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Introduction

The goal of this work is to propose and implement a numerical model which
could predict temperature field, melt flow and a position and a shape of the the
crystal/melt interface in the Bridgman experimental arrangement. In particular
model is aimed to Bridgman growth of lead halides and ternary alkali lead halides
in specific laboratory conditions, i.e. particular experimental procedure, geometry
and material properties of apparatus.

Growth of high-quality single crystals is sensitive to conditions being en-
forced during growth process. Experimental optimization of relevant conditions
is lengthy and time-consuming process. For our specific problem of a growth
of single crystal of PbCl2 of weigth ca. 150 g, the growth itself lasts few days.
There are plenty of parameters to be set and numerical modeling can help with
this issue.

Modeling and numerical realization of crystal growth problems represents
challenging task. Model must be able to handle a phase change from a liquid
phase to a solid phase – i.e. phases of which behaviour is qualitatively different.
There are few conceptually different classes of models for description of phase
changes. Some of them are well-established but other are still subject to current
research, regarding their mathematical but also thermodynamical aspects.

Real solid–liquid phase changes possesses significant jump in material density.
This has non-trivial consequences and plenty of models incorporates simplifying
assumptions being in contradiction with these consequences. We will try to in-
corporate this density jump to the model.

Crystal growth modeling potentially incorporates many different phenomena
driving a process. Things are getting very complicated when dealing with a
material of two and more chemical substances. Luckily we will avoid this.

Another complication is movement present in a growth system. This puts non-
trivially increased computational effort to many numerical methods in comparison
to problems with static domains. We will use finite element method (FEM) to
discretization of the problem as this is method suitable for solving problem in
complicated geometries. We can then track moving structures of the system by
fitted mesh although we will not particularly fit a mesh to evolving phase interface
but use rather a different method.

We will take advantage of having available detailed description of the working
crystal growth apparatus. Hence we are aware that we are trying to model real
physical problem and take advantage of having opportunity to observe what is
the real behaviour and what is not. Moreover some precise measurements were
performed on the system of the concern which will enable us to compare modeled
result directly to behaviour of the considered system.
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1. Crystal growth by vertical
Bridgman method

1.1 Introduction to Bridgman method

Vertical Bridgman method is a widely used technique for crystal growth of dif-
ferent materials from a melt.

During this procedure melted material within an ampoule is slowly pulled
down through temperature gradient in a furnace. Temperature conditions in a
furnace and a pulling rate are specifically chosen to achieve a development of high
quality single crystal. In particular homogeneous nucleation in the bulk of melt
needs to be avoided and convex or planar (see figure 1.1) crystal/melt interface is
desirable to avoid formation of various crystal defects. Moreover some degree of
melt stirring by natural convection is usually desirable to homogenize impurities
and/or additives.

Typical schematic configuration of the setup is shown in figure 1.2. For more
details regarding the Bridgman growth reader is referred to [12].

Solid

Melt

a)

Solid

Melt

b)

Solid

Melt

c)

Fig. 10.45a–c Melt–solid interface shapes observed dur-

ing vertical Bridgman growth:(a) convex, (b) planar, and

(c) concave interface shapes

Figure 1.1: Crystal/melt interface shapes: (a) convex, (b) planar and (c) concave.
Taken from [12, chapter 10] with kind permission of Springer Science+Business Media.

1.2 Properties of lead chloride

Lead(II) chloride (PbCl2) was chosen as a model compound for its availability in
high purity, for widely available material coefficients and their temperature de-
pendences, and similarity of its properties with ternary alkali lead halides (TALH)
[20]. Lead halides [7] and TALH [28] are considered to be suitable as a low phonon
host for rare earth (RE) doping and thus for construction of mid-infrared solid-
state lasers [28, 17, 30]. Analysis – both experimental and theoretical – of ternary
compounds growth is much more complicated by dependence of phase-equilibrium
temperature on the phase fractions of components as is typically demonstrated
by phase diagrams.

Crystalline lead chloride shows a slight anisotropy, as the most of crystals. In
particular it has an orthorhombic bipyramidal structure. Dependence of material
coefficients on crystallographic orientation is rarely available. We will use only
isotropic coefficients and model will not show anisotropy at all. Anyway it is
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Fig. 10.3a,b Schematic diagram of a vertical Bridgman (VB ) crystal growth process in a single-zone furnace:(a) at the

beginning of the experiment and(b) with partially grown crystalFigure 1.2: Schematic diagram of a vertical Bridgman crystal growth process
in a single-zone furnace: (a) at the beginning of the experiment and (b) with
partially grown crystal.
Taken from [12, chapter 10] with kind permission of Springer Science+Business Media.

hardly a drawback because growth method which will be described below does
not permit a set-up of crystallographic orientation.

1.3 Experimental arrangement

All relevant parts of the used apparatus – i.e. ampoule (crucible), its holder
and furnace – possess cylindrical symmetry. This will enable us to simplify com-
putations to two dimensions which will lead to significantly less computational
effort needed. This simplification would not be justifiable if turbulence occurred
– precisely said, turbulent velocity and temperature fields could not be considered
possessing cylindrical symmetry but only some statistical means of them could
be.

Furnace has five independent unequal-sized heating zones. This allows setting
a broad class of temperature profiles. This is done by setting constant current
through resistance heating zones. Measured temperature profiles are displayed
in figure 1.3 and the details of these measurements is described by Král in [20].
Temperature profiles are practically independent of the ampoule position and the
fraction of solidified material. In other words, heat conditions in the system have
almost no influence on temperature of furnace.

Ampoule is made of fused quartz. Major part (cca 2/3) of the ampoule is filled
with high-purity PbCl2 and sealed. This procedure is performed under introduc-
tion of chlorination agent into the PbCl2 melt as described by Nitsch [27]. During
growth process top part of the ampoule has temperatures from 500 to 585◦C1.
Therefore there is pressure slightly lower than standard atmospheric pressure in
the ampoule atmosphere, particularly cca 0.8–0.9 bar.

1this is maximal temperature of used temperature profiles.
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Figure 1.3: Scaled layout of used Bridgman apparatus. Aspect ratio is not pre-
served. Only half-section is shown – cylindrical symmetry applies. On the right,
four temperature profiles at the inner wall of furnace are shown. Points are
measured values and lines are linear extrapolation from two outer values.
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Usual pulling rates range from 0.5 mm/h to 3 mm/h. This means that a
growth process itself takes several days.

Apart from actual growth experiments, also temperature measurement ex-
periments were designed and performed by Král [20]. These were done using
special ampoule with capillaries for insertion of thermocouples which is depicted
in figure 1.4. Steady state with fixed position of ampoule was reached and then
measurement of temperature was performed throughout whole length of capil-
laries with step 1 mm. This was repeated with different positions of ampoule –
i.e. different fractions of solidified substance – and with different temperature
profiles.

These capillaries breaks cylindrical symmetry of the system. They may imply
substantial differences of velocity field in comparison to proper ampoule, at least
from kinematic reasons, but one may hope that they do not significantly disturb
heat balance. We will discuss this more in chapter 4.

4 capillaries

Figure 1.4: Geometry of ampoule with capillaries for temperature measurements.
Dimensions are in millimetres.
Figure by R. Král. Used with kind permission of the author.
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2. Mathematical model

There are plenty of physical phenomena driving crystal growth process described
in previous chapter. Leaving microscopic structure of phase interface out of ac-
count we may try to model growth process in a framework of continuum thermo-
mechanics. Evolution of phase interface is basically given by heat transfer – rate
of heat drain controls the speed of crystallization. Therefore accurate description
of concerning system must account for all significant heat transfer mechanisms if
possible. Most important ones are

• conduction

• convection in fluid parts of system

• release of latent heat due to crystallization

• radiation1

There are also other effects of minor importance – one being buoyancy-induced
diffusion of species in a melt giving raise to its non-homogenity; this would be of
much larger significance in binary and higher order substances. Viscous heating
is other minor effect – in fact negligible how we will show in chapter 4.

Description of the interface between crystal and its melt is the most challeng-
ing part of the mathematical model and its numerical implementation also. For
the main reasons we can count the facts that interface is not planar, its position
is a priori unknown and evolving and the fact that there is fluid on one side and
solid on the other side. On the other hand handling an interface with such a low
curvature is much simpler than in the case of dendritic solidification.

Probably the oldest numerically realizable class of methods for solidification
with moving interface are based on a quite heuristic modification of governing
equations of fluid in way that solid behaviour is fulfilled in a part of the substance.
This can be realized by either very high viscosity enforcing no flow [14] or by a
momentum forcing in a fashion of Darcy’s law with very low permeability [26].
For an overview of methods of this kind reader is referred to [42]. In this work we
adopted the latter approach. We can count these methods into class of diffuse-
interface models.

Nowadays there is being performed active research of diffuse-interface models,
also called phase-field models. One class of them originate in legendary works of
Allen, Cahn and Hilliard [2, 8]. These were originally proposed for modeling sur-
face effects between phases. Now the way how to fit these models into framework
of continuum thermodynamics is subject of current research – see for instance
Heida, Málek and Rajagopal [15, 16] or Aland and Voigt [1]. These models are
able to describe a broader class of phenomena like supercooling/superheating.
This is facilitated by penalizing a newly arising phase by a surface tension in a
combination with a kinetic character of phase change mechanism. This advantage
is naturally balanced by a need to prescribe more material quantities, constitutive
relations and boundary conditions.

1We did not go into modeling the radiation as it is not of such an importance as for substances
with much larger melting points.
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Another possibility for a treatment of evolving phase interface is in using
sharp interface approach. Balance equations describing each phase are enforced in
respective regions. They share a common boundary constituting a sharp interface
where a surface form of balance equations is being enforced. This approach
generally has a pretty straightforward physical interpretation. It is distinguished
by a sharp interface and well-separated pure phases. It may include various
sort of interfacial constitutive relations, either equilibrium-like (e.g. temperature
continuity) or kinetic (e.g. temperature jump proportional to heat flux). Šilhavý
gives very exhausting and mathematically rigorous treatment of this topic (among
others) in monograph [41]. On the other hand numerical treatment of sharp-
interface models is much more challenging task and may possibly be accomplished
by XFEM/PUM (extended finite element method/partition of unity method) –
see [25, 10, 19].

In following sections we will describe details of the used model. We will also
comment on Allen-Cahn type model a bit further.

2.1 Balance equations

We start with equations for mass, linear momentum and internal energy of single-
component media

ρ̇ = −ρ div u (2.1)

ρu̇ = div T + ρb (2.2)

ρė = T · ∇u− div q (2.3)

where ρ is density, u velocity, T Cauchy stress, b mass-specific body force, e
internal energy and q heat flux. Dot above quantity denotes material derivative,
div is divergence operator and ∇ gradient operator.

Now we proceed by specifying constitutive relations and boundary or interfa-
cial conditions we will use. We shall deal with balance equations applying to each
part of the system separately. Multiple phases will be treated although this will
apply only to PbCl2. Other parts of the system (inert atmosphere, ampoule, air,
holder) will be subject to same equations – while forgetting phase-change terms
and possessing another material coefficients – and interfacial conditions coupling
them will be given later.

2.1.1 Energy balance

Let’s assume we can split Cauchy stress T into isotropic equilibrium part given
by thermodynamic pressure and dissipative part S so that we have

T = −pI + S. (2.4)

Substituting this into balance of energy (2.3) and using balance of mass (2.1) we
arrive at

ρ(ė+ pν̇) = S · ∇u− div q (2.5)

where we introduced mass-specific volume ν = 1/ρ. Introducing enthalpy h =
e+ pν we obtain enthalpy balance

ρḣ− ṗ = S · ∇u− div q. (2.6)
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Now consider material subject to phase transition whose phase is picked by
value of quantity – so called phase-field 0 ≤ c ≤ 1. We prescribe its energy by
the classical Gibbs relation

ė = θη̇ − pν̇ + µċ (2.7)

where η is entropy and µ chemical potential. Using definition of enthalpy we
rewrite this into

ḣ = θη̇ + νṗ+ µċ. (2.8)

Now we define heat capacity at constant pressure cp, latent heat of phase transi-
tion L and coefficient of thermal expansion α as usual2

cp =

(
∂h

∂θ

)
p,c

, (2.9)

L =

(
∂h

∂c

)
p,θ

, (2.10)

α =
1

ν

(
∂ν

∂θ

)
p,c

= −1

ν

(
∂η

∂p

)
θ,c

. (2.11)

Transforming enthalpy (2.8) from its natural variables η, p, c into variables p, θ, c
and using definitions (2.9)–(2.11) we obtain

ḣ = ν(1− αθ)ṗ+ cpθ̇ + Lċ. (2.12)

Sticking this into enthalpy balance (2.6) we have

ρcpθ̇ + ρLċ− αθṗ = S · ∇u− div q. (2.13)

This is useful form of energy balance in many practical situations when defor-
mation contributes to pressure by negligible amount compared to external con-
straints so that pressure is practically constant 3 (e.g. at value of ambient pres-
sure). We assume such a situation so we can neglect pressure term and consider
remaining coefficients as a function of θ and c only:

ρ(θ, c)cp(θ, c)θ̇ + ρ(θ, c)L(θ, c)ċ = S · ∇u− div q. (2.14)

We now focus on the phase change of our interest. We will assume that
crystallization of PbCl2 in our crystal growth apparatus occurs at narrow interval
(θm − ε, θm + ε) around equilibrium melting temperature θm

4 so that phase-field
c is for ε > 0 continuous function

c = c(θ) (2.15)

2Last equality in (2.11) is due to one of the Maxwell relations and is a statement of the
integrability of the Gibbs potential g = e+ pν − θη.

3 Regarding motion of fluid this holds for low Mach number flows which are by the way
approximately isochoric. Here we also clearly showed why in such a situation heat coefficient
at constant pressure cp should be used when expressing energy in the means of temperature
rather than coefficient at constant volume cν . For the physical reasoning one should take into
consideration that even that flow is nearly isochoric so one would be tempted to use coefficient
at constant volume cν , actual external constraint on the motion is given by holding pressure –
not volume – constant. Surroundings of the body do not perform an extra work (cp − cν)θ̇ to
keep the body at constant volume – this is only the approximate property of the motion.

4 This assumption should quite precisely hold for our use case when the crystal growths slowly
and with small curvatures of the phase interface. On the other hand it was observed by Král
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meeting

c(θ) =

{
0 θ < θm − ε
1 θ > θm + ε

. (2.16)

Having this in mind (2.14) takes form

ρ(θ)ceff
p (θ)θ̇ = S · ∇u− div q (2.17)

where we define

ρ(θ) = ρ(θ, c(θ)), (2.18)

ceff
p (θ) = cp(θ, c(θ)) + L(θ, c(θ))

dc(θ)

dθ
. (2.19)

We observe that c(θ) and dc(θ)/dc are approximations of Heaviside function and
Dirac distribution respectively, converging in the sense of distributions when ε→
0.

Next we neglect viscous heating in fluid parts (and stress work at all in solid
parts) of the system so that first term on the right-hand side of (2.17) vanishes.
Heat flux can be modeled by Fourier’s law q = −κ(θ, c)∇θ. Defining

κ(θ) = κ(θ, c(θ)) (2.20)

we finally arrive at heat equation

ρ(θ)ceff
p (θ)θ̇ = div (κ(θ)∇θ) . (2.21)

2.1.2 Balance of linear momentum

We have no intention to solve for deformation in the solid parts of the system
although one could like to investigate an effects of thermoelasticity in the crystal
and the surrounding ampoule. We will solve a flow of air in the furnace to account
for a heat transfer by a convection therein. More importantly we shall solve a
flow in the melt. Since phase interface ought to be driven by energy balance in
a diffuse-interface manner we need to handle mechanics – i.e. linear momentum
balance – also in this way. We simply adopt the way used many times (see
[26, 42, 39, 40]) which penalizing velocity in solid phase by Darcy-type forcing.
Together with consideration of Newtonian response (with no bulk viscosity) we
have balance of linear momentum

ρu̇ = −∇p+ div(µ(∇u +∇u>))− Su + ρg (2.22)

where µ is dynamic viscosity of fluid, g is gravity acceleration due to Earth and
S is penalty function taking high value in solid phase and being zero in liquid

that very high purity of used substance enables substantial under-cooling when suddenly pulling
the crystal out of the furnace by a significant displacement. This could be in principle predicted
by phase-field model incorporating surface free energy and kinetic equation for phase-field
or sharp-boundary model with kinetic interfacial condition like the Gibbs-Thomson equation
(see Beckermann et al. [5, equation (23)] for treatment on a connection between these two
approaches or Baldoni and Rajagopal [4, inequality (5.9)] giving far generalization of such
condition).
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phase. In the terms of Darcy’s law S is related to permeability of porous media
K through S = µ/K. Usual form used for S is

S(φ) = C
(1− φ)2

φ3
(2.23)

where φ is porosity and C large constant. This equation is motivated by Kozeny-
Carman formula (see [24]) which predicts a discharge of a stationary laminar flow
through homogeneous porous media by considering the Poiseuille flow through
a collection of straight ducts and rather heuristically accounting for geometry of
pores. There is no clear connection between assumptions behind this formula and
physics of the diffuse interface. One could rather consider equation (2.23) as a
numerical penalty enforcing no flow in a solid phase.

As we did not specify in any way what measurable quantity is represented by
phase-field c in preceding subsection we are free now to choose c = φ. Considering
density (2.18), viscosity µ = µ(θ)5 and defining S(θ) = S(c(θ)) we arrive at
balance of linear momentum

ρ(θ)u̇ = −∇p+ div(µ(θ)(∇u +∇u>))− S(θ)u + ρ(θ)g (2.24)

As said above we understand mentioned Darcy-forcing-model as a mathemat-
ical penalization rather than a proper model of interface mechanics. Besides it
misses surface tension, it does not model anything but rigid solid. In addition
it penalizes movement against coordinate frame not against solid phase hence it
could not be useful for describing homogeneous nucleation.

If we would like to take into account thermoelasticity of solid phase we could
turn to some viscoelastic model (for example [32, 33]). We believe that this could
be in principle coupled with phase-field so that models reduced to elastic and
viscous behaviour in solid and liquid phase respectively. However it is not clear
whether numerical implementation would be manageable.

As an interfacial condition for velocity on a surface between melt and protec-
tive atmosphere we choose continuity. It is obvious that normal velocity must be
continuous and equal to surface velocity because of mass conservation on this sur-
face. But condition for a tangential component could be relaxed to say Navièr’s
slip condition, free-slip condition etc. We chose the continuity because anything
else would require an additional major implementational and/or computational
effort.

2.1.3 Mass balance

Mass balance will apply only to fluid regions and diffuse interface as we chose not
to account for any deformation in solid parts of the system.

In accordance to previous subsections we will stick here to the case of equi-
librium density ρ = ρ(θ) but omit θ argument for convenience.

It is well-known that the compressible Navièr-Stokes equations (i.e. with full
mass balance in the form (2.1)) supports sound waves. Numerical solution of

5We have no motivation to start with µ = µ(θ, c) and interpreting viscosity of a solid phase
hence we omit dependence of µ on c whose inclusion could seem natural in view of preceding
subsection.
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such a problem with hyperbolic character requires special treatment. Regarding
low Mach number flows one is usually not interested in these waves at all. The
most prevalent way to suppress sound waves is using Boussinesq approximation.
This consists in its simplest form of approximating mass balance (2.1) by

div u = 0 (2.25)

and approximating density, capacity, conductivity etc. by constants

ρ = ρ, cp = cp, . . .

in all the terms of mass and energy balance (2.2),(2.3) except body force term
ρb = ρ(θ)g which represents buoyancy and enables natural convection. In forced
convection cases one calls this incompressible/isochoric approximation of flow
rather than Boussinesq approximation.

Approximation (2.25) is not acceptable for us from two reasons. First one is
that this is too crude unless

ρ(θ0)− ρ(θ1)� ρ(θ) (2.26)

holds where θ0, θ1 and θ represents respectively the lowest, the highest and mean
(in some sense) temperature of media in a flow process. This is not clearly the
case at least for air in the furnace which flows up and down in the gap between
furnace inner wall and the ampoule. Perturbative analysis of Boussinesq approxi-
mation and more precisely declared criteria for validity of the approximation were
pronounced by Rajagopal, Růžička and Srinivasa [31].

But the second and the most important reason is related to the fact that
the density of PbCl2 increases by not negligible amount during solidification.
Densities of crystallic and liquid phase at melting point are 5666 kg m−3 and
4951 kg m−3 respectively (see Figure 2.2). Therefore domain Ω (see Figure 2.1)
must change its volume during solidification. Because ∂Ω is material surface,
melt surface Σ must move down while fraction of solid increases. It means that
vertical component of the melt velocity uz fulfills

uz|Σ = U < 0 (2.27)

z

Σ

Ω

Λ

Figure 2.1: Domains representing interior of the ampoule. Ω represents PbCl2 -
either crystal and melt, Λ protective atmosphere and Σ = ∂Ω∩∂Λ planar surface
of the melt.
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Figure 2.2: Density of PbCl2. Experimental values and the estimate based on
known value at 25 ◦C and assuming value of Grüneisen parameter - see [45].

with U independent of spatial coordinates while solidification takes place. This
would be in contradiction with (2.25) or even so-called anelastic approximation

div ρu = 0 (2.28)

used usually in geosciences to describe low Mach number flows of such a depth
that they do not meet (2.26). We therefore step into pseudo-incompressibility
approximation of the form

div ρu = αΩ in Ω, (2.29)

div ρu = αΛ in Λ (2.30)

with αΩ, αΛ being spatially constant. Integrating (2.29),(2.30) over Ω, using
divergence theorem and (2.27) one gets

U

∫
Σ

ρ|Ω dS = αΩ|Ω|, (2.31)

−U
∫

Σ

ρ|Λ dS = αΛ|Λ| (2.32)

Equations (2.29),(2.30) represents pseudo-incompressibility constraint and equa-
tions (2.27),(2.31) give interfacial condition for velocity which reads

uz|Σ =
αΩ|Ω|∫

Σ
ρ|Ω dS

, (2.33)

uz|Σ = − αλ|Λ|∫
Σ
ρ|Λ dS

. (2.34)
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To close the equations we need to provide equations for αΩ and αΛ. Comparing
(2.29),(2.30) with proper mass balance (2.1) one gets

αΩ = − 1

|Ω|

∫
Ω

ρ′ dV, (2.35)

αΛ = − 1

|Λ|

∫
Λ

ρ′ dV. (2.36)

This ensures that mass is conserved in Ω and Λ separately. We note that this
approximation when discretized cannot be consistent with original mass balance
(2.1) as αΩ, αΛ are zero-order in space approximations to time-derivative −ρ′
except special cases.

We pick the equation (2.33) rather than (2.34) for expressing interfacial ve-
locity condition because isobaric expansion of solid and melt in Ω is what steers
surface movement and volume of gas in Λ not vice versa. This is basically caused
by orders of magnitude difference in compressibilities of gas and condensed phas-
es.

2.1.4 Complete model

Let us have four time-dependent domains Ω ∪ Λ, ∆, Φ, Ψ whose movement is
a priori known (see Figure 2.3; for real dimensions see Figure 1.3). Note that
position of horizontal planar surface Σ = ∂Ω ∩ ∂Λ is not a priori known and is a
consequence of mass conservation in Ω. Values of all material coefficients are in
table 2.1. Then the problem is to find the unknowns Σ, u, p, θ, α such that

• Σ = ∂Ω ∩ ∂Λ is horizontal and planar time-dependent domain,

• u and p are functions of time and coordinates continuous in the each of
their domain Ω, Λ, ∆,

• θ is continuous function of time and coordinates in the domain Ω∪Λ∪∆∪
Φ ∪Ψ,

• α is function of time and coordinates defined in Ω and Λ which is spatially
constant in each of its domain separately,

• mass and momentum balance

div(ρu) = α, (2.37)

ρu̇ = −∇p+ div
(
µ
(
∇u +∇u>

))
− Su + ρg, (2.38)

α =


− 1
|Ω|

∫
Ω
ρ′ dV in Ω

− 1
|Λ|

∫
Λ
ρ′ dV in Λ

0 in ∆

, (2.39)

are fulfilled in Ω, Λ and ∆,

• energy balance
ρceff

p θ̇ = div(κ∇θ), (2.40)

is fulfilled in Ω, Λ, ∆, Φ and Ψ,
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Ψ

∆
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z

Ω
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Φ

Ψ

∆

upull

g

Figure 2.3: Schematic layout of computational domains: Ω – crystal and melt,
Λ – protective atmosphere, ∆ – air in furnace, Φ – ampoule, Ψ – holder;
velocity boundary conditions: no-slip, free-slip, not applicable;
temperature boundary conditions: Dirichlet cooling θ = 350 K,

Dirichlet heating - see Figure 1.3, thermal insulation (zero Neumann
condition). Note that domains Ω ∪ Λ, Φ and Ψ are rigid and they are moving
downwards with constant velocity upull so that ∆ is being deformed such that
∂∆\(Φ ∪Ψ) stays at rest.

• u is continuous on Σ 6,

• velocity u which is being a velocity of Σ as well fulfills

uz|Σ = − α|Ω |Ω|∫
Σ
ρ|Ω dS

(2.41)

due to mass conservation in Ω,

• no tangential force acts on Σ, i.e.

τ · (T|Ω − T|Λ) n = 0 on Σ (2.42)

for all n, τ unit normal and tangential vectors of the surface Σ respectively,
where T = −pI + µ

(
∇u +∇u>

)
,

6We choose this interfacial condition merely for an implementational ease involved.
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• free-slip condition holds on symmetry axis, i.e.

u · n = 0
τ ·Tn = 0

}
on {r = 0} ∩

(
Ω ∪ Σ ∪∆

)
, (2.43)

for all n, τ unit normal and tangential vectors of the axis {r = 0} respec-
tively, where T is given as above,

• no-slip condition (given by movement of the respective boundaries) for u
holds on other velocity boundaries,

• heat flux −κ∇θ is continuous on every interior interface and is zero on in-
sulation boundaries given in Figure 2.3,

• temperature Dirichlet condition for θ given in Figure 2.3 is being acquired,

• initial conditions for u, p, θ and α are attained in respective domains.

We note again that we choose continuity of tangential component of u on Σ
just because of computational ease.

We must remark that if one forgets all the boundary conditions given on
{r = 0} and imagines that all the domains are toroidal so that just their half-
section is showed in Figure 2.3, one can regard this as 3D formulation involving
no assumption on a symmetry of a solution. Role of these boundary conditions
will be exposed in following sections.

One can take an advantage of the fact that pulling velocity upull is constant
hence a frame of reference connected with the ampoule is inertial as well. Thus
in domains Ω and Λ we can solve for velocity relative to the ampoule whereas
in domain ∆ we can take laboratory velocity, without any modification to the
equations except values of the Dirichlet conditions.

Now we must mention that problem as given above has not good mathematical
meaning. Attentive reader could indeed object that we did not specified sufficient
differentiability the unknowns should have in order to field equations had a good
meaning. We were sloppy here because the data does not allow for classical
formulation anyway. One can observe that at least velocity boundary/interfacial
conditions as specified possesses discontinuity in points where moving and still
boundaries/interfaces meet. Remedy to this is a weak formulation of the problem
which will be treated in next sections.

2.2 Weak form of equations

At first consider open domains Ω̂, Λ̂, ∆̂, Φ̂, Ψ̂ and Σ̂ = (∂Ω̂ ∩ ∂Λ̂)◦ as three-
dimensional and rotationally symmetric so that respective domains in Figure 2.3
represent the half-section. Next we define V̂ as a subset of Sobolev space H1(Ω̂∪
Σ̂ ∪ Λ̂ ∪ ∆̂)3 with zero trace of a respective component on the velocity Dirichlet

boundaries defined above, 7 Lebesgue space P̂ = L2(Ω̂∪Λ̂∪∆̂) 8 and Q̂ as a subset

of H1(Ω̂ ∪ Λ̂ ∪ ∆̂ ∪ Φ̂ ∪ Ψ̂) with zero trace on temperature Dirichlet boundaries.

7Note that V̂ is constrained to zero trace also on internal interface Σ̂.
8Note that P̂ admits discontinuity (of traces) on Σ̂ in comparison with V̂ .
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Ω

ρ = ρS + (ρL − ρS)H0
(
θ−θm
ε

)
ρL = 6112− 1.5 θ [18]

ρS = 5965.1− 0.3861 θ [35]

ceff
p = cS

p + (cL
p − cS

p)H
0
(
θ−θm
ε

)
+ L/ε δ1

(
θ−θm
ε

)
cS
p = 0.02903/M θ + 68.45/M [9]

cL
p = 11.504/M [9]

L = 21883/M , M = 0.2781, θm = 774 [9]

κ = 7.132× 10−7 θ2 + 0.0001932 θ

µ = 4.5356× 10−3 [18]

Λ

ρ = 0.4572− 5.714× 10−4(θ − θm) IGL

cp = 30/0.0365 [27]

κ = 0.04 [27]

µ = 3.66× 10−5 [27]

∆

ρ = 0.46− 6× 10−4(θ − θm) IGL

cp = 1000

κ = 0.05

µ = 3.625× 10−5

Φ

ρ = 2203 [44]

cp = 45.3/0.06 [44]

κ = 1.3 [44]

Ψ

ρ = 8908 Fe

cp = 26.07/0.0587 Fe

κ = 90.9 Fe

H0(x) =


0 x ≤ −1

(x+ 1)/2 −1 < x < 1

1 x ≥ 1

δ1(x) =

{
(x+ 1)2(x− 12) −1 < x < 1

0 x ≤ −1 or x ≥ 1

Table 2.1: Used values of material coefficients. M is molar mass of PbCl2, H0

is C0-approximation to Heaviside function and δ1 is C1-approximation to Dirac-δ
distribution. Fe means value of iron taken instead and IGL is ideal gas law.
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Finally consider uD ∈ H1(Ω̂ ∪ Σ̂ ∪ Λ̂ ∪ ∆̂)3 and θD ∈ H1(Ω̂ ∪ Λ̂ ∪ ∆̂ ∪ Φ̂ ∪ Ψ̂)
being some representatives of these Dirichlet conditions.

The task is then to find u, p, θ, α and Σ̂ such that

u(t)− uD(t) ∈ V̂ , u′(t) ∈ L2(Ω̂ ∪ Λ̂ ∪ ∆̂), (2.44)

p(t) ∈ P̂ , (2.45)

θ(t)− θD(t) ∈ Q̂, θ′(t) ∈ L2(Ω̂ ∪ Λ̂ ∪ ∆̂ ∪ Φ̂ ∪ Ψ̂), (2.46)

0 =

∫
Ω̂∪Λ̂∪∆̂

q [div (ρu)− α] dV ∀q ∈ P̂ , (2.47)

α =


− 1

|Ω̂|

∫
Ω̂
ρ′ dV in Ω̂

− 1

|Λ̂|

∫
Λ̂
ρ′ dV in Λ̂

0 in ∆̂

, (2.48)

0 =

∫
Ω̂∪Λ̂∪∆̂

[
ρ (u′ +∇uu) · v − p div v + µ

(
∇u +∇u>

)
· ∇v

−ρg · v + Su · v] dV ∀v ∈ V̂ , (2.49)

0 =

∫
Ω̂∪Λ̂∪∆̂∪Φ̂∪Ψ̂

[
ρceff

p (θ′ + u · ∇θ) η + κ∇θ · ∇η
]

dV ∀η ∈ Q̂ (2.50)

holds almost everywhere in time interval (0, T ) and some initial conditions for
the quantities u, θ and Σ are being attained in t = 0. We note that we are
slightly sloppy treating time-dependence of the problem. Proper way would be to
employ the theory of Bochner spaces, polish a sense of time derivatives and initial
condition. We relieve us from doing this by assuming sufficient time-regularity.

All the coefficients except S are L∞ functions in their respective domains
because these are continuous functions of θ which is essentially bounded due to
maximum principle applying to heat equation (2.50). 9 Coefficient S = S(c(θ))
given by (2.23) takes infinite values in the solid phase where c = 0. Hence (2.23)
must be modified somehow so that S ∈ L∞(Ω). For now we just assume this
holds.

Once all the coefficients are essentially bounded we see that chosen trial and
test spaces render all the terms in (2.47)–(2.50) finite (convective terms are res-
cued by the Sobolev embedding).

This weak formulation is non-standard in the involvement of the pseudo-
incompressibility condition (2.47) rather than standard 0 = ∫ q div u dV con-

straint. Also note that integral in (2.47) is computed separately on domains Ω̂

and Λ̂ to avoid integration of Dirac δ due to discontinuity of ρ across interface Σ̂.

9We don’t know how to proof the maximum principle. Nevertheless we would like to expect
holding it.
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2.3 Cylindrical coordinates

Now we will proceed with transition to cylindrical coordinates r, ϕ, z given by

x = r cosϕ, (2.51)

y = r sinϕ, (2.52)

z = z (2.53)

in order that we can exploit the symmetry of the problem. Hence we first assume
that no quantity in (2.47)–(2.50) depends on angle ϕ and also assume that velocity
field has no swirl, i.e. u = urr̂ + uzẑ where r̂, ϕ̂, ẑ is unit basis induced by
cylindrical coordinates. Then the following relations hold

dV = 2πr dr dz, (2.54)

dS = 2πr dr for horizontal dS, (2.55)

div y = yr,r + yz,z + yr/r ∀y axi-symmetric, differentiable,

no-swirl vector, (2.56)

x · y = xryr + xzyx ∀x,y axi-symmetric, no-swirl vectors10,
(2.57)

∇uu = (ur,rur + ur,zuz)r̂ + (uz,rur + uz,zuz)ẑ, (2.58)(
∇u +∇u>

)
· ∇v = ur,rvr,r + (ur,z + uz,r)(vr,z + vz,r)/4

+ uz,zvz,z + urvr/r
2. (2.59)

One can now become interested what are suitable function spaces for ur, uz, p,
θ. Deparis [11][Proposition 1.2.1] shows that particular weighted Sobolev spaces

are isomorphic to no-swirl, axi-symmetric subsets of spaces V̂ , P̂ and Q̂ and
summarizes or proves many technical results regarding analysis of Stokes and
Navièr-Stokes problem and their particular finite-element approximations.

To be specific, let space Lpα(D) is defined as the set of measurable functions
with finite norm

||w||Lpα(D) =

(∫
D

|w|prα dr dz

)1/p

. (2.60)

Next let H1
1 (D) ⊂ L2

1(D) such that norm

||w||H1
1 (D) =

(
||w||2L2

1(D) + ||w,r||2L2
1(D) + ||w,z||2L2

1(D)

)1/2

(2.61)

is finite. Finally let us define V 1
1 (D) = H1

1 (D) ∩ L2
−1(D) equipped with norm

||w||V 1
1 (D) =

(
||w||2L2

−1(D) + ||w,r||2L2
1(D) + ||w,z||2L2

1(D)

)1/2

. (2.62)

It can be shown that functions in V 1
1 (D) have zero trace on axis r = 0.

Let domains Ω, Λ, ∆, Φ, Ψ and Σ = (∂Ω ∩ ∂Λ)◦ are half-sections of corre-
sponding hatted domains as shown in Figure 2.3. Now we can define spaces Vr
and Vz for radial velocity ur and axial velocity uz as a subsets of V 1

1 (Ω∪Σ∪Λ∪∆)

10This relation holds also for gradients of axi-symmetric scalars in place of vectors.
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and H1
1 (Ω ∪ Σ ∪ Λ ∪ ∆) respectively subject to appropriate zero Dirichlet con-

straints. Pressure space is simply P = L2
1(Ω∪Λ∪∆) and temperature space Q is

a subset of H1
1 (Ω ∪ Λ ∪∆ ∪ Φ ∪Ψ) subject to zero temperature conditions given

above.
Assuming axial symmetry and no-swirl we can now reformulate our problem

(2.44)–(2.50) using transformations (2.54)–(2.59). Then task is to find ur, uz, p,

θ, α and Σ̂ such that

ur(t)− uD
r (t) ∈ Vr, u′r(t) ∈ L2

1(Ω ∪ Λ ∪∆), (2.63)

uz(t)− uD
z (t) ∈ Vz, u′z(t) ∈ L2

1(Ω ∪ Λ ∪∆), (2.64)

p(t) ∈ P, (2.65)

θ(t)− θD(t) ∈ Q, θ′(t) ∈ L2
1(Ω ∪ Λ ∪∆ ∪ Φ ∪Ψ), (2.66)

0 =

∫
Ω∪Λ∪∆

q [(ρur),r + (ρuz),z + ρur/r − α] 2πr dr dz ∀q ∈ P, (2.67)

α =


− 1
|Ω|

∫
Ω
ρ′ 2πr dr dz in Ω

− 1
|Λ|

∫
Λ
ρ′ 2πr dr dz in Λ

0 in ∆

, (2.68)

0 =

∫
Ω∪Λ∪∆

[ρ (u′r + ur,rur + ur,zuz) vr + ρ (u′z + uz,rur + uz,zuz) vz

+µ
(
ur,rvr,r + (ur,z + uz,r)(vr,z + vz,r)/4 + uz,zvz,z + urvr/r

2
)

−p (vr,r + vz,z + ur/r)− ρgzvz + S(urvr + uzvz)] 2πr dr dz ∀v ∈ Vr × Vz,

(2.69)

0 =

∫
Ω∪Λ∪∆∪Φ∪Ψ

[
ρceff

p (θ′ + θ,rur + θ,zuz) η + κ(θ,rη,r + θ,zη,z)
]

2πr dr dz ∀η ∈ Q (2.70)

Note that 1/r term in (2.67) and in the pressure term of (2.69) is canceled by
Jacobian of volume element r. But there remains term 2π ∫ µurvr/r dr dz having
1/r factor. This is clearly integrable thanks to a choice of Vr function space.

We must mention that spaces Vr, Vz and P depend on the position of interface
Σ which is driven by (2.41) which we did not include explicitly to the problem
formulation. Also value uD

z is given by the same equation. Technically this
makes all these “quantities” unknowns. We are not sure whether the problem
is still well-posed under these conditions. There is also an option reformulating
Dirichlet constraints on Σ using Lagrange multipliers. We leave it in this state
with note that numerical procedure we will present in next chapter treats this
coupling successfully in very simple explicit way and the continuous formulation
was rather reverse-engineered from the numerical procedure.
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2.4 Notes on Allen-Cahn type model

Allen-Cahn equation11

ρċ = γ

(
3

2

σε

ρ
∆c− 12

σ

ε
(c+ 1)c(c− 1)

)
(2.71)

originating in work [2] is evolution equation for phase-field c subject to species
conversion driven by particular potentials which will be given hereafter. The
equation can also be derived from variational formulation. In this section interface
width ε has dimension of length instead of temperature. Constant σ is surface
tension and γ is kinetic coefficient required to be positive by the 2nd law of
thermodynamics.

Equation (2.71) (or similar Allen-Cahn-like equations) can be coupled to ther-
momechanical framework in different ways. In subsection 2.4.2 we will treat on
one particular given in [15]. We recommend a reader to read this work before
stepping into subsection 2.4.2 because there is not enough room to rephrase this
work here.

But first we shortly take a look on surface tension from a perspective of
classical thermodynamics.

2.4.1 Classical thermodynamics of interface

Classical thermodynamics of interface might be described by fundamental relation

dU I = θdSI + σdAI (2.72)

where U I is internal energy of interface, SI entropy of interface, AI surface area
of interface and σ is so called surface tension or surface energy.

Now we present an argument by Ondřej Souček showing that surface tension
σ can be interpreted as a surface density of Helmholtz potential:

Consider fundamental equation of an interface (2.72). Also assume
that internal energy U I(SI, AI) is a function homogeneous of order one,
i.e.

U I(λSI, λAI) = λU I(SI, AI) ∀λ > 0. (2.73)

Then one can use classical Euler’s argument to obtain Euler equation.
Differentiating (2.73) w.r.t. λ and using (2.72) we obtain

U I = θSI + σAI. (2.74)

Dividing by AI one gets

σ =
U I

AI
− θ S

I

AI
(2.75)

hence one can say that σ is surface density of Helmholtz potential.

(Ondřej Souček, June 10, 2013, personal correspondence)

11Form with the unusual scaling is presented. This is consistent with functionals given here-
after.
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2.4.2 Diffuse interface thermodynamics

Let us split Helmholtz free energy density into bulk part fB and interfacial part
f I
ε and assume special dependence on quantities θ, ν, c, ∇c

f(θ, ν, c,∇c) = fB(θ, ν, c) + f I
ε (ν, c,∇c). (2.76)

First term is motivated by the set-up of subsection 2.1.1 with the exception that
now we start with Helmholtz potential. For a second term we take

f I
ε (ν, c,∇c) = ν

[
12
σ

ε
c2(1− c)2 +

3

4
σε|∇c|2

]
(2.77)

with constant σ. This formula is motivated by classical functional for free energy

F [c] =

∫ [
f(c) + σ/2|∇c|2

]
dV (2.78)

introduced in original Allen-Cahn and Cahn-Hilliard models [2, 8]. In particular
we use the form similar to [6][equation (1)]. In this work there is shown that in
one dimension functional c 7→ ∫ ρf Iε dx takes minimal value σ under the species-
conservating constraint ∫ c dx = const. This demonstrates connection with sharp
interface energy ∫

σ dS (2.79)

used in classical thermodynamics. Particularly interesting is the fact that minimal
value does not depend on the value of ε.

Very promising way of how to incorporate classical diffuse interface models
by Allen, Cahn and Hilliard into continuum thermo-mechanical framework was
proposed recently by Heida, Málek and Rajagopal in [16, 15]. We are especially
interested in the latter work which applies to a system subject to species conver-
sion. In this work surface free energy (2.78) is taken and very special internal
energy of the system is considered. The simplest possible non-trivial entropy
production is assumed and constitutive relations for fluid-like multi-phase system
are then derived using Ziegler’s principle of maximal entropy production (see
[23]) although there is some freedom in the choice of entropy flux during this
procedure.

A knowledge of a concrete function dependency (2.76) gives us full equilib-
rium information about the system considered. Now we proceed by exploiting
consequences of this dependency as we think that otherwise convincing diffuse
interface model suggested in [15] utilizes a quite restrictive form of a thermody-
namic potential. In particular there is chosen internal energy of the form

e(η, ν, c,∇c) = e0(η, ν) + f(c) + νσ/2|∇c|2. (2.80)

Performing partial Legendre transform (see [41][section 10.1]) in variables η, ν
(up to the sign) one gets Gibbs potential

g(θ, p, c,∇c) = g0(θ, p,∇c) + f(c) + ν0(θ, p,∇c)σ/2|∇c|2. (2.81)

with g0 and ν0 being in a particular relation with e0 but this is not important.
Difference g(θ, p, 1,∇c)− g(θ, p, 0,∇c) = f(1)− f(0) is constant hence the same
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phase is always preferred regardless of temperature and pressure (or no phase at
all when the difference is zero). This is very restrictive property disallowing a
description of macroscopic phase-transitions.

We now show that potential (2.76) is a remedy to this problem. We will
again incorporate enthalpy formulation of energy balance (2.6). We first calculate
pressure

p = −
(
∂f

∂ν

)
θ,c,∇c

= pB(θ, ν, c) + pI
ε(c,∇c) (2.82)

where bulk part of pressure is given by

pB(θ, ν, c) = −∂f
B(θ, ν, c)

∂ν
(2.83)

and interfacial pressure is given by

pI
ε(c,∇c) = −∂f

I
ε (ν, c,∇c)
∂ν

= −f
I
ε

ν
= −

[
12
σ

ε
c2(1− c)2 +

3

4
σε|∇c|2

]
(2.84)

which is negative so that interface is coherent.
Now we assume that (2.83) is invertible in ν so we can write

ν = ν̂(θ, pB, c). (2.85)

We also calculate entropy

η = −
(
∂f

∂θ

)
ν,c,∇c

= ηB(θ, ν, c) + ηI
ε (2.86)

where bulk entropy is

ηB(θ, ν, c) = −∂f
B(θ, ν, c)

∂θ
(2.87)

and interfacial entropy ηI
ε is zero. Relaxing constant σ to σ = σ(θ) in (2.77) would

induce non-trivial interfacial entropy ηI
ε = ηI

ε(θ, ν, c,∇c). This would prevent us
from deriving particularly simple energy balance hereinafter so we avoided it. But
it can be easily considered.

Now we calculate enthalpy

h = f + pν + θη

= fB(θ, ν̂(θ, pB, c), c) + f I
ε + pI

εν︸ ︷︷ ︸
=0 due to (2.84)

+pBν̂(θ, pB, c) + θηB(θ, ν̂(θ, pB, c), c)

=: hB(θ, pB, c) (2.88)

We obtained a form of enthalpy which does not depend on ∇c. Little drawback is
that it depends on bulk pressure pB instead of true pressure p. But this difference
can be probably ignored if interface possesses small curvature so that (negative)
interfacial pressure is small compared to bulk pressure which is to be mainly in-
duced by large ambient pressure. This is somewhat analogical to the situation
with slow flows under large ambient pressure constraint as described in subsec-
tion 2.1.1. If we neglect difference between pB and p we obtained exactly (2.13).
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If we would like to express enthalpy without the p ≈ pB approximation we
could express density in (2.88) as ν = ν̂(θ, p − pI

ε(c,∇c), c) so we would not be
able to rule-out ∇c from energy balance.

By similar calculations we can compute also internal energy in its natural
variables

e = eB(η, ν, c) + f I
ε (ν, c,∇c). (2.89)

We omit relation of eB to known functions as it is not important here. It is
crucial that (2.89) is a slight generalization of (2.80) so that all the constitutive
relations derived in [15] are compatible and valid (under assumptions therein)
with potential (2.76). Basically these relations count Newtonian fluid with added
surface tension, Fourier law (possibly with added particle heat depending on
chosen form of entropy flux) and Allen-Cahn type kinetic equation for phase-field
c similar to (2.71).

Now we can turn back to our original problem of PbCl2 single crystal growth.
The Allen-Cahn model [15],(2.76) would require some modification describe sol-
id phase. The approach of subsection 2.1.2 would work but it is not apparent
whether additional interfacial mechanics of Allen-Cahn model keeps sense when
modified by such a heuristic, rather numerical workaround. One could also appre-
ciate kinetic character of phase-field equation which could enable shifting actual
melting temperature downwards with rapid growth rates. But still we have no
idea what is the value of relevant kinetic coefficient as well as surface energy σ for
crystal-melt interface of PbCl2. Simply said Allen-Cahn model would bring us a
little of new behaviour based on unknown material coefficient values at a cost of
additional implementational and computational effort.

Interesting research topic regarding Allen-Cahn models could be finding a
correspondence to models which relate surface tension with latent heat of va-
porization (see [13]). This probably does not apply at all to solid-liquid phase
transitions or it is at least not known.
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3. Numerical algorithm

For a numerical implementation of the weak form of the model described in
preceding chapter we have chosen FEniCS [21]. FEniCS Project is a free collection
of libraries for automated solution of partial differential equations using finite
element method. Automation here means that efficient low-level machine code
for assembling element tensors is automatically generated by FFC (FEniCS form
compiler) taking a form and a finite element specified by user as input. This code
is independent of a particular mesh. During an actual computation a mesh is
generated or imported and system tensors are assembled by iterating over mesh
entities and invoking this code. Many efficient third-party libraries then can be
used to solve for linear systems of algebraic equations. User’s task is merely
programming a solution algorithm in terms of coupling a discretization in time
and space, a movement of a mesh, a linearization of a problem, etc. The most of
these particular tasks is managed by high-level interface DOLFIN.

Not insignificant amount of work behind this thesis consists of bug-fixes and
minor features being implemented into DOLFIN. As a result the code developed
for solution of our problem runs with current development version of FEniCS.
Specific revision of FEniCS components needed is specified in the enclosed source
code.

We have tried to develop an algorithm which would work in parallel. Vast
amount of FEniCS features works in parallel but there are few exception whose
parallelization is under development or on plan. A major such exception is assem-
bling of integrals over interior facets. Therefore we have a priori chosen to avoid
these integrals. As a result we chose the possibly unrealistic interfacial condition
for tangential velocity on Σ given above.

As we need to solve problem on moving domains, incorporated meshes will
need to be deformed. In our case (and in the most cases in practice) maximal de-
formation of mesh is bounded by a requirement on its quality and on preservation
of its topology1. As a result one needs from time to time to create a new mesh
and project fields onto it. Such a projection produces substantial numerical error
which must be attenuated by numerical scheme. Usual Crank-Nicolson scheme
would require stringent restriction on time-step. We therefore choose backward
Euler method for time discretization. One would prefer higher-order method but
whole algorithm is such a complicated because of a moving mesh and unusual
mass balance constraint that we would not reach at least a second order time-
accuracy of a whole algorithm. Besides other things an involved growth process is
slow, near-equilibrium hence accumulation effects are not of such an importance.

Developed code supports parallel execution using MPI (Message Passing In-
terface) but there are some practical consideration. First of all projections on
non-matching meshes in parallel are not yet supported in FEniCS. We developed
a hack requiring changes in DOLFIN source code which is not suitable for merg-
ing into main development branch. Actually it solves the issue in quite inefficient
way.2 As a second, we observed some problems during parallel computations on

1The latter demand prevents a situation when determinant of the deformation gradient is
not strictly positive. Of course one would not call this by deformation in continuum-mechanical
sense.

2Our solution – serial-meshes branch of DOLFIN is available at https://bitbucket.
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the Karĺın cluster3. We did not reliably discovered a cause but we suspect an
outdated OpenMPI library altough we cannot exclude a possible bug in our code,
FEniCS or a stack of other used libraries.

3.1 Arbitrary Lagrangian–Eulerian formulation

As we noted in section 2.2 we did not treat time-dependence of the problem
(2.44)–(2.50) precisely. Possible approach for giving a sense to term with time-
derivative of some Sobolev function φ consists of formally using equality∫

φ′ψ dV =
d

dt

∫
φψ dV (3.1)

where ψ is corresponding test function independent of time. Then one does not
need to bother with Bochner spaces and step right to discretization of ordinary
time-derivative on the right-hand side of (3.1) so that one ends up with a sequence
of time-independent problems with usual Sobolev spaces. But equality (3.1) holds
only for time-independent integration domains hence it needs some modification.

We consider time-dependent domain D(t) and velocity uB given in D(t) which
specifies movement of ∂D(t). We start with convective derivative of some quantity
φ in divergence form a rewrite it using the Reynolds transport theorem∫

D(t)

[(ρφ)′ + div (ρφu)]ψ dV =
d

dt

∫
D(t)

ρφψ dV +

∫
D(t)

div
(
ρφ
(
u− uB

))
ψ dV

(3.2)
where we choose test function ψ so that

ψ′ + uB · ∇ψ = 0. (3.3)

We have a freedom to do that and it is a natural choice in the context of finite
element method on a moving mesh. The right-hand side of (3.2) constitutes a
material derivative term in ALE (Arbitrary Lagrangian–Eulerian) weak formula-
tion. The reference frame arbitrariness is manifested by the arbitrariness of uB as
a velocity advecting test space as well as basis functions of a Galerkin expansion
of φ and ψ. 4

Divergence form (ρφ)′ + div (ρφu) of momentum material derivative ρu̇ is
obtained with using proper mass balance (2.1). But we rather use modified mass
balance (2.29), (2.30). We are not sure whether formulation using right-hand side
of (3.2) is suitable or it should be modified to be compatible with modified mass
balance.

Therefore we employ standard formulation of material derivative to derive
ALE formulation∫

D(t)

ρ (φ′ + u · ∇φ)ψ dV =

∫
D(t)

ρ

[
DB

Dt
φ+

(
u− uB

)
· ∇φ

]
ψ dV, (3.4)

org/blechta/dolfin. Its inefficiency is caused by the fact that a complete serial copy of a
parallel function to be projected is constructed prior to actual projection. Besides data transfer
(made using file system) overhead, memory of every single process must accommodate whole
projected function. This absolutely cancels an opportunity of using large amount of distributed
memory to solve problems limited by memory demands.

3http://cluster.karlin.mff.cuni.cz
4With a special choice uB = u or uB = 0, the Lagrangian or Eulerian formulation is restored

respectively.
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where we introduce convective derivative operator DB

Dt
= ∂

∂t
+uB ·∇. Now it is not

obvious how this addition of by-definition-zero term makes this ALE formulation.
This becomes apparent when φ(x, t) is expressed by Galerkin expansion

φ(x, t) = φi(t)φ
i(x, t) (summation implied) (3.5)

with basis functions meeting DB

Dt
φi(x, t) = 0. Then choosing test function ψ = φj

we express material derivative term as

φ′i

∫
D(t)

ρφiφj dV + φi

∫
D(t)

ρ
(
u− uB

)
· ∇φiφj dV. (3.6)

There is also another good reason for starting with standard form of material
derivative ρ(φ′ + u · ∇φ) rather than divergence form (ρφ)′ + div (ρφu). With
φ = u, former one exhibits artificial dissipation of kinetic energy while latter
supports its growth as shown by numerical experiments in [21][chapter 22] 5.

3.2 Spatial discretization

It is well-known that the Taylor-Hood P2/P1 space and P1isoP2/P1 space on a
simpicial mesh is stable discretization of the Stokes problem in Cartesian coordi-
nates in the sense of the Babuška-Brezzi condition. Deparis [11][sections 1.3–1.5]
shows that P1isoP2/P1 space is conforming to weighted Sobolev space for velocity
and pressure (Vr×Vz)×P as defined in section 2.3 and fulfills the Babuška-Brezzi
condition (given by the norms of the weighted spaces Vr, Vz, P ).

We use P2/P1 elements which are very similar to P1isoP2/P1 – in particular
they have a same number of degrees of freedom, even same location of them; only
shape functions are slightly different.

Let Th be a triangulation of the domain Ω ∪ Λ ∪ ∆ ∪ Φ ∪ Ψ matching the
interfaces between Ω, Λ, ∆, Φ, Ψ mutually. Then we define function spaces

Vh =
{

uh ∈ C(Ω ∪ Λ ∪∆)2, uh|T ∈ P2(T )2 ∀T ∈ Th, uh|ΓD
u

= 0, (uh)z|Σ = 0
}
,

(3.7)

Ph = {ph ∈ C(Ω ∪ Λ ∪∆), ph|T ∈ P1(T ) ∀T ∈ Th} , (3.8)

Qh =
{
θh ∈ C(Ω ∪ Λ ∪∆ ∪ Φ ∪Ψ), θh|T ∈ P1(T ) ∀T ∈ Th, θh|ΓD

θ
= 0
}

(3.9)

where C(D) is a set of continuous functions on D and Pn(T ) is a set of all
polynomials of degree up to n on T .

As was shown in section 2.3 we will end with viscous term integral contain-
ing irreducible 1/r factor. Deparis [11][section 2.3.2] shows on example that an
evaluation of such an integral analytically is numerically unstable. He states that
internal nodes quadrature formula is therefore preferable. FEniCS implements
the Gauss quadrature formulae of arbitrary order and estimates necessary order
automatically. As this estimation ensures an exact quadrature only for polyno-
mials, we instruct FEniCS to use degree 2 for 1/r term.

5In [21][chapter 22] there is also shown for incompressible flows that so-called skew-symmetric
form, which is average of both approaches, conserves kinetic energy. We did not investigate
how this can be incorporated with a variable density.
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Similar situation arises with Darcy-like forcing term with coefficient (2.23).
But we do not put stress on quadrature accuracy of this term as we consider
this as rather a heuristic penalty rather than accurate physics, as was discussed
earlier. Nevertheless we must modify formula (2.23) to stay finite in solid phase.
We adopt formula from [22]

S(φ) = Cq
(1− φ)2

φ3 + q
. (3.10)

We observed that stability of algorithm and also velocity in mushy region is
strongly dependent on values of values of C and q. But we are not aware of
any method justifying particular values. We succeded with values C = 5 ×
1010 Pa s m−2 and q = 0.001.

Phase interface thickness parameter ε (given as temperature difference) needs
to be sufficiently large so that phase interface width is comparable at least as few
cells of a mesh. This is mainly given by the latent heat term in ceff

p approximating
Dirac δ-distribution. If it was approximated by too thin peak, Gauss quadrature
would not be able to sample it accurately if at all. In practice we need ε ' 1 K
with used spatial resolution and reached temperature gradients.

3.3 Temporal discretization

Let us have constant time-step δt. We define

tn = n δt (3.11)

φn = φ(tn) (3.12)

for all time-dependent quantities φ, including domains and functions spaces.
Now we approximate uB-convective derivative of quantity φ expressed by ex-

pansion (3.5) as (
DBφ

Dt

)n+1

≈
(
δBφ

δt

)n+1

≡ φn+1
i − φni
δt

(φi)n+1. (3.13)

We propose a following discrete problem: find un+1, pn+1 and θn+1 such that

un+1 − (uD)n+1 ∈ V n+1
h (3.14)

pn+1 ∈ P n+1
h (3.15)

θn+1 − (θD)n+1 ∈ Qn+1
h (3.16)
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0 =

∫
Ωn+1∪Λn+1∪∆n+1

q
[
div(ρ̂nun+1)− αn

]
dV ∀q ∈ P n+1

h (3.17)

0 =

∫
Ωn+1∪Λn+1∪∆n+1

[
ρn+1

((
δBu

δt

)n+1

+∇un+1
(
un+1 − (uB)n+1

))
· v

− pn+1 div v + µn+1
(
∇un+1 + (∇un+1)>

)
· v

−ρn+1g · v + Sn+1un+1 · v
]

dV ∀v ∈ V n+1
h (3.18)

0 =

∫
Ωn+1∪Λn+1∪∆n+1∪Φn+1∪Ψn+1

[
ρn+1

(
(ceff
p )n+1

(
δBθ

δt

)n+1

+ (cp)
n+1
(
un+1 − (uB)n+1

)
· ∇θn+1

)
η

+κn+1∇θn+1 · ∇η
]

dV ∀η ∈ Qn+1
h . (3.19)

Interfacial velocity condition on Σn+1 = ∂Ωn+1 ∩ ∂Λn+1 is treated explicitly
as a Dirichlet condition (3.14). If we choose q = 1 in Ωn+1 and q = 0 elsewhere
in mass balance (3.17) we get necessary condition

un+1
z

∣∣
Σn+1

∫
Σn+1

ρ̂n|Ωn+1 dS = αn|Ωn+1|. (3.20)

Treating density and an approximation of its time-derivative in mass balance (3.17)
explicitly must be accomplished by asserting necessary condition (3.20). Anoth-
er possibility would be to treat both these quantities implicitly and enforce a
necessary condition by Lagrange multiplier.

Calculation of quantity αn using a formula α ≈ −ρ′ would be cumbersome on
deforming mesh. Moreover we can turn to the first purpose of introducing pseudo-
incompressibility constraint (2.29) – enforcement of total mass conservation of
PbCl2 in Ω. After a solution of the discrete problem (3.14)–(3.19) we end up
with with density ρn+1 given merely by temperature θn+1 and violating total
mass conservation in Ωn+1. Afterwards mesh is very slightly deformed such that
surface Σn+1 moves precisely such that∫

Ωn+2

ρ̂n+1 dV = m0
PbCl2

(3.21)

where ρ̂n+1 is ρn+1 convected by this movement and m0
PbCl2

is mass of PbCl2.
Before this correction we have solution with an error in total mass of PbCl2 and
after it we conversely have fields with correct total mass but not fulfilling field
equations (3.17)–(3.19). Mentioned deformation of a mesh and whole algorithm
will be precisely presented hereafter.

Let dn is displacement field of this deformation. Having finished field compu-
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tation (3.14)–(3.19) we set

dn+1,∗ := 0, (3.22)

ρ̂n+1,∗ := ρn+1, (3.23)

Ωn+1,∗ := Ωn+1, (3.24)

Λn+1,∗ := Λn+1, (3.25)

Σn+1,∗ ≡ ∂Ωn+1,∗ ∩ ∂Λn+1,∗ (3.26)

and perform iterative procedure

dn+1,∗
z

∣∣
Σn+1,∗ := dn+1,∗

z

∣∣
Σn+1,∗ +

∫
Ωn+1,∗ ρ̂

n+1,∗ dV −m0
PbCl2∫

Σn+1,∗ ρ̂n+1,∗|Ωn+1,∗ dS
, (3.27)

deform mesh of Ωn+1,∗ ∪ Λn+1,∗ with constraint (3.27), (3.28)

convect ρ̂n+1,∗ with this displacement dn+1,∗ (3.29)

until mass-conservation constraint (3.21) is met with some precision. Finally we
set

Ωn+2 := Ωn+1,∗, (3.30)

Λn+2 := Λn+2,∗, (3.31)

ρ̂n+1 := ρ̂n+1,∗, (3.32)

(uB)n+2 :=
dn+1,∗

δt
, (3.33)

(uD
z )n+2

∣∣
Σn+2 := (uB

z )n+2
∣∣
Σn+2 , (3.34)

αn+1
∣∣
Ωn+2 :=

(uD
z )n+2

∣∣
Σn+2

∫
Σn+2 ρ̂

n+1|Ωn+2 dS

|Ωn+2|
, (3.35)

αn+1
∣∣
Λn+2 := −

(uD
z )n+2

∣∣
Σn+2

∫
Σn+2 ρ̂

n+1|Λn+2 dS

|Λn+2|
, (3.36)

αn+1
∣∣
∆n+2 := 0. (3.37)

Step (3.29) is do-nothing operation in context of finite elements as basis
functions are convected automatically with moving mesh vertices and expan-
sion coefficients are kept untouched. We note that procedure (3.27)–(3.29) does
not converge in one iteration because numerator in (3.27) approximates rather

δt
∫

Ω
DBρ
Dt

dV than δt
∫

Ω
ρ′ dV . We also note that all the surface integrals in (3.27)

and (3.35) are equal (for fixed timestep n).
Up to now we were talking about mesh displacement dn and derived reference

frame velocity (uB)n related to the movement of surface Σn. Now we remind a
reader that there is another movement given by uniformly pulling rigid domains
Ωn ∪ Ωn, Λ, Ψ and Φ downwards. Analogically this deforms domain ∆n with
displacement dn+1 and defines reference frame velocity (uB)n+1 = dn+1/δt and
no-slip Dirichlet condition representant (uD)n+1 = (uB)n+1 , both given in domain
∆n+1.

3.4 Mesh

We choose mesh generator Triangle [36] to produce the constrained Delaunay
triangulation. This is a generalization of the Delaunay triangulation that forces
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∆

Ψ

upull

∆

Ψ

upull

Figure 3.1: Schematic illustration of the issue with incompatibility of displace-
ment d at a red vertex. We simply resolve this by choosing d = δtupull in Ψ.
This yields unwanted movement of a red edge as a side-effect. This tiny growth
of domain ∆ is ignored as it represents negligible error.

location of some segments. In our case a requested triangulation of domain Ω ∪
Λ ∪∆ ∪ Φ ∪Ψ is supposed to be constrained by all the boundaries ∂Ω, ∂Λ, ∂∆,
∂Φ and ∂Ψ. For the algorithm used by Triangle reader is refered to [37].

Our input to Triangle is parametrized by

• vertical coordinate h of a bottom point of Ω,

• vertical coordinate H of surface Σ.

With h, H set to all our use cases Triangle had no problem producing a qual-
ity triangulations with angles bounded from below by 34◦ and area of triangles
bounded by 10−7 m2 in Ω and 10−6 m2 in the rest of the domain. These meshes
typically have about 19,000 vertices and 36,000 triangles.

We now explain how a mesh is deformed. First of all mesh movement is
precisely described by displacement of its every vertex. Thus there is one-to-
one correspondence between this displacement and piece-wise linear, continuous
finite-element vector function. We must remember that we deform a mesh for
two purposes – at first, conservation of mass in Ω and at second, pulling rigid
domains Ω ∪ Λ, Φ and Ψ downwards.

We decided to realize former movement by merely moving vertices lying on Σ
according to the procedure for conservation of mass in Ω described in the end of
the previous section 3.3 and keep rest of vertices still. This is of course possible
when this displacement is small compared to cell size so that it can be repeated
for several time-steps before remeshing is needed.

Latter movement d is given by the pulling velocity d = δtupull in domains
Ω ∪ Λ, Φ and Ψ. We extend this harmonically in ∆ subject to zero Dirichlet con-
dition for normal component and homogeneous Neumann condition for tangential
condition on ∂∆\(∂Φ ∪ ∂Ψ). This combination of movement is not fully com-
patible which is illustrated and resolved in Figure 3.1. Resulting displacement
(divided by time-step) contributes to reference-frame velocity uB and Dirichlet
condition uD in ∆. In the rest of the domain we forget this contribution as motion
is inertial.
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Both these motions cannot deform a mesh indefinitely. When deformation
accumulated through consecutive time-steps would be too large it would alter
mesh topology. In practice deformation must be limited much more to ensure
stability and/or accuracy of the finite element solution algorithm. We watch
ratio of inscribed circle radius to circumscribed circle radius of every triangle.
When minimum over all triangles of the radius ratio decreases by factor 0.9 we
step to remeshing. We just create a new mesh using Triangle and current values of
parameters h and H and project old fields to the new mesh. For details regarding
mesh quality measures (including radius ratio) reader is referred to [38].

3.5 Solution of field equations

Field equations (3.14)–(3.19) represents non-linear problem. FEniCS provides an
implementation of the Newton method for solution of such a system. Moreover,
an automatic symbolic differentiation is available so user does not need to per-
form an error-prone calculation of a system Jacobian. Resulting linear system
of algebraic equations can be solved by many external state-of-the-art libraries.
We use MUMPS (MUltifrontal Massively Parallel sparse direct Solver) which is
an implementation of multifrontal algorithm [3] for computing LU or Cholesky
decomposition of a sparse matrix. We have chosen LU solver because of its ro-
bustness enabling us to focus on other parts of algorithm. Of course usage of more
efficient iterative solvers suggests itself to enable computations on finer meshes
and with smaller ε. But this would need to develop a suitable preconditioning
algorithm as standard algebraic preconditioners often perform poorly on coupled
problems.

Now, at the end of the chapter we briefly present algorithm 1 for numerical
solution of our problem. We remark that as an initial condition we take station-
ary solution of field equations (3.14)–(3.19) with δt = ∞. With present, tuned
settings it can be computed using merely slight algebraic underrelaxation. This
ruins quadratic convergence of the Newton method but still requires negligible
computational effort compared to whole time-stepping.

prepare initial mesh;
compute initial condition;
while some liquid PbCl2 remains do

if mesh quality is poor then
create new mesh and project fields onto it;

end
pull rigid domains Ω ∪ Λ, Φ, Ψ downwards;
smooth mesh harmonically in ∆;
set reference frame velocity uB and no-slip velocity uD in ∆;
move vertices on Σ so that mass in Ω is conserved;
set reference frame velocity uB and no-slip velocity uD in Ω, Λ;
solve field equations (3.14)–(3.19);

end
Algorithm 1: Algorithm of entire calculation.
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4. Results

We performed numerical calculations for all of four temperature profiles and
pulling rates upull = 0.9, 2.7, 5.4 mm/h. Used time-steps and width of dif-
fuse interface are shown in table 4.1. This means that we did five calculations for
every of four temperature profiles.

Computations with higher pull-rates would be also desirable. Problem is that
they would require even smaller time-steps, not only from stability and accuracy
reasons, but also because increased velocity of mesh deformation requires a more
frequent remeshing. Between two remeshings at least one time step is required but
rather more for better dissipation of numerical error introduced by a projection.

Chosen interface widths ε are limited by fineness of a mesh. In fact we per-
formed all the calculations on meshes of approximately same fineness because we
are limited by cubic scaling of the LU method. Two-times finer mesh in both
spatial dimensions means four-times more degrees of freedom and 64-times more
work of LU solver for single time-step. In figure 4.1 there is one of the most
extreme temperature gradients achieved when a phase interface is as thick as
only few mesh triangles. This is practically limiting case for value of ε because
quadrature of approximate Dirac-δ latent heat may be becoming quite inaccurate
with smaller ε.

One can observe in figure 1.3 that temperature profiles are decreasing with
height in top parts of the furnace. In the beginning of the growth process when
ampoule is at the highest position, protective atmosphere and possibly also top
part of the melt is unstably stratified. This possibly enhances stiffness of the
problem. In fact we observed during the development of the numerical algo-
rithm strong instability under such a conditions, particularly when no protective
atmosphere was considered yet and ampoule was full of PbCl2. We resolved
this by introducing protective atmosphere, refining a mesh and possibly also by
other tweaks and bugfixes. The former evidences somewhat that under these
conditions PbCl2 is more susceptible to some kind of instability than protective
atmosphere or even air in the furnace which withstands unstable stratification.
Is is also possible that turbulence is induced in top parts of the melt with high
ampoule positions. It cannot be easily decided using a priori dimensional anal-
ysis as classical Grashof and Rayleigh number criteria applies usually to quite
different situations. We are not aware of such a result with similar geometry
and heat conditions. From a crystal growth perspective, turbulence occurring far
from a phase interface would not be harmful to crystal quality. Possibly it would
enhance it by increased dissolution of chlorination agent.

upull [mm/h] δt [s] ε [K]
0.9 120 5
0.9 120 2
0.9 120 1
2.7 120 5
5.4 60 5

Table 4.1: Used numerical parameters.
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profile h0 [m]
TP1 0.295
TP2 0.295
TP3 0.290 a

TP4 0.275

Table 4.2: Used initial values h0 of ampoule position h.

aAs only exception, calculation with TP3, ε = 2 was started with h = 0.2901 m because of
a minor issue with poor mesh deformation which can happen accidentally.

Still we are not able to obtain an initial steady state for ampoule positioned too
high and we are forced to start all the calculations with positions such that cone
of the ampoule contains a little amount of a solid. Such a situation is depicted in
figure 4.1. We state used initial positions in table 4.2. For depth of PbCl2 (i.e.
distance of Σ from bottommost point of ampoule) H we choose initial condition
H0 = 8 cm which corresponds in all cases to PbCl2 mass mPbCl2 = (164± 1) g.

We also calculated steady-state solution for many values of h and all the set-
ups given above. We do this within transient computations to take advantage
of having all the infrastructure prepared and having transient solution as good
starting point for Newton iteration of stationary problem. It has not been tuned
as precisely as transient computation so it does not converge every time but this
does not matter.

Newton iteration for transient solution also diverges for some cases solved
during solidification of the topmost part of PbCl2. It is possibly caused by inter-
action of the two special features of the algorithm – treatment of interface Σ and
treatment of the solid-liquid interface – which we did not tune anyhow for this
event. Anyway, we are not interested a much in the solution around this event.

We computed viscous powers in Ω, Λ and ∆ every time-step. Total work done
by viscosity during whole process ranges from ca. 7 mJ to 200 mJ depending
practically only on temperature profile and proportionally on a duration of the
process (given by pull-rate). In particular the most significant is power in ∆

Figure 4.1: Mesh and isotherms θm−ε, θm, θm +ε computed with profile TP1 and
ε = 1. Oblique white lines represent a cone of the ampoule. This is a situation
near the beginning of the growth process when phase interface is located within
conical part of the ampoule.
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ranging ca. from 32 nW to 680 nW according to temperature profile and ampoule
position. Viscous power in Ω and Λ are ca. 2–3 and 10 orders of magnitude smaller
respectively. This shows that we did a correct assumptions when neglecting
viscous power in energy balance.

In figure 4.2 we present velocity field at various parts of the system. In
figure 4.2a there is typical air flow above ampoule. In figure 4.2b and 4.2d one
can see how a melt and a protective atmosphere driven by buoyancy induces
a small wake in the atmosphere required for the compatibility requirement on
interfacial velocities. Figure 4.2b also shows proportions of a velocity field on
whole ampoule. Typpical flow pattern in a melt is well visible in figures 4.2c, 4.2e
and 4.2f. Figures 4.2b, 4.2e and 4.2f also shows a velocity wiggle on interface.
Possibly it is caused by poor set-up of constants C and q of Darcy-like forcing
but we are quite satisfied with current working status. Finally figure 4.2g shows
a simple up-and-down flow pattern of furnace air around ampoule holder. Flow
in the gap between ampoule and furnace wall is much slower, maybe also because
of numerical boundary layer due to insufficient mesh resolution.

Evolution of fields is somewhat visible in figures 4.3–4.6 but we encourage
reader to explore animations on the enclosed optical disk. Apart from better
temporal resolution, all the computed cases are available. In subsequent sec-
tions we will present some comparison between calculations and also tempera-
ture measurements described in section 1.3. Some presented figures are plotted
as dependence on ampoule position h instead of time. This is natural scaling for
comparison of calculations with different pull-rates upull. In these figures we then
unusually let the variable h to decrease from the left to the right which resembles
increasing time.

4.1 Shape of phase interface

As we stated previously, shape of phase interface is crucial to crystal quality. We
would like to evaluate dependence of the shape on used temperature profile and
pulling rate.

One could try to directly compute curvature ζ of melting point isotherm from
normal unit vectors n of isotherms using formulas

ζ = div n, (4.1)

n =
∇θ
|∇θ|

. (4.2)

But this cannot be done directly with used finite element space because normals n
are piece-wise constant and discontinuous. Therefore div n has no good meaning
as curvature either globally or locally on element. One could project n to some
H(div)-conforming space and then calculate curvature using (4.1). We tried this
on simple test cases with piece-wise linear Raviart-Thomas elements on same
mesh. It did not work satisfactorily as oscillations were induced near boundary
and its derivatives did not converge with mesh-step size. The issue may be
possibly solved by using different mesh for target space of normal n. Another
possibility may be to use higher-order temperature space so that n is not piece-
wise constant but then it is not obvious how to treat (4.2) as right-hand side
contains square root of polynomial in its denominator.
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(a) Air above am-
poule. Scale 1 s.

(b) Melt and pro-
tective atmosphere.
Scale 5 s.

(c) Streamlines in
melt.

(d) Protective at-
mosphere and adja-
cent melt. Scale 5 s.

(e) Melt and
phase interface.
Scale 50 s.

(f) Melt in a cone.
Scale 25 s.

(g) Air flow around
ampoule holder.
Scale 0.2 s.

Figure 4.2: Velocity in various locations of the system. Computed with profile
TP2, upull = 0.9 mm/h, ε = 2 K at t = 49 h except (c) and (f) at t = 19 h.
Scaling factors are given, which say how much time is needed for a flow to travel
a distance given by arrow length.
Erroneously, isotherms corresponding to ε = 5 K are plotted on figure 4.2. Producing this figure

was lengthy and not automated process and the error was detected too late. This publishing

mistake is definitely not an issue as keen reader can very simply imagine correct isotherms.
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Figure 4.3: Temperature and velocity in a region near phase interface for TP1,
upull = 0.9 mm/h, ε = 2 at t = 0, 15, 30, 45, 60 h. Velocity scale 5 s in ampoule
and 0.1 s in furnace. Isotherms θm, θm ± ε. Temperature in color.
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Figure 4.4: Temperature and velocity in a region near phase interface for TP1,
upull = 0.9 mm/h, ε = 5 at t = 0, 15, 30, 45, 60 h. Velocity scale 5 s in ampoule
and 0.1 s in furnace. Isotherms θm, θm ± ε. Temperature in color.

37



(a) (b) (c) (d) (e)

350

850

400

500

600

700

800

temp

Figure 4.5: Temperature and velocity in a region near phase interface for TP1,
upull = 5.4 mm/h at t = 0, 2.5, 5, 7.5, 10 h. Velocity scale 5 s in ampoule and
0.1 s in furnace. Isotherms θm, θm ± ε. Temperature in color.
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Figure 4.6: Temperature and velocity in a region near phase interface for TP4,
upull = 0.9 mm/h, ε = 5 at t = 15, 30, 45, 60, 75 h. Velocity scale 5 s in ampoule
and 0.1 s in furnace. Isotherms θm, θm ± ε. Temperature in color.
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We therefore stick to looking on plots of isotherms by naked eye although we
are quite frustrated by our lack of quantitative method. Hereafter we will give
plots of velocity and temperature fields with consistent scaling between different
figures unless otherwise stated. Color legend for temperature is given near figures.
Isotherms corresponds to θ = θ, θm± ε. Arrows correspond to velocity scaled by
factors 5 s and 0.1 s in the ampoule (both melt and protective atmosphere) and
in the furnace (air) respectively.

We observe that with all used set-ups, interface is safely convex in the conical
part of the ampoule and it tends to become planar or even concave when pass-
ing into cylindrical part of the ampoule as seen in figures 4.3d, 4.4d and 4.5d.
In particular higher pulling rates induce concave interface while low pull-rate
upull = 0.9 mm/h supports planar or possibly slightly concave interface as seen
by comparison of figures 4.4 and 4.5. Profile TP4 helps the best to keep interface
convex as seen in figures 4.6d and 4.6e.

Analysis on a position of the interface will be given in section 4.3.

4.2 Comparison with steady states

Knowing how accurately are transient states approximated by steady states is
desirable from a few reasons. Generally one may exploit such an accuracy for a
simplification of numerical simulations. We are specially interested in the issue
as available experimental data are measured on the steady system and we would
like to know how far these are from actual growth conditions. We will focus to
the experimental data in the next chapter. Last but not least, understanding this
matter is closely related to considerations of crystal quality.

At first we can take a look to figure 4.7 which clearly shows that with increas-
ing pull-rate crystallization is more lagging behind slower or steady states. In
we figures 4.8–4.10 we show L2 average of temperature difference between steady
and transient solution. We can see a correspondence to a previous statement –
difference significantly increases with pull-rate. Gaps in figures are caused by an
excessive stiffness of the steady problem so that Newton solver does not converge.
We observe general trend that this happens more often with small ε = 1 K (see
figure 4.9a) and with high pull-rate upull = 5.4 mm/h (see figure 4.10b). This
holds generally and reader can check similar figures for other cases on enclosed
optical disk. Exception is profile TP4 which behaves well even with the highest
pull-rate – see figure 4.8.

First bump or wiggle in figure 4.9b and 4.10a occurs at a moment where phase
interface passes from a conical to a cylindrical part of the ampoule. Second one
corresponds happens when all PbCl2 is crystallized. Figure 4.8 does not possess
second one as calculation was finished before this event. This happened for some
calculations because it is not a priori easy to predict needed time for given an
initial ampoule position as evidenced by small derivative in figure 4.7 on the be-
ginning of the process. Conversely it is difficult (probably also in laboratory) to
find the bottommost ampoule position such that it will melt all PbCl2. This is
best observed on the beginning phases of enclosed animations when isotherms
induced by a temperature profile moves almost with an ampoule and changes
their slope to almost vertical with increasing h as shown in figure 4.6a. There-
fore crystal grower must select ampoule position with a safe margin so that all
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Figure 4.9: Comparison of transient and steady solutions. Plotted quantity is L2

norm of temperature difference in respective domain normalized to unit volume.
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Figure 4.10: Comparison of transient and steady solutions. Plotted quantity is L2
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poly-crystallic material is definitely melted. This unnecessarily prolongs growth
process. Possible remedy could be to use higher pull-rates in the beginning and
gradually slow them to usual values so that dependence (mass) growth rate would
be rather to linear in comparison to curves in 4.7.

4.3 Comparison with experimental data

In section 1.3 we described experimental arrangement used for a measurement of
temperature field in ampoule. Now we step to comparison of experimental data
obtained by Král [20] with computations of our numerical model. We simply
evaluate our solutions at position of capillaries and ampoule position for which
experimental data were measured. We remark that our solution is axisymmetric
so it plays no role that capillaries depicted in figure 1.4 do not lie in a common
plane. Note also that for all temperature profiles and for three distinct positions
of ampoule steady-state temperature fields in capillaries were measured. In all
these cases phase interface was located in cylindrical part of the ampoule and
being crossed by capillaries.

On the enclosed optical disk reader can find figures comparing numerical data
to all available experimental data. We now present only examples to reach some
conclusions. We compare also to transient solutions hence for slow pull-rate
upull = 0.9 mm/h we pick only ε = 1 K as others are almost negligibly close. In
a same manner we take stationary solution with ε = 2 K for comparison with
experiment.1

In figures 4.11–4.14 we show comparison of calculated and experimental val-
ues. First of all, calculated data seems to be very consistent. A lag behind
steady solution increases with pull-rate. The highest employed pull-rate upull =
5.4 mm/h shows a bump around melting point caused by latent heat release
which is proportional to growth rate. Jump2 in derivative around z = h+ 75 mm
corresponds to jump in heat diffusivity between melt and protective atmosphere
on interface Σ.

Experimental values and steady numerical values more or less qualitatively
agrees at for temperature profile TP1, TP2 and most of the TP3 measurements.
For data of TP3 profile at h = 0.2365 all the measurements including one in
figure 4.13a shows a substantial deviation not present to other positions h. This
suggest a possible flaw in these particular measurement. All the experimental da-
ta for profile TP4 (see also figures 4.14a, 4.14b) matches very poorly to calculated
temperatures.

Sadly, numerical and experimental steady states shows mutual systematic bias
up to 20 K. Probable cause is hidden in unrealistic boundary conditions involved.
Especially Dirichlet cooling of the holder at 350 K is certainly not realistic and was
chosen as the simplest possible realization of the simplest possible temperature
measurement method – one can touch tho bottom of the holder by a bare hand.
Also mass and heat insulation at the bottom end of the furnace around the
holder is not the case. Hot air is certainly being blown out of the furnace and

1Note that stationary solution does not depend on pull-rate and time-step – more precisely
it corresponds to zero pull-rate in our implementation.

2It does not look much as sharp jump on all the figures because plotted data are interpolated
to equally distributed nodal values distant 1 mm.
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cool air from a room is being sucked in. Modeling and numerical treatment of a
problem with pressure-only in/outflows is a challenging task (see for example [43,
the Chimney problem]). Other possibility is taking into account broader model
involving also some air out of furnace. This could naturally solve also cooling of
the holder. On the other hand simple temperature measurements of the holder
could save the day.

If we return to the problem with bias and assume that experimental results
are correct, we can speculate that an overestimated cooling of the holder could
lower temperature in the system globally, thus producing the bias. On the other
hand, improper boundary conditions at bottom of the furnace probably have an
opposite effect.

We must be critical also to the experiment. At first, layout of the capil-
laries 1.4 definitely breaks cylindrical symmetry of the system. At second, the
capillaries probably influences the measured system. Except for altering velocity
field, thermal conductivity of fused quartz is ca. two-times higher than that of
both solid and liquid PbCl2 but more importantly it is ca. 30-times higher than
that of protective atmosphere. Hence added capillaries may cause substantial
heat supply or drain in the interior of the ampoule.
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Figure 4.11: Comparison of calculated and measured temperature fields for tem-
perature profile TP1.
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Figure 4.12: Comparison of calculated and measured temperature fields for tem-
perature profile TP2.
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Figure 4.13: Comparison of calculated and measured temperature fields for tem-
perature profile TP3.
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Figure 4.14: Comparison of calculated and measured temperature fields for tem-
perature profile TP4.
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Conclusion

In chapter 2 we considered specific model well-established model of solidification
but we advanced in general thermomechanical framework while considering spe-
cific demands of our crystal growth problem. In particular we developed a model
with ability to handle density jump during phase change. We proceeded by for-
mulating all the specifics of our problem like boundary and interfacial conditions.
We reformulated a problem using usual weak formulation and also restated the
problem using special weak formulation applicable to axisymmetric problems.

Some of our thoughts regarding recently proposed Allen-Cahn type model [15]
were passed. Slight generalization was suggested in order to model be able to
describe macroscopic phase transtions driven by temperature or pressure. We
were more verbose than [15] in a discussion and a description of used thermo-
dynamical potentials and performing Legendre their transforms. This enabled
us to derive Stefan-like enthalpy formulation without unclear assumption [15,
equation (3.67)]. Unfortunately we were forced to leave this model due to its
problematic applicability to our case.

In chapter 3 we formulated straightforward finite-element discretization of axi-
symmetric weak problem. Complicated and little unusual is time-discretization
because of the mass-conservation demands. We carried out computations using
FEniCS which is library for automatic discretization and solution of PDEs using
FEM. Therefore we did not need to engage with programming spatial discretiza-
tion method and we could focus to complicated time-discretization. LU method
was used for solution of linear systems. This is very robust but scales poorly.
One could proceed with construction of suitable preconditioning algorithm to be
able to take advantage of the Krylov methods hence getting ability to solve larger
problems.

Finally we presented our numerical results and conclusions in chapter 4.
Quantitative analysis of a phase interface shape was not brought to a working
state. Results were successfully fitted into anticipated expectations of pull-rate
influence on a growth process. We also suggested a possible speed-up of the pro-
cess by increasing pull-rate when the phase interface is located in conical part of
the ampoule. Numerical results were directly compared to temperature data mea-
sured on the stationary system. Serious discrepancies were observed. Suggested
explanations involve flaws in boundary conditions on the side of a numerical mod-
el and possible flaw in the experimental set-up being caused by a thermometer
influencing too much a meassured system.

As a follow-up to this work, some measurements of problematic boundary
conditions could be performed on the real system. Conversely numerical model
could be tweaked for simulating operation of the suspected temperature measure-
ment arrangement. Then accuracy of these measurements could be predicted.
This would definitely need a full 3D computation which would probably not be
manageable using LU method because of requirements on mesh fineness due to
problem stiffness.
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List of abbreviations and symbols

Abbreviations (alphabetically)

ALE – arbitrary Lagrangian–Eulerian

FEM – finite element method

FFC – FEniCS Form Compiler

MPI – Message Passing Interface

MUMPS – MUltifrontal Massively
Parallel sparse direct Solver

PDE – partial differential equation

PUM – partition of unity method

RE – rare earth (element)

TALH – ternary alkali lead halides

XFEM – extended finite element
method

Symbols (in order of appearance)

ρ – density

u – velocity

p – pressure

T – Cauchy stress

b – (volumetric) body force

e – internal energy

q – heat flux

S – dissipative part of the Cauchy
stress

ν = 1/ρ – specific mass

h = e+ pν – enthalpy

0 ≤ c ≤ 1 – phase-field variable

η – entropy

µ – chemical potential

cp – heat capacity at constant pressure

L – latent heat of phase change

α – thermal expansion coefficient

ε – temperature range of diffuse inter-
face

ceff
p – effective heat capacity including

latent heat as (approximate) Dirac-δ
distribution

κ – thermal conductivity

µ – viscosity

S – Darcy like forcing enforcing no-
flow in solid phase

g – gravity acceleration due to Earth

C – parameter of forcing S

φ – porosity

Ω – domain occupied by PbCl2

Λ – domain occupied by protective at-
mosphere

Σ = ∂Ω ∩ ∂Λ

uz = U – vertical (aligned with gravi-
ty) component of u

αΩ, αΛ, α – approximation of −ρ′ in
pseudo-compressibility constraint

∆ – domain occupied by air

Φ – domain occupied by ampoule

Ψ – domain occupied by holder

upull – pull-rate of holder with ampoule
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n, τ – normal and tangential unit vec-
tor of respective surface

Ω̂, Λ̂, ∆̂, Φ̂, Ψ̂ – 3D counterparts of
respective domains

H1 – Sobolev space of square-
integrable functions with square-
integrable derivatives

L2 – Lebesgue space of square-
integrable functions

V̂ , P̂ , Q̂ – 3D function space for veloc-
ity, pressure and temperature

uD, θD – representants of velocity and
temperature Dirichlet condition

v, q, η – general test functions from
some velocity, pressure and tempera-
ture space

L∞ – Lebesgue space of essentially
bounded functions

x, y, z – Cartesian coordinates

r, ϕ, z – cylindrical coordinates

r̂, ϕ̂, ẑ – unit coordinate vectors of
cylindrical coordinate system

ur, uz – respective components in
cylindrical basis of arbitrary vector u

Lpα – weighted Sobolev space of square-
integrable functions with weight rα

H1
1 – weighted Sobolev space induced

by L1
1

V 1
1 = H1

1 ∩ L2
−1

Vr, Vz, P , Q – function spaces for
radial and axial velocity, pressure
and temperature appropriate for axial-
symmetry

σ – surface tension/energy

f , fB, f I
ε – Helmholtz free energy and

its bulk and interfacial part

F – free energy functional

φ, ψ, D – general unknown, test func-
tion and domain in context of ALE
framework

uB – reference-frame velocity, velocity
of domain boundaries and mesh

DB

Dt
– uB-based convective derivative

φ = φi(t)φ
i(x, t) – Galerkin expansion

by uB-convected basis

Th, T – triangulation and its triangle

uh, ph, θh – FEM approximations of
velocity, pressure and temperature

ΓD
u , ΓD

θ – Dirichet surfaces of velocity
and temperature

C – space of continuous functions

Pn – space of polynomials up to de-
gree n

q – parameter of modified Darcy term

δt, tn = n δt – time-step and time-
levels

φn – approximation of φ at tn

δB

δt
– backward-Euler approximation

of DB

Dt

ρ̂n – density on mesh adjusted subject
to mass-conservation

m0
PbCl2

– total mass of PbCl2

dn – displacement of mesh
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