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Abstract: Learning and representing semantics is one of the most important

tasks that significantly contribute to some growing areas, as successful stories

in the recent survey of Turney and Pantel (2010). In this thesis, we present an

innovative (and first) framework for creating a multimodal distributional semantic

model from state of the art text-and image-based semantic models. We evaluate

this multimodal semantic model on simulating similarity judgements, concept

clustering and the newly introduced BLESS benchmark. We also propose an

effective algorithm, namely Parameter Estimation, to integrate text- and image-

based features in order to have a robust multimodal system. By experiments,

we show that our technique is very promising. Across all experiments, our best

multimodal model claims the first position. By relatively comparing with other

text-based models, we are justified to affirm that our model can stay in the top

line with other state of the art models.

We explore various types of visual features including SIFT and other color

SIFT channels in order to have preliminary insights about how computer-vision

techniques should be applied in the natural language processing domain.

Importantly, in this thesis, we show evidences that adding visual features

(as the perceptual information coming from images) is comparable (and possibly

better) than adding further text features to the advanced text-based model; and

more interestingly, the visual features can capture the semantic characteristics of

(especially concrete) concepts and they are complementary with respect to the

characteristics captured by textual features..

Keywords: semantics, vision-based, combination, image processing

vi



Contents

Acknowledgments iii

Summary xi

1 Introduction 1

1.1 Aim and Objective . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Dissertation Structure . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Literature Review 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Text-based Semantic Representation . . . . . . . . . . . . . . . . 8

2.2.1 Semantic Network . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Distributional Semantic Models . . . . . . . . . . . . . . . 9

2.3 Distributional Semantic Modelling . . . . . . . . . . . . . . . . . . 11

2.3.1 Unstructured Models . . . . . . . . . . . . . . . . . . . . . 11

2.3.2 Structured Models . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Semantics in Multimodal Systems . . . . . . . . . . . . . . . . . . 14

3 Image Processing: Foundation and Approach 19

3.1 Image Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.2 Pyramid Matching . . . . . . . . . . . . . . . . . . . . . . 21

vii



3.2.3 Spatial Matching . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Bag of Visual Word . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Color Descriptions in Image . . . . . . . . . . . . . . . . . . . . . 24

3.4.1 Histograms . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.2 SIFT Descriptors . . . . . . . . . . . . . . . . . . . . . . . 25

4 Multimodal Space Methodology 27

4.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Text-based semantic model . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Image-based semantic model . . . . . . . . . . . . . . . . . . . . . 29

4.3.1 Image Data . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.2 BoVW Construction . . . . . . . . . . . . . . . . . . . . . 29

4.3.3 Tag Modelling . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 Integrating Distributional Models . . . . . . . . . . . . . . . . . . 32

5 Evaluation 37

5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1.1 Evaluation benchmarks . . . . . . . . . . . . . . . . . . . . 38

5.1.2 Text-based semantic model . . . . . . . . . . . . . . . . . . 43

5.1.3 Vision-based semantic model . . . . . . . . . . . . . . . . . 44

5.1.4 Model Integration . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2.1 WordSim . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2.2 Rubenstein-Goodeneough . . . . . . . . . . . . . . . . . . 54

5.2.3 Concept Categorization . . . . . . . . . . . . . . . . . . . . 56

5.2.4 BLESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 Result conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Conclusion and Future Work 65

Bibliography 69



Summary

Distributional semantic models use large text corpora to derive estimates of se-

mantic similarities between words. The basis of these procedures lies in the hy-

pothesis that semantically similar words tend to appear in similar contexts (Miller

and Charles, 1991; Wittgenstein, 1953). For example, the meaning of spinach

(primarily) becomes the result of statistical computations based on the association

between spinach and words like plant, green, iron, Popeye, muscles. Alongside

their applications in NLP areas such as information retrieval or word sense dis-

ambiguation (Turney and Pantel, 2010), a strong debate has arisen on whether

distributional semantic models are also reflecting human cognitive processes (Grif-

fiths et al., 2007; Baroni et al., 2010). Many cognitive scientists have however

observed that these techniques relegate the process of meaning extraction solely

to linguistic regularities, forgetting that humans can also rely on non-verbal ex-

perience, and comprehension also involves the activation of non-linguistic rep-

resentations (Barsalou et al., 2008; Glenberg, 1997; Zwaan, 2004). They argue

that, without grounding words to bodily actions and perceptions in the environ-

ment, we can never get past defining a symbol by simply pointing to covariation of

amodal symbolic patterns (Harnad, 1990). Going back to our example, the mean-

ing of spinach should come (at least partially) from our experience with spinach,

its colors, smell and the occasions in which we tend to encounter it. We can

thus distinguish two different views of how meaning emerges, one stating that it

emerges from association between linguistic units reflected by statistical computa-

tions on large bodies of text, the other stating that meaning is still the result of

an association process, but one that concerns the association between words and
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perceptual information.

In this thesis, we try to make these two apparently mutually exclusive accounts

communicate, to construct a richer and more human-like notion of meaning.

We present an innovative (and first) framework for creating a multimodal dis-

tributional semantic model from state of the art text-and image-based semantic

models. We evaluate this multimodal semantic model on simulating similarity

judgements, concept clustering and the newly introduced BLESS benchmark. We

also propose an effective algorithm, namely Parameter Estimation, to integrate

text- and image-based features in order to have a robust multimodal system. By ex-

periments, we show that our technique is very promising. Across all experiments,

our best multimodal model claims the first position. By relatively comparing with

other text-based models, we are justified to affirm that our model can stay in the

top line with other state of the art models.

We explore various types of visual features including SIFT and other color

SIFT channels in order to have preliminary insights about how computer-vision

techniques should be applied in the natural language processing domain.

Importantly, in this thesis, we show evidences that adding visual features (as

the perceptual information coming from images) is comparable (and possibly bet-

ter) than adding further text features to the advanced text-based model; and more

interestingly, the visual features can capture the semantic characteristics of (es-

pecially concrete) concepts and they are complementary with respect to the char-

acteristics captured by textual features.

Published papers:

Partial results of this thesis are published as:

††Giang Binh Tran and Elia Bruni and Marco Baroni. 2011. Convergence of

text-based and vision-based semantics, Social Media Retrieval Summer School,

Poster section, Antalya - Turkey, June.

††Elia Bruni and Giang Binh Tran and Marco Baroni. 2011. Distributional se-

mantics from text and images. EMNLP - GEMS Workshop Edinburgh - UK,

July.



Chapter 1

Introduction

Recently, computer scientists and engineers have obtained good enhancements in

computer speed as well as storage power. However, the problem of building a

computer that can independently think and give decision is still a big challenge.

One of the insightful ideas mentioned in RSA 2008 (Jeff Hawkins, 2008) [40] is

to apply neuron science into computer architecture to emulate people’s brain. In

spite of the fact that it is very complicated, it is not impossible. With current

technology, we may think of this type of machine with languages learning ability

that is comparable to human learners. Since language is one of the most powerful

communicative means of human being, it should be worth exploring this topic.

What is Semantics? The problem of how to teach computer to understand

natural language is often referred as Semantics studies, especially how to repre-

sent natural language in computer (i.e, semantic representation).

”Semantics is the study of the meaning of linguistic expressions. The language

can be a natural language, such as English or Navajo, or an artificial language,

like a computer programming language. Meaning in natural languages is mainly

studied by linguists. In fact, semantics is one of the main branches of contempo-

rary linguistics. Theoretical computer scientists and logicians think about artifi-

cial languages. In some areas of computer science, these divisions are crossed. In

machine translation, for instance, computer scientists may want to relate natural

language texts to abstract representations of their meanings; to do this, they have

to design artificial languages for representing meanings.” [71]

1
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Children’s language acquisition Linguistics and psychologists try to under-

stand how children learn the meanings of words. Presenting one of the most

important studies about that problem, Bloom (2000) answered many questions

to make clear the language acquisition process in children.

Learning a word involves mapping a form, such as the sound dog, onto a meaning

or concept, such as the concepts of dogs [10]

Among his analysis, some conclusions are:

• Children can grasp aspects of the meaning of a new word on the basis of a

few incidental exposures, without any explicit training or feedback - in fact,

even without any explicit act of naming

• Learning the meanings of words is not qualitatively different from learning

facts about the world

• Children make the connection between words and what they refer to through

their understanding of the referential intentions of others: they use their

theory of mind to learn the meanings of words

• No word meaning can be learnt entirely through syntactic cues: syntax is

certainly an important informational source as to the meanings of words,

but it must be integrated with information obtained from other inferential

mechanisms

Obviously, children are not able to access the Internet or dictionary to find new

word definitions and concepts. They learn the language from the environment,

which is where they can figure out the meaning of such words. They may require

some support from adults/their parents, such as showing some hints or repeating

words in different situations.

More specifically speaking, with some supervision they can learn new words

from related visual cues, motions and old words they already know. These things

bring us an idea: children, with no knowledge from the beginning, can acquire

new language skills from the environment. This is the method computers should

use. More generally speaking, we can teach a computer a new language by su-

pervising it, giving it some basic language knowledge and a very rich perceptual

environment.
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Some of the latest cognition studies show that the information of meaning in a

human brain, which is obtained by the cognitive system, is affected by experience

and language (Andrews and Vigliocco; Andrews et al, 2009 & 2010) [1, 2, 3, 4].

In other words, information formed from perception and interaction with the

environment (like emotional information) plays an important role in learning and

representing word meaning, or semantic representation.

Language itself also gives compelling information for learning semantic repre-

sentation across domains. In addition, linguistics studies show that the descrip-

tion of objects may loses its accuracy if it is only extracted from the text without

consideration to the other perceptual information [6]. For example, red light may

refer to the red color but does not keep the same meanings in red light street. In

another example, “green banana” suggests a banana that is not ripe but it also

suggests a banana that is visually green; “black man” refers to a man having

dark skin as well as a man in black clothes. That shows us color words also

convey non-linguistic information [62]. Vice-versa, non-color words, for example

“ocean” in “ocean eyes”, “sunflower” or “rose”, is also able to transmit visual

information. On another hand, description context effects owe boundlessness in

natural language understanding. To take an illustration, the word “behind” ex-

presses different meaning aspects in “clean behind the couch” and “hide behind

the couch” [62]; more examples can be found in Roy and Reiter (2005). Thus,

it would be interesting and useful if we use all of perceptual information such as

information from colors rather than just text descriptions, as the combination for

language learning to come over that disadvantage.

In computer science, learning and representing semantics is one of the most

important tasks that significantly contribute to some growing areas, as successful

stories in the recent survey of Turney and Pantel (2010)[72]. A good semantic

representation can help us tackle various problems from attest words/concept

similarity measurement to information retrieval or e-learning. Some evidences

from recent works show that it is very possible to combine natural language in-

formation and other perceptual information to get learning systems that are much

better than systems coming from individual information types. These systems

can learn language from ambiguous knowledge (Mooney et al., 2008 & 2010)

[14, 15], generate language as a sport caster, label images as an image annotator

(Mooney et al.,2008 & 2010, Lapata et al. 2008 & 2010) [14, 15, 22, 23, 24] and

detect vision activities (Gupta and Mooney., 2010, Roy et al., 2007) [29, 52], etc.

The achievements from those systems are applied in various types of applications
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to bridge the linguistic interaction between human and machine.

1.1 Aim and Objective

Practically, the overall aim of this thesis is to explore specialized topics in mul-

timodal learning. Our goal is to make use of visual information and textual

information and create a multimodal system that can better represent semantics

than individual systems. We put an emphasis on combining state-of-the-art text-

based semantic and vision-based semantics as well as assessing the role/quality

of vision-based information in semantic learning/representation.

Theoretically, we try to make perceptual information from different source

communicate, to construct a richer and more human-like notion of meaning. In

particular, we concentrate on perceptual information coming from images, and

we create a multimodal distributional semantic model extracted from texts and

images, putting side by side techniques from NLP and computer vision.

Indeed, there has not been previous work that combined (physically) discon-

nected visual features to the state-of-the-art text-based semantic model in the

literature (-perhaps works of Lapata and Feng (2010) is the first but with the

possible exception of their technique that is not applied for combining separated

state of the art models together), so in this thesis, we set a target in providing a

first (and innovative) framework, as a prototype, to create a multimodal distri-

butional semantic model from independent sources, namely vision-based model

and text-based model.

Additionally, in this study we examine different approaches to the combination

of semantic models and propose an effective algorithm to accomplish this task.

Our algorithm has proven successful by a variety of our experiments.

Our objectives are:

- Extract and model concepts by visual features from (large) image data to cre-

ate vision-based semantic space; explore which type of feature descriptions are

suitable for the semantic representing task.

- Combine vision-based semantic space with state-of-the-art text-based semantic

space to create a situated system; design an effective algorithm to handle this

task.

- Evaluate the quality of the model in well-known existing tasks including: se-

mantic similarity measurement, concepts categorization and the newly introduced
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BLESS data which is a good benchmark for estimating the semantic representing

capacity of models.

1.2 Contributions

The contributions of this thesis are pertain to the following points:

- Propose the framework to create a multimodal learning system (in the form of

distributional semantic model) from two different sources: vision and text.

- Propose a good strategy to represent concepts meaning from images including

the pipeline of extracting visual features as well as the most suitable type of visual

features

- Propose good algorithms to combine vision-based semantic model and text-

based semantic model to generate an united one that outperforms tasks.

- Prove that perceptual information from images can capture semantic relation

among words/concepts and adding them to the state of the art text-based model

is better than adding further text features. We also provide preliminary evidence

for an integrated view of semantics where the more concrete aspects of meaning

derive from perceptual experience, whereas verbal associations mostly account

for abstraction.

1.3 Dissertation Structure

This dissertation contains 6 chapters. We will review the related works in the sec-

ond chapter. Since our work is not only involved in Natural language processing

techniques but also computer vision techniques, we will provide the background

of image processing and the advanced approach in describing visual features from

images in the chapter 3. The next chapter will describe the high-level architecture

of our proposed framework. In the chapter 5, we go into the evaluation tasks.

The chapter 6 concludes our results and analysis.





Chapter 2

Literature Review

This chapter is to overview the background of the thesis. It is devoted to the

semantics representation and its applications. The basic idea is to describe se-

mantics of words or concepts by their related distributional information and then

represent them in the vector format. This technique is referred as vector space

models of semantics. However, up to our best knowledge, current works in Com-

putational linguistics (CL) fields are mainly based on text distributional informa-

tion.

In fact, there are not many works on using vision-based information to im-

prove CL systems but there are more studies in exploiting text-based information

to improve vision-based systems such as multimedia retrievals or robotics. In

this chapter, we will review works in semantic representation and other studies

that explore combination of text-based information and vision-based information,

although not all of them focus on semantics representation.

2.1 Introduction

Computers understand very little human language. That leads to hardness in giv-

ing friendly instructions to computers. Aiming to break this limitation, computer

scientists try to construct modelling systems that can capture meanings of human

language, or semantics. Their systems concentrate on representing semantics to

enhance computer’s learning ability. Traditional approach is to use text informa-

tion since it is considered as the easiest media to communicate. Another branch

of this approach is to use human voice, or speech information. Last decade has

7



8 Chapter 2. Literature Review

seen a rising approach in using further information rather than text of computer

scientists and cognitive scientists. Most of these works, we call situated systems

or grounded systems, focus on combining textual information with perceptual

information such as visual and emotional information.

2.2 Text-based Semantic Representation

Text-based semantics model is considered as the most effective approach for se-

mantic representing. Some studies prove that using combination of several se-

mantic types can help improve their systems. However, most of those works are

strongly based on text-based semantic models, and other semantic information is

added to help these systems more robust. Indeed, the text-based semantic model

still wins admirations because of its convenience in building and its potency in

problem solving. In this part, we will present the traditional approaches in con-

structing and applying text-based models: semantic network and distributional

semantic model (DSM). The later part of this section will focus more on DSM

since it is one of the most productive representation up to our best of knowledge.

2.2.1 Semantic Network

The principle of semantic network was born in pretty long time ago as a network

of associatively linked concepts. It is conceived as a ”presentational format that

would permit the meanings of words to be stored, so that humanlike use of these

meanings is possible” [18]. Originally, it is mainly designed to presents properties

of thing rather than emotional meanings. Collin & Quillian (1969) proposed the

earliest work in semantic network in which concepts are stored within a hierarchi-

cal structure. In their work, the network of concepts is displayed as a taxonomic

tree where the levels for representing concepts ranging from the most abstract

down to the most concrete. The concept will be linked to a list of its properties

and then the meaning of a concept can be guessed from the concept it is linked to

[18]. Inheriting from these directions, more semantic networks are constructed.

Their primary characteristics are: each concept is a node in the semantic net-

works (graph); edge between 2 nodes is labelled by the relation between them,

for example, ”is” will be labelled on the edge linking ”Dog” and ”mammal” to

represent ”Dog-is-mammal”; and relatedness between 2 nodes is expressed by the

distance between them. However, this model has severe limitations as a gen-
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eral model of semantic structure. Its hierarchical structure clearly accepts only

some certain taxonomically organized concepts, such as classes of animals, trees

or humankind. Thus, semantic networks are mostly appropriate for small scale

human-coded collections of concepts [67]. Starting from this limitation, Steyvers

and Tenenbaum (2005) made an attempt to create a large-structure of semantic

network from word association norms. However, comparing to the vocabulary of

an adult speaker, the number of norms their network can represent is still much

smaller [48]. Breaking this disadvantage, Harrington and Clark recently built

the ASKNet semantic network by using output of a natural language parser. The

ASKNet presents 1.5 million nodes with 3.5 million links extracted from 2 million

sentences [32]. They claim that ASKNet has a strong ability to tackle the task of

semantic measurement by testing on some evaluation test sets and showing good

performance [31]. Another semantic network delivered from same approach as the

ASKNet was developed by Wojtinnek and her colleagues (2010) [79]. They tack-

led the task of similarity measurement by exploring the relatedness of surrounding

local networks and demonstrated an ability to overcome some problems of seman-

tic analysis and representation. Even their reported results on WordSim353 are

lower then most state-of-the-art models, but they showed a promising power of

the automated semantic networks in resolving semantics problems. Figure 2.1

illustrates a semantic network 1

2.2.2 Distributional Semantic Models

The most famous and effective approach for large-scale semantic representation

perhaps is using distributional semantics to describe concept’s meanings, called

Distributional semantic models. In general, the Distributional semantic mod-

els (DSM) are the models relying on some version of distributional hypothesis

proposed by Harris (1954) and Millar & Charles (1991). They claimed that the

degree of semantic similarity among words can be modelled as a function captur-

ing overlap among their linguistic contexts [8]. Its inference is the meaning of a

word can be identified by its usage.

DSM is often in the form of high dimensional vector space so it is known as

“word space”, “vector space” or “semantic space”. It proves a promise to solve

a lot of problems related to semantic knowledge as well as lexical acquisition,

1Figure illustrates a subgraph of the semantic network constructured by Wojtinnek and

Pulman (2010)
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Figure 2.1: Illustration of Semantic Network

for instance, semantic relatedness measurement, word sense disambiguation,..etc.

Furthermore, DSM contributes a lot to the success of information retrieval where

similar documents can be detected and queries can be reformed efficiently. One of

the earliest IR system exploiting DSM is SMART of Salton (1971). His concept

of indexing and representing documents as elements in vector space is still warm

and is applied in the most successful search engines such as Google, Yahoo! or

Bing. That idea works well until some recent decades when the modern search

engines more and more capture DSM’s advantages to attain better answers [72].

The success of IR brings about a trend in computational linguists to improve

the quality of DSM model. In this line, there are quite many interesting works on

enhancing DSM and examining its quality on some related linguistic tests. For

example, Rapp used the DSM approach in form of vector-based representation

to tackle the TOEFL solving problem. His system attains 92.5% accuracy on

multiple-choice question which is much higher than average human-rating score

(64.5%) [61]. Similarly, Turney constructed a DSM and tested it on the SAT
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college entrance test. His model scores 56% on the multiple choice questions and

thus can be comparable to the average results of human (57%) [73]. While many

of works concentrating on constructing a particular DSM that can be applied to

a specific task at hand, Baroni and Lenci provided a DSM namely Distributional

Memory (DM) to overcome many tasks at once [8]. They support the concept

“one distributional model, multiple tasks” and argue against “one semantic task,

one distributional model” which owns a great limit of the current state of the art.

In their work, various linguistic relations of verbs, objects, subjects and others

are employed to form a highly dimensional vector model which later scores highly

in similarity judgements, noun and verb categorization, and others. All in all,

those successful stories just to emphasize that DSM is earning highly impacted

influence in the currently active fields.

2.3 Distributional Semantic Modelling

There often understand that modelling distributional semantics is to model co-

occurrence information between words (or concepts) in large corpora. DSMs are

often classified into 2 categories: unstructured DSM and structured DSM. We will

go into details of the modelling approach for those types of DSMs.

2.3.1 Unstructured Models

Unstructured DSMs are models that don’t use the linguistic structures to compute

co-occurrences. In contrast, they rely on some degrees of the lexical distance

between target elements and context elements to identify co-occurrences. In other

words, a co-occurrence happens when the target elements appear “close enough”

to the context element. People use set a window size for co-occurrence recognizing.

Formally, this type of DSMs is referred as the 2-way structured matrix M|B|x|T |

(i.e, formal definition of semantic space of Pado & Lapata, 2007 ) where B is the

set of basis elements of context and T is target elements that can be compared

to each others by information captured in B [8]. This approach is simple but

capable of simulating the semantic representation.

To make it clear, we may look at the text ”the boy plays football” and ”this book

belongs to Elia”: “boy” and “the” are shared features of “play” and “football”;

“Elia” and “book” also share the feature “this”, “to”. We don’t take any linguistic

relation here.
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One of the earliest unstructured DSMs was provided by Schutze (1992,1993,1997)

[36, 37, 38] in which they showed simply co-occurrence statistics computed from

text resource can demonstrate a substantial amount of semantic information. In

his works, he computed context vectors from a fixed window size (i.e, 1000 char-

acters (1992), 1001 4-grams (1993)). Next, the comparison in meaning of words

can be analysed from their corresponding vectors. Interestingly, he showed that

using a method namely Singular Value Decomposition (SVD) to compress/select

the best subset dimensions from the statistics will improve a lot the quality of

this model. In generality, SVD is a method related to the standard Principle

Component Analysis (PCA) to reduce the dimensional size of non-square matrix

in a least squares sense in order to select important columns which are optimal for

a target function. It is rather sophisticated so we can not go into the details. Its

descriptions can be found in Landauer and Dumais (1997), Manning and Schutze

(1999) or other studies [61, 12].

Similarly to this line, Lund and Burgess (1996) constructed a framework

namely Hyperspace Analogue to Language model (HAL) and showed how simple

patterns from available corpus can effectively handle related-semantics problems.

Instead of using n-grams in character level, they take windows of 10 words in

consideration to identify the lexical co-occurrences in a large corpus of 160M

words coming from the USENET newsgroup discussions. HAL is based on a

corpus where the lexical co-occurrence is used for producing a high-dimensional

semantic space. HAL weights lexical co-occurrences and then creates a nxn co-

occurrence matrix. Each word will be represented as a 2n dimensional space

from its corresponding row and column. Lund and Burgess used the Euclidean

Distance computation to indicate how the words are similar to each others [43].

Additionally, the semantic similarity measurement can be applied by other meth-

ods such as Cosine Similarity or Manhattan Distance.

The size of window in computing co-occurrence can be changed variously

depending on tasks. For example, Rapp (2003) used a window size of 2 on a

sparse corpus to count word co-occurrences. His framework proves that word

sense can be induced well from that simple statistics. However, he argued that

SVD is not so convincing in preserving the information for sense induction and

emphasized that the larger corpora the better quality in representing the word

sense.

Presenting one of the most noticable works of unstructured DSM, Landauer

and Dumais adopted a slightly different approach of information retrieval namely
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Latent Semantic Analysis (LSA, it is similar to Latent Semantic Index in Infor-

mation Retrieval), placing emphasis on reducing dimensionality of word vectors

[44]. It is often referred as the term-document approach where context elements

co-occur with target elements if they are in a same documents. Like most of

the work in unstructured DSMs, they also used a fixed window size to construct

matrix of co-occurrence, nevertheless, they was able to demonstrate how word

co-occurrence data was adequate for children’s learning vocabulary simulation.

That makes clear the significant role of co-occurrences in meaning representation

from the psychological point of view.

The most recent model of unstructured DSMs, Bulliaria and Levy (2007) ex-

tract semantic representation from the statistics of word co-occurrence. They

argued that some aspects fo word meaning can be emitted from patterns of the

word co-occurrence and validated their idea on some testing sets of TOEFL, se-

mantic categorization and syntactic categorization. In experiment, they counted

the number of times n(c,t) each context element c occurs with target element t

in a certain window size, transformed to the probabilistic score and then formed

a corresponding vector of t that is used for later semantic similarity computa-

tion. They also recommended that using Positive PMI to represent probabilistic

scores (i.e. components of target’s vector) and Cosine Similarity in measurement

semantic similarity should bring about better results than other methods [12]

2.3.2 Structured Models

Similar to unstructured DSMs, the structured DSMs can captures the informa-

tion of co-occurrences from text resource. Nevertheless, it distinguishes itself at

extracting linguistic relations between words. Co-occurrence statistics is com-

puted between a pair of words by pattern that links them. Generally, a linguistic

relation is represented by 3 elements (triple): 2 words and a syntactic or lexical-

syntactic link. In almost cases, the link reflects the lexical-semantic properties

related to those words and can be determined from sentence structures. It bases

on the hypothesis that surface structured relations cue their semantic relation

[5, 16, 19, 74, 60, 64]. Let’s look back at the previous examples “the boy plays

football”: “play” is considered as a relevant context connecting “boy” and “foot-

ball” but it should not be the context property of “the”. Take more illustrations,

structured DSMs would not regard “very well” as a linguistic context for “foot-

ball” but would rather to regard it as a context for “play” in the sentence “the
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boy plays football very well”; and it also would not consider “eat” as a legitimate

property for “red” in the sentence “the teacher eats a red apple” [8].

Regarding comparison of structured models and unstructured models, com-

putational linguists claim the structured ones are at least not worse than the

unstructured ones [60, 64, 8]. It is because structured models shapes its seman-

tic representation by taking syntactic structures into account. Furthermore, it

requires some preliminary text processing procedures such as parsing, pattern ex-

tractions which take pretty much information about the unstructured statistical

information in the corpus. Therefore, the structured DSMs may capture some

information of unstructured co-occurrences as well as deeper information for that

unstructured models may not reach. In addition, the preprocessing procedures

practically work like filterers and only interest in linguistics-reflected patterns of

sentences, so that the structured DSMs tend to more sparse and more selective.

Experiments also suggest that structured models perform slightly better than

their unstructured sisters [60, 64, 8]

In presentation, structured DSMs seems to be more flexible than unstructured

DSMs. They can be represented in 2-way matrix forms of ether by dropping one

elements or joining 2 elements from each triple (relation) [74, 60, 8]. They also

can represented as a list of 3-ways tensors that can support many tasks at once

as what Baroni and Lenci (2010) constructed or can be converted into large

semantic networks, or graphs, which can simulate the ASKNet [32]. Nonetheless,

there is a two-edged blade in their representation. On one hand, the different

combinations of 3 elements provide different insights into corpus and then can

perform well in different tasks. On another hand, in 2-way matrix form, they

lose high demonstrative competence of the large set of triples (relations) acquired

from large corpus [8].

2.4 Semantics in Multimodal Systems

There are some certain works in improving learning ability of computers that

already succeeded in some fields such as robotics, computer science and cognitive

science. These works are often referred to “grounded language learning” , “situ-

ated learning system” (in this thesis, we adapt a term “multimodal system” as

the general description about that approach). Most of these works study the com-

bination of linguistic information and one more type of perceptual information.
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Some works are designed for general purpose of meaning representation while

some others pay attention to language learning, generating and understanding.

Proposing one of the first studies in this direction, Siskind demonstrated a

translation of video input into structured representation and developed a tempo-

ral representation that captures relationship between objects inferred from visual

observations. The system can recognize the occurrence of events, which are de-

scribed by simple spatial-motion verbs (Siskind and Morris, 1996).

Taking advantages of the integration of language descriptions and visual in-

put, some systems are able to generate natural language to describe sport events.

For example, the VITRA system can handle language generation task for soc-

cer matches and traffice scenes (Herzog and Wazinski, 1994), and more recently,

Sportcasters can procedure various descriptions for soccer games simulated by

the Robocup simulator (Mooney et al., 2008). VITRA bridges the gap between

vision system and natural language (NL) by encoding spatial relations and in-

teresting motion events into verbal descriptions. In the beginning, visual data

is transformed into geometrical representation, and later, explicit links between

sensory data and NL expression are formed for NL generating purpose. Mooney

and his colleagues developed a series of the Sportcasters systems in which they use

semantic parsers to transform the description of visual information into the logi-

cal semantic representation and then generate NL basing on that (Mooney et al,

2008, Chen and Mooney, 2010). Additionally, they address the problem of learn-

ing language from ambiguous data into their systems, nevertheless, they don’t

process visual information, instead they use prefab of abstract symbolic activity

descriptions, and their systems are designed for working on video annotation or

vision recognition.

Roy and his colleagues present a number of systems that connect natural

language to perceptual environment (Roy and colleagues., 2002& 2004& 2005).

Some of them learn word’s meanings by analyzing speech in related object’s vision

while some others model and acquire language’s grammar from the scene descrip-

tions. They also developed a framework for grounding the meanings of words by

connecting them to a network of sensory motors (Reiter and Roy, 2005). More

presently, Fleischman and Roy (2007) used both captions and motion descriptions

of baseball video to retrieve relevant clips given a textual query. Their direction is

quite close to the work of Gupta and Mooney (2010) where video, as modelled as

“bag of visual words”, and closed captions are used for motion detection. Their

work showed that language can improve the quality of vision scene identification.
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More into using visual information to enhance solving techniques in basic

NLP, Barnard and Johnson exploited vision-based information to tackle word

sense disambiguation (Barnard and Johnson, 2005), Kelleher and his colleagues

built a system that is able to generate and interpret referring object expression

(Kelleher et al., 2005). Most recently, Lapata and her colleagues have constructed

a computational model based on texts and images. In their work, images are

translated to visual features and used with co-occurred words for topic inferring.

Their model, taking the advantages of Latent Dirichlet Allocation (LDA) and

probabilistic estimation, can manage the task of image annotation and text illus-

tration well even it could be better if it uses more information of available image

captions for generating model (Lapata and Feng, 2010). Like this vein, Feng and

Lapata (2010) also presented a multimodal semantic space that is earned directly

from documents and their associated images. This semantic space is extracted

from a large corpus, employs LDA analysis, and infers the meanings of words.

The model gets a significant improvement in handling the task of semantic simi-

larity measurement. Although Feng and Lapata’s work is very heartening, it has

several drawbacks [13]. Firstly, the model requires the extraction of information

from mixed-media data so that it constricts its methods of textual and visual

features extraction. That means it is not easy to add visual features to the state-

of-the-art text-based models like the model extracted from Wikipedia or other

larger corpus. Virtually, the quality of the model is limited, and it is hard to

judge how effective the visual feature contribute to the already good text-based

model. Secondly, their joint model is trained in a such way of a mix between

textual features and visual features, thus, it is very hard to separately evaluate

effects of vision and text on the overall model.

Regarding how the combinational semantic model of perceptual information

is represented, there are some insightful methods that overcome challenges of

mixed semantics learning. For instance, Andrew and his colleagues proposed

the HMM model (2009) and LDA model (2010), and Piantadosi presented the

Bayesian model [57, 3, 2]. These models can deal with two well-known substantial

challenges to learners: referential uncertainty and subset problem. Although

they use the semantic representation for different purposes, they clearly showed

the success and importance of multimodal semantics model. Nonetheless, their

systems, such as Andrew’s, rely on speaker-generated features so they require

a lot of manually encoded. That explains why the main disadvantage of those

models is lying on the scale of the models. They only handle a limited number
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of concepts that is not comparable to what human use daily.





Chapter 3

Image Processing: Foundation and
Approach

The aim of this thesis is to discovery the convergence of vision-based semantics

and text-based semantics. Normally, vision-based semantics is often extracted

from labelled images or video and deals with image processing and video pro-

cessing. Between them, processing video is more complicated than processing

images since it requires split video scene into series of images or frames and then

applies image processing techniques to each of them. In this thesis, we don’t

concentrate on how to split video scene to images sequence and analyse them so

we are not going to propose new methods to process images or video scene. On

the contrast, we are more interested in exploring how vision-based semantics can

contribute to the text-based semantics models. Therefore, employing state of the

art techniques in image processing makes more sense for us in this topic.

In this chapter, we will present the current cutting-edge methods in Image

processing, or Computer Vision (CV) in more generally speaking, as the CV

background of the thesis.

3.1 Image Formation

Image in computer is a 2-dimensional matrix of pixels whose values are propor-

tional to the brightness of the relative point in the scene [56]. Normally, the image

is represented as NxN matrix pixels of m-bit values, that means it has the point

size of N and its brightness is in a range of m-bit values ( 2m values). Thus, the

19
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larger m is, the more colors and higher contrast that image can expresses. For

example, with m equals to 8, the image is often in black and white (gray) color

with brightness ranges between 0 and 255.

Color image is stored a bit sophisticatedly than gray one but it still follows that

strategy (i.e, matrix of pixels of m-values). However, instead of using one image

plane of pixels, it uses several pixel components. For example, the common RGB

image has three pixel components corresponding to red, green and blue; CMYK

image has four pixel components corresponding to cyan, magenta, yellow and

black, etc. Each component contains information specifying pixels’ intensities.

The combination of those component therefore provides a lot of colors [56]

3.2 Feature Extraction

3.2.1 Overview

Feature extraction and matching are important for many computer vision appli-

cations and vision-related fields. Currently active features are felt into 2 main

categories: keypoin features (aka. interest points), and edge features. The key-

point features focus on salient and specific location of images such as mountain

peaks, shape of eyes, leaves’ corners while edge feature focus on group of curves,

local appearance or boundaries of some objects [70]. However, keypoint features

are often considered as stronger features and outperforms the edge features in

image matching tasks, ie. finding image locations or a sparse set of correspond-

ing locations in different images. The reason is they are very distinctively and

selectively extracted from the large database of features with high probability,

which is useful for accurate location matching in 2D images [46, 70]. An practical

example can be found in [76, 45]. On the contrast, edge features, with its object

fenceline, are robust in 2D object or 3D occlusion events recognition (both are

delineated by visible contours) [70]. An alternative version of edge features are

line features that are applied for rectangle detection.

To detect keypoint features, the key idea is to determine image locations

which can correspondingly appear on other images[70]. Perhaps the most fa-

mous approach of feature extraction in computer vision is Scale Invariant Feature

Transform (SIFT) which transforms features of the images into scale-invariant co-

ordinates. It main advantage is that it procedures a large numbers of features

densely covering the images. Therefore, it seriously takes the quality of the image
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in to account to decide the quality of features [46]. SIFT approach is described

by a sequence of following procedures:

(i) Scale-space extrema detection: it searches over all scales and image loca-

tions. It is often implemented effectively with the Difference-of-Gaussian (DoG)

function do determine keypoints that are invariant to scale and orientation.

(ii) Keypoint localization: when a candidate is determined, it is passed to the

model that measure their stability to be considered as the keypoint.

(iii) Orientation assignment: Each keypoint are assigned with one or more

orientations by exploring local image gradient directions. Further operations on

images will be performed relatively to the assigned orientation, scale and location

of each feature.

(iv) Keypoint descriptor: construct representation of local image gradients

that can reflect the local shape distortion and change in illumination.

The more details about SIFT approach could be found in [46, 70]

3.2.2 Pyramid Matching

In image processing, we may need to change the resolution of an image as a

preliminary step before making further analysis. Examples include that it may

need some changes in the resolution to match the output setting of some de-

vices such as printer or computer screen; or to match the objects when we don’t

know exactly size and scale. Image pyramid is a technique to fulfil these require-

ments. Sometime it is more known for multi-resolution image representation. The

main direction is to look for objects or patterns at different scales and perform

multi-resolution changes and to speed up the coarse-to-fine search algorithm [70].

Traditional pyramid techniques like Laplacian pyramid, Gaussian pyramid work

in the same idea: forming different levels of scale; at each level, a daughter of its

parent-level image is generated by sampling by a factor of 2. Figure 3.1 illustrates

the traditional image pyramid multi-resolution changes through levels [70].

Starting from Image pyramid idea, Grauman and Darrell (2005) proposed

pyramid matching kernel to locate an approximate correspondence between two

sets of highly dimensional vectors of features. It places a sequence of coarser grids

over the features space and considers 2 points are matched with each other if they

are in the same cell of any grid of resolutions. Its weights of the matches found

vary differently by levels: weights are higher in finer resolutions and vice versa)

[27, 45] Thus, it can perform accurate matching in high dimensional space.
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Figure 3.1: Illustration of traditional image pyramid multi-resolution changes through

levels (Szeliski, 2010)

Specifically speaking, assuming that we have L levels of grids. The grid at

resolution level l has sizes of 2l cells for each of its dimensions, for a total of

D = 2dl cells. The number of matches at level l is determined as the histogram

intersection of two corresponding histograms of sets

I l =
�D

i=1 min(H l
X(i), H

l
Y (i))

where H l
X(i) and H l

Y (i) are the number of points from 2 sets of vectors that

fall into the ith cell of the grid. Since it contains the number of matches found

in the finer level l+1, so the actual matches found in the level l is:

I l − I l+1

Grauman and Darrell (2005) used the weights for each level l with:

1

2L−l

The Graumann and Darrell’s pyramid matching kernel is defined:

KpL(X, Y ) = IL +
�L−1

l=0
1

2L−l (I l − I l+1)
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3.2.3 Spatial Matching

Pyramid matching kernel has a withdraw: it works with an orderless image repre-

sentation and discards all spatial information, therefore, it is not able to capture

shapes or segment objects from image’s background. Overcoming this, Lazebnik

& Schmid & Ponce (2006) proposed Spatial Matching Scheme which performs

the pyramid matching in the 2D image space and uses traditional clustering al-

gorithms in feature space. They demonstrated that their approach significantly

enhances the bag of visual word (boVW) model which already showed impressive

levels of performance [45] (we will discuss BoVW in the following section). The

general concept of Spatial matching is to quantize/group all feature vectors into

distinguished types and only consider 2 feature vectors matched to each other if

they are same type. After that, Pyramid matching kernel is used to find matches

in each type and summed up to form the Spatial matching kernel finally. The

formal formula is:

KL(X, Y ) =
�M

m=1 KpL(Xm, Ym)

3.3 Bag of Visual Word

Bag of Visual Word (BoVW) is an powerful approach of computer vision that is

employed from NLP. In NLP it is “bag of words” but we adopt BoVW for its

analogous model in computer vision. “bag of words” (BoW) is a dictionary-based

method used in NLP and Information Retrieval. Its main idea is to represent a

text, or document, as an unordered collection of words without grammar consid-

eration. Similarly, in BoVW, each image are treated as a document and then be

described as a bag of visual words which are formed from local interest points

(keypoints - defined as salient image patches). This method is widely applied in

computer vision to tackle various type of tasks, especially image categorization

[66, 17, 55, 11, 59]. The following will describe BoVW procedures:

Keypoint extraction: keypoints are extracted from each image over image

data set. They are in the form of large dimensional vectors. For example, SIFT

keypoint are often in a vector of 128 dimensions.
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Vector quantization: The keypoint vectors are projected in the same space

and clustered into groups. Each group is considered as a visual word. One of the

most common vector quantization techniques is K-means.

Image descriptor: vector quantization allows each original keypoint mapped

into one visual word. Let number of visual words is n, then each image will be

represented as a n-dimensional vector where each dimension’ value reflects the

occurrence number of corresponding visual word. By that way, the image is in a

form of fixed dimensionality spare vector instead of a very large and variant set

of keypoint vectors [13].

Figure 3.2 illustrates above strategy.

Figure 3.2: Illustration of bag of visual words procedure: (a) detect and represent local

interest points as descriptor vectors (b) quantize vectors (c) histogram computation to

form BoVW vector for the image

In fact, the information that image BoVW vector contains is often referred

as the low-level appearance of patches from 2D images. Those patches bring

about rich local information of the images and often point out the area around

corners and edges in the image objects [59]. However, the content that BoVW

captures varies a lot depending on the how we extract keypoints, regarding types

of keypoint, quantization algorithm as well as number of visual words we selected.

3.4 Color Descriptions in Image

This section is dedicated to various types color features in image processing which

achieve a good performance in computer vision. Actually, the intensity-based

features have been widely used but the color features just have been proposed

recently to improve distinguishable ability of the system.
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3.4.1 Histograms

RGB Histogram: The RGB histogram is a combination of three 1-D based

histograms (R(ed), G(reen) and B(lue)). This histogram doesn’t reflect invariant

characteristics [77, 76].

Opponent Histogram: Similar to the RGB histogram, Opponent histogram

is also a combination of three 1-D histograms that are based on different channels

o the opponent color space:

(O1, O2, O3) =
�

R−G√
2
, R+G−2B√

6
, R+G+B√

3

�

the channels O1 and O2 reflect the color information of the image. Channel

O3 reflects intensity information [77, 76]

Hue Histogram: In the HSV color space, hue is often considered being un-

stable near the grey axis. The certainty of the Hue is inverely proportional to

the saturation [58]. That is the reason Hue histogram is often more vigorous if

each sample of the Hue is weighted by its respective saturation. Concerning light

intensity, it reflects scale-invariant and shift-invariant [77, 76]

rghistogram: rghistogram is histogram representing color information of im-

ages. rghistogram deliveries from RGB color model when it is normalized. In

that case, r+ g+ b = 1 so b is redundant if we only take color information (r and

g) into account.

(r, g, b) =
�

R
R+G+B ,

G
R+G+B ,

B
R+G+B

�

It is scale-invariant and invariant to light intensity changes, shadows and shading

[76]

3.4.2 SIFT Descriptors

SIFT the SIFT descriptor is the type of keypoint descriptor that is extracted

by SIFT approach (see section 3.2 above for more details, again). It is proposed

by Lowe (2004) to describe the local shape of a region using edge orientation
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histograms. Its properties can be summed up in 2 points: (i) Gradient of an

image is sift-invariant

(ii) Not invariant to light color changes

it is often in the form of 128-dimensional vector.

HSV-SIFT Bosch and his colleagues (2007) computed SIFT descriptors over all

3 channels of the HSV color model. Each descriptor consists of 3x128 dimensions

where each channel occupies 128 dimensions. It does not posses any invariance

properties although the H color model is scale-invariant and shift-invariant. The

reason is it is computed as the combination of the 3 channels H,S, and V [77].

The drawback of this descriptor is that the periodicity of the hue channel and the

instability of the hue for low staturation is not addressed.

HueSIFT Weijer and his colleagues (2006) concatenated hue histogram with

SIFT descriptor to form HueSIFT. It address the instability of the hue near the

grey axis as well as the periodicity of the hue channel. In addition, it reflects

scale-invariant and shift-invariant properties as the hue histogram [76].

OpponentSIFT OpponentSIFT uses SIFT features to describe all channels of

the opponent color space. It remains the properties of the opponent color space:

O3 indicates the intensity information and O1 and O2 indicate color information

which is not invariant to changes of the light intensity [77].

rgSIFT As synthesised description of van de Sande and his colleagues (2008),

rgSIFT are added for the r and g chromaticity components of the normalized

RGB color model which is scale-invariant. It also owns shift-invariant properties,

nevertheless, the color part of the feature is not invariant to the changes of the

illumination colors [76].

RGB-SIFT RGB-SIFT are SIFT descriptors delivered from every RGB chan-

nel independently. It is equal to the transformed color SIFT features that are

computed by normalizing every channel of RGB and computing SIFT descriptor

for each. It is scale-invariant and shift-invariant as well as invariant to light color

changes [77].
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Multimodal Space Methodology

This chapter will discuss our approach in combining image-based semantics and

text-based semantics. We propose a framework that employs state-of-the-art

techniques in both computer vision and natural language processing to create a

multimodal semantic space. The key idea is to construct text-based and image-

based co-occurrence models separately and then combine them together. How-

ever, we are not going to proposing new model for the text-based semantics for

our purpose. The reason is there exists a numbers of promising text-based se-

mantic models that are staying on the state-of-the-art lines. Instead, we keep

the framework open to all of DSMs that are publicly available off-the-shelf and

has been shown successful. We also provide a method to boost up the model in

order to have deep insights into how effectively our multimodal semantic system

can do. Beside all of that, we pay our attention on forming a good vision-based

model and various ways to concatenate it with the text-based model.

4.1 System Architecture

The Figure 4.1 presents a diagram with the architecture of our framework1. Its

working flow is involved in text-based and vision-based DSM modelling in form of

high dimensional vectors, visual feature extraction based on top-tier techniques

(keypoints extraction), bag of visual words modelling, tag modelling and vector

concatenation. To make it easy to follow, we first describe our procedure to build

1The source code of the system is published at: https://github.com/s2m

27
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both text-based and vision-based DSMs. However, we stress the latter since it is

the more novel part of the procedure. Then, we describe our combination tech-

niques to integrate both models. We underline keeping our system architecture

at an abstract level to enlarge scopes of applications.

Image Data

Visual feature extraction

Bag of visual words

Image-based distributional vectorText-based distributional vector

Text feature extraction

Normalize and concatenate

Multimodal distributional semantic vector

Tag modeling

Text corpus

Figure 4.1: Overview of our system architecture

4.2 Text-based semantic model

Looking at the pros and cons of text-based semantic family including semantic

networks and DSMs. We decided choosing DSMs for its generality and power in

modelling semantics of words/concepts instead of semantic networks (see 2.2.2).

As mentioned previously, we don’t consider proposing a new DSM for our frame-

work and also don’t concretely attach our framework to any specific DSMs. On

the contrast, we keep the architecture of our multimodal system open to various

DSMs. We have a couple of reasons to do that:

Firstly, if choose/propose a specific published model fixed for the framework,

we vividly restrict ourself by that model together with its advantages as well as

disadvantages. Up to our best of knowledges, each DSM has its own strength and

weakness. They are often designed to some specific purposes so that some can be
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good for some tasks but not good for other tasks (see ACL wiki of state-of-the-arts
2 or [8])

Secondly, the open framework makes itself easy to be shared and competed

with other types of models. It is also straightforward for computational linguists

or computer vision scientists who want to explore the convergence of text and

vision by employing their proposed text-based models or vision-based models

regarding their new visual features.

The only enquired requirement from the text-based model in our framework

is that they need to be transformed in the form of high dimensional vectors (as

is the most general form of DSMs). Thus, the whole DSM is encoded in a matrix

in which each target word is represented by a row vector or weights representing

its association with collocates in a corpus. We will go into details about the

text-based model in the section 5.1.2

4.3 Image-based semantic model

4.3.1 Image Data

We use the image data set that contains a large number of images that are

labelled (manually rather than automatically to ensure the quality of the Image

data, although a fully automated ones would be cool). We assume that the word

labels of the images, that we call tags, somehow related to the context that the

image express. We base on a hypothesis that tags and image should share some

salient semantic information. Figure 4.2 illustrates an image and its tags.

4.3.2 BoVW Construction

The key approach to form the image-based vector space is to use the BoVW

method (see 3.3 for a more detailed description of the BoVW) which already

became a powerful approach in representing image by features. Following what

has been increasingly recognized as standard procedures in vision feature extrac-

tion, we use the Difference of Gaussian (DoG) detector to automatically detect

keypoints from images. We use the Scale-Invariant Feature Transform (SIFT)

to represent those keypoints in term of 128-dimensional real-valued descriptor

2http://aclweb.org/aclwiki/index.php?title=State Of The Art
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Figure 4.2: Example of image and its tags: night, tree, gate, street

vectors. We chose SIFTs for their characters at invariance to image scale, orien-

tation, noise and other properties (see 3.4.2). We apply the pipeline of spatial

pyramid matching scheme proposed by Lazebnik and his colleagues (2004) [45]

to form spatial histogram of keypoints, called BoVW. For brief reminding, we

group descriptors into clusters by K-means algorithm and consider each cluster

as a visual word. This algorithm also allows us to map keypoints to a visual word

they belong to, so that we can create histograms for each image. Spatial pyramid

approach is applied to help us enrich the histogram models by dividing the image

into small pieces and integrating histograms of pieces together (see chapter 3.2

for more detailed description about feature extraction techniques). Figure 4.3

demonstrates an illustration of spatial histograms obtain in the end.

4.3.3 Tag Modelling

The previous procedure provides us an useful representation in term of occur-

rences of visual words of each image in our image data set. However, we just

have information of image separated to textual words information. To depict the
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Figure 4.3: illustration of spatial histograms of the image, Vedaldi and Fulkerson

(2010)

connection between textual context and visual context of the image, we associate

the tag to BoVW of all images it is labelled to and sum visual word occurrences

across those list of images. This step is called tag modelling. That results a raw

frequency histogram of visual words for each tag. We transformed them into

Local Mutual Information (LMI) scores computed between each tag and visual

word. LMI is an association measure that closely approximates the commonly

used Log-Likelihood Ratio while being simpler to computer [20]. It is simply

computed as following formula:

LMI(T,w) = p(T,w) log( p(T,w)
p(T )p(w))
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where T and w is correspondingly tag and visual word we are looking at; p(x)

is probability of x which here we estimate by maximum likelihood using relative

frequency.

Finally, we obtain an image-based distributional semantic model which is a

matrix consisting of rows, or tag vector, for summarizing the distributional history

of the tag in the image collections.

4.4 Integrating Distributional Models

We integrate the two distributional vectors to construct our multimodal semantic

space. Notice that a word is represented both in text-based model where it plays

a role of a target word and vision-based model where it plays a role of a tag.

They are all in a form of high dimensional vector. Our procedure of integration

two distributional models simply combines two corresponding vectors. However,

the challenge of this step is lying in the spaces of vectors. In fact, we are staying

in two different spaces with different dimensions and we don’t see the relation

between two space yet. Let’s say the text-based vector is:

u = (u1, u2, u3, ..., un)

and the vision-based vector is:

v = (v1, v2, v3, ..., vm)

where m and n is the dimensional size of 2 spaces.

First of all, we need to bring them to the same scale (aka. vector normalization)

because they posses different scale sizes at the moment. It disadvantages us if

there exists a situation that one vector dominates the values of the other one.

In that such case, the combination work is meaningless. We use the common L2

normalization technique to transform those vectors into 1-unit length vectors:

X = X
||X||

From now, we uniformly refer to the normalized vectors when mentioning U and

V. Next, our aim is to figure out the function f(u, v) that results the integrated
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representation Vf of multimodal distributional semantic space. We propose fol-

lowing methods:

Linear combination We concatenate the two vectors disregarding any weight

scheme between them.

Vf = u||v = (u1, u2, ..., un, v1, v2, ..., vm)

Linear weighted combination Linear weighted combination works pretty

similar to the pure linear combination method above. The only difference is

that each vector is multiple with a score before concatenating step. Sum of all

scores should be 1.

Vf = α ∗ u||β ∗ v = (αu1,αu2, ...,αun, βv1, βv2, ..., βvm)

where α+ β = 1 Actually, the Linear combination can be considered as a special

case of Linear weighted combination when α = β = 0.5.

Vector dyadic Instead representing the combination of two vector in the form

of vector, we can store the combination in the form of matrix resulted from vector

direct product.

Vf = u⊗ v = (uv)i,j = uivj

Parameters Estimation for combination (PE) Most of works in DSMs

share a characteristic: they treat all features, or relations among words, equally.

However, treating all features equally may bring about flaws because some fea-

tures are more important than others. In our proposal, we provide an approach

to overcome that drawback by estimating parameter for weighting features of 2

vectors. This work can be done by machine learning method. Unfortunately,

machine learning approach should be costly in computation since we are working
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with hundreds of thousands features (as is high dimensional vector space) mean-

while the target function for machine learning algorithms is difficult to set up

because we aim to some co-efficient benchmarks for semantic measurement - that

means the target function is pretty unclear for now.

Staying above all that problems, we provide the algorithm based on an idea:

estimating the parameters for groups of features instead of individual feature.

To do so, we estimate the importance of features and sort them following bellow

procedures:

(1) Do the topn selections for text−based features and the vision−based fea-

tures;

For example: we can select the top 4K features, group them into the 1st block ;

then select the next top 4K features and group them into the 2nd block ; so on and

so forth. The top dimensions are picked based on their cumulative Local Mutual

Information mass.

In case the distributional model is represented in a space of huge dimensions

(e.g, 700M dimensions), we make the impact of features by selection only limited

top n dimensions. We show in the experiments that trimming the distributional

models in this way does not have a negative impact on its performance, so that

we are justified in claiming that we are still working with state-of-the-art models.

Table 4.1 demonstrates the topn algorithm

(2) Weight every group of n features and finally combine them together.

Vf = α1 ∗ block1||α2 ∗ block2...||αk ∗ blockk

where α1+α2+ ...+αk = 1; and k is the total number of block topn we extracted.

Nevertheless, there raises two issues: (a) how to evaluate our parameters? and

(b) how to estimate parameters (α) to get a good model?

To evaluate our parameters: we propose a simple (and very common) method

which is where we pick up the parameters’ values corresponding to the best model

based on our evaluation benchmarks. We will discuss more about the evaluation

benchmarks in the next chapter.

To estimate the parameters: we propose a divide and conquer technique. In

our case that is: the problem of combining k blocks of features can be reduced

to the problem of combining 2 blocks of features. We will do k-1 times of

combination. For instance, firstly we vary α1 and α2 to combine the 1st block

and the 2nd block ; then we pick up the values of αs that results the best score in



4.4. Integrating Distributional Models 35

Begin

Initialize the Cumulative scores of all features as zeros

For Word in total words do

Begin

Update Cumulative scores of all features of Word

End For

Sort the Cumulative scores

End

Output N features having highest cumulative scores

Table 4.1: Topn feature extraction algorithm

our benchmark. We consider the combination of the 1st block and 2nd block as

a new block and use that new block to combine with the 3rd block,... so on and

so forth. In each of total of k-1 combinations, the sum of αs parameters related

to 2 blocks in our consideration should be 1. Table 4.2 presents our algorithm to

combine blocks of features.
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Begin

Current_Block = block_1

For i:= 2 to k do

Begin

Best_Block = Current_Block

For \alpha_1 := 0 to 1.0 in step of 0.1

Begin

\alpha_2 = 1.0 - \alpha_1

New_Block = \alpha_1 * Current_Block || \alpha_2 * block_i

Evaluate (New_Block)

if New_Block is better than Best_Block then

Begin

Best_Block = New_Block

Store the \alpha values for later reference if needed

End If

Update: Current_Block = Best_Block

End

End For

End

Output Current_Block

Table 4.2: Parameters Estimation algorithm to combine k blocks of features



Chapter 5

Evaluation

This chapter is to describe our experiments and results in evaluating the multi-

modal semantic model.

In the first part of this chapter, we will speak about our settings for exper-

iment in which we specify the corpus/data set we use for our experiment. We

understand that suitable data are vital for a fair judgement about the proposed

approach. Then, we consider testing our model on famous evaluation sets which

can provide us insightful assessment about semantic representation and similarity

measurement.

One of the interesting works done is visual feature extraction. We use various

parameter settings with advanced techniques from the computer vision commu-

nity. That is the reason for us to claim that we extracted good features from

images. In addition, since our image data set for experiment is pretty huge, we

borrow techniques from distributed system. All of these works are hidden behind

our framework architecture but it is appropriate to mention them here.

In the later part of this chapter, we will report our results and our analysis.

The results are promising enough to show that our model could stay in the top-

tier line of state-of-the art level. Perhaps more fascinating than the testing scores

we have is a proof of contribution of vision in semantic representation. The

vision-based features are at least as good as text-based features. This suggests

that visual words, although hard to be seen or revealed, can capture the semantic

relation among contextual objects of images.

37
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5.1 Experimental Setup

5.1.1 Evaluation benchmarks

WordSim353 We manage our most extensive evaluation on the WordSim353

(WS) data set1 proposed by Finkelstein and his colleagues (2002) [25]. It is a

widely used benchmark constructed by asking 16 subjects to rate a set of word

pairs on a scale of 10-point about similarity between two pair words and averaging

those ratings. For instance, coast/shore, 9.10, day/summer, 3.94, rooster/voyage,

0.62, etc. There is a total of 353 pairs divided into 2 groups: similarity (we call

WS-Sim) and relatedness (we call WS-Rel). WS-Sim is specified for measuring

similarity while WS-Rel is designed for measuring relatedness. WS-Sim seman-

tically similar (e.g., synonyms or coordinate terms) and WS-Rel - semantically

related (e.g., meronyms or topically related concepts).

WS-Rel examples include:

computer-n keyboard-n 7.62

Jerusalem-n Israel-n 8.46

planet-n galaxy-n 8.11

canyon-n landscape-n 7.53

OPEC-n country-n 5.63

day-n summer-n 3.94

day-n dawn-n 7.53

country-n citizen-n 7.31

planet-n people-n 5.75

WS-Sim examples include:

tiger-n cat-n 7.35

tiger-n tiger-n 10.00

plane-n car-n 5.77

train-n car-n 6.31

television-n radio-n 6.77

media-n radio-n 7.42

bread-n butter-n 6.19

cucumber-n potato-n 5.92

1http://alfonseca.org/eng/research/wordsim353.html
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We use the data set in a format that contains POS information for each target

word.

Visit http://alfonseca.org/eng/research/wordsim353.html for more information

about the data set.

We evaluate models in terms of the Spearman correlation of the cosines they

produce for the WordSim pairs with the average human ratings for the same

pairs. With the models based on Google ESP data set, we cover around 73% of

whole set (i.e. 260 pairs), therefore, it does not make sense for us to compare

the results to the state of the art in the literature. However, our results are still

more competitive than that of the state of the art model running on our version

of WS. We will describe the Google ESP image data in the next section.

Additionally, because WS-Sim and WS-Rel can report different views about

semantic relation, our target is that we not only test our models on all WS but also

on each of them separately. Nevertheless, we observe the similar improvement

of our multimodal semantic model with respect to the traditional text-based

semantic model in both WS-Sim and WS-rel (refer to the next section 5.2.1 for

more detailed reports). That means our new model can work well with both the

semantic similarity aspect and semantic relatedness aspect.

We use the common Cosine computation because it is widely used in other

studies; that provides us a fair comparison with other approaches :

cosine(x,y)=Σn
i=1xi∗yi
||x||∗||y||

To verify if the conclusion reached on WS extend to different semantic tasks,

we use further famous benchmarks for which we have a good coverage: Ruben-

stein and Goodenough Similarity Judgments (RG), and Noun categorization.

Although our results are not presented on fully covered testing sets, it is still

good to have a look into the DM and other state-of-the-art models following the

ACL Wiki site 2 just to have a relative comparison. In fact, the state of the art

model brings about pretty similar results on our version of testing set to that on

the corresponding fully covered version reported on the Wiki site.

Rubenstein-goodeneough (RG) Our second challenge comes from the clas-

sic data set of Rubenstein and Goodenough (1965). It is a human-rating set

2http://aclweb.org/aclwiki/index.php?title=State Of The Art
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consisting of 65 noun pairs rated by 51 subjects on the scale of 0-4. The average

rating for each pair represents the perceived similarity between them. For exam-

ple:

boy-n lad-n 3.820

boy-n sage-n 0.960

boy-n rooster-n 0.440

automobile-n car-n 3.920

automobile-n cushion-n 0.970

automobile-n wizard-n 0.110

Generally, RG is quite similar to WordSim but it contains a smaller number of

pairs. Following the earlier literature, we use Pearsons r to examine how good the

cosines in the mulimodal semantic space between the nouns in each pair correlate

with the ratings are. The results (expressed in terms of percentage correlations)

are presented in Section 5.2 below . In our version of RG test, we have 47 pairs

covered by the models, covering about 73 % of the full RG test. That coverage

is quite similar to what we have with WordSim.

Noun categorization - AP and Battig We estimate our model’s effective-

ness on this task because the task of classifying words into classes or categories is

a very important task in both computer science and cognitive science. It provides

clear insights into concepts and meaning as well as the ability to hierarchically

arrange concepts into taxonomies( Murphy, 2002). Moreover, it can show the

potentiality of applying distributional information to various problems related to

semantics (for additional information, refer to Baroni and Lenci, 2010). In this

task, we use 2 well-known data sets: Almuhareb-Poesio (AP) (Almuhareb, 2006),

and the new Battig set [7]. In short, AP set owns 402 concepts from WordNet,

balanced in terms of frequency and ambiguity. They should be categorized into

21 distinguished groups by their relatedness of meaning. For example, basketball,

bowling should be put into game class. Similar to AP set in term of structure,

the Battig set consists of 82 concepts from 10 categories. Even though we do not

have full coverages of those data sets, what we got (i.e, 230 concepts in AP and

72 concepts of Battig) is fairly distributed in all categorizes of the original data
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sets. Therefore, we believe that the test is fair enough for assessing our proposed

models/framework.

Examples of the AP data and Battig data include:

==AP==

acacia-n tree

acceptance-n legal

ache-n pain

acne-n illness

aeon-n time

agency-n socialunit

aircraft-n vehicle

airplane-n vehicle

airstream-n atmospheric

allocation-n assets

allotment-n assets

....

==Battig==

aeroplane-n vehicle

apple-n fruit

bean-n vegetable

bear-n land_mammal

bicycle-n vehicle

birch-n tree

blender-n kitchenware

blouse-n clothes

boat-n vehicle

bowl-n kitchenware

bra-n clothes

broccoli-n vegetable

Following what successfully done in literature, we compute the purity score

of noun clustering based on our distributional models by using CLUTO toolkit

(Karypis, 2003) then compare with the published results using the same toolkit

and experimental settings. To make it more clear, we calculate the similarities

of n nouns and create the similarities matrix of size nxn. After that, we take the
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matrix as the input for CLUTO’s scluster algorithm with the repeated bisections

with global optimization (rbr) clustering method. Cluster quality is evaluated by

percentage purity (Zhao and Karypis, 2003). If ni
r is the number of items from

the i-th true (gold standard) class that were assigned to the r-th cluster, n is the

total number of items and k the number of clusters, then:

Purity = 1
n

k�
r=1

max(ni
r)

In the best case (perfect clusters), purity is 100% and as cluster quality deterio-

rates, purity approaches 0.

BLESS Recently, (computational) linguists have raised a debate about reli-

ability of the Spearman and Pearson coefficient scores in measuring semantic

similarities. Even though they are considered as of the most trustworthy tools

for that task, some argue that those scores are fragile. Providing an alternative

solution, Baroni and Lenci bring forth the BLESS data set. (BLESS) is the

“Baroni-Lenci Evaluation of Semantic Similarity” data set made available by the

GEMS 2011 organizers3. The data set contains 200 concrete nominal concepts,

each paired with a set of words that instantiate the following 5 relations: hyper-

nymy (spear/weapon), coordination (tiger/coyote), meronymy (castle/hall), typ-

ical attribute (an adjective: grapefruit/tart) and typical event (a verb: cat/hiss).

Concepts are moreover matched with 3 sets of randomly picked unrelated words

(nouns, adjectives and verbs). For each true and random relation, the data set

contains at least one word per concept, typically more. The relata were selected

by the authors using rich sources such as WordNet, ConceptNet, Wikiapedia and

the semantic norm of McRae and colleagues. More detailed descriptions can be

found in the available publicity of BLESS.

Following the GEMS guidelines, we apply a model to BLESS as follows. Given

the similarity scores provided by the model for a concept with all associated words

within a relation, we pick the term with the highest score. We then z-standardize

the 8 scores we obtain for each concept (one per relation), and we produce a

boxplot summarizing the distribution of z scores per relation across the concepts

(i.e., each box of the plot summarizes the distribution of the scores picked for each

relations, standardized as we just described). Boxplots are produced accepting

the default boxplotting option of the R statistical package4 (boxes extend from

3http://sites.google.com/site/geometricalmodels/shared-evaluation
4http://www.r-project.org



5.1. Experimental Setup 43

first to third quartile, median is horizontal line inside the box).

5.1.2 Text-based semantic model

As discussed in the section 4.2, we keep the framework open to various DSMs.

Thus, it could be best if we can do experiments on all available DSMs which have

been showed successful in semantic representation. Since most of available DSMs

are designed specifically to be good in some tasks (one task, one distributional

model), doing experiments on all of them will make sense for a just evaluation

on how effective the vision-based semantics contributes to text-based semantics.

However, it obviously takes too much cost in computation and time. We would

prefer leaving that for further research. Alternatively and fortunately, there ex-

ists a text-based semantic model namely Distributional Memory (DM) that is

proven successful for many tasks at once [8]. It has been shown to be near or

at the state of the art with a good variety of semantic tasks such as modelling

similarity judgements, concept categorization, predicting selection preferences,

relation classification and more. Considering DM’s merit, we strongly believe

that this model can be considered as a representative for cutting-edge DSMs in

our evaluation tasks. We are justified in claiming that using DM not only saves

our cost in computation and time but also satisfies our purpose to examine the

strength of the multimodal semantic space as well as effectiveness of the vision-

based semantic model. We lay stress on measuring effectiveness of vision-based

semantic model because at the moment, there are not many studies in that area

published, up to our knowledge.

The DM model (more precisely, the most successful TypeDM version) 5 is

proposed by Baroni and Lenci (2010). It is trained on a large corpus of around

2.8B tokens coming from Web documents, the Wikipedia and the BNC. The DM

is a structured DSMs in which links connecting collocates and target words are

used to label the collocates themselves. It does not compute the score of the

links by looking up only frequency of co-occurrence (or strength of association)

but also variety of surface forms that express the links to avoid losing semantic

information. The links are determined by a mixture o dependency parse infor-

mation and lexico-syntactic patterns, resulting in distributional features such as

in form of as adjective as, subject verb, attribute noun, etc. For example, for the

word fat and the feature of animal, the raw score is 9 because fat co-occurs with

5http://clic.cimec.unitn.it/dm
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9 different forms of the feature (a fat of the animal, the fat of the animal, fats of

animal. . . ). In total, there are 25.336 distinct links in DM and that can be

seen as a tensor of size 30K x 25K x 30K with density 0.0005 % [8].

We transform the DM to its 2-way matrix form of semantic space with 30K

rows (target words) represented in a space of more than 700M dimensions. Since

our visual dimension extraction algorithms are maximally producing 32K dimen-

sions (see Section 5.1.3 below), we make the impact of text features on the com-

bined model directly comparable to the one of visual features by selecting only the

topn DM dimensions (with n varying as explained below). The top dimensions

are picked based on their cumulative Local Mutual Information mass (see more

details in algorithm 4.1). Again, we emphasize in the experiments below that

trimming DM in this way does not have a negative impact on its performance,

so that we are fair to argue we are adding visual information to a state-of-the-art

text-based semantic space.

5.1.3 Vision-based semantic model

Image Data In our experiments, we use the ESP-Game data set6 ESP game

is a system that allows people to label images while playing and is proposed by

von Ahn and Dabbish [78] and acquired by Google Inc. The game is played by

two players not in communication. They are assigned number of images that

both can see (one image at a time) and guess strings to label the image. Only a

string appearing in common for both players is accepted. The ESP-Game data

set is divided into 2 parts and published by the authors: the first one contains

50K images with tags (labels) that form a vocabulary of 11K distinct words. The

image labels contain 6.686 tags on average (2.375 s.d.); the second one contains

100K images (mostly includes the first one) with similar tag’s statistics. We do

experiments on both of them instead of using the second one only. The reason

is that there is a high number of parameters in visual information extraction

algorithm, for example: number of clusters, step size for spatial pyramid and

others which should be tested carefully to fit the framework. That will cost us a

lot of time and computation, especially with a large image data set. Therefore,

we explore the parameter settings on the first data set and evaluate with WS,

then use the results as a criteria to extract features of later large data sets: second

ESP-Data (100K images). Note that the first part contains 50K images, so we

6http://www.gwap.com/gwap/gamesPreview/espgame
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consider it large enough to be the representative for parameters selection. We

refer to them as ESP50K, ESP100K in our experimental reports.

From out point of view, ESP-Game is interesting since on one hand, it is

rather large and we know that the tags are related to the images. On the other

hand, ESP-Game is not the product of experts labelling representative images,

but of a noisy annotation process of often poor-quality or uninteresting images

(e.g, logos) randomly downloaded from the Web. Thus, our algorithms must be

able to exploit large-scale statistical information while being robust to noise.

Visual Feature Extraction Generally, we use a standard pipeline in com-

puter vision to extract visual features from images (Szeliski, 2010). Standard

version SIFT descriptors are extracted on a regular grid with 5 pixels spacing,

at four multiple scales (10, 15, 20, 25 pixel radii), zeroing the low contrast ones

(our experimental results on ESP-Game data 50K shows those settings provides

the best result in general). Descriptors are then quantized on a number of visual

words that we varied between 250 and 2000 in steps of 250. We then computed

a one-level 4x4 pyramid of spatial histograms (Grauman and Darrell, 2005), con-

sequently increasing the features dimensions 16 times, for a number that varies

between 4K and 32K, in steps of 4K. We used the VLFeat7 implementation for

the entire pipeline (Vedaldi and Fulkerson, 2008). From the point of view of our

distributional semantic model construction, the important point to keep in mind

is that standard parameter choices such as the ones we adopted lead to distribu-

tional vectors with 4K, 8K, . . . , 32K dimensions, where a higher number of

features corresponds, roughly, to a more granular analysis of an image.

In addition, we use further types of SIFTs features enhancing color descrip-

tions (we call color SIFTs to distinguish them from the standard SIFT) which

have been showed successful in visual concept classification [75, 77] including

HSV-SIFT, OpponentSIFT, RGB-SIFT, rgSIFT. The visual features are

extracted by the implementation of Koen van de Sande 8 accepting best param-

eters from the authors. Briefly, the descriptors are extracted from every pixel in

the image with Gaussan Derivative filter with a sigma of 0.667. Various colour

channels are calculated separately and then concatenated together. While normal

SIFT is described by 128 dimensional vectors, colour SIFTs are in the form of

384 dimensional vectors so we use PCA techniques to reduce the dimensionality

7http://www.vlfeat.org/
8http://koen.me/research/images/colordescriptors.png
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by a factor of 3 in order to obtain 128 dimensional vectors.

All extracted features are then used to construct the vision-based semantic

space as technically described in the section 4.3. In the experiments below, the

SIFT vision-based model is referred as image and the color SIFT vision-based

model is referred as color-VM.

5.1.4 Model Integration

Linear combination We observed that our visual information extraction pro-

cedure naturally results in vectors of dimensionality from 4K to 32K in steps of

4K. To balance text and image information, we use DM vectors coming from

our topn algorithm, which also range from 4K to 32K in steps of 4K. However,

we don’t just combine a visual model with its related textual model of same di-

mensionality (e.g, 4K text with 4K vision, 8K text with 8K vision, etc.). We

additionally combine each of visual feature vectors with each of textual feature

vectors and obtain 64 combined models, in order to get an extensive outlook of

the multimodal vector space model. We call those model combined models.

Since in the experiments on WS (Section 5.1 below) we observe best performance

with 32K text-based features, we report here later experiments with only (at

least) 32K dimensions. Similar patterns to the ones we report are observed when

adding image-based dimensions to text-based vectors of different dimensionali-

ties. In the experimental result below, we refer to the text model of topn 32K

features as text

Importantly, we remarked above our goal to compare impact of visual features

to the textual features: adding visual features is as good as or better than adding

further text-based features. We notice an improvement of adding visual features

to the text-based model, and we should ask whether the same improvement could

also be obtained by adding more text-based features. To control for this pos-

sibility, we also consider a set of purely text-based models that have the same

number of dimensions of the combined models, that is, we compare the combined

model of d dimensionality to the text-based d dimensionality. For example, the

combined models of 64K dimensionality (aka, model from 32K text-based model

and 32K vision-based model) to the purely 64K text-based model, so on and so

forth. We refer to these models text+ in our experimental reports. However,

the comparison is only meaningful if we treat the features equally. That is why

we use the linear combination for that target.
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Linear weighted combination Leaving the consideration of a thoroughly fair

comparison of text-based features and vision-based features aside, we are also in-

terested in how good model our framework can generate and how effective vision-

based features and text-based features compare to each other in our multimodal

semantic space. We applied linear weighted combination for each of 8 text-based

model (ranging from 4K to 32K in steps of 4K) with each of 8 vision-based model

(also ranging from 4K to 32K in steps of 4K). The weighting parameter α varies

from 0.0 to 1.0 in steps of 0.1 (β = 1.0−α). That is, α = 0.0 means the combined

model is actually the vision-based model and no information of text-based model

takes part in the combination. α = 1.0 brings about opposite meaning.

Parameter Estimation for combination We combine the 32K text-based

model (text) and the 20K vision-based model by our Parameter Estimation al-

gorithm (PE) (the reason why we choose those models will be explained in the

section 5.2) . The reason is both of them own a large number of features and they

show the best performance overall. We divide the set of features into groups of 4K

features and then apply the PE algorithm for find the possibly optimal weighting

schemes for these groups. We tune the PE on WordSim data set and with the

ESP50K vision-based models, then take them over ESP100K vision-based mod-

els and other experimental benchmarks. The result indicates that our algorithm

works pretty well. We will present further discussion on the following section.

5.2 Results and Discussion

5.2.1 WordSim

Linear combination The results on WS of the combined models with SIFT

based on ESP50K are reported in the Table 5.1.

Among text-based topn models, the DM32K obtains the best result overall

in term of Spearman coefficient. However, all topn models get quite similar

results to each others, with very tiny differences. That additionally points up that

dimensional size of trimmed DM models does not affect a lot the performance

of semantic similarity measurement. In other words, trimming DM model by

the topn algorithm can still preserve the quality of the text-based state of the

art model. That judgement becomes more concrete with the result stated in the

Table 5.2 where original DM, trimmed DM (text) and text+ own quite a similar



48 Chapter 5. Evaluation

+Visual features 4K 8K 12K 16K 20K 24K 28K 32K

DM4K 50 48 49 49 49 49 49 49

DM8K 50 49 49 49 50 50 50 49

DM12K 50 49 50 49 50 50 50 50

DM16K 51 49 49 50 50 50 50 50

DM20K 51 49 50 50 50 50 50 50

DM24K 51 49 50 50 50 50 50 50

DM28K 51 50 50 50 50 50 51 50

DM32K 51 50 50 50 50 50 51 50

Table 5.1: Performance of combined models on WordSim in Spearman coefficient (%)

result. Practically, the difference between them is far from significance in our

significance tests on WS.

Starting from above assessments and results from Table 5.1 and 5.2, we are

justified to appoint the DM32K as the representative for all trimmed models in

further experiments.

Figure 5.1 presents the learning curves of the combined models against others

on WordSim, WS-Sim and WS-Rel data sets. It suggests that the multimodal

semantic models perform better than independent ones on both semantic relat-

edness and semantic similarity. Interestingly, both text-based model and vision-

based model do a better job in semantic similarity measurement than relatedness

measurement. The reason could be the relations of pairs in WS-Sim seem to

be more straight forward (i.e, in the same category level, for example: plane -

car) while the relations in WS-Rel is more indirect (i.e, one concept could belong

to the sub-category of the other, for example planet - galaxy ), thus, the distri-

butional model can capture them better in WS-Sim pairs. Additionally, we see

multimodal models stay above the text-based one constantly on WordSim and

both of its subsets. The same overall result patterns are mostly identical in all 3

tests. Thus, we are confident that analysing the result on WordSim is fine enough

to predict what is obtained on WS-Sim - semantically similar (e.g., synonyms or

coordinate terms) and WS-Rel - semantically related (e.g., meronyms or topically

related concepts).

In all tests, the purely image-based model is having the worst performance in

all settings. Although even the lowest image-based Spearman score (0.29 ) is sig-

nificantly above chance (p. < 0.05), suggesting that the model does capture some
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semantic information. Contrarily, adding image-based dimensions to a textual

model (combined) consistently reaches the best performance, also better – for all

choices of dimensionality – than adding an equal number of text features (text+)

or using the full DM matrix..

Based on the results reported in Figure 5.1, further analyses will focus on the

combined model with +20K image-based features, since performance of combined

does not seem to be greatly affected by the dimensionality parameter, and perfor-

mance around this value looks quite stable (it is better only at the boundary +4K

value, and with +28K, where, however, there is a dip for the image model). The

text+ performance is not essentially affected by the dimensionality parameter,

and we pick the +20K version for maximum comparability with combined (with

WS, they share the same Spearman coefficient score).

The Table 5.2 shows the comparison of different models from above results.

model WordSim model WordSim

DM 44 image 32

text 44 combined 50

text+ 45 - -

Table 5.2: WordSim Spearman coefficient of distributional models

The difference between combined and text+, although consistent, is not statis-

tically significant according to a two-tailed paired permutation test [54] conducted

on the results for the +20K versions of the models. Still, very interesting qualita-

tive differences emerge. Table 5.3 reports those WordSim pairs (among the ones

with above-median human-judged similarity) that have the highest and lowest

combined -to-text+ cosine ratios, i.e., pairs that are correctly treated as similar by

combined but not by text+, and vice versa. Strikingly, the pairs characterizing

the image-feature-enriched combined are all made of concrete, highly imageable

concepts, whereas the text+ pairs refer to very abstract notions. We thus see here

the first evidence of the complementary nature of visual and textual information.

While general SIFTs features contribute well to the text model, other color

channels of color SIFT does not show the same ability. The Table 5.4 shows

the performance of models based on color SIFTs.

The results of color VMs are much lower than what is delivered from general

SIFT although they are still above the chance. They don’t act marvelously in the

combining tasks with text-based models and result in worse Spearman coefficient
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multimodal model text+

tennis/racket physics/proton

planet/sun championship/tournament

closet/clothes profit/loss

king/rook registration/arrangement

cell/phone mile/kilometer

Table 5.3: WordSim pairs with highest (first column) and lowest (second column)

combined -to-text+ cosine ratios

name combined color-VM

Opposite-SIFT 36 19

RGB-SIFT 37 19

rgSIFT 37 19

HSV-SIFT 39 21

Table 5.4: Performance of color SIFTs feature-based models

scores than the ones of the text-based model. The reason could be colorSIFTs

place a heavy emphasis on different separated color-channels while our image data

set doesn’t bring rich enough color-oriented information about semantic relations

(typically, the ESP data is in poor definition as well as resolution ). So for further

experiments, we more concentrate on the general SIFT and its respective vision-

based models, nevertheless, from our point of view, it does not mean color SIFTs

can’t capture semantic relation among images. We just put a starting brick in the

problem of exploring various types of visual features in semantic representation

task. As said, we would like to keep our framework simple as a prototype and leave

the job of employing sophisticated computer vision studies for further researches.

Weighted linear combination We pick the text model for the combining

test with all of our vision-based models (again, only those from general SIFT).

The result is presented in the Figure 5.2. It is pretty clear that combined models

own better results than independent ones (purely image-based models is obtained

when α = 0.0 and pure text-based model is obtained when α = 1.0). The models

reach the highest scores when α stays around in the middle of the range [0.0 -

1.0]. Based on that results, we claim that α should be the best for our multimodal

vector space at 0.5. Its overall results are higher than results at other values
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except 0.4, but when α = 0.4, combinations result are less stable (We can figure

out from the Figure 5.2 that the variation of results at 0.4 is much larger than

that at 0.5). That result is very attractive for us because it means vision-based

model and text-based model share the even importance level in the multimodal

space.
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Figure 5.2: Performance of distributional models on WordSim

Combination with parameter estimation (PE) algorithm PE algorithm

works pretty well in the task of similarity measurement on WordSim with much

higher results than what attained by other linear techniques. The Table 5.5

shows its overall Spearman coefficient scores against our previous models, where

the model coming from parameter estimation algorithm is marked as PE. The

distance between our PE-model and other models is not bad with 14% higher

than text+ and 9% higher than combined. It suggests us that weighting the

features relying on their cumulative scores is indeed effective for our model. We
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will observe that judgement clearer when we apply the parameters’ value tuned

from ESP50K on WordSim on other image data sets and other tests later.

Increasing number of images From tuning results we got from ESP50K, we

do experiments with ESP100K where the size of image data is double. The Table

5.5 shows the results of the models coming from ESP100K in comparison with

other models9.

model WS model WS

DM 44 Strube and Ponzetto (2006) Wikipedia 19-48

text 44 jarmasz (2003) Roget’s 55

text+ 45 Hughes and Ramage (2007) Wordnet 55

image 32 Agirre et al. (2009) Wordnet 56

combined 50 Farrington (2010) Web corpus LSA 56

PE 59 Harrington (2010) Sem. Network 62

image-esp100k 33 Agirre et al. (2009) Web corpus 66

combined-esp100k 55 Agirre et al. (2009) Wordnet + gloss 66

PE-esp100k 65 Gabrilovich and Markovitch (2007) Wikipedia 75

Table 5.5: WordSim Spearman coefficient experiment of distributional models

As remarked in earlier results on ESP50K, images can capture semantic re-

lations among words/concepts and adding further visual features is at least as

good as adding more text features. They also show capacity in enhancing seman-

tic measurement between concrete concepts. That statement is stronger with the

results relying on large image data set. Generally, it is fascinating that image

models all stay above chance and combined models bring about better results

than text+ models, but it is even more interesting that increasing number of

images dramatically affect the quality of multimodal semantic space. From the

Table 5.5, the combined-esp100k earns 5% more than combined (esp50k) and the

PE-esp100k earn 10% more than PE (esp50k). Comparing to purely text-based

models, the difference reaches 20 %. This leads us to concretely confirm our pre-

vious conclusion: on WordSim, images actually capture semantic relations and

adding visual features is better than adding further text features from the state

of the art text-based model.

9Results of existed models in literature listed in this table are from Wojtinnek et al. (2010)
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Staying apart from the successful story about image itself, we can see that

our combination techniques greatly help the multimodal space models, especially

with the parameter estimation (PE) algorithm where the relatively improvement

is much better than with the linear combination.

Taking a look at the state of the art league in the Table 5.5, we see that our

model is comparable to the top corpus-based methods in spite of the fact that

they are based on much large corpus than which DM is based on. It suggests a

promising result can be achieved by exploiting visual information as an alternative

source.

5.2.2 Rubenstein-Goodeneough

The Figure 5.3 provides the outline of the performance of our multimodal models

on our version of RG (to remind, we cover 73 % of the original RG). It reports all

combination of text with vision-based models coming from ESP50k and ESP100K.
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Figure 5.3: Performance of distributional models on Rubenstein-Goodeneough

The foremost observation we get here is that the result is pretty similar to

what we got with WordSim. It gets us more confident to confirm the conclusion

above. However, we just have a very limited number of pairs participating on
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this test (i.e, 47 pairs covered, much smaller than what we have in WordSim

with 260 pairs covered ). That explains why the performance of models is less

stable that what we get in the WordSim. From the overall result pattern, we can

see that the text and text+ have a similar result and it is a bit worse than the

original DM models. Also, the multimodal models are not worse than all of them

(especially combined-esp100k is constantly above all of vision-based only models

and text-based only models)

Once more, It is clear that the image can capture semantic relations, that is,

vision-based only models stays above chance and with more images, the results

get higher. Homogeneously, the more images, the more semantic relations the

multimodal DSM can capture. We can see that vividly from the Table 5.610

which presents results of all representative models (to remind, we also pick up the

combination text +20K vision-based model for multimodal model construction)

model RG model RG

DM 83 Chen et al. (2006) DoubleCheck 85

text 80 Herdagdelen et al. (2009) SVD-09 80

text+ 81 Pado and Lapata (2007) DV-07 62

image 43 Pado and Lapata (2007) cosDV-07 47

combined 81 - -

PE 87 - -

image-esp100k 55 - -

combined-esp100k 84 - -

PE-esp100k 81 - -

Table 5.6: RG Pearson coefficient experiment of distributional models

Based on results on the Table 5.6, again, the highest result belongs to our

PE model obtained by parameter settings tuning on WordSim. However, the PE

model related to esp100k has a lower result than that of linear combined model,

even it is still equal to text+. The reason, as we emphasized from beginning,

might be that our version of RG is too small with only 47 pairs and normally

makes our models unstable like what happened in the beginning part of this

section. That makes us less trustful in our version of RG than WordSim, but

still the RG results are very interesting. Although we don’t have a full cover for

10The results of existed models in literature are from Baroni and Lenci (2010)
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RG but relatively comparing to existed models, we believe our multimodal model

can stay in the top of the state of the art line, for example, DM provides quite

similar result on the full RG (see more details in [8]); and our best model (PE) is

comparable to the DoubleCheck, which is holding one of the best scores on RG

and even though it is an unstructured system that relies on Web queries (and

thus on a much larger corpus) [8].

We do a further analysis in how different the multimodal model (PE) and

text+ model are by repeating the qualitative analysis we did with WordSim. The

result is indicated in the Table 5.7

multimodal model text+

autograph/signature magician/oracle

cook/rooster serf/slave

cushion/pillow brother/monk

bird/crane magician/wizard

Table 5.7: WordSim pairs with highest (first column) and lowest (second column)

PE -to-text+ cosine ratios

Another time, the multimodal model list is made of more concrete concepts

than what in the text+ list like what we observed with WordSim. The difference

here is the text+ pairs look more concrete than the text+ pairs in the experi-

ments with WordSim above, but it is because RG doesn’t contains purely abstract

concepts. It emphasizes that our visual features indeed contribute more to the

concrete concepts’ semantic representation.

5.2.3 Concept Categorization

Table 5.811 reports percentage purities in the AP and Battig clustering tasks for

full DM and the representative models discussed above.

The image model alone is not at the level of the text models, although both

its AP and Battig purities are significantly above chance (p < 0.05 based on simu-

lated distributions for random cluster assignment). Thus, even alone, image-based

vectors do capture aspects of meaning. For AP, adding image features does im-

prove performance, although the best multimodal model PE is not significantly

11The results of existed models in literature are from Baroni and Lenci (2010)
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model AP Battig

DM 81 96

text 79 83

text+ 80 86

image 25 43

combined 78 96

PE 83 97

image-esp100k 25 52

combined-esp100k 69 91

PE-esp100k 74 95

— — —

Rothenhausler and Schutze (2009) DepPath 79 NA

Almuhared and Poesio (2005) AttrValue-05 71 NA

Herdagdelen et al. (2009) VSM 70 NA

Baroni et al. (2010) Strudel NA 91

Baroni et al. (2010) DV-10 NA 79

Baroni et al. (2010) AttrValue NA 45

Table 5.8: Percentage AP and Battig purities of distributional models

better than the text+ (by a two-tailed paired permutation test of difference be-

tween text+ and PE ). For Battig, adding visual features (refer to combined and

PE ) improves on the purely text-based models based on a comparable number

of features (although the difference between text+ and PE is not significant),

reaching a modestly better performance than the one obtained with the full DM

model (that in these categorization tests is slightly above that of the trimmed

models). Intriguingly, the Battig test is entirely composed of concrete concepts,

so the difference in performance for combined might be related to its preference

for concrete things we already observed for WordSim.

Strangely, the ESP100K-based multimodal models have worse performance

than the ESP50K-based models on both AP and Battig noun categorizing test.

It is opposite with the results we obtained from WordSim and RG experiments in

the previous experiments, that is, increasing number of images does not enhance

the model pretty much. Since we still believe in our assumption that: images can

captures semantic relations - so more images, we should have better performance,

we think a bottleneck problem here is our techniques in extracting visual features.
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With more images, we are supposed to use difference settings instead of those

tuned in ESP50K (twice smaller data set).

However, the best multimodal model based on ESP100K (PE-esp100k) is still

not worse than the text+. Its result is lower in AP but higher in Battig than that

of the text+. All significance tests between their results shows that the difference

is still far from significance.

Looking at the combination techniques, our PE algorithm again is the winner

as it carries out best job done in both AP and Battig. The linear combination is

not bad but still not on the same line with the PE.

To sum up, the concept categorization experiments do not confirm the ten-

dency on WordSim for increasing the number of images to improve performance.

Nonetheless, the experiments support what we observed on WordSim, that is,

visual features do not harm performance. The results show that the multimodal

model is slightly better than the purely text-based models, even though they

are not statistically significance different. The next test will give us some in-

sights on how visual features affect the behaviour of the models, independently

of performance.

5.2.4 BLESS

The BLESS distributions of text-based models (includingmultimodal model (DSM))

are similar while those of the image-based only models are largely different so we

use here the full DM model as representative of the text-based set and the PE-

esp50k model as representative of the all combined models in Figure 5.4 and –

their boxplots are then compared to the ones of the purely image-based models

in Figure 5.5.

We see that purely text-based DM cosines capture a reasonable scale of tax-

onomic similarity among nominal neighbours (coordinates then hypernyms then

meronyms then random nouns), whereas verbs and adjectives are uniformly very

distant, whether they are related or not. This is not surprising because the DM

links mostly reflect syntactic patterns, that will be disjoint across parts of speech

(e.g., a feature like subject kill will only apply to nouns, save for parsing errors).

Those relations are also captured by the multimodal model. The only differ-

ence between the multimodal model and DM lies on the scale of attributes/events,

random nouns/adjectives/verbs. That suggests the multimodal model is a bit bet-

ter than DM at differentiating related attributes/events/random adjectives/ran-
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Figure 5.5: Distribution of z-normalized cosines of words instantiating various rela-

tions across BLESS concepts of image-base models.
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dom verbs and a bit worse at avoiding random nouns. While DM is only able

to discriminate between attributes and random verbs, the multimodal model can

additionally distinguish attributes from random adjectives more.

Looking at the image-only models, we first observe that the esp50k image

based only model can capture differences between related attributes/events and

random adjectives/verbs (according to a Tukey HSD test for all pairwise com-

parisons, these differences are highly significant, whereas DM only significantly

distinguishes attributes from random verbs). In this respect, image esp50k is

arguably the “best” model on BLESS. However, perhaps more interestingly, the

image-esp50k model also shows a biased for nouns, capturing the same taxo-

nomic hierarchy found for DM. This suggests that image analysis is providing a

decomposition of concepts into attributes shared by similar entities, that capture

ontological similarity beyond mere syntagmatic co-occurrence in an image de-

scription. What is really astonishing is that the esp100k image-based only model

can be the “worst” model at all, regarding some discussed aspects above. It can

not make a distinction of coordinates, hypernyms then meronyms like others. It

is also bias to nouns an can’t capture the taxonomic hierarchies. Once more, we

observe the poorer quality of the vision-based model coming from esp100k. It

leads us suspect (more) that perhaps the settings tuned on ESP50k data set are

not suitable for a twice-time bigger dataset. However, the esp100k model still

can discriminate the difference of random verbs and random adjectives among

relations.

Basing on merits of 2 vision-based (only) models (image esp50k and image

esp100k), we can conclude that vision information still admits a potential capacity

to capture semantic differences among concepts.

Considering that the image esp50k model outperforms the image esp100k

model, we choose the image esp50k model as the representative for generally

purely image-based models and use it for our next experiments (so, we name it

image model). To support the conclusion from the paragraph above, we counted

the average number of times that the related terms picked by the image model

directly co-occur with the target concepts in an ESP-Game label. It turns out

that this count is higher for both attributes (10.6) and hypernyms (7.5) than for

coordinates (6.5). So, the higher similarity of coordinates in the image model

demonstrates that its features do generalize across images, allowing us to capture

“attributional” or “paradigmatic” similarity in visual space. More in general,

we find that, among all the related terms picked by the image model that have
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an above-average cosine with the target concept, almost half (41%) never co-

occur with the concept in the image set, again supporting the claim that, by our

featured analysis, we are capturing visual properties of similar concepts beyond

their co-occurrence as descriptions of the same image.

A final interesting point pertains to the specific instances of each (non-random)

relation picked by the textual and visual models: of 870 related term pairs in to-

tal, almost half (418) differ between DM and image, suggesting that the boxplots

in Figure 5.4 hide larger differences in what the models are doing. The randomly

picked examples of mismatches in top attributes from Table 5.9 clearly illustrate

the qualitative difference between the models, and, once more, the tendency of

image-based representations to favour (not surprisingly!) highly visual properties

such as colours and shapes, vs. the well-known tendency of text-based models to

extract systemic or functional characteristics such as powerful or elegant [7]. By

combining the two sources of information, we should be able to develop distribu-

tional models that come with more well-rounded characterizations of the concepts

they describe.

concept DM image concept DM image

ant small black potato edible red

axe powerful old rifle short black

cathedral ancient dark scooter cheap white

cottage little old shirt fancy black

dresser new square sparrow wild brown

fighter fast old squirrel fluffy brown

fork dangerous shiny sweater elegant old

goose white old truck new heavy

jet fast old villa new cosy

pistol dangerous black whale large gray

Table 5.9: Randomly selected cases where nearest attributes picked by DM and image

differ.

5.3 Result conclusion

In conclusion, we have carefully evaluated tasks ranging from word similarity

judgement, concept clustering to BLESS semantic relationship differentiating in
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order to measure how good our multimodal model is. The overall results are

high with 65 % Spearman coefficient score in WS, 87% Pearson coefficient score

in RG for similarity measurement, 83% and 97% respectively for AP and Battig

clustering tasks. The multimodal model can also recognize/differentiate most of

semantic relationship in BLESS (we don’t have a relative comparison to other

results on BLESS yet because it is newly introduced). Different to almost all

published models that are designed and tuned for a task at hand, our model

works well on all tests gold-standard tests (we do experiments on all of available

tests to evaluate semantic representation, which are possible for our model’s ar-

chitecture , except TOEFL test of synonym detection). The result indicates that

our multimodal model can (or very closely) stay in the top state of the art level.

More interestingly, the results indicate that visual information certainly cap-

tures semantic relations among words/concepts. The purely image-based models,

while worse than the more advance models, still achieve above-chance perfor-

mance. Especially, in the BLESS test, purely image-based model is robust in

differentiating the semantic relationships, is even better than the state of the art

text-based models. To confirm our judgement, we did the qualitative analyses

and successfully recognize the evidence that visual information can capture better

semantic relations among concrete concepts.

Our various experiments show that adding further visual information is com-

parable to adding further text information. In similarity measurement and con-

cept clustering tests, our multimodal model earns higher results than the text-

based model of the same feature dimensionality. Additionally, the BLESS test

indicate the multimodal model can into the bargain distinguish attributes from

random adjectives, while no purely text-based model can.

Considering all factors above, we are safe to claim that the two sources of

information (text and images) are complementary in semantic representation.





Chapter 6

Conclusion and Future Work

We proposed the first framework to integrate a state of the art text-based semantic

model and a vision-based semantic model to create a multimodal semantic model.

The framework is designed as an open prototype for further studies / analysis in

both computer vision and computational linguistics.

We proposed an effective method to augment a state-of-the-art text-based

distributional semantic model with information extracted from image analysis.

The method is based on the famous bag-of-visual-words representation of images

in computer vision where a “visual” word is a cluster of keypoint descriptor

SIFT. The image-based distributional profile of a word is encoded in a vector

of co-occurrences with “visual words”, that we concatenate with a text-based

co-occurrence vector.

In all result reports, adding image-based features earns higher absolute scores

than adding further text-based features, but the statistical significance tests show

that the differences between them are not close to significance level. However, the

result is still very interesting because we can safely claim that adding image-based

features is at least not damaging, when compared to adding further text-based

features, and largely possible beneficial.

Especially, the experiments in the Chapter 5 briefly explored an interesting

aspect of the semantic relations image-based features are capturing. We find that

image-based features lead to interesting qualitative differences in performance:

Models including image-based information are more oriented towards capturing

similarities between concrete concepts, and focus on their more imageable prop-

erties, whereas the text-based features are more geared towards abstract concepts
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and properties. Our experiments show a preliminary evidence for an integrated

view of semantics where the more concrete aspects of meaning derive from per-

ceptual experience, whereas verbal associations mostly account for abstraction.

In addition, we observe that the general SIFT visual features work better than

color oriented SIFT visual features such as HSV-SIFT, OpponentSIFT, RGB-

SIFT, rgSIFT in semantic similarity measurement task. It does not mean the

color SIFTs are bad for our task but it suggests visual features which reflect only

one isolated channel of color information might not capture semantic relations

well, in spite of the fact that image-based representations tend to characterize

visual or color properties of objects in images.

Through all of our experiments, our proposed algorithm namely “Parameter

estimation” (PE) works productively and outperforms the naive linear combina-

tion method in the task of creating a multimodal semantic model by integrating

text-based and vision-based features. The algorithm is based on the idea of ex-

tracting top features and weighting them differently, instead of treating them

evenly. Our best model is the multimodal model coming from applying the PE

algorithm on the ESP50K-based visual model and DM. We haven’t successfully

proved that increasing number of images will improve the quality of multimodal

model but we believe it is just the matter of computer vision techniques. We will

leave that proof task with more sophisticated techniques from computer vision

community for our next studies.

In future work, we plan first of all to improve performance, by focusing on vi-

sual word extraction and on how the text- and image-based vectors are combined

(possibly using supervision to optimize both feature extraction and integration

with respect to semantic tasks). However, the most exciting direction we intend

to follow next will concern evaluation, and in particular devising new benchmarks

that address the special properties of image-enhanced models directly. For exam-

ple, Baroni and Lenci (2008) observe that text-based distributional models are

seriously lacking when it comes to characterize physical properties of concepts

such as their colors or parts. These are exactly the aspects of conceptual knowl-

edge where image-based information should help most, and we will devise new

test sets that will focus specifically on verifying this hypothesis.

Last but not least, we come back to our discussion in the embodied literature

reviews: perceptual information from images indeed captures semantic relations.

In a nutshell, by exploiting visual distributional information, we may break the

limit: the description of objects based on text may loose its accuracy (e.g, “green
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banana”, or “red light”, ...), and that will help us in widely applied scopes of

applications: from solving general tasks mentioned in the recent survey of Tur-

ney and Pantel (2010), such as query expansion, information retrieval or word

sense disambiguation, more ambitiously, to constructing a learning system that

is comparable to the human learner.
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Giang Binh Tran
Combining text-based and vision-based semantics

We present an innovative (and first)

framework for creating a multimodal

distributional semantic model from state

of the art text-and image-based seman-

tic models. We evaluate this multi-

modal semantic model on simulating

similarity judgements, concept cluster-

ing and the newly introduced BLESS

benchmark. We also propose an effec-

tive algorithm, namely Parameter Es-

timation, to integrate text- and image-

based features in order to have a ro-

bust multimodal system. By experi-

ments, we show that our technique is

very promising. Across all experiments,

our best multimodal model claims the

first position. By relatively comparing

with other text-based models, we are

justified to affirm that our model can

stay in the top line with other state

of the art models. We explore various

types of visual features including SIFT

and other color SIFT channels in order

to have preliminary insights about how

computer-vision techniques should be

applied in the natural language pro-

cessing domain. Importantly, in this

thesis, we show evidences that adding

visual features (as the perceptual infor-

mation coming from images) is compa-

rable (and possibly better) than adding

further text features to the advanced

text-based model; and more interest-

ingly, the visual features can capture

the semantic characteristics of (espe-

cially concrete) concepts and they are

complementary with respect to the char-

acteristics captured by textual features.

Partial results of this thesis are pub-
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