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Abstract 
  
In the presented thesis we introduce a computational model that can be used for 2-D and 3-D 
computer simulations of experiments in electrophoresis. The simulations are carried out by 
the aid of the finite element method (FEM). In particular, commercially available program 
Comsol Multiphysics 3.3 is employed. A general shape of continuity equation is chosen to 
express the mass, electric charge, momentum and energy conservation law. Diffusion, 
migration and convection terms are taken into account when formulating the mass 
conservation law. Both external (driving voltage) and internal (diffusion currents) terms are 
considered in the electric charge conservation law. Both constant voltage mode and constant 
current mode can be handled. A solvent is regarded as an incompressible Newtonian fluid. 
Both pressure-driven and electroosmotic flows can be taken into consideration. The heat 
convection as well as the heat diffusion is governed by the energy conservation law. Both 
strong and weak electrolytes (of any attainable valency) may be regarded as system 
constituents. Furthermore, the model can handle the ionic strength correction if desired. A 
task may be assigned either in Cartesian or cylindrical coordinates. The presented model was 
employed to solve four particular tasks. The first one inspects the electromigration in the 
setup in the Agilent 3DCE electrophoresis equipment. Changes in the electrolyte composition 
due to the electrolysis are inspected. The electroosmosis is also considered. The second task 
focuses on the lab-on-a-chip analysis in a gel. The injection cross is of the main interest. The 
analysis is carried out in the constant current mode. Four model anionic species are 
considered as the analytes and their resolution is inspected under various conditions.  
The third task deals with the free flow electrophoresis equipment. Both the electric field and 
the pressure-driven bulk flow are applied simultaneously. Three model cationic species are 
considered as analytes and their resolution is analyzed. The last task investigates the thermal 
effects in a capillary. The temperature rises in the capillary as the electric current passes 
through the electrolyte (Joule heating). Both air and water cooling efficiency are inspected. 
The coolant velocity field and the resulting temperature map are analyzed under various 
conditions.  
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List of used symbols 
 

nℜ  n – dimensional space 
n , N  natural number, number of the system constituents 
ℵ ,ℜ ,C  set of natural, real and complex numbers 

VSxt ,,,  time, distance, surface, volume 
hgf ,,  given functions 
lkji ,,,  counting indices 
)(, tΩΩ  computational domain 

)(, tΩ∂Ω∂  computational domain boundary 

)(, 22 tΩ∂Ω∂  unification of boundary intersections, a boundary of boundaries 

DNDN +ΓΓΓΓ ,,,  boundary part, Neumann, Dirichlet and Newton boundary part 

)(tV  test volume 
)(),( tVtS ∂  test surface, test volume boundary 

),,( zyxX = , ),,( zrX ϕ=  arbitrary domain point in Cartesian and cylindrical coordinates 
dcba ,,,  arbitrary boundary points 

n
r

, t
r

 boundary normal vector, boundary tangent vector 
∇ , .∇ , ⊗∇ , ∆  nabla vector, div, curl and Laplace operator 
. inner product 
⊗  outer product 

n
r∂∂ /  derivative with respect to the boundary normal vector 

T  matrix transposition 

),( tXA , ),( tXB
r

 arbitrary scalar and vector system property 

)(tM  total amount of A in )(tV , integral value of Aover )(tV  
)(tR  total rate of change of )(tM  

),( tXQ  source/sink term in )(tV  
)(tP  production/consumption in )(tV , integral value of Q  over )(tV  

JJtXJ i

rrr
,),,(  general flux of a property A, substance flux, heat flux 

)(tF  total flux of A through )(tV∂ , integral value of J
r

 over )(tV∂  

)(tVv
r

 velocity of )(tV  in nℜ  

ic  analytical concentration of i-th system constituent 

ijc  concentration of j-th ionic form of i-th system constituent 

difiJ ,

r
, difJ
r

 constituent diffusion flux, heat diffusion flux 

migiJ ,

r
 constituent migration flux 

coniJ ,

r
, conJ
r

 constituent convection flux, heat convection flux 

ijD  diffusivity of j-th ionic form of i-th system constituent 

iju  ionic mobility of j-th ionic form of i-th system constituent 

ijz  charge number of j-th ionic form of i-th system constituent 

R universal gas constant 
T  absolute temperature 
F  Faraday constant 

E
r

 electric field strength vector 
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ijh  molar fraction of j-th ionic form within i-th system constituent 

iv
r

, kiv ,  average constituent velocity, its component in k-th direction 

v
r

, kv  bulk flow velocity, its component in k-th direction 

iD  effective constituent  diffusivity 

ρ  liquid density 

eρ , locρ  net electric charge density, local electric charge density 

jj ,
r

 current density vector, current density value 

V  electric potential 
κ  specific electric conductivity 

difj
r

 diffusion current density 

iH  effective constituent charge 

wK  ionic product of water 

G  G-function 

jiA , , jiB ,  arbitrary acid and base 

),( jiKa , ),( jiKb  consecutive acidity constant, stepwise alkalinity constant 

),( jiK  consecutive general constant (either for an acid or for a base) 

ijL  global general constant of constituent 

kbb,
r

 body force vector, its component in k-th direction 

klσσ ,
t

 stress (surface) tensor, its k,l-entry 

pp ∇,  pressure, pressure gradient 

kff ,
r

 external (volume) force, its component in k-th direction 

ℑ
t

 tensor governing the liquid properties 
η  dynamic viscosity 
E  general energy, internal energy 

Tπ  internal pressure at constant temperature 

vc  heat capacity at constant volume 

λ
t

,λ  thermal conductivity tensor, thermal conductivity scalar value 

U  electric voltage, electric potential difference 
I  electric current value, ionic strength 

ijγ  activity coefficient 

ija  ionic activity 

AN  Avogadro’s number 

Bk  Boltzmann constant 

ε  permittivity  
),(, jiK appa , ),(, jiK appb  apparent acidity constant, apparent alkalinity constant 

appwK ,  apparent ionic product of water 

)(Iuij  corrected mobility of j-th ionic form of i-th system constituent 

)(Iκ  corrected conductivity 

)(Icij  corrected concentration 
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1. Introduction 
 
 
 
Electrophoresis is a set of separation techniques that employ the electric field for the 
separation of species. Experiments in electrophoresis may either be conducted in a laboratory 
or simulated by the aid of mathematical methods. Of those, these three are usually employed:  
 
(I) Finite difference method (FDM) is based on dividing the computational domain into non-
overlapping segments. The governing equations are discretized and the system property 
values are evaluated at certain places of the geometry. FDM is used mainly when 1-D 
computational domains are wished to be inspected. Thus, this method may be applied in the 
simulations of experiments conducted in sufficiently narrow capillaries. The FDM can also, in 
principle, handle 2-D and 3-D problems, but it often encounters serious computational 
problems. Thus, more sophisticated methods are developed for 2-D and 3-D tasks.  
 
(II) Finite volume method (FVM) is often employed when searching the solution in more-
dimensional tasks. Similarly to the FDM, it also evaluates the properties at discrete places of 
the geometry. This method employs integrated forms (over finite volume) of governing 
equation. The divergence theorem is used to convert the volume integrals into the surface 
ones. They are evaluated as fluxes originating on the surfaces of neighboring finite volumes.  
 
(III) Finite element method (FEM) is also based on integration of governing equations over 
finite volume. In the first step, the governing equation is multiplied by a smooth function 
(called the test function) and this product is integrated over volume. The Green’s identity is 
employed to modify the resulting integral equation. Boundary conditions as well as initial 
conditions are applied and the integral equations are solved by means of numerical methods.  
 
All the tasks in the presented thesis are solved by the aid of the finite element method. 
Commercially available software Comsol Multiphysics 3.3 was purchased for this purpose. 
This software enables one to solve sets of partial differential equations by means of the FEM. 
The software offers many kinds of physical tasks to be solved. Several application modes 
allow the tasks to be solved readily. The following application modes are available: 
  

• Acoustics 

• Convection and Diffusion 

• Electromagnetics 

• Fluid Dynamics 

• Heat Transfer 

• Structural Mechanics 

• Electro-Thermal Interactions 

• Fluid-Thermal Interactions 
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Governing equations may also be defined by the user if desired.  
 
The Fluid Dynamics application mode employs the Navier-Stokes equations. This mode is 
used in the presented thesis to handle the liquid bulk flow (driven either by electroosmosis or 
by pressure). 
The Heat Transfer application mode employs the energy conservation law. This mode is also 
applied in the presented thesis when temperature changes are wished to be inspected.  
All other governing equations (electric field distribution, chemical equilibrium equations, 
electroneutrality equation, ionic strength correction equations and continuity equations for the 
system constituents) are defined by the author as no appropriate application modes were 
found in the software.  
 
Four particular tasks are chosen to be solved by the presented computational model.  
 
(I) The first task investigates the electromigration in the Agilent 3DCE electrophoresis 
equipment. The simulations are performed in order to study changes in the electrolyte 
composition due to the electrolysis. Forty simulations are carried out under various 
conditions. Moreover, the bulk flow driven by electroosmosis is inspected.  
 
(II) This task deals with the lab-on-a-chip analysis in a gel. The electrokinetically driven 
sample injection is investigated. Four model anionic species are regarded as the analytes. 
Their resolution is investigated under various conditions (sixty-six simulations are carried 
out).  
 
(III) Separation in the free-flow electrophoresis equipment is simulated in this task. Three 
model cationic species are regarded as the analytes. Pressure-driven bulk flow as well as 
electric field is applied and varied. The resolution of analytes is investigated. 
 
(IV) This task focuses on the temperature effects in a capillary. The temperature rises as the 
electric current passes through the electrolyte. This phenomenon is known as Joule heating. 
Two particular geometry arrangements are inspected. Both air and water cooling is 
investigated.  
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2   Review of Present State of Knowledge 

 

The review is divided into two parts. The first one deals with computer simulations of 
electrophoretic experiments in capillaries. The capillaries are usually considered as 
sufficiently narrow compared to their length and, thus, one-dimensional approaches may be 
used to describe the phenomena encountered in classical capillary electrophoresis (CE). The 
second part of the review handles two- and three-dimensional simulations. This approach is 
necessary when trying to describe complex geometries such as various injection sites, sample 
dispensers and mixing chambers. 
 
 

2.1  Simulation Approaches in 1-D Geometries 
 
Generally, serious problems are encountered when searching analytical solutions to solved 
tasks. Majority of problems cannot be solved in a closed analytical form. This brings the 
opportunity to employ numerical approaches. Several papers (Refs.1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 ) 
have been published on numerical simulations. These works, however, lack the possibility of 
making general conclusions as models do not offer any analytical formulae for calculation of 
desired quantities. There is an original approach (to be found in Refs. 11 and 12) that offers 
simulated electropherograms as a result of numerical simulations. However, as this model 
does not take a lot of important features into account, it was subsequently replaced by more 
sophisticated models.  
A typical CE experiment is arranged by a capillary filled with uniform solution 
conventionally called the background electrolyte (BGE). Beside the BGE, the separation 
environment usually contains some analytes to be separated under the influence of electric 
field. The system is governed by the laws formulated for the mass transport (diffusion, 
convection and migration terms). As the analytes are usually thought to be charged species, 
strong Coulombic forces have to be taken into account. The behavior of charged species has 
to be governed by the macroscopic electroneutrality condition. Another condition to be 
satisfied is the electric field distribution, commonly expressed in terms of Kirchhoff’s and 
Ohm’s law. When chemical reactions take part in the system (e.g. dissociation of weak 
electrolytes), they have to be described by terms of the chemical equilibrium. Chemical 
reactions are commonly regarded as much „faster“ than all other phenomena encountered in 
CE and, thus, the concept of equilibrium constants may be used. Majority of general laws 
governing the systems behavior are known from physical chemistry (see Ref. 13) or can be 
found in specialized literature (Ref. 3). Some of the laws describing the system behavior are 
nonlinear (e.g. concentration terms in denominator of the acid-base equilibrium formula). 
This feature causes difficulties when investigating the system behavior. Nevertheless, there 
are experimental setups that lead to a simplification of the equations. Under some 
circumstances, BGE may be regarded as a liquid of uniform composition along the capillary. 
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Unlike the BGE components, sample is injected only at a certain position in the capillary. It is 
commonly called the injection site. A small concentration of an analyte (when compared to 
BGE constituents’ concentration) causes only a small disturbance in system properties (e.g. 
the conductivity or pH value). Under such conditions, continuity equations may be linearized 
and solved easily without computational problems or inaccuracies (in the framework of 
linearized model).  
Gaš et al. (Ref. 14) proposed a simulation model that optimizes the BGE composition in 
capillary zone electrophoresis (CZE). This work focuses on the interface between the sample 
region (contains BGE and sample) and the BGE region (contains only the BGE). The name 
„moving boundaries“ is commonly used for this model as the sample region moves along the 
capillary under the influence of electric field. Four weak trivalent constituents (two acids and 
two bases) are allowed to form the BGE. One anionic constituent of sufficiently small 
concentration represents the sample.  Thus, the model is proposed to simulate the separation 
of anionic analytes. As there is, in principle, no difference in treating anionic and cationic 
species, the model may be modified in order to describe the behavior of cationic analytes. The 
calculation begins with formulating the electroneutrality condition and the acid-base 
equilibrium equations. As there are five trivalent system components, fifteen equilibrium 
equations are to be solved. The model considers any H+ and OH- concentrations that obey the 
ionic product of water. There are four supplementary equations to be fulfilled: they are called 
the moving boundary conditions and represent the mass conservation law for each BGE 
constituent at the BGE-sample interface. Thus, twenty-one equations are to be solved 
simultaneously. This approach does not include the Kohlrausch regulation function. It is 
originally defined by Kohlrausch in Ref. 15 and governs the system behavior in 
isotachophoresis (ITP). Besides its widespread utility in ITP, Kohlrausch function was 
employed by Gebauer et al. (see Refs. 16, 17 and 18) to calculate the sample zone composition 
in CZE. The applicability of this approach (proposed in Ref. 14) is demonstrated by 
investigating phosphate buffer properties. Three anionic analytes (Cl-, Br- and salicylate) are 
employed to inspect how the analyte behavior can be affected by the BGE composition. 
Simulated results agree with experimentally obtained electropherograms.  
Jaroš at al. (Ref. 19) continued in the work initiated by Gaš at al. (Ref. 14).  A mathematical 
model based on the theory of moving boundaries was adapted and a user-friendly simulation 
program PeakMaster was introduced. PeakMaster program allows the BGE properties to be 
calculated and optimized. The designed BGE can be readily prepared and used in real 
analysis. The program, besides its other invaluable benefits, takes the ionic strength correction 
into account (dissociation constants as well as ionic mobilities depend on the ionic strength). 
The well-known theory of Debye, Hückel and Onsager (Refs. 20 and 21) is supposed to predict 
the properties of simple binary electrolytes of ionic strength up to 10 mM (Ref. 13). As a real 
BGE is usually more complicated ionic mixture, a sophisticated theory has to be employed. 
The theory of Onsager and Fuoss (Ref. 22) is supposed to govern the properties of solution 
composed of any ionic mixture. According to Ref. 14, the dissociation constants and the 
moving boundary equations for all BGE constituents are formulated along with the 
electroneutrality condition and the ionic product of water. As the ionic strength is not known 
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initially, the calculus is performed by an iterative method. The first approximation puts all 
activity coefficients to be one. Governing equations are solved and, subsequently, new 
activity coefficients are determined via the formula of Debye and Hückel. The iterative 
procedure stops when the relative difference of subsequent values of activity coefficients is 
less than a sufficiently small number. Afterwards, actual mobilities are calculated employing 
Onsager-Fuoss model. Finally, the actual conductivity is calculated from corrected 
concentrations and ionic mobilities. Output data also contains the concentrations of all ionic 
forms of the system constituents in the sample region as well as in the BGE region. A use of 
PeakMaster is shown employing two examples. The first one considers separation of five 
anionic species - chloride, succinate, lactate, phenylacetate and caproate. Simulated and 
experimentally obtained electropherograms are nearly undistinguishable. The second example 
investigates the separation of complicated ionic assembly. PeakMaster program generally 
predicts the position of analyte peaks as well as system peaks (see next parts of the review for 
a deeper insight). The simulation results in the electropherogram that greatly resembles its 
experimentally obtained counterpart. As there is already a new version of PeakMaster 
program available, all its other features are discussed in subsequent parts of the review.  
Poppe et al. (Refs. 23, 24, 25, 26 and 27) introduced a linearized model of electrophoresis. The 
authors showed that linearized continuity equations lead to a matrix eigenvalue problem. 
Generally, the result of solving N x N square matrix comprises N matrix eigenvectors and N 
matrix eigenvalues. The ordered set of matrix eigenvalues is called the matrix spectrum. Since 
the water autoionization takes place, H+ and OH- ions originate. These ions are also regarded 
as the BGE components. Nevertheless, in the analysis performed under neutral pH (the region 
5 – 9 is usually accepted and is called the safe pH region), these ions are of negligible 
concentrations. This simplifies the governing equations. Generally, N system constituents lead 
to N x N matrix problem (when omitting H+ and OH-) and, thus, N matrix eigenvalues are 
obtained. These conclusions have an invaluable impact on the indirect detection where BGE 
properties (the conductivity and the indirect UV response) are evaluated. 
In chromatography, Crommen and co-authors (see Ref. 28) figured out a remarkable 
phenomenon: when there is an analyte moving (by pure coincidence) as quickly as one of the 
system eigenzones, response of indirect detection reaches infinity values (in terms of absolute 
values). Poppe (Ref. 23) continued in this way in electrophoresis and confirmed such a 
phenomenon here. He also showed (in Ref. 24) that this phenomenon is connected with 
infinitely large matrix eigenvector components.  
Despite all useful conclusions stated above, it should be borne in mind that the linearized 
model does not fully account for all phenomena encountered in CE. One such a phenomenon 
is well-known as the electromigration dispersion (EMD). Undesirable peak distortion and 
broadening is often explained in terms of EMD as a result of nonlinearity of electrophoresis. 
Gebauer et al. (Refs. 16 and 29) and Horká and Šlais (Ref. 30) defined a quantity called the 
relative velocity slope in order to evaluate the extent of EMD. This quantity is useful when 
predicting the analyte peak shape under particular conditions (e.g. when applicability of BGE 
is inspected for particular analysis). 
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Štědrý et al. (Ref. 31) went ahead in direction of Poppe (in Refs. 23 and 24). Employing 
linearized model of electromigration, they carried out a mathematical analysis of a basic 
representative arrangement of CE experiments. The authors focus on simulation of indirect-
detection results. They take only strong electrolytes into account (the buffer constituents as 
well as the analytes) to prevent cumbersome equations that govern the behavior of weak 
electrolytes. They consider only one ion as the analyte. The BGE is composed of three ions, 
two of them being co-ions (related to the analyte one) and one is a counter-ion. All system 
constituents are thought to be univalent. As this work does not take the ionic strength 
correction into account, all properties of the ions are supposed to be constant. Thus, the 
conductivity can be calculated readily without iterative method (see Ref. 13). All ions are 
expected to move exclusively under the influence of electric potential gradient 
(electromigration). Motion under the chemical potential gradient (diffusion) and caused by 
pressure drop or electroosmotic flow (convection) are ignored. Moreover, no thermal or 
sorption effects are assumed to play any role and radial distribution of all constituents is 
assumed to be time-independent. Under such circumstances, 1-D approach may be employed.  
All components are supposed to show only small concentration changes in time. Thus, the 
transformation of variables can be done. Instead of solving problem with commonly defined 
concentrations, new perturbation variables are defined and implemented. The continuity 
equations are formulated at zero time for each system constituent. The system matrix is 
assembled and its eigenvalues are calculated. As there are four system constituents, four 
eigenvalues (called „eigenmobilities“ by the authors) are expected. The result of calculus is 
that two eigenmobilities are zero (they correspond to a water peak often encountered in real 
CE experiments), one eigenmobility is equal to that of the analyte (analyte peak, analyte zone) 
and one depends on the concentrations and mobilities of all buffer constituents. The last one is 
of the main interest as it is not affected by the properties of the analyte and is, thus, called the 
system eigenmobility. The authors define the term „eigenzone“ as a wave traveling along the 
capillary with a velocity proportional (through the electric field strength) to the eigenmobility. 
The waves tend to split and carry the disturbance (initially created by the sample injection) 
with given velocities. Input data (ionic mobilities as well as concentrations) is variable in 
order to investigate how the system peak mobilities are affected by the BGE composition. 
They find a situation where the system eigenmobility is equal to that of the analyte. This leads 
to the so-called resonance effect (notice the analogy with mechanical or electrical 
resonances). The analyte zone and the system zone comigrate and reach the detector site at the 
same time. Concentration profiles of BGE co-ions show the shape of the spatial derivative (a 
zigzag shape) of the original peak (it is supposed to be of the Gaussian shape). The indirect 
detection makes this effect visible. The amplitude of the resonance phenomenon grows in 
time proportionally and the signal can, at least in the framework of the linearized model, reach 
infinite values (in accordance with Ref. 23). Furthermore, the authors derived a formula for 
calculating the relative velocity slope (Refs. 16, 29 and  30). Thus, EMD can be predicted by the 
linearized model of electromigration.  
Štědrý at al. (Ref. 32) generalized the model introduced in Ref. 31. The authors consider the 
linearized model of electrophoresis again. Unlike Ref. 31, weak electrolytes are allowed to 
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form the BGE and they may also be regarded as the analytes. Another restriction vanished – 
ions H+ and OH- are taken into consideration and, thus, the whole pH range may be inspected. 
Nevertheless, only univalent ions are regarded as system constituents (i.e. weak or strong 
univalent acids or bases). 
Similarly as in Ref.  31, three constituents form the BGE and one ion represents the analyte. 
As the ions are not constrained to be strong anymore, the acid-base equilibrium equations 
have to be formulated for all constituents. The H+ and OH- ions contribute to the BGE 
conductivity. The model also allows H+ and OH- terms to be cancelled if reasonable (e.g. the 
H+ term may vanish in alkalic pH range). Following Ref. 31, the continuity equation is 
formulated for each constituent. A new function (called the G-function) is defined and is 
implemented when solving the electroneutrality condition. As the analyte concentration is 
supposed to be negligibly small compared to that of BGE constituents, G-function does not 
take analytes into consideration. Concentrations of all charged forms of BGE constituents are 
expressed as a function of H+ concentration. This forms the G-function with the H+ 
concentration as the only unknown variable. Consequently, H+ concentration is calculated and 
all other quantities are determined from it. 
As it was done in Ref. 31, perturbation quantities are defined and the matrix eigenvalue 
problem is solved. The BGE conductivity is constrained to be spatially uniform as the sample 
injection causes only a small disturbance in it. Two quantities expressing the indirect detector 
response are calculated. The first one, the conductivity detection response, is defined in Ref. 
33 and a simple formula for its calculation is suggested. The second one, the transfer ratio 
(Ref. 34) is useful for indirect UV detection and the present work also allows it to be 
evaluated. The relative velocity slope can also be assessed (taking an electrolyte composed of 
weak ions into account). As there are four system constituents, initial disturbance splits into 
four waves. The significance of H+ and OH- terms in governing equations is investigated. 
Again, these terms may be cancelled from equations only when separation takes place in 
neutral pH region (concentrations of BGE components have to be larger than 1 mM). These 
conditions lead to a simplification in governing equations and guarantee two eigenmobilities 
to be close to zero.  In other words, it means that there are two non-migrating system zones at 
the injection site („double water peak”). However, additional eigenzones of non-zero 
eigenmobilities are encountered beyond the safe pH region. In such cases, migrating waves 
arise as a consequence of significant concentrations of H+ or OH- ions. Mobilities of these 
zones have to be investigated as they can possibly lead to the resonance effects that are 
usually undesirable. Several other authors (Refs. 28, 35, 36, 37 and 38) also investigated the 
behavior of eigenpeaks. Eigenpeaks emerging from significant concentrations of H+ and OH- 
were studied in Refs. 18 and 39. Other authors (Refs. 40, 41, 42, 43, 44 and 45) investigated system 
peaks in BGEs of complicated composition (various attainable ionic forms were taken into 
account).  
Štědrý and co-authors (Ref. 46) investigated a general case of N system constituents. This 
work is, in fact, a generalization of previous works (Refs. 31 and 32). Any substance 
(regardless of its attainable valency) may be considered - weak (or strong) acids (or bases) or 
even ampholytes. This generalization makes the governing equations more complicated. The 
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model allows the behavior of any BGE to be simulated. Moreover, the model actually does 
not distinguish between the buffer components and the analytes and, thus, all system 
constituents are treated in the same way. As there are generally N constituents, the model 
becomes rather complicated (when compared to its earlier versions). On the other hand, a lack 
of transparency is prevailed by its great versatility. Again, the linearized shape of the 
continuity equation is assumed to govern all phenomena (Refs. 31 and 32). It is formulated for 
each analyte bearing all its attainable forms in mind. The matrices are assembled, system 
eigenmobilities are calculated and time evolution of system is predicted (the model still omits 
diffusion). The BGE is thought to be composed of N - 1 constituents and there is, thus, only 
one analyte in the sample region. Nevertheless, the model can, in principle, handle any 
number of analytes. Three simple buffers (acetic, phosphate and oxalic one, taking sodium as 
the counter-ion) show the usefulness of the model. Theoretical pH value and system 
eigenmobilities are calculated for each BGE (pH is a variable quantity as sodium 
concentration is allowed to change). Calculated pH plots resemble well-known „titration 
curves“. The eigenmobility dependencies show a remarkable behavior. The main feature to be 
highlighted is that curves of two different eigenmobilities never cross each other. There are 
conditions where at least one very fast eigenmobility is found. This brings the chance to 
observe the resonance phenomena with an analyte of the same effective mobility. Moreover, 
the present model offers more general conclusions to be done. In majority of BGEs, there is 
often one systemzone of very small eigenmobility (in terms of absolute values). It means that 
there is a zone standing at the injection site regardless of the presence of electric field applied. 
Thus, this zone may serve as the electroosmotic flow (EOF) velocity marker. This piece of 
knowledge has an invaluable impact on the real experiments as the EOF velocity can be 
comfortably assessed from the indirect detector record. However, when there is no eigenzone 
of zero eigenmobility, a neutral constituent has to be employed as the EOF marker.  
Jaroš at al. (Ref. 47) implemented the computer model introduced in Refs. 31, 32 and 46. A new 
version of the simulation program PeakMaster is the result of this effort. Its old version is, 
unlike the improved descendant, based on the theory of moving boundaries (to be found in 
Refs. 14 and 19). The computational model needs certain input data to be inserted. It comprises 
BGE composition, names of the analytes to be separated and desired simulation arrangement 
(capillary length, driving voltage, electroosmosis). PeakMaster program contains the database 
of compounds to be used readily as buffer constituents as well as the analytes. Majority of 
data is taken from the well-known Hirokawa’s database (Refs.  48, 49, 50, 51 and 52). Some data 
is provided by Včeláková et al. (Ref. 53). The database is allowed to be modified if necessary.  
Actual mobility and equilibrium constants of each system constituent are affected by the 
presence of all other system constituents through the ionic strength dependence. 
Computational models presented in Refs. 31, 32 and 46 omitted this feature and all calculations 
were performed using mobilities and equilirium constants extrapolated to zero ionic strength. 
The PeakMaster program takes the ionic strength correction into account. Onsager and Fuoss 
model (Ref. 22) is implemented here. Nevertheless, the ionic strength correction can be left out 
if desired (this saves the computational time). The user interface enables one to choose the 
way of detection (direct, indirect or conductivity tracing). The main result of calculation is a 
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simulated electropherogram that can be compared with results of a real experiment. The peak 
shape (diffusion/EMD mimicking) is simulated by aid of Haarhoff – van der Linde‘s (HVL) 
function (Ref. 54). Besides migration and diffusion, EOF (i.e. convection term) may also be 
taken into account if desired. An ideally flat EOF profile is assumed to avoid shearing effects.  
The pH of the BGE is generally accepted to influence the behavior of electrophoretic system 
as some of constituents are weak acids (or bases) and their degree of dissociation (or 
protonation) is affected by the pH value. The H+ activity is the first variable that is calculated 
at the beginning of the simulation. Once it is determined, all properties of the system 
constituents (effective mobilities, migration times) can be easily calculated. PeakMaster 
program also provides calculation of detection signal – the transfer ratio (UV indirect 
detection) and the molar conductivity detection response (indirect conductivity). The relative 
velocity slope is also assessed. The general properties of BGE (buffering capacity, ionic 
strength, conductivity) are also evaluated. The program is very useful when searching BGE to 
be used in a particular real separation as it can predict effective mobilities, and thus, the 
resolution among the analytes. It also calculates possible peak distortions and broadenings 
caused by EMD and resonance effects. A use of PeakMaster is demonstrated (Ref. 47) by 
inspection of imidazole-oxalic buffer. Peakmaster predicts two eigenzones to arise and 
calculates their mobilities and, thus, also migration times in a real experiment. As a matter of 
fact, there are two system eigenpeaks in an experimentally obtained indirect UV and 
conductivity trace (EOF marker is used in a real experiment to determine the EOF velocity). 
Mobility values of both system peaks are determined. Although there is a small discrepancy 
between simulated and experimentally obtained system eigenmobilities (possibly caused by 
inaccurate data in the database), the program predicts system behavior without tedious trial-
and-error experimental approaches.  
Hruška at al. (Ref. 55) introduced a mathematical model enabling time evolution of the 
electromigration system to be directly simulated and depicted. The model gave rise to a 
simulation program called Simul. It may be (along with PeakMaster program) downloaded as 
a freeware from the website (Ref. 56). Its detailed mathematical background can be found in 
Refs. 4 and 5. The model can handle any number of analytes or buffer constituents regardless 
of their attainable valency. Similarly to PeakMaster, also Simul is based on 1-D approaches.  
All three kinds of particle movement i.e. migration, diffusion and (EOF driven) convection 
are taken into consideration when formulating the continuity equation for each system 
constituent. The electroosmotic flow is supposed to be uniform and no pressure effects are 
assumed to play any role. The electric field distribution is calculated taking the driving 
voltage as well as the diffusion currents into account. Conductivity accounts for H+ and OH- 
ions. Simul solves the continuity equation (partial differential equation - PDE) numerically by 
dividing the entire computational domain (capillary) into certain finite segments.  Thus, finite 
difference method is employed (FDM, see Ref. 57 for a deeper insight). This method converts 
the set of original PDEs (time and spatial coordinate are independent variables) into a set of 
ordinary differential equations (ODEs, time is the only independent variable). ODEs are 
solved by means of the Runge-Kutta and predictor-corrector method (Ref. 58). The electric 
field distribution is an ODE (in 1-D) and it is solved by the aid of Newton iterative method. 
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Time steps used in numerical simulation are either defined by the user or optimized by the 
program. A sufficient number of segments must be employed in order to avoid numerical 
problems. 
The Simul program also offers saving the computational time by solving a part of the 
capillary rather than taking whole its range into account. A typical use of this approach is the 
capillary uniformly filled with the BGE everywhere and with the sample in a certain region, 
additionally. Computational domain expands as the sample region moves and broadens. 
Applicability of Simul is illustrated using three examples from the everyday practice. The first 
one considers separation of phenylacetic and caproic acid in TTAOH/oxalic acid/potassium 
buffer (TTAOH denotes tetradecyltrimethylamonium hydroxide). An experimentally obtained 
electropherogram shows a strange behavior (an unexpected zigzag-shaped peak). The Simul 
program is employed to inspect this problem. As there is an analogous peak in the simulated 
electropherogram, the peak is supposed to be a natural property of the BGE. The second 
example investigates the behavior of acetate ion zone in the sodium/phosphate buffer. Here, 
the electropherogram shows a zigzag-shaped peak. Identity of this peak can be easily clarified 
as Simul program can predict resonance phenomena. The last example shows the simulation 
of ITP separation with twenty-one ampholytes. An immobilized pH gradient is formed to 
mimic the conditions encountered in ITP. The analytes form their „ITP zones“ along the pH 
gradient. Simulated electropherogram resembles that one obtained from real ITP experiments.  
Other authors (Refs. 9 and 59) also introduced ITP simulations. Phenomena connected with 
splitting peaks (Ref. 60), adsorpion effects (Refs. 61 and 62), axial thermal effects (Ref.  63) and 
peak distortion (Ref. 64) were simulated as well. 
Hruška et al. (Ref. 65) inspected conditions where the electromigration matrix has complex 
eigenvalues. According to the theory of dynamic systems, such system should exhibit periodic 
solution (oscillation) in the resulting concentration profile.  
Chemical oscillations are periodical changes in concentration of constituents driven by the 
chemical potential gradient. Electromigration systems can oscillate even when there is no 
gradient in chemical potential and the system is in the chemical equilibrium state. Here, the 
electric potential gradient is a force that creates the oscillations. 
Favorable conditions for oscillations were searched and investigated in Ref. 65. Simul program 
was used to predict the oscillatory behavior. The authors found a buffer (composed of 
imidazole and sebabic acid) that allows the oscillations to come into existence. Theoretically 
predicted periodical solution was later confirmed by the experiment. Experimentally obtained 
electropherograms confirmed oscillating pattern (in both CCD and DAD detection record). A 
buffer of slightly modified composition served as a sample (initial disturbance). 
 
 
 
 
 
 
 



 19 

2.2  Simulation Approaches in 2-D and 3-D Geometries 
 
Microfluidic devices in electrophoresis attract many researchers as they offer invaluable 
benefits over conventionally used appliances. Reduced time of analysis and lesser sample and 
buffer consumption are the main advantages. At the beginning, they were used for gel 
electrophoresis of small ions (Refs. 66, 67, 68, 69, 70, 71, 72 and 73) as well as for the capillary gel 
electrophoresis of complicated assemblies (Refs. 74, 75, 76 and 77). These pioneering works 
resulted into the lab-on-a-chip concept. Unlike classical capillary devices where pressure drop 
serves as a force that injects samples into the separation system, microdevices lack this option 
due to their complicated structure. Thus, electrokinetically driven injection is the only way 
that can be employed.  
Ermakov et al. (Ref. 78) introduced a 2-D mathematical model describing electrokinetically 
driven mass transport in two chip structures - injection cross and T-mixer. As the channel 
depth and wall properties are supposed to be uniform, 2-D model is supposed to describe all 
phenomena in good approximation. The model allows weak (or strong) acids (or bases) to 
participate in the mass transport. The diffusion Péclet number is employed to describe the 
competition between convection and diffusion transport. Electroneutrality condition is 
formulated and assumed to be obeyed everywhere. The model accounts for EOF and its 
velocity is supposed to be ideally flat and uniform as the channel diameter is much larger than 
the Debye radius. The thermal effects are not considered (see Ref. 79).  
Some of 2-D governing equations (e.g. the conductivity expression or the electroneutrality 
condition) are the same as in the 1-D models. However, there are equations (such as electric 
field distribution or mass conservation law) that differ from that ones stated in the 1-D 
models. The Navier-Stokes equations have no counterpart in 1-D models at all. All governing 
equations are solved employing the finite difference method. The simulation domain is 
covered by a rectangular grid. Simulated figures of the steady state flow in the injection cross 
are presented as the main result of the work. The injection cross is made of two 
perpendicularly crossing channels (the injection one and the separation one). One injection 
channel entry serves as a sample reservoir. Two injection parameters are regarded as being 
substantial. The first one is the amount of analyte in the sample plug. The second one is the 
standard deviation in the concentration over the sample plug. This parametes indicates the 
sample spatial dispersion. The ratio of the parameters, which should be as high as possible, is 
investigated. Input data (potentials imposed on particular channel entries) is variable and 
optimal conditions are found for the analysis. Cationic, anionic and neutral species are treated 
separately. Simulated results are compared with the experiments performed in Ref. 80.  
The second part of Ref. 78 deals with the T-mixer that is made of three arms forming the shape 
of the letter „T“. The horizontal arms serve as buffer and sample reservoirs. The vertical one 
is employed to divert a mixed liquid away. The aim of this part of the work is to find 
conditions where diverted mixture is of the most uniform spatial profile. As an identical 
potential is imposed on the buffer and sample arm, the same bulk flow velocities are expected. 
Thus, the same volumes of buffer and sample are supposed to enter the outflow channel. The 
channel width is variable in order to optimize the mixing efficiency.  
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Ermakov et al. (Ref. 81) continued in the way started in Ref. 78. The behavior of pinched and 
gated injection is investigated in the injection cross. Pinched injection (partly described in 
Ref. 78) is used when a compact well-defined sample plug is desired for the analysis. Variable 
sample volumes can be achieved by employing the gate injection. Both injection variants are 
accomplished in two steps. The first step (called the loading one) the sample moves from its 
reservoir and reaches the injection cross. In the second (dispensing) step, the loaded sample is 
forced to change its direction. The sample enters the separation channel where the analytes are 
separated. Similarly to Ref. 78, conditions are optimized in order to get the best sample 
properties (the highest possible analyte amount yet showing the lowest possible spatial 
dispersion). Simulated results are compared with experimental ones taken from Ref. 82.  
Chatterjee (Ref. 83) introduced a universal 3-D computational model. A general concept of 
transport phenomena in continuum is formulated. All conservation laws (i.e. stated for 
momentum, energy, mass and electric charge) can be handled. Generally, the continuity 
equation may be formulated for any quantity to be conserved. As the system is open (the 
fluxes may reach beyond the system), the inflow/outflow term has to be considered on the 
system boundaries. The equilibrium constants (expressed in terms of dissociation degrees) are 
employed to describe the chemical behavior of the system constituents. Each system 
constituent is taken as a simple species regardless of its attainable ionic forms.  
The computational model is based on a rather complicated multi-block finite-volume scheme 
(finite volume method, FVM). The finite-volume method divides the computational domain 
into non-overlapping finite volume subdomains. A power-law scheme is employed to express 
the fluxes in each finite volume. Multi-block finite-volume technique is favorable for complex 
geometries as the domain decomposition reduces the order of matrices to be assembled and 
solved. Generally, the more simple matrices are created, the faster is to solve them.  
Applicability of the present approach is illustrated by two examples. The first one considers a 
3-D mixing chamber that markedly resembles a water tap as there are two inflow channels 
containing hot and cold water to be mixed together. 3-D flow and heat transfer phenomena are 
taken into account. The model investigates thermal profiles of water stream coming out from 
the outflow channel. The second example compares isoelectric focusing of a model analyte 
mixture with and without the bulk flow. Simulation of the EOF free system results to the 
profiles that resemble well-known figures obtained by other simulation approaches. 
Nevertheless, remarkable system behavior is observed when taking the convection into 
account. The pH gradient moves along the EOF and the pH change affects the ζ-potential. As 
the ζ-potential affects the EOF velocity retrospectively, convection profile cannot be regarded 
as flat anymore and it resembles a pressure-driven profile. These conditions lead to distorted 
peaks and, thus, to deterioration of robustness and separation efficiency. 
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3  Aims of Presented Thesis 
 
 
 
The main result of the presented thesis is the proposal of a mathematical model and its 
implementation in the environment of Comsol Multiphysics 3.3 software. In particular, the 
presented model focuses on these problems: 
 

• Mass conservation law (diffusion, migration and convection) 

• Electric charge conservation law (driving voltage, diffusion currents) 

• Momentum conservation law (Navier-Stokes equations, electroosmosis and pressure-
driven bulk flow) 

• Energy conservation law (thermal conduction and thermal diffusion) 

• Ionic strength correction (corrected pK constants, corrected ionic mobility, corrected 
conductivity) 

• Driving electricity modes (constant voltage mode, constant current mode) 
 
The above model is employed to solve four particular tasks (in two or three dimensions): 
 

• Inspection of changes in the electrolyte composition due to the electrolysis 
(electroosmosis is also taken into consideration) 

• Simulation of the electrokinetic injection in the Lab-on-a-chip analysis 

• Investigation of the separation in free-flow analyzer  

• Thermal effects in a capillary (Joule heating and capillary cooling by the aid of water 
and air) 
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4  Results and Discussion 
 
 
 
4.1  Mathematical Model of Electromigration 
 

4.1.1  General Conservation Law 
 
The system property behavior is often 
expressed in terms of the continuity 
equation. It is a differential equation that 
governs its conservation. Continuity 
equations can be written for any property 
that is wished to be conserved (e.g. mass, 
energy, electric charge or linear 
momentum) in a continuum.  

Let us consider a subspace nt ℜ⊂Ω )(  

( ℵ∈n ) that is conventionally called the 
computational domain and may generally change in time (Fig. 1). Time may attain any value 

from interval (0,T), T>0 being the end of the time domain. The domain boundary )(tΩ∂  

connects )(tΩ with the rest of the space nℜ .  

Furthermore, let us consider a space subset )()( ttV Ω⊂  with its boundary )()( tVtS ∂= . The 

subspace V(t) is usually called the test volume (its boundary S(t) is the test surface).  
Let us define the total rate of change R(t) in V(t) 

)()( tM
dt

d
tR =  

 

(1) 
A 

Here M(t) denotes the integral of a quantity A (that is going to be governed by upcoming 
continuity equation) over V(t) 

∫=
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A A 

(2) 

The quantity A is generally space- and time-dependent but M is supposed to be space-
independent as it is formed by integrating A over entire test volume.  
There are two ways that can cause a change of A in V(t). The first one considers changes 
induced by sources or sinks in the test volume 

∫=
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)(),,,()(
tV

tdVtzyxQtP  
A 

(3) 

Here Q denotes the source/sink term and P(t) is its integral over V(t).  

The second contribution originates from the flux (denoted J
r

) of A that passes through the test 
surface 

∫−=
)(

)(),,,().,,,()(
tS
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(4) 
 

 
Fig. 1 Computational domain 
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The dot “.” was employed to denote the inner product. The sign “-“ is in accordance with the 

agreement in which n
r

 is taken as the outer normal vector to S(t).  

The resulting equation 
)()()( tFtPtR +=  (5) 

may be expanded to   
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tV tV tS
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dt

d rr
 

A A A 
A A A 

A(6) 
L  

The divergence theorem may be applied to the right-hand side of the above equation 

∫ ∫ ∫ ∇−=
)( )( )(

)(),,,(.)(),,,()(),,,(
tV tV tV
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dt

d r
 

L 

(7) 
 

Here ∇  denotes the Nabla operator. The Reynolds transport theorem may be employed to 
modify the left-hand side of the above equation 

∫ ∫ ∇−=∇+
∂

∂
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Here )(tVv
r

denotes the velocity of V(t) in nℜ . The above integral identity can be rearranged to  
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and is satisfied only when 
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t
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This formula is well known as a general shape of the continuity equation. When Ω  is 
supposed to be time-independent, the above equation reduces to  

QJ
t

A =∇+
∂
∂ r

.  
L 

(11) 
 

This equation is the one that is used in the simulations, as no time-dependent computational 
domains are considered in the presented thesis. As we will see in next paragraphs, A may 
stand for several quantities, behavior of which will be investigated.  
 

4.1.2  Mass Conservation Law 
 
Let us consider a system with its boundary that consists of N species that we call the system 
constituents. Furthermore, a solvent (usually water) is present and is always regarded as a 
continuum (its molecular structure is fully neglected). The continuity equation may be 
employed to describe such a situation. Here, the analytical concentration of i-th system 
constituent ci is taken as the variable governed by the general conservation law 

0. =∇+
∂
∂

i
i J
t

c r
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(12) 
 

The concentration represents the system quality (the amount of substance) related to the unit 
volume. The Q term is canceled as no sources or sinks of mass are allowed, such as chemical 
reactions among different system constituents. On the other hand, the acid-base equilibria of 
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individual constituents are considered. These cannot, however, alter the total, analytical 
concentration ci of any species. 

The substance flux is denoted iJ
r

. The three kinds of fluxes are considered in the model - 

diffusion, migration and convection: 

0).( ,,, =++∇+
∂
∂

conimigidifi
i JJJ
t

c rrr
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(13) 
 

The diffusion flux can be described in terms of the first Fick’s law 

∑ ∇−=
j

ijijdifi cDJ ,

r
 

L 

(14) 
 

cij and Dij are the concentration and diffusivity of j-th ionic form of i-th system constituent, 
respectively. The integer j may attain both positive and negative values, as the system 
constituents are allowed to be both positively and negatively charged (j = 0 holds for a neutral 
form). The diffusion motion of various ionic forms is treated separately as the ionic 
diffusivities may differ from each other. The diffusivity is related to the mobility through the 

Nernst-Einstein equation 

Fz

RT
uD

ij

ijij =  
L L 

(15) 
 

Here uij and zij are the ionic mobility and charge number, respectively. T denotes the absolute 
temperature. The constants F and R are the Faraday constant and the universal gas constant, 
respectively.  

The electromigration flux occurs in the presence of the electric field (E
r

 being the field 
strength) and can be expressed as follows 

∑=
j
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rr
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d 

(16) 

The molar fraction defined as hij = cij/ci may be employed to modify the above equation 

ii
j
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rrr

== ∑ )sgn(,  
A 

(17) 

The sum in the middle part of the equation is the effective mobility and is useful when 
predicting the motion direction of system constituents. This quantity multiplied by the field 

strength is called the effective constituent velocity iv
r

. 

The convectional term is simply given by 

vcJ iconi

rr
=,  (18) 

 

The system constituents are driven by the bulk flow of velocity v
r

 irrespective of their 
physical and chemical properties. 
When merging all terms, the continuity equation obtains the form 
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This equation holds for all system constituents. The cij terms can be converted into the terms 
that contain ci only. This can be easily done by using hij notation 
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As 0
r

=∇ ijD , the above formula may be rearranged to 
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ii
j

iiijijiijijiijij cDDchDchDccD  (21) 

Here iD  stands for the sum ∑
j

ijij hD  and is called the effective constituent diffusivity. As we 

will see in the next chapter, the hij fractions are affected by the local pH value. The final shape 
of the continuity equation is  
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The continuity equation is an evolutionary equation as the left-most term is the time 
derivative of the governed quantity. One can object that there are also other terms that contain 
time-dependent terms (the velocity terms in Nabla operator). However, it should be borne in 
mind that these terms originate from forces (the electric or the pressure one) that are balanced 
by the viscous force effectively. As a result, steady state flows originate after “switching” the 
forces on immediately. Thus, the first term in the above equation is really the only one that 
vanishes when solving the stationary state problem. When diffusion is the only process that 
takes place in the system, the above equation takes the form 
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(23) 
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This governs the diffusion motion and is well-known as the second Fick’s law.  
The mass conservation law can also be analyzed from another point of view. The liquid 
density ρ may be also considered as the governed quantity 
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It is also a quantity (the mass) related to the unit volume. When constant in the space and time 
(incompressible fluid), we obtain 

0. =∇ v
r

 (25) 
This equation governs the movement of an incompressible liquid and is called the 
incompressibility condition. It is applied when dealing with the bulk flow (e.g. driven by the 
electroosmosis or by the pressure difference). The incompressibility condition is assumed to 
be satisfied when dealing with the electromigration in diluted liquid solutions. 
 

4.1.3  Electric Charge Conservation Law 
 
The continuity equation also governs the electric field distribution. The net electric charge 
density ρe is the quantity that is wished to be conserved 
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Here j
r

denotes the flux of the electric charge and is identical to the current density.  
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No sources or sinks of electric charge are considered. The question arises how the time 
derivative term can be regarded. There are at least two reasons why this term should be zero:  
1) The electroneutrality condition states that the net electric charge density must be zero. So 
must its time derivative. There is an exception that breaks this rule - the electric double layer 
(EDL). However, the EDL layer is much thinner than the dimensions considered in 
electromigration in channels of micrometer dimension. 
2) Even if there was a site of nonzero net electric charge density, its time derivative would 
equal zero when solving the stationary state problem.  
The current density is, thus, simply given by 

0. =∇ j
r

 (27) 

This is well known as the Kirchhoff‘s current law. There are, in principle, two terms that can 
contribute to the current density. The first one accounts for an external source of the electric 
field and can be described in terms of the Ohm’s law. A driving voltage forms the major part 
of electric field that forces charged particles to move along the field streamlines. 
Nevertheless, it should not be forgotten that charged particles also move along the 
concentration gradient due to diffusion. This movement also contributes to the total current 
density value. The Kirchhoff’s law takes the form 

0).().( =+∇−∇=+∇ difdif jVjE
rrr

κκ  (28) 

Here V is the electric potential caused by the external power supply, κ denotes the 

conductivity and difj
r

 stands for the diffusion current term. The conductivity is given by  
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The right-hand terms account for the contribution of H+ and OH- ions.  
The diffusion current term can be derived from the Faraday‘s law and the first Fick‘s law 
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This equation is used to assess the diffusion currents in the simulations.  
Large concentration gradients may give rise to considerable diffusion currents. Large pH 
gradients are often accompanied by strong diffusion currents as H+ and OH- are the fast ions. 
However, in most cases the driving electric field is much stronger than that generated by the 
diffusion currents. 
 

4.1.4  Macroscopic Electroneutrality 
 
As it has already been mentioned, the macroscopic electroneutrality forces the net electric 
charge density to be zero anywhere. This condition is satisfied only when all ionic forms of all 
species obey the condition 
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The fraction hij may be used to modify the above equation 
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Here Hi is called the effective constituent charge. The H+ and OH- ion concentrations are 
bound by the ionic product of water Kw and thus, the above equation takes the shape 
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The left-hand side of this equation is called the G-function. It depends on the concentrations 
of all species as well as on cH. The electroneutrality condition may, thus, simply be written as 
follows 

0),,...,( 1 =HN cccG  (34) 

The last piece of work to be done is determination of all hij fractions. The next paragraph 
makes them computable by solving the chemical equilibrium equations.  
 

4.1.5  Chemical Equilibrium Equations 
 
The model does not account for any chemical reaction that leads to a change of overall 
(analytical) concentration ci of respective species (i-th system constituent).  It means that no 
chemical reaction between k-th and l-th system constituents is allowed. On the other hand, the 
acid-base reactions within one species are considered. They are assumed to be much “faster” 
than all other phenomena encountered. Thus, we assume the acid-base equilibrium to be 
reached at any time.  
The acid Ai,j is defined as a constituent that can dissociate the proton under appropriate 
conditions 
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Here j ≤ 0 as the acids are negatively charged. On the contrary, the base Bi,j is a constituent 
that can accept the proton  
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Here j ≥ 0 as the bases are positively charged. The terms in left-hand sides of the above 
algebraic equations are called the consecutive equilibrium constants for acids and bases, 
respectively. The latter equation can be rearranged to  
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This equation is equivalent to that given for the acids. Thus, a new function K may be defined 
for acids 
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and for bases 
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The concentration and molar fraction of any ionic form of any system constituent can be 
written as 

j
Hijiij cLcc 0=  

A 
(40) 

j
Hijiij cLhh 0=  

A 
(41) 

Here ci0 and hi0 are the concentration and molar fraction of a non-charged form of i-th system 
constituent, respectively. Lij is the global constituent constant (considered either for an acid or 
for a base) that depends only on the consecutive constants. It can be expressed for acids and 
bases, respectively, as 
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The analytical concentration expression allows the fraction of the non-charged form to be 
evaluated 
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Consequently, all hij may be calculated 
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Index j was replaced by k in the denominator in order to avoid misunderstandings. The integer 
k may attain the same values as j. The electroneutrality condition (in fact the G-function) can 
be written as follows 
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This equation can be easily solved as cH is the only unknown variable (all ci values are given 
as input data). 
 

4.1.6  Momentum Conservation Law 
 
The behavior of bulk fluid motion is to be investigated. The linear momentum is the quantity 
which is to be conserved. It comprises two main properties of a moving fluid i.e. its mass and 
velocity. Rather than regarding the momentum itself the momentum related to the unit volume 
is considered. Its component in the respective direction is ρvk, (k is any of x,y,z directions). 
We get 
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We can hardly cancel the source term bk this time as it forces the liquid to move which is 
exactly what is desired. A vector composed of three such source terms is called the body force 

b
r

. Several simple rearrangements (taking the mass conservation law into account) lead to the 
equation that can be written in the vector form as 
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This is the general form of the Navier-Stokes equations. The body force can be either of 
volume or of surface character. Thus, the it can splits into two terms 
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This equation is called the Cauchy momentum equation and governs the motion in any liquid 

that conserves mass. Symmetric tensor σt  is called the stress tensor and handles the surface 

forces whereas vector f
r

accounts for any external volume force such as the gravity or the 

centrifugal force. The stress tensor can be further split into two terms, the first one being the 

pressure gradient and the second one being the gradient of so-called ℑ
t

 tensor that depends on 
the type of a liquid. The Navier-Stokes equations take the shape 
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When a simple Newtonian fluid is considered, the equations read 
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Here ⊗  denotes the outer product (a matrix is created by the multiplication between a column 
vector and a row vector) and T stands for the matrix transposition. Quantity η is called the 
dynamic viscosity. As a liquid is thought to be incompressible, the Navier-Stokes equations 
are solved along with Eq. (25).  These two equations are employed in the simulations. It 

should be mentioned that the external force f
r

 is a way to define the electroosmotic bulk 

flow.  
 

4.1.7  Energy Conservation Law 
 
There are some tasks in electrophoresis that require the temperature profile to be evaluated. 
The system quantity related to the unit volume (the energy density) is regarded as a variable 
that is governed by the continuity equation 
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Here J
r

denotes the heat flux and Q stands either for a heat source or a heat sink term (e.g. 
chemical reactions, friction). In particular, Joule heating is of the main interest here as the 
charged species migrate under the influence of the electric field.  
The internal energy is a variable that will be considered. It may be assumed to depend on the 
volume as well as on the temperature 

dTmcdVdE vT += π  (52) 
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Here Tπ  and cv denote the internal pressure (at constant temperature) and the specific heat 

capacity (at constant volume), respectively. The former one governs the interactions between 
the molecules (the potential energy contribution), the latter one describes the ability of a 
sample to assemble the internal energy when heated (the kinetic energy contribution). As the 
domain is supposed to be of constant volume, the former term cancels. The energy 
conservation law takes the form 
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The heat flux consists of two contributions – the heat diffusion and the heat convection (the 
heat radiation is neglected as a continuum is considered). The former one is given by the 
Fourier’s law of conduction 

TJdif ∇−= λ
r

 (54) 

Here λ stands for the thermal conductivity. Actually, a tensor λ
t

 should be considered rather 
than the scalar number, as, generally the heat transport can depend on direction. Nevertheless, 
when dealing with a uniform liquid (as we consider here) all non-diagonal entries vanish in 
the tensor leaving the λ as a scalar number. It should be noticed that the Fourier’s law 
resembles the first Fick’s law that governs the diffusion of matter.   
The heat convection term can be expressed as follows 
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Vector v
r

 denotes the bulk flow velocity. The continuity equation takes the form 
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and may be rearranged to the shape L 
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The incompressibility condition was used to obtain this equation. The Q term (of dimension 
power/volume) can be easily derived when the Joule heating is the only heat source and no 
heat sinks are considered 

κ

2j

V

jSxE

V

UI
Q ===

r

 

A A A A 
A A A A 
A A A A 

A 
(58) 

 
Here U denotes the electric potential difference (voltage) and I is the resulting electric current. 
The current density value j accounts for both external and internal current sources. The 
equation 
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is employed in simulations where the temperature is changed by the electric current. 
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4.1.8  Ionic Strength Correction 
 
The approach given above considers all ionic species as isolated (though charged) particles 
that do not interact with each other. The ionic strength correction takes the mutual ion-ion 
interactions into account. The ionic strength is defined as 
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It is the basic quantity that appears in the equation for the activity coefficient. In particular, 
the extended Debye - Hückel equation (Refs. 20 and 21) is employed to calculate it 
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The constants A, B, C and D are as follows 
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Here NA, k and e are the Avogadro’s number, the Boltzmann constant and the elementary 
charge, respectively. ε is the permittivity and ρloc stands for the local charge density (not to be 
confused with the net electric charge density ρe which is the macroscopic quantity and is equal 
to zero). The ion activities are given by 

)()()( IcIIa ijijij γ=  (63) 

The activity of any neutral form ai0 equals its concentration 0ic  as non-charged species are 

supposed to be unaffected by the presence of charged species. The acid-base equilibrium state 
can be expressed as 
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The constants defined as 

H
ij

ji
appa c

c

c
IjiK 1,

, ))(1,( −=−  

A 
V 

(66) 
 

OH
ij

ji
appb c

c

c
IjiK 1,

, ))(1,( +=+  

A 
 

(67) 
 

are called the “apparent constants” (in spite of the fact that they are not constant as they 
depend on the ionic strength). The ionic product is in the form 

OHHOHHOHHw ccaaK γγ==  (68) 

Similarly, the apparent ionic product of water is defined as 

OHHappw ccIK =)(,  (69) 
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The equations for apparent constants and the apparent ionic product of water are included in 
the electroneutrality condition and solved together as the G-function. This allows the 
corrected concentrations cij(I) to be determined. 
The ions influence each other also when they move in the electric field. Thus, the mobilities 
and the conductivity are affected by mutual interactions among charged species. The classical 
Onsager - Fuoss theory (Refs. 20, 21 and 22) is employed to describe this effect. It is based on 
the assumption that all charged species are retarded by oppositely charged ions in their 
neighborhood.  
Let us rewrite ij → f  in order to have the next equations simpler. Let M be the total number of 

charged species, let f’ = 1, …, M. The corrected mobility )(Iu f can be calculated as  
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Here, the constants B1 and B2 are defined as 
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and Cn stands for the binomial coefficient 
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The )(n
fR  coefficients are calculated as follows: let us assemble a square matrix (of M x M 

type) called H whose entry Hjk is given by 
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Here jkδ denotes Kronecker delta. Furthermore, let us create a column vector )0(R
r

(of M x 1 

type) 
T
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Its  f-th component is defined as follows 
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Consequently, the matrix multiplication is applied to )0(R
r

 and vector )1(R
r

 is constructed  
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Here, E stands for a unit matrix of M x M type. The vector )1(R
r

is the first member of series 
whose general p-th element can be expressed as 
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The vectors )0(R
r

,…, )5(R
r

 are assembled in this order and their f-th components )0(
fR ,…, )5(

fR  

are used to calculate the corrected mobility )(Iu f . Thus, )(Iuij of any ionic form of any 

species can be determined using this approach. Finally, the corrected conductivity is given by 

The corrected conductivity can possibly affect the electric field distribution and all other 
phenomena encountered.  

 
4.1.9  Transformation of the Variables into the Cylindrical Coordinates  
 
There are several problems in electrophoresis that possess a 
symmetry. This feature can help one to save the 
computation time as the computational domain or even the 
space dimension can be reduced. Let us take a very simple 
capillary arrangement as an illustrative example. The 
capillary is supposed to be a cylinder with a radius r and a 
height z. It can be formed by rotation of the rectangle (r.z) 
around the z axis (Fig. 2).  
The cylindrical symmetry allows all system parameters to 
be independent of the angle φ.  

Let us consider a scalar ),,( zyxAA =  and a vector variable  
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 that 

stand for all system properties used in calculations. The 
transformation of coordinates searches for the variables 
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The following relations are employed 
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The symmetry allows 0=
∂
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ϕ
A

 and 0
r
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∂
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 to be obeyed. The general continuity equation 

takes the shape 
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Here Jr and Jz denote the fluxes of a quantity A that is governed by the general continuity 

equation. The term rJr /  has no counterpart in the continuity equation stated in the Cartesian 

coordinates.  
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Fig. 2 Cylindrical coordinates 
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The mass conservation law has the form 
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Here vi,r and vr denote the system constituent and bulk-flow velocity component in r-
direction, respectively.   
The incompressibility condition reads 
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The electric field distribution is given by  
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Here, the term jdif,r  denotes the diffusion current vector component in r-direction. 
The Navier-Stokes equations are transformed into the shape 
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and the energy conservation law obtains the form 
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The G-function and the equations dealing with the ionic strength correction do not require any 
transformation. 

 
4.2  Boundary Conditions 
 
4.2.1.  Boundary Value Problem 
 
The subspace Ω (called the computational domain) is the region where a system quantity A is 
governed by a differential equation. The boundary conditions (BCs) are the equations that 
govern the boundary ∂Ω. Searching for the solution in Ω and ∂Ω is called the boundary value 
problem. If there were no boundary conditions stated to the governing equation, it would be 
impossible to determine the value of the system quantity in Ω and ∂Ω. Even when the 
governing equation is not a differential one (e.g. electroneutrality), its BCs have to be defined. 
Several types of boundary conditions may be stated. 
In fact, the BCs are not the only conditions that constrain the solution. For instance, when the 

cH value is to be calculated, we a priori search for +∈ RcH . However, CcH ∈  may be 

obtained when wrong solving parameters are chosen. However, complex solution is not 
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physically possible. Such a solution must be rejected and the task recalculated with proper 
solving parameters.  
 

4.2.2  Dirichlet Boundary Condition  
 
The Dirichlet BC refers to the condition that fixes A value on a part of the system boundary 

(usually called the Dirichlet boundary part DΓ ) 

Ω∂⊂ΓΓ∈∀= DDataftaA ),(),(  (89) 

Here a is a boundary point and f denotes a given function defined on DΓ . The Dirichlet BC 

usually forces the boundary value to be maintained in time. The Dirichlet BC stands for a big 
reservoir that would be connected to the system via the corresponding boundary. 
There are some situations where a time-dependent Dirichlet BC is necessary. A time-
dependent function f is employed in such cases and the boundary value changes in time.  
 

4.2.3  Neumann Boundary Condition 
 

Let J
r

 be the flux of the governed system quantity A. The Neumann BC (defined on NΓ  - the 

Neumann boundary part) determines the rate of change rather than the A value itself. In 1ℜ  it 
can be written as 
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Here g is a given function defined on NΓ  and b is arbitrary Neumann boundary part point.  

In more-dimensional space the BC takes the shape 
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The left-hand term denotes the derivative of A with respect to the boundary outer normal 

vector n
r

. This formulation is rather cumbersome as the governed quantity is in the Nabla 
operator. In practice, it is more convenient to formulate the Neumann BC as 
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If g = 0 the BC takes the shape 

0),().( =tbJbn
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 (93) 

This is what is used when the boundary part is wished to be “impermeable” for A. 
 It should be mentioned that the Neumann BC has to be consistent with the equation that is 

stated to. In particular, the flux vector J
r

 is the only variable that may by governed the 
Neumann BC. The same vector variable emerges in the corresponding governing equation. A 
chapter “Weak Formulation” is devoted to dealing with the boundary conditions when solving 
the corresponding differential equation.  
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4.2.4  Mixed Boundary Condition 
 
This BC is applicable for describing the 
boundary behavior when various types of 
boundary parts are necessary. The entire 

system boundary is split into the subsets DΓ  

and NΓ  ( ND ΓΓ=Ω∂ U ) (see Fig. 3). Thus, 

there is a part of the boundary part where the 
quantity value is maintained whereas the 
rest of the system boundary has a prescribed 
flux value. The mixed BC is expressed as  
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rr

 (95) 

 

4.2.5  Newton Boundary Condition 
 
This type of BC is a linear combination of the Dirichlet BC and the Neumann BC. Unlike the 
previous case, it may operate on the entire system boundary simultaneously. It is defined as  

Ω∂⊂ΓΓ∈∀=+ ++ DNDNatahtaJantaA ),(),().(),(
rrβα  (96) 

Here h is a function defined on Ω∂  and α,β are non-zero real functions.  

 
4.2.6  Boundary Conditions Imposed on the Mass Conservation Law 
 
Several types of boundary conditions are used when dealing with the mass conservation law. 

Let us consider a general boundary part Ω∂⊂Γ  ( ND Γ=Γ∨Γ=Γ ). When desired to be 

impermeable, the zero Neumann BC is usually imposed. In other words, the flux vector is 
perpendicular to the boundary outer normal vector and no substance may penetrate it. The 
zero Neumann BC can be expressed as 

[ ] Niiiiiii atavtactavtactaDtactactaDan Γ∈∀=++∇−∇− 0),(),(),(),(),(),(),(),().(
rrr

 (97) 

There are several ways to express the BC when Γ is permeable. The Dirichlet BC is often 
employed 

Dii ataftac Γ∈∀= ),(),(  (98) 

Here fi is usually a time-independent function as a constant concentration is required to be 
maintained on the boundary.  
A non-zero Neumann condition of various shapes can also be imposed on the permeable wall 

NatagtaJan Γ∈∀= ),(),().(
rr

 (99) 

A function g ≠ 0 determines the flux that passes through the boundary. Several smart 
functions may be employed here, such as  

),().(),( taJantag
rr=  (100) 

 

Fig. 3 Illustration of a mixed BC. The system 

boundary is divided into two parts  
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This BC is tricky as the quantities cancel each other (the so-called nothing-doing condition) 

Na Γ∈∀= 00  (101) 

Another condition that may be used here is defined as 

[ ]),(),(),(),().(),( tavtactavtacantag iii

rrr +=  (102) 

This BC forces all non-diffusion terms to cancel each other on the boundary 

[ ] Niiii ataDtactactaDan Γ∈∀=∇−∇− 0),(),(),(),().(
r

 (103) 

The g function can be also defined as 

[ ]),(),(),(),(),(),(),(),().(),( tavtactavtactaDtactactaDantag iiiiiii

rrr ++∇+∇=  (104) 

and the BC acquires the form 

[ ] Niiii ataDtactactaDan Γ∈∀=∇−∇− 0),(),(),(),().(2
r

 (105) 

The three approaches discussed above eliminate the convection and migration terms. The only 
term that remains is diffusion. This possibly eliminates numerical problems that can often 
develop on the boundaries in time.  
Of course, there are more BCs that can be stated to the mass conservation law. Trial-and-error 
simulations are often performed in a hope to find the appropriate set of boundary conditions 
capable of solving the continuity equations without unfavorable numerical problems.  
 

4.2.7  Boundary Conditions Imposed on the Electric Field Distribution Law 
 
The electrophoretic runs can be conducted in two electric driving modes: (1) constant voltage 

mode and (2) constant current mode. The former mode is usual when separating the charged 
species or determining their mobilities. The latter one is often employed in the lab-on-a-chip 
electrophoretic runs.  
Both the constant current and constant voltage mode can be handled by the present 
approaches. This part of the presented thesis shows that the BCs are not only the 
complementary formulae stated to the Kirchhoff‘s current law. In fact, the electric modes are 
governed by the BCs.   
Let us take a simple rectangle as an illustrative example of the computational domain (Fig. 4). 
The system boundary consists of two horizontal impermeable walls (denoted collectively as 

WΓ ) and two vertical boundaries that are identical with the electrodes (RΓ  and LΓ ). The entire 

computational domain is filled with an electrolyte.  
 
The constant voltage mode is easier to 
be implemented as the simple mixed 
BC can be employed. The electric 
potential values on the electrodes attain 
the values that are determined by the 
functions f and g (Fig. 4). Thus, the 
electrodes are the Dirichlet boundaries. 
The driving voltage is usually constant 

 
Fig .4 Constant voltage mode arrangement 
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in time but there are some tasks that require time-dependent potentials to be imposed. The 
zero Neumann BC is imposed on the non-conducting wall. The final set of BCs reads 

 
The constant current mode is more 
difficult to be arranged. The 
conductivity often tends to change in 
time as the ions move in the electric 
field. This means that the electrode 
potentials must change in time in order 
to maintain the constant current value. 
The time-dependent Dirichlet BC is 
inapplicable here as conductivity changes are a result of electromigration and are 
unpredictable. The conductivity-dependent Dirichlet BC would seem to solve the problem. 
Unfortunately, this BC causes serious computational problems that make it useless.  
 
(I) Neumann BC set is more appropriate to be used here (Fig. 5). The following Neumann BC 
set is employed here  

RR ajtajan Γ∈∀=),().(
vr

    (right electrode) (109) 

LL bjtbjbn Γ∈∀−=),().(
vr

    (left electrode) (110) 

WW ctcjcn Γ∈∀= 0),().(
vr

   (non-conductive wall) (111) 

Here j determines the electric current density on the electrodes. However, a set of pure 
Neumann BCs lacks a point with a given potential value. This causes problems in the 
calculation of the electric field calculation and no unambiguous solution can be found. These 
troubles may be overcome by stating the so-called point condition that is a condition stated to 
the existing boundary condition. It is usually sufficient to define it at one point 

WLRjidtdfdV ji ,,,),()( 22 =ΓΓ=Ω∂Ω∂∈= I  (112) 

Arbitrary function f makes the electric field distribution able to be calculated but does not 
affect the required electric current density value.  
 
(II) An alternative BC set was found. It 
also allows the constant current electric 
field distribution to be calculated. It 
employs the mixed BC. No point 
condition is required here as a g 
function provides a fixed potential 
value that prevents numerical problems 
from arising (Fig. 6). The BCs are 

RaaftaV Γ∈∀= )(),(    (right electrode)  (106) 

LbbgtbV Γ∈∀= )(),(    (left electrode) (107) 

Wctcjcn Γ∈∀= 0),().(
rr

   (non-conductive wall)  (108) 

 
Fig .5 Constant current mode arrangement I 

 
Fig .6 Constant current mode arrangement II 
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defined as follows  

RR ajtajan Γ∈∀=),().(
vr

 (Neumann BC, right electrode) (113) 

LbbgbV Γ∈∀= )()(  (Dirichlet BC, left electrode) (114) 

WW ctcjcn Γ∈∀= 0),().(
vr

(Neumann BC, non-conductive wall) (115) 

The current density value is determined by the Neumann BC imposed on the right electrode. 
Several tasks were solved and their results investigated in order to reveal possible differences 
between the two mentioned BC sets for constant current mode. As no differences were found, 
the two BC sets seem to be equivalent.  
 

4.2.8  Boundary Conditions Imposed on the Electroneutrality Equation 
 
As this electroneutrality equation is algebraic, its BC may be of the same shape 

DataG Γ∈∀= 0),(  (116) 

regardless of whether the boundary is wished to be permeable or impermeable (it is the zero 
Dirichlet BC by definition).  
The Neumann BC may also be employed 

[ ] 00),().( =Γ∈∀=∇ ξξ NH atacan
r

 (117) 

Both BCs exhibit the same results.  

 
4.2.9  Boundary Conditions Imposed on the Momentum Conservation Law 
 
The classical Dirichlet boundary condition is used when the bulk flow value is known on the 
boundary  

This BC is called the inflow/outflow velocity condition as it is predominantly used to for the 
open boundaries.  
The no slip condition forces the velocity to attain the zero value on the boundary 

0),(0),(0),( =∧=∧= tavtavtav zyx  (120) 

Dzyx avvvtav Γ∈∀== 0),,(),(
rr

 (121) 

This BC is imposed when dealing with pressure-driven flows.  
The pressure condition defines a certain pressure p0 on the boundary. It is given by 

[ ] N
T aantaptavtavEtapan Γ∈∀−=⊗∇+⊗∇+− )(),()),(()),((),().( 0

rrrr ηη  (122) 

The slip boundary condition forces the liquid to flow perpendicularly to the boundary normal 
vector 

[ ] N
T aantavtavEtapattavan Γ∈∀=⊗∇+⊗∇+−∧= 0)(.)),(()),((),().(0),().(
rrrrrr ηη  (123) 

),(),(),(),(),(),( taftavtaftavtaftav zzyyxx =∧=∧=  (118) 

Dzyxzyx ataffffvvvtav Γ∈∀=== ),(),,(),,(),(
rr

 (119) 
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Here t
v

denotes the boundary tangent vector at a given point. This boundary condition is used 
for defining the electroosmotic flow and also when dealing with symmetrical problems in 
which no flux can pass the symmetry axis.  
The normal flow condition constrains the velocity vector to be perpendicular to the boundary 
tangent vector 

[ ] N
T aantavtavEtapantavat Γ∈∀=⊗∇+⊗∇+−∧= 0)(.)),(()),((),().(0),().(
rrrrrr

ηη  (124) 

The neutral boundary condition does not control the motion direction with respect to the 
boundary 

[ ] N
T aantavtavEtap Γ∈∀=⊗∇+⊗∇+− 0)(.)),(()),((),(
rrr ηη  (125) 

An inclined flow through the boundary is usually governed by this BC.  
 
 

4.2.10  Boundary Conditions Imposed on the Energy Conservation Law 
 
The Neumann BC is used on a boundary part where a certain heat flow is required 

Np atavtaTctaTtaJtaJtaJan Γ∈∀+∇−=∧=− ),(),(),(),(),(),().( 0

rrrr ρλ  (126) 

Here, scalar 0J  defines the flux value that passes through the boundary either by diffusion or 

by convection. When no flux is allowed to pass the boundary part, the above equation reduces 
to the shape 

NataJan Γ∈∀=− 0),().(
rr

 (127) 

This equation is called the insulation wall condition.  
Dirichlet BC is imposed when the temperature is wished to be constant 

DataTtaT Γ∈∀= ),(),( 0  (128) 

This is what is called the constant temperature condition.  
There are some tasks that wish the computational domain to be divided into several domain 
parts (subdomains): Ωk,   k = 1, … N. Thus, new (internal) boundaries come into existence. 
When wished to be permeable, the BC takes the shape 

kkjiijijji aJaJaJan Ω=ΩΩΩ=ΓΓ∈∀′=− UI
rrr

))()().((  (129) 

Here iJ
r

and jJ
r

denote the heat fluxes that act on the internal boundary Γij from adjacent 

subdomains Ωi and Ωj, respectively. The BC is called the heat flux continuity condition when 
J’ = 0.  The heat flux discontinuity condition refers to J’ ≠ 0. 
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4.3  Weak Formulation  
 
This chapter brings an insight into the way 
of solving the differential equations by 
means of the finite element method.  
Let us consider a simple computational 

domain Ω  (Fig. 7) with a Neumann (NΓ ) 

and a Dirichlet ( DΓ ) boundary part. The 

boundary is collectively denoted Ω∂ . The 
mass conservation law may serve as an 
example of a governing equation. Its 
strong formulation reads 

),0(),(),(.
),(

TtXtXQtXJ
t

tXc
ii

i ∈Ω∈∀=∇+
∂

∂ r
 

(130) 

The source Qi term is not cancelled this time in order not to lose a general shape of the 
equation. The source term may represent the chemical reaction term. The task must be 
completed with the boundary conditions 

D
D
ii aacac Γ∈∀= )()(  (131) 

Ni bbgbnbJ Γ∈∀= )()().(
rr

 (132) 

as well as with the initial condition 

Ω∈∀== XXctXc ii )()0,( 0  (133) 

here 0
ic  denotes the concentration at zero time.  

The concentration ic  is assumed to belong to  

[ ] ))(,,0( 2,12 ΩWTL   (134) 

Here )(2,1 ΩW denotes the space of “well-behaved” functions 

{ }∫∫ ΩΩ
+∞<∇+∃∇∀=Ω dVcdVcccW iiii

222,1 ,:)(   
A 
(135) 

The left-hand integral constrains the concentration value. The right-hand one treats the 
concentration gradient in a similar way. 

Let us take a smooth function )(0 Ω∈ ∞Cϕ . Here, the subscript 0 denotes that φ is zero on DΓ . 

The governed quantity must also belong to )(0 Ω∞C  . As ci need not necessarily attain zero 

value on the Dirichlet boundary part, a new (shifted) variable is defined 

)(~0)()()(~~
0 Ω∈⇒Γ∈∀=−=⇒−= ∞Ccaacacacccc iD

D
i

D
ii

D
iii  (136) 

Let us multiply the strong formulation by φ and integrate the product over Ω  

∫∫∫ ΩΩΩ
=∇+

∂
∂

dVQdVJdV
t

c
ii

i ϕϕϕ
r

.  
(137) 

 
Fig. 7 Computational domain 
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This is what is called the weak formulation of the equation. The function φ is usually called 
the test function. The Green’s identity may be employed to modify the second integral in the 
left-hand side of the equation 

∫∫∫∫ ΩΩΩ∂Ω
=∇−+

∂
∂

dVQdVJdSnJdV
t

c
iii

i ϕϕϕϕ ..
rrr

 
A A A A A 
A 
(138) 

Thus, the weak formulation has one invaluable benefit over the strong one: it does not contain 
the governed quantity in nabla operator. This makes it easier to be solved.  
The domain boundary is divided into two parts. Thus, the above equation takes the shape 

∫∫∫∫∫ ΩΩΓΓΩ
=∇−++

∂
∂

dVQdVJdSgdSnJdV
t

c
iii

i

ND

ϕϕϕϕϕ ..
rrr

 
A A A A A 
A 
(139) 

Here, the Neumann boundary condition formulation was employed. The Dirichlet term 

vanishes as φ attains zero value on DΓ  

∫∫∫∫ ΩΩΓΩ
+∇+−=

∂
∂

dVQdVJdSgdV
t

c
ii

i

N

ϕϕϕϕ .
r

 
A A A A A 

A 
(140)  

The dependence on the time may either be handled by integrating the equation over time 
domain (very weak formulation) or by the finite difference method (FDM). The latter 
approach is applied here. 
There are two ways to employ the finite difference method. The first one is called the explicit 

method and can be described by the formula 

∫∫∫∫ ΩΩΓΩ

+

+∇+−=
−

dVQdVJdSgdV
h

cc N
i

N
i

N
N
i

N
i

N

ϕϕϕϕ .
1 r

 

A A A A A 
A 

(141)  A  

Here h stands for the discrete time step that approximates the time derivative. The quantities 
N
ic and 1+N

ic  denote the concentrations at N - th and N+1 - th time level, respectively. Notice 

that the above equation is time-independent. It can be rearranged to 

∫∫∫∫∫ ΩΩΓΩΩ

+ +∇+−= dVQhdVJhdSghdVcdVc N
i

N
i

NN
i

N
i

N

ϕϕϕϕϕ .1
r

 
A 
(142) 

Here, all right-hand side terms denote the variables at N – th time level. This approach allows 
1+N

ic  to be directly calculated. The first computational step employs the initial condition 0ic  to 

obtain 1
ic .  

The implicit method employs the formula  

∫∫∫∫ Ω

+

Ω

+

Γ

+

Ω

+

+∇+−=
−

dVQdVJdSgdV
h

cc N
i

N
i

N
N
i

N
i

N

ϕϕϕϕ 111
1

.
r

 

A A A A A 
A A A A A 
(143) 
A  

Here, all right-hand side terms denote the variables at N+1 – th step. Thus, the equation cannot 

be easily rearranged to obtain 1+N
ic . It must be solved by means of iterative numerical 

methods. As the latter method is known as being of greater numerical stability, it is employed.  
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4.4  Inspection of Electromigration Behavior in some Electrophoretic Configurations  
 
4.4.1 Electrolysis of Background Electrolyte in Agilent 3DCE Electrophoresis 
 

4.4.1.1  Geometry Arrangement 
 
We inspect electromigration in the setup in the Agilent  
3DCE electrophoresis equipment. A cylindrical vessel is 
filled with the electrolyte solution (Fig. 8). A separation 
capillary is embedded in a metal electrode and both are 
immersed in the solution. The height of the flask is 25 mm 
and its radius is 3 mm. The length of the electrode part 
immersed in the flask is 10 mm. The inner and the outer 
diameters of the capillary are 75 µm and 365 µm, 
respectively. The inner and the outer diameters of the 
electrode are 410 µm and 1000 µm, respectively. Thus, there 
is a gap between the capillary and the electrode filled with 
the electrolyte solution. The electrode base – capillary inlet 
distance is adjustable and denoted as x. The outer electrode 
edge is curved with the radius of 250 µm. The inner electrode 
edge and both capillary edges are curved with the radius of 
25 µm.  
 

4.4.1.2  Symmetry 
 
As the geometry is of the cylindrical shape, the cylindrical 
symmetry may be employed. A 2-D half cross-section is 
considered as a computation domain. This approach enables 
this configuration to be solved as a 2-D problem, as the angle 
coordinate need not be considered, which saves the 
computational time. Consequently, all governing equations 
are in the form employing the cylindrical coordinates.  

 
4.4.1.3  Further Assumptions 
 
No ionic strength correction is considered in order to save the 
computational time. Thus, the calculation employs the ionic 
mobilities and the pK values as constants extrapolated to zero 
ionic strength. The temperature is assumed to be constant 
(298.15 K) as no thermal effects are supposed to play any 
significant role.  
 

 

Fig.i8 The 3-D electrode 
image. x denotes the capillary 
inlet – electrode base 
distance. The capillary 
(orange) is embedded in the 
electrode (silver).  
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4.4.1.4  Buffer Composition 
 
At zero time, the computational domain is filled with the background electrolyte of uniform 
composition. In particular, sodium and acetic acid are chosen as the buffer components. No 
analyte is considered. Both sodium and acetic acid are regarded as weak electrolytes. Tab. 1 
gives the complete information about buffer parameters (the ionic mobilities and the pK 
constants are taken from the PeakMaster database).  
 
Tab. 1 

Species c/(mM) u/e.u. pK(+1) pK(-1) 

Sodium 10 51.9 13.7 - 

Acetic acid 20 42.4 - 4.756 

e.u. - electrophoretical unit 

 

The upper capillary end UCEΓ  (see Fig. 9) is the only 

part of the system boundary that permeates the 
buffer components. Thus, the constant Dirichlet BC 
is imposed to the continuity equations here. The BC 
approximates a very long capillary filled with the 
electrolyte of uniform composition that is equal to 
that at zero time. The rest of the system boundary 
parts are impermeable for the buffer components 
and the zero Neumann BC is imposed here.  
 

4.4.1.5  Metal Electrode 
 
The metal electrode has positive potential and, thus, 
the constant Dirichlet BC is stated to the electric 
field distribution equation here. The upper capillary 
end forms the counter-electrode with zero potential 
(all simulations are performed under the constant 
voltage mode). The rest of the system boundaries 
are assumed to be ideally non-conductive and, thus, 
the zero Neumann BC is imposed here.   

 
4.4.1.6  Modifications 
 
As it has already been mentioned, the electrode base 
– capillary inlet distance is adjustable. This 
parameter is allowed to attain eight respective 
values: -1, 0, 1, 2, 3, 5, 8 and 11 mm. In the first 
configuration (x = -1 mm), the capillary is hidden  

 

Fig.i9 Three particular geometry 

arrangements. The symbols denote the 

names of the boundaries: 

ΓS - symmetry axis 

ΓCIW - capillary inner wall 

ΓUCE  - upper capillary end 

ΓLS - liquid surface 

The most-right figure shows the 

computational mesh employed.  
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in the electrode. The second one (x = 0 mm) is the situation where the capillary end is at the 
same level as the electrode base. The rest of the geometries consider the capillary sticking out 
of the electrode base.  
The capillary electric field strength is another variable parameter. It may attain five respective 
values: 5.55, 27.7, 55.5, 85.0 and 125 kV/m (determined at t = 0).  
Thus, forty particular simulations are to be carried out and their results analyzed.   
 

4.4.1.7 Inspection of Electrolysis Phenomena 
 
The main result of this part of the thesis is the study of rate of changes that occur in the 
electrolyte composition under various conditions, especially with various length of the 
capillary sticking out of the electrode. As the metal electrode is positively charged, the acetic 
acid concentration is supposed to increase in its vicinity. As its concentration is maintained at 
the upper capillary end by the constant Dirichlet BC, its total amount should increase in time. 
On the other hand, the positively charged sodium is assumed to depart from the electrode 
vicinity and escape the domain through the constant Dirichlet boundary. These two 
phenomena are believed to decrease the pH value in the electrode vicinity and, consequently, 
in the capillary. The extent of these phenomena is to be investigated.  

 
4.4.1.8 Results 
 
All simulations really show a decrease in the buffer pH value in time (see Fig. 10).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.i10 The pH value in time. Conditions: electric field strength 55.5 kV/m, xi=i5 mm. The 

arrow denotes the time when pH = 4.70 is reached.   
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The initial pH value of the BGE is 4.76. There are several possibilities to quantify the extent 
of its change. The pH = 4.70 is chosen to depict the situation where the buffer pH value starts 
to differ from that at t = 0. The pH value is determined at the centre of the capillary inlet (see 
the blue arrow in Fig. 8).  
The time required to reach this change is evaluated. The time is strongly affected by the 
geometry arrangement as well as by the capillary electric field strength (Fig. 11). 
  
Two particular configurations (with x = -1 mm and x = 1 mm) were chosen to be analysed in 
detail.  
 
Hidden capillary arrangement x = -1 mm.  

This situation may happen when a mistake is done in the capillary preparation. The electric 
field in the capillary region is highly homogenous (Fig. 12) whereas the rest of the domain is 
of heterogeneous field. As the capillary cross-section is much smaller than the electrode 
surface, the capillary field strength is several orders of magnitude stronger than that beyond it.  
There is a small region at the inner electrode surface with a high electric field. The 
streamlines tend to concentrate here and touch the inner electrode surface. The rest of the 
electrode surface is exposed to a very weak field that cannot cause any particle movement in 
this region.  
 
This experimental setup is far away from being desirable as there is almost no distance 
between the electrode inner space and the capillary base. The electrochemical reactions alter 
the pH value strongly in the close neighborhood of the capillary region (Fig. 13). Thus, a 
buffer of altered composition enters the capillary immediately. In particular, only two seconds 
are required to change the pH value. 
 
Capillary arrangement with x = 1 mm.  
This experimental setup may be encountered when a too short capillary tip sticks out of the 
electrode. Similarly to the former case, the capillary field strength attains a high value        
(Fig. 14). However, a weak electric field is at the electrode surface and, thus, the 
electrophoretic movement is of lesser and the diffusion is of higher significance.  
 
The capillary wall prevents the buffer altered by electrolysis to be passed straightforward into 
the capillary region (Fig. 15). Thus, a much longer time is required to induce the pH change 
here. Under these circumstances, the analysis may be carried out without undesirable effects.  
 
Capillary arrangements with x = 2 - 11 mm. 

These arrangements have longer electrode base – capillary inlet distance so the time to cause 
the pH change in the capillary inlet is also longer. The spatial hindrance is very effective. This 
is useful to be realized when long separation times are required.  
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Other dependence worth studying is the way the capillary field strength affects the time of the 
pH change. Five respective field strength values try to encompass the ones used in the real 
experiments. The stronger the imposed field is, the shorter times are required (Fig. 11).  
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Fig. 11 Times required to cause the pH change (from 4.76 to 4.70) for eight geometries and 

five electric fields. Longer capillary tip sticking out of the electrode requires longer time to 
the pH change. Strong electric field tends to shorten the time. 
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Fig.i12 The arrangement with xi=i-1 mm. The field streamlines (left picture) and the field 

strength value (right picture) is pictured. Capillary field strength: 55.5 kV/m (blue colour 

denotes the strong electric field to be found in the capillary). 

 

 
 
Fig.i13 The arrangement with xi=i-1 mm. The pH profiles at 1.2 s (left picture) and at 2.3 s 

(right picture) are depicted. Very short time is sufficient to alter the pH value. Capillary field 

strength: 55.5 kV/m. 
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Fig.i14 The arrangement with xi=i1 mm. The field streamlines (left picture) and the field 

strength value (right picture) are shown. Capillary field strength 55.5 kV/m. 

 

 
 
Fig.i15 The arrangement with xi=i1 mm.  The pH profiles at 50 s (left picture) and at 500 s 

(right picture) are depicted. Long time is necessary to cause the pH change. Capillary field 

strength 55.5 kV/m. 
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4.4.1.9  Electroosmosis 
 
The previous analysis did not account for influence of the 
electroosmotic movement. It may be, however, also taken into 
account. When an uncoated silica capillary is employed, the 
electroosmotic velocity vector has upward z – direction in the 
capillary region: it flows up in the capillary, (a coated capillary 
with the reversed EOF vector can also be analyzed, of course). 

The bulk velocity vector can be determined on CIWΓ  

CIWEOF a
z

aV
auav Γ∈∀

∂
∂−= )

)(
)(,0,0()(

r
 

A 
(144) 

 
Here uEOF is the electroosmotic flow mobility. This is a BC stated 
to the Navier-Stokes equations. There are a lot of situations 
where this BC formulation causes computational problems. This 
is not striking as it contains the electric potential. It is governed 
by another differential equation (the electric field distribution) 
that is solved along with the Navier-Stokes equations.  
This problem can be overcome by stating the electroosmotic 
velocity instead of the mobility. This approach may be used 
without inaccuracies when no large conductivity changes evolve 
in time. As the simulations focus on slight pH changes, this 
assumption is supposed to be fulfilled.   
The zero normal flow condition is imposed on the symmetry axis 

SΓ  (no liquid may pass through it)  

Sr bbv Γ∈∀= 0)(  (145) 

The normal flow BC is imposed on the liquid surface LSΓ as well 

as on the upper capillary end UCEΓ . There are two ways how the 

bulk flow can be handled on the rest of the boundary parts (the 
vessel base and its vertical wall, the electrode and the outer 
capillary surface). In particular, the slip condition and the no slip 

condition may be employed. The former one constrains the 
velocity vector to be perpendicular to the boundary normal vector 
and the latter one forces the velocity value to be zero. Both BC 
sets are investigated for several values of electroosmotic mobility 
(or, rather velocity) values. 
Particularly, the EOF mobilities of 0, ±1, ±2, ±3, ±4, ±5, ±10, 
±15, ±20, ±25, ±30, ±35, ±50, ±100 and ±200 e.u. are analyzed. 
The geometry arrangement with xi=i5imm and of the field 
strength of 55.5 kV/m is presented as an illustrative example.  

 
 
Fig. 16 The bulk flow 

streamlines tend to 

create vortices in the 

vessel. The homogenous 

field is in its upper part. 

The field streamlines may 

only cross through the 

boundaries UCEΓ  and LSΓ . 

Simulating Conditions:                

uEOF = 50 e.u, no slip BC 

is imposed on the rest of 

system walls. 
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In both cases of BC sets, the bulk flow 
velocity field was investigated. At first 
sight, the velocity size and its direction 
are rather complicated in the vessel 
(Fig. 16). The velocity streamlines tend 
to create vortices at the capillary inlet as 
well as close to the electrode base. On 
the other hand, the velocity field has a 
homogenous profile in the upper part of 
the vessel as well as in the capillary 
region (Fig. 17).  
 
 
 
 
 
 
 
 
Fig. 17 EOF-driven bulk flow velocity 

field. Arrows indicate the flow vector 

length and orientation. The velocity 

field of a uniform profile is in the 

capillary. 
 

 
The liquid is supposed to be pumped from the vessel into the capillary when positive EOF 
mobility values are considered. This phenomenon may possibly decrease the time required to 
alter the pH value in the capillary. Conversely, when a capillary with reversed EOF is 
employed, the EOF velocity vector is of opposite direction. Under such circumstances, a 
“fresh” buffer enters the domain through the upper capillary end. This slows down or prevents 
the pH changes from arising. 
Low EOF flowing up in the capillary causes small changes in the time required to attain the 
pH change due to electrolysis. On the other hand, even small values of the reversed EOF 
mobility strongly suppress the pH changes in the capillary, which is favorable. The pH value 
does not change at all when reversed EOF of mobility greater than 5 e.u. is considered      
(Fig. 18). 
 
 
 
 
 



 52 

 
Fig.i18  The pH value in the capillary tip when the EOF is considered. Simulation conditions: 

field strength 55.5 kV/m, x = 5 mm 

 

No significant difference between the slip and the no slip condition is observed (Fig. 19). This 
suggests that the velocity field in the capillary is independent of that in the vessel region.  
The electrode immersion in the vessel is also varied. All formerly performed simulations 
employed the arrangement with the electrode immersion of 10 mm (let us call it the shallow 
arrangement). The deep arrangement (the immersion of 15 mm) is also considered (Fig. 20). 
There is a good motivation for investigating the deep arrangement. As the liquid departs the 
vessel (when positive EOF values are considered), there must be a region where the 
electrolyte concentration is decreased. It is in the vicinity of the liquid surface as it is the only 
boundary part of the vessel where the normal flow BC is imposed. It is worth noticing that 
this decrease is of a purely artificial origin. It should be investigated whether it can cause 
some artificial pH changes. The shallow arrangement seems to be more sensitive to them as 
the capillary inlet is closer to the liquid surface. If there were any discrepancies between the 
arrangements results, the artificial effects would be significant.  
The times needed to attain nearly the same values for both electrode immersion values and for 
all EOF mobility values (results not shown). It suggests that no artificial effects are supposed 
to play any substantial role here.  
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Fig..19 The two 

BC sets reveal   

no significant 

difference in 

times required to 

cause the pH 

change. 

 
 
 
 
 
 
 
 
 
 

 

Fig. 20 The shallow and the deep electrode 

arrangement (xi=i5imm, uEOFi=i50ie.u.). 

The sodium concentration profile is 

pictured at t = 4000 s. The deep electrode 

arrangement reveals the separation of the 

artificial (at LSΓ ) and the natural (at the 

electrode) concentration gradients. 
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4.4.2  Electromigration Behavior in Chip Electrophoresis Structures 
 
As it has already been mentioned, the lab-on-a-chip techniques are of rising interest nowadays 
as they offer a lot of benefits over conventional approaches. There are several chip structures 
that can be investigated by means of computer simulations. One of them is the channel 
intersection that serves as the injection site for the samples to be separated. This part of the 
thesis focuses on the injection and the analysis of four virtual analytes by gel electrophoresis 
in the lab-on-a-chip device.  
 

4.4.2.1  Geometry Arrangement 
 
The computational domain is formed by two 
channels perpendicularly crossing each 
other (Fig. 21). The channels are of same 
width (50 µm). The vertical one serves as 
the injection channel whereas the horizontal 
one is employed as the separation channel.  
The channel intersection is of the main 
interest as most of the substantial processes 
take place here. The intersection has round 
corners (radius 10 µm) as it is in the reality 
(this also prevents numerical problems from 
arising in computation). The four arms are 
denoted U, R, D, L according to their 
position. The upper one (U) serves as the 
sample reservoir whereas the lower one (D) 
is the sample waste. The left (L) and right 
(R) arm are the buffer inlet and outlet, 
respectively. The detector is placed in the 
outlet channel 2 mm downstream from the 
channel intersection. The open boundaries 
are called ΓU, ΓR, ΓD, ΓL and the rest of the 
boundary is denoted Γ0. 
 

4.4.2.2  Assumptions 
 
The third dimension is not considered as the 
channel depth is supposed to be uniform 
and, thus, a 2-D model is employed. No 
ionic strength correction and thermal effects 
are considered.   
 

 

Fig. 21 The injection cross geometry 

 
Fig. 22 The gel region (black colour) 
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4.4.2.3  Separation Environment and Analytes 
 
The left and the right arms of the injection cross are filled with the BGE containing 
hydrophilic gel as a sieving medium (Fig. 22). The upper and the lower arms are filled with 
free BGE. The BGE is composed of two constituents: Na+ and TAPS 
(tris(hydroxymethyl)methylaminopropanesulfonic acid). They are of a uniform concentration 
in all channels (Tab. 2). Four weak anionic constituents are regarded as the analytes. They 
have the same mobilities in the free BGE. However, their mobilities are different when they 
are in the gel-filled region. The analytes represent the species composed of long-chain 
molecules (e.g. DNA fragments) that can be separated in the gel according to the length. No 
change in mobility of sodium, TAPS, H+ and OH- is considered as these species are regarded 
as being small enough to pass the gel sieving environment without retardation.  
The gel is not supposed to affect the acid-base equilibrium of any species. Moreover, it is 
assumed to prevent the bulk flows, either electroosmotic or laminar ones, from arising.   
 
Tab. 2 

cINJ – concentration of species in sample reservoir (upper arm) at t = 0 

uGEL – electrophoretic mobility of the constituent in the gel-filled region 

e.u. – electrophoretical unit 

 

4.4.2.4  Electric Field Distribution 
 
All simulations are performed in the constant current mode. The separation process is 
accomplished in two steps. The first one is called the injection step and employs the electric 
field that forces the analytes to move downwards from the sample reservoir through the 
channel intersection into the sample waste. The second one is called the separation step. The 
analytes migrate from the channel intersection into the right arm of the separation channel.  
The electric current distribution has to satisfy the Kirchhoff’s current law. Its integral shape 
has the form 

∑ ∈∀==
i

i TtLDRUitI ),0(,,,0)(  (146) 

Here I i denotes the electric current value in i-th arm. It is governed by the boundary condition 
that is imposed on respective open boundary. Its values may attain both positive and negative 
values according to the current direction with respect to the boundary outer normal vector.  

Species c (mM) cINJ (mM) u (e.u.) uGEL (e.u.) pK(+1) pK(-1) 

Sodium 20 20 51.9 51.9 13.7 - 

TAPS 40 40 25.0 25.0 - 8.3 

A1 - 0.1 27.0 5.0 13.7 - 

A2 - 0.1 27.0 10.0 13.7 - 

A3 - 0.1 27.0 15.0 13.7 - 

A4 - 0.1 27.0 20.0 13.7 - 
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As the channels are of uniform cross-section, the above equation also holds for the current 
density values j i.  

The symbols inj
L

inj
D

inj
R

inj
U jjjj ,,,  and sep

L
sep
D

sep
R

sep
U jjjj ,,,  denote the electric current density value 

in respective arms in the injection and separation step, respectively (Figs. 23,24).  

The quantity inj
Uj  is the one that forces 

the analytes to move downwards during 
the injection step (Fig. 23). It is never 
varied and attains the value (3000 A.m-2) 
in all simulations. This ensures the 
constant amount of the analytes to enter 
the channel intersection. The current 

densities inj
Lj  and inj

Rj  always attain 

identical value in order to create the 
symmetrical simulation arrangement. 
This value is called the constraint current 

density c
inj
R

inj
L jjj ==  and is variable. 

The constraint current forces a pure 
buffer to enter the channel intersection 
from the horizontal arms. The quantity 

inj
Dj  is calculated so that the electric 

distribution satisfies the Kirchhoff’s 
current law. A fraction defined as 

inj
Ucinj jj /=λ  is employed to show the 

relative significance of the constraint 
current density. It is allowed to attain six 
respective values: 0,i0.0417,i0.0833, 
0.0167,i0.250iandi0.333. However, it 
should be mentioned that the real 
constraint current is twice as high as 
there are two streams that constrain the 
sample flow.  
 

The current density sep
Rj  causes the 

sample motion in the separation step 
(Fig. 24). It is constant (3000 A.m-2) in 
order to maintain constant separation 
velocities and, thus, also migration times 

of the analytes. The values of sep
Uj  and 

sep
Dj  attain identical value denoted 

 
Fig. 24 Electric current density vector directions  

in the separation step (it takes next 25 s). 

 
Fig. 23 Electric current density vector directions 

in the injection step (it takes first five seconds) 
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p
sep
D

sep
U jjj ==  and called the pull back current density. It is variable and serves to prevent 

sample leakage from arising. The value of sep
Lj  is adjusted to allow the current law to be 

obeyed. The fraction sep
Rpsep jj /=λ  is employed to depict the relative significance of the pull 

back stream. It may attain eleven respective values 0, 0.0417, 0.0833, 0.167, 0.250, 0.333, 
0.417, 0.500, 0.583, 0.667 and 0.833. The real pull back strength is double as high as there are 
two streams that pull the injected sample back to the sample reservoir and the sample waste. 
 
The constraint current is believed to affects the shape of analyte zone. The zone is diluted in 
the sample waste as a pure buffer enters the channel intersection from horizontal arms.   
The pull back current prevents the sample leakage from arising in the separation step. The 
current density is applied in the upper and lower arms and pulls the sample from the injection 
cross back to the vertical arms. This is, along with the constraint stream, assumed to affect the 
separation of the analytes.   

Both injλ  and sepλ  are variable in the steps given above. Thus, sixty-six simulations are 

carried out and their results investigated.  

For an easy overview we denote the simulations according to the scheme sepinj λλ → . For 

instance, the simulation employing 583.0=injλ  and 0=sepλ  is denoted as 0583.0 → . 

 

4.4.2.5 Results 
 
Zero constraint current density leaves the horizontal arms blind in the injection step - no 
electric field is in this region (Fig. 25, left panel). Current densities in upper and lower arm 
attain the same value.  
Non-zero constraint current density values make the horizontal arms active and, thus, a 
stronger electric field is in the lower arm (Fig. 25, right panel). This dilutes the sample.  
Although there is no field strength in the horizontal arms when no constraint current is 
applied, the diffusion tends to spread the analytes into this region (Fig. 26, left panel). The 
steady state is never reached as the diffusion operates permanently. This makes the separation 
worse as a longer sample plug is injected into the separation channel. 
The constraint current confines the sample stream and reduces the diffusion effect (Fig. 26, 
right panel). This reduces the sample plug width injected into the separation channel. 
However, the sample concentration is lowered. This can possibly make the detection limit 
worse. 
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Fig. 25. Electric field distribution in injection step (ti=i4is) for 0i→i0 (left picture) and      

0.333 → 0 (right picture). Arrows indicate the electric field strength vector. No field is in the 

horizontal arms when no constraint current is employed. Conversely, considerable field is in 

this region when constraint current is applied.  

 

 
Fig. 26. Concentration profile of A4 at ti=i4is. All analytes have the same concentration 

profiles in the injection step as they have equal mobilities as long they are in the vertical arm. 
The diffusion is of high significance (to be seen in left picture) when no constraint current is 

employed (0i→i0). Non-zero constraint current (right picture) confines the sample stream 

(0.333i→i0). The analytes are diluted in the sample waste arm.  
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The injection step is first five seconds. This time is found to be sufficiently long to reach the 
steady state for all constraint current density values employed (apart from the zero one). The 
electric field distribution is changed at 5 s (the change lasts 100 µs) and the separation step 
starts (lasts next 25 seconds). At the very first moment of the separation step, the sample 
stream is pulled from the channel intersection and forms the sample plug in the separation 
channel. The pull back current density is the quantity that is variable (Fig. 27) in the 
separation step. When no pull back current is applied, the diffusion causes the sample leakage 
from the vertical channel into the separation channel. The pull back current reduces the extent 
of this phenomenon as it diverts the sample into the sample reservoir and the sample waste 
(Fig. 28). 
 

 
 

Fig. 27. Electric field distribution in the separation step (t =i6 s). No electric field is in the 

vertical arms (left picture) when no pull back current is employed (0 → 0). On the other hand, 

the electric field is in this region (right picture) when pull back current is applied                       

(0 → 0.250). 
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Fig. 28. Concentration profiles of A4 at t = 5.7 s for 0 →i0 (the upper picture) and 0 → 0.250 

(the lower picture). When no pull back current is applied the injected plug has a tailing shape 

as the analytes leak from the injection channel by the diffusion. The pull back current 

prevents the leakage from arising. In both cases, the analytes tend to concentrate at the start 

of the separation channel as there is a decrease in their mobility due to gel sieving 

environment.  
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The mobility of the analytes decrease when they enter the gel region due to sieving. Thus, 
they slow down at the gel edge and tend to enhance the concentration here (Fig. 29). This 
process is called the stacking. This may possibly increase the detection sensitivity as a zone of 
higher concentrations is supposed to reach the detector site. The analyte A1 has the highest 
mobility change and its stacking is, thus, the most pronounced.  

Fig. 29. Stacking of the analyte A1 at the edge of the gel in the separation channel. The 

analyte concentration increases and its zone becomes more narrow. The concentration 

reaches its maximum at ~5.7 s and becomes four times higher than that in the sample 

reservoir. This effect may significantly enhance the detection sensitivity. Simulation 

conditions:  0i→i0.250. As a pull back current is employed, there is no sample leakage and 

the resulting peak is of nearly Gaussian shape.  

 

It should be noticed that the sample injection is discriminative as the analytes have different 
mobility changes in the gel environment. The fastest analyte (A4) has always of the lowest 
concentration. Conversely, the slowest has the highest concentration (Fig. 30).  
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Fig. 30 Simulated electropherograms.  

(A): Separation of analytes when no constraint and pull back currents (0 → 0) are employed. 

A strong leakage causes tailing peaks that deteriorate the analysis.  

(B): The pull back current (0i→i0.250) strongly reduces the leakage and peaks are of 

Gaussian shape. The migration time of the analytes is the same as the electric field of 

constant strength is in the separation arm in all simulations. Notice that the peak heights are 

lowered when the pull back current is applied.  
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Migration times of the analytes have always the same values in all simulations (Fig. 30). This 
is in accordance with the constant field strength value that is in the separation arm in the 
separation step. The analytes A3 and A4 were selected to be investigated in terms of resolution. 
The resolution may be defined as 

2/142/13

43
4,3 )()(

18,1
ww

tt
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+
−=  

 

(147) 
 

Here t3, t4 and (w3)1/2, (w4)1/2 denote the migration times and full widths at half peak maxima, 
respectively, of the analytes A3 and A4.  
One more quantity was defined ad hoc to describe the peak resolution. It resembles the above 
definition but employs the peak width at 5% of the its height 
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This quantity is believed to describe the effect of the peak tailing. The peak shape can be 
evaluated by the asymmetry factor 

4,3)()( 20/120/1, ==+= iwba
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iF  

 

(149) 
 

Here, ai and bi denote the horizontal distance from the peak maximum to the peak start and its 
end at 5% of its height, respectively.  
Another quantity worth studying is the amount of the analyte that is injected into the 
separation channel. The concept of the peak areas is inapplicable here as there may happen 
the conditions where peaks never reach zero signal due to the constant diffusion leakage from 
the vertical channel. Rather, the concept of peak heights is utilized. In particular, we define 
the average concentration 

2
,4,3 DD

D

cc
c

+
=  

 

(150) 
 

Here, c3,D and c4,D stand for the maximum concentrations of the analytes at the detector site.  

Both 4,3R  and 4,3
*R  as well as 

D
c  are wished to be as high as possible. Thus, we define the 

products 
D

cR 4,3   and 
D

cR 4,3
*  as criteria to find the optimal conditions for the analysis 

(Figs. 31, 32, 33,.34, 35 and 36).  
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Fig. 31 Average concentration at the detector site <c>D. The arrangement 00 → offers the 

highest possible concentration of the analytes to be injected into the separation channel. Both 

pull back and constraint currents tend to decrease the injected amount.   

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig . 32 Asymmetry factor (AF,3)1/20 (determined at 5i% of the peak height). The peaks are 

symmetrical when pull back current density is high. (Evaluated for A3.) 
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Fig. 33 The resolution R*3,4. Separation is enhanced when strong pull back current is applied. 

Dependence on the constraining current value is lesser. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 34 The resolution R3,4. Both constraint and pull back current tend to enhance the 

resolution.  
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Fig. 35 The criterion 
D

cR 4,3
* . Its value reaches the best value approximately at 417,00 → .  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig . 36 The criterion 
D

cR 4,3 . The optimal value is at 167,00 → . 
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It has already been mentioned that the analytes are stacked when reaching the gel area in the 
separation channel. On the other hand, application of the constraining current or the pull back 
current decreases the injected amount (defined by Eq. (150) and to be seen in Fig. 31). Well 
resolved are to be found when a strong pull back current is applied.  

Peak resolution 4,3R  (defined by Eq. (147)) shows only small absolute differences in the 

results (Fig. 34). This is what can be expected as the peak tailing tends to affect its lower part 
rather than its middle part (where the peak width is evaluated). On the contrary, higher 
differences are found in R*

3,4 values (defined by Eq. (148)) as the peak width is assessed at     
5 % of the peak height where the peak tailing is more pronounced (Fig. 33).  
All this is related to the peak symmetry (Eq. (149). Symmetrical peaks are achieved when 
strong pull back currents are applied (Fig. 32).  

Although there is a small discrepancy when using either 
D

cR 4,3  or 
D

cR 4,3
* , both 

approaches show the same qualitative results (Figs. 35, 36). Both criteria reach the maxima 
when no constraint current and moderate pull back current is applied.  
This, strong constraint currents are meaningless to be imposed as they do not significantly 
enhance the resolution. Moreover, they make the detection limit worse as the smaller amount 
of the sample is injected. On the other hand, constraint current may be used when the 
detection limit is not the issue.  
Pull back current is more appropriate to be used as it significantly enhances the resolution. 
However, its high values also decrease the injected sample amount.  
This should be considered as the main result of this part of the thesis. The finite difference 
method enables one to find the best conditions for the analysis. The input data (analyte 
mobilities, their pK constants and the geometry arrangement) can be modified to investigate 
any particular lab-on-a-chip analysis.  
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4.4.3  Electromigration in Free-flow Electrophoresis 
 
This method is employed when pure analytes are wished to result from the separation. Unlike 
the capillary methods, preparative amounts of analytes may be injected and separated. The 
method is based on the bulk-flow stream that delivers a mixture to the separation system. In it, 
perpendicularly imposed electric field diverts the charged species away from the course of the 
bulk flow. In principle, both cationic and anionic species can be treated at the same time. As 
the presented device is of small dimensions, it may be employed as a part of a separation chip.  
 

4.4.3.1  Geometry 
 
A separation chamber of 
rectangular shape is a main 
part of the device (Fig. 37). In 
its top part, fifteen channels 
feed it with the background 
electrolyte. Additionally, one 
channel contains a dissolved 
mixture to be separated (it is 
denoted by the red rectangle 
in Fig. 1). In the lower part of 
the chamber, fifteen channels 
divert the separated analytes 
to the collecting vessels (not 
considered in the model).  
The chamber width is merely 
590 µm. Its height is 300 µm. 
The width of the channels is 
30 µm and their mutual 
distance is 10 µm. The 
chamber depth is supposed to 
be uniform and, thus, a 2-D 
model is employed.  

 
4.4.3.2  BGE and Analytes 
 
For the sake of simplicity, the 
buffer is of the same 
composition as it is in the 
simulations dealing with the 
separation in the injection 
cross (see Tab. 2 for a deeper 

 

Fig. 37 Free-flow analyzer. The upper panel shows the 

electric field distribution. The green lines represent the 

electric field streamlines. The blue vertical walls denote the 

electrodes. Black-colored boundaries are non-conductive.  

The lower panel shows the bulk flow velocity profile. Arrows 

indicate the velocity vector. Green (virtual) boundaries 

represent the inflow and the outflow channels. Here, the 

liquid is allowed to cross the boundary. The rest of system 

boundaries are impermeable (denoted by black colour).  
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insight). The three weak cationic analytes (of mobilities 10, 20 and 30 e.u.) are considered. 
They match that ones in the injection cross section in their acid-base properties.  
 

4.4.3.3  Electric field 
 
The separation is carried out in the constant voltage mode. Two vertical chamber walls serve 
as the electrodes (denoted as blue lines in the upper panel in Fig. 37). Here, the constant 
Dirichlet boundary conditions are imposed. The rest of system boundaries are non-conductive 
(black walls). The zero Neumann boundary condition is imposed here.  
 

4.4.3.4  Bulk Flow 
 
As usual, the velocity profile is calculated by means of the Navier-Stokes equations. The 
inflow and the outflow channels are substituted by the virtual boundaries where the velocity 
vector is dictated by the constant Dirichlet boundary condition (denoted green). The upper 
channels serve as liquid reservoirs whereas the lower ones act as liquid sinks. The no slip 
boundary condition is imposed on all other walls (denoted black). No liquid may penetrate the 
boundary here.   
 

4.4.3.5  Results 
 

Besides the electrophoretic mobility, both the electric field strength value E
r

and the bulk 

flow velocity value v
r

 affect the trajectory of the species in the chamber. In particular, the 

ratio of these two variables dictates the position analytes as they runs out of the chamber.  
There is one more variable that is substantial for the resolution of the analytes – their 
residence time τ.  It is given by 

v

h
r=τ   

A a 

(151) 
 

Here h = 300 µm denotes the vertical distance traveled by the species and equals the chamber 
height. Short resident times prevent the diffusion from deteriorating the analysis (see Figs. 38 
and 39).  
As the chamber dimensions are very small, the steady state flow profile is achieved very 
quickly (after several hundreds of milliseconds). The total amount of the separated substances 
is dictated by the separation time that may be much greater than the residence time of 
analytes.  
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Fig. 38 

Steady states 

profiles of the 

analytes. The 

Ratio vE
rr

/  is 

constant. The 

lowest figure 

shows the best 

separation as 

the residence 

time attains the 

lowest value 

here.  
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Fig 39. Pictures show the 

steady-state separation of 

the analytes. The numbers 

denote the position of 

outflow channels. The best 

resolution is achieved in 

the lowest picture where 

the highest field strength 

and bulk flow velocity 

values are applied.  
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4.4.4  Joule Heating in Electrophoresis 
 
The temperature rises as the electric current passes through an electrolyte. This is known as 
Joule heating. This part of the thesis shows the possibility of simulating this phenomenon. In 
particular, capillary cooling by the aid of air and water (coolants) is investigated here. 
 

4.4.4.1  Geometry 
 
The capillary is of the main interest as Joule heating originates here (see Fig. 40).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 40 Two geometry arrangements: I (left picture) and II (right picture). The blue colour is 

used to denote the region filled with the background electrolyte. Orange colour depicts the 

silica glass region. Colourless regions denote the coolant (either water or air). Green arrows 

indicate the entry and the exit of the coolant. 
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Its inner and outer diameter is 75 µm and 365 µm, respectively. Thus, the capillary wall 
thickness is 145 µm. The capillary length is 12 mm and both its ends are connected to vessels. 
The vessel diameter is 6 mm and its height is 1 cm. For the sake of simplicity, the vessel wall 
is of the same thickness as the capillary wall.  
The two particular geometries are considered. The first arrangement (denoted I in Fig. 40) 
deals with the capillary and the vessels immersed in the figure of cylindrical shape of uniform 
radius (1 cm). In the second arrangement (II ), the capillary and the vessels are immersed in 
the figure that leaves a gap (of size 1 cm) around them. In both cases, the figure is filled either 
by air or by water.  
 
4.4.4.2  Symmetry 
 
The geometry is of cylindrical shape and, thus, the cylindrical symmetry is employed. 
 

4.4.4.3  Background Electrolyte 
 
The capillary and the vessels are filled with the BGE. It is composed of phosphoric acid and 
potassium. Both BGE constituents are regarded as weak electrolytes (Tab. 3). No analyte is 
considered.  
 
Tab. 3 

 c/mM u(+1)/e.u u(-1)/e.u u(-2)/e.u u(-3)/e.u pK(+1) pK(-1) pK(-2) pK(-3) 

K+ 7.5 76.2 - - - 13.0 - - - 

Ph. 5.0 - 34.6 61.4 71.5 - 2.16 7.21 12.67 

Ph.  – Phosphate 

e.u. – electrophoretical unit 

 

4.4.4.4  Assumptions 
 
The BGE composition is supposed to be maintained in time. This can be achieved by 
employing virtual buffer reservoirs connected to both upper and the lower vessel through the 
outer horizontal vessel boundary parts ΓU and ΓD (circle surfaces, see Fig. 40).  
The continuity equations for potassium and phosphate as well as the electric field distribution 
are not solved in the walls and in the coolant region. They are only solved in the capillary and 
in the vessel region. Moreover, as the buffer composition is supposed to be constant, these 
equations need not be solved in time. Their stationary state solution is calculated at t = 0 and 
is employed in the time propagation.  
The heat transfer equation and the Navier-Stokes equations are solved in entire computational 
domain. The Navier-Stokes equations are not solved in time as the profile of applied coolant 
flow is supposed to be constant in time. It means that the heat transfer equation is the only 
equation solved in time. It accounts for both thermal diffusion and thermal convection. The 
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Joule heating is the only heat source considered in the model. No thermal sinks are taken into 
account. No ionic strength correction and EOF is considered.  

 
4.4.4.5  Electric Field 
 
The analysis is carried out in the constant voltage mode. The field strength attains the value 
40.0 kV/m in the capillary region. It is not supposed to change in time as no changes in the 
BGE composition are assumed.  
 

4.4.4.6  Boundary Conditions 
 
The mixed boundary condition is stated to the mass conservation laws for both BGE 
constituents. In particular, the constant Dirichlet BC is imposed on the outer horizontal vessel 
boundary parts (ΓU and ΓD). The zero Neumann condition is imposed on the capillary and rest 
vessel boundary parts (internal boundary parts collectively denoted ΓINT) and, thus, no matter 
may penetrate through these boundary parts.  
The boundaries ΓU and ΓD serve as the upper and the lower electrode, respectively. Thus, the 
constant Dirichlet BC is imposed here when dealing with the electric field distribution. The 
zero Neumann BC is imposed on ΓINT as these walls are supposed to be non-conductive. 
As no bulk flow is considered in the capillary, no external force is imposed in the capillary 
and vessels when solving the Navier-Stokes equations. The neutral BC is imposed on ΓU and 
ΓD. The no slip BC is imposed on ΓINT and ΓEXT. The inflow velocity BC determines the 
velocity profile on the inflow boundary part ΓIN (the coolant enters the computational domain 
through its lower part). The normal flow BC is imposed on ΓOUT.  
No thermal insulation or heat discontinuity effects are considered. The constant temperature 
BC is imposed on ΓIN, ΓOUT, ΓD and ΓU as the system is supposed to be placed in the infinitely 
large surrounding of constant temperature (T0 = 298.15 K). The heat continuity BC is imposed 
on the internal boundaries ΓINT. 
As usual, the zero Dirichlet BC stated to the electroneutrality condition is imposed on all 
boundary parts.  
 

4.4.4.7  Physical Properties of Materials  
 
For the sake of simplicity, all physical properties of the materials are taken as temperature-
independent. The property values hold for 298.15 K. However, the model can also, in 
principle, handle the physical properties that depend on temperature.  
 
Density of water (applied also to the phosphate buffer) is ρ(H2O) = 996.8 kg.m-3.  
Density of silica glass is ρ(glass) = 2203 kg.m-3. 
Air is supposed to obey the ideal gas law and, thus, its density is given by 

3
00 .19.1/)( −== mkgRTMpairρ  (152) 
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The air is assumed to be pumped under constant (atmospheric) pressure p0 = 101325 Pa. 
Average molar mass of the air is M  = 29,0.10-3 kg.mol-1.  

 
Dynamic viscosity of water (or of phosphate buffer) is η(H2O) =9,13.10-4 Pa.s. 
Dynamic viscosity of glass is a quantity that is very difficult to be determined. The value 
η(glass) = 1 Pa.s is employed here. This value is supposed to be sufficiently high to prevent 
any flow from arising in the glass region.  
Dynamic viscosity of air is η(air) = 1,77.10-5 Pa.s (this value holds for 101325 Pa). 
 
Thermal conductivity of water (or phosphate buffer) is λ(H2O) =0,616 W.m-1.K-1. 
Thermal conductivity of glass is λ(glass) = 1.38 W.m-1K-1.  
Thermal conductivity of air is  λ(air) = 0.0262 W.m-1K-1 (holds for 101325 Pa) 
 
Specific heat capacity (at constant volume) of water (also applied to phosphate buffer)           
is cv(H2O) = 4200 J.kg-1K-1. 

Specific heat capacity of glass is cv(glass) = 703 J.kg-1K-1. 
Specific heat capacity of air is cv(air) = 1100 J.kg-1K-1. 
 
It should be mentioned that the values of density, dynamic viscosity, thermal conductivity and 
specific heat capacity are taken from the database of Comsol Multiphysics 3.3 Program. The 
values were also discussed with Ref. 13.  
 

4.4.4.8  Results 
 
Geometry arrangement I 

In this geometry, the velocity field tends to create the vortex above the lower vessel (Fig. 41). 
The coolant velocity attains low values in the upper part of the capillary and, thus, convective 
heat flow is ineffective here. The heat cumulates here and the temperature change is 
pronounced mainly in this region.   
 
Geometry arrangement II 

This geometry arrangement was selected to be analyzed in detail. Fig. 42 shows the velocity 
and temperature profile when the air is used as a coolant. The air cooling works more 
effectively in this geometry arrangement as the air flows directly around the capillary where 
the heat is produced. As seen from Fig. 43, the water cooling works even more effectively. In 
both types of cooling, the temperature tends to decrease as the coolant flows faster. Fig. 44 
shows the temperature profile across the BGE, the capillary wall and the coolant (air is 
employed). A parabolic profile is found in the BGE region whereas it is of logarithmic shape 
in the glass and in the coolant region.  
 
It should be mentioned that higher coolant velocities were not able to be investigated because 
of computational problems that arose when solving the stationary Navier-Stokes equations.  
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Fig. 41. Geometry arrangement I with air cooling. Velocity field streamlines (left picture) and 

temperature map (right picture) are pictured. The velocity field tends to create vortex above 

the lower vessel. Temperature attains its maximum value in the upper part of the capillary as 

the air cooling is not effective here. Green arrows indicate the entry and the exit of the 

coolant. Air inflow velocity: 0.5 m/s 
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Fig. 42. Geometry arrangement II with air cooling. Velocity value (left picture) and 

temperature map (right picture) are pictured. Green arrows indicate the entry and the exit of 

the coolant. No vortices originate in the airflow in this geometry. Air inflow velocity: 0.5 m/s  



 78 

Fig. 43 Axial temperature profiles (at the centre of the capillary and the vessels) for air 

(upper picture) and water (lower picture) cooling at various velocities. The water cooling 

works very effectively. In both types of cooling, the temperature decreases as the coolant 

flows faster. Notice the difference in temperature scales in the pictures. 
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Fig. 44 Temperature profiles across the BGE, capillary wall and coolant (at the centre of the 

capillary) at various velocities. Temperature decreases as the coolant flows faster. A 

parabolic temperature profile is found in the BGE region whereas the capillary wall and the 

coolant region are of logarithmic temperature profiles. The air was used as a coolant.  
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5  Concluding Remarks 
 
 
 
The presented thesis shows the ability of simulating 2-D and 3-D electrophoretic tasks by 
means of the finite element method. The introduced computational model handles many kinds 
of phenomena encountered in real experiments in electrophoresis. Four particular tasks are 
chosen to be solved. 
The first task focuses on the electrophoresis in the 3DCE equipment. Changes in the 
electrolyte composition due to electrolysis are investigated. The sodium/acetic buffer is 
selected as a representative buffer example. The acetate ion tends to cumulate in the vicinity 
of the positively charged electrode. On the other hand, sodium ion moves away. The pH value 
decreases in the vessel and, subsequently, also in the capillary. The extent of this change is 
inspected. The arrangement with the capillary hidden in the electrode shows fast pH changes 
as no hindrance is placed between the electrode and the capillary inner region. The 
arrangements with long capillary tips require much longer times to alter the buffer pH in the 
capillary region. The bulk flow driven by electroosmosis is also investigated. Electroosmotic 
flow of upward direction (assessed in the capillary) speeds up the pH change as an altered 
buffer is pumped into the capillary by convection. On the contrary, reversed EOF slows down 
the pH change. This kind of simulation may be useful when planning a new geometry 
arrangement for the electrophoresis.  
The second task deals with the injection cross that is a common part of separation 
microdevices. The task shows that the simulation can also be carried out in the constant 
current mode. The resolution of analytes is inspected under various conditions. Optimal 
conditions for the analysis are found. The task demonstrates the importance of constraint 
current and pullback current in the lab-on-a-chip analysis. They control the analyte 
concentration in the separation and they can also avoid the peak tailing that originates due to 
the diffusion. The presented computational model is also able to handle more complicated 
chip structures (results not shown).  
The third task concerns the free-flow electrophoresis equipment. It can possibly be used also 
as a chip structure. The simulations reveal spatial profiles of the analytes under various 
conditions. This kind of simulation may be useful when searching for a free-flow device of 
appropriate dimensions as well as when optimizing the free-flow separation.  
The fourth task focuses on the temperature effects in the capillary. The simulations reveal 
stationary temperature profiles in two particular geometry arrangements. The temperature 
rises as the electric current passes through the electrolyte. Furthermore, the air and the water 
cooling are inspected. The temperature decreases as a coolant flows faster around the 
capillary. The water cooling is more effective than that employing the air. This kind of 
simulation may be of great interest when heat-sensitive analytes are to be separated.  
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The finite element method is a powerful tool when solving the tasks in the natural sciences, 
especially in the physics. The presented thesis would like to show that it can also lend a 
helping hand when solving the tasks in electrophoresis. I believe that the introduced 
mathematical model will be further improved and applied also to other tasks that deal with the 
computer simulations of experiments in electrophoresis.  
Last of all, I suppose that I have fulfilled all the aims of the presented thesis.  
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