
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Martin Chytil

Adaptation of Relational Database
Schema

Department of Software Engineering

Supervisor of the master thesis: RNDr. Irena Mlýnková, Ph.D.

Study programme: Informatics

Specialization: Software systems

Prague 2011

I would like to thank to my supervisor RNDr. Irena Mlýnková, Ph.D. for her
helpful suggestions, thorough notes, provided related research material and text
corrections.
I would also like to thank to Mgr. Martin Nečaský, Ph.D. for his suggestions and
comments.

Prohlašuji, že jsem svou diplomovou práci napsal samostatně a výhradně s
použit́ım citovaných pramen̊u. Souhlaśım se zap̊ujčováńım práce.

I hereby declare that I have elaborated this master thesis on my own and
listed all used references. I agree with making this thesis publicly available.

In Prague on November 20, 2011 Martin Chytil

Název práce: Adaptace Schématu Relačńı Databáze

Autor: Martin Chytil

Katedra: Katedra Softwarového Inženýrstv́ı

Vedoućı diplomové práce: RNDr. Irena Mlýnková, Ph.D.

E-mail vedoućıho: irena.mlynkova@ksi.mff.cuni.cz

Abstrakt: V předložené práci studujeme evoluci databázového schématu a jej́ı
vliv na souvisej́ıćı oblasti. Práce obsahuje přehled d̊uležitých problém̊u spojených
se změnou úložǐstě dat a také popisuje existuj́ıćı př́ıstupy k těmto problém̊um.
Detailněji práce rozeb́ırá vliv změn databázového schématu na databázové dotazy,
které jsou na př́ıslušném schématu závislé. Př́ıstup představený v této práci
ukazuje možnost modelováńı databázových dotaz̊u společně s modelem databázového
schématu. Práce dále popisuje řešeńı jak upravovat databázové dotazy v závislosti
na evoluci př́ıslušného databázového schématu. V neposledńı řadě práce obsahuje
sadu experiment̊u ověřuj́ıćıch návrh zvoleného řešeńı.

Kĺıčová slova: Relačńı databáze, SQL, mapováńı, evoluce

Title: Adaptation of Relational Database Schema

Author: Martin Chytil

Department: Department of Software Engineering

Supervisor: RNDr. Irena Mlýnková, Ph.D.

Supervisor’s e-mail address: irena.mlynkova@ksi.mff.cuni.cz

Abstract: In the presented work we study evolution of a database schema and
its impact on related issues. The work contains a review of important problems
related to the change in a respective storage of the data. It describes existing
approaches of these problems as well. In detail the work analyzes an impact
of database schema changes on database queries, which relate to the particular
database schema. The approach presented in this thesis shows a ability to model
database queries together with a database schema model. The thesis describes a
solution how to adapt database queries related to the evolved database schema.
Finally the work contains a number of experiments that verify a proposal of the
presented solution.

Keywords: Relational database, SQL, mapping, evolution

Contents

1 Introduction 4
1.1 Motivation . 4
1.2 Aim of the Thesis . 5
1.3 Organization of the Thesis . 5

2 Relational Data Model and SQL 7
2.1 Relational Data Model . 7

2.1.1 Structure . 7
2.1.2 Keys . 8
2.1.3 Relational Schema Diagram Notation 9

2.2 SQL Language . 9
2.2.1 The SELECT Statement 10
2.2.2 Views . 12

3 Model Driven Architecture 13
3.1 Model Driven Architecture . 13

3.1.1 Computation Independent Model 13
3.1.2 Platform Independent Model 13
3.1.3 Platform Specific Model 14
3.1.4 Model Transformation . 14

4 Database Schema Adaptation 15
4.1 Database Schema Integration . 15
4.2 Database Schema Versioning and Schema Evolution 17
4.3 Data Migration . 19
4.4 Adaptation of the Database Queries 21

5 Related Work 23
5.1 Database Schema Integration Process 23

5.1.1 Phases of the Database Schema Design Process 23
5.1.2 Form Type Concept . 24
5.1.3 IIS*Case . 25
5.1.4 Discussion . 25

5.2 QuickMig . 25
5.2.1 The QuickMig Migration Process 26
5.2.2 Mapping Categories . 27
5.2.3 The QuickMig Architecture Overview 27
5.2.4 Discussion . 28

5.3 The PRISM Workbench . 28

1

5.3.1 SMO Language . 28
5.3.2 Evolution Process . 29
5.3.3 Data Migration And Query Support 31
5.3.4 Discussion . 31

5.4 Adaptive Query Formulation . 32
5.4.1 Graph-based Model . 32
5.4.2 Evolution Policies . 33
5.4.3 SQL Extensions . 34
5.4.4 Discussion . 34

5.5 Comparision of the Related Works 34

6 Database Model 36
6.1 PIM Layer . 36
6.2 PSM Database Model . 36

6.2.1 Model Constructs . 38

7 SQL Query Model 40
7.1 Limitations of the Query Model 40
7.2 Graph-Based Query Model . 40

7.2.1 DataSource Component 41
7.2.2 From Component . 42
7.2.3 Select Component . 45
7.2.4 Condition Component . 49
7.2.5 GroupBy Component . 52
7.2.6 OrderBy Component . 54

7.3 SQL Query Visualization Model 54
7.3.1 Visualisation Model Components 55

7.4 Mapping to Database Model . 58
7.4.1 Mapping of Operations . 59
7.4.2 Complex Operations . 60

7.5 Generating of the SQL Query . 60
7.5.1 Order of SQL Query Generating 61
7.5.2 Generating SQL Algorithm 63

8 Change Propagation 68
8.1 Propagation Policies . 68
8.2 Distribution of Changes . 68

8.2.1 Graph Operations . 69
8.2.2 Traversing through Query Graph 69
8.2.3 Creating Table Column . 70
8.2.4 Renaming Table Column 72
8.2.5 Renaming Database Table 74
8.2.6 Removing Table Column 76
8.2.7 Removing Database Table 83

9 Implementation and Experiments 86
9.1 DaemonX . 86
9.2 Implementation . 86
9.3 Experiments . 87

2

9.3.1 Basic Select . 88
9.3.2 Basic Group-By . 88
9.3.3 Complex Group-By . 89
9.3.4 Query as DataSource . 90
9.3.5 Complex Where . 91
9.3.6 View vStoreWithAddresses 92
9.3.7 View vProductAndDescription 94
9.3.8 Results of Performed Changes 94

10 Conclusion 99
10.1 Main Contributions . 99
10.2 Open Problems . 100
10.3 Future work . 100

10.3.1 Richer SQL Syntax . 100
10.3.2 Extension of Query Model 101

A Attachments 102

B Used Database Schemas and SQL Queries 103
B.1 Example of the Query Graph . 103
B.2 Model of the Database Schema 103
B.3 Basic Queries . 103
B.4 View vStoreWithAddresses . 103
B.5 View vProductAndDescription . 103

Bibliography 104

3

Chapter 1

Introduction

1.1 Motivation

Since most of the current applications are dynamic, sooner or later the structure
of the data needs to be changed and so have to be changed also all related issues.
We speak about evolution and adaptability of applications. One of the aspects
of this problem is adaptation of the respective storage of the data.

The adaptation of the storage covers many related issues:

• Database Schema Evolution
This issue involves retaining current data and software system functionality
despite the database schema changes.

• Database Schema Integration
This issue involves combining of data sources concepts and knowledge into
one schema. It is very common in situations when two database schemas
have to be combined together to create a single schema.

• Data Migration
In relational databases is common situation that data have to be moved from
one database management system to another, or the version of database
software being used has to be upgraded.

• Adaptation of Respective Queries
If the database schema has been changed, all database queries have to be
reformulated according to the changes. This involves changes of views,
stored procuders and functions, or queries used for instance for analytical
purposes.

In this thesis we focus on adaptation of SQL queries. The change of the
underlaying database schema can cause that SQL queries over this schema may
become inconsistent with the new schema, e.g.:

• A database table has a new name in the new schema.

• A table column has a new name in the new schema.

• A database table does not exist in the new schema.

4

• A table column does not exist in the new schema.

• A new table column, which should be used in SQL query, appeared in the
new schema.

All these presented possibilities lead to incorrect SQL queries and so for this
reason they should be corrected. Suppose an SQL view PendingOrders, which
returns all information about the pending orders, including all items of the given
order. Now, when the name of the column itemName is changed (for instance to
productName), all SQL queries where this column is used have to be checked by
designer and updated respectively.

1.2 Aim of the Thesis

The aim of this thesis is a research on possibilities and limitations of adaptation
of a relational database schema. The thesis analyzes the related issues in general
and discusses their key problems and solutions. The core of the work is a proposal
and implementation of own approach dealing with selected open issue related to
database schema evolution. In this thesis we selected adaptation of SQL queries.
The purpose of the thesis is to:

• design a model of SQL queries usable in Computer Aided Software Engi-
neering (CASE) tools

• analyze changes in the database model and their possible impact on related
SQL queries

• propose algorithms to propagate changes done in the database model on
the query to satisfy valid results

1.3 Organization of the Thesis

The rest of this thesis is organized as follows. Chapter 2 briefly describes the
relational data model [19] and selected parts of SQL language [28] related to
the aim of this thesis. Chapter 3 introduces a base concept of a model driven
architecture [31], which is important to understand roles of the proposed models
in this thesis.

Chapter 4 describes related issues of relational database schema adaptation
and discusses key problems and solutions. In Chapter 5 are discussed related
works which are dealing with a selected database schema adaptation problem.

In Chapter 6 a database model, which is used in this thesis as a model for
representing a database schema, is described.

In Chapter 7 we propose a graph-based SQL query model, which is particularly
designed for evolution process. The platform-specific visualisation model of the
query is introduced as well. A part of this chapter is focused on mapping between
SQL query model and the database model. At the end of this chapter we describe
an algorithm to generate SQL query from the query model.

5

Chapter 8 discusses an impact of changes in the database model on the queries
in the SQL query model. The biggest part of this chapter is paid to description
of algorithms which distribute changes in the query graph.

Chapter 9 presents a prototype implementation of the proposed solution. Re-
sults of experiments on the real-world database schema are described as well.
Chapter 10 summarizes this thesis and proposes future research directions of this
approach.

6

Chapter 2

Relational Data Model and SQL

This chapter describes the most popular data model of databases - the relational
data model [19]. Then we describe selected parts of the SQL language which are
related to the aim of this thesis.

2.1 Relational Data Model

The characteristic features of the relational data model are:

• Conceptually simple - the fundamentals are intuitive and very simple.

• Powerful underlaying theory - the relational model is the database model,
which is powered by formal mathematics.

• Easy-to-use database language - the Structured Query Language (SQL) [28]
is responsible for the success of relational model, though formaly it is not its
part; SQL became a de facto standard language for working with relational
databases.

2.1.1 Structure

There exists only one data structure in the relational data model - the relation.
The idea of a relation is based on a mathematical construct of relation. Relations
in the relational data model obey a certain restricted set of rules:

• Each relation must have an unique name.

• Each attribute in a relation must have an unique name within the relation.

• Each attribute in a relation defines a set of permitted values of given at-
tribute. This set of permitted values is called the domain of given attribute.

• The ordering of attributes in a relation is not significant.

• Each tuple of relation must be unique (from the mathematical definition of
relation). In other words, duplicate tuples are not allowed.

• The ordering of tuples of relation is not significant.

7

• Formally, for a relation r with n attributes a1, . . . , an, each attribute ak,
where k ∈ 1 . . . n , has a domain Dk, and any given tuple of r is a n-tuple
(v1, . . . , vn) such that vk ∈ Dk. Therefore, any instance of relation r is a
subset of the Cartesian product D1 × · · · ×Dn.

• There is an assumption, that each domainDk must have only atomic values.
Composite structures are not allowed to be used.

• Each domain has one extra allowed member - null value, which means an
unknown or non-existent value. In practice, this value causes a number of
practical issues, so it is intention to avoid the using of the null value.

The relational database is a collection of tables, where each table corresponds
to the term of relation in the sense of relational data model.

2.1.2 Keys

The keys are values or sets of values used to distinguish one tuple from another
one in the same relation.

We distinguish these kind of keys:

• Superkey
The superkey is a non-empty set of attributes, which uniquely identify a
tuple in a relation. It can range from one attribute to the entire tuple.
Formally, if R is a schema of relation, then a subset K of R is a superkey
for R if, for a relation r with schema R (r(R)) and tuples t1 and t2 in r,
t1 ̸= t2 → t1[K] ̸= t2[K].
In practice, not every superkey can be useful.

• Candidate key
The candidate key corresponds to the superkey, for which no proper subset
is a superkey too. Simply it is a minimal superkey.
Still there can exist more than one candidate key for a relation, consisting
of different subset of attributes.

• Primary key
The primary key is a candidate key, that has been marked by a designer.
It usually has some meaning for identifying tuples in relation.

• Foreign key
Let us have two schemas of relations R1 and R2, which share some subset
of attributes. Then Kp is a foreign key, if Kp is a primary key of R2 and
Kp ⊆ R1 (attributes of R1 include the primary key of R2).
The relation, which contains the foreign key (r1), is called the referencing
relation.
The relation for which Kp is a primary key (r2), is called the referenced
relation.
In practice, specifying a foreign key rises a constraint on the data: ∀ tuple
t1 ∈ r1 there must exist a tuple t2 ∈ r2, such that t1[Kp] = t2[Kp]

8

2.1.3 Relational Schema Diagram Notation

A relational database schema can be visualized by a relational schema diagram.
Its notation is similar to ER [24] or UML [35], but the notation is highly focused
and specific for the relational data model. In contrast to, for instance, UML class
diagram, it is very easy.

The rules for drawing relational schema diagrams are as follows:

• Relations are drawn as boxes with the relation name above the box.

• Attributes of given relation are listed within its box.

• The attributes belonging to the primary key of relation are listed first.
There is a line separating primary key from other attributes and the back-
ground is gray.

• Foreign key dependencies are drawn as arrows from the referencing relation
to the referenced relation.

An example of relational database schema is illustrated in Figure 2.1. The
example describes documents in an school information system - relation docu-
ment. Each document was written by a student, relation student, and it belongs
to some user, relation user. Each document contains keywords, relation keyword.
Assigning of the keyword to the given document is represented by a relation
doc-keyword.

Figure 2.1: A sample of relational schema diagram

2.2 SQL Language

The SQL language became a de facto standard language for relational databases.
Therefore every relational database management system (RDBMS) uses SQL as
its front end.

The SQL language is, in fact, composed of three parts:

• Data Definition Language (DDL)
This part of the language specifies constructs for defintion of schema, rela-
tions, integrity constraints and views.

9

• Data Manipulation Language (DML)
This part of the language specifies construct for inserting, deleting, updating
and querying the data in the relations (tables).

• Data Control Language (DCL)
This part of language is used to control access to data stored in the relations.
It specifies operations for which privileges may be granted to (or revoked
from) a given database user or role.

2.2.1 The SELECT Statement

In many modern uses of databases, all we really need to do with the database is to
select some subset of the records from given table(s), and let some other program
manipulate the result. For these operations SQL uses the SELECT statement.

The SELECT statement is consist of six clauses:

• SELECT
This part is called projection. It specifies the columns or computations with
columns, which will appear in the result set of records corresponding to the
given query.
It can also contain so called aggregate functions, which are computations
applied on the whole result set of given column. Aggregate functions are
especially mathematical functions, like minimum, average, sum, etc.
The SELECT clause is obligatory in each query.

• FROM
This clause describes data sources for a given query. It can consist of one or
more tables, which are linked through Cartesian product or standard JOIN
construct of relational algebra [25].
The clause is obligatory in each query.

• WHERE
This clause is called restriction. It specifies search conditions that are ap-
plied to the result of the preceding FROM clause. If the record satisfies
these conditions, it will appear in the result set.
The clause is optional.

• GROUP BY
This clause is used together with combination of aggregate functions. The
clause partitions the set of records in a table into groups based on the
given criteria and computes aggregate function for each group. All records
from preceding clauses (FROM claues and WHERE clause if applicable)
that agree on a set of grouping attributes are put into a corresponding
group. Every group puts one record (tuple) to the output. All the grouping
attributes must also appear in the SELECT clause.
The usage of this clause is linked with occurrence of aggregate functions in
the SELECT clause.

• HAVING
This clause is sometimes called second restriction. It is used to elimination

10

of groups from the preceding GROUP BY claues. It eliminates groups that
do not satisfy a given search condition.
The clause can appear only with combination with previous the GROUP
BY clause, but it is optional.

• ORDER BY
This clause is used to specify the order of records in the result set. There
can be used a column from the SELECT clause or any expression.
The clause is optional.

All the following examples of SQL queries are related to the database schema
illustrated in Figure 2.1.

The first example illustrates simple usage of standard SELECT statement.
The query returns firstname and lastname of all students in the table student.

SELECT
f i r s tname

, lastname
FROM

student

The next example illustrates usage of the clauses WHERE and ORDER BY.
The query returns title, timestamp and author’s firstname and lastname of those
documents, whose author’s firstname is ’John’. The result has to be ordered by
author’s lastname.

SELECT
d . t i t l e

, d . timestamp
, s . f i r s tname
, s . lastname

FROM
document d
JOIN student s ON (s . s tuden t id = d . s tuden t id)

WHERE
s . f i r s tname = ’ John ’

ORDERBY
s . lastname

The last example illustrates usage of the clauses GROUP BY and HAVING.
The query returns firstname, lastname and number of documents he or she has
written of those students, who have already written more than one document.

SELECT
s . f i r s tname

, s . lastname
, COUNT(∗) as number of documents

FROM
student s
JOIN document d ON (s . s tuden t id = d . s tuden t id)

GROUPBY

11

s . f i r s tname
, s . lastname

HAVING
COUNT(∗) > 1

2.2.2 Views

Views in SQL provide virtual relations which contain data spread across different
tables. They are used because:

• they simplify query formulations,

• they hide the real database schema and hide inappropriate data,

• they provide a logical data indepence,

• they do not need to be stored as permanent tables (but they can - we speak
about materialized views).

View Statement

The view can be defined simply by syntax:
CREATE VIEW view-name AS <SELECT Statement>
This creates a View with a name <view-name> with a structure and data
defined by the result of the <SELECT Statement>.

12

Chapter 3

Model Driven Architecture

In this chapter we briefly introduce model driven architecture, an approach to
system development.

3.1 Model Driven Architecture

The Model drive architecture (MDA), [31] is an approach to system development,
which increases the power of models in that work. It is model-driven, because it
provides means for using models to understanding, design, construction, deploy-
ment, operation, maintenance and modification.
MDA deals with the idea of separating the specification of the operation of a
system from details of the way that system uses the capabilities of its platform.
MDA provides an approach for the following actions:

• Specifying a system independently of the platform that supports.

• Specifying platforms.

• Choosing a particular platform for the system.

• Transforming the system specification into one for a particular platform.

3.1.1 Computation Independent Model

A computation independent model (CIM) is a view of a system from the compu-
tation independent viewpoint. It focuses on the environment of the system, and
the requirements for the system. The details of the structure and processing of
the system are hidden or as yet undetermined.

3.1.2 Platform Independent Model

A platform independent model (PIM) is a view of a system from the platform
independent viewpoint. It focuses on the operation of a system while hiding the
details necessary for a particular platform. PIM represents part of the complete
specification that does not change from one platform to another.
For modeling of PIMs, there is often used a general purpose modeling langugage,
like UML. It is also possible to use a language specific to the area in which the
system will be used.

13

3.1.3 Platform Specific Model

A platform specific model (PSM) is a view of a system from the platform specific
viewpoint. It combines the platform independent viewpoint with an additional
focus on the detail of the use of a specific platform by a system.

3.1.4 Model Transformation

A model transformation is the process of converting one model to another model
of the same system.
From the perspective of MDA, the most interesting is model transformation from
PIM to PSM. This model transformation can be described as follows:

1. The PIM is completed with special mapping marks, which defines general
mapping rules.

2. There is chosen specific platform.

3. Model transformations corresponding to the mapping marks are executed
according to the chosen specific platform.

Figure 3.1 illustrates a schema of the Billing system according to MDA layers.
The CIM layer represents a general policy of the given company about the billing
process. The PIM layer represents an analysis model of the billing system. The
PSM layer contains many various models, which are particularly designated for
specific purpose, e.g. database model, web server model, etc.

Figure 3.1: An example of the usage of MDA in system development.

14

Chapter 4

Database Schema Adaptation

This chapter contains an introduction into database schema adaptation issues.
From the global perspective the main issues of database schema adaptation are
described.

Database schema adaptation is a complex operation which starts mainly with
change of database schema and involves change of each subsystem (in general)
related to given database schema.
Each discussed issue has a smaller or greater relation to the database schema
adaptation, but it is necessary to consider each of them.

4.1 Database Schema Integration

Database schema integration issue involves combining of integrating data sources
concepts and knowledge into an integrated view that isolates users from the sys-
tem organization. Constructing an integrated view of data sources can be difficult
because they will store different types of data, in varying formats, with different
meanings, and will reference it using different names. In addition, construct-
ing an integrated view requires resolving different mechanisms for storing data
(structural conflicts), for referencing data (naming conflicts), and for attributing
meaning to the data (semantic conflicts).

Types of schema integration

There are two major types of schema integration:

• View Integration
This type is used during the design of a new database when user require-
ments may be different for each user group. The process of view integration
merges different viewpoints into a single data model.

• Database Integration
This type is used when two or more databases have to be combined to create
a single schema. We call this schema a global schema.

15

Problems of schema integration

Paper [6] introduces basic problems of database schema integration. These prob-
lems can be summarized into 4 main categories:

• Different Perspectives
The problem is occuring when two database schemas are designed by dif-
ferent designers using different user requirements. The resulting schemas
will often present contrasting views of the same data.
For example, the relationship between employee and project in one database
is represented as a relationship between employee, department and project
in another database.

• Equivalent Concepts
Different databases are dealing with the same concept in a different way.
There are two situations that must be dealt with:

1. Different concepts are modelled in the same way. For instance, in a
university database staff and students are both represented by the
entity person even though they are different concepts.

2. The same concepts are modelled in different way. For instance, a given
property is designed as an entity in one database, but as an attribute
in another database.

• Incompatible Designs
Two database designs might be incompatible because there are different
constraints placed on the data or mistakes were made in the initial design.
For example, relationship between two entities is represented as one-to-
many in one database and many-to-many in another one.
During schema integration these different viewpoints must be unified.

• Resolving conflicts
During the integration of independant schemas different conflicts may ap-
pear.

– Name conflicts
Name conflicts may cause a problem, because information is going to
be duplicated in the integrated database. It is important to identify
correct data items in each schema that should be represented using
different structures in the integrated schema or that actually repre-
sents the same concept.

Synonyms - two similar concepts occur with different names.
Homonyms - two different concepts occur with the same name.

– Structural conflicts
Structural conflicts occur when the actual method of representing the
same concept in different databases is different or incompatible.
There exist three cases:

∗ Identical Concepts
The same concept in different databases is represented in the same

16

way.
These entities can be merged directly.

∗ Compatible Concepts
The same concept in different databases is represented in compat-
ible way.
These entities can be merged through some given conversion way.

∗ Incompatible Concepts
The same concept in different databases is represented using dif-
ferent structures. It is often difficult to merge them directly.
Incompatible designs have to be often resolved by analysing the
data and adapting one or more of the schemas. Also there can be
constructed a new, common representation.

Strategies of schema integration

There exist two main strategies for applying database schema integration:

• All-in-one
The strategy is based on merging all schemas into a single large schema
(called the global schema).
This approach is going to be difficult when the schemas are large or when
there is a large number of schemas.

• Stages
This strategy is also called gradual schema integration. At first there are
integrated some schemas, then there are gradually integrated remaining
schemas to the result schema from the step before.
This approach is going to be more appropriate when the schemas are com-
plex or when there are a large number of schemas.

4.2 Database Schema Versioning and Schema

Evolution

Schema versioning is one of related areas dealing with the same general problem
- using multiple heterogeneous schemas for various database related tasks. To-
gether with its weaker companion, schema evolution, it deals with the necessity
to retain current data and software system functionality despite the changing
database structure.

Paper [4] gives a good definition of terms of schema modification, evolution
and versioning to understand the difference in their usage.

• Schema Modification
Schema Modification means that a database system allows for changes to
the schema definition of a populated database.

• Schema Evolution
Schema Evolution means that a database system facilitates the modification
of the database schema without loss of existing data.

17

• Schema Versioning
Schema Versioning means that a database system allows the accessing of all
data, both retrospectively and prospectively, through user definable version
interfaces.
Schema versioning can be divided into two categories by distinguishing be-
tween retrieval and update activity:

– Partial Schema Versioning
Partial Schema Versioning is a weaker concept of versioning. It means
that a database system allows the viewing of all data, both retro-
spectively and prospectively, through user definable version interfaces.
Data stored under any historical schema may be updated only through
the current or active schema.

– Full Schema Versioning
Full Schema Versioning means that a database system allows the view-
ing and update of all data, both retrospectively and prospectively,
through user definable version interfaces. It means that data stored un-
der any historical schema may be updated through any other schema,
not only the current or active schema.

The considerable difference between evolution and versioning is the capability
for users to identify stable points in the definition for later reference. Schema
evolution does not require the ability to version data except when each changed
schema can be considered as a new version. Also it does not require that the
database system provides a view-mechanism using past schema definitions.

Schema evolution does not imply full historical support for the schema. It
only requires the ability to change the schema definition without loss of data. In
contrast, schema versioning (even in its simplest form), requires that a history
of changes has to be maintained to enable the retention of past schema definitions.

Schema changes will not necessarily result in creating a new version. More
often schema changes will be grained finer than the definable versions.

Domain/type evolution

Domain/type evolution is the simplest type of database schema evolution. It in-
volves changes of attributes’ domain, which results in change of attributes’ type
in given database management system (DBMS). It could seem, that there is not
any problem with such evolution. But the research in [5] shows the importance
of capturing the semantics of a domain and the identification of that semantic
content within the metadata.

Domain evolution is a great example of the difference between schema evolu-
tion and schema versioning. In schema evolution process, existing instances must
be converted to the new format and thus existing applications become incompat-
ible. Schema versioning supports program compatibility by leaving the existing
definition in place.

18

Relation/class evolution

Relation and class evolution involve attribute and relation/class definition, redef-
inition, deletion and class modification. Suggestions from the research indicate
that modification of the database schema to accommodate changes at the re-
lational or class design (and above) can be achieved in a number of ways. For
instance, within the relational model a set of atomic operations is proposed which
result in a consistent and, as far as possible, reversible database structure, [7].

4.3 Data Migration

Data migration problem is closely related to schema adaptation issue.
Data migration is in general the process of transfering data between two comput-
er systems. In relational databases it often includes moving from one DBMS to
another, or upgrading the version of database software being used.
The latter case is less likely to require a physical data migration, but this can
happen with major upgrades. A physical transformation process in this case
could be required since the underlying data format can change significantly.
The data migration process can affect behaviour in the applications layer, de-
pending on whether the data manipulation language or protocol has changed –
but current applications are written to be independent on the database technolo-
gy, so usually it is only necessary to make data migration test in database layer.

The data migration project plan usually involves these 7 phases, which relate
to the overall project:

• Strategy

• Analysis

• Design

• Build

• Testing / Implementation

• Revise

• Maintain

Strategy

The strategy phase is often the easiest part of the project planning process. The
focus of the overall project is determined in this phase. The data migration
projects do not operate independently. Rather they are a part of other devel-
opment efforts. The project managers are clearly focused on determining the
requirements that the new system must satisfy, and pay little or no attention to
the data migration that must occur. It is common to review a project plan for
a new system and discover that data migration is merely listed as a single task
item.

19

Analysis

The analysis phase of data migration project should be scheduled to occur con-
currently with the analysis phase of the core project. The aim of the analysis
phase in data migration projects is to identify the data sources that must be
transported into the new system. An important part of the analysis phase in-
volves becoming acquainted with the actual data you plan to migrate. At this
point of the project, there is no idea if the data is even of high enough quality
to consider migrating. It can be helpful to obtain reports that can provide row
and column counts, and other statistics regarding your source data. This kind of
information gives us a rough idea of just how to migrate data. You can find that
the cost of migration is prohibitive relatively to the quantity of data that needs
to be moved.

Design

The design phase involves going through the list of data elements from each and
every source data structure, and deciding whether to migrate each one. The de-
sign phase is not intended to identify the transformation rules by which historical
data will be pushed into the new system. Rather, it is basically the act of making
a checklist of the legacy data elements that must be migrated.

Build

The generation of the new data structures and their creation within the database
is the task of this phase.

Testing / Implementation

Testing and implementation are often combined into one phase, because these
two phases are practically inseparable. The first step is to execute the mapping.
Testing breaks down into two areas: logical errors and physical errors.

Physical errors are usually syntactic so they can be easily identified and resolved.
Physical errors have nothing to do with the quality of the mapping effort. Rather,
this level of testing is dealing with semantics of the scripting language used in
the transformation effort.

Implementation is the area of identifying and resolving logical errors. The best
test of data mapping is providing the populated target data structures to the
users that assisted in the analysis and design of the core system. These users will
begin to identify scores of other historical data elements that must be migrated
that were not apparent to them during the analysis/design sessions.

Revise

In the revise phase a clean-up is managed. All data model modifications, transfor-
mation rule adjustment, and script modification are basically combined to form
for the revise phase.
In this phase the maintaining of logical and physical data model is managed.

20

CASE tools can be used to maintain the link between the logical and physical
models. It is highly sensible to select a CASE tool providing an API to the
meta-data, because it will be needed most certainly.

Maintain

In the maintenance phase all of the mappings are validated and successfully imple-
mented in a series of scripts that have been thoroughly tested. The maintenance
phase differs depending upon whether the migration is to an On-line Transaction
Processing (OLTP) [9] or an On-line Analytical Processing (OLAP) [10]) system.
The aim of migration to an OLTP system is to successfully migrate the legacy
data into the new system, rendering the migration scripts which become useless
when the migration has been accomplished.
In the migration to an OLAP system, the new system will be reloading most
likely in timely intervals. As new information is recorded in the OLTP system,
it is necessary to transfer it to the OLAP system. Script performance is a highly
critical issue in OLAP migrations, while OLTP migrations pay no attention (or
little) to script performance since they will only be run once.

4.4 Adaptation of the Database Queries

Adaptation of the database query issue is highly related to database schema adap-
tation issue, but, in addition, it is also very close to the database schema evolution
issue, mentioned before.
Database query adaptation is the process of reformulation of database query ac-
cording to the way the underlaying database schema has been changed.
Each DBMS usually contains these queries related to schema change:

• Views

• Constraints

• Stored procedures

The aim of the research on this issue is the possibility of reaction for a database
schema change and automated reformulation of the given queries.

Chase and Backchase

Chase and backchase is the original algorithm for enumerating the reformulations
of a query under constraints. The algorithm was developed by [11]. But a re-
search showed, that for its properites (especially correctness and completeness)
it could be simply generalized and might be used in other areas, like XML [12],
[13] or in complex database schema evolution framework [14].

The algorithm proceeds in two phases:

• Chase
Let us have a rewriting (extending) rule D. If query Q contains the left-
hand-side of D, then the right-hand-side of D is added to Q as a conjunct.

21

This does not change answers of Q’ — if Q satisfies left-hand-side of D’, it
also satisfies right-hand-side of D’.

Such query extension is repeated until Q cannot be extended any further.
We call the largest query obtained at this point a universal plan, U.

• Backchase
At this phase, the system removes from U every atomic formula (conjunct)
that can be obtained back by a chase. This step does not change the answer,
either.
Atomic formulas of U’ are repeatedly removed, until no atomic formula can
be dropped any further. So we obtain another equivalent query Q’.

Simple example:

• Let us have a query Q :
SELECT DISTINCT STRUCT (E: t.TMember)
FROM depts d, d.DProjs pn, Teams t, Payroll p
WHERE pn = t.TProj and d.DName = ’Security’ and p.PDept = d.DName
and p.Empl = t.TMember

• By the chase phase it is extended by views V1 and V2 and constraints to
universal plan, which is equivalent to default query Q :
SELECT DISTINCT STRUCT (E: t.TMember)
FROM depts d, d.DProjs pn, Teams t, Payroll p, V1 v1, V2 v2
WHERE pn = t.TProj and d.DName = ’Security’ and p.PDept = d.DName
and p.Empl = t.TMember
and v1.D = d.DName and v1.P = pn and v1.E = p.Empl
and v2.D = d.PDept and v2.E = t.TMember and v2.P = t.TProj

• By the backchase phase it is induced by maximal reduction of constraints
obtainable by chase phase to another equivavalent query :
SELECT DISTINCT STRUCT (E: t.TMember)
FROM V1 v1, Teams t
WHERE v1.D = ’Security’ and v1.E = t.TMember and v1.P = t.TProj

22

Chapter 5

Related Work

In this chapter papers related to evolution of database schema are discussed.
The chapter contains analysis of 4 works dealing with a selected database schema
adaptation problem. Each analysis introduces the given problem, the solution
described in the work and possibilities of the solution.
The last section of this chapter gives a summary comparison of all discussed works
and briefly introduces main issue of this work.

5.1 Database Schema Integration Process

Paper [1] describes an approach for integration of complex database schemas.
The main aims of the paper are:

• To design a database schema through the approach of a gradual integration
of external schemas.

• To suggest a new conceptual modeling design able to be used for conceptual
database schema design instead of ER data model.

• To develop a CASE tool which provides complete support for schema inte-
gration process.

5.1.1 Phases of the Database Schema Design Process

Design of a complex database schema is based on a gradual integration of external
schemas. An external schema is a complex structure that formally defines a user
view on a database schema (at the conceptual level). The authors divide the
whole process of the database schema design into 5 phases:

1. Identifying groups of similar end-user business tasks
In the first phase it is necessary to design separate external schema for each
group of similar end-user business tasks. Each program that supports a
user request is based on an associated external schema.

2. Conceptual modeling
In this phase each external schema is integrated into a common conceptual
database schema. The set of the subschemas represents an outcome of this

23

phase.
The authors use form type concept (see Section 5.1.2) for conceptual database
schema design in contrast to mainly used ER data model or UML class di-
agrams.

3. Transformation into relational data model
Each resulting subschema is translated into relation data model.

4. Generating a database schema
A potential database schema is created by integration of relation sub-
schemas. This operation can be done by applying the synthesis algorithm
[3].

5. Consolidation
The process of independent design of external schemas may lead to colli-
sions in expressing the real system constraints. The last phase provides a
mechanisms for detection of such constraint collisions and their resolving.

5.1.2 Form Type Concept

Form type concept is an approach for conceptual database schema design. The
authors assume that the form type concept may be used for conceptual database
schema design instead of ER data model or UML class diagrams. The main idea
of this one approach comes from the late 80’s (see [2]).
The concept is based on the fact that users communicate with an information
system through application forms. So the designer’s work is to specify screen
forms of transaction programs.
The main reason for using form type is the fact that the concept is more familiar
to end-users’ perception of information system, than the concepts of entity and
relationship types in ER data model. In addition, form type is a concept that is
formal enough to precisely express all the rules signifcant for structuring future
database schema.

Example

Figure 5.2 shows the structure of a form type F, which generalizes an application
form of Operation plans in Figure 5.1. The form type consists of one component
type OP, graphically represented by a rectangle. Underlined attributes indicate
component type keys.

Figure 5.1: An example of a screen form.

24

Figure 5.2: An example of a form type.

5.1.3 IIS*Case

IIS*Case (Integrated Information Systems*Case) is a resulting software developed
by the authors of the paper, that supports an approach for gradual integration
of external schemas. It is based on the form type concept mentioned before.
IIS*Case is designed to provide complete support for developing complex database
schemas with regard to the number of concepts used, and to give an intelligent
support in the course of the whole schema integration process. IIS*Case supports:

• Conceptual modeling of external schemas.

• Automated design of the so-called relational database subschemas in the
3rd normal form [23].

• Automated integration of relational database schema from designed sub-
schemas.

• Detecting and resolving the constraint collisions between a database schema
and a set of subschemas.

5.1.4 Discussion

The paper presents an original approach to automatic integration of database
schemas. The approach is based on the form type data model. From the design-
er’s point of view, the form type data model offers a simple way for defning the
initial set of attributes and constraints. For the designers, the database design of
even complex information systems became easier because the process of modeling
is raised to the level of a user without an advanced knowledge of the database
design.
The paper also suggests some methods, how to detect and finally resolve colli-
sions between independly designed database schemas. The success of approach
is guaranteed by many results of theoretical research.
As the big advantage of the paper can be found that presented approach is sup-
ported by own CASE tool - IIS*Case.

5.2 QuickMig

Paper [15] describes a semi-automatic approach to determining semantic corre-
spondences between schema elements for data migration applications.

25

5.2.1 The QuickMig Migration Process

The QuickMig approach divides a process of migration into 5 phases:

1. Answering a Questionnaire

2. Injection of Sample Instances

3. Schema and Instance Import

4. Matcher Execution

5. Review

Answering a Questionnaire

The purpose of the first phase is to collect as much information as possible about
the source system. This data will be used to automatically reduce the complexity
of the target schemas. This also helps with reduction of the complexity of the
matching process.
The first phase has to be performed manually by a person with some knowledge
of the capabilities of the source system.

Injection of Sample Instances

In this phase instances existing in the target system are manually created in the
source system. These samples are used by the instance-based matching algorithms
in order to determine correspondences between the source and the target schemas.
Using sample data this knowledge can be exploited by the matching algorithms.
By injecting sample data into the source system the matching algorithms do not
only have arbitrary instances available but one dedicated instance which maps
exactly to a specific instance of the target schema.

Schema and Instance Import

In the third phase of migration process the source schemas as well as correspoding
sample instances are imported into the QuickMig system.

Matcher Execution

In this phase schema matching algorithms are executed. These automatically
determine a mapping proposal using different matching algorithms. The resulting
mapping proposal includes similarities between elements of the source and target
schemas as well as a proposal for the mapping categories.

Review

In the final phase a developer reviews and corrects the mapping proposal. When
the mapping proposal is acceptable, real mapping code is generated and the
mapping is stored.

26

5.2.2 Mapping Categories

Each returned correspondence from the matching phase (phase 4 of migration
process) is associated with some mapping category. These mapping categories
are used to create parts of the necessary mapping expressions. At least it can be
used to provide a mapping expression template that can be easilly completed by
a developer.

QuickMig distinguishes the following 11 mapping categories:

• CreateInstance

• KeyMapping

• InternalId

• LookUp

• Move

• ValueMapping

• Code2Text

• DefaultValue

• Split

• Concatenate

• Complex

5.2.3 The QuickMig Architecture Overview

The QuickMig is based on COMA++ [16]. QuickMig extends COMA++ by
implementing three new matching algorithms:

• Equality Matcher
It is the simplest matcher. It tries to identify equal instance values in the
source and target schema.

• SplitConcat Matcher
This matcher checks the instance data for splitting or concatenation rela-
tionships.

• Ontology-Based Matcher
This matcher exploits background knowledge provided in a domain ontol-
ogy in addition to instance data in order to identify corresponding schema
elements.

Each matching algorithm returns a list of correspondences between the source
and the target schema and also the associated mapping category. The results of
all algorithms are combined in order to create the resulting mapping.

27

5.2.4 Discussion

This paper presents QuickMig, a system for the semi-automatic creation of schema
mappings in data migration projects. The system is based on 5-phase migration
process. The most important phase is the phase of matching execution, where the
mapping proposal is created and each found correspondence is associated with
some mapping category.
The proposal approach was experimentally evaluated using real SAP [36] schemas.
In these experiments QuickMig achieved very good results. QuickMig is planned
to be integrated into SAP data migration tools in future.

5.3 The PRISM Workbench

Paper [14] describes an advanced approach to support database schema evolution
in traditional information systems. In such projects the frequency of database
schema changes has increased while tolerance for downtimes has nearly disap-
peared. The main aim of the paper is to create a tool to manage and automate:

• predicting and evaluating the effects of the proposed schema changes,

• rewriting queries and applications to use the new schema, and

• migrating the database.

5.3.1 SMO Language

The whole evolution process is described by Schema Modification Operators (SMO).
Each SMO represents an atomic operation performed on both schema and data.
All SMOs together represents the SMO language.
Basically, PRISM provides for database administrator the simple SMO language
to express schema changes in the process of designing evolution steps. There exist
the following SMOs:

• Create Table R(A)
- → R(A)

• Drop Table R
R(A)→ -

• Rename Table T into R
R(A)→ T (A)

• Copy Table R into T
RVi

(A)→ RVi+1
(A), T (A)

• Merge Tables R, S into T
R(A), S(A)→ T (A)

• Partition Table R into S (satisfies the condition) and T
R(A)→ S(A), T (A)

28

• Decompose Table R into S(A,B), T (A,C)
R(A,B,C)→ S(A,B), T (A,C)

• Join Table R, S into T according to condition
R(A,B), S(A,C)→ T (A,B,C)

• Add Column C into table R
R(A)→ R(A,C)

• Drop Column C from R
R(A,C)→ R(A)

• Rename Column B in R to C
RVi

(A,B)→ RVi+1
(A,C)

• NOP (no operation)
- → -

Marking

• Right arrow (→) means the change of the left side to the right side.

• A - schema or subschema of the table, i.e. all columns or subset of columns
of a given table.

• R(A) - table R with the schema A.

• R(A,B) - table R with the schema containing two disjoint subschemas A
and B.

• R(A,C) - table R with the subschema A and column C, which is not a part
of the subschema A.

• RVi
(A) - table R has the schema A in the database schema version Vi.

5.3.2 Evolution Process

The process of evolution is divided into 5 phases:

1. Evolutin design

2. Inverse generation

3. Validation and query support

4. Materialization and performance

5. Deployment

29

Evolutin Design

The first phase of evolution process can be further divided into the sequence of 6
steps:

• The database administrator expresses by the SMO language the desired
atomic changes to be applied to the input schema.

• The system virtually applies the SMO sequence to input schema and creates
the candidate output schema.

• The system verifies whether the desired evolution is resistant against loss
of data during executing the evolution. If it is, we call the evolution as
information preserving.

• Each SMO in sequence is analyzed for redundancy. For instance, Copy
table SMO generates redundancies. A database administrator has to decide
whether such redundancy is intended or not.

• The system translates the desired SMO sequence into a logical mapping be-
tween schema versions. This mapping is expressed by so-called Disjunctive
Embedded Dependencies (DEDs).

• Query chase engine rewrites the queries expressed over the old schema into
equivalent queries expressed over the new schema. Alternatively the SMO
sequence is translated into SQL Views corresponding to the mapping be-
tween versions to support queries over the data stored in the basic tables.

The whole phase can be iterated until the candidate schema is satisfactory
and the final schema is obtained.

Inverse Generation

In this phase the system, on the basis of the forward SMO sequence, computes the
candidate inverse sequence. Then is checks, whether the inverse SMO sequence
is information preserving. If both forward and inverse sequences are information
preserving, the schema evolution is guaranteed to be completely reversible.

Validation and Query support

In this phase the system translates the inverse SMO sequence into a logical map-
ping using DEDs. As in the last step of the first phase, queries expressed over the
new schema are rewritten into equivalent queries expressed over the old schema.
Also corresponding SQL views are generated. According to results of this phase,
the database administrator can repeat phases 1 to 3 to improve the evolution.

Materialization and Performance

This phase can be further divided into 4 steps:

• The system translates both the forward and inverse SMO sequences into
SQL data migration scripts.

30

• On the basis of the previous step the system materializes new schema and
supporting queries in the old schema by views or query rewriting.

• Rewritten queries are tested against the materialized new schema for abso-
lute performance testing.

• Old queries are tested natively against the old schema. The results are
compared with the results of the previous step.

The database administrator can improve performance by modifying the schema
layout, for instance by modifying indexes in new schema.

Deployment

In the last phase, the old schema is dropped and old queries are supported by
SQL views or by query rewriting. The whole evolution process is recorded into
an enhanced information schema, to allow schema history analysis. It is possible
to preform a late rollback by generating an inverse data migration script from
inverse SMO sequence.

5.3.3 Data Migration And Query Support

The logical mapping between versions is expressed by DEDs. Each SMO in an
input SMO sequence is converted into DED, so each DED represents a given
mapping rule between the old schema and the new schema. Each SMO produces
both forward and backward mapping. Forward mapping expresses how to migrate
data from the source (old) schema version to the target (new) schema version.

Using the generated DEDs, the queries are rewritten by engine using the chase
and backchase algorithm [11].

SMO to SQL

SMOs are tailored to assist data migration tasks, therefore many SMOs combine
actions on both schema and data. In phase 4 of evolution process, each SMO is
translated into corresponding SQL data migration code.

PRISM also supports expressing of the mapping between versions in terms of
SQL views. This often happens in the data integration area. Views are usually
used to enable what-if analysis (forward views), or to support old schema versions
(backward views). Each SMO can be translated into a corresponding set of SQL
views.

5.3.4 Discussion

This paper presents PRISM workbench, a system to support database schema
evolution. The whole evolution process is based on 5-phase evolution process,
including manual design of desired evolution by SMO language and automated
work of PRISM tools to perform corresponding schema evolution, generate data
migration scripts and rewrite queries into equivalent one expressed on the new

31

database schema.
The system was tested on Wikipedia database schema. Its 170+ schema versions
provided good testing environment for validating PRISM tools and ability to sup-
port legacy query rewriting.

The PRISM deserves further research, especially in the field of optimization of
performance or query rewriting, but it is clear that the PRISM takes a big step
toward needs of database administrators to have methods and tools to manage
and automate the whole process of database schema evolution.

5.4 Adaptive Query Formulation

Papers [17] and [18] describe a graph-based aproach to database schema evolution.

5.4.1 Graph-based Model

The authors propose a graph-based model that uniformly covers relational ta-
bles, views, database constraints and SQL queries. Formally, the given database
schema is represented as directed graph G = (V,E), where V are the nodes of the
graph representing the entities of the model, and E are the edges representing
the relationships between these entities.
There are the following essential components:

• Relations
The relation in the database schema is represented as a directed graph,
which includes:

– Relation node, representing relational schema.

– Attribute node, one for each attribute.

– Relationship edges directing from relation node to attribute nodes,
indicating belonging of an attribute to the relation.

• Conditions
The conditions refer to selection conditions (of queries and views) and con-
straints (of a database schema). A condition node represents a given condi-
tion. The node is tagged with appropriate operator and it is connected to
the operand nodes. Composite conditions are simply constructed by tagging
the condition node with a Boolean operator and the appropriate edges to
the conditions composing the given composite condition.

• Queries
The graph representation of the query includes a query node and attribute
nodes corresponding to the query projection. In order to determine rela-
tionship between the query and relations, the query is divided into these
essential parts:

– Select part
This part of the query maps appropriate attributes of the involved
relations to the attributes of the query projection through edges of

32

typemap-select directing from the query attributes toward the relation
attributes.

– From part
This part of a query is considered as the relationship between the
query and involved relations. The relations involved in this part are
combined with the query node through edges of type from-relationship
directing from the query node towards the relation nodes.

– Where and Having parts
These clauses are assumed to be in conjunctive normal form(CNF)
[30]. There exist two edge types where-relationship and having-relationship
directing from a query node towards an operator node at the highest
level of the conjunction.

– Group and Order By parts
For this part there are two special nodes: group-by node (GB) to cap-
ture the set of attributes acting as the aggregators and aggregate func-
tion node. There are the following types of edges: group-by directing
from query node to GB node, and from GB node to each aggregator,
and map-select directing from each aggregated attribute to aggregate
function node and directing from aggregate function node to appropri-
ate relation attribute.
Order-by clause is performed similarly.

• Views
Views are considered either as queries or in case of materialized views as
relations.

5.4.2 Evolution Policies

In the context of the proposed graph-based model, changes in the database schema
are events, which transform specific parts of the graph and eventually affect oth-
er dependent graph constructs, which recursively may raise new changes, which
have an impact on other graph constructs.
To handle schema evolution, the graph constructs have to be annotated with poli-
cies that allow the designer to specify the behavior of a given construct whenever
change events occur. This combination of event and policy triggers the execution
of the appropriate action - blocks the event or reshapes the graph respectively.

Possible events are defined as Cartesian product of a set of hypothetical actions
(addition, deletion, modification) and set of graph constructs, which are subject
of evolution (relations, views, attributes and conditions).
There exist three kinds of policies, which can be used with a given event:

• Propagate the change, i.e. the graph has to be reshaped to adjust new
semantics.

• Block the change to retain old semantics and the event has to be blocked.

• Prompt the user to interactively decide what will eventually happen.

33

5.4.3 SQL Extensions

The authors propose an extension of a database system catalog with extra in-
formation regarding evolution purposes. Each assertion is considered as a tuple
(event, policy).
These assertions extend SQL syntax both in DDL statements as well as in SQL
queries. The general syntax is:

ON < event > THEN < policy >

An event refers to evolution events in the database schema (delete, add, modify,
rename) and a construct type (node, relation, query, view, attribute, condition,
PK, FK, NNC, UC). The policy can take the values mentioned in previous section
(propagate, block, prompt).

5.4.4 Discussion

The papers present a graph-based approach to performing database schema evo-
lution. They focus on propagating potential changes of the database system to
all the affected parts of the system.
There was introduced a complex graph-based model, which covers the whole
database systems, including such elements like queries or views. Also there was
introduced an extension to the SQL language specifically tailored for the man-
agement of evolution.
The applicability and efficiency of this approach has been tested in real-world
evolution scenario extracted from an application of the Greek public sector. The
main goal of the test was to minimize the human effort required for defining and
setting the evolution metadata by using the proposed language extension.

5.5 Comparision of the Related Works

All presented works study a problem of database schema adaptation, but each of
them focuses on a separate part of this complex issue.

The first paper [1] describes an approach to the process of integration of
complex database schemas. It is based on the form-type concept, which is used
for conceptual database schema design in contrast to mainly used ER data model
or UML class diagrams.

The second paper [15] describes a semi-automatic approach to determining
semantic correspondences between schema elements for data migration applica-
tions. It focuses on the matching process where a mapping proposal is created
and each found correspondence is associated with some mapping category. These
are then used to create parts of the mapping expressions.

The third and the fourth works study the same problem - database evolution,
but each from the different point of view.
The third work [14] focuses on the support of database schema evolution in tra-
ditional information systems. It introduces the SMO language used to design
desired evolution changes.

The last work [18] is based on graph model of the whole database system,
including views, queries or constraints. Such graph is annotated by policies to

34

specify behavior of given database system construct whenever change events oc-
cur.

As the result of the third work there is a sequence of traditional SQL state-
ments, in contrast to the last work, where the evolution is performed in place and
all affected elements are automatically adjusted into new version.

In this thesis we will focus on the problem of database queries adaptation.
We will focus especially on the following problems which were not solved in these
papers:

• On modeling of database queries in a CASE tool together with the database
schema model.

• On the relation between database schema and database queries.

• On the propagation of changes between database schema and database
queries.

35

Chapter 6

Database Model

In this chapter we describe a Database Model, which will be used in this thesis as
a model for representing a database schema.

6.1 PIM Layer

According to MDA approach, PIM layer defines essential concepts comprising
the system and relationships between these concepts. Thanks to interconnections
between PIM and PSM, it is possible to propagate changes done in PIM layer to
corresponding constructs in PSM layer.
For the purpose of this thesis, it is not important what kind of model is used in
PIM diagram. Figure 6.1 shows an example of such PIM diagram based on UML
class diagram. The example illustrates a draft of a schema of orders in e-shop.
The diagram is consist of:

• Classes - visualized as yellow rectangles. Each class has a nonempty name.
For instance, in Figure 6.1 Customer or Order are classes.

• Attribute - visualized as a child item of any class. Each attribute has a
nonempty name and belongs to exactly one class. For instance, firstname,
lastname, email and phone are attributes of the class Customer.

• Associations - visualized as a line connecting two classes. Each association
has a name and cardinalities used with the particular part of the association.
For instance, association contains means that the order contains ordered
items. The cardinality setttings means that each ordered item belongs to
exactly one order and each order contains at least one ordered item.

6.2 PSM Database Model

The PSM database model is based on the relational database model. Such
database model is used as platform-specific according to MDA approach.
In this thesis, the database model has still another role. It is used as PIM model
for a query model described in Section 7.2. The idea of using the database model
this way is simple. From the perspective of arbitrary query language (not only
SQL), the database model creates a basic concept of a database schema. Each

36

Figure 6.1: An example of PIM diagram.

query language then creates own platform-specific point of view on the database
model.

The PSM database model was implemented in the DaemonX framework [32] as
a modeling plug-in of PSM database schema. Figure 6.2 illustrates the example
of PSM database model, which corresponds to the PIM model in Figure 6.1, i.e.
the draft of a schema of orders in e-shop. The PSM database model diagram is
consist of:

• Tables - visualized as rectangles with a nonempty black name in a blue
field. For instance, in Figure 6.2 Address or Product are tables.

• Columns - visualized as a child item of any table. Each column has a
nonempty name, datatype and belongs to exactly one table. For instance,
productId, name, description and unitPrice are columns in the table Prod-
uct.
The column can be further marked as:

– Primary Key - the column represents a primary key of the table - red
font color and golden key icon

– Foreign Key - the column is the foreign key to the another table - blue
font color and grey key icon

– Not Null - the column cannot have a null value - black font color, red
bead icon and the tag NN behind the name

– Null - the column can have a null value - light grey font color and blue
bead icon

37

– Unique - the column has a unique value - the tag U behind the column
name, the font color and the icon according to the Null / Not Null
property

• Relationships - visualized as an arrow leading from the referencing table
to the referenced table. The relationship has a nonempty name. Each
referencing table contains a primary key column from the referenced table
as a column marked as foreign key.

Figure 6.2: The example of PSM database model.

6.2.1 Model Constructs

The model contains the following constructs:

• Table represents a given table in a given database system. Each table
construct can represent only one class from the PIM model. Every table
construct has a name and contains column constructs. Table concstructs
can be connected by relationships.

• Column is a construct that can exists only as a child of a table construct.
Each column construct represents at most one PIM attribute. Every column
construct has a name, a data type, an indicator if it is used as primary key,
nullable or with a unique value.

• Relationship construct represents a connection between two table con-
structs. Every relationship construct has a role, which represents a logical
label for such connection, and cardinality of relationship. There can exist
more than one relationship between two table constructs, but each such
relationship must have a unique role.
The relationship between two tables is not only logical or virtual. It is based

38

on the concept of keys and foreign keys 2.1.2. If exists a column construct
C, which is in table construct T1 used as primary key and in table construct
T2 used as foreign key, there must exist a relationship construct connecting
constructs T1 and T2.

39

Chapter 7

SQL Query Model

For possibility of evolution of SQL queries related to a given database schema
there must exist a mapping between SQL query and a database schema model.
This mapping helps to manage the evolution process to evolve the query related
to the evolved database schema.

In this chapter we will introduce a graph-based SQL query model, which is
particularly designed for evolution process. We will describe its visualization
model, limitations and possibilities. The mapping between SQL query model
and the database schema will be introduced as well. Also we will describe an
algorithm to generate the SQL query from the query model.

7.1 Limitations of the Query Model

Full SQL language syntax is too extensive to be used in this thesis. For this
reason there exist some limitations on the used subset of SQL language.

• Projection operator ’∗’ is banned to use. It is always necessary to enumerate
all the columns used in the SELECT clause.

• In queries it is possible to use only simple column enumeration, other ex-
pressions or functions other than aggregate functions are banned to use.
This limitation relates to the CASE construct as well.

• The model does not support UNION, INTERSECT and EXCEPT con-
structs.

• Each condition used in the SQL query is assumed to be in conjunctive
normal form (CNF) [30].

7.2 Graph-Based Query Model

The idea of the graph-based model comes from papers [17] or [18]. In this paper
we use graph-based model for query modeling, in contrast to mentioned papers,
where graph-based model is implemented as part of database management sys-
tem (DBMS). The idea of graph-based model from [17] and [18] is adjusted and
extended for purposes of this thesis.

40

Each SQL query is in the model represented as a directed graph with partic-
ular properties.

Definition 7.1. (Query Graph). A query graph G of the SQL query Q is a di-
rected graph GQ = (V,E), where V is a set of query vertices and E is a set of
query edges.

Definition 7.2. (Query Model). A query model M of the SQL query Q is
a pentad MQ = (GQ, TV , TE, τV , τE), where GQ is a query graph GQ = (V,E),
TV is a set of vertex types {AggregateFunction, Alias, BooleanOperator, Combi-
neSource, ComparingOperator, ConstantOperand, DataSource, DataSourceItem,
From, FromItem, GroupBy, Having, OrderBy, OrderByType, QueryOperator, Se-
lect, SelectItem, Where}, TE is a set of edge types {Alias, Condition, Condi-
tionOperand, DataSource,DataSourceAlias, DataSourceItem, DataSourceParent,
FromItem, FromItemParent, FromItemSource, GroupBy, GroupByColumn, Hav-
ing, MapColumn, MapSource, OrderBy, OrderByColumn, SelectColumn, Selec-
tQuery, SourceTree, Where}, a function τV : V → TV assigns a type to each
vertex of the query graph GQ and a function τE : E → TE assigns a type to each
edge of the query graph GQ.

A query vertex represents a particular part of the SQL query, e.g. database
table, table column, comparing operator in condition, selected column in the SE-
LECT clause, etc. A query edge connects parts of the SQL query together and
gives a particular semantics to this connection. For instance the edge connecting
a From vertex and a Where vertex means that the query contains a WHERE
clause represented by the Where vertex.

Each query graph can be logically divided into smaller subgraphs. These sub-
graphs are called essential components. Each essential component has a visual
equivalent in query visualization model described in Section 7.3.

There exist the following essential components:

• DataSource

• From

• Select

• Condition

• GroupBy

• OrderBy

The simplest SQL queries of the form ’SELECT projection FROM table’ re-
quire only DataSource, From and Select components.

7.2.1 DataSource Component

A DataSource component represents a general source of data, primarily it is used
to model database tables of a given database schema. But we can also consider
it as a database view, a result of a given database function, or something else.
The DataSource component represents an input point of evolution process (see
Section 7.4). The component comprises the following types of vertices or edges:

41

DataSource Vertex

This vertex represents a particular source of data, for instance a database table.
The vertex contains a name of the source of data.

DataSourceItem Vertex

This vertex represents one attribute of a particular source of data, for instance
a column of a given database table. For each attribute of a given source there
exists exactly one DataSourceItem vertex. The vertex contains a name of the
attribute.

DataSourceItem Edge

This edge is directing from DataSource vertex to DataSourceItem vertex. The
edge indicates that the given DataSourceItem belongs to the particular Data-
Source. From one DataSource vertex there can lead zero to n edges of this type.
The edges are indexed from 0. The index determines an order of the DataSour-
ceItem in the source of data.

DataSourceParent Edge

This edge is directing from DataSourceItem vertex to DataSource vertex. The
edge indicates that the DataSource vertex is a parent of the DataSourceItem ver-
tex. Exactly one edge of this type must lead from one DataSourceItem vertex.

Figure 7.1 shows visualization of the query graph of the DataSource component.
The depicted DataSource represents a database table Customer with columns
firstname and lastname.

Figure 7.1: An example of DataSource query graph component.

7.2.2 From Component

A From component is used to model the FROM clause of the SQL query. The
component comprises the following types of vertices or edges:

42

From Vertex

This vertex is the main vertex of the From component. In the context of whole
SQL query it represents the FROM clause. Algorithm 7.4 for generating SQL
query from the model starts at this vertex. Also it is the important point of
algorithms, which distribute changes in query model and which are described in
Section 8.2.

FromItem Vertex

This vertex represents one column from a possible set of query results. Each
FromItem vertex corresponds to exactly one DataSourceItem vertex. Each at-
tribute from each source of data used in the particular query must be covered by
FromItem vertex. The vertex contains the full name of the covered attribute, i.e.
the name with the alias of the attribute parent.

FromItem Edge

The edge of this type is directing from a vertex of type From to vertices of type
FromItem. The edge indicates that the FromItem belongs to the given From
vertex. The From vertex can have zero to n adjacent vertices connected by the
edge of the FromItem type.

FromItemParent Edge

The edge is directing from the FromItem vertex to the From vertex. The edge
indicates that the FromItem is a parent of the From vertex. Each FromItem
vertex must have exactly one adjacent vertex of the type From connected by
edge of the FromItemParent type.

FromItemSource Edge

This edge is directing from the DataSourceItem vertex to the FromItem vertex.
The edge indicates a mapping of the DataSourceItem (e.g. a table column) into
the column representation of the particular query.

Alias Vertex

This vertex contains a used alias for a particular source of data used in the
FROM clause. This vertex always exists, even if there is not defined any alias in
the query. In such case the alias has a value of the name of the given source of
data.

DataSource Edge

This edge is leading from the AliasVertex to the DataSource vertex. It indicates
that the Alias vertex is related to the given DataSource vertex. Each Alias vertex
have exactly one adjacent neighbour connected by the edge of this type.

43

DataSourceAlias Edge

This edge is leading from the AliasVertex to the From vertex. It indicates that
the Alias vertex represents an alias of the given DataSource. Each alias vertex
have exactly one adjacent neighbour connected by the edge of this type.

Alias Edge

The edge of this type is used in three places:

• The edge which leads from the From vertex to the Alias vertex means
membership of the given DataSource in the particular query.

• The edge which leads from the FromItem vertex to the Alias vertex repre-
sents parent of the given FromItem in the particular query.

• The edge which leads from the DataSource vertex to the Alias vertex means
that the given DataSource appears in the particular query as the alias with
the name of the Alias vertex value.

SourceTree Edge

This edge is leading from From vertex to the so called MainSource vertex, which:

• In the case of the simple SQL query with only one DataSource, this edge is
leading direct to the Alias vertex of this DataSource.

• Otherwise it is leading to the root of the combination source tree (see later).

Each From vertex covering any DataSource has exactly one MainSource vertex.

The illustration in Figure 7.2 shows a simple example of the modeled FROM
clause with only one database table. The example is equivalent to the following
part of the SQL query:

FROM Order O

Figure 7.2: An example of the simple model of the FROM clause.

44

Combination Source Tree

Even simple SQL queries often contain a combination of database tables. In SQL
table combinations are performed by Cartesian product or by variations of JOIN
construct. For these types of queries there exists a structure called combination
source tree.

It is an acyclic graph structure which comprises the following vertices and
edges:

• CombineSource vertex, which represents combination of two database
tables by the given type of combination (i.e. Cartesian product, Join, etc.).

• MapSource Edge is the type of the edge, which connects CombineSource
vertex with other level of the combination source tree. The first edge (in-
dexed from 0) is leading to Alias vertex, if there is no other combination.
Otherwise, if there exists another combination of DataSources, it is leading
to CombineSource vertex.
The second edge is always leading to Alias vertex and it represents currently
connected DataSource into the tree.

• Condition Edge. This edge is leading from the combine-source vertex
to the root of the condition tree (see Section 7.2.4). This edge exists on-
ly if the combination type of combine-source vertex is not the Cartesian
product, because in such case there is necessary to specify condition of the
DataSource connection.

Figure 7.3 illustrates the part of the modeled FROM clause containing a
combination source tree. The example is equivalent to the following part of the
SQL query:

FROM
Order
JOIN OrderDeta i l ON cond i t i on1
JOIN Customer ON cond i t i on2

7.2.3 Select Component

A Select component is used to model the SELECT clause of the SQL query. The
component comprises the following types of vertices or edges:

Select Vertex

This is the main vertex of the Select component. In the context of the SQL query
it represents the SELECT clause. It is the important part of algorithms which
distribute changes in the query model as well.

SelectQuery Edge

This edge is directing from a From vertex to a Select vertex. It indicates that the
SELECT clause represented by the Select vertex belongs to the FROM clause
represented by the From vertex. From each From vertex only one edge of the

45

Figure 7.3: An example of the combination source tree model.

SelectQuery type can lead and to each Select vertex can lead only one edge of
the SelectQuery type.

SelectItem Vertex

This vertex represents a selected column in the SELECT clause of the SQL query.
The task of this vertex is to provide a name of the selected column. In case that in
the selected column expression there is an alias, it contains its value. Otherwise
it contains the full name of the source item (i.e. a name of the DataSourceItem
including the alias used for the parent DataSource).

SelectColumn Edge

This edge connects a Select vertex with a SelectItem vertex. It indicates the
membership of the selected column with the particular Select vertex. To each
SelectItem vertex must lead exactly one edge of the SelectColumn type. The edges
are indexed from 0, where index determines the order of the selected columns in
the SELECT clause.

AggregateFunction Vertex

This vertex represents an aggregate function used in the SELECT clause. The
possible represented aggregate functions are the following:

• Count

• Sum

• Average

• Maximum

• Minimum

46

MapColumn Edge

The edge of this type can be used in three places:

• The edge which leads from the SelectItem vertex to the FromItem vertex
means a mapping of the selected column to its source column in FROM
part of the query.

• The edge leading from the SelectItem vertex to the AggregateFuntion vertex
means that the given aggregate function is used in the particular select
column expression.

• The edge leading from the AggregateFunction vertex to the FromItem ver-
tex indicates the usage of the given source column as the argument of the
aggregate function.

Figure 7.4 shows an example of the modeled SELECT clause. The example
simply illustrates a difference when an alias for the column is used or not. The
example is equivatelent to the following part of the SQL query:

SELECT
c . CustomerId as c id

, c .Name
FROM

Customer c

Figure 7.4: An example of the simple model of the SELECT clause.

Figure 7.5 shows the example of a usage of the aggregate function in the
SELECT clause. The example is equivalent to the following part of the SQL
query:

SELECT
COUNT(c . CustomerId) as customerCount

FROM
Customer c

47

Figure 7.5: An example of a usage of an aggregate function in the SELECT
clause.

SQL Query as DataSource

Each SQL query can be used as a DataSource in the FROM clause of another
SQL query. The query model provides this possibility as well. The connection
between the Select component and the From component is similar to the con-
nection between the DataSource component and the From component, but there
exist following exceptions:

• The Alias edge leading to the Alias vertex is directed from the Select vertex
and it has the same meaning as the edge between the DataSource vertex
and the Alias vertex.

• The FromItemSource edge is leading from each SelectItem vertex belonging
to the SELECT clause to the FromItem vertex. The edge indicates a map-
ping of the selected column into the column representation of the particular
query.

Because of usage of an SQL query as a DataSource, there exist FromItem ver-
tices, which create a transparent interface for other components this way, instead
of direct mapping between DataSourceItem vertices and for instance SelectItem
vertices.

Figure 7.6 shows the example of the usage SQL query as a DataSource of an-
other SQL query.

Figure 7.6: An example of a usage of the SQL query as a DataSource.

48

7.2.4 Condition Component

This component is used to model conditions in SQL queries. Conditions occur in
the following parts of the SQL query:

• WHERE clause.

• HAVING clause.

• Condition of the DataSource combination.

Condition Tree

A condition tree is an acyclic graph structure, which can cover a model of each
condition used in the SQL query. It comprises the following types of vertices or
edges:

• ComparingOperator Vertex
This vertex represents the conditions with a comparing operator. The form
of these condititions is A op A′ or A op constant, where A and A′ refer to the
table column or usage of the aggregate function with the given table column,
and op is a binary operator (<, >, >=, <=, =, ! =, LIKE, NOT LIKE)
or a unary operator (IS NULL, IS NOT NULL). The vertex has one or
two adjacent vertices according to the arity of used operator.

• QueryOperator Vertex
This vertex represents conditions which have the form of A opb Q or opu Q,
where A refers to the table column, opb is a binary query operator (IN ,
NOT IN , ANY), opu is an unary query operator (EXISTS, NOT EXISTS)
and Q is a query. The vertex has one or two adjacent vertices according to
the arity of used operator.

• ConstantOperand Vertex
This vertex represents any constant value used in conditions.

• AggregateFunction Vertex
In the context of conditions, this vertex is used in the HAVING clause of
the SQL query.

• BooleanOperator Vertex
This vertex represents boolean operator used to joining of conditions. Lit-
erals of conditions in CNF are joined by OR operator, clauses of conditions
are joined by AND operator. Each BooleanOperator vertex has at least
two adjacent vertices. All modeled literals of one clause are connected with
one OR operator vertex, all modeled clauses are connected with one AND
operator vertex. From this claim it is obvious that each condition contains
at most one AND operator vertex.

Only the ComparingOperator vertex and the QueryOperator vertex can be
adjacent vertices of the BooleanOperator vertex of the type of OR. The
BooleanOperator vertex of the type of AND can have the BooleanOperator
vertices of the type of OR as adjacent vertices in addition as well.

49

• ConditionOperand Edge
This is the only type of edge which is used in the whole condition tree. All
vertices mentioned before are connected by this edge. The edges leading
from the particular vertex are indexed from 0. The edge can lead between
following types of vertices:

– Two BooleanOperator vertices. This edge can lead only from AND
boolean vertex to OR boolean vertex.

– BooleanOperator vertex and ComparingOperator or QueryOperator
vertex. The edge indicates the membership of the literal in the clause.

– ComparingOperator or QueryOperator vertex and FromItem vertex.
The edge indicates that the table column represented by FromItem
vertex is compared to other column, constant value or query.

– ComparingOperator or QueryOperator vertex and AggregateFunction
vertex. The edge indicates that the result of the aggregate function is
compared to constant value or query.

– AggregateFunction vertex and FromItem vertex. The edge indicates
the usage of the aggregate function with the table column represented
by FromItem vertex as its argument.

– ComparingOperator vertex and ConstantOperand vertex. The edge
indicates that the table column is compared to constant value.

– QueryOperator vertex and Select vertex. The result of the query rep-
resented by Select vertex is used as operand to be compared with other
column of result of the aggregate function usage.

WHERE and HAVING Clauses

WHERE and HAVING clauses of the SQL query are modeled as follows:

• Where Vertex, which represents a WHERE clause.

• Having Vertex, which represents a HAVING clause.

• Condition Edge, which is leading from the Where or the Having vertex
to the root of the condition tree. Each Where or Having vertex can be
connected at most with one condition tree.

• Where Edge, which is leading from the From vertex to the Where vertex.
It indicates a membership of the WHERE clause in the SQL query. Each
From vertex can be connected at most with one Where vertex and vice
versa.

• Having Edge, which is leading from the From vertex to the Having vertex.
It indicates a membership of the HAVING clause in the SQL query. Each
From vertex can be connected at most with one Having vertex and vice
versa.

50

DataSource Combination Condition

The way of the usage of the condition in DataSource combination was described
in Section 7.2.2.

Figure 7.7 shows a simple example of the condition in the WHERE clause of
the SQL query. The example is equivalent to the following part of the SQL
query:

WHERE
OrderId = 1135

Figure 7.7: An example of the simple model of the WHERE clause.

Figure 7.8 shows a simple example of the condition in the HAVING clause
of the SQL query. The example is equivalent to the following part of the SQL
query:

HAVING
COUNT(OrderId) > 100

Figure 7.9 shows a more comlex example of the condition using Boolean op-
erators. The example is equivalent to the following part of the SQL query:

(orderDate >= ’ 1 . 6 . 2011 ’)
AND

(c i t y = ’New York ’ | | c i t y = ’Log Angeles ’)
AND

(productName IN (Products))

51

Figure 7.8: An example of the simple model of the HAVING clause.

7.2.5 GroupBy Component

A GroupBy component is used to model the GROUP-BY clause of the SQL query.
The component comprises the following types of vertices or edges:

GroupBy Vertex

This main vertex of GroupBy component represents the GROUP-BY clause of
the SQL query. It is the part of algorithms which distribute changes in the query
model as well.

GroupBy Edge

This edge is directing from a Select vertex to a GroupBy vertex. It indicates
the membership of the GROUP-BY clause in the SQL query. The edge must
lead from the Select vertex, because the columns that are grouped depend on the
selected columns in the SELECT clause.

GroupByColumn Edge

This edge is directed from a GroupBy vertex to a SelectItem vertex. It indicates
that the given selected column is used in the GROUP-BY clause. Because of cor-
rectness of the SQL query, each SelectItem vertex which do not use an aggregate
function has to be connected with the GroupBy vertex, but this applies only in

52

Figure 7.9: An example of the modeled complex condition.

case that there exists at least one SelectItem, which uses the aggregate function.
The edges are indexed from 0 according to the order of the aggregator.

Figure 7.10 illustrates a simple example of the modeled GROUP-BY clause. The
example is equivalent to the following parts of the SQL query:

SELECT
CustomerId as cid ,
COUNT(OrderId) as orderCount

. . .
GROUPBY

CustomerId

Figure 7.10: An example of a simple model of the GROUP-BY clause.

53

7.2.6 OrderBy Component

The OrderBy component is used to model the ORDER-BY clause of the SQL
query. The component comprises the following types of vertices or edges:

OrderBy Vertex

This vertex represents the ORDER-BY clause of the SQL query. It is the part of
algorithms which distribute changes in the query model as well.

OrderByType Vertex

This vertex represents a choice whether the sort by the given column is ascending
or descending.

OrderBy Edge

This edge is directing from a From vertex to an OrderBy vertex. It indicates the
membership of the ORDER-BY clause in the SQL query.

OrderByColumn Edge

This edge is used in three places:

• The edge directing from an OrderByType vertex to a FromItem vertex
indicates that the given table column is used as an argument for sorting the
SQL query result.

• The edge directing from an OrderByType vertex to a SelectItem vertex
indicates that the given selected column is used as an argument for sorting
the SQL query result.

• The edge directing from an OrderBy vertex to an OrderByType vertex
indicates a direction of used sort by the given column.

All the edges are indexed from 0 in order to set the order of columns used in
a sorting algorithm.

Figure 7.11 illustrates a simple example of the modeled ORDER-BY clause. The
example is equivalent to the following part of the SQL query:

ORDERBY
CustomerId ASC,
Name DESC

7.3 SQL Query Visualization Model

Though graph-based query model can describe any SQL query, it is relatively
complex. Even query model for a simple SQL query contains a lot of vertices
and edges. For this reason we proposed a visualisation model, which simplifies
an underlaying query model for users.

54

Figure 7.11: An example of a simple model of the ORDER-BY clause.

7.3.1 Visualisation Model Components

The visualisation model is divided into essential visual components. Each es-
sential component mentioned in Section 7.2 has its visual equivalent by some
essential visual component, so each visual component represents a part of the
SQL query graph model.

We distinguish the following visual components:

• DataSource

• QueryComponent

• Component Connection

DataSource Visual Component

A DataSource visual component visualizes a DataSource essential component.
Each DataSource has a name, which clearly identifies the given DataSource. The
content of the DataSource component is the list of DataSourceItem visual com-
ponents. The DataSource visual component itself corresponds to the DataSource
vertex. The DataSourceItem visual components correspond to the DataSourceIt-
em vertices.

Figure 7.12 shows an example of DataSource visual component. The example
represents a database table Customer with columns:

• customerId

• firstname

• lastname

• email

• phone

55

Figure 7.12: An example of a DataSource visual component.

QueryComponent Visual Component

A QueryComponent is an universal visual essential component, which represents
parts of the SQL query. A basic appearance of all query components looks the
same. We distinguish the following types of query components according to the
clause of the SQL query they represent:

• Select
This represents the SELECT clause of the SQL query. It covers the Select
essential component of the query graph.

• From
This represents the FROM clause of the SQL query. It covers the From
essential component of the query graph.

• Where
This represents the WHERE clause of the SQL query. It covers a corre-
sponding part of the Condition essential component of the query graph.

• GroupBy
This represents the GROUP-BY clause of the SQL query. It covers the
GroupBy essential component of the query graph.

• Having
This represents the HAVING clause of the SQL query. It covers a corre-
sponding part of the Condition essential component of the query graph.

• OrderBy
This represents the ORDER-BY clause of the SQL query. It covers the
OrderBy essential component of the query graph.

Figure 7.13 illustrates an example of the QueryComponent visual component.
The example shows visualisation of the WHERE clause.

Component Connection

A Component Connection does not correspond directly to any essential compo-
nent of the query graph. Instead of this it covers connection of two essential
components to finish the correct and complete query graph. We distinquish the
following types of connections:

56

Figure 7.13: An example of a QueryComponent visual component.

• DataSource → From
The connection represents the DataSource being a part of the SQL query,
specifically of the FROM clause. It consists of Alias vertex, Alias edge and
DataSource edge.

• Select → From
The connection represents the SELECT clause belonging to the FROM
clause in the SQL query. It consists of a SelectQuery edge.

• Where → From
The connection represents the WHERE clause belonging to the FROM
clause in the SQL query. It consists of a Where edge.

• GroupBy → Select
The connection represents the GROUP-BY clause corresponding to the
SELECT clause in the SQL query. It consists of a GroupBy edge.

• Having → From
The connection represents the HAVING clause belonging to the FROM
clause in the SQL query. It consists of a Having edge.

• OrderBy → From
The connection represents the ORDER-BY clause belonging to the FROM
clause in the SQL query. It consists of an OrderBy edge.

Figure 7.14 shows a visualisation model of a more complex SQL query. The
modeled SQL query is the follows:

SELECT
c . f i r s tname

, c . lastname
, a . s t r e e t
, a . c i t y
, a . postcode

FROM
Customer as c
JOIN Address as a ON c . customerId = a . customerId

WHERE
(c . f i r s tname = ’ John ’ OR c . f i r s tname = ’ Jane ’)

AND
(c . lastname = ’Doe ’)

ORDERBY

57

c . customerId ASC
, c . lastname ASC
, a . postcode DESC

Figure 7.14: An example of a visual model of a more complex SQL query.

For comparision, the underlaying query graph model is consists of 45 vertices
connected by 87 edges. A visualisation of this query graph can be found in
Appendix B.

7.4 Mapping to Database Model

Since the database model consists of tables and its columns which we can interpret
as a general source of data, we have a direct mapping from the database model
to the query model. We do not consider database relationhips between database
tables in the database model. For the purpose of the query model they are not
important.

The mapping between the database model and the query model is described
as follows:

• Database table → DataSource
The database table in the database model is mapped to the DataSource
visual component which corresponds to the DataSource vertex of the un-
derlaying query graph.

• Table column → DataSourceItem
The table column in the database model is mapped to the DataSourceItem
visual component which corresponds to the DataSourceItem vertex of the
underlaying query graph.

58

An example of the mapping is shown in Figure 7.15. The example illustrates
the mapping from a database table Customer to a DataSource visual component
named Customer.

Figure 7.15: An example of a mapping between database model and query model.

The mapping does not preserve keys (primary keys, foreign keys) and any
other column attribute like not-null or unique. For the purpose of the data
querying this property is insignificant.

7.4.1 Mapping of Operations

In this section we describe mapping of the operations of database and query
models used in the evolution process.

Definition 7.3. (Operation). An operation is a general function f : (M,C) →
M ′, where M is a particular model intented to change, C represents a context
describing a change of the model M and M ′ is a modified model.

Definition 7.4. (Atomic Opertion). An atomic operation is the minimal indi-
visible operation. It can be used to create composite operations.

All changes in the database model are done by atomic operations. All atomic
operations in the database model which have an impact on the SQL query model
are translated by the evolution process into corresponding atomic operations in
the SQL query model (see Section 8.2).

Database Model Operations

Let us suppose a database model MD, which is a set of tables Ti. Each table
Ti ∈MD has a name TiN and a set TiC , which is a set of columns cj. Each column
cj has a name cjN .

Renaming Database Table αT : (Ti,m) → T ′
i The operation returns ta-

ble T ′
i where T ′

iN
= m and T ′

iC
= TiC .

Removing Database Table βT : (MD, Ti) → M ′
D The operation removes

database table Ti ∈MD from the database model MD. It returns database model
M ′

D where M ′
D = MD\{Ti}.

59

Creating Table Column γC : (Ti, cj) → T ′
i The operation adds the col-

umn cj into table Ti. It returns table T ′
i where T ′

iN
= TiN and T ′

iC
= TiC ∪ {cj}.

Renaming Table Column αC : (cj,m) → c′j The operation returns col-
umn c′j where c′jN = m.

Removing Table Column βC : (Ti, cj) → T ′
i The operation removes column

cj ∈ Ti from the table Ti. It returns table T
′
i where T

′
iN

= TiN and T ′
iC

= TiC\{cj}.

SQL Query Model Operations

Let us suppose a query model MQ, whose query graph GQ consists of a set of
DataSources Di and other components, which are not important for this purpose.
Each DataSource Di ∈MQ has a name DiN and a set DiI , which is a set of Data-
SourceItems dj. Each DataSourceItem dj has a name djN .

Renaming DataSource αD : (Di,m) → D′
i The operation returns Data-

Source D′
i where D′

iN
= m and D′

iI
= DiI .

Removing DataSource βD : (MQ, Di) → M ′
Q The operation removes Data-

Source Di ∈ MQ from the query model MQ. It returns query model M ′
Q where

M ′
Q = MQ\{Di}.

Creating DataSourceItem γI : (Di, dj)→ D′
i The operation adds DataSour-

ceItem dj into DataSource Di. It returns the DataSource D′
i where D′

iN
= DiN

and D′
iI
= DiI ∪ {dj}.

Renaming DataSourceItem αI : (dj,m) → d′j The operation returns Data-
SourceItem d′j where d′jN = m.

Removing DataSourceItem βI : (Di, dj)→ D′
i The operation removes Data-

SourceItem dj ∈ Di from the DataSource Di. It returns DataSource D′
i where

D′
iN

= DiN and D′
iI
= DiI\{dj}.

7.4.2 Complex Operations

More complex operations like Split, Merge, Move done in the database model can
be propagated to the SQL query model as well. In the SQL query model these
operations have to be composed from mentioned atomic operations.

A prototype implementation described in Section 9.2 contains only an imple-
mentation of the atomic operations.

7.5 Generating of the SQL Query

Since the SQL query model describes an SQL query, it has to be possible to
generate the resulting SQL query code from the query model, i.e. from the query

60

graph. The resulting code has to be able to be executed on the particular DBMS.
Since limitations of the query model basically correspond to the SQL-92 Standard
[29], each DBMS supporting the SQL-92 Standard is suitable.

In this section we describe an algorithm for generating the correct SQL query
code from the particular query graph.

7.5.1 Order of SQL Query Generating

The query model diagram can describe more than one SQL query. It is common
that any modeled queries depend on other modeled queries, for instance the query
is used as a DataSource in the FROM clause of other query, or the operators IN
and EXISTS have the query as an argument. For this reason the queries used as a
part of the another query have to be generated before this query. Obviously, the
circular dependency of the queries is banned. Such query could not be executed
and evaluated by any DBMS. This observation causes the generated queries have
to be generated in a topological order.

In the following described algorithms we use the following auxiliary functions:

• VertexType(V), where V is a vertex of the query graph. The function returns
the type of the vertex V .

• EdgeType(E), where E is an edge of the query graph. The function returns
the type of the edge E.

• V.GetNeighbour(type), where V is a vertex of the query graph and type is
the type of the edge. The function returns first adjacent vertex of the vertex
V connected by the edge of the type type.

• V.GetNeighbours(type), where V is a vertex of the query graph and type
is the type of the edge. The function returns all adjacent vertices of the
vertex V connected by the edge of the type type.

• V.GetNeighbourOfType(type), where V is a vertex of the query graph and
type is the type of the vertex. The function returns first adjacent vertex of
the vertex V of the type type.

• V.GetNeighboursOfType(type), where V is a vertex of the query graph and
type is the type of the vertex. The function returns all adjacent vertices of
the vertex V of the type type.

• V.GetSourceVertex(type), where V is a vertex of the query graph and type
is the type of the edge. The function returns adjacent vertex from which
leads the edge of the type type to the vertex V .

• GetCodeForQuery(SelectVertex). This function returns for the given Select
vertex the already generated SQL query. Obviously, this function is called
by the dependant queries to complete the query.

• StoreSQLCode(SQL Code). This functions stores the already generated
SQL query to be fetched later by the previous function.

61

• GetResultingSQLCode(). This function returns all the generated SQL queries
concatenated together.

Definition 7.5. (Inverse Graph). An inverse graph of the graph G = (V,E) is a
graph G′ = (V,E ′) such that if (v1, v2) ∈ E ⇒ (v2, v1) ∈ E ′.

Algorithm 7.1 generates the topological order of the generated queries in the
particular query model. At first, it creates a dependency graph from the query
graph by Algorithm 7.3. Then it finds independent vertices in the dependeny
graph. Independent vertex is a vertex, which has no adjacent vertices. Then
depth-first-search (DFS) Algorithm 7.2 is used on each independent vertex in an
inverse graph of the dependency graph. This algorithm at first recursively visits
neighbours of an input vertex and finally it adds the input vertex to the resulting
topological order. If Algorithm 7.1 finishes, the resulting order contains vertices
of the dependency graph in the topological order.

Algorithm 7.1 GetTopologicalOrderOfQueries

Input: Query Graph GQ

Output: List of vertices ordered by topological order, where each vertex repre-
sents one query

1: roots← list of vertices
2: DGQ ← CreateDependencyGraph(GQ) {see Algorithm 7.3 }
3: resultOrder ← resulting list of vertices
4: for all vertex ∈ DGQ.V ertices do
5: if vertex.GetNeighbours().Count = 0 then
6: roots.Add(vertex)
7: end if
8: end for
9: DGQ.Inverse() { creates an inverse graph }
10: DGQ.InitV isit() { sets to each vertex state READY }
11: for all vertex ∈ roots do
12: DoTopologicalOrder(DGQ, vertex, resultOrder) {see Algorithm 7.2 }
13: end for
14: return resultOrder

Algorithm 7.2 DoTopologicalOrder

Input: Dependency Graph DGQ, current vertex, resulting order
Output: vertex added to order in topological order
1: vertex.State← OPENED
2: for all neighbour ∈ DGQ.GetNeighbours(vertex) do
3: if neighbour.State = READY then
4: DoTopologicalOrder(DGQ, neighbour, order)
5: else if neighbour.State = OPENED then
6: Error - cycle found.
7: end if
8: end for
9: order.Add(vertex)
10: vertex.State← CLOSED

62

Algorithm 7.3 creates a special graph useable to be topologically ordered. It
consists of Dependency vertices and edges. The Dependency vertex contains a
pair of From vertex and the corresponding Select vertex. This pair represents a
whole SQL query.

Algorithm 7.3 CreateDependencyGraph

Input: Query Graph GQ

Output: Dependency graph of queries in the query graph
1: DGQ ← emptygraph
2: for all vertex such that V ertexType(vertex) = From do
3: selectV ertex← vertex.GetSelect() {finds corresponding select vertex}
4: DGQ.AddV ertex(DependencyV ertex(vertex, selectV ertex))
5: end for
6: for all fromV ertex ∈ DGQ.V ertices do
7: for all selectV ertex ∈ DGQ.V ertices do
8: if DGQ.Depends(fromV ertex.From, selectV ertex.Select) then
9: DGQ.AddEdge(selectV ertex, fromV ertex,Dependency)
10: end if
11: end for
12: for all selectV ertex ∈ fromV ertex.GetConditionQueryDependecies()

do
13: vertex ← DGQ.GetDependencyV ertex(selectV ertex) {finds dependen-

cy vertex containing given select vertex }
14: DGQ.AddEdge(vertex, fromV ertex,Dependency)
15: end for
16: end for
17: return DGQ

7.5.2 Generating SQL Algorithm

Algorithm 7.4 goes in the topological order through the list of queries of the query
model and for each query it generates the resulting SQL code, which describes
Algorithm 7.5.

Algorithm 7.4 GenerateSQL

Input: Query Graph GQ

Output: SQL code of the queries defined by the query graph.
1: queries ← GetTopologicalOrderOfQueries(GQ) {returns queries of the

query graph in a topological order (see Algorithm 7.1) }
2: for all queryV ertex ∈ queries do
3: queryCode← GenerateSQLOfQuery(queryV ertex) {see Algorithm 7.5}

4: StoreSQLCode(queryCode)
5: end for
6: return GetResultingSQLCode()

Algorithm 7.5 generates a particular SQL query. It generates the SELECT and
the FROM clauses. Then checks, whether another clauses exist (i.e. WHERE,

63

HAVING, GROUP-BY and ORDER-BY). If does, they are generated as well.

Algorithm 7.5 GenerateSQLOfQuery
Input: QueryVertex V
Output: SQL code of the query represented by the vertex V .
1: fromV ertex← V.From
2: selectV ertex← V.Select
3: code← empty string
4: code← GenerateSelectClause(selectV ertex) {see Algorithm 7.6}
5: code← GenerateFromClause(fromV ertex) {see Algorithm 7.7}
6: whereV ertex = fromV ertex.GetNeighbour(WHERE)
7: if whereV ertex != null then
8: code← GenerateConditionClause(whereV ertex) {see Algorithm 7.11}
9: end if
10: groupByV ertex = selectV ertex.GetNeighbour(GROUPBY)
11: if groupByV ertex != null then
12: code← GenerateGroupByClause(groupByV ertex) {see Algorithm 7.9}
13: end if
14: havingV ertex = fromV ertex.GetNeighbour(HAV ING)
15: if havingV ertex != null then
16: code← GenerateConditionClause(havingV ertex) {see Algorithm 7.11}
17: end if
18: orderByV ertex = fromV ertex.GetNeighbour(ORDERBY)
19: if orderByV ertex != null then
20: code← GenerateOrderByClause(orderByV ertex) {see Algorithm 7.10}
21: end if
22: return code

Algorithm 7.6 generates the content of the SELECT clause of the SQL query.
It generates the ’SELECT’ keyword and it generates for each adjacent SelectItem
vertex the resulting code of the query.

Algorithm 7.6 GenerateSelectClause

Input: SelectVertex S
Output: SQL code of the SELECT clause represented by the vertex S.
1: code← SELECT
2: for all itemV ertex ∈ S.NeighboursOfType(SelectItemV ertex) do
3: code← itemV ertex.SQLCode
4: end for
5: return code

Algorithm 7.7 generates the content of the FROM clause of the SQL query.
It generates the ’FROM’ keyword and it uses Algorithm 7.8 in order to generate
the remaining content.

Recursive Algorithm 7.8 traverses down the combination source tree by the
DFS algorithm. If the algorithm goes to the leaf node of the tree (i.e. Alias
vertex), it generates the name of the DataSource. Otherwise it generates a code
for the left subtree, then type of the connection, subsequently the right subtree
and finally it possibly generates a join condition.

64

Algorithm 7.7 GenerateFromClause
Input: FromVertex F
Output: SQL code of the FROM clause represented by the vertex F .
1: code← FROM
2: code ← GenerateFromClauseRecursive(F.MainSource) {see Algorithm

7.8 }
3: return code

Algorithm 7.8 GenerateFromClauseRecursive
Input: Vertex V
Output: SQL code of the part of the FROM clause represented by the vertex

V .
1: code← empty string
2: if V is Alias vertex then
3: dataSource = V.GetNeighbour(DATASOURCE)
4: if dataSource is DataSource vertex then
5: source← dataSource.Name
6: else
7: source← GetCodeForQuery(dataSource)
8: end if
9: code← source as alias
10: else if V is CombineSource vertex then
11: source0← V.GetNeighbour(MapSource[0])
12: source1← V.GetNeighbour(MapSource[1])
13: code← GenerateFromClauseRecursive(source0)
14: code← type of the connection
15: code← GenerateFromClauseRecursive(source1)
16: code← GenerateConditionClause(V) {see Algorithm 7.11}
17: end if
18: return code

65

Algorithm 7.9 generates the content of the GROUP-BY clause of the SQL
query. It generates the ’GROUP BY’ keyword and it generates for each adjacent
SelectItem vertex the resulting code of the query.

Algorithm 7.9 GenerateGroupByClause
Input: GroupBy vertex G
Output: SQL code of the GROUP-BY clause represented by the vertex G.
1: code← GROUP BY
2: for all itemV ertex ∈ G.NeighboursOfType(SelectItemV ertex) do
3: code← itemV ertex.SQLCode
4: end for
5: return code

Algorithm 7.10 generates the content of the ORDER-BY clause of the SQL
query. It generates the ’ORDER BY’ keyword and it generates for each adjacent
OrderByType vertex the resulting code of the query.

Algorithm 7.10 GenerateOrderByClause

Input: OrderByVertex O
Output: SQL code of the ORDER-BY clause represented by the vertex O.
1: code← ORDER BY
2: for all orderByTypeV ertex ∈ O.NeighboursOfType(OrderByTypeV ertex)

do
3: code← orderByTypeV ertex.SQLCode
4: end for
5: return code

Algorithm 7.11 generates the content of the particular condition clause of the
SQL query. It generates the keyword according to the type of condition and it
uses Algorithm 7.12 in order to generate the remaining content of the condition.

Algorithm 7.11 GenerateConditionClause

Input: Condition vertex C
Output: SQL code of the condition represented by the vertex C.
1: code ← condition key word related to the type of C {WHERE, HAVING,

ON}
2: conditionRoot← C.GetNeighbour(CONDITION)
3: if conditionRoot != null then
4: code← GenerateConditionRecursive(conditionRoot) {see Algorithm 7.12

}
5: end if
6: return code

Algorithm 7.12 recursively generates the condition from the condition tree.

• For the FromItem vertex it generates the name of the FromItem.

• For the ConstantOperand vertex it generates its value directly.

66

• For the Select vertex it generates the code of the whole SQL query represent-
ed by the Select vertex. Since the queries are generated in the topological
order, this query has to be already generated.

• For the ComparingOperator vertex or the QueryOperator vertex it gener-
ates a first operand recursively, then it generates a corresponding operator
and finally it generates a second operand recursively.

• For the BooleanOperator vertex it generates all child conditions recursively.

Algorithm 7.12 GenerateConditionRecursive
Input: Vertex V
Output: SQL code of the part of the condition represented by the vertex V .
1: if V is FromItem vertex then
2: code← V.Name
3: else if V is ConstantOperand vertex then
4: code← V.V alue
5: else if V is Select vertex then
6: code← GetCodeForQuery(V)
7: else if V is ComparingOperator vertex then
8: code← GenerateConditionRecursive(V.GetNeighbour(ConditionOperand[0]))

9: code← Comparing operator
10: if comparing operator /∈ {Is Null, Is Not Null} then
11: code← GenerateConditionRecursive(V.GetNeighbour(ConditionOperand[1]))
12: end if
13: else if V is QueryOperator vertex then
14: if query operator /∈ {Exists,Not Exists} then
15: code← GenerateConditionRecursive(V.GetNeighbour(ConditionOperand[1]))
16: end if
17: code← Query operator
18: code← GenerateConditionRecursive(V.GetNeighbour(ConditionOperand[0]))
19: else if V is BooleanOperator then
20: conditions← V.GetNeighbours(ConditionOperand)
21: for i = 0 to conditions.Count do
22: if i > 0 then
23: code← Boolean operator
24: end if
25: code← GenerateConditionRecursive(conditions[i])
26: end for
27: end if
28: return code

67

Chapter 8

Change Propagation

In this chapter we discuss the impact of changes in the database model on the
queries in the SQL query model. We introduce propagation policies, which influ-
ence the change propagation and we describe algorithms, which distribute changes
accross the query graph.

8.1 Propagation Policies

Database model operations mentioned in Section 7.4.1 have an impact on the
queries in the SQL query model. During the evolution process, changes in the
database model have to be propagated to the SQL query model, where mod-
eled queries are adapted to the current database model. Sometimes the direct
propagation cannot be profitable. For instance, if a new column is added to the
database table, we do not want to add new column to the SELECT clause of the
query. For this reason we propose so called propagation policies, which influence
a behavior of the propagation. The policies are defined on the vertices of the
query graph, which participate on the change distribution process described in
the section 8.2.

We distinguish the following propagation policies:

• Propagate
This policy allows to perform the change directly. Subsequently, the prop-
agation is passed on the following vertices in the change process.

• Block
This policy does not allow to perform the change. The subsequent propa-
gation is stopped and the following vertices in the change process are not
visited.

• Prompt
A system asks user which one of the two policies mentioned before is used
to continue.

8.2 Distribution of Changes

In this section we describe operations which modify the query graph. Discusion
on an impact of changes of the database model on the query model is provided

68

as well.

8.2.1 Graph Operations

SQL query model operations mentioned in Section 7.4.1 are atomic operations, i.e.
they cannot be divided into smaller operations. In fact, these atomic operations
consist of many smaller steps called graph operations, which modify the query
graph of the SQL query model. From the global perspective, graph operations
do not make any sense, if they are used separately. They have to be combined
together to create a real atomic operation, which has a sense in the context of
change propagation.

In the following definitions GQ represents a query graph GQ = (V,E). We
distinguish the following graph operations:

• CreateVertex γv : (GQ, v)→ G′
Q

The operation returns graph G′
Q = (V ∪ {v}, E).

• CreateEdge γe : (GQ, vsource, vtarget, etype)→ G′
Q

The operation creates edge e = (vsource, vtarget) such that EdgeType(e) =
etype and returns graph G′

Q = (V,E ∪ {e}).

• RemoveVertex βv : (GQ, v)→ G′
Q

The operation returns graph G′
Q = (V \{v}, E ∩(

V \{v}
2

)
).

• RemoveEdge βe : (GQ, e)→ G′
Q

The operation returns graph G′
Q = (V,E\{e}).

• ChangeLabel λ : (v, l)→ v′

The operation returns query vertex v′, where vertex type v′type = vtype and
label v′L = l. For instance it returns the DataSourceItem vertex with a new
name.

• ChangeConnectionType η : (C, t)→ C ′

This operation returns CombineSource vertex C ′ with connection type C ′
T =

t.

• ResetContent ρ(GQ, C)
Since the visualisation model visualizes the query graph, they have to be
synchronized. This operation is used to signal the parent visual component
C that a change in the query graph GQ has been done and the content of
the visual component has to be updated.

Definition 8.1. (Graph operation plan). An operation plan is a sequence of the
graph operations.

8.2.2 Traversing through Query Graph

Each database model operation which has an impact on the query graph trig-
gers an event, in which the query graph is traversed through in a particular way.
The change is fully described by so called change context. Each change context
contains a reference to the query graph GQ being changed and an empty graph

69

operation plan, which is filled in the traversing algorithm by the graph opera-
tions, which changes the query graph according to the triggered event. After the
traversing algorithm is done, the graph operation plan is executed as a part of
the particular atomic operation.

Each visit of the query graph vertex with the traversing algorithm performs a
check whether the propagation policy allows the given change propagation. All
the following traversing algorithms suppose the propagation is allowed.

In the following described algorithms we use the following auxiliary functions:

• ResetAllContent(FromVertex, OperationPlan, QueryGraph). This function
adds to the operation plan ResetContent operations to reset content of all
the components used in the particular query represented by From vertex.

• RemoveVertexComplete(Vertex, OperationPlan, QueryGraph). This func-
tion adds to the operation plan operations needed to complete removing
of the given vertex, which includes RemoveVertex and RemoveEdge opera-
tions.

8.2.3 Creating Table Column

This database model operation is translated into the creating DataSourceItem
operation. Each query using the parent DataSource of the new DataSourceItem
has to add a new item to the corresponding components, which policy allows
the propagation. This means, new FromItem vertex has to be created and sub-
sequently Select vertex and OrderBy vertex have to decide, whether the new
FromItem vertex is going to be used in these clauses.

Algorithm 8.1 starts at the DataSource vertex, where it creates a new Data-
SourceItem vertex. Then it traverses through all Alias vertices to corresponding
From vertices, where it creates a new FromItem vertex. This step is described by
Algorithm 8.2.

Algorithm 8.1 DistributeCreatingDatasourceItem

Input: DataSource vertex D, change context C
Output: Graph operations to create a new DataSourceItem.
1: newItem← new DataSourceItem(C.Name)
2: C.P lan← CreateV ertex(C.GQ, newItem)
3: C.P lan← CreateEdge(C.GQ, D, newItem,DataSourceItem)
4: C.P lan← CreateEdge(C.GQ, newItem,D,DataSourceParent)
5: C.Originator ← newItem
6: for all aliasV ertex ∈ D.GetNeighbours(Alias) do
7: DistributeCreatingDatasourceItemOnAlias(aliasV ertex, C) {see Algo-

rithm 8.2}
8: end for

Algorithm 8.2 creates a new FromItem vertex in the corresponding From ver-
tex and connects it with appropriate vertices. Subsequently it traverses to the

70

Select vertex, where it creates corresponding vertices and edges using Algorithm
8.3. Finally it traverses to the OrderBy vertex, where it creates corresponding
vertices and edges using Algorithm 8.4.

Figure 8.1 depicts adding of a new DataSourceItem OrderDate to the Data-
Source component using Algorithm 8.1 and to the From component using Algo-
rithm 8.2. In the figure new elements of the query graph are highlighted with a
red color.

Figure 8.1: An example of adding new DataSourceItem to the DataSource and
to the From components.

Algorithm 8.3 creates a new SelectItem vertex in the SELECT clause. Then
it checks, whether the GroupBy vertex exists. If does, it connects the GroupBy
vertex with the new SelectItem vertex. Finally it traverses to all Alias vertices of
dependant queries and applies already mentioned Algorithm 8.2.

Figure 8.2 depicts a propagation of adding of a new SelectItem Name to the
dependant query using Algorithm 8.3. In the figure new elements of the query

71

Algorithm 8.2 DistributeCreatingDatasourceItemOnAlias

Input: Alias vertex A, change context C
Output: Graph operations to create new DataSourceItem.
1: fromV ertex← A.GetNeighbour(DataSourceAlias)
2: newItem← new FromItem(C.Name)
3: C.P lan← CreateV ertex(C.GQ, newItem)
4: C.P lan← CreateEdge(C.GQ, C.Originator, newItem, FromItemSource)
5: C.P lan← CreateEdge(C.GQ, newItem,A,Alias)
6: C.P lan← CreateEdge(C.GQ, fromV ertex, newItem, FromItem)
7: C.P lan← CreateEdge(C.GQ, newItem, fromV ertex, FromItemParent)
8: C.Originator ← newItem
9: selectV ertex← fromV ertex.GetNeighbour(SelectQuery)
10: if selectV ertex != null then
11: DistributeCreatingDatasourceItemOnSelect(selectV ertex, C) {see Al-

gorithm 8.3}
12: end if
13: orderByV ertex← fromV ertex.GetNeighbour(OrderBy)
14: if orderByV ertex != null then
15: DistributeCreatingDatasourceItemOnOrderBy(orderByV ertex, C)

{see Algorithm 8.4}
16: end if
17: C.P lan← ResetContent(C.GQ, fromV ertex)

graph are highlighted with a red color. The elements highlighted with a blue
color were added to the query graph by previous step of the traversing algorithm.

Algorithm 8.4 creates a new OrderByType vertex and connects it with the
OrderByVertex and the source FromItem vertex.

8.2.4 Renaming Table Column

This database model operation is translated into the renaming DataSourceItem
operation. Each query using the parent DataSource has to be translated into the
new name, i.e. each FromItem vertex has to be changed and subsequently each
other component using the given FromItem vertex has to be updated. Since there
can exist queries, which depend on this query, these have to be updated as well.

Algorithm 8.5 starts at DataSourceItem vertex, where it changes the name of
the DataSourceItem. Then it traverses to all FromItem vertices, where Algo-
rithm 8.6 sets the new name of the FromItem vertex.

Algorithm 8.6 changes the name of the FromItem vertex. Then it traverses
through the From vertex to the Select vertex.

Algorithm 8.7 finds a SelectItem vertex corresponding to the changed FromItem
vertex. Then it checks, whether a name of the SelectItem vertex has to be
changed. If does, it continues with traversing to all adjacent FromItem vertices
of the dependant queries, where it applies already mentioned Algorithm 8.6.

Figure 8.3 depicts the process of a distribution of a table column name change.
In the figure elements affected by Algorithm 8.5 are highlighted with a red color,

72

Algorithm 8.3 DistributeCreatingDatasourceItemOnSelect

Input: Select vertex S, change context C
Output: Graph operations to create new DataSourceItem.
1: newItem← new SelectItem(C.Name)
2: C.P lan← CreateV ertex(C.GQ, newItem)
3: C.P lan← CreateEdge(C.GQ, S, newItem, SelectColumn)
4: C.P lan← CreateEdge(C.GQ, newItem,C.Originator,MapColumn)
5: groupByV ertex← S.GetNeighbour(GroupBy)
6: if groupByV ertex != null then
7: C.P lan← CreateEdge(C.GQ, groupByV ertex, newItem,GroupByColumn)
8: end if
9: C.Originator ← newItem
10: for all aliasV ertex ∈ S.GetNeighbours(Alias) do
11: DistributeCreatingDatasourceItemOnAlias(aliasV ertex, C)
12: end for
13: C.P lan← ResetContent(C.GQ, S)

Algorithm 8.4 DistributeCreatingDatasourceItemOnOrderBy

Input: OrderBy vertex O, change context C
Output: Graph operations to create new DataSourceItem.
1: newItem← new OrderByType(Ascending)
2: C.P lan← CreateV ertex(C.GQ, newItem)
3: C.P lan← CreateEdge(C.GQ, O, newItem,OrderByColumn)
4: C.P lan← CreateEdge(C.GQ, newItem,C.Originator,OrderByColumn)
5: C.P lan← ResetContent(C.GQ, O)

Algorithm 8.5 DistributeRenamingDatasourceItem

Input: DataSourceItem vertex D, change context C
Output: Graph operations to change the DataSourceItem name.
1: C.P lan← ChangeLabelOperation(D,C.NewName)
2: for all fromItemV ertex ∈ D.GetNeighbours(FromItemSource) do
3: DistributeRenamingDatasourceItemOnFromItem(fromItemV ertex, C)

{see Algorithm 8.6}
4: end for

Algorithm 8.6 DistributeRenamingDatasourceItemOnFromItem

Input: FromItem vertex F , change context C
Output: Graph operations to change the name of the column represented by the

FromItem vertex.
1: C.P lan← ChangeLabelOperation(F,C.NewName)
2: fromV ertex← F.GetNeighbour(FromItemParent)
3: selectV ertex← fromV ertex.GetNeighbour(SelectQuery)
4: C.Originator ← F
5: DistributeRenamingDatasourceItemOnSelect(selectV ertex, C) {see Algo-

rithm 8.7}
6: ResetAllContent(fromV ertex, C.P lan, C.GQ)

73

Figure 8.2: An example of a propagation of adding of a new SelectItem to a
dependant query.

the elements affected by Algorithm 8.6 are highlighted with a blue color and the
elements affected by Algorithm 8.7 are highlighted with a green color.

8.2.5 Renaming Database Table

This database model operation is translated into the renaming DataSource op-
eration. Each query using the given DataSource has to be checked, whether the
change of its name has an impact on the query, i.e. whether the original Data-
Source name is used directly as an alias of this DataSource in the query. In such
case all columns used in the query has to be rewritten by using new alias refering
to the new DataSource name.

Algorithm 8.8 changes the name of the DataSource vertex and then checks
each adjacent Alias vertex, whether the used alias of the DataSource has to be
changed. If does, it changes the given alias.

74

Algorithm 8.7 DistributeRenamingDatasourceItemOnSelect

Input: Select vertex S, change context C
Output: Graph operations to change the name of the column occuring in the

SELECT clause.
1: selectItemV ertex ← GetCorrespondingSelectedItem(S,C.Originator)
{returns the SelectItem vertex refering to the originator, i.e. mapped to
the FromItem vertex}

2: if selectItemV ertex has not an alias then
3: C.Originator ← selectItemV ertex
4: C.NewName← selectItemV ertex.Name
5: for all fromItemV ertex ∈ selectItemV ertex.GetNeighbours(FromItemSource)

do
6: DistributeRenamingDatasourceItemOnFromItem(fromItemV ertex, C)
7: end for
8: end if

Algorithm 8.8 DistributeRenamingDatasource

Input: DataSource vertex D, change context C
Output: Graph operations to change the DataSource name.
1: C.P lan← ChangeLabelOperation(D,C.NewName)
2: for all aliasV ertex ∈ D.NeighboursOfType(AliasV ertex) do
3: if alias has to be changed then
4: C.P lan← ChangeLabelOperation(aliasV ertex, C.NewName)
5: fromV ertex← aliasV ertex.GetNeighbour(DataSourceAlias)
6: ResetAllContent(fromV ertex, C.P lan, C.GQ)
7: end if
8: end for

75

Figure 8.3: An example of distribution of a table column name change.

8.2.6 Removing Table Column

This database model operation is translated into the removing DataSourceItem
operation. This operation is the most complex one. The propagation of this
change concerns all the components of all queries in the query model. It in-
cludes removing of the particular DataSourceItem vertex and all the correspond-
ing FromItem vertices, which continues with removing corresponding vertices and
edges mapped to the particular FromItem vertex.

Figure 8.4 shows an example of removing of a DataSourceItem Name from a
DataSource Customer. In the figure all elements highlighted with a red color are
being removed.

Algorithm 8.9 starts at DataSourceItem vertex, where it completely removes
the vertex including all the edges. Then it traverses to all the FromItem vertices.

Algorithm 8.9 DistributeRemovingDatasourceItem

Input: DataSourceItem vertex D, change context C
Output: Graph operations to remove the DataSourceItem.
1: for all fromItemV ertex ∈ D.NeighboursOfType(FromItemSource) do
2: DistributeRemovingFromItem(fromItemV ertex, C)
3: end for
4: RemoveV ertexComplete(D,C.P lan, C.GQ) {see Algorithm 8.10}

Algorithm 8.10 completely removes the given FromItem vertex and through
the parent From vertex it traverses to all corresponding components, i.g. Se-
lect, Where, Having, OrderBy. Similarly, the vertex has to be removed from all

76

Figure 8.4: An example of affected elements of a query graph because of the
DataSourceItem being removed.

conditions in the combination source tree. This step is performed by Algorithm
8.11.

Algorithm 8.11 traverses the combination source tree starting at the root node
towards the leaf nodes, and at each level it reorganizes the used condition. If the
whole condition has to be removed, the type of connection is changed to the
Cartesian product.

Algorithm 8.12 removes all SelectItem vertices corresponding to the FromItem
vertex being removed. Then it continues with traversing to all adjacent FromItem
vertices of the dependant queries, where it applies already mentioned Algorithm
8.10.

Algorithm 8.13 removes the FromItem vertex from the condition tree using
Algorithm 8.14. If it is necessary, it changes the root of the condition tree.

Algorithm 8.14 recursively traverses the condition tree and according to the
condition tree level it checks if the condition has to be removed, because the
FromItem vertex (originator of ChangeContext) is used in the condition:

• At BooleanOperator vertex level: Algorithm 8.15 checks all child conditions
(i.e. clauses or literals). If all the child conditions have to be removed,
the BooleanOperator vertex has to be removed as well. If only one child
condition is remaining, the BooleanOperator vertex has to be removed as
well, but at the higher level of the condition tree the root of the subtree has
to be changed to the remaining child condition.

• At the QueryOperator or ComparingOperator vertex level: It checks if any
of its child conditions has to be removed. If does, the operator vertex has
to be removed as well.

77

Algorithm 8.10 DistributeRemovingFromItem

Input: FromItem vertex F , change context C
Output: Graph operations to remove the FromItem vertex.
1: C.Originator ← F
2: fromV ertex← F.GetNeighbour(FromItemParent)
3: selectV ertex← fromV ertex.GetNeighbour(SelectQuery)
4: if selectV ertex != null then
5: DistributeRemovingFromItemOnSelect(selectV ertex, C) {see Algo-

rithm 8.12}
6: end if
7: whereV ertex← fromV ertex.GetNeighbour(Where)
8: if whereV ertex != null then
9: ReorganizeCondition(whereV ertex, C) {see Algorithm 8.13}
10: end if
11: havingV ertex← fromV ertex.GetNeighbour(Having)
12: if havingV ertex != null then
13: ReorganizeCondition(havingV ertex, C)
14: end if
15: orderByV ertex← fromV ertex.GetNeighbour(OrderBy)
16: if orderByV ertex != null then
17: orderType← OrderByType vertex corresponding to F
18: if orderType != null then
19: RemoveV ertexComplete(orderType, C.P lan, C.GQ)
20: end if
21: end if
22: ReorderFromTree(fromV ertex, C) {see Algorithm 8.11}
23: RemoveV ertexComplete(F,C.P lan, C.GQ)
24: ResetAllContent(fromV ertex, C.P lan, C.GQ)

Algorithm 8.11 ReorderFromTree

Input: From vertex F , change context C
Output: Graph operations to remove FromItem vertex from the combination

source tree.
1: sourceV ertex← F.GetNeighbour(SourceTree)
2: while V ertexType(sourceV ertex)! = Alias do
3: complete← ReorganizeCondition(sourceV ertex, C)
4: if complete is true then
5: C.P lan← ChangeConnectionType(sourceV ertex, CartesianProduct)
6: end if
7: sourceV ertex← sourceV ertex.GetNeighbour(MapSource[0])
8: end while

78

Algorithm 8.12 DistributeRemovingFromItemOnSelect

Input: Select vertex S, change context C
Output: Graph operations to remove the FromItem vertex corresponding to

SelectItem vertices of the Select vertex S.
1: for all selectItemV ertex ∈ S.GetNeighbours(SelectColumn) such that

selectItemV ertex corresponds to C.Originator do
2: C.Originator ← selectItemV ertex
3: for all fromItemV ertex ∈ selectItemV ertex.NeighboursOfType(FromItemSource)

do
4: DistributeRemovingFromItem(fromItemV ertex, C)
5: end for
6: RemoveV ertexComplete(selectItemV ertex, C.P lan, C.GQ) {including

the AggregateFunction vertex and the edge from GroupBy component}
7: end for

Algorithm 8.13 ReorganizeCondition

Input: Condition vertex V , change context C
Output: Graph operations to reorganize the condition and a flag indicating that

the whole condition tree was removed.
1: conditionV ertex← V.GetNeighbour(Condition)
2: result ← RemoveFromItemFromCondition(conditionV ertex, C) {see Al-

gorithm 8.14}
3: if result.Type ∈ {Adjust, Remove} then
4: RemoveV ertexComplete(conditionV ertex, C.P lan, C.GQ)
5: if result.Type ∈ {Adjust} then
6: C.P lan← CreateEdge(C.GQ, V, result.NewRoot, Condition)
7: end if
8: C.ConditionTreeRemoved← result.Type = Remove
9: end if

79

• At the FromItem or AggregateFunction vertex level: It check, whether the
vertex corresponds to the the vertex being removed.

• Any other case does not cause any change.

Figure 8.5 depicts a condition reorganization using Algorithm 8.13, because
the FromItem vertex orderDate is being removed. In the figure elements high-
lighted with a red color are being removed because a given condition subtree
contains the removing FromItem vertex. The BooleanOperator vertex AND and
the remaining edge highlighted with a blue color are removed consequently, be-
cause only one subtree of the BooleanOperator vertex remains. The root of the
remaining subtree highlighted with a green color will become a new root of the
whole condition tree.

Figure 8.5: An example of reorganization of a condition because of removing of
a FromItem vertex.

80

Algorithm 8.14 RemoveFromItemFromCondition

Input: Vertex V , change context C
Output: Graph operations to reorganize condition, the type of condition reor-

ganization and an eventual new root of the condition subtree.
1: result.Type← NoChange, result.NewRoot← null
2: if V is FromItem vertex corresponding to C.Originator then
3: result.Type← Remove
4: else if V is AggregateFunction vertex such that the argument of the aggregate

function corresponds to C.Originator then
5: RemoveV ertexComplete(V,C.P lan, C.GQ)
6: result.Type← Remove
7: else if V ∈ {ComparingOperator,QueryOperator} vertex then
8: operand0← V.GetNeighbour(ConditionOperand[0])
9: operand1← V.GetNeighbour(ConditionOperand[1])
10: result0← RemoveFromItemFromCondition(operand0, C)
11: result1← RemoveFromItemFromCondition(operand1, C)
12: result.Type← result1.Type
13: if result0.T ype = Remove then
14: C.P lan← RemoveEdge(C.GQ, V, ConditionOperand[0])
15: result.Type← Remove
16: if operand1 is ConstantOperand vertex then
17: C.P lan← RemoveV ertex(C.GQ, operand1)
18: end if
19: end if
20: if result1.T ype = Remove then
21: C.P lan← RemoveEdge(C.GQ, V, ConditionOperand[1])
22: end if
23: else if V is BooleanOperator vertex then
24: result ← RemoveFromItemFromBooleanCondition(V,C) {see Algo-

rithm 8.15}
25: end if
26: return result

81

Algorithm 8.15 RemoveFromItemFromBooleanCondition

Input: BooleanOperator vertex V , change context C
Output: Graph operations to reorganize Boolean condition, the type of condi-

tion reorganization and an eventual new root of the condition subtree.
1: result.Type← NoChange, result.NewRoot← null
2: conditions← V.GetNeighbours(ConditionOperand)
3: removedConditionsCount← 0
4: for all i = 0 to conditions.Count do
5: res← RemoveFromItemFromCondition(conditions[i], C)
6: if res.Type = Remove then
7: C.P lan← RemoveEdge(C.GQ, V, ConditionOperand[i])
8: removedConditionsCount++
9: else if res.Type = Adjust then
10: C.P lan← RemoveEdge(C.GQ, V, ConditionOperand[i])
11: C.P lan← CreateEdge(C.GQ, V, result.NewRoot, ConditionOperand)
12: result.NewRoot← res.NewRoot
13: else
14: result.NewRoot← conditions[i]
15: end if
16: end for
17: if removedConditionsCount = conditions.Count then
18: C.P lan← RemoveV ertex(C.GQ, V)
19: result.Type← Remove
20: else if removedConditionsCount = conditions.Count− 1 then
21: C.P lan← RemoveV ertex(C.GQ, V)
22: result.Type← Adjust
23: end if
24: return result

82

8.2.7 Removing Database Table

This database model operation is translated into the removing DataSource oper-
ation. The basis of traversing Algorithm 8.16 is removing of all DataSourceItems
of the particular DataSource by traversing Algorithm 8.9.

Algorithm 8.16 starts at the DataSource vertex. From this vertex it raises an
event to remove all the DataSourceItems of the particular DataSource. Then it
traverses through all Alias vertices to the From vertices.

Algorithm 8.16 DistributeRemovingDatasource

Input: Datasource vertex D, change context C
Output: Graph operations to remove the DataSource.
1: for all datasourceItemV ertex ∈ D.GetNeighbours(DataSourceItem) do
2: itemContext← new ChangeContext(datasourceV ertex,RemoveDataSourceItem)

3: DistributeRemovingDatasource(datasourceItemV ertex, itemContext)
4: C.P lan← itemContext.P lan
5: end for
6: RemoveV ertexComplete(D,C.P lan, C.GQ)
7: for all aliasV ertex ∈ D.GetNeighbours(Alias) do
8: fromV ertex← aliasV ertex.GetNeighbour(DataSourceAlias)
9: C.Originator ← aliasV ertex
10: DistributeRemovingDatasourceOnFrom(fromV ertex, C) {see Algo-

rithm 8.17}
11: RemoveV ertexComplete(aliasV ertex, C.P lan, C.GQ)
12: end for

Algorithm 8.17 determines the kind of removing of the Alias vertex related
to the removing DataSource vertex from the combination source tree. The de-
termination is performed on the basis of a location of the Alias vertex in the
combination source tree. After that Algorithm 8.18 is used in appropriate way
to complete the Alias vertex removing.

Algorithm 8.17 DistributeRemovingDatasourceOnFrom

Input: From vertex F , change context C
Output: Graph operations to remove the DataSource from the From component.
1: alias← C.Originator
2: source0← alias.GetSourceV ertex(MapSource[0])
3: if source0 != null then
4: ReorganizeSourceTree(source0, F, 1, C) {see Algorithm 8.18}
5: end if
6: source1← alias.GetSourceV ertex(MapSource[1])
7: if source1 != null then
8: ReorganizeSourceTree(source1, F, 0, C)
9: end if
10: ResetAllContent(F,C.P lan, C.GQ)

Algorithm 8.18 describes how the alias vertex is removed from the combination
source tree. The basis of the algorithm is to replace the parent of the removed

83

alias with its sibling. The situation is depicted in Figures 8.6 and 8.7. Figure 8.6
illustrates simple replacing of the parent with the sibling. Figure 8.7 depicts the
situation, where any sibling has to be set as the root of the combination source
tree. In the figures a color of an arrow corresponds to the vertex being removed.

Algorithm 8.18 ReorganizeSourceTree

Input: CombineSource vertex V , From vertex F , index i of the sibling edge,
change context C

Output: Graph operations to remove alias vertex from the combination source
tree.

1: siblingV ertex← V.GetNeighbour(MapSource[i])
2: C.P lan← RemoveEdge(C.GQ, V,MapSource[i])
3: sourceV ertex← V.GetSourceV ertex(MapSource[0])
4: if sourceV ertex != null then
5: C.P lan← RemoveEdge(C.GQ, sourceV ertex,MapSource[0])
6: C.P lan← CreateEdge(C.GQ, sourceV ertex, siblingV ertex,MapSource[0])
7: else
8: C.P lan← RemoveEdge(C.GQ, F, SourceTree)
9: C.P lan← CreateEdge(C.GQ, F, siblingV ertex, SourceTree)
10: end if
11: C.P lan← RemoveV ertexComplete(V,C.P lan, C.GQ)

84

Figure 8.6: An example of a simple replacing of the parent of the removed alias
with its sibling in the combination source tree.

Figure 8.7: An example of a change of the combination source tree root.

85

Chapter 9

Implementation and Experiments

In this chapter we describe a prototype implementation of the query model de-
scribed in Chapter 7 and algorithms described in Chapters 7 and 8. It was
implemented as an extension of DaemonX, a general framework for modelling
and processing of evolution [32].

9.1 DaemonX

DaemonX [32] is a pluginable CASE tool framework for data and/or process
modeling. It was developed as a software project at the Faculty of Mathematics
and Physics, of the Charles University in Prague. The aim of the framework is
to provide funcionality for processing of evolution among various models. The
models are implemented as plug-ins, which use application programmable interface
(API) of the framework. Implementation of additional plug-ins comprises the
definition of the models and setting rules for propagation of atomic operations
from a source model to a target model. A detailed description of the framework
can be found on the website of the DaemonX project [32].

9.2 Implementation

A prototype implementation uses existing simplified PSM database modeling
plug-in, which was developed as a part of the first release of the DaemonX project
and adds two new plug-ins. The first plug-in is a plug-in for SQL query modeling
(user documentation of this plug-in is available on the attached CD). The second
plug-in is used for evolution propagation from the PSM database model to the
SQL query model.

The prototype implementation has the following features:

• Plug-in for modeling of SQL queries

– It implements all components necessary for SQL query model described
in Chapter 7, i.e. query graph and visualisation model.

– It provides generating of an SQL query from the query model.

– It implements algorithms described in Chapter 8 for propagation of
changes in a query graph.

86

• Evolution plug-in for propagation from the PSM database model to the
SQL query model

– It enables creation of a mapping between the PSM database model
and the SQL query model.

– It supports propagation of operations from the source model to the
target model.

9.3 Experiments

For performing experiments to provide the proof of the concept of the query model
and all used algorithms we used an existing database project Adventure Works
[33]. We modeled in the database model the following tables of given database
schema:

• Person.BusinessEntity

• Person.BusinessEntityAddress

• Person.Address

• Person.AddressType

• Person.StateProvince

• Person.CountryRegion

• Sales.Store

• Production.Product

• Production.ProductModel

• Production.ProductModelProductDescriptionCulture

• Production.ProductDescription

• Person.Person

• HumanResources.Department

Figure 9.1 depicts a part of the modeled database model. The complete
illustration of the modeled database schema can be found in Appendix B.

From this database model we derived to the query model tables as Data-
Sources, which we used to model the following queries and views:

87

Figure 9.1: A part of the modeled database model.

9.3.1 Basic Select

Figure 9.2 shows a model of a simple Select query. The modeled query is as
follows:

SELECT
d . DepartmentID

, d .Name as DepartmentName
FROM

HumanResources . Department as d

9.3.2 Basic Group-By

Figure 9.3 shows a model of a simple usage of the GROUP-BY clause. The
modeled query is as follows:

SELECT
d .GroupName

, COUNT(d .Name) as NumberOfDepartments

88

Figure 9.2: The model of the simple SELECT query.

FROM
HumanResources . Department as d

GROUPBY
d .GroupName

Figure 9.3: The model of the simple usage of the GROUP-BY clause.

9.3.3 Complex Group-By

Figure 9.4 shows a model of a complex usage of the GROUP-BY clause, together
with usage of the HAVING clause. The modeled query is as follows:

SELECT
d .GroupName

, COUNT(d .Name) as NumberOfDepartments
FROM

HumanResources . Department as d
GROUPBY

d .GroupName
HAVING

89

COUNT(d .Name) > 2
ORDERBY

NumberOfDepartments DESC

Figure 9.4: The model of the complex usage of GROUP-BY clause.

9.3.4 Query as DataSource

Figure 9.5 shows a model of a usage of a query as a DataSource in another query.
The modelled query is as follows:

SELECT
d . DepartmentID

, d .GroupName
, d .Name as DepartmentName

FROM
HumanResources . Department as d
JOIN
(
SELECT

d .GroupName
, COUNT(d .Name) as NumberOfDepartments

FROM
HumanResources . Department as d

GROUPBY
d .GroupName

HAVING
COUNT(d .Name) > 2

) as d2 ON (d .GroupName = d2 .GroupName)
ORDERBY

d .GroupName ASC
, d .Name ASC

90

Figure 9.5: The model of the usage query as a DataSource.

9.3.5 Complex Where

Figure 9.6 shows a model of a complex usage of the WHERE clause. The modeled
query is as follows:

SELECT
x . FirstName

, x . LastName
FROM

(
SELECT

p . FirstName
, p . MiddleName
, p . LastName

FROM
Person . Person as p

WHERE
(p . MiddleName IS NOT NULL)

AND

91

(p . LastName = ’Adams ’)
AND

(p . FirstName LIKE ’A\%’ OR p . FirstName LIKE ’K\%’)) as x
ORDERBY

x . FirstName ASC

Figure 9.6: The model of the complex usage of the WHERE clause.

9.3.6 View vStoreWithAddresses

Figure 9.7 shows a model of the vStoreWithAddresses view. The underlaying
query of the vStoreWithAddresses view is as follows:

SELECT
s . Bus ines sEnt i ty Id

, s .Name
, at .Name as AddressType
, a . AddressLine1
, a . AddressLine2
, a . City
, sp .Name as StateProvinceName
, a . PostalCode
, c r .Name as CountryRegionName

FROM
Sa l e s . Store as s
JOIN

92

Person . Bus inessEnt i tyAddress as bea ON
s . Bus ines sEnt i ty Id = bea . Bus ines sEnt i ty Id

JOIN
Person . Address as a ON

a . AddressId = bea . AddressId
JOIN
Person . StateProv ince as sp ON

sp . StateProvinceID = a . StateProvinceID
JOIN
Person . CountryRegion as cr ON

cr . CountryRegionCode = sp . CountryRegionCode
JOIN
Person . AddressType as at ON

at . AddressTypeID = bea . AddressTypeID

Figure 9.7: The model of vStoreWithAddresses view.

93

9.3.7 View vProductAndDescription

Figure 9.8 shows a model of the vProductAndDescription view. The underlaying
query of the vProductAndDescription view is as follows:

SELECT
p . ProductID

, p .Name
, pm.Name as ProductModel
, pmx . CultureID
, pd . Desc r ip t i on

FROM
Production . Product as p
JOIN
Production . ProductModel as pm ON

p . ProductModelID = pm. ProductModelID
JOIN
Production . ProductModelProductDescr ipt ionCulture as pmx

ON
pm. ProductModelID = pmx. ProductModelID

JOIN
Production . ProductDescr ipt ion as pd ON

pmx. ProductDescr ipt ionID = pd . ProductDescr ipt ionID
WHERE

pmx. CultureID = ’ en ’
ORDERBY

p .Name ASC
, pm.Name ASC

The test process can be described as follows:

1. We generated the code of the SQL queries.

2. The generated code was tested using SQL Server 2008 R2 [34]. All queries
were executed correctly and returned correct results.

3. We applied various changes described in Chapter 8. All updates were exe-
cuted correctly in all cases as well. Some of performed changes are described
in Section 9.3.8.

4. We tested the adapted SQL queries using SQL Server. All queries were
executed correctly and returned correct results.

9.3.8 Results of Performed Changes

Application of Creating Table Column Operation on Complex Group-
By Query

The column GroupID was added to the table HumanResources.Department. This
change was propagated into the Complex GroupBy query. The new column was
added to all components of this query.

The original query

94

Figure 9.8: The model of vProductAndDescription view.

SELECT
d .GroupName

, COUNT(d .Name) as NumberOfDepartments
FROM

HumanResources . Department as d
GROUPBY

d .GroupName
HAVING

COUNT(d .Name) > 2
ORDERBY

NumberOfDepartments DESC

was transformed by Algorithm 8.1 to the query

SELECT
d .GroupName

, COUNT(d .Name) as NumberOfDepartments

95

, d . GroupID
FROM

HumanResources . Department as d
GROUPBY

d .GroupName
, d . GroupID

HAVING
COUNT(d .Name) > 2

ORDERBY
NumberOfDepartments DESC

, d . GroupID ASC

Figure 9.9 depicts an updated model of the Complex GroupBy query.

Figure 9.9: The updated model of the Complex GroupBy query.

Application of Removing Table Column Operation on Complex Where
Query

The column FirstName was removed from the table Person.Person. This change
was propagated into the Complex Where query. The new column was removed
from all components of the query, including the dependant query, which is not
using mapped column FirstName directly.

The original query

SELECT
x . FirstName

, x . LastName
FROM

(
SELECT

p . FirstName
, p . MiddleName

96

, p . LastName
FROM

Person . Person as p
WHERE

(p . MiddleName IS NOT NULL)
AND

(p . LastName = ’Adams ’)
AND

(p . FirstName LIKE ’A\%’ OR p . FirstName LIKE ’K\%’)) as x
ORDERBY

x . FirstName ASC

was transformed by Algorithm 8.9 to the query

SELECT
x . LastName

FROM
(
SELECT

p . MiddleName
, p . LastName

FROM
Person . Person as p

WHERE
(p . MiddleName IS NOT NULL)

AND
(p . LastName = ’Adams ’)) as x

Figure 9.10 depicts an updated model of the Complex Where query.

97

Figure 9.10: The updated model of the Complex Where query.

98

Chapter 10

Conclusion

In this thesis we presented an approach to adaptation of SQL queries, which is an
issue related to adaptation of relational database schema problem. We proposed a
model, which can be used in CASE tools to model SQL queries over the particular
database schema. Similarly, we proposed algorithms, which can determine the
impact of changes performed in the database model on the SQL queries and which
update queries in order to be correctly defined and return correct results.

We began with introducing of adaptation of relational database schema prob-
lem in general. We introduced a problem with changing of database schema and
the related problem of incompatibility with related queries (see Chapter 1).

In Chapter 2 we describe the relational data model and selected parts of SQL
language. Chapter 3 introduces a base concept of a model driven architecture,
which we use to define roles of proposed models.

In Chapter 4 we describe related issues of relational database schema adap-
tation and discuss key problems and solutions. Chapter 5 contains an analysis of
related works dealing with a selected database schema adaptation problem.

In Chapter 7 the main contribution of this thesis is described. We propose a
graph-based SQL query model, particularly designed for evolution process. The
platform-specific visualisation model of the query is described as well. An impor-
tant part of this chapter is focused on mapping between the SQL query model and
the database model. The end of this chapter describes an algorithm to generate
SQL query from the proposed query model.

In Chapter 8 we discuss the impact of changes in the database model on the
queries in the SQL query model. The main part of this chapter is focused on a
description of algorithms which distribute changes in the query graph according
to changes performed in the database model.

The implementation of the proposed solution is described in Chapter 9 togeth-
er with test experiments. A prototype implementation of the proposed model and
algorithms was implemented as an extension of the DaemonX framework. It is
available on the attached CD.

10.1 Main Contributions

The main contribution of our approach is the ability to model SQL queries in a
CASE tool, to analyze changes performed in the database model and to update
the queries to preserve their compatibility and correctnes. It enables us to perform

99

changes in the database model without an inspection of all the related views /
queries by looking for an incompatibility of the queries and the new database
schema. Changes in the database schema model are propagated immediately to
the SQL query model thanks to the mapping between these two models.

10.2 Open Problems

Even though the approach is complex and robust, there exists some problems that
are not covered by this thesis. The main problem is the semantics of database
schema elements.

There is no way how to add semantics to the database table or table columns
used in SQL queries. This reflects during the propagation of changes:

• A column was deleted, its occurence has to be deleted from all parts of the
SQL query, including conditions. Was the column important in the seman-
tics of the given query, or not? For instance, suppose a view MarriedPerson
that selects persons who are married. The person’s status is evaluated ac-
cording to a value of a given column. But when this column is removed,
it is also removed from the condition of the MarriedPerson view. Now the
semantics of this view is broken, because it selects all the persons instead
of only those persons, who are married.

• A table was deleted. Does the query after performed changes have any
sense?

• A new column was added to the database table and during the propagation
of changes it was added to the Select clause. Is it necessary to add any
condition in order to retain semantics of the given query?

The semantics in SQL queries is an open problem in general. We could find
simply other examples of parts of the SQL query, where the semantics could be
broken.

10.3 Future work

Our approach covers a large subset of SQL constructs and for this reason it can
be successfully used in practice. To further extend its practical applicability, the
future research can examine the following areas.

10.3.1 Richer SQL Syntax

In Section 7.1 we described limitations for supporting of SQL language in the
query model. These limitations are not very restricting, but for many cases it is
not sufficient. The possible enlargment of the syntax (e.g. support of expressions)
covers an extension of the query model (defining of new types of vertices, defining
of new types of edges, extension of traversing algorithms, etc.), expansion the
analysis of changes performed in the database model and their propagation to
the query model. However, this will make the performing propagation much
more complicated.

100

10.3.2 Extension of Query Model

The query model extension does not relate only to the previous future work
recommendation, but the query model could be also extended by a support of
database stored functions, procedures, constraints or triggers. Such an extension
could cover a complete database schema. But in this case the problem with
semantics is much more important and it would require an extensive research.

101

Appendix A

Attachments

The attached CD contains:

• PDF version of this thesis – thesis.pdf.

• Installer of the DaemonX framework with appropriate plug-ins in the folder
implementation.

• Examples of the database models and SQL query models determined to
evolution process in the folder examples.

102

Appendix B

Used Database Schemas and SQL
Queries

B.1 Example of the Query Graph

The visualisation of the query graph of a query depicted in Figure 7.14 is saved
on the attached CD in the file examples/queryGraph.png.

B.2 Model of the Database Schema

The complete illustration of the modeled database schema used in Section 9.3 is
saved on the attached CD in the file examples/databaseSchema.png.

B.3 Basic Queries

The DaemonX project with the model of basic queries and the corresponding
database schema is stored in the file examples/basicQueries.dx.

B.4 View vStoreWithAddresses

The DaemonX project with the selected part of the AdventureWorks database
schema and the model of the database view vStoreWithAddresses is saved on the
attached CD in the file examples/vStoreWithAddresses.dx.

B.5 View vProductAndDescription

The DaemonX project with the selected part of the database schema and the
model of the database view vProductAndDescription is stored in the file exam-
ples/vProductAndDescription.dx.

103

Bibliography

[1] Lukovic, I., Ristic, S., Mogin, P., Pavicevic, J. Database schema in-
tegration process - a methodology and aspects of its applying. Novi Sad: J.
Math, 2006.

[2] Choobinch J., Mannio V. M., Nunamaker F. J., Konsynski R. B. An
Expert Database Design System Based on Analysis of Forms. IEEE Trans-
actions on Software Engineering, Vol. 14, No. 2 Feb. 1988, pp. 242-253.

[3] Beeri C., Bernstein P. A. Computational Problems Related to the De-
sign of Normal Form Relational Schemas. ACM Transactions on Database
Systems, Vol. 4 No. 1, March 1979, pp. 30-59.

[4] Roddick J.F. A survey of schema versioning Issues for database systems.
In Information Software Technology, 37(7): p.383-393.

[5] Ventrone V., Heiler S. Semantic heterogeneity as a result of domain
evolution. SIGMOD 1991. Rec. 20(4):16-20.

[6] Batini C., Lenzerini M., Navathe, S.B. A comparative analysis of
methodologies for database schema integration. ACM Computing Surveys.
Vol. 18, No. 4, December 1986

[7] Shneiderman B., Thomas G. An architecture for automatic relation-
al database system conversion. ACM Transactions on Database Systems
7(2):235-257, 1982.

[8] Hudicka J.R. An Overview of Data Migration Methodology. Select Maga-
zine. April 1998

[9] Gilbert L.,Hewitt J. http://searchdatacenter.techtarget.com/definition/OLTP/.
Last update in August 2010.

[10] Chaudhuri S., Dayal U. An overview of data warehousing and OLAP
technology. SIGMOD Rec., Vol. 26, No. 1. (March 1997), pp. 65-74.

[11] Deutsch A., Popa L., Tannen V. Physical Data Independence, Con-
straints and Optimization with Universal Plans. In VLDB, pages 459–470,
1999.

[12] Deutsch A., Tannen V. Mars: A system for publishing XML from mixed
and redundant storage. In VLDB, 2003.

104

[13] Deutsch A., Tannen V. XML Queries and Constraints, Containment and
Reformulation. TCS, 336(1):57–87, 2005.

[14] Curino C., Moon H. J., Zaniolo C. Graceful database schema evolution:
the PRISM workbench. Very Large DataBases (VLDB), 1, 2008.

[15] Drumm Ch., Schmitt, M., Do H.-H., Rahm E. QuickMig: Automatic
Schema Matching for Data Migration Projects. Proceedings of the sixteenth
ACM conference on Conference on information and knowledge management
(CIKM). p. 107–116, 2007.

[16] Do H.-H. Schema Matching and Mapping-based Data Integration. Verlag
Dr. Müller (VDM), 2006. ISBN 3-86550-997-5.

[17] Papastefanatos G., Vassiliadis P., Vassiliou Y. Adaptive Query For-
mulation to Handle Database Evolution. In Proceedings of CAiSE Forum,
2006.

[18] Papastefanatos G., Vassiliadis P., Simitsis A., Aggistalis K., Pechlivani F.,
Vassiliou Y. Language Extensions for the Automation of Database Schema
Evolution. In Proceedings of ICEIS (1). 2008, 74-81.

[19] Codd, E.F. The Relational Model for Database Management: Version 2.
Reading, Mass, Addison-Wesley. 1990.

[20] Pokorný J. Relational Data Model. Introduction to Database Systems, lec-
ture notes. 1999.

[21] Sreenivasa, K. Relational Model. Introduction to Database Systems and
Design, lecture notes. 2006.

[22] Yi-Shin Ch. Relational Data Model. Introduction to Database Systems, lec-
ture notes. 2007.

[23] Maier D. Theory of Relational Databases. Computer Science Pr., 1983. IS-
BN: 0914894420

[24] Peter Pin-Shan Chen. The entity-relationship model: toward a unified
view of data. SIGIR Forum 10, 3 (December 1975), 9-9.
http://doi.acm.org/10.1145/1095277.1095279

[25] Chawathe S.S. A Quick Introduction to Relational Algebra. University of
Maine, October, 2006.

[26] Spector, P. Introduction to SQL. Statistical Computing Facility, University
of California, Berkeley, 1999.

[27] Sreenivasa, K. The SQL Standard. Introduction to Database Systems and
Design, lecture notes. 2006.

[28] Melton, J. (ISO-ANSI Working Draft) Foundation (SQL/Foundation).
ANSI TC NCITS H2, ISO/IEC JTC 1/SC 32/WG 3, Database, 2003.

105

[29] Brashear D. ANSI SQL-92 Standard.
http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt

[30] Korovin K. CNF and clausal form. Logic in Computer Science, lecture
notes. The University of Manchester, 2006.

[31] Miller J., Mukerji J. MDA Guide Version 1.0.1. Object Management
Group, 2003.
http://www.omg.org/mda/mda_files/MDA_Guide_Version1-0.pdf.

[32] DaemonX Team. DaemonX.
http://daemonx.codeplex.com/, June 2011.

[33] Adventure Works team. Adventure Works 2008R2.
Released November 2010,
http://msftdbprodsamples.codeplex.com/.

[34] Microsoft Corporation. SQL Server 2008 R2.
http://www.microsoft.com/sqlserver/.

[35] Object Management Group. Unified Modeling Language.
http://www.uml.org/

[36] SAP Corporation. http://www.sap.com/.

106

