Vliv estrogenních hormonů na kapacitaci a akrozomální reakci myších spermií \textit{in vitro}

The influence of estrogens on mouse sperm capacitation and acrosome reaction \textit{in vitro}

DIPLOMOVÁ PRÁCE

Vedoucí diplomové práce: RNDr. Kateřina Hortová, PhD.

Praha, 2011
Prohlášení

Prohlašuji, že jsem tuto diplomovou práci vypracovala samostatně a že jsem uvedla všechny použité informační zdroje a literaturu. Tato práce ani její podstatná část nebyla předložena k získání jiného nebo stejného akademického titulu.

V Praze, 2. srpna 2011
Poděkování

Ráda bych poděkovala své školitelce RNDr. Kateřině Hortové, PhD. za její ochotnou spolupráci, vedení, trpělivost v průběhu vzniku mé diplomové práce a za pomoc při jejím dokončení.

Dále děkuji Mgr. Lukáši Dědovi z laboratoře diagnostiky pro reprodukční medicínu za jeho pomoc při zpracování statistických výsledků pro moji diplomovou práci.

Děkuji také členkám laboratoře reprodukční biologie – Ing. Marianě Sítárové za přátelství a spolupráci při výzkumných pokusech, RNDr. Nataše Šebkové za pomoc a rady při osvojení si některých laboratorních technik a paní Marii Nohýnkové za její dobré rady.

Děkuji všem členům rodiny a svým přátelům za jejich podporu a motivaci při tvorbě této práce.

Tato diplomová práce vznikla za finanční podpory MSMT VC 1M06011.
Obsah

ABSTRAKT .. 5

ABSTRACT... 6

SEZNAM ZKRÁTEK .. 7

1. ÚVOD A CÍLE ... 9

CÍLE DIPLOMOVÉ PRÁCE .. 11

 1.1 Studie vlivu vybraných estrogenů na kapacitaci myších spermií in vitro s detekcí míry tyrozínové fosforylace. ... 11

 1.2 Hodnocení stavu akrozómu myších spermií po kalcium ionoforem indukované akrozomální reakci in vitro. ... 11

2. LITERÁRNÍ PŘEHLED ...12

 2.1 STAVBA A FUNKCE SAVČÍ SPERMIE .. 12

 2.1.1 Hlavička spermie .. 13

 2.1.2 Jádro .. 13

 2.1.3 Akrozóm spermie a jeho funkce .. 14

 2.1.4 Bičík .. 15

 2.2 SPERMATOGENZE .. 16

 2.3. KAPACITACE ... 17

 2.3.1 Biologie in vivo kapacitace .. 19

 2.3.2 Tyrozínová fosforylace ... 20

 2.3.3 Hyperaktivace spermie .. 21

 2.3.4 Kapacitace in vitro ... 22

 2.4 AKROZOMÁLNÍ REAKCE .. 22

 2.4.1 Indukce akrozomální reakce .. 22

 2.4.2 Molekulární mechanismy akrozomální reakce ... 24

 2.4.3 Akrozomální reakce in vitro ... 25

 2.5 ESTROGENY ... 26

 2.5.1 Funkce estrogenů ... 27

 2.5.2 Výskyt estrogenů .. 28

 2.5.3 Struktura estrogenů ... 29

 2.5.4 Biosyntéza estrogenů .. 29

 2.5.5 Transportní proteiny estrogenů a metabolismus ... 30

 2.5.6 Terapeutické estrogeny a syntetické estrogeny ... 31
2.5.7 Estrogenní receptory ... 32
2.5.8 Mechanismus účinku estrogenů .. 33
2.5.9 Role receptorů GPR30 v rychlé signalizační dráze ... 34
2.6 ROLE ESTROGENŮ V SAMČÍ REPRODUKCI ... 35
2.6.1 Estrogenní receptory u mužů ... 36
2.6.2 Estrogeny u myší .. 37
2.6.3 Knockout modely myší ... 38
2.7 VÝLUČOVANÉ ESTROGENY .. 38
2.7.1 Hormony ve vodě ... 39

3. MATERIÁL A METODY ..41
3.1 MATERIÁL ... 41
3.1.1 Chemikálie .. 41
3.1.2 Roztoky .. 42
3.1.3 Přístroje ... 44
3.1.4 Další použitý materiál .. 45
3.1.5 Protílatky a fluorescenčně značené próby ... 45
3.1.6 Živočišný materiál pro odběr spermií .. 45
3.2 METODY ... 46
3.2.1 Příprava jednotlivých koncentrací estrogenů .. 46
3.2.2 Kapacitace spermií in vitro ... 46
3.2.3 Fluorescenční metody .. 48
3.2.4 Hodnocení tyrozínové fosforylace ... 48
3.2.5 Indukce akrozomální reakce in vitro ... 49
3.2.6 Hodnocení akrozomální reakce .. 50
3.2.7 SDS – PAGE a imunodetekce proteinů ... 50

4. VÝSLEDKY ..53
4.1 HODNOCENÍ TYROZINOVÉ FOSFORYLACE V HLAVIČCE SPERMIE MYŠI PO KAPACITACI IN VITRO A STATISTICKÉ ZHODNOCENÍ ZÍSKANÝCH VÝSLEDKŮ ... 53
4.2 HODNOCENÍ CAJ INDUKOVANÉ AKROZOMÁLNÍ REAKCE A STATISTICKÉ ZHODNOCENÍ ZÍSKANÝCH VÝSLEDKŮ ... 57
4.3 ELEKTROFORETICKÉ HODNOCENÍ TYROZINOVÉ FOSFORYLACE Z LYZÁTU CELÝCH SPERMIÍ ... 60

5. DISKUZE ...62

6. ZÁVĚR ..71

7. SEZNAM POUŽITÉ LITERATURY ...72

- 4 -
Abstrakt

V životním prostředí se vyskytuje stále více látek, které mohou působit na reprodukční parametry, jak v samčím, tak v samičím organismu. Současným světovým problémem je snížení kvality spermií, což vede k nárůstu početí nepřirozenou cestou za použití technik asistované reprodukce na specializovaných klinikách.

Mezi tyto látky patří i přírodní estrogeny, které se po vyloučení z těla močí dostávají do odpadních vod. Do lidského těla se zpět dostávají v pitné vodě nebo z potravy a interferují s činností endogenních hormonů již při velmi nízkých koncentracích, proto je vysoce aktuální se v současné době zabývat vlivem těchto látek na savčí spermií.

Estaegony jsou brány jako typicky samičí pohlavní hormony, ale mají významnou roli i v regulaci samčí reprodukce. Endogenní estrogeny jsou u savčích samců důležitou částí endokrinního systému. Účastí se vývoje zárodních buněk, pochodů spermatogeneze a procesů vedoucích k úspěšnému oplození vajíčka jako je kapacitace a akrozomální reakce (AR). Tyrozínová fosforylace proteinů (p-Tyr) je jedním ze zásadních kroků pro úspěšné proběh kapacitace spermií, na kterou navazuje fúze plazmatické a vnější akrozomální membrány s následným vylitím akrozomálního váčku a splynutí spermie s vajíčkem.

Na laboratorních myších kmene BALB/c byl detailně studován vliv estrogenních hormonů 17-β-estradiolu, estronu, estriolu a syntetického 17-α-ethynylestradiolu na kapacitaci a AR in vitro. P-Tyr proteinů je výhradní ukazatel transdukce signálu v regulačních drahách spojených s kapacitací spermií, proto byl efekt daných látek hodnocen mírou p-tyr v hlavičce spermií při kapacitaci in vitro, a to jak pod fluorescenčním mikroskopem, tak pomocí polyakrylamidové gelové elektroforézy v přítomnosti dodecyl síranu sodného (SDS-PAGE). Paralelně byl rovněž hodnocen stav akrozómu po kalcium ionoforem (CaI) indukované AR.

Ze získaných výsledků nelze jednoznačně usuzovat, že exogenní přídání přirozených estrogenních hormonů do kapacitačního média indukuje oproti kontrole odloučenou míru fosforylace tyrozínových zbytků proteinů hlavičky myší spermií. Nicméně v případě syntetického 17-α-ethynylestradiolu, byl nárůst p-Tyr zaznamenán.

Z vyhodnocení CaI indukované AR je patrné, že procento myších spermií s dokončenou AR vzrostlo s kapacitačním časem. U 17-β-estradiolu a estronu byl zaznamenán pokles AR v porovnání s kontrolou. Ostatní signifikantní rozdíly se objevovaly náhodně a bez závislosti na koncentraci, typu steroidu, čase kapacitace nebo době působení CaI. Lze shrnout, že rostoucí koncentrace estrogenů v životním prostředí může vést k ovlivnění schopnosti spermií kapacitovat a procházet akrozomální reakcí in vitro.

Klíčová slova: estrogeny, spermie, kapacitace, tyrozínová fosforylace, akrozomální reakce
Abstract

There are an increasing amount of compounds in the environment that can have a negative effect on reproductive parameters in both male and female organism. There has been a worldwide decline of sperm quality during past decades and this fact lead to an increase of unnatural ways of conception through assisted reproduction techniques in the specialised centres.

Natural estrogens are one of these compounds and they get into waste water after being excluded from the body by the urine. They get back into the human body from drinking water or from the food, and they can interfere with function of endogenous hormones in very low concentrations. For these reasons it is up to date to deal with the influence of these compounds on mammalian sperm.

For many years, estrogens have been considered typically female sex hormones. It is now certain that they are also very important in the regulation of male reproduction. Endogenous estrogens in mammalian males are an important part of the endocrine system. Estrogens play an important role in the development of germ cells, spermatogenesis and processes leading to successful egg fertilization such as a capacitation or acrosomal reaction. Tyrosine phosphorylation is one of the essential steps for the properly ongoing process of capacitation in sperm followed by a fusion of plasma and outer acrosomal membrane of sperm and sequential exocytosis of the acrosomal vesicle followed by sperm-egg fusion.

We used laboratory strain of BALB/c mice for a detailed study of the effect of three natural estrogenic hormones 17-β-estradiol, estron, estriol and synthetic 17-α-ethynylestradiol on capacitation and acrosomal reaction in vitro. P-Tyr is exclusive indicator of a signal transduction pathway associated with sperm capacitation, therefore the effect of these estrogens was evaluated by the ratio of tyrosine phosphorylation in a sperm head during capacitation in vitro with the using of the fluorescent microscope and also SDS PAGE electrophoresis. Simultaneously, we evaluated the state of the acrosome after calcium ionophore induced acrosomal reaction.

The results obtained cannot unequivocally conclude that the exogenous addition of natural estrogenic hormones to the capacitation medium induces different levels of tyrosine-phosphorylated residues expressed in a mouse sperm head in comparison with the control. However, in the case of synthetic 17-α-ethynylestradiol, the increase in sperm head p-Tyr was detected. From the evaluation of CaI induced AR is evident that the increase in percentage of acrosome-reacted sperm was positively dependent on the time of the capacitation. The decrease in the level of AR was analyzed in 17-β-estradiol and estron influenced sperm samples in comparison with the control. Other significant differences occurred randomly and independently on the concentration, type of steroid, capacitation time or duration of CaI exposure. It can be concluded that increasing concentration of estrogens in the environment have an impact on the ability of sperm capacitation and AR in vitro.

Keywords: estrogens, sperm, capacitation, tyrosine phosphorylation, acrosomal reaction
Seznam zkratek

AC adenylát cykláza
AKAP3 protein 3 zakotvující proteinkinázu A
AR akrozomální reakce
ArKO aromatázový knockout myši
ATP adenosintrifosfát
ATPáza adenosin trifosfáza
BPA bisfenol A
BSA hovězí sérum albumin (bovine serum albumin)
CaI kalcium ionofor (calcium ionofore)
cAMP cyklický adenosin monofosfát
CRISP1 sekrece protein bohatý na cystein
cyt P450 cytochrom P450 enzymový komplex
DAG diacylglycerol
DES diethylstilbestrol
DF dekapacitační faktor
DNA deoxyribonukleová kyselina
EGF epidermální růstový faktor (epidermal growth factor)
ELFO elektroforéza
ER estrogenní receptor
ERα estrogenní receptor α
ERβ estrogenní receptor β
ERE estrogenní responzivní element (estrogen response element)
αERKO knockout estrogenního receptoru α
βERKO knockout estrogenního receptoru β
αβERKO dvojité knockout myši pro estrogenní receptory α a β
FSH folikuly stimulující hormon
GEN genistein
GPI glykofosfatidylinositol
GPR receptor spojený s G-proteiny (G-protein coupled receptor)
HSP heat shock protein – chaperon
HRT hormonální substituční léčba (hormone replacement therapy)
IAM - vnitřní akrozomální membrána (inner acrosomal membrane)
IP₃ - inositol trifosfát
LH - luteinizující hormon
NADPH - redukovaná forma - nikotinamid adenin dinukleotid fosfát
nAChR - nikotinový acetylcholinový receptor
NO - oxid dusnatý
NP - p-nonylfenol
OAM - vnější akrozomální membrána (outer acrosomal membrane)
P₄₅₀arom - P₄₅₀ aromatáz
PBP - fosfatidylethanolamin vazebný protein
PBS - fyziologický roztok, fosfátový pufr (phosphate buffer saline)
PCBs - polychlorované bifenylky
PIP₂ - fosfatidyl inositolbifosfát
PKA - protein kináza A
PKC - protein kináza C
PLA₂ - fosfolipáza A₂
PLC - fosfolipáza C
PM - plazmatická membrána
PNA - lektin z burských oříšků z Arachis hypogaea (peanut), Alexa Fluor 488® conjugate
p-Tyr - tyrozinová fosforylace proteinů
PTK - protein tyrozin kináza
RNA - ribonukleová kyselina
SDS - dodecyl síran sodný (sodium dodecyl sulfate)
SDS-PAGE - polyakrylamidová gelová elektroforéza v přítomnosti SDS
SHBG - globulin vázající pohlavní hormony (sex hormone binding globulin)
TBS - fyziologický roztok neobsahující fosfáty (tris-buffered saline)
TEMED - N, N’, N’- tetramethylendiamin
ZP - Zona pellucida
ZP2 - Zona pellucida protein 2
ZP3 - Zona pellucida protein 3
1. Úvod a cíle

V posledních letech dochází k celosvětovému snížení kvality spermií, což vede k nárůstu neplodnosti v ekonomicky vyspělých zemích a přibývá případů početí dítěte nepřirozenou cestou za použití technik asistované reprodukce na specializovaných klinikách. Nestatistická data ukazují, že až každý pátý pár má určité problémy s početím dítěte nezdravými spermiemi, které nejsou schopné oplodnit vajíčko. Odhaduje se, že počet spermií u mužů se v průměru každý rok snižuje o 2 až 3 %.

Na samčí reprodukční buňky působí nepříznivě mimo jiné vlivy životního prostředí. Tyto látky se vyskytují v znečištěných půdách, vodních zdrojích i v ovzduší a po vniknutí do lidského těla mohou mít vliv na plodnost. Muž rovněž nezbytně nezadržuje příznivě, které škodlivě působí na reprodukční parametry.

Hormony se sice výrazně naředí v říční vodě, ale bylo prokázáno, že estrogenní hormony i v extrémně nízkých (10^{-9} - 10^{-12} mol·l^{-1}) koncentracích mají vliv na změny pohlaví rybích samců tzv. feminizace ryb. V důsledku probuzení samičích hormonů začínají samci tvorit jikry, následuje neschopnost oplození samice a dochází k vymírání rybí populace. Ryby nejsou jedinými živočichy, kteří jsou k látkám s hormonálními účinky vnímaví, se stejným problémem se setkáváme i u žab a měsíčních želv. Estrogenní látky se dostávají do těla savců, včetně lidského, v pitné vodě nebo z potravy a interferují s činností endogenních hormonů již opět při velmi nízkých koncentracích, proto je vysoce aktuální se v současné době zabývat vlivem těchto látek na reprodukční parametry.

Estrogeny nejsou pouze samičí pohlavní hormony, ale jsou ve fyziologických koncentracích zcela esenciální pro správný průběh spermatogeneze samců. Estrogeny vznikají u somatických a zárodečných buněk varlat i v buňkách nadvarlat činností enzymu P450 aromatázy (P450arom), která přeměňuje androgyeny na estrogeny. Tyto hormony následně regulují spermatogenezi přes vazbu na specifické estrogenní receptory, které fungují...
jako transkripční faktory a regulují genovou expresi v jádře. Nicméně je prokázáno, že jaderné estrogenní receptory jsou translokovány do plazmatické membrány a touto negenomickou cestou se účastní rychlého chemického přenosu. Estrogeny v endogenně řízené fyziologické koncentraci hrají roli při zahájení pochodů spermatogeneze, v maturaci spermií, při navození jejich motility a udržení životaschopnosti.

Spermie musí podstoupit řadu změn, aby byly schopné oplodnit vajíčko. Estrogeny svou rolí v kapacitaci a AR ovlivňují oplození savců. Tyrozínová fosforylace (p-Tyr) proteinů je jedním ze zásadních kroků pro úspěšný průběh kapacitace u spermií, na kterou navazuje fúze membrán (plazmatické a vnější akrozomální) s následným vylitím akrozomálního vezikulu při AR a po té splynutí spermie s vajíčkem. Estrogen po vazbě na estrogenní receptory zahajuje sled událostí zahrnující v zrůst vnitrobuněčné koncentrace vápenatých iontů, stejně jako hydrohluftitanových iontů, které následně aktivují adenylát cyklázu (AC) generující cyklický adenosin monofosfát (cAMP). Vzrůst cAMP dále aktivuje protein kinázu A (PKA) aktivující tyrozín kinázy, které fosforylují proteiny na tyrozínových zbytcích. Kromě tyrozínové fosforylace dochází současně k hyperpolarizaci membrány, která je způsobena zvýšením propustnosti K⁺ iontů a souvisí s uvolněním inhibičních komponent z povrchu membrány spermie, kdy následně může dojít ke kapacitaci (Baldi et al. 2000). Bez řádné funkce signalizačních drah, kde estrogenní hormony hrají nezastupitelnou roli, není spermie schopná oplození.
Cíle diplomové práce

1.1 **Studie vlivu vybraných estrogenů na kapacitaci myších spermii *in vitro* s detekcí míry tyrozinové fosforylace.**

 Prvním cílem této práce bylo zjistit, zda přírodní estrogeny – 17-β-estradiol, estron, estriol a syntetický 17-α-ethynylestradiol mají vliv na míru tyrozinové fosforylace v průběhu kapacitace *in vitro*. Zajímalo nás, zda spermie ovlivněné v průběhu kapacitace exogenním přidáním estrogenů ve fyziologických koncentracích do kapacitačního média mají časově i koncentračně odlišnou proteinovou fosforylaci tyrozinových zbytků oproti kontrole.

 Míru tyrozinové fosforylace jsme zjišťovali dvěma způsoby:

 1.1.1 **Hodnocením pozitivní tyrozinové fosforylace v hlavičce spermie pod fluorescenčním mikroskopem.**

 1.1.2 **Hodnocením tyrozinové fosforylace z lyzátu celých spermí za použití SDS-PAGE elektroforézy s následnou imunodetekcí proteinů.**

 1.2 **Hodnocení stavu akrozómu myších spermii po kalcium ionoforem indukované akrozomální reakci *in vitro*.**

 Druhým cílem bylo porovnat schopnost spermii projít akrozomální reakcí indukovanou kalcium ionoforem v podmínkách *in vitro* mezi skupinou kontrolní a skupinou ovlivněnou výše definovanými estrogenními hormony.
2. Literární přehled

2.1 Stavba a funkce savčí spermie

Spermie jsou samčí gamety s vysoce specializovanou funkcí a strukturou. Jsou to haploidní buňky, které jsou konečným stádiem procesu spermatogeneze probíhajícím ve varlatech, přesněji v semenotvorných kanálcích. Po vypužení z těchto kanálků se hromadí v nadvarleti, kde dosahují schopnosti pohybu. Skládají se ze dvou hlavních částí, a to hlavičky s uloženou DNA spermie a bíčku (obr. 2.1), který jim zajišťuje pohyb (motilitu). Jejich posláním je spojit se s vajíčkem a vytvořit nový organismus.

Obr. 2.1 Lidská spermie (http://cs.wikipedia.org/wiki/Spermie).
2.1.1 Hlavička spermie

Obr. 2.2 Morfologické typy hlavičky spermie (Eddy & O´Brien 1994).

2.1.2 Jádro

V jádře spermie je chromatin více kondenzovaný a obsahuje poloviční sadu chromozómů. DNA spermie je v konečné fázi spermatogeneze spojena s bazickými proteinami protaminy, které nahrazují históny běžné u somatických buněk. Jádro je obaleno dvěma jadernými obaly, a to vnitřním a vnějším. Vnitřní povrch jaderného obalu lemuje proteínová síť, jaderná lamina, která tvoří jeho strukturální podporu a umožňuje ukotvení chromatinu.
2.1.3 Akrozóm spermie a jeho funkce

Akrozóm hraje důležitou roli v druhově specifické vazbě spermie na ZP vajíčka. Je to sekreční organela odvozená z Golgiho aparátu v pozdní fázi spermiogeneze a připomíná buněčný lysozóm v několika podobnostech: 1) akrozomální komponenty se formují a jsou uchovány po několik týdnů během vzniku a vývoje spermie ve varlatech; 2) obsah váčku prodělává změny během následného zrájení spermie v nadvarlatech, je uložen ve spermii po dlouhou dobu a v koncentrované formě; 3) organela podstupuje sekreci v důsledku vnějšího stimulu (Abou-haila & Tulsiani 2009, Burgess & Kelly 1987).

Jeho hydrolytické enzymy jsou nezbytné pro penetraci spermie skrz obaly obklopující vajíčko (Millette 1999). Obsahuje i receptory důležité při vazbě spermie na zona pellucida (ZP) oocytu. Další akrozomální enzymy pomáhají fúzi membrán vajíčka a spermie a exocytóze kortikálních granul z vajíčka, které zabraňují polyspermii (Gilbert 2000).

Struktura akrozómu

Dobře vyvinutý akrozóm má podobu váčku s vnitřní (IAM) a vnější (OAM) akrozomální membránou. Vnitřní membrána kryje přední část vnější jaderné membrány, prostor mezi těmito membránami nazýváme perinukleární théka. OAM se nachází v těsné blízkosti vnitřní části PM hlavičky spermie (Eddy & O’Brien 1994).

Cytoskelet v hlavičce spermie je bohatý na aktin a vyskytuje se ve formě filamentární (F-aktin) nebo v monomerním stavu (G-aktin). F-aktin zajišťuje fyzickou bariéru, která brání fúzi OAM a PM spermie (Brener et al. 2003).

Složky akrozómu

Akrozóm obsahuje velké množství rozmanitých enzymů, některé z nich jsou specifické jen pro spermatogenní buňky (akrozín, kyselá fosfatáza, β-galaktosidáza, fosfo-
lipáza, hyaluronidáza, neuraminidáza), jiné enzymy – kyselé hydrolázy se běžně vyskytují v lysozómech (Eddy & O’Brien 1994).

Hyaluronidáza je další enzym vyskytující se jak na povrchu spermie, kde je přichycena GPI-kotvou na PM spermie, tak rozpustná v akrozómu (Hardy et al. 1991). Při oplození nejdříve nastupuje hyaluronidáza štěpící kyselinu hyaluronovou v cumulus oophorus, což umožňuje spermii průchod skrz kumulární matrix. Po AR se uplatňuje vypuštěná hyaluronidáza hydrolyzující hyaluronan v ZP. Spermie může potom proniknout do vajíčka a oplodnit ho.

Ostatní enzymy akrozómu napomáhají průniku skrz kumulární matrix.

2.1.4 Bičík

Hlavní funkcí bičíku je poskytnout pohyb spermií, aby se dostala k vajíčku, mohla jím proniknout a oplodnit ho. Bičík je asi 50 µm dlouhý a můžeme ho rozdělit na čtyři části: krček, střední část s mitochondriemi, hlavní část a koncovou část. Bičíkem prochází osové vláknho – axonema, kterou obklopuje spirálovitá mitochondriální pochva. Axonemu tvoří kruh devíti dvojic mikrotubulů s dvěma centrálními mikrotubuly (uspořádání 9+2). Jednotlivé dvojice z kruhu jsou navzájem spojeny dyneinem, který funguje jako molekulární motor a umožňuje zakřivení bičíku při pohybu (obr. 2.3). Spermie se aktivně pohybuje proti proudu a je chemicky přitahována k vajíčku (pozitivní chemotaxe). Pohon pro spermii je zajišťován hydrolyzou molekul adenosin trifosfátu (ATP), které vznikají činností mitochondrií ve střední části bičíku. Během oplodnění jsou mitochondrie degradovány vaječnou buňkou, z toho vyplývá, že potomek má mitochondrie a mitochondriální DNA převážně od matky.
2.2 Spermatogeneze

Muž produkce několik tisíc miliónů spermií za den kontinuálně od puberty po celé reprodukční období, se stářím ale jejich produkce klesá. Spermie jsou produkované v semenotvorných kanálcích varlete v procesu nazývaném spermatogeneze (obr. 2.4), který probíhá v několika navazujících stádiích (fáze rozmnožovací, růstová a zrání) a zahrnuje proliferaci, mitózu, meiózu a diferenciaci pohlavních buněk.

Dalším kompartmentem varlat je intersticiální prostor mezi kanály, ve varlatech se nacházejí tři hlavní typy buněk – germinální neboli zárodečné buňky, které jsou obklopeny a vyživovány plazmou procházející skrze semenotvorné kanály ze Sertoliho buněk a Leydigovy buňky (Gilbert 2006).

Spermatogenezi zajišťují a umožňují Sertoliho buňky tvořící bariéru mezi krví a buňkami spermatogenní (zárodečné) linie a zprostředkující látkovou výměnu pohlavních buněk. Leydigovy buňky se vyskytují ve skupinách mezi semenotvornými kanály varlete a produkují testosteron.

Při spermatogenezi nejdříve dochází k mitotickému dělení spermatogonií, prapohlavních kulovitých samčích buněk, za tvorby primárních spermatocytů neboli I. řádu (2n). Spermatocyty I. řádu se dělí prvním meiotickým dělením, při kterém vznikají
spermatocyty sekundární neboli II. řádu (n). U spermatocytů II. řádu probíhá druhé meiotické dělení za vzniku spermatid, které se už dále nedělí.

Ze spermatid se tvoří spermie procesem nazývaným spermiogeneze. Dochází ke kondenzaci jádra, vytvoření bičíku, ztrátě cytoplazmy a některých organel.

Nezralé spermie putují přes semenotvorné kanálky do nadvarlete, kde se uchovávají po dobu přibližně dvou týdnů a zde také dochází k jejich definitivnímu zrání. Spermie jsou vyživovány sekretem pohlavních přídatných žláz a to nadvarlat, prostaty, bulbouretrálních žláz a semenných váčků. Suspenze spermii je v sekretu žláz tzn. semenné plazmě a nazývá se ejakulát. Semená plazma má zásadité pH, protože spermie jsou lépe pohyblivé v zásaditém prostředí.

Vznik nové spermie trvá přibližně 2 měsíce a odhaduje se, že každou hodinu opouští varle asi 1 milion spermíí.

Obr. 2.4 Průřez epitelem semenotvorného kanálku s jednotlivými stádii spermatogeneze (http://en.wikipedia.org).

2.3. Kapacitace

Savčí spermatické buňky prodělávají neustálé změny během spermatogeneze ve varlatech, zrání v nadvarlatech a v samičím reprodukčním traktu v průběhu kapacitace (Tulsiani et al. 1998). Proces kapacitace je konečný krok zrání savčích spermii a je potřeba pro dosažení schopnosti spermie oplodnit vajíčko (Baldi et al. 2000). Historicky byla kapacitace definována jako časový interval inkubace spermie (in vivo nebo in vitro), který je nutný k dosažení zralosti spermie (Chang 1984). Tento krok je biochemický proces, in vivo nastává po ejakulaci v ženském reprodukčním traktu, in vitro kapacitace může pro-
běhnout v ejakulátu nebo ve vzorku odebraném z nadvarlete (Visconti et al. 1995). Kapacitační reakce zahrnuje (obr. 2.5), mimo jiné, pohyb iontů přes PM, vyvazování cholesterolu tzn. změnu fluidity membrány, nárůst cAMP, p-Tyr mnoha proteinů a v neposlední řadě polymerizací aktinu, která je závislá na vazbě ATP, následně prudkou depolymerizací aktinu, čímž je navozena AR.

Biochemické změny během kapacitace indukované estrogeny nastávají rychle díky negenomické akci estrogenních receptorů (Aquila et al. 2004).

Obr. 2.5 Model možného sledu událostí v mezibuněčné signalizaci vedoucí ke kapacitaci (Abou-haila & Tulsiani 2009).
2.3.1 Biologie in vivo kapacitace

Změny probíhající na povrchu ejakulované spermií při in vivo kapacitaci zahrnují: odstranění adsorbovaných proteinů a glykoproteinů ze semenné plazmy, pozměnění (např. metylace fosfolipidů) a přebudování molekul PM, výsledkem je odhalení receptorů na spermii důležitých pro rozpoznání a vazbu na vajíčko (Jones 1998, Yanagimachi 1994). Efflux cholesterolu (obr. 2.6) mění propustnost a tekutost PM, což umožňuje vtok iontů Ca$^{2+}$ a HCO$_3^-$, které aktivují intracelulární druhé posly (Abou-haila & Tulsiani 2009, Tulsiani et al. 2003). Spustí se signální kaskáda (obr. 2.7) zahrnující a) aktivaci AC a produkci cAMP; b) stimulaci PKA a dalších proteinových kináz; c) tyrozinovou fosforylací skupiny molekul spermie; d) hyperaktivaci spermii (Zeng et al. 1995, Visconti et al. 1999).

Obr. 2.6 Cholesterolový efflux po interakci vajíčka a spermie (Ris 2005).

Obr. 2.7 Schéma průběhu kapacitace spermí (Baldi et al. 1996).

2.3.2 Tyrozinová fosforylace

Fosforylace tyrozínů je důležitá regulační dráha v modulaci událostí spojených s kapacitací (Naz & Rajesh 2004). Na savcích spermích se vyskytují fosfoproteiny, jejichž fosforylovaný nebo defosforylovaný stav je kontrolován aktivitou proteinových kináz a fosfatáz, které mají roli při zisku motility, kapacitací a AR (Tash & Means, 1983). U pro-
teinů spermie může fosforylace probíhat na tyrozínových, serinových a threoninových zbytecích, ale p-Tyr je nejdůležitější a je primárním ukazatelem procházejících signálních drah v buňce (Naz & Rajesh 2004).

Zdá se, že existují tři hlavní cesty přenosu signálu vedoucího ke kapacitaci.
1) cAMP/PKA dependentní, kde cAMP je druhý posel aktivující PKA, která patří mezi serin/threoninové kinázy a reguluje p-Tyr (Thundathil et al. 2002). 2) Dráha receptorové tyrozín kinázy (př. Epidermální růstový faktor - EGF) a 3) Nereceptorová protein tyrozín kinázová dráha (Naz & Rajesh 2004).

K fosforylací dochází jak u bičíku, tak na hlavičce spermie, kde dochází k fúzi gamet (Urner et al. 2001). P-Tyr proteinů bičíku souvisí se ziskem hyperaktivované motility, která je potřebná pro penetraci kumu lu a ZP vajíčka (Naz & Rajesh 2004).

2.3.3 Hyperaktivace spermie

Spermie získá hyperaktivní motilitu díky p-Tyr proteinům bičíku (Holt & Harrison 2002). Spermie uvolněné ze semenné plazmy plavou v přímé trajektorii a rychleji než hyperaktivované. Bičík hyperaktivovaných spermíí se mrská v hlubokých ohybech, pohyb je méně symetrický. Tento pohyb se liší v tekutinách s různou viskozitou a elasticitou a je nezbytný pro průchod oviduktálním hlenem a kumulární matrix, vazbu na vajíčko a průběh AR (Yanagimachi 1994, Suarez & Ho 2003). Pro iniciaci a udržení hyperaktivované motility jsou nutné extracelulární Ca2+ ionty působící společně s axonem bičíku na spuštění hyperaktivace (Suarez & Ho 2003). Po proběhlé kapacitaci se na povrchu bičíku spermie odhalí receptory, které po aktivaci stimulují G protein, který pro změnu aktivuje Ca2+ kanály dovolující krátkodobý vstup Ca2+ iontů. Tyto Ca2+ ionty stimulují AC, a tím se zahájí syntéza cAMP a kinázová kaskáda (Abou-haila & Tulsiani 2009). Zmíněný G-protein ještě aktivuje Na+/H+ kanály (antiport), čímž dochází ke vzrůstu vnitrobuněčného pH (Yanagimachi 1994). Hyperaktivace může být kritická pro úspěch oplození, protože zvyšuje zdatnost spermie oddělit se od stěny vejcovodu, pohybovat se vzhůru spletitou dutinou vejcovodu, prostopovat hlenovým obsahem a proniknout ZP vajíčka (Suarez & Ho 2003).
2.3.4 Kapacitace \textit{in vitro}

Savčí spermie mohou být kapacitovány \textit{in vitro} v chemicky definovaném médiu. Používají se spermie z ocasu nadvarlete (\textit{cauda epididymis}) nebo ejakulované, které se vloží do média doplněného o energeticky bohaté látky, elektrolyty a akceptor cholesterolu (Dow & Bavister 1989).

V kapacitačním médiu musí být obsažena příslušná koncentrace elektrolytů, zdrojů energie, proteiny bovinního sérum albuminu (BSA), Ca\(^{2+}\) ionty a NaHCO\(_3\). Klíčové sekundární signalizační molekuly regulující kapacitaci spermií jsou Ca\(^{2+}\) a HCO\(_3^-\) ionty a cAMP (Abou-haila & Tulsiani 2009). Na myším modelu bylo předvedeno, že podmínky napomáhající kapacitaci spermií z \textit{cauda epididymis} podněcují tyrozinovou fosforylací skupiny proteinů o velikosti 40 – 120 kDa.

Sérum albumin, obvykle hovězí BSA, je používán k vyvazování cholesterolu z PM spermie. Vychytávání cholesterolu je nezbytné v regulaci intracelulární signalizace během kapacitace.

Výsledkem přidání HCO\(_3^-\) iontů do média je stimulace pohyblivosti spermie a její hyperaktivace zprostředkovaná aktivací AC a p-Tyr proteinu 3 zakotvující proteinkináz A (AKAP3), což doplňuje PKA (Luconi \textit{et al.} 2004).

2.4 Akrozomální reakce

Při AR dochází k fúzi PM a OAM (obr. 2.8), což vede k uvolnění akrozomálních enzymů rozrušujících obaly vajíčka a k vystavení nových membránových domén (Breitbart & Spungin 1997). Po AR spermie může snadno proniknout do vajíčka a oplodnit ho. Klinické studie identifikovaly skupinu mužů, jejichž neplodnost byla spojena s nesprávnou AR (Benoff 1997, Abou-haila & Tulsiani 2009).

2.4.1 Indukce akrozomální reakce

Uvažuje se, že signálem zahajujícím AR u myší a několika jiných druhů je rozpoznání a vazba receptorů kapacitované spermie s ligandy na ZP (Tulsiani \textit{et al.} 1997). Vazba spermie na vajíčko se odehrává ve dvou etapách. Nejdříve jsou kapacitované spermie
volně a vratně přimknuty na ZP pomocí PM překrývající jejich akrozóm, potom dojde k pevné nevratné vazbě. První interakce mezi spermií a vajíčkem u myší se účastní specifické cukerné zbytky na ZP proteinu 3 (ZP3), které jsou rozpoznávány komplementárními cukr vazebnými enzymy (glykosidázami, glykosyltransferázami) nebo lektinu podobnými proteiny na povrchu spermie a indukují AR pouze při kovalentní vazbě na proteinovou kostru (Loeser & Tulsiani 1999). Proteinová kostra ZP3 glykoproteínu napomáhá seskupení povrchových receptorů spermie (Breitbart & Spungin 1997).

Sekundární vazebná místa zajišťuje ZP2 glykoprotein na ZP vajíčka. Tato interakce zprostředkovaná cukernými zbytky spouští signální dráhu vedoucí k fúzi PM a OAM a následně AR. Tyto události jsou nejlépe prozkoumané u myší, ale u ostatních druhů živočichů se odehrávají podobně (Loeser & Tulsiani 1999).

Hladina Ca^{2+} iontů ve spermii je před navázáním na ZP velmi nízká, ale v extracelulární tekutině je mnohem vyšší. Kontakt gamet opačného pohlaví otevírá Ca^{2+} kanály, což vede k trvalému přibývání Ca^{2+} iontů a dalších druhých poslů cAMP, inositol tri-fosfátu (IP₃) a diacylglycerolu (DAG). Vzrost hladiny druhých poslů aktivuje cAMP-dependentní (PKA), Ca^{2+} a fosfolipid-dependentní (PLC) kinázy a zahajují signální kaskádu, při které se zvyšuje vnitřní pH spermie.

Odpovědí na přibývání Ca^{2+} iontů a zvyšování pH je depolymerizace F-aktinu na G-aktin, který se rozptyluje a tím se dostává PM blíže k OAM (Spungin et al. 1995). V odpovědi na tyto změny začne depolymerizace F-aktinu, který tvoří fyzickou bariéru mezi PM spermie a OAM, na monomerní G-aktin. Vzrost Ca^{2+} iontů také aktivuje fosfolipázu A₂ (PLA₂), která hydrolyzuje esterové vazby membránových fosfolipidů, čímž podporuje fúzi membrán a jejich vezikulaci. Formace váčků z PM a OAM dovoluje uvolnění složek akrozómu do místa vazby spermie k vajíčku (Abou-haila & Tulsiani 2009). Silný účinek hydrolytických akrozomálních enzymů uskutečněné v místě vazby spermie k vajíčku spolu s mrskavým pohyblem hyperaktivované spermie umožní hyperaktivované spermii vniknout do vajíčka a oplodnit ho (Abou-haila & Tulsiani 2000, Abou-haila & Tulsiani 2009).

Aktivace PKA pomocí cAMP, aktivita PLC a depolymerizace F-aktinu jsou esenciální pro spuštění AR.
2.4.2 Molekulární mechanismy akrozomální reakce

ZP3 glykoprotein se váže k nejméně dvěma receptorům na PM spermie (obr. 2.9). Po vazbě dochází k autofosforylaci receptoru a indukci TK aktivace, která vede k p-Tyr. Signální dráha je spojená s G-proteiny aktivující membránově vázané enzymy PLC a AC. Aktivace těchto dvou enzymů vede ke generaci druhých poslů cAMP činností enzymu AC a DAG spolu s IP3, hydrolýzou fosfatidyl-inositol bisfosfátu (PIP2) činností PLC. Následkem zvýšení hladiny druhých poslů dochází k aktivaci PKA (cAMP dependentní) a později PKC (Ca2+ a fosfolipid dependentní). PKA otevírá napěťově ovládaný Ca2+ kanál v OAM, který vypouští Ca2+ zechnit akrozómu do cytosolu. Toto je první zvýšení hladiny Ca2+ iontů (Baldi et al. 2000). PKC otevírá napěťově ovládaný Ca2+ kanál v PM, otevírá se i IP3 aktivovaný vápníkový kanál, což vede k druhé vlně Ca2+ iontů v cytosolu (Breitbart & Naor 1999). Vzrůst Ca2+ iontů aktivuje PLA2 generující jiné druhé posly kyselinu arachidonovou nebo lyso-fosfatidylcholin z membránových fosfolipidů, což pomáhá fúzi membrán a exocytóze akrozómu (Breitbart & Spungin 1997). Gi i TK receptory mohou také zapínat Na+/H+ pumpu způsobující zásaditost cytosolu.
2.4.3 Akrozomální reakce in vitro

Pro indukci AR in vitro u epididymálních nebo ejakulovaných spermií se používají fyziologické a nefyziologické sloučeniny.

Mezi fyziologické substance patří ty, se kterými se spermie setkává během in vivo oplození, jako jsou progesteron (hormon produkovaný během ovulace); prostaglandiny, glykózaminoglykany a sterol sulfát (přítomny ve folikulární tekutině a kumulárních buňkách). (Yanagimachi 1994). Pro indukci AR lze použít i solubilní ZP, izolovanou z vajíček a rozpuštěnou teplem (Son & Meizel 2003):

K nefyziologickým induktorům patří kalcium ionofor (CaI), neoglykoproteiny, lektiny a další (Tarín & Trounson 1993). CaI indukuje AR otevřením Ca$^{2+}$ kanálů, což umožní vtok Ca$^{2+}$ iontů. Některé syntetické glykoproteiny – neoglykoproteiny obsahující manózu jsou kovalentně vázány s BSA, napodobují ZP a indukují AR (Loeser & Tulsiani 1999).

Pohyb Ca$^{2+}$ iontů z extracelulárního média do nitra spermie je kritický krok, který reguluje vylití akrozómu (De Blas 2002). U několika druhů hlohavců jsou spermií,
inkubované v médiu bez vápníku, neschopné projít AR, pokud se do média vápník nedodá. Kapacitované lidské spermie byly neschopné odpovědi nefyziologickému CaI do doby, než bylo toto činidlo přidáno do média s již obsaženým vápníkem. Přítomnost cAMP může vyvolat CaI -dependentní AR, dokonce když je vápník prakticky nepřítomný v médiu, ale tento cyklický nukleotid není náhradou za Ca²⁺ ionty při AR indukované ZP. cAMP může vynechat požadavek transportu Ca²⁺ iontů jen v případě chemicky indukované AR (Abou-haila & Tulsiani 2009). Ca²⁺ dependentní ATPáza spojená s OAM má funkci pumpy udržující v akrozómu hladinu Ca²⁺ iontů poměrně nízkou, dokud je inhibována (Tulsiani et al. 1998). Do vstupu Ca²⁺ iontů a sestavení složek signální transdukční dráhy jsou zapojené další Ca²⁺ transportní kanály jako například ovládané kanály nebo IP₃ kanály (O’Toole et al. 2000). V průběhu AR dochází k přerozdělení Ca²⁺ mezi OAM a PM z anteriorní oblasti do equatoriálního segmentu, kde membrány fúzují, což vede k exocytóze akrozómu (Abou-haila & Tulsiani 2009).

2.5 Estrogeny

Fyziologie samičích gonád je zčásti pod kontrolou rovnováhy estrogenů a androgenů, s proteinem P450arom sloužící jako modulátor (Carreau & Hess 2010).
2.5.1 Funkce estrogenů

Množství a hladina hormonů se denně mění. Estrogeny jsou sekretovány v krátkých pulsech, které se liší hodinou od hodiny, až minutu od minuty. Uvolňování hormonu se mění i mezi dnem a nocí. U žen v průběhu menstruačního cyklu hladina 17-β-estradiolu kolísá od 50 – 400 pg/ml krevní plazmy, u mužů se pohybuje mezi 5 – 100 pg/ml (Raven et al. 2006). U myších samců se hladina estrogenu v séru pohybuje mezi 5 – 20 pg/ml (Yang 2006).

17-β-estradiol indukuje rychlý vzrůst koncentrace Ca^{2+} uvnitř buněk. Tento efekt je zprostředkován membránovým receptorem a je závislý na přítomnosti Ca^{2+} mimo buňky, proto není pozorovatelný v médiu bez Ca^{2+} iontů. 17-β-estradiol stimuluje tyrozinovou fosforylaci několika proteinů spermie zahrnující funkční estrogen receptorový protein (29 kDa) (Luconi et al. 1999).
2.5.2 Výskyt estrogenů

Tři hlavní druhy estrogenů jsou 17-β-estradiol, estriol a estron (obr. 2.10). Syntéza estrogenů se liší podle pohlaví a věku. Estrogeny jsou primárně syntetizovány v rostoucích folikulech ve vaječnicích, ve žlutém tělísu a v placentě. LH stimuluje produkci estrogenu ve vaječnicích. Některé estrogeny jsou také produkovány v menších množstvích jinými tkáněmi, jako jsou játra, nadledviny a prsní žlázky. Tyto sekundární zdroje estrogenů jsou důležité hlavně u žen po menopauze (Smith 1999).

Od první menstruace do menopauzy je primárním estrogenem 17-β-estradiol, který je produkovan hlavně v zárodečných buňkách vaječníků. Jeho hladina kolísá v průběhu menstruačního cyklu a vzrůstá před ovulací.

V průběhu menopauzy převažuje syntéza estronu převážně v tukových buňkách. Estriol je hlavním estrogenem v těhotenství a vzniká v placentě aromatizací androgenů plodu (Smith 1999).

U mužů jsou estrogeny syntetizovány ve varlatech, v nadvarlatech, ve spermatu stejně jako v mozku (Hess et al. 2001), více viz Kapitola 2.6.

Nadledviny a tukové buňky jsou také schopny syntetizovat estrogeny, což může být důvod, proč podváha nebo naopak nadváha jsou rizikové faktory pro neplodnost.

Obr. 2.10 Chemické vzorce estrogenů (Smith 1999).
2.5.3 Struktura estrogenů

Steroidní hormony, kam estrogeny náleží, se skládají z cyklopentanoperhydrofenantrenové struktury. Od ostatních skupin steroidů, jako jsou progestiny a androgeny, se estrogeny odlišují 18-uhlíkatými atomy uspořádanými do čtyř kruhů. Tuto strukturu nazýváme estranové jádro. Pro jejich správnou hormonální aktivitu je důležité umístění hydroxylové skupiny na uhlíku číslo 3 (C3) a přítomnost hydroxylové nebo ketonové skupiny na pozici C17.

Jejich biologická aktivita se odvíjí od jejich schopnosti vazby k ER a jeho aktivaci. Největší afinitu má ER k 17-β-estradiolu, nižší pak k estronu a estriolu (Smith 1999).

2.5.4 Biosyntéza estrogenů

Estrogeny, stejně jako ostatní steroidy, jsou odvozené z cholesterolu. Biosyntéza (obr. 2.11) vyžaduje přítomnost tří bílkovin obsahujících ve své molekule hemovou skupinu, a to enzymový komplex cytochrom P450 (cytP450) a dvě rozdílné dehydrogenázy.

U žen syntéza začíná v buňkách théky ve vaječnicích.

Estriol se tvoří ve větším množství v průběhu těhotenství v buňkách placenty z 16-α-hydroxydehydroisoandrosteron sulfátu, který je produkovan aktivitou jater a nadledvinek plodu (Smith 1999).
Aromatáza byla kromě buněk reprodukční soustavy, také nalezena v dalších tkáních a buňkách zahrnujících tukové buňky a pokožkové fibroblasty, kosterní svalstvo, vlasové folikuly, kostní tkání, syncyiotrophoblast a několik míst v mozku (Nelson & Bulun 2001).

Obr. 2.11 Schéma biosyntézy steroidních hormonů (http://commons.wikimedia.org/wiki/File:Steroidogenesis.png).

2.5.5 Transportní proteiny estrogenů a metabolismus

Estrogeny jsou sekretovány do krevního oběhu, kde cirkulují ve vázané a nevázané formě. V krevní plazmě se ve volné formě vyskytují pouze 2-3 % 17-β-estradiolu, který je schopen vstoupit do cílové buňky a projevit své biologické účinky. Zbylé množství je
vázáno na albumin (60 %) nebo na globulin vázající pohlavní hormony (SHBG) (38 %) a v takovéto stavu je inaktivní (Smith 1999). Estron se také majoritně váže na albumin. Při estrogenním transportu má vazba estrogenů na albuminy nižší afinitu než vysoko-afinitní vazba na SHBG. Podle afinity k vazebným proteinům plazmy a jejich koncentraci se mění jejich metabolický obrat. Syntéza SHBG probíhá v játrech a je ovlivňována pohlavními steroidy. Estrogeny syntézu SHBG zvyšují, naopak androgeny a gestageny ji snižují, proto nacházíme vyšší koncentraci SHBG u žen než u mužů. Ženy s nízkou koncentrací SHBG (např. ženy obězní) mají sníženou vazebnou kapacitu pro estrogeny a až několikanásobně zvýšenou koncentraci volně cirkulujících estrogenů.

2.5.6 Terapeutické estrogeny a syntetické estrogeny

Uměle vytvořené estrogeny a přírodní estrogeny získané z jiných savců (např. březích klisen) se používají hlavně ve farmaceutickém průmyslu. Jsou součástí většiny antikoncepčních pilulek (zhruba 40 % českých žen pravidelně užívá hormonální antikonceptii) a vyskytují se v přípravcích hormonální substituční léčby (HRT) pro ženy po menopauze. Estrogeny zajišťují prevenci ztrát kostní hmoty následkem menopauzy nebo odnětí vaječníku. Přirozeně se vyskytující estrogeny podporují růst karcinomu prsu u žen, ve vysokých dávkách však paradoxně růst tohoto nádoru blokují. Dříve se proto vysoké dávky estrogenů užívaly pro léčbu karzinomu prsu, dnes je tato léčba nahrazena novějšími způsoby hormonální léčby. U mužů estrogeny snižují tvorbu mužských pohlavních hormonů ve varlatech. Také se podávají transsexuálům, kteří se chtějí stát ženou.

Přírodní 17-β-estradiol má velmi slabou aktivitu při orálním podání, proto se chemicky upravuje pro zvýšení své aktivity. Dva nejčastější syntetické estrogeny jsou estradiol 17-benzoát a 17-α-ethynylestradiol (Smith 1999).

Aktivní forma estradiol valerátu, syntetického 17-β-estradiolu je chemicky a biologicky identická s endogenním lidským 17-β-estradiolem. Nahrazuje ztrátu produkce estrogenu u žen v menopauze a zmírňuje menopauzální symptomy. Estradiol valerát uplatňuje své účinky prostřednictvím interakce se specifickými cytoplasmatickými receptory v estrogen senzitivních tkání.
2.5.7 Estrogenní receptory

Estrogeny jsou lipofilní sloučeniny, tudíž mohou procházet difúzí přes PM a vázat se k vysokoafinitním receptorovým proteinům. Estrogenní receptory (ERs) patří do rodiny jaderných receptorů, která zahrnuje receptory pro ostatní steroidy, vitamíny a thyroidní hormony (Smith 1999). ERs jsou ligandem ovládané transkripční faktory, které vážou estrogeny s vysokou afinitou a pozitivně regulují expresi cílových genů v jádře. Většina receptorů je lokalizována do jaderného kompartmentu, ale některé mohou zůstat v cytoplazmě a mohou být translokovány do PM. Jaderné estrogenní, progesteronové a androgenní receptory byly nalezeny v PM u různých typů buněk (Levin 2008, Pedram et al. 2007).

ER váže 17-β-estradiol fenolickou částí, vazebné místo receptoru je však dvakrát větší než hydrofobní část 17-β-estradiolu (Brzozowski et al. 1997) a tato velká hydrofóbní prohlubeň umožňuje alkylfenolům a bisfenolu A (BPA) vazbu na receptor a vyvolání ne-správných hormonálních signálů (Křesinová et al. 2009).

Estrogeny se mohou účastnit i nogenomického rychlého chemického přenosu v cytoplazmě, když se navážou na membránový receptorový protein na povrchu buněk. Oba typy ERs vyvolávají genomické a nogenomické efekty (Aquila et al. 2004).

Estrogenní receptory α a β (ERα a ERβ)

Existují dva typy ERs a to ERα a ERβ (Gustafsson 1999), které mají shodnou selektivitu k ligandům, ale reakce na tyto estrogenní sloučeniny mohou být různorodé (Kuiper et al. 1997). Oba se skládají z 6 strukturních a funkčních domén. Obsahují několik trans-aktiváčních domén, jejich DNA vazebné domény jsou identické z 96 %, ligand vazebné domény jsou homologní z 55 % (Smith 1999), ale rozdílné ve zkrácení N-koncové
části u ERβ proteinu, který má molekulovou hmotnost jen 45 kDa na rozdíl od ERα (66 kDa) (Brown 1999). DNA vazebná doména je bohatá na cystein a je formována do motivu dvou „zinkových prstů“, jejichž struktura je stabilizována dvěma ionty zinku. Po homodimerizaci ER se touto doménou ER navazuje na estrogenní responzivní elementy (ERE), což je sekvence DNA, která kontroluje transkripci estrogen responzivních genů (Korach 2000).

Odlíšují se svou distribucí v tkáních, transkripčními aktivitami a fenotypem v knock-out modelech (Korach 2000). ERα je exprimován v děloze, ve vaječnicích, ve varlatech, v nadvarlatech (principal cells a jiné typy buněk), v hypofýze, v ledvinách a v nadledvinách. Lokalizace ERα v nadvarlatech se u různých druhů liší, ale v epitelu semenotvorných kanálků je jeho přítomnost konstantní. Druhá izoforma - ERβ je exprimován v prostatě, ve varlatech – téměř ve všech buněčných typech intersticia a semenotvorných kanálků varlate, kromě prodlužujících se spermatid, v nadvarlatech (hlavně v téle a ocasu), vas deferens, ve vývodných kanálcích, v děloze, v močovém měchýři, v plicích a v mozku (Kuiper 1997, Brown 1999, Hess 2003). Rozdílné ligandy mají různou afinitu k α a β izoformám ER. Estron se přednostně váže k ERα, zatímco estriol k ERβ. 17-β-estradiol se váže stejně dobře k oběma izoformám receptorů.

2.5.8 Mechanismus účinku estrogenů

Estrogeny se z krevního řečiště stejně jako ostatní lipofilní molekuly dostávají do cílových buněk difúzí přes buněčné membrány nebo se vážou na membránové receptory na povrchu buněk. Hormon se váže na receptor (obr. 2.12) a vytvoří hormon-receptor komplex, který v jádře dimerizuje a váže se na specifické sekvence DNA ERE (Smith 1999). Zde ovlivňuje genovou expresi v závislosti na interakci koaktivátorů či korepresorů s RNA polymerázou II transkripčního iniciačního faktoru. Koaktivátory a korepresory mají histonacetylázovou či deacetylázovou aktivitu, tudíž podporují či potlačují remodelaci chromatinu ovlivňující transkripci (Brown 1999). Ve výsledku estrogeny aktivují či potlačují syntézu nových proteinů vedoucí ke změně růstu, funkce nebo diferenciace cílové buňky.
2.5.9 Role receptorů GPR30 v rychlé signalizační dráze

Další možné působení estrogenů se kromě klasických estrogenních receptorů ERα a ERβ, odehrává přes receptory růstových faktorů a GPR. GPR30 jsou receptory spojené s heterotrimerickými G-proteiny se 7 transmembránovými doménami (obr. 2.13), jejich N-konec směřuje ven z buňky a C-konec je lokalizován do cytoplazmy (Prossnitz et al. 2007). GPR30 po vazbě estrogenu zahajuje signální kaskádu zahrnující generaci druhých poslů Ca²⁺, cAMP, and NO, stejně jako aktivaci receptorových tyrozin kináz (Paul Micevych et al. 2009). GPR30 působí nezávisle na estrogenních receptorech (ERα a ERβ) a přenáší signály přes EGF receptory (Filardo & Thomas 2005). Mohou zprostředkovávat i klasickou transkripční (genomickou) signalizaci. Na rozdíl od dlouhodobé genomové odpovědi, je signalizační dráha pomocí GPR30 velmi rychlá (Revankar et al. 2005). Biochemické změny během kapacitace indukované estrogeny nastávají rychle díky negenomické akci ERs, protože spermie jsou považovány za transkripčně inaktivní (Aquila et al. 2004). GPR30 signalizace je doprovázená mobilizací vápníku, proto se signalizace přes tento typ receptoru zdá být dobrým kandidátem estrogenní dráhy na spermii.

Na GPR30 se také mohou vázat environmentální estrogeny a mohou aktivovat alternativní estrogenní signalizační dráhu v buňkách, kterým byly odstraněny ER (Thomas & Dong 2006).
2.6 Role estrogenů v samčí reprodukci

Sertoliho, Leydigovy, zárodečné buňky a spermie jsou čtyři rozdílné typy buněk v mužském reprodukčním systému, které obsahují aromatázu a tudíž a jsou schopny syntetizovat estrogény (Hess 2000). Estrogen je produkovan v poměrně velkém množství ve varlatech stejně jako v mozku, ale ve spermatu u některých druhů ho můžeme nalézt v extrémně vysokých koncentracích, přestože primárním mužským steroidem je testosteron. Tato vysoká koncentrace estrogenu v tekutině rete testis u hlodavců je pravděpodobně způsobena přeměnou testosteronu na 17-β-estradiol pomocí aromatáz v zárodečných buňkách varlat a při průchodu spermií reprodukčním traktem (Hess et al. 2001).

2.6.1 Estrogenní receptory u mužů

V samčích reprodukčních tkáních, jako jsou varlata, vývodné kanálky a nadvarlaty, jsou u většiny živočišných druhů přítomny estrogenní receptory (Hess et al. 1997). ERα jsou zapojeny ve steroidogenních procesech, ERβ se uplatňují v gametogenezi (Delbes et al. 2006).

ERβ jsou přítomny v Leydigových buňkách varlate, v prodlužujících se spermatidách a v epitelu vývodných kanálků a přední části nadvarlat. Samotný ERβ není schopen kompenzovat nepřítomnost ERα v samčím reprodukčním traktu (Rosenfeld et al. 1998).

Rozdílné umístění izoforem ER v lidských spermiích odhaluje odlišné úlohy těchto ER ve fyziologii spermií a v procesu oplození (Solakidi et al. 2005).

V lidských ejakulovaných spermiích se ERα často nachází ve střední části s mitochondriemi a ERβ je lokalizován zejména v bíčíku. V proximální oblasti bíčíku se výskyt ERα a ERβ překrývá (Aquila et al. 2004).
2.6.2 Estrogeny u myší

Myší zárodečné buňky ve varlatech obsahují enzym P450arom, která přeměňuje androgeny na estrogeny. Tento nález naznačuje, že tyto buňky jsou schopné produkovať estrogeny. Další studie ukázaly, že P450arom je přítomná v zárodečných buňkách varlat i u jiných druhů živočichů (Janulis et al. 1996).

P450arom byla nalezena ve vývodných kanálcích a v nadvarlatech nejvíce v přední části caput (hlavě) a její přítomnost klesala průchodem spermie do corpus (těla), nejméně znatelné množství bylo v cauda (ocasu) epididymis. Syntéza estrogenů v těchto oblastech je důležitá pro maturaci spermií.

17-β-estradiol stimuluje kapacitaci a AR po přidání k nekapacitovaným spermím v porovnání s neovlivněnými spermiemi (Adeoya-Osiguwa et al. 2003). Nedávná studie in vivo (Spearow et al. 1999) ukázala významný genetický rozdíl v citlivosti k estrogenům mezi různými druhy myší. U vysoce senzitivního kmene myší k estrogenům se varlata samců zmenšila a množství spermií v semenotvorných kanálcích dramaticky pokleslo. Na rozdíl od více rezistentního kmene, kde téměř nedošlo ke změně ve spermatogenezi ani ve velikosti varlat. Tento poměrně značný rozsah v citlivosti má velký význam při určení bezpečnostních hranic pro muže.

2.6.3 Knockout modely myší

Vyřazením genu pro ER tzv. knockoumet (ERKO) u myších samců se dozvídáme o funkci a důležitosti těchto receptorů v reprodukci. ERKO samci jsou normální na anatomické úrovni, ale jsou neplodní, což ukazuje esenciální roli ER v regulaci samčí reprodukce. Dochází narušení spermatoogeneze rozrušením epitelu semenotvorných kanálků a ve výsledku ke snížení počtu spermií a defektům v jejich funkci (Eddy et al. 1996).

Narušení ERα, pomocí knockoutu (αERKO) nebo podáním čistého antiestrogenu, vede k naředení spermatu z cauda epididymis, poškození morfologie spermií, potlačení transportu sodíku a následnému vstřebávání vody, zvýšení sekrece Cl⁻, což v konečném důsledku vede ke snížení plodnosti. Kromě této primární regulace luminální tekutiny a iontového transportu, jsou estrogeny odpovědné za udržení rozdílné epitelové morfologie, proto můžeme říci, že ERα je nezbytně nutný pro plodnost u samců (Hess 2003).

Další možné modely knockout myší jsou pro ERβ (βERKO) a pro oba ER (αβERKO) dvojitý knockout myší, které poskytují cenné informace o způsobu uplatnění obou izoforem ER.

Jiné poznatky se dozvídáme z aromatázového knockoutu myší (ArKO), kdy vznikají jedinci neschopní syntézy endogenních estrogenů. U těchto jedinců nacházíme vysoké hladiny testosteronu, LH a FSH. U spermií je snížena životaschopnost, množství a zhoršena motilita spermií.

U uvedených modelů nalézáme stěžejní poruchy, které zahrnují narušení morfologie varlat, zastavení spermatoogeneze ve stádiu časné spermioogeneze, pokles koncentrace spermií, snížení jejich motility a schopnosti oplodnit vajíčko, závažné roztažení vývodných kanálků a významné přetvoření normálního hormonálního profilu, jež ve výsledku ovlivňuje samčí neplodnost (Jones & Simpson 2000).

2.7 Vylučované estrogeny

Jakost povrchových a podzemních vod je ohrožována mnoha chemikáliemi, které člověk vyrábí. Řada studií přítomnosti farmak a lidských hormonů v životním prostředí byla prováděna během 70. – 80. let (Křesínová et al. 2009, Aherne & Briggs 1989), avšak tehdy detegována stopová množství vzbuzovala malou pozornost, až do doby zjištění spoji-

Během posledních let je věnována značná pozornost přírodním (estron, 17-β-estradiol a estriol) a syntetickým steroidům (17-α-ethynylestradiol), tyto hormony stávající technologie čištění odpadních vod neodstraní. Estrogeny se používají jako přísady do kosmetických výrobků, ve farmaceutickém průmyslu (léky, antikoncepční a menopauzní pilulky, atd.), kdy se po vyloučení z těla dostávají do odpadních vod. Velké množství estrogenů se dostává do vodních toků i z moči pasoucích se hospodářských zvířat. Dalším možným zdrojem estrogenů mohou být pohlavní steroidní hormony, kterými je krmena drůbež a dobytek, aby rychleji pribývali na váze. V některých zemích, kde není užívání potravinových aditiv pečlivě regulováno zákony, mohou v potravinách zůstat velmi významná množství estrogenů (Andersson & Skakkebaek 1999).

Během posledních let je věnována značná pozornost přírodním (estron, 17-β-estradiol a estriol) a syntetickým steroidům (17-α-ethynylestradiol), tyto hormony stávající technologie čištění odpadních vod neodstraní. Estrogeny se používají jako přísady do kosmetických výrobků, ve farmaceutickém průmyslu (léky, antikoncepční a menopauzní pilulky, atd.), kdy se po vyloučení z těla dostávají do odpadních vod. Velké množství estrogenů se dostává do vodních toků i z moči pasoucích se hospodářských zvířat. Dalším možným zdrojem estrogenů mohou být pohlavní steroidní hormony, kterými je krmena drůbež a dobytek, aby rychleji pribývali na váze. V některých zemích, kde není užívání potravinových aditiv pečlivě regulováno zákony, mohou v potravinách zůstat velmi významná množství estrogenů (Andersson & Skakkebaek 1999).

Bylo prokázáno, že tyto přírodní i syntetické estrogenní hormony mají vliv na změny pohlaví ryb. Hormony se sice neuvěřitelně naráží v říční vodě, ale na rybí samce mají nežádoucí účinky i při extrémně nízkých koncentracích. V důsledku probuzení samičích hormonů začínají samci tvořit jikry, následuje neschopnost oplození samice a dochází k vymírnání rybí populace. Ryby nejsou zdaleka jedinými živočichy, kteří jsou k látkám s hormonálními účinky vnímaví, se stejným problémem se setkáváme i u žab a mřížů.

2.7.1 Hormony ve vodě

Přírodní estrogenní hormony estron, 17-β-estradiol, estriol i syntetický 17-α-ethynylestradiol jsou vylučovány lidmi do životního prostředí a jsou průkaznými endokrinními disruptory už v přítomnosti ng/l (Khanal et al. 2006). Odhaduje se, že produkce estrogenů ženskou populací v Praze je 2,1 g/den (Pačes 2002). Kromě lidských
hormonů se do vod dostávají i hormony zvířat a látky, které mají podobné chemické vlastnosti jako hormony.

Hormony ať už přirozené, nebo umělé se dostávají z lidského těla do kanalizačních sítí a z nich se netěsnostmi dostávají do podzemních a později i do povrchových vod. Většina hormonů a jin podobných látek odtéká do čističek, kde se velká část zachytává v čistírenských kaledích. Část hormonů přesto opět uniká do vodních toků. Čistírenské kaly se často různým způsobem využívají, například v zemědělství. Ví se, že se estrogény váží na jílovité částice a na svrchní, organickou vrstvu půdy.

Syntetické estrogény, užívané jako orální antikoncepce, jsou v těle metabolizovány na jejich konjugáty s kyselinou gluuronovou a vyloučeny močí. Tyto konjugáty jsou následně, při zpracování splaškové vody aktivovaným kalem, hydrolyzovány gluuronidázu, produkovanou mikroorganismy (např. Escherichia coli), zpět na formy syntetických estrogénů a kyselinu gluuronovou (Kršinová et al. 2009, Tyler et al. 1998), jiné typy metabolizovaných estrogénů jsou více odolné k modifikacím a zůstávají beze změny nebo jsou upraveny jiným způsobem (Gomes et al. 2009).

17-α-ethynylestradiol je aktivní složka antikoncepčních pilulek, estrogen, který se vyskytuje ve vodních tocích v řádech ng/l i po přečištění odpadních toků. v čističkách odpadních vod. V řekách tento estrogen způsobuje feminizaci vodních organismů (Pauwels et al. 2008)
3. Materiál a metody

3.1 Materiál

3.1.1 Chemikálie

Amonium persulfate (A3678, Sigma)
BSA – albumine bovine serum (≥96%, A-2153, Sigma)
Calcium ionofore A23187 (C7522, Sigma)
Dulbecco’s phosphate buffered saline modified, without CaCl₂ and MgCl₂ (D5652, Sigma)
Estriol (E1253, Sigma)
Estron (E9750, Sigma)
Etanol (02862, Penta)
17-α-ethynylestradiol (E4876, Sigma)
17-β-estradiol (E7879, Sigma)
Formaldeyde (47629, Penta)
Glycin (G8898, Sigma)
Hoechst – bis-benzimidazol (H33258, Sigma)
M2 medium (with HEPES, without Penicillin & Streptomycin) (M7167, Sigma)
Metanol (65543, Penta)
Paraffínöl (8904.1, Roth)
PBS – fyziologický roztok, fosfátový pufr (phosphate-buffered saline)
Precision Plus Protein All Blue Standard – (BioRad)
SuperSignal West Dura Extended Duration Substrate (34075, Thermo Scientific)
TBS – fyziologický roztok neobsahující fosfáty (tris-buffered saline)
TEMED – N, N, N´, N´- tetramethylethylendiamin (T7024-25ML, Sigma)
Triton X-100 (T-9284, Sigma)
Vectashield mounting medium for fluorescence (H-1000, Vector)
3.1.2 Roztoky

PBS (10× koncentrovaný)
1 l destilované H₂O
80 g NaCl
2 g KCl
28,65 g Na₂HPO₄ (pro 12 H₂O)
2 g KH₂PO₄

Sterilní PBS
100 ml tkáňové kultury
0,96 g Dulbecco´s phosphate buffered saline modified (obsahující NaCl 8 g/l, KCl 0,2 g/l, Na₂HPO₄ (pro 7 H₂O) 1,15 g/l, KH₂PO₄ 0,2 g/l)

3,7 % formaldehyd
36 – 38% formaldehyd ředěn v PBS, pH upraveno na hodnotu 7,36

15 mmol NH₄Cl
0,4 g NH₄Cl rozpuštěno v 500 ml PBS

0,1 % Triton
500 µl ředěno v 500 ml PBS

TBS (10× koncentrovaný)
100 ml destilované H₂O
8 g NaCl
1,2 g TRIS

1% BSA
0,1 g rozpuštěno v 10 ml PBS
ELFO elektrodyový pufr
3 g Tris
14,4 g glycinu
1 g SDS
1 l destilované H₂O

ELFO roztoky

Roztok A – 30 g akrylamidu
0,8 g BIS
do 100 ml destilované H₂O

Roztok B – 10 g SDS
do 100 ml destilované H₂O

Roztok C – 22,75 g Tris
do 250 ml destilované H₂O
pH upraveno pomocí HCl na hodnotu 8,8

Roztok D – 3 g Tris
do 100 ml destilované H₂O
pH upraveno pomocí HCl na hodnotu 6,8

Roztok G – 10% persíran amonný (0,1 g/1 ml)

PBS – Tween 0,05%
1 l PBS
500 µl Tween

Přenosový pufr - pufr pro přenos proteinů po SDS-PAGE na membránu
3 g Tris
14,4 g glycinu
200 ml metanolu
do 1 l destilované H₂O

Redukující vzorkový pufr
2,4 ml roztoku D
2 ml roztoku B (tj. 3,3% SDS)
1 ml glycerolu
0,5 ml destilované H₂O
72 mg DTT – dithiotreitol
1 mg bromfenolové modři

10% separační gel
5 ml roztoku A
7,5 ml roztoku C
2,5 ml destilované H₂O
150 µl roztoku B
7 µl TEMED
persíran amonný 150 µl roztoku G
5% zaostřovací gel
1 ml roztoku A
3 ml roztoku D
2 ml destilované H₂O
100 µl roztoku B
5 µl TEMED
persíran amonný 90 µl roztoku G

3.1.3 Přístroje

Analytické váhy WPS 360/C/2 (Radwag)
Autokláv OT 12 (Nüve)
Binolupa Stemi 2000 (Zeiss)
Centrifuga MiniSpin® Plus (Eppendorf)
Centrifuga Micro 200 (Hettich Zentrifugen)
ELFO sestava – Mini vertical gel electrophoresis unit SE 260 (Hoeffer Scientific)
ELFO sestava na nalévání gelů – Dual gel caster SE 245 (Hoeffer Scientific)
Fluorescenční mikroskop BX 40 (Olympus)
Flow box EN 12469 (Biohazard CleanAir)
Inkubátor EN 025 (Nüve)
Konfokální mikroskop DM IRE2 (Leica)
Magnetická mícha RCT Basic (IKA Werke)
pH metr – Microprocessor pH Meter PHB-212 (Omega)
Semi-dry blotter TE77XP (Hoeffer Scientific)
Světelný mikroskop ZP 9491 (Zeiss)
Třepačka Bio Shaker 3D (Biosan)
Třepačka Titertrek Flow laboratories 11212/7
Optimax X-Ray Film Processor (Fomei)
Zdroj – Power Pac Basic 014BR (BioRad)
Zdroj studeného světla Highlight 2100 Europe (Olympus)

3.1.4 Další použitý materiál

Cell culture dish 35 mm × 10 mm (430165, Corning)
Filtráční papír
Nitrocelulózová membrána – Trans-blot-transfer medium (0,2 µm) (BR 162-0150, BioRad)
Rentgenový film – Medix medici X-ray film XBU (Foma)
Zkumavky (Eppendorf)

3.1.5 Protilátky a fluorescenčně značené próby

A0168 anti mouse skonjugovanou peroxydázou – ředění 1:80 000
Goat anti mouse IgG Alexa Fluor 488 (A11001, Molecular Probes) – ředění 1:1000
Lectin PNA conjugates Alexa Fluor 568 (L-32458, Molecular Probes)
Monoclonal anti-phosphotyrosine P-Tyr-01 mouse IgG1 (11-263-C025, Exbio) – ředění 1:500

3.1.6 Živočišný materiál pro odběr spermii

Laboratorní myš inbrední BALB/c, SPF kmen (Anlab, Velaz, chovy PříFUK)
3.2 Metody

3.2.1 Připrava jednotlivých koncentrací estrogenu

Estrogeny byly ředěny etanolem do pěti různých koncentrací, a to 0,02; 0,2; 2; 20 a 200 µg/l. Nejnižší dvě koncentrace estrogenu 0,02 µg/l a 0,2 µg/l jsou fyziologické koncentrace v plazmě myší, následující dvě koncentrace 2 µg/l a 20 µg/l jsou fyziologické v místě ovulace u myší a poslední nejvyšší 200 µg/l je tudíž pouze 10-ti násobek fyziologické. Molární koncentrace jsou po výpočtu a zaokrouhlení následující 0,1 nM, 1 nM, 10 nM, 100 nM a 1 µM.

3.2.2 Kapacitace spermií in vitro

Ve sterilním flow boxu se do příslušného počtu připravených Petriho misk (35×10 mm) napipetovalo fertilizační M2 médium (s obsahem 0,4% BSA). Do dvou misk tvořících zásobu se dávalo 200 µl čistého M2 média a do misk s kontrolními vzorky 100 µl čistého M2 média. V miskách ovlivněných estrogenem bylo 100 µl M2 média smícháno s určitým estrogenem (o výsledné koncentraci estrogenu 200; 20; 2; 0,2 nebo 0,02 µg/l). Taktéž napipetované kapky byly převrstveny parafínovým olejem (cca 700 µl), (obr. 3.1). Všechny misky byly inkubovány minimálně 30 minut v termostatu o stálé teplotě 37 °C a 5% CO₂.

Obr. 3.1 Petriho miska s kapkou kapacitačního média převrstveného parafínovým olejem.
Do zásobních misek byl po vytemperování vložen terminální 4-5 region levé a pravé *cauda epididymis* z dospělého samce myší usmrceného cervikální dislokací. Spermie se nechaly 10 minut uvolňovat z tkáně do média při 37 °C a 5% CO₂. Poté bylo ze zásobních misek rozpipetováno 5 µl suspenze spermií do všech ostatních misek (výsledná koncentrace spermií byla cca 5×10⁶ /ml), (obr. 3.2).

Obr. 3.2 Příprava preparátů pro hodnocení p-Tyr po kapacitaci spermií *in vitro*.

Od této chvíle se začala měřit doba kapacitace a v časových intervalech 5 (ihned po rozpipetování ze zásobních misek), 30, 60, 90, a 120 minut byly prováděny odběry vzorků (obr. 3.3).

Obr. 3.3 Odběr vzorků spermií v daném čase kapacitace.
Tyto vzorky byly použity buď na přípravu preparátů pro fluorescenční hodnocení pozitivní p-Tyr v hlavičce spermie (viz 3.2.3) nebo na přípravu lyzátu celých spermií pro elektroforetické hodnocení p-Tyr (viz 3.2.7).

3.2.3 Fluorescenční metody

Fixace formaldehyd-triton

Zaschnuté preparáty byly vloženy na 10 minut do 3,7% formaldehydu v PBS. Následovalo promýtí (2-3×) v PBS (pH = 7,36) a inkubace po dobu 5 minut s 15 mM NH₄Cl a opětovné promývání v PBS (2-3×). Poté se preparáty nechaly inkubovat maximálně 3 minuty v 0,1% tritonu v PBS a byly promyty 3×5 minut v PBS. Na závěr byly zality PBS a uloženy do chladu před dalším zpracováním.

Nepřímá imunofluorescence

Fixované preparáty byly 45-60 minut blokovány pomocí 1% BSA a 5 minut promývány v PBS. Poté byly inkubovány 2 hodiny s primární protilátkou (Monoclonal anti-phosphotyrosine P-Tyr-01 mouse IgG1 - 11-263-C025, Exbio) ředěnou v poměru 1:500 se sterilním PBS při pokojové teplotě ve vlhké komůrce chráněné před světlem. Po uplynulé době byla protilátka odmyta 5×5 minut v PBS a nanesena próba s navázaným fluoroforem (Goat anti mouse IgG Alexa Fluor 488 - A11001, Molecular Probes) ředěna v poměru 1:1000 se sterilním PBS. Po hodinovém působení byla protilátka odmyta 3×5 minut v PBS a preparát byl zamontován do speciálního média (Vectashield mounting medium) a poté analyzován pod fluorescenčním mikroskopem.

3.2.4 Hodnocení tyrozínové fosforylace

Vzorky spermií odebrané v příslušných časech kapacitace in vitro (viz 3.2.2) byly stáčeny a promývány v TBS (pH = 7,34), poté se ze vzorů připravily preparáty roztěrem na podložní sklíčka a fixovaly se ve formaldehyd tritonu (viz 3.2.3). Po blokaci 1% BSA byly značeny primární protilátkou proti fosforylovaným tyrozínovým zbytkům (Monoclonal anti-phosphotyrosine P-Tyr-01 mouse IgG1 - 11-263-C025, Exbio, ředění 1:500) a sekun-
dální protiletkou s navázaným fluoroforem (Goat anti mouse IgG Alexa Fluor 488 - A11001, Molecular Probes, ředění 1:1000). Připravené preparáty se hodnotily pod fluorescenčním mikroskopem, kdy se určoval počet buněk označených protiletkou čili pozitivních (obr. 4.1) a negativních (obr. 4.2) z celkového počtu 100 buněk a jejich zastoupení bylo vyjádřeno v procentech. Toto hodnocení bylo prováděno minimálně šestkrát u každé koncentrace daného typu estrogenu.

Experimentální data byla analyzována programem STATISTICA 6.0. Pro statistickou analýzu rozdílů mezi porovnávanými skupinami (počet buněk s pozitivní p-Tyr u experimentálních vzorků vs. kontrolní vzorek ve stejném čase) byla použita jednouměrná analýza kovariance (ANCOVA). Vzhledem k nerovnému počtu (N) vzorků ve skupinách byl jako post-hoc metoda zvolen Turkey test pro nerovné N (N=6-10) s cílem zhodnotit statisticky významný rozdíl mezi zkoumanými skupinami. Jako kovariáty byli použit průměr daného parametru, v našem případě počet fosfotyrozin-pozitivních buněk v čase nula. P hladina <0,05*; <0,01**, a 0,001*** byla považována za signifikantní.

U všech statistických vyhodnocení průběhu p-Tyr (Tabulky 4.1 – 4.4) byl použit stejný postup při přípravě i vyhodnocení vzorků, jediný rozdíl byl v použitím estrogenu.

3.2.5 Indukce akrozomální reakce in vitro

V průběhu kapacitace spermí in vitro se paralelně prováděla i indukce AR pomocí 0,5 mM CaI (1 µl/100 µl média), který byl přidáván ve 30, 60, 90 a 120 minutách kapacitace spermí in vitro. Spermie byly kapacitovány při 37 °C a 5% CO₂ a byly vystaveny působení CaI po dobu 60 min (kromě kap30 + Cal5*, kde Cal byl přidán, avšak spermie byly ihned odebrány, CaI tedy mohl působit len krátkou dobu, než byly spermie odebrány a standardně zpracovány). Vzorky byly odebrány v časech s označením kap30 + Cal5*, kap30 + Cal60, kap60 + Cal60, kap90 + Cal60 a kap120 + Cal60. Jako negativní kontrola k těmto experimentálním skupinám sloužila kap5 bez Cal, tzn. čas kapacitace 5 min, kdy nebyl ke spermiím přidán Cal a vzorky byly ihned odebrány po rozpipetování ze zásovních misek. Všechny odebrané vzorky byly poté hodnoceny pod fluorescenčním mikroskopem.
3.2.6 Hodnocení akrozomální reakce

Z odebraných vzorků, u kterých byla prováděna CaI indukovaná AR (viz 3.2.5) bylo na podložní sklátko umístěno 10 µl suspenze spermií s M2 médiem a přídán 2,5 µM PNA lektin s navázaným fluoroforem (Lectin PNA conjugates Alexa Fluor 568 - L-32458, Molecular Probes – značící intaktní akrozóm) a 1 µM hoechst (značící jádro spermie). Pod fluorescenčním mikroskopem byl hodnocen stav akrozómů a počítáno procentuální za-stoupení živých spermií, které prodělaly CaI indukovanou AR (z celkového množství 100 buněk) a spermií s intaktním akrozómem (obr. 4.3). U každé koncentrace (0,02 µg/l; 0,2 µg/l; 2 µg/l; 20 µg/l a 200 µg/l) daného typu estrogenu (17-β-estradiolu, estronu, estriolu a 17-α-ethynylestradiolu) v kapacitačním médiu bylo hodnocení prováděno mini-málně šestkrát.

Pro statistické hodnocení rozdílů mezi jednotlivými skupinami (počet buněk po AR u experimentálních vzorků vs. kontrolní vzorek ve stejném čase) byla použita analýza kovariance (ANCOVA) a jako post hoc metoda byl aplikován Turkey test pro nerovné N (N=6-10) pro zjištění statistických rozdílů mezi zkoumanými skupinami. Jako kovariát byl použit průměr daného parametru, v našem případě procento buněk, u kterých proběhla AR v čase kap5 bez CaI. Důvod pro to je ten, že je nutné do statistického zpracování zahrnout rozdíly v tomto parametrů, které by jinak mohly silně zkreslovat výsledky rozdílů mezi kontrolní a experimentálními skupinami v dalších casedech.

U všech statistických vyhodnocení výsledků indukované AR (Tabulky 4.5 – 4.8) se postup při přípravě i vyhodnocení vzorků shodoval, rozdílný byl pouze použitý estrogen.

3.2.7 SDS – PAGE a imunodetekce proteinů

Příprava vzorku a počítání koncentrace spermií

Spermie z cauda epididymis se inkubovaly v kapacitačním médiu při 37 °C a 5% CO₂ (viz 3.2.2). Spermie byly ovlivňovány koncentrací 0,02; 0,2; 2; 20 nebo 200 µg/l jednoho ze čtyř estrogenů (17-β-estradiol, estron, estriol, 17-α-ethynylestradiol). První odběr se prováděl v čase 5 minut, kdy se spermie po vložení do média ihned odebraly, následova-ly odběry v čase 30, 60, 90 a 120 minut kapacitace.
Odebrané vzorky byly promývány v PBS a stáčeny 10 minut při 12 000 rpm. Po odebrání veškerého supernatantu bylo k peletce přidáno 100 µl PBS a důkladně resuspendováno. Pro zjištění koncentrace spermií byla použita Bürkerova komůrka, na kterou bylo naneseno 10 µl připravené suspenze. Byly počítány buňky v šestnácti čtvercích obsažených v jedné jednotce.

Výsledná koncentrace buněk/ml byla vypočítána podle tohoto vzorce:

\[E = \left(\sum \text{buněk ve čtvercích}/16 \right) \times 100 \times 10^3 \]

K vzorkům bylo přidáno 10 µl vzorkového pufru a vzorky se 5 minut povařily ve vodní lázni. Poté byly zmraženy a uchovány pro další použití.

Příprava SDS gelu a elektroforetické rozdělení proteinů

Po nalití všech složek 10% separačního gelu a jeho převrstvení destilovanou vodou došlo k jeho polymeraci. Přebytečná voda se odsála filtračním papírem. Na zpolymerovaný gel se navrstvilo 5% zaostřovací gel a pomocí hřebenu, který se vložil do ještě neztažlého gelu, se vytvořily jamky pro nanesení vzorků. Hřeben byl vyjmut po úplné polymeraci gelu. Gely, uzavřené mezi skleněnou a plastovou desku, byly upevněny do elektroforetického přístroje a celá sestava byla zalita elektrodovým pufrem. Po definitivní polymeraci gelu se odsála voda filtračním papírem.

Na zpolymerované gel se Hamiltonovou pipetou naneslo 15 µl vzorku nebo 10 µl standardu. Přístroj byl nastaven na 110 V a po přechodu vzorků do zaostřovacího gelu se napětí navýšilo na 140 V. V gelu se sledován transport bromfenolové modře. Po ukončení elektroforez byly z rozložené aparatury vyjmuly gely a byl odtřazen zaostřovací gel. Dále se pracovalo jen se separačním gelem. Protein obsažené ve vzorcích se po elektroforetickém rozdělení přenesly pomocí Western blotu na nitrocelulózovou membránu.

Western blot

Do aparatury na přenos proteinů byly vloženy nejprve 4 listy chromatografických papírů, poté nitrocelulózová membrána, na kterou se položil gel a nakonec další 4 chromatografické papíry. Jednotlivé složky byly vlhčeny přenosovým pufrem. Pro přenos proteinů je potřeba proud 0,8 mA na 1 cm² nitrocelulózové membrány do doby 1,5 hodiny.
Detekce proteinů

Nejprve se membrána zavodnila v roztoku PBS-Tween 0,05% na 15 minut. Poté byla 1 hodinu blokována v roztoku 5% mléka s PBS-Tween 0,05% (10 g mléka na 200 ml PBS-Tween 0,05%). Po zablokování nespecifických vazebných míst byla 1,5 hodiny inkubována v roztoku primární protilátky (Monoclonal anti-phosphotyrosine P-Tyr-01 mouse IgG1 - 11-263-C025, Exbio) ředěné v poměru 1:500 s 1% mlékem v PBS-Tween 0,05%. Po uplynulé době byla primární protilátka odmyta roztokem PBS-Tween 0,05% 6x5 minut. Poté byla ponořena do roztoku sekundární protilátky (A0168 anti mouse s konjugovanou peroxidázou), která byla ředěna v poměru 1:80 000 s 1% mlékem v PBS-Tween 0,05% a 1 hodinu inkubována. Na závěr byla sekundární protilátka odmývána 5x5 minut v PBS-Tween 0,05%. Pomocí chemiluminiscenční sady se proteiny s navázanou peroxidázou detekovaly na RTG filmu a pomocí automatu, který obsahuje lázeň s vývojkou a ustalovačem, se osvícené RTG filmy vyvolaly (Obr. 4.4 – 4.7). Tento postup se opakoval nejméně třikrát pro jednotlivé koncentrace (0,02 µg/l; 0,2 µg/l; 2 µg/l; 20 µg/l a 200 µg/l) estrogenu (17-β-estradiolu, estronu, estriolu a 17-α-ethynylestradiolu) v kapacitačním médiu.
4. Výsledky

4.1 Hodnocení tyrozínové fosforylace v hlavičce spermie myši po kapacitaci \textit{in vitro} a statistické zhodnocení získaných výsledků

Při hodnocení p-Tyr pod fluorescenčním mikroskopem byl zaznamenán počet spermií s pozitivně značenou hlavičkou spermie (obr. 4.1) a negativně značenou hlavičkou spermie (obr. 4.2) u vzorků myších spermií ovlivněných jedním z použitých estrogenů v koncentraci (0,02 - 200 µg/l) odebraných v pěti časech kapacitace (5 - 120 minut).

\textbf{Obr. 4.1} p-Tyr proteinů v hlavičce a bičíku spermie myši – pozitivně značený akrozomální region hlavičky spermie a bičík ve střední a hlavní části.
Obr. 4.2 p-Tyr proteinů v hlavičce a bičíku spermie myší – negativní signál v hlavičce spermie a pozitivní signál v bičíku.

Při hodnocení působení 17-β-estradiolu můžeme nalézt signifikantní výkyvy v procentech p-Tyr proteinů hlavičky spermíí, které ale neukazují jednoznačnou závislost na koncentraci estrogenu nebo na čase kapacitace a jsou velmi náhodné (Tabulka 4.1).

Naproti tomu u syntetického 17-α-ethynylestradiolu se výsledky pokusů zdají mít nejvíce konzistentní trend v nejvyšších koncentracích tohoto estrogenu, z čehož by se dal usuzovat jistý vliv tohoto syntetického estrogenu na průběh kapacitace myších spermíí in vitro. V koncentracích 2 µg/l - 200 µg/l byl signifikantně vyšší nárůst p-Tyr proteinů hlavičky spermie. U koncentrace 20 µg/l byl signifikantní nárůst konzistentní v průběhu 30 - 120 minut kapacitace, u nejvyšší koncentrace 200 µg/l byl tento nárůst pozorován ve 30, 90 a 120 minutách kapacitace, u koncentrace 2 µg/l se projevil pouze v 60 minutách (Tabulka 4.4).

U výsledků hodnocení vzorků spermíí ovlivněných estronem nemají signifikantní odchylky prokazatelný tendenční vývoj v závislosti na čase nebo koncentraci estronu (Tabulka 4.2). Kromě koncentrace 200 µg/l, kdy se projevil podobný trend jako u 17-α-ethynylestradiolu. U estronu byla p-Tyr ve vývoji maximální v 60 minutách kapacitace, u koncentrace 20 µg/l dosahovala maxima v 90 minutách (shodně s kontrolou).
V průběhu p-Tyr proteinů u spermií ovlivněných estriolem bylo u vzorků s koncentrací 0,02 µg/l - 2 µg/l statisticky významně vyšší procento značených buněk ve 30 minutách kapacitace, u koncentrací 0,02 µg/l a 0,2 µg/l i v 60 minutách kapacitace.

Z výsledků v těchto dvou kapacitačních časech můžeme usuzovat na určitý trend, stejně jako u 17-α-ethynylestradiolu, kde se ale projevil konzistentněji po celou dobu kapacitace a u vyšších koncentrací tohoto hormonu. U ostatních signifikantních hodnot se neukázala žádná koncentrační nebo časová závislost (Tabulka 4.3).

Pro hodnotnější výsledky by bylo třeba udělat násobnější opakování pokusů.
Statistické vyhodnocení průběhu p-Tyr při kapacitaci in vitro u myších spermií ovlivněných jedním z estrogenů

Tabulka 4.1

<table>
<thead>
<tr>
<th>Koncentrace 17-β-estradiolu</th>
<th>čas kapacitace (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Kontrola</td>
<td>8,54 ± 1,00</td>
</tr>
<tr>
<td>0,02 µg/l</td>
<td>8,55 ± 0,64</td>
</tr>
<tr>
<td>0,2 µg/l</td>
<td>8,75 ± 1,03</td>
</tr>
<tr>
<td>2 µg/l</td>
<td>10,57 ± 1,17</td>
</tr>
<tr>
<td>20 µg/l</td>
<td>10,43 ± 1,26</td>
</tr>
<tr>
<td>200 µg/l</td>
<td>10,11 ± 1,17</td>
</tr>
</tbody>
</table>

Tabulka 4.2:

<table>
<thead>
<tr>
<th>Koncentrace estronu</th>
<th>čas kapacitace (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Kontrola</td>
<td>9,43 ± 0,47</td>
</tr>
<tr>
<td>0,02 µg/l</td>
<td>9,20 ± 0,56</td>
</tr>
<tr>
<td>0,2 µg/l</td>
<td>10,72 ± 0,97*</td>
</tr>
<tr>
<td>2 µg/l</td>
<td>10,93 ± 1,56*</td>
</tr>
<tr>
<td>20 µg/l</td>
<td>10,76 ± 1,42</td>
</tr>
<tr>
<td>200 µg/l</td>
<td>10,97 ± 1,51</td>
</tr>
</tbody>
</table>

Tabulka 4.3:

<table>
<thead>
<tr>
<th>Koncentrace estriolu</th>
<th>čas kapacitace (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Kontrola</td>
<td>9,78 ± 0,80</td>
</tr>
<tr>
<td>0,02 µg/l</td>
<td>9,77 ± 1,46</td>
</tr>
<tr>
<td>0,2 µg/l</td>
<td>11,51 ± 1,63</td>
</tr>
<tr>
<td>2 µg/l</td>
<td>10,87 ± 1,34</td>
</tr>
<tr>
<td>20 µg/l</td>
<td>5,76 ± 1,60**</td>
</tr>
<tr>
<td>200 µg/l</td>
<td>6,88 ± 1,02*</td>
</tr>
</tbody>
</table>

Tabulka 4.4:

<table>
<thead>
<tr>
<th>Koncentrace 17α-ethynylestradiolu</th>
<th>čas kapacitace (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Kontrola</td>
<td>12,68 ± 0,98</td>
</tr>
<tr>
<td>0,02 µg/l</td>
<td>10,94 ± 1,32*</td>
</tr>
<tr>
<td>0,2 µg/l</td>
<td>12,53 ± 1,30</td>
</tr>
<tr>
<td>2 µg/l</td>
<td>13,18 ± 1,89</td>
</tr>
<tr>
<td>20 µg/l</td>
<td>11,44 ± 0,98</td>
</tr>
<tr>
<td>200 µg/l</td>
<td>11,10 ± 1,30</td>
</tr>
</tbody>
</table>

Hodnoty v tabulkách 4.1 – 4.4 udávají průměrné procento spermií s pozitivní p-Tyr ± střední chyba průměru, po kapacitaci myších spermií in vitro v přítomnosti 5 různých koncentrací (0,02 µg/l - 200 µg/l) příslušného estrogenu s odběry v časech kapacitace (5 - 120 min). Červeně - výsledky se signifikantně vyšším procentem pozitivní tyrozínové fosforilace v hlavici spermií. Modře - výsledky se signifikantně nižším procentem víz na hoře. Rozdíly byly analyzovány pomocí analýzy kovariance (ANCOVA), Turkey test se využil jako post hoc metoda. Jako kovariát byl použit průměr daného parametru (počet fosfotyrozín-poziitivních buněk v čase nula). P hladina <0,05*; <0,01**; a 0,001*** byla považována za signifikantní.
4.2 Hodnocení CaI indukované akrozomální reakce a statistické
zhodnocení získaných výsledků

Počet myších spermií, které prošly CaI indukovanou akrozomální reakcí (obr. 4.3)
byl jednoznačně závislý na čase kapacitace a postupně vzrůstal. Hodnocení bylo prováděno
u každé koncentrace (0,02 - 200 µg/l) příslušného typu estrogenu v kapacitačním médiu
a v daném čase (viz tabulky 4.5 - 4.8).

Obr. 4.3 Spermie s intaktním akrozómem (viz šipky) a spermie po dokončené AR.

U všech koncentrací 17-β-estradiolu bylo v čase kap30 + CaI5* v porovnání
s kontrolou shodně signifikantně nižší procento spermií, u kterých proběhla AR. Může to
naznačovat pomalejší nástup AR u ovlivněných spermií (Tabulka 4.5).

Podobného trendu v procentuálním zastoupení spermií po AR stejně jako
u 17-β-estradiolu, si můžeme povšimnout u třech nejvyšších koncentrací estronu
(2 - 200 µg/l) v čase kap30 + CaI5*, kdy bylo statisticky významně nižší procento myších spermií s dokončenou AR (Tabulka 4.6).
Z výsledků hodnocení estriolu nelze usuzovat žádný trend ve vývoji AR. Není zde patrná žádná závislost na koncentraci estrogenu nebo na časech, v kterých byly vzorky odebrány a statisticky signifikantní hodnoty jsou velmi náhodné.

U syntetického 17-α-ethynylestradiolu by se po porovnání s předchozím estrogenem 17-β-estradiolem a estronem dal usuzovat časový posun statisticky významně nižšího procenta spermií po AR, který se vyskytuje v kapacitačním čase kap30 + CaI60 u většiny koncentrací. Pokud bych se pokusila interpretovat výsledky v čase kap120 + CaI60, kdy naopak došlo k signifikantnímu zvýšení počtu spermií, které podstoupily AR, u vzorků s koncentrací estrogenu 0,02 µg/l, 0,2 µg/l a 200 µg/l, tak se mohlo jednat o kompenzaci pomalejšího nástupu AR.

Jak jsem již zmínila výše, procento myších spermií s dokončenou AR vzrůstalo s kapacitačním časem u všech koncentrací daného estrogenu. Pro větší průkaznost výsledků by bylo nutné násobné opakování pokusů.

Srovnání výsledků průběhu p-Tyr proteinů a CaI indukované AR

Po srovnání výsledků průběhu p-Tyr proteinů a CaI indukované AR u myších spermií ovlivněných estronem by se dala usuzovat korelace v čase kap30 + CaI5* u třech nejvyšších koncentrací (2 - 200 µg/l). U hodnot p-Tyr v tomto čase je signifikantně vyšší procento pozitivně značených spermií a naopak u výsledků AR je ve shodném čase a shodných koncentracích estronu signifikantně nižší procento spermií s dokončenou AR, což může mít souvislost s předčasným zapnutím signálních drah a nesprávnému načasování AR.
Statistické vyhodnocení výsledků Cal indukované AR in vitro u spermí ovlivněných jedním z estrogenů

Tabulka 4.5:

<table>
<thead>
<tr>
<th>Koncentrace 17-β-estradiolu</th>
<th>čas kapacitace (min) + doba působení Cal (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kap5 bez Cal</td>
</tr>
<tr>
<td>kontrola</td>
<td>3,49 ± 0,40</td>
</tr>
<tr>
<td>0,02 µg/l</td>
<td>3,33 ± 0,46</td>
</tr>
<tr>
<td>0,2 µg/l</td>
<td>3,85 ± 0,27</td>
</tr>
<tr>
<td>2 µg/l</td>
<td>4,07 ± 0,67</td>
</tr>
<tr>
<td>20 µg/l</td>
<td>2,90 ± 0,26</td>
</tr>
<tr>
<td>200 µg/l</td>
<td>2,35 ± 0,48*</td>
</tr>
</tbody>
</table>

Tabulka 4.6:

<table>
<thead>
<tr>
<th>Koncentrace estronu</th>
<th>čas kapacitace (min) + doba působení Cal (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kap5 bez Cal</td>
</tr>
<tr>
<td>kontrola</td>
<td>2,71 ± 0,35</td>
</tr>
<tr>
<td>0,02 µg/l</td>
<td>2,90 ± 0,77</td>
</tr>
<tr>
<td>0,2 µg/l</td>
<td>2,37 ± 0,26</td>
</tr>
<tr>
<td>2 µg/l</td>
<td>2,41 ± 0,37</td>
</tr>
<tr>
<td>20 µg/l</td>
<td>2,13 ± 0,31</td>
</tr>
<tr>
<td>200 µg/l</td>
<td>1,49 ± 0,27*</td>
</tr>
</tbody>
</table>

Tabulka 4.7:

<table>
<thead>
<tr>
<th>Koncentrace estriolu</th>
<th>čas kapacitace (min) + doba působení Cal (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kap5 bez Cal</td>
</tr>
<tr>
<td>kontrola</td>
<td>2,42 ± 0,22</td>
</tr>
<tr>
<td>0,02 µg/l</td>
<td>2,37 ± 0,54</td>
</tr>
<tr>
<td>0,2 µg/l</td>
<td>1,95 ± 0,10*</td>
</tr>
<tr>
<td>2 µg/l</td>
<td>2,41 ± 0,56</td>
</tr>
<tr>
<td>20 µg/l</td>
<td>2,67 ± 0,26</td>
</tr>
<tr>
<td>200 µg/l</td>
<td>2,10 ± 0,43</td>
</tr>
</tbody>
</table>

Tabulka 4.8:

<table>
<thead>
<tr>
<th>Konc.17-α-ethynyl estradiolu</th>
<th>čas kapacitace (min) + doba působení Cal (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kap5 bez Cal</td>
</tr>
<tr>
<td>kontrola</td>
<td>5,67 ± 0,94</td>
</tr>
<tr>
<td>0,02 µg/l</td>
<td>6,23 ± 2,19</td>
</tr>
<tr>
<td>0,2 µg/l</td>
<td>5,21 ± 2,24</td>
</tr>
<tr>
<td>2 µg/l</td>
<td>5,27 ± 1,35</td>
</tr>
<tr>
<td>20 µg/l</td>
<td>4,93 ± 1,23</td>
</tr>
<tr>
<td>200 µg/l</td>
<td>4,38 ± 1,15</td>
</tr>
</tbody>
</table>
4.3 Elektroforetické hodnocení tyrozínové fosforylace z lyzátu celých spermii

Obr. 4.4 – 4.7: Výsledek imunodetekce p-Tyr proteinů lyzátu spermií ovlivněných jedním z estrogenů v dané koncentraci v průběhu kapacitace in vitro v porovnání s kontrolou.
U výsledků z SDS-PAGE se neshoduje proteinové zastoupení u kontrolních vzorků použitých pro jednotlivé estrogeny.

Byly zhotoveny pouze 3 bloty pro daný typ estrogenu, což nebylo dostatečné, pro průkazné ovlivnění probíhající kapacitace jednotlivými estrogeny. Docházelо ke špatné manipulaci se vzorky spermií, nepřesnosti v nánosu vzorků.

U spermií k nárůstu p-Tyr proteinů docházelо, protože jsme detekovali určité proteiny o molekulové hmotnosti Mw v rozmezí 40-120 kDa u všech pozorovaných vzorků spermií.
5. Diskuze

Nejnižší dvě použité koncentrace estrogenu 0,02 µg/l a 0,2 µg/l jsou fyziologické koncentrace v plazmě myší, další dvě zvolené koncentrace 2 µg/l a 20 µg/l jsou fyziologické v místě ovulace u myší a nejvyšší vybraná koncentrace 200 µg/l je tudíž pouze 10-ti násobkem nejvyšší fyziologické, avšak přítomnost této koncentrace estrogenů 200 µg/l je dokumentována v životním prostředí.

Biologická aktivita jednotlivých estrogenů se odvíjí o jejich schopnosti vazby k estrogennímu receptoru a jeho aktivaci. Rozdílné ligandy mají různou afinitu k α a β izoformám ER. Estron se přednostně váže k ERα, zatímco estriol k ERβ, 17-β-estradiol se váže stejně dobře k oběma izoformám receptorů (Smith 1999). Kromě cytosolického umístění klasických ER, které se po vazbě ligandu translokují do jádra, byly objeveny ER vyksytující se na PM spermie myší (Zhou \textit{et al.} 2002, Selva \textit{et al.} 2004, Baldi \textit{et al.} 2009). Na PM se mohou i vyskytovat nově objevené ER, které mají jinou stavbu než klasické ER (Baldi \textit{et al.} 2009). Biochemické změny během kapacitace indukované estrogeny nastávají rychle díky nogenomické akci ERs, protože spermie jsou považovány za transkripčně inaktivní (Aquila \textit{et al.} 2004). Po vazbě estrogenů na tyto receptory se zahajuje signální kaskáda zahrnující vzrůst intracelulárního Ca2+, který může dále stimulovat AC produkující cAMP a vedoucí ke zvýšení p-Tyr (Visconti \textit{et al.} 1995).
Výsledky jednotlivých pokusů spermií nebyly specifikovány na jedince, z tohoto důvodu byla použita uniformní populace BALB/c myší. Výsledky byly shromažďovány do konečného souboru dat pro vybraný estrogen o dané koncentraci a času kapacitace v době odběru vzorku. Vzhledem k tomu, že se v průběhu kapacitace mění procento spermií, kde dochází k p-Tyr na hlavičce spermie, jsme úroveň p-Tyr pozorovali u vzorků v 5, 30, 60, 90 a 120 minutách kapacitace.

Pohyb Ca²⁺ iontů z extracelulárního média do nitra spermie je kritický krok, který reguluje vylití akrozómu (De Blas 2002). U několika druhů hlodavců jsou spermie, inkubované v médiu bez vápníku, neschopné projít AR, pokud se do média vápník nedodá. 17-β-estradiol indukuje rychlý vzrůst koncentrace Ca²⁺ iontů uvnitř buněk. Tento efekt je zprostředkován membránovým receptorem a je závislý na přítomnosti Ca²⁺ mimo buňky, proto není pozorovatelný v médiu bez Ca²⁺ iontů (Luconi et al. 1999). Ca²⁺ ionty jsou dále spolu se sérum albuminem potřeba i pro navození kapacitace in vitro. Ca²⁺ ionty především k indukci aktivace adenylyl cyklázy pro generaci cAMP, důležitého druhého posla pro začátku signálních kaskád zahrnující PKA a sérum albumin k vyvázání cholesterolu z PM pro zvýšení její fluidity (Baldi et al. 2009, Naz & Rajesh 2004). Z těchto důvodů jsme pro naše pokusy použili médium s přítomností Ca²⁺ iontů a sérum albuminu.

Z konečných statistických výsledků jsou patrné odchylky od kontrolních hodnot, což může naznačovat, že spermie z cauda epididymis reagují na přítomnost estrogenů v médiu. Spermie mají na plazmatické membráně ERs, které váží ligandy – estrogeny obsažené v okolním prostředí a také obsahují enzym aromatázu, která může konvertovat testosteron na 17-β-estradiol a androstenedion na estron během průchodu z varlat do nadvarlat (Baldi et al. 2009). Po vazbě estrogenů na tyto receptory se zahajuje signální kaskáda zahrnující vzrůst intracelulárního Ca²⁺, který může dálestimulovat AC produkující cAMP a vedoucí ke zvýšení p-Tyr (Visconti et al. 1995).

Během kapacitace spermií u kontrolního vzorku je počet spermií s pozitivní p-Tyr v hlavičce maximálně 9 % (Nixon et al. 2006, Asquith et al. 2004). Je třeba říci, že p-Tyr stejně jako kapacitace nejsou synchronní (Stewart-Savage 1993), nicméně pouze méně než 15 % uvolněných spermií, u kterých došlo k p-Tyr, může rozpoznat zona pellucida vajíčka. Potvrdila jsem, že u neovlivněných (kontrolních) spermií bylo v 90 minutách kapacitace nejvyšší procento fluorescenčně zbarvených buněk (10 – 13 %) z celkové populace spermií. Podobné závěry přináší i Dvořáková-Hortová et al. (2008), Nixon et al.

U mých výsledků se v nejvyšší použité koncentraci 200 µg/l 17-β-estradiolu ukázalo signifikantně zvýšené procento p-Tyr spermií v 90 minutách kapacitace, což nekoreluje s výsledky Adeoya-Osiguwa et al. (2003), kteří došli k závěru, že u nekapacitovaných myších spermií 17-β-estradiol v koncentraci 1 µM (což odpovídá právě koncentraci 20 µg/l) signifikantně stimuluje kapacitaci a AR, ale u kapacitovaných spermií nemá tento estrogen vliv žádný. Adeoya-Osiguwa et al. (2003) si to vysvětují tím, že během kapacitace se mění kompozice a strukturní uspořádání komponentů PM spermie včetně ERs.

V koncentraci 0,2 µg/l a 20 µg/l 17-β-estradiolu se objevil statisticky významný nárůst p-Tyr proteinů spermií ve 30 minutách kapacitace, což mohlo být projevem urychlené kapacitace, ale jedná se spíše o neopodstatněné výkyvy vzniklé možnou variabilitou při barvení nebo nedostatečným počtem opakování pokusů, protože v dalším průběhu kapacitace dochází ke kolísání v naměřených hodnotách. Pro lepší čitelnost závislosti koncentrace použitého estrogenu na průběh kapacitace by bylo potřeba udělat větší počet vzorků pro získ relevantních výsledků.

Při vyhodnocení statistických výsledků u dalšího přirozeného estrogenu – estronu, jsem se setkala s několika signifikantními odchylkami, které stejně jako u výsledků 17-β-estradiolu neměly, snad kromě koncentrace 200 µg/l, prokazatelný tendenční vývoj v závislosti na čase nebo koncentraci estronu. U zmíněných případů koncentrace 200 µg/l se může jednat o předčasnou stimulaci kapacitace touto koncentrací estrogenu, která je 10-ти násobkem fyziologické koncentrace v místě ovulace samice myší, kdy je signifikantní nárůst p-Tyr proteinů ve 30 minutách kapacitace a i se statisticky významným maximem v 60 minutách kapacitace. Estron má nižší afinitu k ERβ a váže se přednostně k ERα (Smith 1999). Vyšší koncentrace estrogenů v buňkách, kde jsou estrogenní receptory téměř saturované, může státé zvyšovat počet kapacitovaných buněk v závislosti na koncentraci, tudíž estrogenní efekt ve vysoké koncentraci, může být zprostředkován jiným mechanis-
mem než přes estrogenní receptory, např. průnikem estrogenů narušenou membránou tzv.
perturbací, kdy estrogen volně proniká do buňky (Baldi et al. 2009).

Naproti tomu u spermií ovlivněných estriolem se ukázal signifikantní nárůst p-Tyr
ve 30 minutách kapacitace u nižších koncentrací (0,02 µg/l - 2 µg/l) tohoto estrogenu
a u koncentraci 0,02 µg/l a 0,2 µg/l i v 60 minutách kapacitace. Z výsledků v těchto dvou
kapacitačních časech můžeme usuzovat na určitý trend. Děd et al. (2010) v publikovaných
výsledcích uvádějí, že specifické mechanismy (jako např. signalizace přes receptory) jsou
odpovědné za citlivost k nízkým koncentracím estrogenů a k estrogenům ve vysoké kon-
centraci citlivé nejsou. Tato skutečnost může být podpořena i dalším statisticky význam-
ným výsledkem, kdy se u dvou nejvyšších koncentrací estriolu setkáváme v čase 5 minut
s pomalejším nástupem p-Tyr v porovnání s kontrolou. Nicméně u ostatních signifikant-
ních hodnot se neukázala žádná koncentrační nebo časová závislost.

Po vyhodnocení výsledků kapacitace spermií ovlivňovaných syntetickým estrogen-
em 17-α-ethynylestradiolem používaným se jako aktivní složka hormonální antikoncep-
ce, a u kterého byl prokázán vliv na ryby, kdy docházelo k feminizaci samého pohlaví,
k poklesu plodnosti a k redukci estrogenů v plazmě u rybích samců i samic (Křesinová et
al. 2009, Flores-Valverde et al. 2010), jsem zaznamenala celkově vyšší procenta znač-
ných buněk i u kontrolní skupiny v porovnání s pokusy u ostatních estrogenů. V porovnání
s kontrolou jsem vyhodnotila statisticky významný konzistentní nárůst p-Tyr proteinů hlav-
čky spermie ve dvou nejvyšších koncentracích 17-α-ethynylestradiolu (20 µg/l
a 200 µg/l) ve 30, 90 a 120 minutách kapacitace a u konc. 20 µg/l i v 60 minutách.
U tohoto syntetického estrogenu by se dal usuzovat jistý vliv na průběh kapacitace myších
spermií in vitro, protože u přirozených hormonů se tento trend nepronížil.

Je známo, že syntetické estrogeny, mezi něž používaný 17-α-ethynylestradiol
patří, interferují s činností endogenních hormonů, což může mít negativní efekt na vývoj
a reprodukci (Křesinová et al. 2009, Quinn et al. 2004, Van den Belt et al. 2003,
Flores-Valverde et al. 2010). Tento estrogen se může vázat s větší afinitou na estrogenní
receptory a urychlovat signální dráhy vedoucí ke kapacitaci. Za těchto okolností je však
utné si uvědomit, že k řádnému oplození dochází právě při správném a fyziologickém
načasování procesů, jakož je kapacitace a AR, které tomuto předcházejí. Urychlení těchto
procesů nemusí tudíž vést k úspěšné fertilizaci vajíčka spermií.

Relevantní v souvislosti s individuální odpovíďí jedince na vlivy estrogenních hormonů je publikace Spearow et al. (1999), kteří zjistili velké rozdíly mezi kmeny myší v citlivosti k narušení reprodukčního vývoje dospívajícího samci při působení 17-β-estradiolu. Rozdíly v účincích 17-β-estradiolu na jednotlivé kmeny myší, jakož i dávková 17-β-estradiolu na relativní váhu varlat a spermatogenezi byly signifikantní (P < 0.0001).

zaznamenali stimulační efekt 17-β-estradiolu a rozdílných xenoestrogenů na kapacitaci, AR a fertilaizační schopnost myších spermí.

Nelze říci, že z mých výsledků by vyplývalo, že estrogény měly jednoznačný vliv na kapacitaci. Kromě konzistentného signifikantního zvýšení procent p-Tyr spermí v koncentraci 20 µg/l a 200 µg/l syntetického 17-α-ethynylestradiolu, kdy byl patrný výraznější trend u nejvyšších koncentrací v průběhu celé kapacitace. Z naměřených hodnot estronu lze uvést tendenční vývoj u nejvyšší koncentrace 200 µg/l v průběhu času kapacitace a u estriolu lze spekulovat o určitém trendu naopak u 2 nejnižších koncentrací 0,02 µg/l a 0,2 µg/l. U 17-β-estradiolu nelze interpretovat žádná závislost na koncentraci estrogenu a čase kapacitace. Pro hodnotnější výsledky by bylo třeba udělat násobné opakování pokusů.

Dalším cílem bylo porovnat schopnost spermií projít CaI indukovanou AR v podmínkách in vitro po ovlivnění spermií estrogenními hormony 17-β-estradiolem, estronem, estriolem a syntetickým 17-α-ethynylestradiolem. Úspěšný průběh AR je po kapacitaci další důležitý krok nutný k snadnému proniknutí spermie skrz vajenčné ochranné obaly a oplacení vajíčka. Pohyb Ca²⁺ iontů z extracelulárního média do intracelulární oblasti spermií je kritický krok, který reguluje vylití akrozómu, protože zvýšená koncentrace Ca²⁺ iontů vede k fúzi membrán a exocytóze akrozómu (De Blas 2002, Gupta & Bhandari 2011). CaI slouží jako nefyziologický induktor AR, který otevírá Ca²⁺ kanály v akrozómu a zcela odráží tento jev probíhající in vivo (Yamagata et al. 1998).

Průběh AR se u kontrolních spermií myšího kmene BALB/c v prvním testovaném čase (kap5 bez CaI) a druhém testovaném čase (kap30 + CaI5*, kdy CaI působil 5 minut) sho-}

- 67 -
CaI (kap30 + CaI5*) statisticky významné nižší procento spermií, u kterých proběhla AR. Podobný trend v procentuálním zastoupení spermií po AR se objevil u dalšího přirozeného estrogenu estronu, kdy se u jeho vyšších koncentrací (2 - 200 µg/l) v čase kap30 + CaI5* ukázaly statisticky významně nižší procenta spermií, u kterých došlo k AR. P-Tyr a polymerizace aktinu následují jedna po druhé v přesně stanoveném pořadí. P-Tyr, jako jedna z mnoha dalších, vyvolává polymerizaci aktinu, která brání předčasné fúzi PM a OAM, která vede k AR (Brener et al. 2003, Breitbart et al. 2005). Pokud je p-Tyr zvýšená, může to mít za následek neschopnost depolymerizace filamentárního aktinu, a proto může dojít k bloku AR, dokud není p-Tyr zredukována. To může naznačovat, že v našem případě došlo k opoždění AR oproti kontrole, protože mohla být předčasně sepnutá dráha p-Tyr, která nemohla být dokončena polymerizací aktinu a jeho následnou depolymerizací. Načasování všech procesů spojených s molekulárními změnami vedoucími ke kapacitaci a AR je velmi důležité a nesprávné nastavení sledu událostí může vést ke snížení schopnosti oplození spermie.

Data ale přesně nekorelují s výsledky p-Tyr u 17-β-estradiolu, kdy se projevil signifikantní nárůst p-Tyr jen u dvou koncentrací estrogenu, ale ke zpomalení AR docházelo ve všech koncentracích. To může značit, že byly výsledky AR nebo p-Tyr špatně vyhodnoceny. Po porovnání výsledků se statistickým vyhodnocením průběhu p-Tyr u estronu můžeme ve stejném čase kapacitace (30 minut) u spermií, ovlivněných třemi nejvyššími koncentracemi estronu (2- 200 µg/l), vidět jistou korelací s průběhem AR, kdy dochází k p-Tyr u signifikantně vyššího procenta spermií, tedy k časnějšímu zahájení p-Tyr než u kontroly.

Z výsledků hodnocení estriolu nelze usuzovat na žádný trend ve vývoji AR. Není zde patrná žádná závislost na koncentraci estronu nebo na časech, v kterých byly vzorky odebrány a statisticky signifikantní hodnoty jsou velmi náhodné.

U syntetického 17-α-ethynylestradiolu by se po porovnání s předchozím estrogenu 17-β-estriolem a estronom dal usuzovat časový posun statisticky významně nižšího procenta spermií po AR, který se vyskytuje v kapacitačním čase kap30 + CaI60 u většiny koncentrací. Pokud bych se pokusila interpretovat výsledky v čase kap120 + CaI60, kdy naopak došlo k signifikantnímu zvýšení počtu spermií, které podstoupily AR, u vzorků s koncentrací estrogenu 0,02 µg/l, 0,2 µg/l a 200 µg/l, tak se mohlo jednat o kompenzaci pomalejšího nástupu AR.
Je diskutabilní, zda můžeme považovat za průkazné výsledky průběhu AR u 17-α-ethynylestradiolu, protože se zde statisticky signifikantní odchylky od kontrolních hodnot objevují náhodně a bez zjevné závislosti na koncentraci, čase kapacitace nebo době působení CaI.

Po statistickém vyhodnocení výsledků indukované AR jsou u spermií ovlivněných estrogeny patrné odchylky od hodnot kontrolních vzorků. Většina těchto statisticky významných rozdílů neprokaže závislost na koncentraci, typu steroidu, době působení CaI nebo na čase, v kterém byly vzorky odebrány. Nicméně lze říci, že procento myších spermií s dokončenou AR vzrůstalo s kapacitačním časem u všech koncentrací daného estrogenu. Pro větší průkaznost výsledků by ale bylo nutné provést pokusy s násobnějším opakováním.

Naproti tomu Děd et al. (2010) dokázali signifikantní účinek estrogenů (17-β-estradiolu, estronu, estriolu a 17-α-ethynylestradiolu) na AR indukovanou pomocí solubilizované ZP a CaI, kdy byl počet spermií po AR signifikantně vyšší ve všech experimentálních skupinách. Jejich výsledky ze ZP a CaI indukované AR svědčí o tom, že estrogeny mají skutečné fyziologické účinky na kapacitaci spermií. Správné fyziologické načasování procesů kapacitace a AR je důležité pro úspěšnou fertilizaci (Nixon et al. 2006), ke které při urychlení těchto procesů nemusí docházet. Spermie, které prodělají AR předčasně, ztrácí svůj fertilitační potenciál, nejsou schopny pronikat skrz cumulus oophorus a vázat se na ZP.

Moje výsledky SDS-PAGE elektroforézy nám nepřinesly přesvědčivé důkazy o ovlivnění probíhající kapacitace jednotlivými estrogeny, protože se neshoduje proteinové zastoupení u kontrolních vzorků použitých pro jednotlivé estrogeny. Vzorky spermií pro jednu SDS-PAGE elektroforézu, byly odebrány z jednoho myšího samce z inbredního laboratorního kmene BALB/c u daného typu estrogenu jsem pokus prováděla pouze třikrát. Pokusy nebyly provedeny v dostatečném množství a kvalitě, proto z výsledků nemůžeme vyvozovat závěry.

Tuto metodu používal i Visconti et al. (1995), který pro získání relevantnějších výsledků pokusy zopakoval minimálně pětkrát s podobnými výsledky. U jednotlivých zdrojových zvířat byly po imunodetekci proteinů patrné velké výkazy p-Tyr proteinů v průběhu kapacitace in vitro u kontrolních i experimentálních skupin spermií. Toto možné zkreslení výsledků může být způsobeno špatnou manipulací se vzorky SDS-PAGE elektroforézy nám nepřinesly přesvědčivé důkazy
ky spermií, které se pro hodnocení použily (např. nepřesností v nánosu vzorků, chybné označení vzorků při odběru, chybovou v pipetování) nebo nedodržením správného postupu při použití metody SDS – PAGE.

Nicméně můžeme říci, že u spermií v průběhu kapacitace k nárůstu p-Tyr docházelo, protože jsme detekovali pozitivní p-Tyr u specifických proteinů o molekulové hmotnosti Mw v rozmezí 40-120 kDa u všech pozorovaných vzorků spermií. Výsledky Visconti et al. (1995) prokazují vznik p-Tyr u proteinů Mw v rozmezí 40-120 kDa v průběhu kapacitace a určují p95/116 hexokinázu (95 kDa) jako hlavní protein s fosforylovanými tyrozíny na membráně myších spermií, který je neměnný během inkubační periody. U myší byly popsány další proteiny, u kterých dochází k p-Tyr v průběhu kapacitace. Jsou to 2 chaperony - endoplasmin (erp99 – 52 kDa) a heat shock protein 60 (hsp60 – 75 kDa), které se vyskytují na PM hlavičky spermie. Aktivací těchto dvou proteinů, pomocí p-Tyr během kapacitace, dochází ke spuštění konformačních změn usnadňujících sestavení ZP receptorového komplexu na povrchu spermie. Po rozpoznání a vazbě receptorů kapacitované spermie s ligandy na ZP (Tulsiani et al. 1997) se spouští signální dráha vedoucí k depolymerizaci F-aktinu na G-aktin a tím se dostává PM blíže k OAM (Spungin et al. 1995), která po fúzi a formaci váčků umožní uvolnění složek akrozómu (Abou-haila & Tulsiani 2009, Asquith et al. 2004, Breitbart et al. 2005, Naz & Rajesh 2004). U lidských spermií jsou to například proteiny ERK-1 a ERK-2 (kinázy regulující extracelulární signály), u kterých také probíhá p-Tyr.

Je diskutabilní, zda můžeme považovat signifikantní odchylky v mých výsledcích za průkazné, protože se u většiny koncentrací daného estrogenu objevují náhodně a bez zjevné závislosti na koncentraci, čase kapacitace nebo na typu estrogenu, proto nelze jednoznačně říci, že estrogeny měly vliv na průběh kapacitace nebo AR.

Nicméně lze říci, že k určitému vývoji p-Tyr proteinů v průběhu času docházelo, a že kromě času 5 minut, kdy u experimentálních skupin došlo ke snížení AR, procento myších spermií s dokončenou AR vzrůstalo s kapacitačním časem u všech koncentracích daného estrogenu. Pro hodnotnější výsledky by bylo třeba pokusy s myšími spermiemi ovlivněnými danými koncentracemi estrogenů zopakovat vícekrát než bylo provedeno.
6. Závěr

Z konečných statistických výsledků studie vlivu vybraných přírodních estrogenů 17-β-estradiolu, estronu, estriolu a syntetického 17-α-ethynylestradiolu na kapacitaci myších spermí **in vitro** jsem z hodnocení míry fosforylace proteinů na tyrozinových zbytečích v hlavičce spermí neprokázala jednoznačný koncentrační nebo časový vliv těchto hormonů. Zaznamenala jsme síce signifikantní odchylky od kontrolních hodnot, což by mohlo naznačovat, že spermie *cauda epididymis* na estrogeny reagují. Kromě konzistentního signifikantního zvýšení procent p-Tyr spermí ve dvou nejvyšších koncentracích syntetického 17-α-ethynylestradiolu, kdy byl patrný výraznější trend u nejvyšších koncentrací v průběhu celé kapacitace a u 2 nejnižších koncentrací estriolu v 30 a 60 minutách kapacitace se jedná spíše o nepřesnosti hodnocení nebo variabilitu při barvení, protože ke kolísání v naměřených hodnotách dochází bez zjevné závislosti na typu estrogenu, jeho koncentraci nebo na době, po kterou byly spermie kapacitovány.

Ze statistických výsledků hodnocení stavu akrozómu myších spermí po CaI indukované AR **in vitro** jsem zaznamenala u spermí ovlivněných 17-β-estradiolem a estronem jistý trend, kdy docházelo ve 30 minutách kapacitace a po pěti minutovém působení CaI k dokončení AR u statisticky významně nižšího procenta spermí v porovnání s kontrolou, kdy se pravděpodobně jednalo o pomalejší nástup AR. Další statisticky signifikantní odchylky od kontrolních hodnot, které jsem zaznamenala, se objevovaly náhodně a bez závislosti na koncentraci, typu steroidu, čase kapacitace nebo době působení CaI. Nicméně lze konstatovat, že procento myších spermí s dokončenou AR vzrostlo s kapacitací časem u všech koncentrací daného estrogenu.

Výsledky elektroforetického hodnocení tyrozinové fosforylace z lyzátu celých spermí nedokazují ovlivnění probíhající kapacitace jednotlivými estrogeny, protože pokusy nebyly provedeny v dostatečném množství a kvalitě. Docházelo ke špatné manipulaci se vzorky spermí, k nepřesnosti v nánosu vzorků nebo chybnému označení vzorků při odběru.

Při získávání výsledků k této diplomové práci jsem si osvojila používání laboratorních metod spojených s technikami přípravy spermí pro **in vitro** oplození, a to kapacitaci myších spermí **in vitro** nebo indukci AR za použití CaI u myších spermí **in vitro**, dále fluorescenční barvení a metodu SDS-PAGE s následnou imunodetekcí proteinů.
7. Seznam použité literatury

http://e.hormone.tulane.edu/learning/docking-receptor-binding.html

http://cs.wikipedia.org/wiki/Spermie

http://en.wikipedia.org

