
Charles University in Prague

Faculty of Mathematics and Physics

BACHELOR THESIS

Martin Böhm

Graph labeling

Department of Applied Mathematics, MFF UK

Supervisor of the bachelor thesis: Mgr. Martin Mareš, PhD.

Study programme: Informatika

Specialization: Obecná informatika

Prague 2011

I thank my advisor and my family for their unending patience and support.

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In Prague, August 5th, 2011 Martin Böhm

Název práce: Graph labeling

Autor: Martin Böhm

Katedra: Katedra aplikované matematiky

Vedoućı bakalářské práce: Mgr. Martin Mareš, PhD., Katedra aplikované matem-
atiky, MFF UK

Abstrakt: Práce představuje výsledky v oblasti schémat pro značkováńı graf̊u,
která kóduj́ı sousednost vrchol̊u. Tato schémata maj́ı praktické aplikace v oblasti
paralelńıch algoritmů, souviśı však i s teoríı univezálńıch graf̊u. Práce se soustřed́ı
na moderńı metodu Traversal and Jumping, jej́ıž d̊ukaz správnosti je zjednodušen
a opraven. Také se zabýváme hledáńım malých univerzálńıch graf̊u hrubou silou.

Kĺıčová slova: teorie graf̊u, komprese, univerzálńı struktury

Title: Graph labeling

Author: Martin Böhm

Department: Department of Applied Mathematics

Supervisor: Mgr. Martin Mareš, PhD., Department of Applied Mathematics,
MFF UK

Abstract: We introduce the concept of adjacency labeling schemes and recent
results in the area. These schemes have practical application in parallel algorithm
design and they relate to the theory of universal graphs. We concentrate on the
modern technique of “Traversal and Jumping”. We present a less technical proof
of its correctness as well as correcting some errors in the original proof. We also
apply brute-force algorithms to find small induced-universal graphs.

Keywords: graph theory, compression, universal structures

Contents

Introduction 2

1 Preliminaries 3
1.1 Graph basics . 3
1.2 Adjacency labeling scheme . 4
1.3 Universal graphs . 5
1.4 Suffix codes . 6

2 Known results 7
2.1 Trivial bounds . 7
2.2 Microtree/macrotree decomposition 7
2.3 Traversal and Jumping . 8
2.4 Trees with bounded depth . 8
2.5 Planar graphs . 8

3 Traversal and Jumping 10
3.1 General method . 10
3.2 Caterpillars . 10

3.2.1 Step 1: Orienting the caterpillar 11
3.2.2 Step 2: Defining the intervals 11
3.2.3 Step 3: The suffix code . 12
3.2.4 Problem with the code . 13
3.2.5 Encoding and decoding . 13
3.2.6 Step 4: Computing the labels 15
3.2.7 Label length . 15
3.2.8 Improving the bound . 18

4 Small universal graphs for trees 19
4.1 Description of the algorithm . 19

4.1.1 Generating trees . 20
4.1.2 Sorting trees . 22
4.1.3 Complexity . 23

4.2 Implementation . 24
4.3 Results . 24

Conclusion 25

Referenced literature 26

1

Introduction

In many applications of graph theory we encounter the problem that the graph
which we are traversing is too large to be completely stored in the memory of
a computer. This is of crucial importance for distributed algorithms, which often
need to work on large graphs. Search engines manipulating large XML trees also
find use of this technique.

For manipulating such immense data, it is necessary to encode the graph
structure in such a way that we can decode the local structure of the graph only
from a fraction of the complete encoded structure. We concentrate on adjacency
labeling schemes, which are methods for encoding only the most basic graph
structure – adjacency – in local manner.

There is also a close link between adjacency labeling schemes and a class
of universal graphs, which arise in the field of graph theory.

Our work focuses on the adjacency labeling schemes for the class of trees,
which are often used to store data without cyclic dependencies (XML trees, for
example).

In the first part of the thesis, we introduce the concept of labeling and list
some landmark results of the area. In the second part of our thesis, we concentrate
on a seminal proof regarding a specific subclass of trees – using a method called
Traversal and Jumping – and reprove the original result while fixing the short-
comings of the original proof. In the final part of the thesis, we use algorithmic
means to search for small induced-universal graphs.

2

1. Preliminaries

1.1 Graph basics

We assume basic knowledge in the field of graph theory – for definitions of graphs,
trees, orientations, please see a textbook on Graph Theory.

In general graphs, we say vertices are connected to each other, or are neigh-
bours. This symmetric relation is called adjacency. In rooted trees (trees with
edges oriented away from the root), given two adjacent vertices u and v, we do
prefer an assymetric relation and say that u is a parent of v if u and v are
adjacent, but u is closer to the root than v.

We define depth of a vertex in a rooted tree in this way: the root has depth
0 and every child of a vertex of depth k has depth k + 1.

If we take the reflexive and transitive closure of the “being a parent” relation,
we get the ancestry relation. The reader can think of ancestry in family trees,
as it is the same.

0

11

2 2 2 2 2

1 1 1 1

0

3

Figure 1. Two rooted trees with depth inside the vertices. Note that the two
trees are isomorphic if viewed as unrooted trees, but the choice of the root

changes the parent relation.

A caterpillar is a tree C with two types of vertices: S and L. The vertices
of S (the spine) induce a path in graph C, while every vertex of L (these are
called legs) is connected with exactly one vertex s ∈ S.

We can observe that if the spine vertices at the end of the induced spine path
carry no leg vertices, they can be assigned as leg vertices to their spine neighbours.
Therefore, we may assume that every spine vertex at the end of the path has at
least one associated leg.

Figure 2. A caterpillar with 4 spine vertices and 9 leg vertices. We can create
an isomorphic caterpillar with 5 spine vertices and 8 legs, or an isomorphic one

with 6 spine vertices and 7 legs.

For a non-negative integer x, bin(x) will denote its binary representation.
When working with binary strings, we will denote their concatenation as x ◦ y.

In most contexts, the log n will denote the binary logarithm of n, usually
restricted only to non-negative numbers. We often use logarithms for estimation,
and so, when dealing with log 0, we define it to be 0. Also, in chapter 2 of the

3

thesis, we often assume n is a power of 2, so that we do not have to differenti-
ate between ⌈log n⌉ and log n – in estimations, the difference is usually purely
technical. (Note that this constant can be often hidden into O(1).)

The iterated logarithm log∗ n, a function growing asymptotically slower
than any chain of logarithms with a fixed length, is defined thus: log∗ n = s
if and only if we need to iterate the logarithm operation s times, starting from
n, until we get a negative number. To show a few examples, log∗ 223 = 5 and
log∗ 1048576 = 6. The iterated logarithm is an inverse function to the tower

function T (k) = 22
2
2
···
}

k times.

We will also use ppq as p rounded up to the nearest power of two. (We still
employ ⌈q⌉ as rounding up to the nearest integer.)

We employ the Iverson notation for conveniently using predicates inside for-
mulas. If P (x) is a Boolean predicate dependent on a variable x, we define [P (x)]
as 1 if P (x) is true, and zero otherwise.

1.2 Adjacency labeling scheme

Our goal is to search for functions that encode the local structure of a graph into
computer-readable numbers.

Being precise, we want to label vertices of a graph G with binary strings –
elements of the set {0, 1}l for a suitable l. A labeling is thus a function λ :
V → {0, 1}l. However, not every labeling is of interest to us, we concentrate on
adjacency labeling functions, which are defined as follows:

Definition 1. An adjacency-labeling function is a function λ : V → {0, 1}l

for which the following conditions hold:

• The labeling λ is injective. (The labels are unique.)

• There exists a decoding function δ : {0, 1}l × {0, 1}l → {0, 1} such that
δ(λ(x), λ(y)) = 1 if and only if the vertices x and y are adjacent in the
original graph.

It is not possible to label all possible graphs, as the label length l would then
be unbounded. Therefore, we often restrict ourselves to a graph subclass G,
usually with a fixed limit on the number of vertices n.

Definition 2. The triple (G, λ, δ) is a adjacency labeling scheme if G is
a graph class and for every graph G ∈ G is λ an adjacency labeling function with
decoding function δ.

We can see from the definition that while λ can encode the graph using global
information about it, the decoding function δ can work only with the bit strings
without knowing which graph from G has been encoded.

In general practice it is often expected that the δ has worst-case time com-
plexity O(1), and that λ has worst-case time complexity O(|V (G)|+ |E(G)|).

4

1.3 Universal graphs

Given a set of graphs G, a graph U is called universal if it contains every graph
from G as a subgraph. A subtype of universal graphs that is more of interest
to us are induced-universal graphs: A graph U ′ is induced-universal for a set G′

if every graph in G′ is an induced subgraph of U .
Note that for every graph class with size at most n, there is a simple uni-

versal graph of size n – the complete graph Kn. Our work concentrates on the
induced-universal graphs and therefore, we will call induced-universal graphs sim-
ply universal graphs, unless noted otherwise.

Figure 3. An induced-universal graph for trees of size 5 and the list of
non-isomorphic trees of that size.

The following lemma connects the universal graphs, which have been originally
studied in the field of mathematics, with adjacency-labeling schemes which come
from computer science:

Lemma 1. Given an adjacency labeling scheme for a graph class G which is b bits
long, we can construct a universal graph of size 2b.

Second, given a universal graph of size 2b for a graph class G, we can construct
an adjacency labeling scheme with labels of lengths b for such class.

Proof. We can create a “labeling graph” L where we consider every possible label
of b bits as a vertex, while edges are defined by our adjacency decoding function δ.
If the labeling is correct, the algorithm must not make mistakes, so when given a
graph G ∈ G, we can use the encoding function λ which actually assigns to every
vertex v ∈ V (G) a vertex λ(v) ∈ L, and see that the image of Λ(G) is an induced
subgraph of L isomorphic to G.

For the second part of the lemma, assume we have been given a universal
graph L′. It has 2b vertices, so we assign every vertex a unique non-negative
integer from the interval [0, 2b − 1], which we will call an identifier. Now, since
L′ is fixed, of limited size and universal, we can for every G ∈ G (say by going
through all possibilities) find an induced subgraph in L′ isomorphic to G. We
label the vertices of G by the bit representation of the identifiers belonging to its
copy in L′.

The decoding function δ simply looks at the universal graph L′, treats given bit
strings as identifiers in L′ and answers adjacency based on edges in the universal
graph.

For some classes of graphs, adjacency labeling of length O(logn) can never
exist, and therefore, the universal graph has to have at least 2Ω(log n) = Ω(n)
vertices. This holds because every two different graphs with labels of length
O(log n) must differ at least in one bit in their labels, and so there can be at

5

most 2O(logn) such graphs. For example, bipartite graphs of size n cannot have
any universal graph of size O(n) [2].

Universal graphs are often studied in combinatorics, most often their infinite
versions, but the finite ones have also received some attention [11]. The universal
graphs have been studied even before the notion of adjacency labeling was known
[10].

1.4 Suffix codes

The “Traversal and Jumping” method, which is discussed in the third part of the
thesis, is based on encoding numbers into binary strings with fixed prefixes so
that they can be later extracted without knowing what the original number was.
The technique of encoding all non-negative integers into such binary strings is
called suffix (or prefix) coding, and the resulting code is called a suffix code.

The name “prefix code” is more common in literature, but it refers to the
opposite property than we use. Every suffix code can be made into a prefix code
simply by reversing it. To avoid confusion, we will henceforth speak only about
suffix codes.

Our goal is to encode every non-negative number x into a binary string C(x)
so that when we prepend other binary strings in front of C(x), we can still
decode x. We can state the requirement like this: no encoded number can be
a suffix of another encoded number.

Suffix codes have a valuable property: that chaining a constant number of
suffix codes creates another suffix code. This also means that we can encode and
decode pairs of integers without needing any form of delimeters. Traversal and
Jumping uses suffix codes in precisely this manner.

As it would be expected, it is impossible to use a suffix encoding of all non-
negative integers and not expect a non-trivial increase in size compared to their
standard binary encoding. We always need at least log n+Ω(log logn) space for
numbers from 1 to n.

Traversal and Jumping, as implemented in [1] and in our thesis, uses the
following set of recursive prefix codes, which encode all non-negative integers x:

code0(x) = 1 ◦ 0x times

codei(x) = bin(x) ◦ codei−1(|bin(x)| − 1) when i > 0.

In this thesis, we are only interested in the first two codes in this recursion,
code0 and code1, which we’ll call cl (the long code) and cs (the short code),
respectively. To illustrate the codes, cs(4) is equal to 100 100 and cl(4) is 1000.

We will need the following lemma on the label size of the short and long code:

Lemma 2. For a non-negative integer x, the length of cl(x) is x + 1 and the
length of cs(x) is 2⌊log x⌋+ 2.

Proof. The length of cs can be seen immediately from the definition of it, and cl is
composed of the binary representation of x (of length ⌊log x⌋+1) and the length of
such representation in cl form, minus one, which is again precisely ⌊log x⌋+1.

6

2. Known results

2.1 Trivial bounds

There is a very simple adjacency labeling scheme for all trees of size n with
labels of size 2 logn. We root the tree and then traverse it, assigning a unique
non-negative identifier to each vertex. Then, for every vertex, we construct the
labeling in this manner: inside the first log n bits we store the identifier of the
vertex itself and in the following log n bits we store the identifier of its parent in
the tree. For two vertices x, y we need only to compare the second number of
x with the first number of y and vice versa. If any two numbers are the same,
we consider the vertices adjacent. For the root, we just store the same number
twice, so we can detect root immediately.

This test is clearly correct and every vertex was given a single number, there-
fore we have found a 2 logn adjacency labeling scheme. This was first published
by the seminal work of Kannan et al [2]. We can view this scheme as an upper
bound of the size of the optimal adjacency labeling scheme for trees.

A simple lower bound can also be found: we can always view the binary
labels as numbers, and since every vertex of a tree has a unique label, we need n
different non-negative integers and so at least logn bits. There is currently no
(asymptotically) better lower bound for trees. In fact, it is believed that this is
the asymptotically correct size of the optimal adjacency labeling scheme for trees
of size at most n.

2.2 Microtree/macrotree decomposition

In 2002, Alstrup and Rauhe introduced a simple adjacency labeling scheme for
trees which uses log n+O(log logn) bits [3]. They achieve this by using a preorder
traversal of the tree (assigning increasing identifiers to vertices so that the root
gets the smallest number and then we recursively traverse its children from left to
right) and storing its identifier (the log n part) combined with a modified version
of the heavy/light decomposition.

In their approach, the heavy edge is the edge from the root to the largest
subtree induced by its children, and then defined recursively for all other vertices
in the tree (ignoring its ancestors). All non-heavy edges are light. If there is
more than one candidate for the heavy edge, we select one arbitrarily.

In [3], they use a labeling scheme storing for each v its traversal number along
with three integers from the range [0, logn] – the number of light edges on the
path from the root to v, the logarithm of the difference between the identifier of v
and its parent and the logarithm of the difference between the identifier of v and
its heavy child. This leads to an adjacency labeling scheme of the requested size.

The scheme works because if the light depth changes by one, the difference
between the identifiers for non-adjacent vertices is noticable even on the logarith-
mic scale, mostly because of the increase by the heavy subtree. If the light depth
does not change, the remaining logarithmic numbers must be equal in order for
the vertices to be adjacent. For the precise inequalities see [3].

7

In the same paper, the authors also show how to use the aforementioned label-
ing along with a microtree/macrotree decomposition (for definition see [3]) to cre-
ate a labeling for general trees which only uses log n+O(log∗ n) bits. Even though
it is very close to the optimum, it is expected that microtree/macrotree decom-
position itself is not sufficient to reach the optimum value, as factors of O(log∗ n)
are common in proofs using these decompositions.

It is important to mention that the log n+O(log∗ n) scheme uses asymptoti-
cally more than a constant time for decoding, as we have to recurse into roughly
O(log∗ n) subtrees.

2.3 Traversal and Jumping

In 2007, Bonichon, Gavoille and Labourel published a technique named “Traversal
and Jumping” [1] which gives log n+O(1) label lengths for several classes of trees,
most notably caterpillars and binary trees. This is especially noteworthy as these
are some of the few non-trivial classes of trees for which logn + O(1) bound is
known.

It has also been claimed that Traversal and Jumping can also be used on all
bounded degree trees, which seems quite plausible, as one would follow a similar
technique as was used for binary trees. However, the proof of this claim has not
yet been published as of 2011.

2.4 Trees with bounded depth

Another class of trees for which a log n + O(1) adjacency labeling scheme is
known are trees with bounded depth d. In fact, this is a corollary of a theorem by
Fraigniaud and Korman on ancestry labeling schemes [6]. An ancestry labeling
scheme is very similiar to adjacency labeling in that it shares the necessity of
injectivity and an encoding and decoding function, but the functions decode not
adjacency, but the more general ancestry.

The result of Fraigniaud and Korman is an ancestry labeling scheme for all
trees (and forests) of depth d with labels of size log n + 2 log d + O(1). We can
translate it to a log n+3 log d+O(1) adjacency labeling scheme simply by storing
the depth itself inside the label. A parent can be defined then as an ancestor which
has depth one less than the child.

It is important to mention that it has been shown that it is not possible to
get an logn+O(1) ancestry labeling scheme for all trees – in fact, if you require
even parent and sibling queries for trees (so you can recognize which is which),
you need labels of size at least logn+Θ(log log n). Both of the results mentioned
above are proven in [4].

2.5 Planar graphs

Another class of graphs for which an adjacency labeling scheme is often sought
are planar graphs, graphs which can be drawn without crossings on the plane.

Since it is known [7] that every planar graph can be decomposed into a union
of three forests (disjoint sets of trees), we can make use of this decomposition,

8

apply the straightforward labeling method and get the upper bound of 6 logn +
O(1). If we make use of the fact that we can store only one identifier for all three
trees, as opposed to having different ones for every tree, we get to the bound of
4 logn +O(1).

We can employ another theorem [8], which states that we can find a decom-
position into three forests where one of the forests has bounded maximum degree
by a constant, and get label lengths of 3 logn +O(1).

In [9], Gavoille et al. suggested a different labeling, which produces labels
of size 2 logn + O(log logn). Their result is actually a specific case of a more
general result on graphs with bounded treewidth – planar graphs do not have
fixed treewidth, but we can decompose them into two graphs which are limited.
Using the labels together as in the previous example, we get the coeficient 2 in
2 logn.

9

3. Traversal and Jumping

3.1 General method

“Traversal and Jumping” is a method of developing adjacency labeling schemes
for several subclasses of trees. It is noteworthy because it is the first and (at the
time) only technique for producing log n + O(1) adjacency labeling schemes for
caterpillars and bounded degree trees.

This method was developed by Bonichon, Gavoille and Labourel [1] in 2007.
In general, we can describe this method in the following steps:

1. Set a fixed root and orientation away from the root.

2. For vertices v of the graph, define and compute intervals which contain
labels for the children of v. Often, the actual interval sizes depend on
interval sizes of the children, so we may have to traverse the graph in order
to compute the interval sizes.

3. Create a suffix code C that encodes the interval sizes.

4. Traverse the graph again and assign to every vertex v a different positive
number chosen from the right interval so that C(v) can be decoded from
this number.

The method treats the label assigned to v as an integer or as a bit string,
whichever is better at the moment. We will therefore mix and match these two
terms as well.

As we can see from Step 4 of the procedure, the choice of the code C may
influence the interval sizes, so we will define the code first and compute the
interval sizes afterwards.

In the following section, we will describe this technique on the class of cater-
pillars. We skip the case of binary (or bounded degree) trees, as it is much more
technical, while the general ideas remain the same.

3.2 Caterpillars

As we recall from the introduction, a caterpillar is a simple tree consisting
of a path (the spine) and vertices connected each to one element of the spine,
called legs.

In this section, we will prove the original result of Gavoille and Labourel
concerning ⌈log n⌉+6 bounds on label sizes of caterpillars of size at most n. Our
proof is slightly different and arguably less technical than the original, although
it employs the same encoding techniques and basic ideas. Also, we fix some errors
present in the original paper.

Formally, we will prove the following:

Theorem 1. There exists an adjacency labeling scheme for the set of all cater-
pillars of size at most n, which uses ⌈logn⌉+6 bits for the label length. Also, we
can construct such labeling in linear time and decode the labels in time O(1).

10

3.2.1 Step 1: Orienting the caterpillar

For caterpillars, we orient the spine as a path. The root will be one of the spine
vertices that has only one spine neighbor. We name these vertices s1 to sk along
the oriented path. Also, the edge between a spine vertex and a leg vertex is
always oriented towards the leg vertex. Most of the information for adjacency
will be stored in the spine vertices.

The leg vertices will be denoted li,j for a j-th leg vertex of the spine vertex si.
We will also denote di the number of leg vertices for a given si.

We will need to decide quickly whether a given label of a vertex is a leaf or
not. Therefore, we spend 1 bit of the label (the first one) to encode whether
a vertex is a leg vertex (then it has 0 set) or a spine vertex (then it has 1).

Figure 4. A caterpillar showing the suggested orientation.

3.2.2 Step 2: Defining the intervals

We will define two intervals for every spine vertex si, both of which together
will hold all children of si, with respect to the orientation. The sizes of these
two intervals will be stored inside the label of si. The intervals themselves will
immediately follow si and these two intervals do not overlap each other, so we can
easily check, given a label of another vertex, if such vertex is inside either of these
intervals or completely outside. Intervals for different si may overlap each other,
which we describe later.

The first interval will be called a leg interval of si and it will host all legs
that are associated with si. Labels that will be associated with these leg vertices
will be simply picked in the increasing order from this interval, and otherwise
they will hold no information on their own.

On the other hand, the following spine vertex si+1 must be stored in a larger
interval by itself, because we need enough candidates for the label of si+1, so that
the right information (in our case, the interval sizes of the following intervals)
can be decoded from the label.

Therefore, we impose that in the second type of interval, called the location
interval of si+1, only one spine vertex will be located. That does not mean that
there are no other labels – there will be, as the following spine vertex also has
the associated leg interval right after its own label.

In order to fulfill our requirement on the number of spine vertices present in
one location interval, we must make sure that the following interval (which is a
leg interval for si+1) ends after the end of the location interval of si+1. We solve
this by actually making the size of the location and the leg interval of si exactly
the same.

11

si

si+1li,1-4
Figure 5. The location interval and the leg interval for si and a location

interval for si+1. Note that the leg interval of si starts immediately after the set
label for si and that it is of the same length as the location interval for si.

3.2.3 Step 3: The suffix code

We shall devise the suffix code so that for every spine vertex si, we can store
inside this code two numbers: the size of the leg interval of si and the size of the
location interval for si+1 (the next spine vertex on the oriented path).

It would be very hard to encode the exact sizes of the intervals, therefore we
will be more generous and keep only a fraction of the information. Precisely said,
we will set both intervals to be as large as some power of 2, while storing only
the logarithm of the interval size.

Also, since we use a suffix code, we cannot expect to have both efficient
encodings for very small numbers and efficient encodings for larger numbers.
Roughly said, the shorter codes (in terms of bit length) we use for the smaller
numbers, the longer the code gets when the integers increase.

With this in mind, we will choose a granularity for the interval sizes. The
intervals for si will be of size 2ti+3, where ti ≥ 0. Therefore, the smallest interval
we can allocate will be of size 8 = 23. As we described before, we will need to
store two numbers in the label for every si: the size of the leg interval for si and
the size of the location interval for si+1.

The reader should remember that, when we defined the intervals in Step 2, we
noted that we will set the size of the location interval of si and the leg interval of si
to be the same size, so we will not get into trouble with decoding the adjacency
of the spine vertices. This means that ti will denote the size of two intervals: the
leg interval of si and the location interval of si.

However, these two interval sizes are stored in different labels: the size of the
leg interval of si is stored inside the label of si, while the location interval for si
must be stored within the label of si−1. This means that every spine vertex will
store two integers: (ti, ti+1).

Now that we have ascertained that we need to store the pair (ti, ti+1) for every
spine vertex si, we need to figure out which suffix code to use. Since the length
of the location interval for si is equal to 2ti+3, the code should use at most ti + 3
bits, as we cannot store more information using a suffix code inside an interval
of this size.

Recall that we defined two codes cl and cs, the latter of which is a suffix code
that uses 2⌊log x⌋ + 2 bits for encoding a number x, which should be more than
enough for our needs – we have ti + 3 bits, while cs uses only two times the
logarithm of ti plus two. The authors of the original article suggest that we can
pad the rest of the code with the longer code (minus the length of the shorter

12

code), so that the length of the complete code is exactly ti + 3:

C(si) = cl(ti + 3− |cs(ti+1)|) ◦ cs(ti+1).

We will need to work closely with variables ti in the proof, so we restate
the conditions we have on ti: the cl code above can encode only non-negative
numbers, ti must be large enough to store all leg vertices of si and it has to be
at least 0:

ti = max{|cs(ti+1)| − 3, ⌈log di⌉ − 3, 0}

3.2.4 Problem with the code

However, at this point we encounter a problem which is not treated in the refer-
enced article and leads to the incorrectness of the proof given there. If we look
closely at the size of C(si), we find out that it is actually ti+4 bits long, because
of the leading 1 in the code cs. The authors of the article claim that we can find
a number representing C(si) in an interval of size 2ti+3, but that is not always
the case.

A straightforward approach would then be to actually make the intervals one
bit larger and increase the final calculations (which we will make later) by a factor
of 2. This is possible, but it leads to a labeling of size ⌈logn⌉+7, not ⌈log n⌉+6
as originally claimed.

We will however fix the code in the following way, which will keep the length
⌈log n⌉+6: if we decode as ti any number besides 0, we will add 1 to the ti which
was decoded (so we will expect larger intervals), but if we decode 0 as ti, we treat
it the same way it was before. The numbers ti and the code will be the same
as before, but we have changed the interval calculation: instead of 2ti+3, we will
now count 2ti+3+[ti≥1].

The reason for this change is because we must be careful with the spine vertices
which have 0 leg vertices attached. Both in the new code and in the original code,
the pairs (0, 0) and (0, 1) are encoded using only 3 bits, which will be important
later on.

3.2.5 Encoding and decoding

The following section deals with the correctness and complexity of encoding and
decoding the pair (ti, ti+1) to/from an integer that is assigned as a label to si.

We will assume that we are working in a Word-RAM computational model.
This means we can access word-sized memory register in constant time and apply
“traditional” arithmetic and binary operations on them. We also assume all of
our numbers fit into one word or a constant number of words. For a precise
definition of the RAM model, see e.g. [5].

The following lemma shows that it is possible to decode and encode the prefix
code C(si) into a location interval, even in constant time:

Lemma 3. Given two integers (ti, ti+1) and an integer x, we can decode and
encode these numbers using the code C(si) from/into an interval [x, x+2ti+3+[ti≥1])
in O(1) time.

13

Proof. We will split the proof into two parts: encoding and decoding.
Encoding. To encode the pair, we will first transform them into the code

C(si). First, we calculate the value of |bin(ti+1)| − 1, which we can do in O(1)
(we are given ti+1 in binary as input, so we know its length, or we can calculate
it using MSB). Then, we take ti+1 in its binary representation, append 1 and
shift the entire number to the left by |bin(ti+1)| − 1 places, thus completing the
encoding of cs(ti+1).

To encode the cl(ti + 3− |cs(ti+1)|), we need to add one more 1 to the correct
place, the computation of which takes again only constant time. Adding the one,
we have successfully encoded (ti, ti+1) into the code C(si). We now also know the
length of C(si): ti + 4 or ti + 3, depending on ti. We will denote the length of
the code by l.

We can also see that if ti equals zero, the only pairs (ti, ti+1) where the first
number is zero are (0, 0) and (0, 1), as any higher ti+1 would cause the ti to be
at least 1. The code for (0, 0) is 110 and the code for (0, 1) is 111, so these cases
can be safely encoded inside the interval of 23 numbers.

In order to encode the code into a positive number from the interval, we
simply find the smallest larger number to x which contains C(si) as a suffix. This
number is surely within the [x, x + 2l) interval, because in this sequence we can
see all possible binary suffixes of length l.

The smallest number which contains C(si) as a suffix can be computed again
very fast, as we already know the length l. We replace the l least significant bits
with our code C(si). Using this operation, we may arrive at a number smaller
than x. If this is the case, we need to put it back into our interval, so we simply
add 1 to the partpreceding our encoded suffix. Since we were originally below x,
by this operation we could not have gone above x+ 2l.

Decoding. To decode the string, we will first use LSB (least significant bit
operation) to decode the value |bin(x)|−1. After we decode this number, we can
easily take the preceding |bin(x)| bits and decode ti+1. To decode ti, we shift the
entire cs part of the code to the right and then apply LSB again. The position
of the first 1 from the left encodes ti again according to the definition of cl.

Besides MSB and LSB, we have used only basic arithmetic and shifts, which
all can be done in O(1) time. The fact that LSB and MSB can be done on
Word-RAM in O(1) is a non trivial one, for the proof see [5].

The complete decoding process, given two labels label(u) and label(v) can be
described in this manner:

1. Strip the first bit from both labels. If both bits are equal to zero, the
vertices are not adjacent. Otherwise, continue the check. Assume now that
u = si.

2. Decode ti+1 and ti from label(si) as explained in Lemma 1. Do the same
for v, if it is a spine vertex as well.

3. Calculate the interval sizes from ti using the formula 2ti+3+[ti≥1].

4. If v lies in the interval (label(u), label(u)+12ti+3+[ti≥1]] and v is a leg vertex,
declare u and v to be adjacent.

14

5. If v is a spine vertex and either v lies in [label(u) + 2ti+3+[ti≥1], label(u) +
2ti+3+[ti≥1] + 2ti+1+3+[ti+1≥1]) or vice versa, declare u and v to be adjacent.

6. Otherwise, declare them to be non-adjacent.

3.2.6 Step 4: Computing the labels

Now that we have labels and set the dependencies, we can move on to computing
the integer labels, given a specific caterpillar. To do this, we observe that the
last spine vertex sk does not need to store any location interval at all, and thus
will have tk+1 set to zero. The size of its own leg interval therefore depends only
on the number of legs, and we can see that the rest of the interval sizes will be
defined by induction, going backwards along the oriented path of the spine.

To calculate the labels, we will traverse the caterpillar twice – the first traversal
will work backwards along the oriented path, calculating the values of ti. In the
second traversal, we will go along the path of the spine, and “laying down” the
intervals one by one, starting from 0, always picking the label of the vertex si
based on Lemma 1.

For example, if we calculated t1 to be 0 and t2 to be 1, we will first start
with the interval [0, 8) and pick the right integer encoding C(s1) as described in
the lemma. Then, we move on to the interval [8, 16) and put all the leg vertices
of s1 one by one into that interval (so the l1,1 will have label 8, l1,2 label 9 and so
on). Afterwards, we read t2 and look at the interval [16, 58). This is the location
interval for s2, so we choose the right number for encoding C(s2) and continue
onwards.

3.2.7 Label length

In order to conclude our proof of Theorem 1, we need to estimate the maximum
size of the labels for a caterpillar of size n.

Because of the way Traversal and Jumping assigns intervals to every spine
vertex and intervals to a set of leg vertices, we will estimate the maximum label
length by the label of the last leg vertex.

Since the intervals are without gaps, and the label of the last vertex is inside
the last interval, we can estimate the label length by (the logarithm of) the sum
of the interval sizes, provided we count every interval indicated by ti twice – the
first time it is a leg interval for si, then a location interval for si+1. Also note
that we need a location interval even for the first vertex, s1. We also must not
forget about the extra bit of information we use on non-zero intervals and about
the bit we use for deciding whether the vertex is in the spine or not.

If we assume the last (leg) vertex is named lk,m, we have:

label(lk,m) ≤

k
∑

i=0

2 · 2ti+3+[ti≥1].

15

The accounting method

The logical step now is to bound the size of 2ti+3+[ti≥1]. However, it will not be
as simple. If we look at the definition of ti as stated above:

ti = max{|cs(ti+1)| − 3, ⌈log di⌉ − 3, 0},

we can see that sometimes the size of ti is set by the size of ti+1, and we cannot
bound it at all by the number of the associated leg vertices, di. The following
picture illustrates the idea:

64000000

3210000

12864328888

di

ti

int.

Figure 6. A potential situation which needs to be solved using the accounting
method. Inside the vertices are the leg counts di. Above them are the numbers
ti for each vertex. On top are the interval sizes for each si. We calculate the
interval sizes using the formula 2ti+3+[ti≥1]. Note that the small vertices inside

the rectangle could not estimate their lengths by their di, but summed together,
the total length of the intervals is less than 4 times the di of the last one.

Therefore, we have to somehow “redistribute” the size of ti to the later spine
vertices, which actually caused the increase in size for ti. We will borrow some
terms from economy: we say that a vertex sj pays for vertex sl, l ≤ j, if we
attribute the interval length of 2tl+3+[tl≥1] to the vertex sj . The idea is that sj
could have enough leg vertices, so that it can cover not only its own intervals,
but also the intervals of other vertices. This will be shown to be true.

It is interesting to note that this method of proving inequalities and other
mathematical statements comes from algorithm theory, namely amortized com-
plexity.

Our goal will be the following lemma:

Lemma 4. With ti defined as before, the following inequality holds:

k
∑

i=0

2ti+3+[ti≥1] ≤ 8
k

∑

i=0

pdi + 1q.

Proof. We will try to estimate 2ti+3+[ti≥1] for all vertices. We will split the proof
into three cases, based on which part of the definition is being the maximum
at the moment. First, we solve two cases which are able to pay for their own
intervals:

Case 1: the spine vertex has at most 8 legs and the previous location interval
does not need many bits. Formally, ti = 0 and ti+1 ≤ 1. The interval size is then
23 = 8, which is less than 8pdi + 1q. Notice that we had to keep these intervals
only 3 bits in length, otherwise the inequality would break for vertices with no
legs.

Case 2: the spine vertex has enough legs, so that ⌈log di⌉ − 3 defines the
interval size. Formally, in this case di ≥ 8 and |cs(ti+1)| < ⌈log di⌉ − 3.

16

The interval size is therefore bounded by 2pdiq, which is always smaller than
2pdi + 1q. The coefficient 2 appears because of our [ti ≥ 1] factor which we
introduced in order to correct the original proof.

To sum up, we have that in this case, 2ti+3+1 is bounded by 2pdi + 1q.
Case 3: the location interval for si+1 needs more information than the legs of

si, and the size of ti becomes dominated by that information. Formally, ti+1 ≥ 2
and |cs(ti+1)| > ⌈log di⌉ − 3, which leads to ti = |cs(ti+1)| − 3.

In this case, we need to use the accounting method as described earlier. We
will move the cost of this ti to the first sk (with k larger than i) which belongs to
a case other than 3. We can deduce that the method is correct from the following
observations:

• There is always a vertex which can be used for the transfer. The
following vertex is either of case 2, which is what we look for, or of case
3, in which case we use induction to prove this claim. The last vertex is
always of type 1 or 2, so the induction argument is correct.

• The vertices of case 1 or case 3 are never recipients of the cost.
If the vertex preceding a vertex of case 1 enters case 3 itself, it has to be
because the preceding label length was too large – which means the vertex
had to be of case 3 or case 2.

• The increased cost is at most twice the interval size of the receiv-
ing vertex. We will look at the increased cost at the point where all the
vertices have finished the accounting. We can see that if a vertex enters
case 3, the following inequality holds:

2ti+3+[ti≥1] = 2|cs(ti+1)|+1 = 22(⌈log(ti+1+1)⌉)+1 ≤ 2ti+1+3+1/2.

This inequality holds for every ti ≥ 1, because it can be rewritten as
2⌈log(ti + 1)⌉ ≤ ti + 2, which holds for small ti by manual verification
and for larger ones by asymptotics of the left and right sides.

That means the interval size is halved from the following vertex by and if
the vertex that pays the cost is l vertices away, the interval size is divided
by 2l. Since

∑r

i=1 p/2
i ≤ 2 · p, we have increased the amount allocated to

the recipient by a multiple of 2, and since the recipient’s interval estimate
was shown to be 2pdi + 1q, we will only double this amount and get the
estimate for vertices of Case 2 as 4pdi + 1q.

By this calculation we get all the possible bounds: the small vertices have
20+3 bounded at most 8pdi + 1q, spine vertices with enough legs pay have both
their cost and the cost of the preceding smaller vertices bounded by 4pdi + 1q
and the vertices which get dominated by larger vertices are all absorbed in the
costs of larger ones. Thus:

k
∑

i=0

2ti+3+[ti≥1] ≤ 8
k

∑

i=0

pdi + 1q.

17

We conclude our original argument, that the label length of the last vertex
can be bounded by:

label(lk,m) ≤

k
∑

i=0

2 · 2ti+3+[ti≥1] ≤ 2

k
∑

i=0

8 · pdi + 1q ≤ 16

k
∑

i=0

pdi + 1q ≤ 32n = 25n.

We add one bit to decide whether the vertex is a spine vertex or a leg vertex,
and we get that we have a ⌈log n⌉ + 6 adjacency labeling scheme for caterpillars
of size at most n, which is what we set out to prove.

3.2.8 Improving the bound

Originally, the goal of our work was to use this accounting method to improve the
bound of the article by at least one. This seemed to be possible, as in the original
proof it could be seen that the large vertices only pay 2pdi + 1q, which could be
increased by a multiple of 2 and keep within the desired bound 4pdi + 1q.

The problematic spine vertices for which the bound is 8pdi + 1q and not just
4 are the ones with no associated legs at all. In the code C, we use the codes 110
and 111 for these, which require location intervals of size 23. Since there can be
caterpillars which consist of many such vertices with no vertices for transferring
the cost, we would need to create a better suffix code.

One of the ideas would be to change the granularity and encode the new (0, 0)
(only for spine vertices which have up to 3 legs) as 10 and (0, 1) as 11 and then
deal with the increase in code length for the larger vertices which can afford it.
However, this technique is probably impossible with the proof given above, as
there are no larger vertices which could bear the increased cost of the suffix code
– every vertex that is not of Case 3 is paying for the full amount that would be
allowed were the 8 constant changed to 4: 4pdi + 1q.

We have been unable to improve the constant mainly because we had to spend
the possible increased cost of the larger vertices on the correction of the original
proof.

18

4. Small universal graphs for
trees

As we noted in the first part of the thesis, every adjacency labeling scheme can
be thought of as a special case of an induced-universal graph. If the scheme
produces labels of size l, the resulting universal graph will be of size 2l. While
the conjecture of an existence of log n + O(1) labeling is still open, we have
employed an algorithm that generates induced-universal graphs for small values
of n, the number of vertices of the trees.

Using this method a lower bound for the constant in the hypothesised log n+
O(1) could be found, provided we show that there exists an n such that all
universal trees for such n have size larger than 2logn = n. However, the sheer
amount of graphs required to check makes searching for the precise constant very
difficult.

In order to skip at least some of the graphs, we check only connected graphs
of size n. It can be easily seen that every disconnected universal graph (for a class
of connected graphs) can be extended with additional edges until it is connected,
while preserving the universal property.

4.1 Description of the algorithm

At its heart the algorithm is an exhaustive search from the set of all possible
graphs of size n. Nonetheless, the algorithm has to employ non-trivial methods
to provide fast operations that are needed – namely, it has to quickly decide
whether the given graph is universal.

Instead of checking that every tree of size k is an induced subgraph in this
graph, we will do the converse operation – we will generate all trees of size k from
a given universal candidate C, then quickly sort these and remove isomorphic
ones. In the end, we will compare the number of non-isomorphic trees induced
in C with the number of non-isomorphic trees of size k and return the boolean
result.

This has the advantage that the candidate graphs themselves can be generated
in advance and the checking itself can be parallelized on several machines if need
be.

The algorithm goes through the following steps:

1. We generate all non-isomorphic graphs C for a given n.

2. For a fixed tree size k, we check all k-vertex-subsets of a given graph C.

3. We filter these subsets and keep only those that define a tree.

4. We save all the generated trees for one C.

5. We centralize the trees in C, separating them into two groups. This is done
so the following step is more straightforward.

19

6. We use bucket sort to calculate the number of isomorphism classes of the
trees.

7. We add the two numbers and compare them to the number of all non-
isomorphic trees of size k.

4.1.1 Generating trees

Verification

The first step is to generate all induced subgraphs/trees of size k from a given
candidate C. Usually those are called induced subtrees. There can be exponen-
tially many non-isomorphic induced subtrees in some candidates, so we do not
focus much attention at the finest points of the generation. Nonetheless, we do
try to make it reasonably fast.

We choose every k-tuple of vertices of C and for the specific tuple we only
consider the induced graph in C. For convenience reasons, we will copy the k-
tuple and the edges it induces as a separate graph. We will also gain faster tree
checking in the following steps. The copying step will however take O(k2) time,
as we have to create new adjacency lists.

It is wiser to consider k-tuples of vertices instead of every (k − 1)-tuple of
edges, as the candidate C can have quadratically many edges.

Next, we must verify that the current tuple is a tree (we will call the current
induced subgraph I). This verification can be done using a depth-first search.
This search simply traverses the vertices of I, starting from an arbitrary one, and
marks the ones it has already visited. Two different routes to a vertex imply
a cycle inside the induced subgraph, while the number of visited vertices at the
end can be used to check connectivity. A depth-first search will take time O(k),
even though the k-tuple may not be a tree. This holds because after we checked
(k − 1) edges we know whether the k-tuple induced a tree or not.

Centralization

If I is verified to be a tree, a copy is created and exported for the next phase of the
algorithm. However, the next phase needs to process trees which are “standard”
in some sense – namely, we need to have a rooted tree without arbitrarily choosing
the root vertex. For this the centralization of a tree is applied.

Figure 7. The caterpillar on the left has no uniquely defined center, but the
tree on the right has.

Centralization is a simple, linear time algorithm to find a vertex (called a
center) with a property that the longest path from it to some leaf is shortest
among all possible centers. Centers of trees are the best choices for rooting such

20

trees, as they are often uniquely defined and so we have an easier time when
working with isomorphism classes.

A center is “almost always” uniquely defined, as the lemma states:

Lemma 5. The center of a tree is uniquely defined unless there is an edge such
that both vertices on that edge have the same longest distance from them to a leaf.

Proof. If the graph is only a single vertex, the center is uniquely defined, if it is
only one edge, the two vertices have the same longest distance to a leaf (to each
other). So we may assume the tree has at least some non-leaf vertices.

Now, we observe than when considering a leaf connected to a non-leaf vertex,
the leaf is never the right choice for a center, because every path must cross the
inner vertex through which the leaf is attached.

We can therefore remove all the leaf vertices and if we find a center of the new,
reduced tree, we can add all the leaf vertices back and notice that every path to
the leaf has now been increased by one, therefore the center of the reduced tree
is the best candidate for a new center.

By removing all the leaves, we could either end with a single remaining vertex
(which must be the center) or with an empty graph. In the second case, before
this step we removed two leaves connected to each other – but after returning all
the removed vertices we note (by induction) that they have the same maximum
distance to a leaf, which means that we cannot choose the center uniquely.

As we noted in the proof of the lemma, the only case where the center (our
new root) is not uniquely defined is where the two candidates share an edge.
Since the next step does not need to count all the trees in one pass, we can split
the exported trees into two groups: with a unique center and without it. The
trees without it can then be converted to trees with a center using subdivision of
the problematic edge. We lose the information about the tree structure, but we
will not need it in the following step.

Centralization can be also easily achieved by a linear-time algorithm, inspired
by the proof of the lemma: We mark every vertex with a number that corresponds
to the step at which it would be removed from the graph using the reduction
algorithm.

• First, we mark every leaf with the number 1 and add their neighbours to a
queue.

• Then, we go through the queue and look for all the new leaves. Some
elements of the queue are not yet leaves, but we know that every new leaf
must be created by removing a previous leaf, so all new leaves are somewhere
in the queue.

• Wemark every new leaf by the number 2 and treat them as removed vertices,
which means adding their neighbors to the queue.

• We repeat the process until all the vertices are marked with a number.

• Then, either two vertices have the same number (and we subdivide the edge
between them), or there is a vertex with the highest number, which must
be the center because of the correctness of the lemma.

21

The running time is O(k) for a tree of size k, as we can observe that every
edge triggers at most one addition to the queue, and the number of edges is k−1.

We have therefore centralized/rooted the trees and sorted them into two
groups, one with trees of size k and one with trees of size k + 1.

4.1.2 Sorting trees

In the second part, we take the set of the trees of size k (or k+1), many of which
are isomorphic, and decide how many isomorphism classes there are in the set.

We will achieve this by using a special version of the sorting algorithm named
“Bucket sort”. We will assign every non-isomorphic subtree a special number,
while keeping track of how many numbers we have assigned. At the end of the
algorithm, the number of different numbers we have assigned to the roots of the
trees will equal the number of non-isomorphic trees in that set.

There are many algorithms for canonically assigning a positive number to
every isomorphism class of trees. We will, however, make use of the fact that we
do not need to store or decode the numbers – all we care about is the number of
isomorphism classes. We will, therefore pick numbers in the increasing order, only
making sure that every member of an isomorphism class gets the same number.

The bucket sort is executed in several stages. First, we sort the subtrees by
depth. This can be done by doing a depth-first search on a tree and then putting
the subtrees into buckets once their depth becomes known. For the rest of the
algorithm, we work only with trees with (roots of) the same depth d, going from
the shallowest (depth 0) to the deepest.

For depth 0, we can assign every vertex with the same identifier, as one-vertex
subtrees are all isomorphic. So we can suppose the depth is now 1 or more.

At the beginning of the stage, we take all subtrees of depth d and put them
in a list. Next, we can look at every subtree from that list as a tree where every
vertex has been already assigned a correct identifier, not counting the root. Our
task is to assign a number to the root such that every two isomorphic trees from
our list get the same number.

It is important to note that subtrees can be isomorphic only if they have the
same depth, so we do not miss any classes by working in phases by depth.

Next, for every tree on the list, we sort (using bucket sort in O(k) or even a
slower sort, as k is very small) the children of the root according to their already
assigned identifiers (they have lower depth than the root by definition, so we
already assigned identifiers to their subtrees). It is not important in which order
we sort these subtrees, as the numbers actually mean very little to us.

Since the children of every root are sorted by their assigned identifiers, we will
consider the tuple of the identifiers and apply the bucket sort iteration for every
position in the tuple.

The bucket sort therefore takes the list L, goes (at step z) through the z-th
element in the identifier tuples and puts every tree from the list into the bucket
corresponding to the identifier on the z-th position in the tuple.

We maintain a list of the buckets which are currently non-empty, so we can ac-
cess them in linear time for emptying – going through all the buckets sequentially
would take too much time.

After the list has been depleted, we traverse all the buckets, emptying them

22

and putting all trees back into the list L – preserving the order as we would do
in a regular bucket sort.

If, at this point, a tree runs out of elements in the tuple (say in the third
iteration there is a tree with degree 3 and yet some other tree with degree 7), we
can safely assign to it (and every other root with the same tuple) a new identifier
and remove it from the procedure.

Because of the way the bucket sort is operating, we know that trees with
the same tuples (both in size and in identifiers) will be one after another in
the designated bucket, so labeling all isomorphic trees the same simply reduces
to checking if the last tree in the bucket had the same tuple as the current one.

With the rest of the unfinished subtrees in L, we repeat the refilling/emptying
procedure until every subtree of this depth has been assigned an identifier. We
can now return and assign numbers to trees of higher depths, as their subtrees of
lower depths were already assigned an identifier.

Please note that the only assigned identifiers which are of interest to us are
identifiers which are assigned not just to subtrees, but to the roots of the input
trees, so we separately store the information about how many different identifiers
are assigned to the roots of the input trees.

After we run through all the phases and all the possible depths, we sum up
the number of non-isomorphic trees from this algorithm with the number of all
isomorphic trees from the second run, which we have launched on the subdivided
trees. Comparing this number to the number of all non-isomorphic trees of size
k gives us the confirmation or rejection of this candidate as a potential induced-
universal tree.

4.1.3 Complexity

In the first step, the most time-consuming factor is checking every k-tuple. The
check will be done in O(k2) as we need to create a copy of the induced subgraph
or work with the adjacency lists of the candidate C. Multiplied together, we get
O((n/k)k · k2) = O(nk/kk−2).

Centralization is done using a linear time algorithm, and is applied only on
trees, so it takes O(k) time.

Computation of the isomorphism classes surprisingly takes only linear time in
terms of the total size of trees on input. The first part (creating a separate pointer
to every subtree, sorting subtrees by depth) is linear. Every subtree enters the
bucket sort procedure exactly once and stays inside the empty/refill process for
z rounds, where z corresponds to the degree of the root. Therefore, it will be
checked once for every edge oriented away from the root of the subtree and so,
every edge will be checked at most once.

Since there are k − 1 edges in a tree of size k (or k edges in a tree of size
k + 1), we get that the total worst case complexity is O(k · T), where T is the
number of trees that were generated from the candidate graph C.

23

For larger values of n, there may arise an issue with the memory complexity
of the bucket sort algorithm, as we need in theory as many buckets as

∑n

i=0 T (i),
where T (i) is the number of non-isomorphic oriented subtrees of size i. We get
this factor because unlike the roots of the trees, the subtrees are not centralized
and can therefore contain more non-isomorphic trees than general unoriented
trees.

However, this issue has not been a problem for the smaller values of n that we
checked. The more acute problem is the sheer number of non-isomorphic graphs
to check, which raises exponentially and for n = 10 it amounts to 11716571.

4.2 Implementation

We have implemented our algorithm in two separate executable programs called
treegen.c and treecomp.c. The first generates all the induced trees of given size
from a candidate universal graph, and the other does the sorting and comparing
of the list of trees. Both of those programs are written in the C programming
language, version C99. They are launched together using a Perl script.

In order to generate all non-isomorphic graphs of size n in order to use them
as universality candidates, we employ Brett McKay’s computer program toolset
nauty, which is available online at http://cs.anu.edu.au/∼bdm/nauty/ .

The tree sizes can either be calculated from nauty or found in the On-Line
Encyclopedia of Integer Sequences at http://oeis.org/.

4.3 Results

The following table denotes the number of non-isomorphic connected induced
universal graphs for trees of size exactly k.

Tree size k 4 5 6 7 8
No. of classes 2 3 6 11 23
Cand. size: 5 2 0 0 0 0
6 42 0 0 0 0
7 593 18 0 0 0
8 1277 0 0 0
9 66 0 0
10 0 0

From the table we can see that we need at least ⌈log n⌉+1 bit labels to store
all trees of size 7. It is hard to interpolate the results as the amount of candidates
to check dominates the running time of the algorithm.

24

Conclusion

Conjecture 1. There exists an adjacency labeling scheme for all trees of size at
most n that employs labels of length at most log n+O(1).

The chief conjecture of the adjacency labeling schemes for trees, stated in a
general form in [2] is still open and seems to be rather difficult, given the tight
bounds around it (⌈log n⌉+ 1 from below, log n+O(log∗ n) from above).

While Traversal and Jumping methods may still be improved in the future,
especially for the bounded degree graphs, where the proof is rather technical,
it seems that this technique itself will not be enough to create labels for all
trees. Traversal and Jumping has the most difficulty when subjected to trees
with variable degrees, where suggested interval sizes may fluctuate wildly and it
is hard to encode every number efficiently inside the code.

However, we remain optimistic and hope that the conjecture will be answered
in the affirmative, perhaps by creating an improved version of the methods that
Traversal and Jumping employs.

25

Referenced literature

[1] Bonichon, Nicholas and Gavoille, Cyril and Labourel, Arnaud. Short
Labels by Traversal and Jumping. Electronic Notes in Discrete Mathematics,
pages: 153-160, 2007.

[2] Kannan, Sampath and Naor, Moni and Rudich, Steven. Implicit Repre-
sentations of Graphs. Proceedings of the Twentieth Annual ACM Sympo-
sium on Theory of Computing, p. 334-343, 1988.

[3] Alstrup, Stephen and Rauhe, Theis. Small Induced-Universal Graphs and
Compact Implicit Graph Representations. 43rd Annual IEEE Symposium
on Foundations of Computer Science, pages 53-62. IEEE Computer Society
Press, 2002.

[4] Alstrup, Stephen and Bille, Philip and Rauhe, Theis. Labeling Schemes
for Small Distances in Trees. SIAM Journal on Discrete Mathematics, 19(2):
448-462, 2005.

[5] Thorup, Mikkel. Undirected single source shortest paths with positive integer
weights in linear time. Journal of the ACM (JACM), 46(3): 362-394, 1999.

[6] Fraigniaud, Pierre and Kormand, Amos. Compact Ancestry Labeling
Schemes for XML Trees. 21st ACM-SIAM Symposium on Discrete Algo-
rithms, 2010.

[7] Schnyder, W. Embedding planar graphs on the grid. 1st ACM-SIAM Sym-
posium on Discrete Algorithms, pages 138-148, 1990.

[8] Gonçalves, D. Covering planar graphs with forests, one having a bounded
maximum degree. Electronic Notes in Discrete Mathematics, 31: 161-165,
2008.

[9] Gavoille, Cyril and Labourel, Arnaud. Shorter Implicit Representations
for Planar Graphs and Bounded Treewidth Graphs. ESA 2007, LNCS 4698,
pages 582-593, 2007.

[10] Babai, L. and Chung, F. R. K. and Erdős, P. and Graham, R. L. and
Spencer, J. On graphs which contain all sparse graphs. Ann. Discrete Math,
12: 21-26, 1982.

[11] Chung, F. R. K. Universal Graphs and Induced-Universal Graphs. Journal
of Graph Theory, 14(4): 443-454, 1990.

26

	Introduction
	Preliminaries
	Graph basics
	Adjacency labeling scheme
	Universal graphs
	Suffix codes

	Known results
	Trivial bounds
	Microtree/macrotree decomposition
	Traversal and Jumping
	Trees with bounded depth
	Planar graphs

	Traversal and Jumping
	General method
	Caterpillars
	Step 1: Orienting the caterpillar
	Step 2: Defining the intervals
	Step 3: The suffix code
	Problem with the code
	Encoding and decoding
	Step 4: Computing the labels
	Label length
	Improving the bound

	Small universal graphs for trees
	Description of the algorithm
	Generating trees
	Sorting trees
	Complexity

	Implementation
	Results

	Conclusion
	Referenced literature

