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Abstract

In the presented thesis we introduce a computdtiaodel that can be used for 2-D and 3-D
computer simulations of experiments in electropkisteThe simulations are carried out by
the aid of the finite element method (FEM). In marar, commercially available program
Comsol Multiphysics 3.3 is employed. A general ghap continuity equation is chosen to
express the mass, electric charge, momentum andjyerm®nservation law. Diffusion,
migration and convection terms are taken into actowhen formulating the mass
conservation law. Both external (driving voltagedanternal (diffusion currents) terms are
considered in the electric charge conservation Beth constant voltage mode and constant
current mode can be handled. A solvent is regaededn incompressible Newtonian fluid.
Both pressure-driven and electroosmotic flows cantdken into consideration. The heat
convection as well as the heat diffusion is goverbg the energy conservation law. Both
strong and weak electrolytes (of any attainableen@)) may be regarded as system
constituents. Furthermore, the model can handleidhie strength correction if desired. A
task may be assigned either in Cartesian or cytabcoordinates. The presented model was
employed to solve four particular tasks. The fose inspects the electromigration in the
setup in the Agilent 3DCE electrophoresis equipm€htanges in the electrolyte composition
due to the electrolysis are inspected. The elesinasis is also considered. The second task
focuses on the lab-on-a-chip analysis in a gel. ifjegtion cross is of the main interest. The
analysis is carried out in the constant current enodour model anionic species are
considered as the analytes and their resolutiorspected under various conditions.

The third task deals with the free flow electrogsis equipment. Both the electric field and
the pressure-driven bulk flow are applied simultarsty. Three model cationic species are
considered as analytes and their resolution isyaedl The last task investigates the thermal
effects in a capillary. The temperature rises ia tapillary as the electric current passes
through the electrolyte (Joule heating). Both ad avater cooling efficiency are inspected.
The coolant velocity field and the resulting tengtere map are analyzed under various
conditions.
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1. Introduction

Electrophoresis is a set of separation technighes eémploy the electric field for the
separation of species. Experiments in electroprmay either be conducted in a laboratory
or simulated by the aid of mathematical methodsthO$e, these three are usually employed:

(I) Finite difference method (FDM) is based on diwg the computational domain into non-
overlapping segments. The governing equations &eratized and the system property
values are evaluated at certain places of the gepmiEDM is used mainly when 1-D
computational domains are wished to be inspectbds;Tthis method may be applied in the
simulations of experiments conducted in sufficigmrrow capillaries. The FDM can also, in
principle, handle 2-D and 3-D problems, but it oftencounters serious computational
problems. Thus, more sophisticated methods ardajeaae: for 2-D and 3-D tasks.

(1) Finite volume method (FVM) is often employedch@n searching the solution in more-
dimensional tasks. Similarly to the FDM, it alscakiates the properties at discrete places of
the geometry. This method employs integrated fo(meer finite volume) of governing
equation. The divergence theorem is used to corkertvolume integrals into the surface
ones. They are evaluated as fluxes originatindherstirfaces of neighboring finite volumes.

(1N Finite element method (FEM) is also basediotegration of governing equations over
finite volume. In the first step, the governing ation is multiplied by a smooth function
(called the test function) and this product is gnéted over volume. The Green’s identity is
employed to modify the resulting integral equati@oundary conditions as well as initial
conditions are applied and the integral equatioeasalved by means of numerical methods.

All the tasks in the presented thesis are solvedhieyaid of the finite element method.
Commercially available software Comsol MultiphysBS8 was purchased for this purpose.
This software enables one to solve sets of pattifdrential equations by means of the FEM.
The software offers many kinds of physical taskdéosolved. Several application modes
allow the tasks to be solved readily. The followayplication modes are available:

* Acoustics

» Convection and Diffusion

» Electromagnetics

* Fluid Dynamics

* Heat Transfer

» Structural Mechanics

* Electro-Thermal Interactions
* Fluid-Thermal Interactions
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Governing equations may also be defined by theitisesired.

The Fluid Dynamics application modemploys the Navier-Stokes equations. This mode is
used in the presented thesis to handle the liquikl fow (driven either by electroosmosis or
by pressure).

The Heat Transfer application modamploys the energy conservation law. This moddss
applied in the presented thesis when temperatuegds are wished to be inspected.

All other governing equations (electric field distrtion, chemical equilibrium equations,
electroneutrality equation, ionic strength corr@etequations and continuity equations for the
system constituents) are defined by the authorcasppropriate application modes were
found in the software.

Four particular tasks are chosen to be solved éyptbsented computational model.

() The first task investigates the electromigratiom the Agilent 3DCE electrophoresis
equipment. The simulations are performed in oraerstudy changes in the electrolyte
composition due to the electrolysis. Forty simwiat are carried out under various
conditions. Moreover, the bulk flow driven by el@csmosis is inspected.

(I) This task deals with the lab-on-a-chip anadys a gel. The electrokinetically driven
sample injection is investigated. Four model ardospecies are regarded as the analytes.
Their resolution is investigated under various ¢boils (Sixty-six simulations are carried
out).

(Il1) Separation in the free-flow electrophoresigugment is simulated in this task. Three
model cationic species are regarded as the analgtessure-driven bulk flow as well as
electric field is applied and varied. The resolntal analytes is investigated.

(IV) This task focuses on the temperature effecta capillary. The temperature rises as the
electric current passes through the electrolytes phenomenon is known as Joule heating.
Two particular geometry arrangements are inspecBath air and water cooling is
investigated.
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2 Review of Present State of Knowledge

The review is divided into two parts. The first odeals with computer simulations of
electrophoretic experiments in capillaries. The ilages are usually considered as
sufficiently narrow compared to their length anal g, one-dimensional approaches may be
used to describe the phenomena encountered ircelbsapillary electrophoresis (CE). The
second part of the review handles two- and threeedsional simulations. This approach is
necessary when trying to describe complex geonsettueh as various injection sites, sample
dispensers and mixing chambers.

2.1 Simulation Approachesin 1-D Geometries

Generally, serious problems are encountered wharclgaeg analytical solutions to solved
tasks. Majority of problems cannot be solved inl@sed analytical form. This brings the
opportunity to employ numerical approaches. Seveapers (Refs, 2 3 4, ° 6 7 8 9and'?)
have been published on numerical simulations. Thes&s, however, lack the possibility of
making general conclusions as models do not offgramalytical formulae for calculation of
desired quantities. There is an original approaohbé found in Refs'! and'?) that offers
simulated electropherograms as a result of nunesioaulations. However, as this model
does not take a lot of important features into aatoit was subsequently replaced by more
sophisticated models.

A typical CE experiment is arranged by a capillaiiiled with uniform solution
conventionally called the background electrolyte5E. Beside the BGE, the separation
environment usually contains some analytes to paraged under the influence of electric
field. The system is governed by the laws formulater the mass transport (diffusion,
convection and migration terms). As the analytesuamually thought to be charged species,
strong Coulombic forces have to be taken into actolihe behavior of charged species has
to be governed by the macroscopic electroneutradgdition. Another condition to be
satisfied is the electric field distribution, comnip expressed in terms of Kirchhoff’'s and
Ohm’s law. When chemical reactions take part in sigetem (e.g. dissociation of weak
electrolytes), they have to be described by termshe chemical equilibrium. Chemical
reactions are commonly regarded as much ,faste @l other phenomena encountered in
CE and, thus, the concept of equilibrium constanéy be used. Majority of general laws
governing the systems behavior are known from mlaysihemistry (see Ref’) or can be
found in specialized literature (R€J. Some of the laws describing the system behaaiier
nonlinear (e.g. concentration terms in denominatothe acid-base equilibrium formula).
This feature causes difficulties when investigatihg system behavior. Nevertheless, there
are experimental setups that lead to a simplificatof the equations. Under some
circumstances, BGE may be regarded as a liquichibdum composition along the capillary.
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Unlike the BGE components, sample is injected ailg certain position in the capillary. It is
commonly called the injection site. A small conecahbn of an analyte (when compared to
BGE constituents’ concentration) causes only a lsthsiurbance in system properties (e.qg.
the conductivity or pH value). Under such condisipoontinuity equations may be linearized
and solved easily without computational problemsimaccuracies (in the framework of
linearized model).

Gas et al. (Ref'®) proposed a simulation model that optimizes theEB@mposition in
capillary zone electrophoresis (CZE). This workuses on the interface between the sample
region (contains BGE and sample) and the BGE regontains only the BGE). The name
»-moving boundaries” is commonly used for this modsglthe sample region moves along the
capillary under the influence of electric field. Foveak trivalent constituents (two acids and
two bases) are allowed to form the BGE. One aniamnostituent of sufficiently small
concentration represents the sample. Thus, thelm®groposed to simulate the separation
of anionic analytes. As there is, in principle, difference in treating anionic and cationic
species, the model may be modified in order tomas¢he behavior of cationic analytes. The
calculation begins with formulating the electromality condition and the acid-base
equilibrium equations. As there are five trivaleyistem components, fifteen equilibrium
equations are to be solved. The model considersdarmnd OH concentrations that obey the
ionic product of water. There are four supplemegn&gjuations to be fulfilled: they are called
the moving boundary conditions and represent thesntnservation law for each BGE
constituent at the BGE-sample interface. Thus, tywene equations are to be solved
simultaneously. This approach does not include Kbllrausch regulation function. It is
originally defined by Kohlrausch in Ref® and governs the system behavior in
isotachophoresis (ITP). Besides its widespreadtytih ITP, Kohlrausch function was
employed by Gebauer et al. (see R&fs!” and'®) to calculate the sample zone composition
in CZE. The applicability of this approach (propdsan Ref. '%) is demonstrated by
investigating phosphate buffer properties. Threeraa analytes (C] Br and salicylate) are
employed to inspect how the analyte behavior caraffected by the BGE composition.
Simulated results agree with experimentally obtéiekectropherograms.

Jaro$ at al. (Ref:) continued in the work initiated by Ga$ at al. {R8). A mathematical
model based on the theory of moving boundaries adapted and a user-friendly simulation
program PeakMaster was introduced. PeakMaster gmogitlows the BGE properties to be
calculated and optimized. The designed BGE can daglily prepared and used in real
analysis. The program, besides its other invalubberefits, takes the ionic strength correction
into account (dissociation constants as well agiomobilities depend on the ionic strength).
The well-known theory of Debye, Hiickel and Onsdgafs.® and?) is supposed to predict
the properties of simple binary electrolytes ofitostrength up to 10 mM (Ref). As a real
BGE is usually more complicated ionic mixture, @lssticated theory has to be employed.
The theory of Onsager and Fuoss (R8f.is supposed to govern the properties of solution
composed of any ionic mixture. According to R&EL. the dissociation constants and the
moving boundary equations for all BGE constituemt® formulated along with the
electroneutrality condition and the ionic produtwater. As the ionic strength is not known
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initially, the calculus is performed by an itera&imethod. The first approximation puts all
activity coefficients to be one. Governing equasioare solved and, subsequently, new
activity coefficients are determineda the formula of Debye and Huckel. The iterative
procedure stops when the relative difference otegbent values of activity coefficients is
less than a sufficiently small number. Afterwardstual mobilities are calculated employing
Onsager-Fuoss model. Finally, the actual condugtive calculated from corrected
concentrations and ionic mobilities. Output dasoatontains the concentrations of all ionic
forms of the system constituents in the sampleoregs well as in the BGE region. A use of
PeakMaster is shown employing two examples. Tha Bne considers separation of five
anionic species - chloride, succinate, lactate,nplagetate and caproate. Simulated and
experimentally obtained electropherograms are pesudlistinguishable. The second example
investigates the separation of complicated ionsearbly. PeakMaster program generally
predicts the position of analyte peaks as wellyates peaks (see next parts of the review for
a deeper insight). The simulation results in thectebpherogram that greatly resembles its
experimentally obtained counterpart. As there ieamly a new version of PeakMaster
program available, all its other features are dised in subsequent parts of the review.
Poppe et al. (Refé? #* % ¢ and?’) introduced a linearized model of electrophore®ie
authors showed that linearized continuity equatiteesl to a matrix eigenvalue problem.
Generally, the result of solving x N square matrix comprisé¢$ matrix eigenvectors and
matrix eigenvalues. The ordered set of matrix erghres is called the matrix spectrum. Since
the water autoionization takes plac€, ahd OH ions originate. These ions are also regarded
as the BGE components. Nevertheless, in the asghgsformed under neutral pH (the region
5 — 9 is usually accepted and is called the safergaibn), these ions are of negligible
concentrations. This simplifies the governing eourst. GenerallyN system constituents lead
to N x N matrix problem (when omitting Hand OH) and, thusN matrix eigenvalues are
obtained. These conclusions have an invaluable atmpa the indirect detection where BGE
properties (the conductivity and the indirect Ugpense) are evaluated.

In chromatography, Crommen and co-authors (see Epffigured out a remarkable
phenomenon: when there is an analyte moving (bg pamcidence) as quickly as one of the
system eigenzones, response of indirect deteat@ches infinity values (in terms of absolute
values). Poppe (Ref?) continued in this way in electrophoresis and momd such a
phenomenon here. He also showed (in R&f.that this phenomenon is connected with
infinitely large matrix eigenvector components.

Despite all useful conclusions stated above, iukhde borne in mind that the linearized
model does not fully account for all phenomena entered in CE. One such a phenomenon
is well-known as the electromigration dispersioM{®. Undesirable peak distortion and
broadening is often explained in terms of EMD assult of nonlinearity of electrophoresis.
Gebauer et al. (Refs? and?®) and Horka and Slais (Ref) defined a quantity called the
relative velocity slope in order to evaluate théeex of EMD. This quantity is useful when
predicting the analyte peak shape under parti@daditions (e.g. when applicability of BGE
is inspected for particular analysis).
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Stdry et al. (Ref.®") went ahead in direction of Poppe (in Refsand *%. Employing
linearized model of electromigration, they carriedt a mathematical analysis of a basic
representative arrangement of CE experiments. TH&es focus on simulation of indirect-
detection results. They take only strong electedyinto account (the buffer constituents as
well as the analytes) to prevent cumbersome equatibat govern the behavior of weak
electrolytes. They consider only one ion as thdyémaThe BGE is composed of three ions,
two of them being co-ions (related to the analyte)oand one is a counter-ion. All system
constituents are thought to be univalent. As thisrkwdoes not take the ionic strength
correction into account, all properties of the icaare supposed to be constant. Thus, the
conductivity can be calculated readily without dive method (see Ret®). All ions are
expected to move exclusively under the influence aéctric potential gradient
(electromigration). Motion under the chemical paoingradient (diffusion) and caused by
pressure drop or electroosmotic flow (convectiorg mgnored. Moreover, no thermal or
sorption effects are assumed to play any role awlibl distribution of all constituents is
assumed to be time-independent. Under such cireamoss, 1-D approach may be employed.
All components are supposed to show only small eotnation changes in time. Thus, the
transformation of variables can be done. Insteasobfing problem with commonly defined
concentrations, new perturbation variables arenddfiand implemented. The continuity
equations are formulated at zero time for eachesystonstituent. The system matrix is
assembled and its eigenvalues are calculated. &= thre four system constituents, four
eigenvalues (called ,eigenmobilities” by the au)oare expected. The result of calculus is
that two eigenmobilities are zero (they corresptmd water peak often encountered in real
CE experiments), one eigenmobility is equal to tfdahe analyte (analyte peak, analyte zone)
and one depends on the concentrations and mabiditiall buffer constituents. The last one is
of the main interest as it is not affected by thepprties of the analyte and is, thus, called the
system eigenmobility. The authors define the teemgenzone” as a wave traveling along the
capillary with a velocity proportional (through te&ectric field strength) to the eigenmobility.
The waves tend to split and carry the disturbanuéally created by the sample injection)
with given velocities. Input data (ionic mobilities well as concentrations) is variable in
order to investigate how the system peak mobiliies affected by the BGE composition.
They find a situation where the system eigenmaghigitequal to that of the analyte. This leads
to the so-called resonance effect (notice the gyalwith mechanical or electrical
resonances). The analyte zone and the system nomgrate and reach the detector site at the
same time. Concentration profiles of BGE co-iongvelthe shape of the spatial derivative (a
zigzag shape) of the original peak (it is suppasele of the Gaussian shape). The indirect
detection makes this effect visible. The amplitedehe resonance phenomenon grows in
time proportionally and the signal can, at leaghmframework of the linearized model, reach
infinite values (in accordance with Réf). Furthermore, the authors derived a formula for
calculating the relative velocity slope (Ref$.* and *%. Thus, EMD can be predicted by the
linearized model of electromigration.

Stdry at al. (Ref>?) generalized the model introduced in R&f.The authors consider the
linearized model of electrophoresis again. Unlikef.R', weak electrolytes are allowed to
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form the BGE and they may also be regarded asrtalytas. Another restriction vanished —
ions H and OH are taken into consideration and, thus, the whbleange may be inspected.
Nevertheless, only univalent ions are regardedyagems constituents (i.e. weak or strong
univalent acids or bases).

Similarly as in Ref. %!, three constituents form the BGE and one ion m=mes the analyte.
As the ions are not constrained to be strong angmibie acid-base equilibrium equations
have to be formulated for all constituents. Thé ddad OH ions contribute to the BGE
conductivity. The model also allows'ldnd OH terms to be cancelled if reasonable (e.g. the
H* term may vanish in alkalic pH range). FollowingfR¥, the continuity equation is
formulated for each constituent. A new functionll@zh the G-function) is defined and is
implemented when solving the electroneutrality ¢bod. As the analyte concentration is
supposed to be negligibly small compared to thaB@E constituents-function does not
take analytes into consideration. Concentrationallatharged forms of BGE constituents are
expressed as a function of Honcentration. This forms th&-function with the H
concentration as the only unknown variable. Coneetiy, H™ concentration is calculated and
all other quantities are determined from it.

As it was done in Ref?, perturbation quantities are defined and the matigenvalue
problem is solved. The BGE conductivity is consteal to be spatially uniform as the sample
injection causes only a small disturbance in itoTquantities expressing the indirect detector
response are calculated. The first one, the coilyctletection response, is defined in Ref.
3 and a simple formula for its calculation is sudgds The second one, the transfer ratio
(Ref. * is useful for indirect UV detection and the presevork also allows it to be
evaluated. The relative velocity slope can alsadsessed (taking an electrolyte composed of
weak ions into account). As there are four systemsttuents, initial disturbance splits into
four waves. The significance of 'Hand OH terms in governing equations is investigated.
Again, these terms may be cancelled from equatwmig when separation takes place in
neutral pH region (concentrations of BGE componéiatge to be larger than 1 mM). These
conditions lead to a simplification in governinguatjons and guarantee two eigenmobilities
to be close to zero. In other words, it means iiniate are two non-migrating system zones at
the injection site (,double water peak”). Howevedditional eigenzones of non-zero
eigenmobilities are encountered beyond the safeggibn. In such cases, migrating waves
arise as a consequence of significant concentsatidrH or OH ions. Mobilities of these
zones have to be investigated as they can poskahly to the resonance effects that are
usually undesirable. Several other authors (R&fs®, *° % and®) also investigated the
behavior of eigenpeaks. Eigenpeaks emerging frgmifgiant concentrations of 'Hand OH
were studied in Refé® and®. Other authors (Refé, 4, #2 %3 44 and*) investigated system
peaks in BGEs of complicated composition (variotiai@able ionic forms were taken into
account).

Stdry and co-authors (Ref®) investigated a general case Nfsystem constituents. This
work is, in fact, a generalization of previous workRefs.®' and *%). Any substance
(regardless of its attainable valency) may be a®rsd - weak (or strong) acids (or bases) or
even ampholytes. This generalization makes thergowg equations more complicated. The



16

model allows the behavior of any BGE to be simulatdoreover, the model actually does
not distinguish between the buffer components dmal dnalytes and, thus, all system
constituents are treated in the same way. As thsregenerallyN constituents, the model
becomes rather complicated (when compared to ikgeaersions). On the other hand, a lack
of transparency is prevailed by its great verdgtilAgain, the linearized shape of the
continuity equation is assumed to govern all phesrman(Refs*! and®?). It is formulated for
each analyte bearing all its attainable forms imdniThe matrices are assembled, system
eigenmobilities are calculated and time evolutibsystem is predicted (the model still omits
diffusion). The BGE is thought to be composedNof 1 constituents and there is, thus, only
one analyte in the sample region. Nevertheless,nmbdel can, in principle, handle any
number of analytes. Three simple buffers (acetiosphate and oxalic one, taking sodium as
the counter-ion) show the usefulness of the modékoretical pH value and system
eigenmobilities are calculated for each BGE (pH aisvariable quantity as sodium
concentration is allowed to change). Calculated giéts resemble well-known ,titration
curves®. The eigenmobility dependencies show a rieaide behavior. The main feature to be
highlighted is that curves of two different eigeriniiies never cross each other. There are
conditions where at least one very fast eigenmgbit found. This brings the chance to
observe the resonance phenomena with an analyte a(fame effective mobility. Moreover,
the present model offers more general conclusiorizetdone. In majority of BGEs, there is
often one systemzone of very small eigenmobilitytérms of absolute values). It means that
there is a zone standing at the injection sitendigas of the presence of electric field applied.
Thus, this zone may serve as the electroosmotie (E©OF) velocity marker. This piece of
knowledge has an invaluable impact on the real mxgats as the EOF velocity can be
comfortably assessed from the indirect detectosrcedHowever, when there is no eigenzone
of zero eigenmobility, a neutral constituent habeécemployed as the EOF marker.

Jaro$ at al. (Ref’) implemented the computer model introduced in Reéf§?and*. A new
version of the simulation program PeakMaster isrdsalt of this effort. Its old version is,
unlike the improved descendant, based on the theforngoving boundaries (to be found in
Refs.* and'®). The computational model needs certain input tatse inserted. It comprises
BGE composition, names of the analytes to be stgzhend desired simulation arrangement
(capillary length, driving voltage, electroosmosiBgakMaster program contains the database
of compounds to be used readily as buffer constituas well as the analytes. Majority of
data is taken from the well-known Hirokawa’s datbéRefs.*®, *°, 0 > and®?). Some data

is provided by \elakova et al. (Ref?). The database is allowed to be modified if nemgss
Actual mobility and equilibrium constants of eagystem constituent are affected by the
presence of all other system constituents througk tonic strength dependence.
Computational models presented in R&fs** and*® omitted this feature and all calculations
were performed using mobilities and equilirium dangss extrapolated to zero ionic strength.
The PeakMaster program takes the ionic strengtliecoon into account. Onsager and Fuoss
model (Ref??) is implemented here. Nevertheless, the ionimgtiecorrection can be left out
if desired (this saves the computational time). Tker interface enables one to choose the
way of detection (direct, indirect or conductivitacing). The main result of calculation is a
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simulated electropherogram that can be compardd regults of a real experiment. The peak
shape (diffusion/EMD mimicking) is simulated by aflHaarhoff — van der Linde's (HVL)
function (Ref.>¥. Besides migration and diffusion, EOF (i.e. cartien term) may also be
taken into account if desired. An ideally flat E@#efile is assumed to avoid shearing effects.
The pH of the BGE is generally accepted to infleetiee behavior of electrophoretic system
as some of constituents are weak acids (or basesb)tteeir degree of dissociation (or
protonation) is affected by the pH value. Thedstivity is the first variable that is calculated
at the beginning of the simulation. Once it is deieed, all properties of the system
constituents (effective mobilities, migration timesan be easily calculated. PeakMaster
program also provides calculation of detection aigh the transfer ratio (UV indirect
detection) and the molar conductivity detectiorpoese (indirect conductivity). The relative
velocity slope is also assessed. The general grepesf BGE (buffering capacity, ionic
strength, conductivity) are also evaluated. Thegam is very useful when searching BGE to
be used in a particular real separation as it qadigt effective mobilities, and thus, the
resolution among the analytes. It also calculatessiple peak distortions and broadenings
caused by EMD and resonance effects. A use of Pasidvlis demonstrated (Ré&f) by
inspection of imidazole-oxalic buffer. Peakmasteedicts two eigenzones to arise and
calculates their mobilities and, thus, also migratimes in a real experiment. As a matter of
fact, there are two system eigenpeaks in an expetaily obtained indirect UV and
conductivity trace (EOF marker is used in a regdeginent to determine the EOF velocity).
Mobility values of both system peaks are determimdthough there is a small discrepancy
between simulated and experimentally obtained systggenmobilities (possibly caused by
inaccurate data in the database), the programgiseslystem behavior without tedious trial-
and-error experimental approaches.

Hruska at al. (Ref>) introduced a mathematical model enabling timeltian of the
electromigration system to be directly simulatedl atepicted. The model gave rise to a
simulation program called Simul. It may be (alonghweakMaster program) downloaded as
a freeware from the website (R&9). Its detailed mathematical background can be dauan
Refs.*and®. The model can handle any number of analytes fieboonstituents regardless
of their attainable valency. Similarly to PeakMastdso Simul is based on 1-D approaches.
All three kinds of particle movement i.e. migratiatiffusion and (EOF driven) convection
are taken into consideration when formulating tlmatiowuity equation for each system
constituent. The electroosmotic flow is supposedbdouniform and no pressure effects are
assumed to play any role. The electric field dmsttion is calculated taking the driving
voltage as well as the diffusion currents into actoConductivity accounts for'Hand OH
ions. Simul solves the continuity equation (parntiflerential equation - PDE) numerically by
dividing the entire computational domain (capillamyto certain finite segments. Thus, finite
difference method is employed (FDM, see Ré&for a deeper insight). This method converts
the set of original PDEs (time and spatial coorirere independent variables) into a set of
ordinary differential equations (ODEs, time is toely independent variable). ODEs are
solved by means of the Runge-Kutta and predictorector method (Ref®). The electric
field distribution is an ODE (in 1-D) and it is sed by the aid of Newton iterative method.
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Time steps used in numerical simulation are eittefined by the user or optimized by the
program. A sufficient number of segments must beleyed in order to avoid numerical
problems.

The Simul program also offers saving the computaticime by solving a part of the
capillary rather than taking whole its range intc@unt. A typical use of this approach is the
capillary uniformly filled with the BGE everywhesnd with the sample in a certain region,
additionally. Computational domain expands as tamme region moves and broadens.
Applicability of Simul is illustrated using thregamples from the everyday practice. The first
one considers separation of phenylacetic and cam@d in TTAOH/oxalic acid/potassium
buffer (TTAOH denotes tetradecyltrimethylamoniundigxide). An experimentally obtained
electropherogram shows a strange behavior (an ectegh zigzag-shaped peak). The Simul
program is employed to inspect this problem. Asdhs an analogous peak in the simulated
electropherogram, the peak is supposed to be aahairoperty of the BGE. The second
example investigates the behavior of acetate iove 2o the sodium/phosphate buffer. Here,
the electropherogram shows a zigzag-shaped peatitidof this peak can be easily clarified
as Simul program can predict resonance phenomdralabt example shows the simulation
of ITP separation with twenty-one ampholytes. Ammabilized pH gradient is formed to
mimic the conditions encountered in ITP. The arayform their ,ITP zones* along the pH
gradient. Simulated electropherogram resemblesotibbtained from real ITP experiments.
Other authors (Refs. and*®) also introduced ITP simulations. Phenomena cdedewith
splitting peaks (Ref?), adsorpion effects (Ref&: and®?, axial thermal effects (Ref?) and
peak distortion (Ref? were simulated as well.

Hruska et al. (Ref®) inspected conditions where the electromigraticatrin has complex
eigenvalues. According to the theory of dynamideys, such system should exhibit periodic
solution (oscillation) in the resulting concentoatiprofile.

Chemical oscillations are periodical changes inceotration of constituents driven by the
chemical potential gradient. Electromigration sgstecan oscillate even when there is no
gradient in chemical potential and the system itheachemical equilibrium state. Here, the
electric potential gradient is a force that cre#tesoscillations.

Favorable conditions for oscillations were searcied investigated in ReF. Simul program
was used to predict the oscillatory behavior. Twhars found a buffer (composed of
imidazole and sebabic acid) that allows the osmltes to come into existence. Theoretically
predicted periodical solution was later confirmedttte experiment. Experimentally obtained
electropherograms confirmed oscillating patternb@h CCD and DAD detection record). A
buffer of slightly modified composition served asample (initial disturbance).
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2.2 Simulation Approachesin 2-D and 3-D Geometries

Microfluidic devices in electrophoresis attract maresearchers as they offer invaluable
benefits over conventionally used appliances. Redtiene of analysis and lesser sample and
buffer consumption are the main advantages. Atlbginning, they were used for gel
electrophoresis of small ions (Ref8.%7, %8 9 70 71 72 3nd7%) as well as for the capillary gel
electrophoresis of complicated assemblies (Réfs”>, "® and ”"). These pioneering works
resulted into the lab-on-a-chip concept. Unlikessleal capillary devices where pressure drop
serves as a force that injects samples into tharagpn system, microdevices lack this option
due to their complicated structure. Thus, electreically driven injection is the only way
that can be employed.

Ermakov et al. (Ref’®) introduced a 2-D mathematical model describirertebkinetically
driven mass transport in two chip structures -atgm cross and T-mixer. As the channel
depth and wall properties are supposed to be umjf@D model is supposed to describe all
phenomena in good approximation. The model allowakvor strong) acids (or bases) to
participate in the mass transport. The diffusiorl&énumber is employed to describe the
competition between convection and diffusion tramsp Electroneutrality condition is
formulated and assumed to be obeyed everywhere.niddel accounts for EOF and its
velocity is supposed to be ideally flat and unifamthe channel diameter is much larger than
the Debye radius. The thermal effects are not densil (see Ref?).

Some of 2-D governing equations (e.g. the conditgtexpression or the electroneutrality
condition) are the same as in the 1-D models. Hewedhere are equations (such as electric
field distribution or mass conservation law) thaffed from that ones stated in the 1-D
models. The Navier-Stokes equations have no cquantein 1-D models at all. All governing
equations are solved employing the finite diffeeenoethod. The simulation domain is
covered by a rectangular grid. Simulated figurethefsteady state flow in the injection cross
are presented as the main result of the work. Tijection cross is made of two
perpendicularly crossing channels (the injectioe and the separation one). One injection
channel entry serves as a sample reservoir. Tvextiopn parameters are regarded as being
substantial. The first one is the amount of analytthe sample plug. The second one is the
standard deviation in the concentration over thapa plug. This parametes indicates the
sample spatial dispersion. The ratio of the parametvhich should be as high as possible, is
investigated. Input data (potentials imposed orti@dar channel entries) is variable and
optimal conditions are found for the analysis. Qaitt, anionic and neutral species are treated
separately. Simulated results are compared witlexperiments performed in Ré.

The second part of Ref deals with the T-mixer that is made of three afonsiing the shape

of the letter ,T“. The horizontal arms serve asfeutind sample reservoirs. The vertical one
is employed to divert a mixed liquid away. The anihthis part of the work is to find
conditions where diverted mixture is of the mostfarm spatial profile. As an identical
potential is imposed on the buffer and sample #nssame bulk flow velocities are expected.
Thus, the same volumes of buffer and sample arpasgal to enter the outflow channel. The
channel width is variable in order to optimize thixing efficiency.
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Ermakov et al. (Ref) continued in the way started in R&L The behavior of pinched and
gated injection is investigated in the injectiomss. Pinched injection (partly described in
Ref.’®) is used when a compact well-defined sample puesired for the analysis. Variable
sample volumes can be achieved by employing the iggction. Both injection variants are
accomplished in two steps. The first step (callezllbading one) the sample moves from its
reservoir and reaches the injection cross. In ¢éoersd (dispensing) step, the loaded sample is
forced to change its direction. The sample entexseparation channel where the analytes are
separated. Similarly to Ref?, conditions are optimized in order to get the beminple
properties (the highest possible analyte amountsp@wing the lowest possible spatial
dispersion). Simulated results are compared wiffesmental ones taken from R&t
Chatterjee (Ref®®) introduced a universal 3-D computational modelgéneral concept of
transport phenomena in continuum is formulated. @dhservation laws (i.e. stated for
momentum, energy, mass and electric charge) cahabdled. Generally, the continuity
equation may be formulated for any quantity to baserved. As the system is open (the
fluxes may reach beyond the system), the inflowlowt term has to be considered on the
system boundaries. The equilibrium constants (esgae in terms of dissociation degrees) are
employed to describe the chemical behavior of thistesn constituents. Each system
constituent is taken as a simple species regardfassattainable ionic forms.

The computational model is based on a rather caameld multi-block finite-volume scheme
(finite volume method, FVM). The finite-volume meth divides the computational domain
into non-overlapping finite volume subdomains. Aveo-law scheme is employed to express
the fluxes in each finite volume. Multi-block fiedvolume technique is favorable for complex
geometries as the domain decomposition reducesrttes of matrices to be assembled and
solved. Generally, the more simple matrices aratetk the faster is to solve them.
Applicability of the present approach is illustidtey two examples. The first one considers a
3-D mixing chamber that markedly resembles a wetpras there are two inflow channels
containing hot and cold water to be mixed togetBdd. flow and heat transfer phenomena are
taken into account. The model investigates thepnaiiles of water stream coming out from
the outflow channel. The second example compamseastric focusing of a model analyte
mixture with and without the bulk flow. Simulatiosf the EOF free system results to the
profiles that resemble well-known figures obtainég other simulation approaches.
Nevertheless, remarkable system behavior is obdewteen taking the convection into
account. The pH gradient moves along the EOF amgithchange affects tliegpotential. As
the(-potential affects the EOF velocity retrospectivalgnvection profile cannot be regarded
as flat anymore and it resembles a pressure-dpvefiie. These conditions lead to distorted
peaks and, thus, to deterioration of robustnessapdration efficiency.
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3 Aimsof Presented Thesis

The main result of the presented thesis is the gualpof a mathematical model and its
implementation in the environment of Comsol Mulyplts 3.3 software. In particular, the
presented model focuses on these problems:

* Mass conservation law (diffusion, migration and\egtion)

» Electric charge conservation law (driving voltagéfusion currents)

 Momentum conservation law (Navier-Stokes equatietestroosmosis and pressure-
driven bulk flow)

* Energy conservation law (thermal conduction andntia diffusion)

» lonic strength correction (correct@K constants, corrected ionic mobility, corrected
conductivity)

» Driving electricity modes (constant voltage modenstant current mode)

The above model is employed to solve four partictadaks (in two or three dimensions):

* Inspection of changes in the electrolyte compasitidue to the electrolysis
(electroosmosis is also taken into consideration)

» Simulation of the electrokinetic injection in thal-on-a-chip analysis

* Investigation of the separation in free-flow analyz

* Thermal effects in a capillary (Joule heating aagdiltary cooling by the aid of water
and air)
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4 Results and Discussion

4.1 Mathematical Model of Electromigration
4.1.1 General Conservation Law

The system property behavior is often
expressed in terms of the continuity
equation. It is a differential equation that
governs its conservation. Continuity
equations can be written for any property
that is wished to be conserved (e.g. mas:
energy, electric charge or linear
momentum) in a continuum.

Let us consider a subspac@(t) 0 O"

(nOD) that is conventionally called theF19- 1 Computational domain

computational domain and may generally changeme {jFig. 1). Time may attain any value
from interval (OT), T>0 being the end of the time domain. The domainndauy 9Q(t )
connectsQ(t Yvith the rest of the spade”.

Furthermore, let us consider a space suldget] Q(t with its boundaryS(t) =dV(t ) The

subspac#/(t) is usually called the test volume (its bound&t)is the test surface).
Let us define the total rate of charfigé) in V(t)

d
R(t) —aM(t) 1)
Here M(t) denotes the integral of a quantidy(that is going to be governed by upcoming
continuity equation) ovev/(t)
M@®) =], AxY.zdV() 2
The quantityA is generally space- and time-dependent Muis supposed to be space-
independent as it is formed by integratihgver entire test volume.

There are two ways that can cause a changg iof V(t). The first one considers changes
induced by sources or sinks in the test volume

P(t) = [, QEx Y. zD)AV() 3)
HereQ denotes the source/sink term &g is its integral ove¥(t).

The second contribution originates from the flugr{dtedJ ) of A that passes through the test
surface

F) ==, Iy, 20 A(x y. 2 )dS(t) (4)
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The dot “.” was employed to denote the inner prodlibe sign “-“ is in accordance with the
agreement in whichi is taken as the outer normal vectoS(p).
The resulting equation
R(t) = P(t) + F(t) (5)
may be expanded to
d = _
p j Vo Ay, Z DAV (D) = j v QO Y, 20V (D) - j o I X Y. ZDA(x, Y, Z,)dS() (6)

The divergence theorem may be applied to the hghtd side of the above equation

d N -

Sl A Y20V = [ Qv y,20avE) - [ D.3(xy,20dV() (7)
Here [0 denotes théNabla operator. The Reynolds transport theorem may bglmd to
modify the left-hand side of the above equation

I vmw V) DAX Y, Z, 1) dV (L) = jvm Q(x, Yy, z,t) = 0.J(x, Y, z,t)dV(t) (8)

Here v, ,, denotes the velocity of(t) in 0". The above integral identity can be rearranged to

0A  _ = _
| vm{ﬁ +V, o DA+ 0.3 - Q}dV(t) =0 9
and is satisfied only when
z—?+\7\,(t).DA+ 0J=Q for Ot O,T), OV(t) O Q(t) (10)

This formula is well known as a general shape & tontinuity equation. Whe is
supposed to be time-independent, the above equatiices to

0A =

—+0J = 11

3 Q (11)
This equation is the one that is used in the sitirmnlg, as no time-dependent computational
domains are considered in the presented thesisvéAwill see in next paragraph&, may

stand for several quantities, behavior of whicH b investigated.
4.1.2 Mass Conservation Law

Let us consider a system with its boundary thasmte ofN species that we call the system
constituents. Furthermore, a solvent (usually watempresent and is always regarded as a
continuum (its molecular structure is fully negkstt The continuity equation may be
employed to describe such a situation. Here, theyaoal concentration of-th system
constituent; is taken as the variable governed by the generaearvation law

oc

~+0J =0 12
ot ' (12)

The concentration represents the system qualigy dthount of substance) related to the unit
volume. TheQ term is canceled as no sources or sinks of masallawed, such as chemical
reactions among different system constituents. l@nother hand, the acid-base equilibria of
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individual constituents are considered. These danmowever, alter the total, analytical
concentratiorg; of any species.

The substance flux is denotell. The three kinds of fluxes are considered in theleh -

diffusion, migration and convection:

ac -

a_t|+D-(ji,dif +Ji mig +J =0 (13)

Lcon)

The diffusion flux can be described in terms of fingt Fick’s law
Jiar = _Z D, Uc; (14)
]

cj andD; are the concentration and diffusivity jeth ionic form ofi-th system constituent,
respectively. The integgr may attain both positive and negative values, hees dystem
constituents are allowed to be both positively aedatively charged € 0 holds for a neutral
form). The diffusion motion of various ionic forms treated separately as the ionic
diffusivities may differ from each other. The diiuity is related to the mobility through the
Nernst-Einstein equation

D; =y, ﬁ (15)

)

Hereu; andz; are the ionic mobility and charge number, respebti T denotes thabsolute
temperature. The constariisandR are the Faraday constant and the universal gadasun
respectively.

The electromigration flux occurs in the presencethef electric field E being the field
strength) and can be expressed as follows

ji,mig = > san(i)qy, E (16)
i
The molar fraction defined ag k gj/ci may be employed to modify the above equation
ji,mig =C Ezsgn(j)hj U, = GV, a7
i

The sum in the middle part of the equation is tffective mobility and is useful when
predicting the motion direction of system constitise This quantity multiplied by the field
strength is called the effective constituent veiogj .

The convectional term is simply given by
3 =cv (18)

The system constituents are driven by the bulk flowelocity v irrespective of their
physical and chemical properties.
When merging all terms, the continuity equatioragis the form

oc.

c')_tl +0.(->.D,0c; +c vV, +¢V) =0 (19)
i

This equation holds for all system constituentse hterms can be converted into the terms
that contairc; only. This can be easily done by usiggnotation
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ZDijDClj :Z D;0(chy) :ZDijCthj +ZDij h;0c :QZDithj +DC|ZDij h; (20)

As 0D, = 0, the above formula may be rearranged to

ZDUDC.] :QDZDijhj +DC|ZDijhj = 0D, +D,0g (21)
i i i

Here D, stands for the sunz D,;h, and is called the effective constituent diffugivifs we
j

will see in the next chapter, the fractions are affected by the local pH value. Tihal shape
of the continuity equation is
%+D.(—EDQ —¢OD, +cV +¢cV) =0 (22)
The continuity equation is an evolutionary equatias the left-most term is the time
derivative of the governed quantity. One can olijeat there are also other terms that contain
time-dependent terms (the velocity terms\iabla operator). However, it should be borne in
mind that these terms originate from forces (tleeteic or the pressure one) that are balanced
by the viscous force effectively. As a result, dieatate flows originate after “switching” the
forces on immediately. Thus, the first term in Hi®ve equation is really the only one that
vanishes when solving the stationary state probMfinen diffusion is the only process that
takes place in the system, the above equation thkesrm

% - 0.0c) (23)
ot
This governs the diffusion motion and is well-knoasithe second Fick’s law.
The mass conservation law can also be analyzed &oather point of view. The liquid
densityp may be also considered as the governed quantity

%—‘t’m.(m) =0 (24)
It is also a quantity (the mass) related to thé wslume. When constant in the space and time
(incompressible fluid), we obtain

ov=0 (25)

This equation governs the movement of an incomjiesdiquid and is called the
incompressibility conditionlt is applied when dealing with the bulk flowdedriven by the
electroosmosis or by the pressure difference). imbempressibility condition is assumed to
be satisfied when dealing with the electromigratiodiluted liquid solutions.

4.1.3 Electric Charge Conservation Law

The continuity equation also governs the electietdfdistribution. The net electric charge
densitype is the quantity that is wished to be conserved

0p -
e +[1i=0 26
ot : (26)

Here | denotes the flux of the electric charge and istidahto the current density.
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No sources or sinks of electric charge are consdlefhe question arises how the time
derivative term can be regarded. There are at teamsteasons why this term should be zero:
1) The electroneutrality condition states that le¢ electric charge density must be zero. So
must its time derivative. There is an exceptiort tiraaks this rule - the electric double layer
(EDL). However, the EDL layer is much thinner th#me dimensions considered in
electromigration in channels of micrometer dimensio
2) Even if there was a site of nonzero net eleaharge density, its time derivative would
equal zero when solving the stationary state praoble
The current density is, thus, simply given by

0.j=0 (27)
This is well known as the Kirchhoff‘s current laithere are, in principle, two terms that can
contribute to the current density. The first onecamts for an external source of the electric
field and can be described in terms of the Ohmis & driving voltage forms the major part
of electric field that forces charged particles moove along the field streamlines.
Nevertheless, it should not be forgotten that obdrgarticles also move along the
concentration gradient due to diffusion. This moeeainalso contributes to the total current
density value. The Kirchhoff's law takes the form

O.(KE + [ ) = O.(~A0V + [ ) =0 (28)
Here V is the electric potential caused by the externalvgr supply,x denotes the
conductivity andj,, stands for the diffusion current term. The conuitgtis given by

K= FZ‘ZH ‘uij ¢, +Fu,c, +Fug,Coy =FD ¢ Z‘Zu ‘uij h, + Fuy,Cy + Fug,Coy (29)
i,j i j

The right-hand terms account for the contributibrdand OH ions.
The diffusion current term can be derived fromHagaday's law and the first Fick's law

Tdif = FZ Z; jij,dif + FjH - FjOH = _FZ z;D,Uc; —FD,Uc, +FDg,,Uc,, (30)
i i)

This equation is used to assess the diffusion otgria the simulations.

Large concentration gradients may give rise to iclemable diffusion currents. Large pH
gradients are often accompanied by strong diffusioments as Hand OH are the fast ions.
However, in most cases the driving electric fiddniuch stronger than that generated by the
diffusion currents.

4.1.4 Macroscopic Electroneutrality

As it has already been mentioned, the macroscdpatreneutrality forces the net electric
charge density to be zero anywhere. This condi@atisfied only when all ionic forms of all
species obey the condition

chj Z; +Cy —Coy =0 (31)
i

The fractionh; may be used to modify the above equation
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ZQZhjzij"'CH ~ Con :ZQHi"'CH —Con =0 (32)
i i i

Here H; is called the effective constituent charge. Theadd OH ion concentrations are
bound by the ionic product of watky, and thus, the above equation takes the shape

SoH, +o, — = (33

i CH
The left-hand side of this equation is called @¥unction. It depends on the concentrations
of all species as well as @n. The electroneutrality condition may, thus, simpé/written as
follows

G(c,,....C\,Cy) =0 (34)

The last piece of work to be done is determinatbrall h; fractions. The next paragraph
makes them computable by solving the chemical #xjwim equations.

4.1.5 Chemical Equilibrium Equations

The model does not account for any chemical readi@t leads to a change of overall
(analytical) concentration; of respective speciesth system constituent). It means that no
chemical reaction betwedeth andl-th system constituents is allowed. On the othadhthe
acid-base reactions within one species are corgidd@ihey are assumed to be much “faster”
than all other phenomena encountered. Thus, wemasshe acid-base equilibrium to be
reached at any time.

The acidA; is defined as a constituent that can dissociagepitoton under appropriate
conditions

. . C .
A, o Apa+HT K (G j-1) =202

Cy (35)

i
Herej < 0 as the acids are negatively charged. On the agntitee baseB;; is a constituent
that can accept the proton

C|,j+1

B, o B ,+OH  K.(i,j+1)=

1,] 1,j+1

Con (36)
i
Herej > 0 as the bases are positively charged. The termefithdnd sides of the above
algebraic equations are called the consecutiveliequim constants for acids and bases,
respectively. The latter equation can be rearranged
Ko(,1+1) _ G jua ¢l (37)
KW Clj

This equation is equivalent to that given for thelecThus, a new functiok may be defined
for acids

K@, j-1)=K,(,j-D (j=0 (38)
and for bases
K

K(i,j"‘l):m (1z0) (39)
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The concentration and molar fraction of any ionienfoof any system constituent can be
written as

C = CIOLI] (40)

hy = holy c} (41)
Herecjp andhjp are the concentration and molar fraction of a dearged form of-th system
constituent, respectively; is the global constituent constant (considereukeeifor an acid or
for a base) that depends only on the consecutiastants. It can be expressed for acids and

bases, respectively, as
j—l j+l 1

L, = k|:‘_|1|<(i,|<) L, = k|:‘+|1K(i,k) (42)

The analytical concentration expression allows tiaetion of the non-charged form to be
evaluated

i C 1
G =20 T2 Lt = Co=w, 5 = ho= - 43
R YT yit )
Consequently, altj may be calculated
L.c/
i ZLikCIIfI (44)

Indexj was replaced bk in the denominator in order to avoid misundersiiagsl The integer
k may attain the same valuesjaghe electroneutrality condition (in fact tlefunction) can
be written as follows

G +Cn»Chy -—%=0 45
(CrniCyiCy) = Z ZZJZLIKC c. (45)
This equation can be easily solvedcass the only unknown variable (adl values are given
as input data).

4.1.6 Momentum Conservation Law

The behavior of bulk fluid motion is to be investigh The linear momentum is the quantity
which is to be conserved. It comprises two mairpprties of a moving fluid i.e. its mass and
velocity. Rather than regarding the momentum itgefmomentum related to the unit volume
is considered. Its component in the respectivectioe is pvi, (k is any ofx,y,zdirections).
We get

0 _

ABY) 1 0. pu3) =1, (46)
We can hardly cancel the source tdgthis time as it forces the liquid to move which is
exactly what is desired. A vector composed of tlseeh source terms is called the body force

b . Several simple rearrangements (taking the masseceation law into account) lead to the
equation that can be written in the vector form as
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p(g—‘t’ + \mv) =b (47)

This is the general form of the Navier-Stokes equati The body force can be either of
volume or of surface character. Thus, the it caitssppito two terms

p(% + \mvj =00+ f (48)

This equation is called tf@auchy momentum equatiand governs the motion in any liquid
that conserves mass. Symmetric tengoris called the stress tensor and handles the surfac

forces whereas vectof accounts for any external volume force such asgtiaeity or the
centrifugal force. The stress tensor can be furpét into two terms, the first one being the

pressure gradient and the second one being theegtad so-called’] tensor that depends on
the type of a liquid. The Navier-Stokes equatioks the shape

,o(z—\t/+\7.D\7j =-Op+0.0+f (49)
When a simple Newtonian fluid is considered, theagigns read
p(‘;—‘t’w.mvj = -Op+07[(@Ov)+@Ov) ]+ f (50)

Here [0 denotes the outer product (a matrix is createtheéynultiplication between a column
vector and a row vector) arldstands for the matrix transposition. Quantjtjs called the
dynamic viscosity. As a liquid is thought to beantpressible, the Navier-Stokes equations
are solved along with Eq. (25). These two equat@ms employed in the simulations. It

should be mentioned that the external forteis a way to define the electroosmotic bulk
flow.

4.1.7 Energy Conservation Law

There are some tasks in electrophoresis that retheréemperature profile to be evaluated.
The system quantity related to the unit volume @hergy density) is regarded as a variable
that is governed by the continuity equation

0(E =

2{F)roise
Here Jdenotes the heat flux ar@ stands either for a heat source or a heat simk (erg.
chemical reactions, friction). In particular, Jotieating is of the main interest here as the
charged species migrate under the influence oéligwric field.
The internal energy is a variable that will be cdesed. It may be assumed to depend on the
volume as well as on the temperature

dE =rzdV +mgdT (52)
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Here 7z, andc, denote the internal pressure (at constant tempejatund the specific heat

capacity (at constant volume), respectively. Thenfarone governs the interactions between
the molecules (the potential energy contributidhg latter one describes the ability of a
sample to assemble the internal energy when héttekinetic energy contribution). As the
domain is supposed to be of constant volume, threndb term cancels. The energy
conservation law takes the form

mg, 0T

Vo t0I=Q (53)

The heat flux consists of two contributions — thathdiffusion and the heat convection (the
heat radiation is neglected as a continuum is densd). The former one is given by the
Fourier’s law of conduction

J, =-A0T (54)

Here/ stands for the thermal conductivity. Actually,emsorA should be considered rather
than the scalar number, as, generally the heatpgoahcan depend on direction. Nevertheless,
when dealing with a uniform liquid (as we consitiere) all non-diagonal entries vanish in
the tensor leaving thé as a scalar number. It should be noticed that theri€r's law
resembles the first Fick's law that governs théudibn of matter.

The heat convection term can be expressed as follows

Jm=ov="00y (55)
Vv Vv
Vector Vv denotes the bulk flow velocity. The continuity egjoa takes the form
o0, T v oo+ M gy = (56)
ot Vv
and may be rearranged to the shape
pq,%—-[ +0.-AOT) + pc v.OT =Q (57)

The incompressibility condition was used to obtdiis equation. Th&) term (of dimension
power/volume) can be easily derived when the Jbekting is the only heat source and no
heat sinks are considered

Q=Y -E%_ 1 (58)

HereU denotes the electric potential difference (voljeayedl is the resulting electric current.
The current density valug accounts for both external and internal currenirses. The
eguation

oT _ _j? 9
,OCVE+D.(—/1DT)+,OCVV.DT = (59)

is employed in simulations where the temperatuch@hged by the electric current.



31

4.1.8 lonic Strength Correction

The approach given above considers all ionic speasesolated (though charged) particles
that do not interact with each other. The ionicrgith correction takes the mutual ion-ion
interactions into account. The ionic strength isroef as

1
= Ezcij Zij2 (60)
1]
It is the basic quantity that appears in the equafior the activity coefficient. In particular,

the extended Debye - Hiickel equation (R&fand?®’) is employed to calculate it

AZI
logy. (1) = ——23 " +CZ +DI % +... (61)
ay; (1) 1o BT z;

The constanté\, B, CandD are as follows

|—Bos_ ZEN C=10* D=0 (62)
47N In10V 2£°R°T

Here Na, k and e are the Avogadro’s number, the Boltzmann constemt the elementary
charge, respectively.is the permittivity ango stands for the local charge density (not to be
confused with the net electric charge denaityhich is the macroscopic quantity and is equal
to zero). The ion activities are given by

a; (1) =y; (e (1) (63)
The activity of any neutral formj, equals its concentration, as non-charged species are

supposed to be unaffected by the presence of ahapgries. The acid-base equilibrium state
can be expressed as

Ko j-D =g, =iy, S (64

g Vi Ci
Kol j +1) = g, = Fuity S (65

i i i

The constants defined as
Kaapp (1 =D(1) = (66)
i

Ko app i ] " Con (67)

ij
are called the “apparent constants” (in spite & ffict that they are not constant as they
depend on the ionic strength). The ionic produat the form
Kw = 84804 = Vi VorCh Con (68)
Similarly, the apparent ionic product of water efided as
Kuwapp (1) = Ciy Cop (69)
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The equations for apparent constants and the apgparea product of water are included in
the electroneutrality condition and solved togetlasr the G-function. This allows the
corrected concentratiomg(l) to be determined.

The ions influence each other also when they mowbearelectric field. Thus, the mobilities
and the conductivity are affected by mutual inteoas among charged species. The classical
Onsager - Fuoss theory (Ref$.** and®?) is employed to describe this effect. It is basad
the assumption that all charged species are retabogeoppositely charged ions in their
neighborhood.

Let us rewritdj — f in order to have the next equations simpler.Nldde the total number of
charged species, I1Bt= 1, ..., M. The corrected mobility, (I 9dan be calculated as

: N
u,(1)=u, -| B,z,u, Y C.R™ +B,|z,| W2 (70)
(1) =u, (Z { z\f\j el

Here, the constan®; andB, are defined as

e [ N, e [N
=  [— A B =— | A (71)
% 127V KT 2 em \ &T

andC, stands for the binomial coefficient

c - (1/ 2] 72

n
The R coefficients are calculated as follows: let useasisle a square matrix (&4 x M
type) calledH whose entrHy. is given by

Z’c,. u../|z,. 2 u, /|z
H,k=,k2f2,f( e }ﬁf{ L ] 73)

uf./‘zf.‘+uj/‘zj‘ u /‘Zj‘+uk/|zk|

Here 9, denotes Kronecker delta. Furthermore, let us craatelumn vectorR® (of M x 1

type)
R® =(R?,...,R? .. ROY (74)

Its f-th component is defined as follows

> zicy.

=
sz.cf.‘zf./uf.‘
=

Consequently, the matrix multiplication is appliedR‘® and vectorR® is constructed
RY =(R”,...,RY,..,.R")T = (2H - E)R® (76)

Z;

R =7, - (75)

U

Here, E stands for a unit matrix dfl x M type. The vectoR® is the first member of series
whose genergl-th element can be expressed as

RP = (2H - E)?R® (77)
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The vectorsR®,...,R® are assembled in this order and tHei componentsR®,...,R®
are used to calculate the corrected mobility(I . Thus, u; (I of any ionic form of any
species can be determined using this approachll\sitiee corrected conductivity is given by

K(1)=FY |z, (e, (1) (78)

The corrected conductivity can possibly affect thectric field distribution and all other
phenomena encountered.

4.1.9 Transformation of the Variablesinto the Cylindrical Coordinates

There are several problems in electrophoresispbsgéess a
symmetry. This feature can help one to save the T
computation time as the computational domain onehe e
space dimension can be reduced. Let us take asuapie
capillary arrangement as an illustrative exampldée T
capillary is supposed to be a cylinder with a radiand a
heightz. It can be formed by rotation of the rectangle)(
around thez axis (Fig. 2).

The cylindrical symmetry allows all system paramet®
be independent of the angle

Let us consider a scalak= A(x,y,z and a vector variable ]

B=(B,.B,,B,) =(B,(x.¥.2).,B,(x.y.2),B,(x,y,2) that P
stand for all system properties used in calculatiohhe
transformation of coordinates searches for theab#s Fig. 2 Cylindrical coordinates
A=A(r,9,z) and I§:(Br(r,¢,z),B¢(r,¢,z),Bz(r,¢,z)).

The following relations are employed

0A 0A 0A _ . ,0A
— =COoSp— — =sing— 79
oX % or ay / or (79)
2 Y 2 2 2
a,zAzsm ¢0—A+co§¢af‘ 6?:c0§¢%+sin2¢6f\ (80)
0x ror or oy ror or
2 2
M:D_(DA):1%+0 ,20\+0 'ZA‘ D,B=E+%+GBZ (81)
ror or 0z ror 0z
0A _ B _ - o .
The symmetry aIIows%—O and ﬁ_o to be obeyed. The general continuity equation
takes the shape
ORI 03 03, _0A Ly 5y, d g Drzz(i,ij (82)
ot r or o0z ot r or 0z

Here J. andJ, denote the fluxes of a quantifythat is governed by the general continuity
equation. The ternd, /r has no counterpart in the continuity equationestan the Cartesian
coordinates.
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The mass conservation law has the form
X0, (-B0,6 -60,B +6% +69)+ 1 -5, 20 ¢ Lrgy, +ay, |=0 (83)
ot r or or ’

Here vi; and v, denote the system constituent and bulk-flow vé&ociomponent inr-
direction, respectively.
The incompressibility condition reads

(U )+ =0 (84)
The electric field distribution is given by
00 + L)+ kS 41, ) =0 ®5)

Here, the ternyis, denotes the diffusion current vector componemtdirection.
The Navier-Stokes equations are transformed irgskape

p(avr 0] ij_@m o, O, +Q(%_£j a6
a or o 0z22 ) rlor r (86)
o, _ op 0°v, 0°v, | nov
L+va,y, |=——+ L4 ——L |+ = 87
'0( or & Zj 0z ,7( or? 622] roor (87)
and the energy conservation law obtains the form

oT AoT 1 i
—+0,.(-A0,T)+| -=— |+ pc,(v,,v,).0,T+= v T = (88)

o, O 0, A0+ -2 0]+ o, 1, 0,7 + LT = L

The G-function and the equations dealing with the i@trength correction do not require any
transformation.

4.2 Boundary Conditions
4.2.1. Boundary Value Problem

The subspaceg (called the computational domain) is the regiorereha system quantity is
governed by a differential equation. The boundanyddtons (BCs) are the equations that
govern the boundar§Q. Searching for the solution @ andoQ is called the boundary value
problem. If there were no boundary conditions stdatethe governing equation, it would be
impossible to determine the value of the systemntiyain Q and 02. Even when the
governing equation is not a differential one (elgctroneutrality), its BCs have to be defined.
Several types of boundary conditions may be stated.

In fact, the BCs are not the only conditions thatstrain the solution. For instance, when the

cy value is to be calculated, v priori search forc, OR". However,c, OC may be
obtained when wrong solving parameters are chosemever, complex solution is not
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physically possible. Such a solution must be regcnd the task recalculated with proper
solving parameters.

4.2.2 Dirichlet Boundary Condition

The Dirichlet BC refers to the condition that fix&ssalue on a part of the system boundary
(usually called the Dirichlet boundary péi} )

Aa,t)=f(at) Oadl, [, 00Q (89)
Herea is a boundary point arfddenotes a given function defined 6g. The Dirichlet BC

usually forces the boundary value to be maintaingtne. The Dirichlet BC stands for a big
reservoir that would be connected to the systenthe corresponding boundary.

There are some situations where a time-dependenchi2tr BC is necessary. A time-
dependent functiohis employed in such cases and the boundary valaleges in time.

4.2.3 Neumann Boundary Condition

Let J be the flux of the governed system quanéityThe Neumann BC (defined dn, - the

Neumann boundary part) determines the rate of eheattper than tha value itself. InO*" it
can be written as

aiA(b,t) =g(bt) CbOr, T, 00Q (90)
X

Hereg is a given function defined ofiy, andb is arbitrary Neumann boundary part point.
In more-dimensional space the BC takes the shape
0
on(b)

The left-hand term denotes the derivativePofvith respect to the boundary outer normal
vector ri. This formulation is rather cumbersome as the gmarquantity is in thélabla
operator. In practice, it is more convenient torfatate the Neumann BC as

fi(b).J(b,t) = g(b,t) (92)
If g =0 the BC takes the shape

fi(b).J(b,t) =0 (93)

This is what is used when the boundary part is wdghée “impermeable” foh.
It should be mentioned that the Neumann BC hasetoonsistent with the equation that is

A(b,t) = fi(a).0A(b,t) = g(b,t) ObOr, I, 04Q (91)

stated to. In particular, the flux vectar is the only variable that may by governed the
Neumann BC. The same vector variable emerges indhlresponding governing equation. A
chapter “Weak Formulation” is devoted to dealinghwthe boundary conditions when solving
the corresponding differential equation.
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4.2.4 Mixed Boundary Condition

This BC is applicable for describing the

boundary behavior when various types (¢

boundary parts are necessary. The ent €aie)
system boundary is split into the subsEts

and Iy (0Q=T,UTr,) (see Fig. 3). Thus,

there is a part of the boundary part where tl._

quantity value is maintained whereas thEig. 3 lllustration of a mixed BC. The system

rest of the system boundary has a prescribedundary is divided into two parts
flux value. The mixed BC is expressed as

A(at) = f(a,t) Dalr, (94)
A(b).J(b,t) = g(b,t) CbOT, (95)

Iy

4.2.5 Newton Boundary Condition

This type of BC is a linear combination of the Diiet BC and the Neumann BC. Unlike the
previous case, it may operate on the entire sybtmmdary simultaneously. It is defined as
al(a,t) + fi(a).J(at) =h(at) Dall,, [y 00Q (96)

Hereh is a function defined odQ anda,f are non-zero real functions.
4.2.6 Boundary Conditions I mposed on the Mass Conservation L aw

Several types of boundary conditions are used vdeating with the mass conservation law.
Let us consider a general boundary part] 0Q (I =T, O =T ). When desired to be
impermeable, the zero Neumann BC is usually impobedther words, the flux vector is
perpendicular to the boundary outer normal vectat ao substance may penetrate it. The
zero Neumann BC can be expressed as
i(a)[- D, (at)0c (at) -¢ (a)OD (at) +c (@@t +c(atv(at)=0 Daor, (97)
There are several ways to express the BC whén permeable. The Dirichlet BC is often
employed
c(at)=f(at) Dadrl, (98)
Heref; is usually a time-independent function as a caristancentration is required to be
maintained on the boundary.
A non-zero Neumann condition of various shapesatsmbe imposed on the permeable wall
f(a).J(at) =g(at) Oadrl, (99)
A function g # 0 determines the flux that passes through the bayndgeveral smart
functions may be employed here, such as

g(a,t) =f(a).J(a ) (100)
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This BC is tricky as the quantities cancel eachroftie so-called nothing-doing condition)

0=0 Oadrl, (101)
Another condition that may be used here is defased
g(at) =fi(@)[c (at)v (at) +¢(at)v(at) (102)
This BC forces all non-diffusion terms to cancelreather on the boundary
fi(a)|- D, (a,t)0c, (a,t) - ¢, (a,t)0D; (a,t)| =0 DadT, (103)

Theg function can be also defined as

g(at) = ﬁ(a).[ﬁi(a,t)Dcl (a,t) +c (a,t)dD, (at) +¢ (a,t)V (a,t) + ¢ (a,t)\7(a,t)] (104)
and the BC acquires the form

2fi(a) |- D, (a,)Oc, (a,t) - ¢, (a,)OD, (a,t)| =0 DaOr, (105)

The three approaches discussed above eliminat®tivection and migration terms. The only
term that remains is diffusion. This possibly eliates numerical problems that can often
develop on the boundaries in time.
Of course, there are more BCs that can be statdektmass conservation law. Trial-and-error
simulations are often performed in a hope to fimel &ppropriate set of boundary conditions
capable of solving the continuity equations withontavorable numerical problems.

4.2.7 Boundary Conditions Imposed on the Electric Field Distribution Law

The electrophoretic runs can be conducted in twetrdtedriving modes: (1¢onstant voltage
modeand (2)constant current modd he former mode is usual when separating the eldarg
species or determining their mobilities. The latiee is often employed in the lab-on-a-chip
electrophoretic runs.

Both the constant current and constant voltage moale be handled by the present
approaches. This part of the presented thesis shbafts the BCs are not only the
complementary formulae stated to the Kirchhoff‘srent law. In fact, the electric modes are
governed by the BCs.

Let us take a simple rectangle as an illustratka®le of the computational domain (Fig. 4).
The system boundary consists of two horizontal imgaible walls (denoted collectively as
Iy ) and two vertical boundaries that are identicahwhe electrodesl; andl", ). The entire

computational domain is filled with an electrolyte.

The constant voltage mode easier to Ty
be implemented as the simple mixe
BC can be employed. The electric
potential values on the electrodes atta” =€
the values that are determined by th
functionsf and g (Fig. 4). Thus, the

electrodes are the Dirichlet boundaries. | q
The driving voltage is usually constan{:Ig -4 Constant voltage mode arrangement

Ly
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in time but there are some tasks that require temgendent potentials to be imposed. The
zero Neumann BC is imposed on the non-conductirf Wae final set of BCs reads
V(at)=f(a) 0OalOr, (rightelectrode) (106)
V(bty=g(b) ObOr, (left electrode) (107)

f(c).j(c,t)=0 OcOr, (non-conductive wall) (108)

The constant current modés more Ty V()= f
difficult to be arranged. The
conductivity often tends to change ir ; g
time as the ions move in the electric “ |r, 1—2?3’
field. This means that the electrodt
potentials must change in time in orde

to maintain the constant current value.
The time-dependent Dirichlet BC isFig .5 Constant current mode arrangement |

T

inapplicable here as conductivity changes are ailtresf electromigration and are
unpredictable. The conductivity-dependent Dirictid& would seem to solve the problem.
Unfortunately, this BC causes serious computatipnatblems that make it useless.

() Neumann BC set is more appropriate to be used (Fig. 5). The following Neumann BC
set is employed here

f.(a).j(at)=j OalOr, (rightelectrode) (109)
A (0).j(b,t)==j ObOr,_ (left electrode) (110)
A,(c).j(ct)=0 OcOr, (non-conductive wall) (111)

Here j determines the electric current density on theteldes. However, a set of pure
Neumann BCs lacks a point with a given potentidu@a This causes problems in the
calculation of the electric field calculation and mnambiguous solution can be found. These
troubles may be overcome by stating the so-caléent gondition that is a condition stated to
the existing boundary condition. It is usually stifint to define it at one point

vV(d)=f(d¢t) dOo’Q 4°Q=rNr i,j=RLW (112)
Arbitrary functionf makes the electric field distribution able to k@calated but does not
affect the required electric current density value.

(I An alternative BC set was found. It
also allows the constant current electri
field distribution to be calculated. It =
employs the mixed BC. No pointyzgl-‘E IF—
condition is required here as g

function provides a fixed potential
value that prevents numerical problem
from arising (Fig. 6). The BCs areFig .6 Constant current mode arrangement |

Dy
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defined as follows

f(a).j(at)=j OalOrl, (Neumann BC, right electrode) (113)
V(b) = g(b) UbOTr, (Dirichlet BC, left electrode) (114)
A, (¢).j(c,t) =0 Oc0OTr,, (Neumann BC, non-conductive wall) (115)

The current density value is determined by the Nevm2C imposed on the right electrode.

Several tasks were solved and their results inya&®td in order to reveal possible differences
between the two mentioned BC sets for constanenumode. As no differences were found,
the two BC sets seem to be equivalent.

4.2.8 Boundary Conditions Imposed on the Electroneutrality Equation

As this electroneutrality equation is algebrais,BC may be of the same shape
G(a,t)=0 Oalrl, (116)
regardless of whether the boundary is wished tpdsmeable or impermeable (it is the zero

Dirichlet BC by definition).
The Neumann BC may also be employed

f(a)[&0c, (a,t)]=0 DaOr, &=0 (117)
Both BCs exhibit the same results.

4.2.9 Boundary Conditions Imposed on the Momentum Conservation Law

The classical Dirichlet boundary condition is usdtew the bulk flow value is known on the
boundary

v,(at) = f (at) Ov, (at) = f (at) Ov,(at) = f,(at) (118)
V(at) =(v,.v,,v,) = (f,, f,, f,) = f(at) DaOr, (119)

This BC is called thénflow/outflow velocity conditioms it is predominantly used to for the
open boundaries.
Theno slip conditiorforces the velocity to attain the zero value anltbundary
v,(at)=00v,(a,t)=00v,(at)=0 (120)
v(a,t) =(v,,v,,v,) =0 Dall, (121)
This BC is imposed when dealing with pressure-dril@ns.
Thepressure conditionlefines a certain pressysgon the boundary. It is given by
fi(a)|- p(a ) E+7(0 OV(a,t) +7(@0 0V(@a,L) |= -p(at)i(@) Dadr, (122)
Theslip boundary conditiotiorces the liquid to flow perpendicularly to theumdary normal
vector
fi(a)¥(a,t) =0 0t (a)|- p(a,t)E+7(0OV(a,t) +7(0 0V (a t) |[i(a) =0 Dadr, (123)
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Here t denotes the boundary tangent vector at a givert.pbimis boundary condition is used
for defining the electroosmotic flow and also whagaling with symmetrical problems in
which no flux can pass the symmetry axis.
Thenormal flow conditionconstrains the velocity vector to be perpendictdathe boundary
tangent vector
f(a)v(at) =0 Ofi(a)]- p(a,t)E+7(0 OV(a,t) +7(00V(at) i) =0 DaOr, (124)
The neutral boundary conditiomoes not control the motion direction with resptxtthe
boundary
|- pat)E+n(0DV(a, ) +7(O0V(at) i@ =0 Dalr, (125)

An inclined flow through the boundary is usuallywgmed by this BC.

4.2.10 Boundary Conditions Imposed on the Energy Conservation Law

The Neumann BC is used on a boundary part whergairc@eat flow is required
-f(a).J(at) = Jy(at) OJ(at) = -A0T(at) + pc, T(at)V(at) Cadr, (126)
Here, scalarJ, defines the flux value that passes through thentbary either by diffusion or

by convection. When no flux is allowed to passlibendary part, the above equation reduces
to the shape

-fA(a).J(at)=0 Oaldrl, (127)
This equation is called thesulation wall condition
Dirichlet BC is imposed when the temperature ishedto be constant

T(at) =T,(at) Dadl, (128)

This is what is called theonstant temperature condition
There are some tasks that wish the computationahoioto be divided into several domain

parts (subdomains}2, k=1, ...N. Thus, new (internal) boundaries come into exisgenc
When wished to be permeable, the BC takes the shape

f(a).(J, (@) -J,(@)=J" DaOrl, r,=Q,NQ, Q=U,Q, (129)
Here ji and j]_ denote the heat fluxes that act on the internahbary I'; from adjacent

subdomaing; and(;, respectively. The BC is called theat flux continuity conditiowhen
J' = 0. Theheat flux discontinuity conditiorefers toJ’ # O.
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4.3 Weak Formulation

This chapter brings an insight into the wa
of solving the differential equations by
means of the finite element method.

Let us consider a simple computatione
domain Q (Fig. 7) with a Neumannr{)

and a Dirichlet [;) boundary part. The

boundary is collectively denotedQ . The
mass conservation law may serve as i J[ \f‘i
example of a governing equation. It J

strong formulatiorreads _ ) )
Fig. 7 Computational domain

(130)

WJ,D@(XJ) =Q(X,t) OXOQ tO(@OT)

The sourceQ; term is not cancelled this time in order not teelca general shape of the
equation. The source term may represent the chemseation term. The task must be
completed with the boundary conditions

¢(a)=c’(a) Oall, (131)
J.(b)fi(b) = g(b) ObOr, (132)

as well as with the initial condition
c(X,t=0)=c’(X) OXOQ (133)

herec? denotes the concentration at zero time.

The concentratiore, is assumed to belong to

L2([0, T w*2(Q)) (134)
Here W' (Q )denotes the space of “well-behaved” functions
. 2 2
W(Q) ={0c,: (e[ _[o"dv+[_|de [ dv < +oof (135)

The left-hand integral constrains the concentratiatue. The right-hand one treats the
concentration gradient in a similar way.

Let us take a smooth functighD C; (Q) . Here, the subscriptdenotes thap is zero or .
The governed quantity must also belong@p(Q) . As ¢ need not necessarily attain zero
value on the Dirichlet boundary part, a new (sifteariable is defined

¢ =c-c¢° = G(=c’(@-c’(@=0 DalOl, = G OC;(Q) (136)
Let us multiply the strong formulation lpyand integrate the product over

ac - _ (137)
o 9V +jQ 0.J,¢dV = jQQi¢dV
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This is what is called theveak formulatiorof the equation. The functiom is usually called
the test function. The Green’s identity may be emgibto modify the second integral in the
left-hand side of the equation

Q%¢dv+jmi figds- | 3.04dv =] Qdv (138)

Thus, the weak formulation has one invaluable beogér the strong one: it does not contain

the governed quantity imablaoperator. This makes it easier to be solved.

The domain boundary is divided into two parts. Thiig,above equation takes the shape
Q%mwj% J. AgdS+ er g¢dS—JjS OgdV = JQQigde (139)

Here, the Neumann boundary condition formulations veamployed. The Dirichlet term

vanishes ag attains zero value oh,

oc; a -
QEgde——er ggdS+|[_J Dgdv +[_Qedv (140)
The dependence on the time may either be handledtegrating the equation over time
domain (very weak formulation) or by the finite fdifence method (FDM). The latter
approach is applied here.
There are two ways to employ the finite differencetimod. The first one is called tleeplicit

methodand can be described by the formula
N+1

IQ : h_ ck pav = _.[rN gN¢dS+IQ jiN Hgav +IQQiN¢dV (141)

Hereh stands for the discrete time step that approxistite time derivative. The quantities
cMand ¢ denote the concentrationsat th and™** - th time level, respectively. Notice
that the above equation is time-independent. Itbsarearranged to

chiN*1¢dV = chiNqﬁdv —her gV pdS+ thJiN OgdV + hIQQiN¢dV (142)
Here, all right-hand side terms denote the vari@ht& — th time level. This approach allows
¢! to be directly calculated. The first computatiosiap employs the initial conditiotf to
obtainc'.
Theimplicit methodemploys the formula

j Q#mv = ‘f .9 NgdS + j . IV OgdV + j Q" gdv (143)

Here, all right-hand side terms denote the var@bt&™ — th step. Thus, the equation cannot
be easily rearranged to obtaif'™. It must be solved by means of iterative numerical

methods. As the latter method is known as beirgyediter numerical stability, it is employed.
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4.4 Inspection of Electromigration Behavior in some Electrophoretic Configurations

4.4.1 Electrolysis of Background Electrolytein Agilent 3DCE Electrophoresis

4411 Geometry Arrangement

We inspect electromigration in the setup in the |&wi
3DCE electrophoresis equipment. A cylindrical vesisel
filled with the electrolyte solution (Fig. 8). A aration
capillary is embedded in a metal electrode and laoth
immersed in the solution. The height of the flasRismm
and its radius is 3 mm. The length of the electrpdet
immersed in the flask is 10 mm. The inner and th&srou
diameters of the capillary are 7pgm and 365 um,
respectively. The inner and the outer diameters haf 1
electrode are 410m and 100Qum, respectively. Thus, there
is a gap between the capillary and the electrotkd fivith
the electrolyte solution. The electrode base — lzapiinlet
distance is adjustable and denotedk.a$he outer electrode
edge is curved with the radius of 26. The inner electrode
edge and both capillary edges are curved with dldeus of
25um.

4412 Symmetry

As the geometry is of the cylindrical shape, théncyical
symmetry may be employed. A 2-D half cross-seci®n
considered as a computation domain. This approaahlesn
this configuration to be solved as a 2-D problesithe angle
coordinate need not be considered, which saves
computational time. Consequently, all governing atpuns
are in the form employing the cylindrical coordiest

4.4.1.3 Further Assumptions

No ionic strength correction is considered in ordesave the
computational time. Thus, the calculation employes ithnic

e Y
~ ] A

10 mm

%

S Smm S

25 mm

Fig.8 The 3-D electrode

image. x denotes the capillary
inlet — electrode

distance. The

(orange) is embedded in the

mobilities and theK values as constants extrapolated to zeffCctrode (silver).

ionic strength. The temperature is assumed to bstaon
(298.15 K) as no thermal effects are supposed dg phy
significant role.

capillary

base
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4.4.1.4 Buffer Composition

At zero time, the computational domain is filledtlwthe background electrolyte of uniform
composition. In particular, sodium and acetic amid chosen as the buffer components. No
analyte is considered. Both sodium and acetic amdregarded as weak electrolytes. Tab. 1
gives the complete information about buffer pararget(the ionic mobilities and theK
constants are taken from the PeakMaster database).

Tab. 1 N T
Species c/(mM) | uleu.| pKD) | pK(-1)

Sodium 10 519 | 13.7 | - Loce

Acetic acid | 20 42.4 - 4.756

e.u. - electrophoretical unit

The upper capillary endl .. (see Fig. 9) is the only

part of the system boundary that permeates i L
buffer components. Thus, the constant Dirichlet B|Y r L L
is imposed to the continuity equations here. The E| W
approximates a very long capillary filled with the
electrolyte of uniform composition that is equal t
that at zero time. The rest of the system bound:
parts are impermeable for the buffer componer
and the zero Neumann BC is imposed here. I:

4.4.15 Metal Electrode

The metal electrode has positive potential and,, thi
the constant Dirichlet BC is stated to the electr
field distribution equation here. The upper capylar
end forms the counter-electrode with zero potent
(all simulations are performed under the consta ;= 1 x=0mm x=5mm
voltage mode). The rest of the system boundaries

are assumed to be ideally non-conductive and, thiig- © Three particular geometry

the zero Neumann BC is imposed here. arrangements. The symbols denote the
names of the boundaries:
4.4.1.6 Modifications I's - symmetry axis

Iciw - capillary inner wall

As it has already been mentioned, the electrode bAgce - upper capillary end

— capillary inlet distance is adjustable. Thibts - liquid surface

parameter is allowed to attain eight respectid'® mostright figure shows the
values: -1, 0, 1, 2, 3, 5, 8 and 11 mm. In thet fir§oMmputational mesh employed.
configuration (x = -1 mm), the capillary is hidden
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in the electrode. The second one (x = 0 mm) is itlvateon where the capillary end is at the
same level as the electrode base. The rest of tregjges consider the capillary sticking out
of the electrode base.

The capillary electric field strength is anotherigbale parameter. It may attain five respective
values: 5.55, 27.7, 55.5, 85.0 and 125 kV/m (detezthatt = 0).

Thus, forty particular simulations are to be caroet and their results analyzed.

4.4.1.7 Inspection of Electrolysis Phenomena

The main result of this part of the thesis is thedgtof rate of changes that occur in the
electrolyte composition under various conditionspezially with various length of the
capillary sticking out of the electrode. As the aletlectrode is positively charged, the acetic
acid concentration is supposed to increase inigiaity. As its concentration is maintained at
the upper capillary end by the constant Dirichl&, Bs total amount should increase in time.
On the other hand, the positively charged sodiurassumed to depart from the electrode
vicinity and escape the domain through the constamichlet boundary. These two
phenomena are believed to decrease the pH valine ielectrode vicinity and, consequently,
in the capillary. The extent of these phenomena ztinvestigated.

4.4.1.8 Results

All simulations really show a decrease in the bufiid value in time (see Fig. 10).

4,80
4,75+

4,70

4,65 +

4,60

4,55

pH at the centre of the capillary inlet

4,50 —

. , . , . , . . .
0 1 2 3 4 5 6
time (hours)

Fig. 10 The pH value in time. Conditions: electric figlength 55.5 kV/m, x 5 mm. The
arrow denotes the time when pH = 4.70 is reached.
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The initial pH value of the BGE is 4.76. There areesalpossibilities to quantify the extent
of its change. The pH = 4.70 is chosen to depicsituation where the buffer pH value starts
to differ from that at = 0. The pH value is determined at the centre efctipillary inlet (see
the blue arrow in Fig. 8).

The time required to reach this change is evalualéeé. time is strongly affected by the
geometry arrangement as well as by the capillagtet field strength (Fig. 11).

Two particular configurations (with x = -1 mm and=XL mm) were chosen to be analysed in
detail.

Hidden capillary arrangement x = -1 mm.

This situation may happen when a mistake is dorteencapillary preparation. The electric
field in the capillary region is highly homogenaisg. 12) whereas the rest of the domain is
of heterogeneous field. As the capillary crossieacts much smaller than the electrode
surface, the capillary field strength is severaleos of magnitude stronger than that beyond it.
There is a small region at the inner electrode sarfaith a high electric field. The
streamlines tend to concentrate here and touchntier electrode surface. The rest of the
electrode surface is exposed to a very weak fieddl tannot cause any particle movement in
this region.

This experimental setup is far away from being @& as there is almost no distance
between the electrode inner space and the capblasg. The electrochemical reactions alter
the pH value strongly in the close neighborhoodhef capillary region (Fig. 13). Thus, a
buffer of altered composition enters the capillanynediately. In particular, only two seconds
are required to change the pH value.

Capillary arrangement with x =1 mm

This experimental setup may be encountered whew altort capillary tip sticks out of the

electrode. Similarly to the former case, the capjllfield strength attains a high value
(Fig. 14). However, a weak electric field is at tledéectrode surface and, thus, the
electrophoretic movement is of lesser and the sidfiu is of higher significance.

The capillary wall prevents the buffer altered bgctiolysis to be passed straightforward into
the capillary region (Fig. 15). Thus, a much longere is required to induce the pH change
here. Under these circumstances, the analysis magiied out without undesirable effects.

Capillary arrangements with x =2 - 11 mm.

These arrangements have longer electrode base lflagapilet distance so the time to cause
the pH change in the capillary inlet is also lon@dre spatial hindrance is very effective. This
is useful to be realized when long separation tisvesequired.



a7

Other dependence worth studying is the way thdlaapfield strength affects the time of the
pH change. Five respective field strength valuggdrencompass the ones used in the real
experiments. The stronger the imposed field isstiwter times are required (Fig. 11).

20 4 —&— 5,55 kV/m
. —@— 27.7 kV/Im

18+ 55.5 kV/m .
' —¥—85.0 kV/m
16 125 kV/m

time (hours)
=
o
|

6_: ./I/ ./:
4_. / o/ v/
1/ e

n——

X (mm)

Fig. 11 Times required to cause the pH change (for® to 4.70) for eight geometries and
five electric fields. Longer capillary tip stickingut of the electrode requires longer time to
the pH change. Strong electric field tends to stothe time.
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200 ym 200 pm

Fig. 12 The arrangement with=x-1 mm. The field streamlines (left picture) and tiedd
strength value (right picture) is pictured. Capijafield strength: 55.5 kV/m (blue colour
denotes the strong electric field to be found mchpillary).

200pm ) 200pm

pH

32 34 36 38 40 42 44 46

Fig. 13 The arrangement with=x-1 mm. The pH profiles at 1.2 s (left picture) atd2.3 s
(right picture) are depicted. Very short time isfeuént to alter the pH value. Capillary field
strength: 55.5 kV/m.
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200 pm 200 um

Fig. 14 The arrangement with=x1 mm. The field streamlines (left picture) and fiedd
strength value (right picture) are shown. Capilldigld strength 55.5 kv/m.

50s ———— (1500 Irr—
200 um 7 200um

4.0 4.1 42 43 4.4 45 4.6 4.7

Fig. 15 The arrangement with=x1 mm. The pH profiles at 50 s (left picture) andb@0 s
(right picture) are depicted. Long time is necegstar cause the pH change. Capillary field
strength 55.5 kV/m.
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4.4.1.9 Electroosmosis

The previous analysis did not account for influerafe the
electroosmotic movement. It may be, however, add@n into |
account. When an uncoated silica capillary is engado the ||
electroosmotic velocity vector has upwad- direction in the I
capillary region: it flows up in the capillary, @ated capillary
with the reversed EOF vector can also be analyakdpurse).
The bulk velocity vector can be determinedIqg,

¥(a) = (o,o,—uEOF(a)¥) DAl g, (144)

Hereugor is the electroosmotic flow mobility. This is a B@&ted
to the Navier-Stokes equations. There are a lotitofatsoons
where this BC formulation causes computational j@mis. This
is not striking as it contains the electric potahtlt is governed
by another differential equation (the electric diadistribution)
that is solved along with the Navier-Stokes equmstio

This problem can be overcome by stating the elesinoic
velocity instead of the mobility. This approach miag used
without inaccuracies when no large conductivityrades evolve
in time. As the simulations focus on slight pH opes this
assumption is supposed to be fulfilled.

The zero normal flow condition is imposed on the syetry axis
s (no liquid may pass through it)

v.(b)y=0 Ob0OTrg (145) Fig. 16 The bulk flow
streamlines tend to
create vortices in the

as on the upper capillary erfd... There are two ways how thevessel. The homogenous

bulk flow can be handled on the rest of the boupgearts (the fielqd is in its upper part.

vessel base and its vertical wall, the electrode #re outer Tne field streamlines may
capillary surface). In particular, thsip conditionand theno slip  only cross through the
condition may be employed. The former one constrains tBSundarieS'UCE andrl .
velocity vector to be perpendicular to the boundagmal vector

and the latter one forces the velocity value tzém. Both BC
sets are investigated for several values of elestrmtic mobility
(or, rather velocity) values.

Particularly, the EOF mobilities of 0, £1, £2, +34,+5, £10,
115, +20, 25, £30, +35, +50, £100 and +200 e.e analyzed.
The geometry arrangement with=%6 mm and of the field
strength of 55.5 kV/m is presented as an illusteatixample.

The normal flow BC is imposed on the liquid surfdGgas well

Simulating  Conditions:
Ugor = 50 e.u, no slip BC
is imposed on the rest of
system walls.
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In both cases of BC sets, the bulk flow
velocity field was investigated. At first
sight, the velocity size and its direction
are rather complicated in the vessel
(Fig. 16). The velocity streamlines tend
to create vortices at the capillary inlet as
well as close to the electrode base. On
the other hand, the velocity field has a
homogenous profile in the upper part of
the vessel as well as in the capillary
region (Fig. 17).

TTIMTTT
MMM
0 o
TTTTTTTTT
TP
M

MMM
] ?‘T"W '|

|\’*I\n-
| | \ )

vt
o gl_?".-;'.?'.flll I | 'Lllt.\ﬁ;.'ﬁx'f.n N

Fig. 17 EOF-driven bulk flow velocity
field. Arrows indicate the flow vector
length and orientation. The velocity
field of a uniform profile is in the

20um capillary.
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The liquid is supposed to be pumped from the vasselthe capillary when positive EOF

mobility values are considered. This phenomenon pusgibly decrease the time required to
alter the pH value in the capillary. Conversely,ewha capillary with reversed EOF is

employed, the EOF velocity vector is of oppositeediion. Under such circumstances, a
“fresh” buffer enters the domain through the upgagillary end. This slows down or prevents
the pH changes from arising.

Low EOF flowing up in the capillary causes small mipas in the time required to attain the
pH change due to electrolysis. On the other hawen esmall values of the reversed EOF
mobility strongly suppress the pH changes in thalleay, which is favorable. The pH value

does not change at all when reversed EOF of molgirfeater than 5 e.u. is considered
(Fig. 18).
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4,76 1 _ -5 e.u.
] -3 e.u.
4,74
4,72 -
4,70 - no EOF
i 25 e.u.
:5_ 4,68
’ 50 e.u.
4,66 —
4,64 - 75 e.u.
4,62 -
i 100 e.u.
4,60 L) l L) l L) l L) l L) l
0,0 0,5 1,0 1,5 2,0 2,5

time (hours)

Fig. 18 The pH value in the capillary tip when the EOEassidered. Simulation conditions:
field strength 55.5 kV/m, x =5 mm

No significant difference between thip and theno slipcondition is observed (Fig. 19). This
suggests that the velocity field in the capillasyridependent of that in the vessel region.

The electrode immersion in the vessel is also varddformerly performed simulations
employed the arrangement with the electrode immeref 10 mm (let us call it the shallow
arrangement). The deep arrangement (the immersiba ofm) is also considered (Fig. 20).
There is a good motivation for investigating theplaerangement. As the liquid departs the
vessel (when positive EOF values are consideredyetimust be a region where the
electrolyte concentration is decreased. It is eitinity of the liquid surface as it is the only
boundary part of the vessel where the normal flaviB imposed. It is worth noticing that
this decrease is of a purely artificial origin.stiould be investigated whether it can cause
some artificial pH changes. The shallow arrangerseretns to be more sensitive to them as
the capillary inlet is closer to the liquid surfatkethere were any discrepancies between the
arrangements results, the artificial effects wdaddsignificant.

The times needed to attain nearly the same valudsoth electrode immersion values and for
all EOF mobility values (results not shown). It segig that no artificial effects are supposed
to play any substantial role here.
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Fig.19 The two
BC sets reveal
no significant
difference in
times required to
cause the pH
change.

10.0 Fig. 20 The shallow and the deep electrode
arrangement (x 5mm, gor= 50e.u.).
The sodium concentration profile is
19.0 pictured at t = 4000 s. The deep electrode
arrangement reveals the separation of the
artificial (at I'g) and the natural (at the

18-0 electrode) concentration gradients.
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4.4.2 Electromigration Behavior in Chip Electrophoresis Structures

As it has already been mentioned, the lab-on-a-&upniques are of rising interest nowadays
as they offer a lot of benefits over conventiorgbr@aches. There are several chip structures
that can be investigated by means of computer simonls. One of them is the channel
intersection that serves as the injection sitettier samples to be separated. This part of the
thesis focuses on the injection and the analysfewfvirtual analytes by gel electrophoresis
in the lab-on-a-chip device.

Ly

U
The computational domain is formed by twe —e= 20 pm
channels perpendicularly crossing eac
other (Fig. 21). The channels are of san detector
width (50 um). The vertical one serves a: L l R
the injection channel whereas the horizont L
one is employed as the separation chann
The channel intersection is of the mai
interest as most of the substantial process
take place here. The intersection has roui
corners (radius 1Qm) as it is in the reality
(this also prevents numerical problems fror Ic
arising in computation). The four arms arc
den.o_ted J. R, D, L according to thelrFig. 21 The injection cross geometry
position. The upper one (U) serves as the
sample reservoir whereas the lower one (I
is the sample waste. The left (L) and rigt
(R) arm are the buffer inlet and outlet
respectively. The detector is placed in th
outlet channel 2 mm downstream from th
channel intersection. The open boundarit
are calledl'y, I'r, I'p, I'L and the rest of the
boundary is denotel.

4421 Geometry Arrangement

4.4.2.2 Assumptions

The third dimension is not considered as tf
channel depth is supposed to be unifor
and, thus, a 2-D model is employed. N
ionic strength correction and thermal effects
are considered.

Fig. 22 The gel region (black colour)
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4.4.2.3 Separation Environment and Analytes

The left and the right arms of the injection crose élled with the BGE containing
hydrophilic gel as a sieving medium (Fig. 22). Tupmper and the lower arms are filled with
free BGE. The BGE is composed of two constituents:™ Nand TAPS
(tris(hydroxymethyl)methylaminopropanesulfonic gcilhey are of a uniform concentration
in all channels (Tab. 2). Four weak anionic constits are regarded as the analytes. They
have the same mobilities in the free BGE. Howe\regirtmobilities are different when they
are in the gel-filled region. The analytes represat species composed of long-chain
molecules (e.g. DNA fragments) that can be sepauat¢he gel according to the length. No
change in mobility of sodium, TAPS, Hind OH is considered as these species are regarded
as being small enough to pass the gel sieving @mwient without retardation.

The gel is not supposed to affect the acid-baseliequm of any species. Moreover, it is
assumed to prevent the bulk flows, either electramig or laminar ones, from arising.

Tab. 2

Species c (mM) G (MM) u(e.u.) e (e.u.) pK(+1) | pK(-1)
Sodium 20 20 51.9 51.9 13.7 -
TAPS 40 40 25.0 25.0 - 8.3
A - 0.1 27.0 5.0 13.7 -

Az - 0.1 27.0 10.0 13.7 -

Az - 0.1 27.0 15.0 13.7 -

Ay - 0.1 27.0 20.0 13.7 -

Cing — concentration of species in sample reservoip@r@arm) att =0
UceL — electrophoretic mobility of the constituent e tgel-filled region
e.u. — electrophoretical unit

4.4.2.4 Electric Field Distribution

All simulations are performed in the constant cotrenode. The separation process is
accomplished in two steps. The first one is calledlihjection step and employs the electric
field that forces the analytes to move downwardasnfrthe sample reservoir through the
channel intersection into the sample waste. Thenskoae is called the separation step. The
analytes migrate from the channel intersection théoright arm of the separation channel.
The electric current distribution has to satisfy Kiechhoff's current law. Its integral shape
has the form

I(t)=0 i=U,RD,L OtOOT) (146)

i
Herel; denotes the electric current valua-tt arm. It is governed by the boundary condition
that is imposed on respective open boundary. ligegamay attain both positive and negative
values according to the current direction with eggpgo the boundary outer normal vector.
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As the channels are of uniform cross-section, th@vea equation also holds for the current
density values.

iSep isep isep ;s

The symbolsj, j&, j&, i and j3%, j3, |5, j°*° denote the electric current density value
in respective arms in the injection and separattep, respectively (Figs. 23,24).
The quantity j’ is the one that forces

the analytes to move downwards durin
the injection step (Fig. 23). It is nevel
varied and attains the value (3000 A)m

in all simulations. This ensures the

constant amount of the analytes to ent i i
. . JL R

the channel intersection. The currer . P

densities j¥ and j2 always attain
identical value in order to create the
symmetrical simulation arrangement
This value is called the constraint currer A

inj — ;inj

density j" = jg =], and is variable.

The constraint current forces a pur
buffer to enter the channel intersectio
from the horizontal arms. The quantity
jg‘i is calculated so that the electrid-ig. 23 Electric current density vector directions
distribution satisfies the Kirchhoff's in the injection step (it takes first five seconds)

current law. A fraction defined as
Ay = ic!j" is employed to show the
relative significance of the constrain
current density. It is allowed to attain si»
respective values: ©.0417,0.0833,
0.0167,0.250anc0.333. However, it T
should be mentioned that the ree
constraint current is twice as high a - -
there are two streams that constrain tt
sample flow.

The current density j2® causes the | »*
sample motion in the separation ste
(Fig. 24). It is constant (3000 A:fjin

order to maintain constant separatio
velocities and, thus, also migration time.

sep
of the analytes. The values gf™ and Fig. 24 Electric current density vector directior

jo” attain identical value denotedin the separation step (it takes next 25 s).
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jo?=j3"=], and called the pull back current density. It isialle and serves to prevent

sample leakage from arising. The value jgf* is adjusted to allow the current law to be

: sep

obeyed. The fractionl,,, = j,/ jq

back stream. It may attain eleven respective valye3.0417, 0.0833, 0.167, 0.250, 0.333,
0.417, 0.500, 0.583, 0.667 and 0.833. The realqagk strength is double as high as there are
two streams that pull the injected sample backéosample reservoir and the sample waste.

is employed to depict the relative significancelad pull

The constraint current is believed to affects thapshof analyte zone. The zone is diluted in

the sample waste as a pure buffer enters the chiawersection from horizontal arms.

The pull back current prevents the sample leakag® farising in the separation step. The

current density is applied in the upper and lowersaand pulls the sample from the injection

cross back to the vertical arms. This is, along withconstraint stream, assumed to affect the
separation of the analytes.

Both A, and A, are variable in the steps given above. Thus, sixysimulations are

carried out and their results investigated.
For an easy overview we denote the simulationsrdewp to the schemel,; - A,. For

sep

instance, the simulation employint};, =0. 588d A, = Ois denoted a9.583 - 0

4.4.2.5 Results

Zero constraint current density leaves the horaoatms blind in the injection step - no
electric field is in this region (Fig. 25, left pelh Current densities in upper and lower arm
attain the same value.

Non-zero constraint current density values make hbezontal arms active and, thus, a
stronger electric field is in the lower arm (Fi&, 2ight panel). This dilutes the sample.
Although there is no field strength in the horizinarms when no constraint current is
applied, the diffusion tends to spread the analyits this region (Fig. 26, left panel). The
steady state is never reached as the diffusioratggepermanently. This makes the separation
worse as a longer sample plug is injected intas#paration channel.

The constraint current confines the sample streainreduces the diffusion effect (Fig. 26,
right panel). This reduces the sample plug widthedatgd into the separation channel.
However, the sample concentration is lowered. This gossibly make the detection limit
worse.
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Fig. 25. Electric field distribution in injection gie(t= 4s) for C— 0 (left picture) and
0.333— 0 (right picture). Arrows indicate the electriclfiestrength vector. No field is in the
horizontal arms when no constraint current is empbh Conversely, considerable field is in
this region when constraint current is applied.
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Fig. 26. Concentration profile of JAat t= 4s. All analytes have the same concentration
profiles in the injection step as they have equabitities as long they are in the vertical arm.
The diffusion is of high significance (to be seeteit picture) when no constraint current is
employed (3— 0). Non-zero constraint current (right picture) d¢mes the sample stream
(0.333— 0). The analytes are diluted in the sample waste. ar
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The injection step is first five seconds. This timddund to be sufficiently long to reach the
steady state for all constraint current densityi@alemployed (apart from the zero one). The
electric field distribution is changed at 5 s (tteange lasts 100s) and the separation step
starts (lasts next 25 seconds). At the very firsihmant of the separation step, the sample
stream is pulled from the channel intersection somths the sample plug in the separation
channel. The pull back current density is the gtyarthat is variable (Fig. 27) in the
separation step. When no pull back current is adpthe diffusion causes the sample leakage
from the vertical channel into the separation clehrifhe pull back current reduces the extent
of this phenomenon as it diverts the sample ineoghmple reservoir and the sample waste
(Fig. 28).
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Fig. 27. Electric field distribution in the separaticstep (t =:6 s). No electric field is in the
vertical arms (left picture) when no pull back cemt is employed (8> 0). On the other hand,
the electric field is in this region (right pictyrewhen pull back current is applied
(0 — 0.250).
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mM
I 2 I : 0
0 0.02 0.04 0.06 0.08 0.10 0.12

Fig. 28. Concentration profiles of;att = 5.7 s for 0— 0 (the upper picture) and-8> 0.250
(the lower picture). When no pull back current ppked the injected plug has a tailing shape
as the analytes leak from the injection channeltly diffusion. The pull back current
prevents the leakage from arising. In both cades,analytes tend to concentrate at the start
of the separation channel as there is a decreasah&ir mobility due to gel sieving
environment.
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The mobility of the analytes decrease when theyreht gel region due to sieving. Thus,
they slow down at the gel edge and tend to enhdreeoncentration here (Fig. 29). This
process is called the stacking. This may possilisegse the detection sensitivity as a zone of
higher concentrations is supposed to reach thectbetsite. The analyte ;Ahas the highest
mobility change and its stacking is, thus, the nppshounced.

0,40 - 56 S 59s

| 6.2s
0,35 5.3s 6.5s
] 6.8s
7.1s
0,30 1 50s
0,25
2 ]
Z 0,20~
© 0,15-
0,10 4
0,05
0,00 4
| ! | ! | ! | ! |
01 0.2 03 0.4

0,0 , ) , '

position in the separation channel / mm

Fig. 29. Stacking of the analyte, At the edge of the gel in the separation chanhibke
analyte concentration increases and its zone besomere narrow. The concentration
reaches its maximum at ~5.7 s and becomes fourstimgher than that in the sample
reservoir. This effect may significantly enhances tbetection sensitivity. Simulation
conditions: 0— 0.250. As a pull back current is employed, thereassample leakage and
the resulting peak is of nearly Gaussian shape.

It should be noticed that the sample injectionise@minative as the analytes have different
mobility changes in the gel environment. The fastestlyte (A) has always of the lowest
concentration. Conversely, the slowest has thedsigtoncentration (Fig. 30).
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Fig. 30 Simulated electropherograms.

(A): Separation of analytes when no constraint patl back currents (G- 0) are employed.

A strong leakage causes tailing peaks that detetgottae analysis.

(B): The pull back current (6> 0.250) strongly reduces the leakage and peaks &re o
Gaussian shape. The migration time of the analjdethe same as the electric field of
constant strength is in the separation arm in athglations. Notice that the peak heights are
lowered when the pull back current is applied.
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Migration times of the analytes have always theesaaiues in all simulations (Fig. 30). This
is in accordance with the constant field strengilue that is in the separation arm in the
separation step. The analy#esandA, were selected to be investigated in terms of utiswi.
The resolution may be defined as
t, —t,
(W3)1/5 +(W,) 4,
Herets, t4 and(ws)1/2, (Ws)1/2 denote the migration times and full widths at ledhk maxima,
respectively, of the analytdg andA,.
One more quantity was defined hocto describe the peak resolution. It resemblesabwe
definition but employs the peak width at 5% of tiseheight
t,—t,
(W3) 1720 + (W,) 1720
This quantity is believed to describe the effecthd peak tailing. The peak shape can be
evaluated by the asymmetry factor

(Ao =2

o ath=Wy, =34 (149)
Here,a andb; denote the horizontal distance from the peak mamno the peak start and its
end at 5% of its height, respectively.

Another quantity worth studying is the amount ot thnalyte that is injected into the
separation channel. The concept of the peak ardaapglicable here as there may happen
the conditions where peaks never reach zero sgpreato the constant diffusion leakage from
the vertical channel. Rather, the concept of peafhts is utilized. In particular, we define
the average concentration

R,, = 118 (147)

R 34 =2 (148)

C,p tC
<C>D =_3D 4D (150)
2
Here,c3 p andc, p stand for the maximum concentrations of the aralgt the detector site.

Both R,, and R's4 as well a#c)D are wished to be as high as possible. Thus, weealdfe

products Ry, (c) and R'a4(c)_
(Figs. 31, 32, 33,.34, 35 and 36).

as criteria to find the optimal conditions for thealysis



64

Fig. 31 Average concentration at the detector site xdThe arrangemen® - 0offers the
highest possible concentration of the analytesatanfected into the separation channel. Both
pull back and constraint currents tend to decregdmgeinjected amount.

12

; : (AF,S) 1/20

Fig . 32 Asymmetry factor £4)120 (determined at 86 of the peak height). The peaks are
symmetrical when pull back current density is higtvaluated for A)
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0,000 0,000

Fig. 33 The resolution R4 Separation is enhanced when strong pull backeniris applied.
Dependence on the constraining current value isdes

0,000 0,000

Fig. 34 The resolution £ Both constraint and pull back current tend to emt& the
resolution.
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Fig . 36 The criterionR;,(c)_ . The optimal value is & - 0167.
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It has already been mentioned that the analytestaoked when reaching the gel area in the
separation channel. On the other hand, applicatidghe constraining current or the pull back
current decreases the injected amount (defined by{1I5Q) and to be seen in Fig. 31). Well
resolved are to be found when a strong pull bacieatiis applied.

Peak resolutionR,, (defined by Eq. (147)) shows only small absolutéetgnces in the

results (Fig. 34). This is what can be expectedageak tailing tends to affect its lower part
rather than its middle part (where the peak widthevaluated). On the contrary, higher
differences are found iR 34 values (defined by Eq. (148)) as the peak widthsisessed at
5 % of the peak height where the peak tailing iseypyonounced (Fig. 33).

All this is related to the peak symmetry (Eq. (149ymmetrical peaks are achieved when
strong pull back currents are applied (Fig. 32).

Although there is a small discrepancy when usineei R,,(c)  or R'as(c)_, both

approaches show the same qualitative results (BEs36). Both criteria reach the maxima
when no constraint current and moderate pull backeat is applied.

This, strong constraint currents are meaningledsetimposed as they do not significantly
enhance the resolution. Moreover, they make thectiet limit worse as the smaller amount
of the sample is injected. On the other hand, caimgtcurrent may be used when the
detection limit is not the issue.

Pull back current is more appropriate to be used significantly enhances the resolution.
However, its high values also decrease the injexsa@able amount.

This should be considered as the main result ofghars of the thesis. The finite difference
method enables one to find the best conditionsttier analysis. The input data (analyte
mobilities, theirpK constants and the geometry arrangement) can bdieaotb investigate
any particular lab-on-a-chip analysis.

D'’
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4.4.3 Electromigration in Free-flow Electrophoresis

This method is employed when pure analytes are wigheesult from the separation. Unlike
the capillary methods, preparative amounts of desalynay be injected and separated. The
method is based on the bulk-flow stream that dedigemixture to the separation system. In it,
perpendicularly imposed electric field diverts tierged species away from the course of the
bulk flow. In principle, both cationic and aniorspecies can be treated at the same time. As
the presented device is of small dimensions, it beagmployed as a part of a separation chip.

4431 Geometry
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A separation chamber of e
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model is employed.
i Fig. 37 Free-flow analyzer. The upper panel shows the

electric field distribution. The green lines repees the
electric field streamlines. The blue vertical waldlsnote the
. electrodes. Black-colored boundaries are non-condect
For the sake of simplicity, the .
buffer is of the same The lower panel shows the bulk flow velocity peofArrows

. L indicate the velocity vector. Green (virtual) boaneés
composition as it is in the .
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liquid is allowed to cross the boundary. The reksystem

separation in the injection _ _
I t lack cgl
cross (see Tab. 2 for a deepetgoundarles are impermeable (denoted by black clour

4.4.3.2 BGE and Analytes
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insight). The three weak cationic analytes (of mted 10, 20 and 30 e.u.) are considered.
They match that ones in the injection cross secdtidheir acid-base properties.

4.4.3.3 Electricfield

The separation is carried out in the constant veltagde. Two vertical chamber walls serve
as the electrodes (denoted as blue lines in therupgnel in Fig. 37). Here, the constant
Dirichlet boundary conditions are imposed. The oédstystem boundaries are non-conductive
(black walls). The zero Neumann boundary conditgomiposed here.

4.4.3.4 Bulk Flow

As usual, the velocity profile is calculated by meaf the Navier-Stokes equations. The
inflow and the outflow channels are substitutedthiy virtual boundaries where the velocity
vector is dictated by the constant Dirichlet bougdeondition (denoted green). The upper
channels serve as liquid reservoirs whereas therl@mmes act as liquid sinks. The no slip
boundary condition is imposed on all other wallsn@ted black). No liquid may penetrate the
boundary here.

4.4.3.5 Results

Besides the electrophoretic mobility, both the &iedield strength va|ue§|§\ and the bulk

flow velocity value|\7| affect the trajectory of the species in the chambreparticular, the

ratio of these two variables dictates the posiéinalytes as they runs out of the chamber.
There is one more variable that is substantial f&r tesolution of the analytes — their
residence time. It is given by

7= W (151)

Hereh = 300um denotes the vertical distance traveled by theispeand equals the chamber
height. Short resident times prevent the diffugrem deteriorating the analysis (see Figs. 38
and 39).

As the chamber dimensions are very small, the gtstate flow profile is achieved very
quickly (after several hundreds of milliseconds)eTatal amount of the separated substances
is dictated by the separation time that may be mgater than the residence time of
analytes.
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Fig. 38

Steady  states
profiles of the
analytes. The
Ratio ‘E‘/|\7| is
constant. The
lowest  figure
shows the best
separation as
the residence
time attains the
lowest value
here.
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Fig 39. Pictures show the
steady-state separation of
the analytes. The numbers
denote the position of
outflow channels. The best
resolution is achieved in
the lowest picture where
the highest field strength
and bulk flow velocity
values are applied.
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The temperature rises as the electric current paksmsgh an electrolyte. This is known as
Joule heating. This part of the thesis shows theipitisy of simulating this phenomenon. In
particular, capillary cooling by the aid of air awdter (coolants) is investigated here.

4441 Geometry

The capillary is of the main interest as Joule Ingadriginates here (see Fig. 40).
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Its inner and outer diameter is {Hn and 365um, respectively. Thus, the capillary wall
thickness is 14om. The capillary length is 12 mm and both its endscannected to vessels.
The vessel diameter is 6 mm and its height is 1kanthe sake of simplicity, the vessel wall
is of the same thickness as the capillary wall.

The two particular geometries are considered. Tis¢ &rrangement (denotédn Fig. 40)
deals with the capillary and the vessels immeraddie figure of cylindrical shape of uniform
radius (1 cm). In the second arrangemdint the capillary and the vessels are immersed in
the figure that leaves a gap (of size 1 cm) ardhedh. In both cases, the figure is filled either
by air or by water.

4442 Symmetry

The geometry is of cylindrical shape and, thusctimdrical symmetry is employed.

4.4.4.3 Background Electrolyte

The capillary and the vessels are filled with theEB@ is composed of phosphoric acid and

potassium. Both BGE constituents are regarded ak eleatrolytes (Tab. 3). No analyte is
considered.

Tab. 3

c/mM | u@¢l)/e.u| u(-1)/e.u u(-2)le.t u(-3)eju pKY | pK(-1) | pK(-2) | pK(-3)
K" | 7.5 76.2 - - 13.0 - - -
Ph.| 5.0 - 34.6 61.4 715 - 2.16 7.21 12.6

Ph. — Phosphate
e.u. — electrophoretical unit

4.4.4.4 Assumptions

The BGE composition is supposed to be maintainedinm@. This can be achieved by
employing virtual buffer reservoirs connected tahbopper and the lower vessel through the
outer horizontal vessel boundary pdrtsandI'p (circle surfaces, see Fig. 40).

The continuity equations for potassium and phospaateell as the electric field distribution
are not solved in the walls and in the coolantaegiThey are only solved in the capillary and
in the vessel region. Moreover, as the buffer casitom is supposed to be constant, these
equations need not be solved in time. Their statjostate solution is calculated tat 0 and

is employed in the time propagation.

The heat transfer equation and the Navier-Stokeatems are solved in entire computational
domain. The Navier-Stokes equations are not solvaine as the profile of applied coolant
flow is supposed to be constant in time. It mednad the heat transfer equation is the only
equation solved in time. It accounts for both thareiffusion and thermal convection. The
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Joule heating is the only heat source considerédemmodel. No thermal sinks are taken into
account. No ionic strength correction and EOF issmsred.

4445 Electric Field

The analysis is carried out in the constant voltagele. The field strength attains the value
40.0 kV/m in the capillary region. It is not suppdsto change in time as no changes in the
BGE composition are assumed.

4.4.4.6 Boundary Conditions

The mixed boundary condition is stated to the mamsservation laws for both BGE
constituents. In particular, the constant DiriclB€ is imposed on the outer horizontal vessel
boundary partsI{y andI'p). The zero Neumann condition is imposed on thelleapiand rest
vessel boundary parts (internal boundary partectllely denoted'\yt) and, thus, no matter
may penetrate through these boundary parts.

The boundarie§y andI'p serve as the upper and the lower electrode, regplctThus, the
constant Dirichlet BC is imposed here when dealinidp the electric field distribution. The
zero Neumann BC is imposed Bt as these walls are supposed to be non-conductive.

As no bulk flow is considered in the capillary, external force is imposed in the capillary
and vessels when solving the Navier-Stokes equatibime neutral BC is imposed o and

I'n. The no slip BC is imposed dnnt andIexr. The inflow velocity BC determines the
velocity profile on the inflow boundary pdrty (the coolant enters the computational domain
through its lower part). The normal flow BC is ingeal ol ouyr.

No thermal insulation or heat discontinuity effeate considered. The constant temperature
BC is imposed of'\, I'out, I'o andI'y as the system is supposed to be placed in thatadfi
large surrounding of constant temperatdig= 298.15K). The heat continuity BC is imposed
on the internal boundariégyr.

As usual, the zero Dirichlet BC stated to the etewtutrality condition is imposed on all
boundary parts.

4.4.4.7 Physical Propertiesof Materials

For the sake of simplicity, all physical propertefsthe materials are taken as temperature-
independent. The property values hold for 298KL5However, the model can also, in
principle, handle the physical properties that dejpen temperature.

Density of water (applied also to the phosphatéeb)ifs p(H,0) = 996.8kg.m?>,
Density of silica glass is(glass)= 2203kg.ni°.
Air is supposed to obey the ideal gas law and,, tisiglensity is given by
p(air) = p,M /RT, = 119kgm™ (152)
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The air is assumed to be pumped under constant gptreac) pressurgy = 101325Pa.
Average molar mass of the aifiis = 29,0.10 kg.mol™.

Dynamic viscosity of water (or of phosphate bufigr)(H,0) =9,13.1¢' Pa.s

Dynamic viscosity of glass is a quantity that igydifficult to be determined. The value
n(glass)= 1 Pa.sis employed here. This value is supposed to beécgrifly high to prevent
any flow from arising in the glass region.

Dynamic viscosity of air ig(air) = 1,77.10 Pa.s(this value holds for 10132%a).

Thermal conductivity of water (or phosphate buffer)(H-0) =0,616W.m*.K™.
Thermal conductivity of glass ifglass)= 1.38W.nm'K ™,
Thermal conductivity of air isi(air) = 0.0262W.m"K™* (holds for 10132%4)

Specific heat capacity (at constant volume) of wgeso applied to phosphate buffer)
is ¢,(H20) = 4200J.kg*K™.

Specific heat capacity of glasscigglass)= 703J.kg*K™.

Specific heat capacity of air és(air) = 1100J.kg*K™.

It should be mentioned that the values of dendypamic viscosity, thermal conductivity and
specific heat capacity are taken from the datab&€smsol Multiphysics 3.3 Program. The
values were also discussed with R&f.

4.4.4.8 Results

Geometry arrangement |

In this geometry, the velocity field tends to cestite vortex above the lower vessel (Fig. 41).
The coolant velocity attains low values in the uppet of the capillary and, thus, convective
heat flow is ineffective here. The heat cumulatese hend the temperature change is
pronounced mainly in this region.

Geometry arrangement Il

This geometry arrangement was selected to be amhigzaetail. Fig. 42 shows the velocity
and temperature profile when the air is used a®aant. The air cooling works more
effectively in this geometry arrangement as theflaws directly around the capillary where
the heat is produced. As seen from Fig. 43, themadoling works even more effectively. In
both types of cooling, the temperature tends toedse as the coolant flows faster. Fig. 44
shows the temperature profile across the BGE, tipdlaxy wall and the coolant (air is
employed). A parabolic profile is found in the BGE&gjion whereas it is of logarithmic shape
in the glass and in the coolant region.

It should be mentioned that higher coolant velesitivere not able to be investigated because
of computational problems that arose when solvinegstationary Navier-Stokes equations.
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Fig. 41. Geometry arrangement | with air cooling. Mgty field streamlines (left picture) and
temperature map (right picture) are pictured. Thedoeity field tends to create vortex above
the lower vessel. Temperature attains its maximaiwevin the upper part of the capillary as

the air cooling is not effective here. Green arroiwdicate the entry and the exit of the
coolant. Air inflow velocity: 0.5 m/s
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Fig. 42. Geometry arrangement Il with air cooling. I&aty value (left picture) and
temperature map (right picture) are pictured. Gremnows indicate the entry and the exit of
the coolant. No vortices originate in the airflowthis geometry. Air inflow velocity: 0.5 m/s
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Fig. 43 Axial temperature profiles (at the centretioé capillary and the vessels) for air
(upper picture) and water (lower picture) cooling \arious velocities. The water cooling
works very effectively. In both types of coolifgg temperature decreases as the coolant
flows faster. Notice the difference in temperasoales in the pictures.
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Fig. 44 Temperature profiles across the BGE, capillasll and coolant (at the centre of the
capillary) at various velocities. Temperature dexses as the coolant flows faster. A
parabolic temperature profile is found in the BGEimggwhereas the capillary wall and the
coolant region are of logarithmic temperature ple$i. The air was used as a coolant.
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5 Concluding Remarks

The presented thesis shows the ability of simulaf#iig and 3-D electrophoretic tasks by
means of the finite element method. The introducedputational model handles many kinds
of phenomena encountered in real experiments ictrefghoresis. Four particular tasks are
chosen to be solved.

The first task focuses on the electrophoresis in 3BECE equipment. Changes in the
electrolyte composition due to electrolysis areestigated. The sodium/acetic buffer is
selected as a representative buffer example. Thataden tends to cumulate in the vicinity
of the positively charged electrode. On the otlaard) sodium ion moves away. The pH value
decreases in the vessel and, subsequently, ald® icapillary. The extent of this change is
inspected. The arrangement with the capillary hiddethe electrode shows fast pH changes
as no hindrance is placed between the electrode t@dcapillary inner region. The
arrangements with long capillary tips require miariger times to alter the buffer pH in the
capillary region. The bulk flow driven by electroossis is also investigated. Electroosmotic
flow of upward direction (assessed in the capillasyeeds up the pH change as an altered
buffer is pumped into the capillary by convecti@n the contrary, reversed EOF slows down
the pH change. This kind of simulation may be usefhen planning a new geometry
arrangement for the electrophoresis.

The second task deals with the injection cross tkaB common part of separation
microdevices. The task shows that the simulation alan be carried out in the constant
current mode. The resolution of analytes is insgkateder various conditions. Optimal
conditions for the analysis are found. The task destrates the importance of constraint
current and pullback current in the lab-on-a-chipalgsis. They control the analyte
concentration in the separation and they can aleadhe peak tailing that originates due to
the diffusion. The presented computational modedls® able to handle more complicated
chip structures (results not shown).

The third task concerns the free-flow electropharesjuipment. It can possibly be used also
as a chip structure. The simulations reveal spatiafiles of the analytes under various
conditions. This kind of simulation may be usefulenhsearching for a free-flow device of
appropriate dimensions as well as when optimizmegftee-flow separation.

The fourth task focuses on the temperature effecthe capillary. The simulations reveal
stationary temperature profiles in two particul@ogetry arrangements. The temperature
rises as the electric current passes through dwrelyte. Furthermore, the air and the water
cooling are inspected. The temperature decreases @solant flows faster around the
capillary. The water cooling is more effective thémat employing the air. This kind of
simulation may be of great interest when heat-tgasanalytes are to be separated.
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The finite element method is a powerful tool whelvieg the tasks in the natural sciences,
especially in the physics. The presented thesis dvbké to show that it can also lend a
helping hand when solving the tasks in electropierel believe that the introduced
mathematical model will be further improved andlaggpalso to other tasks that deal with the
computer simulations of experiments in electropkiste

Last of all, | suppose that | have fulfilled alkthims of the presented thesis.
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