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1. History
The labelling problem is kind of a distance constrained vertex coloring. But first
we look at its ancestor, the channel assignment problem.

The channel assignment problem is to assign a channel (nonnegative integer)
to each radio transmitter so that interfering transmitters are assigned channels
whose difference is big enough.

Roberts [7] proposed a variant of the channel assignment problem in which
"close" transmitters must receive different channels and "very close" transmitters
must receive channels that are at least two channels apart. To formulate the
problem in graphs, the transmitters are represented by vertices of a graph. Two
vertices are "very close" if they are adjacent in the graph and "close" if they are
at distance two. This is the definition of L(2, 1)-labeling. More precise definition
will follow later.

This definition provides a natural motivation of this problem.
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2. Labeling
Labeling of a graphG = (V,E) is a mapping of vertices to nonnegative integers. It
is similar to a proper coloring of a graph, just additional constrains are introduced.

Definition 1 (L(p, q)-labelling). An L(p, q)-labelling is a mapping l of vertices
to non negative integers with the following constrains.
Condition p: vertices connected by an edge are labelled by labels that differ by
at least p.

∀u, v ∈ V, (u, v) ∈ E : |l(u)− l(v)| ≥ p

Condition q: vertices with a common neighbour are labelled by labels that differ
by at least q.

∀u, v, w ∈ V, (u,w), (w, v) ∈ E : |l(u)− l(v)| ≥ q

We can also define such labelling in a more general way.

Definition 2 (Distance). Distance between vertices u and v in a graph G is the
length of the shortest path between these vertices. This distance is denoted by
the symbol dist(u, v).

Definition 3 (Span of a labelling). Let G = (V,E) be a graph and l : V → N
be a labelling function. The span of the labelling l is defined as

λ = max
v∈V

l(v)−min
v∈V

l(v).

It is good to point out that any labelling of the span λ may actually use λ+ 1
labels. It is common, that the labels are chosen as 0, 1, . . . , λ.

There is also a variant of the labelling problem with more constrains:

Definition 4 (L(c1, c2, c3, ..., ck)-labelling). Let G = (V,E) be a graph and
l : V → {0, 1, . . . } be a function. The function l is an L(c1, c2, c3, ..., ck)-labelling
if the following holds:

∀u, v ∈ V, ∀i ∈ {1, ..., k} : dist(u, v) = i⇒ |l(u)− l(v)| ≥ ci

Definition 5 (λ−L(p, q)-labelling). Let G = (V,E) be a graph. We say, that
the graph G can be λ−L(p, q)-labelled if there exists an L(p, q)-labelling with the
span λ.
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3. Our question
We investigate computational complexity of the existence of an L(p, q)-labeling.
For this purpose we now define various decision problems. These problems differ
by the choice of parameters that are fixed, hence do not belong to the input.
When a parameter becomes fixed, the problem may become tractable as we will
show in some cases.

Definitions of complexity and tractability can be found for example here [4].
L-labeling
Instance: A graph G and integers p, q and λ.
Question: Can G be properly L(p, q)-labelled by the set of labels {0, 1, . . . , λ}?

As p and q are on the input, you can ask whether a graph G admits an
L(1, 0)-labelling and that is equivalent of asking for a chromatic number of G,
which is a well known NP-complete problem.

So we need to ask for a bit different problem. This new formulation of the
problem gives us more accurate characterization of the L(p, q)-labelling problem.

Generally, fixing some portion of the input as a parameter of the problem can
help to get better understanding of the problem. First we try to fix just variables
p and q. So the problem is changed to:
L(p, q)-labeling
Parameters: Integer p and q.
Instance: A graph G and an integer λ.
Question: Can G be properly L(p, q)-labelled by the set of labels {0, 1, . . . , λ}?

It was already shown before, that there are values of λ for which instance of
this problem is NP-hard to decide.

The last variable to fix is the span λ.
λ−L(p, q)-labeling
Parameters: Integer p, q and λ.
Instance: A graph G.
Question: Can G be properly L(p, q)-labelled by the set of labels {0, 1, . . . , λ}?

We study this variant of the problem. The 3−L(1, 0)-labelling problem is
equivalent to the three coloring problem, hence is NP-complete. On the other
hand, the 2−L(1, 0)-labelling problem is equivalent to the two coloring problem,
so this problem is polynomial. We seek for which parameters it belongs to which
complexity class.

In [1] Bertossi and Bonuccelli proved the NP-completeness result for
L(0, 1)-labelling.

Also the L(1, 1)-labelling problem was proved to be NP-complete with a
reduction from 3-SAT [6]. This means that any L(p, p)-labelling problem is
NP-complete as we will show in Lemma 6.

The same question for the L(2, 1)-labelling is also NP-complete [5] to answer.
This result was obtained by a double reduction: from Hamiltonian path to the
decision problem asking whether there exist an injection f : V → [0, n− 1] such
that |f(x)− f(y)| ≥ 2 whenever (x, y) ∈ G(E). This auxiliary problem was then
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reduced to the decision version of the L(2, 1)-labelling problem. The problem is
NP-complete whenever λ ≥ 4 and it is polynomial for λ ≤ 3 (this case occurs
only when G is a disjoint union of paths of length at most 3).

In [3] the authors conjectured that for every p ≥ q ≥ 1, there is a λ (depending
on p and q) such that the decision whether G admits an L(p, q)-labelling of span λ
is NP-complete. In support of their conjecture, the authors proved that there is at
least one NP-complete instance, namely that it is NP-complete to decide whether
G admits an L(p, q)-labelling for the span p+ qdp/qe for all fixed p ≥ q ≥ 1.

There are also some results considering special classes of graphs, those can be
found in a survey by Calamoneri [2].

Considering all the previous results, there are still several open problems,
e.g. the smallest unknown problem is 5−L(3, 1)-labelling.

We focus on the case when p ≥ q ≥ 1 and almost fully resolve the
λ−L(p, q)-labelling problem. The only open cases left are for λ ≥ p + 3q and
p < 2q.
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4. Properties of an L(p, q)-labelling
It is enough to focus on p and q being relative primes. Otherwise the λ, p and
q can be divided by a common divisor and this new problem is equivalent to the
previous one in the following sense.

Lemma 6 (Dividing lemma). Let G be a graph. For all p, q, λ, and c ≥ 1. The
graph G admits a λ−L(p, q)-labelling, if and only if it admits a cλ − L(cp, cq)-
labelling.

Proof. First let us prove the easy implication from left to right. Assume that
there exists a labelling l. Define l′(v) = cl(v). The span of l′ is cλ. If u and v are
adjacent, we know that |l(u)− l(v)| ≥ p and hence |l′(u)− l′(v)| = c|l(u)− l(v)| ≥
cp. Analogously, we get that the difference between two vertices with a common
neighbour is also c times bigger.

The other implication is similar. It is defined l′(v) = b l(v)
c
c. For each two

vertices u and v.

|l(u)− l(v)| ≥ d⇒ |l′(u)− l′(v)| =
∣∣∣∣⌊ l(u)c

⌋
−
⌊
l(v)

c

⌋∣∣∣∣ ≥ ∣∣∣∣⌊ l(u)− l(v)

c

⌋∣∣∣∣ ≥ ⌊dc
⌋
= d′

Depending on the distance between u and v we set d = cp or d = cq. In both
cases the rounding does not violate the distance constraint. So the d′ is exactly
p or q as needed. The same can be done for the span, decreasing it from cλ to
λ.

By the previous lemma we know, that the problems λ−L(p, q)-labelling and
cλ−L(cp, cq)-labelling are equivalent.

Lemma 7 (Inverted labelling). Let l : V → {0, 1, . . . , λ} be a λ−L(p, q) labelling
of G. Let l̄ by defined as l̄(v) = λ− l(v). Then l̄ is also a valid λ−L(p, q) labelling
of G.

Proof. As the labels used by the labeling l are 0, 1, . . . , λ, it is obvious that the
labels used by the labelling l̄ are also from the same set. Now consider two
vertices u and v. If the difference between two labels in the original labeling l is
|l(u)− l(v)| = d, then the difference between the same two labels in the inverted
labelling is |l̄(u)− l̄(v)| = |λ− l(u)− (λ− l(v))| = |l(v)− l(u)| = d. This means
that for each pair of vertices the differences of its labels are the same.

To make our proofs more readable we group labels as follows.

Definition 8. For given q and λ denote by Li the set of labels {i, i+1, . . . , i+q−1}
and by L the set of all the labels {0, 1, . . . , λ}.

Finally, we need one more simple but useful lemma.

Lemma 9. Let G be a graph, that allows a λ−L(p, q)-labelling for λ < 2p. Then
the graph G is bipartite and the partitions are A = {v ∈ V (G) | l(v) < p} and
B = {v ∈ V (G) | l(v) ≥ p}.
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Proof. Let l be the λ−L(p, q)-labelling.
Consider the set A = {v ∈ V (G) | l(v) < p} and the set B = V (G) \ A. Any

two vertices u, v ∈ A satisfy, that |l(u) − l(v)| < p and thus there is no edge
between u and v. The same holds for u, v ∈ B, since p ≤ l(u), l(v) < 2p.

The sets A and B are the classes of the bipartition of the graph G.
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5. Overview of our approach
We first develop bounds for λ, p and q where the λ−L(p, q)-labeling problem
becomes an NP-complete problem. We then employ standard method and develop
a polynomial reduction of a known NP-complete problem to the discussed problem
of L(p, q)-labeling with the span λ.

We could not find a single reduction for all values of λ, p and q, so we distin-
guish two cases according to values of these parameters. We show two reductions
from different known NP-complete problems. The first reduced NP-complete
problem is a well known variant of SAT, the NAE 3SAT. The other NP-complete
problem is a bit less known problem of edge precoloring extension.

For the SAT reduction, it is needed to construct a graph from a given Boolean
formula and use that graph as an input of the λ−L(p, q)-labelling. The solution
of this labelling problem is then transformed to a solution of the SAT problem.

The edge precoloring extension problem has a graph at the input. This graph
is transformed to an input graph of the λ−L(p, q)-labelling problem. As before,
the solution is interpreted as a solution of the edge precoloring extension problem.

There are also easy cases. For the λ < p + 2q we prove that the
λ−L(p, q)-labelling problem is polynomial. For λ ∈ {p + 2q, . . . , p + 3q − 1}
we use the SAT reduction as our proof. And at last, the edge precoloring exten-
sion problem is used for reduction for remaining values of λ. Unfortunately, there
still exists several choices of parameters when the problem is open.
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6. Satisfiability reduction
One of the basic NP-complete problems is the Satisfiability problem (SAT). In
many cases using the SAT problem in general is inconvenient. There are many
variants of the SAT problem which are still NP-complete. One of the commonly
known equivalent problem to the SAT problem is the NAE-3SAT problem.
"Not all equal"-3SAT – NAE-3SAT
Instance: Formula ϕ in conjunctive normal form with 3 variables per clause
(3-CNF).
Question: Does there exist an assignment of TRUE and FALSE values to vari-
ables, such that each clause in the formula ϕ contains both TRUE and FALSE
literal?

This problem is well known to be NP-complete[8].
In this chapter, we are interested in the following setting:

q ≥ 1

p+ 3q >λ ≥ p+ 2q

λ ≥ 2p

Combination of the inequalities yields us more implicit conditions. We also
define some variables:

3q > p

a = λ− p+ 2q

d = p− q
d >a ≥ d− q
q >a ≥ 0

Through this chapter the variables p, q and λ satisfy the above conditions.
For the SAT reduction we need to express variables and clauses of the formula

provided as an input of the SAT problem. We will construct a graph GΦ for the
formula Φ on the input. A solution of the labelling problem on the graph GΦ,
then corresponds to a solution of the SAT problem for the formula Φ. More
precisely, we formulate the result as follows.

Theorem 10. Let Φ be an instance of NAE-3SAT and GΦ be the associated graph.
Then the graph GΦ has an λ−L(p, q)-labelling if and only if Φ is satisfiable.

For the proof we describe few construction blocks and then compose them
together. Before we begin, we need a useful lemma.

Lemma 11. Any vertex of degree 3 can be λ−L(p, q)-labelled only by a label from
the set L0 or Lλ−q+1.

Proof. The vertex is denoted by v.
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L0
vc

Lpvl2

L2pvl1

L0
vl

Lp+qvm2

Lqvm1

Lp+2q
vm

Lp+2qvr2

Lpvr1

L0
vr

Figure 6.1: Basic block

First, let the vertex v be labelled by the label 0. Then the number of labels
allowed to be used on the neighbouring vertices is

λ+ 1− p = p+ 2q + a+ 1− p = 2q + a+ 1 ≥ 2q + 1.

The labels are consecutive and three common neighbours can easily fit into this
set.

For the label q, the first label outside the set L0, the situation is similar. The
labels allowed for the neighbours are consecutive, just the number has decreased
to

λ+ 1− p− q = p+ 2q + a+ 1− p− q = q + a+ 1 ≤ 2q.

Since this set is consecutive, there can be at most two neighbour of the vertex v
labelled by labels from this set.

The situation is different when the vertex v is labelled by at least label p.
Then the number of allowed labels is

λ+ 1− 2(p− 1)− 1 =

p+ 2q + a+ 2− 2p =

3q + d+ a+ 2− 2(q + d) =

q − d+ a+ 2 ≤ q + 1.

Now, the set of labels is not consecutive. It is divided to the labels smaller than
the label of the vertex v and the labels bigger than the label of the vertex v.
These two sets are at least 2p labels apart. As both these sets are nonempty,
there is one label for a neighbour from one of the sets and one from the other set.
There can be no more neighbours labelled by a label from any of the sets, since
both these sets are too small.

We can do the same from the other side and prove the same for the set Lλ−q+1

by Lemma 7.

In the following constructions we denote some of the vertices as "endpoints".
These vertices are special in two ways. They are used to join building blocks
together. In the resulting graph, they will have degree 3, thus they will be allowed
to have only labels from the sets L0 and Lλ−q+1. In the forthcoming lemmas we
assume, that these vertices have degree 3 already. This makes the lemmas and
proofs much more simple.

The first construction is depicted on Fig. 6.1.

Construction 12 (Basic Block – BB). The basic block is obtained from three
paths of length three starting at one common vertex. The common vertex is
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Lλ−q+1
vt

Lp/L0

L0/Lp

vi1

vi2

Lλ−q+1
vb

Figure 6.2: Interconnection block

L0
vc

Lpvl2

L2pvl1

L0
vl

Lp+qvm2

Lqvm1

Lp+2q
vm

Lp+2qvr2

Lpvr1

L0
vr

vt

Lp/L0

L0/Lp

vi1

vi2

Lλ−q+1
vb

Figure 6.3: Extended block

denoted by vc. The other ends of these paths are the endpoints for this basic
block and denoted by vl, vm, and vr.

We call these paths chains. The path containing the vertex vl is the left
chain, the one containing the vertex vm is the middle chain, and finally the one
containing the vertex vr is the right chain.

These chain are indistinguishable to each other. The names are used to refer
to the labels used on the chains according to the next lemma.

Lemma 13. Any λ−L(p, q)-labelling of the graph created by the Construction
12 satisfies that the vertex vc is labelled by a label from the set L0 or Lλ−q+1.
Moreover, if vc is labelled by a label from the set L0, then up to an isomorphism
of the building block we may assume without loss of generality that:

1. The endpoints vl and vr are labelled by a label from the set L0

2. The endpoint vm is labelled by a label from the set Lλ−q+1

3. The vertex vm1 is labelled from the set Lq

4. The vertex vl1 is labelled from the set L2p

5. The vertex vr1 is labelled from the set Lp

We point out that the BB construction gives us a graph, where two special
vertices have to be labelled by a label from the set L0 and one has to be labelled
by a label from the set Lλ−q+1 (or vice versa).

Definition 14 (Connecting blocks). Let B1 and B2 be two blocks and v1 be a
endpoint of B1, while v2 belongs to B2.

Connection of these two blocks by endpoints v1 and v2 means that we merge
vertices v1 and v2 together. We say that we connect also labellings of blocks B1

and B2 in the case when v1 and v2 have the same label in both labellings.

The following constructions are depicted in Fig. 6.2 and 6.3.

Construction 15 (Interconnecting Block – IB). Let IB be the path of length 5.
The second vertex of the path is the endpoint vt and the neighbour of the last
vertex is the endpoint vb.
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L0

Lλ−q+1

Lp

L0

Lλ−q+1

Lp
L0

Lλ−q+1Lp

Lp+q

Lq

Lλ−q+1

Lp/L0

L0/Lp
Lλ−q+1

Lp+q

Lq

Lλ−q+1

Lp/L0

L0/Lp
Lλ−q+1

Lp+q

Lq

Lλ−q+1

Lλ−q+1

L0

Lλ−p

Lλ−q+1

L0

Lλ−p

Lλ−q+1

L0 Lλ−p

Lλ−p−q

Lλ−q

L0

Lλ−p−q+1/
Lλ−q+1

Lλ−q+1/
Lλ−p−q+1

L0

Lλ−p−q

Lλ−q

L0

Lλ−p−q+1/
Lλ−q+1

Lλ−q+1/
Lλ−p−q+1

L0

Lλ−p−q

Lλ−q

L0

Figure 6.4: Variable circle pair

Construction 16 (Extended block – EB). The EB graph is constructed by
connecting the endpoint vm of a BB and the endpoint vt of a IB. The endpoints
of this block are the endpoints of the BB and IB, except the merged vertices vm
and vt.

Lemma 17. Any λ−L(p, q)-labelling of the graph created by the Construction 16,
such that the labels of the BB chain connected to the IB are the ones of the middle
chain and the vertex vc is labelled by a label from the set L0. Then the label of the
vertex vt is labelled by a label from the set Lλ−q+1. The label of the vertex vb is
labelled by a label from the set Lλ−q+1. The labels of vertices in between endpoints
vt and vb can be labelled by labels from the sets L0 and Lp.

Lemma 18. The endpoint vb of the graph EB can be connected with any endpoint
of the graph BB while preserving a λ−L(p, q)-labelling.

Construction 19 (Variable circle – VC). Variable circle of size c is a circle in a
graph with 3c vertices. A path of length 6 is connected to each 3k-th vertex for
0 ≤ k ≤ c− 1, k ∈ N. The free end of each of these paths is called an endpoint.

In addition, one extra edge to a new vertex is connected to each 3k + 1-th
vertex and to the third and last vertex on each of the paths.

Construction 20 (Variable circle pair). Let C1 and C2 be two variable circles
of the same size. The variable circle pair is constructed from these two circles
by shortening the path connected to the first vertex on both circles by 3 vertices
and connecting this shortened paths.

One of the circles is called positive and the other negative. Endpoints of
the positive circle are positive endpoints and endpoints of the negative circle are
negative ones.

An example of a variable circle pair is shown on the Fig. 6.4.

Lemma 21. Any λ−L(p, q)-labelling of the graph created by Construction 20
satisfies that all positive endpoints are labelled by a label from the set L0 and all
negative endpoints are labelled by a label from the set Lλ−q+1.

Construction 22. Let Φ be a 3SAT formula. Then a graph GΦ is constructed
as follows.
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L0

Lλ−q+1

Lp
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L0

Lλ−p−q+1

Lλ−p−q+1

L0

Lλ−p−2q+1

Lλ−2q+1

Figure 6.5: Construction example

The formula Φ consists of clauses over variables x1, x2, . . . , xn and clauses
ϕ1, ϕ2, . . . , ϕm. In addition we denote by ci the number of occurrences of a variable
xi.

Each xi is represented in the graph GΦ as a VC pair, each circle of size ci + 1
(one pair of paths is used to make the VC pair). These VC pairs are disjoint and
disconnected.

Each ϕi is represented in the graph GΦ as one BB joining three endpoints of
VC pairs as follows.

Each ϕi is composed from at most three literals denoted by xϕi(1), xϕi(2), xϕi(3).
For each positive literal in ϕi, one of the endpoints of the corresponding BB

is connected with a unique positive endpoint of the corresponding variable circle
pair.

Similarly, for each negative literal in ϕi, one of the endpoints of the corre-
sponding EB is connected with a unique negative endpoint of the corresponding
variable circle pair.

Fig. 6.5 shows how the complete construction looks like.
Now it is time to recall, that through this whole chapter the variables p, q

and λ satisfies the inequalities from the beginning of this chapter.

Proof of Lemma 13. The vertex vc has three neighbours, so it can have only a
label from the set L0 or Lλ−q+1 by Lemma 11. This proves the first condition.
From here it is assumed, that the vertex vc is labelled by a label from the set L0.

The neighbouring vertices can be labeled only by labels from the sets Lp, Lp+q
and Lp+2q, since λ ∈ Lp+2q.

Let the vertex vl2, the first vertex in the left chain, be labelled by a label from
the set Lp. Then the vertex vl1 can be labelled only by a label equal or bigger
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than 2p. Meaning that the number of its possible labels is:

λ− 2p =

p+ 2q + a− 2p =

2p− d+ q + a− 2p =

q + a− d

That is less than q, thus the label of the vertex vl1 has to be from the set L2p.
This is the condition 5.

The last vertex, which is the endpoint vl, cannot be labelled by a label from
the set Lλ−q+1, because this would conflict with the label of previous vertex, so
it has to be labelled by a label from the set L0. This proves the vl part of the
condition 2.

Let the vertex vm2, the first vertex in the middle chain, be labelled by a label
from the set Lp+q. The vertex vm1 cannot be labelled by a label equal or bigger
than 2p + q, because there are no such labels as we already know. This vertex
also cannot be labelled by a label from the set L0, as such label is already used
on the vertex vc. The only possible set of labels for that vertex is the set Lq. The
last vertex, which is the endpoint vm, can be labelled just by a label from the set
Lλ−q+1. This proves conditions 3 and 4.

At last, let the vertex vr2, the first vertex in the right chain, be labelled by a
label from the set Lp+2q. The vertex vr1 can be labelled by one of the labels from
q to at most λ − p. The last vertex, which is the vertex vr, cannot be labelled
by a label from the set Lλ−q+1, because of the vertex in distance 2. When the
previous vertex is labelled by a label p or bigger, then the vertex vr can be labelled
from the set L0 and that is possible, because λ ≥ 2p. This finished the proof of
conditions 2 and 6.

Proof of Lemma 17. The vertex vm is identified with the vertex vt and the vertex
vm cannot have a label from the set L0 by Lemma 13. Furthermore the vertex
vt now have degree 3, so it can be labelled only by a label from the set Lλ−q+1.
The label of the vertex vi1 cannot be from the set Lq, as a label from this set is
used on the other vertex next to vt. It also cannot use any label from λ− p to λ,
because of the label of vertex vt.

λ− p = p+ 2q + a− p = 2q + a = p+ q + a− d

So labels from the sets L0 and Lp are allowed for the vertex vi1.
The vertex vl2 can be labelled by the other set than the vertex vl1. The two

sets are p labels apart. It would be also possible to label the vertex vi2 by a label
from the set Lλ−2q+1, but then there would be no possible label for the vertex vb.

The last vertex, which is the vertex vb, is an endpoint, meaning that it can
be labelled only by a label from the set L0 or Lλ−q+1. A label from the set L0

is used on the neighbouring vertex or vertex in distance 2, so that set cannot be
used.

Proof of Lemma 18. First, let the endpoint vb be connected with the endpoint vl.
Then the vertex next to the endpoint vl can be labelled by a label from the set
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L2p by condition 5 of Lemma 13. In this setting a label from both sets L0 and
Lp can be used on the vertex next to the vertex vb on the path to the vertex vt.

In the second case, let vb be connected with the endpoint vm. Both label sets
L0 and Lp can be used here. It was already discussed in the proof of Lemma 17.

Finally, in the last case, let vb be connected with the endpoint vr. Now the
vertex next to the vertex vb can be labelled by a label from the set Lp, leaving
the label set L0 for the neighbouring vertex.

Proof of Lemma 21. The VC of size c is actually composed only of EBs, but these
EBs overlap at chains.

The vertices on the circle with the long path connected to them are the vertices
vc of a EB. The right chain of each EB overlap with the left chain of the consequent
EB. The path connected to each vc is the middle chain of the BB and the IB block.

By Lemma 13, the endpoints of the chains vl and vr are labelled by a label
from the set L0. These endpoints overlap at the vertices vc of the consequent EB.
The vertices next to the endpoints can be labelled by labels from the sets Lp and
L2p. Labels of such sets can be used on neighbouring vertices.

The one extra edge added to the vertex next to vc on the cycle ensures, that
chains are as described. The edge raises the degree of the vertex to 3 and neither
of the vertices vm1 and vm2 of the middle chain of a BB cannot by labelled by a
label from the set L0 or Lλ−q+1.

We already know that the vertex vc can be labelled only by a label from the
set L0 or the set Lλ−q+1. The endpoints vl and vr have to be labelled by a label
from the same set as the vertex vc. This concludes, that the vertices vc of all
the EBs have to be labelled by a label from the same set. We also get that all
the endpoints of the VC have to be labelled by a label from the other set (L0 or
Lλ−q+1). This is due to Lemma 18.

So far we were dealing with just one VC, but a Variable circle pair is construct-
ed from two circles. The shortening of the path connected to the first vertices of
both circles yields an IB stripped from the chain of EB. It can be also viewed as a
BB chain with an extra edge connected to the endpoint. Endpoints of both such
stripped paths are connected by an edge, raising the degree of both endpoints to
2. The extra edge raise the degree further to 3. Such vertices can be labelled
only by a label from the set L0 or Lλ−q+1. These endpoints are neighbours now,
so one has to be labelled by a label from the set L0 and the other from the set
Lλ−q+1. All the endpoints of one VC are labelled by a label from the same set,
by Lemma 17 also all the vt vertices of one VC are labelled by the same set as
well.

All together we have that all the endpoints of one VC has to be labelled by a
label from the set L0 and all the endpoints of the other VC by a label from the
set Lλ−q+1 or vice versa. Just picking the right VC as positive one and the other
as negative one proves the lemma.

Proof of Theorem 10. Assume that the NAE-3SAT instance is satisfiable and
that x′i is the value of the variable xi in a satisfying assignment.

For each x′i being true, the labelling of the corresponding variable circle pair
is chosen as depicted on Fig. 6.4. Vertices on the EB parts of VC are depicted
with two sets, one of the sets is picked based on the chain connected to this EB.
This is described in the proof of Lemma 18. From each set, the first label is used.
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For each x′i being false, the labelling of the corresponding variable circle pair
is chosen as inverted labelling to the labelling used in the first case.

Also the labelling of BBs representing clauses is chosen as depicted on Fig.
6.1 and the first label of each set is used. If the clause has two positive and one
negative literal the labelling is as described. Otherwise the inverted labelling is
used.

On the other hand, assume that a λ−L(p, q)-labelling of the graph GΦ exists.
If a vertex vc of a variable circle is labelled by a label from the set L0, then
the corresponding variable is assigned true. Otherwise the label is from the set
Lλ−q+1 by Lemma 21 and the variable is assigned false.

There are two cases to consider:
In the first case all literals in the clause are positive or all are negative. The

BB corresponding to such clause has one endpoint labelled by a label from the
set Lλ−q+1 and two by a label from the set L0 or vice versa. All three variables
are connected to positive or all to negative endpoints of variable circles. So one
variable circle has to have different labelling than the other two. This means
that one has different value than the other two, and this means that this clause
is satisfied.

In the second case two literals are positive and one negative or vice versa.
Now there are two sub-cases:

The two endpoints labelled with the same label are connected to two positive
(or negative) literals. The last endpoint is connected to the negative (or positive)
literal. The two variables corresponding to the two positive (or negative) literals
thus have the same value and the last variable also has the same value, because it
is connected to the endpoint with a label from a different set. So all the variables
have the same value, but one literal is negative (or positive). This assignment
satisfies the clause.

The second sub-case is when one of the endpoints with different labels is
connected to positive literal and the other one to negative literal. These two cor-
responding variables than have the same value but the literals then have different
values so this is satisfying assignment.
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7. Edge precoloring extension
reduction
In this chapter, we are interested in λ ≥ p+ 3q. We have also changed the known
NP-complete problem, from well known NAE-3SAT to a bit less known Edge
precoloring extension problem on bipartite graphs.

Our situation have changed. The current setting for this chapter is

q ≥ 1

p ≥ 2q

λ ≥ p+ 3q

and

a = λ− (p+ 3q)

d = p− q,

where

a ≥ 0

d > a mod q.

The labelling problem with this setting behaves a bit differently, depending
on wherever λ < 2p or not. As before, the variables p, q, and λ satisfy the above
condition through this whole chapter.

The edge coloring is similar to the vertex coloring. The goal is to assign colors
to edges in such a way, that any two edges sharing a vertex have different colors.

Definition 23 (Edge coloring). Let G be a graph, and let S be a set of size χ.
A function c : E(G) → S is a proper edge coloring function if it satisfies the
following condition.

(∀e1, e2 ∈ G(E))(|e1 ∩ e2| 6= ∅)⇒ c(e1) 6= c(e2)

The set S is the set of colors.

In order to properly state the problem we want to use, we need the following
definition.

Definition 24 (Regularity of a graph). Graph G is r-regular when all the vertices
has degree exactly r.

We also need to properly state our new NP-complete problem. This problem
was proved to be NP-complete by Fiala [3].

Edge precoloring extension of 3-regular graph
Instance: A 3-regular bipartite graph G, sets B,R ⊆ E(G), B ∩R = ∅
Question: Can G be properly edge colored by 3 colors, such that all edges in B
have the same color and all edges in R have also the same, but different color?
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Theorem 25. Let G be a connected 3-regular precolored bipartite graph and G′
a graph constructed from G by Construction 26. Then the graph G′ admits an
λ−L(p, q)-labelling, if and only if the precoloring of the original graph G can be
extended to a proper 3-edge-coloring.

Now it is time to go through the construction of G′. The edge replacement
blocks are constructed later, but it is better first to know how they are used.

Construction 26. Consider that we are given a connected 3-regular bipartite
graph G = (V A∪V B, E) and disjoint sets of precolored edges B,R ⊆ E(G). The
edges of the graph G are possibly marked by b or r according to their incidence
to the sets B and R. We construct a new graph G′ by replacing each vertex from
V A and its adjacent edges by the result of construction:

1. Construction 28 if λ < 2p.

2. Construction 29 otherwise.

Observe that this procedure involves all edges of G, as the graph is bipartite.
We want both of the edge replacement blocks to behave the same. The next
lemma holds for both blocks.

Lemma 27. Any λ−L(p, q)-labelling of the block created by Construction 29 or
28 satisfies the following rules:

1. The vertex vm has a label from the set L0 or Lλ−q+1.

2. One vertex vi, i ∈ {1, 2, 3} has a label from the set Lλ−q+1

3. One vertex vi, i ∈ {1, 2, 3} has a label from the set Lλ−2q+1

4. One vertex vi, i ∈ {1, 2, 3} has a label from the set L \ (L0 ∪ Lq ∪ Lλ−q+1 ∪
Lλ−2q+1)

5. If there is a vertex vb, then it has a label from the set Lλ−q+1

6. If there is a vertex vr, then it has a label from the set Lλ−2q+1

All but the first rule assumes, that the vertex vm is labelled from the set L0.

In the following constructions we mean by "add an edge to the vertex v", that
we add a new vertex and connect this new vertex and the vertex v by an edge.

We start with the more simple construction for the inequality λ < 2p.

Construction 28 (Edge replacement block - simple). Given a vertex vm and its
three edges e1, e2, e3, the vertex vm is kept and each of the edges is replaced by a
path of length 2. This paths are denoted by p1, p2, and p3. The middle vertices
of the paths are denoted by v1, v2, and v3. In addition, the path representing
an edge marked by b (or r) is also denoted by pb (or pr) and the corresponding
vertex by vb (or vr).

There are dλ+1−p
q
e − 4 edges added to each of the vertices v1, v2, and v3.

Another two edges are added to an vertex vb, if there is such a vertex.
If there is a vertex vr, then a path of length 2 is added to this vertex and the

other end of the path is denoted by vs. The degree of the vertex vs is risen up to
dλ+1−p

q
e by adding edges to it.
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L0vf
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Figure 7.1: Edge replacement block - complex

The edge replacement block for the inequality λ ≥ 2p is depicted on Fig. 7.1.

Construction 29 (Edge replacement block - complex). Given a vertex vm and
its three edges e1, e2, e3, the vertex vm is kept and each of the three edges is
replaced by a path of length 2. The paths are denoted by p1, p2, and p3. The
middle vertices of the paths are denoted by v1, v2, and v3. In addition, the path
representing an edge marked by b (or r) is also denoted by pb (or pr) and the
corresponding vertex by vb (or vr).

A new vertex denoted by vt is added. The vertex vt is connected by
dλ+1−2p)

q
e − 2 paths of length 2 with the vertex vm. If p ≥ 3p, then a new

similar path is added.
There are dλ+1−p

q
e − 2 edges added to the vertex vb, if such vertex exists.

There can be also an edge marked by r. In this case, a new vertex vs is
introduced. The vertices vs and vt are connected by a path of length 3. The
vertex next to vt on that path is denoted by vf . There are dλ+1−p

q
e − 1 paths of

length 2 added between vertices vs and vr.
Finally, the degree of each vertex vi, i ∈ {1, 2, 3} is risen to dλ+1−p

q
e − 2, and

also the degree of vertices vm, vt, vs, and vf is risen to dλ+1−p
q
e.

Both constructions ensures that each edge of the graph G is represented by a
unique path of length 2. Also in both cases the resulting graph G′ is still bipartite,
but in neither of them it is regular any more.

Before we prove the lemma, we finish the proof of the main theorem of this
chapter.

Proof of Theorem 25. The graph G′ is constructed from the graph G by Con-
struction 26.

First, assume that an 3-edge-coloring of the graph G is given and that we want
to λ−L(p, q)-label the graph G′. The graph is divided to the Edge replacement
blocks. That is one block per vertex in the set V A. The only vertices belonging to
multiple block are the vertices from the set V B. All this vertices receive label q.
Otherwise, each block is labelled independently. The vertices of Edge replacement
blocks are labelled as depicted on Fig. 7.1. The first label from each set is used.
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A path representing an edge colored by color 1 is labelled by labels of the path
containing the vertex v1. The same holds for colors 2 and 3. The labels don’t
conflict, since the graph G is properly 3-edge colored.

Now we assume that a λ−L(p, q)-labelling of the graph G′ is given and we
want to 3-edge-color the graph G. By the Lemma 27, we know that each vertex
representing an edge is labelled by a label from one of three disjoint sets. We
color the edges of G according to these sets. Each of the three sets corresponds to
one of the three colors. The lemma also ensures that the colors of edges around
a vertex from V A are three different colors.

We now show that edges around vertices from V B are properly colored. To
be able to do that, we have to look back at the labels of vertices representing to
those edges. The vertices have labels from the sets Lλ−q+1, Lλ−2q+1, L\ (L0∪Lq∪
Lλ−q+1 ∪ Lλ−2q+1). The difference between the smallest and the biggest labels in
the sets Lλ−q+1 and Lλ−2q+1 is strictly smalled than q. So there cannot be two
vertices labelled by that sets adjacent to the same vertex. In other words, there
are two colors of edges, such that neither of them can be used around one vertex
from V B twice. The last color can be used multiple times around a single vertex,
but that is not a problem, since the colors are used evenly on the vertices from
V A. As there is only a single color which is possible to use multiple times, it
means that they have to be used evenly also on the vertices from V B.

At last, we have to assign correct colors to the edges, in order to respect the
precoloring. It is not a problem, as the vertices representing edges precolored by
one color have a label from a single set among the three possible sets.

To simplify the next proofs a bit, we define the notion of friends.

Definition 30 (Friend of a label). Friend of a label x is such label y that |x−y| ≥
p holds. In other words, x and y can be assigned to neighbouring vertices.

The "number of friends" of a label x is the maximum number of labels, which
can be used together (satisfying the q condition) in the neighbourhood of a vertex
labelled by label x.

We need a lemma similar to Lemma 11 from the previous chapter.

Lemma 31. Any vertex of degree dλ+1−p
q
e can be λ−L(p, q)-labelled only by a

label from the set L0 or Lλ−q+1.

Note that according to our choice of p, q and λ we have dλ+1−p
q
e ≥ 4.

Proof. First, let the vertex be labelled by the label 0. Then the size of the set of
labels allowed for neighbours would be

λ+ 1− p = p+ 3q + a+ 1− p = 3q + a+ 1

and the set is consecutive. The number of friends possible in such set is⌈
λ+ 1− p

q

⌉
=

⌈
3q + a+ 1

q

⌉
=

3 +

⌊
a

q

⌋
+

⌈
(a mod q) + 1

q

⌉
= 4 +

⌊
a

q

⌋
≥ 4.
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The first label not in the set L0, is the label q. When the vertex is labelled by
such label, then the set of labels allowed for neighbours is still consecutive. The
size of the set is λ+ 1− p− q, but the number of friends is just dλ+1−p

q
e − 1.

The first label, where the set of labels allowed for neighbours is non consecutive
is the label p. When the vertex is labeled by the label p, then the size of the set
is

λ+ 1− 2(p− 1)− 1 = p+ 3q + a+ 2− 2p =

3q + a+ 2− (q + d) = 2q + a+ 2− d.

To count the number of friends, we first assume that the set is consecutive. Then
the number of friends would be⌈

2q + a+ 2− d
q

⌉
= 2 +

⌊
a

q

⌋
+

⌈
(a mod q)− d+ 2

q

⌉
.

The term (a mod q) − d + 2 is at most 1 by the inequality d > (a mod q) ≥ 0
from the current setting. We know, that the set is split into two parts, one with
labels smaller than the label of the vertex and the other with bigger labels than
the label. The maximum number of friends is, when one of the sets has just one
label (or kq + 1, for any suitable k) and the other set the rest of labels. The one
label brings in one friend, and the rest 2 +

⌊
a
q

⌋
friends. Having more than one

label in the small set is wasting of labels, as the labels are too close to the first
one. So the number of friend is at most dλ+1−p

q
e − 1.

As before, by the Lemma 7, the same can be done from the other side and
prove the same for the set Lλ−q+1.

Proof of Lemma 27. We start with Construction 28. Before we prove anything
about the construction, we need to prove a simple fact of the setting when this
construction is used.

It is used only when λ < 2p. This provides us one more useful inequality:

2p > λ ≥ p+ 3q

2p > p+ 3q

p > 3q

The vertex vm is of degree dλ+1−p
q
e, thus it can be labelled only by a label

from the set L0 or Lλ−q+1 by Lemma 31. This is the first rule. From now on,
we assume, that the vertex vm is labelled by a label from the set L0, since the
lemma says so.

If there is a vertex vb, then it is of the same degree as vertex vm. So, it also
can be labelled only by a label from th set L0 or Lλ−q+1 by the same lemma. This
is the rule 5.

Now we focus on the vertex vr, if the exist such a vertex. As λ < 2p we
employ Lemma 9. Let the vertex vm be in the partition A. Then the vertex vs is
in the partition B. The vertex vm is labelled by a label from the set L0, thus the
vertex vs has to be labelled by a label from the set Lλ−q+1 by Lemma 31. The
vertex vr cannot be labelled by a label from the set Lλ−q+1, because of the label
of the vertex vs.
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The vertex vr has degree dλ+1−p
q
e − 1 and p > 3q. The second inequality

ensures, that (L0 ∪ Lq ∪ L2q) ∩ Lp = ∅. Also by the inequality λ < 2p, the set
of labels allowed for neighbours is consecutive. In particular for a vertex labelled
by a label at least p, the size of the set would be λ+ 1− 2p ≤ 1.

The number of friends of the vertex labelled by a label from the set L0 is
at most dλ+1−p

q
e, by Lemma 31. The number of friends of the vertex labelled

by a label from the set Lq is at most dλ+1−p
q
e − 1, as the set of labels allowed

for neighbours is consecutive and smaller by at least q. The same argument still
holds for the set L2q and the number of friends is dλ+1−p

q
e−2. If the vertex would

be labelled by a label from any other set, then the size of the set of labels allowed
for neighbours would be at most λ + 1− p− 3q, thus the number of friends can
be at most dλ+1−p

q
e − 3.

All the above also holds for the sets Lλ−q+1, Lλ−2q+1 and Lλ−3q+1, by Lemma
7. So the vertex vr can be labelled only by a label from the set Lλ−q+1 as its
degree is dλ+1−p

q
e − 1.

The last thing to check is, that the vertices vi, i ∈ {1, 2, 3} have to be labelled
by one label from each of the sets Lλ−q+1, Lλ−2q+1, and L \ (L0 ∪ Lq ∪ Lλ−q+1 ∪
Lλ−2q+1). As the vertices are of degree at least dλ+1−p

q
e − 2, we have just proven

this.
Now we begin with Construction 29.
The vertices vm, vt, vs, vf , and vb are of degree dλ+1−p

q
e, thus each of them can

be labelled only by a label from the set L0 or Lλ−q+1 by Lemma 31. So the first
rule is proven. Also now we are assuming, that the vertex vm is labelled by a
label from the set L0 in the rest of this prove.

If there exists a vertex vb, it is a neighbour of the vertex vm, so the only
possible set of labels for this vertex is Lλ−q+1. This proves the rule 5.

The vertices vm and vt have at least one common neighbour and the sets L0

and Lλ−q+1 both have range strictly smalled than q, the vertex vt can be labelled
only from the set Lλ−q+1. The common neighbour of vertices vm and vt is assured
by the inequality λ ≥ 2p.

Now we focus on the vertices on paths between vertices vm and vt. There is
at most dλ+1−2p

q
e such vertices. As the vertices vm and vt have labels from the

sets L0 and Lλ−q+1, we can consider them labelled by labels 0 and λ, as there
is nothing what can restrict the labels from the outer side. Then the number of
possible common friends of both vertices is exactly dλ+1−2p

q
e.

The most interesting part, are the vertices v1, v2 and v3. None of the vertices
on paths between vertices vm and vt can use a label from the set Lλ−q+1, because
of the label of the vertex vt. It is also easy to restrict the labels from the set
Lλ−2q+1 from the vertices on that paths, as p ≥ 2q.

If p ≥ 3q, then the same holds for the set Lλ−3q+1, otherwise we have erased
one of the paths between vm and vt, so we have one label, which is allowed to be
in the neighbourhood of vertex vm. This last label is from the set L \ (L0 ∪ Lq ∪
Lλ−q+1 ∪ Lλ−2q+1).

The vertices vi, i ∈ {1, 2, 3} are of degree dλ+1−p
q
e − 2, this ensures, that if

p ≥ 4q, then only labels from the sets Lλ−q+1, Lλ−2q+1 and Lλ−3q+1 can be used.
This proves rules 2, 3, and 4.

The last rule in this case is the rule 6. We know, that vertices vf and vs have
labels from the sets Lλ−q+1 and L0. Vertex vf is a neighbour of the vertex vt,
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which is labeled from the set Lλ−q+1, so it has to be labelled from the set L0.
Vertices vs and vf have a common neighbour, meaning that the vertex vs needs
to have a label from the set Lλ−q+1.

Vertices vr and vs have dλ+1−p
q
e−1 common neighbours. The vertex vs restricts

the set of labels allowed to be used on the neighbours at least to {0, 1, . . . , λ−p}.
So the vertex vr need to use at least label λ− p− q + p, in order to have enough
friends. The label is from the set Lλ−2q+1, proving the rule 6 and finishing the
proof.
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8. The easy cases
At last, it is time to look at the other cases of p, q and λ, where neither the
inequalities from the SAT reduction chapter nor the inequalities from the Edge
precoloring extension reduction chapter holds.

First consider the case λ < p. In this case, if a graph G admits a λ−L(p, q)-
labelling, then it is a set of isolated vertices. This is just by a simple fact that
an edge needs two labels at least p apart, and there are none such labels in this
narrow span.

A bit more edges are allowed for λ = p. Now the maximum degree allowed
for a vertex is 1. Hence, the graphs admitting a λ−L(p, q)-labelling are sets of
isolated edges and sets of isolated vertices.

In the following cases we are considering only connected graphs. If the graph
is disconnected, then each component can be analysed independently.

Setting p + 2q > λ ≥ p + q allows the graph to have a path of length 3. The
path can be labelled by labels p, 0, p + q and q. There cannot be more vertices
connected to that path, since there is no more labels to use.

For the setting p+ 3q > λ ≥ p+ 2q and λ < 2p it is a bit more complicated.
The possible values of p are:

2p >λ > p+ 2q

p > 2q

When λ < 2p holds, then the graph is bipartite. The inequality p + 3q > λ
allows the maximal degree to be 3. The inequality p > 2q ensures, that any
vertex labelled by a label from the set Lq has degree at most 2. Also any vertex
labelled by label 2q can be of degree at most 1. As there is no label, which can
have a consecutive set of labels allowed for friends, a vertex labelled by any label
from between 2q and λ− 2q can be of degree at most 1.

How does looks like the labels of neighbours of a vertex labelled by a label
from the set L0. There is one vertex labelled by a label from the set Lp, such
a vertex can have degree up to 1. Then, there is one vertex labelled by a label
from the set Lp+q, this vertex can have degree up to 2. Finally the last vertex is
labelled by a label from the set Lp+2q, which is part of the set Lλ−q+1, so it can
have degree up to 3.

This means that if a graph G admits a λ−L(p, q)-labelling, with this setting,
then the graph G is a cycle or a path with an edge connected to some of its
vertices.

Observation 32. A simple greedy algorithm starting with any vertex of degree 3
(or any vertex if there is no such vertex) results in a proper λ−L(p, q)-labelling
or answers that the graph does not satisfy the above conditions.
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9. Conclusion
We have resolved almost fully the λ−L(p, q)-labelling problem. The only choice
of p, q and λ for further studies is

λ ≥ p+ 3q

p < 2q.

We have used two fundamentally different approaches. One using the NAE-
3SAT problem, the other using the edge precoloring extension problem. Even
using two approaches was not enough, we had to use different constructions to
suite different choices of p, q and λ.

At last, here are the constrains for p, q, and λ of the λ−L(p, q)-labelling
problem, where the problem is yet to decide.

The problem is NP-complete when

p+ 3q > λ ≥ p+ 2q

λ ≥ 2p

or

λ ≥ p+ 3q

p ≥ 2q.

It is polynomially solvable when

p+ 3q > λ ≥ p+ 2q

λ < 2p

or

λ < p+ 2q

p > q ≥ 1.

The complexity of the λ−L(p, q)-labelling problem for small values of p and
q is illustrated in the following table.

λ−L(p, q)-labelling
p q p q p q p q p q
2 1 3 1 3 2 5 2 5 3

SAT λ = 4 7 ≤ λ ≤ 8 λ = 10 11 ≤ λ ≤ 14
EPE 5 ≤ λ 6 ≤ λ 11 ≤ λ
Poly λ ≤ 3 λ ≤ 5 λ ≤ 6 λ ≤ 9 λ ≤ 11
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