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Abstract: Accurate and automatic segmentation techniques that do not require any
explicit prior model have been of high interest in the medical community. We propose
a fully-automatic method for segmenting the femur from 3D Computed Tomography
scans, based on the graph-cut segmentation framework and the bone boundary en-
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Chapter 1

Introduction

Due to its advancements and a wide spread in the medical community, the Computed
Tomography (CT) modality has become common data source for many segmentation
studies. However, as pointed out in Wang et al. (2006), despite several years of ac-
tive research, bone segmentation from CT datasets remains in several aspects an open
problem. Due to segmentation challenges coupled with the CT modality, established
approaches are of limited use, including thresholding, region growing, watershed trans-
formation, snakes and level-sets.

Recently, the graph-cut framework, introduced by Boykov and Jolly (2001), has
shown to provide an elegant and efficient approach for segmentation. It has been
applied to the problem of bone segmentation in many studies with promising results,
e.g. in Fürnstahl et al. (2008).

This work presents a fully-automatic graph-cut-based method for segmenting the
femur bone from 3D-CT volumes without employment of any shape prior knowledge. In
particular, the study proposes new cost terms for the graph-cut framework which utilize
a novel bone-boundary enhancement filter with prior knowledge of bone radiodensity
properties. The applicability of the proposed method is subsequently evaluated in
large-scale experiments, conducted on a set of 197 CT volumes.

The motivation of the proposal is to provide a tool for bootstrapping the construc-
tion of a statistical model of shape and appearance. These models integrate variability
of bones within a population and have been subject to an increasing interest within the
past decade in a wide variety of medical applications (Heimann and Meinzer, 2009).
Besides anatomical studies, such models are particularly interesting in the domain of
orthopedics, especially for intra-operative guidance, re-constructive surgery or implant
design. However, learning such models requires that a large number of examples are
available and pre-processed. Segmentation, in particular, remains a serious bottleneck
in this context since manual processing is common practice. Automatic segmenta-
tion algorithms are therefore of high interest since they provide an automated tool for
acquisition of initial samples.
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1.1 Thesis structure

Chapter 2 introduces the problem of bone segmentation from CT modality and dis-
cusses manifold established segmentation methods which have been used for bone seg-
mentation. Chapter 3 provides detailed description of the proposed method, with the
focus on the graph-cut framework and proposal of graph-cut cost functions designed
specifically for the purpose of femur segmentation. Chapter 4 expands on evaluation of
the method in large-scale experiments and comparison with other existing approaches.
Chapter 5 concludes the thesis with summary of results and discussion over future
work.



Chapter 2

Segmentation of bones in CT

This chapter describes in more detail the problem of bone segmentation from comput-
ed tomography (CT) scans. Section 2.1 provides deeper explanation of the problem
and discusses its manifold challenging aspects. Section 2.2 then expands on current
approaches targeting the bone segmentation.

2.1 Problem statement

This section details the problem of bone segmentation from CT volumes. Section 2.1.1
describes the CT modality in general and briefs the process of acquiring a 3D-CT scan.
The problem of bone segmentation from such a scan is defined in Section 2.1.2. The
latter section also expands on typical challenges coupled with bone segmentation.

2.1.1 Computed tomography scans

In spiral CT, a 3D radiodensity image is created by reconstructing a stack of 2D
images from successively acquired X-ray data (Lipson, 2006). A patient is first placed
and fixed on a table, which is subsequently rolled into the CT gantry. A set of 2D
scans is then acquired by using an X-ray source, which rotates continuously in helical
fashion, and a detector array, determining current material attenuation. To acquire
larger anatomical regions, the table mechanically moves and the scanning procedure is
repeated for another set of 2D scans.

Raw output of a CT scanner is a 3D radiographic density map. Each box-like
volumetric element, also called a voxel, represents average attenuation or density of
the object at the corresponding area. In the last step, original radiographic density
measurements are linearly transformed into a more descriptive scale – Hounsfield units
(HU). By definition, the value of 0 HU corresponds to radiodensity of distilled water
and -1000 HU to the radiodensity of air. HU values of other substances commonly
present in human body are based on this definition and are listed in Table 2.1.

To view such a CT scan on a monitor, Hounsfield units are mapped to a gray
scale. The transformation function is called a transfer function and is usually fully
customizable in medical software. A typical example of a 3D-CT scan, containing
human forearm, is depicted in Figure 2.1.

7



CHAPTER 2. SEGMENTATION OF BONES IN CT 8

Substance HU value

Air -1000
Fat -120 to -50
Water 0
Muscle +40
Cortical bone +400 to +2000

Table 2.1: HU values for common substances

Figure 2.1: Selection of 15 axial slices (out of 660) from a CT volume of human forearm.
The temporal axial ordering is top-to-bottom left-to-right. Voxel intensities correspond
to HU values. Black regions represent air with HU value below -800. Soft-tissues, water
and fat (HU from -200 to 400) is depicted by gray. Strong cortical bone layers with
HU above 400 is colored white. Resolution of this volume is 320x320x660.

2.1.2 Femur segmentation

In general, a binary segmentation of an image can be formulated as follows: Assume
that I : Ω→ R is an image on a (grid) domain Ω. Segmenting an object means to find
a labelling function

A : Ω→ {obj , bkg}

which classifies all pixels belonging to the object of interest as obj and the remaining
pixels as bkg . Having the pixels classified, the image can be considered as a union
of two disjoint sections Sobj , Sbkg ⊂ I, where Sobj and Sbkg represent the object and
background parts of the image, respectively.

In this study, the input image for segmentation is a product of a CT scanner, i.e. a
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3D volume with voxels expressed in the Hounsfield scale. The goal is to automatically
segment the femur bone without employment of any prior knowledge of the femur
shape. Example of a desired result is illustrated in Figure 2.2.

(a) Original image (b) Segmented femur

Figure 2.2: Femur segmentation illustrated on an axial slice. The object of interest
(femur) is depicted in red. Background (pelvis, fat and soft-tissues) is depicted blue.

Typical appearance of the femur in the CT modality is illustrated in Figure 2.3. The
middle part of a long bone, also called a shaft or a diaphyses, consists of rigid, strongly
attenuating and dense cortical tissue, which exhibits high HU values in CT scans. Due
to smooth bone boundaries and high contrast between the cortical layer and encasing
low-intensity soft tissue, segmentation of the shaft is a relatively simple tasks. Global
thresholding (subsection 2.2.1) followed by basic morphological operations (Haralick
et al., 1987) can deliver satisfactory results.

However, the bone structure is significantly different in the epiphyses – part of
a bone near joints, where more flexibility has to be provided due to pressure and

Figure 2.3: Typical appearance of the femur in a CT scan. The middle part of the femur
consists of strongly attenuating and rigid cortical tissue. The corticalis diminishes
towards the joint areas where it is replaced by low-attenuating vascular and hard-to-
segment cancellous tissue.
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Figure 2.4: Challenges coupled with segmentation of the femur from CT volumes:
different intensity distributions of the cortical and cancellous tissues (A,B), weak and
diffused bone boundaries (C, E), missing bone boundaries (F,H), narrow inter-bone
spacing (D,G) and noise (C).
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body movement. The bone interior consists almost exclusively of low-attenuating and
vascular cancellous tissue. As Sebastian et al. (2003) and Fürnstahl (2009) listed, there
are manifold challenges regarding the segmentation of bone epiphyses from CT volumes
(see Figure 2.4):

Low-contrast and weak bone boundaries Thickness of the cortical shell decreases
rapidly towards the epiphyses area which results in low-contrast bone boundaries.
In particular, this is the case for elderly patients with chronically decreased bone
density. What is more, the bone boundary often appears to be heavily diffused
or is not visible at all, due to the presence of a cartilage or a vessel nourishing
the bone interior.

Varying density of cancellous tissues Cancellous bone tissue is vascular and spongy
which causes the bone to appear textured and inhomogeneous. The density prop-
erties of bone tissues cannot be characterized uniformly. From the radiodensity
perspective, the epiphyses interior partially resembles low-attenuating fat and
soft-tissues; partially high-attenuating corticalis. Therefore, basic segmentation
techniques like thresholding or region growing (section 2.2) inevitably yield in-
sufficient results (Sebastian et al., 2003).

Narrow inter-bone spacing Articular space between adjacent bones is extremely
narrow. Due to partial volumetric effect, inherently present in CT modality, the
inter-bone regions are diffused and brighter and the bones appear as being in
direct contact.

Low quality of CT scans Moreover, the overall quality of CT scans is generally
rather low. Volumes suffer from noise and low-resolution. Voxels are usually
anisotropic with dimensions ranging from 0.5mm to 2mm. The resolution of
a CT scan is often insufficient for the image processing purposes. Conversely,
memory requirements coupled with software processing are very high with re-
spect to the current computer capacities. Consider a CT volume of a resolution
512x512x1024. If four bytes per voxel are used for the Hounsfield unit, the volume
size reaches 1GiB.

2.2 Current approaches

This section discusses manifold established techniques which have been applied to the
problem of bone segmentation in 2D/3D CT domain. The summary begins with the
description of the most common and easy-to-implement methods: Section 2.2.1 focuses
on thresholding and Section 2.2.2 briefs the region growing. In Sections 2.2.3 and 2.2.4
, the Watershed transformation and approaches employing first-order local structure
analysis are explained, respectively. A family of segmentation methods based on de-
formable models are described in the remaining sections. Section 2.2.5 and Section 2.2.6
cover snakes and geometric active contours, respectively. The Section 2.2.7 expands on
segmentation methods based on statistical models of shape and appearance.
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2.2.1 Thresholding

Thresholding is one of the most common and simplest segmentation methods. In its
most simplistic form, (global) thresholding classifies pixels according to the statistical
distribution of their intensity values – histogram. Pixels with intensity values above a
manually chosen HU value are interpreted as a part of an object, otherwise pixels are
classified as the background.

The global thresholding performs well if the intensities of an object and a back-
ground do not vary significantly throughout the image. However, this is not the case
for CT bone segmentation due to similarities in radiological density of bones and sur-
rounding soft tissues. For example, the global thresholding cannot properly handle
segmentation of vascular cancellous bones (see Figure 2.5a) nor segmentation of joint
regions with diffused and weak bone contours (Sebastian et al., 2003; Wang et al.,
2006). The method also struggles in narrow inter-bone regions due to the volumetric
effect (see Figure 2.5b).

Additionally, to achieve satisfactory results the threshold value has to be chosen
carefully; the operation which tends to be tedious and time-consuming in case of manual
interactive large-scale segmentations (Sebastian et al., 2003). Also, incorporation of
various constraints (as a continuous bone boundary) is also hardly feasible (Fürnstahl,
2009).

Several of the aforementioned limitations are suppressed in local thresholding –
a method featuring local adaptability. Each pixel is classified according to a local
threshold, calculated from local image characteristics. However, Sebastian et al. (2003)
and Wang et al. (2006) pointed out that the local thresholding fails in narrow inter-
bone regions since methods employed to determine the threshold typically use small
local windows centered around a pixel.

Being one of the oldest segmentation techniques, the thresholding methods experi-
enced an enormous scientific interest in the past. Many researchers incorporated prior
knowledge and statistical methods (e.g. clustering, entropy, etc.) to increase robust-
ness, resulting in numerous thresholding variations. Excellent reviews are given in
Sahoo et al. (1988) and Sezgin and Sankur (2004). In the latter review, more than 40
thresholding methods are categorized, compared and unified under the same notation.

Despite its limitations, thresholding is often built into many segmentation pipelines
as a preprocessing step or as a partial processing stage.

2.2.2 Region growing

Region growing methods partition an image into coherent areas, each of which satisfies
a given homogeneity criterion. The most common region growing algorithms are based
on seeded region growing, introduced by Adams and Bischof (1994).

Initially, several object seeds are chosen manually by a user. The seeds then start
to grow into regions by annexing adjacent pixels. The annexing criterion is defined
by a similarity measure, usually based on pixel intensities, gradient, local neighbor-
hood characteristics, statistical tests, etc. When the growing stops, statistically similar
adjacent regions are typically merged together, resulting in region merging algorithms.

Seeded region growing tends to be sensitive to noise, which results in undesirable
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(a) Global thresholding: The lack of local
adaptability produces holes in the segmented
object since the tissues with similar intensities
cannot be differentiated.

(b) Global thresholding: Due to the volumetric
effect, thresholding merges adjacent bones with
narrow inter-bone spacing.

(c) Seeded region growing: Leakages occur
through weak and missing bone boundaries.

(d) Region competition: Segmentation contains
leakages to soft tissues and other bones.

(e) Watershed transform: The transformation
results in an oversegmented image.

(f) Local Structure Analysis: Adaptive Filter-
ing controlled by local structure tensors (Westin
et al., 1998).

Figure 2.5: Common outputs and problems of the presented low-level segmentation
methods. Each example contains an original unprocessed image (left) and the corre-
sponding output (right). Image sources: Sebastian et al. (2003), Westin et al. (1998).

holes, and to initial seeds (Sebastian et al., 2003). Due to partial volumetric effect,
regions with narrow inter-bone spacing tend to be merged together (Wang et al., 2006).
Since no geometrical constraints are incorporated, leakages through gaps in bone sur-
faces occur as well (see Figure 2.5c).

Many authors extended the idea of region growing: Modayur et al. (1997) proposed
an adaptive similarity measure to alleviate limitations caused by noise and spatially
varying tissue intensities. Zhu and Yuille (1996) presented a region competition (see
Figure 2.5d) – an algorithm which incorporates geometrical properties of active con-
tours (Sections 2.2.5 and 2.2.6) into region growing. The method also incorporates
local competition between regions allowing recovery-from-errors behavior.

2.2.3 Watershed transform

The Watershed transform (WT) is a morphological gradient-based technique pioneered
by Vincent and Soille (1991). A gray image is interpreted as a height-map, where pixel
values correspond to elevation. First, several water sources are initialized either as
points with minimum gradient or as user-defined markers. Water emerging from these
sources then gradually floods the map and creates a catchment basin for each source.
Watersheds delineating filled basins represent segmented regions.
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Due to presence of noise and high inhomogeneities in CT domain, general WT
produces oversegmented images (Sebastian et al., 2003), as illustrated in Figure 2.5e.
Moreover, being a gradient-based method, the watershed transform struggles in regions
with low-contrast bone boundaries.

Hahn (2005) introduces an interactive WT for bone segmentation and gives an
excellent overview of WT methods. Neubauer et al. (2005) combines manually initial-
ized WT with thresholding to segment radius, ulna and carpus. Straka et al. (2003)
proposes WT in combination with a probabilistic anatomic atlas.

2.2.4 Local structure analysis

To remove noise and increase contrast at bone boundaries, behavior of local iso-intensity
regions for all locations of an image can be scrutinized. To analyze a local structure,
the eigenvalue decomposition of the structure tensor T may be employed, where

T =

 I2
x IxIy IxIz

IxIy I2
y IyIz

IxIz IyIz I2
z


and I denotes a 3D image. Westin et al. (1997) incorporated the eigenvalues 0 ≤ λ1 ≤
λ2 ≤ λ3 of tensor T into a planarity measure

cplane =
λ3 − αλ2

λ3

.

For each image voxel, the measure approaches 1 for planar structures (e.g. bones) and 0
otherwise. The measure is subsequently used in adaptive thresholding classifying each
pixel according to the local threshold t(x) = t0 − αcplane(x), where t0 is a manually
chosen global threshold and α is a constant weight factor.

The algorithm was employed to segment thin-walled bone regions from 3D-CT
volumes. Since the tensor T is based on the first-order variations only, the planarity
measure is strong on the bone boundaries but weak inside the cortical bone, where the
gradient approaches zero.

Extensions followed in (Westin et al., 1998) and (Westin et al., 2000). Westin
et al. (1998) presented a tensor controlled adaptive filters (see Figure 2.5f). In Westin
et al. (2000), they incorporated the adaptive components derived from local structure
descriptors into the Geodesic Active Contours (see Section 2.2.6).

Westin’s approach may be extended to Hessian matrices, which represent curvature
of a local region via second-order derivatives. subsection 3.1.2 describes this technique
in more detail as it is a building block of the proposed femur segmentation method.

2.2.5 Parametric deformable models (Snakes)

Parametric deformable models (PDMs) segment an object via evolution of an explicitly
defined contour. The most popular implementation of this approach was proposed by
Kass et al. (1988) in their seminal publication on snakes :



CHAPTER 2. SEGMENTATION OF BONES IN CT 15

Assume that Ω ⊂ R2 denotes a continuous image plane. The snake contour is then
defined as an explicit (parametric) curve C : [0, 1] → Ω. The curve is associated with
an energy functional E(C), defined as

E(C) = −
∫
|∇I(C)|2ds+ ν1

∫
|Cs|2ds+ ν2

∫
|Css|2ds, (2.1)

where Cs, Css denote first-order and second-order derivatives of the curve C, respec-
tively, values ν1, ν2 denote nonnegative constants and ∇I denotes an image gradient.

In the beginning, the snake is initialized manually or as a result of a preprocessing
step. Using a variational framework, the curve is subsequently evolved by minimizing
the functional E(C). More technically, the finite differences scheme is employed on the
Euler-Lagrange equation derived from (2.1) to compute the local minimum.

The functional E is composed of two components: external and internal energy.
The first term of Equation 2.1 represents external energy as it attracts the evolving
curve towards large image gradient locations rather than towards local homogeneous
regions. The second and third terms comprise internal energy; they measure the length
and rigidity of the snake and therefore provide regularization of the evolving contour.

According to Cremers et al. (2007), the original snake technique is highly efficient
and easily incorporates prior knowledge. However, the algorithm is sensitive to ini-
tial conditions and often gets stuck in a local undesired minimum. Moreover, due to
the explicit contour representation, snakes lack the feature of topological adaptability
(Cremers et al., 2007; Maa et al., 2009). Therefore, the initial contours must share the
same topology as the object of interest.

There are many publications alleviating the aforementioned hindrances. To name a
few, Cohen (1991) added a balloon force to the external force to prevent contours from
shrinking or stopping on local minimum. Xu and Prince (1998) lowered dependence
on initialization by replacing the gradient field with the gradient vector field. User
interaction was increased by McInerney and Terzopoulos (1996). A detailed review
coupled by an excellent comparative study is given in He et al. (2008).

2.2.6 Geometric deformable models

This section focuses on geometric active contours – methods designed to inherently
handle topological changes during the contour evolution and thus alleviate issues cou-
pled with snakes (Section 2.2.5). Geometric active contours are based on the level-set
framework, pioneered by Osher and Sethian (1988), who applied level-sets to model
ocean waves and burning flames. The level-set framework was first employed to the
problem of image segmentation by Malladi et al. (1995).

As opposed to snakes, where the contour is moved explicitly, Osher and Sethian
proposed to implicitly embed a contour into a higher-dimensional surface and track
the contour as the zero level-set of this evolving embedding surface.

Contour evolution with level-sets

Assume that Ω ⊂ R2 denotes a continuous image plane and a contour C ⊂ Ω of arbi-
trary topology is manually initialized. The evolution operates with a time-dependent
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Figure 2.6: A sketch illustrating the idea behind the level-set technique. A lower-
dimensional curve (bottom row) is embedded into a higher dimensional surface (top
row) as a zero-level set. Level-set segmentation methods naturally feature topological
adaptability during the contour evolution.

embedding surface φ : Ω→ R, defined as

φ(x, t) = ±d(x),

where x is position in the image, t is time and d(x) is a signed distance between x and
the contour C. The sign in front of the distance is positive for x outside the contour
and negative for interior regions. In this manner, the contour C may be represented as
a zero level-set of the surface φ, i.e.

C = {x ∈ Ω|φ(x) = 0},

as depicted in Figure 2.6. Assumption that the contour motion is perpendicular to the
boundary leads to the evolution model

∂C
∂t

= F · n, (2.2)

where n denotes a normal vector and F denotes a speed function. Cremers et al. (2007)
pointed out that the tangential component in the evolution model (2.2) is usually not
included as the latter does not affect the contour but only the parametrization.

Since φ(C(t), t) = 0 all the time, the total time derivative of φ for points lying on
the contour must vanish:

0 = φt + φxxt + φyyt

= φt +∇φ · (xt, yt)

= φt +∇φ · ∂C
∂t

= φt +∇φ · Fn

= φt + F |∇φ|,

using the chain rule and the definition of the normal vector n = ∇φ
|∇φ| . Hence, the

resulting evolution equation for the embedding surface φ is

∂φ

∂t
= −|∇φ|F (2.3)
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Figure 2.7: Performance of various level-set methods applied to bone segmentation as
surveyed by Truc et al. (2009).

with a given initial condition φ(x, t = 0). This can be solved using finite differences on a
discrete spatial grid of the Ω domain. In order to numerically implement the evolution
equation (2.3), the speed function F , initially defined only for contour locations, needs
to be extended to the whole image domain. For technical details see Malladi et al.
(1995).

(Original) Geometric Active Contours

In the original geometric active contours (Caselles et al., 1993; Malladi et al., 1995)
the speed function F is based on a function g(x) which vanishes to zero on edges and
approaches one in homogeneous regions. For example,

g(x) = exp
(
−α|∇(G ∗ I)(x)|2

)
is such a function, where G∗I denotes convolution of an input image I with a Gaussian
kernel G and α denotes a constant parameter. The corresponding contour evolution is
given by

∂φ

∂t
= (κ+ V0)g|∇φ|, (2.4)

where κ is an Euclidean curvature and V0 is a real constant. The intuitive idea behind
geometric active contours (ACs) is the following: As the contour approaches an object
boundary, the increased gradient magnitude decreases the speed of the propagating
curve.

While the geometric ACs usually perform well in high contrast images, the algo-
rithm struggles in regions with weak edges and gaps (Suri et al., 2002; Truc et al., 2009;
Maa et al., 2009). In regions with diffused bone boundaries and holes, the gradient
magnitude is too small to stop the evolving curve and causes leakages in resulting seg-
mentations. The method also lacks a pulling-back feature (Suri et al., 2002), meaning
that once an object boundary is crossed the propagating front cannot return.

Geodesic Active Contours To overcome the leakage problem of the geometric ACs,
Caselles et al. (1997) proposed Geodesic ACs, a method inspired by classical parametric
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energy minimization techniques (snakes), briefed in Section 2.2.5. The contour flow of
Geodesic ACs can be described as

∂φ

∂t
= (κ+ V0)g|∇φ|+∇g · ∇φ.

In comparison with Malladi’s equation (2.4), an extra stopping term ∇g · ∇φ is added
to attract the propagating front towards weak edges.

Siddiqi et al. (1998) pointed out that Geodesic ACs still yield leakages for complex
structures. Therefore, they incorporated another component to the flow – area forces.
Suri et al. (2002) concluded in their review that albeit the latter approach performed
better than the previous two models, the method is still not robust enough to handle
the convolutedness of medical structures.

Other methods and Reviews A number of researchers extended the aforemen-
tioned ideas. For example, Paragios et al. (2004) incorporated gradient vector flow
(Xu and Prince, 1998) into Geometric ACs. An alternative method of ACs based on
Mumford-Shah functional (Mumford and Shah, 1989) was proposed by Chan and Vese
(2001).

An excellent reviews and comparative studies of many level-set methods were pre-
sented by Suri et al. (2002), He et al. (2008) and Truc et al. (2009). A summary of
statistical approaches to level-set segmentation is deeply detailed by Cremers et al.
(2007). Truc et al. (2009), Sebastian et al. (2003) and He et al. (2008) employed the
geometric active contours to the problem of bone segmentation. Performance of various
AC methods applied to bone segmentation from CT volumes is illustrated in Figure 2.7.

2.2.7 Statistical shape models

Statistical shape models (SSMs) form a family of established methods for robust seg-
mentation utilizing prior shape knowledge. This section scrutinizes 3D SSMs employed
for purposes of medical image processing. A typical work-flow of a SSM is detailed and
a brief description of the two most established methods is given: Active Shape Mod-
els (ASMs) and Active Appearance Models (AAMs). Refer to Heimann and Meinzer
(2009) for an excellent review of SSMs for 3D medical image segmentation. Cootes
et al. (2004) presents an extensive technical report of ASMs and AAMs.

A typical outline of a SSM segmentation is depicted in Figure 2.8. Initially, a col-
lection of training samples is obtained by (manual) segmentation of numerous medical
volumetric images. A statistical shape model, which extracts the mean shape and the
most significant modes of variations, is subsequently constructed from this training
data set. The training set is also utilized to encode object appearance into appearance
statistical model. To extract an object of interest from a previously unseen image, the
search algorithm employs both the shape and appearance model. The following text
discusses each aforementioned aspect of the segmentation work-flow.

Shape representation

The majority of shape models in the medical image domain is based on Point Distribu-
tion Models (PDMs), the term coined by Cootes et al. (1992). A shape is represented
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Figure 2.8: Outline of a segmentation algorithm based on Statistical Shape Models
(SSMs). First, the statistical model reflecting the mean shape and the most significant
modes of variation is extracted from the training dataset. Subsequently, the appearance
model encoding shape boundary features or inner object region features is construct-
ed. These two models are then employed in the search phase to locate a shape in a
previously unseen image.

as a set of n points distributed over the surface. The points are concatenated into a
vector x describing the shape:

x = (x1, y1, z1, . . . , xn, yn, zn)T .

In literature, these points are often referred to as landmarks. A PDM coupled with
connectivity information between the points is called a mesh.

Construction of a statistical shape model

A SSM extracts statistical properties like a mean shape and significant modes of varia-
tions from a collection of training samples. To build a SSM, landmarks on all training
samples must be initially located at corresponding positions. This task is called a cor-
respondence problem and forms the most challenging part of 3D model reconstruction.
Basically, all algorithms for finding correspondences perform a registration between
the involved shapes (Heimann and Meinzer, 2009). For a comparison of an exhaus-
tive number of publications regarding the correspondence problem for SSM, refer to
Heimann and Meinzer (2009).

Once the correspondences between the shapes are found, the volumetric samples
are aligned in a common coordinate frame. Generalized Proscrustes alignment (Gower,
1975; Goodall, 1991) and tangent space scaling (Dryden and Mardia, 1998) are the most
popular methods for solving this problem.

The PCA analysis, e.g. Jolliffe (2002), is subsequently employed to extract the
mean shape and the modes of shape variation to globally describe the training data
in lower dimension. The mean shape x is approximated by simply averaging over the
sample set

x =
1

N

N∑
i=1

xi,
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Figure 2.9: Principal modes of variation for an SSM of the pelvic mode as presented
by Lamecker et al. (2004): In the left column, the eigenmode with the largest variance
λ1 is varied between ±3

√
λ1, the medium and right column show the variation of the

second and third largest eigenmode, respectively.

where N denotes the number of samples and xi encodes the aligned PDM of i-th
training sample. The eigenvalue decomposition of a covariance matrix S, defined as

S =
1

N − 1

N∑
i=1

(xi − x)(xi − x)T ,

delivers the c largest principal modes of variation v1,v2, . . . ,vc. Each valid shape can
be then approximated by a linear combination of the first c modes as

x ≈ x +
c∑
i=1

αivi.

In this manner, a shape is represented by only a small number of shape parameters
α1, . . . , αc instead of a large PDM vector x. An illustration of a constructed SSM using
PCA is given in Figure 2.9.

Construction of the appearance model

To apply the SSM for object segmentation, the appearance model (AM) for the object
of interest must be built as well. In principle, there are two well-established families of
AM: boundary-based and region-based.

To construct a boundary-based AM, the profiles perpendicular to the object surface
are scrutinized for corresponding landmarks. Various features may be employed to
describe the profiles, e.g. (normalized) intensities or derivatives. Machine learning
techniques like PCA or kNN-classifier are subsequently applied to globally describe the
profile for each landmark.
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In the region-based AM, the entire inner object region is analyzed. One established
approach is the Active Appearance model, explained in the next paragraph. All training
samples are first transformed into a common shape, e.g. into the mean shape x of the
SSM. Then, a feature vector encoding properties of an inner object region is computed
for each transformed image. The appearance model is then obtained by applying a
PCA on the feature vectors.

Searching algorithm

The segmentation is performed by locating the constructed SSM in a new image. Since
most popular methods use local search algorithms, initial estimate of the model pose
in necessary. In the most simple case, a user can manually estimate rough alignment
and rotation of the shape. Alternatively, histogram analysis (Soler et al., 2001), affine
registration with an atlas (Fripp et al., 2005), generalized Hough-transform (Ecabert
et al., 2008), genetic algorithms (Hill and Taylor, 1992; Stegmann et al., 2001; Pitiot
et al., 2002) or partical filtering (De Bruijne and Nielsen, 2005; Heimann et al., 2005)
may be employed for initialization.

One of the most popular searching algorithms is Active Shape Model Search (ASM),
proposed by Cootes et al. (1992, 1995). Location of the object in a new image can be
approximated by the model m defined as

m = T (x +
c∑
i=1

bivi),

where (x,v1, . . . ,vc) denotes the SSM as described earlier, b1, . . . , bc are the shape
parameters and T is a similarity transform. The object is found by iteratively adjusting
the transformation T and parameters b1, . . . , bc. In each update step, the fit of a local
boundary-based AM at different positions perpendicular to the surface is evaluated for
each landmark.

In Active Appearance Models (AAMs), pioneered by Cootes et al. (1998), the region-
based appearance models are employed. Shape and appearance variations are combined
into one vector which is iteratively adjusted according to a certain criterion. AAMs
belongs to a generative models, which can synthesize realistic images of the modeled
data (Heimann and Meinzer, 2009).

Since there are numerous publications regarding various search techniques using
SSMs, refer to Heimann and Meinzer (2009) for an exhaustive survey of the current
approaches.

Application

SSMs have been widely used in 3D medical image analysis, including the domain of
bone segmentation. Active Shape Models have been recently employed to segment
pelvic bones (Lamecker et al., 2004), femur bones (Josephson et al.) and knee bones
(Fripp et al., 2006). A hybrid shape model for the reconstruction of femur bones was
presented by Tang and Ellis (2005). Active Appearance Models are rarely employed
in medical image context due to its excessive memory requirements for the 3D texture
model.
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In general, SSMs are suitable for shapes which are relatively stable over populations.
This makes SSMs ideal for segmentation of bones or deep brain and cardiac structures.
Conversely, shapes with highly varying structures like liver or vessels are much harder to
analyze with SSMs. Structures with mainly random shapes, e.g. tumors, are therefore
unsuitable for statistical modeling.



Chapter 3

Algorithm proposal

The proposed algorithm is based on the graph-cut framework and a novel bone bound-
ary enhancement filter. First, the graph-cut framework and the basic idea behind the
enhancement filter are described in Section 3.1. Section 3.2 details the volume prepro-
cessing used to increase low contrast at bone boundaries. Section 3.3 explains how the
graph-cut framework is initialized to segment all bone tissues from input CT volumes.
Section 3.4 expands on the postprocessing step which handles bones appearing to be
in directed contact in CT volumes.

3.1 Prerequisites

This section covers the prerequisites required to understand the proposed method. Sec-
tion 3.1.1 describes the graph-cut segmentation framework and Section 3.1.2 introduces
the sheetness score as a measure of similarity of local iso-intensity regions to a planarity
structure based on Hessian analysis.

3.1.1 Graph-Cut framework

The family of graph-cut methods are relatively recent. Pioneered by Greig et al. (1989),
who applied the algorithm to binary image restoration, many authors followed his work
and used graph-cuts in many areas of computer vision, including image restoration,
multi-view reconstruction, texture synthesis, etc. Graph-cut methods were applied to
the problem of image segmentation by Boykov and Jolly (2001). Boykov and Funka-
Lea (2006) give deeper explanation of the presented algorithm and gives an excellent
overview of current graph-cut methods. This section introduces basic ideas of the
graph-cut and describes main features offered by the framework: incorporation of hard
constraints and directed boundary terms.

Basic Overview

The graph-cut framework is an energy-minimization segmentation method based on
the combinatorial graph theory. For the graph-cut, an image (of arbitrary dimension)
is represented as a set of pixels P within a neighborhood system N ⊆

(P
2

)
.

23
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In general, the method requires to define two components of a cost function: the
per-pixel term and the boundary-term. The per-pixel term

Rp : P × {obj , bkg} → R+
0

specifies for each label L ∈ {obj , bkg} and each pixel p ∈ P an individual penalty for
assigning the label L to the pixel p. Normally, Rp(·) encodes how the intensity of the
pixel p fits into a known intensity model of the object and the background (Boykov
and Jolly, 2001). For example, the per-pixel term can be defined as:

Rp(obj ) = − lnP (Ip|obj ),

Rp(bkg) = − lnP (Ip|bkg),
(3.1)

where P (Ip|obj ) denotes probability that the pixel p of intensity Ip belongs to an
object. The two distributions can be calculated either from prior segmentation results
or employing prior information about the object and the background. Typically, the
per-pixel penalty Rp(obj ) (Rp(bkg)) should be low for pixels which fit with an object
(background) model and high otherwise.

The boundary term B({p, q}) : N → R+
0 defines a penalty for classifying adja-

cent pixels p and q with different labels. The boundary term penalizes discontinuities
between adjacent pixels and thus encourages spatial coherence within object and with-
in background. Typically, the penalty is high for ”similar” pixels and low otherwise.
Various similarity measures may be employed to define the boundary term; based
e.g. on local intensity gradient, Laplacian zero-crossing, gradient direction or others
(Mortensen and Barrett, 1998). As Boykov and Funka-Lea (2006) noted, it is often
sufficient to set the boundary penalties from a simple function like

B({p, q}) ∝ exp

(
−(Ip − Iq)2

2σ2

)
1

dist(p, q)
. (3.2)

The function penalizes a lot for discontinuities between pixels of similar intensities, i.e.
when |Ip − Iq| < σ. Conversely, the function encourages boundaries if adjacent pixels
are very different, i.e. |Ip − Iq| > σ.

With the two terms defined, the graph-cut computes a binary labelling A as a global
minimum of an energy function E(A) defined as:

E(A) =
∑
p∈Ω

Rp(Ap) + λ
∑

{p,q}∈N

δ(Ap, Aq)B({p, q}), (3.3)

where Ap ∈ {obj , bkg} is a label assigned to a pixel p in the segmentation A, the
function δ is the Kronecker delta and λ is a parameter defining relative importance of
the per-pixel and the boundary term. The purpose of δ(Ap, Aq) is to restrict disconti-
nuity penalties for cases where pixels p, q are assigned different labels, since it is not
meaningful to penalize for discontinuity if discontinuity is not present.

Hard Constraints

Typically, regional properties of the object of interest in real examples are not distinct
enough and thus the object cannot be segmented from the background without further
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(a) Initialization: A user manual-
ly marks object (red) and back-
ground (blue) seeds.

(b) Segmented 3D model

Figure 3.1: The graph-cut algorithm applied for segmentation of bones from a 3D CT
volume Boykov and Funka-Lea (2006). Note that only one slice (a) was used in the
initialization.

constraining the search space of possible solutions before computing the optimal one
(Boykov and Funka-Lea, 2006). The graph-cut framework provides flexible support for
incorporating prior topological information to segmentations.

Assume that subsets O,B ⊂ P are a priori known to be part of the object and
the background, respectively. The sets O,B can be either determined manually as
user-defined seeds or computed automatically in highly specialized applications such
as organ segmentation from medical volumes. Incorporating this knowledge into a
resulting segmentation means to restrict the search space for all possible segmentations
with the following hard constraints:

∀p ∈ O : Ap = obj ,

∀p ∈ B : Ap = bkg .
(3.4)

Since O ∩ B = ∅, the definition is correct. These hard constraints can be integrated
into the per-pixel term as:

Rp(obj ) =

{
0 for p ∈ O,

K for p ∈ B,
Rp(bkg) =

{
K for p ∈ O,

0 for p ∈ B,

where K represents an infinitely large value. For the purpose of graph-cut segmenta-
tion, the value of K should be at least

K ≥ 1 + max
p∈P

∑
q:{p,q}∈N

B({p, q})

as suggested by Boykov and Funka-Lea (2006). The power of hard constraints is demon-
strated in Figure 3.1, where the graph-cut framework was applied to segment the femur
and the pelvis from a 3D-CT volume.
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Figure 3.2: Typical work-flow of a graph-cut algorithm applied to a simple 3x3 image
(Boykov and Funka-Lea, 2006). Detailed description is given in the text.

Optimal Solution via Minimal Graph Cuts

This section briefs algorithmic details behind the graph-cut segmentation method. For
more details, discuss Boykov and Funka-Lea (2006).

Based on a set of pixels P within a neighboring system N and the components
Rp(·) and B({p, q}), a graph G = (V,E) with weighted edges is constructed as follows:

V = P ∪ {S, T},

E = N
⋃
p∈P

{{p, S}, {p, T}},

where S and T are additional nodes not present in P . The edge costs are defined
according to Table 3.1.

Edge Weight (cost) For

{p, q} λ ·B(p, q) {p, q} ∈ N
{p, S} Rp(bkg) p ∈ N
{p, T} Rp(obj ) p ∈ N

Table 3.1: Edge weights of the graph used in the graph-cut segmentation.

Apart from nodes representing image pixels, the graph contains two additional
nodes: the node S representing an object source terminal and the node T representing
a background sink terminal. The neighborhood system and the boundary term is
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Figure 3.3: Graph-cut segmentation with directed boundary term. User seeds are
depicted as red (object) and blue (background) circles. Compare the results on an
undirected graph (c) with the results on a directed graph (d) (Boykov and Funka-Lea,
2006).

captured in the graph by a set of edges N , also called n-links. The per-pixel term
is encoded in the graph via t-links, which connect each pixel to the sink and the source.

The segmentation boundary optimal with respect to Equation 3.3 can be determined
by finding the minimum cost cut on the graph G (see Boykov and Funka-Lea (2006) for
the technical proof). The cut divides the graph into two components – one connected
to the source and one to the sink. The two components then represent the object and
the background in the result segmentation, respectively (see Figure 3.2).

There are several well-established algorithms, which can be employed to compute
the minimal cut efficiently in low-order polynomial time, e.g. Ford and Fulkerson (1962)
or Goldberg and Tarjan (1988). Recently, an algorithm specialized for minimization of
the energy function 3.3 has been introduced by Boykov and Kolmogorov (2004). As
authors claim, their algorithm performs several times faster than the aforementioned
methods for many cases of input images.

Using Directed Edges

Consider the medical image in Figure 3.3(b): a medium-bright object of interest (liver)
is separated from a very bright bone by a thin layer of dark muscle tissue. Assume that
the goal is to segment the liver. A user manually places object and background seeds
as depicted in Figure 3.3(b) and defines components of the cost function according to
Equation 3.1 and Equation 3.2. The graph-cut results in the segmentation depicted in
Figure 3.3(c).

Visibly, the liver boundary is not precise, since the segmentation sticks to the bright
bone instead of following the true liver boundary. Since the contrast between the bone
and surrounding muscle tissue is very high, it is cheaper (the boundary term is lower) to
lead the boundary along the bone rather than along the liver. To improve precision of
the liver boundary, a user must add more seeds in the initialization step. Alternatively,
the feature of directed edges offered by the graph-cut framework can be exploited to
automatically correct this error:

So far, n-links of the graphG have been considered undirected; the value ofB({p, q})
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represented a penalty of assigning pixels p, q two different labels. However, the graph
can connect each pair of adjacent voxels p, q with two directed edges of weights w(p,q)

and w(q,p), i.e.

E =
⋃

{p,q}∈N

{(p, q), (q, p)}
⋃
p∈P

{{p, S}, {p, T}}.

If an optimal cut separates nodes p, q such that p is connected to the source and q is
connected to the sink, then the cost of the minimum cut includes w(p,q) and ignores
w(q,p). In the context of graph-cut segmentation, the directed boundary term B(p, q)
would represent a penalty of assigning p to the object and label q to the background.
Formally, the directed version of the energy which is minimized by the graph-cut may
be presented as:

E(A) =
∑
p∈Ω

Rp(Ap) + λ
∑

(p,q)∈N ′

B(p, q) · δAp=obj ,Aq=bkg ,

where N ′ contains all ordered pairs (p, q) of neighboring pixels and the value of δx is
one if the condition x is fulfilled and zero otherwise.

To achieve more precise liver boundaries, the directed boundary term may be ex-
ploited to specifically favor transitions from the object to the background in regions
with decreasing intensity, e.g.:

B(p, q) ∝

1 if Ip ≤ Iq,

exp

(
−(Ip − Iq)2

2σ2

)
otherwise.

This definition encourages transitions from the liver to background in areas where liver
boundary goes from bright tissue to darker tissue. Therefore, the result segmentation
(Figure 3.3(d)) does not stick to the bone, where the transition from liver to background
goes from darker tissue to brighter tissue.

3.1.2 Sheetness measure

As detailed in Section 2.1.2, boundaries of cancellous bone in CT images are often weak
and suffers from low-contrast. To enhance the contrast in these regions, behavior of a
local iso-intensity region for each location of the input image may be analyzed. The
filters based on first-order derivatives has been discussed in Section 3.1.2. This section
describes analysis based on second-order derivatives.

Consider a 3D image I : Ω→ R, a voxel of interest v and the Hessian matrix Hσ(v)
defined as

Hσ(v) =

Ixx Ixy IxzIxy Iyy Iyz
Ixz Iyz Izz

 ,

where Iab is a second-order derivative at v computed at scale σ along axes a and b.
The eigenvectors and eigenvalues of the locally computed Hessian Hσ(v) correspond to
the local principal directions and the principal region curvatures, respectively. Hence,
according to the eigenvalues |λ1| ≤ |λ2| ≤ |λ3|, local structures can be classified into
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(a) Planar, |λ3| � |λ1|, |λ2| (b) Tubular, |λ3|, |λ2| �
|λ1|

(c) Isotropic,
|λ1| ≈ |λ2| ≈
|λ3|

Figure 3.4: Illustration of the local structure based on eigenvalues |λ1| ≤ |λ2| ≤ |λ3| of
the Hessian matrix.

Eigenvalues Local structure Example

|λ1| ≈ |λ2| ≈ 0, |λ3| >> 0 Sheet-like bone,skin
|λ1| ≈ 0, |λ2| ≈ |λ3| >> 0 Tube-like vessels, nerves
|λ1| ≈ |λ2| ≈ |λ3| >> 0 Blob-like nodule
|λ1| ≈ |λ2| ≈ |λ3| ≈ 0 Noise-like background, noise

Table 3.2: Local structure classification based on eigenvalue decomposition of the Hes-
sian matrix.

sheet-like, tube-like and blob-like shape categories (Lorenz et al., 1997; Sato et al.,
1998), as described in Table 3.2 and illustrated in Figure 3.4

Inspired by Westin et al. (1997) and Frangi et al. (1998), Descoteaux et al. (2005)
incorporated the eigenvalues of the Hessian into a sheetness score S(v), which for each
voxel v quantifies similarity of a local iso-area to a planar structure. The score is
defined as:

Sσ(v) = exp

{
−R

2
sheet

α2

}
exp

{
−R

2
tube

β2

}(
1− exp

{
−R

2
noise

γ2

})
, (3.5)

where α, β, γ are constant parameters and the terms Rsheet, Rtube and Rnoise are defined
as

Rsheet =
|λ2|
|λ3|

,

Rtube =
|λ1|
|λ2||λ3|

,

Rnoise =
|λ1|+ |λ2|+ |λ3|

T
,

with T denoting the average trace of the Hessian at each image voxel. Each term in
Equation 3.5 has a specific function.
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(a) Axial slice of an original CT image (b) Result of the sheetness filter

Figure 3.5: Parasinal bone structures enhanced with a multi-scale sheetness filter,
proposed by Descoteaux et al. (2005).

� exp

{
−R

2
sheet

α2

}
is a sheet enhancement term. The maximum value occurs for

sheet-like structures and the minimum for noise.

� exp

{
−R

2
tube

β2

}
is a tube enhancement term. Similarly, the term reaches the

maximum value for tube-like structures and diminishes for noise.

�

(
1− exp

{
−R

2
noise

γ2

})
is a blob suppression term. The value is maximal for

inhomogeneous regions and minimal for blob-like areas.

To increase the robustness of the sheetness score, Descoteaux et al. (2005) proposed
to compute the Hessian matrix at different scales Σ and retaining, for each voxel, the
maximum sheetness response:

S(v) = max
σ∈Σ

Sσ(v).

See Figure 3.5 for an example of a multi-scale sheetness filter applied to enhance parasi-
nal bone structures.

Recently, similar versions of the sheetness filter have been i included into various
segmentation pipelines targeting the CT modality. Harders et al. (2007) used the
region growing after applying the sheetness filter. Fürnstahl et al. (2008) combined
the sheetness score with intensity maps to initialize a slice-wise 2D graph-cut method.
Fornaro et al. (2010) enhanced the filter to increase the contrast of true positives
compared to false positives in the resultant image.

3.2 Preprocessing - Enhancement of bone bound-

aries

In the preprocessing step, the contrast at bone boundaries is enhanced. First, the input
image I (Figure 3.6a) is enhanced by the unsharp masking (Figure 3.6b), defined as

IU = I + k(I − I ? Gs),
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(a) Axial slice of an acetab-
ulofemoral joint

(b) Unsharp masking (c) Sheetness filter

Figure 3.6: Preprocessing step: Two filters are successively applied to the original
image (a) to enhance contrast at the bone boundaries: unsharp masking (b) and the
sheetness measure (c).

where ? denotes convolution, Gs a Gaussian kernel with variance s2 and k a scaling
constant.

Subsequently, the image is processed with a bone boundary enhancement filter. The
filter is a modified version of the sheetness score, described in Section 3.1.2: The sign
of the largest eigenvalue has been incorporated into the sheetness measure to further
increase the contrast at bone boundaries:

S ′
σ(v) = − sgn(λ3)Sσ(v). (3.6)

Moreover, the multi-scale implementation has been altered to retain the response which
corresponds to the highest absolute value:

S(v) = argmax
S′
σ(v):σ∈Σ

|S ′
σ(v)|.

The output of these filters (Figure 3.6c), denoted by S in the following, greatly enhances
contrast at the bone boundaries. Note that the filter is especially efficient in narrow
inter-bone regions, where it robustly separates two closely adjacent bones. In the
following sections, the novel sheetness score is utilized for definition of the per-pixel
and the boundary term used in the graph-cut segmentation.

3.3 Graph-cut bone segmentation

To segment all bone tissues from an input CT volume, the graph-cut framework utilizing
the preprocessed volume (Section 3.2) is employed. The definition of the per-pixel term
is given in Section 3.3.1. Section 3.3.2 covers definition of the boundary term. Since
CT volumes are regular 3D raster grids, the graph-cut uses standard 6-neighborhood
system to capture adjacency information.

3.3.1 Per-Pixel term

As detailed in Section 3.1.1, the per-pixel term Rp(Ap) reflects a penalty for assigning
the voxel p the label Ap. Therefore, the cost should be
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(a) Background exclusion region
E¬bkg

(b) Bone exclusion region E¬bone

Figure 3.7: Bone and background exclusion regions used for the graph-cut initialization.

� low if p belongs to a bone and Ap = bone,

� low if p belongs to background and Ap = bkg ,

� otherwise, the cost should be high.

Weak bone boundaries, narrow inter-bone space and low intensities in the trabecular
bone make image intensity alone a relatively poor feature for discriminating bone from
background. Nevertheless, exclusion regions E¬bkg and E¬bone (Figure 3.7) can safely
be estimated as:

E¬bkg = {x ∈ Ω|I(x) ≥ 400 HU ∧ S(x) > 0},
E¬bone = lcc({x ∈ Ω|I(x) < −50 HU}),

where lcc denotes the largest connected component of the binary argument. The term
I(x) ≥ 400 HU selects high-intensity voxels present mostly in cortical bone while
S(x) > 0 discards soft-tissue voxels in narrow inter-bone areas. The term {x|I(x) <
−50 HU} retains mostly fat and air voxels of low intensity values, and the lcc operation
discards low-intensity voxels encountered in the bone interior.

Based on the computed exclusion regions, the per-pixel term of the graph-cut cost
function (Equation 3.3) is defined as

Rp(Ap) ∝


1 if Ap = bone and p ∈ E¬bone,

1 if Ap = bkg and p ∈ E¬bkg,

0 otherwise.

This initial classification can be considered as the initialization of the graph-cut seg-
mentation. Since the value of the per-pixel term is 0 for all voxels outside E¬bkg∩E¬bone,
it is the boundary term that arbitrates on the classification of these voxels.

3.3.2 Boundary term

To encourage spatial coherency and to automatically achieve more precise bone bound-
aries, the proposed graph-cut segmentation exploits the directed version of the bound-
ary term. As detailed in Section 3.1.1, the value of B(p, q) represents a penalty for
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(a) Input: all bone tissues cor-
rectly segmented

(b) Individual bones identified
using morphological erosion.

(c) Final results after applying a
simplified graph-cut.

Figure 3.8: Postprocessing step: Separation of adjacent bones

assigning the voxel p to bone and the voxel q to the background. Employing the mod-
ified sheetness measure S, introduced in Section 3.2, the boundary term is defined
as

B(p, q) ∝

exp

{
−|S(p)− S(q)|

σs

}
for S(p) ≥ S(q),

1 otherwise,

where σs is a constant scaling parameter. This definition encourages boundaries in
regions with abrupt variations of the sheetness measure. Moreover, by exploiting di-
rected edges of the underlying combinatorial graph, transition from bone to background
is encouraged in regions with decreasing sheetness score.

3.4 Postprocessing - Separation of adjacent bones

Applying the graph-cut method described in section 3.3 results in binary images sim-
ilar to Figure 3.8a. The method correctly discriminates voxels of bone tissues from
background. However, in many cases, the method cannot properly separate two closely
adjacent bones due to narrow low-contrast inter-bone regions. Albeit the sheetness
filter greatly enhances contrast in the joint channels, adjacent bones often remains
connected with several voxels in the output segmentation. This is a typical case for
the acetabulofemoral joint at the upper femur extremity and for the knee-joint at the
lower extremity, where the femur appears to be in direct contact with adjacent bones.
The goal of the postprocessing step is to automatically determine if such a bottleneck
exists and possibly identify individual bones within a segmented component.

To determine existence of a bottleneck, a morphological erosion (Haralick et al.,
1987) with a spherical element of radius R is applied to the binary image (Fig. 3.8b).
If the erosion divides a component C ⊂ Ω into two subcomponents D,E ⊂ C, a
bottleneck has to be present in C . Otherwise, the component C correctly represents
a bone or the error is too large to be detected.

After the bottleneck is detected, the next step is to find disjoint parts D′, E ′ ⊂ C
such that D′ ∪ E ′ = C,D ⊂ D′, E ⊂ E ′ and the number of voxels on the boundary
between both sets is minimal. To accurately find D′, E ′, a simplified graph-cut is
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employed:
Instead of Ω, only the part C of a volume is used as a domain for the simpli-

fied graph-cut, with a standard 6-neighborhood system. The hard-constraints D ⊂
D′, E ⊂ E ′ are imposed on the classification via the per-pixel term, as described in
subsection 3.1.1:

∀p ∈ C : Rp(Ap) ∝


∞ if Ap = ”D” and p ∈ E,

∞ if Ap = ”E” and p ∈ D,

0 otherwise.

To encourage minimal boundary between D′ and E ′, the symmetric boundary term

B({p, q}) = 1

is used. This procedure can be employed to either segment all bones in the image by
assigning them different labels or to extract only one of them (Fig. 3.8c).



Chapter 4

Experiments

To visually and quantitatively evaluate performance, the proposed method was tested
and compared to other three fully-automatic bone segmentation approaches in a large-
scale experiment conducted on a set of 197 femur samples. Section 4.1 describes the
sample set in more detail, introduces the quantitative measures recorded for each sam-
ple, presents the three alternative approaches and lists concrete parameter settings for
each method. Section 4.2 expands on the results and discusses impact of each specific
aspect of the proposed method to the challenges coupled with the femur segmentation.

4.1 Experiment design

The method was evaluated on a dataset comprising 197 CT volumes. The scans were
cropped around the femur, with voxel intensities expressed in Hounsfield units. The
volume spacing of the scans ranged from 0.6 to 1.17mm in-plane and from 0.8 to
1.25mm inter-slice. The slice resolution ranged from 83x83 to 260x289 pixels and the
number of slices varied from 314 to 658. For all datasets, manual segmentation by a
medical expert was available and served as a reference for quantitative evaluations.

All volumes were processed automatically in a batch mode with a pilot application
(Appendix A) which implements the proposed method. The output of the application
is a multi-label volume where voxels of zero value correspond to the background and
voxels of positive value represent bone tissue. Individual bones were numbered in
ascending order according to their size from the largest bone to the smallest. It was
assumed that the largest bone (of label one) corresponds to the femur.

For each sample, the following measures were recorded:

� True Positive Rate

TPR =
TP

TP + FN
,

� False Positive Rate

FPR =
FP

FP + TN
,

� Hausdorff distance (HD) between the estimated (X) and the reference (Y) surface:

dH(X, Y ) = max{ sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y) }, (4.1)

35
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Figure 4.1: Components of the calculation of the Hausdorff distance (Equation 4.1)
between the green surface X and the blue surface Y (wikipedia.org).

� the processing time and

� the memory consumption.

The terms TP and TN denote number of correctly classified bone and background
voxels, respectively. Similarly, terms FP and FN denote number of misclassified bone
and background voxels, respectively. Since the term TP+FN represents true size of the
bone according to the ground truth, the TPR ratio measures size of correctly segmented
bone with respect to the size of the whole bone. Conversely, the FPR rate measures
the ratio of number of misclassified bone voxels to true background size. The Hausdorff
distance (Figure 4.1) represents the maximum distance error between the segmented
and the reference surface. Generally, a good segmentation algorithm achieves TPR
close to one (bone interior segmented) and FPR and HD close to zero (no leakages to
the background).

The proposed method was compared to other three state-of-the-art existing fully-
automatic 3D-based bone segmentation approaches, none of which employs any prior
shape knowledge:

Gradient-based Geometric Active Contour (GeomAC) The geometric active con-
tour method is detailed in subsection 2.2.6. The method has been implemented
with the following settings: the initial level-set initialized as the signed distance
of the binary image E¬bkg, propagation parameter 5.0, curvature parameter 1.0
and max. number of iterations 400.

Zhang iterative adaptive thresholding (ZIAT) The method proposed by Zhang
et al. (2010) first performs binary thresholding with a manually chosen global
threshold and then gradually increases quality of the segmentation by local iter-
ative steps. The method has been implemented with the window size of 15x15x3
pixels and the initial threshold value of 70 HU.

Intensity-based graph-cut method (IBGC) For IBGC, the graph-cut algorithm



CHAPTER 4. EXPERIMENTS 37

was used with the following terms:

Rp(bone) =

{
1 for p ∈ E¬bone,

0 otherwise,

Rp(bkg) =

{
1 for I(p) > 500 HU,

0 otherwise,

B({p, q}) = exp

{
|I(p)− I(q)|

100

}
.

Based on the image gradient only, it is expected that the IBGC method will
produce leakages due to weak and diffused bone boundaries and will not be able
to separate bones which appear to be in direct contact.

Parameters of all methods were chosen experimentally and represent settings which,
according to visual evaluation, produce the most satisfying segmentation results. The
parameters for the proposed method were also manually selected (see Table 4.1) and
kept constant for all datasets.

Parameter Description Value

k Scaling constant of the unsharp masking 10
s2 Variance of the Gaussian kernel in the unsharp masking 1
α Scaling parameter of the sheetness measure 0.5
β Scaling parameter of the sheetness measure 0.5
γ Scaling parameter of the sheetness measure 0.25
Σ Scales for the multi-scale sheetness measure {0.75, 1.0}
λ Relative importance of the per-pixel and the boundary term 5
σs Scaling parameter of the boundary term 0.2
R Radius of the spherical element used in the morphologic erosion 3

Table 4.1: Parameters of the pilot graph-cut application.
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4.2 Results

Based on visual evaluation of 197 results, it can be concluded that the method provides
satisfactory segmentation results in most of the cases (see Figure 4.2) and robustly
handles segmentation challenges coupled with the CT imaging:

The problem of large intensity difference between the cortical layer and the bone
interior in the shaft area is eliminated due the definition of the exclusion region E¬bone
employed in the per-pixel term, especially due to the operation of largest connected
component. Via the definition of E¬bkg, the per-pixel term also alleviates the issue
of high intensity variance within the vascular cancellous tissues. The segmentation in
these regions is robustly handled also due the bias of the graph-cut towards smaller
object boundaries. Moreover, the boundary term based on the sheetness score visi-
bly handles the challenge of weak and diffused bone boundaries. Also, the directed
boundary term increases precision of bone boundaries.

In general, the method segmented the femur correctly because the graph-cut is ini-
tialized with an accurate estimation of true bone tissues and true background tissues
and the framework employs the sheetness score to precisely delineate the bone bound-
ary. Moreover, the sheetness score in the definition of E¬bkg minimizes the number
of false positives in the narrow inter-bone regions. With this support, the postpro-
cessing step is able to automatically identify individual bones and separate the femur
accordingly.

However, the method did not produce satisfactory results in several cases (see Fig-
ure 4.3), where major parts of bone boundaries were missing or two adjacent bones
seems to touch each other in larger areas. In particular, this is a case for elderly pa-
tients, where the inter-bone channels in the acetabulofemoral joint may shrunk. Due
to the volumetric effect present in CT images, the acetabulum part of the pelvis and
the femur appear to be in touch, which makes femur segmentation without any shape
prior knowledge hardly feasible.

The comparative results (Figure 4.4 and Figure 4.5) show that all tested approaches,
except ZIAT, are able to correctly discriminate the true femur voxels with satisfactory
precision (TPR > 0.85). Due to the low contrast in narrow inter-bone channels and
weak bone boundaries, leakage (GeomAC, IBGC, ZIAT) and contour discontinuity
(ZIAT) always occurred in segmentations from these three methods. None of them
could separate the femur accurately (HD > 5cm), nor segment the challenging weak
bone contours (visual evaluation).

Our approach is clearly superior in detecting bone boundaries in narrow inter-
bone regions and in suppressing leakage into adjacent bones. The proposed method
correctly segmented and separated the femur from adjacent bones (TPR > 0.85, FPR <
0.001, HD < 8mm) in 81% of the cases, with average HD of 5.4mm within this set.
The postprocessing procedure (Section 3.4) separated the femur from at least one
neighboring bone in 57% of cases.

In comparison with ZIAT and GeomAC, the graph-cut-based approaches have also
proven to be much faster, requiring only a few minutes per datasets. Conversely, the
memory requirements of the graph-cut library are much higher.
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(a)

(b)

(c) (d)

(e) (f)

Figure 4.2: Satisfactory results produced with the proposed method. The method
robustly handles high density variability of cancellous bone (a) as well as different in-
tensity distributions between the shaft and joint regions (b). Due to the bone boundary
enhancement filter, the bone surface is segmented well without any significant discon-
tinuity (d,e). The postprocessing step is able to separate adjacent bones which appear
to be in direct contact (c,e,f).
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(a) (b)

Figure 4.3: Unsatisfactory results produced by the proposed method.

(a) Original image (b) Reference (c) GeomAC

(d) ZIAT (e) IBGC (f) Our approach

Figure 4.4: Segmentation results of four tested methods illustrated on axial slice of the
acetabulofemoral joint.
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Figure 4.5: Quantitative comparison of the proposed method with three other fully-automatic approaches based on segmentation
of 197 samples.
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Conclusion

Accurate and automatic segmentation techniques that do not require any explicit prior
model have been of high interest in the biomedical imaging community. Despite several
years of active research, bone segmentation from 3D Computed Tomography (CT) scans
remains in several aspects an open problem, due to inherent challenges present in the
CT modality.

The first contribution of this thesis is a summary of established methods for seg-
mentation of bones from medical images. The review details the low-level approaches,
incl. thresholding, region growing, watershed transform and local structure analyses,
as well as high-level, more sophisticated, algorithms such as snakes, geometric active
contours, statistical shape models and the graph-cut framework. For each method, the
basic idea is explained and the applicability to bone segmentation is discussed. The
review also contains references to further extensions and summaries, which focus on
specific families of segmentation algorithms.

However, the main contribution is the proposal of a novel method for automatic
femur segmentation from CT volumes. The work introduces a bone boundary enhance-
ment filter based on the second-order analysis of local iso-intensity regions. Utilizing an
improved version of the sheetness score, this filter greatly increases contrast at the bone
boundary and effectively attacks the problem of narrow inter-bone spacing. Based on
the modern graph-cut framework, the method has been optimized and designed to seg-
ment all bone tissues within the input CT volume without any shape prior knowledge.
Also, the method features a postprocessing step automatically distinguishing adjacent
bones which appear to be in direct contact in a CT scan.

The third contribution of the study is an extensive evaluation of the presented
method. To compare performance, three other fully-automatic state-of-the-art meth-
ods were chosen and implemented. The four approaches were tested on a set of 197
femur CT volumes and compared both visually and quantitatively. Results show that
out of the four methods, the proposed algorithm achieved most accurate results and
segmented the femur correctly in 81% of the cases. Other methods would require
manual postprocessing to achieve comparable results.

In summary, the goals of this study have been fulfilled: the thesis proposes a method
which robustly segment the femur from a 3D-CT volumes without any shape prior
knowledge and human interaction. Results of this study were also accepted and pre-
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Figure 5.1: 3D models generated from an automatically segmented femur, radius and
ulna, mandible and carpal bones (from left to right).

sented on The IEEE International Symposium on Biomedical Imaging, April 2011, held
in Chicago, USA. The corresponding publication can be found in Appendix A.

By design, the proposed method does not require any explicit shape prior knowl-
edge. Therefore, it is potentially suitable for segmenting other bones from CT images.
Indeed, preliminary experiments on forearms, (toothless) mandibles and wrists showed
promising results (Figure 5.1) without any parameter tuning.

As a consequence, the proposed method is suitable for bootstrapping the construc-
tion of bone statistical shape models. These models integrate the variability of shape
and appearance within a population and have been of particular interest in the past
decades. However, construction of such models requires a large set of pre-segmented
samples. This remains a serious bottleneck due to the lack of accurate and fully au-
tomatic segmentation methods. Manual processing, which is often tedious, remains
a common practice. Therefore, algorithms providing an automated mechanism for
acquisition of initial samples are of high interest.

Future work aims at embedding the proposed automatic segmentation tool into a
statistical model generation approach, by iteratively improving the model and refining
the segmentations. In this manner, the method can potentially segment the bone of
interest from more challenging cases.

Moreover, demand for specialized max-flow algorithms for massive large-scale N-D
grids grows rapidly in the computer vision community. Several recent publications
already target the problem of high-memory graph-cut requirements (e.g. Delong and
Boykov (2008)). Replacement of the Boykov-Kolmogorov graph-cut library with a more
specialized approach can substantially improve performance of the proposed segmen-
tation method and is therefore also planned as future work.



Appendix A

Attached CD

The CD attached to this thesis contains:

thesis.pdf Document containing electronic version of this thesis.

ISBI11.pdf Publication regarding the proposed method, accepted to
IEEE International Symposium of Biomedical Imaging: From
Nano to Macro, April 2011, Chicago, USA

src/ Folder containing source files of the four tested segmentation
methods.

sample-volumes/ Folder containing several sample CT volumes with segmented
results.

All applications were developed in C++ using the ITK library (www.itk.org) for general
image processing. Compile the programs using the CMake utility (www.cmake.org).
The target platform is Linux x86. Due to legal restrictions, the full set of 197 CT femur
samples could not be included in the CD. Sample CT volumes can be viewed using e.g.
the free application 3D Slicer (www.slicer.org).
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