phenotype.  
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7.8 Behavior of Hstx2PWD depends on genetic background of the hybrid animals 

The co-occurrence of Hstx1 and Hstx2 in a single region made us to investigate the 

incompatibilites between various genetic backgrounds and Hstx2 locus. To test it, we introduced 

Hstx2PWD to a different (M.m.m x M.m.d)F1 hybrid background, where F1 hybrids lack the 

meiotic block phenotype. PWD and PWK are related inbred strains derived from M.m.m 

subspecies (Gregorova and Forejt, 2000). However, the F1 hybrids resulting from the cross of 

PWK female and B6 males are semi-fertile, whereas hybrids between female PWD and male B6 

are sterile due to azoospermia (Table 7.2). Therefore, we asked whether the presence of Hstx2PWD 

in (PWK x B6)F1 hybrid background can influence its meiotic phenotype. We crossed B6.PWD-

Chr.X.1, X.1s, X.2 and X.3 subconsomic females with PWK male. The 8-weeks-old (B6.PWD-

Chr.X.1 x PWK)F1 males were fertile with 173.6 mg TW and 29.5 million SC,  whereas 

(B6.PWD-Chr.X.1s x PWK )F1 hybrid males had 79.5mg TW with no sperm in cauda 

epididymis (Table 7.2). Surprisingly, 24 weeks old (B6.PWD-Chr.X.1s x PWK)F1 hybrid males 

showed partial rescue in its sterility phenotype with a significant increase in TW to 109.8 mg and 

0.6 million sperm in cauda epididymis (Table3, P<0.05, Welch’s t-test). The phenotypes in 8 and 

24- weeks-old (B6.PWD-Chr.X.1s x PWD)F1 and (PWD x B6)F1 hybrid males remained similar 

(Table 7.2). This delayed fertility phenotype in (B6.PWD-Chr.X.1s x PWK)F1 hybrid males 

suggested that the Hstx2PWD locus cannot manifest the same phenotype in (PWK x B6)F1 

background as in (PWD x B6)F1 background. The above experiment concludes that the 

manifestation of Hstx2PWD locus depends on epistasis involving other interacting locus on genetic 

background. 

7.9 Candidates for Hstx1 and Hstx2  

Our mapping experiments with introgression model and F1 hybrids of B6.PWD-Chr.X# 

subconsomic strains indicated a single 4.7-Mbp region on PWD Chr X involved in multiple 

hybrid sterility phenotypes. The QTL showed an overlap with previous studies on a different 

hybrid sterility model (Storchova et al., 2004; Oka et al., 2004; Good et al., 2008a). In this 4.7 

Mbp hybrid sterility locus, there are eleven known protein coding and 20 miRNA genes (Figure 

7.6). Out of these, six genes (cancer/testis antigen 2 or Ctag2, RIKEN cDNA 4930447F04 gene 

or 4930447F04Rik, SLIT and NTRK-like family, member 2 or Slitrk2, RIKEN cDNA 

4933436I01 gene or 4933436I01Rik, fragile X mental retardation syndrome 1 homolog or Fmr1 
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and fragile X mental retardation 1 neighbor or Fmr1nb) and all 20 miRNAs show expression in 

meiotic prophase (Figure 7.6A and Table 7.3). Out of the six genes; 4933436I01Rik with an 

unknown function is abundantly expressed in post meiotic round spermatids; whereas Fmr1 and 

Fmr1nb are predominantly expressed in early prophase. The other three genes (Ctag2; 

4930447F04Rik, Slitrk2) showed expression in both pre and post-meiotic cells (Figure7.6A). All 

the six genes showed similar expression in sorted spermatogenic population in PWD and B6 

strain (Table 7.3). They showed expression on 14.5dpp testis of PB6F1 and reciprocal B6PF1 

hybrids with no significant difference between them (Table 7.4; Figure 7.6C). All 20 miRNAs 

present in Hstx1/2 locus are expressed in adult testis and do not undergo meiotic sex chromosome 

inactivation ((MSCI) (Song et al., 2009); Table 7.3). Out of the 20 miRNAs Mir465a/b/c-3p 

showed approximately two fold upregulation in the early and late pachytene cells in PWD 

compared to that of B6 (Table 7.3;  Figure 7.6B). The comparison of expression profiling of 

PB6F1 14.5dpp testis with that of B6PF1 showed 1.5 to 2 fold up regulation of Mir88b-3p, 

Mir465a/b/c-3p and Mir465a/b -5p, while Mir743a,Mir743-5p,Mir880 and Mir465c-5p showed 

1.2 to 4 fold down-regulation (Table 7.4 and  Figure 7.6D). 

Re-sequencing experiment using PWD genomic DNA and BAC libraries showed number of non-

synonymous mutations in protein coding genes listed in Figure 7.8. The inspection of exome 

sequencing data revealed seven nonsynonymous substitutions in the PWD allele of 

4933436I01Rik gene compared to B6. Of the remaining genes, Aff2 has five, Fmr1nb has two, 

Ctag2; 4930447F04Rik, and Slitrk2 have one whereas Fmr1 has no non-synonymous 

substitutions between PWD and B6. Among miRNAs Mir743a has a single nucleotide 

polymorphism in its seed sequence, which changes it from the AAAGACA in B6 to AAAGACG 

in PWD (Figure 7.8). These results were further confirmed by re-sequencing using the Sanger 

method and using mouse phenome database. 

Genes involved in reproductive isolation in Drosophila and mouse (including Prdm9) have been 

shown to be rapidly evolving (Ting et al., 1998; Barbash et al., 2004; Barbash et al., 2003; 

Presgraves et al., 2003; Brideau et al., 2006; Mihola et al., 2009) and to undergo positive 

selection, an important prerequisite for Dobzhansky-Muller incompatibilities (Coyne et al., 2004; 

Orr et al., 2004). Two of the candidates for the Hstx1/2 locus (4933436I01Rik and Fmr1nb) 

displayed an elevated rate of protein evolution in comparison with their rat orthologs (Figure 
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7.8). In particular, 4933436I01Rik is among the most rapidly evolving genes on Chr X (Bono et 

al., 2003; Good et al., 2008b). As 4933436I01Rik is under positive selection, it is likely to 

function both as Hstx1 and Hstx2 because of its pre and post-meiotic expression. 
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Figure 7.1: Box plot ranges for male fertility parameters of reciprocal F1 hybrids and hybrids of 

selected chromosome substitution strains. TW – Testes weight, LogSC - log sperm 

count. Chr # is an abbreviated designation for a B6.PWD-Chr# chromosome 

substitution strain. 
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Figure 7.2: Fertility parameters of F1 hybrids between PWD and chromosome substitution 

strains. Bar plots represent average testis weight (mg) and log-sperm count across 

individual crosses. Chr # is an abbreviated designation for a B6.PWD-Chr# 

chromosome substitution strain. 
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Figure 7.3: Single QTL mapping on X chromosome on F1 hybrid males from the cross between 

consomic females carrying heterozygous X (B6.Chr XPWDXB6) with PWD males. (a) QTL 

analysis using testis weight shows a 1.5-LOD support interval between 34.59 cM to 35.30cM, 

located in the central region of Chr X. (b) Testis weights of males carrying DXMit87 (LOD score 

of 30) from PWD versus B6.(c) QTL analysis of sperm count shows 1.5 LOD support interval 

between 34.59 cM to 35.30cM. (d) Sperm counts of males with DXMit87 (LOD score above 20) 

from PWD versus B6. 
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Figure 7.4: Phenotypic values of F1 hybrids resulting from the crosses of B6, PWD and 

B6.PWD-Chr.X# subconscomics and parental controls. The figure highlighted in the table are 

significant difference from the controls (P<0.01; Welch’s t-test).Position of markers are as per 

GRCm38. 
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Figure 7.5: Values of three fertility parameters depending on the position of the recombination 

breakpoint on the X chromosome in 71 PWD/B6 single recombinant males. The fertility declines 

in males with recombination breakpoint between markers DXMit76 (64.8 Mb) and DXMit143 

(69.5 Mb), indicating that this region encompasses Hstx1 gene. The broken lines refer to 

borderlines between fertile and sterile/subfertile phenotypes. 
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Strain Testis weight  Sperm count abnormal 
  (mg) (x106) sperm (%) 
B6.PWD-Chr.17 (n=10) 195.6 ± 7.7 35.8 ± 7.9 - 
B6.PWD-Chr.X1s (n=5) 173.0 ± 2.8 17.8 ± 7.5 56.7 
(B6 x B6.PWD-Chr.17)F1 (n=3) 213.3 ± 9.5 47.3 ± 9.6 15.7 
(B6.PWD-Chr.X1 x B6.PWD-Chr.17)F1(n=3) 212.7 ± 10.1 42.6 ± 7.6 13.5 
(B6.PWD-Chr.X1s x B6.PWD-Chr.17)F1(n=6) 123.0 ± 8.8* 15.4 ± 6.7*   87.8* 

 

Table 7.1:  Fertility phenotypes of consomic hybrids showing epitasis between Hstx2 and 

Prdm9. * means P<0.05; Welch’s t-test for the comparison of 8-weeks-old (B6.PWD-

Chr.X1s x B6.PWD-Chr.17)F1 verses all other genotypes. 
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Cross 
8 weeks old 24 weeks old 

Testes Sperm 
n 

Testes Sperm 
n 

(mg) (x10-6) (mg) (x10-6) 

(PWD x B6)F1 62.8 ± 5.8** 0*** 52 58.8 ± 8.1** 0** 10 
(B6.PWD-Chr X.1s x PWD)F1 61.3 ± 5.2** 0*** 32 60.3 ± 6.6** 0** 10 
(PWK x B6)F1 110.2± 6.8* 1.7 ± 0.7 12 - - - 
(B6.PWD-Chr X.1 x PWK)F1 173.6 ± 9.6 29.5 ± 3.9 11 - - - 

(B6.PWD-Chr X.1s x PWK)F1 79.5 ± 6.2** 0*** 15 109.8 ± 6.2 0.6 ± 
0.2 15 

(B6.PWD-Chr X.2 x PWK)F1 70.8 ± 6.9** 0*** 10 - - - 
(B6.PWD-Chr X.3 x PWK)F1 118.2 ±7.9* 9.0 ± 2.0* 8 - - - 

 

Table 7.2: Fertility phenotypes of F1 hybrids resulting from PWD and PWK crosses.  

**P<0.05 and ***P <0.00001; Welch’s t-test; 8 weeks compared with all F1 hybrid genotypes 

compared to (B6.PWD-Chr X.1 x PWK)F1 ;whereas for 24 weeks hybrids were compared 

against (B6.PWD-Chr X.1s x PWK)F1. 
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Figure 7.6: Schematic representation Hstx1 and Hstx2 loci on X chromosome (GRCm38). 
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symbol AvgExp 
LogFC P-Value 

LP(PWD 
VS B6) 

RP(PWD 
VS B6) 

ST(PWD 
VS B6) 

LP(PWD VS 
B6) 

RP(PWD VS 
B6) 

ST(PWD VS 
B6) 

Ctag2 8,03 0,51 0,14 -0,55 0,31 0,77 0,28 
4930447F04Rik 4,48 -0,03 0,15 -0,58 0,72 0,13 0,00 
4933436I01Rik 6,39 0,41 0,64 -0,58 0,54 0,36 0,40 
Fmr1 7,45 -0,25 0,25 1,08 0,61 0,60 0,05 
Fmr1 6,04 -0,41 -0,93 0,10 0,34 0,05 0,80 
Fmr1nb 8,78 -0,45 -0,55 0,03 0,57 0,49 0,97 
Aff2 3,10 -0,04 0,10 -0,06 0,37 0,05 0,22 
                
Mir-743a 1,73 0,22 -0,99 -1,07 0,76 0,19 0,15 
Mir-743b-3p 0,34 -0,51 0,24 0,02 0,16 0,49 0,94 
Mir-743b-5p 0,12 -0,02 -0,13 0,32 0,92 0,49 0,12 
Mir-742* 0,13 0,05 0,15 -0,20 0,84 0,54 0,41 
Mir-742 0,53 0,35 -0,08 -0,25 0,12 0,71 0,26 
Mir-883a-3p 0,35 0,01 0,09 0,01 0,97 0,79 0,98 
Mir-883a-5p 0,45 -0,09 -0,07 -0,26 0,76 0,80 0,37 
Mir-883b-3p 2,61 0,94 0,74 0,12 0,27 0,38 0,88 
Mir-883b-5p 0,42 0,04 -0,10 0,02 0,91 0,76 0,94 
Mir-471 0,22 0,06 -0,32 -0,23 0,79 0,18 0,34 
Mir-741 0,38 0,11 -0,25 -0,12 0,74 0,45 0,71 
Mir-463* 0,39 -0,06 -0,04 0,21 0,84 0,89 0,45 
Mir-463 0,29 0,00 0,21 0,22 0,99 0,41 0,39 
Mir-880 0,27 -0,17 0,22 -0,33 0,54 0,44 0,25 
Mir-878-3p 1,57 -0,07 -0,16 -1,00 0,92 0,82 0,15 
Mir-878-5p 0,27 -0,38 0,61 -0,11 0,20 0,05 0,70 
Mir-881* 0,32 0,02 -0,13 0,11 0,96 0,68 0,74 
Mir-881 0,20 -0,10 -0,18 0,20 0,70 0,46 0,42 
Mir-871 0,37 0,09 0,21 -0,54 0,73 0,44 0,06 
Mir-470* 0,22 0,06 0,48 0,30 0,82 0,07 0,25 
Mir-470 6,39 0,04 -0,10 -0,03 0,88 0,69 0,92 
Mir-465a-3p 2,41 3,32 1,59 0,40 0,00 0,01 0,45 
Mir-465a-5p 0,20 0,16 0,69 0,10 0,48 0,01 0,67 
Mir-465b-3p 2,18 2,73 2,15 -0,20 0,00 0,01 0,80 
Mir-465b-5p 0,18 -0,24 0,19 0,59 0,44 0,54 0,07 
Mir-465c-3p 2,63 1,26 2,27 0,03 0,13 0,01 0,97 
Mir-465c-5p 0,24 -0,28 -0,03 0,30 0,25 0,89 0,22 
Mir-201 0,05 -0,04 -0,13 -0,11 0,83 0,46 0,54 
Mir-547 0,13 -0,02 0,16 -0,30 0,93 0,44 0,15 
Table 7.3: Differential expression profiling of Hstx1/2 linked genes and miRNAs between sorted 
spermatogenic cells from PWD and B6 testis. LP means leptonema, zygonema and early 
pachynema cells; RP stands for mid-late pachytene and Diplotene whereas ST stands for round 
spermatids. Significant differential expression is highlighted in the table. 
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symbol AvgExp 
 logFC P-value 

( PB6F1 vs B6PF1) ( PB6F1 vs B6PF1) 

Ctag2 4,5213 0,1542 0,3599 

4930447F04Rik 3,0405 -0,2115 0,1261 

Slitrk2 4,5023 0,0386 0,7860 

4933436I01Rik 2,7804 0,0745 0,5526 

Fmr1 10,1064 0,2715 0,0234 

Fmr1nb 8,7537 -0,9859 0,0000 

Aff2 6,7561 -0,3164 0,0648 

        

Mir-743a 8,9883 -1,1335 0,0018 

Mir-743b-3p 4,0478 -0,4085 0,6599 

Mir-743b-5p 1,1363 -1,5710 0,0105 

Mir-742* 0,6496 -0,8107 0,0287 

Mir-742 8,6757 0,0966 0,6650 

Mir-883a-3p 4,0594 0,4024 0,6492 

Mir-883a-5p 5,9751 0,4204 0,3407 

Mir-883b-3p 1,0307 1,2569 0,0247 

Mir-883b-5p 7,1262 -0,2453 0,3531 

Mir-471 0,1933 0,2923 0,3947 

Mir-741 7,6933 -0,2601 0,2985 

Mir-463* 0,5841 -0,2129 0,6612 

Mir-463 1,9609 -0,0419 0,9643 

Mir-880 2,3231 -1,2864 0,0109 

Mir-878-3p 10,1923 -0,2956 0,2269 

Mir-878-5p 0,2159 -0,4168 0,2170 

Mir-881* 1,2869 0,0326 0,9377 

Mir-881 0,6124 0,4541 0,2390 

Mir-871 4,2930 -0,5499 0,3840 

Mir-470* 1,2962 -0,5856 0,2276 

Mir-470 11,8064 -0,1177 0,6151 

Mir-465a-3p 8,9695 1,5959 0,0005 

Mir-465a-5p 3,4266 2,4397 0,0009 

Mir-465b-3p 8,8471 1,6438 0,0006 

Mir-465b-5p 4,6127 2,4017 0,0033 

Mir-465c-3p 8,9632 1,6967 0,0003 

Mir-465c-5p 2,1612 -4,2762 0,0000 

Mir-201 0,4721 -0,0713 0,9001 

Mir-547 0,8788 0,1635 0,6836 
Table 7.4:  Differential expression profiling of Hstx1/2 linked genes and miRNAs between 
14.5dpp PB6F1 and B6PF1 testis. Significant differential expression is highlighted in the table. 



77 
 

 

Figure 7.7: Expression profiling of Hstx2 linked genes and miRNAs. (A and B) Expression 

profiling of genes and miRNAs on sorted spermatogenic population in meiotic prophase. (C and 

D) RT-PCR quantification of candidate genes and miRNAs on 14.5dpp testis. 
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Figure 7.8: Candidate genes from the X-linked hybrid sterility region. 

a. Physical position of the candidates genes based on GRCm38. 

b. Physical position of the candidates genes based on NCBI mouse build 37(Ensemble 67, 
May 2012). 

c. Rate of protein evolution based on one to one comparison with rat orthologs. (NCBIM37, 
May 2012). 

d. SNPs for protein coding genes taken from PWD exome sequencing compared with B6 
reference genome (NCBIM37, May 2012).SNPs were confirmed by classical re-
sequencing method and mouse phenome database.  

e. Expression in spermatogenetic germ cells; for miRNAs this thesis and (Song et al., 
2009).Confirmed by quantitative RT-PCR. 
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8. Mechanistic basis of hybrid sterility. 

8.1 Spermatogenic block and apoptosis of primary spermatocytes at pachytene stage.  

The F1 adult males derived from the crosses between PWD female with B6 males (PB6F1) were 

invariably infertile, azoospermic with more than 50% reduction of testes, whereas a reverse 

interspecific hybrid between B6 female with PWD males are fertile (B6PF1) having testis weight 

(TW) of 112.6 mg with 13.7 million sperm (SC) in cauda epididymis. In intra-species hybrids 

between PWD female with PWK male (both M. m. musculus; henceforth PKF1) are fertile (TW 

102.9 mg; SC 14.4 million); similarly hybrids between B6 female with BALB/C male (both M m 

domesticus; henceforth B6CF1) are fertile (TW 175.4 mg; SC 28.8 million). 

Analysis of hematoxylin - eosin (HE) and Periodic acid-Schiff (PAS) stained histology sections 

of sterile PB6F1 hybrids showed huge disruption of spermatogenesis with section showing the 

formation of large vacuole like structure and enlarged pachytene cells completely devoid of 

postmeiotic cell types, smaller tubule diameter and no progression beyond epithelial stage IV. 

Large vacuole-like structures and enlarged multinuclear cells were also detected in most of the 

tubules (Figure 8.1A). Testicular histology of fertile reverse inter-species B6PF1 hybrids showed 

incomplete spermatogenic block in some tubules with reduced numbers of round and elongated 

spermatids. Some of the sections showed vacuole like structure, while other tubules seem to have 

normal spermatogenesis; overall it looked significantly different from normal fertile controls 

(Figure 8.1A). In intra-species hybrids B6CF1 and PKF1 shows normal spermatogenesis similar 

to fertile inbred controls of PWD and B6 males (Figure 8.1A). 

Absence of round spermatids and mature sperms in sterile hybrids made us to investigate the fate 

of germ cells. Using fluorometric DeadEnd TUNEL assay system on testicular sections from 2 

months old PB6F1, B6PF1 hybrids and B6 as inbred controls we determined the rate of apoptosis 

in due course of spermatogenesis. Sterile PB6F1 hybrids displayed 24-fold increase in TUNEL 

positive apoptotic cells compared to B6 (P<0.00001, Mann-Whitney U test) and 4-fold more 

TUNEL positive cells to that of fertile B6PF1 hybrids (P<0.00001, Mann-Whitney U test; Figure 

8.1B and C). The reverse fertile B6PF1 hybrid showed 7- fold more TUNEL positive cells than 

that of B6 controls (P<0.0001, Mann-Whitney U test; Figure 8.1B and C).The TUNEL assay 

revealed that in sterile PB6F1 hybrid, high amount of germ cells undergoes apoptosis causing the 
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stage IV arrest leading to sterility, while the fertile B6PF1 hybrids shows partial but significant 

apoptosis of germ cells than that of B6 inbreed controls (P<0.0001, Mann-Whitney U test). 

We also checked the cellular composition of spermatogenic populations from 13.5 dpp till adult 

in PB6F1, B6PF1 and B6 animals. Adult intraspecific hybrids PKF1 and B6CF1 were also 

analyzed for germ cell composition during meiotic prophase. We analyzed the course of meiotic 

prophase I using antibody against testis specific histone H1t (differentiates leptonema, zygonema 

and early pachynema from mid-late pachynema and diplonema) and synaptonemal complex 

protein 3 (SYCP3, protein present in axial element of synaptonemal complex; differentiate 

meiotic prophase I based on its structure) on spermatocyte spreads. The pachytene spermatocytes 

first occur on day 13.5 after birth (13.5 dpp) in the first wave of spermatogenesis. Until 14.5dpp 

we did not find any significant differences in the cellular composition between the hybrids and 

B6 controls. The first significant deviation in sterile hybrids was the deficiency of mid-pachytene 

cells at 15.5 dpp (P<0.001, chi-square test; Figure 8.1D). Another block was observed at 17.5 dpp 

with excessive accumulation of early pachytene cells, apoptosis of remaining mid-pachynemas 

and almost complete absence of diplotene cells (both P<0.000001, chi-square test; Figure 8.1D). 

By 8 weeks of age PB6F1 sterile mouse shows significant difference to its fertile counterpart 

(P<0.000001, chi-square test; Figure 8.1D). As expected, intra-specific hybrids PKF1 and B6CF1 

showed normal spermatogenesis similar to inbred controls of PWD and B6 males.  

8.2 Cause of germ cell elimination: dissecting meiotic recombination in PB6F1 hybrids.  

Meiotic recombination is dependent on the formation and subsequent repair of programmed 

Spo11-induced DNA double-strand breaks (DSBs) (Baudat et al., 2000; Romanienko and 

Camerini-Otero, 2000). To investigate whether pachytene arrest could result from the disturbance 

of these earlier processes, we visualized the early recombination intermediates using antibodies 

for RAD51 and DMC1 DNA repair recombinases to mark DSBs (Smagulova et al., 2011), ATR 

foci to monitor DSBs repair (Turner et al., 2006) (Figure 8.2D), and STAG3 cohesin to check 

integrity of the synaptonemal complex (Prieto et al., 2001). The average number of 

RAD51/DMC1 foci did not differ between the sterile PB6F1 hybrids in comparison to B6PF1 

and B6 controls (256± 18, 258±17 and 257±18 foci respectively) in zygotene spermatocytes, but 

was higher at the pachytene stage of sterile hybrids (50.7± 18; 40.8± 11 and 42.2± 10 foci; 

P<0.01, Mann-Whitney U test; Figure 8.2B). MSH4, a mismatch repair protein of the MutS 
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family showed foci at late zygonema – early pachynema at lower frequency ( 55.2 ± 10.3; foci 

Figure 8.2B) in PB6F1 sterile hybrids compared to B6 and B6PF1(76.9 ± 13.7;Figure 8.2B). 

Additionally,  MLH1, a mismatch repair protein of the MutL family, displaying foci at mid-

pachynema also have lower frequency (24.1 ± 2.2 foci) in PB6F1 sterile hybrids compared to B6 

and B6PF1(24.9 ± 2.1  and 27.0 ± 2.3  foci respectively; Figure 8.2C)  indicating changes in the 

rate of meiotic recombination. However analysis of other genotypes including fertile (PWD × 

B6.Hst1f) F1; (PWD × B6.PWD-chr17) F1 and (PWD × B6.PWD-chr19) F1 hybrids showed 

similar MLH1 frequency ( on average 24.5 foci; Figure 8.2C)  to PB6F1 sterile hybrids pointing 

to an X-linked polymorphism controlling the meiotic recombination rate (Dumont and Payseur, 

2011), rather than the meiotic arrest (Figure 8.2C). To obtain an insight into DSB’s repair process 

for pachytene cells we used anti-ATR antibody which showed decorated sex chromosomes and 

autosomal univalents in mid-pachytene cells (Figure 8.2D). Thus the failure of DSB repair 

mechanism can now explain the elimination of pachytene spermatocytes. The mammalian 

STAG3 protein is a component of the synaptonemal complex that is specifically expressed in 

germinal cells. STAG3 has a role in sister chromatid arm cohesion during mammalian meiosis 

I. Immunofluorescence results in prophase I cells suggest that STAG3 is a component of the 

axial/lateral element of the synaptonemal complex. STAG3 interacts with the structural 

maintenance chromosome proteins SMC1 and SMC3, which have been reported to be subunits of 

the mitotic cohesin complex (Prieto et al., 2001). The knockout mutants of subunits of the mitotic 

cohesin complex show asynapsis in the prophase 1 of mammalian meiosis where sister homologs 

fails to pair (Prieto et al., 2001). So we looked at the mitotic cohesin complex using anti-STAG3 

antibody along with anti- SYCP3 antibody. In PB6F1 sterile hybrids   STAG3 showed complete 

co-localization with SYCP3 protein component of the lateral element of synaptonemal complex 

in spermatocytes similar to that of fertile control (Figure 8.2E).  

8.3 Extent of chromosomal asynapsis contributes to germ cell elimination. 

The most distinct aberration in pachynemas of sterile PB6F1 males was the asynapsis of 

homologous chromosomes during the first meiotic prophase. Examination of the synaptonemal 

complexes on meiotic spreads from sterile PB6F1 testes revealed multiple asynapsed autosomes 

(range 1-19 per cell, median 5) in over 95% of early, histone H1t negative, pachytene 

spermatocytes, while , 17.6% in B6PF1 and 7.7% in B6 showed asynapsis (Figure 8.3A,B,C and 
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D). The asynapsis of individual autosomal pairs was mostly complete with exceptional bizarre 

multivalents and ring-like chromosomes apparently resulting from partial and/or non-homologous 

synapsis (Figure 8.3B). The SYCP3-positive univalents were negative for SYCP1 protein 

component of transverse filaments of the central element of synaptonemal complex. The 

univalents were decorated by HORMAD2, a HORMA domain-containing protein coordinating 

chromosome synapsis and γH2AFX, the phosphorylated form of histone H2AFX. The unpaired 

chromosomes often formed domains of silenced chromatin, sometimes termed as pseudo-sex 

bodies (Bellani et al., 2005). However, unlike the fertile controls the early pachytene 

spermatocytes from sterile males rarely displayed a discernible sex body (Figure 8.3A and B). 

In mid-pachytene stage the chromosomal asynapsis became limited to 2 or 1 autosomes. The 

early pachytene spermatocytes carrying multiple univalent of autosomes disappeared by mid-late 

pachytene stage, which might have been eliminated by apoptosis. In PB6F1 sterile hybrids 90.6% 

of mid-late pachynemas in sterile PB6F1 hybrids, and 32% in semisterile B6PF1 carried one, 

exceptionally two unsynapsed autosomes completely or partially embedded in the sex body 

(Figure 8.3A). Similar introgression of autosomal chromatin was reported in various male-sterile 

chromosomal translocations with incomplete synapsis of their rearranged chromosomes (Forejt, 

1984; Forejt et al., 1981). The autosomal introgression into the sex body was non-existent in the 

B6, PKF1 and B6CF1 intra-specific fertile hybrids controls (Figure 8.3E). The synapsis of X and 

Y chromosome is restricted to a short ≈700 Kb pseudoautosomal region (PAR) and is a 

prerequisite of homologous recombination and for the  proper segregation of the X and Y 

chromosomes (Kauppi et al., 2011; White et al., 2012). The X-Y synapsis failed in 34% of 

analyzable mid-pachytene spermatocytes of sterile males. The failure of pseudoautosomal 

synapsis in fertile B6PF1 hybrid was observed in 7.4% of mid- pachytene cells which are non-

existent in B6 fertile inbreed controls (Figure 8.3F). We conclude that the autosomal asynapsis 

does not result from a failure of DSBs formation or DSBs repair. The elevated DSBs incidence in 

early pachynemas suggests a partial failure or delay of DSBs repair on unsynapsed autosomes. 

The unrepaired DSBs on asynaptic chromosomes are supposed to activate the pachytene 

checkpoint leading to apoptosis (Burgoyne et al., 2009). 
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8.4 Nonrandom engagement of individual autosomes in asynapsis.  

Chromosomal asynapsis in the sterile PB6F1 hybrids proved to be the major cause of elimination 

of pachytene cells in two stages. The early pachynemas with multiple asynapsis could influence 

different meiotic check points to promote the process of cellular elimination and a major block in 

the progression of spermatogenesis. We further asked whether the asynapsis affected the 

autosomes at random by analysis ofsynapsis status of chromosome Chr 2, 16, 17, 18 and 19 

(randomly chosen) using DNA FISH whole-chromosome-specific probes in combination with the 

antibodies against HORMAD2 as a mark for asynapsed chromosomes (Figure 8.4A to E). In 

PB6F1 male Chr 19 was asynapsed in 46.7% of pachynemas, where two Chr 19 DNA clouds 

colocalized with HORMAD2-labeled univalents. The Chr 17 was unsynapsed in 32.1% of 

pachytene cells (Figure 8.4F). The proportionality test comparing the probability of overall 

asynapsis with that of the individual chromosomes suggested that the Chr 2 (4.7%) and Chr 16 

(6%) were asynapsed significantly less frequently and Chr 19 was asynapsed significantly more 

frequently than would be expected by random asynapsis (expected random asynapsis, 27%; P < 

0.01), but there was no significant deviation from the random involvement of Chr 17 (32.1%) and 

Chr 18 (26.2%). However, Chr 19 and Chr 17 were prevalent in a small fraction of supposedly 

mid–late pachynemas with only one or two unsynapsed autosomal pairs.  

 

8.5 The extent of asynapsis is genetically modulated.  

Previously we identified four main components of the genetic control of hybrid sterility, which 

together represent the minimal genotype necessary to reconstitute the sterility of PB6F1 male 

hybrids on the B6 genetic background (Mus m. domesticus). They include a region on the Chr 

XPWD carrying the Hstx2 locus, Prdm9PWD/B6 heterozygosity on Chr 17, and heterozygosity of a 

poorly defined portion of the F1 genetic background. The fourth component resides on Chr 19 

(also (Dzur-Gejdosova et al., 2012)). Using the reciprocal F1 hybrids and B6.PWD-Chr# 

chromosome- substitution strains to switch the subspecies origin of these components, we 

examined the extent of rescue of pachytene arrest and asynapsis (Table 8.1). The reciprocal 

B6PF1 hybrids carrying the middle region of Chr XB6 on an F1 hybrid background were 

semifertile, with partial spermatogenic arrest and significantly increased apoptosis as compared 

with B6 controls (Figure 8.1 A, B and C). Compared with PB6F1 sterile hybrids, the asynapsis 
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was reduced to 32% (39/120). In half of the pachynemas with asynapsis, the Chr 19 univalents 

were observed. Interestingly, asynapsed Chr 17 was not found with detectable frequency. At the 

mid–late pachytene stage, six of the seven examined cells revealed Chr 19 asynapsis. We 

conclude that a gene in the middle part of Chr XB6 controls the partial rescue of pachytene arrest 

and more than threefold reduction in the occurrence of pachynemas with asynapsis. The 

difference between the male reciprocal F1 hybrids was in contrast to the equal frequency of 

meiocytes with asynapsis in reciprocal F1 female hybrids (section 9). Complete suppression of 

the sterilizing effect of the F1 hybrid genome was observed in the (PWD × B6.PWD-Chr 17)F1 

males. Elimination of Chr 17PWD/B6 heterozygosity in an otherwise complete F1 hybrid genotype 

resulted in a total rescue of fertility, release of pachytene block, and complete disappearance of 

asynaptic chromosomes. The rescue cannot be explained by a dominant sterilizing effect of Chr 

17B6, because it was shown elsewhere (Dzur-Gejdosova et al., 2012) that homozygosity for Chr 

17B6 is incompatible with a full pachytene block. 

 

8.6 Heterospecific homologs of Chr 17 and 19 are more prone to asynapsis.  

The occurrence of asynaptic chromosomes can result from aberrant gene function, such as Spo11, 

Mei1 or Hormad2 null mutations (Baudat et al., 2000; Romanienko and Camerini-Otero, 2000; 

Libby et al., 2002; Kogo et al., 2012) or from structural or sequence incompatibility between the 

individual members of homologous pairs. We found that asynapsis of Chr 17 and 19 pairs was 

limited to genotypes where they are heterospecific, each composed of a PWD and B6 homolog. 

In (PWD x B6.PWD-Chr 19)F1 hybrids where all autosomal pairs but Chr 19 are heterospecific, 

asynapsis occurred in 59.6% of the pachynemas but strikingly, did not affect Chr 19PWD/PWD 

(0/100). The males were sterile but displayed the range of 0 – 1.2 million sperm count and 72.6 

mg testes weight (Figure 8.5A). The other example of the predisposition of heterospecific 

homologs to asynapsis was found in (B6.PWD-Chr X.1s × B6.PWD-Chr 17) pachynemas where 

the only heterospecific was Chr 17 pair. Seventeen per cent of pachynemas displayed a single 

pair of asynapsed chromosomes (Figure 8.5B). In all cells (25/25) examined it was identified as 

Chr 17 by DNA FISH. The results on pachytene asynapsis in F1 males of various genotypes are 

summarized in Table 8.1.  
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8.7 The disturbed inactivation of sex chromosomes in sterile males.  

To evaluate the transcriptional activity of sex chromosomes in the spermatocytes of sterile F1 

hybrids we carried out RNA FISH for Chr X genes Scml2, Egfl6, Ndufa1 and Ott, and for Chr Y 

Zfy2 (Figure 8.6 A to F). All examined Chr X genes but Scml2 are known to be silent at the 

pachytene stage of primary spermatocytes in control males. While all five genes were silenced by 

MSCI at mid-pachytene in fertile B6 controls with the exception of weak positivity (3.6%) of 

Scml2, their transcripts were detected with frequency ranging between 30% to 45% of mid-

pachytene cells in PB6F1 sterile males (Figure 8.6G). The activation of Zfy2 (30%) in mid-late 

pachynemas is known to induce apoptosis (Royo et al., 2010). In B6PF1 fertile hybrids 2.1% of 

mid-pachytene cells showed expression of Scml2, whereas 8.9% of mid-pachytene cells showed 

expression of Ott showing failure of MSCI to a certain extent (Figure 8.6G). 

Next we searched for genome-wide changes in the gene expression pattern by comparing 

transcription profiles of whole testes from sterile 14.5 dpp PB6F1 males and fertile controls 

(B6PF1, B6 and PWD) of the same age using Affymetrix GeneChip Mouse Gene 1.0 ST Array. 

Using the approach described recently (Good et al., 2010) we confirmed similarity of cellular 

compositions of testes of 14.5 dpp reciprocal hybrids by comparing the expression pattern of the 

dataset of spermatogenesis stage-specific genes (Chalmel et al., 2007; Good et al., 2010), (Figure 

8.7A). Since the immunofluorescence microscopy and RNA FISH revealed the absence of the 

regular sex body or its aberration in pachynemas and active transcription of probed Chr X and 

Chr Y genes, we focused mainly on the genome-wide expression pattern of genes on the sex 

chromosomes. Comparison of the expression profile of sterile hybrids to fertile controls B6PF1, 

B6 and PWD showed that the sterile PB6F1 hybrids displayed misregulated genes more 

frequently on the Chr X (Figure 8.7B and 8.8A and C, Poisson model, p-value < 0.01). The most 

extensive genome-wide disturbance of gene expression was observed on the Chr X A7.1 

cytogenetic band (Figure 8.8B, permutation test, p-value<0.01). However, the misregulation was 

not significantly biased in either direction, as 140 Chr X genes were upregulated and 116 Chr X 

genes were downregulated  (Figure 8.8C, binomial test, p-value = 0.15). The same conclusion 

was reached by Gene Set Enrichment Analysis (GSEA) (Subramanian et al., 2005), which further 

revealed enrichment of functionally predetermined gene sets among differentially expressed 

genes upregulated in PB6F1 sterile hybrids or B6PF1 fertile controls. Many enriched gene sets in 
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fertile controls were connected to gametogenesis with GO terms such as SEXUAL 

REPRODUCTION, GAMETE GENERATION, DNA REPAIR, DNA RECOMBINATION or 

MEIOTIC CELL CYCLE, probably reflecting the activation of genes necessary for later stages 

of spermatogenesis. The gene sets enriched in sterile (PB6F1) hybrids were frequently connected 

with ion channels and membrane receptors for reasons not obvious to us. This work was carried 

out in collaboration Dr. Petr Simecek and Dr. Paul Denny. 

8.8 Effects of Hstx2 on meiotic pairing and spermatogenic differentiation  

Meiotic arrest of PB6F1 hybrid males is associated with the failure of proper pairing and synapsis 

of homologous heterospecific autosomes, delay of DNA double strand break repair on 

unsynapsed autosomes and dysregulation of meiotic sex chromosome inactivation (MSCI) at the 

first meiotic prophase. Here we focused on the fertility parameters and pachytene chromosome 

synapsis in F1 hybrid males differing at Hstx2 locus. The hybrid males (B6.PWD-Chr X.1s x 

PWD)F1 or DX.1sPF1 carrying Hstx2PWD alleles were fully sterile without sperm, whereas the 

(B6.PWD-Chr X.1 x PWD)F1 or DX.1PF1  males carrying Hstx2B6 were semifertile (more on 

section 7). Analysis of hematoxylin and eosin (HE) and Periodic acid-Schiff (PAS) stained 

histology sections of sterile DX.1sPF1 hybrids showed a huge disruption of spermatogenesis with 

section showing the formation of large vacuole like structure and enlarged pachytene cells with 

complete lack of postmeiotic cell types, smaller tubule diameter and spermatogenic block at 

epithelial stage IV, similar to that of PB6F1 hybrids (Figure 8.9A). The fertile DX.1PF1 hybrids 

showed incomplete spermatogenic block in some tubules similar to that of B6PF1.The B6 control 

showed normal spermatogenesis (Figure 8.9A). Analysis of meiotic prophase on 2 month old 

adult testis from DX.1sPF1 showed reduced occurrence of mid-late pachynemas, almost absent 

diplotene spermatocytes (Figure 8.9B and C). The DX.1PF1 males showed greatly reduced 

meiotic arrest at the late pachytene stage (Figure 8.9C). Identification of synaptonemal 

complexes by immunostaining SYCP3 and SYCP1 components of lateral and central element or 

HORMAD2 protein revealed unsynapsed autosomes in >90% of pachynemas in DX.1sPF1 males 

similar to that of PB6F1 hybrid (Figure 8.9D). Similar pattern between DX.1sPF1 and PB6F1 

males were followed by the number of univalents per cell (Figure 8.9E). The examination of 

meiocytes using super resolution microscopy revealed irregular spots of SYCP1 on some 

univalents and clear examples of nonhomologous synapsis (Figure 8.10).  In contrast, DX.1PF1 
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males carrying Hstx2B6 showed only 34% of pachynemas with asynapsis restricted to one or two 

pairs of unsynapsed univalents. It can be concluded that the presence of the Hstx2B6 allele in F1 

hybrid males partially restores the fertility and significantly reduces the frequency of pachynemas 

with asynapsis and the number of unsynapsed autosomes per cell.  

8.9 Heterochromatinization of autosomal univalents and relaxation of the Chr X chromatin 

in sterile male hybrids  

To further analyze the effect of Hstx2 gene on spermatogenic differentiation, we used the whole 

chromosome DNA FISH probes in combination with HORMAD2 protein immunostaining to 

visualize Chr 17 and Chr 19 known to get frequently unsynapsed in PB6F1 pachynemas (section 

8.4 and (Bhattacharyya et al., 2012)).  The F1 hybrid males DX.1sPF1 and PB6F1 displayed very 

similar frequencies of pachynemas with asynaptic Chr 17 (27% and 30%) and Chr 19 (42% and 

40%) (Figure 8.11 A and B). During this experiment we noticed significant differences in 

chromatin areas covered by the hybridization signal between synapsed and unsynapsed 

autosomes (P<0.01 Mann-Whitney U test, Figure 8.11 A and C). For both chromosomes the 

chromatin was more condensed in univalents, suggesting their heterochromatinization and 

meiotic silencing of unsynapsed chromatin (MSUC). Next we inspected the chromatin area 

defined by Chr X DNA FISH and found two-fold increase in Chr X chromatin area in PB6F1 and 

DX.1sPF1 sterile hybrid males compared to fertile parental (PWD) control (P<0.01 Mann-

Whitney U test, Figure 8.11 A and C). This finding provides the cytological counterpart to the 

transcriptional reactivation of X-linked genes during MSCI failure in PB6F1 sterile males as 

described earlier (section 8.7).   
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Figure 8.1: Spermatogenesis during the first wave of spermatogenesis and in adults in 

interspecific and intraspecific hybrids. (A) Histological cross-sections of spermatogenic tubules 

stained with H&E show a block at epithelial stage IV, giant multinuclear cells, and the absence of 

haploid phase in sterile PB6F1 hybrids. The B6PF1 testes display complete spermatogenic 

development but a reduced number of postmeiotic cells. (B) Apoptosis of spermatogenic cells 

detected by TUNEL assay in histological cross-sections from 8-wk-old mice. (C) Average 

number of TUNEL-positive cells per cross-section of a seminiferous tubule. Sterile PB6F1 

hybrids show significantly higher numbers of apoptotic cells than B6PF1 and B6 mice (P<0.01 

for both comparisons; Mann–Whitney U test). n=  n,total number of cross-sections examined. (D) 

Frequency of individual stages of primary spermatocytes in the suspensions of testicular cells 

from males during the first wave of spermatogenesis and from adults. The first difference in 

cellular composition was found in 15.5-dpp sterile PB6F1 males (P < 0.001; χ2 test). The second 

significant difference was observed at 17.5 dpp in PB6F1 cell populations, showing reduced mid–

late pachynemas and the absence of diplotene spermatocytes. Three males per genotype were 

analyzed.  n= number of cells examined. 
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Figure 8.2: DSBs, repair, and meiotic recombination in sterile males. (A) RAD51/DMC1, 

MSH4, and MLH1 foci are visualized by immunolabeling on meiotic spreads from sterile hybrids 

and fertile controls. Synaptonemal complexes are labeled by anti-SYCP3 antibody; unsynapsed 

chromosomes of mid-pachynemas are labeled by HORMAD2. (B and C) The increased 

frequency of RAD51/DMC1 in early pachynemas of sterile hybrids reflects stalled repair of 

DSBs in asynapsed autosomes. The difference between reciprocal hybrids in MSH4 and MLH1 

probably is controlled by an X-linked polymorphism of the meiotic recombination rate locus 

(39). N = number of mice, n = number of cells analyzed: RAD51, DMC1 and MSH4 (N = 3, n = 

30 for zygotene, n = 60 for early pachytene; MSH4 N = 3, n = 100; MLH1, N = 5, n = 150. (D) 

ATR decorates only the XY pair in B6 mice; in sterile hybrids it also persists on unsynapsed 

autosomes (N = 4 n = 100 per genotype). (E) STAG3 cohesin labels all chromosomes irrespective 

of their synapsis status (N = 3, n = 50). 



92 
 

 



93 
 

Figure 8.3: Asynapsis of homologous chromosomes in sterile F1 males. (A) Asynapsis of 

pachytene spermatocytes revealed by immunostaining of SYCP3 or HORMAD2. Early (histone 

H1t-negative) pachynemas show multiple asynapsed autosomes decorated by the phosphorylated 

form of histone H2AFX (γH2AFX). H1t-positive mid–late pachynemas show one or two pairs of 

asynaptic autosomes engulfed in the sex body. (B) The exceptional multivalents and ring-like 

chromosomes indicate partial and/or nonhomologous synapsis. (C) Asynapsis was rare in B6 

mice and was absent in intraspecific hybrids (B6 × BALB/c) F1 (abbreviated B6CF1) and (PWD 

× PWK)F1 (abbreviated PKF1). PB6F1 meiocytes with more than four univalents disappear in 

mid-pachynema and diplonema. (D) Distribution of pachynemas according to the number of 

asynapsed autosomes estimated by counting the CREST-stained centromeres on SYCP3- labeled 

synaptonemal complexes. Individual pachytene stages could not be identified in this experiment. 

In total, 111 aberrant pachynemas were counted. (E) Frequency of mid–late pachynemas with 

autosomal univalents within the sex body in sterile PB6F1 and semifertile reciprocal B6PF1 

hybrids. (F) X–Y asynapsis correlates with male sterility; however, the sex chromosomes could 

not be reliably identified in the majority of early pachynemas. PAR, pseudoautosomal region. 
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Figure 8.4: Five autosomes were tested for asynapsis by DNA FISH and HORMAD2 

immunolabeling on pachytene spreads from PB6F1 sterile males. (A and B) (Left) A single DNA 

cloud signals properly aligned chromosomes and HORMAD2-positive axes restricted to sex 

chromosomes. (Center) A cell in which asynapsis does not involve the studied chromosome. 

(Right) Arrows show partial asynapsis of Chr 2 and complete asynapsis of Chr 16, respectively. 

(C–E) Separate DNA clouds and HORMAD2-labeled univalents demonstrate asynapsis of Chrs 

17 (C), 18 (D), and 19 (E). (F) The frequency of asynapsis of five examined chromosomes in 

sterile PB6F1and semifertile reciprocal B6PF1 hybrids. n, total number of cells scored; nd, not 

done. 
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Figure 8.5: (A) Histological cross-sections of spermatogenic tubules stained with H&E 

display a block at epithelial stage IV, giant multinuclear cells, and the absence of haploid phase 

in sterile PB6F1 hybrids. The (PWD x B6.PWD-Chr19)F1 testes display partial relaxation of  

spermatogenic block with reduced number of postmeiotic cells. The (PWD x B6.PWD-Chr17)F1 

testes display normal spermatogenesis. (B) The frequency of asynapsis of Chr 17 and 19 

examined in sterile PB6F1, semifertile / fertile crosses (PWD x B6.PWD-Chr17 or 19)F1 and 

(B6.PWD-Chr X.1s × B6.PWD-Chr 17)F1  hybrids .N= total number of cells scored; ND means 

not done. 
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Genotype autosomal 

constitution 

Chr X Fertility Pachytene 

block 

Pachytene asynapsis 

PWD × B6  All APWD/B6* PWD ST Complete Multiple. Excess of 

Ch17 and Chr 19 

univalents 

B6 × PWD All APWD/B6 B6 F/ST Weak Limited. Excess of 

Chr 19 univalents 

PWD × B6.PWD-

Chr 19 

Chr 19PWD/PWD

All other 

APWD/B6  

PWD ST Partially 

released 

Multiple. Chr 19 

univalents missing 

B6.PWD-Chr 

X.1s × B6.PWD-

Chr 17 

Chr 17PWD/B6 

All other AB6/B6  

 

PWD** ST None Limited. Only Chr 

17 univalents 

present 

PWD × B6. 

PWD-Chr 17 

Chr 17PWD/PWD 

All other 

APWD/B6  

PWD F None None 

 

Table 8.1: Heterospecific autosomes and pachytene asynapsis in F1 hybrid males of various 

genotypes. 

*All heterospecific autosomal pairs consist of one Mus m. musculus (PWD) copy and one of Mus 

m. domesticus (B6) 

** Chr X.1s shows  a 4.5 MB extension of the distal end of proximal PWD interval, when 

compared to Chr X.1 
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Figure 8.6: Disrupted silencing of X- and Y-linked genes in mid–late pachynemas revealed by 

RNA FISH. (A) The Scml2 gene is silenced in mid–late pachynemas in fertile controls but 

remains active in PB6F1 sterile males. (B and C) Egfl6 (B) and Ndufa1 (C) are active in Sertoli 

cells. They are silenced in mid–late pachynema of fertile controls but remain active in sterile 

hybrids. (D) Similarly, multicopy Ott is active in spermatogonia of all genotypes. It is silenced in 

mid–late pachynema of fertile controls but is active in mid–late pachytene of sterile hybrids. (E) 

Zfy2 on the Y chromosome remains active in sterile hybrids. Its activity is thought to induce 

apoptosis. (F) Positions of the studied genes on Chr X. (G) Quantification of pachytene and 

control cells with active or silenced X/Y genes. ND is not done. 
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Figure 8.7: Gene-expression profiling of 14.5-dpp sterile hybrids and fertile controls. (A) No 

apparent differences in the distribution of testicular cell types are indicated by histograms of log 

fold-changes in gene expression between sterile PB6F1 and fertile B6PF1 hybrids for each cell 

type. ME, meiotic (spermatocytes), 1,222 genes; MI, mitotic (spermatogonia), 1,544 genes; SO, 

somatic (Sertoli cells), 995 genes. (B) Number of genes with suggestive differences in expression 

(P< 0.05) specific for PB6F1, B6PF1, B6, or PWD strains, compared with the pool of remaining 

three strains, is calculated for each chromosome and compared with the counts expected by pure 

chance. The preponderance of misregulated genes on Chr X (shown in red) is apparent in the 

comparison of sterile PB6F1 hybrids with fertile controls. 
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Figure 8.8: Gene-expression profiling of 14.5-dpp male testes of sterile males and fertile 

controls. (A) The number of genes with suggestive differences in expression per chromosome 

(unadjusted P value < 0.05) between sterile PB6F1 hybrids and a pool of fertile (B6PF1, B6, 

PWD) controls was compared with counts expected by pure chance (Poisson model, P < 0.01). 

The X chromosome showed a significantly high number of misexpressed genes compared with 

the autosomes. Three mice were analyzed per genotype. (B) Median absolute log fold-change 

between PB6F1 and B6PF1 average gene expression was calculated for Chr X cytogenetic bands. 

Maximum is attained for A7.1. (C) Log fold-changes of Chr X gene expression between PB6F1 

and B6PF1. 
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Figure 8.9: (A) Histological cross-sections of spermatogenic tubules stained with H&E display a 

block at epithelial stage IV, giant multinuclear cells, and the absence of haploid phase in sterile 

DX.1sPF1 hybrids. The DX.1PF1 testes display complete spermatogenic development with 

reduced postmeiotic cells while B6 testes showed normal spermatogenesis. (B) Asynapsis of 

pachytene spermatocytes as revealed by immunostaining of SYCP3 and HORMAD2. Early 

pachynemas show multiple asynapsed autosomes. Mid–late pachynemas showed one or two pairs 

of asynaptic autosomes engulfed in the sex body. (C) Frequency of individual stages of primary 

spermatocytes in the suspensions of testicular cells from adult males. A significant difference in 

the cellular composition was found in between sterile PB6F1 and DX.1sPF1 males with fertile 

controls (P < 0.001; χ2 test). In comparison to or compared to fertile controls striking difference 

was observed in the reduced number of mid–late pachynemas and rare presence of diplotene 

spermatocytes in PB6F1 and DX.1sPF1 sterile hybrids. n, number of cells examined. (D) PB6F1 

and DX.1sPF1 meiocytes with more than four univalents disappear in mid-pachynema and 

diplonema. In DX.1PF1 asynapsis was restricted to one or two chromosome in 34% of the 

spermatocytes. In B6, PWD, DX.1 and DX.1s control males asynapsis was absent. (E) 

Distribution of percentage pachynemas according to the number of asynapsed autosomes 

estimated by counting the CREST-stained centromeres on SYCP3- labeled synaptonemal 

complexes. In total 350 aberrant pachynemas with asynapsis were counted for PB6F1 and 

DX.1sPF1 sterile hybrids, whereas 45 meiocytes with asynapsis were counted for DX.1PF1 

fertile hybrid. 
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Figure 8.10: The examination of meiocytes using super resolution microscopy.(A) In normal 

pachytene spermatocyte the chromosome pair with their homologous partners shown here by 

SYCP3 (Red; stains Axial element of synaptonemal complex). (B). The synapsis process is 

marked by the presence of central element protein SYCP1 (Green) (C) In sterile PB6F1 and 

DX.1sPF1 hybrids pachynemas showed clear examples of nonhomologous synapsis and revealed 

irregular spots of SYCP1 on some univalent (D). The scale bar is 2µm in length. 
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Figure 8.11: Two autosomes and chromosome X were tested for asynapsis by DNA FISH and 

HORMAD2 immunolabeling on pachytene spreads from PB6F1, DX.1sPF1 and PWD males. (A) 

(Left) A single DNA cloud signals the properly aligned autosomes or HORMAD2-positive axes 

restricted to X chromosome. (Center) A cell in which asynapsis does not involve the studied 

autosomes but on relaxed X chromosome. (Right) Arrows show complete asynapsis of Chr 17 

and Chr 19, and relaxed chromatin of X chromosome. (B) The frequency of asynapsis of Chr17 

and 19 in PB6F1, DX.1sPF1 and PWD males. n, total number of cells scored.(C) Graph 

displaying the area of chromatin in terms of synapsis status. The area of chromatin doesn’t show 

any correlation with the area of DNA (DAPI).The unsynpsed autosomes (both Chr 17 and 19) in 

sterile hybrids showed significant (P<0.01; Mann-Whitney U test) decrease in the chromatin area 

to their synapsed counterpart which could be explained by meiotic silencing of the unsynapsed 

chromatin and the suppression of transcription. Meanwhile Chr. X in sterile hybrids showed 

significant (P<0.01; Mann-Whitney U test) spreading of chromatin area in comparison to fertile 

PWD control. The finding provides the cytological counterpart to the transcriptional reactivation 

of X-linked genes during MSCI failure in PB6F1 sterile males as described earlier (section7.7). 
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9. Meiotic phenotype in hybrid females. 

The F1 hybrid sterility is male limited following the Haldane’s rule (Haldane et al. 1922). Here 

we asked whether the meiotic defects leading to hybrid male sterility are indeed male specific. To 

answer this next question we decided to do molecular dissection of oogenesis in PB6F1 hybrid 

females and then compare it with intra-species hybrid and parental control females. 

9.1 Asynapsis of homologous chromosomes in F1 hybrid pachytene oocytes.  

According to Haldane´s rule, sterility or inviability of interspecific hybrids preferentially involves 

heterogametic sex. Indeed, PB6F1 females were fully fertile but their oocytes in the first and 

second meiotic division revealed a series of abnormalities. Meiotic spreads from ovaries revealed 

asynapsis in 40% and 50% of inter-subspecific (PB6F1) F1 hybrid pachynemas at 17.5 dpc and 

19.5 dpc, respectively (Figure 9.1A and B). In about half of these cells one or two autosomes 

were asynapsed, while more than two asynapsed autosomes were observed in the remaining 

aberrant pachynemas. Clouds of phosphorylated histone H2AFX or γH2AFX decorated the 

univalents in a similar fashion as in spermatocytes from sterile males. Unexpectedly oocytes of 

B6 and PWD inbred strains and intraspecific (C3H × B6)F1 (abbreviated C3B6F1) hybrids also 

showed asynapsis, albeit at lower 12% and 23% frequency (Figure 9.1B). Unlike the male 

hybrids, the reciprocal F1(B6PF1) hybrid oocytes and (PWD × B6.Hst1f)F1 oocytes displayed the 

same high level (47%) of asynapsis (Figure 9.1B), thus not reflecting the alternate genotype of 

hybrid sterility genes. At 1 dpp the proportion of diplonemas was significantly reduced in PB6F1 

(37.5%) and B6PF1 (33%) inter-subspecific hybrid oocytes compared to B6 (64.1%) and PWD 

(56.6%) controls (P<0.01, Chi-square test, Figure 9.2A). Partial elimination of the univalent-

carrying oocytes is the likely explanation of this reduction. To test this possibility we counted the 

oocytes on histological cross-sections of 6-weeks-old ovaries of C3B6F1, PB6F1, B6PF1 and 

PWD females. The number of oocytes was decreased in PB6F1 and B6PF1 (321.7±109.8 and 

351.2±55.1 respectively; P<0.05 ANOVA with Tukey’s correction) when compared to C3B6F1 

(941.66±335.9) females. However, a similar reduction was observed in PWD ovaries 

(320.7±45.9) probably reflecting the smaller body and ovary size of PWD females (Figure 9.2 B 

and C). Histological section analysis was done in collaboration wih Dr. Ondrej Mihola. 
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9.2 Chromosome pairing and segregation errors in female metaphase I and II.  

 

The high frequency of asynaptic chromosomes observed in pachytene stage of developing 

oocytes prompted us to analyze the later stages of meiosis I. Oocytes in metaphase I with 

chromosomes without visible chiasmata were found with similar frequency, about 6%, in both 

inter-subspecific F1 hybrids (B6PF1 n = 77; PB6F1 n = 81; Figure 9.2 G and H). In contrast, 

control C3B6F1 oocytes (n = 78) had no univalent; Figure 9.2 F and H). The finding of a low 

frequency of univalents in MI indicated significant elimination of oocytes with meiotic pairing 

errors. It has been shown that the presence of univalent chromosomes at the first meiotic division 

is frequently accompanied by chromosome segregation errors and aneuploidy (Sebestova et al., 

2012; Kouznetsova et al., 2007). Kinetochore counting at the metaphase II (MII) revealed 2% 

aneuploidy in C3B6F1 (n = 238) MII oocytes, while significantly higher frequency, 11% and 9%, 

was detected in MII from inter-subspecific hybrids B6PF1 (n = 129) and PB6F1 (n = 100, Figure 

9.2 I, J and K). This work was done in collaboration with Dr. Martin Anger. 

 

9.3 Live imaging analysis of chromosome segregation in MI oocytes.  

The relatively low frequency of univalents detected in MI in inter-subspecific F1 hybrids could 

not fully explain the levels of aneuploidy in MII oocytes and therefore we monitored potential 

defects of chromosome segregation by live imaging microscopy. We did not observe any 

difference in duration of meiosis I between inter-subspecific and intraspecific hybrids, despite the 

presence of univalents in B6PF1and PB6F1 oocytes (Figure 9.2 D). Quantification of the securin 

expression levels showed that also the timing of anaphase-promoting complex (APC) activation 

was similar in all three hybrids (Figure 9.2 E).  Both results are not surprising in the light of 

recently accumulating evidence showing that spindle assembly checkpoint in oocytes is unable to 

arrest cells with unaligned chromosomes (Nagaoka et al., 2011; Sebestova et al., 2012). However, 

the analysis of the time-lapse movies showed extensive chromosome congression defects in 

B6PF1and PB6F1oocytes compared to C3B6F1 (Figure 9.1 C and D). While C3B6F1 oocytes 

were able to align chromosomes properly on the metaphase plate when approaching to anaphase, 

B6PF1and PB6F1oocytes were both entering anaphase with the metaphase plate fairly 

disorganized. Quantification of density of DNA located near the equatorial plane in six intervals 

within the last two hours before anaphase showed significant differences between inter-
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subspecific and intraspecific hybrid oocytes in all but the last interval (Figure 9.1D). This work 

was done in collaboration with Dr. Martin Anger. 

9.4 Hstx2 and Hst1/Prdm9 regulate male but not female asynapsis     

Our most critical observation was that asynapsis preferentially affects autosomal pairs with 

heterospecific homologs and their pairing failure is strongly influenced by Prdm9 and Hstx2 

hybrid sterility genes in sterile hybrid males (section 8) (Bhattacharyya et al., 2013). Thus we 

asked whether the genetic control of meiotic asynapsis differs between male and female 

gametogenesis of intersubspecific hybrids. The examination of B6 and PWD parental strains did 

not reveal any asynapsis in pachynemas of primary spermatocytes but showed 14% and 29% of 

pachynema 18.5 dpc oocytes with one or more asynapsed autosomal pairs. In PB6F1 hybrid 

females over 40% of pachynemas showed asynapsis, but contrary to F1 hybrid males the 

frequency of asynaptic oocytes was not modified by Prdm9 and Hstx2 hybrid sterility genes. The 

conclusion was reached by comparing the asynapsis frequency in male and female meiosis of 

hybrids between consomics and PWD. In (PWD x B6.PWD-Chr 17)F1 or PD17F1 female fetuses 

46% pachytene oocytes displayed asynapsis that was absent in spermatocytes of the same 

genotype. Moreover 46.5% and 44% of oocytes of (B6.PWD-Chr X.1 x PWD)F1 or DX.1PF1 

and (B6.PWD-Chr X.1s x PWD) or DX.1sPF1 hybrids showed asynaptic autosomes, compared 

to 34.1% and 96.4% of pachynemas of the corresponding male genotypes of the same cross. 

These comparisons demonstrate the lack of control of asynapsis in female meiosis by the Chr 17 

and Hstx2 hybrid sterility gene (Figure 9.3 A and C). However, the detailed analysis of female 

hybrids conspecific for Chr 17PWD showed lower number of unsynapsed autosomes per cell when 

compared with other intersubspecific F1 hybrid genotypes (Figure 9.3 D). Thus Prdm9/Hst1 or 

some other gene on Chr 17 showed a limited effect on asynapsis in female hybrids. 

The state of asynapsis in F1 hybrid females raised questions about the fate of these pachynemas 

with asynapsis. Earlier in this chapter we have shown that the majority of meiocytes with 

asynapsis gets eliminated before moving to diplotene stages. The state of asynapsis in DX.1sPF1 

hybrid females brought questions about the fate of these pachynemas with asynapsis. So, we 

checked the progression of pachytene to diplotene in 19.5dpc ovary. The 19.5dpc DX.1sPF1 

ovary had 66.7% pachynema and 33, 3% diplonema, whereas 19.5dpc PB6F1 hybrid have 71.5% 

and 28.5% pachynema and diplonema respectively. The inbreed control of PWD (45%) and B6 
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(47.5%) showed significantly (P< 0.01, Chi-square test, Figure 9.3B) higher percentage of 

diplonema’s at same age. The decrease in number of diplotene in hybrid females can be 

explained by elimination of pachynemas as we have showed earlier. 

9.5 Heterospecific homologs are prone to asynapsis in female meiosis 

Previously we showed that the conspecific (PWD/PWD) homologous autosomes become 

resistant to asynapsis in otherwise heterospecific (PWD/B6) genomic background. The finding 

indicates cis-control of asynapsis based on some form of incompatibility between heterospecific 

homologs of Mmm and Mmd origin (Bhattacharyya et al., 2013). Considering the difference 

between male and female hybrids in the overall frequency of asynapsis and the role of hybrid 

sterility genes in their control we asked whether the incompatibility of heterospecific homologs 

resulting in decreased efficiency of their pairing and synapsis operates also in female meiosis.  

We used the chromosome substitution strains carrying Chr 17PWD and Chr X.1s PWD to analyze 

primary oocytes of intersubspecific F1 hybrid (18.5-19.5 dpc) conspecific (PWD/PWD) for these 

particular chromosomes.  We compared efficacy of their meiotic synapsis with matching 

heterospecific pairs in (PWD x B6)F1 or PB6F1 pachytene oocytes. First, the chromosome 

synapsis was determined using SYCP3/SYCP1 immunostaining of synaptonemal complexes 

and/or visualization of univalents by HORMAD2 and SYCP3 on pachytene spreads prepared 

from PB6F1 oocytes. Besides Chr 17 and Chr X we also visualized Chr 2, Chr 16, Chr 18, and 

Chr 19 by whole chromosome DNA FISH. In agreement with previous analysis of male hybrids, 

Chr 2 showed the lowest incidence of asynapsis. The occurrence of univalents of small 

autosomes 16, 17, 18 and 19 varied between 18% and 49% in asynaptic pachytene oocytes. 

Strikingly, the highest frequency of asynapsis, 64%, was displayed by Chr X (Figure 9.3 E and 

F). The asynapsis of conspecific Chr 17PWD/PWD dropped to zero in PD17F1 oocytes, although the 

total frequency of pachynemas with asynapsis was the same as in PB6F1 hybrids. In DX.1sPF1 

oocytes, proximal 69.9 Mb of Chr X was conspecifc for PWD sequence, while the remaining 

101.4 Mb was PWD/B6 heterospecific. Nevertheless, the partial conspecificity was sufficient to 

reduce the Chr X asynapsis from 64% down to 5.6% of pachytene oocytes (Figure 9.3F). Thus 

asynapsis in intersubspecific female and male hybrids follows the same rule, depending on 

unspecified sequence incompatibility between individual homologs of Mmm and Mmd origin.  
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9.6 Hstx2 introgression enables the testing of dominance theory of Haldane´s rule in mice 

To explain Haldane’s rule of hybrid sterility, the dominance theory postulates that the recessive 

nature of X-linked variants that disrupt gametogenesis in hemizygous (XY) but not in 

homozygous (XX) sex (Muller, 1940; Turelli and Orr, 1995) and Figure 9.4). In its simplest 

interpretation the F1 hybrid females should become sterile in the same way as their hemizygous 

male siblings if their genotype could be made homozygous for incompatible Chr X variant 

(Figure 9.4). We were able to construct such genotype by crossing consomic females B6.PWD-

Chr.X.1s and PWD males. The resulting female hybrids were PWD/B6 heterospecific for the 

whole autosomal genome but conspecific for proximal 69.9 Mb of Chr XPWD, including the 

Hstx1/2 hybrid sterility locus. Contradicting the simple interpretation of Muller’s dominace 

hypothesis DX.1sPF1 hybrid females were fully fertile, as were all parental controls (Table 9.1). 

The DX.1sPF1 hybrid females carry two recessive alleles of Hstx2 i.e Hstx2PWD/PWD, compared to 

the controls with Hstx2PWD/B6 in PB6F1 and B6PF1 hybrid females on otherwise similar hybrid 

background. As explained in chapter 7, the DX.1sPF1 hybrid males carrying Hstx2PWD are sterile 

due to meiotic arrest. Breeding experiments of F1 hybrid females carrying Hstx2PWD/PWD against 

PWD males did not detect any significant difference in breeding performance compared to 

control F1 hybrid females carrying Hstx2PWD/B6 up to 8 months of age (Table 9.1). These findings 

challenge the dominance theory explaining the dimorphism in phenotypes between male and 

female hybrid.  
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Figure 9.1: Asynapsis at prophase I of oocytes of reciprocal hybrids and B6 controls. (A) Almost 

half of pachynemas of hybrid females show one or more pairs of asynaptic autosomes detected by 

SYCP3/SYCP1 or HORMAD2/SYCP3 immunostaining. The unsynapsed chromosomes 

embedded in clouds of histone γH2AFX show a tendency to clustering. (B) The high frequency 

of asynapsis in intersubspecific hybrids does not depend on the fertility status of their male 

counterparts. PB6*fF1 is the hybrid (PWD × B6.Hst1f) carrying the C3H allele of Hst1/Prdm9 

gene. The males of this phenotype are fertile (Flachs et al., 2012). Three females per genotype 

and 40 cells per mouse were analyzed. (C and D) Chromosome alignment in meiosis I by time-

lapse analysis. The values represent the amount of DNA located near the equatorial plane in 

C3B6F1 (green, n = 6), B6PF1 (red, n = 7), and PB6F1 (orange, n = 7) oocytes at indicated time 

points before anaphase. 
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Figure 9.2: Chromosome defects in meiosis I and II in oocytes of intraspecific and 

intersubspecific hybrids. (A) The frequency of diplonema (Dipl) oocytes is lower in interspecific 

hybrids, but the extent of reduction is smaller than in spermatocytes of the same genotype. Pach, 

pachynema. (B) Representative histological cross-section of ovary from a 6-wk-old C3B6F1 

female; H&E staining. Oocytes in primordial (pd), primary (pr), and secondary (s) follicular 

stages are shown in the section. (C) Sum of oocyte numbers on every 10th section. n, number of 

biological replicates. (D) The duration of meiosis I don’t differ in intra- and intersubspecific 

oocytes. (E) Securin expression levels do not differ in intra- and intersubspecific oocytes. (F and 

G) Chromosome configuration in meiosis I analyzed by chromosome spreads. DNA (blue) and 

kinetochores (red) were detected by DAPI and CREST antiserum, respectively. (Scale bars: 10 

μM.) (F) An example of an oocyte with all chromosomes organized in bivalents. (G) An oocyte 

containing two univalents (arrows). (H) Frequency of univalent chromosomes in meiosis I 

oocytes: C3B6F1 oocytes (blue, n = 78) contained no univalents, whereas 6% of B6PF1 (red, n = 

77) and PB6F1 (green, n = 81) oocytes contained univalent chromosomes. Gray columns indicate 

cells with univalents. (I and J) Aneuploidy in meiosis II oocytes: chromosomes (green) and 

kinetochores (red) were detected by DAPI and CREST antiserum, respectively, in oocytes 

exposed to monastrol. (Scale bars: 5 μM.) (I) Example of an oocyte with 40 kinetochores. (J) An 

oocyte with 36 kinetochores. (K) Frequency of aneuploidy in meiosis II oocytes: 2% of C3B6F1 

oocytes (blue, n = 238); 11% of B6PF1 oocytes (red, n = 129); and 9% of PB6F1 oocytes (green, 

n = 100) were aneuploid in meiosis II. 
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Figure 9.3: Asynapsis at prophase I of oocytes of hybrid females and B6 controls. (A) Almost 

half of pachynemas of hybrid females show one or more pairs of asynaptic autosomes detected by 

SYCP3/SYCP1 or HORMAD2/SYCP3 immunostaining. (B) The high frequency of asynapsis in 

DX.1sPF1, PB6F1, DX.1PF1 and PD17F1 hybrids does not depend on the fertility status of their 

male counterparts. In PD17F1 chromosome 17 is in conspecific condition with 

Hst1/Prdm9PWD/PWD, whereas in DX.1sPF1 chromosome X is conspecific for proximal 69.9 Mb 

of Chr XPWD with Hstx2 PWD/PWD state. (C) The frequency of diplonema (Dipl) oocytes is lower in 

interspecific hybrids, but the extent of reduction is smaller than in spermatocytes of the same 

genotype. Pach. Stands for pachynema. (D) Distribution of percentage pachynemas according to 

the number of asynapsed autosomes estimated by counting the CREST-stained centromeres on 

SYCP3- labeled synaptonemal complexes. In total 200 aberrant pachynemas with asynapsis were 

counted for PB6F1, DX.1sPF1 and PD17F1 hybrid females (E) Five autosomes  and chromosome 

X were tested for asynapsis by DNA FISH and HORMAD2 immunolabeling on pachytene 

spreads from PB6F1 hrbrid females. (E) (Left) A single DNA cloud signals properly aligned 

autosomes or HORMAD2-positive axes restricted to X chromosome. (Right) Arrows show 

complete asynapsis of Chr 17 and relaxed chromatin of X chromosome. (F) The frequency of 

asynapsis of five examined autosomes and X chromosome in PB6F1, DX.1sPF1, PD17F1 and 

DX.1s D17F1 hybrids. n, total number of cells scored. Scale bar is 10 µm. 
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Figure 9.4: Cartoon explaining Muller’s dominance theory. The dominance theory posits the 

recessive nature of X-linked variants that disrupt gametogenesis in hemizygous (XY) but not in 

homozygous (XX) sex. In its simplest interpretation the F1 hybrid females should become sterile 

in the same way as their hemizygous male siblings if their genotype could be made homozygous 

for incompatible Chr X variant. R symbolizes for recessive mutation and D symbolizes for 

dominant mutation. 

 

 

 

 

 



120 
 

 

Strain or cross 

Age  No. of   Autosomal Hstx Litter size per 
No. of 

litters  

(in 

weeks ) 
mated  combination  status  female   

  females  in female   (mean ± S.D) 
(in 2 

month) 

C57BL/6J (B6) 8 8 AB6 AB6 Hstx1B6/B6 8.2 ± 1.3 12 

B6.PWD-Chr X.1 8 6 AB6 AB6 Hstx1B6/B6 8.5 ± 1.3 12 

B6.PWD-Chr X.1s 8 6 AB6 AB6 Hstx1PWD/PWD 8.2 ± 1.4 12 

(PWD x B6)F1 8 6 AB6 APWD Hstx2PWD/B6 7.7 ± 1.0 12 

(B6 x PWD)F1 8 6 AB6 APWD Hstx2B6/PWD 8.0 ± 1.3 12 

(B6.PWD-ChrX.1 x PWD)F1 8 6 AB6 APWD Hstx2PWD/B6 7.6 ± 1.0 12 

(B6.PWD-ChrX.1s x 

PWD)F1 
8 6 AB6 APWD Hstx2PWD/PWD 8.9 ± 1.6 12 

(PWD x B6)F1 24 4 AB6 APWD Hstx2PWD/B6 7.2 ± 1.3 6 

(B6.PWD-Chr X.1s x 

PWD)F1 
24 4 AB6 APWD Hstx2PWD/PWD 8.3 ± 1.9 6 

 

Table 9.1: Fertility of F1 hybrids females with Hstx1B6/B6; Hstx2PWD/B6 and Hstx2PWD/PWD in B6 

and (PWD x B6)F1 hybrid background. All females were crossed to PWD males for a period of 2 

months. 
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10. Genetics of meiotic recombination. 

The PB6F1 hybrid males carrying Hstx2PWDallele in hybrid background showed mid-pachytene 

arrest due to widespread defects in chromosome pairing and meiotic synapsis suggesting the 

possible problems involving meiotic recombination. Allelic incompatibilities often affect hybrid 

fitness by hindering meiotic processes as synapsis and recombination. Recently our group has 

mapped the first mammalian hybrid sterility gene Prdm9 in the (PWD x B6) F1 hybrid model 

(Mihola et al., 2009). The same gene was later shown to known to control the recombination 

hotspots (Parvanov et al., 2010; Baudat et al., 2010). So, we asked whether the different 

functional variant of Prdm9 might epistatically interact with different partners of Hstx2 to 

recognize and bind distinct DNA sequence motifs important to determine the recombination 

hotspots. Incompatibilities between functional allelic variant of Prdm9 and other epistatic locus 

can possibly create confusion in the determination of recombination hotspots, causing an 

incomplete or no crossovers which might lead to asynapsis resulting in sterility. Crossovers are 

marked by the mismatch repair protein MLH1 situated in recombination nodules in mid-to-late 

pachytene.  To test the hypothesis we took a top down approach to look at the global 

recombination rate in parental strains, B6.PWD-Chr X# sub-consomics and their sterile and fertile 

hybrids using the MLH1 immunostaining assay on mid-pachytene spermatocytes (Figure.10.1). 

Understanding of the influence of epistasic interactions between Prdm9 subspecies-specific 

alleles with other hybrid sterility locus on meiotic recombination may shed light on the major 

issue of chromosomal asynapsis in F1 sterile hybrids.  

10.1 Hstx1/2PWD locus controls meiotic recombination rate. 

The initial experiment was focused on parental B6, PWD and B6.PWD-Chr.X# subconsomic 

strains. We observed a significant difference in the mean number of MLH1 foci for B6 

(24.3±2.1) and PWD (28.6±2.5) (Figure 10.2, Table 10.1 and 10.2 ANOVA-Tukey HSD, P<10-

8). These results were in agreement with the recently published data on different strain 

combination (Dumont and Payseur, 2011). So, we conducted MLH1 immuno-staining assays on 

meiocytes spread of B6.PWD-Chr X# sub-consomics to dissect the genetic locus controlling the 

rate of meiotic recombination. The B6.PWD-Chr X# sub-consomics had the same Prdm9B6/B6 

allele with different pieces of chromosome XPWD with or without Hstx1/2PWDlocus on B6 genetic 

background. Analysis of B6.PWD-Chr X.1s and B6.PWD-Chr X.2 spermatocytes showed 
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significant decrease in the average rate of meiotic crossing over (22.1±1.8 and 22.5±1.9, Table 

10.1, ANOVA-TukeyHSD, P<0.01 to B6) compared to B6 control. The average number of 

MLH1 foci for B6.PWD-Chr X.1 and B6.PWD-Chr X.3 was 23.7± 2.1 and 25.3±2.2 

respectively, (Table 10.1, ANOVA-Tukey HSD P= n.s), similar to that of B6. The patterns of the 

distribution of MLH1 foci maps to the 4.7Mbp X-linked Hstx1PWDregion between 64,880,641 bp 

- 69,581,094 bp (GRCm38) influencing the rate of meiotic recombination. Hence, we named the 

locus as meiotic recombination rate controlling gene 1 or Mrr1. This worked was done in 

collaboration with Maria Dzur-Gejdosova. 

10.2 Hstx1/2PWD locus controls depression in meiotic recombination rate in Mmm x Mmd 

hybrids. 

Overlapping of Hstx1 with Mrr1 directed us to look at the influence of Mrr1 on meiotic 

recombination rate on hybrid background. Previously, the reciprocal F1 hybrids between PWD 

and B6 have already shown a Chr XPWD linked depression in meiotic recombination rate. It was 

shown that the mean MLH1 foci for PB6F1 sterile hybrids were 23.2± 2.7 compared to that of 

26.8±2.4 for B6PF1 fertile hybrid. However analysis of other genotypes including fertile (PWD × 

B6.Hst1f) F1, (PWD × B6.PWD-chr17) F1 and (PWD × B6.PWD-chr19) F1 hybrids showed 

similar MLH1 frequency (on average 24.5 foci; Figure 8.2C)  to PB6F1 sterile hybrids pointing 

to an X-linked polymorphism controlling the meiotic recombination rate, rather than the meiotic 

arrest (Figure 8.2C). So we examined the number of meiotic crossing over events using MLH1 

assay on pachytene spreads of (B6.PWD-Chr X.1x PWD)F1 and (B6.PWD-Chr X.1s x PWD)F1 

hybrid males. These two F1 hybrids will have similar F1 hybrid background but different alleles 

of Mrr1 locus coinciding with Hstx2 locus.  The mean MLH1 count per cell for (B6.PWD-Chr 

X.1 x PWD)F1 fertile hybrids was 27.1± 2.5 and 23.9± 2.3 for (B6.PWD-Chr X.1s x PWD)F1 

sterile hybrid (Figure 10.3, Table 10.2; ANOVA-Tukey HSD, P<10-7). The depression in MLH1 

was linked to Hstx2/Mrr1PWD locus between the two hybrids. Further comparison between sterile 

(B6.PWD-Chr X.1s x PWD)F1, (B6 X PWD)F1 and (B6.PWD-Chr X.1 x PWD)F1 hybrids with 

each other confirms a significant depression in meiotic recombination linking to Mrr1PWD locus 

(Figure 10.3, Table 10.2). The coincidence of Hstx1, Hstx2 and Mrr1 locus governing hybrid 

sterility and meiotic recombination shows similarity in behavior to that of Prdm9 performing a 

similar dual role. But it is impossible to conclude that all the three phenotypes are under the 
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influence of a single gene. Further genetic dissection of the region is required to make any 

conclusive remark. 
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Figure 10.1: Pachytene spermatoctye from an inbreed B6.PWD-Chr.X.1 subconsomic male. 

SYCP1, a component of the central elements of the synaptonemal complex, is stained in red. 

Sites of recombination along the synaptonemal complex are denoted by green MLH1 foci. 

Centromeric proteins targeted by human auto-immuno anti- centromere antibodies are in blue. 

The white arrow points to the heterogametic sex chromosomes lightly stained by SYCP1. Only 

MLH1 foci on autosomal bivalents were scored. 
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Figure 10.2: Variation in number of MLH1 foci among B6, PWD, and B6.PWD-Chr.X# 

subconsomic strains. Mean MLH1 counts (± standard errors) were obtained from five males for 

each genotype. For each mouse at least 30 mid-pachytene cells were analyzed.  
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Figure 10.3: Variation in number of MLH1 foci among B6, PWD, and B6.PWD-Chr.X# 

subconsomic strains and their F1 hybrids.Parental strains were used as a control. Mean MLH1 

counts (± standard errors) were obtained from five males for each genotype. For each mouse at 

least 30 mid-pachytene cells were analyzed.  
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p-value / 

average 

difference B6 PWD 

B6.PWD-

Chr.X.1 

B6.PWD-

Chr.X.1s 

B6.PWD-

Chr.X.2 

B6.PWD-

Chr.X.3 

B6   -4.3 0.4 2.0 1.4 -0.9

PWD 

              

0.00    4.7 6.3 5.7 3.3

B6.PWD-

Chr.X.1 

              

0.92  

               

0.00    1.6 1.0 -1.4

B6.PWD-

Chr.X.1s 

              

0.00  

               

0.00  

                  

0.02    -0.6 -3.0

B6.PWD-

Chr.X.2 

              

0.04  

               

0.00  

                  

0.25  

                  

0.77    -2.4

B6.PWD-

Chr.X.3 

              

0.31  

               

0.00  

                  

0.05  

                  

0.00  

                  

0.00    

 

Table 10.1: Differences in meiotic recombination rate comparing PWD and B6.PWD-Chr.X# 

subconsomic strains with B6. Upper: Difference between average MLH1 count (row - 

column).Lower: TukeyHSD-adjusted p-values for pairwise comparison of means. Numbers 

highlighted in red are statistically significant. 
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p-value / 

average 

difference 

B6 PWD 
PWD 

x B6 

B6 x 

PWD

B6.PWD-

Chr.X.1 

B6.PWD-

Chr.X.1s 

B6.PWD-

Chr.X.1 

x PWD 

B6.PWD-

Chr.X.1s 

x PWD 

B6 0 -4.3 0.8 -2.6 0.4 2.0 -2.8 0.4 

PWD 

      

0.00  
0 5.1 1.7 4.7 6.3 1.5 4.7 

PWD x 

B6 

      

0.49  

       

0.00  
0 -3.4 -0.4 1.2 -3.6 -0.4 

B6 x 

PWD 

      

0.00  

       

0.00  

       

0.00 
0 3.0 4.6 -0.2 3.0 

B6.PWD-

Chr.X.1 

      

0.96  

       

0.00  

       

0.98 

      

0.00 
0 1.6 -3.2 0.0 

B6.PWD-

Chr.X.1s 

      

0.00  

       

0.00  

       

0.09 

      

0.00 

         

0.01  
0 -4.8 -1.6 

B6.PWD-

Chr.X.1 x 

PWD 

      

0.00  

       

0.02  

       

0.00 

      

1.00 

         

0.00  

         

0.00  
0 3.2 

B6.PWD-

Chr.X.1s 

x PWD 

      

0.96  

       

0.00  

       

0.98 

      

0.00 

         

1.00  

         

0.01  

           

0.00  
0 

 

Table 10.2: Differences in meiotic recombination rate comparing PWD and B6.PWD-Chr.X# 

subconsomic strains and F1 hybrids with B6. Upper: Difference between average MLH1 count 

(row - column).Lower: TukeyHSD-adjusted p-values for pairwise comparison of means. 

Numbers highlighted in red are statistically significant. 
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Discussion 

Hybrid sterility is a universal phenomenon associated with speciation from Drosophila to plants. 

The genetic dissection of the reproductive barriers is a powerful approach for studying 

reproductive isolation. In recent history, genetics of post-zygotic reproductive isolation has been 

overwhelmingly studied in Drosophila (Sawamura, 1996; Sawamura et al., 1993a; Sawamura et 

al., 1993b; Ting et al., 1998; Barbash and Ashburner, 2003; Presgraves et al., 2003; Sun et al., 

2004b; Brideau et al., 2006; Bayes and Malik, 2009; Ferree and Barbash, 2009; Phadnis and Orr, 

2009; Tang and Presgraves, 2009).  House mice as a mammalian model provided a powerful 

system for studying genetics of reproductive isolation. Two major approaches were widely used. 

The first was focused on well-defined hybrid zone between Mmm and Mmd stretching across 

central Europe. It was aimed to understand the genetics of hybrid sterility in natural populations 

(Boursot et al., 1993; Richard et al., 1993; Dod et al., 1993; Macholan et al., 2007; Payseur et al., 

2004; Macholan et al., 2011). The other approach involved, laboratory crosses of M. m. musculus 

, M. m. molossinus , M. m. castaneus and M. m. domesticus inbred strains (Forejt and Ivanyi, 

1974; Oka et al., 2004; Storchova et al., 2004; Britton-Davidian et al., 2005; Vyskocilova et al., 

2009; Mihola et al., 2009; White et al., 2011; White et al., 2012; Campbell et al., 2012; Dzur-

Gejdosova et al., 2012; Good et al., 2008a; Good et al., 2008b). The genetic dissection 

experiments showed Dobzhansky-Muller (D-M) incompatibilities (Muller and Pontecorvo, 1942; 

Dobzhansky, 1936) involving multiple genetic loci as the primary cause of postzygotic isolation 

(Mihola et al., 2009; White et al., 2011; White et al., 2012; Campbell et al., 2012; Dzur-

Gejdosova et al., 2012). Strong hybrid sterility loci were observed on Chr X in the above 

mentioned models. The first hybrid sterility gene identified in mammals, Prdm9 (Mihola et al., 

2009), shows D-M interaction with Chr X and other autosomal loci (Dzur-Gejdosova et al., 2012) 

in the (PWD x B6)F1 hybrid model. In this study, we present a high resolution map of genes 

affecting hybrid sterility on Chr X and its possible mechanistic contribution to meiotic 

chromosome asynapsis and spermatogenic failure. 

11.1 Dissecting the genetic architecture of F1 hybrid sterility. 

To study the genetic architecture of hybrid sterility, we used inbred strains PWD and B6 

representing M. m. musculus and M. m. domesticus subspecies (see Materials and Methods) and 

B6.PWD-Chr# chromosome substitution (consomic) strains carrying individual M. m. musculus 
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chromosomes introgressed in the genome of M. m. domesticus (Gregorova et al., 2008; 

Gregorova and Forejt, 2000). By using the results from F1 hybrids between B6.PWD-Chr# 

consomic strains and PWD mice we estimated the nature of asymmetry of F1 hybrids, the 

number of hybrid sterility genes, their location in the genome, and their mode of interaction. The 

role of mitochondrial genome, autosomal imprinted genes, and Chr Y was also evaluated. 

The asymmetry of hybrid sterility in (PWD x B6) model could result from D-M incompatibilities 

involving uniparental inheritance, such as sex chromosomes, imprinted genes, or mitochondrion 

(Orr et al., 2004; Coyne et al., 2004; Turelli and Moyle, 2007). The analysis of male hybrids 

between PWD and B6.PWD-Chr # consomics provided direct evidence that asymmetry in male 

infertility is controlled from the central region of Chr XPWD, excluding the role of the Chr Y, 

mitochondrial genome, or imprinted autosomal genes. The rescue of intrameiotic arrest by PWD 

homozygosity of Chr 19 can be interpreted by the presence of a B6 recessive hybrid sterility gene 

or it can be the effect of a recessive B6 rescue gene, which overcomes meiotic checkpoint but has 

no active role in the F1 hybrid sterility. The presence of two copies of Chr 17PWD in (PWD × 

B6.PWD-Chr17)F1 males resulted in full fertility rescue. The effect of PWD/PWD homosomy of 

individual autosomes on F1 hybrid genetic background revealed underdominance of the Chr 17 

hybrid sterility locus. The action of hybrid sterility gene at Chr 17, most probably Hst1/Prdm9, 

was clearly underdominant because both its homozygous forms i.e. PWD/PWD and B6/B6, 

rescued hybrid sterility associated meiotic arrest when situated on F1 hybrid background or as 

shown in N2 hybrid males (Dzur-Gejdosova et al., 2012).The Chr 17 and Chr X showed 

significant association with TW and fertility in a QTL analysis of the backcross (B6 × M. 

macedonicus) F1 ×B10 (Elliott et al., 2004). While the QTL interval on Chr X seems to overlap 

Hstx1, the peak on Chr 17 is distal to Hst1/Prdm9. Another QTL analysis of the backcross (PWD 

x B6)F1 x B6 showed strong interval on Chr X and Chr 17 overlaping Hstx1 and Hst1/Prdm9, 

respectively (Dzur-Gejdosova et al., 2012). 

 

11.2 Major hybrid sterility locus on the X chromosome. 

 

Involvement of an X-linked M.m.musculus allele(s) in hybrid sterility has been described 

repeatedly in different hybrid sterility models (Storchova et al., 2004; White et al., 2011; Dzur-

Gejdosova et al., 2012; Good et al., 2008b). In our present study we found a 4.7 Mb interval by 
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high resolution mapping XPWD chromosome, which controls two hybrid sterility phenotypes, i.e. 

abnormality of post-meiotic cells (Storchova et al., 2004) and F1 meiotic block (Mihola et al., 

2009). In the experiment using B6.PWD-Chr.X# consomic strains we found that a 4.7 Mb 

Hstx1PWD region on X chromosome manifested the reduced TW and abnormal sperm head 

morphology phenotype on B6 genetic background.  Similar postmeiotic phenotypes were 

observed in mouse models carrying introgressions of M. m. musculusPWK  X chromosome on M. 

m. domesticusLEWES background, M. m. molossinusMSM X chromosome on M. m. domesticusB6 

background, and M. m. musculusPWD X chromosome on M. m. domesticusB6 background (Oka et 

al., 2004; Storchova et al., 2004; Good et al., 2008a). All three studies identified multiple QTLs 

along the X chromosome influencing abnormal sperm head morphology.  

The phenotype of F1 hybrid sterility was mostly represented by postmeiotic block (White et al., 

2011; White et al., 2012; Good et al., 2008b), which differed from the intrameiotic arrest seen in 

(PWD × B6)F1 males (Mihola et al., 2009; Dzur-Gejdosova et al., 2012). The F1 male of PWD 

and B6 showed asymmetry in sterility phenotype that is manifested as meiotic arrest. In the 

present study, QTL analysis of hybrids resulting from a heterozygous consomic female, B6-

XPWDXB6, and PWD male revealed an X-linked 4.7 Mb Hstx2PWD region controlling the 

asymmetry in meiotic arrest phenotype. This finding was later confirmed in F1 hybrids of 

B6.PWD-Chr.X# females and PWD males. We also found that the same 4.7 Mb Hstx2PWD region 

coincides with Hstx1PWD location. Recently, Payseur and co-workers (White et al., 2011) 

analyzed the genetic architecture of hybrid sterility of M. m. musculus × M. m. domesticus 

hybrids using F2 crosses of PWD and WSB inbred strains. They found several QTLs on 

autosomes and X chromosome. Interestingly, another mouse species, M. spretus, carries a hybrid 

sterility gene in the same overlapping region of Chr X as observed in M. m. musculus (PWD) and 

M. macedonicus hybrids (Elliott et al., 2001). A mechanistically similar model of F1 hybrid 

sterility has been described between Drosophila species of D. pseudoobscura Bogota and D. 

pseudoobscura USA (Prakash, 1972; Orr and Irving, 2001; Phadnis, 2011; Phadnis and Orr, 

2009). As in the M. musculus subspecies, both D. pseudoobscura subspecies diverged quite 

recently and their reproductive isolation is incomplete. Hybrid sterility is asymmetric, as the male 

progeny of Bogota females and USA males are sterile, while reciprocal hybrids are fertile in both 

sexes. QTL analysis distinguished seven hybrid sterility loci with three strong on the Chr X and 

four autosomal with a weaker effect. The absence of any effect of the Chr Y (Phadnis, 2011; 
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Phadnis and Orr, 2009) is an additional feature common between our mouse and the Drosophila 

model. The disproportionate effect of Chr X linked genes on hybrid sterility is known as large X-

effect from Drosophila studies (Orr et al., 2004; Coyne et al., 2004). 

 

11.3 Dobzhansky-Muller (D-M) incompatibilities associated with Hstx1 and Hstx2. 

The genetic basis of D-M incompatibilities lies with an epistatic interactions between different 

loci with alternative alleles. In a hybrid between two populations, this genetic incompatibility 

between alternative alleles of multiple genes causes a failure to form a functional unit having 

adverse effects on hybrids. The co-occurrence of two hybrid sterility loci on Chr X promped us to 

ask whether these two phenotypes could be two manifestations of a single gene based on D-M 

interaction with other autosomal locus in different genetic backgrounds. The (B6.PWD-Chr X.1s 

x B6.PWD-Chr 17)F1 hybrids the males do not show pachytene block phenotype but they are 

sterile due to abnormal sperm suggesting contribution of weak epistasis between different genetic 

loci in the manifestation of meiotic arrest phenotype. On the other hand the (PWD x WSB)F1 

hybrids have partial meiotic block, carry limited number of sperm cells (White et al., 2011), 

although they carry Hstx2PWD. Similarly, (PWD x C3H)F1 males carrying Hstx2PWD partially 

escape the meiotic arrest phenotype (Flachs et al., 2012). The spermatogenetic abnormality of 

(PWD x WSB)F1 males were similar to (PWD x C3H)F1 males. C3H and WSB strains are 

mostly of Mmd origin (like B6), but they have different Prdm9 alleles from that of B6 (Mihola et 

al., 2009; Parvanov et al., 2010). These experiments showed that the manifestation of meiotic 

block phenotype is strongly dependent on D-M interactions between Hstx2PWD, Prdm9 and the 

genetic background. The correlation between genetic heterozygosity of the genetic background 

with Prdm9 – Chr X epistatic incompatibility also suggested additional loci of weaker effect as a 

requirement for the manifestation of F1 hybrid sterility phenotype (Dzur-Gejdosova et al., 2012; 

Flachs et al., 2012). In Drosophila, such D-M interactions were observed in F1 hybrid sterility 

between Drosophila pseudoobscura Bogota and Drosophila pseudoobscura USA. The D-M 

incompatibility could be changed by the replacement of a “sterility” allele by a compatible 

“fertile” allele at a single gene resulting in the restoration of fertility (Prakash, 1972; Orr and 

Irving, 2001; Phadnis, 2011; Phadnis and Orr, 2009). Though the discussion concentrated on 

single locus - single gene approach, the presence of multiple genetic interactions inside the locus 

or independent genetic control to the two different phenotypes cannot be ruled out. The 
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postzygotic reproductive isolation between Mmm and Mmd is more complex, as it includes 

interactions of underdominant or recessive hybrid sterility genes. We propose that the D-M 

incompatibility involved in F1 hybrid sterility is like a “jigsaw puzzle” where Prdm9 and Hstx1/2 

plays the central characters, whereas other complex interactions involving recessive genes and 

epigenetic modifications control the variable manifestations in phenotypes. Rescue experiments 

involving bacterial artificial chromosome (BAC) containing fertile alleles will give a clear 

answer to these questions. 

11.4 The role of meiotic chromosome pairing and synapsis in F1 hybrid sterility. 

Asynapsis at pachytene stage was the earliest detectable phenotype that we identified in sterile 

(PWDx B6)F1 males. The involvement of individual autosomes was not random because out of 

five chromosomes tested, Chr 19 was the most often affected. Moreover we report, for the first 

time, that heterospecific autosomal pairs in sterile hybrids are more prone to asynapsis than the 

homospecific pairs where both homologs come from the same species. We also show that this 

phenotype is strongly linked to 4.7 Mb Hstx2PWD locus on Chr X. Based on these findings we 

suggest that the failure of pairing and/or synapsis of heterospecific homologs, probably caused by 

their fast evolving nongenic DNA divergence, may represent the primary target of the meiotic 

surveillance mechanism that recurrently breaks down in meiosis of various interspecific hybrids. 

In this scenario the hybrid sterility genes Prdm9 and the gene(s) on Hstx2 locus can act, directly 

or indirectly either to promote or to suppress the less stable pairing of heterospecific homologs. 

Asynapsis of multiple chromosomes is a fairly common meiotic aberration reported in carriers of 

various genic and chromosomal mutations. Whenever it occurrs it almost invariably triggers the 

pachytene checkpoint and meiotic breakdown (Bolcun-Filas and Schimenti, 2012). Unpaired 

homologs undergo transcriptional silencing of genes within unsynapsed chromatin (MSUC) 

(Turner et al., 2005) and their occurrence is the sign of death on pachynemas that carry them. The 

establishment of MSUC was supported by the heterochromatinization of unsynapsed 

chromosome observed in the present study.   

A few studies have focused on pairing of meiotic chromosomes in interspecific hybrids. In sterile 

F1 hybrids of Mus spretus and Mus m. domesticus Eicher and coworkers (Hale et al., 1993) 

observed 70% of pachytene nuclei with autosomal univalency. Crosses of three taxa of 

caviomorph rodents Trychomys resulted in male sterility in all the three F1 hybrid combinations, 
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two of them showing extensive failure of chromosome pairing at the pachytene stage (Borodin 

PM, 2006). Massive asynapsis was also observed in sterile males of a hybrid stock arisen from 

two chromosome taxa of house musk shrew (Suncus murinus). The authors concluded that the 

hybrid sterility is genic rather than of chromosomal type (Borodin et al., 1998). An alternative 

explanation is that the sterility could be chromosomal, caused by the heterospecific pairing 

incompatibilities and the reported variation in pairing failure is under genic control. In sterile F1 

hybrids between cattle and yak (Bos taurus x Bos grunniens) a reduction of spermatogonia 

signaled premeiotic genic incompatibility nevertheless, synaptic anomalies and pachytene arrest 

were seen at the meiotic prophase. The female hybrids were fertile (Tumennasan et al., 1997). 

Finally, hybrids between domestic pig and Babyrousa babyrussa were sterile with meiotic pairing 

failure and pachytene arrest. Both sexes were affected (Thomsen et al., 2011). We are not aware 

of any report on meiotic pairing in interspecific Drosophila hybrids, but several pieces of indirect 

evidence are in favor of D-M incompatibilities based on nongenic sequence divergence. Naveira 

and Maside (Maside et al., 1998) reviewed the polygenic character of hybrid sterility in crosses of 

Drosophila koepferae and D. buzzatti. They found a correlation between the length of 

interspecific substitution in backcross male hybrids and sterility; longer segments produced 

sterility while shorter segments did not (Maside et al., 1998). More recently Moehring 

(Moehring, 2011) compiled a dataset from ten interspecific backcrosses/F2 intercrosses of 

various species concluding that the greater the level of chromosome heterospecificity regardless 

of the marker location, the greater the level of sterility with the allowance for a stronger effect of 

Chr X (Moehring, 2011). Our recent analysis of the genetic architecture of hybrid sterility in Mus 

m. musculus and Mus m. domesticus backcross identified two strong hybrid sterility loci 

interacting with a set of weak and interchangeable loci, which may represent non-coding 

sequence incompatibilities (Dzur-Gejdosova et al., 2012). Direct evidence of the role of sequence 

diversity in hybrid sterility was provided in crosses between two related species of 

Saccharomyces, where hybrid sterility was partially alleviated by deleting mismatch repair 

proteins (Hunter et al., 1996). We conclude that our current results and the majority of available 

experimental data from inter-(sub) specific hybrids are compatible with the idea that genetically 

modulated meiotic asynapsis of heterospecific chromosomes represents a predetermined pathway 

leading to sterility of the F1 hybrids. 
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11.5 Meiotic Sex Chromosome Inactivation (MSCI) in intersubspecific hybrids. 

Cytological observations of abnormalities of sex body formation in pachytene spermatocytes of 

mouse intersubspecific hybrids led us to consider the role of sex chromosome inactivation in 

hybrid sterility (Forejt, 1996; Forejt et al., 2012). Here we show the absence of the classical sex 

body in the majority of early pachynemas and the entrapment of unsynapsed autosomes in the sex 

bodies of the surviving mid–late pachynemas. Four Chr X genes and Zfy2 on Chr Y tested by 

RNA FISH were not silenced at the pachytene stage, in accord with the genome-wide expression 

profiling showing the misregulation of the X-linked genes. A similar conclusion was reported in a 

study of (PWK/PhJ × LEWES/EiJ)F1 hybrids representing Mus m. musculus × Mus m. 

domesticus sterility with meiotic arrest after pachytene stage (Good et al., 2010). Alternative 

evidence for MSCI failure came from our observation of undercondensation and 

euchromatinization of X-linked chromatin in pachytene cells of sterile hybrids. The mechanism 

behind the synapsis checkpoint in the case of extensive asynapsis is still unclear (Bolcun-Filas 

and Schimenti, 2012). The sequestration of ATR kinase and γH2AFX on unsynapsed autosomal 

chromatin is the cause proposed for the failure of MSCI (Mahadevaiah et al., 2008), but the 

possibility that the apoptosis of early pachynemas is induced by the activation of the 

recombination checkpoint by unrepaired DSBs cannot be ruled out. The observed elimination of 

pachytene spermatocytes of PB6F1 sterile males in two steps of the first meiotic prophase could 

indicate that more than one checkpoint is activated.  

 
11.6 Oocytes of hybrid females share the aberrant meiotic phenotype with spermatocytes of 
the sterile male hybrids. 
 

The infertility of hybrids between the members of the Mus musculus group and Mus spretus 

follows Haldane’s rule, being restricted to the male sex. However, meiosis of female hybrids is 

far from normal, as first shown in the B6 × Mus spretus cross (Hale et al., 1993). Approximately 

half of the pachytene oocytes from the crosses between PWD and B6 inbred strains displayed 

multiple asynapsed chromosomes, most of which disappeared before MI. In contrast to the hybrid 

males of the same genotype, the incidence of oocytes with asynapsis was not changed by the 

Prdm9 or Hstx2 genotype. To conclude, our results show that, although hybrid females obey 

Haldane’s rule, being fertile, they displayed abnormalities of oogenesis that were similar to, 
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although less extensive than the abnormalities of spermatogenesis in their male siblings. We also 

report, for the first time, that heterospecific autosomal pairs in female hybrids are more prone to 

asynapsis than the homospecific pairs where both homologs come from the same species similar 

to their male counterpart.  

Almost half of the pachytene oocytes carried asynaptic chromosomes and disappeared before MI, 

probably by ATR-directed MSUC checkpoint (Schimenti, 2005). The surviving oocytes still 

showed some defects, which contributed to the increased frequency of aneuploidy at MII in both 

types of reciprocal intersubspecific hybrids. Even the oocytes that proceeded through MI were 

marked by disorganization of chromosomes at the MI plate and low but significant frequency of 

aneuploidy in MII. The abnormalities seen at the pachytene stage in male and female mouse 

intersubspecific hybrids thus appear to be the same, their incidence in females being half of that 

in males. The lower frequency of oocytes with asynapsis and the absence of MSCI offer a 

plausible explanation of Haldane’s rule in this particular hybrid sterility model. 

 

11.7 Hstx2PWD homozygous hybrid females defy Muller’s dominance theory. 

The Haldane’s rule states that, in hybrids between two species, if only one of the sexes are 

inviable or sterile, the affected sex is more likely to be heterogametic (i.e. XY or ZW) than 

homogametic (Haldane, 1922). Muller’s dominance theory offers an explanation for the 

Haldane’s ruleby assuming that majority of alleles affecting hybrid fitness are recessive. In 

hemizygous sex, the expression of the recessive alleles creates the sterility. However, in 

homogametic sex the presence of a dominant allele neutralizes the effect of a recessive one. Thus, 

the homogametic sex with homozygous recessive allele should become sterile as the hemizygous 

sex. Thus it can explain the large effect of X chromosome observed in genetic analysis of hybrid 

sterility. We present the first experimental test of the dominance theory in mammals. 

Constructing Hstx2PWD homozygous F1 hybrid females, we showed that the recessive X-linked 

hybrid sterility locus, which creates sterility in an F1 hybrid male, fails to do so in homozygous 

condition in hybrid females. The Muller’s theory was previously challenged using “unbalanced” 

hybrid females, expressing the same X-linked recessive alleles as those of the males in two 

independent hybridization experiments using Drosophila simulans - D. mauritiana and D. 

simulans - D. sechellia (Orr, 1987; 1989; Orr and Coyne, 1989). Hybrid females carrying two D. 

simulans X chromosomes in hybrid genetic background remained fertile. Later, the “unbalanced” 
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female results were confirmed in at least six independent Drosophila hybridization experiments 

(Orr, 1987; 1989; Orr and Coyne, 1989; Turelli and Orr, 1995). Although the fertility of 

“unbalanced” hybrid females in Drosophila and mouse questions the dominancy theory for 

hybrid sterility, it does not rule out the explanation of Haldane’s rule for inviability as pointed out 

earlier (Johnson and Wu, 1992; Wu and Davis, 1993). Two Drosophila hybridization experiment, 

between D. simulans - D. tessieri and D. melanogaster- D. simulans, revealed that the females 

homozygous for a recessive X-linked locus in otherwise hybrid background are not viable like 

hybrid males (Orr, 1993). An alternative explanation for the mouse is that the X–linked recessive 

genes causing male sterility in hybrids were testes-specific. If so, incompatibility involving these 

genes could be sensitive to different meiotic check points involving both genetic and epigenetic 

processes. In summary, our data showed a limitation of the dominance theory explaining mouse 

hybrid sterility, although further investigation using alternative models is required to reveal its 

universality. 

11.8 Meiotic recombination and F1 hybrid sterility. 

Homologous recombination is an important mechanism for creating genetic variation. There is a 

considerable difference in the rate of meiotic recombination between species (Broman et al., 

1998; Sun et al., 2004a; Coop et al., 2008; Koehler et al., 2002; Dumont and Payseur, 2011; 

Thomsen et al., 2001; Borodin et al., 2008; Ptak et al., 2005; Winckler et al., 2005). It plays an 

important role in speciation by shuffling the allelic variation of novel genes. Understanding the 

genetics of meiotic recombination has been a long term desire. Recently, our laboratory identified 

the first mammalian speciation-associated gene Prdm9/Hst1 in the (PWD x B6)F1 hybrid model 

(Mihola et al., 2009). Prdm9 gene was also shown to determine the preferred recombination sites 

or hotspots through sequence-specific binding of its highly polymorphic multi-Zn-finger domain 

in mouse and humans (Parvanov et al., 2010; Baudat et al., 2010; Myers et al., 2010; Cheung et 

al., 2010; Berg et al., 2010; Grey et al., 2011). Though genes significantly influencing the rate of 

genome wide recombinations in humans were identified (Kong et al., 2008; Stefansson et al., 

2005; Chowdhury et al., 2009), many questions linked to genetic control of the process remain 

unanswered.  

In this thesis we have demonstrated that (PWD x B6)F1 sterile hybrids shows severe depression 

in meiotic recombination frequency compared to (B6 x PWD) F1 fertile hybrids, concluding the 



138 
 

role of X chromosome on the number of meiotic crossovers. Using the B6.PWD-Chr.X.# sub-

consomic strains and F1 hybrids we showed that a genome wide depression in the meiotic 

crossover was linked with Hstx1/ Hstx2PWD locus. The coincidence of two hybrid sterility loci 

Prdm9/Hst1 and Hstx1/ Hstx2 performing dual role in hybrid sterility and meiotic recombination 

indicates a possible new role of meiotic recombination in speciation. Meanwhile, multiple loci 

were mapped using CAST/EiJ (M. m. castaneus) and PWD (M. m. musculus) F2 population 

contributing to genome- wide recombination rate. A strong QTL was observed on X chromosome 

controlling the meiotic recombination rate between CAST and PWD (Dumont and Payseur, 

2011). The mapped X-linked locus overlaps Hstx1/Hstx2 locus. A X-linked depression was also 

observed between (PWD x CAST)F1 hybrids but the authors observed no overt defects in 

chromosome pairing or synapsis in any hybrid animals (Dumont and Payseur, 2011). These 

results indicate a clear role of X chromosome in meiotic recombination but its contribution to 

hybrid sterility may be far more complicated. The rate of recombination is a complex trait 

dependent on multiple genes (Chinnici, 1971; Kidwell, 1972; Charlesworth and Charlesworth, 

1985; Brooks and Marks, 1986). The (PWD x B6)F1 and (PWD x CAST) F1 hybrids show a 

convergence in depression in the meiotic recombination rate but diverge in sterility phenotype. 

This ambiguity may be due to different Prdm9 allele between B6 and CAST, which binds to 

distinct DNA sequences (Baudat et al., 2010) based on altered zinc finger DNA-binding domains 

(Persikov et al., 2009) choosing different hotspots. 

The Prdm9 encodes meiotic histone H3 methyltransferase (Hayashi et al., 2005) marking the 

recombination hotspots (Baudat et al., 2010; Parvanov et al., 2010). Most of the recombination in 

Prdm9-/- is initiated at promoters with H3K4 trimethylation mark (Brick et al., 2012). Like 

Prdm9-/- mice, repair of meiotic double strand breaks (DSBs) in (PWD x B6) F1 males does not 

proceeds normally in almost 95% of the spermatocytes showing possible random asynapsis and 

the formation of univalents suggesting a possible failure of meiotic recombination process. 

Meanwhile, we cannot rule out that the allelic incompatibilities involved are only limited to 

meiotic recombination rate without causing sterility. The analysis of other genotypes including 

fertile (PWD × B6.Hst1f) F1; (PWD × B6.PWD-chr17) F1 and (PWD × B6.PWD-chr19) F1 

hybrids showed similar meiotic crossover frequency to that of (PWD x B6) F1 sterile hybrids 

pointing to an Hstx2PWD linked polymorphism controlling the meiotic recombination rate, rather 
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than the meiotic arrest. Further analysis of meiotic hotspot using ChIP-seq approach on different 

mouse strains and their hybrid strains can resolve these issues.  
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Conclusions 

A. The postzygotic reproductive isolation between Mmm and Mmd is complex, as it includes 

interactions of underdominant or recessive hybrid sterility genes. Here we mapped Hstx2 

locus to 4.7 Mbp region on Chr.X. The 4933436I01Rik,’and Fmr1nb protein coding genes 

and mmu-miR-743a and mmu-miR-465 microRNA cluster are likely candidates for Hstx2. We 

propose that the D-M incompatibility involved in F1 hybrid sterility is like a “jigsaw puzzle” 

where Prdm9 and Hstx2 play the central characters, whereas heterozygous (heterospecific) 

genetic background and epigenetic modifications modulate the manifestations of the 

phenotypes. 

B. Based on our findings, we suggest that meiotic asynapsis of heterospecific homologous 

chromosomes is the primary mechanistic basis of hybrid sterility manifested by pachytene 

arrest. According to our hypothesis, the nongenic sequences, as the fastest diverging 

component of the mammalian genome, may represent the suitable candidate for a recurrent 

D–M incompatibility leading to asynapsis. The predisposition to asynapsis occurs in both 

male and female meiosis of intersubspecific hybrids. In spermatogenesis, but not in 

oogenesis, certain hybrid sterility genes directly or indirectly modulate the sensitivity of 

synapsis to the sequence divergence between heterospecific chromosomes, either enhancing 

or suppressing it. MSCI plays a decisive role in eliminating the asynapsed primary 

spermatocytes and underlies most of the features of the Haldane’s rule. However, because 

hybrid sterility is a consequence of independent genomic evolution in related taxa, other D–M 

incompatibilities that do not interfere with chromosome synapsis may act together with it or 

independently of it. 

C. Using female F1 hybrids homozygous for Hstx2PWD we showed defyance of a simple 

interpretation of dominance theory for Haldane’s rule. We also demonstrated that contrary to 

male meiosis, Chr 17 and Hstx2 do not control frequency of asynaptic pachynemas in female 

meiosis of intersubspecific hybrids. The proposed explanation for these differences is that the 

X–linked recessive genes causing male sterility in hybrids were testes-specific. 

D. We found a meiotic recombination rate-controlling locus in the same 4.7Mb interval as the 

Hstx2 hybrid sterility gene. The coincidence of the loci governing meiotic recombination and 

hybrid sterility on Chr 17 and Chr X may indicate a new role of meiotic recombination in 

speciation. 
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Abbreviations 

B6.PWD-Chr.# - Chromosome substitution strain (consmics) with introgressed PWD 
chromosomes on B6 background. 

PB6F1- F1 hybrids from cross between PWD female x B6 male. 

B6PF1- F1 hybrids from cross between B6 female x PWD male. 

PB6-Hst1fF1- F1 hybrids from cross between PB6F1 with Prdm9 fertile allele. 
 
PD17F1- F1 hybrids from cross between PWD female x B6.PWD-Chr.17 male. 

PD19F1- F1 hybrids from cross between PWD female x B6.PWD-Chr.19 male. 

DX.1sD17F1-F1 hybrids from cross between B6.PWD-Chr.1s female x B6.PWD-Chr.19 male. 

C3B6F1- F1 hybrids from cross between C3H female x B6 male. 

DX.1sPF1- F1 hybrids from cross between B6.PWD-Chr.1s female x PWD male. 

Hstx1- X-linked hybrid sterility gene 1 

Hstx2- X-linked hybrid sterility gene 2 

Prdm9- PR domain zinc finger protein 9  

Hst1f- Hybrid sterility gene 1 fertile allele. 

Mb- Megabase pairs. 

TUNEL- Terminal deoxynucleotidyl transferase dUTP nick end labeling 

SYCP1- Synaptonemal complex protein 1 

SYCP3- Synaptonemal complex protein 3 

HORMAD2- HORMA domain protein containing 2  

γH2AFX- phosphorylated form of H2AFX histone  

ATR- ataxia-telangiectasia- and Rad3-related protein 

RAD51- RAD51 homolog of S. cerevisiae 

DMC1- DMC1 dosage suppressor of mck1 homolog, meiosis-specific homologous 
recombination 

FISH- Fluorescent in-situ hybridization 

MSCI- Meiotic sex chromosome inactivation 

MLH1- Mismatch repair protein of the MutL family. 
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