
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Martin Majlǐs

Large Multilingual Corpus

Institute of Formal and Applied Linguistics

Supervisor: doc. Ing. Zdeněk Žabokrtský, Ph.D.

Study programme: Informatics

Specialization: Mathematical Linguistics

Prague 2011

I would like to thank my supervisor doc. Ing. Zdeněk Žabokrtský, Ph.D. for his

advice and my parents for their support.

I declare that I carried out this master thesis independently, and only with the

cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act

No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that

the Charles University in Prague has the right to conclude a license agreement

on the use of this work as a school work pursuant to Section 60 paragraph 1 of

the Copyright Act.

In Prague, August 5, 2011

Název práce: Velký mnohojazyčný korpus

Autor: Martin Majlǐs

Katedra: Ústav formálńı a aplikované lingvistiky

Vedoućı diplomové práce: doc. Ing. Zdeněk Žabokrtský Ph.D.

Abstrakt: V této diplomové práci je popsán webový korpus W2C. Tento korpus

obsahuje 97 jazyku a pro každý z nich alespoň 10 milion̊u slov. Celková velikost je

10,5 miliardy slov. Aby bylo možné takovýto korpus vytvořit, bylo nutné vyřešit

celou řadu d́ılč́ıch problémů. Na začátku musel být sestaven korpus z Wikipedie

se 122 jazyky, na kterém byl natrénován rozpoznávač jazyk̊u. Pro stahováńı

webových stránek byl implementován distribuovaný systém, který využ́ıval 35

poč́ıtač̊u. Ze stažených dat byly odstraněny duplicity. Vytvořené korpusy byly

vzájemně porovnány pomoćı r̊uzných statistik, jako jsou pr̊uměrná délky slov a

vět, podmı́něná entropie a podmı́něná perplexita.

Kĺıčová slova: jazykový korpus, distribuované zpracováńı

Title: Large Multilingual Corpus

Author: Martin Majlǐs

Department: Institute of Formal and Applied Linguistics

Supervisor: doc. Ing. Zdeněk Žabokrtský Ph.D.

Abstract:

This thesis introduces the W2C Corpus which contains 97 languages with more

than 10 million words for each of these languages, with the total size 10.5 billion

words. The corpus was built by crawling the Internet. This work describes the

methods and tools used for its construction. The complete process consisted

of building an initial corpus from Wikipedia, developing a language recognizer

for 122 languages, implementing a distributed system for crawling and parsing

webpages and finally, the reduction of duplicities. A comparative analysis of the

texts of Wikipedia and the Internet is provided at the end of this thesis. The

analysis is based on basic statistics such as average word and sentence length,

conditional entropy and perplexity.

Keywords: language corpus, distributed processing

Contents

1 Introduction 3

1.1 Problem Definition . 3

1.2 Motivation . 4

1.3 Thesis Organization . 4

2 Literature Review 6

2.1 Existing Languages . 6

2.2 Language Resources . 6

2.3 Multilingual Web Corpora . 12

2.4 Word Seeds . 18

2.5 URL Seeds . 20

2.6 Crawling . 21

2.7 Language Recognition . 22

2.8 Corpus Storing and Distribution 26

2.9 Corpus Quality Analysis . 27

2.10 Internet Size . 27

3 Methods 29

3.1 Available Resources . 29

3.2 General Principles . 31

3.3 Metadata . 32

3.4 Database . 33

3.5 Wiki Corpus . 35

3.6 Language Recognition . 38

1

CONTENTS CONTENTS

3.7 URL Seeds . 42

3.8 W2C Builder . 43

3.9 Distributed Corpus Building . 51

3.10 Duplicity Detection . 53

3.11 W2C Corpus . 54

3.12 Corpus Distribution . 55

3.13 Comparing Wiki vs Web . 56

4 Results 57

4.1 Wiki Corpus . 57

4.2 Language Recognition . 57

4.3 W2C Corpus . 62

4.4 Comparing Wiki vs Web . 63

4.5 Internet Size . 69

5 Conclusions 72

A DVD Content 74

B List of Languages 76

C Wiki vs Web 80

2

1. Introduction

As statistical approaches become the dominant paradigm in natural language

processing, there is an increasing demand for data. It is known that simple

models and a lot of data outclass sophisticated models based on less data. The

web contains huge amounts of linguistics data for many languages. The web has

many undeniable advantages: (a) size — it is the largest text collection containing

billions of documents and its size is exponentially growing, (b) range — texts are

available in many languages, styles and domains, (c) availability — most of the

documents are available in machine-readable form, so no scanning or rewriting is

necessary.

One of the key issues for computational linguists is easy access to such data.

These data are publicly available on the Internet, but already collected corpora

are available only for the major word languages, but not for most of the other

languages.

Therefore, my aim is to collect, with minimal or no human intervention, at least

ten millions of words for as many languages as possible.

1.1 Problem Definition

The goal of this thesis is to build multilingual corpus of texts available on the

Internet. This corpus will consist of at least 10 million words for as many lan-

guages as possible. The collected material will be quantitative, and qualitative,

analysed and conclusions about different languages will be made.

The project consists of:� A study of existing multilingual resources and approaches used to construct

them.� A review of tools and methods used for solving particular tasks such as

building initial corpora, crawling, language recognition and duplicity detec-

tion.� A design for solving these particular tasks as well as the main tasks with

respect to amount of processed data.

3

1.2. MOTIVATION CHAPTER 1. INTRODUCTION� An implementation of tools and processes capable of taking benefits of

distributed environment.� A quantitative and qualitative analyses of the collected material.� Conclusions about used methods with evaluation of their performances for

different languages.

1.2 Motivation

There are many publicly available projects that are trying to collect multilingual

textual resources. Some of them cover many of languages but contain either

very few documents or these documents are not in computer accessible form, so

they cannot be easily used in computational linguistics. Other projects contain

more data, but are available in very few languages. Therefore, it will be useful

to construct corpus, that will overcome these disadvantages. When this data

becomes available, it will be possible to use it for comparative analysis of related

languages, building language models for various applications such as machine

translation, speech recognition, spell checking, etc. For achieving the main goal,

many subtasks has to be solved, such as recognizing languages or downloading

millions of web pages. When all this data is collected, it will be possible to use

it for further improvements.

Apart from these objective motivations, there are also my personal motivations.

Working on this project gives me a chance to get insight, knowledge and hands-on

experience on processing massive amounts of data.

1.3 Thesis Organization

The work is divided into five chapters, beginning with the introductory Chapter

1 containing problem definition and motivation. Chapter 2 gives an overview of

existing methods and techniques. It briefly introduces existing multilingual re-

sources and multilingual corpora as well as methods used for their construction.

It also presents methods for solving particular steps. Chaprter 3 presents require-

ments for the complete system and available computational resources. It also in-

troduces implemented tools and methods how to use them effectively. Chapter 4

shows achieved results in language recognition and size of constructed corpus. A

quantitative and qualitative analyses of the corpus is included. Chapter 5 dis-

4

1.3. THESIS ORGANIZATION CHAPTER 1. INTRODUCTION

cusses the results and areas where the methods and implementation could be

improved. It also suggests goals for the for future work.

Four appendices are included: Appendix A describes the content of the DVD.

Appendix B contains lists of languages covered by the collected corpus with

their ISO-639-3 codes and. Appendix C presents differences between the Wiki

Corpus and the W2C Corpus.

5

2. Literature Review

This chapter reviews existing tools, methods and approaches. It opens by pre-

senting statistics about existing languages, followed by an introduction of exist-

ing multilingual projects and multilingual web corpora. The end of this chapter

contains an overview of methods used for crawling, text extraction, language

recognition and corpus storing and distribution.

2.1 Existing Languages

There are 6,909 known living languages according to the Ethnologue databse 1,

but only about 390 of them are used by more than 1 million of native speakers2,

while 172 of them have more than 3 million speakers.

Detailed distribution of languages and speakers is showed in Table 2.1 and Fig-

ure 2.1. These numbers must be treated with caution, because they are slightly

out-of-date. Total population according to this table is 6 billion but it was true

in 19993.

According to Wikipedia, there are 116 official languages4.

2.2 Language Resources

There are many projects aim to collect materials in as many languages as possible,

because there are predictions, that fifty percent of the world’s languages will

disappear in the next century5.

Following projects are reviewed:� The Rosetta Project (2.2.1)

1http://www.ethnologue.com/web.asp
2http://www.ethnologue.com/ethno_docs/distribution.asp?by=size
3http://www.census.gov/population/international/data/idb/

worldpopgraph.php
4http://en.wikipedia.org/wiki/List_of_official_languages
5http://www.unesco.org/new/en/culture/themes/cultural-diversity/

languages-and-multilingualism/endangered-languages/

6

2.2. LANGUAGE RESOURCES CHAPTER 2. LITERATURE REVIEW

Population range Living languages Number of speakers

Count Percent Cumulative Count Percent Cumulative

100,000,000 to infinity 8 0.1 0.1% 2,308,548,848 38.73721 38.73721%

10,000,000 to 99,999,999 77 1.1 1.2% 2,346,900,757 39.38076 78.11797%

1,000,000 to 9,999,999 304 4.4 5.6% 951,916,458 15.97306 94.09103%

100,000 to 999,999 895 13.0 18.6% 283,116,716 4.75067 98.84170%

10,000 to 99,999 1,824 26.4 45.0% 60,780,797 1.01990 99.86160%

1,000 to 9,999 2,014 29.2 74.1% 7,773,810 0.13044 99.99204%

100 to 999 1,038 15.0 89.2% 461,250 0.00774 99.99978%

10 to 99 339 4.9 94.1% 12,560 0.00021 99.99999%

1 to 9 133 1.9 96.0% 521 0.00001 100.00000%

Unknown 277 4.0 100.0%

Total 6,909 100.0 5,959,511,717 100.00000

Table 2.1: Distribution of languages by number of first-language speakers

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 0 1000 2000 3000 4000 5000 6000 7000

Languages

Speakers

(a) All Languages

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 50 100 150 200 250 300

Languages

Speakers

(b) Top 300 Languages

Figure 2.1: Distribution of languages by number of first-language speakers

7

2.2. LANGUAGE RESOURCES CHAPTER 2. LITERATURE REVIEW� The Open Language Archives Community (2.2.2)� The Wikipedia (2.2.3)� The Universal Declaration of Human Rights (2.2.4)� The Project Gutenberg (2.2.5)� The Wikisource (2.2.6)� The Watchtower (2.2.7)� Urbi et Orbi (2.2.8)� Open-source Software (2.2.9)

2.2.1 Rosetta Project

The Rosetta6 Project is a global collaboration of language specialists and na-

tive speakers working to build a publicly accessible digital library of material on

all known human languages. The collection currently contains nearly 100,000

pages of material spanning over 2,500 languages, as well as a growing multimedia

collection of modern and historical language recordings.

This material is publicly available on the Internet Archive website7. Most of the

languages are covered very briefly. For example for Yami8 with three thousand

speakers there is only a dictionary9. For Czech10 with twelve million speakers

there is only a dictionary and the Universal Declaration of Human Rights11.

The 300 Languages Project12 is Rosetta’s sub-project with a specfic goal of com-

piling a universal collection of 300 most widely spoken languages. This collection

will contain parallel texts and recordings.

2.2.2 Open Language Archives Community

The Open Language Archives Community13 (OLAC) is an international partner-

ship of institutions and individuals who are creating a worldwide virtual library

6http://rosettaproject.org/ and http://www.archive.org/details/

rosettaproject
7http://www.archive.org/browse.php?field=subject&mediatype=

texts&collection=rosettaproject
8http://www.ethnologue.com/show_language.asp?code=tao
9http://www.archive.org/details/rosettaproject_tao_swadesh-1

10http://www.ethnologue.com/show_language.asp?code=ces
11http://www.archive.org/search.php?query=language\%3A\%22ces\%22
12http://rosettaproject.org/projects/300-languages/
13http://www.language-archives.org/

8

2.2. LANGUAGE RESOURCES CHAPTER 2. LITERATURE REVIEW

Population range Languages Coverage Online Resources

Count Percent Items Count Percent Items

100,000,000 to 999,999,999 8 8 100% 7745 8 100% 1007

10,000,000 to 99,999,999 77 75 97% 4367 72 94% 2152

1,000,000 to 9,999,999 304 277 91% 4887 246 81% 3006

100,000 to 999,999 895 716 80% 8814 600 67% 4388

10,000 to 99,999 1824 1181 65% 15208 951 52% 5581

1,000 to 9,999 2014 1244 62% 20566 1097 54% 8190

100 to 999 1038 634 61% 11239 560 54% 3799

10 to 99 339 235 69% 6427 202 60% 1075

1 to 9 133 90 68% 1067 75 56% 519

Unknown 277 115 42% 1731 79 29% 394

All living languages 6909 4575 66% 82051 3890 56% 30111

Extinct languages 520 242 47% 2328 178 34% 778

Table 2.2: OLAC - language coverage

Articles Count Cumulative

1,000,000 to 9,999,999 3 3

100,000 to 999,999 34 37

10,000 to 99,999 64 101

1,000 to 9,999 107 208

100 to 999 60 268

10 to 99 7 275

1 to 9 5 280

Table 2.3: Wikipedia - article counts

of language resources. Their language coverage is presented in Table 2.2.

2.2.3 Wikipedia

Wikipedia14 is a free, web-based, collaborative, multilingual encyclopedia project.

It contains 19 million articles in 281 languages15. Article counts are presented in

Table 2.3.

14http://www.wikipedia.org/
15http://meta.wikimedia.org/wiki/List_of_Wikipedias

9

2.2. LANGUAGE RESOURCES CHAPTER 2. LITERATURE REVIEW

2.2.4 Universal Declaration of Human Rights

The Universal Declaration of Human Rights16 (UDHR) is a milestone document

in the history of human rights. At present, there are 379 different translations of

UDHR, available in HTML and/or PDF format. This project sets the Guinness

World Record for Most Translated Document17.

There is a related project UDHR in Unicode18 which aims to convert all doc-

uments into Unicode, although only four of them have been completed and re-

viewed19.

2.2.5 Project Gutenberg

The Project Gutenberg20 is a volunteer effort to digitize and archive cultural

works. It contains over 34 thousands documents in 60 languages. Most of the

items are the full texts of public domain books.

2.2.6 Wikisource

Wikisource21 is an online library of free content textual sources, operated by the

Wikimedia Foundation. Its aims are to harbour all forms of free text, in many

languages. Wikisource contains more than 1M articles in 62 languages22.

2.2.7 Watchtower

The Watchtower23 is an illustrated religious magazine, published semi-monthly by

Jehovah’s Witnesses. It is written in 418 languages (366 without sign languages).

Texts are available as web pages or PDF files. All files have a very similar

structure, so it may serve as a very good source of parallel texts.

16http://www.ohchr.org/EN/UDHR/Pages/Introduction.aspx
17http://www.ohchr.org/EN/UDHR/Pages/WorldRecord.aspx
18http://unicode.org/udhr/
19http://unicode.org/udhr/index_by_stage.html
20http://www.gutenberg.org/
21http://www.wikisource.org/
22http://meta.wikimedia.org/wiki/Wikisource\#List_of_Wikisources
23http://watchtower.org/

10

2.2. LANGUAGE RESOURCES CHAPTER 2. LITERATURE REVIEW

2.2.8 Urbi et Orbi

Urbi et Orbi24 is the blessing which takes place at each Easter and Christmas

celebration in Rome from the central loggia of St. Peter’s Basilica, at noon. This

year (2011) was pronounced in 65 languages, the highest number in the history.

This blessing consists of a single sentence: “May the grace and joy of the Risen

Christ be with you all.”

2.2.9 Open-source Software

Open-source Software25 is computer software that is available in source code typ-

ically developed by volunteers distributed amongst different geographic regions.

Therefore, big OSS projects are available in many languages. These string are

mostly texts of error messages, menus and buttons. For example:� Launchpad26 - 323 languages, 1,730,838 strings� Gnome27 - 173 languages� KDE28 - 75 languages

2.2.10 Summary

Sizes of different language resources are summarized in Table 2.4. From these

sizes, it is possible to conclude:� Thousands of languages are available in the Rosetta Project and the Open

Language Archives Community. To achieve this, special language interest

groups and linguistics specialists are required.� Around 300 languages are presented in the Universal Declaration of Human

Rights, Wikipedia, the Watchtower and Launchpad. This is the upper

bound for number of languages that are at least theoretically available in

written form on the Internet. This covers almost 90% of all people.

24http://en.wikipedia.org/wiki/Urbi_et_Orbi
25http://en.wikipedia.org/wiki/Open_source_software
26https://translations.launchpad.net
27http://l10n.gnome.org/languages/
28http://l10n.kde.org/teams-list.php

11

2.3. MULTILINGUAL WEB CORPORACHAPTER 2. LITERATURE REVIEW

Projects Languages Size

Rosetta Project 2.2.1 over 2,500 100,000 pages

OLAC 2.2.2 4,575 82,051 items

Wikipedia 2.2.3 281 19,034,746 articles

UDHR 2.2.4 379 at most 379 documents

Project Gutenberg 2.2.5 60 34,000 documents

Wikisource 2.2.6 62 1,028,303 pages

Watchtower 2.2.7 366 thousands of pages

Urbi at Orbi 2.2.8 65 65 sentences

Launchpad 2.2.9 323 1,730,838 strings

Gnome 2.2.9 173 about 1 million of strings

Table 2.4: Multilingual resources — summary� Around 60 languages are available in Project Gutenberg, Wikisource and

Urbi at Orbi. This is the lower bound for the number of languages that are

used in developed or newly industrialized countries29 countries. This covers

almost 70% of all people.

2.3 Multilingual Web Corpora

As early as 2001, Banko and Brill [BB01] and recently in 2009 Halevy et al.

[HNP09], showed that using more data and simple method outperform less data

and sophisticated method.

The following multilingual web corpora WaCky (2.3.1), Crúbadán (2.3.2), I-X

(2.3.3) and Corpus Factory (2.3.4) are reviewed in more details. The unit ‘W’

will be used instead of word, so 10MW means 10 million words.

2.3.1 WaCky

WaCky was introduced for the first time in Baroni and Kilgarriff [BK06] in 2006

with more detailed information in [BBFZ09]. This corpus contains 3 languages -

English, German and Italian — and each of them has approximately 1.5TW.

They randomly combined mid-frequency content words from existing corpora for

each language to construct word pairs. This bigrams were used for constructing

search queries for Google to retrieve a list of seed URLs.

29http://en.wikipedia.org/wiki/Newly_industrialized_country

12

2.3. MULTILINGUAL WEB CORPORACHAPTER 2. LITERATURE REVIEW

Property deWaC itWaC ukWac

Raw crawl size (GB) 398 379 351

Documents after filtering (M) 4.86 4.43 5.69

Size after document filtering (GB) 20 19 19

Size after near-duplicate cleaning (GB) 13 10 12

Documents after near-duplicate cleaning (M) 1.75 1.87 2.69

Tokens (G) 1,278 1,586 1,914

Table 2.5: WaCky — data size

Heritrix30 was used to crawl pages with breadth-first crawling strategy. Crawling

was restricted to pages in relevant web domains (.de/.at for German; .it for Italian;

.uk for English). URLs with suffix indicating non-HTML data (.pdf, .jpg, etc.)

were discarded

From the Heritrix log file they retrieved pages with mime type text/html and

between 5 and 200kB. These pages were preserved. For removing boilerplate

code they used their own reimplementation of the BTE tool31.

The cleaned documents were filtered based on lists of function words. Documents

not meeting minimal requirements — 10 types and 30 tokens per page, with

function words accounting for at least a quarter of all words were discarded. This

filter also worked as a simple language identifier. They also used a blacklist to

discard pornographic pages.

Near duplicate detection was performed by a simplified version of Broder’s “shin-

gling” algorithm [BGMZ97]. They removed functional words and randomly se-

lected 25 5-grams from each document. If a pair of documents shared at least two

5-grams, they were considered as near duplicate and one of them was removed.

Building a corpus for each language took approximately 3 weeks (10 days crawl-

ing, 7 days cleaning, 4 days near-duplicate detection). Basic statistics are pre-

sented in Table 2.5.

30http://crawler.archive.org/
31http://dev.sslmit.unibo.it/wac/post_processing.php

13

2.3. MULTILINGUAL WEB CORPORACHAPTER 2. LITERATURE REVIEW

2.3.2 Crúbadán

Crúbadán is a multilingual corpus introduced by Scannel [Sca07]. This corpus

contains 487 languages32.

For each language, some additional metadata was provided manually: the name

of the language in English, the ISO 639-3 code, a flag indicating whether the

language is under-resourced, and a list of “polluting” languages (languages fre-

quently used in boilerplate texts).

The majority of training texts came from three sources: Wikipedia, the Watch-

tower (Jehovah’s Witnesses web site) and the Universal Declaration of Human

Rights site. Training texts were preprocessed. A temporary word frequency list

was generated and then several filters were applied to produce a clean word list.

For example the following words were removed: words with characters not usually

appearing in the target language, words with no vowels (when this made sense),

words with the same character appearing three or more times in a row, words with

a capital character appearing after the first character, words that appeared in the

word list for a polluting language, and words that contained improbable letter

trigrams (at later stages, after the statistics were available). Native speakers were

asked to define language specific constrains.

Stop words were extracted by native speakers. When no native speaker was

available, the highest frequency words that did not appear as high frequency

words in other languages were used.

Search queries were generated by combining randomly chosen words, connected

by OR and at least one stop word connected by AND. They used Google to

retrieve URLs and wget. For the conversion to plain text, they have used the

open source programs vilistextum, pdftotext and wvText.

Language detection is based on comparing the cosine of the angle between vec-

tors representing downloaded document and training documents in the space of

character trigrams with manual tuning based on a number of ad-hoc factors.

Crúbadán corpus size is presented in Table 2.6.

Scannel also states:

Indeed, we claim that any effort to crawl the web for a large num-

32http://borel.slu.edu/crubadan/stadas.html

14

2.3. MULTILINGUAL WEB CORPORACHAPTER 2. LITERATURE REVIEW

(a) Document counts

Document count Languages

> 1k 70

> 500 115

> 250 143

> 125 181

> 65 210

> 32 255

> 16 337

> 8 356

> 4 381

> 2 416

> 1 449

(b) Word counts

Word count Languages

> 100MW 1

> 10MW 11

> 1MW 127

> 100kW 225

> 10kW 354

> 1kW 473

> 100W 487

Table 2.6: Crúbadán — data size

ber of languages without attempting to harness the collective knowl-

edge of many language experts, ..., is doomed to failure.

2.3.3 I-X

Sharoff [Sha06] introduced BNC-like multilingual web corpus. This corpus con-

tains 6 languages — English, German, Russian, Chinese, Romanian and Ukraini-

an, but only for three of them are results available.

500 common words were chosen from existing corpora and constructed queries by

combining N-tuples (N = 2-4) of such words connected by AND and prefixed by

2 very frequent words connected by OR.

5,000 queries were used and with Google API, 50,000 URLs were retrieved. These

URLs were downloaded without recursion. Encoding was unified and lynx33 was

used to convert pages from HTML to plain text (worked better than ad-hoc

Perl filters). Then, simple heuristic was used for navigation frame detection

(links density). For deduplication they used a simplified version of “shingling”

algorithm from WaCky (2.3.1).

The corpus size is presented in Table 2.7. The corpora for Chinese, Romanian and

Ukrainian are mentioned only in the introduction and no results are presented.

33http://lynx.isc.org/ - text web browser

15

2.3. MULTILINGUAL WEB CORPORACHAPTER 2. LITERATURE REVIEW

Language Size in MW

English (I-EN) 127

German (I-DE) 126

Russian (I-RU) 156

Chinese ???

Romanian ???

Ukrainian ???

Table 2.7: I-X — size in MW

2.3.4 Corpus Factory

Corpus Factory is a multilingual corpus constructed by Kilgarriff [KRPA10]. This

corpus contains 8 languages - Dutch, Hindi, Indonesian, Norwegian, Swedish,

Telugu, Thai and Vietnamese.

Firstly, they built corpora from Wikipedia pages with at least 500 words (Wiki

Corpora). Secondly, they tokenized these corpora. For languages with absent

explicit word delimiters, (Thai, Vietnamese) they used language specific tools

and space and punctuations marks for the rest.

They considered the top 1000 words as high-frequency words and the next 5000

words as mid-frequency ones. They used only words with at least 5 characters

(except for Vietnamese, where words may contain spaces).

They used BootCaT’s query generation module. The number of words in a query

was language dependent and was automatically assigned. They also found out,

that Google normalizes many non-UTF8 encodings to UTF-8 whereas Yahoo

and Bing don’t. For licensing and usability reasons they used Yahoo and Bing,

therefore they converted UTF8 word seeds into native encodings.

Wget was used for downloading web pages and only pages with mime type tex-

t/HTML and size between 5kB and 2MB (this information was provided by the

search engine API).

They used BTE34 algorithm to remove boilerplate code and to retrieve plain text.

They considered 500 words with the highest frequency (from Wiki Corpora) as

functional words. Then they sorted wiki pages according to the proportion of

top-500 words. They found out, that the top 70% of pages contains connected

texts. These pages contain at least 65% of the words from the top-500 words.

34Body Text Extraction algorithm (BTE, Finn et al. 2001)

16

2.3. MULTILINGUAL WEB CORPORACHAPTER 2. LITERATURE REVIEW

Language Wiki Corpora Web Corpora

Dutch 30.0 108.6

Hindi 2.5 30.6

Indonesian 8.5 102.0

Norwegian 19.1 94.9

Swedish 9.3 114.0

Telugu 0.2 3.4

Thai 6.2 81.8

Vietnamese 9.5 149.0

Table 2.8: Corpus Factory — size in MW

Therefore they preserved only web pages with at least 65% of the words from the

top-500.

For near-duplicate detection, they used perl’s Text::DeDupper module which im-

plements Broder’s “shingling” algorithm.

Corpora size is displayed in Table 2.8.

2.3.5 Summary

In this subsection, I summarize existing multilingual corpora and compare them

with one another. Sizes are presented in Table 2.9.

All approaches used very similar methods:

1. Retrieve word seeds from existing corpora or reliable text source.

2. Generate n-tuples of words.

3. Use these tuples as search queries.

4. Download found web pages.

5. Preserve just files with mime text/html and acceptable size.

6. Use BTE for removing boilerplate code.

7. Use functional words for language detection and running text detection.

8. Use Broder’s ”shingling” algorithm to find near duplicate detection.

Differences among all approaches are displayed in Table 2.10.

17

2.4. WORD SEEDS CHAPTER 2. LITERATURE REVIEW

Language WaCky Crúbadán I-X Corpus Factory

English 1,914GW 26.8MW 127MW No

German 1,278GW 2.7MW 126MW No

Russian No 333kW 156MW No

Italian 1,586GW 3.2MW No No

Dutch No 2.6MW No 138.6MW

Hindi No 805kW No 33.1MW

Indonesian No 5MW No 110.5MW

Norwegian No 1.3MW (B), 2.6MW (N) No 114MW

Swedish No 2MW No 123.3MW

Telugu No 2MW No 3.6MW

Thai No 218kW No 90MW

Vietnamese No 3.9MW No 158.5MW

Chinese No 320kW Yes No

Romanian No 6.6MW Yes No

Ukrainian No 273kW Yes No

Table 2.9: Language coverage

2.3.6 Conclusions

If I evaluate these projects with respect to the goals of this thesis, then size

10MW was fulfilled by 11 languages in Crúbadán, 7 in the Corpus Factory and 3

in WaCky and I-X. Methods used for building Crúbadán required native speakers

or were computationally ineffective — language detection done by comparison

with with all testing documents.

2.4 Word Seeds

Word seed is an initial small corpus, that is used as a source of words for gener-

ating queries, recognizing languages and estimating document quality. All mul-

tilingual web corpora (2.3) were using any existing reliable language resource as

the initial corpus. They used Wikipedia (2.2.3) or established corpora such as

the British National Corpus.

18

2.4. WORD SEEDS CHAPTER 2. LITERATURE REVIEW

Property WaCky Crúbadán I-X Corpus Factory
Word seeds Texts from exist-

ing corpora.
Texts from from
specified website.

Texts from exist-
ing corpora.

Texts from
Wikipedia.

URL seeds Searching pairs
of mid-frequency
content words
using google.

Searching ran-
domly chosen
words from lex-
icon (OR’ed
together) with
AND’ed at least
one stopword.

Searching ran-
domly chosen
words from lex-
icon (AND’ed
together) with
OR’ed 2 high
frequency words.

Searching mid-
frequency words.
Number of words
is language
dependent.

Crawler Heritrix wget Unspecified wget
Crawling Domain restrict-

ed, suffix restrict-
ed. Recursive.

Extracted URLs
are added to
the pending list
of URLs for
the language of
the download-
ed document.
Recursive.

Just extracted
URLs. Without
recursion.

Just extracted
URLs. Without
recursion.

Filtering Mime type tex-
t/html, size be-
tween 5kB and
200kB.

Unmentioned Unmentioned Mime type tex-
t/html, size
between 5kB
and 2MB. At
least 65% of high
frequency words.

Boilerplate Modified BTE al-
gorithm.

Unmentioned Tag density
(maybe BTE)

BTE algorithm.

Deduplication Simplified version
of Broder’s “shin-
gling” algorithm.

Unspecified Simplified version
of Broder’s “shin-
gling” algorithm.

Broder’s “shin-
gling” algorithm.

Language De-
tection

Contains func-
tional words.

Cosine angle
between vectors
representing the
document and
training texts in
the space of char-
acter trigrams.
Manual tuning.

Unmentioned.
Functional words
in search query.

Unmentioned.
Functional words
in search query.

Languages 3 487 3 (6) 8
Median size 1.586GW 68,221W 126MW 102MW

Table 2.10: Existing multilingual corpora — overview

19

2.5. URL SEEDS CHAPTER 2. LITERATURE REVIEW

2.5 URL Seeds

URL seeds is an initial list of URLs for crawler. There are at least 2 possible

approaches to how to construct the list: use any existing list of URLs (2.5.1) or

retrieve these URLs a from search engine (2.5.2).

2.5.1 Existing Lists

A web directory or a language resource with external links can be a good source

of URLs in a specific language.

Open Directory Project

The Open Directory Project35 (ODP or Dmoz) is a multilingual open content

directory of World Wide Web links. It contains links to websites in 90 languages36,

although from 2006 it is no longer expanding37.

Wikipedia

Wikipedia contains a lot of links to external web pages (links are mostly in the

External Links section). It is also possible to retrieve all external links in single

file - for example English38.

2.5.2 Search Engines

Another approach is to use search engines to retrieve URLs. This method is

used by all multilingual web corpora (2.3). They differ in the way they generate

queries from word seeds - how much words should be used, which words should

be chosen and how they should be combined.

35http://www.dmoz.org/
36http://www.dmoz.org/World/
37http://commons.wikimedia.org/wiki/File:Odp_sitecount_top.png
38http://dumps.wikimedia.org/enwiki/latest/enwiki-latest-

externallinks.sql.gz

20

2.6. CRAWLING CHAPTER 2. LITERATURE REVIEW

Google Search

Google Search39 is a web search engine owned by Google Inc. and is the most-used

search engine on the Web.

In the past, there was Google Web Search API40 but it has been officially depre-

cated as of November 1, 2010. There is also Custom Search API41, which allows

100 queries per day and additional ones must be bought.

Bing

Bing 42 is a web search engine owned by Microsoft Corporation and is one of the

most used search engine on the Web.

It provides API43 for searching. The only limitation is less than 7 queries per

second.

2.6 Crawling

There are plenty of crawlers available on the Internet. Some of them are:

GNU Wget

GNU Wget44 is part of the GNU Project and is therefore is available on all linux

machines.� Very simple and easy to use.� It can store HTTP headers.� It is not possible to create rules that decides, whether to continue or termi-

nate downloading according to HTTP header.� A lot of websites returns different content or 4XX HTTP status code. It is

possible to change the user agent.

39http://www.google.com
40http://code.google.com/intl/cs/apis/websearch/
41http://code.google.com/apis/customsearch/v1/overview.html
42http://www.bing.com/
43http://www.bing.com/developers/
44http://www.gnu.org/software/wget/

21

2.7. LANGUAGE RECOGNITION CHAPTER 2. LITERATURE REVIEW

Nutch

Nutch45 is a crawler that is built on Apache Lucene.� It can run on single machine, but also on Hadoop46 cluster.� It supports plugins.

Heritrix

Heritrix47 is a crawler developed by Internet Archive for web archiving.� It is a very complex software with dozens of options.� It can be very precisely tuned and missing functionality may be implement-

ed as a plug-in.

2.7 Language Recognition

Language detection is one of the crucial parts of this project. This field has been

researched since 1970s48. There are many articles about language recognition,

but I found out that algorithms used in real applications are different. Therefore

I at first introduce theoretical approaches (2.7.1) and then approaches used in

some applications (2.7.2).

2.7.1 Theoretical

Cavnar and Trenkle [CT94] algorithm uses a sliding window over a set of char-

acters. A list of the 300 most common n-grams for n in 1..5 is created during

training for each training document . To classify the new document, they con-

structed the list of the 300 most common n-grams and compare n-grams position

with testing lists. The list with minimal differences is the most similar one and

new document is in same language. They were classifying 3478 samples in 14

45http://nutch.apache.org/ and http://en.wikipedia.org/wiki/Nutch
46http://hadoop.apache.org/
47http://crawler.archive.org/ and http://en.wikipedia.org/wiki/Heritrix
48http://speech.inesc.pt/~dcaseiro/html/bibliografia.html

22

2.7. LANGUAGE RECOGNITION CHAPTER 2. LITERATURE REVIEW

languages from a newsgroup. They reported they achieved an accuracy of 99.8%

(only 7 document were wrong).

Sibun [SR96] introduced a method for language detection based on relative en-

tropy, a well-known measure also known as Kullback-Leibler distance. The rela-

tive entropy is a useful measure of the similarity between probability distributions.

She used texts in 18 languages from European Corpus Initiative CD-ROM. She

achieved accuracy for bigrams 100%.

Hayati [Hay04] reported, that with Cavnar and Trenkle’s algorithm they achieved

an 86.8% accuracy on webpages spanning 11 languages. Therefore, they used the

Fisher discriminant function to choose representative n-grams for all the lan-

guages, and compared the new document to the reference using cosine similarity

measure. Using this method, they achieved an accuracy of 93.9%. They also

showed, that using information about incoming and outgoing links (webpages

usually links to pages in the same language), increases the accuracy of the clas-

sifier.

Martins et. al [MS05] reported that with Cavnar and Trenkle’s algorithm of

improved metric for comparing lists of n-grams, they achieved accuracy 91.25%

for 12 languages.

2.7.2 Applications

There are plenty of applications that use language detection and some of them

have an accessible source code which is why I take a closer look at them.

Mozilla Firefox

Mozilla Firefox49 is a free and open source web browser. Mozilla currently con-

tains two charset detectors50.

Chardet51 is an original Mozilla project that is still used for charset detection. It

uses precomputed bi-gram models. The source code is originally in C++52 but

49http://www.firefox.com/
50http://www.mozilla.org/projects/intl/chardet.html
51http://www-archive.mozilla.org/projects/intl/ChardetInterface.htm
52http://mxr.mozilla.org/seamonkey/source/intl/chardet/

23

2.7. LANGUAGE RECOGNITION CHAPTER 2. LITERATURE REVIEW

there are ports in Java53 or Python54.

Li and Momoi [LM01] universal charset detector55 uses a combined approach. In

the first phase, the code scheme gets checked. Some byte sequences are illegal

in some encoding, so this is very effective for 7-bit multi-byte encodings. If

encoding is not recognized then unigram distribution is used to detect encoding.

If the detector is still not confident enough it will use bigram distribution. Source

code are in C++ and are publicly available56.

Google CLD

Google CLD57 (Compact Language Detection Library) is a part of Google Chrome58.

Google Chrome is also a free and open source web browser.

The CLD looks up each quadgram in a large hashtable that contains language

probabilities. This hashtable was originally built by processing language prob-

abilities over billions of web pages that are indexed by Google’s search engine.

The CDL is able to recognize approximately 90 languages59.

The algorithm itself60 uses informations from TLD - it is more probable that a

page in TLD .cz will be in Czech than in Slovak). It also uses page encoding

- windows-1250 is central European and therefore it will not be in any Asian

language. It iterates over all quadgrams (HTML markup is ignored) and accu-

mulates a score for each language. It is using information about language close

pairs to modify the overall score. Language scores are also normalized by average

score retrieved per kilobyte.

It also contains manually written rules. If the text is in English or language X

(X is high enough), then assumes the English is boilerplate and the page is in

language X. If the text is in FIGS (French, Italian, German or Spanish) or X (X

53http://jchardet.sourceforge.net/
54http://chardet.feedparser.org/
55http://www.mozilla.org/projects/intl/UniversalCharsetDetection.html
56http://mxr.mozilla.org/seamonkey/source/extensions/universalchardet/
57http://googletranslate.blogspot.com/2010/03/faster-simpler-and-

safer-browser-goes.html
58http://www.google.com/chrome/
59http://src.chromium.org/viewvc/chrome/trunk/src/third_party/cld/

languages/proto/languages.pb.h?view=markup
60http://src.chromium.org/viewvc/chrome/trunk/src/third_party/cld/

encodings/compact_lang_det/compact_lang_det_impl.cc?view=markup

24

2.7. LANGUAGE RECOGNITION CHAPTER 2. LITERATURE REVIEW

is not English and is high enough), then it assumes the FIGS is boilerplate and

page is in language X.

There is a lot of magic numbers for different thresholds, ratios, etc.. Hashtables of

quadgrams are declared in this file61. Code also contains interesting comments62:

Restrict the set of scored languages to the Google ”Top 40*”, which

is actually 38 languages. This gets rid of about 110 language that

represent about 0.7% of the web. Typically used when the first pass

got unreliable results.

Google Translate API

Google Translate API63 is service provided by Google to translate texts between

52 languages. It has also an interface for language detection64. It is very probable,

that it is using Google CLD.

This API was officially deprecated as of 26th May 2011 and will be shut down on

1st December 201165.

2.7.3 Multilingual Web Corpora

Multilingual web corpora use different methods (summarized in Table 2.10).

WaCky detects functional words in document. I-X and Corpus Factory rely on

functional words in search queries. Crúbadán compares the cosine angle between

vectors representing the document and training texts in the space of character

trigrams with manual tuning.

61http://src.chromium.org/viewvc/chrome/trunk/src/third_party/cld/

encodings/compact_lang_det/generated/compact_lang_det_generated_quads_

256.cc?view=markup
62http://src.chromium.org/viewvc/chrome/trunk/src/third_party/cld/

encodings/compact_lang_det/compact_lang_det_impl.h?view=markup
63code.google.com/apis/language/translate/overview.html
64http://code.google.com/intl/cs/apis/language/translate/v2/using_

rest.html\#detect-language
65http://googlecode.blogspot.com/2011/05/spring-cleaning-for-some-of-

our-apis.html

25

2.8. CORPUS STORING AND DISTRIBUTIONCHAPTER 2. LITERATURE REVIEW

Paper Languages Accuracy

Cavnar and Trenkle [CT94] 14 99.8%

Sibun [SR96] 18 100%

Hayati [Hay04] 11 93.9%

Martins et. al [MS05] 12 91.25%

Google CLD 2.7.2 87 unknown

Google Translate API 2.7.2 53 unknown

WcCky 2.3.1 3 unknown

Crúbadán 2.3.2 489 unknown

I-X 2.3.3 3 unknown

Corpus Factory 2.3.4 8 unknown

Table 2.11: Language detection — summary

2.7.4 Summary

An overview of all these papers is in Table 2.11. The Crúbadán has the highest

number of recognized languages, but more than 100 languages contains four or

less documents and half of them less than 40, so I suppose that a lot of them

were assigned manually.

2.8 Corpus Storing and Distribution

Corpus storing and distribution is one of the fundamental parts of corpus building.

Wynne ([Wyn05]) as well as E-MELD66 suggests many tips.

Archival copies should be made in a format which offers LOTS (i.e., it is Lossless,

Open Standard, Transparent, and Supported by multiple vendors). A corpus

must also contain proper documentation of used formats along with information

about terms of use, and access restrictions.

Making a corpus widely available should not be possible due to copyright and

other legal issues.

66http://emeld.org/school/bpnutshell.html

26

2.9. CORPUS QUALITY ANALYSISCHAPTER 2. LITERATURE REVIEW

2.9 Corpus Quality Analysis

Corpus analysis is an important step in building web corpus. Without comparing

with existing corpora it is hard to say whether high quality texts were downloaded

or if they are just some ‘CD image’.

Rayson et. al [RG00] suggested using log-likelihood statistics for comparing fre-

quency lists. This approach was used in all multilingual corpora. Bharati et. al

[BRSB00] also suggested using a number of unique unigrams, entropy, word and

sentence lengths for comparing different corpora.

2.10 Internet Size

When the corpus is downloaded, it is useful to know, how much can it be extended.

In 1997, Bharat et al. [BB98] used 300,000 documents in the Yahoo! hierarchy

to build a lexicon of about 400,000 words (low frequency words were excluded).

Then they constructed random queries and retrieved random pages from first 100

results. They used 35,000 queries and 4 search engines to estimate the size of the

Internet in November 1997 which was at least 200 million pages.

In 2005, Gulli et al. [GS05] used a very similar method but in larger scale. They

used 438,141 queries in 75 different languages. They also used four search engines

and they found out, that their overlap is just 28.85%. They needed 43 Linux

servers, requiring about 70Gb of bandwidth and more than 3600 machine-hours.

They estimated that the indexable web has more than 11.5 billion pages.

Broder et al.[BFJ+06] and Bar-Yossef et al. [BYG07] showed that random queries

do not return random documents and this is causing an underestimation of the

the size. To overcome this problem, Lu et al. [LL10] introduced estimator based

on the capture–recapture methods.

From the other resources, there are more than 255 million websites67 and almost
68 50 billion webpages. The former Google CEO, Eric Schmidt, states in 2005,

that Google is indexing 170GB69. The search engine Cuil70 indexed more than

121 billion pages in 2007.

67http://www.focus.com/images/view/48564/
68http://www.worldwidewebsize.com/
69http://news.softpedia.com/news/How-Big-Is-the-Internet-10177.shtml
70http://en.wikipedia.org/wiki/Cuil

27

2.10. INTERNET SIZE CHAPTER 2. LITERATURE REVIEW

The Internet has now more than 2.1 billion users71, doubled since 2007. Zhang

et al. [ZZY+08] showed that the number autonomous system doubles every 5.3

years.

71http://www.internetworldstats.com/emarketing.htm

28

3. Methods

This chapter describes tools and methods used for building web corpus. Complete

process is illustrated on Figure 3.1 with available resources and data flow.

Constructing of web corpus consists of several step. The initial step was gath-

ering metadata from Wikipedia and Ethnologue. The downloaded metadata are

stored into the database on the hosting. When matadata was available, then

Wiki Corpus was built from Wikipedia articles. Frequency lists for trigrams and

quadgrams were computed and uploaded to the hosting. From the Wiki Corpus

the language model was trained and moved to the hosting. Building web corpus

was divided smaller jobs, that were executed in the computer laboratory. Job

results were stored on ufallab, where they were merged into raw corpus. This raw

corpus was transferred back to the laboratory, when duplicity was reduced and

statistics were computed. The clean corpus was stored on ufallab.

3.1 Available Resources

I had access to the following computational resources during my work on this

thesis.� PC (stingray) — Intel Pentium 4 CPU 1.80GHz, 2GB RAM, 230GB disk� Computer laboratory72 — available for all students of our faculty — 15

computers with Intel Core i7 920 (4x2.67GHz + HyperThreading), 6GB

72http://wiki.ms.mff.cuni.cz/wiki/Po\%C4\%8D\%C3\%ADta\%C4\%8De_UNIX

InternetWikipedia

 Laboratory

Wiki
Corpus

Language
Model

Job Results

 Raw Corpus

 Clean Corpus

1

2

3

4
5

6

7

ufallab

hosting

PC

Ethnologue

Metda
data

1

8

9

Figure 3.1: Building Web Corpus

29

3.1. AVAILABLE RESOURCES CHAPTER 3. METHODS

RAM, 150GB disk space, 16 computers with Intel Core2 Quad Q9550

(4x2.83GHz), 4GB RAM and 50GB disk space, 6 computers with AMD

64 X2 3800+/4200+ (2x2GHz/2.2GHz), 2GB RAM and 50GB disk space

and 5GB on shared network disk.� Server (ufallab) — Intel Pentium 4 CPU 3GHz, 2GB RAM, 1.1TB disk� Hosting — shared webhosting, 50GB disk space

The most serious limitation of the used resources was absence of possibility to

establish ssh connection between the computer laboratory and ufallab without

manually typed password. This password typing would be required every 15

minutes and more than two thousand times, if n other solution would be found.

Another complication, that I strongly underestimate in early stages, was very

unpredictable environment in the computer laboratory. The main complications

were:

1. Very low (for my needs) quotas on network traffic. I was able to consume

weekly quota (2GB of outgoing traffic) in less than two hours. I negotiated

disabling this quotas.

2. Any program can not run longer than 24 hours, so I have to divide work

into smaller jobs.

3. This laboratory is used by many students and quite often some of them

executed programs that consumed all memory or worked as fork bombs73.

This behaviour has two consequences. The first one was, that any running

program could crash, because it could not execute any subprogram. I added

scripts that were restarting crashed programs, but these programs were also

crashing, so I monitored them manually. The second one was, that the

stacked computer might be restarted (by student or laboratory service). In

this situation I was trying to use as much as possible from already processed

data.

4. There is shared file system used for home directories in this laboratory. So

very few programs intensively interacting with file system are causing lags

(in seconds, dozens such programs can lag longer than a minute). These

situations induces unpredictable behaviour of file operations. For example

two scripts executed in serial order, where the first one creates a file and

the second reads it, can cause, that the file does not exist, when the second

script is executed.

73http://en.wikipedia.org/wiki/Fork_bomb

30

3.2. GENERAL PRINCIPLES CHAPTER 3. METHODS

5. Problems mentioned in points 3 and 4 have also social aspect. If computers

are working slowly, then users start complaining to the laboratory service

or administrator. It is easy for them to expect, that the users with more

than 2 thousands running processes, is causing problems. I had to defend

myself to avoid account deletion.

3.2 General Principles

The design was based on maximal utilization of available resources (3.1) and

their limitations. I decided to use many small components, that could be easily

connected into more complex components. I also preferred to start with small

scale experiments and simple scripts to explore the reality.

3.2.1 Usability

The usability is important for product spreading among users. It is very frustrat-

ing, when a program is executed and nothing happens or when it crashes with a

cryptic message, because another required program or library is missing.

To overcome these problems, all scripts check fulfilling of their own requirements

and additionally, there is a script checkRequirements.sh checking requirements

of all scripts.

All scripts also use special notation for writing comments, that easily allows to

automatically generate help if parameter -h is used and generate HTML docu-

mentation74.

3.2.2 External Tools

I decided to employ as many already existing open-source software components

as possible. External tool may be widespread and therefore may be included in

an OS distribution package repository and easily installable (with apt, yum, etc.),

or it may be a specific tool that must be retrieved from developers website.

There are at least 3 ways how these dependencies can managed:

74http://w2c.martin.majlis.cz/w2c/doc-gen/

31

3.3. METADATA CHAPTER 3. METHODS

1. They are just mentioned in a documentation.

2. They are bundled with a project.

3. They are retrieved from an external resource.

All these approaches have their pros and cons. The first one is the easiest one for

the developer. If the external tool is widespread, then this possibility is also very

convenient for the user. The second possibility gives the developer high control

over the execution environment but for the cost of expanding project size. The

third one haves benefits from the second one (control over environment) and it

also does not increase project size.

I decided to use the third one, because it provides many benefits for users. As I

mentioned in the section about usability (3.2.1), there is a script checkRequirements.sh

that checks all requirements of external tools and libraries. If any of them is miss-

ing, then tips for installation are provided.

I also found out, that there are huge differences in the performance of different

versions of the same software. For example grep 2.5.4 (that was available in the

computer laboratory) is in some situations 60 times slower than version 2.6.3 or

newer. Filtering 2 million lines with grep 2.5.4 took more than 13 minutes but

with 2.6.3 took slightly more than 12 seconds. Therefore also program versions

are checked and newer ones are installed.

3.3 Metadata

Metadata, such as language name, its ISO code, population size, writing system,

etc., was for each language automatically downloaded from the Internet. The

Following sources were combined:� SIL International75 —which provides easily parsable table76 of all languages

with their ISO codes and names.� Wikipedia77 — with its list of all wikipedias78, where they use their own

codes and names.

75http://sil.org
76http://www.sil.org/iso639-3/iso-639-3_20100707.tab
77http://www.wikipedia.org/
78http://meta.wikimedia.org/wiki/List_of_Wikipedias

32

3.4. DATABASE CHAPTER 3. METHODS� Ethnologue79 — with easily parsable pages with language information - e.g.

Czech80.

Because I knew that the Ethnologue numbers are out-of-date (2.1), I intended

to use information from the info-boxes in Wikipedia. For example, English has

328 million speakers according to Ethnologue81, while Wikipedia82 provides also

information about first and second language speakers with overall up to 1.8 billion

speakers. In fact, English is the ‘Lingua franca’ of the Internet therefore I would

prefer to use numbers from Wikipedia.

To avoid parsing Wikipedia, I wanted to use DBpedia83, which extracts informa-

tion from Wikipedia, but I discovered that it is not reliable. For example, for the

Buginese language DBPedia84: 240 speakers, Wikipedia:85: 3.5 to 4 millions and

Ethnologue 86: 3.5 millions.

From this I concluded, that information extraction from Wikipedia may not be

easy. Not all languages are present and it may be hard to localize them, due

to their name variants. It would be also hard to automatically and correctly

decide, which number of speakers is correct. Therefore, I decided to stick with

Ethnologue.

Scripts used for metadata extraction are langList.sh and ethnologueParser.sh.

In the early stages, extracted information was stored in text files. Later on, they

were moved into a database (3.4).

3.4 Database

The database is used for storing metadata (3.3) and achieved results. In the

early stages I was using text files but that required synchronization (among nb,

pc, lab, ufallab), so I decided to use a database. I wanted to use an key-value

store87. Due to limitations, I could not install anything on my computer that

79http://www.ethnologue.com/
80http://www.ethnologue.com/show_language.asp?code=ces
81http://www.ethnologue.com/show_language.asp?code=eng
82http://en.wikipedia.org/wiki/English_language
83http://dbpedia.org/
84http://dbpedia.org/page/Buginese_language
85http://en.wikipedia.org/wiki/Buginese_language
86http://www.ethnologue.com/show_language.asp?code=bug
87http://en.wikipedia.org/wiki/NoSQL

33

3.4. DATABASE CHAPTER 3. METHODS

would permanently visible from the Internet), I decided to use MySQL88, which

is available on my web hosting.

3.4.1 Tables

There are two tables w2c alias and w2c language. The table w2c alias contains

two columns alias and iso. The purpose of this table is to make all scripts more

user-friendly. Internally, ISO 639-3 codes are used but for the user, it is much

easier to write ‘czech‘, ’cs’ instead of ‘ces’.

The problem was, that some language names are the same as ISO codes of other

languages. For example the En language89 has ISO 639-3 code enc but its name

is the same as the ISO 639-1 code for English. It would be very confusing if ‘en’

was used, and it would not mean English. For these reasons, aliases are filled in

this order: ISO 639-3 codes, language name, name used on Wikipedia and local

name. Now, when ‘en’ is used, English is used.

The second table w2c language contains 3 columns language, key, value, where

language represents ISO 639-3 code and key and value are arbitrary strings up

to 30 characters for key and 255 characters for value.

3.4.2 Access

There are three ways how to access stored data - using web interface, simplified

RESTful API90 and script webAPI.sh .

The web interface is available on http://w2c.martin.majlis.cz/language/. It is

possible to specify the language and key and all corresponding values are returned.

It is possible to specify output format which can be:� TXT - text output - columns are separated by tabs. This output may be

easily processed with unix command-line tools.� XML - XML output� JSON - JSON91 output which can be easily used in programs.

88http://www.mysql.com/
89http://www.ethnologue.com/show_language.asp?code=enc
90http://en.wikipedia.org/wiki/REST
91http://en.wikipedia.org/wiki/JSON

34

3.5. WIKI CORPUS CHAPTER 3. METHODS

Wikipedia

SIL

Ethnologue

DB
langList.sh

ethnologueParser.sh

fillLangDB webAPI.sh

S1

S2

S3

Figure 3.2: Metadata — work flow

The URLs provided by the web interface are also a part of the REST API. If

proper authentication token is used, values may be changed or new ones added.

The script webAPI.sh is a wrapper written in bash. It uses REST API and its

text output. This script is used by almost all programs.

3.4.3 Work Flow

The metadata flow is displayed in Figure 3.2. This section just connects infor-

mation presented in Sections 3.3 and 3.4.

Metadata is automatically retrieved from the Internet with scripts langList.sh

and ethnologueParser.sh. Downloaded information is stored in temporary text

files. These files are then processed with scripts in a fillLangDB directory. These

scripts use webAPI.sh for inserting data into a database. When any script (S1,

S2 etc.) needs any information, it uses webAPI.sh. Some scripts are also adding

new metadata, therefore an arrow exists between scripts and webAPI.sh is bidi-

rectional.

Using this metadata, it is very easy to create simple scripts. Script for building

corpora from Wikipedia in languages, that do not use the latin script is showed

in Example 1.

3.5 Wiki Corpus

The next step in building a web corpus was to construct the initial corpus. I

decided to use Wikipedia (2.2.3), because it was widely used in other multilingual

corpora and also, I have previously worked with Wikipedia. I constructed several

35

3.5. WIKI CORPUS CHAPTER 3. METHODS

Example 1 Wiki corpora for languages not using latin script

for l in ‘webAPI . sh GET nu l l s c r i p t | grep −v ’ Lat ’ | cut −f1 ‘ ; do

u r l =‘webAPI . sh GET $ l ’ w ik i ur l ’ | cut −f3 ‘ ;

i f [! −z $ur l] ; then

wikiCorpora . sh −c 100 $ l ;
f i ;

done ;

tools, constructed several initial corpora and developed a work flow for building

additional wiki corpora.

3.5.1 Tools

At the beginning I used a script wikiMiniCorpora.sh for downloading Wikipedia

pages. It is a wrapper for crawlerSimple.sh. It is possible to specify, how many

web pages should be downloaded from Wikipedia, and the script then downloads

them. Pages with a colon or a number in their title are skipped. Pages with a

colon are typically special pages (Talk:*, Wikipedia*, Special:*, User:) and pages

with a number are very often ‘Date pages’92.

When I downloaded a few Wikipedias, I found out that this approach is insuffi-

cient for at least two reasons. Firstly, there were many similar sentences (auto-

matically generated - e.g.: “This article needs additional citations for verification.

Please help improve this article by adding reliable references.”93. Secondly, it was

quite slow, because the crawler has to wait for a few seconds after each request

and this behaviour dramatically increased the total execution time.

The first problem was solved by the script cleanFile.sh, which is described

in Section 3.10. To overcome the second one I developed the wikiCorpora.sh

script.

Script wikiCorpora.sh downloads directly the Wikipedia dumps (provided by

Wikimedia). On the one hand, it significantly improved processing speed, but on

the other hand, it brought problems with parsing Wikipedia special syntax. I used

the CPAN module Text::MediawikiFormat94 to convert the wiki format to HTML

92e. g.: http://en.wikipedia.org/wiki/1918
93http://www.google.com/search?q=site\%3Aen.wikipedia.org+"This+

article+needs+additional+citations+for+verification."
94http://search.cpan.org/~dprice/Text-MediawikiFormat-0.05/

36

3.5. WIKI CORPUS CHAPTER 3. METHODS

and then to plain text. I found out that this module did not work correctly, so I

used slightly different approach. At the beginning all links, tables and special syn-

tax are removed. This preprocessed text is passed to the Text::MediawikiFormat

module to create a HTML output, from which only paragraphs are preserved

and all tags are removed. Then, duplicates lines are removed with the script

cleanFile.sh.

3.5.2 Corpora

For prototyping, I used a corpus build from 5,500 articles for each language with

at least 100 thousand articles. Later on, I extended this corpus to languages with

at least 5 thousands articles. This corpus contains 115 languages. This corpus

has a database key data wiki 550095.

For my main work, I used a corpus of 20,000 articles from Wikipedias with at

least 5 thousands articles. This corpus has a database key data wiki 2000096.

Both corpora are available as plain text files, vertical files and frequency files of

trigrams and quadgrams.

3.5.3 Work Flow

The work flow for building the Wiki Corpus is displayed in Figure 3.3. The first

step is script download-wikipedias.sh execution with a specified number of

required pages and minimal article counts. This script executes wikiCorpora.sh

for each language and created sub-corpora are stored on the disk.

It is possible to extend this process by executing script processFiles.sh, which

iterates over languages included in the downloaded corpus. For each language, is

a script processFile.sh executed. This script removes duplicity with cleanFile

and generates a vertical file using verticalFile.sh. Frequency lists for n-grams

are constructed with frequencyList.sh. All created files are uploaded to the

hosting and URLs of these files are added to the database.

95http://w2c.martin.majlis.cz/language/?lang=\&key=data+wiki_5500*\

&format=TXT
96http://w2c.martin.majlis.cz/language/?lang=\&key=data+wiki_20000*\

&format=TXT

37

3.6. LANGUAGE RECOGNITION CHAPTER 3. METHODS

download-wikipedias.sh wikiCorpora.sh Wikipedia

FS

processFiles.sh

cleanFile.sh

verticalFile.sh

frequencyList.sh

w
e
b
A
P
I
.
s
h

processFile.sh

hosting

Figure 3.3: Wiki Corpora — work flow

3.6 Language Recognition

The language recognition is one of the crucial components of the project. Ex-

isting solutions, described in Section 2.7, are usually able to recognize around

10 languages. To achieve the goal, my language detector must be capable of

recognizing more than ten times more languages.

3.6.1 Prototype

I started language detection with simple prototyping. I built a Wikipedia corpus

for languages with at least 100 thousand articles (31 at that time) and I used

two thousand of them. I used the simplest method - character n-gram model.

I trained it on full sentences without segmentation or any preprocessing. For

example ’I am’ would create 3-grams: ‘ I’, ‘ I ’, ‘I a’, ‘ am’, ‘am ’ and ‘m ’. I

trained this model for n-grams for n from 1 to 5 and I selected n-grams from the

top of the frequency list until p percent of the total n-gram count was chosen.

This means that for frequency list of unigrams: ‘a’: 5, ‘b’ 2, ‘c’: 1 and p equals

0.5, only ‘a’ would be chosen. Achieved results are shown in Table 3.1. It seemed

that anything more than 4-grams would provide sufficient results and I considered

this problem as solved.

3.6.2 Full Scale

In the next step, I ran this experiment in full scale with more than one hundred

languages, and I found out that accuracy dropped significantly. The reason was

that for every major language, there is set of related languages. For English,

38

3.6. LANGUAGE RECOGNITION CHAPTER 3. METHODS

Ratio 1-gram 2-gram 3-gram 4-gram 5-gram

0.05 0.021 0.403 0.891 0.992 0.999

0.10 0.022 0.623 0.969 0.999 0.999

0.15 0.037 0.790 0.989 0.999 0.999

0.20 0.117 0.880 0.992 0.999 0.999

0.25 0.222 0.918 0.992 0.999 0.999

0.30 0.285 0.907 0.993 0.999 0.999

0.35 0.350 0.930 0.993 0.999 0.999

0.40 0.219 0.903 0.993 0.999 0.999

Table 3.1: Language recognition for the first 31 languages

it was Welsh, Irish, Scottish Gaelic, Scots, etc. For Spanish it was Portuguese,

Occitan, Catalan, Asturian, Galician, etc. For Russian, it was Bulgarian and

Ukraine. The hardest was Croatian, Serbo-Croatian and Bosnian.

For example, the word ’goat’ is in Occitan, Catalan, Spanish and Portuguese

written as ’cabra’, and in Latin, Italian and Romanian as ’capra’. Word ’bridge’

is written as ’pont’ in Occitan, Catalan and French, and as ’ponte’ in Latin,

Italian and Portuguese.

The full scale experiment used 20 thousands articles from Wikipedias with at

least 5 thousand articles. One half was used for training, one third was used as

heldout and the rest for testing.

The main problem was, that some minor language was often reported instead of

its associated major language. I tried different ratios - top X n-ngrams, where

X is either fixed or a percentage or until they covered some ratio of n-grams

(the same as in the initial experiment). I also tried using segmented sentences or

even lower-cased sentences. I tried using heldout data to normalize the score by

score achieved per kilobyte. Some combinations of the methods mentioned above

preferred the major languages and some of them preferred the minor ones. To fix

this, I boosted ‘the right ones’ manually.

Because running the full-scale experiment took more than a day, I used an iter-

ative approach. From the last known result, I picked a problematic pair — i.e.

English and Scots — selected a method and tuned parameters to achieve good

results. Then I added a few more languages from other families — Spanish, Cata-

lan, Russian and Bulgarian - and re-ran the experiment. Very often this ended

with satisfactory results, so I ran the experiment with full data. However, it very

often ended with in failure — for example, most of the Occitan was recognized

as Spanish. So I added Occitan to the small scale experiment and with minor

39

3.6. LANGUAGE RECOGNITION CHAPTER 3. METHODS

Model 1 Model 2

Language Accuracy Mistakes Accuracy Mistakes

Major 0.8 Min 1: 0.1, Min 2: 0.1 0.99 Min 1: 0.01

Min 1 1 0.7 Maj: 0.3

Min 2 0.9 Major: 0.1 0.7 Maj: 0.3

Table 3.2: Language recognition — model selection

tuning I tried to fix it. When it was fixed, I ran the experiment in full-scale and

I found out, that there was trouble with another language.

For example, when the top 5% of 4-grams or more than 2000 4-grams were chosen,

then all Russian texts were recognized as Bulgarian (all Bulgarian was recognized

as Bulgarian). When I decreased the number of 4-grams to 200, only 4% of

Russian texts were recognized as Bulgarian (Bulgarian was still Bulgarian). When

I decreased the number of 4-grams to 100, all samples were recognized perfectly.

Decreasing the amount of n-grams dramatically increased the performance of the

recognizer but few languages were still recognized instead of major languages, so

I manually boosted English (eng), French (fra) and Russian (rus) by 10%.

3.6.3 Language Model Selection

Selecting the language model was the only step, when manual intervention was

needed. A typical situation is displayed in Table 3.2, where 2 models are com-

pared. Language Major represents a major language and languages Min 1 and

Min 2 represent minor related languages. The first one has higher mean and

median, so it looks better. If the first model will be chosen, then during the

harvesting of language Min 1, a lot of pages in the Major language will be dis-

covered and 10% of them would be recognized as Min 1. Due to the expected

differences in many orders between languages Major and Min 1, a corpus of Min

1 will be created from texts in Major. The second model, on the other hand,

will throw away 30% of pages written in languages Min 1 and Min 2, but the

resulting corpous will still be be cleaner than the one from the first model. That

is why I preferred the second model .

40

3.6. LANGUAGE RECOGNITION CHAPTER 3. METHODS

3.6.4 Final Version

The final version of my language recognizer was constructed in the following way.

The Wiki Corpora was divided into two parts for training and testing. The first

five sixths were used for training and the remaining data was used for testing.

Test data for each language was divided into 500 equally large (in words) chunks.

If a chunk was greater than 500 words then extra words were deleted.

Preprocessing

All input texts — for training and testing, were processed in the following way:� All punctuation characters were removed. I only used characters class

[:punct:]97, because adding any Unicode punctuation character used in

non-latin languages significantly increased the processing time98� All digits were removed. I was using character class [:digit:]. When

a whole word with digits was deleted, almost everything was deleted in

languages without spaces - e.g. Japanese (jpn) or Chinese (zho).� Input text was divided into words. Words are separated by character class

[:space:].

For example, the input sentence ‘A, b568c de.’ is segmented into words ‘A’, ‘b’,

‘c’ and ‘de’. All words are separately divided into 4-grams with padding - e.g. ‘I’

constructs four 4-grams ‘ I’, ‘ I ’, ‘ I ’ and ‘I ’.

Training

The probability of each 4-gram is computed using the training data and only

the first 100 are preserved. These probabilities are normalized to sum up to

1. Probabilities for English (eng), French (fra) and Russian (rus) are boosted by

10%, so they sum to 1.1. All these probabilities are treated as a score and merged

into single model.

97http://www.gnu.org/software/grep/manual/grep.html
98Grep with [:punct:] executed on a 20MB file took 2 seconds, when character ‘�’ was added

processing took 10 minutes.

41

3.7. URL SEEDS CHAPTER 3. METHODS

(a) Training data

Lang Training data

L1 bbbeaccdcdaabbbbeddc

L2 bbacceeceaedcdeabbeb

(b) Training Probabilities

Lang a b c d e

L1 0.15 0.35 0.20 0.20 0.10

L1 0.15 0.25 0.20 0.10 0.30

(c) Language Model

Uni Lang Score Uni Lang Score

b L1 0.43 c L2 0.27

b L2 0.33 d L1 0.29

c L1 0.29 e L2 0.40

(d) Detection — ‘aabbecdec‘

Lang Computation Score

L1 0.00 + 0.00 + 0.43 + 0.43 + 0.00 + 0.29 + 0.29 + 0.00 + 0.29 1.73

L1 0.00 + 0.00 + 0.33 + 0.33 + 0.40 + 0.27 + 0.00 + 0.40 + 0.27 2.00

Table 3.3: Language recognition — example

Detection

During detection, the input text is preprocessed and divided into 4-grams. Scores

for each language are summed up and the language with the highest score is the

winner.

Example

A simple example for two languages, an unigrams language model and only the

first 3 unigrams are used, is shown in Table 3.3. Training data (a) is used to

compute probabilities (b). Only the first 3 most probable unigrams for each lan-

guage are preserved, normalized and stored in the language model (c). Language

detection for sample input string is presented in Table (d), so the input string

‘aabbecdec‘ would be recognized as L2.

3.7 URL Seeds

At the beginning I used external links from Wikipedia. These external links are

stored as a SQL dumps provided by Wikimedia. For retrieving these links I was

using script wikiExternalLinks.sh. I found out, that the vast majority of these

42

3.8. W2C BUILDER CHAPTER 3. METHODS

links can not be used, because pages did not no-longer exist, it were specialized

websites or databases, were written in English, etc.

So I decided to use Google Search. When the user agent in the HTTP request

header contained word ‘bot’, then Google returned HTTP Status Code 403 For-

bidden. So I used user agents used by web browser.

I used trigram frequency file from the Wiki Corpora to generate search phrases.

All trigrams with numbers or punctuation were removed and from the remaining

list trigrams on lines from 2nd to 5th percentile were chosen. I used 30 queries

to Google and stored the first hundred of links.

3.8 W2C Builder

The W2C Builder is a distributed corpus builder capable of running on multiple

machines. For building the web corpus, several components are needed:� crawler — receives an URL and returns HTML code� parser — receives HTML code and return text� detector — receives text and returns language code� master — coordinates work of all components mentioned above

The initial plan anticipated that there will be multiple masters running in the

computer laboratory, that will be coordinating all workers. But there are a few

aspects, that should be considered. Not all workers use the same resources -

parsing requires CPU, language detection requires CPU and memory for storing

language model. It is a waste of resources to transfer data over network, when it

should be completely processed on a single computer. Hence, I decided to change

my plans, and instead of a single master for the whole laboratory, a master was

executed on every machine. Support scripts were used for master execution and

storing of total results. Even though the W2C Builder is capable of running

on multiple machines, it was never really used this way, because it would not

provides any benefit.

3.8.1 Overview

The W2C Builder consists of several bash and Perl scripts that cooperate with

each other. Scripts crawler.pl, parser.pl and detector.pl are workers re-

43

3.8. W2C BUILDER CHAPTER 3. METHODS

create-corpora.sh

create-corpora.pl

keeper.sh

charter.sh

parser.pl

parser.pl

detector.pl

detector.pl

crawler.pl

crawler.pl

create-corpora.sh

Internet

Figure 3.4: W2C Builder

sponsible for crawling, text extraction and language recognition. Script create-corpora.pl

is the master, scripts keeper.sh and charter.sh are responsible for restarting

workers and drawing charts. The create-corpora.sh is only a wrapper, that is

executed by the user. The scripts are displayed in Figure 3.4.

For building a web corpus with 10 million words in Czech, it is sufficient to execute

./create-corpora.sh ces 10M.

3.8.2 Configuration

The system configuration is stored in an XML file in which it is specified, how

many workers are to be executed. For example, in the configuration file in Ex-

ample 2, it is specified, that the master runs on the localhost and listens on port

9001. One crawler, parser and detector are to be executed at the localhost. Each

task will contain 40 URLs. All workers will be executed with nice 19.

3.8.3 create-corpora.sh

The script create-corpora.sh is the main script executed by the end-user. For

example, the command create-corpora.sh ces 10M creates a corpus with 10

million words for Czech. This script is responsible for argument checking —

44

3.8. W2C BUILDER CHAPTER 3. METHODS

Example 2 W2C Builder — configuration file

<con f i g>

<master l ogg ing=”INFO”>

<host> l o c a l h o s t</ host>

<port>9001</ port>

</master>

<c raw le r s l ogg ing=”INFO”>

<node> l o c a l h o s t</node>

</ craw le r s>

<pa r s e r s l ogg ing=”INFO”>

<node> l o c a l h o s t</node>

</ pa r s e r s>

<de t e c t o r s l ogg ing=”INFO”>

<node> l o c a l h o s t</node>

</ d e t e c t o r s>

<tmpDir>/tmp/ corpora−tmp/</tmpDir>

<r e s u l tD i r>/tmp/ corpora−r e s /</ r e s u l tD i r>

<workerDir>/tmp/ corpora−workers /</workerDir>

<packS ize>40</ packS ize>

<commandPrefix>n i ce −n 19 </commandPrefix>

</ con f i g>

45

3.8. W2C BUILDER CHAPTER 3. METHODS

whether specified language code is available in the language recognizer. When

the correct language is used, then the language model and corresponding trigram

frequency list is downloaded from the hosting. The URL seed (3.7) is constructed

from the downloaded frequency lists. Then, scripts keeper.sh and charter.sh

are executed in the background. Then the master create-corpora.pl is exe-

cuted. When the master finishes keeper.sh and charter.sh are killed and the

downloaded results are packed with script packData.sh.

3.8.4 create-corpora.pl

The script create-corpora.pl is the master script for the W2C Builder and

works as a server for all workers.

During the initialization phase, the script reads the configuration file, inserts an

initial URL seed into database and builds a distribution archive. The path to the

configuration file and the file with the initial URLs are passed as an argument.

The distribution archive is a gzipped tar archive with source codes necessary for

worker execution.

All URLs are stored in the SQLite database99. I decided to use this database,

because it is widely available on all systems, and therefore it does not increase

requirements. I wouldhave preferred to use any NoSQL database, but I did not

find any widely available one without the need of additional configuration. The

same problem was with traditional databases like MySQL100 or PostgreSQL101.

Then, distribution archives are copied on nodes specified in the configuration file

and the corresponding workers are executed.

Logging is important for debugging and run analysis of complex programs, so

I decided to use log4perl102 which is compatible with log4j103. Apache Log4 is

widely used in applications written in Java, but there are also ports for other

languages. The main advantage of the widely used format is the availability of

tools for log analysis104.

99http://www.sqlite.org/
100http://www.mysql.com/
101http://www.postgresql.org/
102http://mschilli.github.com/log4perl/
103http://logging.apache.org/log4j/1.2/
104http://en.wikipedia.org/wiki/Log4j#Log Viewers

46

3.8. W2C BUILDER CHAPTER 3. METHODS

Tasks

The task is a small unit of work, which is assigned to a waiting worker. The task

is in the form of gzipped tar archives, designed in such a way, that the output

from the preceding worker in the processing pipeline is the input for the following

worker. The main file in the archive is called a protocol, columns are called

attributes. Each row contains information about a processed URL.

The crawl task contains only a protocol with URLs. URLs are read from the

database. When an URL is chosen, it is marked as ’in progress’. The crawl

downloads URLs and fills attributes actual time, URLs md5 hash, HTTP Status

code, base URL, charset and size. Downloaded files are added to the archive in

the form of urls-md5.html.

The parser task is the crawler’s output archive. It reads the protocol and search-

es for URLs with the correct attributes (HTTP status, mime-type). If a correct

URL is found, the stored HTML file is processed. Links are stored in the file

urls-md5.links, text is saved to the file urls-md5.txt and attributes for num-

ber of links, text size in characters and text size in words are filled in.

The detector task is the parsers’s output archive. It reads the protocol and

searches for URLs with the correct attributes (text size, number of links). If a

correct URL is found, a language is recognized and stored to the protocol.

When the server retrieves a result from any detector, it reads the protocol and

searches for URLs in the target language. If a URL is found, all links are added

to the database and the text is appended to the corpus. The attributes of all

URLs are stored in the database and the URL itself is marked as finished.

When a new URL is added to the database, it gets assigned a random number.

When URLs are selected for a new crawler task, then the first N according to

this random number are chosen. The purpose of this is to reduce the probability

of all the URLs in the task being from the same domain.

This design allows reprocessing finished tasks. If the text extraction or the lan-

guage detection are improved, then all finished tasks could be used as input for

the parser or detector.

47

3.8. W2C BUILDER CHAPTER 3. METHODS

URL Preprocessing and Filtering

All URLs are normalized105 to reduce the obvious duplicity on the URL level;

for example, these URLs are equal HTTP://www.Example.com/ and http://www.

example.com/.

The URL filtering was essential for increasing the yield of the crawling. In the

early versions, I started with manually written regular expressions for the most

common file types (doc, docx, xls, xlsx, etc.), which should be ignored. After a few

experiments, I found out, that this is not sufficient, because lot of links directed

to advertisement websites. I thus decided to use a list of known advertising

websites106 as blacklist. However, further investigation revealed that there are

also links to bookmarking services (digg, stumble, etc.) or social services (twitter,

facebook), which should also be ignored, so I abandoned this idea.

Also, the top-level domain names can be used for filtering. When the task is to

build a Czech corpus, all pages under TLD ‘.cz’ are good candidates (Czech is

used in the Czech Republic with the TLD ’.cz’) but pages under ’.de’ (Germany)

are not good candidates. It would be feasible to create such rules for a few major

languages, but not for hundreds. Furthermore, domains under the ‘right’ TLD are

not always worth crawling - for example search results, catalogues, advertisement

servers etc.

To solve this problem, I used an additional database with two tables - one for

TLDs and one for domains. These tables contain column for the TLD (or domain

name), the number of downloaded URLs, the number of valid URLs, the ratio of

valid URL (in percent) and information, whether this domain is ignored.

When a URL was processed, then its TLD and domain name was extracted. The

number of downloads for this TLD and domain was increased. If the URL was in

the target language, than the number of valid URLs was also increased. Then, the

ratios were updated. If the TLD was downloaded more than 20 times and has less

then 10% of valid URLs, then it was marked as ignored. Same approach was used

for domains, but at least 40 downloads were required. The ratio 10% looks very

low (should be higher), but I found out, that when this ratio was higher, lot of

domains were banned too quickly. Complex websites contain lot of sections with

categories, tags, archives, list of articles by date, author, etc. Typical situation

was, that the page with connected text was downloaded first, but lot of links

105http://en.wikipedia.org/wiki/URL normalization
106https://easylist.adblockplus.org/en/

48

3.8. W2C BUILDER CHAPTER 3. METHODS

from this page links to pages with lists of articles (tages, sections, etc.) without

connected text. So this domain got immediately marked for ignoring.

When whole task was processed, domains newly marked as ignored were used to

mark all unprocessed URLs in database as invalid (and therefore it will not be

chosen). Before any URL was added to the database, it was checked, whether it

is from ignored TLD or domain.

This filtering speeds up processing twice.

3.8.5 crawler.pl

The script crawler.pl is responsible for downloading web pages. I used CPAN

package LWPx::ParanoidAgent for downloading web pages. Downloading of URL

consist of several steps. The HTTP Header is read and HTTP Status code

and mime-type are extracted. Only pages with mime-type text/html and sta-

tus code 2XX are processed further. In the next step, the content charset is

retrieved. A complete webpage is converted to utf-8 encoding with package

Text::Iconv. If conversion fails or empty content is returned, then processing

of this URL is stopped. The converted webpage is normalized by tidy107 with

options -utf8 -asxml -b -q.

3.8.6 parser.pl

The script parser.pl is used for extracting texts and links from web pages. I

used CPAN module HTML::Parser for parsing. The parser extracts only texts of

paragraph (inside elements <p>). The text from the paragraph is added to the

result if it is considered as valid. A valid paragraph:� contains at least 8 words - ommits poorly written lists and headers:

<p>Item 1</p><p>Item 2</p><Item 3</p>.� contains less than twice more words than links - ommits menus

<p><a>Menu 1
<a><Menu 2</p>.� Does not contains too much punctuation (less than 66% of words).

All these constants were empirically selected during initial phases of development.

107http://tidy.sourceforge.net/

49

3.8. W2C BUILDER CHAPTER 3. METHODS

During testing, I found out that the amount of poorly written web pages is much

higher, than I expected. Therefore, usually only a very small amount of text was

selected. This was caused by using div tags instead of p or by dividing long

texts just by br tags. When the extracted text was smaller than 20% of complete

webpage size, then all div and td tags were treated as p.

3.8.7 detector.pl

The script detector.pl is responsible for the language detection of downloaded

texts. At the beginning, it receives the language model from the master. On-

ly texts with at least 50 words (or 300 characters) are recognized. Language

recognition is described in Section 3.6.

3.8.8 controller.pl

Program controller.pl is used for controlling and monitoring. The main com-

mands are:� nodes — returns a list of nodes along with their statistics� status — returns information about progress� terminate — terminates create-corpora.pl� addCrawler — executes a new crawler on specified computer� addParser — executes a new parser on specified computer

3.8.9 keeper.sh

The script keeper.sh is crucial for keeping the W2C Builder running. If fewer

workers, than specified in the configuration file are running, then it executes miss-

ing workers. If the job queue is empty, then it terminates create-corpora.pl.

This script also removes zombie processes.

3.8.10 charter.sh

This script charter.sh is responsible for collecting statistics, e.g. queue sizes,

the amount of downloaded URLs, the amount of processed texts, the number

50

3.9. DISTRIBUTED CORPUS BUILDING CHAPTER 3. METHODS

of running workers, etc. These statistics are stored in a file (each column has

specific meaning). This file is parsed and different charts are generated.

3.8.11 create-corpora-local.sh

The script create-corpora-local.sh is simply a wrapper for textttcreate-corpora.sh.

I found out, that in the computer laboratory, it is not possible to connect to the

localhost and that the hostname has to be specified. Therefore, this script creates

a new configuration file config-HOSTNAME.xml from the main configuration file

and replaces all strings ’localhost’ with the actual hostname. The path to this

configuration file is used as an argument for create-corpora.sh.

3.9 Distributed Corpus Building

To maximize the computer laboratory utilization, a distributed approach was

applied. In the early stages, I was executing jobs manually; typical work flow

looked like this:� Find a node, where the downloading finished or crashed.� Connect to that node.� Copy the result to the ufallab (type password (3.1)).� Delete results and temporary files.� Execute new job.

The problem with this approach was, that it required constant supervision, be-

cause every 15 minutes, some interaction was needed. I realized that this method

was not efficient in terms of human work, so I started to work on a fully auto-

matic process. On the server ufallab runs webserver Apache108 with the option

post max size109 set to 8MB. I used 7-zip110 to compress the result and to cre-

ate 4MB volumes. Then this volumes were encoded to base64111 encoding and

uploaded via HTTP Post method to the ufallab. On the ufallab was simple PHP

script, that stored received volumes on the disk and created a bash script for their

108http://httpd.apache.org/
109http://php.net/manual/en/ini.core.php\#ini.sect.data-handling
110http://www.7-zip.org/
111http://en.wikipedia.org/wiki/Base64

51

3.9. DISTRIBUTED CORPUS BUILDING CHAPTER 3. METHODS

processing. This included extraction, decoding and moving to the folder with re-

sults deletion of received files. This solution did not require human interaction,

but was very inefficient. The amount of data, that was downloaded during six

hours in the computer laboratory took almost one day to compress and upload

and another day to merge and decompress.

My final solution was a semi-automatic process, that required typing in the pass-

word only a few times a day. It consists of two scripts — fill-corpora-quotas.sh

and copy-results-to-single-node.sh.

3.9.1 fill-corpora-quotas.sh

The purpose of the script fill-corpora-quotas.sh is to build a corpus of spec-

ified size for all languages passed as an argument. It processes languages sequen-

tially and reads information about the actual corpus size112 from which it retrieves

the amount of data downloaded for the language. The size of jobs already running

for the language is added. If the total size is smaller than the quota, then a free

node is located and the W2C Builder for the language is executed. If a free node

is found and the builder executed, the size of already running jobs is increased.

For example, if there is 85MW downloaded for language X and the limit is

100MW, only 2 jobs for 20MW will be executed.

3.9.2 fill-corpora-quotas-wrapper.sh

The script fill-corpora-quotas-wrapper.sh executes the script fill-corpora-quotas.sh

for each language.

3.9.3 copy-results-to-single-node.sh

The script copy-results-to-single-node.sh copies all downloaded data to a

single computer in the computer laboratory from which it can be manually up-

loaded to ufallab.

112http://ufallab.ms.mff.cuni.cz/\~majlis/info.txt — generated by

generate-stats.sh

52

3.10. DUPLICITY DETECTION CHAPTER 3. METHODS

3.9.4 merge-results.sh

The script merge-results.sh is executed on the server ufallab. This scripts

takes all partial results and merges them into a single corpus. Each language is

treated separately, so when new results for a single language are added, only data

related to this language are processed.

In the early versions, when texts were merged, duplicate content was removed.

But when the collected data grew, it took almost three days to merge the results,

that were downloaded in the computer laboratory during a single day. It would

have not been feasible to distribute the merging to the computers in the computer

laboratory, because the bottleneck was the single disk on ufallab.

3.9.5 generate-stats.sh

The script generate-stats.sh is responsible for generating statistics about down-

loaded data. The statistics are generated in machine readable form113 for other

scripts and in human readable form114.

3.10 Duplicity Detection

When I was processing Wikipedia, I found out, that many pages contained the

same paragraphs, even though they were not duplicates. It would be wasteful to

throw away the complete web page, especially for minor languages. So instead of

page oriented approach, I decided to use paragraph oriented approach. I created

frequency list of all paragraphs and the first 1 percentile of lines were removed.

It removed the most duplicate lines. I also removed the last 1 percentile of lines,

because they contained malformed lines (“, , , , , , ,”, “)))”, etc.). The remaining

lines were shuffled. This was done by cleanFile.sh script.

Then I realized that removing duplicities on the line level could also solve the

problem with spam pages and spam comments.

A good position in search engine results is now crucial for business success. There

are thousands of pages trying to sell the same product, but users usually click

only on the top few links. Therefore, spammers are trying to manipulate with the

113http://ufallab.ms.mff.cuni.cz/\~majlis/info.txt
114http://ufallab.ms.mff.cuni.cz/\~majlis/

53

3.11. W2C CORPUS CHAPTER 3. METHODS

search engine indexing (this technique is called spamdexing115). They build link

farms116 or scaper sites117 - automatically generated websites that are tightly-knit

pages referring to each other. Content is typically generated from Wikipedia or

other publicly available resources. To trick the search engines, these websites

do not contain exact copies of original texts, but rather only mixed fractions.

These spamdexing techniques may cause problems during crawling. If breadth-

first approach is used, then the crawler may get stucked in this farm. It may also

fool the duplicity detection.

Another technique used by spammers, is spamming blogs118, where bots comment

blog spots. These comments contain links to the spammers’ website to increase

its popularity. Projects like Honey Pot119 or Akismet120 are catching millions

of spam comments every day. Spam in comments may also be the source of

duplicities and therefore decrease the corpus quality. When a blogger writes a

spot on his/her blog in language X, the text is valuable for the corpus. Later,

when a few spam comments are attached, this article will still be recognized as

language X, but it will not be so valuable, because it will also contain some

English sentences. When many such articles are added, the same comments may

be presented many times.

Removing duplicate lines may also fix the problem with incorrectly recognized

boilerplate code.

For these reasons I decided to remove duplicities on the line level instead of the

page level.

3.11 W2C Corpus

The W2C Corpus was one of the main goals of this thesis. When I reached

the quota 100 million words for many languages, I started with the cleaning

of the downloaded material. For the construction of the clean corpus the fol-

lowing scripts were used: process-results.sh, process-results-wrapper.sh

and process-results-overview.sh.

115http://en.wikipedia.org/wiki/Spamdexing
116http://en.wikipedia.org/wiki/Link_farm
117http://en.wikipedia.org/wiki/Scraper_site
118http://en.wikipedia.org/wiki/Spam_in_blogs
119http://www.projecthoneypot.org/statistics.php
120http://akismet.com/

54

3.12. CORPUS DISTRIBUTION CHAPTER 3. METHODS

3.11.1 process-results.sh

The scripts process-results.sh prepares the corpus for a single language. It

includes of downloading the raw corpus from ufallab, computing various statistics

for the Wiki Corpus, estimating the Internet, duplicity reduction and computing

statistics for the W2C Corpus.

3.11.2 process-results-wrapper.sh

The scripts process-results-wrapper.sh executes the script process-results.sh

for each language included in the raw web corpus.

3.11.3 process-results-overview.sh

The script process-results-overview.sh generates statistics about this cleaned

corpus. The statistics are generated in the machine readable form121 for other

scripts and in the human readable form122.

3.12 Corpus Distribution

At the end, is the final distribution is compiled. There are two scripts responsible

for the distribution process — build-package.sh and build-package-wrapper.sh.

The W2C-97-10 Corpus was extracted from the W2C Corpus. This corpus con-

tains 10 million words for each of 97 languages.

The unclear legal status of the downloaded material does not allow the publishing

of the W2C-97-10 Corpus on the Internet, so it was released for internal usage

only.

3.12.1 build-package.sh

The script build-package.sh downloads the complete text forhe specified lan-

guage from ufallab. From this file, only a required amount of text is extracted

and copied to the single computer.

121http://w2c.martin.majlis.cz/w2c//data/results.eye.txt
122http://w2c.martin.majlis.cz/w2c//data/process-results-overview.html

55

3.13. COMPARING WIKI VS WEB CHAPTER 3. METHODS

3.12.2 build-package-wrapper.sh

The scripts build-package-wrapper.sh executes the script build-package.sh

for each language included in the raw web corpus.

3.13 Comparing Wiki vs Web

For comparing both corpora I used the following methods:� Average Word Length� Average Sentence Length� Conditional Entropy — H(Y |X) = −
∑

x∈X

∑
y∈Y p(x, y) log p(y|x)� Conditional Perplexity — G(Y |X) = 2H(Y |X)

When I collected data for the first time, I found out, that average word length

for the Internet was higher than for Wikipedia. I found out, that this was really

caused by the bug in the parser. When the tag
 was found, it was erased

and many web pages in Japanese, were instead of paragraphs using break lines.

It was not possible to parse all pages again, because it would required 5 thousand

hours.

I found out that achieved values depends on preprocessing. For example, for

Chinese it was possible to achieve conditional entropy from 1 to almost 5. If all

words with punctuation or number were removed, then the conditional entropy

was 1, because all bigrams were seen just once. But when the numbers and

punctuation characters were treated as a separate word, then the conditional

entropy was 4.8, because many bigrams were just number with its unit.

56

4. Results

This chapter describes the collected results. At the beginning of this chapter, the

Wiki Corpus (4.1) size is presented, followed by results for the language recognizer

(4.2). Then the results for the W2C Corpus 4.3 and its comparison with the Wiki

Corpus are presented. At the end of this chapter is an estimate of the size of the

Internet.

Tables are sorted alphabetically according to the ISO 639-3 code. All used codes

are in Table B. The highest five values in each column are printed overlined and

the lowest five are printed underlined.

4.1 Wiki Corpus

The Wiki Corpus was built from Wikipedias with at least 5000 articles corre-

sponding to 122 languages. Methods used for building this corpora are described

in Section 3.5. These 122 languages are used by 4.6 billion people (2/3 of the

total population).

The complete data is presented in Table 4.1 and visualized in Figure 4.1.

The biggest outlier is the Kannada language (kan) which with just 10 thousand

articles has 118MB. It seems that many articles are complete translations of

articles from English Wikipedia123. The Kannada language is written in the

Kannada script which consumes 3 bytes per character124, so it may contains up

to 3 times less characters. A similar explanation also applies for languages Thai

(tha), Gujarati (guj) and Burmese (mya).

4.2 Language Recognition

The language recognition was trained and evaluated on the Wiki Corpus. Meth-

ods used for language detection are described in Section 3.6.

123e.g. http://kn.wikipedia.org/wiki/\%E0\%B2\%B5\%E0\%B3\%87\%E0\%B2\

%B2\%E0\%B3\%8D\%E0\%B2\%B8\%E0\%B3\%8D— and other articles about countries
124http://www.unicode.org/charts/PDF/U0C80.pdf— Kannada Script

57

4.2. LANGUAGE RECOGNITION CHAPTER 4. RESULTS

Lang Size Art Lang Size Art Lang Size Art Lang Size Art

afr 25348 18 fas 40272 159 lat 8930 56 sah 4595 8

als 15190 10 fin 55427 273 lav 17714 35 scn 4587 17

amh 3752 11 fra 99152 1126 lim 6679 7 sco 5219 7

ara 57379 152 fry 16404 21 lit 24326 136 sgs 0 13

arg 9890 26 gan 920 6 lmo 6063 21 slk 29200 126

arz 8788 7 gla 3020 8 ltz 12237 33 slv 18436 119

ast 11634 15 gle 12178 13 mal 42828 19 spa 105891 802

aze 27808 74 glg 30382 73 mar 10835 34 sqi 20443 33

bcl 1604 5 glk 2314 6 mkd 43384 47 srp 46074 145

bel 26792 38 guj 54981 21 mlg 7018 20 sun 7303 15

ben 21103 22 hat 984 53 mon 11681 6 swa 11282 22

bos 22804 31 hbs 28723 44 mri 1553 7 swe 39858 403

bpy 20720 25 heb 80910 121 msa 30708 121 tam 42169 34

bre 10688 38 hif 973 5 mya 40937 6 tat 6994 12

bug 392 9 hin 38859 99 nap 3299 43 tel 12291 48

bul 51853 119 hrv 36790 100 nds 19561 18 tgk 5123 9

cat 49694 346 hsb 2450 7 nep 19201 15 tgl 6491 53

ceb 3070 43 hun 50084 195 new 9788 70 tha 64411 68

ces 42328 201 hye 18132 14 nld 59434 738 tur 39112 170

chv 9074 13 ido 14132 22 nno 14352 71 ukr 77036 302

cos 1359 6 ina 3208 6 nor 35170 308 urd 19138 17

cym 10264 33 ind 31301 168 oci 8772 30 uzb 3779 8

dan 24431 152 isl 11370 32 oss 3324 8 vec 4543 9

deu 136894 1259 ita 73510 819 pam 2723 7 vie 48960 211

diq 1832 11 jav 5321 35 pms 5724 41 vol 19384 119

ell 72189 63 jpn 95234 759 pnb 3750 17 war 2196 102

eng 170366 3683 kan 118430 11 pol 49864 815 wln 3174 12

epo 20495 148 kat 43485 50 por 68096 690 yid 13311 9

est 22945 86 kaz 31429 56 que 1536 17 yor 1635 30

eus 16086 103 kor 38020 167 ron 28735 163 zho 48508 365

fao 2580 5 kur 8368 16 rus 130610 736

Table 4.1: Wiki Corpora — size in kB

Columns — Lang : ISO 639-3 code, Size: text size in kB after duplicity reduction, Art: number

of articles in thousands

58

4.2. LANGUAGE RECOGNITION CHAPTER 4. RESULTS

 0

 25000

 50000

 75000

 100000

 125000

 150000

 175000

 200000

 0 10 20 30 40 50 60 70 80 90 100 110 120

S
iz

e
(k

B
)

Languages

Wiki Corpora - size in kB
eng

deu
rus

kan

spa
fra
jpn

heb
ukr

ita
ell
por
thanld

ara
fin
guj
bul
hun

pol
cat
vie
zho
srp

kat
mkd
mal
ces
tam

mya
fas
swe

tur
hin

kor
hrv
nor
kaz
ind

msa
glg
slk
ron
hbs

aze
bel
afr
dan

lit

est
bos
ben
bpy
epo

sqi
nds
vol
nep
urd

slv
hye
lav
fry
eus

als
nno
ido
yid
tel

ltz
gle
mon

ast
isl

swa
mar
bre
cym
arg

new
chv

lat
arz
oci

kur
sun
mlg

tat
lim

tgl
lmo
pms

jav
sco

tgk
sah
scn
vec
uzb

amh
pnb
oss
nap
ina

wln
ceb
gla
pam

fao

hsb
glk
war
diq
yor

bcl
mri
que
cos
hat

hif
gan
bug
sgs

Figure 4.1: Wiki Corpora — size in kB

Languages are sorted according to their size in the Wiki Corpora.

122 languages in total were evaluated on 61 thousands test samples. The recogniz-

er achieved in total accuracy 0.885 (with median 0.982). The detector recognized

27 languages without any errors, 52 with accuracy higher than 0.99 and 92 higher

than 0.9. The histogram and the quantiles are presented in Table 4.2.

Complete results for all languages are in Table 4.3. Languages sorted according

to the detector’s accuracy are displayed in Figure 4.2.

There are several reasons for some of the mistakes that were made. The Wiki

Corpus was constructed without any manual interaction, so not all of the training

and the testing data was in a single language. This is because:� It is a quite common practice that a new article starts out as a copy of the

article from the English Wikipedia, and only after that it is slowly translated

into the target language. This practice is quite common especially for minor

languages125.� I suppose, that a similar practice could be used between close languages,

but I did not find any evidence.

125http://new.wikipedia.org/wiki/\%E0\%A4\%AD\%E0\%A4\%BE\%E0\%A4\%B7\

%E0\%A4\%BE

59

4.2. LANGUAGE RECOGNITION CHAPTER 4. RESULTS

(a) Results

Languages 122

Total 61000

Success 53997

Fail 7003

1st Qu. 0.912

Median 0.982

Mean 0.885

3rd Qu. 0.998

(b) Histogram

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
ou

nt

Accuracy

Accuracy

Table 4.2: Language Detection — Overview

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100 110 120

A
cc

ur
ac

y

Languages

Accuracy
vie
tam
swa

rus
por
pms

nld

mya
mlg

lit
lav
kaz
kat
kan

ita
hun
heb

fry
fra
eng

ell

deu
cym
ben
bel
ara
amh

yid

srp
nds
mon
mkd

kor
fin
fas

tur
tgl
pnb

isl
gla
ceb
bul

afr
tel
oss
ina
glg
eus
ron

mal
hat
dan
urd
aze
hye
sqi

bug
bpy
tha
lim
epo
ces
lmo

jpn
est
slk
sah
nep
chv
scn

kur
vol
new

pol
bcl
ukr
lat

guj
bre
msa
war
swe
vec

tat

ast

spa
mri
fao

ltz
sco

zho

pam

hin

jav
arg

slv
hif
cat

als

tgk

ido
hsb

nor
mar

oci

arz
cos

gle
hrv
yor

uzb

bos

glk

nap

hbs
ind
gannno

wln

diq
sun
que

Figure 4.2: Language Detection

Corresponding table — 4.3

60

4.2. LANGUAGE RECOGNITION CHAPTER 4. RESULTS

Lang Acc Sim Lang Acc Sim Lang Acc Sim

afr 0.996 fra: 0.002 hat 0.990 eng: 0.010 nor 0.752 dan: 0.230

als 0.834 fra: 0.050 hbs 0.342 bos: 0.342 oci 0.728 fra: 0.260

amh 1.000 heb 1.000 oss 0.994 rus: 0.006

ara 1.000 hif 0.864 swa: 0.122 pam 0.912 eng: 0.086

arg 0.880 glg: 0.092 hin 0.898 eng: 0.090 pms 1.000

arz 0.714 ara: 0.280 hrv 0.648 hbs: 0.208 pnb 0.996 urd: 0.004

ast 0.948 fra: 0.044 hsb 0.788 swa: 0.192 pol 0.964 swa: 0.032

aze 0.988 tur: 0.010 hun 1.000 por 1.000

bcl 0.960 tgl: 0.032 hye 0.986 eng: 0.014 que 0.074 swa: 0.890

bel 1.000 ido 0.788 ita: 0.096 ron 0.992 vec: 0.004

ben 1.000 ina 0.994 vec: 0.004 rus 1.000

bos 0.420 hrv: 0.306 ind 0.314 msa: 0.672 sah 0.978 rus: 0.022

bpy 0.984 vie: 0.012 isl 0.996 fao: 0.004 scn 0.974 ita: 0.022

bre 0.958 eng: 0.020 ita 1.000 sco 0.924 eng: 0.076

bug 0.984 swa: 0.016 jav 0.882 pam: 0.054 slk 0.978 swa: 0.006

bul 0.996 mkd: 0.004 jpn 0.980 eng: 0.006 slv 0.868 fra: 0.028

cat 0.858 fra: 0.066 kan 1.000 spa 0.932 glg: 0.060

ceb 0.996 tgl: 0.004 kat 1.000 sqi 0.984 fra: 0.006

ces 0.982 slk: 0.010 kaz 1.000 srp 0.998 mkd: 0.002

chv 0.976 rus: 0.012 kor 0.998 vie: 0.002 sun 0.114 swa: 0.392

cos 0.706 scn: 0.236 kur 0.974 eng: 0.008 swa 1.000

cym 1.000 lat 0.958 eng: 0.036 swe 0.954 nds: 0.040

dan 0.990 fry: 0.006 lav 1.000 tam 1.000

deu 1.000 lim 0.982 fra: 0.012 tat 0.952 sah: 0.032

diq 0.144 swa: 0.714 lit 1.000 tel 0.994 eng: 0.006

ell 1.000 lmo 0.980 vec: 0.020 tgk 0.800 rus: 0.150

eng 1.000 ltz 0.926 fra: 0.050 tgl 0.996 pam: 0.002

epo 0.982 fra: 0.010 mal 0.990 eng: 0.010 tha 0.982 eng: 0.018

est 0.980 swa: 0.018 mar 0.750 eng: 0.242 tur 0.996 ron: 0.002

eus 0.994 fra: 0.002 mkd 0.998 swa: 0.002 ukr 0.958 rus: 0.036

fao 0.930 scn: 0.018 mlg 1.000 urd 0.988 eng: 0.012

fas 0.998 arz: 0.002 mon 0.998 sah: 0.002 uzb 0.596 tgk: 0.314

fin 0.998 eng: 0.002 mri 0.932 swa: 0.058 vec 0.952 ita: 0.032

fra 1.000 msa 0.956 eng: 0.018 vie 1.000

fry 1.000 mya 1.000 vol 0.970 fin: 0.026

gan 0.276 zho: 0.172 nap 0.388 scn: 0.570 war 0.954 swa: 0.044

gla 0.996 eng: 0.004 nds 0.998 eng: 0.002 wln 0.202 fra: 0.794

gle 0.656 gla: 0.330 nep 0.978 eng: 0.022 yid 0.998 heb: 0.002

glg 0.994 por: 0.006 new 0.966 eng: 0.030 yor 0.642 eng: 0.134

glk 0.398 fas: 0.562 nld 1.000 zho 0.914 eng: 0.030

guj 0.958 eng: 0.042 nno 0.268 nor: 0.702

Table 4.3: Language Detection

Columns — Lang : ISO 639-3 code, Acc: accuracy and Sim: the most similar language

61

4.3. W2C CORPUS CHAPTER 4. RESULTS� Some articles contain texts in multiple languages. These articles are about

some wide spread texts such as famous passages from books, songs or an-

thems. For example, this article126 contains a single song in eleven languages

along with their transcriptions.� I preferred the best language model for constructing a web corpus, not for

achieving the highest accuracy (3.6.3).

Languages that were incorrectly recognized, have some common properties. Their

training data was small, such as Buginese (bug), Dimli (diq), (gan) Gan Chinese,

Gilaki (glk), Quechua (que), etc or there is a very similar language: a) Norwegian

(Nynorsk) (nno) and Norwegian (Bokm̊al) (nor); b) Walloon (wln) and French

(fra), both are Frech family127; Gilaki (glk) and Farsi (fas) where Gilaky was

strongly influenced from Faris128.

4.3 W2C Corpus

The W2C Corpus was the main goal of this thesis. Methods used for its con-

struction are described in Section 3.11.

4.3.1 Execution Statistics

To build this corpus, more than 100 million web pages were downloaded and

this downloading took more than 7.6 thousand hours (approximately 317 days)

of computer time. The real time as well as the number of downloaded URLs

is higher, because keeping track of these statistics was not done in the early

stages. The number of downloaded URLs may even be higher, because when a

component crashed, all actually processed web pages were lost. If time consumed

for transferring data between nodes, time needed for duplicity reduction, time for

computing quality metrics, and time for building distribution packages would be

added, then more than one year of computer time was consumed. These statistics

are summarized in Table 4.4.

The absence of statistics from the early phases caused, that some ratios, which

should be in range 0–1, are higher. They were also added at various times, so the

126http://sk.wikipedia.org/wiki/Hej,_Slov\%C3\%A1ci
127http://www.ethnologue.com/show_family.asp?subid=304-16
128http://www.ethnologue.com/show_language.asp?code=glk

62

4.4. COMPARING WIKI VS WEB CHAPTER 4. RESULTS

URL (k) 103935.444 URL L 64308.829 Ratio 0.618

Downloaded (MB) 4556544.624 Downloaded L 3335991.519 Ratio 0.732

Text (MB) 173785.867 Text L 131314.057 Ratio 0.755

Words (MW) 23278.877 Words L 17369.166 Ratio 0.746

Execution Time (h) 7620.656 Chunks 2231.000 Data (MB) 964755.611

Table 4.4: Web Corpora — execution statistics

URL: number of downloaded URLs, Downloaded: amount of downloaded data in MB, Text:

size of extracted text in MB, Words: number of words; suffix L means in target language;

Execution Time: consumed computer time in hours and Chunks: number of executed jobs

metrics that should correlate could have outliers.

4.3.2 Corpus Size

The W2C Corpus contains a total of 10.6 billion words in 97 languages, with

total size being almost 90GB. The size of the collected material is presented in

Table 4.5. The collected size differs for various languages, that is why 64 languages

have more than 100 million words, 75 more than 50 million and 97 more than 10

million of words.

Languages with the highest amount of collected material are Malayalam (mal),

Thai (tha), Japanese (jpn), Burmese (mya) and Chinese (zho). The thing all

these languages have in common is that do not use space for separating words.

There was a bug in script fill-corpora-quota.sh (3.9.1).

Table 4.6 presents the yield of crawling for different languages. Column URL

represents the amount of unique URLs from all downloaded URLs. The average

value is 0.536, but for small languages, such as Tosk Albanian (als), Haitian (hat),

Gujarati (guj), etc., it is only around 0.1. Languages, that are not presented in

this corpus have this ratio only around 0.02. This metrics represents, how big the

Internet is for specific language. Column Dup represents, how much text remains

after duplicity reduction.

4.4 Comparing Wiki vs Web

Comparing the Wiki Corpus and the Web Corpus is one of the possibilities how

to check whether reliable data was downloaded. Several different properties may

point to a language for which suspicious material was collected.

63

4.4. COMPARING WIKI VS WEB CHAPTER 4. RESULTS

ISO Size Words ISO Size Words ISO Size Words

afr 741.140 125.684 hif 98.432 18.741 nor 963.056 153.024

als 134.228 19.956 hin 1254.703 125.470 oci 305.517 30.551

amh 202.222 20.222 hrv 818.463 119.687 pam 178.985 24.565

ara 1261.417 126.141 hun 869.870 106.172 pol 920.957 119.613

ast 136.435 21.328 hye 445.940 44.594 por 804.510 119.560

aze 633.229 68.768 ina 77.814 11.891 ron 852.413 128.423

bel 1113.988 111.398 ind 782.032 113.751 rus 1963.244 196.324

ben 1489.417 148.941 isl 777.660 110.613 sah 586.165 58.616

bos 657.471 100.145 ita 959.041 135.908 scn 253.118 25.311

bre 251.128 42.527 jav 136.911 16.139 sco 511.439 84.363

bul 1268.706 126.870 jpn 3505.917 350.591 slk 970.614 132.368

cat 732.564 119.962 kan 1727.014 172.701 slv 708.846 107.655

ces 1244.336 166.429 kat 1851.489 185.148 spa 864.982 137.491

cym 496.677 81.339 kaz 1030.728 103.072 sqi 650.159 103.415

dan 714.138 109.872 kor 1258.226 125.822 srp 1037.876 103.787

deu 770.740 107.150 kur 360.505 54.793 swa 687.184 102.848

ell 1764.323 176.432 lat 451.212 58.068 swe 837.778 128.774

eng 835.683 138.522 lav 1437.623 172.097 tam 2235.889 223.588

epo 941.651 133.936 lim 237.350 32.920 tat 426.672 42.667

est 958.051 125.339 lit 1078.219 113.359 tel 1559.062 155.906

eus 702.816 86.490 lmo 215.487 34.049 tgk 511.233 51.123

fao 159.554 22.563 ltz 451.970 72.264 tgl 641.369 101.669

fas 1153.468 115.346 mal 3614.134 361.413 tha 3582.302 358.230

fin 1215.412 129.699 mar 1379.852 137.985 tur 1033.919 119.865

fra 800.397 122.345 mkd 1194.824 119.482 ukr 1210.234 121.023

fry 656.543 98.340 mlg 93.080 13.700 urd 1164.416 116.441

gla 156.379 25.486 mon 1186.394 118.639 uzb 359.062 42.583

gle 633.214 96.461 mri 54.203 10.251 vec 112.725 18.186

glg 642.326 101.009 msa 804.109 108.043 vie 648.241 105.097

guj 1039.488 103.948 mya 3132.473 313.247 yid 1045.940 104.594

hat 114.674 21.319 nds 116.133 17.179 zho 2883.315 288.331

hbs 789.628 122.806 nep 1291.312 129.131

heb 1124.252 112.425 nld 869.751 139.009

Table 4.5: Web Corpora — size

Columns — Size: size in MB, Words: words in millions

64

4.4. COMPARING WIKI VS WEB CHAPTER 4. RESULTS

ISO URL Dup ISO URL Dup ISO URL Dup ISO URL Dup

afr 0.616 0.574 fry 0.474 0.568 lav 0.610 0.649 sco 0.678 0.569

als 0.080 0.616 gla 0.112 0.629 lim 0.687 0.237 slk 0.639 0.698

amh 0.382 0.247 gle 0.181 0.705 lit 0.790 0.683 slv 0.763 0.596

ara 0.778 0.773 glg 0.520 0.782 lmo 0.292 0.351 spa 0.592 0.898

ast 0.460 0.338 guj 0.106 0.869 ltz 0.295 0.482 sqi 0.531 0.889

aze 0.457 0.761 hat 0.081 0.758 mal 0.538 0.920 srp 0.434 0.746

bel 0.369 0.770 hbs 0.399 0.678 mar 0.408 0.854 swa 0.268 0.648

ben 0.630 0.791 heb 0.830 0.550 mkd 0.579 0.621 swe 0.741 0.744

bos 0.651 0.658 hif 0.109 0.949 mlg 0.113 0.373 tam 0.590 0.856

bre 0.166 0.268 hin 0.580 0.916 mon 0.440 0.869 tat 0.299 0.561

bul 0.641 0.789 hrv 0.394 0.524 mri 0.127 0.671 tel 0.496 0.919

cat 0.587 0.755 hun 0.704 0.733 msa 0.633 0.716 tgk 0.366 0.418

ces 0.740 0.564 hye 0.174 0.606 mya 0.464 0.871 tgl 0.759 0.571

cym 0.796 0.298 ina 0.822 0.096 nds 0.116 0.441 tha 0.559 0.690

dan 0.704 0.710 ind 0.392 0.696 nep 0.375 0.919 tur 0.863 0.514

deu 1.047 0.567 isl 0.626 0.915 nld 0.854 0.747 ukr 0.721 0.578

ell 0.796 0.877 ita 0.853 0.800 nor 0.604 0.531 urd 0.434 0.766

eng 1.095 0.675 jav 0.378 0.167 oci 0.319 0.558 uzb 0.148 0.873

epo 0.688 0.559 jpn 0.646 0.756 pam 0.687 0.259 vec 0.321 0.256

est 0.623 0.755 kan 0.446 0.886 pol 0.663 0.628 vie 0.779 0.560

eus 0.685 0.379 kat 0.694 0.565 por 0.737 0.575 yid 0.644 0.811

fao 0.131 0.847 kaz 0.833 0.239 ron 0.632 0.776 zho 0.580 0.903

fas 0.722 0.820 kor 0.673 0.710 rus 0.602 0.816

fin 0.761 0.797 kur 0.171 0.706 sah 0.151 0.788

fra 0.970 0.634 lat 0.551 0.631 scn 0.778 0.253

Table 4.6: Web Corpus — yield

URL: Ratio between unique and all downloaded URLs; Dup: Ratio between text size after

removing duplicate URLs and after duplicity reduction;

65

4.4. COMPARING WIKI VS WEB CHAPTER 4. RESULTS

 6

 7

 8

 9

 10

 11

 6 7 8 9 10 11

W
eb

Wiki

Average Word Length

afr

als

ara

ast

aze

bel

ben

bos
bre

bul
cat

ces

cym

dan

deu

ell

eng

epo est

eus

fao

fas

fra

fry

gla

gle

glg

guj

hat

hbs

heb hin

hrv

hun

hye

ina
ind

isl

ita

jav kan

katkaz

kur

lat

lav
lim

lit

lmo

ltz

mar

mkd
mlg

mon

mri

msa nds

nep

nld nor

oci

pam

pol

por

ron

rus

sah

scn

sco

slk
slv

spa

sqi
srp

swa

swe

tam

tat

tel

tgk

tgl

turukr

uzb

vec

vie

yid

zho

Figure 4.3: Wiki vs Web — average word length

Raw data are in Table C.1

For comparing Wikipedia and the Internet are used following properties:� Average Word Length (4.4.1)� Average Sentence Length (4.4.2� Conditional Entropy and Perplexity (4.4.3)

The values presented should be used with caution, because their main purpose

was only the comparison of both corpora. The numbers can be significantly

changed by different preprocessing, as was shown in Section 3.13.

4.4.1 Average Word Length

The average word length may reveal problems caused by HTML parsing. The

raw data are presented in Table C.1 and visualized in Figure 4.3.

The biggest outlier is Japanese (jpn), where the length differs about 66%, but it

was caused by the bug.

66

4.4. COMPARING WIKI VS WEB CHAPTER 4. RESULTS

 10

 15

 20

 25

 30

 10 15 20 25 30

W
eb

Wiki

Average sentence Length

afr

als

ast

azebel

bos

bre

bul

cat

ces

cym

dan

deu

ell eng

epo

est

eus
fao

fas

fin

fra

fry

gla
gle glg

guj

hat

hbs
heb

hif

hrv

hun

ina

ind

isl

ita

jav

kan

kat

kaz

kor

kurlat

lav lim

lit

lmo
ltz

mal

mar

mkd

mlg

mon

mri

msa

nds
nld

nor

oci

pam

pol

por

ron

rus

sah

scn

sco

slk
slv

spasqi

srp swa

swe

tam

tat

tel

tgk

tgl

tha

tur
ukr
uzb

vec

vie

yid

zho

Figure 4.4: Wiki vs Web — average sentence length

Raw data are in Table C.2

4.4.2 Average Sentence Length

The average sentence length is presented in Table C.2 and visualized in Figure 4.4.

The biggest outliers in this metric are Urdu (urd) and Japanese (jpn). The

average sentence length for Urdu is 429.52 in Wikipedia and only 151.94 on the

Internet. Checking any page on Urdu Wikipedia129 reveals, that it does not

contain any dot, so whole paragraph is treated as a single sentence, whereas

extracted segments from the Internet are much shorter and this is causing the

difference. The Japanese is on the opposite site, sentences extracted from the

Internet are 2.54 times longer than Wikipedia ones. When Japanese Wikipedia

is checked130, it reveals that dots are also missing. I am not able to explain, why

this happened.

4.4.3 Conditional Entropy and Conditional Perplexity

The conditional entropy is presented in Table C.3 and visualized in Figure 4.5.

The average ratio between the conditional perplexity computed for the Wiki

129http://ur.wikipedia.org/wiki/
130http://ja.wikipedia.org/

67

4.4. COMPARING WIKI VS WEB CHAPTER 4. RESULTS

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6 7

W
eb

Wiki

Conditinal entropy afr

als

amh

ara

ast

aze

belben

bos

bre

bul

cat

cescym

dan

deuell

eng
epo

est

eusfao

fas

fin

fra

fry

gla

gle

glg

guj
hat

hbs

heb

hif

hin

hrvhun

hye

ina

ind

isl
ita

jav

jpn

kan

kat
kazkor

kur

lat

lav

lim
lit

lmo

ltz

mal

mar

mkd
mlg

monmri

msa

mya

nds

nep

nld
nor

oci

pam

pol
por

ron

rus

sah

scn

sco
slk

slv

spa
sqi

srp swa

swe

tam

tat

tel

tgk

tgl

tha

tur

ukr

urd

uzb vec

vie

yid

zho

Figure 4.5: Wiki vs Web — conditional entropy

Corpus and the Web Corpus is 0.98, which signalizes, that the downloaded quite

corresponds to the data retrieved from Wikipedia. On the one side are Maori

(mri) and Malagasy (mlg) with ratio over 2 and on the other side Sicilian with

ratio bellow 0.5.

The conditional perplexity is presented in Table C.4 and visualized in Figure 4.6.

4.4.4 Conclusions

All outliers have in common, that they are either from minor languages, such as

Occitan (oci), Sicilian (scn), Maori (mri), Malagasy (mlg), for which low quality

texts were collected, or they are written in non-latin scripts, such as Japanese

(jpn), Chinese (zho), Nepali (nep), which are sensitive to preprocessing.

When different clustering algorithms were applied, then languages in same clus-

ters does not have too much common properties.

68

4.5. INTERNET SIZE CHAPTER 4. RESULTS

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120

W
eb

Wiki

Conditinal perplexity

afr

als

amh

ara

ast

aze

belben

bos

bre

bul

cat

ces
cym

dan

deuell

eng

epo

est

eusfao

fas

fin

fra

fry

gla

gle

glg

guj

hat

hbs

heb

hif

hin

hrvhun

hye

ina

ind

isl

ita

jav

jpn

kan

kat
kazkor

kur

lat

lav

lim
lit

lmo

ltz

mal

mar

mkd

mlg

monmri

msa

mya

nds

nep

nld

nor

oci
pam

pol

por

ron

rus

sah

scn

sco

slk

slv

spa

sqi

srp swa

swe

tam

tat

tel

tgk

tgl

tha

tur

ukr

urd

uzb vec

vie

yid

zho

Figure 4.6: Wiki vs Web — conditional perplexity

4.5 Internet Size

The W2C Corpus was then used to estimate the Internet size in gigabytes of

texts and number of pages. Table 4.7 presents size of the Internet in gigabytes

and Table 4.8 in million of pages. The total size of all texts was estimated to

3.2PB and the total number of pages to 1.3 trillion pages. Pages written in

English occupy 57% of the Internet, Russian 9%, Spanish 7%, French 4% and

Arabic as well as German 2%.

Estimated numbers are much higher than they should be according to available

information. This overestimation is caused by the search query selection, where

phrases from Wikipedia were used, for example when 15 word English query is

used hundreds of results are return.

69

4.5. INTERNET SIZE CHAPTER 4. RESULTS

ISO Size Part ISO Size Part ISO Size Part

afr 92.303 0.000 hif 0.040 0.000 nor 6215.762 0.001

als 0.036 0.000 hin 2651.988 0.000 oci 13.364 0.000

amh 0.004 0.000 hrv 12190.795 0.003 pam 0.004 0.000

ara 89416.080 0.027 hun 3.769 0.000 pol 51055.931 0.015

ast 9.258 0.000 hye 166.321 0.000 por 45789.010 0.014

aze 602.170 0.000 ina 0.038 0.000 ron 7717.890 0.002

bel 269.672 0.000 ind 51542.119 0.016 rus 313035.213 0.097

ben 0.024 0.000 isl 3331.202 0.001 sah 0.012 0.000

bos 2452.213 0.000 ita 27496.694 0.008 scn 0.265 0.000

bre 0.056 0.000 jav 0.016 0.000 sco 518.982 0.000

bul 15172.081 0.004 jpn 1690.396 0.000 slk 10.676 0.000

cat 9771.115 0.003 kan 7.579 0.000 slv 7.230 0.000

ces 8663.921 0.002 kat 2065.458 0.000 spa 208703.996 0.064

cym 92.672 0.000 kaz 43.548 0.000 sqi 1252.158 0.000

dan 6228.309 0.001 kor 0.368 0.000 srp 1347.320 0.000

deu 84322.440 0.026 kur 1.729 0.000 swa 0.096 0.000

ell 27149.268 0.008 lat 0.589 0.000 swe 12886.093 0.004

eng 1838631.170 0.571 lav 1159.025 0.000 tam 0.080 0.000

epo 46.632 0.000 lim 0.013 0.000 tat 9.852 0.000

est 630.203 0.000 lit 10.901 0.000 tel 0.028 0.000

eus 2.777 0.000 lmo 0.004 0.000 tgk 0.012 0.000

fao 0.999 0.000 ltz 1.878 0.000 tgl 174.601 0.000

fas 39487.743 0.012 mal 19.729 0.000 tha 0.116 0.000

fin 1952.586 0.000 mar 0.072 0.000 tur 25279.695 0.007

fra 150028.022 0.046 mkd 2373.767 0.000 ukr 21913.459 0.006

fry 0.425 0.000 mlg 0.000 0.000 urd 371.984 0.000

gla 0.065 0.000 mon 401.265 0.000 uzb 0.080 0.000

gle 25.420 0.000 mri 0.086 0.000 vec 0.075 0.000

glg 1174.611 0.000 msa 22167.686 0.006 vie 50267.527 0.015

guj 0.433 0.000 mya 0.084 0.000 yid 0.211 0.000

hat 0.000 0.000 nds 0.020 0.000 zho 12402.360 0.003

hbs 7632.790 0.002 nep 0.005 0.000

heb 11154.272 0.003 nld 36260.232 0.011

Table 4.7: Internet — size in GB

70

4.5. INTERNET SIZE CHAPTER 4. RESULTS

ISO Pages Part ISO Pages Part ISO Pages Part

afr 117.781 0.000 hif 0.003 0.000 nor 5333.773 0.003

als 0.006 0.000 hin 227.653 0.000 oci 22.174 0.000

amh 0.005 0.000 hrv 10729.230 0.007 pam 0.003 0.000

ara 26625.484 0.019 hun 1.938 0.000 pol 22574.016 0.016

ast 42.338 0.000 hye 63.672 0.000 por 32832.643 0.024

aze 184.932 0.000 ina 0.901 0.000 ron 3270.138 0.002

bel 80.743 0.000 ind 22146.039 0.016 rus 63948.004 0.047

ben 0.006 0.000 isl 813.613 0.000 sah 0.005 0.000

bos 1617.746 0.001 ita 16645.993 0.012 scn 2.021 0.000

bre 0.026 0.000 jav 0.015 0.000 sco 485.694 0.000

bul 3413.059 0.002 jpn 87.777 0.000 slk 4.916 0.000

cat 4016.530 0.002 kan 0.456 0.000 slv 7.719 0.000

ces 4416.463 0.003 kat 639.687 0.000 spa 54071.089 0.040

cym 595.061 0.000 kaz 41.593 0.000 sqi 240.534 0.000

dan 3706.546 0.002 kor 0.047 0.000 srp 319.285 0.000

deu 53575.887 0.039 kur 0.792 0.000 swa 0.042 0.000

ell 6163.909 0.004 lat 0.926 0.000 swe 5414.419 0.004

eng 779025.248 0.578 lav 736.307 0.000 tam 0.009 0.000

epo 60.814 0.000 lim 0.103 0.000 tat 6.454 0.000

est 301.061 0.000 lit 7.997 0.000 tel 0.012 0.000

eus 8.040 0.000 lmo 0.003 0.000 tgk 0.006 0.000

fao 0.606 0.000 ltz 1.231 0.000 tgl 318.172 0.000

fas 8980.481 0.006 mal 1.097 0.000 tha 0.009 0.000

fin 1356.983 0.001 mar 0.034 0.000 tur 26286.978 0.019

fra 85847.997 0.063 mkd 950.037 0.000 ukr 9853.784 0.007

fry 0.639 0.000 mlg 0.000 0.000 urd 69.210 0.000

gla 0.051 0.000 mon 70.244 0.000 uzb 0.041 0.000

gle 16.184 0.000 mri 0.114 0.000 vec 0.243 0.000

glg 578.176 0.000 msa 11391.889 0.008 vie 45520.137 0.033

guj 0.050 0.000 mya 0.003 0.000 yid 0.048 0.000

hat 0.009 0.000 nds 0.004 0.000 zho 1261.691 0.000

hbs 2697.391 0.002 nep 0.011 0.000

heb 8187.467 0.006 nld 18858.003 0.014

Table 4.8: Internet — page counts

71

5. Conclusions

The Web Corpus ‘W2C’ consists of at least 10 million words for each of the

included 97 languages out of which 63 contain more than 100 million words.

For the purpose of corpus constructing tools for collecting metadata, building

corpus from Wikipedia, language recognition and distributed crawling, duplicity

reduction and statistical analysis were developed.

The language metadata is automatically extracted from Ethnologue andWikipedia

and stored in the database. The collected metadata is used and extended by all

the components.

Wikipedia was used as the source for the initial corpus. The Wiki Corpus was

constructed from Wikipedias with at least 5 thousand articles. The Wiki Cor-

pus contains 20 thousand articles (or as many as available) for 122 languages.

This corpus served for training and testing of a language recognizer, as well as a

baseline for comparison with the web corpus.

A language recognizer for 122 languages was developed. The recognizer was able

to achieve 0.885 accuracy (median 0.982). The model used in the recognizer

was specially tuned for corpus building, which may have decreased its overall

accuracy.

The Web Corpus was build from more than 100 million pages, which were down-

loaded in the computer laboratory on 35 computers with a total execution time

over a year. The computer laboratory is used by faculty students, so the developed

solution had to be able to recover from failures, caused by memory exhaustion

and computer restarts.

The raw corpus of downloaded data contained at least 10 million words for each of

the 106 languages included at that time and for 96 of them more than 100 million

words. Because the quality of the resulting corpus was important too, only 97

languages remained with size higher than 10 million of words after duplicity

reduction. The total corpus size is 10.5 billion words, almost 90GB of texts.

Both corpora were statistically analysed and compared.

The unclear legal status of downloaded material does not allow publishing of the

Web Corpus on the Internet, so the W2C-97-10 corpus with 10M word for 97

languages was released for internal usage only.

72

CHAPTER 5. CONCLUSIONS

One of the goals, building corpus for hundreds of languages, was not achieved.

There are only around 60 languages, that are used in industrialized countries,

making them possible to be downloaded without any special effort. For the

next 30 languages, it was possible to build the corpus with the required size,

but a lot of duplicate content was downloaded. It would be possible to achieve

the quota one hundred of languages for the cost of decreasing corpus quality.

Downloading hundreds of languages would require collecting initial corpus for this

amount of languages, which are not easily accessible. If this initial corpora would

be available, highly specialized language recognizer for each language would be

necessary, because only very short text fragments would be analysed. And even if

this recognizer would be available, it still could not be possible to automatically

download the texts, because they are not available on-line.

All downloaded data, more than 4.5TB, were preserved, so that they can be inves-

tigated further and more information about real language usage can be revealed,

such as distribution of encodings or scripts for each language. Different tools for

text extraction, language recognition and duplicity detection may be plugged-in.

If the text extractor could extract texts segments instead of complete pages, it

would be possible to increase corpus size for minor languages. A different set-up

of existing tools allows constructing corpora for many purposes, from the hight

quality ones for manual usage to the low quality ones for machine processing.

Also, a specialized single topic corpus could be compiled.

Also, many partial topics can be investigated in a more detailed way. For exam-

ple the language recognition problem, where dozens of parameters and methods

combinations were ad-hoc tested, requires more rigorous approach. The text ex-

traction problem could be studied as a complex problem together with duplicity

reduction. Where a much simpler extractor does not remove all boilerplate code,

but with duplicity reduction on line level, this boilerplate code is removed. All

these methods could also be investigated from a performance view, where sim-

pler methods could save weeks of computation for the cost of slightly decreased

quality.

The W2C Corpus is a unique data source for linguists, because it outclasses all

published works both in the size of collected material and the number of covered

languages. The collected data may be used for comparative analysis of related

languages, building language models for various applications such as machine

translation, speech recognition, spell checking, etc.

73

A. DVD Content

All source codes, the W2C Corpus and text of this thesis are available on the

DVD. The DVD has the following directory structure:� corpus — the W2C-97-10 Corpus — 10 million words for 97 languages� text — text of this thesis in version for viewing and printing� source — contains the tarball with source code

The source codes extracted from the tarball has the following content:� checkRequirements.sh — checks, whether all required programs and li-

braries are available� bin — symlinks for scripts located in pipes, visualizations and tools� builder — directory containing the W2C Builder� data — retrieved and generated files, all scripts are storing results to this

folder� experiments — scripts for experiments� pipes — scripts that read standard input and modified output print out

to standard output� scripts — scripts that are useful on specific environment — the computer

laboratory or the server ufallab� tools — scripts for specific tasks

– aspellCoverage — scripts for computing coverage of an aspell dictio-

nary

– crawlerSimple — simple crawler for downloading web pages

– ethnologueParser — scripts for parsing the Ethnologue website

– fillLangDB — scripts for filling the metadata database

– internetSize — script for estimating the Internet size

– langDetect — scripts for training and testing language recognizer

– langList — scripts for parsing Wikipedia

– search — scripts for retrieving results from search engines

– utils — scripts with miscellaneous purposes

– webAPI — command line client to the database

– wikiCorpora — scripts for building the corpus from the Wikipedia

dumps

74

APPENDIX A. DVD CONTENT

– wikiExternalLinks — scripts for extraction external links fromWikipedia

– wikiMiniCorpora— scripts for building the corpus from theWikipedia

pages� visualizations — scripts that are used to visualization, formatting or

analysis of the input file

75

B. List of Languages

All information are automatically extracted from ethnologue131.

Column — Lang : ISO 639-3 code, Name: language name, Pop: population in

thousands, WO: Word Order typology and Script: used script

Table B.1: List of Languages

ISO Name Pop Type Classification

afr Afrikaans 4934 Liv Indo-European, Germanic, West

als Tosk Albanian 3035 Liv Indo-European, Albanian, Tosk

amh Amharic 17528 Liv Afro-Asiatic, Semitic, South

ara Arabic 221002 Liv Afro-Asiatic, Semitic, Central

arg Aragonese 2000 Liv Indo-European, Italic, Romance

arz Egyptian Arabic 53990 Liv Afro-Asiatic, Semitic, Central

ast Asturian 125 Liv Indo-European, Italic, Romance

aze Azerbaijani 19147 Liv Altaic, Turkic, Southern

bcl Central Bicolano 2500 Liv Austronesian, Malayo-Polynesian, Philipp

bel Belarusian 8618 Liv Indo-European, Slavic, East

ben Bengali 181272 Liv Indo-European, Indo-Iranian, Indo-Aryan

bos Bosnian 2203 Liv Indo-European, Slavic, South

bpy Bishnupriya 115 Liv Indo-European, Indo-Iranian, Indo-Aryan

bre Breton 500 Liv Indo-European, Celtic, Insular

bug Buginese 3500 Liv Austronesian, Malayo-Polynesian, South S

bul Bulgarian 9097 Liv Indo-European, Slavic, South

cat Catalan 11530 Liv Indo-European, Italic, Romance

ceb Cebuano 15807 Liv Austronesian, Malayo-Polynesian, Philipp

ces Czech 9490 Liv Indo-European, Slavic, West

chv Chuvash 1674 Liv Altaic, Turkic, Bolgar

cos Corsican 402 Liv Indo-European, Italic, Romance

cym Welsh 537 Liv Indo-European, Celtic, Insular

dan Danish 5581 Liv Indo-European, Germanic, North

deu German 90294 Liv Indo-European, Germanic, West

diq Dimli 1000 Liv Indo-European, Indo-Iranian, Iranian

ell Modern Greek 13084 Liv Indo-European, Greek, Attic

eng English 328008 Liv Indo-European, Germanic, West

epo Esperanto 0 Con Constructed language

est Estonian 1048 Liv Uralic, Finnic

eus Basque 658 Liv Basque

fao Faroese 48 Liv Indo-European, Germanic, North

fas Persian 31381 Liv Indo-European, Indo-Iranian, Iranian

Continued on Next Page. . .

131http://ethnologue.org

76

APPENDIX B. LIST OF LANGUAGES

ISO Name Pop Type Classification

fin Finnish 5009 Liv Uralic, Finnic

fra French 67838 Liv Indo-European, Italic, Romance

fry Western Frisian 467 Liv Indo-European, Germanic, West

gan Gan Chinese 20600 Liv Sino-Tibetan, Chinese

gla Scottish Gaelic 66 Liv Indo-European, Celtic, Insular

gle Irish 391 Liv Indo-European, Celtic, Insular

glg Galician 3185 Liv Indo-European, Italic, Romance

glk Gilaki 3270 Liv Indo-European, Indo-Iranian, Iranian

guj Gujarati 46493 Liv Indo-European, Indo-Iranian, Indo-Aryan

hat Haitian 7701 Liv Creole, French based

hbs Serbo-Croatian 16351 Liv Indo-European, Slavic, South

heb Hebrew 5316 Liv Afro-Asiatic, Semitic, Central

hif Fiji Hindi 380 Liv Indo-European, Indo-Iranian, Indo-Aryan

hin Hindi 181676 Liv Indo-European, Indo-Iranian, Indo-Aryan

hrv Croatian 5546 Liv Indo-European, Slavic, South

hsb Upper Sorbian 18 Liv Indo-European, Slavic, West

hun Hungarian 12501 Liv Uralic

hye Armenian 6376 Liv Indo-European, Armenian

ido Ido 0 Con

ina Interlingua 0 Con

ind Indonesian 23187 Liv Austronesian, Malayo-Polynesian, Malayo-

isl Icelandic 238 Liv Indo-European, Germanic, North

ita Italian 61696 Liv Indo-European, Italic, Romance

jav Javanese 84608 Liv Austronesian, Malayo-Polynesian, Javanes

jpn Japanese 122080 Liv Japonic

kan Kannada 35327 Liv Dravidian, Southern, Tamil-Kannada

kat Georgian 4255 Liv Kartvelian, Georgian

kaz Kazakh 8331 Liv Altaic, Turkic, Western

kor Korean 66305 Liv Language isolate

kur Kurdish 16025 Liv Indo-European, Indo-Iranian, Iranian

lat Latin 0 Anc Indo-European, Italic, Latino-Faliscan

lav Latvian 1504 Liv Indo-European, Baltic, Eastern

lim Limburgan 1300 Liv Indo-European, Germanic, West

lit Lithuanian 3154 Liv Indo-European, Baltic, Eastern

lmo Lombard 9133 Liv Indo-European, Italic, Romance

ltz Luxembourgish 320 Liv Indo-European, Germanic, West

mal Malayalam 35893 Liv Dravidian, Southern, Tamil-Kannada

mar Marathi 68061 Liv Indo-European, Indo-Iranian, Indo-Aryan

mkd Macedonian 2113 Liv Indo-European, Slavic, South

mlg Malagasy 14736 Liv Austronesian, Malayo-Polynesian, Greater

mon Mongolian 5720 Liv Altaic, Mongolic, Eastern

mri Maori 60 Liv Austronesian, Malayo-Polynesian, Central

Continued on Next Page. . .

77

APPENDIX B. LIST OF LANGUAGES

ISO Name Pop Type Classification

msa Malay 39144 Liv Austronesian, Malayo-Polynesian, Malayo-

mya Burmese 32319 Liv Sino-Tibetan, Tibeto-Burman, Lolo-Burmes

nap Neapolitan 7050 Liv Indo-European, Italic, Romance

nds Low German 1 Liv Indo-European, Germanic, West

nep Nepali 13875 Liv Indo-European, Indo-Iranian, Indo-Aryan

new Newari 839 Liv Sino-Tibetan, Tibeto-Burman, Himalayish

nld Dutch 21730 Liv Indo-European, Germanic, West

nno Norwegian Nynorsk 0 Liv

nor Norwegian 4640 Liv Indo-European, Germanic, North

oci Occitan 2048 Liv Indo-European, Italic, Romance

oss Ossetian 641 Liv Indo-European, Indo-Iranian, Iranian

pam Pampanga 1905 Liv Austronesian, Malayo-Polynesian, Philipp

pms Piemontese 3110 Liv Indo-European, Italic, Romance

pnb Western Panjabi 62648 Liv Indo-European, Indo-Iranian, Indo-Aryan

pol Polish 39990 Liv Indo-European, Slavic, West

por Portuguese 177981 Liv Indo-European, Italic, Romance

que Quechua 10098 Liv Quechuan, Quechua II, C

ron Romanian 23351 Liv Indo-European, Italic, Romance

rus Russian 143553 Liv Indo-European, Slavic, East

sah Yakut 443 Liv Altaic, Turkic, Northern

scn Sicilian 4830 Liv Indo-European, Italic, Romance

sco Scots 200 Liv Indo-European, Germanic, West

sgs Samogitian 0 Liv

slk Slovak 5019 Liv Indo-European, Slavic, West

slv Slovenian 1909 Liv Indo-European, Slavic, South

spa Spanish 328518 Liv Indo-European, Italic, Romance

sqi Albanian 5825 Liv Indo-European, Albanian, Gheg

srp Serbian 7020 Liv Indo-European, Slavic, South

sun Sundanese 34000 Liv Austronesian, Malayo-Polynesian, Malayo-

swa Swahili 730 Liv Niger-Congo, Atlantic-Congo, Volta-Congo

swe Swedish 8311 Liv Indo-European, Germanic, North

tam Tamil 65675 Liv Dravidian, Southern, Tamil-Kannada

tat Tatar 6496 Liv Altaic, Turkic, Western

tel Telugu 69758 Liv Dravidian, South-Central, Telugu

tgk Tajik 4457 Liv Indo-European, Indo-Iranian, Iranian

tgl Tagalog 23853 Liv Austronesian, Malayo-Polynesian, Philipp

tha Thai 20362 Liv Tai-Kadai, Kam-Tai, Be-Tai

tur Turkish 50750 Liv Altaic, Turkic, Southern

ukr Ukrainian 37029 Liv Indo-European, Slavic, East

urd Urdu 60586 Liv Indo-European, Indo-Iranian, Indo-Aryan

uzb Uzbek 20250 Liv Altaic, Turkic, Eastern

vec Venetian 6230 Liv Indo-European, Italic, Romance

Continued on Next Page. . .

78

APPENDIX B. LIST OF LANGUAGES

ISO Name Pop Type Classification

vie Vietnamese 68634 Liv Austro-Asiatic, Mon-Khmer, Viet-Muong

vol Volapük 0 Con

war Waray 2570 Liv Austronesian, Malayo-Polynesian, Philipp

wln Walloon 1120 Liv Indo-European, Italic, Romance

yid Yiddish 2255 Liv Indo-European, Germanic, West

yor Yoruba 19380 Liv Niger-Congo, Atlantic-Congo, Volta-Congo

zho Chinese 1212515 Liv Sino-Tibetan, Chinese

79

C. Wiki vs Web

This appendix contains raw data for comparing the Wiki Corpus and the W2C

Corpus.� Average Word Length (C.1)� Average Sentence Length (C.2� Conditional Entropy (C.3)� Conditional Perplexity (C.4)

80

APPENDIX C. WIKI VS WEB

ISO Wiki Web R ISO Wiki Web R ISO Wiki Web R

afr 9.30 9.44 1.01 hif 6.41 5.99 0.93 nor 9.88 9.97 1.01

als 9.23 9.69 1.05 hin 6.95 6.67 0.96 oci 7.64 10.31 1.35

amh 4.78 5.19 1.09 hrv 8.33 8.65 1.04 pam 7.39 8.43 1.14

ara 6.33 6.94 1.10 hun 9.67 10.29 1.06 pol 8.88 9.55 1.08

ast 7.88 8.50 1.08 hye 8.92 9.31 1.04 por 7.99 8.43 1.06

aze 8.53 9.24 1.08 ina 7.76 8.56 1.10 ron 8.10 8.83 1.09

bel 8.56 8.80 1.03 ind 7.48 8.42 1.13 rus 8.97 9.68 1.08

ben 7.86 7.60 0.97 isl 9.40 9.27 0.99 sah 8.45 9.27 1.10

bos 8.31 8.50 1.02 ita 8.16 8.96 1.10 scn 7.99 10.40 1.30

bre 7.21 8.70 1.21 jav 7.39 9.66 1.31 sco 7.10 7.94 1.12

bul 8.35 8.44 1.01 jpn 7.40 12.30 1.66 slk 8.52 8.81 1.03

cat 7.79 8.61 1.11 kan 10.20 9.59 0.94 slv 8.12 8.66 1.07

ces 8.35 8.72 1.04 kat 8.84 9.12 1.03 spa 8.17 9.04 1.11

cym 7.48 8.41 1.12 kaz 8.62 9.10 1.05 sqi 7.91 8.07 1.02

dan 9.82 10.19 1.04 kor 4.25 5.07 1.19 srp 8.10 8.29 1.02

deu 10.89 10.78 0.99 kur 7.14 7.46 1.04 swa 8.13 8.54 1.05

ell 8.58 9.63 1.12 lat 8.54 9.88 1.16 swe 9.85 9.99 1.01

eng 7.55 8.44 1.12 lav 8.51 9.12 1.07 tam 10.65 10.62 1.00

epo 8.26 10.18 1.23 lim 8.66 9.22 1.06 tat 8.01 8.34 1.04

est 9.85 10.27 1.04 lit 8.79 9.51 1.08 tel 9.01 9.15 1.02

eus 9.06 10.57 1.17 lmo 7.07 7.99 1.13 tgk 7.33 7.84 1.07

fao 8.57 8.86 1.03 ltz 9.45 9.72 1.03 tgl 7.80 8.44 1.08

fas 6.65 6.96 1.05 mal 12.08 12.37 1.02 tha 28.14 23.65 0.84

fin 11.19 11.04 0.99 mar 8.04 7.90 0.98 tur 8.86 9.46 1.07

fra 7.84 8.71 1.11 mkd 8.30 8.61 1.04 ukr 8.74 9.50 1.09

fry 9.12 10.38 1.14 mlg 7.18 8.46 1.18 urd 5.92 6.43 1.09

gla 7.45 7.69 1.03 mon 7.75 7.91 1.02 uzb 8.35 8.88 1.06

gle 8.16 8.55 1.05 mri 6.97 7.18 1.03 vec 7.45 7.84 1.05

glg 8.04 8.92 1.11 msa 7.42 10.09 1.36 vie 6.08 6.03 0.99

guj 7.40 7.28 0.98 mya 14.28 13.28 0.93 yid 7.42 7.27 0.98

hat 6.47 6.76 1.05 nds 9.32 10.13 1.09 zho 6.77 7.76 1.15

hbs 8.29 8.44 1.02 nep 7.66 8.05 1.05

heb 6.31 6.60 1.05 nld 9.59 9.98 1.04

Table C.1: Wiki vs Web — average word length

81

APPENDIX C. WIKI VS WEB

ISO Wiki Web R ISO Wiki Web R ISO Wiki Web R

afr 19.86 17.68 0.89 hif 15.34 18.87 1.23 nor 15.71 13.87 0.88

als 15.45 15.06 0.97 hin 63.36 34.27 0.54 oci 21.14 22.80 1.08

amh 65.34 57.07 0.87 hrv 14.70 17.05 1.16 pam 17.13 18.01 1.05

ara 24.45 30.85 1.26 hun 13.93 15.23 1.09 pol 14.92 14.02 0.94

ast 21.91 22.24 1.01 hye 64.22 53.80 0.84 por 22.32 16.81 0.75

aze 13.07 13.57 1.04 ina 19.59 17.55 0.90 ron 20.06 19.68 0.98

bel 12.10 13.83 1.14 ind 17.37 14.75 0.85 rus 15.50 15.83 1.02

ben 175.91 70.08 0.40 isl 14.89 16.44 1.10 sah 9.39 11.33 1.21

bos 14.97 17.51 1.17 ita 25.55 18.59 0.73 scn 21.23 24.46 1.15

bre 20.12 20.57 1.02 jav 14.73 14.52 0.99 sco 19.34 16.45 0.85

bul 14.95 16.04 1.07 jpn 24.62 59.51 2.42 slk 13.92 14.82 1.06

cat 25.11 22.76 0.91 kan 13.42 9.80 0.73 slv 15.72 15.77 1.00

ces 14.88 14.73 0.99 kat 11.69 13.82 1.18 spa 24.92 22.81 0.92

cym 18.52 20.53 1.11 kaz 10.89 12.40 1.14 sqi 20.75 22.52 1.09

dan 16.16 16.70 1.03 kor 14.01 13.58 0.97 srp 14.41 17.89 1.24

deu 16.62 15.47 0.93 kur 14.51 18.44 1.27 swa 17.16 17.70 1.03

ell 19.60 18.68 0.95 lat 14.79 18.82 1.27 swe 16.97 15.01 0.88

eng 21.56 19.11 0.89 lav 12.37 15.70 1.27 tam 10.74 10.73 1.00

epo 16.37 17.92 1.09 lim 16.53 15.48 0.94 tat 10.79 11.89 1.10

est 11.75 13.07 1.11 lit 10.58 13.60 1.28 tel 11.25 9.48 0.84

eus 13.00 14.22 1.09 lmo 18.17 18.18 1.00 tgk 13.46 19.30 1.43

fao 13.43 15.27 1.14 ltz 15.62 17.26 1.11 tgl 18.73 14.64 0.78

fas 21.19 25.18 1.19 mal 9.28 9.06 0.98 tha 23.93 18.28 0.76

fin 12.12 12.53 1.03 mar 11.56 11.62 1.01 tur 13.49 14.31 1.06

fra 23.83 22.95 0.96 mkd 18.06 16.78 0.93 ukr 13.32 13.67 1.03

fry 15.86 15.03 0.95 mlg 17.82 20.71 1.16 urd 429.52 151.94 0.35

gla 18.86 20.55 1.09 mon 16.12 14.58 0.90 uzb 13.44 14.43 1.07

gle 20.62 19.77 0.96 mri 20.84 20.55 0.99 vec 22.64 16.71 0.74

glg 21.65 19.55 0.90 msa 17.43 15.95 0.92 vie 27.05 25.25 0.93

guj 17.32 15.99 0.92 mya 147.34 17.86 0.12 yid 23.35 24.04 1.03

hat 12.39 17.82 1.44 nds 14.10 14.76 1.05 zho 18.10 12.62 0.70

hbs 15.49 16.68 1.08 nep 62.44 107.89 1.73

heb 17.12 16.15 0.94 nld 17.66 15.36 0.87

Table C.2: Wiki vs Web — average sentence length

82

APPENDIX C. WIKI VS WEB

ISO Wiki Web R ISO Wiki Web R ISO Wiki Web R

afr 6.57 6.77 1.03 hif 4.61 4.96 1.08 nor 6.68 6.48 0.97

als 6.17 5.82 0.94 hin 6.21 6.42 1.03 oci 5.88 3.77 0.64

amh 3.74 3.61 0.96 hrv 6.24 6.02 0.97 pam 4.85 4.19 0.86

ara 5.87 5.45 0.93 hun 6.00 5.99 1.00 pol 5.95 5.82 0.98

ast 6.27 6.20 0.99 hye 5.51 5.53 1.00 por 6.72 6.06 0.90

aze 5.42 5.16 0.95 ina 5.80 5.19 0.89 ron 6.34 6.45 1.02

bel 5.42 5.54 1.02 ind 6.62 5.95 0.90 rus 5.41 5.30 0.98

ben 5.23 5.52 1.06 isl 6.16 6.28 1.02 sah 3.92 3.97 1.01

bos 6.19 6.17 1.00 ita 6.74 6.46 0.96 scn 5.82 2.62 0.45

bre 5.86 5.33 0.91 jav 4.78 4.05 0.85 sco 5.83 5.92 1.02

bul 6.10 6.23 1.02 jpn 2.68 1.64 0.61 slk 5.93 5.74 0.97

cat 6.55 6.64 1.01 kan 4.58 4.24 0.93 slv 5.95 6.22 1.05

ces 6.10 5.98 0.98 kat 4.97 4.76 0.96 spa 6.62 6.59 1.00

cym 6.08 6.05 1.00 kaz 5.10 4.57 0.90 sqi 6.61 6.74 1.02

dan 6.69 6.47 0.97 kor 4.63 4.58 0.99 srp 5.65 5.84 1.03

deu 6.64 6.07 0.91 kur 5.80 6.01 1.04 swa 6.03 5.79 0.96

ell 6.16 6.05 0.98 lat 5.46 5.04 0.92 swe 6.65 6.63 1.00

eng 6.87 6.46 0.94 lav 5.90 5.48 0.93 tam 4.19 4.16 0.99

epo 6.43 6.25 0.97 lim 6.01 4.35 0.73 tat 4.26 4.61 1.08

est 5.72 5.99 1.05 lit 5.65 4.60 0.81 tel 3.91 4.01 1.03

eus 5.74 5.36 0.93 lmo 4.56 5.36 1.17 tgk 4.31 4.54 1.05

fao 5.29 5.33 1.01 ltz 6.08 5.90 0.97 tgl 5.85 5.95 1.02

fas 6.60 6.60 1.00 mal 3.81 3.76 0.99 tha 1.78 1.60 0.90

fin 5.45 5.19 0.95 mar 4.64 4.88 1.05 tur 5.88 5.03 0.85

fra 6.64 6.34 0.95 mkd 6.23 5.91 0.95 ukr 5.50 5.42 0.99

fry 6.51 5.89 0.90 mlg 2.76 5.71 2.07 urd 6.43 6.46 1.00

gla 5.26 5.13 0.97 mon 5.27 5.15 0.98 uzb 3.88 4.45 1.15

gle 6.01 5.87 0.98 mri 2.52 5.18 2.06 vec 5.84 4.48 0.77

glg 6.70 6.54 0.98 msa 6.51 6.35 0.98 vie 6.52 6.53 1.00

guj 4.31 5.46 1.27 mya 2.51 2.15 0.86 yid 6.18 6.11 0.99

hat 4.38 5.20 1.19 nds 5.89 5.85 0.99 zho 2.91 2.04 0.70

hbs 6.19 6.39 1.03 nep 5.31 5.11 0.96

heb 5.81 5.70 0.98 nld 6.74 6.72 1.00

Table C.3: Wiki vs Web — conditional entropy

83

APPENDIX C. WIKI VS WEB

ISO Wiki Web R ISO Wiki Web R ISO Wiki Web R

afr 95.11 109.23 1.15 hif 24.39 31.20 1.28 nor 102.41 89.33 0.87

als 71.85 56.38 0.78 hin 74.21 85.88 1.16 oci 58.75 13.62 0.23

amh 13.36 12.19 0.91 hrv 75.35 65.02 0.86 pam 28.75 18.23 0.63

ara 58.43 43.82 0.75 hun 63.92 63.45 0.99 pol 61.89 56.68 0.92

ast 77.01 73.38 0.95 hye 45.50 46.13 1.01 por 105.15 66.52 0.63

aze 42.73 35.79 0.84 ina 55.77 36.54 0.66 ron 80.81 87.48 1.08

bel 42.85 46.44 1.08 ind 98.50 61.91 0.63 rus 42.65 39.43 0.92

ben 37.44 45.99 1.23 isl 71.38 77.52 1.09 sah 15.13 15.67 1.04

bos 73.04 71.78 0.98 ita 106.53 88.23 0.83 scn 56.44 6.15 0.11

bre 58.20 40.13 0.69 jav 27.51 16.52 0.60 sco 56.92 60.66 1.07

bul 68.76 74.93 1.09 jpn 6.42 3.13 0.49 slk 60.78 53.48 0.88

cat 93.88 99.56 1.06 kan 23.97 18.94 0.79 slv 61.75 74.68 1.21

ces 68.75 62.96 0.92 kat 31.36 27.05 0.86 spa 98.30 96.35 0.98

cym 67.71 66.36 0.98 kaz 34.23 23.67 0.69 sqi 97.49 106.99 1.10

dan 103.38 88.58 0.86 kor 24.84 23.87 0.96 srp 50.18 57.47 1.15

deu 99.57 67.22 0.68 kur 55.71 64.56 1.16 swa 65.35 55.51 0.85

ell 71.38 66.23 0.93 lat 44.04 32.80 0.74 swe 100.65 98.98 0.98

eng 116.94 88.11 0.75 lav 59.52 44.49 0.75 tam 18.27 17.89 0.98

epo 86.30 76.16 0.88 lim 64.23 20.45 0.32 tat 19.22 24.45 1.27

est 52.70 63.52 1.21 lit 50.29 24.27 0.48 tel 14.98 16.08 1.07

eus 53.56 41.12 0.77 lmo 23.61 41.03 1.74 tgk 19.83 23.24 1.17

fao 39.18 40.23 1.03 ltz 67.87 59.57 0.88 tgl 57.74 61.81 1.07

fas 97.03 96.92 1.00 mal 14.00 13.51 0.96 tha 3.43 3.02 0.88

fin 43.60 36.57 0.84 mar 24.86 29.47 1.19 tur 59.01 32.61 0.55

fra 99.89 80.78 0.81 mkd 74.90 59.97 0.80 ukr 45.30 42.96 0.95

fry 91.19 59.31 0.65 mlg 6.79 52.52 7.74 urd 86.39 87.81 1.02

gla 38.30 34.93 0.91 mon 38.45 35.60 0.93 uzb 14.71 21.82 1.48

gle 64.65 58.29 0.90 mri 5.73 36.37 6.35 vec 57.29 22.35 0.39

glg 103.86 93.37 0.90 msa 91.16 81.73 0.90 vie 91.63 92.10 1.01

guj 19.86 44.10 2.22 mya 5.70 4.44 0.78 yid 72.74 69.10 0.95

hat 20.85 36.76 1.76 nds 59.24 57.60 0.97 zho 7.50 4.11 0.55

hbs 72.94 84.03 1.15 nep 39.63 34.64 0.87

heb 56.19 51.90 0.92 nld 106.70 105.10 0.99

Table C.4: Wiki vs Web — conditional perplexity

84

Bibliography

[BB98] Krishna Bharat and Andrei Broder. A technique for measuring the

relative size and overlap of public web search engines. In Proceed-

ings of the seventh international conference on World Wide Web 7,

WWW7, pages 379–388, Amsterdam, The Netherlands, The Nether-

lands, 1998. Elsevier Science Publishers B. V.

[BB01] Michele Banko and Eric Brill. Scaling to very very large corpora for

natural language disambiguation. In Proceedings of the 39th Annu-

al Meeting on Association for Computational Linguistics, ACL ’01,

pages 26–33, Stroudsburg, PA, USA, 2001. Association for Computa-

tional Linguistics.

[BBFZ09] Marco Baroni, Silvia Bernardini, Adriano Ferraresi, and Eros

Zanchetta. The wacky wide web: a collection of very large linguisti-

cally processed web-crawled corpora. Language Resources and Eval-

uation, 43:209–226, 2009. 10.1007/s10579-009-9081-4.

[BFJ+06] Andrei Broder, Marcus Fontura, Vanja Josifovski, Ravi Kumar, Ra-

jeev Motwani, Shubha Nabar, Rina Panigrahy, Andrew Tomkins, and

Ying Xu. Estimating corpus size via queries. In Proceedings of the

15th ACM international conference on Information and knowledge

management, CIKM ’06, pages 594–603, New York, NY, USA, 2006.

ACM.

[BGMZ97] Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Ge-

offrey Zweig. Syntactic clustering of the web. Comput. Netw. ISDN

Syst., 29:1157–1166, September 1997.

[BK06] Marco Baroni and Adam Kilgarriff. Large linguistically-processed

web corpora for multiple languages. In Proceedings of the Eleventh

Conference of the European Chapter of the Association for Computa-

tional Linguistics: Posters & Demonstrations, EACL ’06, pages

87–90, Stroudsburg, PA, USA, 2006. Association for Computational

Linguistics.

[BRSB00] A. Bharati, K. P. Rao, R. Sangal, and S. M. Bendre. Basic statistical

analysis of corpus and cross comparison among corpora. Technical

Report of Indian Institute of Information Technology, 2000.

85

BIBLIOGRAPHY BIBLIOGRAPHY

[BYG07] Ziv Bar-Yossef and Maxim Gurevich. Efficient search engine measure-

ments. In Proceedings of the 16th international conference on World

Wide Web, WWW ’07, pages 401–410, New York, NY, USA, 2007.

ACM.

[CT94] William B. Cavnar and John M. Trenkle. N-grambased text cat-

egorization. In In Proc. of SDAIR-94, 3rd Annual Symposium on

Document Analysis and Information Retrieval, pages 161–175, 1994.

[GS05] A. Gulli and A. Signorini. The indexable web is more than 11.5 billion

pages. In Special interest tracks and posters of the 14th international

conference on World Wide Web, WWW ’05, pages 902–903, New

York, NY, USA, 2005. ACM.

[Hay04] Katia Hayati. Language identification on the world wide web, 2004.

[HNP09] Alon Halevy, Peter Norvig, and Fernando Pereira. The unreasonable

effectiveness of data. IEEE Intelligent Systems, 24:8–12, 2009.

[KRPA10] Adam Kilgarriff, Siva Reddy, Jan Pomikálek, and P. V. S. Avinesh.

A corpus factory for many languages. In Language Resources and

Evaluation, 2010.

[LL10] Jianguo Lu and Dingding Li. Estimating deep web data source size

by capture—recapture method. Inf. Retr., 13:70–95, February 2010.

[LM01] Shanjian Li and Katsuhiko Momoi. A composite approach to lan-

guage/encoding detection. In 19th International Unicode Conference,

International Unicode Conference ’01, 2001.

[MS05] Bruno Martins and Mário J. Silva. Language identification in web

pages. In Proceedings of the 2005 ACM symposium on Applied com-

puting, SAC ’05, pages 764–768, New York, NY, USA, 2005. ACM.

[RG00] Paul Rayson and Roger Garside. Comparing corpora using frequen-

cy profiling. In Proceedings of the workshop on Comparing corpora -

Volume 9, WCC ’00, pages 1–6, Stroudsburg, PA, USA, 2000. Asso-

ciation for Computational Linguistics.

[Sca07] Kevin P. Scannell. The Crúbadán Project: Corpus building for under-

resourced languages, volume 4 of Cahiers du Cental, pages 5–15.

Louvain-la-Neuve, Belgium, 2007.

86

BIBLIOGRAPHY BIBLIOGRAPHY

[Sha06] Serge Sharoff. Creating general-purpose corpora using automated

search engine queries. In WaCky! Working papers on the Web as

Corpus. Gedit, 2006.

[SR96] Penelope Sibun and Jeffrey C. Reynar. Language identification: Ex-

amining the issues, 1996.

[Wyn05] Martin Wynne. Developing Linguistic Corpora: a Guide to Good

Practice, chapter Archiving, Distribution and Preservation, pages 71–

78. Oxford: Oxbow Books, 2005. Available online, Accessed 2011-01-

01.

[ZZY+08] Guo-Qing Zhang, Guo-Qiang Zhang, Qing-Feng Yang, Su-Qi Cheng,

and Tao Zhou. Evolution of the internet and its cores. New Journal

of Physics, 10(12):123027, 2008.

87

List of Tables

2.1 Distribution of languages by number of first-language speakers . . 7

2.2 OLAC - language coverage . 9

2.3 Wikipedia - article counts . 9

2.4 Multilingual resources — summary 12

2.5 WaCky — data size . 13

2.6 Crúbadán — data size . 15

2.7 I-X — size in MW . 16

2.8 Corpus Factory — size in MW . 17

2.9 Language coverage . 18

2.10 Existing multilingual corpora — overview 19

2.11 Language detection — summary 26

3.1 Language recognition for the first 31 languages 39

3.2 Language recognition — model selection 40

3.3 Language recognition — example 42

4.1 Wiki Corpora — size in kB . 58

4.2 Language Detection — Overview 60

4.3 Language Detection . 61

4.4 Web Corpora — execution statistics 63

4.5 Web Corpora — size . 64

4.6 Web Corpus — yield . 65

4.7 Internet — size in GB . 70

4.8 Internet — page counts . 71

88

LIST OF TABLES LIST OF TABLES

B.1 List of Languages . 76

C.1 Wiki vs Web — average word length 81

C.2 Wiki vs Web — average sentence length 82

C.3 Wiki vs Web — conditional entropy 83

C.4 Wiki vs Web — conditional perplexity 84

89

List of Figures

2.1 Distribution of languages by number of first-language speakers . . 7

3.1 Building Web Corpus . 29

3.2 Metadata — work flow . 35

3.3 Wiki Corpora — work flow . 38

3.4 W2C Builder . 44

4.1 Wiki Corpora — size in kB . 59

4.2 Language Detection . 60

4.3 Wiki vs Web — average word length 66

4.4 Wiki vs Web — average sentence length 67

4.5 Wiki vs Web — conditional entropy 68

4.6 Wiki vs Web — conditional perplexity 69

90

