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1. Introduction

1.1 Motivation

Unification of electricity and magnetism led to electromagnetism. Unification of
electromagnetism and classical mechanics, by extending the validity of Lorentz
transformations from the former to the latter theory, gave us the Special Theory of
Relativity (STR) which unifies space and time, mass and energy. The equivalence
principle stemming from the equivalence of gravitational and inertial mass led to
the discovery of General Theory of Relativity, yet another unification. The hunt
for unification is behind the birth of Quantum Field Theory (QFT) as an attempt
to consistently accommodate STR into Quantum Mechanics (QM). Within that
theory we were able to unify the electromagnetic and weak interactions. Needless
to mention SU(2) × U(1) unification which brought us electroweak theory. An
example of unification that we are still looking for is quantum gravity.

In this thesis we follow the idea of unification. We investigate the relationship
between the topologically distinct instantonic vacua and the unitarily inequivalent
vacua of QFT. The latter are a fundamental feature of any QFT, relativistic
or not, due to the infinite number of degrees of freedom associated with the
description of a field. A typical physical situation where such inequivalent vacua
appears is that of spontaneously broken symmetries, [1]. On the other hand, such
vacua are infinite in number, hence many of them are inessential (redundant)
to the physical description of a finite number of phases of the physical system.
The elucidation of the link between those vacua and the instantonic vacua could
shed a light on the way to select the sub-sectors of physical vacua using super-
selection rules based on topological constraints. Another natural environment
to investigate the problem is QFT in curved spacetime, where the Hawking and
Unruh phenomena rely on the inequivalent vacua.

In this thesis we focus on examples in QM, where instantons appear but
the complications due to quantum gauge field theory are absent. Although in
QM (i.e. finite degree of freedom) we do not expect the Unitarily Inequivalent
Representations (UIRs) to play any role (Stone-von Neumann theorem (SvNT)).
We will focus on two cases where such an instance might indeed be there. Those
are quantum dissipative system and a quantum particle constrained on a circle.

1.2 The main topics at a glance

We have chosen two kinds of inequivalence. At first we will comment on the
instantonic one. Instantons are localized finite-action solutions of the classical
Euclidean field equations. It can be said that they are solitons localized in time.
One very well known example of solitons is given in the φ4 model, where such
solutions exists and are divided into sectors, characterized by an integer (the
winding number). These sectors are topologically distinct in the sense that fields
from one sector cannot be distorted continuously into another sector without
violating the requirement of finite energy. In particular, since time evolution is
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Figure 1.1: The unification we are looking for

an example of continuous distortion, a field configuration from any one sector
stays within that sector as time evolves.

Now we comment on the second inequivalence. In QFT, the number of degrees
of freedom is infinite and this fact alone ensures that there are representations of
the CCRs, which are unitarily non-equivalent. This means that exist quantum
vacua, that cannot be related by a unitary transformation. This fact is by now
well established and used in many contexts, QFT in curved spacetime as well as
applications of QFT methods to condensed matter physics. In what follows, we
will be more explicit on the mathematical meaning of such inequivalence.

In this thesis we studied the relation between those two different inequiva-
lences. An issue that, to our knowledge, was never addressed before.

The thesis is organized as follows. In Section 2.1 we present the Stone-von
Neumann theorem (SvNT), which establishes the relation between the number of
degrees of freedom of a quantum system and the representations of the CCRs. We
then introduce the Weyl form of the CCRs, which provides us with a connection
to the phase space. In Section 2.2 we summarize the formalism of the Bogoliubov
transformations (BTs). In Section 2.3 we discuss a model to treat dissipation in
a quantum context based on a paper by Celeghini, Rasetti, Vitiello (CRV) [2].
In there, a system made by one damped harmonic oscillator and one amplified
harmonic oscillator is considered and it is derived that the time evolution of
physical observables and of the vacuum is generated by BT. In the (necessary)
field limit, i.e. for infinite number of degrees of freedom, the vacua parametrized
by time are unitary non-equivalent. In this case the time evolution of the vacuum
is a ”tunneling” through the set of inequivalent quantum vacua (IQV). In Section
3.1 we review φ4 theory to introduce topologically distinct sectors. In Section 3.2
we introduce the Yang-Mills instantons. Then we discuss vacua (pure gauge)
and their relation to the Yang-Mills instantons. Also Pontryagin index, which
labels the sectors of field configurations. In Section 3.3 we introduce θ vacua
in both a QM system and in the Yang-Mills theory. In the QM system a total
derivative term in the Lagrangian is related to the different realizations of the
UIRs. In Section 4.0 we list a strategy to find a link we are looking for. In
Section 4.1 the theory of one particle escaping from a metastable minimum is
discussed. In the calculations, the techniques of Wick rotation, stationary phase
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approximation and gas diluted method are employed. Instantons are present
in the description of the system. The system was connected with CRV model
through an identification of the decay constants in the systems. In Section 4.2 we
start with double well system and move to the system built from two harmonic
oscillators, which is closer to the CRV model where UIRs and IQV are present. In
Section 4.3 the particle on the circle, its path integral description and geometrical
quantization is discussed. The UIRs are present. In section 4.4 a correspondence
between particle on circle and a QFT system is discussed. Finally we draw our
conclusions.
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2. Inequivalent Quantum Vacua

2.1 Stone-von Neumann theorem, Weyl form of

the CCRs

The main results of the Stone-von Neumann theorem (SvNT) can be summarized
as follows:

• For a quantum system with a finite number of degrees of freedom and trivial
topology, all representations of the CCRs are unitarily equivalent.

There are at least two different origins for the violation of the SvNT. The first
one is the infinite number of degrees of freedom, see [3], [4]. The second one is
the non-trivial topology arising in the quantization of the particle on the circle
[5]. In both cases, there exist representations of the CCRs which are unitary
nonequivalent.

If we deal only with one particle and trivial topology then there are just two
basic operators: the coordinate operator q̂ and the momentum operator p̂. Those
operators satisfy the Heisenberg CCRs

[q̂, p̂] = i~Î , [q̂, Î] = [p̂, Î] = 0 (2.1)

where Î is the identity operator, ~ is the Planck constant.
Schroedinger representation of the Heisenberg CCRs is:

(q̂ψ)(x) = xψ(x)

(p̂ψ)(x) = −i~dψ
dx

(x) (2.2)

where x ∈ R, ψ ∈ L2(R). q̂ and p̂ are not bounded operators. To overcome this
problem the following set of operators, which are bounded, is defined:

U(Q) = eiQp̂/~ , V (P ) = eiP q̂/~ ; Q,P ∈ R (2.3)

In Schroedinger representation:

(U(Q)ψ)(x) = ψ(x+Q) , (V (P )ψ)(x) = eiPx/~ (2.4)

From the Heisenberg CCRs and by employing Baker-Campbell-Hausdorff formula
we obtain the Weyl form of the CCRs:

U(Q)V (P ) = exp
(iPQ

~

)

V (P )U(Q) (2.5)

We started with q̂, p̂ and Heisenberg CCRs then U, V were defined and Weyl form
of the CCRs was derived. This can be done in the opposite direction therefore
we say that there is a one-to-one correspondence between the Heisenberg CCRs
on one hand and U , V which satisfy the Weyl form of the Heisenberg CCRs on
other hand.
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The following lines and the theorem are from [4]. A representation of the Weyl
form of the CCRs is said to be irreducible if the only subspaces of the Hilbert
space H of states left invariant by the operators {U(a) | a ∈ R}∪{V (a) | a ∈ R}
are {0} and H itself.

The Stone-von Neumann Uniqueness Theorem:

If {Ũ(a) | a ∈ R} and {Ṽ (a) | a ∈ R} are (weakly continuous) families of
unitary operators acting irreducibly on a (separable) Hilbert space H such that

Ũ(a)Ũ(b) = Ũ(a+ b) , Ṽ (a)Ṽ (b) = Ṽ (a+ b)

Ũ(a)Ṽ (b) = eiab/~Ṽ (b)Ũ(a)

then there exists a Hilbert space isomorphism W: H → L2(R) such that

WŨ(a)W−1 = U(a) , W Ṽ (a)W−1 = V (a)

for all a ∈ R, where U(a) and V (a) are the Weyl unitaries in the Schroedinger
representation defined in Eq. (2.4).

The theorem holds for the finite number of degrees of freedom with trivial
topology.

The annihilation operator â and creation operator â† are defined and obey
following relations:

â ≡ q̂ + ip̂√
2~

, â† ≡ q̂ − ip̂√
2~

(2.6)

[â, â†] = Î , [â, Î] = [â†, Î] = 0 (2.7)

This can be rewritten in a more beautiful way by introducing ê1, ê2 and ê3.

ê1 ≡ i(~)−1/2p̂ , ê2 ≡ i(~)−1/2q̂ , ê3 ≡ iÎ (2.8)

[ê1, ê2] = ê3 , [ê1, ê3] = [ê2, ê3] = 0 (2.9)

Those operators form the Heisenberg-Weyl algebra W. The elements of W are
written as

x ≡ (s; x1, x2) = x1ê1 + x2ê2 + sê3

= Î +
i

~
(P q̂ −Qp̂) = isÎ + (αâ† − α̃a†) (2.10)

where
x1 = −(~)−1/2Q , x2 = (~)−1/2P , s ∈ R (2.11)

α ≡ (2~)−1/2(Q+ iP ) = 2−1/2(−x1 + ix2)

α̃ ≡ (2~)−1/2(Q− iP ) = 2−1/2(−x1 − ix2) (2.12)

The elements of the group are:

exp(x) = exp(isÎ)D(α) , D(α) = exp(αa† − α̃a) (2.13)
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By employing Baker-Campbell-Hausdorff formula we obtain the multiplication
law for D(α):

D(α)D(β) = exp(2iIm{αβ̄})D(β)D(α) (2.14)

We expressed the Weyl form of the CCRs in terms of â, â† to see a connection
to the phase space. Im{αβ̄} = 2A(0, β, α + β), where A(α, β, γ) is the area of
the triangle with vertices at the points α, β, γ i.e. Im{αβ̄} is proportional to
the area of the triangle on the phase plane [6]. In general Q, P are not any real
numbers, but they are related to the phase space.

2.2 The Bogoliubov transformation

When we deal with a scalar field we often use the Fock representation, which is
unitarily equivalent to the Schroedinger representation. Let us remind here that
a vector in Fock space is:

|n1, n2, ..〉 ,
∑

i

ni = finite (2.15)

where ni means that the i-th single particle state is occupied by ni particles.
Those vectors form a countable set, basis in Hilbert space. If the n is infinite
then the summation over ni is not restricted to be a finite number and those
vectors form a non-countable set. It is often believed that to describe a physical
system you need just a countable set of vectors which form the basis of a Hilbert
space or in other words physicists use countable basis. But there are infinitely
many ways to choose a countable set from the set of the non-countable vectors. To
have two different bases means that any basis vector from one space differs from
any basis vector in the other space in infinitely many places [7]. Two different
bases chosen from this non-countable set are orthogonal to each other. It means
that any vector from one space, which is a linear combination of the basis of this
space, does not belong to the other space. To be more precise, when we expand
such a vector in the basis of the other space we see that all coefficients are zero,
see [8]. We can explicitly see this in the next lines.

Let us consider two sets of boson annihilation operators, α(k) and β(k). We
can build the Fock space, denoted by H (α, β). The vacuum |0〉 is defined by

α(k)|0〉 = 0 β(k)|0〉 = 0 (2.16)

The CCRs for these operators are

[α(k), α†(l)] = δ(k− l) [β(k), β†(l)] = δ(k− l) (2.17)

Other commutators are zero. Let us now introduce the operators, a(k) and b(k)
through the following Bogoliubov transformations (i.e. the quantum counterpart
of the canonical transformations of classical mechanics, see Eq. (2.21)).

a(k) = ckα(k)− dkβ
†(−k) (2.18)

b(k) = ckβ(k)− dkα
†(−k) (2.19)

7



Here the c-number coefficients ck, dk are real functions of k2 and if they satisfy
the relation

c2k − d2k = 1 (2.20)

then a(k) and b(k) satisfy the same CCRs as α(k) and β(k):

[a(k), a†(l)] = δ(k− l) [b(k), b†(l)] = δ(k− l) (2.21)

Other commutators vanish. The transformation is canonical. From Eq. (2.20)
one sees that a way to represent ck and dk is

ck = cosh(θk) dk = sinh(θk) (2.22)

G(θ) and A(θ) are defined:

G(θ) = exp[A(θ)] , A(θ) =

∫

d3kθk[α(k)β(−k)− β†(−k)α†(k)] (2.23)

The following relations can be derived, see Eq. (A.13)

G−1(θ)α(k)G(θ) = α(k) cosh θk − β†(−k) sinh θk (2.24)

a(k) = G−1(θ)α(k)G(θ) , b(k) = G−1(θ)β(k)G(θ) (2.25)

The following important result can be found, see Eq. (A.40)

|0〉〉 ≡ G−1(θ)|0〉 = f0(θ) exp
(

δ(3)(0)

∫

d3kα†(k)β†(−k) tanh θk

)

|0〉 (2.26)

f0(θ) = exp
(

− δ(3)(0)

∫

d3k log cosh θk

)

(2.27)

where

δ(3)(0) = lim
k→0

δ(k) , δ(k) = (2π)−3

∫

d3xeikx (2.28)

The δ(3)(0) can be seen as

δ(3)(0) = (2π)−3 × (volume of the system) (2.29)

Eg. (2.16, 2.25, 2.26) give us that |0〉〉 is the vacuum of a(k) and b(k)

a(k)|0〉〉 = 0 , b(k)|0〉〉 = 0 (2.30)

δ(3)(0) is infinite, therefore f0(θ) = 0. We can draw a conclusion that when |0〉〉
is expressed in terms of the basis vectors of H [α, β], every expansion coefficient
is zero, |0〉〉 does not belong to H [α, β]. We can build the Fock space H [a, b]
from a†(k), b†(k), |0〉〉. It can be proven that vectors of H [a, b] do not belong
to H [α, β]. We say H [α, β], H [a, b] are orthogonal to each other. For more
details see [8].
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2.3 The CRV model for Quantum Dissipation

This section is based on [2]. We are interested in the CRV model for Quantum
Dissipation as its description contains IQV and later we compare this system with
the path integral description of the particle escaping from metastable minimum
because it involves instantons.

In this section the CRV system made by one damped harmonic oscillator and
one amplified harmonic oscillator is discussed and an important fact is shown
that the time evolution of physical observables and of the vacuum is given by
BT. In the (necessary) field limit, i.e. for infinite number of degrees of freedom,
the vacua parametrized by time are unitary non-equivalent. In this case, the time
evolution of the vacuum can be seen as a ”tunneling” through the set of IQV.

The classical equation of motion of the damped harmonic oscillator is

mẍ+ γẋ+ κx = 0 (2.31)

where m is mass, γ is a damping constant, κ is a spring constant.

Let us mention that the canonical quantization of this system is pathological
[2] i.e. the CCRs are not preserved by time evolution due to the damping term
in the present system.

Consider the following system given by the Lagrangian L

L = mẋẏ +
1

2
γ(xẏ − ẋy)− κxy (2.32)

By employing Euler–Lagrange equation of motion we obtain the classical equa-
tions of damped and amplified harmonic oscillators

mẍ+ γẋ+ κx = 0 , mÿ − γẏ + κy = 0 (2.33)

For completeness we state the canonical momenta px and py

px = mẏ − 1

2
γy , py = mẋ+

1

2
γx (2.34)

The Hamiltonian of the system is:

H =
1

m
pxpy +

1

2m
γ(ypy − xpx) + (κ− γ2

4m
)xy (2.35)

The system is quantized by a symmetrical procedure, it means that the term
ypy − xpx in the Hamiltonian is replaced by 1/2(ypy + pyy − xpx − pxx) and
the variables are replaced by their associated operators. The quantization is
performed as follows:

[x̂, p̂x] = i~ = [ŷ, p̂y] , [x̂, ŷ] = 0 = [p̂x, p̂y] (2.36)

Here are definitions of the annihilation and creation operators:

â ≡
( 1

2~Ω

)1/2( p̂x√
m

− i
√
mΩx̂

)

, â† ≡
( 1

2~Ω

)1/2( p̂x√
m

+ i
√
mΩx̂

)

(2.37)
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b̂ ≡
( 1

2~Ω

)1/2( p̂y√
m

− i
√
mΩŷ

)

, b̂† ≡
( 1

2~Ω

)1/2( p̂y√
m

+ i
√
mΩŷ

)

(2.38)

â, â†, b̂, b̂† obey the following CCRs:

[â, â†] = 1 = [b̂, b̂†] , [â, b̂] = 0 = [â, b̂†] (2.39)

Ω, Γ are defined here:

Ω ≡
[ 1

m

(

κ− γ2

4m

)]1/2

, Γ ≡ γ/2m (2.40)

Γ is the decay constant for the classical variable x(t) we need to introduce oper-
ators Â, B̂:

Â ≡ (1/
√
2)(â+ b̂) , B̂ ≡ (1/

√
2)(â− b̂) (2.41)

Â, Â†, B̂, B̂† obey the following CCRs:

[Â, Â†] = 1 = [B̂, B̂†] , [Â, B̂] = 0 = [Â, B̂†] (2.42)

It is also useful to define Ĵ+, Ĵ−, Ĵ3 and the operator Ĉ :

Ĵ+ = Â†B̂† , Ĵ− = Ĵ†
+ = ÂB̂ , Ĵ3 =

1

2
(Â†Â+ B̂†B̂ + 1) (2.43)

Ĉ
2 ≡ 1

4
+ Ĵ2

3 − 1

2
(Ĵ+Ĵ− + Ĵ−Ĵ+) =

1

4
(Â†Â− B̂†B̂)2 (2.44)

Finally the Hamiltonian can be written as:

Ĥ = Ĥ0 + ĤI (2.45)

where
Ĥ0 = ~Ω(Â†Â− B̂†B̂) = 2~ΩĈ (2.46)

ĤI = i~Γ(Â†B̂† − ÂB̂) = i~Γ(Ĵ+ − Ĵ−) = −2~ΓĴ2 (2.47)

Notice that Ĵ1 and Ĵ2 are defined by the following relationship:

Ĵ± ≡ (Ĵ1 ± iĴ2) (2.48)

and it is easy to check that those operators satisfy the su(1, 1) algebra:

[J1, J2] = −iJ3 , [J3, J1] = iJ2 , [J2, J3] = iJ1 (2.49)

Ĉ is the casimir operator, as can be easily checked, hence, in particular:

[Ĥ0, ĤI ] = 0 (2.50)

Simultaneous eigenvectors of Â†Â and B̂†B̂ are denoted by |nA, nB〉 where
nA, nB are non-negative integers. The eigenvalue of Ĥ0 is the constant quantity
2~Ω(nA − nB). The eigenstates of ĤI can be written in the standard basis, in
terms of the eigenstates of (Ĵ3 − 1

2
) in the representation labeled by the value

j ∈ Z1/2 of C , {|j,m〉;m ≥ |j|}:

C |j,m〉 = j|j,m〉 , j =
1

2
(nA − nB) (2.51)
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(J3 −
1

2
)|j,m〉 = m|j,m〉 , m =

1

2
(nA + nB) (2.52)

This representation is not a unitary irreducible representation, look at the dis-
cussion in [2] (below eq.12).

The vacuum state |0〉 is defined by the following relationships, it means |0〉 =
|nA = 0, nB = 0〉, i.e. j = 0, m0 = 0.

Â|0〉 = 0 , B̂|0〉 = 0 (2.53)

The evolution operator is given by Eq. (2.23), up to a factor −i/~. We just
need to take a finite volume of Eq. (2.26-2.29). This is formally achieved by the
following replacement 1/(2π)3 → 1/V , integration → summation, θk → Γt and
α(k), β(−k) by Âk, B̂k. In our case, there is no summation over k because we
deal only with one pair of creation and annihilation operators. A time evolution
of the vacuum can now be easily found

|0(t)〉 = e−
i
~
ĤI t|0〉 = 1

cosh(Γt)
exp(tanh(Γt)J+)|0〉 (2.54)

|0(t)〉 has unit norm
〈0(t)|0(t)〉 = 1 (2.55)

As t→ ∞, |0(t)〉 becomes an asymptotic state which is orthogonal to the |0〉

lim
t→∞

〈0(t)|0〉 = lim
t→∞

exp(− ln cosh(Γt)) → 0 (2.56)

It means that time evolution leads out of the original Hilbert space. Despite
the fact that the number of degrees of freedom is finite, time evolution of the
vacuum give us IQV which breaks the SvNT. This breaking could come from
non-trivial topology at finite degree of freedom but we have not investigated this.
The approach followed in [2] reopened infinite number of degrees of freedom as
the natural setting to treat this problem.

We work with the following QFT system, all is quite similar to the situation
above, hence we only very quickly go through the main results. k labels a spatial
momentum. We work at finite volume of the system V , and at the end we make
the limit V → ∞.

Ĥ = Ĥ0 + ĤI (2.57)

Ĥ0 =
∑

k

~Ωk(Â
†
kÂk − B̂†

kB̂k) (2.58)

ĤI = i
∑

k

~Γk(Â
†
kB̂

†
k − ÂkB̂k) (2.59)

The CCRs are:

[Âk, Â
†
λ] = δk,λ = [B̂k, B̂

†
λ] , [Âk, B̂

†
λ] = 0 = [Âk, B̂λ] (2.60)

Once again the evolution operator is given by Eq. (2.23), up to a factor −i/~.
We use Eq. (2.26-2.29), what was proven in Appendix A. Finally we just need to
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replace θk by Γkt and α(k), β(−k) by Âk, B̂k to obtain the time evolution of the
vacuum.

|0(t)〉 = e(−i/~)HI t =
∏

k

1

cosh(Γkt)
exp(tanh(Γkt)J

(k)
+ )|0〉 (2.61)

|0〉 has a unit norm:
〈0(t)|0(t)〉 = 1 ∀t (2.62)

It is easy to obtain the following relations too, so we can conclude that in the
infinite volume limit time t parametrizes IQV, |0(t)〉.

〈0(t)|0〉 = exp
(

−
∑

k

ln cosh(Γkt)
)

(2.63)

if
∑

k Γk > 0

lim
t→∞

〈0(t)|0〉 ∝ lim
t→∞

exp
(

− t
∑

k

Γk

)

= 0 (2.64)

V → ∞ : 〈0(t)|0〉 −→ 0 ∀t (2.65)

V → ∞ : 〈0(t)|0(t′)〉 −→ 0 ∀t, t′; t 6= t′ (2.66)

The time evolution of Âk and B̂k is easily obtained from Eq. (2.24). We only
need to replace the integration by a summation, θk by Γkt and α(k), β(−k) by
Âk, B̂k.

Âk(t) = e−i(t/~)ĤI Âke
i(t/~)ĤI = Âk cosh(Γkt)− B̂†

k sinh(Γkt) (2.67)

B̂k(t) = e−i(t/~)ĤI B̂ke
i(t/~)ĤI = −Â†

k sinh(Γkt) + B̂k cosh(Γkt) (2.68)

At every time t the system is build from Âk(t), Â
†
k(t), B̂k(t), B̂

†
k(t); |0(t)〉. As

time evolves the system is described by UIRs of the CCRs.

12



3. Instantons

In this chapter we introduce instantons and some of their features which seem to
us to be relevant for our investigation. Let us start with a definition:

An instanton is a solution of the Euclidean equations of motion such that the
action of that solution is finite.

Why do we deal with Euclidean space despite the fact that our space is
Minkowskian? In the path integral formulation of QM it is often very useful to go
to Euclidean space by Wick rotation. This effectively means that we replace the
real time by an imaginary one. To employ the stationary point approximation
to predict the probability to find a particle at xf that initiated its motion at xi,
we need the classical solution of this motion from xi to xf . Such a solution, as
well known, is missing for tunneling, i.e. there is no classical counterpart. This
problem is solved by Wick rotation. When we go to Euclidean space the poten-
tial is effectively reversed with respect to the Minkowski (real) situation and the
consequence is that we can find a classical solution that allows us to employ the
stationary point approximation.

On the other hand, finite action solution is demanded, mainly because we want
to perform the saddle point approximation [9]. If the action of a field configuration
were infinite, then the contribution to a probability amplitude would be zero. To
satisfy the requirement of a finite action solution we can see that this often brings
a non trivial topology into play. A typical example is the φ4 model.

A theta vacuum is build from topological vacua, i.e. quantum vacuum states,
which live around classical vacua and are connected by instantons. Theta vacua
are objects of QM (QFT) where UIRs are present.

Some basic relationships between Euclidean and Minkowskian coordinate, vec-
tors are in [10]. A vector in Minkowski space is Vm(x0, x1, x2, x3), the Minkowski
metric is (−1, 1, 1, 1), V 2

M = −x20+x21+x22+x23. A vector in the 4-dimensional Eu-
clidean space is Ve(x4, x1, x2, x3), the 4-dimensional Euclidean metric is (1, 1, 1, 1),
V 2
e = x21 + x22 + x23 + x24. If we replace real time x0 by purly imaginary one −ix4

then the Minkowski metric becomes Euclidean and some problems are easier to
solve.

3.1 Kink solution in φ4 theory

In this section we review a simple model, where solitons exist. Although solitons
are not instantons, they share important features with them. They are solutions
of the equation of motion of finite action and they are divided into sectors. These
sectors are topologically distinct. We will be more specific now.

The φ4 theory is given by the following Lagrangian density:

L (x, t) =
1

2
(φ̇)2 − 1

2
(φ′)2 − 1

4

(

φ2 − 1

)2

(3.1)

where φ(x, t) is a single scalar field, a dot (prime) is differentiation with respect to
time (space) variable t (x). c, the velocity of light is set to be one. The potential
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is minimized by field values:
φ = ±1 (3.2)

we call them classical vacua. The equation of motion is:

φ̈− φ′′ = φ− φ3 (3.3)

We are interested in non-singular, finite-energy, localized energy density, static
(not crucial) solutions. In order for the energy of the system to be finite at any
given time the solution of equation of motion has to be φ = ±1 at spatial infinity
(x = ±∞). The time evolution is the continuous distortion of the field. Therefore
the field say at x = +∞ can not jump from value φ = +1 to φ = −1 during
the time evolution because at some moment the field at infinity would have to
have a different value as one that minimizes the potential and hence the energy of
the system would be infinite and the energy conservation law would be violated.
Therefore, the values of the fields at infinity are preserved during time evolution.
Hence this solutions are divided in to topological sectors, labeled by two indices
(φ(x = −∞), φ(x = +∞)) i.e. (−1,−1), (−1, 1), (1,−1), (1, 1). To get a field
from one sector to the other, requires a non continuous transformation, a field
would have to jump from one sector to another.

There are two kinds of static solutions. They can begin from φ = −1 at
x = −∞ and end up with φ = +1 at x = ∞, or vice versa. The solution is

φ(x) = ± tanh[(1/
√
2)(x− x0)] , x0 ∈ R (3.4)

and it is called the ‘kink’ (‘antikink’) for the plus (minus) sign. Kink has its values
at spatial infinity (−1,+1), therefore we say that Kink connects these vacua.

For more details see [10], [11] and [12]. In [10] you can find review of the more
general case (sine-Gordon) and a definition of an analogue of the Pontryagin
index. In [11] you can find a physical model of sine-Gordon system, i.e. a string
with pegs.

3.2 The Yang-Mills instantons

Here we want to introduce true instantons, the Yang-Mills instantons. We deal
with the Euclidean theory. The Lagrangian is:

L = −1

4
F a
µνF

aµν = −1

2
Tr
(

FµνF
µν
)

(3.5)

Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ] (3.6)

Aµ ≡ 1

2
σaAa

µ , Fµν ≡ 1

2
σaF a

µν (3.7)

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

(3.8)

where Aµ is the matrix field, called the non-Abelian gauge field corresponding to
the gauge group SU(2). Fµν is the field strength, g denotes a coupling constant, σa
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are the standard Pauli matrices. Aµ is transformed by the gauge transformation
as follows and consequently Fµν is transformed too.

Aµ → A′
µ = UAµU

−1 − i

g
U∂µU

−1 , Fµν → F ′
µν = UFµνU

−1 (3.9)

The equation of motion is:
DµF

aµν = 0 (3.10)

where Dµ = ∂µ − igAµ is the covariant derivative. This is a non linear equation
whose solutions are difficult to find. By employing the Bianchi identity

DµF
∗aµν = 0 (3.11)

where F ∗aµν is

F ∗aµν =
1

2
ǫµνλκF a

λκ (3.12)

To find solutions of the equation of motion we just need to find a field configura-
tion which satisfies the following relationship:

F aµν = ±F ∗aµν (3.13)

such fields are called self dual (+) or anti-self dual (-).

Let us now focus on the objects we are interested in, i.e. vacua: Aµ = 0 (pure
vacuum) and Fµν = 0. A gauge transformation gives us

Aµ = − i

g
U∂µU

−1 (3.14)

For such field configuration (pure gauge), again Fµν = 0. Every finite-action

configuration must be pure gauge at S
(phy)
3

1 for r = ∞ [10]. These field configu-

rations Aµ(x) are assigned to a group function U , which is defined on S
(phy)
3 . This

group function maps to a group space of SU(2), which is S
(int)
3

2 sphere, so there

is a mapping S
(phy)
3 → S

(int)
3 . A homotopy theory (see Appendix B) says that

we deal with π3(S3) homotopy group, hence the maps S
(phy)
3 → S

(int)
3 are divided

into a discrete infinity of homotopy classes labeled by an integer Q, Pontryagin
index. Mappings from one class cannot be continuously deformed into a mapping
from another class hence a field Aµ(x) belonging to a given sector Q cannot be
continuously deformed to another sector because the field would have to become
not pure gauge at S

(phy)
3 during such a continuous deformation and consequently

the action would be infinite. To get a field from one sector to another one, a
discontinuous transformation would be needed. Our configurations at infinity are
pure gauge (vacua) and form a set of topologically distinct objects.

1S
(phy)
3 is the physical space, a three dimensional sphere in four dimensional Euclidean space.

As we already mentioned we moved from Minkovskian space to Euclidean one by Wick rotation.
An analytic equation of the sphere is r2 = x2

1 + x2
2 + x2

3 + x2
4.

2S
(int)
3 is the SU(2) group space, a three dimensional sphere in four dimensional euclidean

space with radius one, because any element of SU(2) can be written as σ.a+ a4I, where ai and
a4 are any real number such that a formula a

2 + a24 = 1 holds. σi are Pauli matrices and I is
the identity matrix 2× 2.
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The Yang-Mills instanton, i.e. the solution of the equation of motion can be
found by solving the (anti) self-dual equation, which can be found in [10], [13] or
in the original paper [14]. In [10], [15] you can see a more general N -instanton
solution. The Yang-Mills instantons:

Aµ =
x2

x2 + λ2

(−i
g

)

U∂µU
−1 (3.15)

where

U =
x4 + ix · σ√

x2
, x2 = x21 + x22 + x23 + x24 (3.16)

The parameter x4 is the Euclidean time. When x4 → +∞ the Yang-Mills reduces
to a pure gauge vacuum, which belongs to some topological sector3. When x4 →
−∞ it reduces to a pure gauge vacuum which belongs to a topological sector,
which is assigned an integer which differs by one4 from the integer assigned to
the sector of the former field at x4 = +∞. The instanton connects pure gauge
vacua which are members of different homotopy classes. Let us see how [11]:

Ai → ign∂ig
−1
n , x4 → +∞ , i = 1, 2, 3 (3.17)

Ai → ign−1∂ig
−1
n−1 , x4 → −∞ , i = 1, 2, 3 (3.18)

where
g1 = exp

[

− iπ
x · σ

(x2 + λ2)1/2

]

, gn ≡ gn1 , n ∈ Z (3.19)

It is the Pontryagin index that assigns a homotopy class to a field configuration.
Let us define,

1

4
Tr
(

FµνF
∗µν
)

= ∂µK
µ (3.20)

where we have used Fµν = F ∗
µν and

Kµ ≡ ǫµνλκTr

(

1

2
Aν∂λAκ − ig

1

3
AνAλAκ

)

(3.21)

K0 is called Chern-Simons term. Pontryagin index P can now be defined and
through Stokes’ theorem expressed as:

P ≡ g2

16π2

∫

R4

dx4Tr
(

FµνF
∗µν
)

=
g2

4π

∫

∂R4=S3

d3σKµnµ (3.22)

As we deal with pure gauge on the boundary, and we require a finite action, it
can be written as

Kµ = ǫµνλκ

[

− 1

2g2
Tr
(

UU−1
,ν (UU−1

,κ ),λ

)

− 1

3g2
Tr
(

UU−1
,ν UU

−1
,λ UU

−1
,κ

)]

=
1

g2
ǫµνλκ

(1

2
− 1

3

)

Tr
(

UU−1
,ν UU

−1
,λ UU

−1
κ

)

(3.23)

3The S
(phy)
3 can be deformed to a such cylinder that at x4 = ∞ we are at the upper disk

of the cylinder. For the temporal gauge A4 = 0 at fixed x4 the 3-dimensional plane can be

compactified into sphere S3 [13]. For x4 → ∞ Aµ is a pure gauge hence there is S3 → S
(int)
3 .

4The integer, Pontryagin index, of our Yang-Mills instanton is 1 [10] and in temporal gauge
it can be written as difference between two integrals of the field configurations over disks (of
the cylinder) at x4 ± ∞ [11] which is difference between the integers assigned to the field
configurations at ±∞. Hence the integers of those sectors differ by one.
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which gives

P =
1

24π

∫

S3

d3σ nµǫµνλκTr
(

UU−1
,ν UU

−1
,λ UU

−1
,κ

)

(3.24)

P is the winding number of the mapping from S
(phy)
3 into S

(int)
3 i.e. the number

of the times the group space of SU(2) is wrapped around S
(phy)
3 . It can be shown

that Pontryagin index is proportional to the integral over the group measure [16].

P ∝
∫

dµ(U) (3.25)

The constant(−16π2)−1 in Eq. (3.22) was chosen so that P gives us precisely the
winding number. Let us here define: small gauge transformations leave the field
configuration in its sector, large gauge transformations do not.

The Euclidean action is

S = − 1

2g2

∫

d4xTr[FµνF
µν ] (3.26)

Let us consider the identity

−
∫

d4xTr[(Fµν ± F ∗
µν)

2] ≥ 0 (3.27)

−
∫

d4xTr[FµνF
µν ] ≥ ∓

∫

d4xTr[F ∗
µνF

µν ] (3.28)

Therefore for any finite-action configuration

S ≥ (8π2/g2)|P | (3.29)

Fields which minimize the action in any given homotopy sector are solutions of
the Euclidean Yang-Mills equation falling in that sector. We see that the absolute
minimum value of S(S = (8π2/g2)|P |) in a sector P is reached by a (anti) self-
dual configuration i.e. (anti) self-dual configuration minimize S and hence solve
the Euclidean Yang-Mills equation.

3.3 θ vacua

This section is based mainly on [10] and [11], [9], [17]. Up to now we have mainly
discussed vacua of a classical theory with emphasis on instantons. IQV of the
CCRs are those of QM (QFT). To investigate the topic it is more than relevant
to review theta vacua which often appear when we move from a classical to a
quantum theory. They exist due to tunneling phenomena among classical vacua
which are connected by instantons.

Let us have a classical system which is given by the Hamiltonian:

H =
p2

2m
+ 1− cos q (3.30)

The system has degenerate minima (classical vacua) at points 2πn, n ∈ Z.
Around each minima we can employ a harmonic oscillator and build quantum
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mechanical wave functions, ground states ψ0(q), which are centered at 2πn. We
have a set of groundstates ψ0(q− 2πn). We turn on QM, quantum tunneling and
we are interested in the true vacuum. To find the true vacuum we compare two
amplitudes of probability, that particle will tunnel from |qi = 0〉 to |qf = 2π〉,
given by two computation methods.

The first one is the Feynman path integral. By Wick rotation we go to Eu-
clidean theory where classical solution, the instanton, exists. We employ a saddle
point approximation and diluted gas method as well. We have to deal with zero
mode. It is very similar to that calculation which was carried out in the Section
Escape from a metastable minimum with all details for the case of escaping from
a metastable minima. Some calculation steps are in [10]. The second method is:
we insert identity in terms of eigenvectors, say φn, of the Hamiltonian between the
evolution operator and the initial state. You can find the following relationships
in [10]

lim
τ→∞

〈2π|e−Ĥτ/~|0〉 = lim
τ→∞

∑

n

〈2π|φn〉〈φn|0〉e−Enτ/~ (3.31)

lim
τ→∞

〈2π|e−Ĥτ/~|0〉 =
∫ 2π

0

dθ

2π
eiθ
( ω

π~

)
1

2

exp
(

− 1

2
ωτ + 2JK cos (θ)e−S0/~τ

)

(3.32)
where ω is the angular frequency of the harmonic oscillators which were employed.
S0 is the action of the instanton solution which connects these two minima. Defini-
tions of constants J andK are in the Section Escape from a metastable minimum
and they can be found in [10], [9], [18]. Terms with the eigenstates which are not
the lowest state are suppressed for large τ . By comparing those two amplitudes of
probability we find energies of Hamiltonian which are parametrized by parameter
θ

E(θ) =
1

2
~ω − 2~JK cos (θ)e−S0/~ (3.33)

Those energies correspond to the eigenvalues of the Hamiltonian, which are de-
noted by |θ〉.

The Hamiltonian is invariant under a transformation q → q + 2π. Hence
it is required that the eigenvectors of the Hamiltonian are invariant under this
transformation, up to a phase. It seems to be plausible to expect that those
states are a linear combination of the degenerate quantum vacua ψ0(q − 2πn),
call them topological vacua. Since we deal here with a periodic potential the
Bloch’s theorem must be satisfied. The following set of vectors parametrized
by θ satisfies requirements which we have just mentioned and therefore these
vectors are eigenvectors of the operator which replaces q by q + 2π. Since this
operator commutes with the Hamiltonian we know that |θ(q)〉 are eigenvectors of
the Hamiltonian with eigenvalues which we have already found

|θ(q)〉 =
∞
∑

n=−∞

einθ|ψ(q − 2πn)〉 (3.34)

For θ = 0 we have the ground state. And indeed:

|θ(q + 2π)〉 = eiθ|θ(q)〉 (3.35)
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For the case of the particle on the circle with same periodic potential, any wave
function has to satisfy ψ(q + 2π) = ψ(q). From the set of |θ(q)〉 only |θ = 0(q)〉
satisfies this condition.

Let us consider the particle on the line with the periodic potential again, but
a new term −θdq/2πdt is added to the Lagrangian

L =
1

2

(dq

dt

)2

− (1− cos q)− θ

2π

dq

dt
(3.36)

The term is a total derivative, hence the equation of motion is not changed. By
the procedure which was mentioned above we can find that the ground state has
the same energy as the state |θ(q)〉 when the new term was not present [10].

For the system we started with, we usually take a Hilbert space which consists
of 2π periodic functions, but this is not the only option. We can consider Hilbert
space build from quasiperiodic functions [17].

ψ(φ+ 2π) = e2πiθψ(φ) (3.37)

For those functions, eigenvalues of operator p = −i∂φ are n + θ. We can leave a
function to be periodic and redefine the momentum operator, in other words we
make a following transformation [17]:

p→ p = −i∂φ + θ

φ→ φ (3.38)

This transformation is canonical, i.e. the CCRs are preserved. Here we can see
different realizations of the CCRs, which are parametrized by θ. This transfor-
mation brings total derivative θdq/2πdt to the Hamiltonian.

Let us now introduce a θ vacuum of the Yang-Mills theory. This theory
possesses a set of classical vacua (pure gauge) which are divided into homotopical
sectors and are connected by the Yang-Mills instantons. Around each classical
vacuum, belonging to a sector N , we can build a perturbative quantum vacuum
state (ground state) denoted by |N〉, called topological vacuum. A Hamiltonian
is invariant under gauge transformation. Classical vacua belonging to the N and
N −1 sector are related by some large gauge transformation. The Corresponding
transformation which relates |N〉 and |N − 1〉 is denoted by T1, T1|N〉 = |N − 1〉.
Since T1 commutes with the Hamiltonian and it is a unitary transformation,
eigenstates of the Hamiltonian and the true vacuum are eigenstates of T1 too,
with eigenvalue eiθ. This is satisfied by |θ〉, see [10], [11], or the original paper
[15]

|θ〉 =
∞
∑

N=−∞

eiNθ|N〉 (3.39)

Indeed
T1|θ〉 = eiθ|θ〉 (3.40)

Let us mention that

0 = 〈θ|[B, T1]|θ′〉 = 〈θ|B|θ′〉(eiθ′ − eiθ) (3.41)
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Since any physical operator B commutes with T1 we see that vectors |θ〉 and |θ′〉
are not connected by a physical operator, so in this sense they belong to different,
unconnected sectors.

〈θ|B|θ′〉 = 0 for θ 6= θ′ (3.42)

When the term Lθ,

Lθ =
θ

16π2
Tr[FµνF

∗µν ] (3.43)

Lθ is a total divergence hence equations of motion (instantons) are not effected,
is added to the Yang-Mills Lagrangian, then |θ〉 is the true vacuum [10]. For each
θ we have different quantum theory with the vacuum |θ〉.
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4. Linking Inequivalent Quantum

Vacua and Instantons?

Here we show what has been done in attempt to find a link between topologically
distinct vacua and unitarily inequivalent quantum vacua, as follows.

1. The theory of one particle escaping from a metastable minimum is discussed
because the path integral description of the system contains desired instan-
tons. We make identification of the decay constants present in this system
and in the CRV model for quantum dissipation, which contains IQV, UIRs.

2. We start with a double well system, where instantons connect topological
vacua, and we try to move to the system which is build from two harmonic
oscilators because the CRV model, where UIRs of the CCRs are present, is
build from damped and amplified harmonic oscilators. The idea is nicely
captured in the chain of Fig. 4.1, 4.2, 4.3.

3. We have found a QM system, a particle on a circle, which possesses UIRs.

4. We discuss a correspondence between particle on a circle and a QFT system.

-a a
q

V

Figure 4.1: Double well system.

-a a

Figure 4.2: Two LHOs.
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Figure 4.3: The CRV model.

4.1 Escape from a metastable minimum

Here we follow the steps and formulas from [18], [9] where they deal mainly with
the double well system, but we handle the decay of false vacuum. The Lagrangian
is

L =
m

2
q̇2 − V (q) (4.1)

where m is a mass of the particle, the potential is given by the blue curve in
Fig. 4.4. The potential possesses a minimum at qm. By a Wick rotation t →

q

V

Figure 4.4: Metastable minimum. The potential is given by the blue curve, which
is effectively changed to the red one by Wick rotation.

−iτ we replace real time t by a purely imaginary parameter −iτ . One of the
consequences is that the potential is effectively reversed i.e. V (q) → −V (q)
because m(dq/dt)2/2−V (q) → −(m(dq/dτ)2/2+V (q)). The equation of motion
is:

−mq̈ + ∂qV (q) = 0 (4.2)

where the dot means a derivation with respect to τ . We are interested in solutions
which satisfy q(τi) = qm and q(τf ) = qm. One solution is that the particle
stays at qm at all times. The second solution, let us denote by qinst, is that the
particle leaves qm, accelerates through the ”new” minimum, reaches the turning
point and bounces back to the qm at time τ . Let us call this solution the one-
instanton solution (bounce, quasi particle), which is very close to qm except for
the moment of the bounce when it changes its position q very quickly. Hence
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there are approximative solutions, n-instanton solutions built from one-instanton
solutions which are centered (the moment of bounce) at (τ1, τ2, ..., τn).

We want to calculate an amplitude of probabilityG(qm, qm; τ). We will employ
the stationary phase approximation, see Appendix C, despite the fact that the
potential is not positively definite and gas diluted method. Later, we will take into
account this fact and we will derivate the correct solution. After the calculation,
the real time amplitude is obtained by an analytic continuation. Gn(τ1, ..., τn)
denotes the contribution from this n-instanton solution (τ1, τ2, ..., τn).

The gas diluted method means that we sum over all instanton sectors (n-
instanton solutions) and integrate over all instanton solutions within the sectors

G(qm, qm; τ) ≃
∑

n

Kn

∫ τ

0

dτ1

∫ τ1

0

dτ2....

∫ τn−1

0

dτnGn(τ1, ..., τn) (4.3)

K is present to compensate dimensions of the time integrations. Due to stationary
phase approximation Gn = Gn,cl × Gn,qu, see Eq. (C.3), Gn,cl is related to the
action of the n-instanton solution, Gn,qu is related to the determinant.

We multiply eq. of motion −mq̈ + ∂qV (q) = 0 by q̇inst, integrate over time
and use: ∂τqinst = V = 0 at qinst = qm, we obtain m

2
q̇2inst = V (qinst). Hence the

action of a one-instanton solution is

Sinst =

∫ τ

0

dτ ′
(m

2
q̇2inst + V (qinst)

)

=

∮

qm

dq
(

2mV (q)
)1/2

(4.4)

Sinst is determined by V , i.e. does not depend on the structure of the solution
qinst.

For τi ≪ τ ′ ≪ τi+1 the particle rests at qm, no action accumulates. An action
of one-instanton is Sinst. n-instanton is composite from n one-instantons. An
action of n-instanton is nSinst, hence

Gn,cl(τ1, ..., τn) = e−nSinst/~ (4.5)

Gn,cl does not depend on τi.

Gn,qu possesses two kinds of contributions. The first one is when the particle
rests on the hill at τi+1 − τi, which is a particle in a well but ”Wickly rotated”.
Hence we replace t → −iτ in

√

1/ sin(ωt), see equatin Eq. (C.9), which is a
contribution for a particle in a well, to obtain the contribution

√

1

sin(−iω(τi+1 − τi))
∼ e−ω(τi+1−τi)/2 (4.6)

The second one contributes at the moments of bounces, this time period is short
hence it contributes nothing. We set τ0 ≡ 0, τn+1 ≡ τ . Gn,qu, hence

Gn,qu(τ1, ..., τn) =
n
∏

i=0

e−ω(τi+1−τi)/2 = e−ωτ/2 (4.7)
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Gn,qu does not depend on {τi}, finally

G(qm, qm; τ) ≃
∞
∑

n=0

Kne−nSinst/~e−ωτ/2

∫ τ

0

dτ1

∫ τ1

0

dτ2...

∫ τn−1

0

dτn

≃
∞
∑

n=0

Kne−nSinst/~e−ωτ/2τn/n!

≃ e−ωτ/2 exp[τKe−Sinst/~] (4.8)

The real time amplitude is recovered by the analytic continuation τ → it.

G(qm, qm; t) = Ce−iωt/2 exp
[

− Γ

2
t
]

(4.9)

the decay rate is Γ/2 = |K|e−Sinst/~.

Here we compute K. By differentiating −mq̈ + V ′(q) = 0 for qinst we find

(

−m∂2τ + V ′′(qinst)
)

∂τqinst = 0 (4.10)

The function ∂τqinst is a zero mode of the determinant with respect to the one-
instanton sector. We normalize zero mode by normalization factor S

−1/2
inst , hence

the zero mode is q1 = S
−1/2
inst ∂τqinst. A general function obeying the boundary

conditions can be written as q(τ) = qinst(τ) +
∑

n cnqn(τ), qn are a complete set
of real orthonormal functions vanishing at the boundaries,

∫ qf
qi
dtqn(t)qm(t) = δmn.

We had to integrate over the centers of the instantons in Eq. (4.3). If we make a
perturbative change in the τ1 then the change of q(τ) is dq = (dqinst/dτ)dτ1. The
change induced by a small change of c1 is dq = q1dc1. We find

dc1/
√
2π~ = dτ1

√

Sinst/2π~ (4.11)

Therefore, in evaluating the determinant, we should not include the zero eigen-
value, but we should include into K a factor of (Sinst/2π~)

1/2. Hence the one-
instanton contribution to G is

〈qm|e−HT |qm〉one−inst. = NT (Sinst/2π~)
1/2e−Sinst/~(det ′[−∂2τ+V ′′(x̄)])−1/2 (4.12)

det′ means that zero eigenvalue is excluded. Comparing this to the one-instanton
term in Eq. (4.9), up to the prefactor

〈qm|e−HT/~|qm〉 =
( ω

π~

)1/2

e−ωT/2
∑

n

(Ke−Sinst/~T )n/n! (4.13)

and by employing Eq. (4.6, C.6-C.9), we get up to the prefactor

N [det(−∂2τ + ω2)]−1/2 =
(

ω/π~
)1/2

e−ωτ/2 (4.14)

from Eq. (4.12-4.13) we find

K = (Sinst/2π~)
1

2

[

det(−∂2τ + ω2)

det′(−∂2τ + V ′′(x̄))

]
1

2

(4.15)
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Let us show that K is a pure imaginary number. qinst (a bounce) has a
maximum, it looks like the function denoted by z = 1 in the Fig. 4.5. Therefore
the eigenfunction q1 has a node, because it is proportional to the time derivative
of the bounce. Hence q1 is not the eigenfunction of the lowest eigenvalue, so there
must be a negative eigenvalue. Therefore, we conclude thatK is a pure imaginary
number.

We have computed G(qm, qm; τ) ≡ 〈qm|e−Hτ/~|qm〉 in Eq. (4.8). Therefore

E0 =
1

2
ω~+ ~Ke−Sinst/~ (4.16)

We deal with an unstable state, its energy has an imaginary part. Hence
Im E0 = Γ/2 = ~|K|e−Sinst/~, Γ is the decay rate. We have ignored that Â is not
positive-definite. Hence a factor of 1/2 was missing. The correct Γ is

Γ = ~|K|e−Sinste/~ (4.17)

An explanation is in [9]. The energy of an unstable state is defined by an
analytic continuation, it is not an eigenvalue of Ĥ. They consider an integral
over some path in function space, which is sketched in Fig. 4.5, parametrized by
z, z ∈ R.

I =

∫

dz(2π~)−
1

2 e−S(z)/~ (4.18)

t

q

z=-1

z=0

z=1

z=2

Figure 4.5: The integral over the functions.

This path includes function q(τ) = 0 at z = 0 (resting particle) and the bounce
(one-instanton) at z = 1. z = 1 maximizes S. For z → ∞ S → −∞, because the
function spends more and more time in the region where V is negative, hence Eq.
(4.18) is divergent. If qm were the absolute minimum of V then S would never
be negative during the integration and the integral would be convergent. We
analytically change the potential with absolute minimum into our potential and
the steepest descent approximation is employed to keep the integral convergent.
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The curve goes along the real axis to z = 1 and then out along a line parallel to
the imaginary axis. Hence the integral contains an imaginary part

Im I = Im

∫ 1+i∞

1

dz(2π~)−
1

2 e−S(1)/~e−
1

2
S′′(1)(z−1)2/~ (4.19)

=
1

2
e−S(1)/~|S ′′(1)|− 1

2 (4.20)

We integrated only over half of the Gaussian peak hence 1/2 is present. We have
only one negative eigenvalue of the determinant so just one 1/2 was ”added”. All
other one-dimensional integrations give us positive or zero eigenvalues near the
stationary point and another 1/2 is not ”needed”.

For x ∈ R+, the terms in the series,
∑

xn/n!, increase with n until n ≃ x,
then they fall fast. Therefore, the important terms in Eq. (4.8) are

n . Kτe−Sinst/~ (4.21)

The typical summation index of a sum
∑

n cn of cn > 0 is defined as 〈n〉 ≡
∑

n cnn/
∑

n cn. This gives us a typical number of instantons contributing to
G(qm, qm; τ), see Eq (4.8), so we have

〈n〉 ≡
∑

n nX
n/n!

∑

nX
n/n!

= X (4.22)

where
X ≡ τKe−Sinst/~ (4.23)

To employ the gas diluted method the instantons must be widely separated, that
corresponds with the low density of instantons 〈n〉/τ .

Let us remark here that the n and n+1-instanton solutions are separated by
an energetic barrier. This means they belong to the different sectors.

The description of the CRV model for quantum dissipation includes UIRs of
the CCRs and IQV, to be more specific time evolution of the physical observables
and of the vacuum is given by BT. Vacua parametrized by time are unitarily non-
equivalent in the field limit. The time evolution of the vacuum goes through the
set of IQV, see Eq. (2.61, 2.67-2.68). The system contains the decay constant of
the classical variable x. The path integral description of the particle escaping from
a metastable minimum contains instantons and the decay constant of the escaping
particle, see Eq. (4.9). We suggest the identification of the decay constant present
in both systems. By this we obtain the equation where on the one side we have
the IQV description, on the other side instantonic vacua are explicitly present.
So let us denote by ΓQD the decay constant of the classical variable x in the CRV
model for quantum dissipation and by ΓI we denote the decay constant of the
escaping particle from metastable minima. By setting up ΓQD ≡ ΓI we obtain

ΓQD = ~|K|e−Sinst/~ (4.24)

In Eq. (2.61), we see that inequivalent quantum vacua |0(t)〉 are not just parametrized
by time but rather by ΓQDt, |0(ΓQDt)〉. Since we have set the equivalence be-
tween ΓQD and ΓI , we can fix time and go through inequivalent quantum vacua by
”varying” the potential in the system of a metastable minimum. We can replace
ΓQDt by ~〈n〉, see Eq. (4.22, 4.23, 2.61). Inequivalent quantum vacua |0(~〈n〉)〉
are parametrized by a typical number of instantons contributing to G(qm, qm; τ).
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4.2 Double well

Here we review the double well system in the context of the thesis. One particle in
the potential, which is given by the blue curve. To see G(a,±a; τ) in the language

a-a
x

V

Figure 4.6: Double well.

of path integral we follow procedure in Section 4.1. ByWick rotation the potential
is reversed into the red curve hence an instanton which conects the local minima
(in Minkowski spacetime) exists. We employ saddle point approximation and
gas dilute technique. In Eq. (4.8) we sum over n = odd for G(a,± − a; τ) and
n = even for G(a,±a; τ)

G(a, a; τ) ≃ Ce−ωτ/2 cosh
(

τKe−Sinst/~
)

(4.25)

G(a,−a; τ) ≃ Ce−ωτ/2 sinh
(

τKe−Sinst/~
)

(4.26)

Let us deal with two identical but independent linear harmonic oscillators. The
eigenvectors and the corresponding eigenvalues of the Hamiltonian are

|ψi
0〉, |ψi

1〉, . . .
1

2
~ω,

3

2
~ω, . . . (4.27)

with i = 1, 2. Let us consider a Hilbertspace made of the two ground states:

I = |ψ1
0〉〈ψ1

0|+ |ψ2
0〉〈ψ2

0| (4.28)

The system is described by the Hamiltonian Ĥ0

Ĥ0 = E1
0 |ψ1

0〉〈ψ1
0|+ E2

0 |ψ2
0〉〈ψ2

0| (4.29)

and E1
0 = E2

0 = ~ω/2 Let us now turn on an interaction so that the Hamiltonian
becomes Ĥ = Ĥ0 + ĤI . In the energy representation we have

Ĥ =

(

〈ψ1
0|Ĥ|ψ1

0〉 〈ψ1
0|Ĥ|ψ2

0〉
〈ψ2

0|Ĥ|ψ1
0〉 〈ψ2

0|Ĥ|ψ2
0〉

)

≡
(

H11 H12

H21 H22

)

≡
(

1
2
~ω + ED EAD

EAD
1
2
~ω + ED

)

(4.30)
where

ED = 〈ψ1
0|ĤI |ψ1

0〉 = 〈ψ2
0|ĤI |ψ2

0〉 , EAD = 〈ψ1
0|ĤI |ψ2

0〉 = 〈ψ2
0|ĤI |ψ1

0〉 (4.31)
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If the interaction is turned off, Ĥ is reduced to

Ĥ0 =

(

H11 0
0 H22

)

≡
(

E1
0 0
0 E2

0

)

≡
(

1
2
~ω 0
0 1

2
~ω

)

(4.32)

Let us now use a unitary transformation to diagonalize the Hamiltonian and
obtain new eigenvectors and new eigenvalues.

ĤNew = UĤU † , |ψi
0New〉 = U |ψi

0〉 (4.33)

where i = 1, 2 and

U =
1√
2

(

1 −1
1 1

)

(4.34)

ĤNEW ≡ U

(

1
2
~ω + ED EAD

EAD
1
2
~ω + ED

)

U † =

(

1
2
~ω + ED − EAD 0

0 1
2
~ω + ED + EAD

)

(4.35)
(

|S〉
|A〉

)

≡ U

(

|ψ1
0〉

|ψ2
0〉

)

(4.36)

the eigenvalues and the eigenvectors are

ES =
1

2
~ω + ED − EA , EA =

1

2
~ω + ED + EA (4.37)

|S〉 = 1√
2
(|ψ1

0〉+ |ψ2
0〉) , |A〉 = 1√

2
(|ψ1

0〉 − |ψ2
0〉) (4.38)

Now the identity is
I = |S〉〈S|+ |A〉〈A| (4.39)

therefore
〈−a|S〉〈S|a〉 = 〈−a|a〉 − 〈−a|A〉〈A|a〉 (4.40)

| ± a〉 are minima of the double well. We can realize that

〈a|S〉 = 〈−a|S〉 (4.41)

〈a|A〉 = 〈−a| − A〉 = −〈−a|A〉 (4.42)

we denote

〈a|S〉〈S|a〉 = C

2
(4.43)

〈−a|a〉 = δ(−2a) = 0 for a 6= 0, and Eq. (4.40-4.43) finally give us

〈a|A〉〈A|a〉 = 〈a|S〉〈S| ± a〉 = −〈a|A〉〈A| − a〉 = C

2
(4.44)

now we can calculate

G(a,±a; τ) = 〈a|e− 1

~
Ĥτ | ± a〉

= 〈a|(|S〉〈S|+ |A〉〈A|)e− 1

~
Ĥτ (|S〉〈S|+ |A〉〈A|)| ± a〉

= 〈a|(|S〉e− 1

~
ESτ 〈S|+ |A〉e− 1

~
EAτ 〈A|)| ± a〉

= e−
1

~
τ( 1

2
~ω+ED){〈a|S〉〈S| ± a〉e− 1

~
EADτ + 〈a|A〉〈A| ± a〉e 1

~
EADτ}
(4.45)
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G(a, a; τ) = Ce−
1

~
τ( 1

2
~ω+ED) cosh

(EADτ

~

)

(4.46)

G(a,−a; τ) = Ce−
1

~
τ( 1

2
~ω+ED) sinh

(EADτ

~

)

(4.47)

On the one hand we have a double well system and on the other we have two
harmonic oscillators. In classical theory the double well has two degenerate clas-
sical vacua, a topological one in the meaning that if the energy of the particle
is small then the particle cannot move from one sector to the other. Here by a
sector we mean an area around a classical minima. We started with two isolated
linear harmonic oscillators. To manage this we could say that these oscillators
are widely separated. We build a system in the way that we take the lowest states
from the harmonic oscillators. We would like to build a double well system. We
turn on an interaction to effectively gain a double well from two widely separat-
ed oscillators. In Euclidean space, reached by Wick rotation, we have instanton
which connects those classical vacua. The instanton is the most important path
which contributes to the tunneling, which is a QM effect. In our QM system build
from two isolated oscilators, a tunneling is present due to the interaction term.
Someone could investigate the relation between the interaction term on one hand
and instanton on the other. Here the quantum vacuum is a linear combination of
the original lowest states of the oscillators and the coefficients do not depend on
anything here, hence it does not depend on the interaction term. Only the energy
splitting of those two lowest states is proportional to the exponential of an action
of the instanton, which connects those classical vacua. Let us find the interaction
term which is added to the Hamiltonian of two isolated harmonic oscillators in
low energy approximation to get the Hamiltonian which resembles double well
system. In the following we drop the diagonal lifting of the energy ED because
it is not essential and we also use the notation

|1〉 ≡ |ψ1
0〉 , |2〉 ≡ |ψ2

0〉 (4.48)

Ĥ = (
1

2
~ω − EAD)|S〉〈S|+ (

1

2
~ω + EAD)|A〉〈A|

=
1

2

(1

2
~ω − EAD

)

(|1〉+ |2〉)(〈1|+ 〈2|) + 1

2

(1

2
~ω + EAD

)

(|1〉 − |2〉)(〈1| − 〈2|)

=
1

2
~ω|1〉〈1|+ 1

2
~ω|2〉〈2| − EAD(|1〉〈2|+ |2〉〈1|) (4.49)

Let us view the first two terms in the Hamiltonian as two isolated harmonic
oscillators, where the first (second) term is related to the Hamiltonian of linear
harmonic oscillator with respect to variable x (y)

P 2
x

2m
+
m

2
ω2x2 (4.50)

P 2
y

2m
+
m

2
ω2y2 (4.51)

and the last term is related to an interaction Hamiltonian ĤI . Let us now show
to which expression in terms of x and y ĤI corresponds. We start with:

I = |S〉〈S|+ |A〉〈A| = |1〉〈1|+ |2〉〈2| (4.52)
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Ix̂IŷI = (|1〉〈1|+ |2〉〈2|)x̂(|1〉〈1|+ |2〉〈2|)ŷ(|1〉〈1|+ |2〉〈2|)
(4.53)

Ix̂IŷI+ IŷIx̂I = |1〉〈1|
(

〈1|x̂|2〉〈2|ŷ|1〉+ 〈1|ŷ|2〉〈2|x̂|1〉
)

+

+ |2〉〈2|
(

〈2|x̂|1〉〈1|ŷ|2〉+ 〈2|ŷ|1〉〈1|x̂|2〉
)

+

+ |1〉〈2|
(

〈1|ŷ|1〉〈1|x̂|2〉+ 〈1|ŷ|2〉〈2|x̂|2〉
)

+

+ |2〉〈1|
(

〈2|x̂|1〉〈1|ŷ|1〉+ 〈2|x̂|2〉〈2|ŷ|1〉
)

(4.54)

where we applied well known relations

〈1|x̂|1〉 = 0 , 〈2|ŷ|2〉 = 0 (4.55)

and we will use

〈x|ψ1
0〉 = ψ1

0(x) =
4

√

mω

π~
e−

1

2

mω
~

x2

(4.56)

〈y|ψ2
0〉 = ψ2

0(y) =
4

√

mω

π~
e−

1

2

mω
~

y2 (4.57)

We would like to see this oscillators living on the same axis hence both described
by a same variable. We now make the link with one variable system, explicitely

x̂ = (q̂ + a) , ŷ = (q̂ − a) (4.58)

Vx =
1

2
mω2(q + a)2 , Vy =

1

2
mω2(q − a)2 (4.59)

〈1|x̂|2〉 =
mω

π~

∫ ∞

−∞

e−
1

2

mω
~

(q+a)2(q + a)e−
1

2

mω
~

(q−a)2dq

=
mω

π~
e−

mω
~

a2
∫ ∞

−∞

(q + a)e−
mω
~ q2dq

= a

√

mω

π~
e−

mω
~

a2 (4.60)

functions are real hence:

〈1|x̂|2〉 = 〈2|x̂|1〉 , 〈1|ŷ|2〉 = 〈2|ŷ|1〉 (4.61)

we can find that

〈1|x̂|2〉 = a

√

mω

π~
e−

mω
~

a2

〈2|x̂|2〉 = 2a

√

mω

π~

〈1|ŷ|2〉 = −〈1|x̂|2〉
〈1|ŷ|1〉 = −〈2|x̂|2〉 (4.62)
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x̂ŷ + ŷx̂ = −2(|1〉〈1|+ |2〉〈2|)(〈1|x̂|2〉〈1|x̂|2〉)−
− 2(|1〉〈2|+ |2〉〈1|)(〈1|x̂|2〉〈2|x̂|2〉) (4.63)

Thus the −ĤI/EAD can be expressed

|1〉〈2|+ |2〉〈1| = 1

2
e−mωa2/~(|1〉〈1|+ |2〉〈2|)− 1

4a2

( π~

mω

)

emωa2/~(x̂ŷ + ŷx̂)(4.64)

and the Hamiltonian is

Ĥ =
(1

2
~ω|1〉〈1|+ 1

2
~ω|2〉〈2|

)(

1− EAD

~ω
e−mωa2/~

)

− EAD

4a2

( π~

mω

)

emωa2/~(x̂ŷ+ ŷx̂)

(4.65)
A consequence of adding the ĤI to the Ĥ0 is that the Ĥ0 was effectively multi-

a-a
q

V

Figure 4.7: Pure interaction term.

plied by a factor, this resembles us a renormalization. It would be interesting to
investigate a case where we would start with infinitely many isolated harmonic
oscillators, what is QFT, where UIRs are present. In this models we could investi-
gate a relationship between instantons and an interaction term and its connection
to the renormalization procedure, which is so often present and needed in QFT.
We obtained a term proportional to x̂ŷ+ ŷx̂, let us call it pure interaction. In the
Fig. 4.7 we plot this term after the substitution x̂ → q̂ + a, ŷ → q̂ − a, the plot
is very similar to the double well. This term connects two harmonic oscillators,
which we started with.

EAD = 〈ψ1
0|ĤI |ψ2

0〉 ∝ 〈ψ1
0|x̂ŷ + ŷx̂|ψ2

0〉 ∝ ~Ke−SInst/~ (4.66)

Here we can see a relationship between the exponential of the action of the instan-
ton and the pure interaction term surrounded by the ground states of originally
isolated harmonic oscillators, which ground states are connected by the instanton.

We could have been even more accurate for example we could start with
system built from the states

|ψ1
0〉 , |ψ1

1〉 , |ψ2
0〉 , |ψ2

1〉 (4.67)

And proceed as we did. It is questionable whether it would lead to any interesting
observation.
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4.3 UIRs and Particle on the circle

We deal with a bead moving without friction on a circular wire with radius r0. A
global topology of a phase space is S1 × R. An angle ϕ ∈ R mod 2π determines
the position of the bead. The angular momentum, pϕ ∈ R, is positive if the bead
moves anticlockwise, negative if the bead moves clockwise. The Lagrangian and
the Hamiltonian are:

L =
1

2
mr20ϕ̇

2 , H =
p2ϕ

2mr20
, pϕ ≡ mr20ϕ̇ (4.68)

Let us start with path integral quantization of particle on circle, based on [19]
and [12]. Paths are divided into the sectors given by the winding number. Any
path from any sector cannot be continuously deformed to a path which belong
to a different sector. ϕn is a path that belongs to a sector which is labeled by a
winding number n. ϕi (ϕf ) is an initial (final) position. A probability amplitude
is Eq. (C.2)

〈ϕf |e−
i
~
Ĥ(tf−ti)|ϕi〉 =

∫

ϕ(tf ) = ϕf

ϕ(ti) = ϕi

Dϕ exp
( i

~
S[ϕ]

)

=
∑

n∈Z

∫

ϕn(tf ) = ϕf

ϕn(ti) = ϕi

Dϕn exp
( i

~
S[ϕn]

)

(4.69)

It is claimed that Schroedinger equation of motion is satisfied by path integral
contribution from any sector, see [19]. Therefore a linear combination of path
integral contribution from this sectors should solve the Schroedinger equation
too. When we move with ϕf to ϕf + 2π predictions of a theory should not be

effected. The probability amplitude can by multiplied by phase, say eiδ̃, where
δ̃ ∈ [0, 2π). By moving the final position ϕf by 2π, trajectories connect the initial
position with the final position change their winding numbers by one. A path
contribution from some sector, say n, becomes a path contribution from sector
n+1. In order to the consequence of this was that the whole amplitude was just
multiplied by phase eiδ̃ the relationship between coefficients, denote by cn, of the
linear combination of the path integral contributions from each sector must be:
cn+1 = eiδ̃cn. If we set co = 1 we get cn = einδ̃. The contribution from n-th sector
is a propagation of free particle on the line between points ϕi and ϕf + 2πn.
Hence:

〈ϕf |e−
i
~
Ĥ(tf−ti)|ϕi〉 =

∑

n∈Z

einδ
∫

ϕn(tf ) = ϕf

ϕn(ti) = ϕi

Dϕn exp
( i

~
S[ϕn]

)

(4.70)

=
∑

n∈Z

(

mr20
2πi(tf − ti)

)1/2

exp

(

inδ̃ +
imr20

(

(ϕf − ϕi)− 2nπ
)2

2(tf − ti)

)

Schroedinger equation is

i∂tψ = − ~

2mr20
∂ϕϕψ (4.71)
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If we do not require ψ(0) = ψ(2π) then the eigenvectors and the eigenvalues of
the Hamiltonian are

ψn =
1√
2π~

e
i
~
(nϕ+ δ̃ϕ

2π
) (4.72)

En =
~

2mr20

(

n+
δ̃

2π

)2

, n ∈ Z, δ̃ ∈ [0.2π) (4.73)

A canonical quantization of the system is based on [5]. The solution of the
equation of motion of Eq. (4.68) is

ϕ(t) = ωt+ ϕ0 (4.74)

where ω = pϕ
mr2

0

and ϕ0 ∈ [0, 2π).

As the classical particle moves around the circle, we map this on the real line.
The real line is called the universal covering space of the circle. If the bead circles
around q times, we say that it runs through a q-fold covering.

Functions h̃1, h̃2 and h̃3 are defined on the phase space Sϕ,pϕ = {s = (ϕ, pϕ);ϕ ∈
R mod 2π, pϕ ∈ R}. These functions obey the Lie algebra e(2) of the Euclidean
group E(2) with respect to the Poisson brackets on Sϕ,pϕ , hence to quantize the

system we replace h̃1, h̃2 and h̃3 by operators X̂1, X̂2, L̂ and the Poisson brackets
by commutators, as follows

h̃1(ϕ, pϕ) = cosϕ, h̃2(ϕ, pϕ) = sinϕ, h̃3(ϕ, pϕ) = pϕ (4.75)

{h̃3, h̃1}ϕ,pϕ = h̃2, {h̃3, h̃2}ϕ,pϕ = −h̃1, {h̃1, h̃2}ϕ,pϕ = 0 (4.76)

1

~
[L̂, X̂1] = iX̂2,

1

~
[L̂, X̂2] = −iX̂1, [X̂1, X̂2] = 0 (4.77)

The relations above are the Lie e(2) algebra. The definitions of E(2) group,
the group multiplication law, the action of the group element of E(2) to a point
of the phase space are in [5].

If the two-dimensional Euclidean plane is represented by complex numbers z
then action of rotation R(α) by angle α, α ∈ [0, 2π) and displacement T2(t) by t,
t = a+ ib; a, b ∈ R is given by

R(α) : z → eiαz

T2(t) : z → z + t (4.78)

Our Hilbert space is L2(S1, dϕ/2π), scalar product is

(ψ2, ψ1) =

∫ 2π

0

dϕ

2π
ψ∗
2(ϕ)ψ1(ϕ) (4.79)

The irreducible unitary representations are parametrized by two real numbers
(ρ, δ), ρ > 0, δ ∈ [0, 1). Representations are given by, see [5].

[Uρ,δ(α)ψ](ϕ) = e−iδαψ[(ϕ− α) mod 2π] (4.80)

[Uρ,δ(t = a+ ib)ψ](ϕ) = e−(i/~)ρ(a cosϕ+b sinϕ)ψ(ϕ) (4.81)
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δ labels the irreducible unitary representations. δ = 0 for the irreducible unitary
representations of the group E(2). For the q-fold covering of E(2) δ = p

q
, where

p, q ∈ N and no common divisor. For a representation of the universal covering
group Ẽ(2) δ is an irrational number.

We define

Uρ,δ(α) = e−(i/~)L̂δα, U (ρ,δ)(t) = e−[i/(~λ0)](X̂1a+X̂2b) (4.82)

where λ0 = (~/mω)1/2 from Eq. (4.80, 4.81) we find that

1

~
Lδ =

1

i
∂ϕ + δ, X1 = r cosϕ, X2 = r sinϕ (4.83)

where r = ρλ0. en(ϕ) = einϕ, n ∈ Z, are eigenfunctions of the orbital angular
momentum: Lδen = ~(n + δ)en, n ∈ Z and those vectors form the orthonormal
basis of our Hilbert space. Now the Hamiltonian and its eigenvalues are

Hδ =
L2
δ

2mr2
=

1

2
ǫ~ω
(1

i
∂ϕ + δ

)2

(4.84)

En,δ =
1

2
ǫ~ω(n+ δ)2, n ∈ Z (4.85)

The lowest energy depends on whether δ ∈ [0, 1/2) or δ ∈ (1/2, 1), as follows. If
δ = 1/2 the ground state is degenerate

En=0,δ =
1

2
ǫ~ωδ2 or En=−1,δ =

1

2
ǫ~ω(1− δ)2 (4.86)

For different δ the operators Lδ, Hδ have different spectra and observables, such
operators are not unitary equivalent.

By the unitary transformations

en(ϕ) = einϕ → en,δ(ϕ) = eiδϕen(ϕ) = ei(n+δ)ϕ ∀n ∈ Z (4.87)

we shift dependence of operators on δ to the set of Hilbert spaces labelled by δ.
we define a Hilbert space L2(S1, dϕ/2π, δ) for each δ. Now the generators in Eq.
(4.83) have the form [5]

1

~
Lδ =

1

i
∂ϕ, X1 = r cosϕ, X2 = r sinϕ (4.88)

and the operators are independent of δ. The δ-dependence is shifted to the basis
en,δ(ϕ).

We define

U(a1, a2) ≡ exp (a1X̂1 + a2X̂2) , V (b) = exp (bL̂) (4.89)

where X̂1, X̂2, L̂ are generators of e(2) algebra, a1, a2, b ∈ R. The Weyl form of
the CCRs of the e(2) Eq. (4.77) is

U(a1, a2)U(c1, c2) = U(a1 + c1, a2 + c2)

V (b)V (c) = V (b+ c)

V (b)U(a1, a2) = U(a1 − i~ba2/2, a2 + i~ba1/2)V (b) (4.90)
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We will prove only the last one by using Eq. (4.77) and Baker-Campbell-Hausdorff
formula

V (b)U(a) = e[bL̂,a1X̂1+a2X̂2]/2e(a1X̂1+a2X̂2)ebL̂

= e(i~ba1X̂2−i~ba2X̂1)/2e(a1X̂1+a2X̂2)ebL̂

= U(a1 − i~ba2/2, a2 + i~ba1/2)V (b) (4.91)

Now let us quantize our system, i.e. the bead on a circle in a more usual way by
canonical quantization, but instead of [q̂, p̂] = i~Î we have

[ϕ̂, L̂] = i~Î , [ϕ̂, Î] = 0 , [L̂, Î] = 0 (4.92)

Weyl form of the CCRs is

exp
[ i

~
QL̂
]

exp
[ i

~
Pϕ̂
]

= exp
[ i

~
QP
]

exp
[ i

~
Pϕ̂
]

exp
[ i

~
QL̂
]

(4.93)

we briefly mention the squeezing transformation [20]

Q→ Q

S
, P → PS, S ∈ R (4.94)

from Eq. (4.93, 4.94) we get

exp
[ i

~

Q

S
L̂
]

exp
[ i

~
SPϕ̂

]

= exp
[ i

~
QP
]

exp
[ i

~
SPϕ̂

]

exp
[ i

~

Q

S
L̂
]

(4.95)

The term QP is invariant under the squeezing transformation.

4.4 QM on circle - QFT correspondence

There exists a correspondence between a particle on a vertical circle in a uni-
form gravitational field and the sine-Gordon field theory. We will start with a
Lagrangian which describes the former system

LQM =
1

2
mr2θ̇2 −mgr(1− cos θ) (4.96)

and we will proceed very quickly to the sine-Gordon model by the following
procedure as was done in [21]. Particle on a circle is a QM system, it has one
degree of freedom. On the other hand we have learned already that for a particle
on a circle there are UIRs due to a non trivial topology, where SvNT can not
be applied. We can make a correspondence with the sine-Gordon system which
is a field theory, hence the degree of freedom is infinity and UIRs are present as
well. Radius of the circle is r, mass of the particle is m, g is the gravitational
constant. The gravity can be replaced by a magnetic field as was done in [22].
The system is described by the position of the bead on the circle i.e. by the angle
θ, θ ∈ [0, 2π). At first we replace θ by q, q ∈ (−∞,+∞)

L′
QM =

1

2
q̇2 − (1− cos q) (4.97)
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This can be done due to a fact that the potential is 2π-periodic. The Lagrangian
we obtained is a one-dimensional analog of 1+1 dimensional field theory, namely
sine-Gordon model

LQFT =
1

2
∂µφ∂

µφ− (1− cosφ) (4.98)

where field φ, φ ∈ (−∞,+∞).

A static solution of our field theory is a solitonic solution of our corresponding
QM system. We find the static solution of the sine-Gordon model when φ is
replaced by θ, x by ω0τ we get instanton for our QM system.

θ(τ) = ±4 tan−1[exp(ω0τ)] (4.99)

Due to this correspondence we have access to both QM system with non trivial
topology and QFT. Here instantons are seen and UIRs have to be present.
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Conclusion

We have introduced the topologically distinct instantonic vacua and the unitarily
inequivalent quantum vacua. We investigated the relationship between those two
different inequivalences and we would like to unify them under just one kind of
inequivalence, possibly at some area. An issue that, to our knowledge, was never
addressed before.

By identification of the decay constant present in the CRV model for quan-
tum dissipation, the description of which contains UIRs of the CCRs, and the
particle escaping from a metastable minimum, where the path integral descrip-
tion includes instantons, we compared these two systems to see some possible
connection we are looking for. We obtained an equation

ΓQD = ~|K|e−Sinst/~ (4.100)

where on the one side we have the inequivalent quantum vacua description, on
the other instantonic vacua are explicitly present. Through this ”door”, the link
we are looking for should be closer. In this particular case, a typical number of
instantons contributing to a probability amplitude that the particle remains at
the metastable minimum, parametrizes IQV in the CRV model.

We considered a double well system, which contains instantons and tried to
see this as a system build from two harmonic oscillators and an interaction term
because the CRV model is build from damped and amplified harmonic oscillators,
where UIRs and IQV are involved. The Hamiltonian which we obtained, see
Eq. (4.65, 4.66) contains action of the instanton and term proportional to xy.
Someone could somehow try to build the CRV model Eq. (2.35, 2.57-2.59), i.e.
to get terms (ypy − xpx), pxpy involved and still keep the instantons from the
double well.

Quantum particle on the circle is a place where UIRs are present too.

Let us make some comment on [21] with respect to our research. In [22] a
correspondence between a particle on vertical rotating circle in a uniform gravi-
tational field and double-sine-Gordon field theory is discussed. In the case of a
particle on rotating circle due to the fact that if the speed of rotation is bigger
than some critical rotation speed than in this system the particle can occupy two
degenerate local minima, therefore instantons are present. The situation is very
similar to a double well case. But a double well system is a QM system, hence
UIRs can not be expected. We have already mentioned that for a particle on
a circle there are UIRs due to non trivial topology, where Stone-von Neumann
theorem is not applicable. Therefore some relation between instantons and UIRs
could exist there.
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A. Appendix

Calculation of |0〉〉
Here we proove the formula Eq. (A.40). It is based on the guide in [8] (section
2.4.)

We deal with a set of creation and annihilation operators α(k), α†(k), β(k), β†(k),
which satisfy the following CCRs. The commutators, that are not explicitly men-
tioned are equal to zero

[α(k), α†(l)] = δ(k− l) , [β(k), β†(l)] = δ(k− l) (A.1)

The Bogoliubov transformation defines operators a(k), a†(k), b(k), b†(k)

a(k) = cosh θkα(k)− sinh θkβ
†(−k) (A.2)

b(k) = cosh θkβ(k)− sinh θkα
†(−k) (A.3)

The transformation is canonical, as we can see from the following relationships.

[a(k), a†(l)] = δ(k− l) , [b(k), b†(l)] = δ(k− l) (A.4)

It is an easy task to show that the line above holds

[a(k), a†(l)] = cosh θk cosh θl[α(k), α
†(l)] + sinh θk sinh θl[β

†(−k), β(−l)]

= (cosh θk cosh θl − sinh θk sinh θl)δ(k− l)

= δ(k− l) (A.5)

A(θ), G(θ) are defined as follows

G(θ) = exp
[

A(θ)
]

, A(θ) =

∫

d3kθk
[

α(k)β(−k)− β†(−k)α†(k)
]

(A.6)

We will need to employ the expressions

[α(k), A(θ)] = −θkβ†(−k) (A.7)

[β†(−k), A(θ)] = −θkα(k) (A.8)

Let us calculate only one of them

[α(k), A(θ)] = [α(k),

∫

d3l θl(α(l)β(−l)− β†(−l)α†(l))]

= −
∫

d3l θl[α(k), β
†(−l)α†(l)]

= −θkβ†(−k) (A.9)

We want to proove the folloving statement

G−1(θ)α(k)G(θ) = α(k) cosh θk − β†(−k) sinh θk (A.10)
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It is an easy task to compute the following terms, n ∈ 1, 2, 3, ..

[A(θ), α(k)] = θkβ
†(−k)

1

2!
[A(θ), [A(θ), α(k)]] =

1

2!
[A(θ), θkβ

†(−k)] =
1

2!
θ2kα(k)

1

3!
[A(θ), [A(θ), [A(θ), α(k)]]] =

1

3!
θ2k[A(θ), α(k)] =

1

3!
θ3kβ

†(−k)

...

1

(2n− 1)!
[A(θ), ..[A(θ), α(k)]] =

1

(2n− 1)!
θ2n−1
k β†(−k)

1

(2n)!
[A(θ), ..[A(θ, α(k))]] =

1

(2n)!
θ2nk α(k) (A.11)

We will need the Hausdorff formula

e−ABeA = B − 1

1!
[A,B] +

1

2!
[A, [A,B]]− ...+ ... (A.12)

Now we are ready to calculate Eq. (A.10), where we use Eq. (A.11, A.12).

G−1(θ)α(k)G(θ) = e−A(θ)α(k)eA(θ)

= α(k)− 1

1!
[A(θ), α(k)] +

1

2!
[A(θ), [A(θ), α(k)]]− ..

= α(k)− θkβ
†(−k) +

1

2!
θ2kα(k)−

1

3!
θ3kβ

†(−k) + ...

= α(k)(1 +
1

2!
θ2k +

1

4!
θ4k + ...)− β†(k)(θk +

1

3!
θ3k +

1

5!
θ5k + ..)

= α(k) cosh θk − β†(k) sinh θk (A.13)

Eq. (A.2, A.3, A.10) give us

a(k) = G−1(θ)α(k)G(θ) , b(k) = G−1(θ)β(k)G(θ) (A.14)

f0(θ) is defined as follows:

f0(θ) ≡ 〈0|G−1(θ)|0〉 (A.15)

δf(θ, l) denotes the change of f0(θ) caused by the following substitution

θ(k) → θ(k) + ǫδ(k− l) (A.16)

A definition of a derivative is

δ

δθl
f0(θ) ≡ lim

ǫ→0

1

ǫ
δf(θ, l) (A.17)
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Here we calculate the derivation of f0(θ)

δ

δθl
f0(θ) = lim

ǫ→0

1

ǫ
δf(θ, l)

= lim
ǫ→0

1

ǫ

[

〈0|G−1(θ + ǫδ(k− l))|0〉 − 〈0|G−1(θ)|0〉
]

= lim
ǫ→0

1

ǫ

[

〈0| exp (−A(θ + ǫδ(k− l)))|0〉 − 〈0| exp (−A(θ))|0〉
]

= lim
ǫ→0

1

ǫ

[

〈0| exp
(

−
∫

d3k(θ(k) + ǫδ(k− l))(α(k)β(−k)− β†(−k)α†(k))
)

|0〉−

− 〈0| exp
(

−
∫

d3k′θ(k′)(αβ − β†α†)
)

|0〉
]

= lim
ǫ→0

1

ǫ

[

〈0|
(

exp
(

−
∫

d3k ǫδ(k− l)(αβ − β†α†)
)

− 1

)

×

exp
(

−
∫

d3k θ(k)(αβ − β†α†)
)

|0〉
]

= lim
ǫ→0

1

ǫ

[

〈0|
(

1 + ǫ
[

∫

]

+
ǫ2

2!

[

∫ ∫

]

+ ... − 1
)

G−1(θ)|0〉
]

= lim
ǫ→0

1

ǫ

[

〈0|
(

− ǫ

∫

d3kδ(k− l)
(

α(k)β(−k)− β†(−k)α†(k)
)

+ o(ǫ2)

)

G−1(θ)|0〉
]

= −〈0|α(l)β(−l)G−1(θ)|0〉 (A.18)

So we have
δ

δθl
f0(θ) = −〈0|α(l)β(−l)G−1(θ)|0〉 (A.19)

δ

δθl
f0(θ) = 〈0|G−1(θ)β†(−l)α†(l)|0〉 (A.20)

The following expression can be rewritten using the fact that G−1(θ) = G(−θ),
Eq. (A.10, A.14)

α(l)β(−l)G−1(θ) = G−1(θ)G−1(−θ)α(l)G(−θ)G−1(−θ)β(−l)G(−θ)
= G−1(θ)[α(l) cosh θl + β†(−l) sinh θl]×
[β(−l) cosh θl + α†(l) sinh θl] (A.21)

From Eq. (A.19, A.20, A.21) we get

δ

δθl
f0(θ) = −〈0|α(l)β(−l)G−1(θ)|0〉

= −〈0|G−1(θ)[α(l) cosh θl + β†(−l) sinh θl][β(−l) cosh θl + α†(l) sinh θl]|0〉
= − sinh θl cosh θl〈0|G−1(θ)α(l)α†(l)|0〉 − sinh2 θl〈0|G−1(θ)β†(−l)α†(l)|0〉

= −δ3(0) sinh θl cosh θl〈0|G−1(θ)|0〉 − sinh2 θl
δ

δθl
f0(θ) (A.22)

Eq. (A.22) can be simplified

δ

δθl
f0(θ) = −δ(3)(0) tanh(θl)f0(θ) (A.23)
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It is an easy task to find the solution of Eq. (A.23)

f0(θ) = exp
(

− δ(3)(0)

∫

d3k log cosh θk

)

(A.24)

The definition of fn(θ, l) will be useful

fn(θ; l) ≡ 〈0|[α(l)β(−l)]nG−1(θ)|0〉 (A.25)

We calculate the derivative

δ

δθl
G−1(θ) = −G−1(θ)(α(l)β(−l)− β†(−l)α†(l)) (A.26)

We will prove the folloving statement because it will be used later

〈0|[α(l)β(−l)]nβ†(−l)α†(l)G−1(θ)|0〉 = n2[δ(3)(0)]2fn−1(θ; l)

= n2[δ(3)(0)]2〈0|[α(l)β(−l)]n−1G−1(θ)|0〉
(A.27)

At first we show that Eq. (A.27) holds for n = 2

〈0|[α(l)β(−l)]2β†(−l)α†(l)G−1(θ)|0〉 =
= 〈0|αβ(α†α + δ(0))(β†β + δ(0))G−1|0〉
= 〈0|(α†α + δ(0))(β†β + δ(0))αβG−1|0〉+ δ(0)〈0|(α†α + δ(0))αβG−1|0〉+
+ δ(0)〈0|(β†β + δ(0))αβG−1(θ)|0〉+ δ2(0)〈0|αβG−1(θ)|0〉
= 22[δ(3)(0)]2f1(θ, l) (A.28)

It is an easy task to compute the following three relationships

〈0|[αβ]nα†αG−1(θ)|0〉 = n[δ(3)(0)]〈0|[αβ]nG−1(θ)|0 〉 (A.29)

〈0|[αβ]nβ†βG−1(θ)|0〉 = n[δ(3)(0)]〈0|[αβ]nG−1(θ)|0 〉 (A.30)

〈0|[αβ]nβ†βα†αG−1(θ)|0〉 = n2[δ(3)(0)]2〈0|[αβ]nG−1(θ)|0 〉 (A.31)

Let us assume that Eq. (A.27) holds for some n and we will prove that it holds
for n+ 1. We need to calculate

〈0|[α(l)β(−l)]n+1β†(−l)α†(l)G−1(θ)|0〉 = (n+ 1)2[δ(3)(0)]2〈0|[α(l)β(−l)]nG−1(θ)|0〉
(A.32)

Indeed, here we can see that if Eq. (A.27) holds for some n then it holds for n+1
too. To calculate this we employed Eq. (A.29, A.30, A.31)

〈0|[αβ]nαββ†α†G−1(θ)|0〉 =
= 〈0|[αβ]nβ†βα†αG−1(θ)|0〉+ δ(3)(0)〈0|[αβ]nβ†β|0〉+
+ δ(3)(0)〈0|[αβ]nα†αG−1|0〉+ [δ(3)(0)]2〈0|[αβ]nG−1(θ)|0〉
= (n+ 1)2[δ(3)(0)]2〈0|[αβ]nG−1(θ)|0〉 (A.33)

Eq. (A.27) has been just proven.
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We calculate the following relationship because it will be usefull, using Eq.
(A.25, A.26, A.27)

δ

δθl
fn(θ, l) = −〈0|[α(l)β(−l)]n(α(l)β(−l)− β†(−l)α†(l))G−1(θ)|0〉

= −〈0|[α(l)β(−l)]n+1G−1(θ)|0〉+ 〈0|[α(l)β(−l)]nβ†(−l)α†(l)G−1(θ)|0〉
= −fn+1(θ; l) + n2[δ(3)(0)]2fn−1(θ; l) (A.34)

Let us remind that Eq. (A.23, A.25) give us

δ

δθl
f0(θ) = −f1(θ; l) = −δ(3)(0) tanh θlf0(θ) (A.35)

From Eq. (A.34) we have

f2(θ; l) = [δ(3)(0)]2f0(θ; l)−
δ

δθl
f1(θ, l)

f3(θ; l) = 22[δ(3)(0)]2f1(θ; l)−
δ

δθl
f2(θ, l)

...

fn(θ; l) = (n− 1)2[δ(3)(0)]2fn−2(θ; l)−
δ

δθl
fn−1(θ, l) (A.36)

By employing Eq. (A.24, A.35, A.36) we find

f2(θ; l) = 2[δ(3)(0)]2 tanh2(θl)f0(θ; l)

f3(θ; l) = 6[δ(3)(0)]3 tanh3(θl)f0(θ; l)

f4(θ; l) = 24[δ(3)(0)]4 tanh4(θl)f0(θ; l)

... (A.37)

Someone could guess that fn(θ) is

fn(θ; l) = n![δ(3)(0)]nf0 tanh
n θl

= n![δ(3)(0)]n exp
(

− δ(3)(0)

∫

d3k log cosh θk

)

tanhn θl (A.38)

We assume that this holds for some n and we show that the statement is correct
for n+ 1 too. To calculate this, Eq. (A.36, A.38) were used

fn+1(θ; l) = n2[δ(3)(0)]2fn−1(θ; l)−
δ

δθl
fn(θ; l)

= n2(n− 1)![δ(3)(0)]n+1f0(θ; l) tanh
n−1(θl)− n![δ(3)(0)]n×

(

n tanhn−1 θl(1− tanh2 θl)δ
(3)(0)f0(θ; l)− δ(3)(0) tanhn+1(θl)f0(θ; l)

)

= (n+ 1)! tanhn+1(θl)f0(θ; l)[δ
(3)(0)]n+1 (A.39)

Eq. (A.38) is proven.

Finally from Eq. (A.25, A.38) we see that the following important statemet
holds

|0〉〉 ≡ G−1(θ)|0〉 = f0(θ) exp

(

δ(3)(0)

∫

d3kα†(k)β†(−k) tanh θk

)

|0〉 (A.40)
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B. Appendix

Homotopy

This Appendix is based on [18]. Fields are defined as mappings

φ :M → T,

z → φ(z), (B.1)

where M is a manifold, usually M is Rd and T is some target space. Often, we
require field configurations to have a constant value on the boundary of M so
that the action of the system is finite. Hence M can be compactified to a large
sphere and we identify M ≃ Sd, Sd is the d-dimensional unit sphere. Often it is
sufficient to focus on φ : Sd → T .

Two fields φ1 and φ2 are by definition topologically equivalent if they can be
continuously deformed into each other i.e. there is a continuous mapping called
a homotopy

φ : Sd × [0, 1] → T

(z, t) → φ(z, t) (B.2)

such that φ(., 0) = φ1 and φ(., 1) = φ2.
The equivalence class of all fields topologically equivalent to a given represen-

tative φ is denoted by [φ]. The set of all topological equivalence classes {[φ]} of
mapping φ : Sd → T is called the d-th homotopy group, πd(T ).

Here we list a few examples of homotopies. Mappings S1 → S1 can be classi-
fied in terms of winding numbers, W,: π1(S

1) = Z i.e. the number of times φ(z)
winds around the unit circle as z progresses from 0 to β: φ(β)− φ(0) = 2πW . It
is not possible to change W by continuous deformation of φ.

It is easy to see that any mapping S1 → S2 i.e. a closed curve on the 2-sphere
can be continuously contracted to a point. Hence π1(S

2) = 0. An short list of
homotopies:

π1 π2 π3 π4 π5 π6
S0 0 0 0 0 0 0
S1 Z 0 0 0 0 0
S2 0 Z Z Z2 Z2 Z12

S3 0 0 Z Z2 Z2 Z12

S4 0 0 0 Z Z2 Z2

To learn more about this topic yhe book [23] is recommended.
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C. Appendix

The path integral, well

Here we introduce the Feynman path integral and the Stationary phase approxi-
mation.

For the Hamiltonian of the form Ĥ = T̂ + V̂ , i.e. the sum of a kinetic
energy T̂ = p̂2/2m and some potential energy operator V̂ , we can construct the
Hamiltonian formulation of the path integral from the ”operator QM” (the key

is that the eigenstates of the factors e−iT̂△t/~, e−iV̂△t/~ are known independently)

〈qf |e−iĤt/~|qi〉 =
∫

q(t) = qf
q(0) = qi

Dx exp
[ i

~

∫ t

0

dt
′

(pq̇ −H(p, q))
]

(C.1)

The integration is over all paths through the phase space which connects qi and
qf .

As T̂ (p) = p̂2/2m then by Gaussian integration we obtain

〈qf |e−iH̄t/~|qi〉 =
∫

q(t) = qf
q(0) = qi

Dq exp
[ i

~

∫ t

0

dt′L(q, q̇)
]

(C.2)

where L(q, q̇) = mq̇2/2 − V (q) and Dq = limN→∞( Nm
it2π~

)N/2
∏N−1

n=1 dqn. The in-
tegral is over all paths, which begin (end) at the initial (final) point, through
coordinate space.

Stationary phase approximation:

∫

Dx e−F [x] ≃
∑

i

e−F [x̄i] det

(

Âi

2π

)−1/2

(C.3)

where the ”‘points” of stationary phase x̄i are given by the condition of vanishing

functional derivative i.e. ∀t : δF [x]
δx(t)

∣

∣

∣

∣

x=x̃i

= 0 and Âi ≡ Ai(t, t
′) = δ2F [x]

δx(t)δx(t′)

∣

∣

∣

∣

x=x̃i

denotes the second functional derivative. We can apply the stationary phase
approximation if the operator Â is positive-definite [18].

Let us deal with a quantum particle in a well. The Hamiltonian is

Ĥ = p̂2/2m+ V (q̂) (C.4)

The potential is a symmetric well with the minimum at q = 0 and V (0) = 0.
The equation of motion is mq̈ = −∂qV (q). We are looking for the solution that
satisfies q(t) = q(0) = 0. The solution is qcl = 0, therefore S[qcl] = 0. The Eq.
(C.3) gives us

G(0, 0; t) ≃ J det
(

−m(∂2t + ω2)/2
)−1/2

(C.5)
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where ω2 = 1
m
∂2qV (q)|q=0, J absorbs constants. The determinant is a product over

eigenvalues, so we need to solve −m
2
(∂2t + ω2)rn = ǫnrn where rn(t) = rn(0) = 0.

The solution is rn(t
′) = sin(nπt′/t) , n = 1, 2.., and ǫn = m[(nπ/t)2 − ω2]/2 and

det
(

−m(∂2t + ω2)/2
)−1/2

=
∞
∏

n=1

[m

2

((nπ

t

)2

− ω2
)]−1/2

(C.6)

what for some t seems to be divergent. If V ≡ 0 then our G reduces to Gfree, i.e.
the propagator of a free particle

Gfree(qi, qf ; t) ≡ 〈qf |e−
i
~

p̂2

2m
t|qi〉Θ(t) =

( m

2πi~t

)1/2

e
i
~

m
2t
(qf−qi)

2

Θ(t) (C.7)

Θ(t) is Heaviside function[18]. Both G and Gfree have J . We regularize the
transition amplitude as [18]

G(0, 0; t) ≡ G(0, 0; t)

Gfree(0, 0; t)
Gfree(0, 0; t) =

∞
∏

n=1

[

1−
( ωt

nπ

)2]−1/2( m

2πi~t

)1/2

Θ(t)

(C.8)
by employing the identity

∏∞

n=1 [1− (x/nπ)2]−1 = x/ sin x we find

G(0, 0; t) ≃
√

mω

2πi~ sin(ωt)
Θ(t) (C.9)
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