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1 INTRODUCTION 7

1 Introduction

In the 1960s, the hard disk of a mainframe would have a capacity of several

megabytes. Nowadays, a personal computer’ one can store several Tera bytes

of data. However, simply storing data is hardly beneficial. In order to achieve

progress, data must be processed into meaningful information.

Yes, we are aided in this endeavor by the powerful hardware. Never-

theless, interpretation, analysis and visualization of computations is still a

challenging task. In order to simplify this task numerous methods for data

mining were developed. Among the most often used ones are neural networks,

dimensionality reduction, clustering and support-vector machines.

One such field, where the above mentioned methods are used, is the field

of morphometry. Morphometry or morphometrics is a compound word of

morpho (Latin for shape or form) and metrum (Latin for to measure). Hence

morphometry focuses on study and measurement of shape and form differ-

ences between biological samples. One of the common tasks for morphome-

trical analysis is determining the extent of sexual dimorphism among the

samples. This means establishing the differences between the male and fe-

male species from the dataset. Other possible task is classifying the members

of the dataset according to their species.

This thesis focuses on usage of data mining methods in the field of mor-

phometry. In particular, we will focus on dimensionality reduction. In the

introductory part of the thesis, we will discuss previous work on dimension-

ality reduction and its usage in the field of morphometry. Subsequently, we

will define the goal of the thesis. Based upon this goal, we will describe the

structure of the thesis.

1.1 Previous Work

In this section, we will describe the previous work in field of dimensionality

reduction. We first survey the linear dimensionality reduction methods and

then focus on non-linear methods. We underline the impact of dimensionality

reduction in the field of geometric morphometry and anthropology.
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PCA and Linear Dimensionality Reduction

In this part of the introduction, we focus on Principal component analy-

sis and its applications. We also briefly mention kernelPCA. In particular,

we emphasize the role of PCA in both outline-based and landmark-based

morphometry.

This section does not contain mathematical description of the PCA al-

gorithm. This can be found in section 2.3. Detailed description of the GPA

algorithm is presented in section 3.1.

Dimensionality reduction is a rapidly developing area of research. Initially

the focus centered predominantly around linear methods for dimensionality

reduction such as principal component analysis (PCA) which was first de-

scribed in [33]. A further interest in the principal component analysis was

sparked by the introduction of kernelPCA. KernelPca transforms the origi-

nally linear PCA method into a nonlinear method by computing the PCA

transformation in a Hilbert space and is introduced in [39].

PCA and kernelPCA are used in various areas of research such as graph

drawing, text recognition, data mining etc. Harel and Koren in [10] use

dimensionality reduction in the field of graph drawing. The main advantage

of this type of graph drawing algorithm is that it provides a quantifiable

measure of output quality. Unlike other algorithms for graph drawing such as

simulated annealing high-dimensional embedding does not converge towards

local minima. It is also fast and allows for drawing of large graphs.

In the field of anthropology and morphometry, PCA is extensively used.

In landmark-based analysis PCA is often used in tandem with Generalized

Procrustes Analysis. In fact, Julien in [15] claims that it has become the

default method of operation in morphometrical analysis. In particular, the

analysis of the Kendall Shape Space is very thorough. We refer the interested

reader to Kendall’s article [18] on eigenshape analysis.

Other category of methods used in morphometrical analysis are methods

based on outline analysis. PCA is also extensively used in combination with

these methods. Various methods for outline representation were suggested.

For an initial survey of outline based methods, Julien’s monograph [15] on
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Morphometrical methods in R is a good starting point. A common combina-

tion is using principal component analysis with Elliptic Fourier Descriptors.

For example Berg et al. in [3] use an approach based on Fourier Descriptors

in segmentation of femur from computer tomography images. For a detailed

survey of Elliptic Fourier Descriptors (EFD), you may also refer to Hwang’s

and Lina’s article [24] on EFD.

As the performance of computers increases the focus has of morphome-

trical analysis has shifted towards three-dimensional meshes and volumetric

data rather than two-dimensional images. Hutton, Buxton and Hammond

in [12] use principal component analysis for registration of facial scans. They

use PCA in combination with thin-plate spline deformation to model the tri-

angular meshes. The final registration of the meshes is then performed using

an iterative closest point search in combination with an active shape model.

Non-Linear Dimensionality Reduction

This section centers around the description of previous work in the field of

non-linear dimensionality reduction. We focus on multidimensional scaling

and locally linear embedding. Furthermore, we describe the applications of

these methods in the field of anthropology. This section does not focus on the

mathematical of the presented methods. The interested reader should refer

to section 2.4 for an explanation of the locally linear embedding algorithm.

Multidimensional scaling is explained in section 2.5.

One of the oldest of non-linear dimensionality reduction methods is mul-

tidimensional scaling (MDS), introduced by Kruskal in [19]. While its use in

the field of morphometry and anthropology is not as widespread as that of

PCA, multidimensional scaling is commonly used in the field of morphome-

try. For example Chiu et al. in citeCHIU use MDS for analysis of snail shells.

Multidimensional scaling is especially useful when studying shape variation.

It is mostly used as a landmark based method rather than for outline pro-

cessing. Christensen in [5] uses multidimensional scaling in combination with

principal component analysis in order to determine the geographical variation

of lodgepole pines.
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Non-linear dimensionality reduction has started to gain popularity at the

end of the last millennium. This can be connected with the introduction of

both kernelPCA and Locally Linear Embedding (LLE) in [37]. Since then

many variants of LLE were proposed such as kernelised LLE or laplacian

eigenmaps (LEM). For a detailed overview of these techniques please refer to

Kayo’s dissertation [17] on the applications of LLE. Kayo also concludes that

LLE offers the best classification rate of the non-linear methods. However,

no discussion of the target dimensionality parameter is undertaken.

In the field of anthropology, usage of locally linear embedding is rather

sparse. It predominantly focuses on its usage in supervised learning. This is

based upon the supervised LLE algorithm suggested by de Ridder and Duin

in [36]. Zhang and Chau then apply this methodology and further enhance it

for classification of plant leaves in [40]. Other similar methods are proposed

by Lee and Chen in Classification for Leaf Images. For a detailed explanation

of this algorithm please refer to [20]. Both of those algorithms are based on

outline analysis rather than landmark based approach.

Furthermore, S. Kadoury in his master thesis [16] uses traditional LLE

in the area of face recognition in combination with support vector machines.

However, this study is rooted in image analysis rather than the field of an-

thropology.

1.2 Motivation and Goal of the thesis

Motivation

Having explored the previous work on dimensionality reduction in the field of

anthropology we can conclude that non-linear methods are underrepresented.

Especially the usage of locally linear is rather scarce. Using locally linear

embedding on landmark-type data is relatively untested.

One of the main disadvantages of non-linear dimensionality reduction

methods (such as Multidimensional scaling or Locally Linear Embedding)

is that the target dimension is an explicit parameter of the algorithm. As

a result, the user is faced with blindly choosing and testing multiple target

dimensions before a reasonable output is obtained. While the optimal choice
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of the target dimension for the classification algorithm was briefly discussed

in the above mentioned articles a thorough analysis was never conducted.

Goal of the thesis

Based on the above mentioned facts the goal of this thesis is thus to com-

bine existing clustering and non-linear dimensionality reduction methods and

apply the resulting methods in the field of anthropology. The main contri-

bution of the thesis is analyzing and determining the effect of dimensionality

reduction on the quality of the clustering output.

In particular, we will introduce a new approach called multipass dimen-

sionality reduction and show its main advantages and disadvantages as a

preprocessing algorithm for k-means clustering. Moreover, we will provide

experimental evidence that shows that multipass dimensionality reduction

decreases the number of dimensions required for successful classification.

1.3 Outline of the Thesis

In order to achieve the above stated goal, we will adopt the following ap-

proach: In the first section, we discuss the problem of dimensionality reduc-

tion. We first define the problem of dimensionality reduction and distinguish

between feature extraction and feature selection. We then survey both ex-

isting linear and non-linear dimensionality reduction methods.

In the subsequent part, we discuss the specifics of anthropological data.

We introduce various types of datasets (landmark-data, Fourier descriptors,

trimeshes) that come up in the field of anthropology. In particular, we focus

on the usage of Euclidean Distance Matrix Analysis (EDMA) and General-

ized Procrustes Analysis (GPA) for registration of landmark data.

The next section centers around the problem of clustering. We distinguish

between hierarchical and partitional clustering. We focus on the partitional

algorithms and describe the k-center algorithm in greater detail.

Having described and analyzed the main relevant methods, we switch

our attention to practical application of these methods. At first, we focus on
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showing the importance of the dimensionality reduction process as a prepro-

cessing algorithm for the clustering process. We show that dimensionality

reduction improves the success rate of the clustering process. We then fo-

cus on the issue of choosing of the target dimension for the dimensionality

reduction algorithm in order to maximize the success rate and reduce the

variability of the clustering process.

We then introduce the process of multipass dimensionality reduction and

compare its results with the basic singlepass approach from the previous

chapter. We will show that this method further improves the quality of

the clustering. In particular, we will provide practical evidence that the

multipass method improves the performance of the dimensionality reduction

algorithm at target dimension two. Therefore the user is not forced to blindly

determine the target dimensionality.

This thesis builds upon the Morphome3cs project. In the appendix, we

will therefore briefly discuss the design and architecture of this software. In

particular, we will briefly focus on the technological issues of using the R

library in C# programs.
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2 Dimensionality Reduction

In this part, we introduce the problem of dimensionality reductionand pro-

vide mathematical definition for it. Furthermore, we explain the difference

between feature selection and feature extraction. Then we will focus on the

particular methods for dimensionality reduction. We will cover the following

methods:

• Principal component analysis (PCA)

• Locally Linear Embedding (LLE)

• Multidimensional scaling (MDS)

In modern data analysis, problems with a high number of features per ob-

ject are becoming increasingly more popular. These problems are especially

important in bioinformatics and multimedia analysis. In the field of anthro-

pology, specimens are usually characterized by a set of multiple landmarks.

Each of those landmarks represents a two or three dimensional data point.

Since the number landmarks per specimen is usually over ten we quickly ar-

rive to over 20 features per specimen. In such situations, it is often beneficial

to reduce the dimensionality of the data (describe it in using features) in

order to improve the efficiency and accuracy of data analysis.

Cunningham in [6] cites the following main reasons for dimensionality

reduction:

• The identification of a reduced set of features that are predictive of

outcomes can be very useful from a knowledge discovery perspective.

• For many learning algorithms, the training and/or classification time

increases directly with the number of features.

• Noisy or irrelevant features can have the same influence on classification

as predictive features so they will impact negatively on accuracy.

On the whole, dimensionality reduction techniques facilitate the inter-

pretation of results and allow us to visualize these results in a user-friendly

way.
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In mathematical terms, the problem of dimensionality reduction can be

stated as follows: given the p-dimensional feature vector x = (x1, . . . , xp),

find a lower dimensional representation s = (s1, . . . , sk) ,where k < p, that

best preserves the content of the original data with respect to a certain

criterion function f . For a detailed explanation refer to [7].

In the following section we will describe the main approaches to dimen-

sionality reduction. The two main broad sets of methods revolve around:

• Feature selection

• Feature extraction

2.1 Feature selection

Feature selection attempts to find a subset of the original feature vector that

best represents the original data. Expressed formally this means for a feature

vector x = (x1, . . . , xp) find s ⊂ 1 . . . p, |s| = k, such that f(xs) is maximal.

2.2 Feature extraction

Feature extraction first transforms the original feature space into a different

lower dimensional target space. The two main variants of feature extraction

are linear and non-linear feature extraction. Linear techniques result in each

of the components of the new variable being a linear combination of the

feature vector:

si =
∑

j∈1...p

wi,jxj.

Or in matrix terms: s = Wx, where Wk×p is a linear transformation matrix.

Non-linear dimensionality reductionmethods are methods that do not

have such a representation. An example of such method is locally linear

embedding (LLE), which will be described in greater detail in the following

sections.
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2.3 Principal Component Analysis

Principal Component Analysis (PCA) is the most commonly linear dimen-

sionality reduction method. In this section, we show how to find the principal

components and explain their mathematical significance.

Algorithm Overview

First, let us explain how to compute PCA. Let X be a dataset consisting of

n m-dimensional observation.

X = {x1, . . . xn}, xi = {xi1 . . . xim}

We begin by centering the observations. This is accomplished by com-

puting the mean and subtracting it from the data.

x =
1

n

n∑
i=1

xi

X = X − x

Next, we compute the covariance matrix C of the centered dataset.1

C =
X ∗XT

n
Now we are ready to compute the principal vectors. In order to do this,

we perform eigen-value decomposition of the covariance matrix C.

V −1CV = D

Here, D is a diagonal matrix containing the eigenvalues of C. V contains

the eigenvectors that correspond to these eigenvalues. Finally, we project

the dataset into the target dimension using a subset Vq, q ⊂ 1 . . .m of the

eigenvectors.

1Sometimes it may be useful to normalize the data with respect to unit variance but
it is not always necessary.
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Xred = X ∗ Vq
On the whole, the algorithm for PCA looks as follows:

• Center the dataset.

• Normalize the data to unit variance. (optional)

• Compute the covariance matrix

• Find the eigenvectors and eigenvalues of the covariance matrix

• Using the eigenvectors from previous, find a projection of the dataset

to target dimension

Mathematical Significance of Principal Components

In this part, we will show that the transformation computed by PCA is a

orthogonal transformation that maximizes variance.

Let X be a centered dataset with n observations. We will show based

upon [14] that the first eigenvector w1 of the covariance matrix XXT is

the unit vector that maximizes variance. In mathematical terms we are

attempting to solve the following problem:

w∗ = argmax|w|=1Var{(wTX)}

This is equal to:

w∗ = argmax|w|=1

∑n
i=1 (wTxi − wTx)2

n

Since the dataset was centered(x = 0), we can simplify the term to:

w∗ = argmax|w|=1

∑n
i=1 w

Tx2
i

n
Or in matrix terms:

w∗ = argmax|w|=1

(wTX)(wTX)T

n
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In order to find the maximum, we use Lagrangian multipliers. The system

we are trying to solve looks follows:

wwT = 1

2XXTwT − 2wTλ = 0

The second equation can be simplified to:

wT (XXT ) = λwT

From this we see that indeed the first eigenvector of the covariance matrix

XXT is the solution of the system, while λ is equal to the first eigenvalue

of XXT . We refer the reader to [14] for additional details. The other prin-

cipal components are orthogonal to the previous components and solve the

following equation:

Xk = X −
k−1∑
i=1

wiw
T
i X

wk = argmax|w|=1{Var(wTXk)}

In other words, after removing all the variance explained by the previ-

ous principal components, the next component is a projection that maximizes

variance in the residual dataset. For a more detailed explanation refer to Jol-

liffe’s monograph [14] on PCA.

2.4 Locally Linear Embedding

In this part, we will focus on locally linear embedding (LLE). LLE is a

non-linear dimensionality reduction technique. First we will describe the al-

gorithm and subsequently we will explain the basic properties of the method.

We will base our description on Saul’s and Roweis’s introductory articles [38]

and [37]).

It should be noted that while originally used as an unsupervised technique

recent research has adapted LLE for supervised usage. S. Kaudury uses LLE

as a preprocessing algorithm for training of a support vector machine.For a
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detailed description of the algorithm please refer to [16]. A different approach

was taken by D. de Ridder and R. Duin. The authors in [36] modify the

original LLE algorithm so that it includes the classification of the features.

Then they used this algorithm for clustering.

However, the focus of this thesis lies predominantly on the improvement

of unsupervised classification.

Algorithm

Locally linear embedding is based upon reconstruction of the original data

using linear combination of each data points nearest neighbors. Let us con-

sider a dataset X consisting of m n-dimensional feature vectors x1, . . . , xn.

The first step of the algorithm is to find k-nearest neighbors (other feature

vectors) of each feature vector. K is a user-defined parameter of the algo-

rithm. The metric we use to determine the nearest neighbors of the feature

vectors is not critical to the algorithm and it may be interesting to explore

using exotic metrics. However, this is outside of the scope of the thesis.

Let Nk,i ⊂ 1 . . . n be indices of k-nearest neighbors of the feature vector

xi and let Xk,i be the k-nearest neighbor feature vectors of xi
The next step of the algorithm is to find a weight matrixW that minimizes

the following error term:

∆(W ) =
∑
i

|Xi −
∑

j∈Nk,i

WijXj|2

We are trying to find such a weight matrix that best represents the original

data using only the neighboring vectors. Therefore we must constraint the

weight matrix so that wi,j = 0, if j /∈ Nk,i. Furthermore, let
∑

j wi,j = 1 - ie.

the weights for each feature vector add to 1.

It should be noted that the weights for each feature vector are independent

and so we can compute the weight vector separately for each of the vectors.

Let us begin by defining the local covariance matrix of the feature vector

xi: Covxi
.

Covxi
= (Xk,i − xi)(Xk,i − xi)T



2 DIMENSIONALITY REDUCTION 19

We compute the local covariance matrices for each of the feature vectors

and solve the following equation for wi:

Covxi
wi = 1

We then normalize wi so that it satisfies
∑

j wi,j = 1 and thus obtain the

elements of the weight matrix.

The last step of the algorithm is finding a projection Y of the dataset X

that minimizes the following error term:

Φ(Y ) =
∑
i

|Yi −
∑
j

WijYj|2

In the first minimalization problem the matrix W was being minimized,

while here we are minimizing the projected lower dimension coordinates with

respect to a fixed weight matrix. Once again we need to impose constraints

to ensure that the solution is well-defined. As explained in [38], we would

like the resulting coordinates to be centered around the origin and thus let∑
i Yi = 0. To avoid degenerate solutions, we impose the following constraint:

1

N

∑
YiY

T
i = 1

To solve this problem, we compute the bottom (lowest) eigennumbers and

the respective eigenvectors of the following matrix:

M = (W − I)(W − I)T .

The first eigenvalue of M is equal to 1, and is not used for the projection.

The d-lowest eigenvectors then form the representation of the dataset X in

d-dimensions.[37] On the whole, the algorithm for LLE looks as follows:

1. Find the k-nearest neighbors of each feature vector

2. Compute a weight matrix W that best represents the dataset using the

neighboring feature vectors

3. Find Y - the best low dimensional k-neighbor mapping with respect to

the weight matrix W
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Complexity

In this part, we will compare the time complexity of PCA and LLE. We will

determine what the critical parts of each method are and show how the value

of k in LLE influences the time complexity of the method.

One of the disadvantages of the LLE approach compared to PCA is higher

computational complexity. The critical part of the LLE algorithm is com-

putation of the weight matrix W . For each data point a k × k set of linear

equations needs to be solved. Using Gaussian elimination, solving each of the

systems requires O(k3) time. There are n dimensions for each of m feature

vectors and therefore the total complexity of the step is O(nmk3). The main

issue here is that this term rises very fast with the number of neighbors we

choose in order to interpret the dataset. It should be noted that computing

the nearest neighbors requires O(m2n) time. The final projection - comput-

ing the bottom eigenvectors of a m×m matrix can be performed in O(dm2)

time, where d is the target dimension (number of eigenvectors we need to

find).

In comparison, the critical step of the PCA analysis is the computation

of the covariance matrix. Without using advanced matrix multiplication al-

gorithms, O(m2n) operations are required. Normalization of the data can be

performed in O(nm) and computing the first d eigenvectors of the covariance

matrix requires once again O(dm2) time.

In conclusion, for low values of k PCA is comparable with LLE in terms of

time complexity. However, the complexity of LLE rises fast when we increase

the number of relevant neighboring feature vectors.

2.5 Multidimensional scaling (MDS)

In this section, we will briefly introduce the multidimensional scaling method

(MDS).

Let M = {m1, . . .mn} be a dataset. Let d be a distance function of the

following form:

d : M ×M → <+
0
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Furthermore, we denote the distance between two elements of M as fol-

lows:

di,j = d(mi,mj)

Unlike the previously discussed methods LLE and PCA, multidimensional

scaling requires input data in form of a dissimilarity matrix. This matrix D

contains the distances between the objects from the input dataset:

D =



0 d1,2 d1,3 d1,4 . . .

d2,1 0 d2,3 d2,4 . . .

d3,1 d3,2 0 d3,4 . . .

d4,1 d4,2 d4,3 0 . . .

. . . .
. . .


The goal of the MDS method is to find an optimal embedding of the D

matrix to a target dimension p. An optimal embedding is one such that best

preserves the distances between the objects in the lower dimensions. In other

words, we attempt to find a matrix D̂ so that the distances correspond as

closely to the original ones. We then introduce a stress function S of the

following form.

S : D × D̂ → <+
0

There are various definitions for the stress function. The original and the

most used one is the raw-Stress version from Kruskal [19]:

S(D̂,D) =
1

2

|M |∑
i=1

|M |∑
j=1

wi,j(d̂i,j − di,j)2

For a more detailed overview of the respective stress functions see Groe-

nen’s and van den Welden’s article [9] on multidimensional scaling.

In order to minimize this function, one can use several numerical meth-

ods. The most commonly used one is a procedure called SMACOF. This

is based upon the concept of stress majorization. In overview stress ma-

jorization works as follows. Let f(x) be a function that we are attempting
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to minimize. We now introduce a so called surrogate function g(x, y). The

surrogate function must be chosen so that:

g(x, y) ≥ f(x)

y is called a supporting point and it is fixed. In the supporting point the

following is true:

g(y, y) = f(y)

The minimalization procedure works as follows:

1. Choose initial starting value y = y0.

2. Find an update of x(t) such that g(x(t), y) ≤ g(y, y).

3. Stop if f(y)− f(x(t)) < ε, otherwise y = x(t) and proceed with step 2.

For the details of the majorization procedure and other numerical ap-

proaches towards computing the lower dimensional embedding please refer

to the article [21] on SMACOF in R from de Leeuw and Mair.
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3 Specifics of landmark data

In this section we explain in greater detail how anthropological data differs

from traditional data sources such as image data.

In image data, the basic input for all methods are typically raw pixel

values. When one tries to compare two images, they mostly have the same

image size and the same color scale. This is not the case with anthropological

data. The images may be rotated, translated or be of different size. Therefore

the input data first must be normalized.

3.1 Generalized Procrustes Analysis (GPA)

The most commonly used method for normalization of landmark data is

generalized Procrustes analysis. The method was first described in [18]. This

method normalizes the data with respect to:

1. Translation

2. Scale

3. Rotation

4. Alternatively with respect to reflection

We first explain how to align two objects towards each other. Subsequently,

we demonstrate how to align an entire dataset consisting of multiple specimen

using the Procrustes analysis.

For the following analysis, let A,B be 2-dimensional specimens repre-

sented by n landmarks(A = {(x1, y1) . . . (xn, yn)}, B = {(w1, z1) . . . (wn, zn)}).
In order to normalize the data with respect to translation, one first computes

the arithmetic mean for both dimensions and subtracts it from the original

data:

x =
x1 + . . .+ xn

n
, y =

y1 + . . .+ yn
n

A = (x− x), (y − y)
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Normalization of scale is simple as well. The scale of a specimen is com-

puted as follows:

s =

√
(x1 − x)2 + (y1 − y)2 . . .+ (xn − x)2 + (yn − y)2

n

To normalize A in respect to translation, simply divide it member wise

with the scaling factor:

As =
(x− x)

n
,
(y − y)

n
.

In order to remove the rotational component, we will use B as a ref-

erence shape and rotate A around origin so that the sum of squared dis-

tances between corresponding points of A and B is minimized. Rotation of

2-dimensional A around origin by angle φ is a linear operation expressed in

matrix form as follows:

Arot = As ∗R,

where

R =

 cos(φ) − sin(φ)

sin(φ) − cos(φ)


The term we are attempting to minimize with respect to φ is as follows:

f(φ) = (Arot −B)2 = (x sinφ− y cosφ− w)2 + (x cosφ+ y sinφ− z)2,

where x = x1 . . . xn, y = y1 . . . yn, w = w1 . . . wn, z = z1 . . . zn
The derivation of this term is:

´f(φ) = 2(Arot −B) = 2(−x sinφ− y cosφ)(x cosφ− y sinφ− w) +

+ 2(y cosφ− x sin phi)(x cosφ+ y sinφ− z)

Solving the above term for ´f(φ) = 0, gives the optimal orientation of A with

respect to reference shape B:

φ = arctan
xz − wy
wx+ zy
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In three dimensions removing translation and scaling is analogical to the

two dimensional case. However, removing translation is more challenging.

As the process is rather technical we will not describe it here. Instead, we

refer the interested reader to Kendall’s article on GPA [18].

Now that we have shown how to register 2 objects we will focus on how to

transform the entire dataset. The simple way is to select one of the images in

the dataset as a reference shape and use the above procedure for each of the

other shapes in the dataset. However, the following algorithm highlighted

in [18] demonstrates a more elegant solution.

Let us first define Procrustes distance. This is the distance between the

registered shape Arot and reference shape B given by:

dproc =
√

(Arot −B)2

The algorithm works as follows:

1. Choose one of shapes in dataset as a reference shape.

2. Normalize all members of the dataset with respect to scale, translation

and rotation with respect to chosen reference shape.

3. Calculate the arithmetic mean shape of the resulting shapes

4. If the Procrustes distance between the mean shape and the reference is

above a threshold, let the mean shape be the new reference shape and

return to step 2.

3.2 Euclidean Distance Matrix Analysis

Another way of ensuring invariance to translation and rotation is using Eu-

clidean distance matrix analysis (EDMA). In this section, we will describe

how to compute the EDMA transformation and explain its main advantages

and disadvantages in morphological analysis.
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Algorithm

In this part of the thesis we describe the process of EDMA computation. Let

A be a dataset of the following form:

A = {a1 . . . an}

Here a1 . . . an are objects. Each of these objects is described by m ele-

ments i.e:

ai = (ai1 . . . aim)

In order to compute the EDMA matrix, first compute the conventional

euclidean distances between the specimens:

dij = dist(ai, aj) =

√√√√k=m∑
k=1

(aik − ajk)2

Next, we compute the mean shape a:

a =
n∑

i=1

di
n

Furthermore, for each object compute the error vector ri:

ri =
n∑

j=1

(dij − aj)2

n

The EDMA is a symmetric matrix that looks as follows:

E =


0 e12 . . . e1n

e12 0 . . . e2n

...
...

. . .
...

e1n . . . . . . 0


If the initial objects were two dimensional then:

eij = 4

√
|ai − rij|

In three dimensions EDMA is computed as follows:

eij =
4

√
|ai −

3rij
2
|

For a detailed derivation of the EDMA procedure and its statistical prop-

erties we refer the interested reader to [22].
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Discussion of EDMA

In this section we will briefly describe the basic properties of the EDMA

transformation and mention some of its applications.

The main advantage of the EDMA method is that it is coordinate free. It

is invariant to translation and rotation. It is not invariant to scaling but this

should be obvious from comparing two specimen represented in the EDMA

matrix. Two identical specimen i, j only differing in size would be represented

in the EDMA matrix as:

ei = kej

On the other hand, as EDMA is based upon distances it is harder to

visualize and interpret its results, if compared to the strictly landmark-based

GPA. Displaying the results could according to researchers introduce bias.

For a detailed discussion of the positives and negatives of EDMA please refer

to [35].

One of the interesting applications of EDMA is studying sexual dimor-

phism of species. This is highlighted in the original article on EDMA [22]

as well as in [23]. For other uses of EDMA and its variants, please refer to

Julien’s book on morphometry [15].
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4 Clustering

Having described dimensionality reduction and the specifics of landmark data

we will now focus our attention on clustering. We will first define the clus-

tering problem and differentiate between hard and fuzzy clustering. We will

briefly mention the issue of cluster validity. Subsequently, we will describe

hierarchical and partitional clustering. In particular, we will focus on the

k-means algorithm.

4.1 Hard and fuzzy clustering

First, let us define the clustering problem: Let n be a (possibly user-defined)

number of clusters. Let D = {d1, . . . , dm} be a dataset. Then a hard clus-

tering algorithm produces the following mapping:

F (D)→ 1 . . . n

In comparison, in fuzzy clustering the resulting mapping only assigns a

probability for each pattern and group pair:

F (di, k) ∈< 0; 1 >

∑
k=1...n

F (di, k) = 1,∀i ∈ 1 . . .m

The clustering process can be divided broadly into following steps:

• Data acquisition and representation of the data features

• Defining a measure of proximity

• The actual clustering process

• Evaluation and interpretation of the clustering output

Further details on clustering are provided in [13].
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4.2 Cluster validity and selecting the number of clus-

ters

We can see that the only required supervisor input in a traditional clustering

algorithm is the number of clusters. As the actual relevance of the result is

heavily dependent on the number of clusters, a measure of the output clus-

tering quality should be defined. The process of defining and implementing

this measure is described as clustering validity. For a detailed description

of this problem please refer to Jain’s and Dubes’s monograph on clustering

algorithms [13].

4.3 Hierarchical clustering

The two main approaches to clustering are:

• top-down or partitional

• bottom-up or hierarchical

We will briefly describe the hierarchical approach, however, this thesis focuses

predominantly on usage of partitional clustering.

In this section, we will describe the process of hierarchical clustering and

highlight its usage in anthropology and morphometry. At the start of hier-

archical clustering each exemplar forms a single element cluster with itself.

We then select a pair of clusters which are closest together and join them

to form a new cluster. We repeat this procedure until we have reached the

desired number of clusters.

In a more formal language the hierarchical procedure is as follows:

• Let Q = {q1 . . . qm} be a dataset

• Let n be the desired number of clusters,

• Let C = D be the clustering set,let d : c × c− > <+ be a distance

function

• If |C| ≤ n terminate
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• Find ci and cj such that d(ci, cj) is minimal

• Let C = C − ci − cj + (ci ∪ cj)

• Go to 4

Usage in anthropology

In anthropology hierarchical methods are predominantly used in order to pro-

duce dendrograms. Unlike partitional methods hierarchical methods output

the time at which a certain element was joined to a cluster. This is espe-

cially useful when trying to study the evolution of species. As these images

can help in deciding at which time a certain species was separated from its

original one.

4.4 Partitional clustering

While there exist other forms of partitional clustering we will describe the

k-means (or k-center) clustering algorithm in this section.

The user once again selects the number of clusters. First, the algorithm

assigns the clusters randomly. Typically elements of the dataset are used as

starting centers. In the next step, the algorithm assigns each specimen in the

dataset to its nearest center. Then we recalculate the centers. If the position

of the centers did not change sufficiently, we end the algorithm. Otherwise,

we recompute the clusters.

The k-center algorithm is described in pseudocode here:

\\INPUTS:

no_clusters=user defined

dataset = {d[1] .. d[m]}

\\ASSIGN STARTING CLUSTERS RANDOMLY:

for(i in 1 .. no_clusters)

center[i]= d[random]//should not repeat centers

\\THE MAIN LOOP:

while( True )
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{

//find the nearest center for each element in the dataset:

for( i in dataset)

{

cluster[i]=mindist_index(center,d[i])

}

//recompute the centers:

for( i in centers)

{

//choose the members of the respective cluster

//and recalculate its position:

newcenter[i]=calc_center(dataset[cluster==i])

}

//the centers are stable - end:

if(energy(center,new_center)< eps)

return {center,cluster};

//the centers are not stable - recalculate them:

else:

center=new_center;

}
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5 Comparison of traditional algorithms

In the previous sections, we have described the specifics of landmark data.

Furthermore, we have explained the basic approaches towards dimensionality

reduction and clustering. Thus we have all the tools required for a practical

application of these techniques. Our goal will be to determine the importance

of dimensionality reduction as a preprocessing algorithm for the clustering

algorithm. Furthermore, we will compare the performance of MDS and LLE

as preprocessing algorithms.

This section centers around providing experimental evidence for two main

hypothesis. First, we would like to show that for high dimensional datasets

dimensionality reduction improves the quality of classification if compared

to direct clustering. The second task is to determine optimal target dimen-

sionality to maximize the clustering quality for each of the dimensionality

reduction methods.

In order to fulfill these goals, we will adopt the following structure.

First we describe the nature of the dataset and the process of data acqui-

sition in greater detail. The main focus will be at attempting to analyze the

role of dimensionality reduction algorithms in the clustering process. To ex-

amine the first hypothesis, we will compare the results of the dimensionality

reduction based methods at target dimensionality 2 with direct clustering.

In order to examine the second part of the conjecture, we will analyze the

behavior of the dimensionality reduction algorithms at differing target di-

mensions.

5.1 Description of the dataset

In this section we will describe the dataset that will be used in the testing

process. Furthermore, we will discuss the suitability of this dataset in regards

to our goal.

The dataset that will be used consists of 24 three dimensional facial scans

of students and employees of the faculty of Mathematics and Physics. On

each of the facial scans, 13 landmarks were placed:
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• 2 landmarks on each eye

• 3 landmarks on the nose

• 4 landmarks on the mouth

• 2 landmarks in the kin region

The landmark configuration is depicted on the following image 1.

The goal of the algorithms will be to classify the exemplars based on

gender. In the dataset there are 7 female samples and 17 male ones. As

we are interested in unsupervised learning, the classification algorithm will

receive no initial training set or expert information apart from the landmarks

provided.

We should note that the sample size is relatively low. However, in order to

provide evidence in respect to the above stated conjectures we require a high-

dimensional dataset. Computations with large high-dimensional datasets

are time-consuming. The described dataset provides a comparatively high

number of dimensions (39). At the same time it allows for relatively fast

testing of the algorithms in question. We will attempt to partially mitigate

the small sample size by running each experiment multiple times on the same

dataset.

It should be noted that these landmarks were not placed by an expert

biologist and hence suffer from imprecision. This is, however, not a flaw

for the purposes of our testing. It allows us to study the behavior of the

algorithms in less than optimal conditions. Finally, we must emphasize that

while we use landmarks on face scans as our testing dataset, our goal was

not to develop a face recognition algorithm. We merely use these landmarks

as a testing dataset. The methods presented should be transferable to other

similar datasets in both two and three dimensions or even landmarks in

volumetric data such as CT scans or magnetic resonance images.
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Figure 1: Landmark placements

Source:

• Landmarks placed by author in Morphome3cs Landmark Editor.

• Data provided by the Faculty of Science of the Charles university.
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5.2 Impact of preprocessing and dimensionality reduc-

tion

Goal of the experiment

In this section, we will attempt to determine the impact of the preprocessing

and dimensionality reduction algorithms on the quality of clustering. Our

main hypothesis is as follows:

For high dimensional data (such as are common in anthropol-

ogy) dimensionality reduction improves the clustering quality.

We will now describe the exact nature of the measurement. Subsequently

the results of the measurements will be described and interpreted with respect

to the above stated hypothesis.

Details of the measurement

In order to proof the above stated hypothesis, we will compare the perfor-

mance of dimensionality reduction methods with pure clustering. From the

dimensionality reduction methods we have selected the following three:

• LLE with GPA (including scaling and reflection) as preprocessor

• LLE with EDMA as input

• MDS with EDMA as input

Finally, as a baseline for our measurements we need to run a pure clustering

algorithm on the same dataset without any preprocessing. We will use the

Hartigan-Wong algorithm both as the final part of the reduction dimension-

ality methods and as the baseline algorithm. We will keep the number of

clusters to two.

An interesting consideration is setting the target dimension of the dimen-

sionality reduction algorithm. This will be discussed in sections 5.3 and 6.4.

Our goal here is not to find a certain magic number to show that in some cor-

ner case with a precisely defined input data we can show that dimensionality

reduction has impact. Instead we are trying to show that there is no need
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for such magic numbers. In fact, a palpable improvement can be obtained

regardless of the choice of numeric parameters.

The logical choice in this case is therefore setting the target dimension

to 2. This leaves maximum amount of work to the dimensionality reduc-

tion algorithm and thus offers the best comparison to the pure method. For

LLE the other critical parameter is the number of neighbors that are to be

accounted for in the algorithm. This essentially distinguishes between local

and global approach to dimensionality reduction. For this part of the experi-

ment, we kept this parameter to 8. This represents a reasonable compromise

between local and global dimensionality reduction. Once again this will be

discussed in the later course of the thesis. We will focus on the impact of

this parameter in the section 6.5.

It should be stressed here that partitional clustering and k-means cluster-

ing in particular is dependent on the choice of starting configuration. There-

fore randomization is part of every clustering algorithm. Therefore it is not

sufficient to perform a single measurement. We will run each method five

times. In addition to the average clustering quality, we will record maximal

and minimal values as well as the median result.

Results and their interpretation

The results of the above outlined measurements are outlined in the Table 1.

We can now answer that preprocessing and dimensionality reduction has

an impact on the quality of clustering. While the pure Hartigan-Wong al-

gorithm struggled with a mean success rate of 52.4 percent, the reduction

dimensionality techniques improved on this result by an average of almost

8.0 percent.

Among the dimensionality reduction methods multidimensional scaling

recorded the highest average clustering quality of 61.6 percent. It is closely

followed (61.2) by the combination of locally linear embedding with EDMA

as the input preprocessor. Given the popularity of generalized Procrustes

analysis in the field of anthropology if compared to the EDMA approach it

is surprising that it only recorded a success rate of 58.3 percent.
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Table 1: Impact of dimensionality reduction - success rate in percent

Method Name Mean Median Max Min

Hartigan-Wong 52.4 54.1 54.1 50

GPA+LLE(2,8) 58.3 58.3 62.5 50

EDMA+LLE(2,8) 61.2 66.6 66.6 58.3

EDMA+MDS(2) 61.6 62.5 79.1 50
Source: Author.

This is where we need to abandon the mean results and analyze the

results in greater detail. While the original success rate of the GPA based

method seems low, it should be noted that this is significantly impact by one

measurement. In the fourth run the GPA method only achieved the minimal

value of 50 percent. This has significantly impacted the average value. If this

measurement is removed the average rises to 60.4 percent. While this is still

somewhat lower than the more successful methods the difference is within a

single percent point.

Similar approach must be taken when considering the results of the mul-

tidimensional scaling procedure. If we disregard the single positive outlier

(79.1 percent), the success rate drops to only 57.3 percent. This constitutes

a drop of 4.1 percent points. It is even lower than the original unadjusted

value for LLE with Procrustes analysis as preprocessing filter. On the other

hand, this is still significantly above the pure clustering results.

One could in similar fashion as with GPA+LLE disregard the minimal

value for the multidimensional scaling procedure. While this would further

reduce the number of conducted measurements, it may give us an indication

of the behavior of the multidimensional scaling in average case. If we follow

this approach, we achieve an average success rate value of 59.7 percent. This

is comparable with other methods but to rank the methods, obviously more

measurements need to be conducted.

The difference between the reliable LLE+EDMA approach and the more

variable procedure of MDS+EDMA is further highlighted on the following

graph. This graph depicts all the measurements for both methods ranked in
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descending order of success rate.

Summary

In conclusion, we have confirmed that for high dimensional datasets that are

common in the field of anthropology, dimensionality reduction improves the

quality of clustering. While the pure clustering approach was only able to

barely cross the 50 percent mark at our dataset, the performance of dimen-

sionality reduction methods hovered around 60 percent success rate. The

most successful of the dimensionality reduction methods were the ones based

on EDMA.

The combination of EDMA and multidimensional scaling achieved the

highest average success rate. This method was also responsible for the high-

est individual score of nearly 80 percent. It was closely followed by the

combination of LLE and EDMA. If compared to the previous method, this

method achieved more stable results. It also had by far the highest median

score of 66.6 percent.

Surprisingly GPA-based LLE did not perform as well on the dataset in

question. Its measurements could have been negatively impacted by one

single measurement. If we subtracted this measurement, we would acquire a

respectable result of just over 60 percent.

One could argue here that the number of measurements is insufficient.

Indeed it is on the low side. But it is sufficient to demonstrate the necessity of

the dimensionality reduction methods. We will conduct further experiments

in order to compare and contrast the methods and determine their optimal

parameters.

5.3 Choosing the right dimension

Rationale

In the previous section we have demonstrated that dimensionality reduc-

tion techniques are helpful when attempting to cluster high-dimensional

landmark-type objects. What we have not discussed is the actual role of
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Figure 2: Comparison between behavior of LLE and MDS

Source: Author.
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the dimensionality reduction algorithm in the clustering process.

Essentially there are three possible approaches for this, which we will

examine in this section. These are:

• Reduce the dimension as far as possible

• Only transform the data while keeping their original dimension

• A compromise between the two approaches

Our initial hypothesis is that for high-dimensional data the best

approach is to reduce the dimensionality as far as possible and

leave as little work for the clustering algorithm. In addition, we

would like to show that improvement does not necessarily depend on selecting

the correct target dimension. After all, one of the main advantages of the

dimensionality reduction methods is that they do not require expert user

input. Thus forcing the user to optimize a certain parameter to a specific

value would be counterproductive at best. In this case, one may wish to

choose one of many supervised methods such as Linear Discriminant Analysis

or Support Vector Machines.

We will briefly discuss, how this problem can be handled while using

principal component analysis. Then we will conduct a series of measurements

to proof our hypothesis for LLE and MDS-based methods.

PCA

This is one area, where using the traditional principal component analysis,

simplifies the problem. Typically the PCA outputs an eigen-vector of the
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following form:

L =



λ1

λ2

.

.

.

λi
0

.

.

.

0


Here λ1 . . . λi are the eigennumbers of the respective covariance matrix. The

number of non-zero eigenvectors of the covariance matrix is given by i. Usu-

ally the vector does not have full rank as several of the eigenvalues are zero.

For our question, an interesting observation is that if we square the eigen-

values and add them together we receive the amount of variability that is

explained by the selected eigenvalues. Formally, this can be written as fol-

lows:

φ (Λ) =

∑
k∈Λ λ

2
k∑j=i

j=0 λ
2
j

, fΛ ⊆ 1 . . . i

While we cannot directly state the exact optimal value for maximum

clustering quality while using PCA, selecting Λ such that φ (Λ) > 0.95 and

|Λ| minimal is a good starting point for most applications. For a detailed

explanation refer to [14] and [15].

Unfortunately, there is no such measure for MDS or LLE. Both of these

methods have the target dimension as part of their algorithms. Therefore we

need to conduct an experiment to determine the optimal settings.

Description of the Measurements

We will measure the performance of the successful algorithms from the pre-

vious section ie. :
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• GPA+LLE

• EDMA+LLE

• EDMA+MDS

Unlike in the previous section, we will not keep the target dimension

constant. For each of the methods we will measure their behavior for target

dimensions 2-15. As the default clustering algorithm once again the Hartigan-

Wong method will be used.

Regarding the number of neighbors for the LLE-based methods, we will

adopt the following approach: The number of neighbors will be 6 + the

current target dimension. This should be a reasonable compromise between

local and global approach to the LLE process. We will analyze this issue in

greater detail in the subsequent parts of the thesis.

In order to alleviate the impact of clustering randomization, this time we

will run each method seven times for each parameter value.

Multidimensional scaling

The results for the multidimensional scaling method are illustrated on the

following figure 3.

First of all, we can notice that for dimensions greater than 12 the dimen-

sionality reduction method can hardly outperform the theoretical baseline of

pure clustering. While we have not conducted exhaustive search for higher di-

mensions, the tendency is apparent from the behavior for dimensions greater

than 12. All in all, in these cases the dimensionality reduction algorithm

works just as a data transformation algorithm. The lower dimensions are

usually unnecessary for the interpretation and representation of the origi-

nal dataset. As a result the clustering algorithm is unable to separate the

datasets. In short, there is too much unnecessary information which impedes

successful clustering.

It should be noted that most results for dimensions greater than 10 ex-

hibit similar behavior. In one or two runs the clustering algorithm chooses a
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suitable initial configuration and converges towards a good clustering. How-

ever, there is an overwhelming tendency towards reaching unsuitable local

minima with success rates barely over 50 percent.

However, the results are slightly surprising. The most successful dimen-

sion for the presented dataset was 8 closely followed by 9. With the target

dimension 8 the clustering algorithm performed admirably and recorded a

success rate of 65.4 percent. With 9 dimensions the algorithm was only

marginally less successful - it reached 63.8 percent success rate. This is still

3.2 percent point more than the success rate for two dimensions. On the other

hand, the highest individual result from a single measurement still belongs

to the two dimension variant. As mentioned before it reached 79.1 in one of

the runs. In comparison, the next best result of 75 percent was achieved by

several dimensions (4, 7, 8, 9, 11, 12, 13).

What also needs to be addressed is the behavior of the algorithm between

the dimensions 3 to 7. For the examined data, it is obvious that the perfor-

mance at these dimensions is poor in comparison to both target dimension

two and dimensions 8 and 9. On average, in this segment the mean result

was just 54,7 percent. This is only slightly more than the baseline for pure

clustering. It is more than 10 percent points less than the performance for 8

dimensions. If we subtract the relatively successful dimension four from the

equation, the average drops by further 1.2 percent point.

The question arises why this is the case. One would naturally expect that

the function would exhibit monotonic behavior - decreasing as the number

of dimensions increases. While we do not have a definitive answer, we can

use the comparison with the PCA analysis. Once again the more dimensions

we keep the more information value is preserved. On the other hand, the

performance of clustering algorithm improves with the decreasing number of

dimensions of the clustering dataset. We can therefore conclude that these

dimensions are significant for the separation of the dataset and by removing

these dimensions the information loss is greater than the gain from a slightly

improved clustering performance.

We have already briefly touched on the variability issue in the previous

section as we were explaining the behavior of the MDS algorithm. Here we
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Figure 3: Multidimensional scaling - selecting the optimal target dimension

Source: Author.
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Table 2: Variability of the MDS measurements

Dimension Mean Variability

2 60.6 91.6

4 59.5 148.9

8 65.4 56.4

9 63.8 125.8
Source: Author.

will further analyze the variability issue. The variability for the selected di-

mension is recorded along with the mean values in the following table 2. We

have selected only the most promising dimensions for the variability discus-

sion. There is little value in discussing the variability of the less successful

methods.

We can see that not only does the algorithm in our experiments achieves

the maximal success rate at dimension 8, its variability is also the lowest from

the observed group. This means that results for dimension 8 should be the

most reliable ones, in addition to allowing for the best possible clustering.

On the other hand, the algorithm performs poorly for dimension 4 with both

highest variance as well as the lowest success rate.

In between the two extremes, there are dimensions 9 and 2. While 2 does

achieve a marginally lower success rate, its reliability is much greater than

for dimension 9. This is to be expected as the higher number of dimensions

may once again lead to a faulty local minima convergence. While when

the algorithm converges properly it may achieve higher success rate as more

information is preserved in the higher dimensional model.

Summary

It seems that on the analyzed dataset the MDS algorithm performs best for

the dimensions 8 and 9. For dimension 2 the success rate is better than

average. However, dimensions 8 and 9 recorded a success rate that was

greater by more than 4 percent points. The method was even more stable in

respect to its variability for dimension 8 than for target dimension 2. Based
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on these results we must slightly change our initial hypothesis. It appears

that the best usage of the dimensionality reduction algorithm so far seems

to be in dividing the labor with the clustering process. We will now focus

on the LLE based methods to see if we can find similar behavior for them as

well.

LLE with GPA

In this part we will discuss the results of the locally linear embedding with

generalized Procrustes analysis as a preprocessor. The results for this com-

bination of methods are listed in the table 3.

While the results for dimensions greater than 13 are not listed they exhibit

similar behavior to dimensions 10 to 13. The average there hovers around 58

to 61 percent. They exhibit the same type of variance as was demonstrated

with the MDS results. Although while with MDS the results were typically

skewed by one single favorable clustering, here the favorable clusterings occur

more often and the median value is also typically a little higher (50 for the

high dimensional MDS method, 58.3 for the high dimensional LLE/GPA

combination).

The first observation about the GPA/LLE combination, for the examined

dataset, is that the average success rate is much higher than for the MDS-

based clustering. Here the success rate for dimensions two through thirteen

is 61.2 which is almost as high as the success rate for the four best-performing

dimensions in the MDS method (62.3). While only for three dimensions in the

MDS method the 60 percent mark was crossed, here only for dimensions two,

three and eleven the algorithm failed to reach this psychological border. Even

the variance between the dimensions is a pleasant surprise. The standard

deviation here is 3.95. For the MDS method the standard deviation is 4.3

with a much lower average. It should be noted that the standard deviation for

LLE/GPA is mainly driven by the performance of the algorithm at dimension

6.

At dimension six the algorithm achieved an average success rate of 72

percent. This constitutes an improvement of more than six percent compared
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to the best success rate for the MDS algorithm. Moreover, the algorithm

never recorded a run with worse than a 58.3 success rate. Finally, it also

recorded a 83.3 percent clustering.

However, it can be said that this is an isolated peak of the algorithm.

While the MDS algorithm had a two dimensional optimum at eight and nine

dimensions, the LLE/GPA approach only peaked at exactly 6 dimensions.

Localizing such a peak is obviously data dependent. In order to accelerate

finding of this peak, one could use the similarity between LLE and PCA. One

would use the dimensionality specified by the PCA eigenvectors as a baseline

in the further computation. Subsequently one would attempt to optimize the

LLE clustering result in the close region specified by the PCA approach.

The highest single clustering performance was recorded by the algorithm

at 11 dimensions. Apart from this single run (87.5) the algorithm at eleven

dimensions did not perform remarkably well. In none of the following run did

it manage to cross the 60 percent baseline. Thus the maximal value should

be regarded as an outlier.

LLE with EDMA as preprocessor

In this section we will focus on the LLE-EDMA combination. The results

of this method for dimensions 2 through 13 are displayed on the following

figure 4.

The average success rate is 61.0 percent. In comparison, the LLE/GPA

recorded an average success of 61.3. If we, however, disregard the perfor-

mance of the LLE/GPA algorithm at dimension 6 (72.0 percent), its mean

success rate drops by 1 percent to 60.3 percent. This would place the LLE

EDMA method ahead of the LLE GPA combination.

Overall the algorithm appears to be the most stable of the three dis-

cussed. Here with stability we mean indifference towards the selection of

dimension. The standard deviation across the dimensions is 2.50. This is

much lower than both LLE/GPA (3.95) and the multidimensional scaling

variation (4.34).

As we can see the behavior of the algorithm closely resembles the one
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Figure 4: LLE/EDMA - selecting the optimal target dimension

Source: Author.



5 COMPARISON OF TRADITIONAL ALGORITHMS 49

of the MDS algorithm. Once again the success rate drops significantly after

dimension 10. While the average success rate for dimensions 6-10 is 63.3

percent, the average for dimensions 11 through 13 is only 59.1 percent. This

is demonstrated in the table 4. On the other hand, the standard deviation for

dimensions eleven through thirteen is 17.9 percent less than the average for

the dimensions 6 through 10. If compared to the behavior for dimensions 2

through 5, the algorithm performed comparably at dimensions 11 through 13.

The average success rate is lower by 1.3 percent point. On the other hand,

it appears that the algorithm is much more stable at higher dimensions with

the standard deviation being 0.76 points lower than for the dimensions 2

through 5.

The algorithm performed at its best for dimensions 6 through 10. The

highest average success rate was recorded for 10 dimensions (65.5). On the

other hand, this is still 7.5 percent point behind the maximal performance

of the GPA based algorithm at six dimensions. The LLE/EDMA algorithm

also recorded its highest percentage clustering at 8 dimensions (79.1 percent).

The algorithm also recorded a couple of runs with 75 percent success rate.

This namely occurred at dimensions three and eight.

The next best performances of the algorithm occurred at target dimen-

sions six, eight and nine. The algorithm reached 63.7 at eight dimensions.

For dimensions six and nine the mean success rate was 63.0. Unlike the

GPA algorithm the behavior in the optimal region appears to be more sta-

ble. While the GPA base algorithm does have the best performance of 72.0

percent, it only cross 62 percent at one other dimension. Meanwhile the

EDMA based algorithm crossed the 62 percent line five times.

Outside of dimensions 6 through 10 only the behavior at dimension 3 is

noteworthy. The algorithm here reached 62.5 percent success rate. This is

far better than the behavior of the competing algorithms for dimension 3.

It is exactly 6.0 percent point better than the LLE/GPA combination at 3

dimensions. The MDS algorithm failed to cross the 55 percent barrier at

target dimension three altogether. We can generalize that for dimensions

two through five the LLE/GPA was the best performing algorithm. This is

further demonstrated in the following table 5.
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As we can see it recorded an average success rate of 60.5 percent. None

of the other algorithms managed to cross the 60 percent mark. This was

mainly due to the behavior of the LLE/EDMA algorithm at dimensions two

and three. On the other hand, the GPA based algorithm outperformed the

LLE/EDMA combination at target dimensions four and five. At dimension

4 even the MDS approach was more successful than the EDMA-based locally

linear embedding.

Last but not least, we will focus on the variability of the measurements

of the EDMA/LLE algorithm. The variability and standard deviation was

computed for target dimensions 3, 8, 9 and 10. The results are recorded in

the table 6.

If compared to MDS algorithm the EDMA/LLE method appears to be

more stable. While the variability of the MDS method ranged from 56.4 to

148.9, the variability of the selected EDMA runs never crossed 70. On the

whole, the lowest standard deviation was recorded for dimension nine (6.58).

The highest success rate for dimension eight (63.7 percent), was not caused

by positive outliers as we can see from the table. The variance for dimension

8 was comparable to the best result of dimension nine. Target dimension

three was the least successful one both in terms of mean success rate as well

as in terms of variability from the selected dimensions.

Summary

In conclusion, the LLE with GPA algorithm recorded the best overall result

for the examined dataset at dimension 6 with a success rate of 72.0 percent.

The highest average across all dimensions was recorded by the LLE with

EDMA algorithm. It was also the most stable algorithm.

On the dataset in question, all three algorithms performed best in the

situation when they shared their work evenly with the clustering algorithm.

The best performing dimension for LLE with GPA was dimension 6, while

MDS and LLE/EDMA recorded the highest averages at dimension 8 through

10. For dimensions two through five the algorithms rarely crossed the 60

percent mark. While the average score for dimensions six through ten was
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well over the 60 percent mark, we should note that there was a tendency

to lower performance as the dimension increased over ten. This is caused

by the fact that the information contained in these dimension has very little

relevance for the clustering process and only misleads the clustering process.

It appears that for our dataset, the dimensionality should not be reduced

as far as possible as this leads to loss of information for the clustering process.

Given the relatively small sample size, we must be careful in assessing the

relevance of this observation. Nevertheless, the fact that the same behaviour

was observed for all three algorithms, solidifies this claim.

Thus the question arises, whether we can alter the process so that we can

adopt the original approach - ie. reducing the dimension as far as possible.

We will discuss our approach that uses multipass dimensionality reduction

in the following section.
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Table 3: Success rate for the GPA/LLE measurements

Dimension Mean Max Min

2 58.3 62.5 50

3 56.5 70.8 50

4 61.9 66.7 54.1

5 61.3 75 50

6 72.0 83.3 58.3

7 61.8 75 50

8 62.4 75 54.1

9 61.2 75 50

10 60.6 75 50

11 58.8 87.5 54.1

12 60.1 75 50

13 61.2 75 50
Source: Author.

Table 4: Success rate of the EDMA/LLE algorithm

Dimensions Mean Std. Dev.

2-5 60.4 2.00

6-10 63.3 1.51

11-13 59.1 1.24
Source: Author.

Table 5: Success rate of the algorithms for target dimensions 2 through 5

Dimension MDS GPA/LLE EDMA/LLE

2 60.6 58.3 61.6

3 54.8 56.5 62.5

4 59.5 61.9 58.2

5 52.4 61.3 59.5

Mean (2-5) 56.9 59.5 60.4
Source: Author.
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Table 6: Variability of the MDS measurements

Dimension Mean Variability Std. Dev.

3 62.5 69.44 8.33

8 63.7 44.98 6.70

9 63.0 43.30 6.58

10 63.0 50.14 7.08
Source: Author.
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6 Multipass dimensionality reduction

In the previous section we have discussed the impact of the target dimension

on the result of the classification process. We have shown in the previous

section that it appears that the optimal division of labor between the clus-

tering and dimensionality reduction algorithm is an even division partition.

While there exist guidelines as to how to select optimal dimensionality for

PCA, dimensionality is an explicit parameter of both MDS and LLE. Thus

the user is forced to determine the optimal dimension by trial and error.

Therefore our goal is to focus on lowering the number of dimensions re-

quired for successful classification. In particular, we will focus on the per-

formance of the algorithms at target dimensionality 2. Success in this task

would allow the user to quickly find a reasonable clustering output without

being forced to iterate through the entire target dimension space.

In order to achieve this goal, we will introduce a new multipass approach

towards dimensionality reduction. First and foremost, we describe the al-

gorithm for multipass dimensionality reduction. Subsequently, we compare

the performance of the multipass algorithms with the traditional approach

at dimensionality two. Furthermore, we concentrate at selecting the optimal

k-means algorithm on the classification process.

We will also study the behavior of the multipass algorithm at higher di-

mensions and once again discuss its advantages and disadvantages compared

to the singlepass methods. Finally we will focus on the impact of the number

of neighbors parameter both on the singlepass and multipass LLE algorithms.

6.1 Description of the algorithm

In this section, we will describe the multipass dimensionality reductionalgo-

rithm.

At start, the user selects the target dimension for the algorithm and

also assists in defining the step function. We begin the process by applying

the preprocessing algorithm on the dataset. The preprocessing algorithm

in our case will be either EDMA or GPA. Next, we determine the next
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target dimension by applying the user defined step function. Then we apply

the dimensionality reduction algorithm (ie. LLE or MDS) with the target

dimension determined by the step function. We repeat these two steps until

the desired dimensionality (typically 2 or 3) is reached. In this thesis, we will

limit ourselves to using simple division as the step function s:

s(dtrg, dcur, n) = max(dcurdivn, dtrg)

We finish the process by using a clustering algorithm on the resulting

data. In a more formal way, the algorithms looks as follows:

1. INPUT:

• Dataset

• Target dimension

• Step function or step parameter

• Dimensionality reduction algorithm (MDS, LLE)

• Preprocessing algorithm (GPA, EDMA)

• Clustering algorithm (Hartigan-Wong, Lloyd)

2. Apply the preprocessing algorithm on the dataset. Let the current

dataset be the dataset returned by the preprocessing algorithm.

3. Calculate the next dimension using the step function.

4. Apply the dimensionality reduction algorithm on the current dataset.

Let the current dataset be the dataset returned by the dimensionality

reduction algorithm.

5. If the next dimension is greater than the target dimension, go to 3,

otherwise go to 6.

6. Use the clustering algorithm on the current dataset.

7. OUTPUT: Classification provided by the clustering algorithm in the

previous step.
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A similar concept of iterative dimensionality reduction is introduced in [27].

There the author uses gradient descent to improve the quality of the dimen-

sionality reduction, but they do not alter the target dimension. They also

predominantly focus on PCA and kernelPCA. Our focus will be on the im-

provement of LLE and MDS performance.

6.2 Comparing the algorithms

Once again we begin the testing process by comparing the algorithms at tar-

get dimensionality two. Our starting hypothesis is that multipass dimen-

sionality reduction improves the clustering quality at low dimen-

sionality if compared with the singlepass approach. Furthermore, the

multipass algorithm should lead towards more stable clustering results.

In order to proof this hypothesis, we will compare the results from the

section 5.2 with the results of the multipass algorithm at dimensionality two.

In order to proof the second part of the hypothesis we will compare the

variability of the success rates between the two approaches. We will execute

each of the following algorithms seven times on the same dataset:

• Multipass EDMA/MDS

• Multipass EDMA/LLE

• Multipass GPA/LLE

Once again the final clustering algorithm will be in all cases Hartigan-Wong

clustering. The number of clusters will be kept to two clusters. We will focus

on the impact of both of these variables in the following parts of the thesis.

For the LLE based algorithms, the number of closest neighbors was kept at

eight. This means that in the initial stages the algorithm performs the LLE

algorithm with the number of neighbors equal to the target dimension plus

one. Once the dimensionality drops below eight, the number of neighbors is

left at eight.

The overview of the results is presented in the table 7.
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Table 7: Multipass dimensionality reduction

Algorithm Mean Median Max Min

MDS+EDMA 76.7 79.1 79.1 70.8

LLE+EDMA 58.3 58.3 66.7 54.1

LLE+GPA 67.2 58.3 79.1 58.3
Source: Author.

Unfortunately, our hypothesis is only partly confirmed by these results.

On the whole, the multipass-based algorithms with target dimension 2 re-

corded a mean success rate of 67.4 percent. We can see that this is far

higher (7.3 percent points) than the average of the singlepass algorithms at

dimensionality two. However, from the table it is obvious that the algorithms

benefited differently from the multipass approach.

Especially, the multipass MDS algorithm performed extremely well. Not

only did it outperform the standard MDS algorithm at two dimensions. In

fact, it was the most successful of the methods used so far. It recorded an

average success rate of 76.7 percent. This is 4.7 percent point higher than

the previously best result for the singlepass GPA+LLE combination at target

dimensionality 8. Moreover, the clustering results appear to be stable. This

is suggested by the very high minimal clustering value of 70.8 percent. All

of the approaches handled so far, recorded a minimal clustering value of less

than sixty percent. The second best minimal clustering of 58.3 percent was

shared by multipass LLE+GPA at target dimensionality 2 and the singlepass

LLE+GPA algorithm at dimensionality 6. Further evidence to the stability

of the MDS multipass algorithm is provided in the table 8.

From this table, we can discern that not only did it the MDS achieve

the highest success rate on the examined dataset. Moreover, if compared to

the three other well performing methods, multipass MDS method reached a

standard deviation of 4.04, while the nearest competitor recorded a standard

deviation of 8.80.

This table also suggests the potential shortcoming of the multipass LLE+GPA

method. On the one hand, it recorded a relatively high success rate of 67.2

percent. The minimal clustering success rate of 58.3 can be interpreted as
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Table 8: Variability of results

Algorithm Target dimension Mean Var Std. Dev.

Multipass MDS+EDMA 2 76.7 16.04 4.04

Multipass LLE+GPA 2 67.2 123.61 11.11

Singlepass LLE+GPA 6 72.0 77.57 8.80
Source: Author.

a relative success. Only the multipass MDS algorithm recorded a better

minimal clustering success.

On the other hand, the GPA-based multipass LLE suffers from great

instability. All of the measurements performed by us ended with a result of

either 79.1 percent or 58.3. In the end, this resulted in a very high variability

value of 123.61. This means that the quality of the clustering is largely

dependent on the initial center choice selected by the k-center algorithm as

well as the exact mechanics of the k-center algorithm. One could attempt to

fix this flaw by careful selection of clustering algorithm. Another possibility

would be to run the clustering algorithm multiple times and average the

classification results over multiple runs.

The results for the LLE+EDMA combination are disappointing. Indeed,

its mean success rate is 2.9 percent points lower than the success rate for

its singlepass variant at dimensionality two. None of the runs exceeded 70

percent clustering success rate. Overall, the best result was just 66.7 percent.

All the other runs achieved a success rate of less than 60 percent.

In conclusion, we may state that on the presented dataset multipass MDS

achieved the best performance. Multipass dimensionality reduction also im-

proved the performance of the LLE+GPA combination. Unfortunately, the

performance of the LLE+EDMA combination was poor. Therefore in the fur-

ther course of the thesis we will focus on the behavior of the more promising

methods: LLE+GPA and MDS+EDMA.
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6.3 Impact of the clustering algorithm

So far we have neglected the importance of the clustering algorithm in the

process. In all the previous test cases, we have used the Hartigan-Wong

algorithm. On the other hand, it appears that especially in the case of

multipass LLE we could improve the performance of the method by careful

selection of the clustering process.

Therefore our goal in this section is to test several clustering algorithms

and compare their results. We will compare the following k-means-based

algorithms:

• Hartigan-Wong [11]

• Lloyd [25]

• Mac Queen [26]

• Forgy [8]

It should be noted that the above described algorithms are implemented

in the R library. As a result they can be used in the Morphome3cs software.

For a detailed information on the R binding please refer to section A.3.

MDS

We will start determining the impact of the clustering algorithm by studying

the performance of the multipass MDS at dimensionality 2. The results of

this experiment are presented in the table 9.

Overall we can see that the success rate of the algorithm heavily depends

on the choice of the clustering approach. the difference between the most suc-

cessful We can see that the Hartigan-Wong algorithm was the most successful

one both in terms of average performance as well as clustering stability. This

is no surprise as this algorithm is more sophisticated than its competitors.

Both the Mac Queen and Forgy approaches achieved similar results.

While the Forgy method achieved a marginally higher success rate (0.6 per-

cent point higher than the Mac Queen variant), the Forgy algorithm was less
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Table 9: Clustering Algorithm Performance - multipass MDS

Algorithm Mean Var Std. Dev.

Hartigan-Wong 76.5 16.04 4.04

Forgy 69.6 133.91 11.44

Lloyd 60.0 120.33 10.96

Mac Queen 69.0 114.76 10.70
Source: Author.

stable than the Mac Queen approach with a 0.74 higher standard variance.

In the testing process, the Forgy method recorded a minimal clustering suc-

cess rate of 50 percent. In this respect, it was outperformed by the Mac

Queen algorithm which achieved a minimal value of 54.1 percent. Both of

the examined algorithms achieved a maximal clustering with 79.1 success

rate.

Finally, the Lloyd algorithm performed poorly. It barely crossed the

60 percent success rate. Even its variance was not comparable with the

Hartigan-Wong approach.

Multipass LLE+GPA

In the section 6.2, we have stated that while the multipass algorithm im-

proves the results of the LLE+GPA method at target dimension two, it

suffers from great instability if combined with the Hartigan-Wong cluster-

ing. In this section, we will therefore focus on improving the stability of

the LLE+GPA method by using other clustering method. Unfortunately the

results for multidimensional scaling suggest that this might not be possible

as the Hartigan-Wong algorithm outperformed the other k-center variants.

The results of the experiment are presented in the table 10.

Unlike with multipass MDS algorithm, here we can see that the Hartigan-

Wong algorithm was outperformed by both the Lloyd’s and Mac Queen’s

methods. The highest average score was achieved by the Lloyd algorithm.

This average score of 69.6 is the same as the performance of the Forgy’s

algorithm with multipass MDS. In fact, LLE+Lloyd was even more stable
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Table 10: Clustering Algorithm Performance - multipass LLE+GPA

Algorithm Mean Var Std. Dev.

Hartigan-Wong 67.2 123.61 11.11

Forgy 60.1 45.70 6.70

Lloyd 69.6 119.88 10.94

Mac Queen 68.4 91.86 9.58
Source: Author.

than the Forgy’s algorithm in terms of variability. Moreover, LLE+Lloyd

even recorded the highest individual run by a multipass clustering algorithm

so far - 83.3 percent.

While the Mac Queen’s algorithm achieved a slightly lower average suc-

cess rate (1.2 percent point) than the Forgy variant, it still outperformed the

Hartigan-Wong algorithm. It should be stressed that in this experiment Mac

Queen’s algorithm outperformed both Hartigan-Wong and Forgy in terms

of variability. Four of its runs were above seventy five percent success rate.

This is the same number as for the Lloyd’s method and one more than for

Hartigan-Wong.

The variability of the Forgy’s algorithm was exceptional (45.70). Unfor-

tunately, its mean success rate was very low. All but one of its run were

below sixty percent. Overall this combination does not look very promising.

In conclusion, we can state that while the Hartigan-Wong algorithm com-

bined well with the multidimensional scaling, it suffered from high degree of

variability when combined with locally linear embedding. On the other hand,

by using the less complex Lloyd’s and Mac Queen’s algorithms we have man-

aged to improve the stability of the LLE method. Moreover, this change also

resulted in a 2.4 percent point success rate increase. Finally we have achieved

the highest value for a multipass algorithm run by using Lloyd’s clustering

in combination with LLE.
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6.4 Selection of Target Dimension

In this section, we will study the impact of the target dimensionality pa-

rameter on the multipass algorithms. We have already stated that our main

purpose in designing the multipass approach was to improve the performance

of dimensionality reduction at target dimension 2. Now we will analyze the

behavior of the multipass algorithm and compare it with the performance of

the singlepass algorithm at low dimensions.

It should be noted that at dimensions 9 and higher the impact of the

multipass approach is relatively low as the number of iterations is only two. In

these cases, the multipass algorithm converges towards the singlepass version

and we have therefore not focused on these dimensions in our analysis.

MDS

As the MDS algorithm seemed the most promising in our initial tests, we

will focus on the behavior of the multipass MDS algorithm for dimensions

two through six. The results of the experiment are presented in the table 11.

The results for dimensions three through six are not as persuasive as for

target dimensionality 2. Overall the average success rate for dimensions three

through six is just 59.6. On the other hand, we must note that clusterings

with maximal value greater than 75 percent were recorded for all dimensions

but dimension 4. This indicates that the output from multidimensional scal-

ing does separate the two genders, however, due to the extra dimensions the

clustering algorithm is unable to find a correct clustering. This effect is not

present at dimensionality two resulting in a high mean clustering value.

If we compare the results for dimensions two through six with the per-

formance of the singlepass algorithm, we determine that for all dimensions

but target dimension 4 the multipass algorithm outperformed the singlepass

variant. The comparison between the performances of the two algorithms for

dimensions 2 through 6 is presented on the figure 5.

On average the singlepass method at dimensions 2 through 6 reached

a success rate of 56.1. In comparison, the multipass method performed on

average 6.3 percent point better. Similarly in terms of maximal performance,
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Figure 5: Comparison between singlepass and multipass MDS

Source: Author.
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Table 11: Multipass MDS - target dimension

Dimension Mean Max Min

2 76.0 79.1 70.8

3 59.2 79.1 50.0

4 54.1 54.1 54.1

5 62.5 75.0 50.0

6 60.6 79.1 50.0

7 62.5 79.1 50.0

8 61.6 75.0 54.1
Source: Author.

the singlepass MDS algorithm only reached over 70 percent clustering on two

occasions. The multipass algorithms achieved this on 15 occasions.

6.5 Impact of the LLE k-parameter

So far we have not discussed the impact of the number of neighbors on either

the singlepass or multipass locally linear embedding. Therefore we will focus

on this parameter in this section. First, we will discuss the impact of this

factor on the singlepass LLE algorithm and then we will focus on its impact

on the multipass approach.

Singlepass LLE

The best performance of the singlepass LLE algorithm with GPA as prepro-

cessor was recorded at target dimensionality 6 and therefore we have decided

to focus on the k-parameter at this dimensionality. We have kept the target

dimensionality constant and varied the number of neighbors used for the LLE

algorithm from 7 to 15.

The results of the experiment are documented in the figure 6.

We can see that the algorithm produced the best result with 11 neighbors

- 73.2 percent. This is only 2.8 percent behind the best performance of the

multipass MDS algorithm at target dimensionality 2. Overall the algorithm
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achieved a mean success rate of 62.7 percent. The standard deviation with

respect to the neighbor parameter was 5.58.

We have grouped the results of this experiment into three groups:

• Low (7-10)

• Medium (11-13)

• High (14-16)

Table 12: Aggregate results - singlepass LLE+GPA

Number of neighbors Mean Max Min

7-10 58.7 61.3 53.5

11-13 68.3 73.2 65.5

14-16 62.0 63.4 60.7
Source: Author.

The aggregate results for these neighbor counts are shown in the table 12.

As is obvious from the table, the algorithm performed best at dimensions

11 through 13. With this number of neighbors, the algorithm recorded an

average success rate of 68.3 percent.

It was expected that the performance of the algorithm would be less

impressive at dimensions 7 through 10. Here the algorithm recorded a mean

success rate of 58.8 percent. This is almost ten percent points less than in the

above mentioned optimal range. Furthermore, in two instances the algorithm

failed to cross the 60 percent mark. Especially the result at dimensionality

For dim = k + 1 the LLE algorithm degenerates as the dataset tends to

fragment into closed sets of neighboring specimens. As a result the main ad-

vantage of LLE - its non-linearity - is more or less lost. For further examples

of this effect, see for instance [37] and [40].

Multipass LLE

Having studied the behavior of the single pass algorithm in respect to the

number of neighbors chosen, we will now focus on the behavior of the mul-

tipass LLE algorithm. We have already mentioned that the algorithm here
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Figure 6: Singlepass LLE+GPA - Impact of the neighbor factor

Source: Author.
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behaves slightly differently. As long as the next dimensionality is higher than

the maximal number of neighbors the multipass algorithm uses the current

number of dimensions plus 1. Only after the dimensionality drops below the

specified number we start using the user defined k-parameter.

In this experiment we will use the multipass LLE algorithm with GPA

as a preprocessor. Target dimensionality will be kept at 2. For fair compar-

ison reason, we have decided to use Hartigan-Wong clustering even though

it appears to be less beneficial for the LLE algorithm. For each maximal

neighbor count we have run the test seven times. We have decided to focus

on neighbor counts 2 through 12.

The results of the above described experiment are documented in the

figure 7.

On our dataset, the algorithm performed best with the maximal neighbor

count of 9. Here it recorded an average success rate of 75.0 percent. Only

1.2 percent point worse was the performance of the algorithm with maxi-

mal neighbor count 7. Compared to the singlepass algorithm, the multipass

algorithm managed to cross the mean success rate of 70 percent for three

neighbor count choices. The last occurrence was with neighbor count 3. The

singlepass algorithm only achieved this feat once for eleven neighbors. Only

once did the algorithm fail to cross the 60 percent barrier. This happened

with five neighbors. The singlepass approach failed to cross the sixty percent

mark for neighbor counts eight and nine.

Even in terms of the mean performance across neighbor count did the

multipass algorithm outperform the single pass version. The mean success

rate for the multipass method was 65.7. This is 3.0 percent point higher than

the success rate of the singlepass algorithm. In terms of variance between

the performance of the method among different neighbor counts, both the

singlepass and multipass recorded similar results. The slight advantage was

once again held by the multipass algorithm which recorded a standard devia-

tion of 5.41 which is 0.14 lower than the standard deviation of the singlepass

algorithm.

Once again we will group the results based on the number of neighbors

used into three categories:
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• Low (2-5)

• Medium (6-9)

• High (10-12)

The summary of the aggregate results is presented in table 13.

Table 13: Aggregate results - multipass LLE+GPA

Number of neighbors Mean Max Min

2-5 63.9 70.8 58.3

6-9 69.9 75.0 64.8

10-12 62.4 64.8 60.4
Source: Author.

All in all, we can observe that both the multipass and singlepass methods

exhibit similar properties in respect to the number of neighbors chosen. Both

perform best in the medium range. Here both the algorithms reach a an

average success above 65 percent. While the performance of both method in

the low and high neighbor ranges oscillates between 55 and 65 percent.

The main drawback of the multipass algorithm appears to be a high dif-

ference between adjacent neighbor counts. While the algorithm performs

extremely well for target neighbor count 7 and 9, it performs less than op-

timally for neighbor count 8. Unfortunately, we have little idea why this is

the case.

On the analyzed dataset, once again the multipass algorithm outper-

formed the singlepass approach in all three categories. The highest difference

was in the low category. This gap (5.2 percent points) was predominantly

caused by the performance of the multipass algorithm with 3 neighbors and

the comparatively poor performance of the singlepass algorithm with maxi-

mum neighbor count of 9. Even without these outliers the singlepass algo-

rithm would still lag behind the multipass variant but the difference would

be within two percent points. The smallest gap of 0.4 percent point was in

the high neighbor count category. The difference in the medium category

was 1.6 percent point.
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Figure 7: Multipass LLE+GPA - Impact of the neighbor factor

Source: Author.
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6.6 Summary

Overall, we may conclude that multipass methods do improve the perfor-

mance of the clustering algorithm on the analyzed dataset. The greatest

improvement was recorded for multi-pass MDS at target dimensionality 2.

We also improved the performance of the LLE+GPA by applying the multi-

pass approach.

Furthermore, by using the multipass method we have managed to decrease

the number of dimensions and neighbors required for successful classification

of our dataset. While the singlepass method required from 6 to 10 dimensions

to achieve optimal performance, on our dataset multipass MDS peaked at

dimensionality 2. Similarly, in terms of number neighbors for the LLE+GPA

algorithm the singlepass approach required between 11 and 13. The multipass

algorithm performed best for neighbor counts 6 through 9.

Finally, we have determined that for multipass LLE+GPA the best per-

forming clustering methods on our dataset were Lloyd’s and Mac Queen’s.

On the other hand, Hartigan-Wong clustering was the best performing clus-

tering algorithm for multipass MDS.
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7 Challenges and open problems

In this thesis, we have restricted ourselves to applying multipass dimensional-

ity reduction to locally linear embedding and multidimensional scaling. Our

goal was to improve the performance of dimensionality reduction in combi-

nation with clustering algorithms.

We are aware that more testing of the multipass methods should be con-

ducted. We would like to verify the multipass methods on several datasets

with greater number of clustering groups and higher number of specimen.

However, multipass dimensionality reduction can be used in conjunction

with other dimensionality reduction methods such as ISOMAP, PCA and

Laplacian Eigenmaps. Furthermore, there are opportunities in combining

multipass dimensionality reduction with the variants of the base algorithms

such as the kernel or Hessian versions of LLE. Another possibility is using

our method with non-metric multidimensional scaling. The interested reader

may find further information on non-metric MDS in [1].

Even though we have not focused on supervised learning, multipass di-

mensionality reduction could be used in this area as well. It would be espe-

cially interesting to implement a k-NN classifier based on multipass super-

vised LLE and compare the results with the single pass Zhang’s approach as

described in [40].

In order to refine the presented results, a calculation of Spearman and

Procrustes measures on the clustering output should be undertaken. For a

detailed description of these methods, we refer the interested reader to Kayo’s

dissertation [17].
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8 Conclusion

Our first goal was to analyze previous research on dimensionality reduction

in the fields of morphometry and anthropology. We have determined that

linear dimensionality reduction methods are prevalent. Especially principal

component analysis is well studied and used both in outline and landmark

analysis. On the other hand, comparatively less work is dedicated towards

landmark based locally linear embedding. Furthermore, most of the work on

LLE has been dedicated towards supervised locally linear embedding.

In the theoretical part of the thesis, we have described the main algo-

rithms for dimensionality reduction and clustering. We have also discussed

approaches towards landmark registration.

Having assembled the theoretical apparatus for practical analysis, we first

focused on traditional non-linear dimensionality reduction techniques. In

particular, we have focused on locally linear embedding and multidimensional

scaling in combination with EDMA and GPA. We have tested these methods

using a dataset consisting of landmarks on 3D facial scans.

We speculated that the optimal dimension for the non-linear methods

would be 2 or 3. Based upon our experiments, we were forced to abandon

this hypothesis. It appears that for our dataset the EDMA-based algorithms

peaked at target dimensionality 8 through 10. On the other hand, the combi-

nation between GPA and LLE achieved the best preliminary result at target

dimensionality 6. We concluded that finding optimal target dimensionality is

a complex challenge for the user. This led us towards creating the multipass

dimensionality reduction.

Our main goal was to improve the performance of the dimensionality re-

duction in respect to the success rate of the clustering output. Furthermore,

our goal was to focus reducing the number of dimensions required for success-

ful classification so that the user is not forced to blindly search through the

dimension space in order to improve the clustering quality. We have tested

three variants of the multipass algorithm based upon the singlepass methods

developed in the previous chapter.

On the presented dataset, the multipass MDS at dimensionality 2 two
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was the best performing algorithm overall. Moreover, we have compared

the results between the multi- and singlepass LLE algorithms based on the

number of neighbors used for the LLE algorithm. We have determined that

the multipass algorithm outperformed the singlepass variant both in terms

of maximal and average performance.

In terms of clustering algorithm choice, we have determined that for the

MDS algorithm Hartigan-Wong clustering performed best. In comparison,

the less complicated Forgy and Mac Queen clustering methods were more

stable for the multipass LLE GPA combination. Both of these algorithms

outperformed the Hartigan-Wong clustering in terms of mean success rate

and variance. While the Forgy algorithm recorded a slightly higher average

performance, the Mac Queen algorithm was more stable in terms of standard

deviation.

For the discussed dataset, we can conclude that the multipass approach

not only improved the quality of clustering but allowed to reduce the number

of dimensions further than the singlepass algorithm. Finally, we have listed

ideas for further research and application of the multipass dimensionality

reduction algorithms.
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A Morphome3cs

A.1 Overview and aim of the Morphome3cs project

In this part we will describe the basic aim of the Morphometrics project as

well as demonstrate a need for a unifying platform for morphometric research.

The Morphome3cs project was proposed as a Software project at the

Faculty of Mathematics and Physics of Charles University in Prague. The

specification was based on the requirements of researchers from the Faculty

of Science, especially from the Department of Anthropology and Human

Genetics.

When development was started these researchers were forced to use nu-

merous applications in order to perform a single experiment. One application

was used to acquire the landmarks, in the next program the was modified

and finally a third program was used for statistical analysis. Often these

applications were poorly maintained and documented. As a result the aim

of the Morphome3cs projects was to offer an open and modifiable platform

that would integrate most of the methods used in morphometric studies. See

also [29].

The main goal was to allow for both a smooth data acquisition as well

as usage of mathematical and statistical methods for users without deep

mathematical knowledge. The framework was also developed for science

students as an educational tool in morphometrical analysis. Furthermore,

the framework was successfully used for several bachelor and diploma thesis

on both faculties as well as a tool in academic research papers. For further

information, refer to [31] and [29].

A.2 Users of the Morphome3cs platform

In this section we will describe the two main user groups of the Morphome3cs

framework.

The users in the first group are those who mainly use Morphome3cs for

research or study purposes. They use the prepared morphometric methods

without requiring to understand the inner mechanism of both the framework
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as well as the morphometric methods. As such no programming or mathe-

matical knowledge is required for these users.

The second user group are responsible for administering applications,

managing computation environments and preparing computation schemes/guides

for the users from the first group. In short, they prepare methods for the first

group of users, but they can also utilize the system for their own research.

This scripting is performed in Python and therefore basic programming skills

are required. Finally, this user-programmer should have both understanding

of the inner mechanisms of Morphome3cs platform as well as knowledge of

the mathematical methods. Additional information are provided in [29].

A.3 Statistical computation in Morphome3cs

In order to facilitate implementation of statistical method, Morphome3cs

relies on the open-source statistical library R available from [34]. While it

would be possible to directly execute R commands from C#, access to the R

functionality is facilitated using the rdcom library. This library is available

from [2].

The main functionalities of the binding are as follows:

• Transfer data between C# code and R

• Allow C# code access to statistical methods of R

• Allow C# code access to R plotting methods

At the start of the Morphome3cs application several R processes are ini-

tialized. Access to these process can then be acquired via a manager. Access

to the interpreter is exclusive and no other thread can interfere with the

acquired R interpreter. Using the interpreter the C# thread can execute R

commands and transfer data to and from R as described in [29].

Once the interpreter was released there is no guarantee that data and

variables will be preserved within the R interpreter. While there could be

an argument for persistence (see the function call transfer issues) this would

complicate the implementation and usage severely in most cases. There
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would mainly exist no guarantee as to which variables are used and can safely

be accessed. Moreover, data transfer between C# and R is not time critical

and thus using shared memory for the interpreters or persistent variables

between acquire calls was rejected.

Limitations of the binding

Unfortunately the binding system does not currently support creation of

external graphical devices of R or its other interactive features. However,

the native R plotting devices can still be used and their output stored to

various image formats.

Finally, R objects containing function calls cannot currently be com-

pletely transfered to C# (one example is the lda object). If the function

call is not required to perform further R operations this can be neglected.

This has however no impact on further computation within C#. A possible

workaround is to perform all R-related computation within a single C# filter

without releasing the R interpreter.
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B Installing Morphome3cs

Here we will describe how to install Morphome3cs. The installation proce-

dure can be divided in two parts. First the prerequisites of Morphome3cs

are installed, then Morphome3cs proper is installed. The prerequisites of

Morphome3cs are:

• Windows Installer 3.1

• .NET Framework v. 3.5

• RAndFriends v. 2.13.1

These are provided on the installation DVD. If you run the setup.exe program

from the DVD distribution these programs will be automatically installed if

they are not present on your PC. Alternatively you can download these pro-

grams yourself and manually install them. RAndFriends is available from [2].

The current version of .NET framework is available at [28].

After installing the prerequisites of Morphome3cs, you are ready to in-

stall the main application. This is a straightforward process. In the first

screen 8 you are asked whether or not you want to install the necessary R

packages. You should generally allow the packages to be installed if you wish

to use the R-based scripts. You can download them anytime by running the

RInstallPackages.exe script from the installation directory. Finally, you are

asked to select the installation folder in the screen 9.
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Figure 8: Installation of R packages

Source: Author.

Figure 9: Selecting the install folder for Morphome3cs

Source: Author.



C REPRODUCING THE RESULTS 86

C Reproducing the results

In this section, we will describe how to reproduce the results of the thesis

using the Morphometr3cs software.

C.1 GUI-based scripts

The first way to test the described methods is by experimenting with their

settings interactively in a GUI-based Morphome3cs workflow. There are six

such workflows:

• Multipass MDS

• Multipass LLE+GPA

• Multipass LLE+EDMA

• Singlepass MDS

• Singlepass LLE+GPA

• Singlepass LLE+EDMA

These workflows can be run from the Morphome3cs Workflow menu.

First, the method(MDS, LLE+GPA, LLE+EDMA) is selected. Then you

select whether to use single- or multipass algorithm. Finally, you choose the

option Single Run from the menu. This is shown on the figure 10.

Once the filter was executed several tabs appear on the screen. In the

first tab, you can select the dataset to be used in the experiment. This is

typically not needed since you get to select it anyway in the specimen editor.

For the GPA-based filters the tab 11 is displayed. In this tab, you can select

whether to normalize the dataset in respect to reflection and scale. For the

default dataset, we chose not to normalize in respect to scale and reflection

since all the images were already scaled and oriented in respect to reflection

during the data acquisition phase.

In the LLE tab you can select the parameters of the dimensionality re-

duction algorithm. The figure 12 shows the options for the multipass LLE
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Figure 10: Selecting the Single Run script from Morphome3cs menu

Source: Author.

Figure 11: GPA Tab

Source: Author.
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Figure 12: Dimensionality Reduction Tab

Source: Author.

variant. Here you can select the target dimensionality and the number of

neighbors. For MDS, the number of neighbors is not present. Finally, the re-

duction factor field determines the speed with which dimensions are reduced

in the multipass algorithm. For example, if you increase this number to 4,

every time the target dimension for the next step of the algorithm will be

divided by 4. This option is only present for multipass methods.

The clustering tab allows you to select the number of clusters to be used

in the clustering algorithm and the appropriate clustering algorithm. You

can see it on the figure 13. Finally, on the summary card you should select

the file to which you want to write the report. This report contains the

success rate and the classification of the specimens. In addition to it, the

centers of the clusters are also given. Having select the report path, the next

step is pressing the run button on the summary tab.

After pressing the Run button the specimen editor will appear. In this

powerful tool you can among others add specimen to the dataset, change

their properties and locate landmarks. For details refer to the Morphome3cs

user manuals [30] and citeMORPHO2USER. Here we will restrict ourselves

to merely selecting the provided dataset. To perform this action, select Open

Specimens from the Editor menu and open the provided sample. Wait for

the program to load the specimen table. The state of the specimen editor
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Figure 13: Clustering Tab

Source: Author.

should then resemble figure 14. Afterwards close the specimen editor.

A window(as depicted in figure 15) will pop up asking you to select the

attribute from the specimen table that determines the clusters in the dataset.

This is only used for calculating the success rate in the report. Select SEX

and press OK. Finally, the above described report will be produced.

C.2 Scripts without GUI

The other way of reproducing the results of this thesis is running the non-

interactive python scripts in Morphome3cs. For each of the algorithms several

methods are provided:

• Finding optimal dimension

• Finding optimal clustering method

• Finding optimal optimal neighbor count (LLE only)

The file for each of the scripts can be invoked from the Morphome3cs Work-

flow menu. These scripts only ask you to select the dataset and the clas-
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Figure 14: Specimen Editor

Source: Author.

Figure 15: Selection of the Classification Attribute

Source: Author.
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sification parameter as was discussed in the previous section. The output

is then written to the Results directory in the Morphome3cs installation

folder. You may change the directory to which the output will be written in

the Morphome3cs configuration. The application must be restarted before

these changes take place. Alternatively you can directly edit the scripts. For

details see Morphometrics programmer’s guides [29] and [31]. The scripts

are located in the PythonScripts directory in the Morphome3cs installation

directory.

It should be noted that these scripts are targeted towards user-programmer

rather than the user-student group. These scripts may require some constants

such as maximal dimensionality to be edited in the Python script so that they

funcion optimally on datasets other than the one provided.
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D Note on the used configuration

For all the measurements in this thesis, the following configuration was used:

• CPU: AMD Athlon64 3500+

• RAM: 1024 MB

• GPU: ATI Radeon 1900

• OS: MS Windows XP SP2

• MS Visual Studio 2008 SP 3.5

• RAndFriends version 2.9.2

It should be noted that this is far from modern hardware and that all

the methods run smoothly. Especially the processor is single-core. While

Morphome3cs allows for multi threading the methods were not optimized for

multi-threaded environment. Similarly, the RAndFriends version is not the

most recent one but Morphome3cs should run without problems on versions

greater than 2.8.1. Nevertheless, the current version 2.13.1 is recommended.
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E Contents of the DVD

• setup.exe, Morphome3cs.msi - the Morphome3cs installer

• thesis.pdf - this file

• src.zip - zipped source code of Morphome3cs

• manuals directory - contains the user and developer guides for Mor-

phome3cs 1 and 2

• data directory - contains the test dataset and the specimen editor file

test.xml

• DotNetFx directory - .NET Framework installer

• WindowsInstaller3 1 directory - Installer setup

• RAndFriends directory - RAndFriends installer
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