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Abstrakt:
Vyvinuli jsme metodu umožňuj́ıćı konstrukci dvousmyčkových 2 → 2 rozptylových amplitud pseudoska-
lárńıch mezon̊u založenou na disperzńıch relaćıch a relaćıch unitarity. Použit́ı této metody jsme nejprve
ilustrovali na př́ıkladu konstrukce všech takovýchto amplitud zachovávaj́ıćıch isospin v chirálńı poruchové
teorii za předpokladu pouze silných interakćı.

Poté jsme ji použili ke konstrukci amplitud popisuj́ıćıch ππ rozptyl a rozpady K → 3π a η → 3π, kde
jsme vzali v úvahu efekty narušuj́ıćı isospin zp̊usobené r̊uznými hmotami částic př́ıslušej́ıćıch do stejného
isomultipletu. Takto vzniklé parametrizace jsou připraveny k fenomenologickým studíım ππ rozptylových
délek a efekt̊u narušeńı isospinu, které nám mohou poskytnout d̊uležité informace k pochopeńı kvantové
chromodynamiky při ńızkých energíıch.

Nakonec jsme provedli analýzu rozpadu η → 3π, z ńıž jsme źıskali hodnotu poměru kvarkových hmot
1/R = (md −mu)/(ms − m̂). Náš konzervativńı odhad této veličiny je R = 39.6+2.5

−5.1. Zkombinováńı této
hodnoty s výsledky pro izospinové hmoty m̂ = (mu + md)/2 a ms plynoućımi z jiných metod (sumačńı
pravidla nebo lattice) vede k v současné době nejpřesněǰśımu určeńı hmot u a d kvarku, jejichž hodnoty
uvád́ıme v textu.

Kĺıčová slova: procesy pseudoscalárńıch mezon̊u, disperzńı relace, chiralńı poruchová teorie, narušeńı
isospinu, určeńı kvarkových hmot

Title: Construction of pseudoscalar meson amplitudes in chiral perturbation theory using a dispersive
approach

Author: Martin Zdráhal

Department: Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles
University in Prague

Supervisor: RNDr. Jǐŕı Novotný, CSc.

Abstract:
We have developed a method enabling a construction of two-loop 2 → 2 scattering amplitudes of pseu-
doscalar mesons based on the dispersion and the unitarity relations. This method is illustrated on the
construction of the amplitudes of all such processes in chiral perturbation theory in isospin limit taking
into account strong interactions only.

Then it was used for the construction of ππ scattering amplitudes and of K → 3π and η → 3π decay
amplitudes including isospin breaking effects induced by different masses of the particles belonging to the
same isomultiplet. These parametrizations are prepared for various phenomenological analyses of the ππ
scattering lengths and of the isospin breaking effects, both of which could provide us important information
for the understanding of quantum chromodynamics at low energies.

Finally, we have performed the phenomenological study of η → 3π decay and obtained a value of the
quark mass ratio 1/R = (md − mu)/(ms − m̂). Our conservative estimate is R = 39.6+2.5

−5.1. This value
supplemented by the values of the isospin symmetric masses m̂ = (mu+md)/2 and ms from other methods
(as sum-rules or lattice) enables us to obtain currently the most precise determination of the mu and md

quark masses, whose values are quoted in the text.

Keywords: pseudoscalar meson processes, dispersion relations, chiral perturbation theory, isospin breaking,
quark masses determination
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Preface

Whenever we want to describe some phenomenon occurring in the world around us and
construct a relevant physical model that will give numerical predictions of further experi-
ments related to it, at several places of its construction we are faced with choosing between
various alternatives.

The first such choice occurs in formulation of the basic principles our model should
possess. Without their right choice, the model we construct will not reproduce the results
of the observations and of the experiments dealing with the phenomenon. It is believed
that in the end there exists only one genuine choice corresponding to the world in which
we live and that after a shorter or longer time we will identify it. Therefore, when some
choice of the set of principles proves itself to be wrong, we completely forget this alternative
and concentrate ourselves on the new one. The challenging aspect of it is, however, the
fact that it can take much time before one finds some observation which contradicts the
expectations of the model thereby indicating that his choice of the basic principles was in
fact only approximate or even incorrect and it can take even longer until we really end up
with the genuine correct choice. Nowadays, thanks to the long history of our endeavor to
describe the world around us and to the belief that there exists only one general physics,
we have gained some experience that can be used as a guiding line for the formulation of
the principles. However, still each time we enter a new area (and era) of physics where the
old ideas do not work or give improper/incorrect answers, we are once again faced with the
questions which of the principles we already have should be abandoned or adjusted and
whether we should add some new one.

There follows the second choice — the choice of the right mathematical framework that
would possess the right properties compatible with the basic principles we have chosen.
Also here the tradition can help substantially but can also be misleading. Whereas the
basic principles are usually stated in simple words, in order to explore all the properties of
the mathematical framework we need much more patient and careful studies.

Although these two steps on the quests for the physical models with the correct basic
principles and with the correct mathematical framework are amusing and in the recent
years in the form of the search for new physics beyond the Standard model very popular
and topical, in this work we will deal with another appearances of alternatives in physics.

Even within the right framework with the correct basic principles we still have more
alternative techniques how to compute some physical quantity. Here there comes into the
game a new sort of alternatives. This time the different alternatives using the correct
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assumptions usually lead to the same results and the criterion determining which of the
techniques should be preferred is predominantly the simplicity with which the results are
obtained. In this situation it is therefore important to keep in mind the existence of
all such alternatives since in some other applications it can show up that some of them
is more useful than the one originally chosen. Moreover, in the nowadays physics we
usually do not know the way how to obtain the complete non-perturbative result, and thus
we need to make some approximations leading to an approximate result with a required
precision. In that case, in addition to the freedom of choice of the effects we neglect
and to the approximations we can make, there could happen that the method we have
originally chosen for the computation as the right one can cease to be compatible with
these approximations or that some other alternative would be now more suitable.

In this work we discuss one such alternative method to the traditional approaches in the
low-energy regime of strong interactions and demonstrate how it can be useful for gaining
the insight into the results that can be obtained by both the traditional and the alternative
methods, but also for obtaining the results that go beyond the traditional approach.



Chapter 1

Introduction

The basic principles of the theory of strong interactions are believed to be well-known —
they are formulated in the full elegance in the mathematical model called quantum chro-
modynamics (QCD). Its quantum field origin offers us an ample amount of methods that
can be used to solve problems within it. However, despite the success of the perturba-
tive QCD exploiting the property of asymptotic freedom, at the low-energy region, where
the confinement rules, the degrees of freedom are no longer quarks and gluons but rather
hadrons and we feel the lack of complete non-perturbative methods that would operate
in terms of these particles. We have, therefore, no other choice than adding some addi-
tional principles, even though the approximate ones, that enable the use of approximate
non-perturbative methods. Probably the best known of them is the lattice QCD, which
discretizes the space-time and using huge supercomputers computes path-integrals of QCD
(nowadays there exists a vast amount of literature dealing with different topics of this sub-
ject; we recommend as a good starting point for the interested reader the recent attempt
to provide a summary of many lattice results for non-lattice experts [46]).

The fact that in the hadron spectrum there appears a gap between the light pseudoscalar
mesons, π, K, η, and the other hadrons, which start to appear at ΛH ∼ 1GeV; together
with the existence of a suitable approximate symmetric structure of the low-energy theory
enabling us to understand these mesons as pseudo-Goldstone bosons of a specific chiral
symmetry breaking are the basic ideas behind the chiral perturbation theory (χPT) [130,
73, 74, 26] as the further non-perturbative method. We recall here only few important
properties of it, which will be important in the following chapters. For the introduction to
the subject, one can use either author’s diploma thesis [I] or some standard introduction
[62, 121, 70, 26]. Texts [131, 106, 71] written by the founding fathers of χPT are as well
recommended — they contain also some interesting historical remarks and foundational
aspects of this framework. In addition, the last of these papers covers the more general
subject of the history of ππ scattering, whose studies have been one of the most important
motivations for our current work.

Chiral perturbation theory introduces the so-called chiral expansion containing two
expansion parameters, the momenta of pseudo-Goldstone particle p/Λ and the measure

3
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of the explicit breaking of the chiral symmetry by the non-zero lightest quark masses
mq/Λ, in both these parameters the quantity Λ is the scale of chiral symmetry breaking
Λ ∼ 1GeV. Although this framework is non-renormalizable there exists a natural power-
counting scheme that organizes the contribution of higher-order diagrams so that to a given
order there contributes a finite number of diagrams and there appears a finite number of
low-energy constants (LEC). The importance of a given diagram is determined by its chiral
order O(pd). Besides the standard chiral power-counting of Weinberg [130] there appeared
in 1991 also a less predictive generalized chiral power-counting [67, 125, 97] that included
the possibility of a small chiral condensate 〈0|qq|0〉, which was not studied before. This
inspired Stern and collaborators [125] for developing an S-matrix method for construction
of the ππ scattering amplitude, which was Lagrangian-free and thereby not depending on
the particular power-counting scheme. Even though the recent experiments favor more
the standard scenario1, the analyses based on their S-matrix method, which is referred
nowadays as the “reconstruction theorem”, can still have a few interesting applications
as is presented in this work. But for the next few lines let us return back to the chiral
perturbation theory.

In the last quarter-century χPT has made a considerable progress, mainly in the
mesonic sector. There the calculation of most of the processes of interest and of the
corresponding observables have been done at the two-loop level (including two loops, in
chiral counting of order O(p6)) and very accurate predictions based on such calculations
have been made (cf. [26]). The prominent examples of this sort are the S-wave ππ scatter-
ing lengths a0 and a2 [48, 49]. However, the non-renormalisibility of this approach causes
the following limitations of the method when we want to include higher and higher orders.
Raising the level of computation to two loops means a rapid increase of the number of
effective LEC that have to be estimated before one can make reliable physical predictions.
Such an estimate usually appears to be the weakest point of the two-loop numerics. On
the other hand, since the physical amplitudes depend on a few specific combinations of
LEC that can be shared by different amplitudes and observables, we can still use the two-
loop results for finding some nontrivial combinations of observables independent on the
unknown LEC. Nevertheless, because of the extreme length of the generic O(p6) results
that provides no easy survey, this task might be very tricky. Similarly, the large extent of
the O(p6) results make rather difficult to reveal the analytic structure of the result, which
is in fact governed by unitarity. Last but not least, the O(p6) calculations based directly
on the chiral Lagrangian represent themselves a very hard technical problem combining
both advanced analytical as well as numerical methods.

Therefore, there is a place for some alternative and complementary approaches to the
Lagrangian-based two-loop calculations that might prove to be useful. They can provide
two distinct benefits. First, they can be helpful for a better organization and understand-
ing of the complicated structure of the O(p6) results, namely by means of revealing the
repetitious combinations of LEC and chiral logs and moreover, elucidating the analytic
structure of the results through their connection to the unitarity. Secondly, they can pos-

1For more details about this vivid history of the size of the chiral condensate, we recommend again [71].
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sibly serve as a tool enabling us to go at least partially beyond the standard χPT and
beyond the O(p6) accuracy. The latter might be useful either for theoretical estimates of
the uncertainties of the Lagrangian-based O(p6) results or, taking into account possible
problems with the convergence of the standard chiral expansion (cf. for instance the stud-
ies of η → 3π, discussed in Section 9.2), it can be used to improve the convergence in
“dangerous” kinematic regions by virtue of matching both approaches at the points where
the convergence is guaranteed from general considerations.

One sort of such approaches that are on the market are the Lagrangian-free S-matrix
methods based on the dispersion relations and the unitarity, which are nowadays under-
stood as an integral part of the analyses of many processes. Let us emphasize among
others the ππ scattering [118,13,48,125,95,94] (and many references thereof), πK scatter-
ing [11, 12], Kℓ3 decays [25] and finally η,K → 3π decays [17, 90, 44, 50].

In the case we do not want to modify significantly the assumptions of χPT and we do
not have any information about the high-energy asymptotics of the amplitudes, or when
we want to reproduce exactly the standard χPT results, the most useful are the methods
based on the “reconstruction theorem” referred above. The original paper [125] presented a
Lagrangian-free S-matrix method for construction of the ππ scattering amplitude up to and
including two loops in two flavor χPT, based on the most general principles of analyticity,
unitarity and crossing combined with the assumption of chiral expansion (neglecting only
the effects of order higher than the two-loop one). Employing this method iteratively
with the help of two-particle unitarity in [95] allowed to parametrize the two-loop ππ
amplitude in terms of six independent parameters prior to the standard Lagrangian-based
O(p6) calculation [30,31]. The latter fitted the general form from [95] and the six relevant
parameters have been identified in terms of LEC and chiral logs.

Moreover, because of its generality, the parametrization is valid regardless of the par-
ticular scheme of the chiral power counting and therefore it can be understood as a way
beyond the standard scheme or alternatively as a tool to resum partially the higher order
unitarity corrections.

In this work we discuss the generic derivation of the reconstruction theorem, its im-
portant properties and its application for the construction of two-loop amplitudes in all
generality. Then the illustration of this construction on the example of isospin symmet-
ric 2 → 2 meson scattering amplitudes is presented. Thereafter, we concentrate on the
isospin breaking ππ scattering amplitudes and their influence on the η and K decays into
three pions. As is recalled in Section 6.2, where also a list of the recent theoretical studies
of these two decays is presented, they are nowadays in the center of interest either as a
tool for determination of the isospin breaking ratio of the quark masses R = ms−m̂

md−mu
from

η → 3π, or as a clean method for extracting the ππ S-wave scattering lengths a0 and a2
from the cusp effect in the final π0π0 invariant spectrum of the K+ → π+π0π0 decay. The
reconstruction procedure used iteratively for the amplitudes of these processes can provide
us with the most general parametrization of them including two-loop effects. Because we
have a freedom in the exact choice of the parameters used there, we can use, among other
choices, the S-wave scattering lengths, thereby already performing a partial resummation
going beyond the strict Lagrangian-based O(p6) calculation. These parametrizations for
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the amplitudes of interest are prepared for the phenomenological analyses. We explicitly
perform such analyses in these work only for the η → 3π and from the experimental infor-
mation on it we obtain the value of R. As is discussed in Section 9.1, in connection with
the isospin symmetric studies on the lattice or by QCD sum-rule techniques this enables
us to determine the mu and md quark masses with a very high precision.

The main text of this thesis is divided into four parts. Part I concerns general discus-
sion of the reconstruction theorem and its applications for the construction of the two-loop
four-meson amplitudes. In Chapter 2 we derive the reconstruction theorem with a care-
ful discussion of all of its assumptions. This topic was partially presented in author’s
diploma thesis [I] and paper [II], however, the discussion in the current text is more de-
tailed, especially in discussions of the number of subtractions, of the freedom of choice
of the subtraction scheme, and of the possible simplifications that can be used for the
resulting form of the dispersion integrals. In Chapter 3 we describe the application of the
theorem for the construction of the meson-meson scattering amplitudes. In addition to
the material presented in [I, II], the discussion of the second iteration in Sections 3.4–3.5
is included. We have also added the section about the properties of the polynomial part
of the amplitude in the chiral limit (Section 3.3) and the important discussion about the
possible interpretations of the polynomial parameters of our representation (Section 3.6).
In Chapter 4 we illustrate this method on the example of isospin symmetric 2 → 2 me-
son scattering amplitudes. We do not repeat the complete analysis of [I, II] but instead
concentrate more on the connection of our parametrization to the χPT result.

Part II containing just the single Chapter 5 deals with the construction of the ππ
scattering amplitudes, with the main emphasis on the isospin breaking ones. After the
construction of the complete two-loop parametrization, we have included in Section 5.11
also the determination of the values of its parameters compatible with the χPT result and
with the experimental information on the ππ phase shifts.

Part III uses all these results for construction of the K → 3π and η → 3π decay
amplitudes. In Chapter 6 we summarize important properties of these decays and the
state of art in analyses of them. In Chapters 7 and 8 we have elaborated separately
the case of the amplitudes in the leading order in isospin breaking, which is important
mainly for the η → 3π processes, and the case where all the isospin breaking effects
induced by the different masses of the mesons belonging to the same iso-multiplets are
taken into account. The results on this part and partially also those of Part II will be
presented in our forthcoming publication [X]. Some topics were already presented in our
proceedings [III, IV,V] and in paper [VI].

Finally, in Part IV we perform the phenomenological analysis of η → 3π decay based
on our analytic dispersive representation that uses the information from the NNLO chiral
result and the one from the measurement of the charged η → 3π decay by KLOE for the
determination of the value of the quark mass ratio R. Part of this analysis was published
in [VI]. Here, we do not repeat the analyses performed in [VI] but we analyze another
distribution compatible with the KLOE results (note that the genuine KLOE data are
unavailable) in order to study the dependence of the result on the particular form of the
distribution and we discuss into more detail the possible sources of errors. In Section 9.10
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we use the determined value of R together with the results of the other recent analyses
presented in the literature for constraining the mu and the md quark masses. This subject
was discussed also in [VII,VIII,IX], however, in the current work the most recent numbers
(including the complete error budget from the η → 3π analysis) are presented.

In Chapter 10 we summarize the important conclusions of the thesis and partially
discuss also the outlook of the further applications of the presented methods.

Note that we use the appendices not only for the technical details and the extensive
expressions but also for the important subjects that could be otherwise dissipated in the
main text. Especially, the essential part of the material of Appendices A, E and J–K is
therefore deferred there not because of its unimportance or in order to save the reader from
a tedious reading of dense formulas but in opposite for sake of simpler referring to them.

Appendix A is part of our derivation of the reconstruction theorem2 as it gives the
general solution of the crossing relations for the polynomial parts of the amplitudes. Ap-
pendix B discusses a few important properties of Hilbert transform and lists some relations
used for the determination of Hilbert transform of some function from the knowledge of the
transform of a related function. In Appendix C we follow the procedure of [124] and find
the kinematic regions where the validity of dispersion relations and further assumptions
of the reconstruction theorem for the amplitudes from Chapters 4 and 5 can be proved
directly from the axiomatic theory. In Appendix D we list the values of the polynomial
parameters for the amplitudes of Chapter 4 that reproduce the standard O(p4) chiral am-
plitudes (from [78]) — they were also published in [II]. In Appendix E we derive the
important relations between the scattering-length parameters and the derivatives of the
amplitudes and then employ them for the unitarity corrections of these parameters in our
representation — they define the restoring polynomials used in Chapter 5 for keeping the
values of these parameters at their physical values. In Appendix F we list all kinematical
functions appearing in our results. In Appendix G there are given the explicit forms of
the polynomials of the NLO partial waves of the ππ amplitudes, these polynomials then
occur also in the two-loop results of ππ scattering and of K → 3π and η → 3π decay
amplitudes. Appendix H reviews the relations between the usual Dalitz plot parametriza-
tion of the η → 3π amplitude and its linear form and then gives also the relation between
these parametrizations for the neutral and for the charged decays valid in the first order of
isospin breaking. In Appendix I the isospin structure of K → 3π amplitudes is derived. In
Appendix J we extent the analysis of [40,86] deriving the analytic properties of Kπ → ππ
and ηπ → ππ amplitudes also to the case of isospin breaking. We use the method of Lan-
dau equations for the determination of the analytic properties of the individual Feynman
diagrams contributing to this processes. In Appendix K the resulting prescription for the
correct analytic continuation in the mass of the decaying particle is used for the continua-
tions of the partial waves of the Kπ → ππ and ηπ → ππ amplitudes, which are then used
in Chapters 7 and 8 for computation of the correct result of the second iteration for these
processes. The thesis is closed with Appendix L, where the polynomials appearing in NLO
partial waves and in the NNLO amplitudes of K → 3π and η → 3π decays are listed.

2This appendix represents author’s reformulation of the text of unpublished note of J. Novotný.
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Part I

Reconstruction procedure in general

9





Chapter 2

Reconstruction theorem

In this chapter we formulate and prove the reconstruction theorem in the formulation writ-
ten for any meson-meson scattering, which will be used in the following chapters for the
construction of amplitudes of several particular processes. We state here all the assump-
tions essential for the theorem, which will simplify our further discussion of validity and
limitations of the results computed for the individual processes, and also of the further
applications of the theorem.

2.1 Notation

Kinematics

We consider a quasi-elastic scattering process of two particles of the type

A(pA)B(pB) → C(pC)D(pD) (2.1)

and define its amplitude according to

f〈C(pC)D(pD)|A(pA)B(pB)〉i = δif + i (2π)
4 δ(4)(pC +pD−pA−pB)AAB→CD(s, t, u). (2.2)

It depends on two independent kinematic variables. It is convenient to choose them
to be the total energy squared s and the angle θ between the momenta pA and pC in the
center of mass system (CMS); or the Mandelstam variables

s = (pA + pB)
2 = (pC + pD)

2, (2.3)

t = (pA − pC)
2 = (pB − pD)

2, (2.4)

u = (pA − pD)
2 = (pB − pC)

2. (2.5)

Only two of them are independent since

s+ t+ u = 3s0, (2.6)

11
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where 3s0 is the sum of squared masses of all the particles appearing in the process,

3s0 = m2
A +m2

B +m2
C +m2

D, (2.7)

and the point s = t = u = s0 corresponds to the center of the Dalitz plot.

The transition between the scattering angle and the Mandelstam variables is possible
using the relation

cos θ =
s(t− u) + ∆AB∆CD

λ
1/2
AB(s)λ

1/2
CD(s)

, (2.8)

where

∆xy = m2
x −m2

y (2.9)

and λ
1/2
xy (s) is a square root of the Källen’s quadratic form1

λxy(s) =
(

s− (mx +my)
2
) (

s− (mx −my)
2
)

, (2.10)

which reduces for the particles of the same masses to λxx(s) = s2σ2
x(s) with

σx(s) =

√

1− 4m2
x

s
. (2.11)

Crossed channels

Later on, we will employ the crossing property. We define the amplitudes of the crossed
processes in the following way. The amplitude of the direct process is denoted by S(s, t, u),
i.e. AAB→CD(s, t, u) = S(s, t, u). The amplitude of the T-crossed channel is

AAC→BD(s, t, u) = ǫTT(s, t, u) (2.12)

with the phase factor ǫT defined so that T(s, t, u) fulfills crossing relation

S(s, t, u) = T(t, s, u) (2.13)

and similarly for the U-crossed channel.

1In some applications of the theorem it is necessary to continue analytically partial waves of amplitudes
below their physical thresholds. It involves a continuation of cos θ, which is connected with a continuation
of this square root and hence requires a careful study of its analytic properties. For such cases it will be
given separately in the particular chapters. For now, we just stress that in the following relations we take
this square root within the physical region to be the regular positive-valued square root of positive real
numbers.
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Partial wave decomposition

In the reconstruction theorem, we deal with the S and P partial-wave projections of the
amplitude A(s, t, u). Our notation for them is

A(s, t, u) = 16πN (f0(s) + 3f1(s) cos θ) + Aℓ≥2(s, t, u), (2.14)

where Aℓ≥2 denotes the contribution of higher partial waves and θ is the CMS scattering
angle connected with Mandelstam variables by (2.8). We have introduced the factor N
here since our definition in different applications of the theorem changes in order to be
consistent with those used in the literature — N = 2 in Chapter 4 whereas N = 1 in all
the other chapters.

The lowest partial waves are extracted by integrations

f0(s) =
1

32πN

∫ 1

−1

d(cos θ)A(s, t, u), (2.15)

f1(s) =
1

32πN

∫ 1

−1

d(cos θ) cos θ A(s, t, u). (2.16)

As will be emphasized a few more times in this work, we do not require the existence
of all partial waves or the convergence of the full partial wave decomposition. Our only
requirement is the existence of the S and P partial waves given by these two integrals and
the specific suppression of the Aℓ≥2(s, t, u) remainder of amplitude as will be specified in
the assumptions of the theorem.

We will construct the lowest partial waves iteratively and so it turns out to be useful
to distinguish the contributions of different orders. We denote the O(p2) part of partial
waves as φ, the O(p4) one as ϕ and finally their O(p6) part is denoted as ψ, so the complete
partial waves read

fℓ(s) = φℓ(s) + ϕℓ(s) + ψℓ(s) +O(p8). (2.17)

Unitarity relation

In order to use the reconstruction theorem as a tool for constructing the amplitudes it is
necessary to specify the input for the imaginary parts of the partial waves appearing there.
These will be provided by the relation coming from the unitarity of S-matrix projected on
the corresponding partial waves. In the next chapter we show that we will deal only with
the processes for which the intermediate states appearing there are in the low-energy region
and up to two loops restricted to pairs of light pseudoscalar mesons. The contribution of the
other states should be then included by the polynomials and the higher orders. Assuming
it and the T-invariance of the amplitudes together with their real analyticity, we can write

Im f i→f
ℓ (s) =

∑

k

N

Sk

λ
1/2
k (s)

s
f i→k
ℓ (s)

(

f f→k
ℓ (s)

)⋆

θ(s− thrk). (2.18)



14 CHAPTER 2. RECONSTRUCTION THEOREM

The sum goes over all the possible intermediate states k (those containing two mesons) that
have the same (conserved) quantum numbers as the initial state i and the final state f of
the process in question. Sk denote their symmetry factors — Sk = 2 for indistinguishable
states and Sk = 1 otherwise. thrk is the threshold at which the particular channel k opens
and λk(s) is the triangle function (2.10) corresponding to this two-particle state.

Further shorthand notation

Together with the notation already defined in this section, we will use also the following
shortcuts that simplify the form of relations in this text. It will hopefully also add more
clarity to the results that will be presented.

Σxy = m2
x +m2

y, (2.19)

µ±
xy = (mx ±my)

2 . (2.20)

At the beginning of the chapters with the particular applications of the theorem, we intro-
duce further notation useful for the individual processes under consideration.

2.2 Statement of the theorem

Suppose the following assumptions (which are discussed in more detail in the next section)

(i) existence of a threshold Λ up to which we can regard the theory under consideration
to be complete;

(ii) existence of a well-behaved expansion of the considered amplitude in powers of
p/Λ;

(iii) good behaved partial wave decomposition (2.14) and such suppression of the ab-
sorptive part of Aℓ≥2(s, t, u) part of the amplitude that it starts at O(p8) order;

(iv) validity of three-times-subtracted u-fixed dispersion relation for amplitude S(s, t, u)
in the form (2.27);

(v) analyticity of the amplitude considered as a function of a single Mandelstam vari-
able in some unempty open region;

(vi) validity of the crossing relations S(s, t, u) = T(t, s, u) = U(u, t, s);

(vii) finiteness of the amplitude in the chiral limit with the external momenta fixed.

Then we can construct the amplitude S(s, t, u) ≡ AAB→CD(s, t, u) up to two loops in the
form

S(s, t, u) = R(s, t, u) + U(s, t, u) +O(p8), (2.21)
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where R(s, t, u) denotes a third order polynomial in the Mandelstam variables having
the same s, t, u symmetries as the amplitude S(s, t, u); and U(s, t, u) is the non-analytic
unitarity part

U(s, t, u) =W 0
S (s) + (t− u)W 1

S (s) +W 0
T(t) + (s− u)W 1

T(t)

+W 0
U(u) + (t− s)W 1

U(u)
(2.22)

given in terms of single variable dispersion integrals over the imaginary parts of S and P
partial waves of all the crossed amplitudes,

W 0
S (s) = 16Ns3

∫ Λ2

sthr

dx

x3(x− s)
Im fS

0 (x)

+ 48N∆AB∆CD s
3

∫ Λ2

sthr

dx

x3(x− s)
Im

fS
1 (x)

λ
1/2
AB(x)λ

1/2
CD(x)

,

(2.23)

W 1
S (s) = 48Ns2

∫ Λ2

sthr

dx

x(x− s)
Im

fS
1 (x)

λ
1/2
AB(x)λ

1/2
CD(x)

. (2.24)

The lower limit of the integrations sthr is the non-analyticity threshold in the S channel
[cf. (2.28)]. Similar relations for the contributions of T and U crossed processes, W 0

T(t)
and W 1

T(t) and W
0
U(u) and W

1
U(u) respectively, are easy to obtain from the obvious cyclic

permutations.

2.3 Assumptions of the theorem

Here we specify the assumptions of the theorem more precisely. We are interested in the
description of meson-meson scattering processes, where the framework of chiral perturba-
tion theory can be used. This simplifies their discussion considerably already at the general
level. Eventual additional comments and justifications of the assumptions are given for
the particular applications in question in the appropriate chapters.

(i)+(ii) Existence of a threshold Λ and a good-behaved expansion in powers
of p/Λ

There should exist a threshold Λ up to which we can regard the theory under
consideration as complete and the amplitudes should have convergent expansions
in powers of p/Λ below this Λ. This means, among others, that below this threshold
there occurs no particle of a type other than those which are already explicitly
included in the theory and all the influence of such extra particles is under the
threshold negligible or already taken into account effectively. Naturally, there
could be also other reasons for the introduction of the threshold Λ besides the one
that we do not know the complete theory valid also above it. We can for example
introduce it as a cut-off of numerical integrations. Nevertheless, for the validity of
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the theorem it is still necessary that the expansion in p/Λ below such threshold is
convergent.

In chiral perturbation theory the natural choice of Λ is the threshold of production
of other particles than the psedo-Goldstone bosons in the particular process, Λ ∼
1GeV. [Note that in the SU(2) version of χPT such threshold has to prohibit in
that region also the occurrence of kaons, as the first particles not included in the
theory.] The expansion in powers of momenta required above then corresponds
to the regular chiral expansion. For these assumptions the existence of any chiral
expansion where M2

P ∼ p2, P = π,K, η, is therefore sufficient, it is not needed to
be the standard Weinberg one [130], where in addition quark masses are counted
as mq ∼ p2.

As is common in χPT, instead of O((p/Λ)n) we write just O(pn) for short.

(iii) Existence of S and P partial waves of the amplitude and suppression of
the absorptive part of the rest to O(p8)

For the considered amplitude there should exist convergent integrals (2.15) and
(2.16) defining S and P partial waves. Their behavior in the p/Λ expansion together
with the one of the rest of the amplitude Aℓ≥2(s, t, u) from (2.14) should be

Re fℓ=0,1(s) = O(p2), Im fℓ=0,1 = O(p4), (2.25)

ReAℓ≥2 = O(p4), ImAℓ≥2 = O(p8). (2.26)

Thanks to this p/Λ behavior we can (up to O(p8) order) deal in the theorem just
with the first two partial waves.

Within χPT the integrals (2.15) and (2.16) are guaranteed to exist and chiral be-
haviors (2.25) and (2.26) can be justified there from assumptions (vii), i.e. finiteness
of the S-matrix in the chiral limit; (v), i.e. analyticity of the amplitudes; and from
the Goldstone-boson character of the particles under consideration as follows. In
χPT the amplitudes behave dominantly as O(p2) and do not contain any bound
state poles. Unitarity relation (2.18) then implies that their imaginary parts be-
have as O(p4), which means that the amplitudes are dominantly real. According
to analyticity of the amplitude, its leading O(p2) part should be a polynomial in
Mandelstam variables. Moreover, it has to be a polynomial of first order; other-
wise its coefficients would grow up as masses of the particles went to zero, which
would contradict the finiteness of the S-matrix in the chiral limit with the external
momenta fixed. However, since the first-order polynomial could not contribute
to ℓ ≥ 2 partial waves, these partial waves should behave in chiral limit as O(p4).
Using the unitarity relation once more, we see that imaginary parts of these partial
waves are at least of O(p8) order.

Note that we require the existence only of the S and the P partial waves and
the theorem is valid even if the higher partial waves do not exist. Nevertheless,



2.3. ASSUMPTIONS OF THE THEOREM 17

for some of the processes we can find a domain where the complete partial wave
decomposition is convergent already from the axiomatic field theory.

(iv) Validity of three-times subtracted dispersion relation

The essential assumption of the proof is that we can write an n-times subtracted
dispersion relation for the amplitude S(s, t; u) in the complex s-plane for a fixed
value of u in the form (2.27). The legitimacy of this assumption has to be discussed
separately for each process.

The connected important question is of the number of subtractions needed in the
dispersion relations. Jin and Martin [85] have shown that thanks to the Froissart
bound [66] it suffices to consider just two subtractions. However, the Froissart
bound deals with the complete theory (in our case with the full QCD), whereas
in the framework of an effective theory one does not know (or more exactly one
does not deal with) what is above Λ, and so there can occur a situation that
more than two subtractions are needed. In other words, Froissart tells us that two
subtractions are sufficient if we supply the dispersion integral above Λ with the
complete theory. Moreover, not only the incompleteness of the theory above Λ
but also the fact that we take only S and P waves of the amplitudes calls for the
higher number of subtractions — as is obvious from the proof, taking a smaller
number of them can disrupt the suppression of contribution of ℓ ≥ 2 partial waves
to the O(p8) order. This is the reason why we begin with n ≥ 2 subtractions in the
theorem and then show that in order to obtain the amplitude including all two-
loop corrections [i.e. with a remainder of order O(p8)] at least three subtraction
are needed and the natural choice is n = 3.

(v) Analyticity of the amplitude

Assuming analyticity of the amplitude considered as a function of a single Man-
delstam variable (with the other variable fixed at some appropriate value) in some
unempty open region enables us to prove a simple and symmetric form of the poly-
nomial R(s, t, u). In our applications, chiral perturbation theory provides such an
unempty region.

(vi) Crossing property S(s, t, u) = T(t, s, u) = U(u, t, s)

The widely accepted assumption of the crossing property has been even proved
for a general 2 → 2 process from the axiomatic theory by Bross, Epstein, and
Glaser [42].

(vii) Finiteness of the amplitude in the chiral limit with the external momenta
fixed

This is a basic assumption of the chiral perturbation theory requiring a smooth
chiral limit of the amplitudes.
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2.4 Proof of the theorem

We begin with n-times subtracted dispersion relation for the scattering amplitude with a
fixed value of u (for now not specifying the number n) in the form

S(s, t, u) = Pn(s, t, u) +
sn

π

∫ ∞

sthr

dx

xn
Im

S(x, 3s0 − x− u, u)

x− s

+
tn

π

∫ ∞

tthr

dx

xn
Im

S(3s0 − x− u, x, u)

x− t
, (2.27)

where Pn(s, t, u) denotes a polynomial2 of (n − 1)-th order in s and t with u-dependent
coefficients, and sthr is the non-analyticity threshold in S-channel, i.e. the minimum of
squared invariant masses of all possible intermediate states (α, β) in this channel (or rather
the lowest mass of the state with the same quantum numbers as the in and out states)3,

sthr = min
(α,β)

(mα +mβ)
2, (2.28)

and analogically tthr for T channel (later on we will also need threshold uthr in U channel).
Thanks to the crossing property we can replace the amplitude S(s, t; u) in the second

integral with T(t, s; u). Furthermore, since we assume that we know the complete theory
only up to some threshold Λ (up to which the chiral expansion of the amplitude is conver-
gent), we have to split the dispersion integral into two parts — the low-energy (x ≤ Λ2)
and the high-energy (x ≥ Λ2) part.

The amplitude then depends on Λ, on pseudoscalar masses (in the following we write
them generically as M), and on Mandelstam variables. Because it is dimensionless, we can
write4

S
(

s, t(s, u,M2); u;M2,Λ2
)

= S
(

s

Λ2
;
u

Λ2
,
M2

Λ2

)

. (2.29)

The high-energy part of the integrals can be expanded for |s| < Λ2 (together with the
substitution x = yΛ2),

HS(s; u) =
sn

π

∫ ∞

Λ2

dx

xn
ImS(x, t(x; u); u)

x− s

=
( s

Λ2

)n
∫ ∞

1

dy

π

ImS
(

y; u
Λ2 ,

M2

Λ2

)

yn+1

∞
∑

k=0

1

yk

( s

Λ2

)k

. (2.30)

2Due to relation (2.6) for the sum of Mandelstam variables, such polynomials can be written in the
form Pn(s, t;u) = α(u) + β(u)(s− t) + γ(u)(s− t)2 + · · ·+ ω(u)(s− t)n−1.

3In this relation we anticipate that in the cases that will be considered the only relevant intermediate
states are just the two-particle ones.

4Note that all further quantities that can appear in amplitudes do not change the analysis that follows.

For instance, the decay constant Fπ translates in this relation into dimensionless constant
F 2

π

Λ2 that does
not change the chiral behavior of the amplitude as it does not scale with λ in (2.33).
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The existence of a smooth chiral limit of S(x, t(x; u); u) and its nonsingular behavior for
u→ 0 imply that

HS =
(

s/Λ2
)n
KS(u) +O

(

(p/Λ)2n+2
)

, (2.31)

where KS(u) is a u-dependent function. A similar situation occurs also for the high-energy
part of the integration of T(s, t, u). Hence, up to an O((p/Λ)2n+2) remainder we can replace
the infinity in the upper bounds of integrations with Λ2 provided we take in the theorem
a polynomial Pn+1 of n-th order5. After that, the dispersion relation is of the form

S(s, t; u) = Pn+1(s, t; u) +
sn

π

∫ Λ2

sthr

dx

xn
Im S(x, 3s0 − x− u; u)

x− s

+
tn

π

∫ Λ2

tthr

dx

xn
ImT(x, 3s0 − x− u; u)

x− t
+O(p2n+2). (2.32)

Now, we introduce partial waves from decomposition (2.14) for the imaginary parts of
the amplitudes. One of our assumptions tells Im f0,1 = O(p4) and ImAℓ≥2 = O(p8) and
we could naively expect that the contribution of ImAℓ≥2 in the dispersion integrals is also
suppressed as O(p8). However, we will see that depending on the particular number of
subtractions n we take in the theorem, it can contribute also with a lower chiral order. We
identify chiral order of each contribution after the formal rescaling

(s, t, u, sthr,M
2,Λ2) → (λs, λt, λu, λsthr, λM

2,Λ2) (2.33)

as the leading behavior for λ→ 0.
Before performing the explicit determination of chiral orders of various contributions,

we present a toy example illustrating its true dependence on n. If we assumed that the
imaginary part of the higher-partial-wave remainder behaved simply as s4, i.e. of order
O(p8), the S-integration after this rescaling would give

λnsn

π

∫ Λ2

λsthr

dx

xn
x4

x− λs
= λ4

sn

π

∫ Λ2/λ

sthr

dy

yn
y4

y − s
.

This integral is easy to compute and we see that the λ-dependence of the upper limit of the
last integration (which would not occur without the introduction of the cut-off Λ of this
integration) is the actual origin of a possible change of the chiral order of its contribution.
Indeed, for n = 2, we obtain the leading-order behavior in λ as λ2Λ4 s2

2π
, i.e. it would

contribute with chiral order O(p4). Similarly, for n = 3 we obtain λ3Λ2 s3

π
+ O(λ4), which

means chiral order O(p6); and only when n = 4, this integral equals λ4 s
4

π
times a logarithm

and so the integral contributes with the order O(p8) that was naively expected.

5As a consequence, we can formally extend the validity of the effective theory even beyond threshold Λ
and compute the dispersion integrals up to infinity, pretending that the effective theory is in fact complete
— with the appropriate modification of the third-order polynomial. Naturally, provided such integrals
converge.
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Already from this toy example, we have seen the basic properties of this n-dependence:
Such anomalies in chiral orders appear when the dispersion integral diverges for Λ → ∞.
Secondly, in order to have the contribution of Aℓ≥2 suppressed to O(p8) for any possible
Aℓ≥2, we have to take at least four subtractions, whereas three subtractions induce a
polynomial term of lower chiral order and the remainder of order O(p8).

After this illustration we return to the general case and determine chiral orders of
individual contributions of fℓ and Aℓ≥2. Let us write for x < Λ2 generic chiral expansions

Im fS
ℓ (x) =

∑

k≥2

F (2k)
ℓ

(

x

Λ2
,
M2

Λ2

)

, ImAS
ℓ≥2(x) =

∑

k≥4

S(2k)
ℓ≥2

(

x

Λ2
,
u

Λ2
,
M2

Λ2

)

, (2.34)

where the quantities with an upper index (2k) are of a given chiral order O(p2k).

We start with the discussion of the contribution of F (2k)
ℓ for ℓ = 0, 1. (Note that in

the case when there exists a complete partial wave decomposition, the contribution of the
complete amplitude can be written in the form of F (2k)

ℓ with ℓ ≥ 0.) After the rescaling
(followed by the substitution x = λy), we obtain

16Nλnsn
∫ Λ2

λsthr

dx

xn

F (2k)
ℓ

(

x
Λ2 , λ

M2

Λ2

)

Pℓ(cos θ(x, λu, λM
2))

x− λs

= 16Nλksn
∫ Λ2/λ

sthr

dy

yn

F (2k)
ℓ

(

y
Λ2 ,

M2

Λ2

)

Pℓ(cos θ(y, u,M
2))

y − s
, (2.35)

where Pℓ(x) is a Legendre polynomial coming from the PW decomposition. Here, we have

used the fact that F (2k)
ℓ and cos θ are homogeneous6 functions of the rescaled variables of

degree k and 0 respectively.
Let us study the last integral in the limit λ → 0. We split the integration into two

parts
∫ Λ2

sthr
+
∫ Λ2/λ

Λ2 . The first one precisely respects the chiral order of F (2k)
ℓ , whereas the

chiral order of the second part can be affected by its behavior for large upper bound. In
the case of finite or logarithmically divergent integral

16Nsn
∫ ∞

Λ2

dy

yn

F (2k)
ℓ

(

y
Λ2 ,

M2

Λ2

)

Pℓ(cos θ(y, u,M
2))

y − s
(2.36)

also the second part respects the chiral order of F (2k)
ℓ . However, in the case where this

integral is at least linearly divergent, the λ dependence of the upper bound can influence
the chiral order we want to determine and so we have to proceed more carefully.

From the finiteness of the amplitude in the chiral limit and also in the limit u → 0, func-
tions F (2k)

ℓ

(

y
Λ2 ,

M2

Λ2

)

have to behave with large y as O(yk) or lower, whereas cos θ(y, u,M2) =

6The usual appearance of chiral logarithms in the amplitude violates such homogeneity. Nevertheless,
we are interested in the asymptotic behavior of the functions, which remains the same even in the presence
of the logarithms and thus for simplicity we can claim the functions formally homogeneous.
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O(y0). Therefore, the degree of divergence of integral (2.36) is D ≤ k − n. As a conse-
quence, for k > n (provided the maximal divergence of the integral realizes) the integral in

(2.35) behaves at worst as λk
(

1
λ

)k−n
and the minimal order with which F (2k)

ℓ contributes
is O(p2n), independently on the original chiral order 2k.

From this discussion it should be obvious that we come to the same conclusions also for
the functions S(2k)

ℓ≥2

(

x
Λ2 ,

u
Λ2 ,

M2

Λ2

)

from chiral expansion (2.34) since they are homogeneous

function of degree k in all rescaled variables and from the same arguments as were presented
for fℓ, they have to behave for large y as O(yk). [Note that in relations (2.35) and (2.36)

there appears instead of F
(2k)
ℓ Pℓ(cos θ) just S(2k)

ℓ≥2 .]
In the usual formulation of the theorem (such as [125]) the ℓ ≥ 2 contributions [with

k ≥ 4] are claimed to be thrown away as a remainder of O(p8) order. It could seem,
therefore, that one should begin with at least four subtractions. However, by the following
simple trick we show that the lower order contribution [of O(p6) order] of the ℓ ≥ 2 PW
dispersion integral is just a polynomial.

For any function X(x) (provided all integrals on both sides exist) it is possible to write

s3
∫ Λ2

sthr

dx

x3
X(x)

x− s
= s3

∫ Λ2

sthr

dxX(x)

x4
+ s4

∫ Λ2

sthr

dx

x4
X(x)

x− s
. (2.37)

This relation implies that the thrice subtracted integral of the terms giving the O(p6)
contribution can be divided into two parts — the first one is a polynomial term, which can
be included into P4(s, t; u), and the second part leads according to the analysis from the
previous paragraphs to a contribution of the lower order from either O(p8) or O(p2k), with
k being the chiral order of the function X(x). From that it is obvious that it is sufficient to
begin with three subtractions since both the O(p6) part of the contribution of remainder
Aℓ≥2 and the O(p6) contribution stemming from the parts of S and P partial waves that
are of chiral order O(p8) or higher can be absorbed into the subtraction polynomial of third
order P4(s, t; u).

Note also that integral (2.36) corresponds in fact to the difference between having in the
upper bound of integrations Λ2 and having there infinity. Its possible divergence is therefore
the reason, why we have to be careful if we want to change the upper bound in these
integrals back to infinity in the final form of the theorem7. We have seen that its maximal
order of divergence is k − n, so in order to guarantee this change in all possible dispersion
integrals to the O(p8) order in general, it would be safer to begin with four subtractions.
However, in the practical applications of the theorem, we can examine divergences of the
integrals appearing there one by one and potentially apply the trick (2.37) for increasing
the number of subtraction in the individual integrals, thereby making this change of the
upper bound possible also for them. (In Section 2.5 we will see how this works for a specific
sort of functions appearing in our particular applications of the theorem.)

But now, let us continue with the proof of the theorem. We have shown that it is
natural to choose n = 3 and truncate the partial-wave expansion of imaginary parts taking

7The footnote 5 on page 19 is valid only for the complete amplitude S(s, t, u). Its expansion into PWs
could in principle disrupt this possibility.
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into account just S and P waves (and we do not even need the existence of the further
PWs). From the P-wave contribution we extract the following polynomial term with its
coefficients depending on u (on the last line in the following relation), which can be included
into P4(s, t; u),

48Ns3
∫ Λ2

sthr

dx

x3
x(s+ t− x− u)

x− s
Im

fS
1 (x)

λ
1/2
AB(x)λ

1/2
CD(x)

= 48Ns3(t− u)

∫ Λ2

sthr

dx

x2(x− s)
Im

fS
1 (x)

λ
1/2
AB(x)λ

1/2
CD(x)

− 48Ns3
∫ Λ2

sthr

dx

x2
Im

fS
1 (x)

λ
1/2
AB(x)λ

1/2
CD(x)

. (2.38)

In order to implement the s ↔ u crossing into the dispersive part U(s, t, u), we add
and subtract the U-channel terms written as the following third order polynomial in s and
t (with u-dependent coefficients)

16Nu3
∫ Λ2

uthr

dx

x3
Im fU

0 (x)

x− u
+ 48Nu3(t− s)

∫ Λ2

uthr

dx

x2(x− u)
Im

fU
1 (x)

λ
1/2
AD(x)λ

1/2
CB(x)

+ 48Nu3∆AD∆CB

∫ Λ2

uthr

dx

x3(x− u)
Im

fU
1 (x)

λ
1/2
AD(x)λ

1/2
CB(x)

. (2.39)

Until now, we have restricted in no way the u-dependence of the polynomial P4(s, t; u).
However, we can write similar representations for the T- and the U-crossed amplitudes
starting with fixed u and fixed t dispersion relations for T(s, t; u) and U(s; t, u), respec-
tively, obtaining so the corresponding subtraction polynomials PT

4 (s, t; u) and P
U
4 (s; t, u).

Crossing property and the symmetric form of the dispersive part imply that these polyno-
mials should obey relation

P S
4 (s, t; u) = PT

4 (t, s; u) = PU
4 (u; t, s). (2.40)

In Appendix A we show that under assumption (v) of the theorem, the analyticity of
the amplitude, the subtraction function P4(s, t; u) that satisfies relations (2.40) has to be
a sixth order polynomial in all Mandelstam variables R(s, t, u). On top of that, in the
following we discuss how to take care of the terms that are of higher than third polynomial
order.

Discarding the terms that contribute only to the O(p8) remainder, the coefficients of the
remaining above-mentioned higher-polynomial-order terms have to be singular in the chiral
limit. However, as the complete amplitude should be finite in that limit, these divergences
have to be canceled with the divergences of the dispersive part. We can use this fact
for the determination of these coefficients. Therefore, they are completely fixed by the
divergences of the dispersion integrals, which we obtain from the following correspondence
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between the divergences in the chiral limit and the UV asymptotics of the integrals [cf.

with the asymptotic conditions of [95]]. For every term Φ
(2k)
i of chiral order O(p2k), there

holds for λ→ ∞
Φ

(2k)
i (λs, λt;λu;M2) = λkΦ

(2k)
i (s, t; u;M2/λ). (2.41)

It means that Φ
(2k)
i behaves for λ→ ∞ as O(λk+d), where d is the degree of divergence of

Φ
(2k)
i in the chiral limit. As a consequence, dispersion integrals with higher than logarithmic

divergences in the chiral limit have to have UV asymptotics at least O(λ3) [since their chiral
order is at least O(p4)].

The UV asymptotic behavior of the individual integrals is

s3
∫ Λ2

sthr

dx

x3
Im fS

0 (x)

x− s
→ −λ2s2

∫ Λ2

sthr

dx

x3
Im fS

0 (x), (2.42)

s3∆AB∆CD

∫ Λ2

sthr

dx

x3(x− s)
Im

fS
1 (x)

λ
1/2
AB(x)λ

1/2
CD(x)

→ −λ2s2∆AB∆CD

∫ Λ2

sthr

dx

x3
Im

fS
1 (x)

λ
1/2
AB(x)λ

1/2
CD(x)

,

(2.43)

s3(t− u)

∫ Λ2

sthr

dx

x2(x− s)
Im

fS
1 (x)

λ
1/2
AB(x)λ

1/2
CD(x)

→ −λ3s2(t− u)

∫ Λ2

sthr

dx

x2
Im

fS
1 (x)

λ
1/2
AB(x)λ

1/2
CD(x)

.

(2.44)

Hence, the first two integrals possess in chiral limit maximally logarithmic divergence,
whereas the last one diverges like 1/M2 and this divergence has to be canceled by the
divergent part of the coefficients of the polynomial R(s, t, u). Note also that the only
divergent coefficient is the one accompanying the polynomial of third order, and so the
terms of higher than third order contributes in fact at least as O(p8) and can be therefore
included into the remainder.

Finally, we simplify further the reconstructed form of the amplitude by making use of
relation (2.37). The linearly divergent part of the polynomial together with the divergent
part of the dispersion integral combine into

s3(t− u)

∫ Λ2

sthr

dx

x2(x− s)
Im

fS
1 (x)

λ
1/2
AB(x)λ

1/2
CD(x)

+ s2(t− u)

∫ Λ2

sthr

dx

x2
Im

fS
1 (x)

λ
1/2
AB(x)λ

1/2
CD(x)

= s2(t− u)

∫ Λ2

sthr

dx

x(x− s)
Im

fS
1 (x)

λ
1/2
AB(x)λ

1/2
CD(x)

(2.45)

and we end up with the final form of the theorem (2.21).
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2.5 Possible further simplifications in the theorem

As is obvious from the proof of the theorem, one can work with the theorem also considering
it as a search for functions W ℓ

S,T,U(s) analytic in complex s-plane, with the exception of
the right-hand cut on the real axis that is given by the discontinuities (imaginary parts)

ImW 0
S (s) = 16πN

(

Im fS
0 (s) + 3∆AB∆CD Im

fS
1 (s)

λ
1/2
AB(s)λ

1/2
CD(s)

)

θ(s− sthr), (2.46)

ImW 1
S (s) = 48πN Im

fS
1 (s)

λ
1/2
AB(s)λ

1/2
CD(s)

θ(s− sthr) (2.47)

[and similarly for T and U channel functions]; that have maximally logarithmic divergence
in the chiral limit. All such functions differ just in a polynomial which can be included
into R(s, t, u). The way how one finds them is therefore not that important and one can
for instance try to assemble them from some functions of known analytic behavior without
even calculating a single integral as was presented in [95]. However, many times we will not
succeed in finding the functionsW ℓ

S,T,U(s) in such a closed form and the only representation
we will have for them will be the integral one [from (2.23) and (2.24)]. Not only in that
case the following discussion of further possible simplifications of these integrals will be
useful.

The situation is simplified even more by the fact that in all applications in that we use
the theorem the integrands factorize into Laurent polynomials8 multiplying some dimen-
sionless functions Fi(x) of chiral order O(p

0), so we are in fact computing integrals of the
type

wi(s) = s3
∫ Λ2

sthr

dx

x3
Fi(x)

x− s

∑

m

a(i)m x
m ≡

∑

m

w(i)
m (s). (2.48)

In the following we discuss the conditions under which we can factor these polynomials
out of the integral, thereby leaving in the dispersion integrals just the functions Fi(x) with
some given numbers of subtractions. Naturally after performing this we have to change
appropriately the polynomial coefficients of the theorem.

For any meromorphic function Fi(x) growing at infinity not faster than any polynomial,
there exists an integer nmin such that n-times subtracted dispersion integral

Gn
i (s) = sn

∫ ∞

sthr

dx

xn
Fi(x)

x− s
(2.49)

converges for n ≥ nmin. For the further uses we denote also

gni (s) = sn
∫ Λ2

sthr

dx

xn
Fi(x)

x− s
. (2.50)

8Laurent polynomials are generalized polynomials containing also terms with negative powers of their
variables.
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We start by formal factoring of the polynomial term a
(i)
m sm out of integral (2.48),

w(i)
m (s) = a(i)m s

ms3−m−nsn
∫ Λ2

sthr

dx

xn
Fi(x)

x− s
xm+n−3. (2.51)

For various values of m+n we use an analogue of (2.37) to obtain an expression where the
polynomial multiplies precisely the dispersion integral gni (s):

• m+ n = 3. In this simple case, we directly have

w(i)
m (s) = a(i)m s

mgni (s). (2.52)

• m+ n > 3. Here we use the identity

xm+n−3

x− s
=
sm+n−3

x− s
+

m+n−4
∑

j=0

sjxm+n−4−j (2.53)

to obtain

w(i)
m (s) = a(i)m s

mgni (s) + a(i)m

n−1
∑

j=3−m

sm+j

∫ Λ2

sthr

dx
Fi(x)

xj+1
. (2.54)

Obviously the sum generates only a polynomial contribution.

• m+ n < 3. Using

1

x− s

1

x3−m−n
=

1

x− s

1

s3−m−n
−

3−m−n
∑

j=1

1

sj
1

x4−m−n−j
(2.55)

the integral can be rewritten into

w(i)
m (s) = a(i)m s

mgni (s)− a(i)m

2−m
∑

j=n

sm+j

∫ Λ2

sthr

dx
Fi(x)

xj+1
. (2.56)

For m+ n ≥ 0 the sum generates again just a polynomial contribution.

In summary, for n ≥ max(nmin,−m) the difference induced by the discussed factoriza-
tion is just a polynomial. Now, we shall determine its behavior in the chiral limit similarly
as in the proof of the theorem. To that end we use again the correspondence between the
UV asymptotics and the degree of divergence in the chiral limit (as in (2.41)). Since n was
chosen so that Gn

i (s) converges, the UV asymptotics (λ → ∞) of gni (s) reads [we indicate
here explicitly the dependence on the generic mass M and on the threshold Λ]

gni (λs,M
2,Λ2) = O(λn−1) (2.57)
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and its chiral order is O(p0). This gives us its behavior in the chiral limit (for µ→ 0) as

gni
(

s, µM2,Λ2
)

= O
(

µ1−n
)

. (2.58)

Therefore, if the chiral order of a
(i)
m sm is O(p2d), which means

a(i)m

(

µM2,Λ2
)

sm = µ−ma(i)m

(

µM2,Λ2
)

(µs)m = O
(

µd−m
)

, (2.59)

the integral with the factorized polynomial behaves as

a(i)m (µM2,Λ2)smgni (s, µM
2,Λ2) = O(µd+1−m−n). (2.60)

Thus, this object is divergent in the chiral limit with the degree of divergence m+n−d−1
in the cases when this number is positive. Since the full amplitude is at worst logarithmic
divergent, such divergence has to be canceled out by the divergence of the polynomial,
which is by this condition fixed.

This leads us to the conclusion that if we take n from the interval

max(nmin,−m) ≤ n ≤ d+ 1−m, (2.61)

the difference between the original integral and the factorized one is a polynomial, which
is maximally logarithmic divergent in the chiral limit and can be included into the third
order polynomial of the theorem with a remainder of O(p8) order.

Finally, we discuss the possibility of replacement of the upper bound in gni (s) from Λ2

back to ∞, i.e. the replacement of gni (s) with the corresponding Gn
i (s). The difference

induced by this replacement is

∆gni (s,M
2,Λ2) = sn

∫ ∞

Λ2

dx

xn
Fi(x)

x− s
. (2.62)

Before studying its properties we note that already from using the same methods as in the
proof of the theorem [around relations (2.35) and (2.36)] we can determine its chiral order.
Indeed, from the existence of a finite Gnmin

i it follows that the difference ∆gni (λs, λM
2,Λ2)

behaves in the limit λ → 0 at worst as O
(

( 1
λ
)nmin−n

)

and its contribution is at least of

chiral order O
(

p2(d+n−nmin)
)

, where O
(

p2d
)

is chiral order of the polynomial a
(i)
m sm. For

n > nmin we can therefore include this difference into the O
(

p2d+2
)

remainder of the
theorem. However, in order to enable such replacement in the case n = nmin, one needs to
impose additional requirements on the functions Fi(s).

We start our analysis of (2.62) by increasing the number of subtraction [cf. with (2.37)]

∆gni (s,M
2,Λ2) = sn

∫ ∞

Λ2

dx

xn+1
Fi(x) + sn+1

∫ ∞

Λ2

dx

xn+1

Fi(x)

x− s
(2.63)

and the observation that the only potentially problematic term is γnmin
i snmin with the coef-

ficient

γni (M
2,Λ2) =

∫ ∞

Λ2

dx

xn+1
Fi(x). (2.64)
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We make use of the dimensionlessness of the functions Fi(s), i.e. of the possibility to write
Fi(s,M

2) = Fi

(

s
M2

)

. Rescaling M2 → λM2 in the limit λ→ 0 then leads to

γni (λM
2,Λ2) =

∫ ∞

Λ2

dx

xn+1
Fi

( x

λM2

)

=
1

λn

∫ ∞

Λ2/λ

dy

yn+1
Fi

( y

M2

)

=
1

λn

∫ ∞

Λ2/λ

dy

yn+1
Fi(y).

(2.65)
For n > nmin we first check the above-stated chiral behavior of this term. The existence

of Gnmin
i (s) implies limx→∞

Fi(x)
xnmin

= 0, which means that for any ε > 0
∣

∣

∣

∣

Fi(x)

xnmin

∣

∣

∣

∣

≤ ε

Λ2nmin
(2.66)

for all x > x0 and some suitable x0. Then, for n > nmin and small enough λ

∣

∣γni (λM
2,Λ2)

∣

∣ ≤ 1

λn
ε

Λ2nmin

∫ ∞

Λ2/λ

dy

yn−nmin+1
=

ε

(n− nmin)Λ2n

1

λnmin
, (2.67)

and so the polynomial difference a
(i)
m smγni s

n contributes indeed with chiral order at least
O
(

p2(d+n−nmin)
)

.
Also for n = nmin one could try to include this polynomial into polynomial R(s, t, u)

of the theorem. Nevertheless, by performing this we could introduce divergences to its
coefficients since γni can diverge as bad as 1

λnmin
.

Naturally, this was just a general reasoning and there exist sorts of functions for which
the change of the upper bound back to infinity induces just a difference, which can be
included into the remainder and eventually also to the polynomial of the theorem. One
example of such functions are the functions behaving for x → ∞ as xnmin−1, i.e. those for
which there exist suitable K and x0 such that

∣

∣

∣

∣

Fi(x)

xnmin−1

∣

∣

∣

∣

≤ K

Λ2(nmin−1)
(2.68)

for all x > x0. (Note that this condition implies (2.66).) Then the bounds on γni (λM
2,Λ2)

for n > nmin − 1 read

∣

∣γni (λM
2,Λ2)

∣

∣ ≤ 1

λn
K

Λ2nmin−2

∫ ∞

Λ2/λ

dy

yn−nmin+2
=

K

(n− nmin + 1)Λ2n

1

λnmin−1
. (2.69)

The polynomial difference of such function therefore contributes with chiral order at least
O
(

p2(d+n−nmin+1)
)

and thus it can be included into the O
(

p2(d+1)
)

remainder of the theorem
even for n = nmin.

Looking carefully at the reasoning of this statement we can realize that even if we
take a function behaving at infinity as xnmin−1 logj x, with some integer j (i.e. if we add
some logarithmic divergence), the conclusion will be the same. For λ small enough and
n > nmin − 1, we have

∣

∣γni (λM
2,Λ2)

∣

∣ ≤ 1

λn
K

Λ2nmin−2

∫ ∞

Λ2/λ

log y dy

yn−nmin+2
=

K

Λ2n

1

λnmin−1

1
n−nmin+1

+ log Λ2 − log λ

(n− nmin + 1)
.

(2.70)
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The logarithm log λ does not spoil the above-mentioned chiral power-counting and similarly
also for any j ≥ 1.

This partial discussion has the conclusion that in the reconstructed form of amplitudes
we can replace the function gni (s) with G

n
i (s) at least in the following three cases

1) n > nmin,
2) n ≥ nmin and Fi(x) ∼ xnmin−1 for x→ ∞,
3) n ≥ nmin and Fi(x) ∼ xnmin−1 logj x for x→ ∞.







(2.71)

In these cases the difference induced by this replacement can be included into the remainder
of chiral order O(p2d+2). We will see that all the functions that appear in our applications
belong to either one of these categories.

For the second integral of the reconstruction theorem,

vi(s) = s2
∫ Λ2

sthr

dx

x

Fi(x)

x− s

(

1

x

∑

m

b(i)m x
m

)

≡
∑

m

v(i)m (s), (2.72)

we can repeat a similar procedure. To keep the analogy as close as possible, we have shifted
the powers m of the polynomial by factoring 1

x
out of it. By that the integrals looks like

regular twice subtracted dispersion integral and the arguments of the case discussed above
remain valid with the simple change of the number of subtractions from three into two.
However, since we are not interested in the exact form of the difference obtained by the
factorization of the polynomial (we include it into the polynomial of the theorem) and
since the condition for n (2.61) does not depend on the number of subtractions we have
started with, it remains unaltered. The only difference is connected with the chiral order
of the corrections (2.62). They are multiplied by (t − u)b

(i)
m sm and thus they contribute

with chiral order O
(

p2(d+1+n+m)
)

.

Summary

Summarily, in the theorem we can write instead of integral

s3
∫ Λ2

sthr

dx

x3
Fi(x)

x− s
a(i)m x

m (2.73)

with a dimensionless function Fi(s) and a polynomial term a
(i)
m sm of chiral order O(p2d),

its simplified form

a(i)m s
mGn

i (s), (2.74)

where Gn
i (s) is n-times subtracted dispersion integral of the function Fi(s)

Gn
i (s) = sn

∫ ∞

sthr

dx

xn
Fi(x)

x− s
(2.75)
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and this number of subtractions lies in the interval

max(nmin,−m) ≤ n ≤ d+ 1−m (2.76)

with nmin being the minimal number of subtraction for which the dispersion integral (2.75)
converges. The number n has to be connected with the function Fi(x) also by fulfillment of
one of the conditions (2.71). This change is connected with a redefinition of the polynomial
parameters of the theorem.

Further, the integral

s2
∫ Λ2

sthr

dx

x

Fi(x)

x− s

1

x
b(i)m x

m (2.77)

in the theorem with a polynomial term b
(i)
m sm of chiral order O(p2d) can be simplified

(together with a redefinition of the polynomial parameters) into

b(i)m s
mGn

i (s), (2.78)

where n satisfies inequality (2.76) and one of the conditions (2.71).
We conclude with the remark that since a constant is also a polynomial, this procedure

can be used as well for lowering of the number of subtractions in the integral to any number
satisfying (2.76).



30 CHAPTER 2. RECONSTRUCTION THEOREM



Chapter 3

Application of the theorem for reconstruction of

amplitudes in χPT

The reconstruction theorem enables us to construct a representation of an amplitude in-
cluding two-loop corrections provided we know the discontinuities of the partial waves
appearing in its formulation. For that end we can use the unitarity relation (2.18). For
a successful construction of the amplitude we will therefore require to know all the inter-
mediate amplitudes of the considered process. If they can be also constructed using the
reconstruction theorem, we obtain a self-consistent system of amplitudes whose represen-
tations can be gained employing the two-step procedure depicted on Figure 1.

Its actual form varies for different processes but we will discuss here its general prop-
erties for any two-pseudoscalar-meson scattering process. For them we show in the next
paragraph that in low-energy region up to and including two-loop order, it is sufficient to
consider just the discontinuities connected with the intermediate states composed of two
pseudoscalar mesons. Then the only inputs required for a successful application of the
reconstruction procedure will be leading orders of all these amplitudes. Moreover, within
the discussion of assumption (iii) of the theorem on page 16, we have shown that the
LO amplitudes of the considered type have to be first order polynomials in Mandelstam
variables.

We are concerned with processes up to (and excluding) O(p8) chiral order and (in
accordance with the first assumption of the theorem) in the region below appearance of all
non-Goldstone particles, we are thus away from the poles and the cuts of such intermediate
states, and their effect is included just by the coefficient of polynomial part R(s, t, u) of the
reconstruction theorem (2.21) and by the higher orders. The intermediate states involving
odd numbers of Goldstone bosons are forbidden by the chiral order of the odd-intrinsic-
parity part of the effective Lagrangian — because the effect of the axial anomaly enters at
the O(p4) order (Wess, Zumino and Witten [132,133]), such intermediate states induce the
contribution of the order of at least O(p8). Furthermore, the contribution of the states with
more than two Goldstone bosons is also suppressed to O(p8) since the n-Goldstone-boson
invariant phase-space scales like p2n−4 and amplitudes with an arbitrary number of external

31
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amplitudes
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Unitarity

Theorem PWs

Unitarity

Theorem

Figure 1: Schematic representation of the iterative two-step reconstruction procedure

Goldstone boson legs behave dominantly as O(p2). Consequently, the contribution of such
(n > 2) intermediate states to the imaginary part of the amplitude is according to the
unitarity relation [cf. (2.18)] at least O(p8). Thus, we conclude that the only intermediate
states that have to be taken into account are the two-Goldstone-boson ones.

3.1 First iteration

We show here how the first iteration generally works. In addition, we will be even able
to present a general result of this iteration. But first, let us observe one simplification
appearing here. Using similar arguments stemming from finiteness of the S-matrix in chiral
limit as in the proof of the theorem, we observe that in order to obtain the amplitude valid
up to O(p4), the required polynomial is just of the second order in Mandelstam variables.

Since the leading-order amplitudes are first order polynomials and the Mandelstam
variables obey (2.6), we can decompose them according to

A = C (α(s) + β(t− u)) , (3.1)

where α(s) is a first order polynomial in s. For further convenience we have introduced an
overall normalization factor C. At this order, the amplitude therefore decomposes exactly
into S and P waves only [using (2.15), (2.16) and (2.8)]

φ0(s) =
C

16πN

(

α(s)− β
∆AB∆CD

s

)

, (3.2)

φ1(s) =
C

48πN
β
λ
1/2
AB(s)λ

1/2
CD(s)

s
. (3.3)

By introducing them into unitarity relation (2.18) we obtain the following discontinuities

Imϕ0(s) =
∑

k

NCikCkf

Sk

[(

αik(s)− βik
∆AB∆k

s

)(

αkf(s)− βkf
∆k∆CD

s

)]

×
(

1

16πN

)2
λ
1/2
k (s)

s
θ(s− thrk),

(3.4)
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Imϕ1(s) =
∑

k

NCikCkf

Sk

[

βik
λ
1/2
AB(s)λ

1/2
k (s)

s
βkf

λ
1/2
k (s)λ

1/2
CD(s)

s

]

×
(

1

48πN

)2
λ
1/2
k (s)

s
θ(s− thrk),

(3.5)

where the sums go over all the possible (two-meson) intermediate states k with the sym-
metry factor of such state Sk. All objects with lower index k are quantities related to
this intermediate state. Similarly indices i and f refer to the initial and the final state,
respectively. Finally, thrk is the threshold of production of the intermediate state k.

Integrals (2.23)–(2.24) then read

W 0
S (s) =

1

16π2

∑

k

CikCkf

Sk
s3
∫ ∞

thrk

dx

x3(x− s)

λ
1/2
k (x)

x

(

αik(x)αkf(x)

− (βikαkf(x)∆AB + αik(x)βkf∆CD)
∆k

x
+ βikβkf∆AB∆CD

∆2
k

x2

+
1

3
∆AB∆CDβikβkf

(

1− 2
Σk

x
+

∆2
k

x2

)

)

,

(3.6)

W 1
S (s) =

1

48π2

∑

k

CikCkf

Sk

βikβkf s
2

∫ ∞

thrk

dx

x(x− s)

λ
1/2
k (x)

x

1

x

(

x− 2Σk +
∆2

k

x

)

. (3.7)

Now, we simplify them by using the methods discussed in Section 2.5. We see that in both

cases we integrate the function F (s) =
λ
1/2
k (s)

s
multiplied by some Laurent polynomial.

Thanks to the behavior of the square root of triangle function λ1/2(s) → s for s → ∞,
the dispersion integral of this function converges already for one subtraction, nmin = 1,
and this function is of the type 2) from conditions (2.71). The first integral contains a
polynomial of chiral order O(p4), i.e. d = 2, and of polynomial order1 m = −2, . . . , 2.
The inequality (2.76) tells us that for m = −2 we have to take at least two subtractions,
whereas for all the other polynomial terms it suffices just one of them (for m = 2 it is
at the same time their maximal number in order to obtain a difference that is at worst
logarithmic divergent in the chiral limit). The polynomial2 in the second integral has d = 1
and its polynomial order takes values m = −1, . . . , 1. Hence, in this case the condition
(2.76) restricts the number of subtraction to at least one (and for the terms with m = −1
and m = 0 it is possible also to take more of them). For sake of simplicity we take always
the minimal allowed number of subtractions. Using the once and the twice subtracted
one-loop integrals, which are defined by

J̄yz(s) =
s

16π2

∫ ∞

(my+mz)2

dx

x(x− s)

λ
1/2
yz (x)

x
, (3.8)

1α(s) is a polynomial of maximally first order in s.
2Note that in this integral we have to identify the polynomial b

(i)
m sm without the 1

x that is extracted in
front of the brackets in order to be in correspondence with the definitions of the quantities of Section 2.5.
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¯̄Jyz(s) =
s2

16π2

∫ ∞

(my+mz)2

dx

x2(x− s)

λ
1/2
yz (x)

x
(3.9)

and discussed in the next section, we rewrite the functions of the theorem into the reduced
form (with an appropriate change of the constants of polynomial R(s, t, u))

W 0
S (s) =

∑

k

CikCkf

Sk

((

αik(s)αkf(s)− (βikαkf(s)∆AB + αik(s)βkf∆CD)
∆k

s

)

J̄k(s)

+
4

3
βikβkf∆AB∆CD

∆2
k

s2
¯̄Jk(s) +

1

3
βikβkf∆AB∆CD

(

1− 2Σk

s

)

J̄k(s)

)

,

(3.10)

W 1
S (s) =

1

3

∑

k

CikCkf

Sk

βikβkf

(

s− 2Σk +
∆2

k

s

)

J̄k(s). (3.11)

We obtain similar results also for the T- and the U-crossed parts. If we carry out the
same extraction of polynomials also for the crossed parts, the symmetries of the polynomial
of the theorem remain intact.

3.2 The one-loop integrals

In the results of first iteration, there appear integrals (3.8) and (3.9). For accomplishment
of the second iteration we need to compute the S-wave and the P-wave projection of these
results, i.e. we need to compute integrals of J̄(s) and ¯̄J(s). Moreover, for some processes it
will be necessary to have an analytic continuation of the partial waves below the physical
region3 and thus also of the one-loop functions. Therefore, we make this small digression
and discuss them here.

In accordance to the integral representation (3.8) and (3.9), we can write4

J̄yy(s) =
1

16π2

(

2 + σy(s) log
σy(s)− 1

σy(s) + 1

)

, (3.13)

J̄yz(s) =
1

16π2

[

1 +

(

∆yz

s
− Σyz

∆yz

)

log
mz

my

+
λ
1/2
yz (s)

s
log

λ
1/2
yz (s)−

(

s− µ−
yz

)

λ
1/2
yz (s) +

(

s− µ−
yz

)

]

, (3.14)

¯̄Jyz(s) = J̄yz(s)−
1

16π2

(

Σyz

2
+

2m2
ym

2
z

∆yz
log

mz

my

)

s

∆2
yz

. (3.15)

3The physical region is given by s > (mx +my)
2.

4From relations (3.10) and (3.11) we observe that in the results there does not appear the double

subtracted one-loop function for the states containing two particles of the same mass, ¯̄Jyy(s).
Note also that [cf. with (2.37)]

¯̄Jyz(s) = J̄yz(s)−
s

16π2

∫ ∞

(my+mz)2

dx

x2

λ
1/2
yz (x)

x
= J̄yz(s)− sJ ′

yz(0). (3.12)
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In order to get a correct analytic continuation of these functions, we take the follow-
ing choice of branch cuts and of the appropriate branches of the many-valued functions
occurring there.

• the square root appearing in σy with the cut (−∞, 0) and the argument of its result
belonging to the interval (−π

2
, π
2
〉; [Then within the physical region we have just the

usual positive square root of positive real numbers.]

• all the logarithms with their cuts located on (−∞, 0) and Im log z ∈ (−π, π〉;

• square root of λyz(s) with its cut on
(

µ−
yz, µ

+
yz

)

and the signs of the result according
to

µ−
yz µ+

yz

−|λ|1/2 |λ|1/2+i|λ|1/2

−i|λ|1/2 s
(3.16)

i.e. it is positive within the physical scattering region. This choice is in accordance
with the sign choice in the same mass limit λ

1/2
yz (s) →

mz→my

sσy(s).

This is just one of a few possible choices resulting in the one-loop functions (3.13)–(3.15)
being analytic in the complex plane with the physical cut

(

µ+
yz,∞

)

. [The situation will
be more complicated for the applications of the reconstruction procedure in the case of
K → 3π and η → 3π as is discussed in Chapter 6.]

3.3 Obtaining the divergent parts of the chiral logarithms

Our arguments used in the proof of the theorem leading to the computation of divergences
of dispersion integrals in the chiral limit can be used also for obtaining the divergent parts
of chiral logarithms that appear in the amplitudes constructed using the theorem. We
illustrate this on the result obtained by the first iteration. In all processes there appear
just two dispersion integrals J̄k(s) and ¯̄Jk(s), which are of chiral order O(p0). From the
condition of finiteness of the complete amplitude in the chiral limit, we know that all their
divergences have to be canceled by the divergences of coefficients of the polynomial which
we are looking for. Using the correspondence (2.41) between these divergences and the UV
asymptotics of the integrals (λ→ ∞)

16π2J̄yz(λs) = −
∫ Λ2

(my+mz)2

dx

x

λ
1/2
yz (x)

x
, (3.17)

16π2 ¯̄Jyz(λs) = −λs
∫ Λ2

(my+mz)2

dx

x2
λ
1/2
yz (x)

x
−
∫ Λ2

(my+mz)2

dx

x

λ
1/2
yz (x)

x
, (3.18)

we see that the first integral has only logarithmic divergence and the second also 1/M2.
Indeed, after their integration (with the upper bound Λ2), we obtain for the divergent parts
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(M2 → 0)

J̄yz(s) →
1

16π2
log

M2

Λ2
, (3.19)

¯̄Jyz(s) → −
s
(

m4
y −m4

z + 2m2
ym

2
z logm

2
z/m

2
y

)

32π2(m2
y −m2

z)
3

+
1

16π2
log

M2

Λ2
. (3.20)

The mass M2 in the logarithms can be changed into any mass just by change of the finite
part of the polynomial. Similarly, the scale Λ can be changed into any other scale, however,
we have to introduce this scale also into the finite part of the coefficients in order to restore
the independence on such scale of the complete result.

From relations (3.10) and (3.11), we gain the part of U(s, t, u) that is divergent in the
chiral limit,

W 0
S (s) →

1

16π2

∑

k

CikCkf

Sk
αik(s)αkf(s) log

M2

Λ2
, (3.21)

W 1
S (s) →

1

16π2

s

3

∑

k

CikCkf

Sk
βikβkf log

M2

Λ2
, (3.22)

where in both α(s) we take only the parts which do not vanish for M → 0 (as the rest
is finite in the chiral limit), i.e. the terms of first order in s. The divergent part of the
polynomial is determined by the requirement of canceling this divergence of the unitarity
part.

3.4 Computation of the S and the P partial waves in NLO

The determination of the leading order partial waves was trivial since the amplitudes at
that order were just polynomials. At the next-to-leading order the situation is different,
we have to integrate some combinations of one-loop functions and the results will be more
complicated since there could in principle appear six different masses in the expressions
for partial waves. Naturally, this case would take place only provided in the application
we are dealing with, there appeared so many masses and the process with all the masses
different was kinematically possible. (In all the cases considered in this work there occur
at most three different masses in the results.) Moreover, as we have already pointed out, in
many particular cases we need to continue analytically the partial waves below the physical
threshold and also to deform the integration contour of the PW integration, which is better
to perform carefully for the individual processes. That are the reasons why we do not give
the explicit results generally but instead we present the formulae leading to them, which
are used thereafter for each particular application for obtaining the corresponding partial
waves.

The unitarity part of the NLO results can be separated into three parts, each containing
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the one-loop functions depending on one of the Mandelstam variables,

U(s, t, u) =

(

P a
S (s, t)J̄a(s) +Qa

S

¯̄Ja(s)

s2

)

+

(

P a
T(t, s)J̄a(t) +Qa

T

¯̄Ja(t)

t2

)

+

(

P a
U(u, s)J̄a(u) +Qa

U

¯̄Ja(u)

u2

)

= US(s, t) + UT(t, s) + UU(u, s),

(3.23)

where Qa
I are constants and P a

I Laurent polynomials containing terms with the power of
Mandelstam variables varying from −1 to 2 [the remaining variable is eliminated from the
polynomials by using relation (2.6)]. In this relation we sum over a being all the possible
intermediate states.

To obtain the partial waves we perform integrations (2.15) and (2.16) of the amplitudes
over cosine of the CMS scattering angle. The polynomial part of the amplitude, R(s, t, u),
and the S-part of the unitarity part, US(s, t, u), can be integrated trivially using inverted
relations to (2.8),

t =
3s0 − s

2
+
λ
1/2
AB(s)λ

1/2
CD(s) cos θ −∆AB∆CD

2s
, (3.24)

u =
3s0 − s

2
− λ

1/2
AB(s)λ

1/2
CD(s) cos θ −∆AB∆CD

2s
. (3.25)

For the integration of the T-part [depending only on t and s] and of the U-part [depending
only on u and s], we perform the substitutions

cos θ =
s(2t+ s− 3s0) + ∆AB∆CD

λ
1/2
AB(s)λ

1/2
CD(s)

=
s(3s0 − 2u− s) + ∆AB∆CD

λ
1/2
AB(s)λ

1/2
CD(s)

, (3.26)

d cos θ =
2s

λ
1/2
AB(s)λ

1/2
CD(s)

dt = − 2s

λ
1/2
AB(s)λ

1/2
CD(s)

du (3.27)

with the corresponding boundary values equal to

t±(s) =
3s0 − s

2
− ∆AB∆CD

2s
± λ

1/2
AB(s)λ

1/2
CD(s)

2s
, (3.28)

u±(s) =
3s0 − s

2
+

∆AB∆CD

2s
∓ λ

1/2
AB(s)λ

1/2
CD(s)

2s
. (3.29)

It means, we have

ϕ0(s) =
s

16πNλ
1/2
AB(s)λ

1/2
CD(s)

∫

C(t−(s),t+(s))

dt UT(t, s), (3.30)

ϕ1(s) =
s2

16πNλABλCD

∫

C(t−(s),t+(s))

dt (2t− t+ − t−)UT(t, s) (3.31)
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and similarly for the integration over u of the U-part. The contour C (t−(s), t+(s)) con-
necting t+ and t− has to be deformed so that it avoids cuts of UT(s, t), i.e. the T-channel
cuts of the amplitude.

If the contour C (t−(s), t+(s)) has in addition the property that there exists an open
neighborhood of every point on the contour where the integrands are continuous [i.e. if the
contour not only avoids the cuts of UT(s, t), but if its open neighborhood also does], the
complex analysis (cf. e.g. [119]) tells us that the contour integral is equal to the difference
between the values of the primitive function of integrand evaluated in the two endpoints
t+ and t− (in the cases when such primitive function exists).

Since the integrands in (3.30) and (3.31) are linear combinations of tnJ̄yz(t) and t
n̄ ¯̄Jyz(t)

with n = −1, . . . , 3 and n̄ = −2,−1, in that case it should be enough to find the following
primitive functions

Iyzn (t) = 16π2

∫

dt tnJ̄yz(t), for n = −1, . . . , 3; (3.32)

Iyz−2(t) = 16π2

∫

dt
¯̄Jyz(t)

t2
, (3.33)

and also

16π2

∫

dt
¯̄Jyz(t)

t
= Iyz−1(t)−

(

Σyz

2
+

2m2
ym

2
z

∆yz
log

mz

my

)

t

∆2
yz

; (3.34)

and evaluate them in the endpoints t±. Naturally, the same chain of reasoning can be
followed also for the U-part integration.

3.4.1 Primitive functions

From formulae (3.13)–(3.15) for the one-loop functions, we find the primitive functions
introduced in the previous section. First, we deal with the case of different masses, where
for sake of simple notation we denote the ratio of these masses q,

q =
mz

my
. (3.35)

The same-mass case will be obtained afterwards just by limiting q → 1.
The following transformation of variables will prove to be useful [Remember our choice

of the analytic continuation of λ1/2(t) in (3.16).]

τyz =
λ
1/2
yz (t)− (t− µ−

yz)

λ
1/2
yz (t) + (t− µ−

yz)
= −t− Σyz − λ

1/2
yz (t)

2mymz
, (3.36)

which simplifies in the equal-mass case to

τy =
σy(t)− 1

σy(t) + 1
. (3.37)
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This transformation maps the complex plane with the cut (µ−
yz, µ

+
yz) onto the unit disc. As

denoted on Figure 2 the points slightly above the cut (t + iǫ) are mapped slightly below
the upper semi-circle while the points slightly below this cut (t − iǫ) slightly above the
lower semi-circle. (The points lying exactly on the upper and on the lower semi-circle have
to be identified.) Ray (µ+

yz + iǫ,∞+ iǫ), where the branch cut of the one-loop function is
located, is mapped onto line segment (−1 + iǫ, 0 + iǫ). The inverse transformation

t(τyz) = Σyz −mymz

(

τyz +
1

τyz

)

, (3.38)

λ1/2yz (t(τyz)) = mymz

(

τyz −
1

τyz

)

, (3.39)

dt = −mymz

τ 2yz

(

τ 2yz − 1
)

dτyz (3.40)

can be continued to the whole complex τyz-plane and satisfies

t(τyz) = t(1/τyz). (3.41)

This means that the points τ and 1/τ should be identified, which implies also the identifi-
cation of τ and τ ⋆ = 1/τ on the unit disc boundary of Figure 2.

In the same mass case (q = 1) the inversion reduces to

t(τy) = −
m2

y

τy
(τy − 1)2 , (3.42)

σ(τy) =
τy + 1

1− τy
, (3.43)

dt = −
m2

y

τ 2y

(

τ 2y − 1
)

dτy . (3.44)

The transformed one-loop functions read5

16π2J̄q(τyz) = 1− Σyz

∆yz
log q − τyz(1− q2)

(τyz − q)(τyzq − 1)
log q +

q(1− τ 2yz)

(τyz − q)(τyzq − 1)
log τyz,

(3.46)

16π2J̄1(τyz) = 2 +
1 + τyz
1− τyz

log τyz. (3.47)

Their analyticity in the unit disc with the segment 〈−1, 0〉 removed and the symmetry
J̄(τ) = J̄(1/τ) are in these relations manifest.

5We note the following relation enabling the computation of the one-loop function q 6= 1 from the
knowledge of the equal-mass one

J̄q(τyz) =
1

2

(

J̄1(qτyz) + J̄1

(

τyz
q

)

− J̄1
(

q2
)

)

. (3.45)
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t = ∞t = µ+ t = µ−

t+ iε

t− iε

Im t > 0

Im t < 0

Re τ

Im τ

|τ | = 1

Figure 2: Conformal transformation (3.36) mapping complex t-plane onto unit disc in τ -
plane. The points on upper and on the lower semi-circle are identified. In the transformed
plane the one-loop functions to which the transformation corresponds have their branch
cut located on the line segment τ ∈ (−1 + iǫ, 0 + iǫ).

From the mixed form of the integral

16π2J̄q(t) = 1 +

(

∆yz

t
− Σyz

∆yz

)

log q +
mymz

t

τ 2yz − 1

τyz
log τyz, (3.48)

one obtain the following simple form of the derivative

16π2 d

dt

(

tJ̄q(t)
)

=
1 + τ 2yz
1− τ 2yz

log τyz −
1 + q2

1− q2
log q, (3.49)

which makes it easy to check the primitive functions given here.
Finally, we introduce the following function appearing in the results of integration

J (τyz) = log q log τyz + Li2(1− qτyz)− Li2

(

1− τyz
q

)

. (3.50)

Having prepared all the necessary ingredients, we present here a list of all primitive
functions that will be needed for computation of S and P partial waves.

Iyz1 (t) = 8π2J̄q(t)t(t− Σyz) +
t2

4
− 2m2

ym
2
zt

log q

∆yz
+m2

ym
2
z log

2 τyz, (3.51)

Iyz2 (t) =
8π2

3
J̄q(t)t

(

2t2 − Σyzt− (Σ2
yz + 8m2

ym
2
z)
)

+
t3

9
+

Σt2

12

− 2m2
ym

2
zt

(

t

3
+ Σyz

)

log q

∆yz
+m2

ym
2
zΣyz log

2 τyz ,
(3.52)
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Iyz3 (t) =
t4

16
+ Σyz

t3

18
+
t2

24
(Σ2

yz + 6m2
ym

2
z) +m2

ym
2
z(Σ

2
yz +m2

ym
2
z) log

2 τyz

−m2
ym

2
zt

(

t2

3
+

5Σyzt

6
+ 2(Σ2

yz +m2
ym

2
z)

)

log q

∆yz

+
4π2

3
J̄q(t)t

(

3t3 − Σyzt
2 − (Σ2

yz + 6m2
ym

2
z)t− Σyz(Σ

2
yz + 26m2

ym
2
z)
)

,

(3.53)

Iyz0 (t) = 16π2J̄q(t)t+ t +
Σyz

2
log2 τyz −∆yz J (τyz), (3.54)

Iyz−1(t) = −16π2J̄q(t)−
1

2
log2 τyz +

Σyz

∆yz
J (τyz), (3.55)

Iyz−2(t) = 8π2J̄q(t)

(

Σyz

∆2
yz

− 1

t

)

+
2m2

ym
2
z

∆3
yz

J (τyz). (3.56)

All of them have a smooth limit for the ratio of pion masses q going to one with the
exception of Iyz−2(t), where we need to add a constant with the appropriate divergence.

We have chosen to add −Σyz

∆2
yz

+ 13
36mymz

, which has the advantage that then Iy−2(t) goes to

zero for t = 0. [However, as we have already noted, in the equal mass case there appears
no Iy−2(t) in the result.] From the same reason we have added −2 to the function Iy−1(t).
The primitive functions of integrations of tnJ̄PP (t), which in addition vanish for t = 0, are
therefore

Iy1 (t) = 8π2J̄1(t)t(t− 2m2
y) +

t2

4
+ tm2

y +m4
y log

2 τy

=
m4

y

4τ 2y

(

(τy − 1)2(5− 6τy + 5τ 2y )− 2(τ 4y − 1) log τy

)

+m4
y log

2 τy,
(3.57)

Iy2 (t) =
16π2

3
J̄1(t)t

(

t2 − tm2
y − 6m4

y

)

+
t3

9
+
t2

2
m2

y + 2tm4
y + 2m6

y log
2 τy

=
m6

y

18τ 3y

(

− (τy − 1)2(2− 7τy + 2τ 2y )(7− 2τy + 7τ 2y )

+ 6(τ 2y − 1)(1 + τy + τ 2y )(1− 4τy + τ 2y ) log τy

)

+ 2m6
y log

2 τy,

(3.58)

Iy3 (t) =
4π2

3
J̄1(t)t

(

3t3 − 2t2m2
y − 10tm4

y − 60m6
y

)

+
t4

16
+

5t3m2
y

18
+

5t2m4
y

4
+ 5tm6

y + 5m8
y log

2 τy

=
m8

y

144τ 3y

(

(τy − 1)2
(

81− 478τy + 1123τ 2y − 732τ 3y + 1123τ 4y − 478τ 5y + 81τ 6y
)

− 12(τ 2y − 1)
(

3− 16τy + 27τ 2y + 32τ 3y + 27τ 4y − 16τ 5y + 3τ 6y
)

log τy

)

+ 5m8
y log

2 τy,

(3.59)

Iy0 (t) = 16π2J̄1(t)t+ t +m2
y log

2 τy =
m2

y

τ

(

(τ 2y − 1) log τy − 3(τy − 1)2
)

+m2
y log

2 τy,

(3.60)
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Iy−1(t) = −32π2J̄1(t)−
1

2
log2 τ = −4 + 2

τy + 1

τy − 1
log τy −

1

2
log2 τy, (3.61)

Iy−2(t) =

(

1−
4m2

y

t

)

8π2

3m2
y

J̄1(t) +
1

9m2
y

=
1

18m2
y(τy − 1)3

(

8(τ 3y − 1)− 3(1 + τy)
3 log(τy)

)

.

(3.62)

3.4.2 Integration in the same mass channel

To perform the explicit calculation we should plug in the endpoints (3.28) and (3.29) into
the particular primitive functions (provided there exists a trajectory connecting the end-
points fulfilling the condition for possibility of use of the primitive functions). That gives
in general complicated expressions. However, in particular cases the situation simplifies —
one of them, which we discuss already on this general level, is the same mass case.

Denoting

T± =
4m2

y − t±(s)

2m2
y

(3.63)

and

σT± :=
1

σy(t±(s))
=

1
√

1− 4m2
y

t±(s)

=

√

T± − 2

T±
, (3.64)

where σy is the square root function corresponding to J̄y, we obtain the argument of
logarithm equal to

τ(t±(s)) = T± − 1− T±σT± , (3.65)

its reciprocal value
1

τ(t±(s))
= T± − 1 + T±σT± , (3.66)

and the logarithm simplified to

LT± = log τ(t±(s)) = log

(

1− σT±

1 + σT±

)

. (3.67)

Inserting these relations into primitive functions (3.57)–(3.62) (and using the simplifi-
cation T±σ

2
T± = T± − 2), we arrive at

16π2J̄yy(t±) = 2 +
LT±

σT±

, (3.68)

16π2 ¯̄Jyy(t±) = 2 +
LT±

σT±

− t±
6m2

y

, (3.69)

Iy1 (t±) = m4
y

(

(T± − 2)(5T± − 8) + 2T±(T± − 1)σT±LT± + L2
T±

)

, (3.70)
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Iy2 (t±) =
m6

y

9

(

2(T± − 2)(7T± − 8)(11− 4T±)

− 12T±(T± − 3)(2T± − 1)σT±LT± + 18L2
T±

)

,

(3.71)

Iy3 (t±) =
m8

y

9

(

(T± − 2)(81T±
3 − 482T±

2 + 941T± − 512)

+ 6T±(6T±
3 − 34T±

2 + 59T± − 15)σT±LT± + 45L2
T±

)

,

(3.72)

Iy0 (t±) = m2
y

(

6(2− T±)− 2T±σT±LT± + L2
T±

)

, (3.73)

Iy−1(t±) = −4 − 2T±
T± − 2

σT±LT± − 1

2
L2
T±, (3.74)

Iy−2(t±) =
1

18m2
y

(

4(2T± − 1)

T± − 2
+

3T±
2

(T± − 2)2
σT±LT±

)

. (3.75)

3.5 Second iteration

After employing the expressions of the previous section, we obtain the NLO partial waves
of the amplitudes. They are in the form

ϕ0(s) =
1

(16π)2π

C

N

∑

j

Mj(s)p
0
j(s), (3.76)

ϕ1(s) =
1

(48π)2π

C

N

∑

j

Mj(s)

(

λ
1/2
i (s)λ

1/2
f (s)p1j(s) +

1

λ
1/2
i (s)λ

1/2
f (s)

p
1,(λ)
j (s)

)

, (3.77)

where pℓj(x) and p
1,(λ)
j (x) are Laurent polynomials depending on the parameters of ampli-

tudes; Mj(x) are some kinematic functions that are independent of those parameters; and
finally λi(s) and λf (s) are triangle functions corresponding to the initial and to the final
states respectively.

For the second iteration we need NNLO discontinuities of partial waves of all crossed
processes as inputs to the reconstruction theorem. They can be obtained from unitarity
relation (2.18),

Imψi→f
ℓ (s) =

∑

k

N

Sk

λ
1/2
k (s)

s

(

φi→k
ℓ (s)

(

ϕf→k
ℓ (s)

)⋆

+ ϕi→k
ℓ (s)

(

φf→k
ℓ (s)

)⋆)

θ(s− thrk),

(3.78)
where there appear products of O(p2) partial waves φℓ(s) and of O(p4) ones ϕℓ(s).

Since one can separate the polynomials depending on the parameters of amplitudes
from the kinematic functions also for the O(p2) partial waves [as is obvious from (3.2) and
(3.3), in that case the only non-polynomial kinematic functions are some combinations of
square roots of triangle functions], the NNLO discontinuities can be reparametrized into

Imψ0(s) =
1

(16π)3π

∑

k

CikCkf

NSk

∑

j

Kj(s)Pk;0
j (s), (3.79)
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Im
ψ1(s)

λ
1/2
i (s)λ

1/2
f (s)

=
1

s

1

(48π)3π

×
∑

k

CikCkf

NSk

∑

j

Kj(s)

(

Pk;1
j (s) +

sM2

λi(s)
Pk;1

j;(λi)
(s) +

sM2

λf (s)
Pk;1

j;(λf )
(s)

)

,

(3.80)

with Pk;ℓ
j (s) and Pk;ℓ

j;(λ)(s) being parameter-dependent Laurent polynomials obtained as

combinations of polynomials pℓj(s) and the polynomials of the O(p2) partial waves; and
Kj(s) are dimensionless kinematic functions arising as products of functions Mi(s) with
square roots of triangle functions. We have extracted factor sM2, where M denotes a
generic mass, from the polynomials Pk;1

j;(λ)(s) in order to have the functions that multiplies
them again dimensionless. As usual, the quantities with indices i, f, k are in turn connected
with the initial, the final and the intermediate states.

After this reparametrization, the integrands appearing in relations (2.23)–(2.24) for
functions W ℓ(s) are in the form of (2.73) or (2.77) and we can factor the polynomials out
of the integrals using the methods of Section 2.5. Thus, we arrive at

W 0(s) =
1

(16π)2π2

∑

k

CikCkf

Sk

(

∑

j

Hj(s)Pk;0
j (s)

+
∆i∆f

9

∑

j

1

s

(

Hj(s)Pk;1
j (s) +Hj;(λi)(s)Pk;1

j;(λi)
(s) +Hj;(λf )(s)Pk;1

j;(λf )
(s)
)

)

,

(3.81)

W 1(s) =
1

(48π)2π2

(

Hj(s)Pk;1
j (s) +Hj;(λi)(s)Pk;1

j;(λi)
(s) +Hj;(λf )(s)Pk;1

j;(λf )
(s)
)

. (3.82)

WithHj(s) we formally denote Hilbert transforms (dispersion integrals) of functions Kj(s),

Hn
j (s) = sn

∫ ∞

sthr

dx

xn
Kj(x)

x− s
. (3.83)

with number of subtractions n varying for different orders of the polynomial term multi-
plying the particular function.

More precisely, instead of the formal symbol Hj(s)Pk;ℓ
j (s), we should write for a given

polynomial

Pk;ℓ
j (s) =

∑

m

ams
m (3.84)

the expression

Hj(s)Pk;ℓ
j (s) 7→

∑

m

ams
mHnm

j (s), (3.85)

where nm depends on m, on the chiral order6 of polynomial Pk;ℓ
j (s) and also on the asymp-

totic behavior of function Kj(s) [on the convergence of integrals (3.83)] such that it satisfies

6Note that in the terms with ∆i∆f in (3.81), the determining chiral orders are the one of 1
sP

k;1
j (s) and

the one of 1
sP

k;1
j;(λ)(s). Note also that we have factored out of polynomials Pk;1

j;(λ)(s) some powers of s and

masses that are written in (3.80) symbolically as sM2.
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inequality (2.76) and one of the conditions (2.71). For some of the terms there still remains
ambiguity in the final choice of n from all the values satisfying both of these conditions. In
that case, we will choose the number that gives the simplest results, videlicet the minimum
of the absolute value of such n with the preference of non-negative values.

In equations (3.80)–(3.82), we have indicated the appearance of functions sM2

λ
Kj(s). We

could naturally introduce them as new functions Kj(s) thereby simplifying the schematic
form of these equations. Nevertheless, in Appendix B we show that a computation of
Hilbert transform Hj;(λ)(s) of a function sM2

λ
Kj(s) is easy provided we already know the

transform Hj(s) of the function Kj(s).
We have seen that the only non-trivial task in performing the second iteration is finding

of Hilbert transforms of the functions appearing in the expressions for discontinuities. We
discuss some properties of Hilbert transform useful in this regard in Appendix B.

3.6 Interpretation of the polynomial parameters

In the results of reconstruction procedure there appear polynomials which are determined
just by their polynomial order (by the powers of Mandelstam variables appearing there),
by the symmetries they have to obey, and naturally also by the condition of chiral conver-
gence of this expansion. Their choice is otherwise unrestricted and we can choose in each
application in principle any parametrization we like. However, together with the ambiguity
of parametrization of the leading order amplitudes their choice can affect the convergence
rate in chiral expansion of the parametrization and it has influence on the stability of an
eventual fit to experimental data.

In most cases we use the parametrization having the subthreshold parameters, viz. val-
ues of the amplitudes, of their slopes, etc. in the center of Dalitz plot, as the polynomial
parameters. This has been used also in all the previous analyses inspired by the recon-
struction theorem [125,95,11,12] and should be an appropriate choice for discussion of the
quantities whose expansion in light quark masses converges rapidly.

On the other hand, for studies of the processes where we cannot rely on such rapid
convergence, there could exist more suitable choices. For instance, in studies of experi-
mental data on ππ scattering (what is one of the main tasks of this work), there seems
to be more appropriate to use the partial-wave parametrization with scattering lengths,
effective ranges, and further shape characteristics as the polynomial parameters of ampli-
tudes. As will be discussed in Chapter 5, working in such parametrization, however, brings
one additional complication. Since the unitarity corrections affect at each order all the
partial waves and thereby also the scattering lengths and the further partial-wave param-
eters, we have to reorganize the parametrization at each order by adding to the unitarity
part some “restoring polynomials” that retain physical interpretations of the parameters
also after including such corrections. With more of these parameters fixed at their correct
physical values at higher orders there appears a necessity of more complicated restoring
polynomials. (Nevertheless, one should bear in mind that there are still just polynomials.)

We will deal also with the processes where although the sufficient rate of chiral conver-
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gence is questioned in any point, up to now there exists no reasonably better expansion
of them and so we stay with the subthreshold expansion in the center of Dalitz plot. To
this class of processes there belong Kπ → ππ and ηπ → ππ processes of Chapters 6–8,
where the kinematic constraint (2.6) implies that there is always one crossed channel whose
center of mass energy exceeds many times the threshold energy of production of the final
states (therefore, the center of Dalitz plot is in a way indeed a point of minimum).

Independently on the parametrization and on the form of polynomials we choose for
some process, there is still one issue connected with the interpretation of the polynomial
parameters we should also discuss. From Figure 1 it is obvious that starting with some
parameter of the polynomial part of an O(pd) amplitude, the same parameter appears in
the higher order O(pd+2) parametrization on two different places with two different orders.
The parameter appearing in the polynomial part obtains some higher order corrections,
thereby changing its value, whereas the same parameter in the unitarity part of O(pd) para-
metrization exactly coincides with that lower-order one. Roughly speaking, the parameters
in the unitarity part are therefore one step behind the parameters of the polynomial part.
With this appearance of parameters in a parametrization of a given order in such double
orders we can deal in two ways:

• order-by-order approach —We can exactly respect chiral orders of each part and thus
distinguish contributions of every order. This approach is therefore more suitable
in the cases when the convergence of the chiral expansion is expected. Its benefit
emerges especially when one wants to make a comparison with the results of χPT.

Moreover, when performing a fit of our parameters to data or to some theory, there
suggests itself the following simplification of the fitting process. We start with com-
paring (fitting) the lowest order formulae and then at each higher order we use those
lower order values for computation of the unitarity part and afterward fit the con-
tributions of the higher orders only to the polynomial part. By that we fit at each
order just a polynomial, while the more complicated unitarity part is already fixed
by the lower order fit.

• resummed approach — We can include into results also a part of the neglected orders
by replacing all the parameters by their highest order values. By that we reorganize
the chiral expansion of the amplitude (from which there follows the adjective “re-
summed”). It is possible, albeit not guaranteed, that this resummation can lead to
the results that will be closer to the final non-perturbative physical values of the
amplitudes than the strict respecting the chiral orders. Nevertheless, the contrary
can also happen to be true. It seams to be more natural to use this interpretation in
the cases when we want to keep a physical meaning (values) of the parameters (this
will be of use for instance for scattering lengths in ππ data).

This interpretation is an intermediate step in the way to the complete dispersive
approaches that try to include unitarity contributions of some specific intermediate
states to an infinite order ignoring the actual counting of the chiral orders.



Chapter 4

Pseudoscalar meson-meson scattering in isospin

conserving strong chiral perturbation theory

As the first application of the procedure outlined in the previous chapter and for the
illustration how the procedure works, we construct the 2 → 2 scattering amplitudes for
all pseudoscalar mesons K, η and π in pure strong chiral perturbation theory with isospin
conservation.

In this simple case, if we in addition neglect the appearance of all the other particles
(vector resonances, etc. — see the discussion in Section 4.6), also the assumptions (iii), (iv),
and (v) of the theorem, viz. existence of the dispersion relation, analyticity and the com-
plete partial wave decomposition of the amplitude, can be justified from the first principles
of the axiomatic quantum field theory — at least in some domains in kinematic region.
This justification is discussed in Appendix C with these domains plotted on Figure 25. By
that, all of the assumptions of the theorem are justified without the need of the existence
of the Lagrangian of χPT. Therefore, if we take the leading order amplitudes entering the
procedure in a model-independent form, by that we construct a parametrization of the
amplitudes in more general form than the result of χPT, for instance independent on the
particular power-counting scheme in use. In this aspect the results of this chapter can be
understood as an extension of the work of Osborn [114] constructing the general form of
the amplitudes of the considered type to the higher orders.

Note, however, that for the construction of the amplitudes using the theorem we do
not need the fulfillment of such general assumptions — the complete (non-perturbative)
amplitude does not need to fulfill these conditions. For the construction it is enough that
the perturbative amplitudes that would be constructed by all of the possible Lagrangians
by the Feynman diagram methods possess these analytic properties.

The meson-meson scattering amplitudes in strong, isospin symmetric chiral perturba-
tion theory form a closed set with respect to the reconstruction theorem and the unitarity
relations. Therefore, we can use the reconstruction procedure from the previous chapter
and construct general forms of these amplitudes to two-loop order. Nevertheless, we per-
form here only the first iteration since in the context of our present work the main reason
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of this chapter is just to give a specific example of amplitudes which can be constructed
by the reconstruction procedure and can be compared afterwards to the result of one-loop
calculation of chiral perturbation theory, obtaining so the particular values of the gen-
eral parameters that correspond to these chiral perturbation theory results. To that end,
we have used the work of Nicola and Pelaez [78], which lists the one-loop results in the
unitarised form that is suitable for such comparison.

With these tasks we have dealt already in author’s diploma thesis [I] and in article [II].
Therefore, for reasons of space, we do not go here into detail of their construction and
present here only a part of the results and refer the interested reader to [I] and [II].

4.1 Notation

In addition to the general notation introduced in the previous chapters, we need to specify
our definition of the (signs of) meson fields. They are collected in the matrix

φ(x) = λaφa(x) =







π0 + 1√
3
η −

√
2π+ −

√
2K+

√
2π− −π0 + 1√

3
η −

√
2K0

√
2K− −

√
2K0 − 2√

3
η






. (4.1)

Our choice of the phase convention corresponds to the Condon and Shortley convention
and brings to a matrix element of mesons one minus sign for each charged particle in the
final state.

4.2 Symmetry properties of the considered amplitudes

We work here in the strong isospin conservation limit. In [I] and [II] we have shown
that then Ward identities1 imply just 7 independent meson-meson scattering processes, in
the notation which follows Aηη, Aηπ, Aππ, AKη, AKηπ, AKπ, BKπ and AKK. From them the
amplitudes of all the possible physical processes can be determined using the crossing prop-
erty and the following relations. We list here also the s, t, u symmetries of the independent
amplitudes which stem from their crossing and Bose symmetry.

1. ηη → ηη
A(ηη → ηη) = Aηη(s, t, u) = Aηη(t, s, u) = Aηη(u, t, s). (4.2)

2. ηπ → ηπ

A(ηπ± → ηπ±) = A(ηπ0 → ηπ0) = Aηπ(s, t, u), (4.3)

Aηπ(s, t, u) = Aηπ(u, t, s). (4.4)

1Note also the existence of the alternative method that is used in Appendix I for the construction of
the independent K → 3π amplitudes.
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3. ππ → ππ

A(π+π− → π0π0) = −Aππ(s, t, u), (4.5)

A(π+π− → π+π−) = Aππ(s, t, u) + Aππ(t, s, u), (4.6)

A(π0π0 → π0π0) = Aππ(s, t, u) + Aππ(t, s, u) + Aππ(u, t, s); (4.7)

Aππ(s, t, u) = Aππ(s, u, t). (4.8)

4. KK → ηη

A(K0K0 → ηη) = −A(K−K+ → ηη) = AKη(s, t, u) = AKη(s, u, t). (4.9)

5. KK → ηπ

A(K−K+ → ηπ0) = A(K0K0 → ηπ0) = −AKηπ(s, t, u), (4.10)

A(K−K0 → ηπ−) = A(K0K+ → ηπ+) = −
√
2AKηπ(s, t, u), (4.11)

AKηπ(s, t, u) = AKηπ(s, u, t). (4.12)

6. KK → ππ

A(K0K0 → π0π0) = −A(K−K+ → π0π0) = AKπ(s, t, u), (4.13)

A(K−K0 → π−π0) = −A(K0K+ → π+π0) =
√
2BKπ(s, t, u), (4.14)

A(K−K+ → π−π+) = AKπ(s, t, u) +BKπ(s, t, u), (4.15)

A(K0K0 → π−π+) = −AKπ(s, t, u) +BKπ(s, t, u). (4.16)

For the determination of all KK → ππ amplitudes it could seem that one needs two
basic amplitudes — the symmetric

AKπ(s, t, u) = AKπ(s, u, t), (4.17)

and the antisymmetric one

BKπ(s, t, u) = −BKπ(s, u, t). (4.18)

However, in fact, we can consider the only independent amplitude to be (4.15) since
the amplitudes AKπ and BKπ can be extracted from it as its symmetric and its
antisymmetric part, respectively, under the exchange of t and u variables.

7. KK → KK

A(K−K+ → K0K0) = −AKK(s, t, u), (4.19)

A(K−K+ → K−K+) = A(K0K0 → K0K0) = AKK(s, t, u) + AKK(t, s, u). (4.20)

We want to point out that the isospin symmetry leaves only two independent KK →
KK amplitudes, which are, however, constraint by crossing. Thus, we end up with
only one independent amplitude K−K+ → K0K0, knowledge of which enables us
the determination of all the other KK → KK amplitudes.
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4.3 Leading order parametrization of the amplitudes

To preserve the model-independence of the construction of the amplitudes, we write also the
leading-order amplitudes entering the first iteration as the most general amplitudes coming
from our assumptions with no dependence on any particular power-counting scheme. We
have already discussed that they should be first order polynomials in Mandelstam variables.
Since they should satisfy the crossing, Bose and isospin symmetries from the previous
section, we can write them in the form:

Aηη = − m2
π

3F 2
π

αηη

(

1−
4m2

η

m2
π

)

, (4.21)

Aηπ =
1

3F 2
π

(

βηπ(3t− 2m2
η − 2m2

π) + αηπm
2
π

)

, (4.22)

Aππ =
1

3F 2
π

(

βππ
(

3s− 4m2
π

)

+ αππm
2
π

)

, (4.23)

AKη =
1

4F 2
π

[

βKη(3s− 2m2
K − 2m2

η) + αKη

(

2m2
η −

2

3
m2

K

)]

, (4.24)

AKηπ =
1

4
√
3F 2

π

[

βKηπ

(

3s− 2m2
K −m2

η −m2
π

)

−
(

2m2
K −m2

η −m2
π + αKηπm

2
π

)]

, (4.25)

AKπ =
1

12F 2
π

[

βKπ

(

3s− 2m2
K − 2m2

π

)

+ 2(mK −mπ)
2 + 4αKπmKmπ

]

, (4.26)

BKπ =
1

4F 2
π

γKπ(t− u), (4.27)

AKK =
1

6F 2
π

(

βKK

(

4m2
K − 3u

)

+ 3γKK(s− t) + 2αKKm
2
K

)

. (4.28)

Imposing chiral symmetry (cf. also with PCAC argumentation of [114]), one can show
that the leading order amplitude Aηπ has to be a constant independent on the Mandelstam
variables, i.e. βLO

ηπ = 0 independently on the particular power-counting scheme in use.
Similar arguments lead to γKK = 0 in the leading order in all power-counting schemes.

Different choices of these (13+2) parameters in our parametrization reproduce results
of the particular models (with the particular power-countings). For instance, the standard
leading order χPT results [74] are obtained by the choice:

αstd
ηη = αstd

ηπ = αstd
ππ = αstd

Kη = αstd
Kπ = αstd

KK = 1, (4.29)

βstd
ππ = βstd

Kη = βstd
Kηπ = βstd

Kπ = γstdKπ = βstd
KK = 1, (4.30)

αstd
Kηπ = 0, (4.31)

βstd
ηπ = γstdKK = 0. (4.32)
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4.4 Results of first iteration

Performing first iteration means merely a straightforward use of relations (3.10) and (3.11)
for the leading order parametrization of the amplitudes from the previous section.

Since the results are rather involved, we do not put here the complete expressions for the
polynomials denoted by Zk

ij, Y
k
ij , X

k
ij,W

k
ij depending on Mandelstam variables, pseudoscalar

masses and the leading order parameters from the previous section. Interested reader
can find them in [II] or [I]. Nevertheless, for illustration and also for the possibility of
comparison with the results of Chapter 5, we present here the full form of the polynomials
for the ππ scattering process.

• π+π− → π0π0

Note that the amplitude of the process π+π− → π0π0 is equal to −Aππ.

−Aππ =
1

3F 2
π

(

βππ
(

3s− 4m2
π

)

+ αππm
2
π

)

+
1

F 4
π

δππ(s− 2m2
π)

2

+
1

F 4
π

εππ
(

(t− 2m2
π)

2 + (u− 2m2
π)

2
)

+
1

72F 4
π

(

Zππ
ππ (s)Jππ(s) + ZKK

ππ (s)JKK(s) + Zηη
ππJηη(s)

)

+

[

1

72F 4
π

(

Y ππ
ππ (t, u)Jππ(t) + Y KK

ππ (t, u)JKK(t)
)

]

+ [t↔ u] +O(p6).

(4.33)

Zππ
ππ (s) = 4

(

3βππs+ (7αππ − 4βππ)m
2
π

) (

3βππs+ (αππ − 4βππ)m
2
π

)

, (4.34)

ZKK
ππ (s) =

(

3βKπs+ 2(1− βKπ)(m
2
K +m2

π) + 4(αKπ − 1)mKmπ

)2
, (4.35)

Zηη
ππ = 4α2

πηm
4
π, (4.36)

Y ππ
ππ (t, u) = 4

(

3β2
ππt(t− u) + 6βππ(2βππu− αππt)m

2
π + 2(α2

ππ + 4βππ(αππ − 2βππ))m
4
π

)

,
(4.37)

Y KK
ππ (t, u) = 3γ2πK(t− 4m2

K)(4m
2
π − t− 2u). (4.38)

• ηπ0 → ηπ0

Aηπ =
1

3F 2
π

(

βηπ(3t− 2m2
η − 2m2

π) +m2
παηπ

)

+
1

3F 4
π

(

δηπ
(

(s− Σηπ)
2 + (u− Σηπ)

2
)

+ εηπ(t− 2m2
π)(t− 2m2

η)
)

+
1

72F 4
π

(

ZKK
ηπ (t)JKK(t) + Zηη

ηπJηη(t) + Zππ
ηπ (t)Jππ(t)

)

+

[

1

9F 4
π

(

Y ηπ
ηπ Jηπ(s) + Y KK

ηπ (s)JKK(s)
)

]

+ [s↔ u] +O(p6).

(4.39)
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• ηη → ηη

Aηη =
1

3F 2
π

αηη

(

4m2
η −m2

π

)

+
1

3F 4
π

δηη(s
2 + t2 + u2 − 4m4

η)

+

[

1

6F 4
π

(

Zηη
ηηJηη(s) + ZKK

ηη (s)JKK(s) + Zππ
ηη Jππ(s)

)

]

+ [s↔ t] + [s↔ u] +O(p6).

(4.40)

• K0K0 → π0η

AKηπ =
1

4
√
3F 2

π

VKηπ(s) +
1

4
√
3F 4

π

δKηπ(s− 2m2
K)(s− Σηπ)

+
1

4
√
3F 4

π

εKηπ ((t− ΣKη)(t− ΣKπ) + (u− ΣKη)(u− ΣKπ))

+
1

24
√
3F 4

π

(

ZKK
Kηπ(s)JKK(s) + Zηπ

KηπJηπ(s)
)

VKηπ(s)

+
[

− 1

96
√
3F 4

π

(

Y Kη
Kηπ(t, u)JKη(t) + Y Kπ

Kηπ(t, u)JKπ(t)
)

− 1

32
√
3F 4

π

1

t

(

XKη
Kηπ(u)JKη(t) +XKπ

Kηπ(u)JKπ(t)
)

+
1

16
√
3F 4

π

∆Kη∆Kπ

t2
βKηπ

(

WKη
KηπJKη(t) +WKπ

KηπJKπ(t)
)]

+ [t↔ u] +O(p6).

(4.41)

In this amplitude we have used the shorthand notation

VKηπ(s) = βKηπ

(

3s− 2m2
K −m2

η −m2
π

)

−
(

2m2
K −m2

η −m2
π + αKηπm

2
π

)

. (4.42)

• K0K0 → π0π0

AKπ =
1

12F 2
π

(

βKπ

(

3s− 2m2
K − 2m2

π

)

+ 2(mK −mπ)
2 + 4αKπmKmπ

)

+
1

12F 4
π

(

δKπ(s− 2m2
π)(s− 2m2

K) + εKπ

(

(t− ΣKπ)
2 + (u− ΣKπ)

2
))

+
1

72F 4
π

(

ZKK
Kπ (s)JKK(s) + Zηη

Kπ(s)Jηη(s) + Zππ
Kπ(s)Jππ(s)

)

+

[

1

96F 4
π

(

Y Kπ
Kπ (t, u)JKπ(t) + Y Kη

Kπ (t, u)JKη(t)
)

+
1

32F 4
π

1

t

(

XKπ
Kπ (u)JKπ(t) +XKη

Kπ(u)JKη(t)
)

+
1

16F 4
π

1

t2
∆2

Kπ

(

WKπ
Kπ JKπ(t) +WKη

KπJKη(t)
)

]

+ [t↔ u] +O(p6).

(4.43)



4.4. RESULTS OF FIRST ITERATION 53

• K−K0 → π−π0

BKπ =
1

4F 2
π

γKπ(t− u) +
1

4F 4
π

ϕKπs(t− u)

+
1

48F 4
π

γKπ(t− u)
(

JKK(s)βKK(s− 4m2
K) + 2Jππ(s)βππ(s− 4m2

π)
)

+

[

1

96F 4
π

(

Y Kπ
Kπch(t, u)JKπ(t) + Y Kη

Kπch(t, u)JKη(t)
)

+
1

32F 4
π

1

t

(

XKπ
Kπch(u)JKπ(t) +XKη

Kπch(u)JKη(t)
)

+
1

16F 4
π

1

t2
∆2

Kπ

(

WKπ
KπchJKπ(t) +WKη

KπchJKη(t)
)

]

− [t↔ u] +O(p6).

(4.44)

• K0K0 → ηη

AKη =
1

4F 2
π

(

βKη(3s− 2m2
K − 2m2

η) + αKη

(

2m2
η −

2

3
m2

K

))

+
1

4F 4
π

(

δKη(s− 2m2
η)(s− 2m2

K) + εKη

(

(t− ΣKη)
2 + (u− ΣKη)

2
))

+
1

24F 4
π

(

ZKK
Kη (s)JKK(s) + Zηη

Kη(s)Jηη(s) + Zππ
Kη(s)Jππ(s)

)

+

[

1

32F 4
π

(

Y Kη
Kη (t, u)JKη(t) + Y Kπ

Kη (t, u)JKπ(t)
)

− 3

32F 4
π

1

t

(

XKη
Kη (u)JKη(t) +XKπ

Kη (u)JKπ(t)
)

+
3

16F 4
π

1

t2
∆2

Kη

(

WKη
Kη JKη(t) +WKπ

Kη JKπ(t)
)

]

+ [t↔ u] +O(p6).

(4.45)

• K−K+ → K0K0

AKK =
1

6F 2
π

(

βKK

(

4m2
K − 3u

)

+ 3γKK(s− t) + 2αKKm
2
K

)

+
1

6F 4
π

(

δKK(s− 2m2
K)

2 + εKK(t− 2m2
K)

2 + ϕKK(u− 2m2
K)

2
)

+
1

288F 4
π

(

ZKK
KK (s, t)JKK(s) + Zηη

KK(s)Jηη(s) + Zηπ
KK(s)Jηπ(s) + Zππ

KK(s, t)Jππ(s)
)

+
1

72F 4
π

(

Y KK
KK (s, t)JKK(t) + Y ηπ

KK(t)Jηπ(t) + Y ππ
KK(s, t)Jππ(t)

)

+
1

36F 4
π

JKK(u)
(

3βKKu− 2(αKK + 2βKK)m
2
K

)2
+O(p6).

(4.46)
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4.4.1 Divergent part of the chiral logarithms

In Section 3.3 we have presented a method how one obtains also the divergent part of
the chiral logarithms appearing in the polynomial R(s, t, u). These divergences have to
cancel the divergences of the unitarity part in the chiral limit that are easy to obtain
from relations (3.21) and (3.22). We have also discussed there that just on the grounds
of the finiteness of the amplitude in the chiral limit we cannot determine the masses
appearing in the arguments of these logarithms since it can be divided by any number
which has a finite logarithm, i.e. also by any ratio of pseudoscalar masses. In the case of
the divergence stemming from the single-mass one-loop function it is, however, natural to
put there precisely this mass. Further, in the case of two different masses, it is useful to
add a finite constant to obtain the logarithm in the form

1

∆yz

(

m2
y log

m2
y

Λ2
−m2

z log
m2

z

Λ2

)

= log
m2

y

Λ2
− 2mymz

∆yz

log
mz

my

, (4.47)

which coincides with the divergent one-loop contribution Jyz(0) determined by the usual
Feynman integration of one-loop diagrams.

In accordance to the standard definition [74], in the following we use the notation

µi =
m2

i

32π2F 2
π

log
m2

i

Λ2
with i = π,K, η. (4.48)

The divergent contributions of our polynomial parameters are then given by relations

δππ → −2

3
β2
ππ

µπ

m2
π

− 1

12
(3β2

Kπ − 2γ2Kπ)
µK

m2
K

, (4.49)

εππ → −2

3
β2
ππ

µπ

m2
π

− 1

12
γ2Kπ

µK

m2
K

, (4.50)

δηη → −27

4
β2
Kη

µK

m2
K

, (4.51)

δηπ → −9

4
β2
Kηπ

µK

m2
K

, (4.52)

εηπ → −9

4
βKηβKπ

µK

m2
K

, (4.53)

δKη → −3

4

(

6βKKβKη
µK

m2
K

− β2
Kη

µK − µη

m2
K −m2

η

− β2
Kηπ

µK − µπ

m2
K −m2

π

)

, (4.54)

εKη → −3

2

(

β2
Kη

µK − µη

m2
K −m2

η

+ β2
Kηπ

µK − µπ

m2
K −m2

π

)

, (4.55)

δKηπ → 1

4
βKηπ

(

−6βKK
µK

m2
K

+ 3βKη
µK − µη

m2
K −m2

η

+ (βKπ + γKπ)
µK − µπ

m2
K −m2

π

)

, (4.56)

εKηπ → −1

2
βKηπ

(

3βKη
µK − µη

m2
K −m2

η

+ (βKπ − 4γKπ)
µK − µπ

m2
K −m2

π

)

, (4.57)
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δKπ → 1

4

(

−6βKπ

(

3βKK
µK

m2
K

+ 4βππ
µπ

m2
π

)

+ 3β2
Kη

µK − µη

m2
K −m2

η

+ (β2
Kπ + 2γ2Kπ)

µK − µπ

m2
K −m2

π

)

,

(4.58)

εKπ → −1

2

(

3β2
Kη

µK − µη

m2
K −m2

η

+ (β2
Kπ + 14γ2Kπ)

µK − µπ

m2
K −m2

π

)

, (4.59)

ϕKπ → 1

12

(

− 2γKπ

(

βKK
µK

m2
K

+ 2βππ
µπ

m2
π

)

+ 3β2
Kη

µK − µη

m2
K −m2

η

+ γKπ(13γKπ − 10βKπ)
µK − µπ

m2
K −m2

π

)

,

(4.60)

δKK → 1

8

(

−27β2
Kη

µη

m2
η

− 22β2
KK

µK

m2
K

+ (4γ2Kπ − 9β2
Kπ)

µπ

m2
π

+ 18β2
Kηπ

µη − µπ

m2
η −m2

π

)

, (4.61)

εKK → 1

4

(

β2
KK

µK

m2
K

− γ2Kπ

µπ

m2
π

− 18β2
Kηπ

µη − µπ

m2
η −m2

π

)

, (4.62)

ϕKK → −1

4

(

17β2
KK

µK

m2
K

+ γ2Kπ

µπ

m2
π

)

. (4.63)

4.5 Connection with chiral perturbation theory

The results of amplitudes in particular models can be obtained by taking specific choices
of the parameters. As an illustration we compare our results with the ones of the standard
one-loop χPT computation presented in [78]. As was discussed in Section 3.6, in order
to reproduce these results exactly, it is natural to use the order-by-order approach to our
parameters, where the comparison proceeds in the following steps. The O(p2) chiral am-
plitude is exactly reproduced by the appropriate leading order polynomial from Section 4.3
with the standard O(p2) χPT values of its polynomial parameters listed in (4.29)–(4.32).
The one-loop chiral result should be described by the parametrization obtained in Sec-
tion 4.4. By taking the standard O(p2) values of our parameters in its unitarity part, we
completely reproduce the non-polynomial part of [78] (up to a different sign convention2).
The comparison of the polynomial parts then yields O(p4) corrections to our parameters
in terms of the low-energy constants (LEC) of the standard χPT.

These O(p4) values of our parameters [in the particular renormalization scheme that
was used in [78]] are listed in Appendix D. One can also verify that their divergent parts
in chiral limit are indeed given by expressions (4.49)–(4.63), where we insert the O(p2)
values of the parameters. It is also worth mentioning that thanks to the form of the second
order polynomial of our parametrization (each term of the second order vanishes at the
particular initial- and final-state thresholds of the amplitude), the O(p4) expressions for the
parameters of the first-order terms, viz. α’s, β’s and γ’s, do not contain (in the subtraction

2In addition, one should pay attention to their label of the 4-kaon process K0K0 → K+K−, which can
give the false illusion about the definition of the Mandelstam variables, whereas the right one consistent
with the notation (2.1) would be better evoked by the caption K0K0 → K−K+.
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Fit10 Fit10p4 FitAll FitAllp4

103Lr
1 0.39± 0.12 0.38 0.88± 0.09 1.12

103Lr
2 0.73± 0.12 1.59 0.61± 0.20 1.23

103L3 −2.34± 0.37 −2.91 −3.04± 0.43 −3.98

103Lr
4 0 0 0.75± 0.75 1.5

103Lr
5 0.97± 0.11 1.46 0.58± 0.13 1.21

103Lr
6 0 0 0.29± 0.85 1.17

103L7 −0.30± 0.15 −0.49 −0.11± 0.15 −0.36

103Lr
8 0.6 ± 0.2 1.0 0.18± 0.18 0.62

Table 1: Values of the low-energy constants Li coming from “fit10” [10] and “fitAll” [34].
Fit10p4 and FitAllp4 correspond to the fits where one uses just NLO expressions. We
quote here the numbers for “fit10” obtained in [34] by redoing the original fit (the quoted
numbers differ slightly to the original ones given in [10]).

scheme of [78]) the low-energy constants Lr
1, L

r
2, and L3, i.e. the LECs of the operators that

have four derivatives in the O(p4) Lagrangian of [74]. By inserting these O(p4) values of
α, β and γ also into the unitarity part we would obtain a part of the O(p6) corrections to
the amplitudes. However, in order to gain the complete O(p6) results, the second iteration
of the reconstruction procedure would be required.

Instead of it, we return back to the chiral O(p4) expressions of our parameters and
illustrate on them a few of the practical applications of our parametrization. By compar-
ison of the experimentally determined values of our parameters with those predicted by
some theoretical calculation, we can verify the assumptions made in that calculation. The
advantage of the parametrization is that it reduces the number of parameters, while at the
same time it preserves the analytic structure of the amplitude dictated by the unitarity.

We ignore for the moment the appearance of resonances in kinematic regions of many
of the discussed processes, which reduces physical applicability of our results for such
processes as is discussed in the next section. Assuming that the one-loop amplitude of a
considered process reasonably approximates its physical amplitude, by studying the depen-
dence of our parameters on chiral LECs, we can determine which of the parameters would
be particularly suitable for constraining the values of these LECs. Furthermore, we can
study the stability of the parameters with respect to their chiral expansion — a possible
instability would indicate either a bad choice of the subtraction scheme (=parametrization)
or a problem with the chiral expansion of the amplitude itself.

The phenomenologically most successful determination of the χPT LECs Li is the ten-
year old “fit10” from [10]. Recently, there has appeared a new fit [34] taking into account
also more recent experimental determinations and computations, which however exposed
large deviations from the values that were expected from large Nc considerations and from
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some results obtained by lattice. Both the fits use NNLO chiral results but present also the
values of Li that reproduce best experimental data in the case one employs just the NLO
expressions — what is our current case. However, since these values are not supplemented
by their error bars, we use also the values from the NNLO results in order to investigate
the magnitude of the possible errors. We list all these sets of values of Li’s in Table 1.

In the expressions for our polynomial parameters from Appendix D there appear also
masses of pseudoscalar mesons and pion decay constant Fπ. In correspondence with [34]
we take them to be equal

mπ = 134.9766MeV, mK = 494.50MeV, (4.64)

mη = 547.853MeV, Fπ = (92.2± 0.2)MeV (4.65)

and we set the logarithmic scale Λ from (4.48) to mρ ≈ 770MeV. Nevertheless, since
the values of Li’s in “fit10” were obtained using slightly different masses and moreover,
the relations of the isospin masses used in our computation with the one experimentally
measured (in the world where the isospin is not a preserved symmetry) are ambiguous,
in the plots in Tables 2(a) and 3(a) we display [Note that the scale of these plots is
logarithmic.] also the dependence of our parameters on the variation in masses in intervals

mπ = (134.9764÷ 139.56995)MeV, mK = (493.677÷ 497.672)MeV, (4.66)

mη = (547.30÷ 547.853)MeV. (4.67)

This brings us interesting information on the dependence of our parameters on the partic-
ular choice of the isospin masses. This effect is directly observable from the error bars of
the values corresponding to “fit10p4” and to “fitAllp4” since for them we have included
no under uncertainties. We observe that e.g. the parameters αKπ, βKπ or αKK and βKK

are very sensitive to the exact value of the masses we take. Taking these uncertainties into
account we see that with the exception of ǫηπ all the parameters corresponding to “fit10”
at least partially overlay with those determined using “fitAll”. However, by using the pure
O(p4) values of Li’s in these two fits, some of the parameters have even the opposite sign
of the one-loop contributions (e.g. ǫKK , βKη). On the plots we can also study chiral con-
vergence of our parameters — in the case the one-loop contribution to a given parameter
is well above 0.1 ÷ 0.3 one doubts a good chiral behavior/convergence of that parameter.
This occurs for αKπ, βKπ and βKηπ.

In parts (b) of Tables 2 and 3 we list the ranges of parameters corresponding to “fit10”
[and to the values of the masses and of Fπ from (4.64)–(4.64)] together with the percentage
of that ranges that is due to uncertainties in the particular Lis. Ignoring still the effect
of resonances and the further particles not explicitly taken into account and the effects
of higher loops, these numbers in the tables would mean that if we had measured some
parameter with its precision better than the one quoted in the columns ∆ρ, we would
obtain a constraint on the Li’s better than “fit10” gives, especially on those Li’s quoted in
the ultimate columns of that tables. Since in “fit10” the values of Lr

4 and L
r
6 are set to the

large-Nc-inspired value = 0, the influence of these constants is invisible in these tables. We
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−1. −0.1 −0.01 −0.001 0.001 0.01 0.1 1.

φKK

ǫKK

δKK

γKK

βKK − 1

αKK − 1

φKπ

ǫKπ

δKπ

γKπ − 1

βKπ − 1

αKπ − 1

ǫππ

δππ

βππ − 1

αππ − 1

ρ ∆ρ Contribution of Lis

αππ − 1 2 · 10−2 ⋆ Lr
8:0.82 Lr

5:0.15

βππ − 1 3 · 10−3 Lr
5:0.74 Lr

4

δππ 3 · 10−3 L3:0.59 Lr
1:0.38

ǫππ 5 · 10−4 Lr
2:0.88

αKπ − 1 0.1 ⋆ Lr
8:0.68 Lr

5:0.15

βKπ − 1 2 · 10−2 Lr
5:0.10 Lr

4

γKπ − 1 1 · 10−2 Lr
5:0.16

δKπ 2 · 10−2 Lr
1:0.56 L3:0.44

ǫKπ 1 · 10−2 Lr
2:0.56 L3:0.44

φKπ 1 · 10−3 L3:1.00

αKK − 1 0.4 ⋆ Lr
8:0.76 Lr

5:0.21

βKK − 1 6 · 10−3 Lr
5:0.34 Lr

4

γKK 3 · 10−3 Lr
4

δKK 1 · 10−2 Lr
1:0.56 L3:0.44

ǫKK 7 · 10−3 L3:0.61 Lr
2:0.39

φKK 3 · 10−3 Lr
2:1.00

(a) with uncertainty in pseudoscalar masses included (b) without uncertainty in MP

Table 2: Dependence of our parameters of meson-meson scattering processes on the values of O(p4) LECs Li of χPT —
first part. On the plot the value of our parameters for the following sets is depicted (note that the x-axes is logarithmic):
full green corresponds to “fit10”; yellow to “fitAll”; black one to “fit10p4” and finally the red one to “fitAllp4”. The
uncertainties are due to uncertainties of Li’s quoted in Table 1 and the uncertainties in the pseudoscalar masses and in
Fπ (4.66)–(4.67). In the table part we list the uncertainties only due to Li’s and Fπ. In the last columns the low-energy
constants with the dominant contribution to this uncertainty are listed together with the corresponding fraction (the
remaining uncertainty is mainly due to the error bar of Fπ). We have denoted also the parameters depending on Lr

4 and
Lr
6 by ⋆.
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−10 −1 −0.1 −0.01 0.01 0.1 1 10

δηη

αηη − 1

ǫηπ

δηπ

βηπ

αηπ − 1

ǫKη

δKη

βKη − 1

αKη − 1

ǫKηπ

δKηπ

βKηπ − 1

αKηπ

ρ ∆ρ Contribution of Lis

αKηπ 8.2 L7:0.51 Lr
8:0.34 L3:0.10

βKηπ − 1 2 · 10−2 L3:0.20 Lr
5:0.11

δKηπ 3 · 10−3 L3:1.00

ǫKηπ 1 · 10−3 L3:1.00

αKη − 1 0.9 ⋆ Lr
8:0.51 L7:0.36 Lr

5:0.09

βKη − 1 1 · 10−2 Lr
5:0.16 Lr

4

δKη 9 · 10−3 L3:0.56 Lr
1:0.44

ǫKη 2 · 10−3 Lr
2:0.80 L3:0.20

αηπ − 1 0.6 ⋆ L7:0.80 Lr
5:0.10 Lr

8:0.03

βηπ 1 · 10−3 Lr
4

δηπ 3 · 10−3 L3:0.51 Lr
2:0.49

ǫηπ 4 · 10−3 Lr
1:0.66 L3:0.34

αηη − 1 1.2 ⋆ Lr
8:0.50 Lr

7:0.41 Lr
5:0.08

δηη 1 · 10−2 L3:0.44 Lr
1:0.28 Lr

2:0.28

(a) with uncertainty in pseudoscalar masses included (b) without uncertainty in MP

Table 3: Dependence of our parameters of meson-meson scattering processes on the values of O(p4) LECs Li of χPT
— second part. On the plot the value of our parameters for the following sets is depicted (note that the x-axes is
logarithmic): full green corresponds to “fit10”; yellow to “fitAll”; black one to “fit10p4” and finally the red one to
“fitAllp4”. The uncertainties are due to uncertainties of Li’s quoted in Table 1 and the uncertainties in the pseudoscalar
masses and in Fπ (4.66)–(4.67). In the table part we list the uncertainties only due to Li’s and Fπ. In the last columns
the low-energy constants with the dominant contribution to this uncertainty are listed together with the corresponding
fraction (the remaining uncertainty is mainly due to the error bar of Fπ). We have denoted also the parameters depending
on Lr

4 and Lr
6 by ⋆.
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have therefore marked the parameters depending on them — Lr
4 is listed in the ultimate

columns of the tables and the dependence on both the Lr
4 and L

r
6 is denoted by star at the

corresponding range.

4.6 Discussions and summary

The generic procedure from the previous chapter was used here for constructing a general
form of the meson-meson scattering amplitudes valid to one-loop order. The major part of
our results (published in all detail in [I] and [II]) were not computed in such a general form
before. However, the practical significance of many of these results hinges on the fact that
our method assumes working far below the region where the further particles different to
the pseudoscalar mesons (e.g. resonances) appear. However, in the case of these processes
with the exception of ππ → ππ and πK → πK, this range is very narrow or does not even
exist (e.g. in the process KK → KK with the kinematic threshold of 990MeV, there can
appear ρ resonance with its mass of 770MeV). Nevertheless, besides the illustration of the
elegance of our construction due to its intrinsic self-consistency, also the results for such
processes can become useful for a check of complicated models or simulations, where it is
possible to separate (or completely turn off) the effects of these resonances. The advantage
is that even in the most general case in (to and excluding) O(p8) order, there is a small
number (= 47) of parameters, coupling different processes together, and the analytic form
of the two-loop result provides an easier survey than the usual Feynman-diagram-based
computation. Naturally, to that end one should, however, complete the second iteration,
which is a straightforward task (using the recipe from the previous chapter) but because
of the appearance of three different masses in the NLO partial waves, the results are more
complicated than in the isospin 2-flavor ππ amplitudes (where only one mass appears)
of [95]. This is beyond the scope of this text. Nevertheless, we refer the interested reader
to the following chapters where we perform the second iteration in the cases of isospin
breaking ππ scattering and the K, η → 3π decays. From there one can gain the experience
how to obtain the two-loop result also here. Moreover, since a part of the one-loop results
from Section 4.4 has a similar form as the one-loop results of Chapters 5, 7 and 8, it is
also possible to restore at least a part of the two-loop results from the two-loop results of
those three chapters by a simple change of the masses and of the polynomial parameters
appearing there.

Our final note is about the applicability of our results in the case of the power-countings
where also odd chiral orders appear. One example of them is the generalized power-
counting [97] which was closely connected with the original motivation of formulation
of the reconstruction theorem [125, 95]. If such scheme turned out to be necessary for
the description of these scattering processes, the only change we would need to make
would be in shifting the chiral orders of our polynomials (together with changing their
interpretations). Then, the input polynomial amplitudes would be of O(p3) order, and so
after the first iteration we would obtain the O(p5) result whereas after the second one we
would end up with the O(p7) order results.
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Chapter 5

ππ scattering

Now, we focus our interest on the most important process of chiral perturbation theory,
on the pion-pion scattering.

5.1 Notation

The main aim of the present and the following chapters is the construction of amplitudes
that includes the isospin breaking induced by different masses of the mesons belonging to
the same isomultiplet. This leads to the necessity of distinguishing such different states.
If we wanted to keep an explicit notation, it would be overburden and probably also not
providing an easy survey. There is therefore a need for a shorthand notation.

We have decided to label the following ππ scattering processes using the one-character
lower index according to the mnemonic

π0π0 → π0π0 0 [neutral], (5.1n)

π+π− → π+π− c [charged], (5.1c)

π+π+ → π+π+ d [double charged states], (5.1d)

π±π∓ → π0π0 x [mixed process], (5.1x)

π+π0 → π+π0 t [t-channel to the mixed process]. (5.1t)

Since we do not take into account a violation of the CP symmetry, the amplitudes of the
π+π0 and the π−π0 scattering processes have to be identical and similarly for the π+π+

and the π−π− elastic scatterings.
The combinations (2.9), (2.19) and (2.20) of the pion masses with the different charged

states are written in the following without any subscripts,

∆ = m2
π± −m2

π0 , (5.2)

Σ = m2
π± +m2

π0 , (5.3)

µ± = (mπ± ±mπ0)2; (5.4)
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and the similar is true also for the Källen’s quadratic form (2.10),

λ(s) = λπ±π0(s). (5.5)

On the contrary, the one-loop function with two different pion masses keeps its indices,
J+0(s).

The single mass kinematical square-roots

σi(s) =

√

1− 4m2
i

s
(5.6)

and the appropriate one-loop functions J i(s) have their index i = 0 or + according to the
charge of the pion appearing there.

In the isospin symmetric case (IB0) with just one mass mπ, we return back to the lower
index π. On this general level, we do not identify this mass with any of the mπ± or mπ0

masses since there is an ambiguity in its choice and different authors use various definitions
of it [cf. the discussion around (4.66)]. However, the choice of Weinberg [129] that takes
mπ equal to the charged one prevails in the literature.

Finally, in the results of NLO partial-waves, we employ the fraction of pion masses

q =
mπ0

mπ±
≈ 0.97 < 1. (5.7)

We remind the reader that in the whole work we use the same choice of phase convention
bringing one minus sign for each charged particle in the final state and thereby also changing
the sign of amplitude every time crossing a charged particle between the final and the initial
states.

5.2 Symmetries

We begin noting that even if we take the isospin violation into account, not all of the
amplitudes (5.1) are independent. The crossing property gives

At(s, t, u) = −Ax(t, s, u), Ad(s, t, u) = Ac(u, t, s). (5.8)

In addition, in the isospin symmetric case the following relations [cf. (4.5)–(4.7)]

AIB0

c (s, t, u) = −AIB0

x (s, t, u)− AIB0

x (t, s, u), (5.9)

AIB0

0 (s, t, u) = −AIB0

x (s, t, u)− AIB0

x (t, s, u)− AIB0

x (u, t, s) (5.10)

tell us that in this case the amplitude AIB0

x can be taken as the only independent one.
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5.3 The reconstruction procedure

Performing the procedure of Chapter 3 and the justification of validity of the assumptions
of the reconstruction theorem for ππ scattering are simple tasks and no further complica-
tion with respect to the cases discussed in the previous chapter appears also beyond the
isospin limit. Moreover, for the low-energy kinematic region, in which we are interested
in these amplitudes, the analyticity of the amplitude and the validity of the dispersion
relation, together with the complete partial wave decomposition can be derived from the
first principles of axiomatic theory similarly1 as for those processes in Appendix C.

In Chapter 3 we have shown that for the construction of a meson-meson scattering
amplitude up to two loops, we just need to count in the contributions of all the intermediate
states (of all the crossed processes) that contain two mesons and possess the same quantum
numbers as the initial (and the final) states of the considered processes do. However,
we want to describe the ππ scattering only within the low-energy region far below the
appearance of other than two-pion states, viz. KK, Kπ, ηπ, . . . , and thereby also far
from the singularities induced by such states. It is therefore not needed to retain all
these intermediate states. Instead, we can formally expand such contributions in powers of
Mandelstam variables divided by the scale corresponding to the threshold of appearance
of these states and include such arisen polynomials into the polynomial of the theorem.
Assuming that this contribution is well described by the third order polynomial, the only
leading order amplitudes that have to be treated as inputs for our construction are indeed
the ππ scattering ones.

We do not take into account any electromagnetic effects other than the π+ − π0 mass
difference, however, with the charged pion scattering there is always connected the effect of
appearance of pionium as the electromagnetically bounded state of two pions (π+π−)γ. We
could try to include it by adding also this state into the set of possible intermediate states
k in the unitarity relations2 and parametrizing its decay amplitudes (π+π−)γ → ππ. This
would bring some new constants, thereby making the eventual fit of data more complicated.
At the current level and also taking into account its narrowness, we propose not to include
it and in the practical applications of our results just discard the points where it appears
from the fit.

We have already noted that the choice of the first-order polynomials as the leading
order amplitudes together with the choice of the polynomial of the reconstruction theorem
can be important for the chiral convergence properties of the resulting parametrization
and can have influence on the stability of the eventual fit to data. The usual choice of the
subthreshold parametrization seems not to be particularly suitable for the description of
the experimental data on ππ scattering. A more natural choice is the use of the scattering
lengths as parameters instead, which is discussed in the following sections. Nevertheless,

1Actually, we can use the results of Section C.3, where we just take mA = mπ± and mπ = mπ0 .
2Naturally, it cannot be done simply by adding the pionium into (2.18) since in the case of 1 → 2

processes there is no direct meaning of partial waves. The simplest way would be therefore to perform
such inclusion separately.
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in Section 5.9 we give transposing relations between the parametrizations, whose simple
application converts our results into the parametrization using the subthreshold parame-
ters.

5.4 Scattering-length parametrization

The scattering-length parametrization or better to say the partial-wave parametrization is
connected with the behavior of partial waves of the amplitude at its physical threshold. The
expansion of the real part of ℓ-th partial wave of amplitude Ai(s, t, u) of process AB → CD

Re fi,ℓ(s) = P ℓ
AB(s)P

ℓ
CD(s)

(

ai,ℓ + (s− sthr)
ri,ℓ
F 2
π

+ · · ·
)

(5.11)

defines3 the scattering lengths ai,ℓ, the effective range parameters ri,ℓ and higher parameters
hidden in the dots. The 3-momenta of the particles in the initial and the final state in
their center-of-mass system are given by

PAB(s) =
λ
1/2
AB(s)

2
√
s

, PCD(s) =
λ
1/2
CD(s)

2
√
s

. (5.12)

As is discussed below, in our applications we concentrate just on the S-wave scattering
lengths ai,0 and its effective range parameters ri,0, so for the sake of brevity, we will not
explicitly write the index indicating S-wave, i.e. we just write ai and ri.

At the leading order we choose the parameters of the amplitude corresponding exactly
to the leading order parameters of the partial-wave expansion, i.e. to the scattering length
and the effective range parameter of S-wave, and where needed also to the P-wave scattering
length. Going to higher order causes a necessity to use further scattering parameters and
it also leads to the appearance of corrections to the parameters from the lower orders. A
part of these corrections comes from the ππ scatterings in the original final states and
appears also in the unitarity part of the theorem. Therefore, if we want to keep the
physical definition (and values) of the parameters, we have to add a restoring polynomial
canceling the contribution of the unitarity part into these parameters4. It is obvious that
more parameters we want to keep at their physical value bring more complicated restoring
polynomials. Nevertheless, at low energies, where we are interested in, the contribution of
the higher order parameters and of their corrections is numerically small. Moreover, the
motivation for using this parametrization is to have as most precise fit of the scattering
lengths (and further parameters) as possible and since it is out of the reach of the current

3Note that our definitions of partial waves and thereby also of the scattering lengths differ from the
common isospin symmetric one (cf. e.g. [73]) by a factor of 2. In addition, the effective range parameter r
(normalized here with F 2

π to be dimensionless) is in the isospin symmetric case usually defined in a slightly
different way.

4One can understand this procedure as a subtraction of the contribution which would be otherwise
double counted — once resummed in the scattering length parameter and once in the unitarity part.
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experimental and fitting techniques to fit also the higher parameters so precisely, in many
cases we need to use their values from outside. It is therefore meaningful to keep the
physical value of just a few of the most important parameters and in the other neglect
their higher order corrections. In some applications it is even more practical to use [in
addition to these few partial-wave parameters in which we are interested in] any additional
parameters, not necessarily corresponding to any threshold partial-wave characteristic. In
the following, we discuss these two possibilities — keeping the physical value only of the
scattering lengths, which will be good enough for the current precision of experiment; and
keeping the physical values of all the parameters appearing already at the leading order,
i.e. of parameters ai and ri [or bi from (5.24) equivalently]. On the latter approach we
illustrate the way the procedure would continue for keeping the physical value also of
further parameters — from a few possible choices one can take, we have chosen here the
one in which the crossing relations (5.61)–(5.64) have a simple linear form.

5.5 Leading order

The physical thresholds for different processes are5

s0,thr = 4m2
π0 , t0,thr = 0, u0,thr = 0, (5.13)

sx,thr = 4m2
π± , tx,thr = −∆, ux,thr = −∆, (5.14)

st,thr = µ+, tt,thr = 0, ut,thr = µ−, (5.15)

sc,thr = 4m2
π± , tc,thr = 0, uc,thr = 0, (5.16)

sd,thr = 4m2
π± , td,thr = 0, ud,thr = 0. (5.17)

Taking them into account together with the crossing and the Bose symmetry, the leading
order parametrization (= polynomial of the first order) of the amplitudes reads

A0(s, t, u) = 16πa0, (5.18)

Ax(s, t, u) = 16π

(

ax +
rx
F 2
π

(s− 4m2
π±)

)

, (5.19)

At(s, t, u) = 16π

(

at +
rt
F 2
π

(s− µ+) +
at,1
F 2
π

(t− u− µ−
µ+

s+ 2µ−)

)

, (5.20)

Ac(s, t, u) = 16π

(

ac +
rc
F 2
π

(s− 4m2
π±) +

ac,1
F 2
π

(t− u)

)

, (5.21)

Ad(s, t, u) = 16π

(

ad +
rd
F 2
π

(s− 4m2
π±)

)

. (5.22)

In these relations, we have indicated manifestly the scattering length parametrization. Nev-
ertheless, the crossing and the Bose symmetry dictate that the P-wave scattering lengths

5In [44] they take a different definition of the scattering length a0 — defined at the cusp threshold
s0,thr = 4m2

π± instead of the physical one that is used here.
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at,1 and ac,1 have to fulfill relations6

at,1 = − µ+

4mπ±mπ0

rt, ac,1 = rc, (5.23)

and so we can write equivalently

At(s, t, u) = 16π

(

at − 2
bt
F 2
π

t

)

, (5.20′)

Ac(s, t, u) = 16π

(

ac − 2
bc
F 2
π

u

)

. (5.21′)

For the sake of brevity, we have introduced parameters bi as rescalled effective range pa-
rameters, where it holds

rx = bx, rt =
4mπ±mπ0

µ+
bt, rc = bc, rd = bd. (5.24)

Even then, not all the remaining parameters are independent since we have not used
the crossing relations (5.8) yet. At the leading order, they relate further

bx = 2bt, bd = −2bc (5.25)

and

at =
4m2

π±

F 2
π

bx − ax, ad = ac −
8m2

π±

F 2
π

bc . (5.26)

This means that at the leading order we have just 5 independent parameters, which can be
chosen e.g. to be the scattering lengths. However, (only) at the leading order (O(p2)) all
the pion scattering lengths can be expressed in terms of the two S-wave scattering lengths
in the isospin limit, a00 and a20 from [73]. From [98] we have the following expressions7

a0 =
2

3
a00 +

4

3
a20 −

2

3

(

a00 + 2a20
) ∆

m2
π±
, (5.27)

ax = −2

3
a00 +

2

3
a20 + a20

∆

m2
π±
, (5.28)

at = a20 − a20
∆

m2
π±
, (5.29)

ac =
2

3
a00 +

1

3
a20 − 2a20

∆

m2
π±
, (5.30)

ad = 2a20 − 2a20
∆

m2
π±
. (5.31)

6Naturally, in the case we wanted to keep the physical interpretation of the P-wave scattering lengths,
at higher orders, relations (5.23) would gain O(p4) corrections and during the computation we would need
to distinguish between the P-wave scattering lengths and the right-hand sides of these relations, i.e. for
instance between ac,1 and rc.

7We have used relations (2.18), (2.21) and (2.22) of [98] and write a00 and a20 instead of
(

a00
)

str
and

(

a20
)

str
from [98]. Note that the isospin limit is defined there traditionally as mπ0 → mπ± , i.e. the mass of

the isospin pion is identified with the mass of the charged pion, mπ± .
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5.6 Next-to-leading-order result

5.6.1 Unitarity part

The first iteration of the reconstruction procedure is again simple. Taking into account the
crossing symmetry of the amplitudes, their NLO form can be written as

Ai(s, t, u) = 16π (Ri(s, t, u) + 16πUi(s, t, u)) +O(p6) (5.32)

with

U0(s, t, u) = W 0
0 (s) +W 0

0 (t) +W 0
0 (u), (5.33)

Ux(s, t, u) = W 0
x (s)−W 0

t (t)− (s− u)W 1
t (t)−W 0

t (u)− (s− t)W 1
t (u), (5.34)

Ut(s, t, u) = W 0
t (s) + (t− u)W 1

t (s)−W 0
x (t) +W 0

t (u) + (t− s)W 1
t (u), (5.35)

Uc(s, t, u) = W 0
c (s) + (t− u)W 1

c (s) +W 0
c (t) + (s− u)W 1

c (t) +W 0
d (u), (5.36)

Ud(s, t, u) = W 0
d (s) +W 0

c (t) + (u− s)W 1
c (t) +W 0

c (u) + (t− s)W 1
c (u). (5.37)

According to (3.10) and (3.11), the dispersion integrals Wi are given by

W 0
0 (s) =

(a0)
2

2
J̄0(s) +

(

ax +
bx
F 2
π

(s− 4m2
π±)

)2

J̄±(s), (5.38)

W 0
x (s) =

(

ax +
bx
F 2
π

(s− 4m2
π±)

)(

a0
2
J̄0(s) +

(

ac +
bc
F 2
π

(s− 4m2
π±)

)

J̄±(s)

)

, (5.39)

W 0
t (s) = J̄±0(s)

[(

at +
bt
F 2
π

(s− 2Σ)

)2

+
7b2t
3F 4

π

∆2 +
2

s

bt
F 2
π

∆2

(

at −
7bt
3F 2

π

Σ

)]

+
4

3

b2t
F 4
π

∆4
¯̄J±0(s)

s2
,

(5.40)

W 1
t (s) =

1

3

b2t
F 4
π

(

s− 2Σ +
∆2

s

)

J̄±0(s), (5.41)

W 0
c (s) =

1

2

(

ax +
bx
F 2
π

(s− 4m2
π±)

)2

J0(s) +

(

ac +
bc
F 2
π

(s− 4m2
π±)

)2

J̄±(s), (5.42)

W 1
c (s) =

1

3

b2c
F 4
π

(

s− 4m2
π±
)

J̄±(s), (5.43)

W 0
d (s) =

1

2

(

ad +
bd
F 2
π

(s− 4m2
π±)

)2

J̄±(s). (5.44)

5.6.2 Polynomial part

The only remaining ingredients for the reconstruction of the NLO ππ scattering amplitudes
are the polynomials Ri(s, t, u). We have already discussed that their form depends on
how many partial-wave parameters are retained at their physical interpretation. We have
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decided to show here two possibilities — keeping the physical value only of the scattering
lengths and keeping them for all the scattering lengths and the effective range parameters
appearing at the leading order of the parametrization, ai, bi.

In any case, Ri(s, t, u) should be a general polynomial of second order in Mandelstam
variables obeying the same s ↔ t ↔ u symmetries as the complete amplitude does. We
divide every such polynomial into three parts, each obeying the given s, t, u symmetry. The
first part corresponds to a general first order polynomial written in the same form as the
appropriate LO amplitude from (5.18)–(5.22) and its parameter ai (and in the second case
also the parameter bi) keeps its physical interpretation also at this order. The second part
contains all allowed polynomial terms of second order supplemented by the appropriate
lower order terms which are chosen so that this part does not contribute to the S-wave
scattering lengths [and when keeping also the definition of bi’s, it does not contribute to
the rescalled S-wave effective ranges8 as well] of the amplitudes and thereby this part is not
changing the physical meaning of ai [and bi]. The third part, which we call the restoring
polynomial, cancels the contribution of the unitarity part Ui(s, t, u) to these parameters.

Keeping the physical values of the scattering lengths

In this case the restoring polynomial is directly equal to the real part of the unitarity part
at the threshold. It is therefore just a constant. In accordance with the definition

ReAi(s, t, u)|thr = 16πai, (5.45)

we obtain
wi = 16πReUi(s, t, u)|thr . (5.46)

Their values for the particular ππ scattering processes are given in Appendix E.
The polynomials of the NLO results are then simply

R0(s, t, u) = a0 + 3
λ0
F 4
π

(s2 + t2 + u2 − 16m4
π0)− w0, (5.47)

Rx(s, t, u) = ax +
bx
F 2
π

(s− 4m2
π±)− λ

(1)
x

F 4
π

s(s− 4m2
π±)

− λ
(2)
x

F 4
π

[

(t +∆)(t+∆− 4m2
π±) + u↔ t

]

− wx,

(5.48)

Rt(s, t, u) = at − 2
bt
F 2
π

t +
λ
(1)
x

F 4
π

t(t− 4m2
π±) +

λ
(2)
x

F 4
π

[

(s− µ+)(s− µ−) + u↔ s
]

− wt,

(5.49)

Rc(s, t, u) = ac − 2
bc
F 2
π

u+
2λ

(2)
c

F 4
π

u(u− 4m2
π±) +

λ
(1)
c + λ

(2)
c

F 4
π

[

s(s− 4m2
π±) + t↔ s

]

− wc,

(5.50)

8Naturally, with the exception of the process A0(s, t, u) — cf. with footnote 10 on the next page.
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Rd(s, t, u) = ad +
bd
F 2
π

(s− 4m2
π±) +

2λ
(2)
c

F 4
π

s(s− 4m2
π±)

+
λ
(1)
c + λ

(2)
c

F 4
π

[

t(t− 4m2
π±) + u↔ t

]

− wd.

(5.51)

From the crossing relations (5.8) it follows that the coefficients λi appearing in the poly-
nomials Rx and Rt are identical and the same is true also for λi in Rc and Rd. Their form
implies also that relations (5.25) and (5.26) obtain the following NLO corrections

bt =
bx
2
, (5.52)

bd = −2bc, (5.53)

at =
4m2

π±

F 2
π

bx − ax − 8m2
π±∆

λ
(2)
x

F 4
π

+ wt + wx, (5.54)

ad = ac −
8m2

π±

F 2
π

bc + wd − wc. (5.55)

Keeping the physical values of all the leading order parameters

In the case we want to keep the physical meaning also of the other leading order parameters,
the determination of the restoring polynomials proceeds in the following way. We write
it as the most general polynomial obeying the given s, t, u symmetries and compute their
contributions into the values of ai and bi which have to cancel such contributions from the
corresponding unitarity part Ui(s, t, u).

We could have taken these polynomials to be of first order — each would have the same
number of parameters as the appropriate LO amplitude has. It means that the conditions
on the coefficients of any restoring polynomial would be a linear system of two independent
equations for two independent parameters9. Nevertheless, we have decided to demand the
simple linear form of the crossing relations (5.61)–(5.64) and thus we take the restoring
polynomials in the form of second-order polynomials, which in addition fulfill the simple
crossing relations coming from (5.8) — namely in both Rx and Rt there appear wx together
with wt and similarly for Rc and Rd polynomials.

We write therefore10

R0(s, t, u) = a0 + 3
λ̂0
F 4
π

(s2 + t2 + u2 − 16m4
π0)− w0(s)− w0(t)− w0(u), (5.56)

9With an exception of A0(s, t, u) where retaining a0 means just having a restoring constant equal to
the contribution of the unitary part [as in the previous case, i.e. (5.46)].

10In the case of amplitude A0(s, t, u), the effective range parameter is in the leading order equal to zero
and thus at the next-to-leading order where it is already nonzero, we have to add it into the parametrization.

Instead of writing λ̂0 we could call this parameter b0 = λ̂0 =
F 2

π

24m2

π0

r0.
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Rx(s, t, u) = ax +
bx
F 2
π

(s− 4m2
π±)− λ̂

(1)
x

F 4
π

(s− 4m2
π±)2 − λ̂

(2)
x

3F 4
π

[(t+∆)(3t+ 5∆) + u↔ t]

− wx(s) + wt(t) + wt(u),

(5.57)

Rt(s, t, u) = at − 2
bt
F 2
π

t+
λ̂
(1)
x

F 4
π

t2

+
λ̂
(2)
x

F 4
π

[

(s− µ+)(s− µ−)− 4(s− Σ)(Σ +mπ0mπ±) + u ↔ s
]

− wt(s) + wx(t)− wt(u),

(5.58)

Rc(s, t, u) = ac − 2
bc
F 2
π

u+
2λ̂

(2)
c

F 4
π

u2

+
λ̂
(1)
c + λ̂

(2)
c

F 4
π

[

s(s− 4m2
π±)− 12m2

π±(s− 2m2
π±) + t↔ s

]

− wc(s)− wc(t)− wd(u),

(5.59)

Rd(s, t, u) = ad +
bd
F 2
π

(s− 4m2
π±) +

2λ̂
(2)
c

F 4
π

(s− 4m2
π±)2 +

λ̂
(1)
c + λ̂

(2)
c

F 4
π

[

t2 + u2
]

− wd(s)− wc(t)− wc(u).

(5.60)

The restoring polynomials wi(s) are derived and listed also for this case in Appendix E.
For their determination we can either use the results for S partial-waves of the unitarity
parts of amplitudes given in Section 5.7.4 and expand them in powers of (s−sthr) or we can
compute them directly using the relations between derivative expansion of the amplitude
at its threshold and the partial-wave parameters as discussed into detail in Appendix E.

It is obvious that the polynomials R(s, t, u) constructed in this way are the most general
second order polynomials obeying the required s ↔ t ↔ u symmetries and that their
parameters a and b keep their physical interpretation up to one loop, e.g. there holds
relation (5.45).

Thanks to our requirement of the symmetric form of the polynomials, the crossing re-
lations (5.8) imply that the parameters λ̂i appearing in Rx and Rt, and similarly those
appearing in Rc and Rd, are again connected as denoted in the written form of the poly-
nomials. Relations (5.25) and (5.26) then obtain simple linear NLO corrections that read

bt =
bx
2
+ 4m2

π±
λ̂
(1)
x

F 2
π

+
λ̂
(2)
x

3F 2
π

(13m2
π± + 6mπ±mπ0 + 5m2

π0), (5.61)

bd = −2bc + 16m2
π±
λ̂
(1)
c + 2λ̂

(2)
c

F 2
π

, (5.62)

at =
4m2

π±

F 2
π

bx − ax + 16m4
π±
λ̂
(1)
x

F 4
π

+ 16m2
π±(2m2

π± +m2
π0)

λ̂
(2)
x

3F 4
π

, (5.63)
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ad = ac −
8m2

π±

F 2
π

bc + 16m4
π±

3λ̂
(1)
c + 5λ̂

(2)
c

F 4
π

. (5.64)

In summary, we have 10 independent parameters describing all the ππ scattering pro-
cesses to the one-loop level, independently on how many parameters are kept at their
physical interpretation. As is discussed in Appendix E.2.3, in the case we decided to ne-
glect the restoring polynomials but took the physical values of the scattering lengths, such
neglecting would correspond to the relative error of the scattering lengths of the order
indicated in relations (E.66)–(E.70), i.e. ∼ 2% to 16%.

Further, using just the restoring constants that keep the physical values only of the
scattering lengths, while taking numerical values of the effective range parameters equal
to their physical values corresponds to having them with relative error of order given in
(E.71)–(E.75), which is less11 than 20%. Since we will not have the values of the effective
range parameters with a better precision, we use in this work precisely this procedure.
Nevertheless, in forthcoming numerical analyses we use also the full restoration of ai and
bi (by changing the restoring polynomial) for examination of its influence on the obtained
results.

5.7 S- and P-partial waves of NLO amplitudes

The computation of S- and P-partial waves of NLO amplitudes was outlined already in
Section 3.4. We use the general formulae from there for the ππ scattering amplitudes
obtained in the previous section. For the physical values of s, all end-points of integrations
(3.30) and (3.31) are real numbers located left to the cuts of J̄i(t) and so we do not need
to deform the integration contours C(t−, t+). The results of integrations are therefore just
the differences of the primitive functions evaluated at those two end points.

There are three different possible types of channels we need to compute (cf. Figure 3)
— either integration of a channel with two particles of the same mass in both the initial
and the final state, symbolically denoted as PP → QQ (Figure 3a,b,d); or PQ → PQ
channel stemming from the direct process PP → QQ (Figure 3c); and finally the latter
coming from the direct process PQ→ PQ (Figure 3e). Let us discuss the integrations for
them separately.

5.7.1 Integration in a same-mass channel PP → QQ

In this case we are computing either the T channel of a process PQ→ PQ or the U channel
of a PQ → QP process (or even a much simpler case with all the masses equal). From
relations (3.28) and (3.29) (or just from simple physical considerations), we observe that
the endpoints are generally

t+ = 0, t− = −λPQ(s)

s
. (5.65)

11Note that this larger relative error occurs only for the parameter bc, all the other have even better
precision, which is less than 8%.
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T, U

S
π0

π0

π0

π0

(a) π0π0 → π0π0

T, U

S
π+

π−
π−

π+

(b) π+π− → π+π−

T, U

S
π+

π0

π−

π0

(c) π+π− → π0π0

T

S
π+

π0

π0

π+

(d) π+π0 → π+π0 (T channel)

U

S
π+

π+

π0

π0

(e) π+π0 → π+π0 (U channel)

Figure 3: Various channels appearing in the computation of partial waves of NLO ππ
scattering amplitudes. A dashed line corresponds to π0, while the plain one to π± (with
the line labels we have indicated charge state of the corresponding pion in S channel).
With the dotted line there is denoted the unitarity cut with the appropriate intermediate
states in T and U channels.

Naturally, for u integration these points are interchanged, i.e. the non-zero value is u+.
Because two pions with different masses have also different charges and we do not

violate the electric-charge conservation, the intermediate states in NLO have to be also
those containing two pions of equal masses and we employ here the single-mass results
(3.68)–(3.75). Since these primitive functions are chosen vanishing at t = 0, the results
of integrations (3.30) and (3.31) are equal to linear combinations of the negative values of
these primitive functions evaluated at t− or for u integrations equal to linear combinations
of these functions at u+.

In the particular processes there appear the following functions in the results [All func-
tions appearing in the results are summarized again in Appendix F.]

• Channel π0π0 → π0π0 (t−(s) = 4m2
π0 − s)

– intermediate state π0π0

T− =
s

2m2
π0

, (5.66)

σT− =
1

σ0(t−)
= σ0(s), (5.67)

LT− = log τ0(t−) = L0(s) := log
1− σ0(s)

1 + σ0(s)
, (5.68)
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– intermediate state π+π−

T− =
s+ 4∆

2m2
π±

, (5.69)

σT− =
1

σ+(t−)
= σ∇(s) :=

√

s− 4m2
π0

s+ 4∆
, (5.70)

LT− = log τ+(t−) = L∇(s) := log
1− σ∇(s)

1 + σ∇(s)
. (5.71)

• Channel π±π± → π±π± or π±π∓ → π±π∓ (t−(s) = 4m2
π± − s)

– intermediate state π+π±

T−(s) =
s

2m2
π±
, (5.72)

σT− =
1

σ+(t−)
= σ+(s), (5.73)

LT− = log τ+(t−) = L+(s) := log
1− σ+(s)

1 + σ+(s)
, (5.74)

– intermediate state π0π0

T−(s) =
s− 4∆

2m2
π0

, (5.75)

σT− =
1

σ0(t−)
= σ∆(s) :=

√

s− 4m2
π±

s− 4∆
, (5.76)

LT− = log τ0(t−) = L∆(s) := log
1− σ∆(s)

1 + σ∆(s)
. (5.77)

• Channel π±π∓ → π0π0 (t−(s) = −λ(s)
s
)

– intermediate state π0π0

T−(s) =
(s−∆)2

2sm2
π0

, (5.78)

σT− =
1

σ0(t−)
= σ⊙(s) :=

λ1/2(s)

s−∆
, (5.79)

LT− = log τ0(t−) = L⊙(s) := log
1− σ⊙(s)

1 + σ⊙(s)
, (5.80)

– intermediate state π+π−

T−(s) =
(s+∆)2

2sm2
π±

, (5.81)
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σT− =
1

σ+(t−)
= σ⊕(s) :=

λ1/2(s)

s+∆
, (5.82)

LT− = log τ+(t−) = L⊕(s) := log
1− σ⊕(s)

1 + σ⊕(s)
. (5.83)

5.7.2 Integration in a PQ→ PQ channel originating from PP → QQ process

The second type of processes is a PQ → PQ channel coming from S-channel process
PP → QQ. In order to take advantage of our short-hand notation, we identify already
from the beginning P ↔ π± and Q ↔ π0 and use the fact that we need the partial waves
of this process only for the physical values of s, s > 4m2

π± > 4m2
π0, i.e. in the region where

both σ+(s) and σ0(s) have real values. The relations for endpoints of integrations read

t±(s) = Σ− s

2
(1∓ σ0(s)σ+(s)) . (5.84)

Because of the conservation of electric-charge, the only intermediate state appearing here
is the π±π0 one and so we need to evaluate the primitive functions (3.51)–(3.56) for one-
loop functions of this two-pion state. The triangle function which appear in these relations
evaluated at those end-points simplifies into [cf. (3.16)]

λ1/2(t±) = −s
2
(σ0(s)∓ σ+(s)) , (5.85)

which implies the arguments of the logarithms (3.36) equaling to

τ(t±) =
1

q

1− σ0(s)

1∓ σ+(s)
=

s

4mπ0mπ±

(

1− σ0(s)
)(

1± σ+(s)
)

. (5.86)

Thus, we have relations between the arguments for t+ and t−

τ(t+)

τ(t−)
=

1 + σ+(s)

1− σ+(s)
, (5.87)

τ(t+)τ(t−) =
1− σ0(s)

1 + σ0(s)
, (5.88)

which simplify the combinations of logarithms appearing in the results into [The functions
L0(s) and L+(s) are defined in (5.68) and (5.74).]

log τ(t+)− log τ(t−) = −L+(s), (5.89)

log τ(t+) + log τ(t−) = L0(s), (5.90)

log2 τ(t+)− log2 τ(t−) = −L+L0(s), (5.91)

λ1/2(t+) log τ(t+)− λ1/2(t−) log τ(t−) =
s

2
(σ0(s)L+(s) + σ+(s)L0(s)) , (5.92)

λ1/2(t+) log τ(t+) + λ1/2(t−) log τ(t−) = −s
2
(σ0(s)L0(s) + σ+(s)L+(s)) . (5.93)
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Consequently, using the notation of functionsMi from Appendix F, the differences of prim-
itive functions evaluated at these endpoints [i.e. the results of integrations along C(t−, t+)]
are

I1(t)

sσ0σ+

∣

∣

∣

t+

t−
=

2m2
π±m2

π0

Σ
M2n+(s)−

1

4

(

s− 2m2
π±
)

M1+(s)

− 1

4

(

s− 2m2
π0

)

M1n(s)−
1

4
(3s− 4Σ)− 1

2

(

s− 8m2
π±m2

π0

Σ

)

M0q(s),

(5.94)

I2(t)

sσ0σ+

∣

∣

∣

t+

t−
= 2m2

π±m2
π0M2n+(s) +

1

12

(

2s2 − s(9m2
π± + 5m2

π0) + 6m2
π±Σ

)

M1+(s)

+
1

12

(

2s2 − s(5m2
π± + 9m2

π0) + 6m2
π0Σ
)

M1n(s)

+
1

36

(

16s2 − 61sΣ+ 36Σ2 + 16m2
π±m2

π0

)

+
1

6

(

2s2 − s
(

5Σ +
12m2

π±m2
π0

Σ

)

+ 32m2
π±m2

π0

)

M0q(s),

(5.95)

I3(t)

sσ0σ+

∣

∣

∣

t+

t−
= 2m2

π±m2
π0

(

Σ+
m2

π±m2
π0

Σ

)

M2n+(s)

− 1

24

(

3s3 − 2s2(10m2
π± + 7m2

π0) + 2s
(

7Σ2 +m2
π±(11m2

π± + 20m2
π0)
)

− 12m2
π±
(

Σ2 +m2
π±m2

π0

) )

M1+(s)

− 1

24

(

3s3 − 2s2(7m2
π± + 10m2

π0) + 2s
(

7Σ2 +m2
π0(20m2

π± + 11m2
π0)
)

− 12m2
π0

(

Σ2 +m2
π±m2

π0

) )

M1n(s)

− 1

144

(

45s3 − 266s2Σ+ 4s
(

107Σ2 + 81m2
π±m2

π0

)

− 16Σ
(

9Σ2 + 20m2
π±m2

π0

) )

− 1

12

(

3s3 − 2s2
(

7Σ +
8m2

π±m2
π0

Σ

)

+ 2s
(

7Σ2 + 44m2
π±m2

π0

)

− 16m2
π±m2

π0

(

5Σ +
4m2

π±m2
π0

Σ

))

M0q(s),

(5.96)

I0(t)

sσ0σ+

∣

∣

∣

t+

t−
= M2n+(s)−M7x(s) +

1

2

(

M1+(s) +M1n(s)
)

+ 2 +M0q(s), (5.97)

I−1(t)

sσ0σ+

∣

∣

∣

t+

t−
= − 1

Σ
M2n+(s) +

Σ

∆2
M7x(s) +

1

2∆
(M1+(s)−M1n(s))−

1

Σ
M0q(s), (5.98)

I−2(t)

sσ0σ+

∣

∣

∣

t+

t−
=

2m2
π±m2

π0

∆4
M7x(s)−

s− 2m2
π±

4∆3
M1+(s) +

s− 2m2
π0

4∆3
M1n(s)

+
1

2∆2
+

s

2Σ∆2
M0q(s).

(5.99)

For the sake of brevity, we have suppressed the explicit indication of the dependence of
functions σ0 and σ+ on s.
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5.7.3 Integration in a PQ→ PQ channel originating from PQ→ PQ process

The last type of contributions comes from the U channel of a process PQ → PQ. [Again
we perform the identification P ↔ π± and Q↔ π0 already from the beginning.]

Proceeding similarly as in the previous case, we obtain for s > 4m2
π± in turn,

u+(s) = 2Σ− s, u−(s) =
∆2

s
, (5.100)

the values of triangle function at these points

λ1/2(u+) = −λ1/2(s), λ1/2(u−) = −∆

s
λ1/2(s) (5.101)

and consequently the arguments of the logarithms (3.36)

τ(u+) =
s− Σ− λ1/2(s)

2mπ0mπ±
, τ(u−) =

sΣ−∆2 −∆λ1/2(s)

2smπ0mπ±
. (5.102)

They fulfill relations

τ(u+)

τ(u−)
=

1− σ⊕(s)

1 + σ⊕(s)
, τ(u+)τ(u−) =

1− σ⊙(s)

1 + σ⊙(s)
(5.103)

with σ⊙ and σ⊕ as well as L⊙ and L⊕ defined in (5.79)–(5.83), from which there follows

log τ(u+)− log τ(u−) = L⊕(s), (5.104)

log τ(u+) + log τ(u−) = L⊙(s), (5.105)

log2 τ(u+)− log2 τ(u−) = L⊕L⊙(s), (5.106)

λ1/2(u+) log τ(u+)− λ1/2(u−) log τ(u−) = −λ(s)
2s

(

L⊕(s)

σ⊕(s)
+
L⊙(s)

σ⊙(s)

)

, (5.107)

λ1/2(u+) log τ(u+) + λ1/2(u−) log τ(u−) = −λ(s)
2s

(

L⊕(s)

σ⊙(s)
+
L⊙(s)

σ⊕(s)

)

. (5.108)

We can therefore write the results in one of the sets of functions, either using L⊙(s) and
L⊕(s), or using the functions

L↑ := log τ(u+), L↓ := log τ(u−). (5.109)

Between these sets we can transfer easily by using relations (5.104)–(5.105). For the sake
of the shortest possible form of the results we use the following mixed notation [Functions
Mi(s) can be found in Appendix F.]

s
I1(t)

λ(s)

∣

∣

∣

u+

u−
= −2m2

π±m2
π0

Σ
M2⊙⊕(s) +

1

2
(s− Σ)M1↑(s)−

1

2

(

Σ− ∆2

s

)

M1↓(s)

+
3

4

(

s− ∆2

s

)

− Σ +
1

2

(

s− 8m2
π±m2

π0

Σ
− ∆2

s

)

M0q(s),

(5.110)
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s
I2(t)

λ(s)

∣

∣

∣

u+

u−
= −2m2

π±m2
π0M2⊙⊕(s)−

1

6

(

2s2 − 7Σs+ 5∆2 + 12m2
π±m2

π0

)

M1↑(s)

− 1

6

(

∆2 + 12m2
π±m2

π0 + Σ
∆2

s
− 2

∆4

s2

)

M1↓(s)

− 1

36

(

16s2 − 61sΣ+ 4(9Σ2 + 4m2
π±m2

π0) + 29Σ
∆2

s
+ 16

∆4

s2

)

− 1

6

(

2s2 − s
(

5Σ +
12m2

π±m2
π0

Σ

)

+ 32m2
π±m2

π0

+
(

Σ+
12m2

π±m2
π0

Σ

)∆2

s
+ 2

∆4

s2

)

M0q(s),

(5.111)

s
I3(t)

λ(s)

∣

∣

∣

u+

u−
= −m2

π±m2
π0

(

Σ +
m2

π±m2
π0

Σ

)

M2⊙⊕(s)

+
1

12

(

3s3 − 17s2Σ+ s(31Σ2 − 6m2
π±m2

π0)− Σ(17∆2 + 30m2
π±m2

π0)
)

M1↑(s)

− 1

12

(

Σ(∆2 + 30m2
π±m2

π0) + (Σ2 + 6m2
π±m2

π0)
∆2

s
+ Σ

∆4

s2
− 3

∆6

s3

)

M1↓(s)

+
1

144

(

45s3 − 266s2Σ+ s(473Σ2 + 144m2
π±m2

π0)− 16Σ(9Σ2 + 20m2
π±m2

π0)

− (121Σ2 + 144m2
π±m2

π0)
∆2

s
− 86Σ

∆4

s2
− 45

∆6

s3

)

+
1

12

(

3s3 − 2s2
(

7Σ +
8m2

π±m2
π0

Σ

)

+ s(17Σ2 + 86m2
π±m2

π0)− 2
(

Σ +
8m2

π±m2
π0

Σ

)∆4

s2

− 16m2
π±m2

π0(5Σ +
4m2

π±m2
π0

Σ
)− (Σ2 + 44m2

π±m2
π0)

∆2

s
− 3

∆6

s3

)

M0q(s),

(5.112)

s
I0(t)

λ(s)

∣

∣

∣

u+

u−
= −M2⊙⊕(s)−M7t(s)−M1↑(s) +M1↓(s)− 2−M0q(s), (5.113)

s
I−1(t)

λ(s)

∣

∣

∣

u+

u−
=

1

Σ
M2⊙⊕(s) +

Σ

∆2
M7t(s)−

s

∆2
M1↓(s) +

1

∆
M8t(s), (5.114)

s
I−2(t)

λ(s)

∣

∣

∣

∣

u+

u−

=
2m2

π±m2
π0

∆4
M7t(s)−

s(s− Σ)

2∆4
M1↓(s) +

s

2Σ∆2
M0q(s) +

1

∆2
M9t(s). (5.115)

5.7.4 Results for partial waves of NLO ππ amplitudes

By employing the formulae from Section 3.4 together with the ones from the previous
subsection, it is an easy (although tedious) task to obtain the partial waves of the NLO
ππ scattering amplitudes in the form (3.76). The partial waves of the particular processes
are12

12Note that ϕi,ℓ is just the NLO part of the partial wave.
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• π0π0 → π0π0

ϕ0;0(s) = p0;0λ (s) + p0;0w (s) +
1

π

∑

i

p0;0i (s)Mi(s) with i = 0, 1n, 1∇, 2n, 2∇, 3n, 3+.

(5.116)

• π±π∓ → π±π∓

ϕc;0(s) = pc;0λ (s) + pc;0w (s) +
1

π

∑

i

pc;0i (s)Mi(s) with i = 0, 1+, 1∆, 2+, 2∆, 3n, 3+,

(5.117)

ϕc;1(s) = sσ2
+(s)

(

pc;1λ (s) + pc;1w (s) + pc;13+(s)M3+(s)
)

+
m2

π±

πsσ2
+(s)

∑

i

pc;1i (s)Mi(s),

i = 0, 1+, 1∆, 2+, 2∆.

(5.118)

• π±π± → π±π±

ϕd;0(s) = pd;0λ (s) + pd;0w (s) +
1

π

∑

i

pd;0i (s)Mi(s), i = 0, 1+, 1∆, 2+, 2∆, 3+. (5.119)

• π±π∓ → π0π0

ϕx;0(s) = px;0λ (s) + px;0w (s) +
1

π

∑

i

px;0i (s)Mi(s), i = 0, 0q, 1n, 1+, 2n+, 3n, 3+, 7x.

(5.120)

• π±π0 → π±π0

ϕt;0(s) = pt;0λ (s) + pt;0w (s) +
1

π

∑

i

pt;0i (s)Mi(s),

i = 0, 0q, 1↑, 1↓, 2⊙, 2⊕, 2⊙⊕, 3↑, 7t, 8t, 9t,
(5.121)

ϕt;1(s) =
λ(s)

s

(

pt;1λ (s) + pt;1w (s) + pt;13↑ (s)M3↑(s)
)

+
sΣ

2πλ(s)

∑

i

pt;1i (s)Mi(s)

i = 0, 0q, 1↑, 1↓, 2⊙, 2⊕, 2⊙⊕, 7t, 8t, 9t.
(5.122)

The polynomials pji (s) are given in Appendix G whereas the dimensionless kinematic func-
tions Mi(s) are defined in Appendix F.
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5.8 Second iteration

Having all NLO partial waves at hand enables us a simple computation of the NNLO
amplitudes of various processes, such as the NNLO ππ scattering amplitudes or the ππ
form-factors. However, since our main interest of this work is concentrated only on its
influence on the K → 3π and η → 3π decay processes and the results of second iteration
are very extensive, we do not present here the results explicitly (but they can be obtained
from the author on demand).

As an illustration for the interested reader, we present here the form of the result for
π0π0 → π0π0 scattering process

A0(s, t, u) = 16π
(

R0(s, t, u) + 16π(W 0
0 (s) +W 0

0 (t) +W 0
0 (u)

)

, (5.123)

where

R0(s, t, u) = a0 + 3
λ0
F 4
π

(

s2 + t2 + u2 − 16m4
π0

)

+ 3
λ
(3)
0

F 4
π

(

s3 + t3 + u3 − 64m6
π0

)

− w′
0,

(5.124)

w′
0 = 16πReU0(s, t, u)|thr (5.125)

and the unitarity part

W 0
0 (s) =

∑

i

PiHi (5.126)

can be obtained from the result (8.44) of the process KLπ
0 → π0π0 by performing limit

mKL
→ mπ0 , replacing C → 16π and by an appropriate replacement of the kaon subtraction

constants Ã, B̃ by the pion ones. It contains 13 Hilbert transforms of the functions resulting
from multiplications of σ0 with M0, M1n, M1∇, M2n, M2∇, M3n, M3+; and of σ+ with
M0, M0q, M1n, M1+, M2n+, M3n, M3+, M7x. Note that σiM3i gives

(

1− 4mi

s

)

Li, i.e.
a similar function as was obtained from σiM1i and σ0M3+ combines with σ+M3n into one
function as is discussed around relation (8.38) and on Figure 13.

5.9 Subthreshold parametrization

The parametrization usually employed in the literature in connection with the reconstruc-
tion theorem (mainly in the isospin limit case) is the subthreshold parametrization using
the value of the amplitude, its slope and further characteristics in the center of Dalitz plot
s = t = u = s0i as its parameters. Such parametrization was also employed to describe the
amplitudes of meson-meson scattering processes in isospin limit in the previous chapter.
The NLO ππ scattering amplitudes (when retaining the different mπ± and mπ0 masses)
look in this parametrization again like

Ai(s, t, u) = Ri(s, t, u) + Ui(s, t, u) +O(p6), (5.127)
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where this time the polynomials Ri(s, t, u) read

R0 =
α00m

2
π0

F 2
π

+ 3
λ00
F 4
π

(

(s− 2m2
π0)2 + (t− 2m2

π0)2 + (u− 2m2
π0)2

)

, (5.128)

Rc =
β+−
F 2
π

(

4

3
m2

π± − u

)

+
2α+−m

2
π0

3F 2
π

+
λ
(1)
+− + λ

(2)
+−

F 4
π

(

(s− 2m2
π±)2 + (t− 2m2

π±)2
)

+
2λ

(2)
+−
F 4
π

(u− 2m2
π±)2,

(5.129)

Rx =
β±0

3F 2
π

(2Σ− 3s)− m2
π0α±0

3F 2
π

− λ
(1)
±0

F 4
π

(s− 2m2
π±)(s− 2m2

π0)

− λ
(2)
±0

F 4
π

(

(t− Σ)2 + (u− Σ)2
)

.

(5.130)

The amplitudes Ad and At are simple to obtain from a direct application of crossing
relations (5.8).

In order to obtain the NLO unitarity parts Ui(s, t, u), expressions for the NLO partial
waves of the amplitudes and also the NNLO result, one does not need to repeat the whole
procedure of the previous sections. Since the kinematical structure of the amplitude re-
mains the same, the kinematical functions appearing in the unitarity part and then also
those appearing in the NLO partial waves are identical to those of the partial-wave parame-
trization. Therefore, we can obtain all results in this parametrization simply by performing
the following replacement in the corresponding results in the partial-wave parametrization

16πa0 =
α00m

2
π0

F 2
π

+ 36
λ00m

4
π0

F 4
π

, (5.131)

16πλ0 = λ00, (5.132)

16πac =
4β+−m

2
π±

3F 2
π

+
2α+−m

2
π0

3F 2
π

+
8(λ

(1)
+− + 2λ

(2)
+−)m

4
π±

F 4
π

, (5.133)

16πbc =
1

2
β+−, (5.134)

16πλ(1)c = λ
(1)
+−, (5.135)

16πλ(2)c = λ
(2)
+−, (5.136)

16πad = −8β+−m
2
π±

3F 2
π

+
2α+−m

2
π0

3F 2
π

+
8(λ

(1)
+− + 2λ

(2)
+−)m

4
π±

F 4
π

, (5.137)

16πbd = −β+−, (5.138)

16πax = −2β±0

3F 2
π

(5m2
π± −m2

π0)−
m2

π0α±0

3F 2
π

− 4λ
(1)
±0

F 4
π

m2
π±(2m2

π± −m2
π0)− 8

λ
(2)
±0

F 4
π

m4
π± ,

(5.139)

16πbx = −β±0 − 2
λ
(1)
±0

F 2
π

∆, (5.140)
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16πλ(1)x = λ
(1)
±0, (5.141)

16πλ(2)x = λ
(2)
±0, (5.142)

16πat = −2β±0

3F 2
π

Σ+
m2

π0α±0

3F 2
π

+
4(λ

(1)
±0 + 2λ

(2)
±0)

F 4
π

m2
π±m2

π0 , (5.143)

16πbt = −1

2
β±0 −

λ
(1)
±0

F 2
π

∆. (5.144)

Naturally, in order to obtain the exact form of the result in this parametrization, we have
to respect strictly the chiral orders of the parameters and when replacing leading orders of
the parameters a

(2)
i , b

(2)
i , we have to abandon the higher-order terms (those containing λ’s)

in the appropriate replacement. Otherwise, we would compute also a part of the higher
order contributions. Let us remind the reader that in this case there is no need for the
restoring polynomials and we take all wi = 0.

5.10 Isospin symmetric case

5.10.1 Scattering-length parametrization

For some of the analyses we are going to perform, it will be enough to use just the much
simpler results valid in the case we neglect the violation of the isospin symmetry. The only
independent isospin symmetric amplitude AIB0

x in the leading order reads

AIB0

x (s, t, u) = 16π

(

a +
b

F 2
π

(s− 4m2
π)

)

. (5.145)

Our isospin partial-wave parameters a and b are related to the S-partial-wave scattering
lengths from [73]. The leading order relations for them are

a =
2

3
(a20 − a00), (5.146)

b =
F 2
π

12m2
π

(5a20 − 2a00). (5.147)

Similarly to the isospin violating case, we obtain the NLO parametrization of this
amplitude in the form

AIB0

x (s, t, u) = 16π
(

RIB0

x (s, t, u) + 16πU IB0

x (s, t, u)
)

+O(p6), (5.148)

where

U IB0

x (s, t, u) = W IB0;0
x (s)−W IB0;0

t (t)− (s− u)W IB0;1
t (t)−W IB0;0

t (u)

− (s− t)W IB0;1
t (u),

(5.149)
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W IB0;0
x (s) = −1

2

(

a +
b

F 2
π

(s− 4m2
π)

)(

7a +
b

F 2
π

(s− 20m2
π)

)

J̄π(s), (5.150)

W IB0;0
t (s) =

(

a− b

2F 2
π

(s+ 4m2
π)

)2

J̄π(s), (5.151)

W IB0;1
t (s) =

b2

12F 4
π

(s− 4m2
π)J̄π(s), (5.152)

RIB0

x (s, t, u) = a +
b

F 2
π

(s− 4m2
π)−

λ̂1
F 4
π

(s− 4m2
π)

2 − λ̂2
F 4
π

(

t2 + u2
)

− w(s, t, u). (5.153)

As was discussed for the isospin breaking case in the previous sections, the particular form
of the restoring polynomial w(s, t, u) depends on the choice of how many parameters are
demanded to keep their physical values and on the additional conditions we attach to them.
Since in the isospin limit the restoring polynomial has a simple expression also when we
restore the physical interpretation of both a and b, we display it in its full form without
a need of restricting ourselves to the simplified case of keeping the physical interpretation
just of the scattering length. (This is indicated also by writing the hats over λ’s in the
polynomial part of the amplitude.)

Provided we write the restoring polynomial in the form

w(s, t, u) = w0
x(s)− w0

t (t)− w0
t (u), (5.154)

w0
x(s) =

s2

72π

(

81
a2

m4
π

− 264
a

m2
π

b

F 2
π

+ 88
b2

F 4
π

)

− 5sm2
π

12π

(

17
a2

m4
π

− 40
a

m2
π

b

F 2
π

− 16
b2

F 4
π

)

,

(5.155)

w0
t (s) =

s2

18π

(

6
a2

m4
π

− 9
a

m2
π

b

F 2
π

− 16
b2

F 4
π

)

− m4
π

9π

(

15
a2

m4
π

+ 36
a

m2
π

b

F 2
π

− 208
b2

F 4
π

)

,

(5.156)

the isospin conserved amplitudes correspond exactly13 to the isospin limit of the results of
the previous subsection with the following limits of the parameters [cf. with (5.9), (5.10)
and (5.61)–(5.64)]

ax → a; bx → b; λ̂(1)x → λ̂1; λ̂(2)x → λ̂2; (5.157)

a0 → −3a + 8
m2

π

F 2
π

b + 32
m4

π

F 4
π

(

λ̂1 + λ̂2

)

; λ̂0 →
1

3
(λ̂1 + 2λ̂2); (5.158)

at → −a + 4
m2

π

F 2
π

b + 16
m4

π

F 4
π

(

λ̂1 + λ̂2

)

; bt →
b

2
+ 4

m2
π

F 2
π

(

λ̂1 + 2λ̂2

)

; (5.159)

13However, there could appear potential differences of higher orders in the case we do not strictly respect
chiral orders of the individual contributions. For instance, it manifests itself in the restoring polynomial
— if we include full expressions for scattering lengths in their limit from the isospin breaking results
(including λ1 and λ2 contributions) instead of using only their leading orders (from Appendix E), we
obtain the restoring polynomial dependent also on these λ’s.
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ac → −2a + 4
m2

π

F 2
π

b + 16
m4

π

F 4
π

(

λ̂1 + λ̂2

)

; bc → −b

2
+ 4

m2
π

F 2
π

(

λ̂1 + 2λ̂2

)

; (5.160)

λ̂(1)c → λ̂1; λ̂(2)c → λ̂2; (5.161)

ad → −2a + 8
m2

π

F 2
π

b + 32
m4

π

F 4
π

(

λ̂1 + λ̂2

)

bd → b + 8
m2

π

F 2
π

(

λ̂1 + 2λ̂2

)

. (5.162)

In the case we wanted to obtain these results from the limit of the isospin violating am-
plitudes where the physical interpretation of just the scattering lengths was restored, in
the above expressions we just throw away the hats with the exception of the following
parameters that have different limits,

bx → b + 4
m2

π

F 2
π

(λ1 + λ2) ; bt →
b

2
+ 2

m2
π

F 2
π

(λ1 + λ2) ; (5.163)

bc → −b

2
− 2

m2
π

F 2
π

(λ1 + λ2) ; bd → b + 4
m2

π

F 2
π

(λ1 + λ2) . (5.164)

Alternatively, we can also abandon the simple form of this limit14 and just subtract the
following simple polynomial

w(s, t, u) =
a

π

(

−7a + 16m2
π

b

F 2
π

)

+
s− 4m2

π

36π
m2

π

(

69
a2

m4
π

− 456
a

m2
π

b

F 2
π

+ 592
b2

F 4
π

)

. (5.165)

The partial waves computed for all NLO ππ scattering processes are equal to

ϕi;0(s) = pi;0λ (s) +
1

π
pi;0w (s) +

1

π

3
∑

j=0

pi;0j (s)Mj(s), (5.166)

ϕi;1(s) = sσ2
π(s)

(

pi;1λ (s) +
1

π
pi;1w (s) +

1

π
pi;13 (s)M3(s)

)

+
m2

π

πsσ2
π(s)

2
∑

j=0

pi;1j (s)Mj(s)

(5.167)

with kinematical functions Mj(s) from Appendix F. Polynomials pi;ℓj are listed in Ap-
pendix G. The distinct choices of the restoring polynomials differ just in the polynomials
pi,ℓw as is also indicated there.

Two-loop result

Thanks to its simple form, we will also write here the result of second iteration of this
amplitude explicitly. The two-loop amplitude reads

AIB0

x (s, t, u) = 16π
(

RIB0

x (s, t, u) + 16πU IB0

x (s, t, u)
)

+O(p8), (5.168)

14Naturally, all the other parts of the amplitudes (other than the restoring polynomial) remain equal to
the displayed limit of their isospin breaking counterpart also in this case.
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with its polynomial part equal to

RIB0

x (s, t, u) = a +
b

F 2
π

(s− 4m2
π)−

λ̂1
F 4
π

(s− 4m2
π)

2 − λ̂2
F 4
π

(

t2 + u2
)

− λ̂3
F 6
π

(s− 4m2
π)

3 − λ̂4
F 6
π

(

t3 + u3
)

− w6(s, t, u),

(5.169)

w6(s, t, u) = w(s, t, u) + 64a
m4

π

πF 4
π

(

λ̂1 + λ̂2

)

+ a3
(

−113

6
+

214

3π2

)

+ 2ab2 m
4
π(2084− 385π2)

3π2F 4
π

− 2a2b
m2

π(824− 183π2)

3π2F 2
π

+ 8b3 m
6
π(−384 + 65π2)

3π2F 6
π

+ (s− 4m2
π)

(

16m2
π

9πF 4
π

(

a (8λ̂2 − λ̂1) + 37b
m2

π

F 2
π

(λ̂1 + λ̂2)

)

+ a3
2056− 163π2

144π2m2
π

+ a2b
326− 885π2

108π2F 2
π

+ 2ab2 m
2
π(−8284 + 2253π2)

81π2F 4
π

+ b3 m
4
π(28529− 6024π2)

81π2F 6
π

)

,

(5.170)

where we have explicitly displayed just the simpler form of the restoring polynomial, having
the O(p4) part equal to w(s, t, u) from (5.165). The unitarity part is of the form

U IB0

x (s, t, u) =W IB0;0
x (s)−W IB0;0

t (t)− (s− u)W IB0;1
t (t)−W IB0;0

t (u)

− (s− t)W IB0;1
t (u),

(5.171)

W IB0;0
x (s) = Px;0

1 (s)G(1)
1 (s) + Px;0

2 (s)G(1)
2 (s) + Px;0

3 (s)G(0)
3 (s), (5.172)

W IB0;0
t (s) = P t;0

1 (s)G(1)
1 (s) + P t;0

2 (s)G(1)
2 (s) + P t;0

3 (s)G(0)
3 (s), (5.173)

W IB0;1
t (s) = P t;1

1 (s)G(1)
1 (s) + P t;1

2 (s)G(1)
2 (s) + P t;1

1σ (s)G
σ;(0)
1 (s) + P t;1

2σ (s)G
σ;(0)
2 (s)

+ P t;1
3σ (s)G

σ;(0)
3 (s).

(5.174)

Kinematical functions Gi(s) are listed in Appendix F.2 and the polynomials multiplying
them,

Px;0
1 (s) =

1

2

(

αx(s)
(

α0(s) + p0;0λ +
1

π
p0;0w +

1

π
p0;00

)

+ α0(s)
(

px;0λ +
1

π
px;0w +

1

π
px;00

)

)

+ αc(s)
(

αx(s) + px;0λ +
1

π
px;0w +

1

π
px;00

)

+ αx(s)
(

pc;0λ +
1

π
pc;0w +

1

π
pc;00

)

,

(5.175)
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Px;0
2 (s) =

1

2

1

π

(

αx(s)p
0;0
1 + α0(s)p

x;0
1 + 2

1

s
(s− 4m2

π)α0(s)p
x;0
3

)

+
1

π

(

αc(s)p
x;0
1 + αx(s)p

c;0
1 + 2

1

s
(s− 4m2

π)αc(s)p
x;0
3

)

,

(5.176)

Px;0
3 (s) =

1

2

1

π

(

αx(s)p
0;0
2 + α0(s)p

x;0
2

)

+
1

π

(

αc(s)p
x;0
2 + αx(s)p

c;0
2

)

, (5.177)

P t;0
1 (s) = αt(s)

2 + 2αt(s)
(

pt;0λ +
1

π
pt;0w +

1

π
pt;00

)

, (5.178)

P t;1
1 (s) = (s− 4m2

π)

(

1

3
β2
t + 2βt

(

pt;1λ +
1

π
pt;1w

)

)

, (5.179)

P t;1
1σ (s) =

2

π
βtp

t;1
0 , (5.180)

P t;0
2 (s) =

2

π
αt(s)

(

pt;01 +
1

s
(s− 4m2

π)p
t;0
3

)

, (5.181)

P t;1
2 (s) =

2

π

1

s
(s− 4m2

π)
2βtp

t;1
3 , (5.182)

P t;1
2σ (s) =

2

π
βtp

t;1
1 , (5.183)

P t;0
3 (s) =

2

π
αt(s)p

t;0
2 , (5.184)

P t;1
3σ (s) =

2

π
βtp

t;1
2 , (5.185)

are easily to obtain from multiplications of [cf. (3.1)]

αx(s) = a +
b

F 2
π

(s− 4m2
π), βx = 0, αt(s) =

b

2F 2
π

(s+ 4m2
π)− a, βt = − b

2F 2
π

(5.186)

with the polynomials pi;ℓa (s) appearing in the NLO partial waves (5.166)–(5.167). Note
that in these relations we have suppressed the explicit indication of the dependence of
these polynomials on s.

5.10.2 Subthreshold parametrization

In order to benefit from the previous analyses of ππ scattering amplitudes by Stern et
al. [125, 94, 95, 56] it is convenient to use also isospin subthreshold parametrization, in
which the polynomial part of the amplitude Ax from (5.127) looks like

Rx =
β

3F 2
π

(4m2
π − 3s)− m2

πα

3F 2
π

− λ1
F 4
π

(s− 2m2
π)

2 − λ2
F 4
π

(

(t− 2m2
π)

2 + (u− 2m2
π)

2
)

− λ3
F 6
π

(s− 2m2
π)

3 − λ4
F 6
π

(

(t− 2m2
π)

3 + (u− 2m2
π)

3
)

.

(5.187)
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All the other expressions can be obtained from those written for partial-wave parametri-
zation by replacing

16πa → −8βm2
π

3F 2
π

− m2
πα

3F 2
π

− 4m4
π

F 4
π

(λ1 + 2λ2), 16πb → −β±0 −
4m4

π

F 4
π

(λ1 + λ2), (5.188)

16πλ̂1 → λ1, 16πλ̂2 → λ2, 16πλ̂3 → λ3, 16πλ̂4 → λ4. (5.189)

Note that the one-loop result can be obtain also from the result (4.33) of Chapter 4 [where
the subtraction parameters are denoted according to αππ = α, βππ = β, γππ = λ1, δππ = λ2]
by expanding the loops containing KK or ηη in powers of s

4m2
K

or s
4m2

η
and the subsequent

inclusion of such terms into the polynomial of the theorem (since we assume working far
below the unitarity cuts corresponding to these intermediate states). Note, however, that
JPP (s) behaves for s≪ 4m2

P as

JPP (s) =
1

96π2

s

4m2
P

+O

(

(

s

4m2
P

)2
)

, (5.190)

i.e. by counting such 2mP as a quantity of order Λ, to a given order such loop function
contributes only through its scale dependent part Jr

PP (0), which is already included in
the polynomial. Thus, we can use the standard one-loop expressions for the values of the
parameters from Appendix D.

For our further applications we also use the results from [125, 94, 95, 56]. However,
when comparing to them, one should remember that our choice of the subtraction scheme
for the NNLO amplitude differs slightly to the NNLO amplitude used there, i.e these
amplitudes differ in their polynomial parts. Denoting their parameters with subscript ⋆,
the corresponding values of our parameters that lead to the same amplitude read

α = α⋆ −
m4

π ((37π
2 − 282)α3

⋆ − 8π2α2
⋆β⋆ + 4 (144 + 19π2)α⋆β

2
⋆ + 24 (8 + π2) β3

⋆)

13824π4F 4
π

,

(5.191)

β = β⋆ + β⋆
m4

π (5 (108− π2)α2
⋆ + 40 (78− 5π2)α⋆β⋆ − 2 (388− 53π2)β2

⋆)

27648π4F 4
π

, (5.192)

λ1 = λ1⋆ + β2
⋆

m2
π ((434− 15π2)α⋆ + 2 (118 + 9π2)β⋆)

13824π4F 2
π

, (5.193)

λ2 = λ2⋆ + β2
⋆

m2
π ((15π

2 − 2)α⋆ − 20β⋆)

27648π4F 2
π

, (5.194)

λ3 = λ3⋆ + β3
⋆

988− 3π2

82944π4
, (5.195)

λ4 = λ4⋆ + β3
⋆

3π2 − 340

165888π4
. (5.196)
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5.11 Determination of parameters of ππ scattering

For various numerical analyses we would need the values of our parameters which re-
produce well the physical amplitudes or the values of the parameters corresponding to
χPT computations. To the best author’s knowledge there exists no analysis including full
isospin breaking in ππ scattering that would give us particular numbers for its physical
amplitude or for its chiral amplitude. We therefore determine the values of our parame-
ters in the isospin breaking case by using just the leading-order isospin-breaking relations
(5.27)–(5.31) from [98] and the values obtained in the isospin limit.

In the isospin symmetric case the situation is better since the ππ scattering is one of
the most important processes and has been measured by various methods and there also
exists a result in χPT including two-loop effects [30,31]. As was already stated we do not
need to repeat all the comparisons of our parametrization with these result but can also use
the outcome of such comparisons performed in [94] with the two-loop χPT computation
and in [56] with the physical measurements of the ππ phase-shifts (for more details see
Section 5.11.1). Note that in these cases one needs to perform the transformation of
variables from (5.191)–(5.196) due to the different subtraction scheme used there.

Let us start with the χPT values. For this comparison we use the order-by-order in-
terpretation of the polynomial parameters and it is therefore more natural to work in the
subthreshold parametrization [the values of the parameters for the scattering-length pa-
rametrization can be then obtained from (5.188)–(5.189)]. The tree level χPT amplitude
corresponds to the LO polynomial with the values of parameters α = β = 1 [cf. (4.29)–
(4.32)]. For reproducing the one-loop result we use the result of first iteration and for the
particular values of the parameters that reproduce exactly the standard one-loop calcula-
tion we can employ the analysis of Section 4.5. We remind the reader that in Appendix D
we have listed the expressions for our parameters in terms of pseudoscalar masses and
low-energy constants of χPT Li, for whose values there exist two complete determinations,
fit10 from [10] and fitAll from [34], which are displayed in Table 1. In Section 4.5 we
have studied also the variations of the parameters with the particular choices/definitions
of the isospin masses mπ, mK and mη and of the value of the pion decay constant. For the
purpose of our analysis of η → 3π decay in Chapter 9 (cf. Section 9.4) we display here the
numbers corresponding to these masses and the decay constant equal to

mπ = 138.0558MeV, mK = 494.53MeV, mη = 547.3MeV, Fπ = 92.4MeV (5.197)

and all the presented error bars are just due to the uncertainties in Lis. In order to
reproduce the two-loop chiral result, we need O(p6) values of the parameters appearing in
the real (polynomial) part of the amplitude. Since in this work we are not going to perform
the numerical two-loop analyses of ππ scattering and in the parametrization of K/η → 3π
decays, which are of the main interest of this work, there appear just the parameters from
the first iteration for the ππ scattering, we present here the numerical results for NNLO
ππ scattering just for the illustration and before one uses them in some other application,
a more complete analysis would be required. For this purpose, it is enough to obtain the



90 CHAPTER 5. ππ SCATTERING

α β 103λ1 103λ2 104λ3 104λ4 a0 102a2 102m2
πa1

p2 1 1 0.155 -4.44 4.4

p4 1.05(2) 1.085(2) −1.6(1.8) 8.4(5) 0.198 -4.15 5.2

p6 1.06 1.116 −5.6 9.7 2.2 −1.6 0.206 -4.25 5.5O
b
O

p4 [34] 1.02(19) 1.11(3) −0.7(1.9) 7.9(8) 0.199 -4.31 5.2

ResPh 1.37(25) 1.09(3) −2.8(5) 9.2(1) 3.7(2) −1.64(6) 0.225 -3.76 5.4

Res4Ph 1.37(25) 1.09(3) −2.8(5) 9.2(1) 0.217 -3.64 5.3

Resp6 1.06 1.116 −5.6 9.7 2.2 −1.6 0.212 -4.40 5.6

Resp4λ 1.05(2) 1.085(2) −1.6(1.8) 8.4(5) 3.7(2) −1.64(6) 0.209 -4.23 5.3

Res4p4 1.05(2) 1.085(2) −1.6(1.8) 8.4(5) 0.201 -4.10 5.2

R
es
u
m
m
ed

p
ol
y
n
.

Fit4 1.352(22) 1.253(3) −10.0(3) 17.5(1) 0.223 -4.43 5.7

Table 4: Various sets of parameters describing ππ scattering together with the correspond-
ing values of the standard a0, a2 and a1 scattering lengths. The rows labeled by ObO refer
to the order-by-order interpretation of the parameters, i.e. e.g. in O(p6) amplitude there
appear parameter α in three different orders, its O(p2) value appears in the row labeled
by p2, its O(p4) value in the p4 row and finally the O(p6) value is displayed in the p6 row.
The sets with resummed interpretation of the polynomials are given in the lower part of
the table. Any of the parameters appearing appears as one entity in the parametrization
and their values are listed in the particular row. The labels of various resummed sets are
described in the main text.

O(p6) parameters by comparison of relations (48) from [94] for the constants bi of the
standard two-loop amplitudes (cf. [30]) in terms of the subthreshold parameters with their
values stemming from the two-loop χPT computation [31] (Table 3 there).

All the determined values of our parameters together with the corresponding values
of the scattering lengths a0, a2 and a1 (which are usually quoted in the analyses of ππ
scatterings) are listed in the upper part of Table 4. We have also constructed the corre-
sponding parametrizations where we do not distinguish various orders of the parameters
appearing there, which we call the resummed interpretation of the polynomial parameters
or resummed parametrization for short (cf. Section 3.6). The most important for us is
the two-loop representation ResPh, which corresponds to the result of [56], where they
matched their dispersive parametrization with the solutions of Roy equations from [13]
supplemented by measurements of ππ phases by E865 [116] — we refer to this amplitude
also as the “physical amplitude” and use it for an illustration how the other representations
differ from the physically measured amplitude (note, however, that this representation of
the genuine physical amplitude is also limited as is shortly discussed in Section 5.11.1 and
manifests itself with the value of a2 coming from this representation a2 = −0.0376± 0.037
which has almost 2σ deviation from the current experimental value.). In Resp6 we take
the complete two-loop parametrization with all the parameters equal to their chiral O(p6)
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values15. For the illustration of the effects of second iteration and also of changing λ3 and
λ4 we have used the choice denoted by Resp4λ, where in the resummed parametrization
we take α, β, λ1, λ2 equal to their chiral O(p4) values and add λ3, λ4 from ResPh.

As we have already stated, in our further applications the more relevant ππ parametriza-
tions are those coming from the first iteration. We therefore add into our sets of various
choices also such parametrizations: Res4Ph, where the values of all the parameters appear-
ing in the first iteration are set to the “physical values” from ResPh; and similarly Res4p4
is first order parametrization with parameters equal to the chiral O(p4) values. Finally, as
described in Section 5.11.1 we have performed a fit of the recent ππ results to the one-loop
parametrization and obtained so Fit4 — this fit uses scattering length parametrization, so
the values of α, β, λ1, λ2 quoted in Table 4 are just approximate and the amplitude that
woudl be constructed by using these values is different to the original Fit4 one as used
below (we remind however that the difference is of higher chiral orders).

On Figure 4 we have plotted the real and the imaginary parts of the amplitude Ax(s, t, u)
corresponding to various choices of the values (and the interpretations) of the parameters
in comparison to the “physical amplitude” on the cut t = u. We plot them in region
s . (0.77GeV)2, above which χPT and also the parametrization ResPh cease to reproduce
well the physics because of the appearance of ρ resonance, and then we have also zoomed
in on the region near the physical threshold s = 4m2

π, which is of particular importance
for us. The datasets whose label contains the shortcut “er.” include their error bars in
their plots. Taking into account such error bars, we observe that the tree and the one-loop
chiral amplitude reproduce the real part of the “physical amplitude” only in the region
∼ (0.25 ÷ 0.45)GeV2, while, as expected, they completely miss the physical imaginary
part. The two-loop chiral amplitude can be considered to reproduce both of the real and
the imaginary parts very well. What is a little bit surprising is that the parametrization
Resp4λ reproduces it at best. It shows us the importance of parameters λ3 and λ4 and of
the two-loop effects.

For our further analyses (mainly of η → 3π decay) the parametrizations stemming from
first iteration will be more important. It is because we will construct such processes to
the two-loop level and therefore the ππ scattering parameters appear there at the one-
loop level. We would therefore need a good one-loop parametrization of the physical
amplitude. Fortunately, as we have emphasized in the construction of our parametrization,
the advantage of our choice of the dispersive representation is that we do not need to
reproduce the physics for all energies but only in the low-energy region up to some cut-off
Λ that is an integral part of our parametrization. The value of such Λ (together with
the precision with which we reproduce the physical amplitudes entering the analysis) then
provides us with the estimate of the precision of the resulting parametrization. On Figure 5
we have plotted various one-loop parametrizations in the region s ∈ (4m2

π, 180MeV). We

15Note that the usage of the polynomial parameters in [94] is more consistent with our resummed
interpretation and so strictly speaking the genuine chiral two-loop amplitude should be somewhere in
between the result of this and the O(p6) order-by-order parametrizations. The chiral O(p6) imaginary
part should be naturally equal to the one from the order-by-order approach, whereas the quoted O(p6)
values of the parameters were obtained from the matching with the resummed parametrization used in [94].
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Figure 4: Course of Ax(s, t, u) in isospin limit for various sets of ππ scattering parameters — described in the main text.
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Figure 5: Course of the amplitude Ax(s, t, u) in isospin limit for various sets of ππ scattering
parameters in the parametrization from the first iteration — description given in the main
text.
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observe that while the real part in all the cases is reproduced quite well, the imaginary
part seems to be problematic. Naturally as is illustrated with the parametrization Res4Ph,
the situation can be saved by two-loop corrections, which will be included in the analyzed
processes. There appears therefore the natural question, in what extent our one-loop
amplitude should reproduce the physical one, in order to prevent such double-counting.
Fortunately, we have at hand also the scattering length parametrizations, which does not
suffer of such effects. Therefore, we have decided to find a one-loop scattering length
parametrization reproducing the known physical data on ππ scattering in the low-energy
region as well as possible. (However, for the moment we will use it just for an estimate of
the magnitude of the error of ππ inputs in our further analyses.)

5.11.1 Search for one-loop parametrization reproducing physical ππ phase
shifts

The experimental knowledge on the ππ scattering is usually presented in terms of the ππ
phase shifts of the amplitudes with the specific values of isospin. These amplitudes are
related to our amplitudes containing physical states by relations (cf. Section 4.2 and [I]):

T 0(s, t, u) = −3Ax(s, t, u)−Ax(t, s, u)− Ax(u, t, s), (5.198)

T 1(s, t, u) = −Ax(t, s, u) + Ax(u, t, s), (5.199)

T 2(s, t, u) = −Ax(t, s, u)−Ax(u, t, s). (5.200)

The partial wave expansion usually written for them defines the corresponding partial
waves [cf. (2.14) with N = 2]

T I(s, t, u) = 32π
∑

ℓ

(2ℓ+ 1)tIℓ(s)Pℓ(cos θ), (5.201)

where Pℓ(x) are Legendre polynomials. By taking into account the conservation of isospin,
the unitarity relation (2.18) below all inelastic channels (s < 16m2

π) reads (note that S = 2
for identical particles)

Im tIℓ(s) = σ(s)
∣

∣tIℓ(s)
∣

∣

2
θ(s− 4m2

π). (5.202)

This means that in the interval s ∈ (4m2
π, 16m

2
π) the phase of the partial wave δ

I
ℓ (s) fulfills

sin δIℓ (s) = 2σ(s)
∣

∣tIℓ(s)
∣

∣ (5.203)

and the partial wave can be written in the form

tIℓ (s) =
1

σ(s)
sin δIℓ (s) e

iδIℓ (s) =
1

2iσ(s)

(

e2iδ
I
ℓ (s) − 1

)

. (5.204)

We arrive at the definition of the phase shift for any s in the form

tIℓ(s) =
1

2iσ(s)

(

ηIℓ (s)e
2iδIℓ (s) − 1

)

, (5.205)
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where ηIℓ (s) is the inelasticity parameter equal to 1 in the case of appearance of no inelas-
ticity.

Note that the symmetry16 of Ax(s, t, u) in t↔ u exchange implies the same symmetry
for amplitudes T 0(s, t, u) and T 2(s, t, u); and the antisymmetry of T 1(s, t, u) with respect
to this exchange. Restricting ourselves to ℓ = 0, 1, the only non-zero partial waves in
these processes are thus S-waves for I = 0, 2 and P-wave for I = 1. Therefore, the usually
presented ππ phase shifts are

δ00 =
1

2
arg

(

1 +
iσ(s)

32π

∫ 1

−1

d(cos θ)T 0(s, cos θ)

)

, (5.206)

δ11 =
1

2
arg

(

1 +
iσ(s)

32π

∫ 1

−1

d(cos θ) cos θ T 1(s, cos θ)

)

, (5.207)

δ20 =
1

2
arg

(

1 +
iσ(s)

32π

∫ 1

−1

d(cos θ)T 2(s, cos θ)

)

. (5.208)

Schenk [120] has proposed the following parametrization of their energy dependence

tan δIℓ (s) = σ(s)P 2ℓ
(

AI
ℓ +BI

ℓP
2 + CI

ℓP
4 +DI

ℓP
6 + . . .

)

(

4m2
π − sIℓ

s− sIℓ

)

, (5.209)

where P =
√
s
2
σ(s) is 3-momenta of the pions in center-of-mass system [cf. (5.12)] and

sIℓ specify the values of s where tan δIℓ (s) diverge, i.e. where δIℓ (s) go through 90◦. Since
tan x ≈ x for small x, the parameter AI

ℓ corresponds to the appropriate scattering length
aIℓ and similarly BI

ℓ is related to the effective range [cf. (5.11)].

In [118] Roy has written for the partial waves of ππ scattering an infinite set of twice17

subtracted dispersion relations, known as Roy equations. The required subtraction con-
stants can be identified with a0 and a2. In [13] these equations were used together with
experimental data on phase shifts at high energies and with the theoretical values of scat-
tering lengths from [49] and determined the corresponding Schenk parametrization. In [56]
this analysis was extended by using new experimental measurement also for the scattering
lengths. In the same paper the matching of the dispersive representation we are using for
ResPh was made. In [69] it was pointed out that Schenk parametrization is not physical
and the alternative representation of the ππ phase-shifts was proposed (using physical po-
sitions of unelastic thresholds and it also parametrizes the region for energies higher than
800 MeV.). In the following we take unconstrained fits to data (UFD) fit from there, which
gives

a00 = 0.218± 0.009, a20 = −0.052± 10, a11 = (37.3± 1.2) · 10−3m−2
π . (5.210)

16Note that this symmetry originates in isospin symmetry connected with Bose/crossing symmetry,
i.e. just by using them we can come to the same conclusions for T I(s, t, u) directly.

17Note that if we do not introduce the cut-off into the dispersion relations, we can use the Froissart
bound [66] together with analysis of Jin and Martin [85] and find that two subtraction are sufficient.
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Figure 6: Comparison of various analyses for ππ phase shift δ00 . We have included Schenk
parametrization obtained from [56] and dispersive parametrization matched to it ResPh,
the unconstrained fits to data analysis from [69] and finally our one-loop fit to this result
Fit4.

We show the corresponding functional behavior corresponding to these two recent de-
terminations from [56] and [69] on Figures 6, 7 and 8. We see that to a good precision level
it is still enough to take the values from [56] supplemented by their error-bars. However,
visible differences between these two parametrizations occur around (0.3÷ 0.4)GeV2. We
have added into the pictures also the phase shifts stemming from the amplitude ResPh,
which is connected with the Schenk parametrization of [56] as explained above.

After we have everything prepared we can return to the original motivation of this
section and find the one-loop representation reproducing well these phase shifts. As was
explained above, we have chosen to fit the scattering-length parametrization since such fit
is stable at the threshold with respect to higher order corrections, and it has shown up
that the representation with the restoring polynomial (5.154) that takes into account the
crossing properties works better that the one with the simpler form of this polynomial.
Since our representation should work for low-energies and for larger energies it can be
worse, we have weighted the fit of the individual phase shifts by choosing the points of
data set with exponentially increasing distances (the number of fitted points in a interval
of s at the threshold is more than the interval of the same size for larger energies and this
number for the interval of fixed size decreases exponentially) — naturally, the result of the
fit depends on the exact choice of this prescription for choosing the fitting points. The
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Figure 7: Comparison of various analyses for ππ phase shift δ11 . The included data sets are
the same as on the previous Figure.

fitting procedure is affected also by the fact that we have to perform coupled fit on three
data-sets δ0, δ1 and δ2. Since the value of δ0 for fixed s is larger than those of δ1 and δ2, we
have decided to use weights of the datasets (w0, w1, w2) = (1, 5, 5). This choice is another
source of ambiguity which can change the fitting result. However, at the current level of
precision and since we use this result rather for determination of error connected with the
ππ inputs in our further analysis, the result of such procedure is sufficient for our purposes.

The fit of the UFD parametrization [69] was performed in Wolfram Mathematica

and we have obtained

a = −0.1783(2), b = −0.02626(3), 103λ̂1 = −0.198(7), 103λ̂2 = 0.347(2) (5.211)

with the correlation matrix

a b λ̂1 λ̂2
a 1 −0.61 0.87 −0.77
b 1 −0.81 0.60

λ̂1 1 −0.94

λ̂2 1

(5.212)

and adjusted r-squared 0.99994 on 284 degrees of freedom. We refer to the result of this
fit as Fit4. We have added it into plots on Figures 4–8. We see that this fit reproduces
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Figure 8: Comparison of various analyses for ππ phase shift δ20 . The included data sets are
the same as on the previous two Figures.

well the δ00 from [69] on whole the kinematic region (even better than ResPh) while δ11 with
δ20 are reproduces only up to ∼ 0.22GeV2 (for these two phase shifts ResPh that includes
also two-loop effects is more reliable). Similarly, the real parts of Ax(s, t, t) corresponding
to Fit4 and ResPh are in agreement, whereas for their imaginary parts there occurs a
deviation already at low energies. Nevertheless, Fit4 works best of all parametrizations
that include just one-loop effects.

5.12 Conclusions for ππ scattering amplitudes

We have constructed parametrization of ππ scattering amplitudes that takes into account
two-loop effects and the full isospin breaking connected with mπ± 6= mπ0 . It can be written
in terms of physical scattering lengths or in terms of subthreshold parameters.

This parametrization can be used as starting point for many phenomenological analyses,
such as analysis of the physical ππ scattering amplitudes or of ππ form-factors. However,
as was already stated, our main purpose of the construction of ππ scattering processes is
the analysis of its influence on the K → 3π and η → 3π decay processes. Moreover, the
numerical analysis performed in this work concerns only the latter process and therefore
we have determined the values of the parameters just in the case of isospin conservation.
Nevertheless, the numerical analysis of the isospin breaking effects is also in progress.
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Chapter 6

K → 3π and η → 3π decays.

General properties.

Our next task (and also the one we are most interested in) will be the dispersive construc-
tion of the amplitudes of K → 3π and η → 3π decay processes [in the case we want to
speak about both of these processes, we denote them generically as P → 3π]. Our final
aim is to include the isospin breaking effects induced by the mass difference between the
mesons belonging to the same isomultiplet. For the sake of brevity we have divided the
analysis into several steps. A discussion of general properties of all these processes and a
presentation of motivation for their studies is given in the rest of this chapter. In the next
chapter we address the computation in the lowest order in the isospin symmetry breaking.
As is discussed further on, it means an isospin symmetric computation (IB0) in the case
of K → 3π decays; whereas for η → 3π processes, which are forbidden in IB0, the lowest
(non-zero) order corresponds to the first order in the isospin breaking (IB1). Finally, in
Chapter 8 we take into account the complete isospin violation induced by the mass dif-
ferences of the charged and the neutral pions (and kaons). There we perform the second
iteration of our construction procedure (leading to NNLO results) only for the P → 3π0

decay processes of the neutral mesons P 0 since in all the other cases there appear further
complications, which will be addressed in our next work.

6.1 Motivation

Our experimental knowledge of the processes P → 3π has greatly improved during the
recent years, and is likely to improve further still in the near future. The sizes of the
collected data-samples in the case of kaons, for instance, outgrow by orders of magnitude
those that were available before. This increase in statistics has prompted various theoretical
studies [27,43,44,68,47,36,37,33,39,82,50,122] of these decay modes, often with emphasis on
isospin breaking contributions. Indeed, from the theoretical point of view, these processes
are interesting because they provide access to fundamental quantities. For instance, the
rates for the decays η → 3π, which are forbidden in the isospin limit, offer a good possibility
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to obtain the value of the quark mass ratio

R =
ms − m̄

md −mu
. (6.1)

We perform such analysis in Chapter 9.

Furthermore, the processes with two neutral pions in the final state exhibit the so-
called cusp effect, which contains information on the ππ scattering lengths in the S-wave.
In particular, decays K± → π±π0π0 and KL → 3π0 have already been studied from this
point of view by NA48 [77] and KTeV [3] collaborations.

Traditionally, these processes have most of the time been analyzed with a polynomial
parametrization in terms of slopes and curvatures of the particular amplitude, usually
referred as Dalitz plot parametrization (which is discussed in Section 6.4), and theoretical
expressions have often been given in this form. It is clear that the study of non-analytic
features of the amplitudes (mainly beyond the mπ± = mπ0 limit), such as a cusp, cannot
be done within such a simple framework. The aim of the following chapters is therefore
to construct a model independent form of two-loop amplitudes of the processes mentioned
above exhibiting the correct unitarity parts coming from the ππ intermediate states.

As was discussed in Section 5.3, these are the only states that, up to two loops in the
chiral expansion, give rise to non-analytic structures to the amplitudes inside the decay
region. Other two-meson intermediate states, such as Kπ, ηπ or KK, correspond to
more remote thresholds. Inside the decay region (i.e. sufficiently far below them), their
effects can be appropriately approximated and described by a polynomial with the terms
up to the third order in Mandelstam variables [cf. also Figure 9]. Let us recall that
intermediate states with more than two mesons contribute only into higher orders in the
chiral expansion, and are not considered in the analysis (also their numerical effects are tiny
as is illustrated on the η → 3π decay in Chapter 9). Note that this is a direct consequence
of the reconstruction theorem and the validity of these arguments rests among others on
three subtractions we have taken there. In general, if we took a somehow simplified form
of the theorem (e.g. with less subtractions) without imposing some additional assumptions
on the amplitudes, we could miss some contribution to them. It is still possible that the
genuine physical amplitudes fulfill such assumptions, but if we want to be cautious and
base our analysis only on the assumptions of Chapter 2, we have to employ the theorem
in the form it was proved there.

The dispersive construction is just an adaptation of the methods of the reconstruction
theorem from the previous chapters on a slightly more complicated case corresponding
to the amplitudes of the scattering processes Pπ → ππ in the threshold region. The
amplitudes for the decay processes P → 3π are then obtained by an analytic continuation
inside the physical decay region in the Mandelstam plane.

In the current work, we do not include real or virtual photons, and all the isospin
breaking is given just by the difference in the physical masses of π± and π0. We also do
not address the possible violation of CP invariance.
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6.2 Processes in question

Our analysis considers the following processes

K± → π0π0π±, [M̃±
x ] (6.2a)

K± → π±π±π∓, [M̃±
c ] (6.2b)

KL → π0π0π0, [M̃L
0 ] (6.2c)

KL → π+π−π0, [M̃L
x ] (6.2d)

KS → π+π−π0, [M̃S
x ] (6.2e)

η → π0π0π0, [M̃η
0] (6.2f)

η → π+π−π0, [M̃η
x] (6.2g)

neglecting CP-violating effects. A natural framework for description of these processes has
evolved to be chiral perturbation theory, in the case of K decays extended to include also
weak non-leptonic decays [88]. Nevertheless, technical complications in computation of the
higher and higher orders together with an increasing number of need-to-be-determined con-
stants have contributed to a wider interest also in alternative phenomenological methods.
Among them the most favorable are the ones using unitarity properties of the amplitudes
or the methods inspired by non-relativistic effective theories.

We are going to describe the decays of the following three types.

K± and K0
L decays

Since kaons are the lightest particles carrying strangeness and this quantum number is
conserved by strong interactions, their decay have to be mediated by weak interactions.
Inclusion of the non-leptonic weak interactions into χPT was done by Kambor, Missimer
and Wyler [88] already in 1989 by adding operators changing isospin by 1/2 and 3/2 into
the chiral Lagrangian. Using their framework, in [89] they have computed amplitudes of
these decays up to the next-to-leading order, at that time ignoring all the isospin breaking
effects (cf. also [32]). The most complete work in including them but still ending at NLO
is a sequence of papers by Bijnens and Borg [27, 28, 29].

The importance of these processes has arisen after the discovery of the cusp effect in
K± → π±π0π0 decay by NA48 collaboration [20], which has been proposed by Cabibbo to
be a potentially clear method for the determination of the ππ scattering lengths a0−a2 [43].
In the same paper he sketched a simple toy-model description of this process using unitarity
properties and so explained the appearance of the cusp. We reformulate his argumentation
in Section 6.5.

A continuation of his ideas and a completion of the NNLO computation is given in
[44]. By assuming a simplified analytic structure of the amplitude and using unitarity of
scattering matrix, the decay amplitude in the vicinity of the cusp is expressed there as an
expansion in scattering lengths ai. In [68] the same assumptions are made but in addition
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to them the isospin symmetric NLO result of χPT is used as an input for the real parts of
the amplitudes.

It was pointed out by the authors of [47] that the correct analytic structure of these
amplitudes is more complicated and they presented a method inspired by non-relativistic
effective field theory (NREFT) based on a combined expansion in ai and in formal non-
relativistic parameter ε. They use a computation done in modified NREFT with non-
local Lagrangian (which obeys the Lorentz invariance) supplemented by the threshold
expansion of the amplitudes for the construction of the non-analytical parts of the P → 3π
amplitudes induced by ππ rescatterings. The polynomial part of the amplitudes is absorbed
into a redefinition of the parameters of the Lagrangian. With that they succeeded in
a continuation of the non-relativistic expansion to the whole decay region, even though
this formal expansion would diverge at the edge of this region, where the outgoing π is
relativistic. One of the profits of using NREFT based computation is the fact that the
amplitudes have there a very simple expansion in ai. For more details see [72]. Finally,
they took advantage of having a Lagrangian formulation and introduced into computations
also real and virtual photons, having so in this aspect the most advanced result [37].

η decays

η → 3π decays violate G-parity1. Therefore, they have to proceed via isospin breaking
effects. There are two mechanisms of this breaking, either through the electromagnetic
(EM) interactions, which are proportional to the electric charge squared,

HIB
QED(x) = −1

2
e2
∫

dyDµν(x− y) T (jµ(x)jν(y)) , (6.4)

where Dµν(x− y) is the photon propagator, T denotes the operator of time-ordering and
jµ(s) is the current density containing the fields corresponding to the charged particles of
the theory; or through the isospin breaking mass difference between u and d quarks,

HIB
QCD(x) =

md −mu

2

(

d̄(x)d(x)− ū(x)u(x)
)

. (6.5)

However, even though the EM interactions have a large effect on the mπ± −mπ0 dif-
ference and on the pion decay constant Fπ, it has turned out that their influence on the

1G-parity (isotopic parity) is a combination of charge conjugation and an isospin rotation by π about
the second axis,

G = CeiπT2 . (6.3)

G-partity of η is even, whereas the one of π is odd. A system of n pions obeys G-parity ηG = (−1)n.
We can deduce the impossibility of the decay as a result of isospin conservation and charge conjugation

invariance (C-invariance) without even introducing G-parity. Indeed, the final state has to have the total
isospin I = 0 and is therefore totally antisymmetric with respect to the permutation of the three pions
(the only allowed state is then π+π−π0). Due to Bose symmetry, the corresponding amplitude is then
totally antisymmetric under exchanges of the momenta of these three pions. On the other hand, according
to C-invariance, the amplitude has to be symmetric with respect to the exchange of the momenta of the
π+ and the π−, which implies that the amplitude is zero.
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η → 3π decay amplitudes is very small [126,23,59]. Hence, HIB
QCD represents the dominant

contribution and the amplitude is proportional to mu −md. The leading behavior is given
by the results computed to the first order in this isospin breaking parameter, in IB1.

Passing over the early computations using the PCAC methods (e.g. [24, 51, 115]), the
first computation of these amplitudes using chiral perturbation theory to NLO [75] was
performed already immediately after the formulation of SU(3) χPT in [74].

Quite recently the NNLO computation has been published [33]. There is included also
the comparison of these IB1 results together with experimental data, the result of which is
used by many authors as the most precise determination of the isospin breaking parameters
R and Q, even though there are still sign discrepancies in the determination of Dalitz pa-
rameters describing the energy dependence of the η decay amplitudes between experiment
and this analysis (cf. also Section 6.4). This discrepancy is one part of the motivation for
our analysis performed in Chapter 9, which uses our dispersive parametrization of the next
section in order to put together consistently the information we have from the experiment
with the information coming from the analysis of [33], resulting in a better determination
of the parameter R. But for now, let us return back to this historical overview of the
computations of η → 3π amplitudes.

By comparison of these three successive orders in the chiral expansion one observes that
η → 3π represents a case where the chiral corrections are large [26]. This is connected with
the higher importance of the ππ rescattering effects. Already at the one-loop level (before
the appearance of the paper [33]) this observation led [90, 17] to abandon, in a certain
sense, the strict chiral counting, attempting instead to obtain the amplitudes with two-pion
rescattering effects formally included to all orders. These approaches employ a restricted
version of unitarity (taking into account just the ππ intermediate states) and construct
dispersion relations of Khuri-Treiman type neglecting the l ≥ 2 partial waves (and the
other intermediate states). The resulting amplitudes are obtained by finding fixed-point
solution of those dispersion relations numerically together with the determination of the
values of subtraction constants from the matching with NLO χPT results at specific points.
Thereby the numerical resummation of all the contributions with any number of subsequent
two-pion rescatterings is performed2. Although the ideas used in both the papers are in
many concepts the same, the formalisms in which they were written are different. The
main phenomenological difference between them is that in [90] the validity of the chiral
expansion is assumed whereas in [17] the chiral counting is believed to converge only in the
vicinity of the Adler zero (for the discussion of the specialties of this point see Section II.C
in [VI]). On the other hand, in [17] a simple high-energy behavior of the amplitudes
leading to the possibility to consider the higher partial waves for any energy negligible
to a considered precision is assumed, and hence just two subtractions are taken; while
in [90] no such additional premises are added and three subtractions are taken (cf. our
discussion of a need for at least 3 subtractions within the proof of the reconstruction

2Note that some authors use the name “dispersive methods” solely for the computations that resum
such rescatterings to an infinite order. This can lead to some misunderstanding of the work that the
reader is currently reading. Here the word “dispersive” is deduced from and refers to the use of dispersion
relations.
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theorem in Section 2.4). Recently, there appeared an attempt [50] to redo the analysis
of [17]; eventually also with obtaining the subtraction constants by matching to the new
NNLO χPT results [33].

As we have already noted, all these studies compute their results in IB1 order and
exactly the same is true for our NNLO result of the next chapter. Nevertheless, although
the η → 3π processes have a different physical background than the weak KL → 3π decays,
by a simple change of the interpretation of the constants appearing in that amplitude we
obtain the complete isospin breaking (IB) results of the η decays, including also description
of the cusp effect in η → 3π0. This will be discussed in Chapter 8.

The similar fact is true also for the non-relativistic approach. Changing the interpreta-
tion of the constants in the analysis of KL → 3π decay [36], in [82] there was also made a
prediction of the strength of the cusp effect there. The NREFT formalism was also use in
order to attempt to shed light on the Dalitz parameter α discrepancy [122]. Note, however,
that in this case the non-relativistic parameter is even more formal. [In the center of Dalitz
plot the momenta of the outgoing pions in the rest-frame of the decaying particle (counted
in their expansion as O(ε)) are 90% of their rest energy (counted as O(1)).]

There exist also further approaches using different methods, such as the parametrization
inspired by the Bethe-Salpeter equation within the unitarised χPT [39].

In Chapter 9 we recall some further arguments leading to the conclusions that our
approach can improve the determination of the mu and md masses and such analysis is
also performed there.

KS decay

Our procedure can be easily modified in order to obtain also the CP even part of the
decay amplitude KS → 3π (it means the contributions of the isospin states I = 0 and
I = 2 to this process). Nevertheless, its branching ratio is very small, and so the only
parameter connected with the energy dependence of this process usually measured in the
recent experiments (e.g. [16, 21]) is the interference parameter λ between KL → 3π and
KS → 3π processes,

λ =

∫

dy dxM̃L∗
x M̃S

x
∫

dy dx|M̃L∗
x |2

, (6.6)

where the integrations are taken over the whole decay region. However, there already exist
first measurements of the parameters of energy dependence (6.25) even though with a large
error of them (e.g. [15], see also Table 6).

From the theoretical point of view, this process is also covered by the χPT computations
up to NLO by Bijnens and his collaborators [32, 27, 28, 29].

6.3 Kinematics

Before the completion of all the motivational topics, we write a few words about kinematics
of the discussed processes and we introduce the rest of our notation, which will be used
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also in the following motivational sections. We start with our notation for the masses. The
masses of the pions are denoted in the same way as in Chapter 5, the masses of K±, KL

and KS are denoted by mK±, mKL and mKS , respectively, and finally mη denotes the mass
of η. In addition, we use the generic mass mP when talking about the mass of any P .

As was mentioned above, we obtain the amplitude M̃c
i of (6.2) that describes the decay

process3

P c(k) → πa(p1)π
b(p2)π

e(p3) (6.7)

by analytic continuation of the amplitudes of the corresponding scattering process

P c(k)πd(p) → πa(p1)π
b(p2) (6.8)

by taking p = −p3 and πd as the charge conjugated pion to πe.
Unlike for the pion-pion scattering case, the scattering amplitudes are denoted here

by the more explicit notation Ãc
ab with ab corresponding to the charge states of the pions

in the final state, and c being ± for decaying K±, L or S for KL,S and η for P = η.
However, the notation for the decay amplitudes and for the polynomial constants appearing
in the processes is given again by the one-letter lower indices 0, c and x according to
the mnemonics similar to the pion case (5.1). These three indices are sufficient thanks
to the fact that we exploit the crossing relations relating different scattering amplitudes
containing the same particle P and the same number of charged pions. As we do not
take in the unitarity relations into account the intermediate states involving particles P ,
in every relation there always appears just one specific particle P (i.e. for instance in the
relations for a process with KL there never appears any particle K+), so there is no need to
indicate explicitly for every variable the specific index P . For the sake of shorter notation
we have decided to omit these indices on the right-hand-sides of all relations in such cases.
To avoid confusion of some of the quantities connected to processes containing particle P
with the one related to the ππ scattering, we use a tilde above the P quantities where such
confusion could occur.

Depending on the particular phase convention used for various states, in the analytic
continuation connected with the crossing relation

M̃c
i(k, p1, p2, p3) = ǫÃc

ab(k, p = −p3, p1, p2) (6.9)

the residual phase factor ǫ might appear. The convention that we use in the whole of this
work implies ǫ to be minus sign in the case of crossing charged pion between the final and
the initial states (in the S-channel it corresponds to a charged πe) and plus in all the other
cases.

We use the usual Mandelstam variables, in the scattering region

s = (k + p)2, t = (k − p1)
2, u = (k − p2)

2, (6.10)

while in the decay region
sj = (k − pj)

2. (6.11)

3As is usual in the literature, we denote the odd pion as the third one [cf. (6.2) and Table 5].
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Decay amplitude S T U s̃ci
M̃+

x : K
+ → π0π0π+ −Ã+

00 Ã+
+0 Ã+

0+ 3s̃x = m2
K± + 2m2

π0 +m2
π±

M̃+
c : K

+ → π+π+π− −Ã+
++ −Ã+

−+ −Ã+
+− 3s̃c = m2

K± + 3m2
π±

M̃L
0 : KL → π0π0π0 ÃL

00 ÃL
00 ÃL

00 3s̃0 = m2
KL + 3m2

π0

M̃L
x : KL → π+π−π0 ÃL

+− −ÃL
0− −ÃL

+0 3s̃x = m2
KL + 2m2

π± +m2
π0

M̃S
x : KS → π+π−π0 ÃS

+− −ÃS
0− −ÃS

+0 3s̃x = m2
KS + 2m2

π0 +m2
π±

M̃η
0 : η→ π0π0π0 Ãη

00 Ãη
00 Ãη

00 3s̃0 = m2
η + 3m2

π0

M̃η
x : η→ π+π−π0 Ãη

+− −Ãη
0− −Ãη

+0 3s̃x = m2
η + 2m2

π± +m2
π0

Table 5: Crossing processes belonging to the individual P → 3π decay processes.
With S we denote the S-channel that can be obtained by the crossing (s3, s1, s2) to (s, t, u).
The T- and the U-channels result from the crossing (s3, s1, s2) to (t, s, u) and (u, t, s),
respectively. s̃ci corresponds to the center of the Dalitz plot of the particular process (for
the sake of simpler notation we do not repeat there the upper index c).

These variables satisfy
s+ t + u = 3s̃ci = s1 + s2 + s3, (6.12)

where s = t = u = s̃ci , with
4

3s̃ci = m2
P +m2

πa +m2
πb +m2

πe (6.13)

corresponds to the center of the Dalitz plot.
Up to the phase factor the crossing relation then means a substitution of the variables

(s, t, u) by (s3, s1, s2) together with the appropriate analytic continuation from the scat-
tering to the decay region. We summarize the crossed amplitudes belonging to each of the
considered decay amplitudes in Table 5. Note that the decay amplitudes of K− are equal
to the ones of K+ thanks to CP symmetry, violation of which is not considered in our
approach.

The constraints (6.12) tell us that just of the kinematic variables are independent. We
can choose them to be, for instance, s3 = s and s1 = t. The plot of the dependence of the
decay amplitudes on these variables is called Dalitz plot. The physically allowed kinematic
regions for the different crossed amplitudes are constrained by kinematic limits arising from
the condition that the energy of a real particle has to be at least equal to its rest energy.
Therefore, for a decay process the variable s3 is bounded by

(mπa +mπb)2 ≤ (p1 + p2)
2 = s3 = (k − p3)

2 ≤ (mP −mπe)2, (6.14)

whereas for a scattering in the S-channel

s ≥ (mP +mπd)2. (6.15)

4Note that in some relations we suppress the index c identifying the particle P .
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[N.B. mP > mπa +mπb +mπd otherwise the decay would be impossible.]
In both cases for a fixed value of s3 we can obtain bounds for s1 using the following

arguments. s1 is an invariant quantity, therefore, it is enough to find the bounds in any
frame of reference. We choose the rest frame of the system p1 + p2. In this system the
energies of the particle with the momenta p2 a the one with p3 are fixed,

E
(12)
2 =

s3 +m2
πb −m2

πa

2
√
s3

, E
(12)
3 =

m2
P −m2

πd − s3

2
√
s3

. (6.16)

The minimal and the maximal value of the quantity (p2 + p3)
2 for some real particles are

then settled by the situations in which they move parallel or antiparallel to each other.
After some simple algebra we find the bounds for s1 to be

s−1 (s3) ≤ s1 ≤ s+1 (s3) (6.17)

with

s±1 (s3) =
3s̃ci − s3

2
− ∆̃Pπd∆πaπb

2s3
± λ̃

1/2

Pπd(s3)λ
1/2

πaπb(s3)

2s3
, (6.18)

where we have already used the tilde denoting the variable containing the particle P .
[Naturally, these limits coincide with the boundary values from (3.28).] From the crossing
we simply obtain the regions also for the T- and the U-crossed amplitudes. In Figure 9 we
plot these kinematic regions in the case of K+ → π0π0π+ decay. The figures for the other
processes look similarly. As an illustration supporting the arguments of the discussion
from page 102 regarding the intermediate states that has to be taken into account, we
have indicated on this figure also the position where the kinematic variables equal m2

K±.
Any intermediate state that contains this particle has to have its threshold behind one
of the dotted line (in the sense outside from the center of the triangle). In the picture
we verify that the decay region is far away from such thresholds, which indicates that a
polynomial expansion of their contributions describes them with a very good accuracy.

In addition to the pion quantities we have defined in the previous chapter, we introduce
the following further useful notation

∆̃+ = m2
P −m2

π± , ∆̃0 = m2
P −m2

π0 , ∆̃ = m2
P −m2

π, (6.19)

µ̃±
c = (mP ±mπ±)2, µ̃±

0 = (mP ±mπ0)2, µ̃± = (mP ±mπ)
2. (6.20)

A similar philosophy is followed also by the notation for the Källen’s quadratic form (2.10),

λ̃+(s) = λ̃Pπ±(s), λ̃0(s) = λ̃Pπ0(s), λ̃π(s) = λ̃Pπ(s). (6.21)

6.4 Dalitz plot parametrization

The standard parametrization of a decay process P → 3π is called a Dalitz plot parame-
trization (cf. [110]). It is a polynomial expansion of |M c

i (s1, s2, s3)|2 around the center of
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D

SU

T

s1 = t = 0

s 3
=
s
=
0

s
2
=
u
=
0

Figure 9: Kinematic regions in the Dalitz plot of K+ → π0π0π+. D denotes the decay
region and S, T and U are the scattering regions in the corresponding crossing channels.
On the solid lines the individual kinematic variables equal to zero. By the dotted lines we
have indicated the positions where these variables equal to m2

K±.

the Dalitz plot

|M̃c
i(s1, s2, s3)|2
|M̃c

i(s̃
c
i)|2

= 1+a(s3−s̃ci)+b(s3−s̃ci)2+c(s2−s1)+d(s2−s1)2+e(s3−s̃ci)(s2−s1)+· · · .

(6.22)
The parameters are usually normalized in order to be dimensionless. Such normalization
and the labels used for the parameters differ for K and for η decays, so we discuss them
separately.

For theoretical comparisons it is sometimes useful to introduced also the linear Dalitz
parametrization of the amplitude itself which is discussed and employed in Appendix H.

6.4.1 Dalitz plot parametrization for K → 3π decays

In the case of K → 3π decays, the normalization factor is chosen to be the mass of the pion
in the isospin limit m2

π. Its physical value is defined by various authors differently, but the
most common choice is to take it equal to the mass of the charged pion m2

π±. Using the
kinematic variables

x =
s2 − s1
m2

π±
, y =

s3 − s̃ci
m2

π±
(6.23)



6.4. DALITZ PLOT PARAMETRIZATION 111

Decay Parameter Exp. χPT

K+ → π0π0π+ g 0.626± 0.007 0.638

h 0.052± 0.008 0.074

k 0.0054± 0.0035 0.0045

K+ → π+π+π− g −0.21134± 0.00017 −0.216

h 0.01848± 0.00040 0.012

k −0.00463± 0.00014 −0.0052

KL → π0π0π0 h (KTeV [3]) 0.00059± 0.00119 −0.0072

h (NA48 [101]) −0.0061± 0.0010

KL → π+π−π0 g 0.678± 0.008 0.677

h 0.076± 0.006 0.085

k 0.0099± 0.0015 0.0055

KS → π+π−π0 γ (3.3± 0.5)·10−8 3.4 · 10−8

ξ (0.4± 0.8)·10−8 −0.2 · 10−8

Table 6: Dalitz parameters for K → 3π decays. The experimental values are taken from
[110] with the exception of KS parameters that are from [15]. In the last column there are
given results of χPT fit from [32].

the parametrization then reads

|M̃c
i(s1, s2, s3)|2
|M̃c

i(s̃
c
i)|2

= 1 + gy + hy2 + jx+ kx2 + fxy + · · · . (6.24)

Note that in the processes K± → π±π±π∓, K± → π0π0π± and KL → 3π0, Bose symmetry
dictates the quantities that are odd in x to be zero. Similarly, since we consider also CP
symmetry to be conserved, it has to be true also for the decay KL → π+π−π0. Therefore,
j = f = 0 for all these processes.

For the same reason, the amplitude KS → π+π−π0 has to contain only the terms with
odd powers of x. With this fact there is connected the usual alternative parametrization
of this process (the linear one) in the way

M̃S
x = γSxx− ξSxxy + · · · . (6.25)

But let us return to the parametrization (6.24). Since the process KL → 3π0 obeys also
additional (Bose) symmetries, further constraints appear, g = 0 and k = h

3
. Finally, im-

posing the isospin symmetry (cf. Appendix I) there will appear some (in)equalities between
the parameters similar to the ones derived in Appendix H for η.

In Table 6 we list experimental values of the parameters from PDG [110]. These values
are compared with the calculation in NLO χPT [32].
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Recently there appeared new empirical parametrizations that try to include the exis-
tence of cusp-like structures in the amplitudes. One such parametrization is the one from
NA48/2 group [22]

d|M̃c
i(x, y)|2
dydx

∝
(

1 +
g

2
y +

h

2
y2 +

k

2
x2 + a(yt − y)qθ(yt − y) + b(y − yt)

qθ(y − yt)

)2

f(y),

(6.26)

where y = yt ≡
4m2

π±−s̃ci
m2

π±
is the cusp point, θ(y) denotes the Heaviside step function and

the function f(y) = 1 + pwδ(y − yt) takes into account additional contributions from the
π+π− bound states and similar electromagnetic effects in the vicinity of the cusp. Their
analysis then leads to the following values of these parameters

g = 0.672± 0.011, (6.27)

h = −0.027± 0.011, (6.28)

k = 0.0081± 0.0005, (6.29)

a = −0.130± 0.007, (6.30)

b = 0.07± 0.03, (6.31)

q = 0.45± 0.06. (6.32)

6.4.2 Dalitz parametrization of η → 3π decays

In the parametrization of η → π+π−π0 there appears the energy of reaction

Qη = mη − 2mπ± −mπ0 . (6.33)

The variables of standard use for this decay are then

x =
√
3
T1 − T2
Qη

=

√
3 (s2 − s1)

2mηQη
, y =

3T3
Qη

−1 =
3

2mηQη

(

(mη −mπ0)2 − s3
)

−1, (6.34)

where Tj is the kinetic energy of the j-th pion in the rest frame of η. In the case we use
in this definition the physical values of the masses, the point x = y = 0, around which we
expand the amplitude, does not coincide exactly with the center of the Dalitz plot. It is
shifted slightly in the s3 direction to

s3(x = 0, y = 0) = s̃ηx +
2

3
(mπ± −mπ0) (2mη −mπ± −mπ0) . (6.35)

However, in the isospin limit,

y =
3

2mηQη
(s̃ηx − s3) (6.36)

and the center of the expansion x = y = 0 matches the center of the Dalitz plot.
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a b d f
Gormley et al. [79] −1.17± 0.02 0.21± 0.03 0.06± 0.04
Layter et al. [104] −1.08± 0.014 0.034± 0.027 0.046± 0.031
Crystal Barrel [2] −1.22± 0.07 0.22± 0.11 0.06± 0.04

KLOE [8] −1.090± 0.020 0.124± 0.012 0.057± 0.017 0.14± 0.02
χPT NNLO [33] −1.271± 0.075 0.394± 0.102 0.055± 0.057 0.025± 0.160

χPT + Unitarity [90] −1.33 0.26 0.10
NREFT [122] −1.213± 0.014 0.308± 0.023 0.050± 0.003 0.083± 0.019

Table 7: Values of the Dalitz plot parameters of the η → π+π−π0 decay coming from
various experimental and theoretical determinations.

The parameters are usually labeled according to

|M̃η
x(s1, s2, s3)|2 = |A|2

(

1 + ay + by2 + cx+ dx2 + exy + fy3 + gx2y + · · ·
)

, (6.37)

where A is the value of the amplitude M̃η
x in the point x = y = 0. Charge conjugation

forbids the appearance of terms containing odd powers of x in this expansion, and so
c = e = 0.

The values of the parameters obtained by various experiments and by a few theoretical
determinations are listed in Table 7. All of the experiments find the values of c and e
compatible with zero. From the table it is obvious that the precision of the determination
from KLOE [8] exceeds significantly the precision of all the others, which are more than ten
years older. It is also up to now the only experiment that has determined the parameter
f with a reasonable precision.

At leading order, the parametrization of the η → 3π0 differential decay rate depends
only on the kinematic variable

z =
3

2m2
η(mη − 3mπ)2

∑

j

(sj − s̃η0)
2 =

3

2m2
η(mη − 3mπ)2

(

s21 + s22 + s23 − 3(s̃η0)
2
)

, (6.38)

which denotes the distance from the center of the Dalitz plot, normalized to one at the
edge of the decay region. However, higher-order corrections do not preserve this accidental
rotational symmetry, and we need again x and/or y from relations (6.34) with mπ± → mπ0 .
Note that the relation

z = x2 + y2 (6.39)

holds. The Dalitz plot parametrization of this process reads

|M̃η
n(s1, s2, s3)|2
|M̃η

n(s
η
0)|2

= 1 + 2αz + 2βy(3z − 4y2) + γz2 + · · · . (6.40)

The factor of 2 in front of α and β is a mere convention to stress the connection with the
direct linear Dalitz parametrization of the amplitude (see Appendix H). For a better visu-
alization of the violation of the (x, y) rotational symmetry at higher orders, it is convenient
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α
Crystal Barrel [1] −0.052± 0.020
Crystal Ball [127] −0.031± 0.004

WASA/CELSIUS [19] −0.026± 0.014
Crystal Ball @ MAMI-B [128] −0.032± 0.003
Crystal Ball @ MAMI-C [117] −0.0322± 0.0025

KLOE [9] −0.0301± 0.0050
WASA @ COSY [5] −0.027± 0.009
χPT NLO [75] 0.015
χPT NNLO [33] 0.013± 0.032

χPT + Unitarity [90] −0.014÷−0.007
U(3) χPT + Bethe-Salpeter [39] −0.031± 0.003

NREFT [122] −0.025± 0.005

Table 8: Experimental and theoretical values of the slope parameter α of the η → 3π0

decay.

to introduce the polar coordinates, x = ρ cos φ, y = ρ sinφ with the distance ρ2 = z, for
which we have y(3z − 4y2) = ρ3 sin(3φ).

Various experimental and theoretical determinations of the parameter α are given in
Table 8. Note the sign discrepancy between the pure χPT determinations (with however
large error bars) and the other determinations, both the theoretical and the experimental
ones, which we address in Chapter 9. Up to now, no experiment has so far published any
constraint on the other parameters, such as β.

In Appendix H we show a derivation of the following relation between Dalitz parameters
that results from the isospin symmetry,

α ≤ 1

4

(

b+ d− a2

4

)

. (6.41)

6.5 Cusp

We have already mentioned that in the processes with two neutral pions in their final state,
the cusp effect caused by different π+ − π0 masses can appear. It is connected with the
contributions of π+π− intermediate states rescattering to π0π0. Such a state generates a
square root singularity, which resides at 4m2

π± . In the case that the masses of the charged
and the neutral pions are different, it lies above the physical threshold, 4m2

π0 , and the cusp
is a result of the interference between the part of the amplitude containing this singularity
and the rest without it.

We illustrate this situation at the one-loop level. The contribution of the π+π− in-
termediate state in the S channel is represented by the Feynman diagram depicted on
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π−

π+

πe

P c

π0

π0

=

π−

π+

J̄+

πe

P c

π0

π0

ax

Figure 10: Feynman diagram connected with the appearance of the cusp in the process
P c → π0π0πc (P cπe → π0π0) at the one-loop level. The appearance of the square-root
singularity at 4m2

π± in this diagram is connected with J̄+(s). Contribution of this diagram
at that singularity point is proportional to the scattering length ax.

Figure 10. In its expression there appears one-loop function J̄+(s) [from (3.13)] behaving
in the vicinity of s = 4m2

π± like iπσ+(s) plus some analytic part. It means that around
that point the amplitude behaves as

M̃(s) = R(σ2
+) + πS(σ2

+)







i

√

1− 4m2
π±
s
, s > 4m2

π±

−
√

4m2
π±
s

− 1, s < 4m2
π±

, (6.42)

where the functions R(σ2
+) and S(σ

2
+) can be expressed as convergent series in

(

s− 4m2
π±

)

in the physical region of the P c → π0π0πc decay. The modulus square of the scattering
amplitude will then look near this singularity like

|M̃|2 =







R̄2 + S2π2
(

1− 4m2
π±
s

)

, s > 4m2
π±

R̄2 + S2π2
(

4m2
π±
s

− 1
)

− 2R̄Sπ

√

4m2
π±
s

− 1, s < 4m2
π±

, (6.43)

where R̄ now includes also regular contributions of the tree amplitude and of the other
intermediate states (in our NLO case the only other intermediate state is the π0π0 one).
Note that a similar situation happens in all crossed channels.

It is obvious that the cusp emerges only in the mπ0 6= mπ± case and its strength is
sensitive to the π+π− → π0π0 scattering at threshold (mainly to the scattering length of
this process). This property can be used for a determination of the scattering lengths from
the measurement of the cusp.

Let us try to estimate the relative sizes of the cusps in various processes where a
pseudoscalar, namely K+, KL or η, decays into three pions. (This discussion is inspired
by [44] and [58].) Because the pion rescattering part will be approximately the same for all
the processes, we may consider the notion of the “visibility” of the cusp in these processes
by comparing the relative ratios between the cusps and the regular parts of the amplitudes,

γ(P c) =
κc|M̃P c→π+π−πc| |M̃P c→π0π0πc|

|M̃P c→π0π0πc|2

∣

∣

∣

∣

∣

cusp

= κc
|M̃P c→π+π−πc|
|M̃P c→π0π0πc|

∣

∣

∣

∣

∣

cusp

(6.44)
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where |M̃| is the absolute value of the matrix element of the indicated process and κc is
a multiplicity factor corresponding to that process, equal to 2 in the case the decaying
particle is charged (then two possible π+π− → π0π0 scatterings are possible), and to 1 in
the other cases. These ratios have to be evaluated at the cusp point s = 4m2

π±.
Using the measured relative decay rates and the values of Dalitz parameters from [110],

we obtain for these processes,

γ(K±) ∼ 7.3, γ(KL) ∼ 0.45, γ(η) ∼ 0.93. (6.45)

From that we can estimate that the effect is approximately 16 (8) times more pronounced
in the K± decay with respect to KL (η) decay.

The cusp effect in K± → π±π±π∓ decay was successfully used for the determination of
the a0 − a2 scattering length by NA48/2 [20]. Similar study for KL → 3π0 was performed
by KTeV [3] and is being performed by NA48/2 [77]. First indications of the cusp effect in
the η → 3π0 decay were also already observed (cf. e.g. [117]). This effect however appears
at the edge of the decay region5 and is therefore not simple to measure. In Chapter 8 we
present a parametrization of the processes P → 3π where the effect of the cusp is also
included. Note that there we give the NLO parametrization of all these processes and the
NNLO parametrization just of KL → 3π0 and η → 3π0 decays.

6.6 The reconstruction procedure

For the construction of Pπ → ππ amplitudes we would like to follow again the steps of the
reconstruction procedure of Chapter 3. However, here one serious complication appears.

Since particle P is unstable, one cannot derive dispersion relations, which are the basic
premise of the procedure, for such processes in the usual way. One way how to evade
this problem is to start with the mass of P such that this particle is stable (i.e. mP <
m1+m2+m3), in the following we refer to this situation as the “stable mP” case. For such
P all the arguments and the statements described before (and used for the ππ scattering)
remain valid and there appears no additional complication in the reconstruction procedure
of the amplitudes.

Nevertheless, in order to obtain results with some practical physical importance we
would need to find them for the physical value of mP . In some cases one can find an
analytic continuation in the parameter mP of such amplitude (obtained for stable mP )
that leads to the correct physical amplitude (with the physical mass of mP ). However, it
is important to stress once more that even thought the dispersion relations can be derived
and the amplitudes can be constructed for all the studied processes for the stable mP ,
the existence of such analytic continuation (leading to the correct physical result) is not

5In the (x, y) plane, the cusp is located on the segment y = y(4m2
π±) ∼ 0.773 and on two other segments

obtained by s ↔ t and s ↔ u (i.e. obtained by rotation of the original one by ±120◦ around the center
of the Dalitz plot). Its position thus does not respect the accidental rotation symmetry, and depending
on its direction in the (x, y) plane, the corresponding value of z changes from 0.597 to 0.883 as 0.597

cos(φ−φ0)
,

with φ0 = 0◦,±120◦.
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guarantied. Fortunately, in our applications such analysis is simplified by the fact that we
deal only with the amplitudes within the regions of kinematic variables where the chiral
expansion of the amplitudes makes sense. Thus, we can use the analytic properties of the
usual Feynman diagram method in the field theoretical framework of chiral perturbation
theory for the study of the existence and eventually also as a guiding line for writing the
correct form of such analytic continuation.

At the one-loop level, i.e. by performing the first iteration, the only non-analytic struc-
ture of the amplitude is induced by the bubble diagram (cf. Figure 30f) which leads to the
normal threshold singularity. On the other side, since the leading order amplitudes are
simply polynomials in Mandelstam variables, there is no ambiguity in the analytic contin-
uation of their partial waves and thereby of the one-loop discontinuities of the amplitudes
and the physical result for the physical value of mP can be written directly. Naturally, this
leads to the correct analytic structure of the one-loop amplitudes.

The situation for the second iteration is more involved. The case in which the masses of
the charged and the neutral pions are the same, i.e. if we want to compute the amplitudes
only to the leading order in the isospin breaking, was studied by Kacser and Bronzan [86,40]
resulting with the prescription for such analytic continuation in mP giving the correct
physical singularities. In Appendix J we recall the important steps of their analysis and
show that even for different masses of mπ± and mπ0 in the case of P 0π0 → π0π0 processes
the same Kacser prescription for the analytic continuation works. For these processes
there appears no principal complication and one can compute quite straightforwardly the
amplitudes also for them. The remaining cases are however more complicated — for
instance there appears an anomalous threshold and one can not avoid deforming the contour
of the dispersion relations. This leads us to the decision to leave their studies in the full
isospin breaking for our next work.

Therefore in this work we are in fact computing the second iteration only of the am-
plitudes of the processes where the masses of all the pions in the initial and in the final
states are the same, either because we work in the isospin limit or because they are the
same pion states.

For these processes the Kacser prescription suggest to compute the amplitudes for stable
mP and thereafter perform the analytic continuation of the results by taking

m2
P →

(

m2
P

)

physical
+ iε. (6.46)

By that we obtain the correct form of the results for the physical masses. However, in
the general discussion of the second iteration in Section 3.5 we have gain its result in the
integral form (3.81)–(3.82) [where there appear only integrals in one variable]. Therefore,
there suggest itself the possibility to make the analytic continuation already on the base of
these integrals by the knowledge of the analytic continuation of the integrand. It is even
unavoidably the only way for obtaining it for the parts of the result where we do not have
the results of integration in terms of functions with known analytic continuations. To that
end, it will be very handy to know the results of continuation (6.46) of the partial waves.
This is why we discuss their computation in Appendix K.
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Pπ → ππ
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Im f̃0,1(s)
of Pπ → ππ
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Figure 11: Schematic representation of the iterative two-step reconstruction procedure for
the Pπ → ππ amplitude. For the construction one needs to perform this procedure simul-
taneously also for the ππ scattering amplitudes appearing as the intermediate processes in
the original Pπ → ππ process.

6.6.1 Parametrization of polynomials

As was discussed already on few places of this work, the choice of the polynomial para-
metrization of the theorem can be crucial for its convergence properties. Inspired by the
Dalitz plot parametrization, we use for Pπ → ππ processes an expansion around the center
of Dalitz plot, although there could exist some better choices.

As is obvious from the reconstruction scheme on Figure 11, during the construction of
the Pπ → ππ processes we employ also the parametrization of the ππ scattering ampli-
tudes. We have constructed it in Chapter 5, where we have presented two possible forms
of it — either the partial-wave (scattering-length) parametrization or the subthreshold
parametrization similar to the one we have chosen for Pπ → ππ scattering. We can use
either of them and it is even possible to convert one into the other using relations from
Section 5.9. We have discussed there that the conversion from the subthreshold into the
partial-wave parametrization is more complicated than the other direction since then we
have to track down all uses of crossing relations to distinguish for example between ax and
at.

For the full isospin breaking results of chapter 8 describing the cusp it is natural to use
the scattering lengths as the parameters — actually, it was the reason why we have started
with this parametrization of the ππ scattering amplitudes.

For the parametrization of the isospin ππ amplitudes used in the results of Pπ → ππ
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amplitudes in the limitmπ± = mπ0 we have chosen also the partial-wave parametrization. It
has two advantages, we can check these results simply by performing limit mπ± → mπ0 and
by using the relations (5.157)–(5.162); and the results in the subthreshold parametrization
are simpler to obtain from them than when doing so from the other direction. The partial-
wave parametrization could be useful also in this case since its better description of the ππ
scattering data can lead to a better description of the P → 3π decay processes.

A special advantage of the partial-wave parametrization will occur when analyzing
η → 3π decays once we will have obtained the scattering lengths exactly from the parame-
trization of the K → 3π cusps — in our parametrizations of both of the processes there
appear the same ππ parameters and so the theoretical error induced by their uncertainties
can be reduced.

Nevertheless, for a simpler comparison and a check with χPT results (for η → 3π decays
with [33]) and to benefit from the analysis of ππ scattering for the subthreshold parameters
by Stern et al. [95, 56], the subthreshold parametrization for ππ scattering is more useful
and is explored for η → 3π in Chapter 9 in more detail.

6.6.2 Normalization of the amplitudes

Both the dispersive and the unitarity relations6 do not depend on the normalization of the
amplitudes and so using a dispersive method, which is based on these relations, we cannot
determine their normalization. It has to be fixed by matching of our parametrization of
the amplitude to the result of some theory that determines the scale, such as χPT. In order
to simplify such matching, we introduce the overall normalization parameter C [similarly
as in (3.1)] with some fixed value. The arbitrariness of the scale is then reflected in the
arbitrariness of the scale of the subthreshold parameters of Pπ → ππ that are obtained by
such matching.

Since the kaon decay is a flavour-changing weak decay, it should be proportional to
CKM matrix element squared and to Fermi constant GF . For all kaon processes we take

CK = −3

5
V ∗
usVud

GF√
2
. (6.47)

Already around relation (6.5) we have discussed that the η decay amplitude should be
proportional to mu − md. The natural choice of the normalization constant for η decay
processes is therefore for instance

Cη =

√
3

4

1

R
, (6.48)

6Naturally, if we have computed also with some other intermediate states than are the two-pion ones,
such as Pπ, in the unitarity relations there would appear the relative normalization of these two amplitudes
(ππ → ππ and Pπ → ππ). Then by measuring of the effects of those intermediate states, we could deter-
mine this relative normalization. However, as we have already discussed, the effect of such intermediate
states is very small — negligible and this determination cannot be performed.
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where the isospin breaking parameter

R =
ms − m̂

md −mu
(6.49)

depends on quark massesmu, md andms and the isospin averaged mass m̂ = 1/2(mu+md).
Note that Cη vanishes in the isospin limit. Therefore, if we compute the amplitude in

the leading order in isospin breaking IB1 (the mπ± = mπ0 case), by factoring this isospin
breaking quantity out of the amplitude the rest remains isospin conserving and from this
there follows why one usually loosely calls also this case as the isospin symmetric one.



Chapter 7

K → 3π for isospin conservation.

η → 3π in first order in isospin breaking.

After the general discussions of the previous chapter, we start with the studies of the
P → 3π decay processes in the leading order in the isospin breaking. We have already
explained there that in the case of η these decays are forbidden in the isospin limit and so
the leading order is the first one in the isospin breaking. Nevertheless, in the dispersive
approach, this just means that the leading order amplitude is nonzero and we can include
all the isospin breaking into the overall normalization constant and continue further with
the computation using an isospin conserving procedure (with taking isospin symmetry of
the amplitudes, the same masses of charged and neutral pions, etc.) as is the case of the
leading order for kaons.

This chapter is not only an easier step (or preparation) before we proceed to the full
isospin-breaking but already on this level of computation one can draw important physical
conclusions. Especially for the η decays, the assumption of the same masses of pions is still a
very good approximation with respect to the present-day experimental uncertainties of their
measurements and for instance in Chapter 9 it is used for the most precise determination
of the masses of the lightest quarks, mu and md.

Naturally, this analysis cannot cover the effect of cusp and if we expand our result
for squared modulus of an amplitude into polynomial, we will obtain nothing more than
its Dalitz plot parametrization from Section 6.4. But since our parametrization contains
explicitly the unitarity relations, it should be more natural to match to various quantum
field theoretical methods, especially to χPT, which is up to the contributions we have
neglected, exactly reproduced by a specific choice of our parameters. The form of our
parametrization also enables us to resign on the exact chiral power-counting and try to
re-sum partially higher unitarity contributions. Also this is discussed in more detail in
Chapter 9.
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η → 3π IN FIRST ORDER IN ISOSPIN BREAKING

7.1 Symmetries

We have already listed some of the crossing symmetries of the amplitudes in Table 5 on
page 108. Together with Bose symmetry they relate all amplitudes Pπ → ππ with the same
particle P and the same number of charged pions and dictate also some s, t, u symmetries
that each amplitude has to obey. Taking the isospin conservation into account results in
more relations between them.

In Appendix I we show that in the case of Kπ → ππ scattering the amplitudes fulfill

Ã+
++(s, t, u) = ÃS

+−(t, s, u)− ÃS
+−(u, t, s)− Ã+

00(t, s, u)− Ã+
00(u, t, s), (7.1)

ÃL
00(s, t, u) = −

(

ÃL
+−(s, t, u) + ÃL

+−(t, s, u) + ÃL
+−(u, t, s)

)

(7.2)

with Ã+
00, Ã

+
++, Ã

L
+− and ÃL

00 being symmetric with respect to t ↔ u exchange [the last

one even totally symmetric in s, t, u], whereas ÃS
+− has to be t− u antisymmetric.

In the processes with KL, it is therefore natural to take ÃL
+− as the only independent

amplitude and to compute all the other amplitudes from the relation (7.2) and the crossing
symmetry. The situation in the K± processes is more complicated since the process ÃS

+−
mixes in and this process is not measured with such a high precision as the K± processes
are. We will therefore treat these amplitudes as independent and regard the relation (7.1)
as an additional constraint on their parameters. Note that CP symmetry together with
the one of Bose forbid the existence of the process KSπ

0 → π0π0.

In the case of η the situation is simpler since after extracting the π − η0 mixing angle,
which is of the first order in isospin breaking, the rest of the amplitude can be in the
considered level of computation taken in the isospin limit and so the isospin structure of
the η → 3π amplitudes is the same as the structure of the ππ scattering amplitudes (5.10)
with η replaced by π0,

Ãη
00(s, t, u) = −Ãη

+−(s, t, u)− Ãη
+−(t, s, u)− Ãη

+−(u, t, s). (7.3)

From charge conjugation there follows that the amplitude Ãη(s, t, u) is t↔ u symmetric,

Ãη
+−(s, t, u) = Ãη

+−(s, u, t). (7.4)

Since the symmetries of the processes containing η and those containing KL are the
same and on top of it we consider just the ππ intermediate states, the amplitudes of these
two processes will look in our reconstruction identical and the only difference between
them will be just a different physical interpretation of the parameters appearing there. In
the following we will therefore write the results only in the form for KL and just discuss
potential differences that can appear for η.
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7.2 Leading order of amplitudes

The amplitudes in the leading order are first order polynomials. Taking into account their
symmetries from the previous section, we parametrize them in the form

Ã+
++ = C

(

Ac +
Bc

F 2
π

(s− s̃0)

)

, (7.5)

Ã+
00 = C

(

Ax +
Bx

F 2
π

(s− s̃0)

)

, (7.6)

ÃL
+− = C

(

Ax +
Bx

F 2
π

(s− s̃0)

)

, (7.7)

ÃS
+− = CBx

F 2
π

(t− u). (7.8)

Note that on the right-hand side of the relations we suppress the upper index determining
the particle P . Moreover, in the isospin limit there is no need to distinguish the different
centers of Dalitz plot since all of them are equal to

s̃ci =
1

3
m2

P +m2
π ≡ s̃0. (7.9)

As is discussed in Section 6.6.2, we take normalization factor C for all the processes with
kaons from (6.47), while for the processes with η we take the value (6.48).

The amplitude ÃL
00 can be obtained from ÃL

+− using (7.2)

ÃL
00 = −3CAx (7.10)

and the relation (7.1) constrains the parameters in the following way

A+
c + 2A+

x +
(

B+
c −B+

x − 3BS
x

) s− s̃0
F 2
π

= 0. (7.11)

Since this relation should hold for any value of s, it leads to

A+
c = −2A+

x , (7.12)

3BS
x = B+

c − B+
x . (7.13)

Since we take the polynomial parameters in such form that these relations remain valid,
we can use them for expressing A+

c and BS
x in the results.

7.3 Next-to-leading order result

First iteration of our reconstruction procedure supplemented with the symmetries of the
particular amplitudes leads to the following form of the NLO expressions for the amplitudes

Ãc
ab(s, t, u) = Cc

(

R̃c
ab(s, t, u) + 16πŨ c

ab(s, t, u)
)

+O(p6) (7.14)
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with

Ũ+
++(s, t, u) = W̃+

++(s) + W̃+;0
+− (t) + (u− s)W̃+;1

+− (t) + W̃+;0
+− (u) + (t− s)W̃+;1

+− (u), (7.15)

Ũ+
00(s, t, u) = W̃+

00(s)− W̃+;0
+0 (t)− (s− u)W̃+;1

+0 (t)− W̃+;0
+0 (u)− (s− t)W̃+;1

+0 (u), (7.16)

ŨL
+−(s, t, u) = W̃L

+−(s)− W̃L;0
0+ (t)− (s− u)W̃L;1

0+ (t)− W̃L;0
0+ (u)− (s− t)W̃L;1

0+ (u), (7.17)

ŨS
+−(s, t, u) = (t− u)W̃ S

+−(s) + W̃ S;0
0+ (t) + (s− u)W̃ S;1

0+ (t)− W̃ S;0
0+ (u)− (s− t)W̃ S;1

0+ (u).
(7.18)

According to (3.10) and (3.11), the dispersion integrals W̃ c;ℓ
ab are given by

W̃+
++(s) =

(

2Ax −
Bc

F 2
π

(s− s̃0)

)(

a− b

2F 2
π

(s+ 4m2
π)

)

J̄π(s), (7.19)

W̃+;0
+− (s) =

1

2

(

Ax

(

9a+
b

F 2
π

(3s− 28m2
π)
)

+
Bx

F 2
π

(s− s̃0)
(

a+
b

F 2
π

(s− 4m2
π)
)

+
Bc

F 2
π

(s− s̃0)
(

2a+
b

2F 2
π

(s− 12m2
π)
)

)

J̄π(s),

(7.20)

W̃+;1
+− (s) =

Bc

F 2
π

b

12F 2
π

(s− 4m2
π)J̄π(s), (7.21)

W̃+
00(s) = −1

2

(

Ax

(

7a+ 4
b

F 2
π

(s− 6m2
π)
)

+
Bx

F 2
π

(s− s̃0)
(

3a− 8
b

F 2
π

m2
π

)

+
Bc

F 2
π

(s− s̃0)
(

a+
b

F 2
π

(s− 4m2
π)
)

)

J̄π(s),

(7.22)

W̃+;0
+0 (s) =

(

Ax −
Bx

2F 2
π

(s− s̃0)

)(

a− b

2F 2
π

(s+ 4m2
π)

)

J̄π(s), (7.23)

W̃+;1
+0 (s) =

Bx

F 2
π

b

12F 2
π

(s− 4m2
π)J̄π(s), (7.24)

W̃L
+−(s) = −1

2

(

Ax

(

7a+ 4
b

F 2
π

(s− 6m2
π)

)

+
Bx

F 2
π

(s− s̃0)

(

4a+
b

F 2
π

(s− 12m2
π)

))

J̄π(s),

(7.25)

W̃L;0
0+ (s) =

(

Ax −
Bc

2F 2
π

(s− s̃0)

)(

a− b

2F 2
π

(s+ 4m2
π)

)

J̄π(s), (7.26)

W̃L;1
0+ (s) =

Bx

F 2
π

b

12F 2
π

(s− 4m2
π)J̄π(s), (7.27)

W̃ S
+−(s) = −Bx

F 2
π

b

6F 2
π

(s− 4m2
π)J̄π(s), (7.28)

W̃ S;0
0+ (s) = −3Bx

2F 2
π

(s− s̃0)

(

a− b

2F 2
π

(s+ 4m2
π)

)

J̄π(s), (7.29)

W̃ S;1
0+ (s) = −Bx

F 2
π

b

12F 2
π

(s− 4m2
π)J̄π(s). (7.30)
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and the polynomials

R̃+
++(s, t, u) = Ac +

Bc

F 2
π

(s− s̃0) +
Cc

F 4
π

(s− s̃0)
2 +

Dc

F 4
π

(

(t− s̃0)
2 + (u− s̃0)

2
)

, (7.31)

R̃+
00(s, t, u) = Ax +

Bx

F 2
π

(s− s̃0) +
Cx

F 4
π

(s− s̃0)
2 +

Dx

F 4
π

(

(t− s̃0)
2 + (u− s̃0)

2
)

, (7.32)

R̃L
+−(s, t, u) = Ax +

Bx

F 2
π

(s− s̃0) +
Cx

F 4
π

(s− s̃0)
2 +

Dx

F 4
π

(

(t− s̃0)
2 + (u− s̃0)

2
)

, (7.33)

R̃S
+−(s, t, u) =

Bx

F 2
π

(t− u) +
Cx

F 4
π

(s− s̃0)(t− u). (7.34)

In the unitarity parts of the results, we have already expressed A+
c using (7.12).

From the validity of the isospin relation (7.1) for any value of s and t in addition to
the relations (7.12) and (7.13) we obtain the following relations between the parameters

A+
c = −2A+

x , (7.35)

3BS
x = B+

c − B+
x , (7.36)

2D+
c = −C+

c − 2C+
x − 4D+

x , (7.37)

2CS
x = −C+

c − 2D+
x . (7.38)

Note that provided the lower order isospin relations (7.12) and (7.13) are fulfilled, the
unitarity parts satisfy the isospin relation (7.1) automatically.

7.4 Results for partial waves of NLO Pπ → ππ amplitudes

Before we can proceed to the second iteration of our construction of the Pπ → ππ am-
plitudes leading to the full NNLO results, we need to compute the S- and the P- partial
waves of the NLO amplitudes of these processes.

In Section 6.6 we have discussed the fact that since P is an unstable particle, the
situation in the case of these processes is more complicated than it was in the case of
ππ → ππ scattering. Nevertheless, we have also discussed there the way, how one can
avoid these problems by employing an analytic continuation in mP . Using such procedure
for mπ± = mπ0 in Appendix K.4, we have computed integrals In(s) from (3.32)–(3.33)
appearing in the relations for the S- and the P-waves of the amplitudes from Section 3.4.
Employing them, we obtain all the S-partial waves in the form1

ϕ̃a;0(s) =
C
16π

(

p̃a;0λ (s) +
1

π

∑

j=0,1,1P,2P,3

p̃a;0j (s)Mj(s)

)

(7.39)

with the dimensionless kinematic functions Mj(s) from Appendix F.1.3. We list the Lau-
rent polynomials p̃a;0j (s) for individual processes in Appendix L. Note that because of the
CP symmetry, the S-wave of the process KSπ0 → π+π− is identically equal to zero.

1Note that ϕ̃a,ℓ denotes just the NLO part of the partial wave.
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The P-waves ϕ̃a;1(s) of the Pπ → ππ processes are non-zero only for processes K±π∓ →
π±π∓, K±π0 → π±π0, KLπ± → π0π±, KSπ0 → π+π−, and KSπ+ → π0π+. We can write
them in the form

ϕ̃a;1(s) =
C
16π

(

σπλ̃
1/2
π

(

p̃a;1λ +
1

π
p̃a;13 (s)M3(s)

)

+
m2

π

πσπλ̃
1/2
π

∑

j=0,1,1P,2P

p̃a;1j (s)Mj(s)

)

(7.40)
with the same kinematic functions Mj(s) as appear in the expression for S-waves. The
polynomials p̃a;1j (s) for these processes are listed again in Appendix L.

7.5 Second iteration for Pπ → ππ amplitudes

Having all the ingredients prepared it is a straightforward task to obtain the NNLO am-
plitudes of the Pπ → ππ processes. From the reconstruction theorem it is obvious that
also the NNLO amplitudes are obtained in the form similar to (7.14),

Ãc
ab(s, t, u) = Cc

(

R̃c
ab(s, t, u) + 16πŨ c

ab(s, t, u)
)

+O(p8), (7.41)

where the unitarity parts Ũ c
ab(s, t, u) are expressed in terms of single variable dispersion

integrals W̃ c
ab(s) according to the relations (7.15)–(7.18). For the determination of these

integrals W̃ c
ab(s) we just need to follow the lines of Section 3.5.

7.5.1 Construction of the NNLO amplitude of the process K±π± → π±π±

The second iteration proceeds similarly for all the Pπ → ππ processes. In order not to
lose ourselves in the ample amount of general indices, we deal here specifically with the
process K+π+ → π+π+. The transcription of the formulas of this section into expressions
for the other processes should be then obvious.

We begin with the simpler task — the determination of the polynomial part. The
polynomial R̃+

++(s, t, u) has to be now the third order polynomial compatible with the
symmetries of the amplitude Ã+

++(s, t, u). We can take it in the form where we simply add
some particular third order terms to the second order polynomial of (7.31), namely

R̃+
++(s, t, u) = Ac +

Bc

F 2
π

(s− s̃0) +
Cc

F 4
π

(s− s̃0)
2 +

Dc

F 4
π

(

(t− s̃0)
2 + (u− s̃0)

2
)

+
Ec

F 6
π

(s− s̃0)
3 +

Fc

F 6
π

(

(t− s̃0)
3 + (u− s̃0)

3
)

. (7.42)

Naturally, the O(p6) corrections with respect to the polynomial (7.31) are included not
only in the new terms with the parameters Ec and Fc, but also in the O(p6) corrections
to the constants Ac, . . . , Dc. We explicate this aspect in Section 9.4, where we discuss the
relation of our parametrization of the η → 3π amplitude to the χPT results for it.
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Now let us proceed to the unitarity part. Since the only intermediate states we take
into account in the unitarity relations are those containing two pions and in this chapter
we work in the limit mπ± = mπ0 , these relations imply for the imaginary part of the O(p6)
partial waves

Imψi→f
ℓ (s) =

∑

k

1

Sk
σπ(s)

[

φ̃i→k
ℓ (s)

(

ϕf→k
ℓ (s)

)⋆

+ϕ̃i→k
ℓ (s)

(

φf→k
ℓ (s)

)⋆ ]

θ(s−4m2
π), (7.43)

where the sum goes over all the possible two-pion intermediate states with the symmetry
factor Sk (Sk = 2 for two identical pions in k, otherwise Sk = 1).

Note that the unitarity relation holds in this form only in the stable mass mP < 3mπ

case — then all the functions Mj(s) with the exception of M3(s) are real and therefore
also the right-hand side of this relation is real. This remains true also after inclusion
of functions M3(s) thanks to the mechanism discussed below near relation (7.57) and
Figure 12. However, after analytic continuation of the relations to physical mass mP , the
functions M1P (s) andM2P (s) start to be imaginary in the interval

(

4m2
π, (mP −mπ)

2
)

and
such continuation means allowing the discontinuity to be complex — we should thus write
in all the relations 1

2
Disc instead of Im. Nevertheless, keeping this fact and the analytic

continuation in mind, we will not complicate the notation and denote all the quantities as
they appear in the stable mass mP scenario. Note also that since the complex conjugation
in (7.43) is connected with the partial waves of ππ scattering, in the unitarity relations
there also appear these complicated functions but never their complex conjugations and
the only case, where we take care with the conjugation is just the function M3(s).

In correspondence with Section 3.1, we denote with αa(s) and βa the following parts of
the leading order amplitudes

Aππ→ππ(s, t, u) = 16π
(

αa(s) + βa (t− u)
)

, (7.44)

ÃPπ→ππ(s, t, u) = 16π
(

α̃a(s) + β̃a (t− u)
)

, (7.45)

where the formal index a corresponds to our usual indices denoting charge states of the
particles. In this notation the leading order partial waves of the corresponding processes
(in the limit mπ± = mπ0) read simply

φa;0(s) = αa(s), φa;1(s) =
1

3
βa sσ

2
π(s), (7.46)

φ̃a;0(s) =
C

16π
α̃a(s), φ̃a;1(s) =

C

48π
β̃aσπ(s)λ̃

1/2
π (s). (7.47)

Note that the leading order parameters of our amplitudes are real (e.g. α⋆
a = αa).

Dispersive integrals of the direct process K±π± → π±π± (S-wave integration)

For the imaginary part of the S-wave of the process K±π± → π±π± we obtain (the only
possible intermediate state here is π±π±)
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Im ψ̃Cd;0(s) =
1

2

C

16π
σπ(s)

[

α̃Cd(s)

(

pd;0λ (s) +
1

π
pd;0w (s) +

1

π

3
∑

j=0

pd;0j (s)Mj(s)

)⋆

+ α⋆
d(s)

(

p̃Cd;0
λ (s) +

1

π

∑

j=0,1,1P,2P,3

p̃Cd;0
j (s)Mj(s)

)]

θ(s− 4m2
π) (7.48)

and the P-wave is identically zero.
Introducing this expression into (2.23), for the integral W̃+

++(s) we obtain schematically

W̃+
++(s) =

C

π

∫ Λ2

4m2
π

s3

x3
dx

x− s
σπ(x)

1

2

(

α
(

p+
1

π
pjMj

)

)

. (7.49)

It is therefore of the form (2.73)

W̃+
++(s) =

C

π

∫ Λ2

4m2
π

s3

x3
dx

x− s
Pj(x)Fj(x) (7.50)

with Fj(x) being dimensionless functions originating from products of σπ(x) with various
Mj(x); and Pj(x) are some Laurent polynomials. Thus, we can employ the simplifications
collected in Section 2.5 and obtain these integrals as

W̃+
++(s) =

C

π
Pj(s)Gj(s), (7.51)

where the functions Gj(s) are Hilbert transforms of Fj(s). We list here the functions
appearing in the results together with the corresponding polynomials (the functions and
some additional information on their properties are discussed in Appendix F.2).

Function G1(s)

This function is Hilbert transform of function

F1(s) = σπ(s). (7.52)

The high-energy asymptotics of this function is F1(s) ∼ s0 for s → ∞. Condition (2.71)
thus implies that the corresponding Hilbert transform exists for the number of subtractions
n ≥ 1.

This function arises in the integrand from the product of σπ(s) and M0(s) = 1. The
polynomial that multiplies it is therefore equal to

P1(s) =
1

2

(

α̃Cd(s)αd(s)+α̃Cd(s)
(

pd;0λ (s)+
1

π
pd;0w (s)+

1

π
pd;00 (s)

)

+αd(s)
(

p̃Cd;0
λ (s)+

1

π
p̃Cd;0
0 (s)

)

)

.

(7.53)
We have included here also the O(p4) part 1

2
α̃α, which is also of this type and was dis-

cussed in Section 3.1 [cf. the NLO result (7.19)]. It remains to determine the number of
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i f

k1 k2

i f

k1 k2

∑

k2

(

∑

k1

αi→k1
αk1→k2

)

M3 × α⋆
f→k2

σπ

∑

k1

αi→k1
×
(

∑

k1

αf→k2
αk2→k1

)⋆

M⋆
3 σπ

Figure 12: Illustration of the symmetry between the contributions with M3(s) coming
from the NLO Pπ → ππ processes with those from the NLO ππ scattering processes. The
real tree-order parameters α are defined in (7.44)–(7.45).

subtractions n of G1(s) needed for the O(p6) part. Any term of m-th polynomial order has

to be multiplied by G(n)
1 (s) with n from the interval (2.76)

max(1,−m) ≤ n ≤ 4−m. (7.54)

Since the polynomial P1(s) contains only terms with m ∈ 〈−1, 3〉, we can take for each of
them n = 1 and we need just the function

G(1)
1 (s) = 16π2J̄π(s) = 2 + σπLπ(s). (7.55)

Function G2(s)

The asymptotics of the function

F2(s) = Lπ(s) (7.56)

is F2(s) ∼ s0 log s for s → ∞, and so the Hilbert transform of this function exists for all
n ≥ 1. The interval for the possible number of subtractions of functions multiplying an
O(p6) term with the polynomial order m is therefore again (7.54).

This function appears in the integrand as the result of multiplication of σπ(s) with
M1(s). In addition, there occurs also a contribution from the multiplication with M3(s).
One should remind that the appearance of M3(s) in the partial waves stems from the
integration of the s-dependent part — it comes from the one-loop contribution to the direct
process. We can thus compare the contributions coming from the intermediate process of
NLO Pπ → ππ amplitude and LO ππ scattering amplitude with the one from NLO ππ
scattering with LO Pπ → ππ intermediate amplitudes as is illustrated on Figure 12.
Since in our cases α’s are real and the considered T-invariance means αi→f = αf→i, the
coefficient standing in front of M3σπ in the contribution of the first diagram is the same
as the coefficient standing in front of M⋆

3σπ in the contribution of the second diagram. In
the integration region s > 4m2

π

σπ(s)M3(s) = σ2
π(s)F2(s)∓ iπσ2

π(s) =
1

s
(s− 4m2

π)F2(s)∓ iπσ2
π(s). (7.57)
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The upper sign corresponds to taking the physical value of the function with s from below.
Therefore, the imaginary parts of the two contributions cancel and their real parts

contribute equally into P2G2.
In total,

P2(s) =
1

2

1

π

(

α̃Cd(s)p
d;0
1 (s) + αd(s)p̃

Cd;0
1 (s) + 2

1

s
(s− 4m2

π)α̃Cd(s)p
d;0
3 (s)

)

. (7.58)

This polynomial contains again only the terms with m ∈ 〈−1, 3〉, so it is sufficient to
use just the once subtracted function

G(1)
2 (s) =

1

2
L2

π(s). (7.59)

Function G3(s)

By multiplication of σπ(s) with M2(s) we obtain the function

F3(s) = −m2
π

L2
π(s)

sσπ(s)
. (7.60)

Its asymptotics is F3(s) ∼ log2 s
s

for s→ ∞, and so its Hilbert transform exists also without

a need for subtractions. This time the number of subtraction of the function G(n)
3 (s) that

can multiply a term with the polynomial power m lies in the interval (2.76)

max(0,−m) ≤ n ≤ 4−m. (7.61)

The polynomial

P3(s) =
1

2

1

π
α̃Cd(s)p

d;0
2 (s) (7.62)

contains terms with m ∈ 〈0, 2〉, so we manage with

G(0)
3 (s) = − m2

π

3sσπ(s)
Lπ(s)

(

L2
π(s) + π2

)

. (7.63)

Function G4(s)

A little bit more complicated situation occurs for

F4(s) = sσπ(s)
M0(s)

λ̃
1/2
π (s)

, (7.64)

which originates from the product of σπ(s) with M1P (s).
Its asymptotics is F4(s) ∼ log s for s→ ∞ and for the existence of its Hilbert transform

we need at least one subtraction. However, the polynomial

P4(s) =
1

2

1

π
αd(s)p̃

Cd;0
1P (s) (7.65)
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contains terms with m ∈ 〈−2, 3〉. Thus, the term with m = −2 does not satisfy the
condition (7.54) with n = 1 and we need to take for this term n = 2. (Note that with this
choice we satisfy our conventional requirement of taking the minimal positive number of
subtractions for each term.)

In order to simplify the notation of the results, we introduce the following operator

〈

∑

i

ais
i
〉

m
:= ams

m (7.66)

picking up the term with a given polynomial order out of a polynomial and the operator

〈

∑

i

ais
i
〉

×m :=
∑

i

ais
i −
〈

∑

i

ais
i
〉

m
=
∑

i 6=m

ais
i (7.67)

dropping such polynomial term.
The contribution related to the function F4(s) then reads

〈

P4(s)
〉

×−2
G(1)
4 (s) +

〈

P4(s)
〉

−2
G(2)
4 (s). (7.68)

Function G5(s)

Finally, the last function appearing in the integrands of the S-waves is

F5(s) = −m2
πLπ(s)

M0(s)

λ̃
1/2
π (s)

, (7.69)

originating from the product of σπ(s) with M2P (s). Its asymptotics is similar to F3(s) and
so the number of subtractions has to fulfill the condition (7.61). Similarly as for that case,
the polynomial

P5(s) =
1

2

1

π
αd(s)p̃

Cd;0
2P (s) (7.70)

contains only terms with m ∈ 〈0, 2〉 and so it is sufficient to introduce

G(0)
5 =

∫ ∞

4m2
π

dx

x− s
F5(x). (7.71)

Dispersive integrals of the crossed processK±π∓ → π±π∓ (P-wave integration)

For the crossed channel K±π∓ → π±π∓ the S-wave have a similar form, with a small
additional complication that the possible intermediate states are both π+π− and π0π0.
Nevertheless, all the other facts described for the direct process remain valid and so the
result for S-wave dispersion integral W̃+;0

+− (s) can be again written using the functions

F (1)
1,2,4(s), F

(0)
3,5 (s), F

(2)
4 (s) and the corresponding polynomials.
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For this process the P-wave is nonzero and one gets2

ImψCc;1(s)

=
C

48π
sσ4

πλ̃
1/2
π

[

β̃Cc

(

pc;1λ (s) +
1

π
pc;1w (s) +

1

π
pc;13 (s)M3(s) +

m2
π

πs2σ4
π

2
∑

j=0

pc;1j (s)Mj(s)

)⋆

+ β⋆
c

(

p̃Cc;1
λ (s) +

1

π
p̃Cc;1
3 (s)M3(s) +

m2
π

πσ2
πλ̃π

∑

j=0,1,1P,2P

p̃Cc;1
j (s)Mj(s)

)]

θ(s− 4m2
π). (7.72)

From (2.24) we obtain the dispersion integral W̃+;1
+− (s) in the (schematic) form

W̃+;1
+− (s) =

C

π

∫ Λ2

4m2
π

s2

x2
dx

x− s
σπ(x)

(

β̃

(

xσ2
π(x)p(x)M(x) +

1

π
pj(x)

m2
πMj(x)

xσ2
π(x)

)

+ β

(

xσ2
π(x)p̃(x)M(x) +

1

π
p̃j
m2

πxMj(x)

λ̃π(x)

))

. (7.73)

It means, it is in the form (2.77)

W̃+;1
+− (s) =

C

π

∫ Λ2

4m2
π

s2

x2
dx

x− s
P1;κ

j (x)Fκ
j (x), (7.74)

which again allows for employing the simplifications of Section 2.5 and we obtain these
integrals as

W̃+;1
+− (s) =

C

π
P1;κ

j (s)Gκ
j (s), (7.75)

where the functions Gκ
j (s) are Hilbert transforms of Fκ

j (s). As is obvious from the intro-
duction of the further index κ, the set of functions appearing in P waves is more complex
than it was in the case of S waves. Nevertheless, by comparing (7.73) with (7.50) one
discovers that the additional functions appearing here are related to the original ones,

Fσ
j (s) = m2

π

Fj(s)

sσ2
π(s)

or F λ̃
j (s) = m2

πs
Fj(s)

λ̃π(s)
, (7.76)

and their Hilbert transforms can be derived from the knowledge of the Hilbert transform
of the original function Fj(s) using relations from Appendix B. These derived functions
are discussed in Appendix F.2.3. In the following, we discuss the polynomials multiplying
these functions in the result of W̃+;1

+− (s).

Function G1(s)

From (7.73) we see that the contributions to W̃+;1
+− (s) of the parts appearing in the P-wave

with M0(s) = 1 separate into three parts.

2Note that the part with the intermediate state π0π0 has again a vanishing P-wave.
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First of them is the part corresponding to the original F1(s) function with the polyno-
mial

P1(s) = sσ2
π(s)

(

1

3
β̃Ccβc + β̃Cc

(

pc;1λ (s) +
1

π
pc;1w (s)

)

+ βcp̃
Cc;1
λ (s)

)

, (7.77)

in which we can include also the NLO part 1
3
β̃β sσ2

π that was discussed in Section 3.1. The
part of the polynomial contributing to the NNLO (O(p6)) amplitude is of the chiral order3

O(p4). The interval for the number of subtraction of the Hilbert transforms multiplying
polynomial term of m-th order is therefore shifted with respect to (7.54). Here,

max(1,−m) ≤ n ≤ 3−m. (7.78)

Nevertheless, polynomial (7.77) contains only terms with m ∈ 〈0, 2〉 and we manage with

the once subtracted G(1)
1 (s).

The second part contains the function Fσ
1 (s) multiplied by

P1σ(s) =
1

π
β̃Ccp

c;1
0 (s). (7.79)

Hilbert transform of function Fσ
1 (s) exists with the number of subtraction n ≥ 0 (by

dividing the original function with s − 4m2
π we have added a subtraction with respect to

it). The polynomial P1σ(s) is again of order O(p4) and contains terms with m ∈ 〈0, 3〉, we
thus need to introduce just Gσ;(0)

1 (s) from (F.61).
Finally, from the NLO Pπ → ππ contribution with M0(s) we obtain the third type of

contributions,

P1λ̃(s) =
1

π
βcp̃

Cc;1
0 (s). (7.80)

multiplied by F λ̃
1 (s). From the same reasons as there occurred for Fσ

1 (s), Hilbert transform
of this function also needs n subtractions with

max(0,−m) ≤ n ≤ 3−m. (7.81)

However, in the opposite to the situation of Fσ
1 (s) the polynomial P1λ̃(s) contains terms

with m ∈ 〈−1, 3〉, we therefore need to introduce not only Gλ̃;(0)
1 (s) but also Gλ̃;(1)

1 (s) and
the correspondent contribution reads

〈

P1λ̃(s)
〉

×−1
Gλ̃;(0)
1 (s) +

〈

P1λ̃(s)
〉

−1
Gλ̃;(1)
1 (s). (7.82)

Function G2(s)

In the result of multiplication of σπ(s) with M3(s) there appears another function from the
original set, F2(s). Its appearance in the P partial waves is connected with the integration

3As was reminded also in Section 2.5, it is connected with the fact that this polynomial appears in the
amplitude multiplied by (t− u).
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of the P-wave of the original direct process. Thus, repeating the discussion of the text above
relation (7.57), which was illustrated also on Figure 12, we verify that the contribution to
P2(s) from both the NLO Pπ → ππ and the NLO ππ scattering amplitudes are the same
1
9π
β̃Ccβ

2
c s

2σ6
π(s). It means

P2(s) =
2

π
β̃Ccp

c;1
3 (s) s σ4

π(s). (7.83)

This polynomial contains terms with m ∈ 〈−1, 2〉, which fulfill the inequality (7.78) with

n = 1 and we need no other function than G(1)
2 (s).

All the other contributions contain either Fσ
j (s) in the case of taking the NLO part

from ππ scattering or F λ̃
j (s) when we take NLO Pπ → ππ with the LO part of ππ → ππ.

Both of the Hilbert transforms are convergent already with one less subtractions than the
corresponding original function. In the case of Fκ

2 (s), the range of possible number of
subtractions is thus again (7.81).

Since

P2σ(s) =
1

π
β̃Ccp

c;1
1 (s) (7.84)

contains terms with m ∈ 〈0, 3〉, we need only Gσ;(0)
2 (s), while for

P2λ̃(s) =
1

π
βcp̃

Cc;1
1 (s) (7.85)

the situation is more complicated as it possesses all terms with m ∈ 〈−2, 3〉, therefore
we have to use the set of functions Gλ̃;(0)

2 (s), Gλ̃;(1)
2 (s), Gλ̃;(2)

2 (s). The total contribution of

F λ̃
2 (s) then has the form

〈

P2λ̃(s)
〉

×−1×−2
Gλ̃;(0)
2 (s) +

〈

P2λ̃(s)
〉

−1
Gλ̃;(1)
2 (s) +

〈

P2λ̃(s)
〉

−2
Gλ̃;(2)
2 (s). (7.86)

Function G3(s)

The contribution coming from Fσ
3 (s) is again simple since

P3σ(s) =
1

π
β̃Ccp

c;1
2 (s) (7.87)

contains only m ∈ 〈0, 2〉 and the condition

max(−1,−m) ≤ n ≤ 3−m (7.88)

is fulfilled with Gσ;(0)
3 (s).

Function G4(s)

More complications occur again for F λ̃
4 (s). Polynomial

P4λ̃(s) =
1

π
βcp̃

Cc;1
1P (s) (7.89)
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possesses terms with m ∈ 〈−2, 3〉, which together with (7.81) imply the following form of
its total contribution to the integral W̃+;1

+− (s),

〈

P4λ̃(s)
〉

×−1×−2
Gλ̃;(0)
4 (s) +

〈

P4λ̃(s)
〉

−1
Gλ̃;(1)
4 (s) +

〈

P4λ̃(s)
〉

−2
Gλ̃;(2)
4 (s). (7.90)

Function G5(s)

Finally, with the last function F λ̃
5 (s), we are back at (7.88) and m ∈ 〈0, 2〉. Polynomial

P5λ̃(s) =
1

π
βcp̃

Cc;1
2P (s) (7.91)

is thus multiplied by Gλ̃;(0)
5 (s).

7.5.2 Results of the second iteration

One can show that the situation for all the considered processes Pπ → ππ in the limit
mπ± = mπ0 is the same and their dispersively constructed O(p6) amplitudes read

Ãc
ab(s, t, u) = Cc

(

R̃c
ab(s, t, u) + 16πŨ c

ab(s, t, u)
)

+O(p8), (7.92)

with the polynomials

R̃c
ab(s, t, u) = Az +

Bz

F 2
π

(s− s̃0) +
Cz

F 4
π

(s− s̃0)
2 +

Dz

F 4
π

(

(t− s̃0)
2 + (u− s̃0)

2
)

+
Ez

F 4
π

(s− s̃0)
3 +

Fz

F 4
π

(

(t− s̃0)
3 + (u− s̃0)

3
)

(7.93)

for R̃+
++(s, t, u), R̃

+
00(s, t, u) and R̃

L
+−(s, t, u) with the corresponding index of the coefficient

z being c, x and x respectively; for the process KSπ
0 → π+π− the polynomial is of the

form

R̃S
+−(s, t, u) = (t− u)

(

Bx

F 2
π

+
Cx

F 4
π

(s− s̃0) +
Ex

F 6
π

(s− s̃0)
2 +

Fx

F 6
π

(

(t− s̃0)
2 + (u− s̃0)

2
)

)

.

(7.94)

The isospin relation (7.1) relates again together the following parameters4

A+
c = −2A+

x , (7.95)

3BS
x = B+

c −B+
x , (7.96)

2D+
c = −C+

c − 2C+
x − 4D+

x , (7.97)

4Note that thanks to exact choice of the polynomials the NLO relations (7.35)–(7.38) obtains no higher
order corrections.
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2CS
x = −C+

c − 2D+
x , (7.98)

2F+
c = −E+

c − 2E+
x − 4F+

x , (7.99)

10F S
x = 3E+

c + 6F+
x − 2ES

x . (7.100)

The unitarity parts Ũ c
ab(s, t, u) are expressed in terms of single variable dispersion in-

tegrals W̃ c
ab(s) according to the relations (7.15)–(7.18) and these integrals are

W̃ c;0
ab (s) = Pz;0

1 (s)G(1)
1 (s) + Pz;0

2 (s)G(1)
2 (s) + Pz;0

3 (s)G(0)
3 (s) + Pz;0

5 (s)G(0)
5 (s)

+
〈

Pz;0
4 (s)

〉

×−2
G(1)
4 (s) +

〈

Pz;0
4 (s)

〉

−2
G(2)
4 (s),

(7.101)

W̃ c;1
ab (s) = Pz;1

1 (s)G(1)
1 (s) + Pz;1

2 (s)G(1)
2 (s) + Pz;1

1σ (s)G
σ;(0)
1 (s) + Pz;1

2σ (s)G
σ;(0)
2 (s)

+ Pz;1
3σ (s)G

σ;(0)
3 (s) +

〈

Pz;1

1λ̃
(s)
〉

×−1
Gλ̃;(0)
1 (s) +

〈

Pz;1

1λ̃
(s)
〉

−1
Gλ̃;(1)
1 (s)

+
〈

Pz;1

2λ̃
(s)
〉

×−1×−2
Gλ̃;(0)
2 (s) +

〈

Pz;1

2λ̃
(s)
〉

−1
Gλ̃;(1)
2 (s) +

〈

Pz;1

2λ̃
(s)
〉

−2
Gλ̃;(2)
2 (s)

+
〈

Pz;1

4λ̃
(s)
〉

×−1×−2
Gλ̃;(0)
4 (s) +

〈

Pz;1

4λ̃
(s)
〉

−1
Gλ̃;(1)
4 (s) +

〈

Pz;1

4λ̃
(s)
〉

−2
Gλ̃;(2)
4 (s)

+ Pz;1

5λ̃
(s)Gλ̃;(0)

5 (s)

(7.102)

with the polynomials Pz;ℓ
jκ (s) constructed using the procedure described in the previous

subsection, the picking up
〈

∑

i ais
i
〉

m
and the dropping operator

〈

∑

i ais
i
〉

×m are defined

in (7.66) and (7.67) respectively and functions Gκ
j (s) are listed in Appendix F.2.

For concreteness, we list here the polynomials (with the correct indices) for KLπ
0 →

π+π− explicitly since this amplitude is used in Chapter 9 for numerical analysis of η → 3π
decay. From (7.17) in its unitarity part there appear three dispersion integrals W̃L

+−(s),

W̃L;0
0+ (s) and W̃L;1

0+ (s). They contain the following polynomials

P+−
1 (s) =

1

2
α̃Ln(s)αx(s) + α̃Lx(s)αc(s)

+
1

2

(

α̃Ln(s)
(

px;0λ +
1

π
px;0w +

1

π
px;00

)

+ αx(s)
(

p̃Ln;0λ +
1

π
p̃Ln;00

)

)

+ α̃Lx(s)
(

pc;0λ +
1

π
pc;0w +

1

π
pc;00

)

+ αc(s)
(

p̃Lx;0λ +
1

π
p̃Lx;00

)

,

(7.103)

P+−
2 (s) =

1

2

1

π

(

α̃Ln(s)p
x;0
1 + αx(s)p̃

Ln;0
1 + 2

1

s
(s− 4m2

π)α̃Ln(s)p
x;0
3

)

+
1

π

(

α̃Lx(s)p
c;0
1 + αc(s)p̃

Lx;0
1 + 2

1

s
(s− 4m2

π)α̃Lx(s)p
c;0
3

)

,

(7.104)

P+−
3 (s) =

1

2

1

π
α̃Ln(s)p

x;0
2 +

1

π
α̃Lx(s)p

c;0
2 , (7.105)

P+−
4 (s) =

1

2

1

π
αx(s)p̃

Ln;0
1P +

1

π
αc(s)p̃

Lx;0
1P , (7.106)
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P+−
5 (s) =

1

2

1

π
αx(s)p̃

Ln;0
2P +

1

π
αc(s)p̃

Lx;0
2P , (7.107)

P0+;0
1 (s) = α̃Lt(s)αt(s) + α̃Lt(s)

(

pt;0λ +
1

π
pt;0w +

1

π
pt;00

)

+ αt(s)
(

p̃Lt;0λ +
1

π
p̃Lt;00

)

, (7.108)

P0+;0
2 (s) =

1

π

(

α̃Lt(s)p
t;0
1 + αt(s)p̃

Lt;0
1 + 2

1

s
(s− 4m2

π)α̃Lt(s)p
t;0
3

)

, (7.109)

P0+;0
3 (s) =

1

π
α̃Lt(s)p

t;0
2 , (7.110)

P0+;0
4 (s) =

1

π
αt(s)p̃

Lt;0
1P , (7.111)

P0+;0
5 (s) =

1

π
αt(s)p̃

Lt;0
2P , (7.112)

P0+;1
1 (s) = sσ2

π(s)

(

1

3
β̃Ltβt + β̃Lt

(

pt;1λ +
1

π
pt;1w

)

+ βtp̃
Lt;1
λ

)

, (7.113)

P0+;1
1σ (s) =

1

π
β̃Ltp

c;1
0 , (7.114)

P0+;1

1λ̃
(s) =

1

π
βtp̃

Lt;1
0 , (7.115)

P0+;1
2 (s) =

2

π
β̃Ltp

c;1
3 (s) s σ4

π, (7.116)

P0+;1
2σ (s) =

1

π
β̃Ltp

c;1
1 , (7.117)

P0+;1

2λ̃
(s) =

1

π
βtp̃

Lt;1
1 , (7.118)

P0+;1
3σ (s) =

1

π
β̃Ltp

c;1
2 , (7.119)

P0+;1

4λ̃
(s) =

1

π
βtp̃

Lt;1
1P , (7.120)

P0+;1

5λ̃
(s) =

1

π
βtp̃

Lt;1
2P , (7.121)

where there appear polynomials p̃a;ℓj (s) from Appendix L and polynomials pi;ℓj (s) from
Appendix G [we have suppressed denoting their dependence on s in these relations]. Poly-
nomials αa(s), α̃a(s) and constants βa, β̃a are parts of the leading order amplitudes [cf.
(7.45)–(7.45)]

αx(s) = a +
b

F 2
π

(s− 4m2
π), αc(s) = −2a− b

2F 2
π

(s− 12m2
π), (7.122)

αt(s) = −a +
b

2F 2
π

(s+ 4m2
π), βt = − b

2F 2
π

, (7.123)

α̃Ln(s) = −3Ax, α̃Lx(s) = Ax +
Bx

F 2
π

(s− s̃0), (7.124)

α̃Lt(s) = −Ax +
Bx

2F 2
π

(s− s̃0), β̃Lt = − Bx

2F 2
π

. (7.125)
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7.6 Conclusions for Pπ → ππ scattering in the limit mπ± = mπ0

We have constructed all the considered amplitudes in the limit mπ± = mπ0 including
the two-loop effects. The results are presented in Section 7.5 in the form where the ππ
scattering amplitudes are parametrized using the scattering-length parametrization. In
order to obtain the result the ππ scatterign parametrized by the subthreshold parameters,
we just need to use the transformations (5.188)–(iso sub-scatt relation last).

All parametrizations are prepared for numerical analyses. In this work we perform
such analysis only for η → 3π decay (which has the same structure as KL → 3π decay) in
Chapter 9.



Chapter 8

K → 3π and η → 3π for isospin breaking

In this chapter we use all the knowledge we have accumulated so far and construct the
amplitudes of P → 3π decays that take into account all the isospin breaking connected
with the different masses of pseudoscalar mesons belonging to the same isomultiplet. With-
out isospin symmetry at hand there is no connection between the amplitudes concerning
different charge states and we need to compute all the amplitudes Ã+

++, Ã
+
00, Ã

L
+−, Ã

L
00,

ÃS
+− separately. Note that the identity of the analytic structure of the processes with KL

and those with η remains also without isospin symmetry and so the results obtained for
KL are valid also for η, where we just need to change the interpretation of the parameters
(and normalization constant) appearing there.

8.1 Leading order of amplitudes

The crossing and the Bose symmetries dictate the following form of leading orders of the
particular amplitudes (which have to be first order polynomials),

Ã+
++ = C

(

Ac +
Bc

F 2
π

(s− s̃c)

)

, (8.1)

Ã+
00 = C

(

Ax +
Bx

F 2
π

(s− s̃x)

)

, (8.2)

ÃL
+− = C

(

Ax +
Bx

F 2
π

(s− s̃x)

)

, (8.3)

ÃL
00 = CA0, (8.4)

ÃS
+− = CBx

F 2
π

(t− u). (8.5)

We have again suppressed the upper index determining the particle P on the right-hand
side of the expressions. The normalization factor C was discussed in Section 6.6.2 and the
values corresponding to the center of Dalitz plot s̃ci for the particular processes are listed
in Table 5.
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8.2 Next-to-leading order result

The first iteration of our reconstruction procedure brings no complications to the general
prescriptions of Section 3.1.

Ãc
ab(s, t, u) = Cc

(

R̃c
ab(s, t, u) + 16πŨ c

ab(s, t, u)
)

+O(p6) (8.6)

with

Ũ+
++(s, t, u) = W̃+

++(s) + W̃+;0
+− (t) + (u− s)W̃+;1

+− (t) + W̃+;0
+− (u) + (t− s)W̃+;1

+− (u), (8.7)

Ũ+
00(s, t, u) = W̃+

00(s)− W̃+;0
+0 (t)− (s− u)W̃+;1

+0 (t)− W̃+;0
+0 (u)− (s− t)W̃+;1

+0 (u), (8.8)

ŨL
+−(s, t, u) = W̃L

+−(s)− W̃L;0
0+ (t)− (s− u)W̃L;1

0+ (t)− W̃L;0
0+ (u)− (s− t)W̃L;1

0+ (u), (8.9)

ŨL
00(s, t, u) = W̃L

00(s) + W̃L
00(t) + W̃L

00(u), (8.10)

ŨS
+−(s, t, u) = (t− u)W̃ S

+−(s) + W̃ S;0
0+ (t) + (s− u)W̃ S;1

0+ (t)− W̃ S;0
0+ (u)− (s− t)W̃ S;1

0+ (u).
(8.11)

According to (3.10) and (3.11), the dispersion integrals W̃ c;ℓ
ab are given by

W̃+
++(s) =

1

2

(

Ac +
Bc

F 2
π

(s− s̃c)

)(

ad +
bd
F 2
π

(s− 4m2
π±)

)

J̄+(s), (8.12)

W̃+;0
+− (s) =

1

2

(

Ax +
Bx

F 2
π

(s− s̃x)

)(

ax +
bx
F 2
π

(s− 4m2
π±)

)

J̄0(s)

+

(

Ac −
Bc

2F 2
π

(s− s̃c)

)(

ac +
bc
F 2
π

(s− 4m2
π±)

)

J̄+(s),

(8.13)

W̃+;1
+− (s) = −bcBc

6F 4
π

(s− 4m2
π±)J̄+(s), (8.14)

W̃+
00(s) =

1

2
a0

(

Ax +
Bx

F 2
π

(s− s̃x)

)

J̄0(s)

+

(

Ac −
Bc

2F 2
π

(s− s̃c)

)(

ax +
bx
F 2
π

(s− 4m2
π±)

)

J̄+(s),

(8.15)

W̃+;0
+0 (s) =

(

Bx

2F 2
π

( bt
3F 2

π

(

3(s− s̃x)(s− 2Σ) + ∆(3∆ + 4∆̃0)− (8Σ∆̃0 + 3s̃x∆)
∆

s

)

+ at

(

s− s̃x +
∆̃0∆

s

))

− Ax

(

at +
bt
F 2
π

λ(s)

s

))

J̄+0(s)

+
2

3

btBx

F 4
π

∆3∆̃0

s2
¯̄J+0(s),

(8.16)

W̃+;1
+0 (s) =

btBx

6F 4
π

λ(s)

s
J̄+0(s), (8.17)
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W̃L
+−(s) =

1

2
A0

(

ax +
bx
F 2
π

(s− 4m2
π±)

)

J̄0(s)

+

(

Ax +
Bx

F 2
π

(s− s̃x)

)(

ac +
bc
F 2
π

(s− 4m2
π±)

)

J̄+(s),

(8.18)

W̃L;0
0+ (s) =

(

Bx

2F 2
π

( bt
3F 2

π

(

3(s− s̃x)(s− 2Σ) + ∆(3∆− 4∆̃+) + (8Σ∆̃+ − 3s̃x∆)
∆

s

)

+ at

(

s− s̃x −
∆̃+∆

s

))

− Ax

(

at +
bt
F 2
π

λ(s)

s

))

J̄+0(s)

− 2

3

btBx

F 4
π

∆3∆̃+

s2
¯̄J+0(s),

(8.19)

W̃L;1
0+ (s) =

btBx

6F 4
π

λ(s)

s
J̄+0(s), (8.20)

W̃L
00(s) =

1

2
a0A0J̄0(s) +

(

Ax +
Bx

F 2
π

(s− s̃x)

)(

ax +
bx
F 2
π

(s− 4m2
π±)

)

J̄+(s), (8.21)

W̃ S
+−(s) =

bcBx

3F 4
π

(s− 4m2
π±)J̄+(s), (8.22)

W̃ S;0
0+ (s) =

(

Bx

2F 2
π

( bt
3F 2

π

(

9(s− s̃x)(s− 2Σ) + ∆(9∆ + 4∆̃+)− (8Σ∆̃+ + 9s̃x∆)
∆

s

)

+ at

(

3s− 3s̃x +
∆̃+∆

s

))

+
2

3

btBx

F 4
π

∆3∆̃+

s2
¯̄J+0(s),

(8.23)

W̃ S;1
0+ (s) = −btBx

6F 4
π

λ(s)

s
J̄+0(s). (8.24)

and the NLO polynomial parts are written in the expected form

R̃+
++(s, t, u) = Ac +

Bc

F 2
π

(s− s̃c) +
Cc

F 4
π

(s− s̃c)
2 +

Dc

F 4
π

(

(t− s̃c)
2 + (u− s̃c)

2
)

, (8.25)

R̃+
00(s, t, u) = Ax +

Bx

F 2
π

(s− s̃x) +
Cx

F 4
π

(s− s̃x)
2 +

Dx

F 4
π

(

(t− s̃x)
2 + (u− s̃x)

2
)

, (8.26)

R̃L
+−(s, t, u) = Ax +

Bx

F 2
π

(s− s̃x) +
Cx

F 4
π

(s− s̃x)
2 +

Dx

F 4
π

(

(t− s̃x)
2 + (u− s̃x)

2
)

, (8.27)

R̃L
00(s, t, u) = A0 +

C0

F 4
π

(

s2 + t2 + u2 − 3s̃20
)

, (8.28)

R̃S
+−(s, t, u) =

Bx

F 2
π

(t− u) +
Cx

F 4
π

(s− s̃x)(t− u). (8.29)

8.3 Second iteration for P 0π0 → π0π0

In Section 6.6 we have discussed the complications that appear in the reconstruction pro-
cedure of Pπ → ππ processes because of the instability of the particle P . From that
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discussion there followed the observation that the complications do not manifest them-
selves in the first iteration. However, when one wants to perform the second iteration we
have to pay attention to them. One possible way how to deal with them is to compute
the amplitude for mP < 3mπ (which can be done for any of the considered processes) and
try to find an analytic continuation in mP that will lead to the physical result also for the
physical mass mP . In many cases such analytic continuation needs deformations of the
contour of the dispersion relations and one needs to perform it very carefully. However,
as is discussed in Appendix J this is not the case for the process P 0π0 → π0π0 even if
we take mπ± 6= mπ0 . By coincidence that are two of the most important processes for
our analyses, η → 3π0 and KL → 3π0 containing the cusp effect. In order to shorten the
current discussion and to simplify the computation, we have therefore decided to perform
in this work the second iteration only for these two processes and the computation for the
other processes will be discussed elsewhere.

8.3.1 Computation of NLO partial waves contributing to P 0π0 → π0π0

The Bose symmetry (together with the crossing property) dictates this amplitude to be
symmetric with respect to the exchange of all the Mandelstam variables. It means that
the amplitude remain the same in all the crossed channels and in addition it has to be
t − u symmetric. Consequently, it possesses only the S-waves and we need to compute
just the NLO S-waves of P 0π0 → π0π0 and of P 0π0 → π+π−. We have already discussed
that instead of starting the computation of the complete amplitude for mP < 3mπ and
performing the analytic continuation using the Kacser prescription not until such amplitude
is computed, we can use the integral representation of the second iteration we have given
in Section 3.5 and perform such continuation already in the partial waves. In Appendix K
we have computed the integrals (3.32) of the one-loop functions appearing in NLO P 0π0 →
π0π0 and P 0π0 → π+π− amplitudes. It is therefore a straightforward task to put all these
relations together and obtain the partial waves desired.

We write them again in the form1

ϕ̃Ln;0(s) =
C
16π

(

p̃Ln;0λ (s) +
1

π

∑

j

p̃Ln;0j (s)Mj(s)

)

with j =

{

0, 1n, 1L, 2Ln, 3n,
3+, 11L, 12L, 13L

, (8.30)

ϕ̃Lx;0(s) =
C
16π

(

p̃Lx;0λ (s) +
1

π

∑

j

p̃Lx;0j (s)Mj(s)

)

with j =

{

0, 0q, 1+, 1L, 2L+,
3n, 3+, 7Lx

. (8.31)

The polynomials p̃a;0j (s) are listed in Appendix L.2 and the dimensionless functions Mj(s)
in Appendix F.

1Note that the amplitude P 0π0 → π+π− possesses also the P-wave. However, we will not need it in
our computation and therefore will not write explicitly.
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8.3.2 Computation of the second iteration

The reconstruction theorem shows that the NNLO amplitude P 0π0 → π0π0 can be obtained
in the form

ÃL
00(s, t, u) = C

(

R̃L
00(s, t, u) + 16πŨL

00(s, t, u)
)

+O(p8). (8.32)

We write the polynomial part in the form

R̃L
00(s, t, u) = A0 +

C0

F 4
π

(

s2 + t2 + u2 − 3s̃20
)

+
E0

F 6
π

(

s3 + t3 + u3 − 3s̃30
)

(8.33)

and the single variable dispersion integral W̃L
00(s) appearing in the unitarity part

ŨL
00(s, t, u) = W̃L

00(s) + W̃L
00(t) + W̃L

00(u) (8.34)

is computed in the following.
Similarly as in the isospin case from the previous chapter, this integral is of the form

(2.73) and we can employ the simplifications of Section 2.5 and obtain the result in the
form

W̃L
00(s) =

C
π
Pj(s)Hj(s), (8.35)

where Hj(s) are Hilbert transforms of dimensionless functions appearing in the integrands
of W̃L

00(s) and Pj(s) are polynomials in s.
Since we have explained the computation in great detail on the case of isospin symmetric

result of Chapter 7, we can be brief now. The richer set of the functionsMj(s) in the partial
waves means also a richer set of kinematic functions Kj(s) appearing in the integrand of
W̃L

00(s). We list them together with some of their properties in Tables 9 and 10. In Table 9
there are given the functions appearing in the contribution of π0π0 intermediate state,
whereas in Table 10 those from contribution of π+π− are listed. The limits of functions
K11 and K12 are

K11(s) → Kq=1
11 (s) =

∆̃− s

m2
π

σ2
π(s)F2(s)−

1

sm2
π

λ̃(s)F4(s), (8.36)

K12(s) → Kq=1
12 (s) = F2(s) +

(

1− ∆̃

s

)

F4(s). (8.37)

As was discussed below the unitarity relations (7.43) even though the various functions
Mj(s) (and thereby also Kj(s)) are for the physical mass mP complex, the only functions
that need specific care are functions M3n(s) and M3+(s) that are complex even for mP <
3mπ and because of the complex conjugation in (7.43) they appear in the integrand once
in the direct and once in the complex conjugated form. It should be obvious that for
the contribution of M3n(s) in π0π0 intermediate state, i.e. for the direct contribution of
Pπ0 → π0π0 → π0π0 rescatterings, there occur the same mechanism as in the isospin
symmetric computation (cf. (7.57) and Figure 12). It means that there contribute only
real part of this function, which is in the integration region equal to σ2

0(s)L0(s), and
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Kj Mj Asympt. nmin Pj m n q → 1

K1n = σ0 M0 s0 1 P1n 〈−1, 2〉 1 → F1

K2n = L0 M1n,M3n log s 1 P2n 〈−1, 0〉 1 → F2

K2n∇ = σ0
L∇
σ∇

M1∇ log s 1 P2n∇ 〈0, 2〉 1 → F2

K3n = −m2
π0

L2
0

sσ0
M2n

1
s
log2 s 0 P3n 0 0 → F3

K3n∇ = −m2
π±

L2
∇

sσ0
M2∇

1
s
log2 s 0 P3n∇ 0 0 → F3

K4n = sσ0
M0

λ̃
1/2
0

M1L log s 1 P4n 〈−1, 0〉 1 → F4

K5n = −m2
π0L0

M0

λ̃
1/2
0

M2Ln
1
s
log2 s 0 P5n 0 0 → F5

K6∇ = Reσ0σ+L+ M3+ log s 1 P6∇ 〈0, 2〉 1 → σ2
πF2

K11 = 2σ0(ω(τ
Ln
+ ) + ω(τLn− )) M11Ln s log s 2 P11 〈0, 1〉 2 → Kq=1

11

K12 = 2m2
π±

ω(τLn
+ )−ω(τLn

− )

λ̃
1/2
0

M12Ln log s 1 P12 〈−1, 2〉 1 → Kq=1
12

K13 = m2
π±

log2 τLn
+ −log2(τLn

− )

λ̃
1/2
0

M13Ln
1
s
log2 s 0 P13 0 0 → F5

Table 9: Kinematic functions Kj appearing in the integrand of W̃L
00(s) stemming from π0π0

intermediate state, i.e. originating as σ0Mj . The expressions for Mj and further functions
used in the table are given in Appendix F. The third column denote asymptotics of the
particular function for s → ∞, from which it follows the minimal number of subtraction
nmin of its Hilbert transform. In the sixth column there are listed powers of s appearing in
the polynomial Pj multiplying the function in question. Using these two numbers together

with the inequality (2.76) we determine the number of subtraction needed for H(n)
j given

in the penultimate column. The ultimate column contains limit of Kj for mπ0 = mπ± —
for the sake of space the more dense limit are labeled here and expressions for them are
given in the main text.

such contribution can be included into P2n(s). The similar discussion applies also for the
contribution of M3+(s) in π

+π− intermediate state. A more complex situation appears in
the crossed contributions. As is depicted on Figure 13 (thanks to the T-invariance) such
crossed contribution in π0π0 intermediate state is for s > 4m2

π0

1

2
αx(s)σ0(s)

(

α̃x(s)α0(s)σ+(s)L+(s) + α̃0(s)αx(s)σ
⋆
+(s)L⋆

+(s)
)

. (8.38)

For s > 4m2
π± it simplifies (σ+(s) > 0 and L+(s) is real) into

1

2
αx(s)σ0(s)σ+(s)

(

(

α̃x(s)α0(s)+α̃0(s)αx(s)
)

L+(s)∓iπ
(

α̃x(s)α0(s)−α̃0(s)αx(s)
)

)

, (8.39)

where the upper sign corresponds to the usual physical choice (continuation in s from
below), whereas for s ∈ (4m2

π0 , m2
π±) the contribution looks like
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Kj Mj Asympt. nmin Pj m n q → 1

K1+ = σ+ M0 s0 1 P1+ 〈−1, 3〉 1 → F1

K1q = −Σ
∆
log q σ+ M0q s0 1 P1q 〈−1, 3〉 1 → F1

K2+ = L+ M1+,M3+ log s 1 P2+ 〈−1, 3〉 1 → F2

K2+n = σ+
L0

σ0
M1n log s 1 P2+n 〈0, 3〉 1 → F2

K3n+ = −Σ
2
L+L0

sσ0
M2n+

1
s
log2 s 0 P3n+ 〈0, 2〉 0 → F3

K4+ = sσ+
M0

λ̃
1/2
0

M1L log s 1 P4+ 〈−1, 3〉 1 → F4

K4+ P4+ −2 2 → F4

K5+ = −Σ
2
L+

M0

λ̃
1/2
0

M2L+
1
s
log2 s 0 P5+ 〈0, 2〉 0 → F5

K6∆ = Re σ0σ+L0 M3n log s 1 P6δ 〈0, 2〉 1 → σ2
πF2

K7x = ∆
J (τx+)−J (τx−)

sσ0
M7x

1
s
log s 0 P7x 〈0, 2〉 0 → 0

K7Lx = ∆
J (τLx

+ )−J (τLx
− )

λ̃
1/2
0

M7Lx
1
s
log s 0 P7Lx 〈0, 2〉 0 → 0

K8Lx = σ+M8Lx M8Lx
1
s
log s 0 P8Lx 〈0, 2〉 0 → −F2 + F4

K9Lx = σ+M9Lx M9Lx
1
s

0 P9Lx 〈0, 1〉 1 → 0

Table 10: Kinematic functions Kj appearing in the integrand of W̃L
00(s) stemming from

π+π− intermediate state, i.e. originating as σ+Mj. The expressions for Mj and further
functions used in the table are given in Appendix F. The other columns contain the similar
quantities as it was the case in the previous table. Note that for K4+ we need two Hilbert
transforms, once with one subtraction and once with two of them.

± 1

2
αx(s)iσ0(s)|σ+(s)|

(

α̃x(s)α0(s)L+(s)− α̃0(s)αx(s)L⋆
+(s)

)

=
1

2
αx(s)σ0(s)|σ+(s)|

(

α̃x(s)α0(s) + α̃0(s)αx(s)
)

(

arctan
2|σ+(s)|
1− σ2

+(s)
− π

)

(8.40)

independently on the choice of the sign since σ+(s) is on this interval purely imaginary
and the argument of the logarithm is then with its norm equal to 1. In conclusion this
contribution splits into the real part, whose polynomial is obtained as adding of two parts
contributing and the imaginary part that starts for s > 4m2

π± with polynomial containing
difference.

Similarly the crossed contribution in π+π− intermediate state for s > 4m2
π± (the one-

half appearing there is from p3n(s))

1

2
αx(s)σ0(s)σ+(s)

(

α̃x(s)α0(s)L⋆
0(s) + α̃0(s)αx(s)L0(s)

)

=
1

2
αx(s)σ0(s)σ+(s)

(

(

α̃x(s)α0(s) + α̃0(s)αx(s)
)

L0(s)± iπ
(

α̃x(s)α0(s)− α̃0(s)αx(s)
)

)

.

(8.41)
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0

L

0

0

−

+

0

0

0

L

0

0

0

0

−

+

1

2
(α̃x(s)M3+(s)αx(s))× α⋆

0(s)σ0(s)
1

2
α̃0(s)× (αx(s)M3+(s)αx(s))

⋆ σ0(s)

0

L

0

0

−

+

0

0

0

L

0

0

0

0

−

+

1

2
α̃x(s)× (αx(s)M3n(s)α0(s))

⋆ σ+(s)
1

2
(α̃0(s)M3n(s)αx(s))× α⋆

x(s)σ+(s)

Figure 13: Illustration of the symmetry of the crossed contributions with M3 to NNLO
Pπ0 → π0π0 amplitude. In the first line there are diagrams containing M3+ in the con-
tribution with π0π0 intermediate state. The second line contains contributions with M3n

from the π+π− intermediate state.

Since both of the imaginary parts are non-zero for s > 4m2
π± and of different sign, they

cancel and only the real parts of the contributions remain, moreover, both with the same
polynomial coefficient. It is not unexpected since the discontinuity of

H(1)
6 (s) = σ0(s)L0(s)σ+(s)L+(s)− 4 =

(

16π2J̄0(s)− 2
) (

16π2J̄+(s)− 2
)

− 4 (8.42)

is equal to

DiscH(1)
6 (s) = Re σ0(s)σ+(s)

(

L0(s)θ(s− 4m2
π±) + L+(s)θ(s− 4m2

π0)
)

. (8.43)

It means that our formal H(1)
6∆(s) and H(1)

6∇(s) combine into this function which is multipli-
cation of two one-loop functions.

In summary, the single variable dispersion integral is

W̃L
00(s) =

C
π

(

P1n(s)G(1)
1n (s) + P1+(s)G(1)

1+(s) + P1q(s)G(1)
1q (s) + P2n(s)G(1)

2n (s)

+ P2+(s)G(1)
2+(s) + P2+n(s)G(1)

2+n(s) + P2n∇(s)G(1)
2n∇(s) + P3n(s)G(0)

3n (s)

+ P3n+(s)G(0)
3n+(s) + P3n∇(s)G(0)

3n∇(s) + P4n(s)G(1)
4n (s) + P5n(s)G(0)

5n (s)

+ P5+(s)G(0)
5+(s) + P6(s)G(1)

6 (s) + P7x(s)G(0)
7x (s) + P7Lx(s)G(0)

7Lx(s)

+ P8Lx(s)G(0)
8Lx(s) + P9Lx(s)G(1)

9Lx(s) + P11(s)G(2)
11 (s) + P12(s)G(1)

12 (s)

+ P13(s)G(0)
13 (s) +

〈

P4+(s)
〉

×−2
G(1)
4+(s) +

〈

P4+(s)
〉

−2
G(2)
4+(s)

)

, (8.44)
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where we have again used the picking up
〈

∑

i ais
i
〉

m
and the dropping

〈

∑

i ais
i
〉

×m oper-

ators from (7.66) and (7.67) respectively.
The polynomials multiplying these kinematic functions are simply

P1n(s) =
a0A0

2
+
A0

2

(

p0;0λ (s) +
1

π
p0;0w +

1

π
p0;00 (s)

)

+
a0
2

(

p̃Ln;0λ (s) +
1

π
p̃Ln;00 (s)

)

, (8.45)

P2n(s) =
1

2

1

π

(

A0 p
0;0
1n (s) + a0 p̃

Ln;0
1n (s) + 2σ2

0(s)A0 p
0;0
3n (s)

)

, (8.46)

P2n∇(s) =
1

2

1

π
A0 p

0;0
1∇(s), (8.47)

P3n(s) =
1

2

1

π
A0 p

0;0
2n (s), (8.48)

P3n∇(s) =
1

2

1

π
A0 p

0;0
2∇(s), (8.49)

P4n(s) =
1

2

1

π
a0 p̃

Ln;0
1L (s), (8.50)

P5n(s) =
1

2

1

π
a0 p̃

Ln;0
2Ln (s), (8.51)

P6(s) =
1

2

1

π

(

A0 p
0;0
3+(s) + a0 p̃

Ln;0
3+ (s)

)

, (8.52)

P11(s) =
1

2

1

π
a0 p̃

Ln;0
11Ln(s), (8.53)

P12(s) =
1

2

1

π
a0 p̃

Ln;0
12Ln(s), (8.54)

P13(s) =
1

2

1

π
a0 p̃

Ln;0
13Ln(s), (8.55)

P1+(s) = αx(s)α̃x(s) + α̃x(s)
(

px;0λ (s) +
1

π
px;0w +

1

π
px;00 (s)

)

+ αx(s)
(

p̃Lx;0λ (s) +
1

π
p̃Lx;00 (s)

)

,

(8.56)

P1q(s) =
1

π

(

α̃x(s)p
x;0
0q (s) + αx(s)p̃

Lx;0
0q (s)

)

, (8.57)

P2+(s) =
1

π

(

α̃x(s)p
x;0
1+(s) + αx(s)p̃

Lx;0
1+ (s) + 2σ2

+(s)α̃x(s)p
x;0
3+(s)

)

, (8.58)

P2+n(s) =
1

π
α̃x(s)p

x;0
1n (s), (8.59)

P3n+(s) =
1

π
α̃x(s)p

x;0
2n+(s), (8.60)

P4+(s) =
1

π
αx(s)p̃

Lx;0
1L (s), (8.61)

P5+(s) =
1

π
αx(s)p̃

Lx;0
2L+ (s), (8.62)

P7x(s) =
1

π
αx(s)p̃

Lx;0
7x (s), (8.63)
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P7Lx(s) =
1

π
α̃x(s)p

Lx;0
7Lx (s), (8.64)

P8Lx(s) =
1

π
αx(s)p̃

Lx;0
8Lx (s), (8.65)

P9Lx(s) =
1

π
αx(s)p̃

Lx;0
9Lx (s), (8.66)

where we have again denoted with α(s) and α̃(s) the LO amplitudes of Ax(s, t, u) and
ÃL

+−(s, t, u) respectively,

αx(s) = ax +
bx
F 2
π

(s− 4m2
π±), α̃x(s) = Ax +

Bx

F 2
π

(s− s̃x). (8.67)

For completeness, let us remind that the polynomials p̃a;ℓj (s) and pi;ℓj (s) can be found in
Appendix L and Appendix G.

8.3.3 Using the result for obtaining other amplitudes

As was already noted above by performing two distinct limits of the amplitude, we can
obtain the result of the amplitude Pπ0 → π0π0 in the isospin limit or isospin breaking
result for π0π0 scattering. In order to obtain the isospin limit of this result, we just need
to perform the limit of the kinematic functions which were already given in Tables 9 and
10 and in the polynomial part we limit mπ± → mπ0 together with the limit in the ππ
parameters from (5.157)–(5.162) and the following change in the parameters of Pπ → ππ
amplitudes

AL
0 = −3AL

x , CL
0 = −CL

x − 2DL
x , EL

0 = −EL
x − 2FL

x . (8.68)

We have verified that we obtain the same result as from the computation of the previous
chapter.

Similarly by performing the limit mP → mπ0 , we can obtain the isospin breaking result
for π0π0 scattering. In this case the kinematic functions have limits

K4n → K2n, K4+ → K2+, (8.69)

K5n → K3n, K5+ → K3+, (8.70)

K7Lx → K7x, K11 → −2
s− 4m2

π0

m2
π±

K2n∇, (8.71)

K12 → 2K2n∇, K13 → K3n∇, (8.72)

K8Lx → ∆

Σ
K1q −

1

2
K2+ +

1

2
K2+n, (8.73)

K9Lx →
(

1− s

Σ

)

K1q +
s− 4m2

π± +∆

2∆
K2+ − s− 4m2

π0 −∆

2∆
K2+n − 1 (8.74)
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and the remaining functions leave the same. In the polynomial part it is easier to obtain
the subthreshold parametrization by changing

AL
0 → α00m

2
π0

F 2
π

, AL
x → −α±0m

2
π0

3F 2
π

, BL
x → −β±0

3
(8.75)

and some more complicated changes in CL
x , D

L
x and EL

0 (this is connected with the fact that
λ’s in subthreshold parametrization of ππ scattering from Section 5.9 were not expanded
around the center of the Dalitz plot but instead at the thresholds).

8.4 Conclusions for Pπ → ππ scattering with mπ± 6= mπ0

We have constructed allK → 3π and η → 3π amplitudes taking into account all the isospin
breaking effects connected with mπ± 6= mπ0 at the one-loop level and the amplitudes KL →
3π0 and η → 3π0 at the two-loop level. These results are prepared for the phenomenological
analyses. Thanks to the inclusion of the isospin breaking effects it is especially useful for
the analyses of the cusp. Note however that at the current level we do not include photons,
which can be missing in the analysis of K decays. Nevertheless, thanks to the suppression
of the electromagnetic effects in η → 3π decays, it seems that our amplitude will be very
suitable for the analysis of cusp effect in η → 3π0, whose first indications are already
observed (cf. [117]).
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Chapter 9

Determination of the mu and the md masses

from η → 3π decays

In the previous chapters we have already discussed some of the possible phenomenological
applications of the amplitudes constructed using the reconstruction theorem and stated
that they are prepared for such studies. The only study we have already performed is the
determination of the isospin breaking parameter R [from (6.1)] connected to the light quark
masses from the η → 3π decay. Nevertheless, also in this case the analysis is incomplete
as we still do not have an access to the physically measured data [cf. Section 9.6]. Before
we describe our analysis, we recall in the next section, the importance of the χPT-inspired
studies for the determination of the light quark masses.

9.1 Introduction

Quark masses are fundamental free parameters of the Standard model. Because of the
QCD phenomenon of color confinement, quarks are bounded inside hadrons and their
masses cannot be directly measured. The only method for their determination is a com-
parison of a theoretical prediction of some observable depending on the masses in some
theoretical framework with the corresponding experimental value. For that end we thus
need a framework, in which the quark masses explicitly occur and which can make predic-
tions of such observable with a sufficient precision. Naturally, such definition of the masses
can depend on the particular framework used. In the following we deal with the current
quark masses, which are the masses occurring in the QCD Lagrangian. However, because
of the quark confinement and the fact that the light quark masses (mu, md, ms) are very
small in comparison to the typical hadron scales, the perturbative QCD cannot be used for
their determination and we need to employ non-perturbative methods of QCD. Nowadays,
the natural candidates for them are sum rules, lattice QCD and chiral perturbation theory.

QCD sum rules are based on dispersion relations stemming from analytic properties
of some observables (such as differential decay rate of τ). They connect together the
hadron world measured in experiments with the perturbative QCD in terms of operator
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product expansion. For the recent review on the sum-rule results on light quark masses
we refer to [110, 60]. Note that a computation of electromagnetic corrections within sum-
rule methods would be very difficult since an inclusion of long-range interactions changes
significantly analytic properties of the amplitudes, which makes it impossible to write
dispersion relations in the regular form.

Numerical simulations on lattice have achieved in recent years a considerable progress
— the current day simulations are performed with 2 + 1 dynamical quarks, moreover,
with ms near its physical value. However, in order to reach the physical point in mu,d,
chiral extrapolation is predominantly still necessary. Again the inclusion of electromagnetic
interactions on the lattice is very involved for their long-range character, nevertheless, even
in this aspect, there is some progress as quenched QED simulations are already performed
(e.g. [38]). In recent years there appeared two attempts [46, 102] to review and average
existing lattice calculations of various quantities, including mq, where more details can be
found.

Both of these methods independently determined the values of ms and of the isospin
averaged mass m̂ = mu+md

2
with a reasonable precision with more-or-less compatible results.

But since the isospin breaking effects generated by electromagnetic interactions are of the
same order as those stemming frommu−md difference and there occur the above mentioned
problems with the direct inclusion of the electromagnetic corrections into the nowadays
studies within both of these frameworks, for the determination of the individual masses
mu and md they both need an additional input1.

A framework that can provide such an input is chiral perturbation theory. We recall
that for the determination of the quark masses, χPT alone is insufficient. It is so because
in all physical results, the quark masses occur multiplied by the scalar quark condensate
B0 and thus rescaling both of them does not change the physics. In addition, starting at
next-to-leading order in chiral counting, there exists the following transformation of the
masses [92]

m′
u = mu + λmdms, m′

d = md + λmsmu, m′
s = ms + λmumd, (9.1)

which together with the corresponding shifts in low-energy constants

L′
6 = L6 − λ

F 2
0

32B0
, L′

7 = L7 − λ
F 2
0

32B0
, L′

8 = L8 + λ
F 2
0

16B0
(9.2)

and similar shifts in some of the NNLO constants Ci leave the pseudoscalar masses, scat-
tering amplitudes and matrix elements containing vector or axial vector currents invariant.
Thus, using only experimental measurements we cannot fix this so-called Kaplan-Manohar
ambiguity. Consequently, χPT can determine only quark mass ratios and needs some ex-
ternal theoretical input in order to fix the physical definition of the masses (otherwise the

1Even for a precise determination of ms, electromagnetic interactions cannot be neglected. However,
since they are here less important, at the current level of precision of the determination of ms it is enough
to take an estimate of them.
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χPT masses could be different with respect to the current quark masses we want to deter-
mine). For a review of χPT NLO determinations of light quark masses, we refer to [107].
In addition, in [10] the employment of NNLO meson mass formulae is included.

For a more precise determination of light quark masses it is therefore useful to combine
isospin symmetric results of the lattice QCD and the sum-rules with some isospin-breaking
study performed in χPT. A very suitable process for such a study is η → 3π decay2, which
is possible only in the isospin breaking world. Moreover, as was discussed in Section 6.2
the electromagnetic contributions to this decay are very small and thus its amplitude is
to a good approximation directly proportional to md − mu. We pull out the following
normalization factor out of the amplitude [cf. (6.48)]

M̃(s, t, u) =

√
3

4R
M̃(s, t, u), with R =

ms − m̂

md −mu

. (9.3)

By a computation of the so defined M̃(s, t, u) in χPT and its comparison to the measured
decay rate of this decay Γ, one can determine the parameter R. As we have already
discussed, after pulling out this isospin breaking parameter we can perform isospin limit
in the rest of the amplitude M̃(s, t, u), which provides a very good approximation.

9.2 Recent theoretical approaches to η → 3π

In Section 6.2 we have summarized all the recent computations of η → 3π amplitude. We
recall that the two-loop computation within χPT exists [33] but there are several hints
questioning the value of R deduced from this computation.

First of them is connected with the observed large chiral corrections in the first three
successive orders — we can illustrate it on Figure 14, where we have plotted the squared
amplitudes stemming from LO, NLO and NNLO computations in χPT, or on the values
of R which follow from these amplitudes if we combine them with the experimental value
of the decay rate of the charged process Γ = 295(16) eV [110]

RLO = 19.1, RNLO = 31.8, RNNLO = 41.3. (9.4)

The second hint is connected with the observed discrepancies between the experimen-
tally measured values of Dalitz parameters and the values predicted from [33] — cf. Tables 7
and 8. For a better quantification of the difference between experiment and theory, we can
introduce

χ2 =

(

exp− theor

σ[exp]

)2

, (9.5)

where exp and σ[exp] are the central value and the error bars of the experimentally mea-
sured value and theor is the value of the considered quantity predicted by the theory.

2In addition to the studies referred in Section 6.2, we refer also to [45], which was one of the first studies
taking seriously into account the results of η → 3π decay together with the first lattice determinations in
order to put constraints on the quark masses.
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Figure 14: The squared amplitudes of the charged η → 3π decay stemming from χPT
computation in the first three chiral orders. The green, red and blue surfaces correspond
to LO, NLO and NNLO amplitudes, respectively. The plot is normalized by taking the
NNLO amplitude in the center of the Dalitz plot equal to one.

For the neutral parameter α, which is most often put forward in this aspect, we obtain
a huge difference of χ2 = 225. However, there is a parameter with even more apparent
discrepancy, namely b with χ2 ∼ 500.

A third hint questioning the accurateness of the R determination from the two-loop
χPT computation as well as a possible explanation of the discrepancies in Dalitz parameters
is the poor knowledge of the O(p6) low-energy constants (LECs) Ci. Two-loop amplitudes
depend on subsets of 102 Cis, whose determination is needed before any reliable prediction.
However, nowadays we are far from a determination of all required LECs from experiment
(or lattice), and hence for many of them we have to rely on some estimates, predominantly
of the resonance saturation type [64, 63, 109, 96]. This brings an unknown error into the
game — the error presented in [33] is an estimate by the authors obtained by taking the
uncertainty of the amplitudes equal to one half of the two-loop contributions.

These complications impose the following questions: What is the origin of the Dalitz
parameters discrepancy? How do this discrepancy together with the slow chiral convergence
and the poor knowledge of the Ci’s influence the determination of the isospin breaking ratio
R?

This has inspired various theoretical studies exploring possible explanations of the dis-
crepancy, namely the effect of higher order final state rescattering [90,17,50], the influence
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of slow chiral convergence of ππ scattering or of η → 3π amplitude itself [122, 99], un-
expectedly large electromagnetic corrections [112, 111], effects of resonances or with that
connected possibility of incorrectly estimated values of Ci’s [99].

We have discussed some of these studies already in Section 6.2, so we emphasize here
only their aspects related to the extraction of the information on the quark masses. From
these four types of studies, quark masses appear explicitly only in two of them [99,112,111]
as these two are using chiral perturbation theory.

In [112,111] the authors have pointed out that the electromagnetic corrections coming
from their partial two-loop computation (taking into account only a subset of the diagrams
contributing at the O(e2p4) order) have in their particular renormalization scheme at the
particular scale they are computing unexpectedly large value and it can happen that these
contributions will not be canceled by the counter terms and the further diagrams not
yet computed. [Note that such cancellation has happened at the electromagnetic one-
loop level [59].] These partial results therefore send an alert that the smallness of the
electromagnetic corrections is not automatic as one would naively expect. Hopefully, after
the completion of the analysis it will answer the question, whether the complete two-loop
electromagnetic contribution is large enough to explain the observed discrepancies in Dalitz
plot parameters or whether the largeness of the partial results presented in [112, 111] was
just due to an inappropriate choice of the regularization/renormalization scheme (leading
to large cancellation of the individual contributions in the total correction).

The study [99] uses the framework of resummed3 chiral perturbation theory [57, 55]
changing the usual treatment of chiral series and of their remainders. The preliminary
studies of [99] show that whereas the discrepancy in b can be accommodated by higher
chiral orders of the expected small size, the experimentally observed value of α cannot be
explained by the higher chiral orders if we assume good convergence properties of both
the chiral amplitudes themselves and of their derivatives (one have to weaken at least the
second requirement). The results of partial studies of the effects of resonances and of the
higher ππ rescattering are also discussed in [99] but the satisfactory explanation of the
Dalitz parameter discrepancies was not found yet.

Putting aside these two ongoing studies, which do not deal directly with the quark
mass determination yet, we are left with two alternatives to χPT, the dispersive meth-
ods [90,17,50] and the non-relativistic effective field theory [72,82,122]. In order to under-
stand their relative advantages and disadvantages, let us recall a few basic properties they
share. All these approaches are constructed as effective field theories that on the basis of
some assumptions (usually represented by some expansion of the amplitude) divide the
phase-space of each amplitude into the “low-energy part” that is included in the compu-
tation and the “high-energy part” that is not known or at least less known. At tree-level
one simply uses the amplitudes only in the low-energy region and is not concerned by what
lies above the cut-off. In order to work consistently, one needs to introduce a mechanism

3This adjective “resummed” denoting the framework introduced in [57,55] should not be confused with
the adjective “resummed” denoting one of the possible approaches to the polynomial appearing in the
reconstruction theorem from Section 3.6.
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that picks up the contributions that contribute with the same importance to a given order,
usually represented by a power-counting. Then, when computing the amplitude to the
higher order, one needs to include also loop contributions (either by means of taking into
account loop Feynman diagrams, as a unitarity contribution, or by any other method),
where one has to integrate also over the high-energy part of the intermediate amplitudes
(over higher momenta of the intermediate virtual particles). By using the “power-counting
mechanism” or by adding some further assumptions, part of these contributions are con-
sidered negligible, but there always remains a part that is finite and unknown and has to
be parametrized somehow — usually there occur new effective parameters in the model
and the old ones are renormalized or shifted. Note that in χPT (representing a Lagrangian
effective field theory) the power-counting mechanism is given by the chiral counting, which
also monitors the number of LECs (effectively containing the contribution of the physics
above the chiral cut-off — the hadronic scale) appearing at a given order.

In the usual dispersive approaches [90,17,50], which attempt to obtain the amplitudes
with two-pion rescattering effects formally included to all orders, the mechanism assign-
ing the importance to a given contribution is based on the assumption that the two-pion
rescattering effects are dominant. In the low-energy part of the amplitudes, the unitarity
contribution of the physics above the threshold, where further intermediate states con-
tribute and where the S and P partial waves of the considered amplitudes cease to be the
dominant ones, are taken into account through subtraction constants. However, in order
to restrict their number to a reasonable amount, one needs to impose some assumptions on
the high-energy region (of both the physical amplitudes and of the amplitude constructed
iteratively by the numerical method). In [17, 50] these assumptions are specified by the
requirement to have only four4 of them.

The methods based on the modified non-relativistic effective field theory (NREFT)
[72, 82, 122] implement instead of the usual chiral expansion a combined expansion in
powers of a formal non-relativistic parameter ǫ and of a formal partial-wave ππ scattering-
characteristics parameter a (representing scattering lengths and higher threshold shape
parameters). The amplitude is then computed to the two-loop order in the NREFT La-
grangian formalism. The power-counting scheme is therefore based on the non-relativistic
expansion together with the loop expansion (which is equivalent in this case to the expan-
sion in the pion scattering parameters). In [122] the results are presented including the
orders up to O(ǫ4), O(aǫ5), O(a2ǫ4), and partially also O(a2ǫ6) and O(a2ǫ8). By assuming
that the included orders are dominant, the contribution of the intermediate states other
than the two-pion ones have to be included through four parameters [cf. footnote 4] coming
from local interaction terms.

Naturally, the reasonable question that has to be addressed in the future is whether
each set of assumptions (either of χPT, of the dispersive approaches, or of the modified
NREFT) adequately describes the physics, and whether a possible drawback in this respect

4Here we classify the number of parameters appearing in the case we take masses of the charged and
the neutral pions equal, mπ± = mπ0 . Note that from our analysis it is obvious that in two-loop χPT
results there occur at least six independent combinations of LECs.
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in any of them is paid off by the other advantages it possesses. The advantages and the
disadvantages of these approaches were nicely summarized in [100]. We emphasize only
that NREFT provides analytic results that are easy to extent beyond the mπ± = mπ0

limit, while the dispersive methods [90, 17, 50] proceed numerically and their extension to
full isospin breaking was never studied. On the other hand, whereas the NREFT expansion
in ǫ is safe only inside the Dalitz region, the results of the dispersive approaches should
work also in some larger regions beyond it. Both types of approaches have in common that,
in contrast to χPT, they directly use the physically measured ππ scattering parameters as
inputs, but there remain four free parameters that have to be fixed from matching either to
χPT or to experimental data. Moreover, since the studied decay amplitudes depend on R or
Q merely just through their normalization, which is factored out in both of methods, even
if those representations are fitted to experimental data, the determination of R or Q would
still require to match with χPT at least at one point, thereby fixing the normalization.

The matching is not an easy task in this context. In addition to the differences in the
structures of these results, since we are matching two different approaches with different
power-counting schemes and assumptions, we need to find the region (or as discussed above
at least one point) and the appropriate orders in both approaches in which their results are
compatible. Nevertheless, thanks to the simple form of the one-loop χPT amplitude, and
to the fact that the physical regions of η → 3π decays are quite small, in both approaches
the matching to one-loop χPT was obtained (cf. [17, 50] and [122]).

In conclusion, in order to determine the correct value of R from η → 3π decays, one
cannot avoid discussing either the accuracy of the χPT result and its possible corrections
(by correcting the values of O(p6) LECs Ci or by inclusion of some higher-order corrections
into the χPT calculation) or the existence of at least one point (or some region) where
the current chiral result reproduces well the complete physical amplitude. For instance,
the discussion of the influence of the Ci’s on the results can be studied using directly the
χPT amplitude, but its complexity and its extreme length together with the fact that it
includes many Ci’s complicates such an analysis.

9.3 The use of the analytical dispersive representation of η → 3π

amplitude

The two-loop representation of η → 3π amplitude constructed in Chapter 7 contains the
χPT result as a special case [the assumptions used for its construction are compatible with
χPT] but have a simpler compact analytic form, therefore, there naturally offers itself the
possibility to use the analytical dispersive representation for addressing the questions we
have premised before, namely, whether one can obtain a reasonable agreement in the de-
termination of the Dalitz parameters from experiment and from the NNLO χPT amplitude
with the corrected set of the Cis; how such a change would influence the determination of
R; possibly also whether there exists another simple way how to solve that disagreement.

Moreover, since the representation is more general than the χPT amplitude [the values
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of its parameters do not need to be held fixed at the χPT values] and it is based only
on the general properties of field theories and on the hierarchy of various contributions to
the amplitude from Section 2.3, we do not need to work in such a close connection to the
χPT amplitude5 and fit the representation directly to the experimental data. We can thus
change completely our strategy and instead of trying to correct the amplitude stemming
from χPT, we use our representation as a parametrization of the data, from which we can
compute the value of R. However, as was discussed above, also in this case we need to fix
the normalization from χPT. For that end we would need to find a region where the chiral
expansion of the amplitude converges fast, where the two-loop χPT amplitude reproduces
the physics well. Thanks to the form of our representation and its simple connection to
χPT, the analytic dispersive method is helpful also in this analysis, resulting with the
recipe for such matching.

Before we discuss these analyses, we recall the form of the parametrization and perform
its matching to the χPT result [33].

In the context of the above discussion of various approaches in effective field theory
we recall that the requirement of having our representation valid to two loops in chiral
counting picks up the contributions that have to be included into the computation and
tells us that at the low-energy region up to this chiral order all the other effects are taken
into account effectively in terms of six subtraction parameters [cf. again footnote 4]. The
amplitude M̃x(s, t, u) from (9.3) in this parametrization reads

M̃x(s, t, u) = R̃x(s, t, u) + 16πŨx(s, t, u) +O(p8), (9.6)

where R̃(s, t, u) is the polynomial containing those six (dimensionless) parameters

R̃x(s, t, u) = Ax +
Bx

F 2
π

(s− s̃0) +
Cx

F 4
π

(s− s̃0)
2 +

Dx

F 4
π

(

(t− s̃0)
2 + (u− s̃0)

2
)

+
Ex

F 6
π

(s− s̃0)
3 +

Fx

F 6
π

(

(t− s̃0)
3 + (u− s̃0)

3
)

(9.7)

and the unitarity part

Ũx(s, t, u) = Ũx(s, t, u;Ax, Bx, Cx, Dx;απ, βπ, λ1, λ2) (9.8)

is expressed in terms of single variable dispersion integrals from Section 7.5.2 and depends
on the ππ parameters6 and the lower order parameters of the η → 3π amplitude. As was
discussed in Section 3.6, depending on our treatment of various chiral orders, the values
of Ax, . . . , Dx inside the unitarity part can be taken either equal to the values appearing
in the polynomial part in the case of the resummed approach, or can be taken in each

5In Section 2.3 we have discussed mainly the validity of the individual assumptions for χPT but from
those discussions it should be obvious that we can require their validity also for a more general framework
— this requirement is justified also from the previous numerical studies of η → 3π.

6We have specified them here as the subthreshold parameters of the ππ scattering απ, . . . λ2, but the
scattering length parameters can be used as well.
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instance with the appropriate chiral order in the case we want to respect strictly the chiral
counting in our order-by-order approach.

In the following, we will refer also to the results of our analysis in [VI], where we have
used a slightly different parametrization. The polynomial part was taken to be

R̃x(s, t, u) =
1

F 2
π

(

A′
xm

2
η +B′

x(s− s̃0) + C ′
x(s− s̃0)

2 +D′
x

(

(t− s̃0)
2 + (u− s̃0)

2
)

+ E ′
x(s− s̃0)

3 + F ′
x

(

(t− s̃0)
3 + (u− s̃0)

3
)

)

. (9.9)

Relations between these two sets of parameters are therefore

Ax = A′
x

m2
η

F 2
π

, Bx = B′
x, Cx = C ′

x F
2
π , (9.10)

Dx = D′
x F

2
π , Ex = E ′

x F
4
π , Fx = F ′

x F
4
π . (9.11)

However, we have taken there also a little bit different subtraction scheme in the two-loop
unitarity part 7. These two parametrizations therefore differ by a polynomial, which is in
general complex. It contains the values of Hilbert transforms Gj(s) evaluated in various
points connected with the subtraction schemes and depends on the masses mη, mπ and on
the decay constant Fπ. Its form is more complicated than it was in the ππ case (5.191)–
(5.196), we therefore display just the numerical values corresponding to the masses and Fπ

from (9.27)–(9.28),

A(6)
x = A′

x

m2
η

F 2
π

− 0.025− 0.022 i, (9.12)

B(6)
x = B′

x − 0.066 + 0.035 i, (9.13)

C(6)
x = C ′

x F
2
π − 0.0021 + 1.3 · 10−5 i, (9.14)

D(6)
x = D′

x F
2
π + 5.6 · 10−4 − 4.4 · 10−4 i, (9.15)

E(6)
x = E ′

x F
4
π − 2.2 · 10−4 − 1.6 · 10−4 i, (9.16)

F (6)
x = F ′

x F
4
π + 1.1 · 10−4 + 7.4 · 10−5 i. (9.17)

We have labeled these parameters with the upper index “(6)” in order to indicate that
these numerical shifts have to be added only in the case we work with the O(p6) order of
the parameters, i.e. in the polynomial part of the NNLO parametrization in order-by-order
approach or in all appearances of these parameters in the case of the resummed approach.

9.4 Connection of the analytic dispersive parametrization with χPT

Similarly, as was done for the ππ scattering in Section 5.11, we shall find in the following
the values of our parameters corresponding to the two-loop χPT amplitude [33]. However,

7In the current work we have demanded dimensionless functions Fj(s) and each term of the polynomial
is multiplied by the Hilbert transform with the minimal possible number of subtractions, which was not
the case in [VI].
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before doing that we have to discuss the effects that are neglected or approximated in our
representation with respect to the complete standard χPT two-loop calculation from [33].

In analogy to our dispersive representation, the O(p6) χPT amplitude can also be split
into a polynomial part and a non-analytic unitarity part. The former corresponds to
the tree-level counterterm contributions as well as to the chiral logs and sunset diagrams
(Figure 30e), while the latter takes explicitly into account the nontrivial contributions of the
loops. Though this splitting is not unambiguous and depends on the particular definition
of the nontrivial part of the loop graphs, the unitarity part has to reproduce the correct
discontinuities of the amplitude as required by unitarity and corresponding to the two-
particle intermediate states. Along with the pure pion loop contributions also the higher
intermediate states are taken into account, namely, the graphs with K and η inside the
loops. However, below the πη threshold the contributions of discontinuities corresponding
to the πη, KK and ηη intermediate states are analytic and can therefore be expanded in
powers of s, t, u. Sufficiently far below these thresholds one can show that their effects
can be approximated by means of only the terms up to the third order — we perform the
numerical estimate of the error introduced by that in the next section. As a result we
should obtain in this region an approximate χPT amplitude with the same structure as
our dispersively constructed amplitude (recall that both of them include the higher non-
Goldstone intermediate states contributions only effectively through the low-energy and the
subtraction constants, respectively). The only difference is that the polynomial part of the
O(p6) χPT amplitude is generally complex due to the contribution of the sunset diagram
with three intermediate pions which develops a nonzero imaginary part. However, it has
been found to be tiny in [33] and therefore can be neglected — we reverify this observation
again in the next section.

We have already noted that for the matching with the χPT result the natural treatment
of the various chiral orders in our representation is the order-by-order fit, in which the
parameters Ax, . . . , Fx are split into their O(p2), O(p4) and O(p6) parts, i.e.

Ax = A(2)
x +∆A(4)

x +∆A(6)
x , Bx = B(2)

x +∆B(4)
x +∆B(6)

x , (9.18)

Cx = C(4)
x +∆C(6)

x , Dx = D(4)
x +∆D(6)

x , (9.19)

Ex = E(6)
x , Fx = F (6)

x . (9.20)

We determine these individual parts by the following consecutive matching procedures in
each chiral order.

The O(p2) χPT amplitude is exactly reproduced by taking

A(2)
x =

m2
η −m2

π

3F 2
π

, B(2)
x = 1 (9.21)

in the leading order parametrization (7.7).
The imaginary part of the O(p4) χPT amplitude below the πη threshold is fixed by

unitarity and is thus equal to

ImU (4)
x (A(2)

x , B(2)
x ;α(2)

π , β(2)
π ), (9.22)
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where
α(2)
π = β(2)

π = 1 (9.23)

are the leading order χPT values of the ππ → ππ subthreshold parameters [cf. (4.29)–
(4.32)]. Hence, up to a polynomial of the second order in s, t, u, the chiral O(p4) ampli-
tude (with the contributions of πη and KK intermediate states expanded to second order

polynomial as discussed above) is exactly reproduced by U
(4)
x . We therefore subtract U

(4)
x

from the chiral amplitude and obtain the desired polynomial.
Similarly to the ππ case, it should be possible (and in order to make the analyses of

the following sections more precise also desirable) to obtain an exact analytic expression

for ∆A
(4)
x ,∆B

(4)
x , C

(4)
x , and D

(4)
x . However, for the current level of precision it is sufficient

to perform a numerical fit as is described below. This numerical analysis has also such
benefit that it visualizes the effect of the choice of the fitting points to the values of the
parameters.

Once these O(p4) parameters are fixed, we can proceed similarly to the O(p6) order.
At this order the unitarity part obtains corrections

U (4)
x (∆A(4)

x ,∆B(4)
x ;α(2)

π , β(2)
π ) + U (4)

x (A(2)
x , B(2)

x ; ∆α(4)
π ,∆β(4)

π )

+ U (6)
λπ (A

(2)
x , B(2)

x ;λ
(4)
1 , λ

(4)
2 ) + U (6)

λη (C
(4)
x , D(4)

x ;α(2)
π , β(2)

π ) + U (6)
2−loop(A

(2)
x , B(2)

x ;α(2)
π , β(2)

π ),

(9.24)

where the last term corresponds to the genuine 2-loop contributions (in our approximation
containing terms each with one LO η → 3π parameter multiplied by the product of two
LO ππ scattering parameters) while the other four terms correspond to the 1-loop contri-
butions (containing terms with products of one NLO parameter and one LO parameter).
In addition to the parameters known from the previous steps, there appear also the NLO
corrections to the subthreshold ππ parameters, which we have discussed in Section 5.11.
In order to keep the correspondence between the parametrization and the two-loop results
of [33] as close as possible, we take their values corresponding to Fit10 [cf. Table 4]

α(4)
π = α(2)

π +∆α(4)
π = 1.05(2), λ

(4)
1 = −1.6(1.8) · 10−3, (9.25)

β(4)
π = β(2)

π +∆β(4)
π = 1.085(2), λ

(4)
2 = 8.4(5) · 10−3. (9.26)

Again by subtracting this unitarity part from the O(p6) part of the chiral amplitude,

we obtain the O(p6) polynomial depending on ∆A
(6)
x , . . . ,∆D

(6)
x , E

(6)
x and F

(6)
x . Since the

O(p6) chiral amplitude [33] is known only numerically, in this case we cannot avoid a
numerical fitting procedure.

On this place we shall specify the numerical values of the pseudoscalar masses and
the pion decay constant used in the following numerical analyses. In order to be in exact
correspondence with [33] we have taken

mη = 547.3MeV, Fπ = 92.4MeV (9.27)

even thought the recent analyses indicate slightly different values mη = 547.9MeV ( [7]; cf.
also [80]) and Fπ = (92.22± 0.07)MeV (e.g. [91]). In order to fully include these changes
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Figure 15: Various regions used for the matching procedure of the analytic dispersive
parametrization for η → π+π−π0 amplitude with the corresponding result of NNLO χPT
[33] — the individual regions denoted by dotted lines. The blue oval corresponds to the
physical region. The full magenta line indicate the πη threshold (where the representation
ceases to be adequate. The blue dashed line represents the axis of the t− u symmetry of
the amplitude.

into our analyses, redoing of the computation [33], which is needed for our inputs, with
the new values would be necessary. However, one should note that a mere change of these
values in our final results (with the values of the subtractions parameters fixed) leads to a
shift in the value of R of about 0.5%, which is negligible with respect to the other sources of
errors. A slightly different situation is with the pion masses. Even though we are working
in the limit mπ± = mπ0 , it is more proper to take different numerical values of the isospin
mass mπ for the charged and the neutral decays. By taking 3m2

π = 2m2
π± +m2

π0 for the
charged decay (and mπ = mπ0 for the neutral decay) we reproduce exactly the physical
location of the center of the Dalitz plot and reproduce almost exactly the physical value
of normalization Qη = mη − 2mπ± −mπ0 in the definition of Dalitz variables x and y from
(6.34). This choice is especially important for the value of Qη since

(mη − 2mπ± −mπ0) : (mη − 3mπ) : (mη − 3mπ0) = 1 : 0.9996 : 1.0690

and by taking the isospin mass mπ equal to mπ0 in the case of the charged decay, we would
induce the error of Dalitz plot parameters and thereby also of the parameter R of about
7% (cf. also the discussion in [122]). For the similar reasons we take in the computation of
the integration over the phase space, its boundaries equal to the physical ones. We again
take the numerical values corresponding to [33] since the slight change in these values with
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Ax Bx 103Cx 103Dx 104Ex 104Fx 1− r2

O(p2) 10.95 1.000 0

O(p4) 16.27 1.955 −3.620(7) 9.19 10−9

O(p6) 20.27 2.357 −0.470(4) 13.92 1.62(1) −1.78(1) 3 · 10−10

O(p6+p8) 20.27 2.356 −0.57(1) 13.92 1.55(1) −1.77(1) 1 · 10−10

0.22(2) 2 · 10−3

0.220 0.099 10−5

0.202 0.098 2.25(5) 9 · 10−7

0.208 0.098 2.27(3) −0.38(2) 3 · 10−7S
et

0
(p
h
y
si
ca
l)

0.209 0.096 2.18(2) −0.40(1) 1.08(8) 10−7

Im
ag
.
p
ar
ts

O
(p

6
)

0.209 0.096 2.19(2) −0.37(1) 1.15(7) −0.31(4) 9 · 10−8

O(p4) 16.58(1) 1.990(2) −2.43(6) 8.89 5 · 10−5

O(p6) 20.35 2.399(1) 1.34(9) 14.04 2.05(2) −1.641 10−6

O(p6+p8) 20.34 2.383(3) −1.3(4) 13.98 0.5(2) −1.61 9 · 10−7

−0.78(2) 0.05

−1.61(4) −0.062(3) 0.04

−1.13(7) 0.03(1) 3.4(4) 0.04

−0.10(1) 0.053(2) 3.92(7) −0.93 10−3

S
et

4

−0.05(2) 0.071(6) 5.4(5) −0.93 0.4(1) 10−3

Im
ag
.
p
ar
ts

O
(p

6
)

0.24 0.104(1) 6.2(1) −1.19 0.42(2) 0.16 5 · 10−5

Table 11: Values of parameters describing χPT η → 3π amplitude in various chiral orders
obtained from the successive fitting procedure described in the text. The error bars stem-
ming from the fits are specified in brackets or are less than the number of significant digits
presented. The corresponding values of parameters Gx, Hx, Ix for fits O(p6+p8), where we
have added the polynomial terms of the fourth order, are listed in the text.

respect to the recent ones induce a negligible error. Numerically, for the charged decay we
take

mπ = 138.0558MeV, mπ± = 139.5702MeV, mπ0 = 134.9760MeV. (9.28)

9.5 Numerical determination of the values of parameters corre-

sponding to NNLO χPT result

In [VI] we have employed FORTRAN codes8 which produce the two-loop χPT results of [33]
for generating five sets of points each inside the corresponding region depicted on Figure 15.

8These codes were provided to us by Hans Bijnens (one of the authors of [33]).
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These sets were fitted with MINUIT package according to the procedure described in the
previous section. We will not repeat here the complete analysis of [VI] but we present here
only the results of the fits9 for Sets 0 and 4 in Table 11. Set 0 represents the physical region
and Set 4 is the one with the largest extent (i.e. the coefficients of the terms with higher
powers can be determined with a higher precision but on the other hand the effect of the
neglected contributions on them is here the largest). All of these fits were performed with
Wolfram Mathematica. In the ultimate column of Table 11 the resulting adjusted r-squared
describing the quality of the corresponding fit is given — the lesser number quoted in table
(i.e. r2 closer to 1) the better fit it provides.

The leading order values are included just for the verification of (9.21). We observe
that both the sets of points are parametrized by the appropriate dispersive formula well, as
expected the physical Set 0 better than Set 4. The differences between these two sets give
us an idea about the effect of the choice of the points for which we perform the fit. With
the exception of parameters Cx and Ex such error is reasonably small. The parameter Cx

which contributes dominantly to the Dalitz parameters b and f depends strongly on this
choice and also obtains the higher chiral order corrections [note its relation with the results
of study [99]].

We have also verified two approximations made in our parametrization and studied the
numerical error introduced by them to our results. The polynomial part of the two-loop
parametrization should be in general complex — this is obvious also from the relations
translating the values of the parameters used in [VI] to the values of the parameters used
in this work. We have stated that we can simplify the parametrization in the physical
region by neglecting the imaginary parts of the parameters. We have therefore performed
the above fits only to the real part of the polynomial. However, in Table 11 we have also
listed the results of the independent fit to the imaginary parts. We have listed consecutive
fits adding an imaginary part to the individual parameters. We observe that in the physical
region the quality of the fit with addition of the higher parameters does not change too
strong and also the values of the imaginary parts of the parameters from the previous
fits do not change significantly after inclusion of further imaginary parts. Therefore, we
can approximate the imaginary contribution in the physical region by addition of just
ImA

(6)
x = 0.22. It is about two orders of magnitude smaller than the real part A

(6)
x and

as we will see in the following it introduce an error in the determination of the physical
observables of order 0.7%. Naturally these simplifications are not possible for the Set 4,
where the imaginary part depends on the phase-space and each inclusion of the imaginary
part to a larger parameter changes significantly the quality of the fit and the values of the
previously determined imaginary parts. Note however that the complete fit of imaginary
parts to all the NNLO parameters leads to the values of ImAx and ImBx similar to the
result of the fit on Set 0.

Similarly, in the representation we have neglected higher than third order polynomial
terms in expansion of KK and πη contributions (in the decay region). We can estimate

9Note that the other sets can be obtained by using relations (9.10)–(9.17) for the values presented
in [VI].
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the corresponding error by addition of some higher-order terms into the polynomial. The
symmetries dictate that the fourth order polynomial would contain just the terms

Gx

F 8
π

(s− s̃0)
4 +

Hx

F 8
π

(s− s̃0)
2(t− s̃0)(u− s̃0) +

Ix
F 8
π

(

(t− s̃0)
4 + (u− s̃0)

4
)

. (9.29)

From dimensional considerations, the contribution of the KK intermediate states into

these parameters should be ∼ F 4
π

(4π)2M4
K

. 10−5 (and similarly for πη, which is however

suppressed by the SU(2) low-energy theorem), whereas even if all of them were ∼ 10−3 the
shift in the determined R would be 0.1% as is obvious from the following paragraphs. This
expectation is confirmed by fitting the extended polynomial with these terms added. The
values of the parameters corresponding to these fits are included in Table 11 in the lines
denoted by O(p6+p8). For the physical set the fitted values of the additional parameters
are

Gx = 4.0(5) · 10−6, Hx = 3.3(7) · 10−6, Ix = 1(3) · 10−7. (9.30)

All of them are of the expected size. We also see that in the physical region the only affected
parameters are Cx and Ex, which have changed their values by 20% and 4% respectively.
However, note that exactly these parameters are the most sensitive ones to the change of
the fitting points.

For Set 4 the values of the additional parameters read

Gx = 2.9(3) · 10−6, Hx = 3.6(4) · 10−7, Ix = 3.2(2) · 10−8. (9.31)

From the other parameters the only one which has changed significantly is Ex.
We have illustrated the individual effects on the amplitudes on Figures 16 and 17

depicting the the real and the imaginary parts of the amplitudes corresponding to the
individual sets of parameters determined from the fits along the lines t = u and s = u
respectively. [Note that they correspond to the figures 6 and 10 from [33].] We have
plotted the complete O(p2), O(p4) and O(p6) amplitudes for Set 0 as denoted on the plots,
the dotted lines corresponds to the same amplitudes obtained from Set 4. In the imaginary
part of the O(p6) amplitude we have included also the imaginary parts of the parameters
from the corresponding fits. With the dashed line there is illustrated the effect of neglecting
this imaginary part (i.e. this line corresponds to our fit O(p6).

We can also go beyond the strict respecting chiral orders of the representation and use
our resummed approach, which is obtained by inserting the full A

(6)
x , . . . , F

(6)
x (and the

NLO ππ parameters) also into the unitarity part. The difference between this resummed
parametrization (for Set 0) denoted as Res0 and the original order-by-order one “O(p6)0”
is of order O(p8) and contains effectively the contributions of the one and the two-loop
diagrams with higher-order counterterms. It might be therefore treated as a rough estimate
of the convergence of the chiral expansion.

Further effect we can study is the effect of the ππ parametrization we take in the uni-
tarity part of the amplitude. In Section 5.11 we have found that for that end the suitable
parametrization of the ππ scattering could be the scattering length parametrization de-
noted there as Fit4, which reproduced the physical phase shifts best from all one-loop
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Figure 16: The real and the imaginary parts of the amplitudes of the charged η → 3π
decay corresponding to various dispersive parametrizations along the line t = u. The
vertical lines demarcate the physical region and its center.

parametrizations (and in addition is quite stable with respect to the higher order chiral
corrections). We assume that this choice will not change significantly the values of param-
eters Ax, . . . , Fx determined from the above fit and add such constructed amplitudes, the

order-by-order one Fit4
O(p6)
0 and the resummed one Fit4Res

0 , into our further analyses.

For the sake of clearness we have not included on Figures 16 and 17 the real part of the

amplitude Fit4
O(p6)
0 which lies between O(p6)0 and Res0; and the amplitude Fit4Res

0 , whose
both parts lie slightly above the corresponding parts of Res0.

More important for our further applications are the individual effects on the physical
observables, in this case on the Dalitz plot parameters and the normalization imprinted
in the isospin-breaking parameter R. In Table 12 are listed the values of Dalitz plot pa-
rameters and of the isospin-breaking parameter R corresponding to the various amplitudes
— the order-by-order amplitudes are denoted O(pn)j, where n is the maximal chiral order
included in the amplitude and subscript j corresponds to the Set j for which we have fitted
the values of the corresponding parameters; we have included also the O(p6) amplitudes
with the non-zero imaginary parts of the parameters O(p6)Im0 and with the included higher-

order terms from (9.29) O(p6)p
8

0 ; further there are included the resummed amplitude Res0
and the amplitudes with the ππ parameters from Fit4. For comparison we have included
also the experimental fits for the Dalitz plot parameters from KLOE [8, 9].
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Figure 17: The real and the imaginary parts of the amplitudes of the charged η → 3π decay
corresponding to various dispersive parametrizations along the line s = u. The vertical
lines demarcate the physical region and its center.

The values of the Dalitz plot parameters in Table 12 were obtained by fitting the squared
amplitudes10 to the parametrization (6.37) and (6.40) respectively weighted by their error
estimated as one half of the higher order (O(pn)) contribution to the O(pn) amplitude.
Note that these fits depend on the number of Dalitz plot parameters we include in the fit.
For instance, the inclusion of the parameter g to the fit of O(p6)Im0 gives

A = 534.4, a = −1.260, b = 0.404, d = 0.079, f = 0.007, g = −0.07. (9.32)

Similarly, we give the values of the neutral parameter α in Table 12 only with the preci-
sion that takes into account their dependence on the choice whether we include also the
parameter β.

The values of the parameter R were obtained from the computed decay rates

Γ =
3

16R2

1

256π3m3
η

∫

dsdt |M̃x(s, t, u)|2, Γ0 =
1

6

3

16R2

1

256π3m3
η

∫

dsdt |M̃0(s, t, u)|2

(9.33)

10As is common in χPT computations, we have used the complete amplitude squared even though in
chiral counting for instance the effect of the squared O(p6) amplitude is of order O(p12), i.e. the same as
would be from the multiplication of the O(p2) and the O(p10) parts of the amplitude, which we do not
have at disposal in this computation.
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A a b 102d 102f R 102α 104β R0

O(p2) 119.9 −1.039 0.270 0 0 19.1 0 0 19.7

O(p4)0 311.4(2) −1.305(1) 0.406(3) 4.8(1) 3.0(4) 31.5 1.1 −5.5 31.9

O(p4)4 322.3(2) −1.305(1) 0.409(2) 4.6(1) 2.7(3) 32.0 1.1 −5.4 32.4

O(p6)0 535.6(4) −1.259(2) 0.378(3) 5.5(2) 3.3(4) 41.1 1.1 −17 41.8

O(p6)Im0 537.4(4) −1.269(2) 0.392(3) 5.5(2) 3.0(4) 41.3 1.1 −16 41.9

O(p6)p
8

0 537.4(4) −1.269(2) 0.392(3) 5.5(2) 3.0(4) 41.3 1.1 −16 41.9

O(p6)4 541.4(4) −1.274(2) 0.393(3) 5.5(2) 2.9(4) 41.4 1.2 −15 42.1

Res0 601.2(4) −1.256(2) 0.367(3) 5.2(2) 4.4(5) 43.5 0.5 −22 44.2

Fit4
O(p6)
0 581.6(4) −1.263(2) 0.381(3) 5.1(2) 3.6(4) 42.9 0.7 −19 43.5

Fit4Res
0 627.7(5) −1.235(2) 0.329(3) 5.2(2) 6.4(5) 44.3 −0.1 −26 45.0

KLOE −1.090(5) 0.124(6) 5.7(6) 14.0(9) −3.0(5)

Table 12: Dalitz plot parameters corresponding to various amplitudes obtained from the
dispersive parametrization together with the corresponding values ofR for the experimental
values of the decay rates of the charged and the neutral processes.

and the experimentally measured values

Γ = 295(16) eV, Γ0 = 423(22) eV. (9.34)

We observe that the neglected effects on the observables are each time smaller than the
effect of the choice of the fitting points — for instance their effect on the determination of R
is smaller than 0.5% whereas the effect of the choice of the fitting points is 0.7%. The partial
inclusion of higher chiral-order corrections in the resummed amplitude changes significantly
all the parameters with the exception of a, the parameter R obtains correction of 6%; the
parameter f and the neutral parameters are changed totally. The similar situation occurs
when we change the ππ parameters into those of Fit4. Note that both these changes move
the Dalitz plot parameters in the right direction towards the physical values obtained by
KLOE, the amplitude Fit4Res

0 even leads to the negative value of α. However, even such
change of the ππ scattering parameters is not sufficient in order to obtain the agreement
with the experiment (moreover, the values of R are changed to higher values, which is not
the preferred direction as seen from the other methods).

We thus conclude that if we want to obtain the physical values of the Dalitz plot
parameters, we have to change also11 the values of the parameters Ax, . . . , Fx of η → 3π

11One could be tempted to draw too strong conclusions from this that the Dalitz plot parameter dis-
crepancy cannot be explained by the physical ππ rescattering effects, however, one should bear in mind
that our current parametrization of the η → 3π amplitude does not enable to separate the effect of the
ππ scattering from the other effects since it influences also the values of its polynomial parameters. It is
therefore still possible that the demanded change of the values of these parameters is connected mainly
with the correct inclusion of the ππ scattering effects.
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Figure 18: The Dalitz plot distribution for the charged η → 3π decay measured by KLOE.
The picture taken from [8]. The capital X and Y in their notation correspond to Dalitz
parameters x and y respectively.

amplitude.

9.6 Experimentally measured Dalitz plot distribution

For the following analyses we would need the access to the experimentally measured Dalitz
plot distribution. Unfortunately, such information is inaccessible yet as we have at disposal
only an approximate 5-parametric distribution from just one experiment [8] for the charged
decay and the value of just one parameter (although independently confirmed by various
experiments — cf. Table 8) for the neutral decay. However, it could change in the near
future as there is currently a substantial activity on the experimental measurement of these
processes at KLOE and WASA-at-COSY promising new data12.

Therefore, for our analyses we try to construct a distribution for the charged η → 3π
decay that will possess all the properties determined by KLOE [8] (we will discuss the
possibility of inclusion of the information on the neutral parameter α in Section 9.9).
They have obtained the Dalitz plot distribution containing 1.34 millions of events depicted

12See e.g. contributions of L. Caldeira Balkest̊ahl and P. Adlarson at the International PrimeNet Work-
shop 2011, Jülich.
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on Figure 18 and fitted it for 154 bins (∆x = ∆y = 0.125) to the distribution13 [cf. (6.37)]

|M̃x(x, y)|2 = |A|2
(

1 + ay + by2 + cx+ dx2 + exy + fy3 + e2x
3 + gx2y + e3xy

2
)

. (9.35)

At the confidence level 74% they have obtained consistency of the parameters c, e, e2, e3, g
with zero (the first three are expected to be zero from C-invariance) and the further pa-
rameters equal to14

a = −1.090(5), b = 0.124(6), d = 0.057(6), f = 0.14(1), g = 0, (9.36)

where we have included just the statistical error. The quoted correlation matrix is then

a b d f
a 1 −0.226 −0.405 −0.795
b 1 0.358 0.261
d 1 0.113
f 1

. (9.37)

In [VI] we have constructed two data sets, one realistic containing 174 data points and
one very optimistic with 2500 data points, both leading to Dalitz parameters from (9.36)
taking into account also the errors. In the meantime we have also obtained from A. Kupść
a distribution that was used in [81] and is based on information from both [8] and from
the more detailed internal KLOE note [6] describing their fitting procedure.

In the following we therefore use this distribution as the physical data — we denote it
as the K distribution. In order to acquire the idea of the possible precision in the upcoming
experiments, we quote also the results for our optimistic data set with 2500 points, denoted
as OPT.

After fitting the 154 points of the K distribution in Wolfram Mathematica weighted by
the statistical uncertainties from the distribution, we obtain

a = −1.085(5), b = 0.126(5), d = 0.056(4), f = 0.12(1), r2−1 = 1.2 ·10−4. (9.38)

We obtain a compatibility of g with zero, since after releasing this condition, we get

a = −1.084(5), b = 0.128(5), d = 0.058(6), f = 0.11(1), r2 − 1 = 1.2 · 10−4 (9.39)

and g = −0.01(1).
We see that these values are compatible with the ones presented by KLOE (9.36).

Another consistency check of the K distribution is the resulting correlation matrix from
this fit

a b d f
a 1 −0.277 −0.369 −0.805
b 1 0.329 −0.194
d 1 0.076
f 1

, (9.40)

13Note the different notation of Dalitz parameters in [8] — e.g. for the parameter denoted in this text
by g, KLOE uses symbol h.

14We have included the parameter g once more in order to simplify referring to these values.
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KLOE χPT χPTg NREFT K distr. O(p6)Im0
(

O(p6)Im0
)

g

rel1 0.02(12) −0.03(72) 0.15(79) 0.35(13) 0.03(13) 0.001(20) 0.17(12)

χ2 0.1 1.2 7.6 0.03 1.6

rel2 0.12(21) −0.1(1.4) 0.3(2.1) 0.44(20) −0.04(9) −0.09(5) 0.27(4)

χ2 1.4 0.6 2.4 1.0 0.5

103β ? −2(25) −2(25) −4.2(7) −1.6 −1.6

Table 13: Values of the Ci-independent combinations (9.41) of Dalitz plot parameters
corresponding to determinations from KLOE [8, 9], χPT and χPTg [33], NREFT [122];
the K distribution and the analytic dispersive parametrization O(p6)Im0 . The quantity χ2

defined in (9.5) was computed for the theoretical determinations by taking the experimental
value from KLOE as given in the first column.

i.e. with the exception of the b − f correlation coefficient it is again consistent with the
results of KLOE.

9.7 First analysis: Correcting χPT η → 3π result

9.7.1 Motivation

Our first analysis studies the effect of Ci’s on the Dalitz plot parameters. Their contribution
to the NNLO amplitude is linear and as they contribute just as tree-level counter-terms,
it can be expanded into a real polynomial in Mandelstam variables. In addition, after a
careful investigation of the O(p6) polynomial of the amplitude calculated in [33], we realize
that there is no contribution of Ci’s to the neutral parameter β̃ of the linear Dalitz plot
expansion (H.8). From relations (H.17)–(H.18), we then obtain the following relations
between Dalitz plot parameters that are independent on the values of the Ci’s (they do
not contribute to imaginary parts), where the subscript C denote the contribution of Ci’s
to the particular Dalitz plot parameter.

rel1 :
(

4(b+ d)− a2 − 16α
)∣

∣

C
= 0,

rel2 :
(

a3 − 4ab+ 4ad+ 8f − 8g
)∣

∣

C
= 0, (9.41)

rel3 : β|C = 0.

Note that the independence of these relations on the Ci’s occur only in the case we take
mπ± = mπ0 . In Table 13 we list the values of these combinations coming from KLOE and
from NNLO χPT.

This table indicates that even though the central values of the individual Dalitz param-
eters determined by χPT and KLOE differ, the central values of these two combinations
are in a good agreement, which indicates that the incorrectly determined values of Ci could
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be a possible explanation of the Dalitz parameter discrepancies. Unfortunately, the large
errors of these combinations for these approaches somehow put down the importance of any
conclusions. However, one should bear in mind that these values were computed just using
the values and the error bars of the individual parameters that were attributed mainly from
the fitting procedures and are thus strongly correlated. This can affect the positions of the
central values by small changes, but primarily the error bars of these combinations are then
overestimated. Note that the errors of the Dalitz parameters from ChPT are enhanced also
by large systematic uncertainties of the amplitudes entering these fitting procedures. Such
uncertainties were caused mainly by uncertainties of the Cis, which should be substantially
eliminated in these combinations.

In order to study these effects we have computed the values of these relations also for the
K distribution and for our parametrization O(p6)Im0 , which represents our approximations
for the KLOE distribution and the NNLO χPT amplitude respectively. The error bars
quoted for these values take into account the correlations matrix we have obtained for
these distributions in the previous sections and the effect of systematic uncertainty enters
into them just through the weighting function of the fitting procedure as described above.
We observe that even after reducing the resulting error bars the values remain compatible.
Finally, we have illustrated in the table the effect of truncation of the Dalitz parametrization
at either f or g. The values with g included corresponding to χPT computation [33] are
denoted by χPTg and the ones stemming from our parametrization O(p6)Im0 are listed in
the ultimate column.

Since the K distribution was constructed from the condition g = 0, we cannot perform
its addition into the fit of this distribution. Note however that if we add to the values of
a, b, d, f measured by KLOE the value of g = −0.02 (g = −0.04), we would obtain an exact
match of the so defined experimental15 value of rel2 with the value from ChPTg (NREFT).

In this table we have also studied predictions of NREFT [122]. Since that method is
built in a different way than ChPT, the combinations of the observables appearing in rel1
and rel2 have no special significance there. However, they are still valid combinations of
observables and so nothing prevents us from using them for comparison of the predictions
from any theory with the experiment. The lesser agreement of NREFT and KLOE in rel1
was already pointed out in [122] in terms of different values of Im ā stemming from the
representation of [122] and the one coming from the KLOE measurement and the relation
(H.17). Together with the slight inconsistency also in rel2 depending only on the parameters
of the charged decay, this indicates that there is a problem either on the side of the current
determination from the KLOE group or on the side of the NREFT representation.

In summary, a new measurement of the charged Dalitz parameters (possibly taking
into account these two relations) would therefore be highly desirable. Before that, we are
not able to answer the question whether it is possible to reproduce the physical Dalitz
plot distribution with a better determination of the LECs Ci or whether the discrepancy
between the ChPT-computed and the experimentally measured distributions has some

15Naturally, repeating the KLOE fit with g included would also change the values of the further param-
eters as is illustrated near relation (9.39) above.
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Ax Bx 103Cx 103Dx 104Ex 104Fx 1− r2 R

OPT0 19.3(2) 1.92(4) −61(3) 8.6(3) −25(2) 16.0(7) 10−8 38.1(4)

K0 14.3(7.1) 1.41(76) −50(8) 4.9(5.5) −8.9(6.0) 14.9(3.3) 10−4 29.8+12.1
−11.5

K4 14.6(7.3) 1.44(77) −51(8) 5.0(5.6) −9.1(6.2) 15.1(3.4) 10−4 30.4+12.3
−11.7

KIm
0 16.0(7.7) 1.56(81) −57(9) 6.2(5.7) −9.5(6.7) 15.4(3.7) 10−4 32.7+13.1

−12.5

KFit4
0 16.0(8.3) 1.57(89) −55(8) 6.5(6.8) −12.3(6.1) 17.6(4.0) 10−4 34.2+14.0

−13.0

O(p4)0 16.27 1.955 −3.62 9.19 31.9

O(p6)0 20.27 2.357 −0.47 13.92 1.62(1) −1.78(1) 41.8

Table 14: The corrected values of the NNLO parameters of the analytic dispersive para-
metrization for the chiral amplitude of the charged η → 3π decay in order to reproduce
our approximations of the physical distribution from KLOE — OPT corresponds to the
optimistic distribution containing 2500 data points whereas K denotes the more realistic
distribution from Section 9.6.

other origin. In addition, should the experimental value confirm the values inconsistent
with the predictions of [122], even if one accepts the explanation for the discrepancy of
the neutral parameter α proposed in [122], the issue of the discrepancy for the charged
parameter b would remain open.

Similarly, the measurement of the second neutral parameter β can provide another test
of this possible explanation since to a very good precision this parameter does not depend
on the values of the Ci’s.

9.7.2 The numerical analysis

Now, we can proceed to the actual analysis. From the previous discussion, we are moti-
vated to assume that all Dalitz parameter discrepancies can be included into a small real
polynomial contribution (i.e. into a possible change of the values of the Cis). This means
that by adding a small real polynomial ∆P to the NNLO χPT amplitude one should re-
produce the data. Thanks to the form of our representation, we can obtain the corrected
polynomial part of the amplitude Pcor. = P (6) + ∆P directly by repeating the procedure
from Section 9.4, where we in the last step fit instead of real part of the NNLO χPT
amplitude the particular KLOE-like distribution — note however that this distribution
corresponds to the amplitude squared and thus this fit is more complicated.

We have performed various fits of such Pcor. — the resulting values compared to the
values of parameters corresponding to χPT result [33] are listed in Table 14. The fit of
the optimistic distribution OPT was discussed in more detail in [VI]. We observe that
with the exception of the parameter Cx and the higher-higher order parameters16 Ex,

16These higher-order parameters are nevertheless determined from the fit inside the physical region with
a very low precision.
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Figure 19: Relative difference between the real parts of the NNLO amplitudes obtained
from two-loop χPT computation [33] and from our fit of the NNLO polynomial parameters
from KLOE data on the physical region. For instance, the region with the depicted differ-
ence of −0.05 corresponds to the region where the KLOE amplitude is of 5% less than the
χPT result.

Fx the parameters of the “corrected amplitude” lie between their NLO and NNLO χPT
values. On Figure 19 we have plotted the change of the real part of the amplitude with
respect to the NNLO χPT result. On the physical region this change is smaller than
∼ 15%. In summary, for the optimistic approximation of the data from KLOE, we have
verified that this distribution is reproduced well by adding a small real polynomial to the
two-loop χPT amplitude [33] and thus the discrepancy between the energy dependence
of the physical amplitude and of the χPT result can be included into the parameters Ci.
If this result were confirmed by the real physical data, from the values of the individual
“corrected parameters” from Table 14 corresponding to the experimental amplitude one
could construct sum rules for the Ci’s and examine their compatibility with the values
coming from other observables. [Note that the possibility to include the higher orders into
the low-energy parameters in one process does not mean that one can perform it in the
complete effective theory.]

The corresponding value of R is shifted to 38.1(4). By repeating this fit also for the
values of the NLO parameters stemming from the other χPT sets, we have obtained

R = 37.7± 2.9 [χPT+Disp.+OPT KLOE]. (9.42)

The quoted error is estimated conservatively by taking into account the slow convergence
of the chiral expansion in the first three orders — assuming that the error of the corrected
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amplitude is equal to one half of its difference to the NLO one (similarly as it was done
in [33]).

However, we have performed also the analysis using the approximation of data by the
K distribution and found that even though the distribution is reproduced well by the
“corrected” amplitude and the polynomial is still on the physical region of a reasonably
small size, the fitting procedure leads to huge uncertainties in the individual corrected
parameters Ax, . . . , Fx. The results of this analysis are therefore not significant and we
cannot conclude any information on the explanation of the Dalitz parameter discrepancy
by the incorrectly determined values of Ci’s. Also the interval of the corresponding values
or R is very large

R = 30+14
−12 [χPT+Disp.+K KLOE]. (9.43)

In the quoted uncertainties we have included the effect of the various choices of the values
of the NLO parameters and of the description of ππ scattering. In Table 14 we have
included the following choices — the values of the NLO parameters from Set 0 and Set 4;
the addition of the Ci-independent imaginary part of the NNLO parameters from χPT and
finally the different parametrization of the ππ scattering from Fit4.

9.8 Second analysis: Direct fit to η → 3π data

A different analysis not imposing anything about the origin of the Dalitz parameters dis-
crepancy takes advantage of the fact that the construction of the analytic dispersive pa-
rametrization (9.6) employs just some general properties of the amplitude. We can thus
assume that the physical amplitude should be also reproduced by this parametrization
and the physical values of its parameters can be obtained by a direct fit to the physical
amplitude. Naturally, as was discussed already a few times above, by this we do not fix
the normalization. In order to perform also this task we suppose that χPT determination
of the amplitude is reliable at least in the region17 specified below.

9.8.1 Fit of the parametrization to the physical amplitude

Let us start with the easier part — fitting the physical data. In contrast to our previous
fits, where respecting the chiral orders of the dispersive parameters was natural (and im-
portant), in this case keeping the different chiral orders of the parameters makes no sense.
The more natural approach is using our representation in the “resummed” form — the
values of the parameters in the polynomial and in the unitarity part are the same.

The fit of this general representation was performed for K distribution from Section 9.6
approximating the physical data set obtained by KLOE (which is not available). Since the
overall normalization will be fixed in the next step, we can for the moment multiply the
resulting values of the parameters by any number. In order to simplify the comparison

17Note that since we have analytic results, for fixing of the normalization one matching point would be
sufficient.
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Ax Bx 103Cx 103Dx 104Ex 104Fx 1− r2

K 20.27(2) 2.03(1) −52(2) 9.6(1.4) −4.0(7.4) 17(5) 10−4

KFit4 20.27(2) 2.07(1) −44(2) 9.4(1.5) 1.3(7.6) 19(5) 10−4

O(p6)0 20.27 2.357 −0.47 13.92 1.62(1) −1.78(1)

OPT0 20.27(21) 2.02(4) −64(3) 9.0(3) −26(2) 16.8(7)

Table 15: The values of the dispersive parameters obtained from the fit to the distribution
K reproducing the η → 3π results from KLOE. For a comparison there are included also
the values corresponding to the NNLO χPT amplitude and to the “corrected amplitude”
from the previous analysis. All the sets of parameters are rescaled such that for all of them
Ax = 20.27.

between this and the previous fits, we have decided to multiply here all these data by such
numerical factor that produces the same number for parameter Ax as follows from NNLO
χPT computation on Set 0, i.e. Ax = 20.27. The values of the so normalized dispersive
parameters coming from this fit of K distribution are presented in Table 15 — we list their
values for two possible choices of ππ scattering parameters (the value of the parameters
corresponding to χPT with Li values from Fit10 [10] and physically motivated values of
the parameters coming from Fit4 from Section 5.11.1). For a comparison we have also
included rescaled values of the parameters from the analysis of the previous section.

Putting aside the parameter Ex, whose determination is affected by a large error, we
observe that only the parameter Cx changes significantly with the change of the ππ scat-
tering parameters. Surprisingly, the same correspondence is noticeable also between these
parameters and the rescaled parameters of the previous analysis (in Table 15 we have
quoted the results obtained for distribution OPT since they give smaller error bars). Note
that the parametrizations of the KLOE-like distributions corresponding to these two analy-
ses possess different unitarity parts (the first one containing NLO χPT parameters, whereas
the second unitarity part containing exactly the same parameters as they appear in the
polynomial part).

In the following we perform the analysis for the physical values of ππ parameters from
Fit4 and the second analysis giving similar results is used just for the estimate of the error
connected with the ππ inputs.

9.8.2 Normalization of the parametrization

Setting the correct normalization of the parametrization of KLOE-like distribution is the
main issue of the dispersive studies of this process. Without its right choice we cannot
obtain a reliable value of R.

In connection with the search of the matching region to χPT in the literature there
is usually employed the following coincidence. At the chiral NLO level there accidentally
coincide the following three points (on the cut s = u):
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Figure 20: The relative difference between the imaginary parts of the NNLO and the NLO
chiral amplitudes for the charged η → 3π decay. The ratio 1 − Im M̃NLO

x /Im M̃NNLO
x is

plotted — only the region where the difference is less than 20% is included. The dashed
black line denotes t = u (around which the plot is symmetric), while the dashed green lines
are the s = t and s = u lines. The dashed red line corresponds to the leading order Adler
zero. Finally, the full green, magenta and orange lines mark the points, where ReO(p4),
ReO(p6), ImO(p6), respectively, are zero.

a) the point, where the amplitude is of order O(m2
π) (Adler zero — cf. our discussion of

the Adler zero in Section II.C of [VI]),

b) the point, where ReM = 0,

c) the point, where the corrections of the computed order to the slope are small.

However, this coincidence proves not to be the case at NNLO. Therefore, having the NNLO
results at hand there is no reason why e.g. the amplitude at the point fulfilling condition
b) should have a faster chiral convergence than at any other point (at NNLO it even seems
to be the opposite). Thus, for the matching at the NNLO order we should not use this
accidental NLO properties and instead we should try to find some other region.

For that end, we use the following conditions.

(i) The matching to NNLO χPT amplitude should be dependent on the values of Ci’s
as less as possible.

It is the reason why we use for the matching just the imaginary part of the amplitudes,
which does not depend on the values of Ci’s at the two-loop order.
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Figure 21: The ratio of the imaginary parts of the physical amplitude (obtained from the
fit to K distribution) and of the NNLO chiral amplitude. The divergence at s = 0 is
caused by a numerical instability of the approximation used for plotting. The dashed lines
denoting t = u (black), s = t (green) and s = u (green) are included similarly as in the
previous plot. The dashed red line denotes the points, where the leading order amplitude
is equal to zero (Adler points).

(ii) Within the matching region the chiral expansion should work well.

It means that already when going from NLO to NNLO the amplitude should not
obtain too large corrections. On Figure 20 we have plotted the relative difference
between the imaginary parts of the NLO and the NNLO chiral amplitudes. We
discard the regions where such difference is larger than 20%. We have also added a
few lines corresponding to various cuts of the phase space and denoted the positions
of the points, where the real parts of the various orders of the amplitude are zero —
we observe that with the exception of the neighborhood of the t = u line such points
are inappropriate for the matching (the NNLO corrections are there higher than the
depicted 20%).

(iii) Also the higher corrections should be small within the matching region.

We assume that the resummed amplitude (containing also some of the higher order
corrections) constructed from the NNLO order-by-order amplitude should not differ
too much from the latter amplitude. Therefore, we match to the average of these two
amplitudes and use their difference as the reference value (we use it as the weighting
function of the fit).

(iv) The physical amplitude should have the similar behavior as the chiral amplitude
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Figure 22: The ratio of the imaginary parts of the physical amplitude (K distribution) and
of the NNLO chiral amplitude along the line t = u. The red plot corresponds to the order-
by-order representation of the chiral amplitude, whereas the green plot corresponds to its
resummed representation. With the dotted curves the statistical errors stemming from the
fit of the K distribution are depicted. The vertical line demarcates the physical threshold.
Finally, with the blue line we have depicted the result of our matching procedure.

inside this region.

As there is no theorem preferring individual points where the chiral corrections should
be small (cf. the discussion of the Adler theorem in [VI]), we assume that if such point
exists, it will not be an isolated point but a region where the behaviors of the NNLO
χPT amplitude and of the physical amplitude are similar. Therefore, we have plotted
on Figure 21 the ratio of the imaginary part of the physical amplitude with respect to
the imaginary part of the NNLO chiral one18. If we had the physical amplitude with
the right normalization, such ratio should be within the correct region close to one
and there should be no steep behavior there. However, since the physical amplitude
is multiplied by an unknown number, the only information we have is that this ratio
should be on the correct region almost constant — we are thus looking for a plateau.

All these conditions together point towards the region around the t = u line for s ∈
(

0.04GeV2, 4m2
π

)

. Naturally, this region is chosen just by the above arguments using the
NNLO computation and it is possible that at NNNLO this prescription will again turn up

18In order to speed up the plotting of this graph, we have used a numerical approximation of the analytic
representation of the amplitudes. This approximation diverges for s = 0, which created the numerical
artifacts around this line visible on Figure 21. We can easily get rid of it by taking the full analytic form
of the representation, which would, however, slow down the production of this plot and would change in
no aspect the results of the current analysis.
Note also that the region where the imaginary part of the NNLO amplitude vanishes has moved slightly

with respect to the situation on Figure 20, which is caused by neglecting here the small imaginary parts
of the dispersive constants in contrast to the plot of Figure 20.
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not to be the right one. But without a strong theoretical argument at hand there is no
better way how to determine the correct region for matching and in this aspect we are just
correcting the prescription used by the previous dispersive analyses by taking the NNLO
corrections into account. Note that the conditions (iii) and (iv) from above are dependent
on the subtraction scheme used, however, we have found that the region chosen above is
picked up for all choices of the scheme we have performed.

On Figure 22 we have plotted the ratio between the physical amplitude and the NNLO
chiral amplitude along the line t = u within the considered region. It varies between
N = 1.02 ÷ 1.09, which gives us the estimate of R = 39.4 ÷ 42.2. For a more precise
determination of the factor we use the following procedure (taking into account the above
conditions once more). We perform a fit on the t = u cut for s ∈ (0.04GeV2, 4m2

π) (i.e.
below the physical threshold) of the imaginary part of the physical amplitudes to the
imaginary part of the average between the order-by-order chiral parametrization and the
corresponding resummed one. The error used for the weighting within the fit is taken equal
to the difference between the order-by-order and the resummed amplitudes.

The result of this fit is

N = 1.06± 0.02, (9.44)

where we have included the systematic error estimated from the difference between the
order-by-order and the resummed amplitudes by using Figure 22 and the statistical error
of the original fit of the K distribution — these two errors dominate over the error of the
matching fit. (Note that this result was obvious already from Figure 22.)

By integration of the resulting parametrization and using the measured decay rate, we
obtain

R = 40.5± 1.6 [Match.+Disp.+K KLOE]. (9.45)

The quoted error includes the statistical error of the fit (∼ 0.3), the error of the chiral
amplitude in the matching region (. 0.1), the effects of the choice of the parametrization
of the ππ scattering (∼ 0.1), the effects of the choice of the subtraction scheme (∼ 0.3)
and finally, the effect of the choice of the matching point (∼ 0.8). Note that in our case
in contrast to the analysis in [VI], the errors of the first type are of the same order as the
error of matching — with respect to the fit of [VI] this statistical error have been reduced
here. However, it is probably just the property of the chosen KLOE-like distribution and
it would be therefore again desirable to perform this analysis for the genuine physical data.
In order to be more conservative we should add into our error budget also the effect of the
possible inaccuracy of the “physical distribution” that was used. In [VI] we have found

R = 37.8± 3.3 [Match.+Disp.+OPT KLOE] (9.46)

and also further slight variations we have tried on the K distribution lead to a smaller
value of R. Thus, for the moment our conservative value of R following from this second
analysis is

R = 39.6+2.5
−5.1 [Match.+Disp.+KLOE]. (9.47)
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mπ± = mπ0 mπ± 6= mπ0

η → π+π−π0 6 8

η → 3π0 5 7

η → 3π 6 9

Table 16: Numbers of free parameters of the dispersive parametrization that are needed
to be determined in various η → 3π analysis. The first two lines describe the individual
studies of the charged and the neutral η → 3π decays, while the ultimate line corresponds
to the combined fit of both of them.

9.9 Analysis of the neutral decay

In the previous sections we have used for the analysis just the charged η → 3π decay.
Thanks to its symmetries the neutral decay is much simpler. Note that the polynomial
part of the analytic dispersive representation for this decay reads

R̃0(s, t, u) = A0+
C0

F 4
π

[

(s− s̃0)2+(t− s̃0)2+(u− s̃0)2
]

+
E0

F 6
π

[

(s− s̃0)3+(t− s̃0)3+(u− s̃0)3
]

,

(9.48)
i.e. it contains just 3 independent parameters. However, these two decays are related
by the 2-particle unitarity and so in the unitarity part of the η → π+π−π0 decay there
appear 2 parameters from the neutral decay, whereas in the unitarity part of the η → 3π0

decay there appear 4 parameters from the charged one. When one takes the full isospin
breaking into account there is no further connection between these two decays and one
needs to determine all these parameters appearing in the considered amplitude. In the
case we work in the leading order of the isospin breaking, relation (7.3) bounds these two
amplitudes together and all the parameters of the neutral decay can be expressed in terms
of the charged ones. The number of the parameters needed to be determined in the various
studies in these two cases are given in Table 16.

From the table and the present status of the information we have from experiment on
these amplitudes, it is obvious that we need to include the studies on the charged decay
modes of η and work in the limit mπ± = mπ0 . In that case we have six unknown parameters
in our dispersive formula which could be saturated by five known Dalitz parameters of this
decay. On the other hand, although the neutral decay is theoretically much simpler (having
less parameters and there is no P-wave contribution to the unitarity part), so far only one
Dalitz parameter (α) was measured for η → 3π0. The procedure elaborated in the previous
section will not be thus very reliable in the case of study of the neutral decay alone.

However, we could try to include the information on α to the combined fit of both
decay modes in the limit mπ± = mπ0 since according to the table it should just add
further constraints on the charged parameters. Nevertheless, with that we come across
the following disadvantage of the dispersive parametrization. We have discussed at the
end of Section 9.4 that even in the mπ± = mπ0 limit we have to use different numerical
values for the charged and the neutral decays since otherwise we would introduce the error
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−α 1− r2 −α β 1− r2 rη

OPT0 0.038+0.002
−0.001 2 · 10−8 0.038+0.002

−0.001 0.0002+0.0007
−0.0001 1.5 · 10−8 1.483(2)

KFit4 0.037(4) 5 · 10−6 0.039(3) 0.005(3) 1.2 · 10−8 1.477(1)

Table 17: The values of the neutral Dalitz parameters and of the ratio of the decay rates
of the neutral and of the charged η → 3π decays corresponding to our fits to KLOE data
of the previous sections.

of the incorrect normalization of Qη (the isospin breaking effect), which would lead to
about 13% smaller value of α (cf. again also the discussion in [122]). In χPT computation
we are free to make this change since the other parameters, LECs, do not depend for
instance on the light quark masses. However, the subtraction parameters in the dispersive
approach do strongly depend on them as they include also their effects. We cannot thus
simply obtain the amplitudes for a new choice of the pion masses without changing the
subtraction parameters. We have decided not to introduce this error (of isospin breaking)
into our analysis and just compute the parameters α and β for the amplitudes obtained
from the previous sections — they are listed in Table 17. From both of the analyses, we
have obtained compatible values (note that in the case of the second analysis they do not
depend on the matching to χPT)

α = −0.038(3), (9.49)

which is in quite a good agreement with the experimental values from Table 8 (most
importantly it is negative) but as expected its value is smaller than the current most
precise experimental values such as MAMI-C result α = −0.032(3). In [VI] we have also
performed the complete analysis where we took the isospin mass mπ equal to the average
of the values used in the charged and the neutral decays and observed the shift of the
resulting value of the expected size (∼ 10%) in the right direction. Our conservative
estimate including also this theoretical error (of the isospin breaking origin) into account
is then

α = −
(

0.038+0.005
−0.008

)

[Disp.+KLOE]. (9.50)

Another interesting physical quantity connected with the neutral and the charged η →
3π decay is the ratio of their decay rates

rη =
Γ(η → 3π0)

Γ(η → π+π−π0)
. (9.51)

It does not depend on the overall normalization of the amplitudes and thus its determi-
nation from the analysis of Section 9.8 is completely χPT independent. We have listed
the corresponding numbers for the analyses of the previous two sections in Table 17. Our
expectation for this quantity including also the expected error of the isospin breaking is

rη = 1.479(11) [Disp.+KLOE]. (9.52)
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This value is in an excellent agreement with the most precise measurement of [4]: rη =
1.46(3)(9).

9.10 Implications for the quark masses

We return back to our original motivation of the determination of the light quark masses.
Assuming that the optimistic distribution OPT describes well the physical amplitude, we
have concluded in [VI] that since both of the performed analyses lead to the compatible
results and both of them have different origin of the dominant errors, these two analyses
can be combined into

R1 = 37.7± 2.2. (9.53)

However, we have shown here that by taking the different distribution compatible with
the data, the distribution K, the conclusions of the analysis of Section 9.7 are less significant
and in the case we want to include the estimate of the error connected with the dependence
on the “physical” distribution we take, the more conservative value would be

R2 = 39.6+2.5
−5.1. (9.54)

We can now compare this result with the other recent analyses of the quark mass quantities.
Note that many of the analyses on the isospin breaking use instead of R the quadratic

isospin breaking parameter

Q2 =
m2

s − m̂2

m2
d −m2

u

, (9.55)

which is connected with R by

Q2 =
1

2
R(r + 1) with r =

ms

m̂
, (9.56)

and use the amplitude M̃Q defined by

M̃(s, t, u) =
1

Q2

m2
K

m2
π

(m2
π −m2

K)
M̃Q

3
√
3F 2

π

(9.57)

rather than the amplitude M̃ from (9.3). Such choice is favored in the analyses based on
χPT at NLO since at this order the parameter Q depends only on QCD meson masses [74]
and is reasonably stable with respect to the Kaplan-Manohar transformation (9.1)–(9.2).
However, at the current level of precision one includes also chiral two-loop effects, with
which both of these advantages are lost since the relation between Q and the meson masses
gains noticeable r-dependent corrections at NNLO (cf. [10]). When matching the ampli-
tudes with the result of NNLO χPT [33], it is more natural to employ the normalization
containing R and assume that the Kaplan-Manohar ambiguity is fixed by the values of
LECs used in that computation (for instance the value of Lr

6 = 0 stemming from large Nc

considerations).
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Figure 23: Various constraints on quark mass ratios (description given in the main text)

In Figure 23 we review various constraints on the light quark masses coming from
recent analyses. In order to keep the plot uncluttered, we include only those which are
independent and when different updates of some analysis exist, we list only the most
recent one. For older results we refer to [107]. The axes of the presented plot correspond
to (isospin symmetric) ratio r = ms

m̂
and to the quantitative measure of isospin violation

mu

md
, which appear naturally in various analyses.

Our results (9.53) and (9.54) are plotted in blue and are denoted by R1 and R2, re-
spectively. The result of the alternative analysis of η → 3π from [17, 50] is depicted in
light gray as Q — we use the most recent result of this analysis from [103], Q = 21.31+0.59

−0.50.
We recall that this numeric approach uses dispersion relations of Omnès type, thereby
attempting to include two-pion rescatterings to all orders. The necessary matching to the
chiral amplitude is performed at the NLO Adler zero at the NLO level. For r > 26 it leads
(similarly as χPT NLO computation) to mu lighter than our result.

Interestingly, our result is fully compatible with one of the results of [10] which compared
the experimental values for meson masses with the χPT NNLO expressions for them taking
into account only the electromagnetic contributions due to Dashen [54] (its central value
and error bars plotted in green and denoted by M1), while the result of [10] that includes
the violation of Dashen limit computed in [35] xD = 1.84 (depicted without error bars with
dotted gray line as M2) moves mu to noticeable smaller values. Note that if we used only
the NLO expressions for the masses, our result would lie in between the determination
respecting Dashen and the one with xD = 1.84 — for r < 27 it would be more compatible
with this violation of the Dashen limit, whereas for r > 28 the NLO result respecting the
Dashen limit would be preferred by our result.
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We proceed now to the recent determinations of r. Progress report on sum rules [60]
quotes the value denoted by r4 (between the dashed red lines), r4 = 24.9±2.7. The method
of [87], which is inspired by large Nc considerations, enables to determine r from the ratio

of Γ(η→γγ)
Γ(η′→γγ)

. The original number is indicated by the arrow r5 = 26.6 ± 1.6. In [93] such
analysis was repeated with more recent numbers, leading to the determination of r that is
significantly below all recent lattice determinations19, rKN = 24.7 ± 1.1. In [93] there was
also used the result of [14] for Dashen violation xD = 1.5 and from the experimental value
of mK+ −mK0 there was obtained QKN = 20.7±1.2. These two results of [93] together are
depicted with label KN.

The most advanced determinations of r are performed using lattice methods. Nowadays
there exist two averaging attempts on lattice results. The average of Laiho et al. [102] gives
r1 = 27.55(14) and isospin quark masses20

mµ
s = 93.6(1.1)GeV, m̂µ = 3.419(47)GeV. (9.58)

FLAG group [46] have similar averages but in order to be more conservative, they quote
estimates r3 = 27.4(4),

mµ
s = 94(3)GeV, m̂µ = 3.43(11)GeV. (9.59)

We use FLAG numbers as our conservative choice. However, since their estimate are in
some aspects very strict (e.g. not including BMW [61] yet), in order to show the precision
of the current determinations we also use the average of [102] with error bars extended
so that they include all the central values of the individual recent lattice determinations,
r2 = 27.55(25),

mµ
s = 93.6(2.2)GeV, m̂µ = 3.42(9)GeV. (9.60)

On Figure 23 these lattice values of r are plotted with orange regions. We have also
included there the recent isospin breaking study on lattice [38] — depicted as the magenta
ellipse denoted by B (note that this value is included in average [102] but not in [46]).

For completeness, let us note that baryonic determinations such as [83] give smaller
quark ratio mu

md
. 0.4.

Taking our conservative result (9.54) together with the conservative lattice estimate
(9.59), we obtain the following values of the quark mass characteristics

mu

md
= 0.50+0.02

−0.05 [0.48(2)] , Q = 23.7+0.8
−1.5 [23.2(7)] ,

mMS,µ=2GeV
u = 2.29+0.10

−0.17MeV [2.21(9)MeV] ,

19Note, however, that in [113] there is a possible explanation of this discrepancy as there is claimed
that the higher loop diagrams not included in the recent lattice calculations can reduce also the values of
r coming from lattice, i.e. it is still possible that the real physical value of r will be less than 26, which
would lead to a higher mass of mu than the one quoted at the end of this section.

20Unlike the mass ratios used above, mq depend on renormalization scheme. All quoted values are in
MS scheme at the scale µ = 2GeV.
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mMS, µ=2GeV
d = 4.57+0.19

−0.14MeV [4.62(12)MeV] .

In the square brackets we have quoted also the more precise values that would be valid in
the case the OPT distribution described the physical η → 3π amplitude and our estimates
on the isospin quark masses (9.60) were fulfilled.
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Chapter 10

Final conclusions and outlook

We have derived the procedure that enables to construct two-loop amplitudes of processes
containing four particles fulfilling the assumptions from Section 2.3 just from the knowl-
edge of imaginary parts (discontinuities) of the S- and P- partial waves of the crossed
processes along the rays starting at their thresholds. In the case when all the possible in-
termediate amplitudes contributing to the unitarity relations of these processes also fulfill
these assumptions, this procedure enables us to construct self-consistently the amplitudes
by employing the iterative two-step scheme of Figure 1 and the only undetermined part is
represented by the values of a small number of subtraction constants. The resulting para-
metrization can be used either for the computation of the form of the unknown amplitudes,
for the simplification of the complex structure of the result of some computation or for its
direct fit to the physical amplitudes.

In this work we have employed such construction (with the verification of all its assump-
tions) for four types of amplitudes. In Chapter 4 we have constructed the pseudoscalar
meson-meson scattering amplitudes in isospin-conserving strong χPT. We have shown pos-
sible applications of this construction for the understanding of the χPT processes, however,
as was discussed there, such construction for the ππ and the Kπ scatterings was already
performed in [125,95] and [11,12] and in all the other processes we have very narrow regions
(or for some processes such regions even do not exist), where the effects of the other par-
ticles than those included in our analysis can be neglected (very narrow regions where the
chiral amplitudes describe well the physics) because of the appearance of the resonances.
It was one of the main reasons, why we have not explicitly performed the second iteration
for these processes.

In Chapter 5 we have constructed two-loop amplitudes (this time performing explicitly
also the second step) of the ππ scatterings in the low-energy region where just the effects
of ππ rescatterings are important. We have included the isospin-breaking effects connected
with the different masses of mπ± and mπ0 and also derived the representation where the
scattering lengths appear as its parameters. In the isospin limit we have shown its con-
nection with the standard χPT computation and also with the experimentally measured
ππ phase shifts. In Section 5.11.1 we have derived a one-loop parametrization that for
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very low energies reproduces well the physical phase shifts (denoted as Fit4). A similar
two-loop analysis and also the analysis taking into account the isospin breaking effects are
prepared.

In Chapter 7, we have constructed a two-loop parametrization of the K → 3π and of
the η → 3π amplitudes in the limit mπ± = mπ0 . It was then used in Chapter 9 for the
analysis of the η → 3π decays as we summarize below.

Finally, in Chapter 8 we have constructed one-loop parametrizations of the K → 3π
and of the η → 3π amplitudes with taking into account the isospin breaking connected with
the different masses of the particles belonging to the same isomultiplet. For the processes
KL → 3π0 and η → 3π0 we have presented the full two-loop results — note that for the
time being there exists no computation of these amplitudes within χPT including these
isospin breaking effects to the two-loop order yet (however, there exists such a computation
using methods of nonrelativistic effective field theory [47, 36, 72]). These parametrizations
are prepared for the phenomenological analyses, especially of the cusp effects appearing in
these processes (note that this effect for K+ → π+π0π0 decay was used for a very precise
determination of the ππ scattering lengths).

The main advantages of our parametrization with respect to the results of chiral per-
turbation theory are its simple analytic form, the natural appearance of just a few scale-
invariant combinations of the LECs (in terms of the subtraction constants), and the pos-
sibility to go beyond the standard power-counting (the subtraction constants do not need
to be fixed to the standard χPT values) and also the possibility to perform partial resum-
mations of the chiral expansion of some observables.

Its main disadvantages are the impossibility to determine (or at least to estimate) the
subtraction constants without the matching either to some other theoretical calculation
(such as the calculation in χPT) or to the experiment (note that usually this does not
fix the overall normalization), the fact that their include many effects together, as for
instance the dependence on the quark masses or on the properties of the intermediate
processes, which cannot be simply separated. The values of the constants depend also on
the subtraction scheme we choose in the dispersive parametrization and can vary a lot in
different orders of computation (this affects then also the resummed interpretation of the
polynomial, where we want to include partially also the higher unitarity effects). However,
on the case of ππ scattering we have shown that the last two problems can be overcome
in the case there exists natural physical observable quantities with the suitable properties
that are used in the parametrization such as the scattering lengths (their values are then
kept fixed at their physical values and by the addition of the “restoring polynomials” they
do not obtain higher unitarity corrections).

Another natural sort of disadvantages is connected with the fact that we have not
constructed the Lagrangian but used just the dispersive methods, i.e. for instance if we
want to include into the computation the electromagnetic effects with the virtual photons,
we have to return back to the Lagrangian formulation.

In Chapter 9 we have used our parametrization of the η → 3π amplitudes for the
phenomenological analyses of the results of KLOE. Unfortunately, the genuine measured
physical distribution is not available, so we had to construct artificial distribution (called
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KLOE-like distribution) only fulfilling the properties that are available. We have found
that the Dalitz plot parameters discrepancy (as described in Section 9.2) cannot be solved
by a mere change of the ππ scattering parameters (but since in the other parameters of
η → 3π there is included also the effect of the ππ scattering this does not tell us much
information about the physics) but our KLOE-like distribution indicate that the effects
explaining the discrepancy can be included into the O(p6) LECs Ci. We have also given
a few simple criteria, which can falsify this expectation [in terms of the Ci-independent
relations between the Dalitz plot parameters (9.41)]. We have also found a region, where
the chiral expansion seems to work well (at least at the two-loop order) and performed a
matching of the fitted parametrization with the χPT in order to obtain the normalization
and thereby the quark mass characteristic R. For the optimistic distribution, we have
found

R = 37.7± 2.2. (10.1)

Moreover, independently on the exact form of the physical distribution, we expect that the
correct value of R would lie in the region

R = 39.6+2.5
−5.1. (10.2)

These values constrain the physical mu and md quark masses according to Figure 23.
We have discussed that at the current level of knowledge it is important to quote the
separately the quark mass characteristics in which the isospin breaking effects are included
and the isospin symmetric ones since the most precise methods giving the later cannot
include the isospin breaking to the same precision yet. If we use the recent lattice values
of r = ms/m̂ and of ms together with our values of R, we obtain

mu

md
= 0.50+0.02

−0.05 [0.48(2)] , Q = 23.7+0.8
−1.5 [23.2(7)] ,

mMS,µ=2GeV
u = 2.29+0.10

−0.17MeV [2.21(9)MeV] ,

mMS, µ=2GeV
d = 4.57+0.19

−0.14MeV [4.62(12)MeV] ,

where the masses are in the MS renormalization scheme at the scale µ = 2GeV and the
values in the square brackets are our optimistic estimates.

From the fit of the charged η → 3π decay we give our estimate of the neutral Dalitz
plot parameter

α = −
(

0.038+0.005
−0.008

)

(10.3)

and of the ratio of the decay rates

rη =
Γ(η → 3π0)

Γ(η → π+π−π0)
= 1.479(11). (10.4)

In the near future there should be at disposal the physical distributions for the charged
η → 3π decay from the KLOE and WASA-at-COSY collaborations, which should improve
these our analyses. Note that these analyses would not be very reliable for the neutral
η → 3π decay unless the precision of the measurement was so high that we can fit also the
isospin breaking effects in this amplitude.
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Appendix A

General solution of crossing relations

In this appendix, we find the general solution of crossing relations

P S
J+1(s, t; u) = P T

J+1(t, s; u) = PU
J+1(u; t, s), (A.1)

where P S
J+1 and P T

J+1 are polynomials in s and t of J-th order with coefficients dependent
on u and similarly PU

J+1 is a J-th order polynomial in s and u with t-dependent coefficients.
At the end we are interested in the special case J = 3, in which relation (A.1) corresponds
to (2.40) from the proof of the reconstruction theorem.

Thanks to the kinematic condition for the sum of Mandelstam variables (2.6), we can
write

P S,T
J+1(s, t; u) =

J
∑

j=0

aS,Tj (u)(s− t)j, (A.2)

PU
J+1(s; t, u) =

J
∑

j=0

aUj (t)(s− u)j. (A.3)

The first of relations (A.1) then simply implies

aSj (u) = (−1)jaTj (u). (A.4)

From the second one, it follows [using again (2.6)]

J
∑

j=0

aTj (u)(2t+ u− s0)
j =

J
∑

j=0

aUj (t)(2u+ t− s0)
j. (A.5)

Now, we will use assumption (v) of the theorem ensuring the existence of a point ū
in our kinematic region for some fixed t such that in its neighborhood all the functions
aTj (u) are analytic and similarly of a point t̄ with all the functions aUj (t) analytic in its
neighborhood. We can then Taylor expand them,

aTj (u) =

∞
∑

k=0

aTjk(u− ū)k, (A.6)

197



198 APPENDIX A. GENERAL SOLUTION OF CROSSING RELATIONS

aUj (t) =

∞
∑

k=0

aUjk(t− t̄)k (A.7)

and insert these expansions into (A.5) to obtain

J
∑

j=0

∞
∑

k=0

aTjkx
k(2y + x+ ζ)j =

J
∑

j=0

∞
∑

k=0

aUjky
k(2x+ y + ξ)j, (A.8)

where we have introduced the shorthand notation

x = u− ū, (A.9)

y = t− t̄, (A.10)

ξ = 2ū+ t̄− s0, (A.11)

ζ = 2t̄+ ū− s0. (A.12)

This relation should hold for any u from vicinity of ū and any t from vicinity of t̄ and
therefore the coefficients in front of xαyβ on its both sides have to coincide. Already from
this equation we see that for α > J its right-hand side vanishes and similarly for β > J its
left-hand side does, i.e. for both α > J and β > J we have trivial equalities.

Using binomial expansion, we get

J
∑

j=0

∞
∑

k=0

j
∑

l=0

l
∑

m=0

(

j

l

)(

l

m

)

aTjkx
k2mymxl−mζj−l

=

J
∑

j=0

∞
∑

k=0

j
∑

l=0

l
∑

m=0

(

j

l

)(

l

m

)

aUjky
k2mxmyl−mξj−l. (A.13)

From comparison of the coefficients of xαyβ, it follows

2β
J
∑

j=0

j
∑

l=β
l≤α+β

(

j

l

)(

l

β

)

aTj,α+β−lζ
j−l = 2α

J
∑

j=0

j
∑

l=α
l≤α+β

(

j

l

)(

l

α

)

aUj,α+β−lξ
j−l. (A.14)

Finally, since l ≤ j, we can restrict the extent of the sums over j,

2β
J
∑

j=β

j
∑

l=β
l≤α+β

(

j

l

)(

l

β

)

aTj,α+β−lζ
j−l = 2α

J
∑

j=α

j
∑

l=α
l≤α+β

(

j

l

)(

l

α

)

aUj,α+β−lξ
j−l. (A.15)

We have obtained the infinite set of linear equations for aTj,k and aUj,l, which has to be
solved. At first, however, let us study its structure. Dealing with its left-hand side it is
obvious that for a given β ≤ J and some α there appear only the terms with aTj,k having
β ≤ j ≤ J and α + β − J ≤ k ≤ α, i.e. for β = J on the left-hand side there occurs solely
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J − 1 J J + 1 2J 2J + 1 k

α

J

J − 1

J − 2

j β

Figure 24: Schematic structure of the left-hand side of the series of equations (A.15). For
a given α and β there appear on the left-hand side of the equation the terms aTj,k with all j
and k above and left above it as indicated by the arrows. To the right of the shaded region
the right-hand side of the equation vanishes, above that region the left-hand side does. The
solution for aTj,k is indicated by the knots of the lattice — the dot means the coefficient
equals to zero whereas the cross indicates that its expression contains some combination
of aUj,k.

the coefficient aTJ,α for every given α, for β = J − 1 the coefficients aTJ,α, a
T
J,α−1 and aTJ−1,α

appear, and similarly there show up more and more coefficients for lower β. Let us point
up again that the left-hand side vanishes for β > J . The same arguments hold for the
right-hand side if we exchange the meaning of α and β. Hence we have a simple triangular
structure depicted on Figure 24. In the equation for a coefficient aTj,k on the left-hand side
that is obtained by taking β = j and α = k there appear also all the coefficients from the
triangle left above it. We use this structure for obtaining a solution of the series.

We begin with β = J . On the left-hand side there remains only one coefficient aTJ,α,
the right-hand side depends on α. For α > J it is zero and so the solution for all aTJ,j with
j > J + 1 is trivial, aTJ,j = 0. For α ≤ J we have some combination of aUj,k on RHS,

2JaTJ,α = 2α
J
∑

j=α

j
∑

l=α

(

j

l

)(

l

α

)

aUj,α+J−lξ
j−l. (A.16)

Next, we take β = J − 1. On the left-hand side there appear the coefficient aTJ−1,α

and two already known coefficients aTJ,α and aTJ,α−1. So depending on α, we can express the
coefficient aTJ−1,α in terms of just these two coefficients for α > J , whereas in the expression
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for α ≤ J there appear these two coefficients together with some combination of aUj,k.

2J−1
(

aTJ−1,α + JaTJ,αζ + χ(α ≥ 1)JaTJ,α−1

)

= 2α
J
∑

j=α

j
∑

l=α
l≤α+J−1

(

j

l

)(

l

α

)

aUj,α+J−1−lξ
j−l.

(A.17)
The function χ(α ≥ 1) is the characteristic function that equals to one when the condition
in brackets is complied, otherwise it is zero. Again, note that for α > J +1 the right-hand
side vanishes and thereby also all the other coefficients. It means then that aTJ−1,k = 0 for
k > J + 1.

We can continue further by lowering β and finally get the solution

aTjk = 0 for j + k > 2J (A.18)

and all the other aTjk expressed using some combinations of aUj,k.
It remains to use the equations with β > J where LHS of (A.15) are zero. We have

here the same picture as Figure 24 just with α and β interchanged.
Starting with α = J we obtain all aJ,k = 0 for k > J . The equation for α = J − 1 gives

0 = 2J−1(aUJ−1,β + JaUJ,βξ + JaUJ,β−1), (A.19)

i.e. for β > J + 1 all the appearing coefficient aUjk are zero, whereas for b = J + 1 we get
an expression for aUJ−1,J+1 in terms of aUJ,J and vanishing aUJ,J+1.

We go on further and find that also

aUjk = 0 for j + k > 2J (A.20)

and all the other coefficients aUjk can be expressed in terms of (J + 1)2 independent coeffi-
cients aUjk with 0 < j, k < J .

Summarily, we have found that the general solution of the crossing relations (A.1) are
polynomials of maximally 2J order with (J + 1)2 independent coefficients,

P S
4 (s, t; u) =

J
∑

j=0

6−j
∑

k=0

aTj,k(t− s)j(u− ū)k, (A.21)

P T
4 (s, t; u) =

J
∑

j=0

6−j
∑

k=0

aTj,k(s− t)j(u− ū)k, (A.22)

PU
4 (s; t, u) =

J
∑

j=0

6−j
∑

k=0

aUj,k(s− u)j(t− t̄)k. (A.23)

We conclude that in our case, where J = 3 the polynomials are maximally of the sixth
order with 16 independent coefficients.



Appendix B

Hilbert transform

For a function K(s) we define n-times subtracted Hilbert transformHn(s) by the dispersion
integral

Hn(s) = sn
∫ ∞

sthr

dx

xn
K(x)

x− s
. (B.1)

For any meromorphic function K(s) growing at infinity not faster than any polynomial,
there always exists an integer nmin such that all Hn(s) for n ≥ nmin exist. Note that from

the definition it follows that Hn(s)
sn

is finite for s → 0, thereby lims→0
Hn(s)
sm

= 0 for all
m < n.

To find an analytical form of Hilbert transform from its integral definition is a non-
trivial task. For some functions it is easier to use the roundabout way trying to find a
function analytic in the complex plane except the branch cut on the interval (sthr,∞)
where it has the discontinuity equal to the value of the function K(s). Different functions
satisfying this requirement differ just by a polynomial. It can be restricted by the UV and
IR asymptotics of the integral, which depends on the number of subtractions.

In the following, we summarize few formulae that can be of use for computation of the
Hilbert transform.

• Formula for raising the number of subtraction

Hn+1(s) = sn
∫ ∞

sthr

dx

xn
K(x)

x− s
− sn

∫ ∞

sthr

dx

xn
K(x)

x
= Hn(s)− sn

(Hn(s)

sn

)

s=0

. (B.2)

Denoting the n-th derivation of Hn(s) with respect to s as Hn(s)(n) we can write this
expression also as

Hn+1(s) = Hn(s)− sn

n!
Hn(0)(n). (B.3)
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• Addition of a new subtraction point x1 6= 0

Hn
x1
(s) = sn

∫ ∞

sthr

dx

xn
M2K(x)

(x− s)(x− x1)

=
M2

s− x1
sn
∫ ∞

sthr

dx

xn
K(x)

(x− s)
− M2

s− x1
sn
∫ ∞

sthr

dx

xn
K(x)

x− x1

=
M2

s− x1

(

Hn(s)−
(

s

x1

)n

Hn(x1)

)

.

(B.4)

We have introduced a generic mass M2 into the functions in order to keep them
dimensionless. Note that the limit x1 → 0 is in correspondence with (B.2). Note also
that since the difference between the one subtracted and the Hilbert transformation
without subtractions differ by a constant, for n = 0 we can write also

H0
x1
(s) =

∫ ∞

sthr

dx

x− s

M2K(x)

(x− x1)
=

M2

s− x1

(

H1(s)−H1(x1)
)

. (B.5)

The notation Hn
x1
(s) we are using here is connected with the other possible under-

standing of the integral on the left-hand side of (B.4) — it corresponds to the Hilbert
transform with n subtraction of function

Kx1(s) =
M2

s− x1
K(s). (B.6)

Such functions appear in contributions to amplitudes from P-waves (cf. 7.76) as
Kσ(s) =

M2

sσ2(s)
K(s).

• Expression for a change of subtraction point is therefore

s

M2
Hn−1

x1
(s) = sn

∫ ∞

sthr

dx

xn−1

K(x)

(x− s)(x− x1)

= Hn(s) + x1s
n

∫ ∞

sthr

dx

xn
K(x)

(x− s)(x− x1)
=

s

s− x1

(

Hn(s)−
(

s

x1

)n−1

Hn(x1)

)

.

(B.7)

Again in the other interpretation it is Hilbert transform with n − 1 subtractions of
the function Kx1(s).

• Using the previous two items we can derive also the Hilbert transforms Hn
(λ)(s) of

the second type of functions appearing in contributions of P-waves

K(λ)(s) =
sM2

λ(s)
K(s) =

sM2

(s− µ+)(s− µ−)
K(s) (B.8)

from the knowledge of Hilbert transform Hn(s) of the function K(s).
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It corresponds to addition of new subtraction point µ+ to the Hilbert transform
Hn−1

µ− (s). Thus,

Hn
(λ)(s) =

sM2

s− µ+







Hn(s)−
(

s
µ−

)n−1

Hn(µ−)

s− µ−
−
(

s

µ+

)n−1Hn(µ+)−
(

µ+

µ−

)n−1

Hn(µ−)

µ+ − µ−







=
sM2

µ+ − µ−







Hn(s)−
(

s
µ+

)n−1

Hn(µ+)

s− µ+
−

Hn(s)−
(

s
µ−

)n−1

Hn(µ−)

s− µ−






.

(B.9)

• Obviously, we can lower the number of subtraction for K(λ)(s),

Hn−1
(λ) (s) =

sM2

s− µ+







Hn(s)−
(

s
µ−

)n−1

Hn(µ−)

s− µ−
−
(

s

µ+

)n−2Hn(µ+)−
(

µ+

µ−

)n−1

Hn(µ−)

µ+ − µ−







=
sM2

µ+ − µ−







Hn(s)−
(

s
µ+

)n−2

Hn(µ+)

s− µ+
−

Hn(s)−
(

s
µ−

)n−2

Hn(µ−)

s− µ−







(B.10)

or raise it

Hn+1
(λ) (s) =

sM2

s− µ+





Hn(s)−
(

s
µ−

)n

Hn(µ−)

s− µ−
−
(

s

µ+

)n−1Hn(µ+)−
(

µ+

µ−

)n

Hn(µ−)

µ+ − µ−





=
sM2

µ+ − µ−





Hn(s)−
(

s
µ+

)n

Hn(µ+)

s− µ+
−

Hn(s)−
(

s
µ−

)n

Hn(µ−)

s− µ−



 .

(B.11)

In all of the previous expressions, we could compute their left-hand side just from the
knowledge of the Hilbert transform Hn(s) and also the existence of the objects appearing
there followed from the existence of this transform. This is not the case for the formula
for lowering the number of subtractions,

Hn−1(s) = sn
∫ ∞

sthr

dx

xn
K(x)

x− s
+ sn−1

∫ ∞

sthr

dx
K(x)

xn
(B.12)
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where we need to compute the constant
∫∞
sthr

dx K(x)
xn and this integral can even diverge

(together with the non-existence of the n−1 times subtracted transform) — this obviously
happens for n ≤ nmin.

General change of the subtraction points

We will not need it in our applications but one could in principle continue with changing
of the subtraction points of the Hilbert transform as follows.

An introduction of a new subtraction point (not equal to any previous subtraction
points) is easy by the successive application of the formula (B.4) similarly to the procedure
that we have done when obtaining (B.9). Consequently, we would like to lower the number
of subtraction in 0. For that end we use

x

x− xi
= 1 +

xi
x− xi

. (B.13)

The situation is a little bit different when we want to raise the number of subtractions
performed at some point xi. In this case the simplest method is the use of differentiation
of an integral with respect to its parameter. Denoting the integral

I(n,m) = sn+m

∫ ∞

sthr

dx

xn(x− xi)m
K(x)

x− s
, (B.14)

we obtain by differentiating this integral with respect to xi the equation (m > 0)

∂

∂xi
I(n,m) =

m

s
I(n,m+ 1). (B.15)

Further, by using the transposition (B.13) we have

I(n− 1, m) = I(n,m− 1) +
xi
s
I(n,m). (B.16)

Consequently, for m > 0

I(n− 1, m+ 1) = I(n,m) +
xi
m

∂

∂xi
I(n,m). (B.17)

As an example of it, from (B.7) we obtain for I(n− 2, 2)

sn
∫ ∞

sthr

dx

xn−2

K(x)

(x− s)(x− x1)2

=

(

1 + x1
∂

∂x1

)

sn
∫ ∞

sthr

dx

xn−1

K(x)

(x− s)(x− x1)

=
s2

(s− x1)2
Hn(s) +

sn

xn−1
1 (s− x1)

((

n− 1− s

s− x

)

Hn(x1)− x1
∂

∂x1
Hn(x1)

)

.

(B.18)



Appendix C

Comments on analyticity of amplitudes, their

partial wave expansion and validity of dispersion

relations from axiomatic field theory

The important assumptions of the reconstruction theorem are the analyticity of amplitudes,
the existence of dispersion relations and also the existence of at least S and P partial waves.
Since we are using the amplitudes only perturbatively in the low-energy regions, we do not
require the complete physical amplitude possesses these properties, but it is enough for us
that the perturbative amplitudes up to the considered order and in the considered region
do. However, for the construction of such perturbative amplitudes one can also use the
usual Feynman diagram method in the field theoretic framework of χPT and the validity
of the assumptions on their analytic structure can be trivially verified by this way.

Nevertheless, for many of the amplitudes we have studied in this work, we can use the
results of a long endeavor of studies of analytic properties of the scattering amplitudes in
the framework of S-matrix theory, which do not even need the existence of the Lagrangian
theory describing these processes as they are older than QCD itself. We do not address
them in more detail and summarize just the results important for us instead. For a very
good and still topical summary explaining many of the details of such studies we recommend
the review article [124] by Sommer.

For the introduction of this appendix let us remind the unfamiliar reader that S-matrix
theory has comprised of many rigorous mathematical methods that have tried to tell us as
much information about the amplitudes as possible by using just the basic set of principles
— axioms (also known as the first principles) such as Lorentz invariance, physical mass
spectrum, completeness of physical states and microscopic causality (local commutativity
of space-like separated fields). In its original motivations they have taken the axioms of
unitarity of the scattering matrix and from it stemming positivity property separately as
they bring non-linear properties into the game.
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EXPANSION AND VALIDITY OF DISPERSION RELATIONS

C.1 Analysis without the use of unitarity — Lehmann ellipses

Even without the use of unitarity, Lehmann [105] has shown that for the Mandelstam
variable s fixed at some value above the physical threshold the singularities of the amplitude
of the process AB → CD can appear in the cos θ plane (cf. (2.8)) only for

cos(θ − α) > x0(s), (C.1)

where α is arbitrary angle and

x0(s) =

√

1 +
s

λCD(s)
ΞCD(s) > 1 (C.2)

depends on the lowest masses MX of two- or more-particle states with the same quantum
numbers as particles X for X = C,D,

ΞXY (s) =
4(M2

X −m2
X)(M

2
Y −m2

Y )

s− (MX −MY )2
. (C.3)

Using the expression for the cosine of sum of two angles, it follows that the scattering
amplitude is holomorphic in the interior of ellipse

cos θ = x0(s) cosα + i
√

x0(s)− 1 sinα (C.4)

with the foci cos θ = ±1 and its major semi-axis equal to x0(s). This ellipse is called small
Lehmann ellipse and by using (2.8) and (2.6) it can be rewritten into interior of the ellipse
in the u-plane (δXY ZW = (∆XY +∆ZW )2)

∣

∣

∣

∣

∣

∣

∣

u+

(

λ
1/2
AB(s) + λ

1/2
CD(s)

)2

− δABCD

4s

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

u+

(

λ
1/2
AB(s)− λ

1/2
CD(s)

)2

− δABCD

4s

∣

∣

∣

∣

∣

∣

∣

<
λ
1/2
AB(s)λ

1/2
CD(s)

s
x0(s). (C.5)

This implies also convergent partial wave expansion of the scattering amplitude inside the
small Lehmann ellipse.

Similarly, he has shown that the absorptive parts of the amplitude ImA(s, t, u) for
s ≥ sthr and ImA(s, t, u) for t ≥ tthr which turn out to be discontinuities across the cuts
in s and t plane are holomorphic inside the (large) Lehmann ellipses

∣

∣

∣

∣

∣

∣

∣

u+

(

λ
1/2
AB(s) + λ

1/2
CD(s)

)2

− δABCD

4s

∣
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∣

∣

∣

∣

∣
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∣

∣

∣

∣

∣

∣

u+

(

λ
1/2
AB(s)− λ

1/2
CD(s)

)2

− δABCD

4s

∣

∣

∣

∣

∣

∣

∣

< Y S
0 (s)

(C.6)
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and
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∣

∣
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∣
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1/2
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1/2
BD(t)
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− δACBD
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u+
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λ
1/2
AC(t)− λ

1/2
BD(t)

)2

− δACBD

4t

∣

∣

∣

∣

∣

∣

∣

< Y T
0 (t), (C.7)

with

Y S
0 (s) =

√

ΞAB(s)
√

ΞCD(s) +

√

ΞAB(s) +
λAB(s)

s

√

ΞCD(s) +
λCD(s)

s
(C.8)

and Y T
0 (s) obtained by interchange of B ↔ C. This again implies the convergence of the

partial wave expansions of the absorptive parts inside the particular Lehmann ellipse.

Finally, the u-fixed dispersion relations (2.27) can be proved for all real negative values
of u which are in the intersection of all these (large) Lehmann ellipses for s ≥ sthr and
t ≥ tthr. As their semi-minor axes tends to zero for s→ ∞ and t → ∞, if nonempty such
intersection is just an interval on the negative real u-axis, −uM ≤ u ≤ −um. In the case
Y S
0 (s) and Y T

0 (t) are real for any s ≥ sthr and t ≥ tthr, it is obvious that

uM = min(uSM , u
T
M), um = max(uSm, u

T
m), (C.9)

where

uSM
m
= min

s>sthr

(

λAB(s) + λCD(s)− δABCD

4s
± 1

2
Y S
0 (s)

)

(C.10)

and analogically for uTM
m
. In the case some of Y S

0 (s) of Y T
0 (t) is complex on the considered

region, the corresponding Lehmann ellipse breaks down and the dispersion relations cannot
be proved by this way.

Note that for process AB → BA, Y S
0 (s) = Y T

0 (s) and it reduces to

Y0(s) = 2ΞAB(s) +
λAB(s)

s
. (C.11)

The real limits uSM,m then simplify into

uSM = min

(

ΞAB(s) +
λAB(s)

s

)

, uSm = minΞAB(s). (C.12)

The latter is going to zero for s → ∞. Therefore, the interval for which the dispersion
relations can be proved is u ∈ (−uM , 0), where

uM = min
s≥min(sthr,tthr)

(

ΞAB(s) +
λAB(s)

s

)

. (C.13)
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C.2 Taking into account unitarity of the S-matrix

By taking into account the unitarity of the S-matrix, one can extent the domains of ana-
lyticity and the region where the dispersion relations are valid. For instance, for the elastic
amplitude Martin [108], Bros, Epstein and Glaser [41] have shown that the amplitude is
analytic in s and u for |u| < R with cuts along the real axis s ≥ sthr and t ≥ tthr for some
R. Its determination from [123] gives

R = min

[

uM , max
s≥sphys

(

λAB(s)

2s
(x0(s)− 1)

)]

. (C.14)

Similarly, it has been shown that ImA(s, t, u) along s ≥ sthr is analytic for fixed physical
s inside the following ellipse in complex u-plane

|u|+
∣

∣

∣

∣

u+
λAB(s)

s

∣

∣

∣

∣

<
λAB(s)

s
+ 2R. (C.15)

For the inelastic amplitude similar result are valid, however, they are in more complicated
form.

There exist also further methods for enlargement of the analyticity domains. Those
methods summarized in [124] lead to the results listed in the following subsections. Let us
remind that these regions are only the minimal domains as for instance we did not take
into account the further specific crossing (and Bose) symmetries of some of the amplitudes.

C.2.1 Elastic scattering AB → BA

The domains of analyticity and the regions of convergence of partial wave expansion for
the absorptive part of the amplitude of elastic scattering are

|u|+
∣

∣

∣

∣

u+
λAB(s)

s

∣

∣

∣

∣

<
λAB(s)

s
+ 2ρ(s), (C.16)

where ρ(s) is for the absorptive part ImA(s, t, u) for s > sthr given by

ρ(s) =



















max (R,ΞAB(s)) for sthr ≤ s < sphys,

4R
(

1 + sR
λAB(s)

)

for sphys ≤ s < sinel,

ΞAB(s) for sinel ≤ s < scrit,
R for scrit ≤ s,

(C.17)

where

R = min

[

u′M , max
s≥sphys

rsL(s)

]

, (C.18)

rsL(s) =
λAB(s)

2s
(x0(s)− 1), (C.19)
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u′M = − max
s≥sinel

lAB(s), (C.20)

lAB(s) = −λAB(s)

s
− ΞAB(s) (C.21)

and the boundary points of the particular intervals s with different prescriptions for ρ(s)
correspond to the threshold, where there starts a two-particle cut in the S-channel of the
amplitude; to the physical threshold, for which the amplitude can occur; to the inelasticity
threshold, where the intermediate states with more than two particles can appear; and
finally to the critical value of s

scrit = (MA −MB)
2 +

4(M2
A −m2

A)(M
2
B −m2

B)

R
, (C.22)

for which the unitarity starts to yield better information than the Lehmann result.
Again the u-fixed dispersion relations can be proved inside the intersection of all these

regions for s and t (in T-channel) above their thresholds. In addition to these ellipses,
the absorptive parts are for all values of s always analytic inside the small complex neigh-
borhood of the segment 〈−t′M , R〉 and this segment is therefore always inside the region,
where one can prove the dispersion relations.

The scattering amplitude can be shown to be holomorphic and its partial wave expan-
sion convergent inside the ellipse (C.16) with

ρ(s) =











R for sthr ≤ s < s1,

u′M − λAB(s)
s

for s1 ≤ s < s2
λAB(s)

2s

(√

1 + sR
λAB(s)

− 1
)

for s2 ≤ s,

(C.23)

where the boundaries s1,2 are defined by conditions

λAB(s1)

s1
= u′M

(

1− R

u′M

)

, (C.24)

λAB(s2)

s2
= u′M

(

1 +
R

4u′M

)−1

. (C.25)

C.2.2 Inelastic scattering AB → CD

For the inelastic process AB → CD, we use the results for the elastic processes (C.18),
RAB corresponding to AB → AB and RCD corresponding to CD → CD scattering.

The ellipses of analyticity of the absorptive part and the regions of convergence of its
partial wave decomposition are
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with

ρ(s) = max
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, (C.27)

where

ηXY (s) =

(

1 +
2sRXY

λAB(s)

)

+

√

(

1 +
2sRXY

λAB(s)

)2

− 1 . (C.28)

The dispersion relations can be proved again inside the intersection of such ellipses for all
s ≥ sthr and t ≥ tthr (in T-channel).

Similarly the scattering amplitude is holomorphic and its partial-wave expansion con-
verges inside (C.26) with

ρ(s) = max
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. (C.29)

C.3 Results for the particular processes

By employing these results for the processes we are interested in, we obtain the follow-
ing regions. Note that we ignore again the appearance of resonances and neglect isospin
breaking and the existence of weak operators changing the isospin (i.e. all the pseudoscalar
mesons are stable).

C.3.1 Processes AA→ AA

The most symmetric processes we are interested in are the processes π+π− → π0π0,
K−K+ → K0K0 and ηη → ηη. Since we assume isospin conservation we do not need
to distinguish the particular isospin states. For simplification of the expressions, we intro-
duce two dimensionless variables

r =
mA

mπ

, x =
s

4m2
π

, (C.30)

where mA is mass of the particle A = π,K, η, i.e. numerically rπ = 1, rK ≈ 3.66, rη ≈ 4.06
[cf. discussion around (4.64)].

The lightest two- or more-particle state with the same quantum numbers as A is Aππ,

i.e. MA = mπ(2+ r) and ΞAA(x) =
16m2

π

x
(1+ r)2. Similarly, the threshold for production of

two-particle states in the considered process is sthr = 4m2
π, which corresponds to xthr = 1.
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The physical threshold is naturally sphys = 4m2
πr

2, which corresponds to xphys = r2 and the
inelastic threshold coincide with the threshold of production of four pions, sinel = 16m2

π ≡
xinel = 4.

Further quantities are equal to

x0(x) =

√

1 +
4(1 + r)2

x (x− r2)
, (C.31)

lAA(x) = 4m2
π

(

r2 − x− 4(1 + r)2

x

)

, (C.32)

rsL(x) = 2m2
π(x− r2)

(
√

1 +
4(1 + r)2

x (x− r2)
− 1

)

. (C.33)

Thus, for r ≥ 1
u′M = 4m2

π

(

4 + 4r − r2
)

, (C.34)

which is greater than 4m2
π for r < 2 +

√
7 ≈ 4.65. The maximum of rsL appearing in R is

equal to 4m2
π and so

R = 4m2
π ⇒ scrit = 16m2

π(1 + r)2 ⇒ xcrit = 4(1 + r)2. (C.35)

Therefore, the domains of analyticity for the absorptive part are ellipses

|u|+
∣

∣u+ 4m2
π(x− r2)

∣

∣ < 4m2
π(x− r2) + 2ρ(x), (C.36)

where for r < 2

ρ(x) =



















16m2
π

x
(1 + r)2 for 1≤ x < r2,

16m2
π

(

1 + 1
x−r2

)

for r2 ≤ x < 4,
16m2

π

x
(1 + r)2 for 4≤ x < 4(1 + r)2,

4m2
π for x ≥ 4(1 + r)2,

(C.37)

while for r ≥ 2

ρ(x) =

{

16m2
π

x
(1 + r)2 for 1≤ x < 4(1 + r)2,

4m2
π for x ≥ 4(1 + r)2,

(C.38)

The fixed u dispersion relation can be thus proved for u ∈ 〈−4m2
π (4 + 4r − r2) , 4m2

π〉. Note
that without the use of the positivity, the Lehmann theory would give ρ(x) = ΞAA(x) and
the interval of validity of dispersion relations would be only u ∈ 〈−4m2

π (4 + 4r − r2) , 0〉.
The regions of validity of dispersion relations for the particular processes, viz ππ, KK

and ηη elastic scatterings, are depicted on Figure 25. The real intervals contained in them
are

ππ : −28m2
π ≤ u≤ 4m2

π, (C.39)

KK : −20.98m2
π ≤ u≤ 4m2

π, (C.40)
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(a) ππ → ππ (b) KK → KK (c) ηη → ηη

(d) πK → Kπ (e) πη → ηπ (f) Kη → ηK

(g) ππ→KK & πK→πK (h) ππ → ηη & πη → πη (i) KK → ηη & Kη → Kη

(j) KK → πη & Kπ → Kη (k) Kπ → ηK

Figure 25: Regions of validity of fixed u dispersion relations in complex u-plane (in multi-
ples of m2

π) for the processes considered in Chapter 4 and therefore also the regions where
the assumptions of our theorem for these processes are valid. With the bold lines the
intervals of validity coming from the use of just the Lehmann theory (ellipses) depicted.
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(d) Small Martin ellipses

Figure 26: Analyticity domains for KK scattering in complex u-plane. The upper part
depicts the domains where the absorptive parts of KK scattering amplitude are analytic,
(a) without the use of the unitarity and (b) by using the prescription given in the main text
(taking unitarity into account). The red ellipses are for both cases the same and correspond
to s < scrit. The cyan ones for s > scrit are different, which leads to the different domains of
validity of dispersion relations on the previous figure. On the lower part we have depicted
the ellipses, inside which the complete scattering amplitude is analytic, again (c) without
the use of unitarity and (d) using it. The red ellipses correspond to s ∈ (sphys, 50m

2
π)

whereas the cyan ones to s ∈ (50m2
π, 1000m

2
π). All numbers in labels are in m2

π units.
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ηη : −15.03m2
π ≤ u≤ 4m2

π. (C.41)

For illustration we have also depicted the (large) Lehmann ellipses for various values
of s for the process KK → KK on Figure 26a and the ellipses stemming from the above
analysis taking into account the unitarity on Figure 26b. In the case we wanted to find
the regions, where the complete amplitude is analytic and its partial wave decomposition
is convergent, we would use the small Lehmann ellipses and the ellipses (C.23) — we have
depicted them on Figures 26c and 26d. However, for the actual proof of the reconstruction
theorem we would need just one value s in whose neighborhood the amplitude is analytic
in s and u. Since there always exists the small Lehmann ellipse, which contains also the
neighborhood of some u inside the regions of validity of dispersion relations, we fix s at the
corresponding value and the amplitude is analytic in small neighborhood in both s and u
Mandelstam variables.

Note that in the case we include the isospin violation the possible more-particle state
with the same quantum numbers as η would have Mη = 3mπ and both uM and u′M would
be negative and one cannot prove the dispersion relations for ηη scattering by this way.

C.3.2 Processes πA→ Aπ

After the explicit discussion for the previous amplitudes, we can be brief now. Here,
we have two types of particles, for them Mπ = 3mπ and MA = mπ(2 + r). This leads to

ΞπA(x) =
32m2

π(1+r)

x−( r−1
2 )

2 . The particular thresholds are xthr = xphys =
(

r+1
2

)2
and xinel =

(

r+3
2

)2
.

Then,

x0(x) =

√

√

√

√
1 +

8x(1 + r)
(

x−
(

r−1
2

)2
)2 (

x−
(

r+1
2

)2
)
, (C.42)

lπA(x) = −4m2
π

x

(

x−
(

r − 1

2

)2
)(

x−
(

r + 1

2

)2
)

− 32m2
π(1 + r)

x−
(

r−1
2

)2 , (C.43)

rsL(x) =
2m2

π

x

(

x−
(

r − 1

2

)2
)(

x−
(

r + 1

2

)2
)

(x0(x)− 1) . (C.44)

Since lπA(x) is for x > xinel, r > 1 decreasing, its maximum is equal to

u′M = −lπA(xinel) = 16m2
π

3(r + 2)2 + 1

(r + 3)2
(C.45)

and greater than 4m2
π for any r. The maximum of rsL occurs for x = (r+1)(r+3)

4
and is equal

to 4m2
π. The Martin’s R is therefore equal to

R = 4m2
π ⇒ xcrit =

r2 + 30r + 33

4
. (C.46)
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The domains of analyticity for the absorptive parts are ellipses (C.16) with

ρ(x) =



















16m2
π

(

1 + x
(

x−( r−1
2 )

2
)(

x−( r+1
2 )

2
)

)

for
(

r+1
2

)2 ≤ x <
(

r+3
2

)2
,

32m2
π(1+r)

x−( r−1
2 )

2 for
(

r+3
2

)2 ≤ x < r2+30r+33
4

,

4m2
π for x ≥ r2+30r+33

4
.

(C.47)

The fixed u dispersion relation can be thus proved for u ∈
〈

−16m2
π

3(r+2)2+1
(r+3)2

, 4m2
π

〉

.

The regions of validity of dispersion relations for the πK and πη elastic scatterings are
depicted again on Figure 25. The real intervals contained in them are

πK : −35.03m2
π ≤ u≤ 4m2

π

(

−31.87m2
π≤ u ≤ 0

)

, (C.48)

πη : −35.69m2
π ≤ u≤ 4m2

π

(

−31.94m2
π≤ u ≤ 0

)

. (C.49)

In brackets, we have added also the intervals following from the Lehmann analysis.

C.3.3 Process Kη → ηK

By a simple generalization of the previous processes, we obtain results for the last elastic
scattering Kη → ηK. We arrive at

xthr =

(

rK + 1

2

)2

, (C.50)

xphys =

(

rK + rη
2

)2

, (C.51)

xinel =

(

rK + 3

2

)2

, (C.52)

ΞKη(x) =
16m2

π(1 + rK)(1 + rη)

x− 1
4
(rη − rK)

2 . (C.53)

The maximum of lKη(x) for x > xinel is again equal to lKη(xinel), which is larger than 4m2
π,

whereas the maximum of rsL(x) occuring at x = 1
4
(2 + rK + rη)(rK + rη) is equal to 4m2

π.

R is thus again equal to 4m2
π and xcrit = (2 + rK + rη)

2 − 3
4
(rη − rK)

2. In the ellipses of
analyticity of the absorptive part of the amplitude

ρ(x) =

{

16m2
π(1+rK)(1+rη)

x− 1
4
(rη−rK)2

for 1
4
(rK + 1)2 ≤ x < (2 + rK + rη)

2 − 3
4
(rη − rK)

2 ,

4m2
π for x ≥ (2 + rK + rη)

2 − 3
4
(rη − rK)

2 .
(C.54)

They are depicted on Figure 25. The real interval of validity of dispersion relations is
u ∈ 〈−18.96m2

π, 4m
2
π〉. The Lehmann interval would be just u ∈ 〈−18.34m2

π, 0〉.
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C.3.4 The inelastic processes

For the remaining processes, which are inelastic, we use the results of Section C.2.2. We
illustrate the explicit determinations on the process ππ → KK.

Process ππ → KK

Also for this process δABCD = 0 and the ellipses (C.26) simplify into

∣

∣

∣
u+

s

4
(σπ(s) + σK(s))

2
∣

∣

∣
+
∣

∣

∣
u+

s

4
(σπ(s)− σK(s))

2
∣

∣

∣
< ρ(s) (C.55)

with (we have used the results for ππ and KK elastic scatterings)

ρ(s) = max







4m2
π

(
√

(

x− 1 + 16
x

) (

x− r2 + 4
x
(1 + r)2

)

+ 8
x
(1 + r)

)

s
2
σπ(s)σK(s)

1+ηπ(s)ηK (s)√
ηπ(s)ηK(s)







, (C.56)

where

ηA(s) = 1 +
2

x− r2

(

1 +
√
x− r2 + 1

)

. (C.57)

There is no simple expression for the intervals, where one of the functions appearing in
(C.27) prevails the other. We therefore just plot the minimal regions, where the dispersion
relations are valid and list here the resulting real intervals belonging to them. However,
before we can do this, we need to determine the ellipses also for the t-crossed channel.

Process ππ → KK

In this case the ellipses (C.26) simplify into

∣

∣u+ s− 2m2
π − 2m2

K

∣

∣ +

∣

∣

∣

∣

u− ∆2
πK

s

∣

∣

∣

∣

< ρ(s) (C.58)

with

ρ(s) = max

{

λπK(s)

s
+ 2ΞπK(s),

λπK(s)

s

1 + η2πK(s)

2ηπK(s)

}

, (C.59)

where ΞπK(s) corresponds to the value for πK → Kπ process computed above and ηπK(s)
follows from (C.28) with R = 4m2

π.

The region of validity of dispersion relations depicted on Figure 25 for this process
is intersection of the ellipses for both of these crossing channels above their particular
thresholds.
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Real intervals of validity of fixed u dispersion relations

The real intervals contained in these regions for the remaining processes are the following

ππ → KK : −21.04m2
π ≤ u≤ 3.05m2

π, (C.60)

ππ → ηη : −14.96m2
π ≤ u≤ 2.68m2

π, (C.61)

KK → ηη : −17.88m2
π ≤ u≤ 3.79m2

π, (C.62)

KK → πη : −23.96m2
π ≤ u≤ 3.77m2

π, (C.63)

Kπ → ηK : −23.93m2
π ≤ u≤ 3.75m2

π. (C.64)

In the last two cases we have again extended the regions by using the arguments following
from elastic unitarity in the Kπ → πK scattering below its inelastic threshold. Without
it, the regions would start with −22.55m2

π and −22.51m2
π respectively.
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Appendix D

Standard χPT O(p4) values of the polynomial

parameters for meson-meson scattering

We give here the values of polynomial parameters of our parametrization of meson-meson
scattering processes in the isospin symmetric case [from Chapter 4] that reproduce the
O(p4) results of the standard chiral perturbation theory. To obtain them we have used the
comparison of our results of first iteration of reconstruction procedure with the standard
χPT computation of [78], which contains all the considered amplitudes and we have took
advantage of the unitary form of their results.

The form of our results is given in terms of physical observables and thus it has to be
scale-independent and the same for all the possible regularization schemes. The only thing
which can be influenced by using different schemes is the relation between our polynomial
parameters and the (renormalised) constants of the Lagrangian theory (LEC). With a
change of the renormalization scale, the values of the LEC change but their combinations
giving the values of our parameters remain scale-independent — this can be another test of
the results obtained from the Lagrangian theory. A further difference between (Lagrangian
theory) results of various authors can rise from different choices of the way they parametrize
the O(p2) constants (bare masses and decay constants) using the physical parameters —
for instance in [78] they expand FK and Fη decay constants in terms of Fπ, L

r
4 and Lr

5.
In [78] they used intensively the Gell-Mann-Okubo relation (GMO) to get their results

more simplified. In the standard chiral power counting the GMO formula has a correction
of O(p4) order and thus we could also employ it to simplify our results in the places where
it would bring only corrections of O(p6) order at least. However, to leave the relations
from this appendix be closely connected to the results [78], we have not done it. The only
place where we refer to the GMO formula (and its correction of O(p4) order) is in those
places where we want to emphasize the validity of the O(p2) values of the parameters from
Section 4.3. Nevertheless, the use of

∆GMO(m
2
η −m2

π) = 4m2
K −m2

π − 3m2
η, (D.1)

which is in the standard power counting of the O(p4) order, can be understood also just

219
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as a (though more complicated) notation of the right-hand side of this definition.
In the results there appear chiral logarithms defined in (4.48). Their dependence on

the scale µ (in those relations written as Λ) is compensated on the right-hand side of the
following relations by the scale-dependence of LEC Lr

i as listed in [74].
• ηη

δηη = 12(2Lr
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εηπ = 24Lr
1 + 4L3 −

9F 2
πµK

4m2
K

− 9

128π2
, (D.4)

δηπ = 12Lr
2 + 4L3 −

9F 2
πµK

4m2
K

− 9

128π2
, (D.5)

F 2
πβηπ = 8Lr

4

(

m2
π +m2

η

)

−
m2

π +m2
η

32π2
−
(

m2
π + 3m2

η

)

F 2
πµK

3m2
K

− 2F 2
πµπ

3
, (D.6)

F 2
π (αηπ − 1)m2

π

= 16Lr
4

(

m4
π − 4m2

ηm
2
π +m4

η

)

+ 16m2
ηm

2
π(−Lr

5 + 6Lr
6)

+ 96L7

(

m2
π −m2

η

)

m2
π + 48Lr

8m
4
π

−
(

5m4
π − 28m2

ηm
2
π + 6m4

η

)

F 2
πµK

3m2
K

+

(

−17m4
π + 9m2

ηm
2
π + 4m4

η

)

F 2
πµπ

3
(

m2
π −m2

η

)

+

(

m4
π −m2

ηm
2
π + 4m4

η

)

m2
πF

2
πµη

3m2
η(m

2
π −m2

η)
−

8m4
π − 11m2

ηm
2
π + 6m4

η

96π2
.

(D.7)

• ππ
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+

(

2m2
K +m2

π − 3m2
η

)

F 2
πµη

m2
π −m2

η

− 5m2
K +m2

π

192π2
,

(D.23)



223

F 2
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(
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(

m2
π − 5m2

K

)

+ 48m2
Km

2
π(2L

r
6 + Lr

8)

− 21m4
K − 25m2

πm
2
K + 21m4

π

192π2
+

(2m6
K − 4m4

Km
2
π + 6m4

πm
2
K − 3m6

π)F
2
πµK

2m2
K(m

2
K −m2

π)

− (8m6
K − 13m4

Km
2
π + 12m4

πm
2
K − 6m6

π)F
2
πµπ

4m2
π(m

2
K −m2

π)

−
(
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• KK

ϕKK = 24Lr
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17F 2
πµK

4m2
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− F 2
πµπ

4m2
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π
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π
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π
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(
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(
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(
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(
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In [78] the authors believe K+K− → K+K− to be independent on K+K− → K0K0,
but we know that isospin structure (Fierz-like identities) and the crossing symmetry dictate
the relation between these two processes given by (4.20) together with (4.19). Therefore,
we could use the values of our parameters obtained from their K+K− → K0K0 amplitude
to explicitly check their K+K− → K+K− result Tch.



Appendix E

Restoring polynomials of ππ scattering

In Section 5.6 we construct the one-loop representation of the ππ scattering amplitudes
in terms of the scattering length parameters. Since the unitarity part contributes to the
expansion of (the real part of) the amplitude at the threshold and we want to keep the
physical meaning of the parameters appearing there, we need to subtract the part of the
contribution which was thereby double counted. In this appendix we show the determina-
tion of that part.

E.1 Keeping the physical value of the scattering lengths

We begin with the easier case of keeping the physical meaning just of the scattering lengths.
The only condition we need to fulfil is

ReAi(s, t, u)|thr = 16πai, (E.1)

which can be met just by subtracting the constants

wi = 16πReUi(s, t, u)|thr . (E.2)

Using relations (5.33)–(5.44) and the threshold values of the one-loop functions (E.37)–
(E.45), we get

w0 =
1

π

(

a20 +Q±0(q)

(

ax − 4
bx
F 2
π

∆

)2
)

, (E.3)
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wx =
1

3π∆
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6acax∆− 6at
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F 4
π

)

Q0±(q)
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(E.4)

wt =
1

3π

(

6a2t − 4
b2t
F 4
π

Σ2 − 16
b2t
F 4
π

m2
π±m2

π0

Σ

∆
log q

)

, (E.5)

wc =
1

π

(

2a2c +
1

2
a2xQ0±(q)

)

, (E.6)

wd =
1

π
a2d . (E.7)

The functions Q(q) depending only on the pion mass ratio q = mπ0/mπ± are given in
equations (E.46) and (E.47).

E.2 Keeping the physical value of all the leading order parameters

In the case if we want to keep the physical meaning also of the further parameters, we have
to use more complicated polynomials — polynomials of a higher order respecting the s, t,
u symmetries of the amplitudes and determine their coefficients by solving sets of linear
equations stemming from the definitions of the scattering length parameters. Since they
are defined as expansion parameters of the real parts of partial waves, we can use the results
for them computed in Section 5.7.4 and expand them at the corresponding thresholds in
accordance to the definition (5.11). We have used also this method for a double-check of
the results, however, an easier way how to obtain them is the method based on the relation
between the scattering length parameters and the values of derivatives of the amplitudes
at thresholds, which is described in the following.

E.2.1 Relations between the scattering length parameters and the derivatives
of amplitudes

According to the partial wave decomposition (2.14) and the definition of the scattering
length parameters (5.11), (the real part of) the amplitude can be expanded at the threshold
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as follows

1

16π
ReA(s, t, u) = a+ (s− sthr)

r

F 2
π

+ · · ·

+ 3C(s, t)

(

a1 + (s− sthr)
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π

+ · · ·
)

+
5

2

(

3C(s, t)2 − λab(s)λcd(s)

16s2

)(

a2 + (s− sthr)
r2
F 2
π

+ · · ·
)

+
7

2
C(s, t)

(

5C(s, t)2 − 3
λab(s)λcd(s)

16s2

)(

a3 + (s− sthr)
r3
F 2
π

+ · · ·
)

+ · · · .
(E.8)

The function C(s, t) is connected with the cosine of the scattering angle (2.8),

C(s, t) =
2t+ s− 3s0

4
+

∆ab∆cd

4s
=
λ
1/2
ab (s)λ

1/2
cd (s)

4s
cos θ. (E.9)

Since the threshold sthr = (mx+my)
2 = max{(ma+mb)

2, (mc+md)
2}, one of the triangle

functions λab(s) or λcd(s) corresponding to this more massive state is equal to zero. (In
general, the second one can be different from zero — in this case we write it as λz(sthr).)
Consequently, also the function C(s, t) = 0 at the threshold and the following derivatives
at the threshold equal

1

16π
ReA(s, t, u(s, t))|thr = a, (E.10)

∂

∂s

(

1

16π
ReA(s, t, u(s, t))
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F 2
π
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1− ∆ab∆cd
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)
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λz (sthr) a2 ,

(E.11)

∂

∂t

(

1

16π
ReA(s, t, u(s, t))

)

|thr =
3

2
a1 , (E.12)

∂2

∂t2

(

1

16π
ReA(s, t, u(s, t))

)

|thr =
15

4
a2 . (E.13)

(Note that the dependence of the amplitude on u(s, t) is expanded into the dependence
on s and t and the derivatives are also with respect to these contributions.) Therefore, we
can obtain the scattering length and the effective range by using the derivatives

a =
1

16π
ReA(s, t, u(s, t))|thr, (E.14)
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1
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(E.15)
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For the particular processes (5.13)–(5.17) these relations simplify

ai =
1

16π
ReAi(s, t, u(s, t))|thr, (E.16)
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E.2.2 Equations for the restoring polynomials

Thanks to the form of the polynomial parts of the amplitudes (5.56)–(5.60), we obtain for
the restoring polynomials the following differential equations

w0(4m
2
π0) + 2w0(0) = 16πReU0(s, t, u(s, t))|thr , (E.22)

wx(4m
2
π±)− 2wt(−∆) = 16πReUx(s, t, u(s, t))|thr , (E.23)

−wx(0) + wt(µ+) + wt(µ−) = 16πReUt(s, t, u(s, t))|thr , (E.24)

w′
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2
π±) + w′
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3
w′′

t (−∆) = 16π
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∂s
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6
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)
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(E.25)

2mπ±mπ0

µ+

w′
x(0) + w′

t(µ+)−
Σ

µ+
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t(µ−) = 16π
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∂s
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µ+

∂

∂t

)

ReUt(s, t, u(s, t))|thr ,

(E.26)

wc(4m
2
π±) + wc(0) + wd(0) = 16πReUc(s, t, u(s, t))|thr , (E.27)

2wc(0) + wd(4m
2
π±) = 16πReUd(s, t, u(s, t))|thr , (E.28)

−1

2
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2
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π±) = 16π
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∂
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ReUc(s, t, u(s, t))|thr , (E.29)

w′
d(4m

2
π±)− w′

c(0) = 16π

(

∂

∂s
− 1

2

∂

∂t

)

ReUd(s, t, u(s, t))|thr . (E.30)
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In the case we want to keep also the physical meaning of λ0 as a rescalled effective range

parameter
(

λ̂0 =
F 2
π

24m2
π0
r0

)

, we can add the condition

w′
0(4m

2
π0)− w′

0(0) = 16π
∂

∂s
ReU0(s, t, u(s, t))|thr. (E.31)

From the structure of these conditions [stemming from our choice of the symmetric form
of the restoring polynomials in (5.56)–(5.60) leading to the simple linear crossing relations
(5.61)–(5.64)] it is obvious that all the polynomials wi(s) have to be of (at least) second
order. [Naturally, if we abandoned the requirement of this symmetric form, we could find
the solutions as some first order polynomials.] We can write them as

w0(x) = w2
0x

2 + w0
0, (E.32)

wx(x) = w2
xx

2 + w1
xx, (E.33)

wt(x) = w2
tx

2 + w0
t , (E.34)

wc(x) = w2
cx

2 + w0
c , (E.35)

wd(x) = w2
dx

2 + w1
dx. (E.36)

On the right-hand side of the equations (E.22)–(E.30) we need the threshold values
of the one-loop functions. They are (with the exception of J̄0(4m

2
π±) and the derivatives

J̄ ′
x(4m

2
x) and J̄

′
0(4m

2
π±) all of them are real)
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, (E.37)

J̄x(4m
2
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, Re J̄ ′
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, (E.38)

Re J̄0(4m
2
π±) =

1
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Q0±(q), Re J̄ ′
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, (E.39)

J̄±(4m
2
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1
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2
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1
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, (E.40)

J̄±0(µ±) =
1

16π2

(

1∓ 2mπ±mπ0

∆
log q

)

, (E.41)

J̄ ′
±0(µ±) = − 1

16π2

1
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(

2 +
µ∓
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log q
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, (E.42)

J̄±0(−∆) =
1

16π2

1

∆
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π± −m2

π0 − 2m2
π± log q +m2
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, (E.43)

J̄ ′
±0(−∆) =

1

16π2

1

∆2

(

−m2
π0 −∆ log q +

m2
π±

2
Q0±(q)
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, (E.44)

J̄ ′′
±0(−∆) =

1

16π2

1

∆3
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2
π± + 2m2

π0

2
− 2∆ log q +

4m2
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4
Q0±(q)
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, (E.45)
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where we have used the notation

Q±0(q) = 2

(

1−
√

1− q2

q
arctan

q
√

1− q2

)

, (E.46)

Q0±(q) = 2

(

1 +
√

1− q2 log
1−

√

1− q2

q

)

. (E.47)

Substituting the expressions for wi(x), the unitarity parts from (5.33)–(5.44) and these
values into the conditions (E.22)–(E.30), we get few simple sets of linear equations for the
coefficients wn

i . For the sake of extent, we put here only the numerical values of them
which were obtained for the physical values

mπ± = 139.6MeV, mπ0 = 135.0MeV, Fπ = 92.22MeV. (E.48)

The coefficients are then

w2
0 =

(

−0.40a20 + 1.11a2x + 8.6axbx − 19b2x
)

· 10−10MeV−4, (E.49)

w0
0 = 0.18a20 − 0.06a2x − 1.7axbx + 3.5b2x, (E.50)

w2
x =

(

−3a2t − 3.5acax − 1.7a0ax + 13axbc + 13atbt + 10b2t + 13acbx + 6a0bx

+ 15bcbx
)

· 10−10MeV−4,
(E.51)

w1
x =

(

0.5a2t + 0.46acax + 0.22a0ax − 1.2axbc − 2atbt + 0.02b2t − 1.2acbx

− 0.6a0bx − 2bcbx
)

· 10−4MeV−2,
(E.52)

w2
t =

(

−2.2a2t − 1.43acax − 0.67a0ax + 3.3axbc + 20atbt − 10b2t + 3.3acbx + 1.4a0bx

+ 15bcbx
)

· 10−10MeV−4,

(E.53)

w0
t = 0.9a2t + 0.41acax + 0.19a0ax − 0.9axbc − 6atbt + 3b2t − 0.9acbx − 0.4a0bx − 4bcbx,

(E.54)

w2
c =

(

−2.1a2c + 0.7a2d − 1.0a2x + 19acbc + 10b2c − 3adbd − 7b2d + 9axbx
)

· 10−10MeV−4,
(E.55)

w0
c = 0.95a2c − 0.21a2d + 0.45a2x − 5.8acbc − 3b2c + 1.0adbd + 2b2d − 3axbx, (E.56)

w2
d =

(

2.8a2c − 1.7a2d + 1.3a2x − 13acbc − 50b2c + 13adbd + 7b2d − 6axbx − 20b2x
)

· 10−10MeV−4,
(E.57)

w1
d =

(

−0.46a2c + 0.23a2d − 0.22a2x + 2.5acbc + 5b2c − 1.2adbd − b2d + axbx + b2x
)

· 10−4MeV−2.
(E.58)

We have rounded off the numerical values of the coefficients taking into account the nu-
merical ordering of the scattering length parameters as follows.

E.2.3 Approximate numerical values of the restoring polynomials

For our further discussion of the numerical order of the corrections, we compute their
approximate numerical values as the values for the following specific choice of the scattering
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length parameters,

a0 = 0.082, ax = −0.18, at = −0.042, ac = 0.14, ad = −0.083, (E.59)

bx = bd = −0.024, bc = −bt = 0.012, (E.60)

stemming from the central values a00 = 0.22, a20 = −0.044 from [48,49] and the expressions
(5.25)–(5.31) valid in the lowest order in the isospin breaking.

The coefficients of the polynomials (E.32)–(E.36) read then

w2
0 = 5.9 · 10−12MeV−4, w0

0 = −0.0060, (E.61)

w2
x = 2.7 · 10−12MeV−4, w1

x = −6.4 · 10−7MeV−2, (E.62)

w2
t = 2.5 · 10−12MeV−4, w0

t = 0.0064, (E.63)

w2
c = −0.58 · 10−12MeV−4, w0

c = 0.013, (E.64)

w2
d = 5.1 · 10−12MeV−4, w1

d = −6.9 · 10−7MeV−2. (E.65)

These polynomials bring the corrections to the scattering lengths which are also (from their
definition) equal to the constants (E.3)–(E.7),

∆a0 = w0 = 0.013, (16%), (E.66)

∆ax = wx = −0.020, (11%), (E.67)

∆at = wt = 0.0011, (2.6%), (E.68)

∆ac = wc = 0.022, (16%), (E.69)

∆ad = wd = 0.0022, (2.6%), (E.70)

i.e. in the case we forgot to subtract this double counting (caused by taking the physical
values of the scattering lengths and adding the full unitarity contribution), we would get
the relative error of the scattering lengths indicated in brackets in these relations.

Similarly, by restoring the physical values of just the scattering lengths and using
only the restoring constants (E.3)–(E.7), but taking everywhere the physical values of the
effective range parameters, we commit the error1

∆b0 = 7.3 · 10−3, (E.71)

∆bx = −1.8 · 10−3, (7.7%), (E.72)

∆bt = 0.45 · 10−3, (3.7%), (E.73)

∆bc = 2.2 · 10−3, (18%), (E.74)

∆bd = 0.90 · 10−3, (3.7%). (E.75)

However, in our further applications we are not aiming to obtain the physical values of bi
with better precision than these maximally 20%.

1Note, that from our simple estimate (E.59)– (E.60), we have no guess for the value b0.
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Appendix F

Kinematic functions appearing in results

This appendix summarizes all the kinematic functions appearing in the results of the
reconstruction procedure for the ππ scattering and the P → 3π decay amplitudes.

We start with the definitions of shortcuts used in them,

Σ = m2
π± +m2

π0 , ∆ = m2
π± −m2

π0 , µ± = (mπ± ±mπ0)2, (F.1)

∆̃+ = m2
P −m2

π±, ∆̃0 = m2
P −m2

π0 , ∆̃ = m2
P −m2

π, (F.2)

µ̃±
c = (mP −mπ±)2, µ̃±

0 = (mP −mπ0)2, µ̃± = (mP −mπ)
2, (F.3)

q =
mπ0

mπ±
, ξ̃ =

m2
π±

∆

∆̃2
0

∆̃+

, ς̃ = m2
Pm

2
π0 −m4

π±. (F.4)

The kinematic square roots connected with the momenta of particles in the center-of-mass
system

σA(s) =

√

1− 4m2
A

s
, λAB(s) = s2 − 2s(m2

A +m2
B) + (m2

A −m2
B)

2 (F.5)

with further notation

σ+(s) = σπ±(s), σ0(s) = σπ0(s), λ(s) = λπ±π0(s), (F.6)

λ̃+(s) = λPπ±(s), λ̃0(s) = λPπ0(s), λ̃π(s) = λPπ(s). (F.7)

Related functions from mixed processes

σ∇(s) =

√

s− 4m2
π0

s+ 4∆
, σ∆(s) =

√

s− 4m2
π±

s− 4∆
, (F.8)

σ⊙(s) =
λ1/2(s)

s−∆
, σ⊕(s) =

λ1/2(s)

s+∆
. (F.9)

For these functions σ̟(s) we define the following corresponding logarithms

L̟(s) = log
1− σ̟(s)

1 + σ̟(s)
, L̟(s) = log

σ̟(s)− 1

1 + σ̟(s)
. (F.10)

233
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These functions have the same real parts but differ in the imaginary parts. For instance for
s > 4m2

π0 , ImL0(s) = 0 whereas ImL0(s) = ±π with the sign depending on the convention.
We also use the logarithms

L↑(s) =
L⊙(s) + L⊕(s)

2
, L↓(s) =

L⊙(s)− L⊕(s)

2
(F.11)

and the corresponding L↑(s) and L↓(s).
The logarithm connected with the Pπ → ππ processes is

M0(s) = −2 log

(

1− ∆̃0

s
+
λ̃
1/2
0 (s)

s

)

+ log
4m2

π0

s
. (F.12)

We denote with the same symbol also its isospin limit, where we just change mπ0 → mπ.
Finally, in the isospin violating results there appears polylogarithms

J (τ) = log q log τ + Li2(1− qτ)− Li2

(

1− τ

q

)

. (F.13)

F.1 Kinematic functions appearing in S and P partial waves of NLO

amplitudes

F.1.1 ππ scattering amplitudes in isospin limit

In this case only the following functions appear in the relations for the NLO partial waves.

M0(s) = 1, M1(s) =
Lπ(s)

σπ(s)
, (F.14)

M2(s) = −m2
π

L2
π(s)

sσ2
π(s)

, M3(s) = σπ(s)Lπ(s). (F.15)

F.1.2 ππ scattering amplitudes with isospin breaking taken into account

M0(s) = 1, M0q(s) = −Σ
log q

∆
, (F.16)

M1n(s) =
L0(s)

σ0(s)
, M1+(s) =

L+(s)

σ+(s)
, (F.17)

M1∆(s) =
L∆(s)

σ∆(s)
, M1∇(s) =

L∇(s)

σ∇(s)
, (F.18)

M1↑(s) = s
L↑(s)

λ1/2(s)
, M1↓(s) = ∆

L↓(s)

λ1/2(s)
, (F.19)
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M2n(s) = −m2
π0

L2
0(s)

sσ2
0(s)

, M2+(s) = −m2
π±

L2
+(s)

sσ2
+(s)

, (F.20)

M2∆(s) = −m2
π0

L2
∆(s)

sσ2
+(s)

, M2∇(s) = −m2
π±
L2
∇(s)

sσ2
0(s)

, (F.21)

M2⊙(s) = −sm2
π0

L2
⊙(s)

λ(s)
, M2⊕(s) = −sm2

π±
L2
⊕(s)

λ(s)
, (F.22)

M2n+(s) = −Σ

2

L0(s)L+(s)

sσ+(s)σ0(s)
, M2⊙⊕(s) = −Σ

2
s
L⊙(s)L⊕(s)

λ(s)
, (F.23)

M3n(s) = σ0(s)L0(s), M3+(s) = σ+(s)L+(s), (F.24)

M3↑(s) =
λ1/2(s)

s
L↑(s), (F.25)

M7x(s) = ∆
J (τx+)− J (τx−)

sσ0σ+
, (F.26)

M7t(s) = s∆
J (τ t+)− J (τ t−)

λ(s)
, (F.27)

M8t(s) = ∆
M1↑ +

s
Σ
M0q(s)

2Σ− s
, (F.28)

M9t(s) =
1

2
M8t(s)

(

∆

2Σ− s
− Σ

∆

)

+
s
(

1−M0q(s)
)

2(s− 2Σ)
. (F.29)

In the functions M7x(s) and M7t(s) there appear end-points of the particular integra-
tions,

τx± =
s

4mπ0mπ±
(1− σ0(s)) (1± σ+(s)) , (F.30)

τ t+ =
s− Σ− λ1/2(s)

2mπ0mπ±
, (F.31)

τ t− =
sΣ−∆2 −∆λ1/2(s)

2smπ0mπ±
. (F.32)

Note that L↑ = log(τ t+) and L↓ = log(τ t−).

F.1.3 Pπ → ππ partial waves in isospin limit

In addition to the functions appearing in Section F.1.1, in the relations for NLO partial
waves of Pπ → ππ amplitudes in isospin limit there appear the following functions.

M1P(s) = s
M0(s)

λ̃
1/2
π (s)

, (F.33)

M2P(s) = −m2
π

M0(s)L0(s)

σπ(s)λ̃
1/2
π (s)

. (F.34)
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F.1.4 Partial waves of P 0π → ππ processes in the case mπ± 6= mπ0

In the expressions for S and P partial waves of P 0π0 → ππ processes there appear ππ
functions from Section F.1.2 together with the following ones

M1L(s) = s
M0(s)

λ̃
1/2
0 (s)

, (F.35)

M2Ln(s) = −m2
π0

M0(s)L0(s)

σ0(s)λ̃
1/2
0 (s)

, (F.36)

M2L+(s) = −Σ

2

M0(s)L+(s)

σ+(s)λ̃
1/2
0 (s)

, (F.37)

M7Lx(s) = ∆
J (τLx+ )− J (τLx− )

σ+(s)λ̃
1/2
0 (s)

, (F.38)

M8Lx(s) =
2∆̃0m

2
π± − s∆

2∆(s− ξ̃)
M1+(s)−

∆̃0Σ− s∆

2∆(s− ξ̃)
M1L(s) +

s∆

Σ(s− ξ̃)
M0q(s), (F.39)

M9Lx(s) =
s

s− ξ̃

(

s− 2Σ− ∆̃0

∆̃+

M8Lx(s)−
1

2
M1+(s)

− 1

2

(

1− ∆̃0

s

)

M1L(s)−M0q(s)− 1

)

(F.40)

M11Ln(s) = 2
(

ω(τLn+ ) + ω(τLn− )
)

, (F.41)

M12Ln(s) = 2m2
π±
ω(τLn+ )− ω(τLn− )

σ0(s)λ̃
1/2
0 (s)

, (F.42)

M13Ln(s) = m2
π±

log2 τLn+ − log2 τLn−

σ0(s)λ̃
1/2
0 (s)

(F.43)

with

ω(τLn± ) =

(

τLn± − 1

τLn±

)

log τLn± . (F.44)

The endpoints of integrations appearing in M7Lx(s) and in the last three functions are

τLx± = − 1

4mπ±mπ0

(1∓ σ+(s))
(

∆̃0 − s− λ̃
1/2
0 (s)

)

, (F.45)

τLn± = 1 +
tLn±

2m2
π±

(

σ+(t
Ln
± )− 1

)

+ iǫ

(

σ+(t
Ln
± )− 1

2m2
π±

+
1

σ+(tLn± )tLn±

)

dtLn±
dm2

P

, (F.46)

tLn± =
1

2

(

m2
P + 3m2

π0 − s± σ0(s)λ̃
1/2
0 (s)

)

. (F.47)
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F.2 Kinematic functions appearing in NNLO amplitudes

F.2.1 Functions appearing in Pπ → ππ in isospin limit from S-wave contri-
butions

In the NNLO Pπ → ππ amplitude in isospin limit there appears five basic functions
Gi(s), i = 1, . . . , 5. They are Hilbert transforms

Gi(s) = sni

∫ ∞

4m2
π

dx

xni

Fi(x)

x− s
, (F.48)

which for real s means

Gi(s+ i0) = sni v.p.

∫ ∞

4m2
π

dx

xni

Fi(x)

x− s
+ iπFi(s), (F.49)

of the following functions

F1(s) = σπ(s), (F.50)

F2(s) = Lπ(s), (F.51)

F3(s) = −m2
π

L2
π(s)

sσπ(s)
, (F.52)

F4(s) = sσπ(s)
M0(s)

λ̃
1/2
π (s)

, (F.53)

F5(s) = −m2
πLπ(s)

M0(s)

λ̃
1/2
π (s)

(F.54)

with n1 = n2 = 1, n3 = n5 = 0 and for F4(s) we need two different numbers of subtractions
n4 = 1, 2.

The first three Hilbert transforms are easy to determine by using the “roundabout”
way described in Appendix B. Since

Disc (σπ(s)Lπ(s)) = πσπ(s)θ(s− 4m2
π) = πF1(s)θ(s− 4m2

π), (F.55)

the Hilbert transform G1(s) will be up to a polynomial equal to the function in the brackets.
The polynomial is easily to determine from the UV and IR asymptotics of the integral.
The considered integral is logarithmically divergent for s→ ∞ and equal to zero at s = 0.
Therefore, we conclude with

G(1)
1 (s) = 2 + σπ(s)Lπ(s) = 16π2J̄π(s). (F.56)

As we have discussed near equation (7.53), G1(s) is connected with the O(p4) unitarity part
of the amplitude that corresponds to the single two-pion rescattering in the final state, it
is therefore no surprise that this result restores the one-loop function J̄π(s).



238 APPENDIX F. KINEMATIC FUNCTIONS APPEARING IN RESULTS
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Figure 27: Plot of function 1
4x
G(1)
4 (xm2

π) used for comparison of the numerical computation
of this function used in this work with the analytic approximate determination from [VI].

Similarly, by using the formula

Disc f(x)g(x) = f(x− i0)Disc g(x) + g(x+ i0)Disc f(x) (F.57)

we arrive at

G(1)
2 (s) =

1

2
L2

π(s) , (F.58)

G(0)
3 (s) = − m2

π

3sσπ(s)
Lπ(s)

(

L2
π(s) + π2

)

. (F.59)

Note that these three functions have appeared also in the two-loop pion scattering compu-
tation [95].

For functions G4(s) and G5(s), this roundabout way does not work and we have to
employ their integral representations (F.48). We have two possibilities how to compute
them: either by integrating these expressions numerically or by means of the construction
of analytic approximations which was described1 in Appendix B of [VI]. The functions

G(1)
4 (s) and G(2)

4 (s) are related by (B.2).
One should note that having these two functions only in either of these approximate

forms does not mean that they are worse than the others — since they depend only on two
masses mπ and mP and on one variable s, once we fix the masses we can tabulate them
for all the needed values of s.

1Note however that the definition of these functions in [VI] differs from the one used here by factor of
s and −m2

π respectively. It also changes the required number of subtractions for F4(s).
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We have plotted graphs of all the Hilbert transforms G(n)
i (s) on Figure 28. For com-

parison with the analytic approximate determination of G(1)
4 (s) from [VI] we have added

also the plot on Figure 27 corresponding to FIG.4 from [VI].

F.2.2 Functions appearing in Pπ → ππ in isospin limit from P-wave contri-
butions

The contributions of P-waves into the NNLO Pπ → ππ amplitudes bring in addition to
the functions of previous section also functions that are related to the previous one by

Fσ
j (s) = m2

π

Fj(s)

sσ2
π(s)

or F λ̃
j (s) = m2

πs
Fj(s)

λ̃π(s)
, (F.60)

In Appendix B we have found the expressions for Hilbert transforms of these functions in
terms of Hilbert transforms of original functions Fj(s).

We obtain

Gσ;(0)
1 (s) =

m2
π

s− 4m2
π

(

G(1)
1 (s)− 2

)

, (F.61)

Gσ;(0)
2 (s) =

m2
π

s− 4m2
π

(

G(1)
2 (s) +

π2

2

)

, (F.62)

Gσ;(0)
3 (s) =

m2
π

s− 4m2
π

(

G(0)
3 (s) +

π2

3

)

, (F.63)

Gλ̃;(0)
i (s) =

mπ

4mP

(

µ̃+

s− µ̃+

(

G(1)
i (s)− G(1)

i (µ̃+)
)

− µ̃−

s− µ̃−

(

G(1)
i (s)− G(1)

i (µ̃−)
)

)

, (F.64)

Gλ̃;(1)
i (s) =

mπ

4mP

(

s

s− µ̃+

(

G(1)
i (s)− G(1)

i (µ̃+)
)

− s

s− µ̃−

(

G(1)
i (s)− G(1)

i (µ̃−)
)

)

, (F.65)

Gλ̃;(2)
i (s) =

mπ

4mP

(

s

s− µ̃+

(

G(1)
i (s)− s

µ̃+
G(1)
i (µ̃+)

)

− s

s− µ̃−

(

G(1)
i (s)− s

µ̃− G(1)
i (µ̃−)

))

,

(F.66)

Gλ̃;(0)
5 (s) =

mπ

4mP

(

s

s− µ̃+

(

G(0)
5 (s)− G(0)

5 (µ̃+)
)

− s

s− µ̃−

(

G(0)
5 (s)− G(0)

5 (µ̃−)
)

)

. (F.67)

The relations for Gλ̃;(n)
i (s) with i = 1, 2, 4 look the same since their original functions have

the same number of subtractions.
We have plotted the graphs of all these additional functions on Figure 29.

F.2.3 Functions appearing in NNLO Pπ0 → π0π0 amplitude for mπ± 6= mπ0

Just for completeness, we remind the reader that the functions appearing in NNLO Pπ0 →
π0π0 in the case we take isospin breaking into account are listed in Tables 9 and 10. We
have a close analytic form of these Hilbert transforms only for the functions H(1)

1n , H
(1)
1+,
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Figure 28: Plot of Hilbert transforms Gj(s) appearing in NNLO Pπ → ππ amplitudes
— functions stemming from S wave contribution. Numerical values used for mπ and
mP = mη are taken from (5.197). Abscissea of the plots measure s in GeV units. Vertical
lines correspond in turn to s = 4m2

π, (mP −mπ)
2, and (mP +mπ)

2.
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Figure 29: Plot of Hilbert transforms Gj(s) appearing in NNLO Pπ → ππ amplitudes —
additional functions appearing in P wave contributions. Numerical values used for mπ and
mP = mη are taken from (5.197). Abscissea of the plots measure s in GeV units. Vertical
lines denotes the following specific values of s, in turn 4m2
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H(1)
1q ,H

(1)
2n , H

(1)
1+, H

(0)
3n as there one just needs to change mπ into the corresponding pion mass

and employs the results of the previous section. In addition, function H(1)
6 is the product

of two one-loop functions (8.42). All the other functions we know at the moment only by
numerical computation of their defining integrals.



Appendix G

Polynomials of the NLO partial waves of the ππ
scatterings

G.1 The isospin breaking case

In this appendix, we give explicit form of the polynomials appearing in the expressions
for partial waves of NLO ππ scattering amplitudes from Section 5.7.4 (in the partial-wave
parametrization).

The form of the λ part of the reconstruction polynomial and of the restoring polynomial
depends on the specific choice of the restoring procedure as is discussed in Section 5.6.2.
We give here the results only for the case we restore just the scattering lengths. In that
case the restoring polynomial is simply a constant from (E.3)–(E.7) and so is also its
contribution to S partial wave,

pi;0w = −wi. (G.1)

Its contribution to P partial wave is zero

pi;1w = 0. (G.2)

The other polynomials are as follows.

• π0π0 → π0π0

p0;0λ =
λ0
F 4
π

(5s+ 4m2
π0)(s− 4m2

π0), (G.3)

p0;00 = 4a20 + 8a2x − ax
bx
F 2
π

(s− 20m2
π0 + 68m2

π±)

+
b2x
F 4
π

(16

9
(2s2 − 7sm2

π0 + 14m4
π0) +

m2
π±

9
(39s− 732m2

π0) + 140m4
π±

)

,

(G.4)

p0;01n = a20, (G.5)
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p0;01∇ = 2
(

a2x − ax
bx
F 2
π

(s− 4m2
π0 + 10m2

π±)

+
b2x
3F 4

π

(

(s− 4m2
π0)2 + 13m2

π±(s− 4m2
π0) + 66m4

π±
)

)

,

(G.6)

p0;02n = a20, (G.7)

p0;02∇ = 2

(

a2x − 6ax
bx
F 2
π

m2
π± + 10

b2x
F 4
π

m4
π±

)

, (G.8)

p0;03n =
1

2
a20, (G.9)

p0;03+ =

(

ax +
bx
F 2
π

(s− 4m2
π±)

)2

. (G.10)

• π±π∓ → π±π∓

pc;0λ = 2

(

2s+m2
π±

)

λ
(1)
c + 3

(

s+m2
π±

)

λ
(2)
c

3F 4
π

(

s− 4m2
π±
)

, (G.11)

pc;00 = 5a2c + ac
bc
2F 2

π

(

3s− 64m2
π±
)

+
7b2c
54F 4

π

(

17s2 − 124sm2
π± + 512m4

π±
)

+
3

2
a2d − ad

bd
4F 2

π

(

5s+ 32m2
π±
)

+
b2d

36F 4
π

(

14s2 + 71sm2
π± + 464m4

π±
)

+
5

2
a2x + ax

bx
4F 2

π

(

3s− 60m2
π± − 4m2

π0

)

+
b2x

36F 4
π

(

50s2 − s
(

220m2
π± − 3m2

π0

)

+ 4
(

236m4
π± + 33m2

π±m2
π0 − 9m4

π0

))

,

(G.12)

pc;01+ = a2c +
1

2
a2d −

(

ac
bc
F 2
π

+
1

2
ad
bd
F 2
π

)

(

s + 6m2
π±
)

+
b2c
9F 4

π

(

s2 + 2sm2
π± + 120m4

π±
)

+
b2d
6F 4

π

(

s2 + 5sm2
π± + 30m4

π±
)

,

(G.13)

pc;01∆ =
1

2
a2x − ax

bx
2F 2

π

(

s+ 4m2
π± + 2m2

π0

)

+
b2x
6F 4

π

(

s2 + s(4m2
π± +m2

π0) + 2(4m2
π± −m2

π0)(2m2
π± + 3m2

π0)
)

,

(G.14)

pc;02+ = a2c − 6ac
bc
F 2
π

m2
π± − 2b2c

3F 4
π

m2
π±
(

3s− 20m2
π±
)

+
1

2
a2d − 3ad

bd
F 2
π

m2
π± + 5

b2d
F 4
π

m4
π±,

(G.15)

pc;02∆ =
1

2
a2x + ax

bx
F 2
π

(

m2
π0 − 4m2

π±
)

+
b2x
F 4
π

(

8m4
π± − 4m2

π±m2
π0 +m4

π0

)

, (G.16)

pc;03n =
1

2

(

ax +
bx
F 2
π

(

s− 4m2
π±
)

)2

, (G.17)
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pc;03+ =

(

ac +
bc
F 2
π

(

s− 4m2
π±
)

)2

. (G.18)

The polynomials of P wave:

pc;1λ =
λ
(2)
c − λ

(1)
c

6F 4
π

s, (G.19)

pc;10 =
1

2
a2c

( s

m2
π±

− 8
)

+ 2ac
bc
9F 2

π

(

11s2

4m2
π±

− 46s+ 176m2
π±

)

− b2c
27F 4

π

(

s3

m2
π±

+ 100s2 − 1166sm2
π± + 3072m4

π±

)

− 1

4
a2d

(

s

m2
π±

− 8

)

− ad
bd
9F 2

π

(

11s2

4m2
π±

− 46s+ 176m2
π±

)

+
b2d

36F 4
π

(

25s3

4m2
π±

− 32s2 − 263sm2
π± + 1344m4

π±

)

+
1

4m2
π±
a2x (s− 4Σ)

+ ax
bx

9F 2
πm

2
π±

(

11

4
s2 − s(40m2

π± + 6m2
π0) + 4(29m4

π± + 24m2
π±m2

π0 − 9m4
π0)

)

− b2x
36F 4

πm
2
π±

(

25

4
s3 − s2

(

31m2
π± +m2

π0

)

− s
(

196m4
π± + 88m2

π±m2
π0 − 21m4

π0

)

+ 4
(

220m6
π± + 236m4

π±m2
π0 − 165m2

π±m4
π0 + 45m6

π0

)

)

,

(G.20)

pc;11+ = a2d − 2a2c +
1

3

(

ac
bc
F 2
π

− 1

2
ad
bd
F 2
π

)(

s2

m2
π±

− 10s+ 48m2
π±

)

− b2c
9F 4

π

(

s

m2
π±

− 6

)

(

s2 + 8m2
π±s− 60m4

π±
)

+
b2d

12F 4
π

(

s

m2
π±

+ 6

)

(

s2 − 10m2
π±s+ 30m4

π±
)

,

(G.21)

pc;11∆ = −a2x
m2

π0

m2
π±

+ ax
bx

6F 2
πm

2
π±

(

s2 − 2s(4m2
π± +m2

π0) + 8(2m4
π± + 7m2

π±m2
π0 − 3m4

π0)
)

− b2x
12F 4

πm
2
π±

(

s3 − 4s2m2
π± − 2s(8m4

π± + 8m2
π±m2

π0 −m4
π0)

+ 4(16m6
π± + 64m4

π±m2
π0 − 50m2

π±m4
π0 + 15m6

π0)
)

,

(G.22)

pc;12+ =

(

s

m2
π±

− 2

)(

a2c −
1

2
a2d

)

+
(

3s− 8m2
π±
)

(

ad
bd
F 2
π

− 2ac
bc
F 2
π

)

− 2b2c
3F 4

π

(

s− 6m2
π±
) (

3s− 10m2
π±
)

− 5b2d
F 4
π

m2
π±
(

s− 3m2
π±
)

,

(G.23)
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pc;12∆ =
1

2m2
π±
a2x
(

s− 4m2
π± + 2m2

π0

)

+ ax
bx

F 2
πm

2
π±

(

s(m2
π0 − 4m2

π±) + 4(4m4
π± − 3m2

π±m2
π0 +m4

π0)
)

+
b2x

F 4
πm

2
π±

(

s(8m4
π± − 4m2

π±m2
π0 +m4

π0)− 32∆m4
π± − 5m4

π0(4m2
π± −m2

π0)
)

,

(G.24)

pc;13+ =
b2c
9F 4

π

(

s− 4m2
π±
)

. (G.25)

• π±π± → π±π±

pd;0λ = 2

(

s+ 2m2
π±

)

λ
(1)
c + 2

(

2s+m2
π±

)

λ
(2)
c

3F 4
π

(

s− 4m2
π±
)

, (G.26)

pd;00 =

(

ad +
bd
F 2
π

(

s− 4m2
π±
)

)2

+ 6a2c − ac
bc
F 2
π

(

5s+ 32m2
π±
)

+
b2c

27F 4
π

(

73s2 + 430sm2
π± + 928m4

π±
)

+ 3a2x − ax
bx
2F 2

π

(

5s+ 28m2
π± + 4m2

π0

)

+
b2x

18F 4
π

(

14s2 + s
(

68m2
π± + 3m2

π0

)

+ 4
(

92m4
π± + 33m2

π±m2
π0 − 9m4

π0

))

,

(G.27)

pd;01+ = 2a2c − 2ac
bc
F 2
π

(

s+ 6m2
π±
)

+
2b2c
9F 4

π

(

5s2 + 28m2
π±s+ 60m4

π±
)

, (G.28)

pd;01∆ = a2x − ax
bx
F 2
π

(

s+ 4m2
π± + 2m2

π0

)

+
b2x
3F 4

π

(

s2 + s(4m2
π± +m2

π0) + 2(4m2
π± −m2

π0)(2m2
π± + 3m2

π0)
)

,

(G.29)

pd;02+ = 2

(

a2c − 6ac
bc
F 2
π

m2
π± +

2b2c
3F 4

π

m2
π±
(

3s+ 10m2
π±
)

)

, (G.30)

pd;02∆ = a2x + 2ax
bx
F 2
π

(

m2
π0 − 4m2

π±
)

+ 2
b2x
F 4
π

(

8m4
π± − 4m2

π±m2
π0 +m4

π0

)

, (G.31)

pd;03+ =
1

2

(

ad +
bd
F 2
π

(

s− 4m2
π±
)

)2

. (G.32)

• π±π∓ → π0π0

px;0λ = −3λ
(1)
x s+ 2λ

(2)
x (s+ 3m2

π± −m2
π0)

3F 4
π

(s− 4m2
π±), (G.33)
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px;00 =

(

a0 + 2ac + 2
bc
F 2
π

(s− 4m2
π±)

)(

ax +
bx
F 2
π

(s− 4m2
π±)

)

− 4a2t + 3at
bt
F 2
π

(s+ 4Σ)

− b2t
27F 4

π

(

5s2 − 14sΣ + 4(171m4
π± + 26m2

π±m2
π0 + 171m4

π0)
)

,

(G.34)

px;00q = −2

(

a2t +
b2t
9F 4

π

(

s2 + 2sΣ+ 8(15m4
π± − 22m2

π±m2
π0 + 15m4

π0)
)

− at
bt
F 2
π

(

s+
6m4

π± − 4m2
π±m2

π0 + 6m4
π0

Σ

)

)

,

(G.35)

px;01n = −a2t + at
bt
F 2
π

(s+ 6m2
π±)− b2t

9F 4
π

(s2 + 2sm2
π± + 120m4

π±), (G.36)

px;01+ = −a2t + at
bt
F 2
π

(s+ 6m2
π0)−

b2t
9F 4

π

(s2 + 2sm2
π0 + 120m4

π0), (G.37)

px;02n+ = −2a2t + 12at
bt
F 2
π

m4
π± +m4

π0

Σ
+

4b2t
3F 4

π

(

3s
m4

π± +m4
π0

Σ
− 20

m6
π± +m6

π0

Σ

)

,

(G.38)

px;03n =
1

2
a0

(

ax +
bx
F 2
π

(s− 4m2
π±)

)

, (G.39)

px;03+ =

(

ac +
bc
F 2
π

(s− 4m2
π±)

)(

ax +
bx
F 2
π

(s− 4m2
π±)

)

, (G.40)

px;07x =
2

3

(

3a2t − 18at
bt
F 2
π

Σ− 2b2t
F 4
π

(

3sΣ− 20(m4
π± +m2

π±m2
π0 +m4

π0)
)

)

. (G.41)

• π±π0 → π±π0

pt;0λ =
λ
(1)
x

(

s2 + 2s(2m2
π± −m2

π0) + ∆2
)

+ λ
(2)
x (4s2 + sΣ +∆2)

3s2F 4
π

λ(s), (G.42)

pt;00q = a2t

(

2− ∆2

sΣ

)

+ at
bt
F 2
π

(

s− 2

Σ
(5∆2 + 12m2

π±m2
π0) + 7

∆2

s
− 2

∆4

s2Σ

)

+
b2t
9F 4

(

−9
∆6

s3Σ
+ 47

∆4

s2
− ∆2

sΣ
(101m4

π± + 94m2
π±m2

π0 + 101m4
π0)

+ 129m4
π± − 82m2

π±m2
π0 + 129m4

π0

− 4

Σ
(5m4

π± + 16m2
π±m2

π0 + 5m4
π0)s+ 14s2

)

,

(G.43)

pt;00 = 3a2t + at
bt
2F 2

π

(

s− 20Σ + 7
∆2

s

)

+
b2t

54F 4
π

(

97s2 − 61sΣ+ 693∆2 + 1600m2
π±m2

π0 − 331Σ
∆2

s
+ 70

∆4

s2

)

− ax

(

3ac +
3

2
a0 −

bc
4F 2

π

(

5s+ 2(21m2
π± − 5m2

π0) + 5
∆2

s

)

)

+
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+
bx
F 2
π

(

a0
8

(

5s+ 2(19m2
π± − 3m2

π0) + 5
∆2

s

)

+
ac
4

(

5s+ 2(21m2
π± − 5m2

π0) + 5
∆2

s

)

− bc
18F 2

π

(

14s2 + 2(345m4
π± − 155m2

π±m2
π0 + 42m4

π0)

+ s(127m2
π± − 56m2

π0) + (127m2
π± − 56m2

π0)
∆2

s
+ 14

∆4

s2

)

)

,

(G.44)

pt;01↑ = a2t − at
bt
F 2
π

(s+ 3Σ) +
b2t
9F 4

π

(

5s2 + 14Σs+ 5(7∆2 + 12m2
π±m2

π0)
)

− ax

(

a0
2

(

1− ∆

s

)

+ ac

(

1 +
∆

s

)

− bc
2F 2

π

(

1 +
∆

s

)

(

s+ 2(4m2
π± −m2

π0) +
∆2

s

))

+
bx
F 2
π

(

ac
2

(

1 +
∆

s

)(

s+ 2(4m2
π± −m2

π0) +
∆2

s

)

+
a0
4

(

1− ∆

s

)(

s + 6m2
π± +

∆2

s

)

− bc
3F 2

π

(

1 +
∆

s

)(

s2 + (9m2
π± − 4m2

π0)
(

s+
∆2

s

)

+ 2(23m4
π± − 11m2

π±m2
π0 + 3m4

π0) +
∆4

s2

)

)

,

(G.45)

pt;01↓ = −a2t + at
bt
F 2
π

(

2s+ 5Σ− ∆2

s

)

− b2t
9F 4

π

(

57Σs+ 2(25Σ2 − 34m2
π±m2

π0)− 13Σ
∆2

s
+ 2

∆4

s2

)

+ ax

(

1

2
a0

(

1− s

∆

)

+ ac

(

1 +
s

∆

)

− bc
2F 2

π

(

1 +
s

∆

)(

s+ 2(4m2
π± −m2

π0) +
∆2

s

)

)

− bx
F 2
π

(

1

2
ac

(

1 +
s

∆

)(

s+ 2(4m2
π± −m2

π0) +
∆2

s

)

+
1

4
a0

(

1− s

∆

)

(

s+ 6m2
π± +

∆2

s

)

− bc
3F 2

π

(

1 +
s

∆

)(

s2 + (9m2
π± − 4m2

π0)
(

s+
∆2

s

)

+ 2(23m4
π± − 11m2

π±m2
π0 + 3m4

π0) +
∆4

s2

)

)

,

(G.46)
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pt;02⊙ = −1

2
a0

(

ax +
bx
F 2
π

(m2
π0 − 4m2

π±)

)

, (G.47)

pt;02⊕ = −acax + 3ax
bc
F 2
π

m2
π± + 3ac

bx
F 2
π

m2
π± − 10

bcbx
F 4
π

m4
π± , (G.48)

pt;02⊙⊕ = a2t − 6at
bt
F 2
π

(m4
π± +m4

π0)

Σ

+
2b2t
3F 4

π

1

Σ

(

13m6
π± − 3m2

π±m4
π0 − 3m4

π±m2
π0 + 13m6

π0 + 3(m4
π± +m4

π0)s
)

,

(G.49)

pt;03↑ =

(

at +
bt
sF 2

π

(s− µ+)(s− µ−)

)2

, (G.50)

pt;07t = a2t − 6at
bt
F 2
π

Σ + 2
b2t
3F 4

π

(13Σ2 − 16m2
π±m2

π0 + 3Σs), (G.51)

pt;08t = 2
bt
F 2
π

∆

(

−at +
bt
3F 2

π

(s+ 6Σ)

)

, (G.52)

pt;09t = −4

3

b2t
F 4
π

∆2. (G.53)

Finally, the P wave polynomials are:

pt;1λ =
−λ(1)x (s+∆) + λ

(2)
x (s−∆)

6sF 4
π

(s+∆), (G.54)

pt;10q = 4a2t
∆2

Σ2
− 2at

bt
3F 2

πΣ

(

s2 +
∆4

s2
− 4Σ(s +

∆2

s
) + 2(21∆2 + 8m2

π±m2
π0)
)

+ 2
b2t

9F 4Σ

(

3s3 − 6

Σ
(3∆2 + 8m2

π±m2
π0)s2 + 4(17∆2 + 12m2

π±m2
π0)s

+
∆2

Σ
(141∆2 + 352m2

π±m2
π0) +

∆2

s
(19∆2 + 32m2

π±m2
π0)

− 2
∆4

s2Σ
(7∆2 + 24m2

π±m2
π0) + 6

∆6

s3
− ∆8

s4Σ

)

,

(G.55)

pt;10 = − 1

Σ
a2t

(

s− 4Σ− ∆2

s

)

− at
bt

9F 2
πΣ

(

5s2 − 68Σs+ 38(9∆2 + 16m2
π±m2

π0) + 4Σ
∆2

s
+ 5

∆4

s2

)

+
b2t

54F 4
πΣ

(

35s3 − 248Σs2 + (545m4
π± − 158m2

π±m2
π0 + 545m4

π0)s

+ 20Σ(145∆2 + 96m2
π±m2

π0)

+
(

221m4
π± − 158m2

π±m2
π0 + 221m4

π0

) ∆2

s
+ 4Σ

∆4

s2
− ∆6

s3

)

+
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− ax
Σ

(

ac

(

s− 2(Σ + 2m2
π±) +

∆2

s

)

+
a0
Σ

(

s− 2(Σ + 2m2
π0) +

∆2

s

)

)

− 1

18Σ

(

ax
bc
F 2
π

+ ac
bx
F 2
π

)

(

11
(

s2 +
∆4

s2

)

− 4(35m2
π± + 11m2

π0)
(

s+
∆2

s

)

+ 2(201m4
π± + 118m2

π±m2
π0 + 33m4

π0)

)

+
bx

36F 2
πΣ

(

−a0
(

11
(

s2 +
∆4

s2

)

− 4(29m2
π± + 17m2

π0)
(

s +
∆2

s

)

+ 2(105m4
π± + 262m2

π±m2
π0 − 15m4

π0)
)

+
bc
F 2
π

(

25
(

s3 +
∆6

s3

)

+ 2(11m2
π± − 75m2

π0)
(

s2 +
∆4

s2

)

− (1189m4
π± + 238m2

π±m2
π0 − 375m4

π0)
(

s+
∆2

s

)

+ 4(751m6
π± + 535m4

π±m2
π0 + 183m2

π±m4
π0 − 125m6

π0)
)

)

,

(G.56)

pt;11↑ = 2a2t (1 +
∆2

sΣ
)− 2at

bt
3F 2

πΣ

(

s2 − 5Σs+ (31∆2 + 48m2
π±m2

π0) + 9Σ
∆2

s

)

+ 2
b2t

9F 4
πΣ

(

2s3 − 7s2Σ+ s(25∆2 + 18m2
π±m2

π0) + Σ(137∆2 + 90m2
π±m2

π0)

+ 5(7∆2 + 12m2
π±m2

π0)
∆2

s

)

+ 2
ax
Σ

(

a0m
2
π0

(

1− ∆

s

)

+ 2acm
2
π±

(

1 +
∆

s

)

)

− 1

3Σ

(

ax
bc
F 2
π

+ ac
bx
F 2
π

)(

1 +
∆

s

)(

s2 +
∆4

s2
− 2(2Σ +m2

π±)
(

s+
∆2

s

)
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G.2 The case of isospin symmetry conservation

If we take into account the isospin conservation, the partial waves have a simpler form
(5.166)–(5.167) with the following polynomials. We give here the results for both choices
of the restoring polynomial both the one (5.154) obtained by limiting the isospin violating
results (denoted as wl) and the one (5.165) which has the simplest possible form restoring
the physical values for both a and b (denoted as ws).
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• π±π∓ → π±π∓
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The polynomials appearing in the P wave:
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The P wave polynomials are:
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Appendix H

Relation between Dalitz parameters of η → 3π
valid in first order of isospin breaking

In this appendix we derive few relations between the Dalitz plot parameters of η → 3π0

and of η → π+π−π0 stemming from isospin symmetry. This appendix is inspired by [33].
In the first order isospin breaking, i.e. in the case that all the isospin breaking is included

just in normalization of the amplitudes, we can expand the amplitude M̃η
x within the decay

region into polynomial

M̃η
x(x, y) = M̃η

x(0)
(

1 + ãy + b̃y2 + c̃x+ d̃x2 + ẽxy + f̃ y3 + g̃x2y + · · ·
)

, (H.1)

with the parameters ã, b̃, . . . that are in general complex. x and y are kinematic variables
connected with the usual Mandelstam parameters by

x = ξ(s2 − s1), y =
√
3 ξ(s̃η − s3) (H.2)

with their normalization ξ =
√
3/(2mηQη). Since the variable x change under the charge

conjugation its sign and the amplitude has to be symmetric with respect to it, it has to be
symmetric also under the change of the sign of x. From that it follows that it has to be
even in x, i.e. c̃ = ẽ = 0.

By squaring this parametrization and comparing with the standard Dalitz plot parame-
trization of the amplitude squared (6.37), we obtain the following relations between these
two parametric sets

a = 2Re ã, (H.3)

b = 2Re b̃+ |ã|2, (H.4)

d = 2Re d̃, (H.5)

f = 2Re f̃ + 2Re ã⋆b̃, (H.6)

g = 2Re g̃ + 2Re ã⋆d̃. (H.7)
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Similarly, we can expand also the amplitude M̃η
n within the decay region into

M̃η
n(x, y) = M̃η

n(0)
(

1 + α̃z + β̃y(3z − 4y2) + γ̃z2 + · · ·
)

. (H.8)

In the considered limit, the masses of mπ0 and mπ± are taken the same and the parameters
appearing in this expansions are the same as in the charged case — the additional crossing
symmetry even simplifies the form and there appear the following combination

z = x2 + y2. (H.9)

Again by squaring this parametrization on comparison with (6.40) we obtain the relations

α = Re α̃, (H.10)

β = Re β̃, (H.11)

γ = 2Re γ̃ + |α̃|2. (H.12)

Now, in the first order in isospin breaking there should hold the following relations
(cf. 7.3)

M̃η
n(s1, s2, s3) = −M̃η

x(s1, s2, s3)− M̃η
x(s2, s1, s3)− M̃η

x(s3, s2, s1). (H.13)

After introducing the linear parametrizations for both the amplitudes and using the fact
that s1 + s2 + s3 = 3s̃η, we obtain relations between linear parameters of both processes

M̃η
n(0) = −3M̃η

x(0), (H.14)

α̃ =
1

2

(

b̃+ d̃
)

, (H.15)

β̃ =
1

4

(

g̃ − f̃
)

(H.16)

and similar expression for γ̃ containing higher parameters of the charged decay, we did not
explicate in the expansion (H.1).

Finally, the relations between the standard Dalitz plot parameters are

α =
1

2

(

Re b̃+ Re d̃
)

=
1

4

(

b+ d− |ã|2
)

=
1

4

(
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4
− (Im ã)2

)

, (H.17)

β =
1

4

(

Re g̃ − Re f̃
)

=
1

4

(

1

2
(g − f) + Re ã⋆(b̃− d̃)

)

=
1

8
(g − f) +

a

16
(b− d)− a3

64
+

Im ã

4

(

Im b̃− Im d̃− a

4
Im ã

)

.

(H.18)

Since (Im ã)2 is always greater than zero, the first relation translate into the famous in-
equality

α ≤ 1

4

(

b+ d− a2

4

)

(H.19)

and the equality holds in the case Im ã = 0, in which case also the second relation translates
into exact equality between the standard Dalitz plot parameters.



Appendix I

Isospin structure of K → 3π processes

Taking the isospin conservation into account, the amplitudes of K → 3π have to be tied
together by some isospin relations. We show here their derivation. We can proceed in
various ways, the one which is usually done in the literature (i.a. [53,32]) makes use of the
construction of three-pion states of a given isospin by Zemach [134]. Here on the contrary
we instead show a different way — we use the crossing symmetry and derive the isospin
relations for the Kπ → ππ scattering processes, which is a simpler task.

These processes, which change the strangeness by 1 (∆S = 1), are in the standard
model governed by the products of currents

∑

q=u,c,t

d̄γµ(1 + γ5)q q̄γ
µ(1 + γ5)s+ h.c., (I.1)

the amplitudes of these processes can be therefore written as

〈ππ| O∆I=1/2 |Kπ〉+ 〈ππ| O∆I=3/2 |Kπ〉 , (I.2)

where O∆I=1/2 and O∆I=3/2 are some operators changing isospin by 1
2
and 3

2
respectively.

We remind the reader that the pions form an isospin triplet, whereas the kaons build
two iso-dublets.




∣

∣+ 1〉
∣

∣0〉
∣

∣− 1〉



 =





∣

∣π+〉
∣

∣π0〉
∣

∣π−〉



,

(
∣

∣1/2〉
∣

∣−1/2〉

)

=

(
∣

∣K+〉
∣

∣K0〉

)

,

(
∣

∣1/2〉
∣

∣−1/2〉

)

=

( ∣

∣K0〉
∣

∣K−〉

)

. (I.3)

The charge conjugation connects

C
∣

∣π±〉 = −
∣

∣π∓〉, C
∣

∣K±〉 = −
∣

∣K∓〉, (I.4)

C
∣

∣π0〉 =
∣

∣π0〉, C
∣

∣K0〉 =
∣

∣K0〉. (I.5)

We start with a construction of the states of given isospin formed out of two pions. We
could study it by writing the most general tensor structures and use their symmetries for
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1
1×1

1 1 0
∣

∣2 2〉 1 0 1
∣

∣2 1〉 1√
2

1√
2

1 0 −1
∣

∣1 1〉 1√
2

− 1√
2

−1 0 1

∣

∣2 0〉 1√
6

√

2
3

1√
6

∣

∣1 0〉 1√
2

0 − 1√
2

0 −1

∣

∣0 0〉 1√
3

− 1√
3

1√
3

−1 0
∣

∣2 − 1〉 1√
2

1√
2

−1
∣

∣1 − 1〉 1√
2

− 1√
2

−1
∣

∣2 − 2〉 1

2
2×1

1 2 1
∣

∣3 3〉 1 0 1
∣

∣3 2〉 1√
3

√

2
3

2 1 0

∣

∣2 2〉
√

2
3

− 1√
3

−1 0 1

∣

∣3 1〉 1√
15

√

8
15

√

2
5

∣

∣2 1〉 1√
3

1√
6

− 1√
2

1 0 −1

∣

∣1 1〉
√

3
5

−
√

3
10

1√
10

−1 0 1

∣

∣3 0〉 1√
5

√

3
5

1√
5

∣

∣2 0〉 1√
2

0 − 1√
2

0 −1 −2

∣

∣1 0〉
√

3
10

−
√

2
5

√

3
10

−1 0 1

∣

∣3 − 1〉
√

2
5

√

8
15

1√
15

∣

∣2 − 1〉 1√
2

− 1√
6

− 1√
3

−1 −2

∣

∣1 − 1〉
√

1
10

−
√

3
10

√

3
5

−1 0

∣

∣3 − 2〉
√

2
3

1√
3

−3

∣

∣2 − 2〉 1√
3

−
√

2
3

−3
∣

∣3 − 3〉 1

3/2
3/2× 1/2

1/2 3/2 1/2
∣

∣2 2〉 1 −1/2 1/2
∣

∣2 1〉 1
2

√
3

2
1/2 −1/2

∣

∣1 1〉
√

3
2

− 1
2

−1/2 1/2
∣

∣2 0〉 1√
2

1√
2

−1/2 −3/2
∣

∣1 0〉 1√
2

− 1√
2

−1/2 1/2

∣

∣2 − 1〉
√

3
2

1
2

−3/2
∣

∣1 − 1〉 1
2

−
√

3
2

−1/2
∣

∣2 − 2〉 1

1/2
1/2× 1/2

1/2 1/2 −1/2
∣

∣1 1〉 1 −1/2 1/2
∣

∣1 0〉 1√
2

1√
2

−1/2
∣

∣0 0〉 1√
2

− 1√
2

−1/2
∣

∣1 − 1〉 1

Table 18: Tables of Clebsch-Gordan coefficients.
The tables list the coefficients for an addition of spins 1/2 × 1/2, 3/2 × 3/2, 2 × 1 and 1× 1,
respectively. To a given resulting state

∣

∣J,m〉 there corresponds a line, in which we read
the coefficients of a linear combination of states with m1 and m2 indicated in the heading
of the particular column.
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obtaining the wanted relations as in [I] for the isospin SU(3) χPT case (of section 4.2).
However, here we follow the straight-forward way of using the Clebsch-Gordan coefficients
of Table 18.

The states
∣

∣I, I3〉 with a given isospin I and its third component I3 are composed
according to

∣

∣2,±2〉 =
∣

∣π±π±〉, (I.6)
∣

∣2,±1〉 = 1√
2

(∣

∣π±π0〉+
∣

∣π0π±〉
)

, (I.7)

∣

∣2, 0〉 = 1√
6

(∣

∣π+π−〉+
∣

∣π−π+〉
)

+

√

2

3

∣

∣π0π0〉, (I.8)

∣

∣1,±1〉 = ± 1√
2

(∣

∣π±π0〉 −
∣

∣π0π±〉
)

, (I.9)

∣

∣1, 0〉 = 1√
2

(∣

∣π+π−〉 −
∣

∣π−π+〉
)

, (I.10)

∣

∣0, 0〉 = 1√
3

(∣

∣π+π−〉+
∣

∣π−π+〉 −
∣

∣π0π0〉
)

. (I.11)

Note that the third component of the pion states corresponds to their electric charge and
that the even-spin states are symmetric with respect to exchange of the first and the
second pions, while the odd-spin states are antisymmetric under such exchange. This will
be important in the construction of the amplitudes. For the choice of signs of the Clebsch-
Gordan coefficients we use the Condon-Shortley convention (the state with the highest
possible third component of isospin of the first particle has always a positive coefficient).
With that it is connected the sign difference between

∣

∣π+π0〉 and
∣

∣π−π0〉 states.
An isospin analog of the Wigner-Eckart theorem then tells us that the amplitudes with

the pions in the final state with isospin
∣

∣I, I3〉 can be obtained as products of form-factors
dependent only on I and on the total isospin of the coupling of isospin state corresponding
to 1

2
or 3

2
operator with the isospin state of initial state

∣

∣Kπ〉 and the Clebsch-Gordan
coefficients corresponding to such coupling by which the state

∣

∣I, I3〉 is obtained.
Since the reaction conserves the electric charge, we are interested only in such isospin

compounds (of O∆I and
∣

∣Kπ〉) that have their total electric charge equal to the third
component of the total isospin (as was the case for

∣

∣ππ〉). Moreover, because currents
(I.1) are electric neutral, the total electric charge of such compound is equal to the sum of
electric charges of the kaon and of the pion.

The various possible isospin states obtained by addition of the isospins of operator,
kaon and pion are of the following types

(a) (3/2 ⊗ 1/2)⊗ 1 ⊃ 2⊗ 1,

(b) (3/2 ⊗ 1/2)⊗ 1 ⊃ 1⊗ 1,

(c) (1/2 ⊗ 1/2)⊗ 1 ⊃ 1⊗ 1,
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(d) (1/2 ⊗ 1/2)⊗ 1 ⊃ 0⊗ 1.

We give them in Table 19. Note that in the case (a) there appear also states with the total
isospin equal to 3, which do not contribute to the considered process (actually, generally
from the operator ∆I = 3/2 there contribute only the components with ∆I3 = ±1/2).

Putting all the information together, we get the following isospin structure of the indi-
vidual Kπ → ππ processes

Ã+
++ =

1

2

(

−Ā− B̄ + 2D̄
)

, (I.12)

Ã−
−− =

1

2

(

ĀC + B̄C + 2D̄C

)

, (I.13)

Ã+
+− =

1

4

(

Ā +
3√
5
ᾱ− 1

3
B̄ − β̄ − 2

3
C̄ +

2

3
D̄ + 2γ̄ +

4

3
Ē

)

, (I.14)

Ã−
−+ =

1

4

(

−ĀC − 3√
5
ᾱC +

1

3
B̄C + β̄C +

2

3
C̄C +

2

3
D̄C + 2γ̄C +

4

3
ĒC

)

, (I.15)

Ã+
00 =

1

2

(

Ā− 1

3
B̄ +

1

3
C̄ +

2

3
D̄ − 2

3
Ē

)

, (I.16)

Ã−
00 =

1

2

(

−ĀC +
1

3
B̄C − 1

3
C̄C +

2

3
D̄C − 2

3
ĒC

)

, (I.17)

Ã+
+0 =

1

4

(

Ā− 3√
5
ᾱ− B̄ − β̄ + 2D̄ + 2γ̄

)

, (I.18)

Ã−
−0 =

1

4

(

−ĀC +
3√
5
ᾱC + B̄C + β̄C + 2D̄C + 2γ̄C

)

, (I.19)

Ã0
00 =

1

3
√
2

(

2B̄ + C̄ + 2D̄ + Ē
)

, (I.20)

Ã0̄
00 =

1

3
√
2

(

−2B̄C − C̄C + 2D̄C + ĒC

)

, (I.21)

Ã0
+− =

1

3
√
2

(

− 3√
5
ᾱ + B̄ − C̄ + D̄ − Ē +

3√
2
δ̄

)

, (I.22)

Ã0̄
−+ =

1

3
√
2

(

3√
5
ᾱC − B̄C + C̄C + D̄C − ĒC +

3√
2
δ̄C

)

, (I.23)

Ã0
+0 =

1

2
√
2

(

−Ā +
1√
5
ᾱ+ B̄ − β̄ + D̄ − γ̄ +

√
2 δ̄

)

, (I.24)

Ã0̄
−0 =

1

2
√
2

(

ĀC − 1√
5
ᾱC − B̄C + β̄C + D̄C − γ̄C +

√
2 δ̄C

)

, (I.25)

Ã0
0− =

1

2
√
2

(

Ā+
1√
5
ᾱ + B̄ + β̄ + D̄ + γ̄ +

√
2 δ̄

)

, (I.26)

Ã0̄
0+ =

1

2
√
2

(

−ĀC − 1√
5
ᾱC − B̄C − β̄C + D̄C + γ̄C +

√
2 δ̄C

)

, (I.27)
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+
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0
〉
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K
0
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〉
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0
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√
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− 1
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√
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√
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−
√
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2
√
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1
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2
√
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(a) Ā 2 -2 1
2
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√
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2
√
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2
√
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√
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√
5

−3
2
√
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(b) B̄ 2 2 − 1
2

(b) B̄ 2 1 −1
2
√
2

1
2 − 1

2

(b) B̄ 2 0 −1
2
√
6

1√
3
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1
2
√
6
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2
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√
2
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2

(b) β̄ 1 1 −1
2
√
2

− 1
2

1
2

(b) β̄ 1 0 −1
2
√
2

−1
2
√
2

(b) β̄ 1 -1 1
2 − 1

2
−1
2
√
2

(b) C̄ 0 0 −1
2
√
3

−1√
6

1√
6

1
2
√
3

(c) D̄ 2 2 1
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2

1
2

1
2

(c) D̄ 2 0 1√
6

1√
3

1√
3

1√
6

(c) D̄ 2 -1 1
2

1
2

1√
2

(c) D̄ 2 -2 1

(c) γ̄ 1 1 1√
2

− 1
2 − 1

2

(c) γ̄ 1 0 1√
2

−1√
2

(c) γ̄ 1 -1 1
2

1
2

−1√
2

(c) Ē 0 0 1√
3

−1√
2

−1√
2

1√
3

(d) δ̄ 1 1 1√
2

−1√
2

(d) δ̄ 1 0 1√
2

−1√
2

(d) δ̄ 1 -1 1√
2

− 1√
2
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〉
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〉
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K
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π
0
〉

∣ ∣

K
−
π
−
〉

Table 19: Isospin states obtained by addition of isospin of an operator ∆I = 3/2 or ∆I = 1/2
with one kaon and one pion. The states with the total isospin equal to 3 are omitted and
from the others we select only the contributions whose electric charge is equal to the third
component of its total isospin. In the first column the type of the process from the list on
page 261 is indicated, in the second we denote the formfactor with which the state appears
in the amplitudes, the third and the fourth give the total isospin and its third component
of the resulting state and in the subsequent columns we list coefficients of given Kπ states
— on the left-hand side there are kaon states from the iso-dublet K+, K0; whereas on the
right-hand side there are listed the states containing K0, K−.
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where Ac
ab(s, t, u) is amplitude of the process Kcπd → πaπb. The formfactors Ā(s, t, u),

B̄(s, t, u), . . ., ᾱ(s, t, u), . . . and ĀC(s, t, u), B̄C(s, t, u), . . . , ᾱC(s, t, u), . . . correspond to
the appropriate isospin states according to Table 19. Latin capitals are symmetric with
respect to t↔ u interchange, whereas the Greek letters are antisymmetric (compare with
the symmetries of the two-pion states). The ones with the lower index C, containing K0

or K−, are in general different from the one without such index, which contain K0 or K+,
however, since we do not violate the CP symmetry, the amplitudes of a process and its CP
conjugated one have to be the same. [In this list we have ordered the amplitudes so that
there is always an amplitude (without lower indices C) followed by its charged conjugated
(with lower indices C).] This gives us eight equations for them and thanks to the given
t↔ u symmetries of the formfactors, their only solution is

ĀC = −Ā, B̄C = −B̄, C̄C = −C̄, D̄C = D̄, ĒC = Ē,

ᾱC = −ᾱ, β̄C = −β̄, γ̄C = γ̄, δ̄C = δ̄,
(I.28)

i.e. the formfactors of the two kaon doublets connected with the operator ∆I = 3
2
differ by

the sign, whereas the ones connected with ∆I = 1
2
are the same.

Now, we can already make a transition from the eigenstates of isospin K0 and K0 to
the eigenstates of the weak interactions (in our case also identical to the CP-even and the
CP-odd states) using

∣

∣KL〉 = 1√
2

(

∣

∣K0〉+
∣

∣K0〉
)

,
∣

∣KS〉 = 1√
2

(

∣

∣K0〉 −
∣

∣K0〉
)

. (I.29)

Now, using the following combinations of the formfactors

Z̄ = 2D̄ − B̄, Ȳ = B̄ + D̄, (I.30)

X̄ = 2Ē − C̄, W̄ = C̄ + Ē, (I.31)

ω̄ = 2γ̄ − β̄, ψ̄ = β̄ + γ̄, (I.32)

χ̄ =
1√
5
ᾱ, φ̄ =

1√
2
δ̄, (I.33)

we get the amplitudes in the form

Ã+
++ =

1

2

(

−Ā + Z̄
)

, Ã+
+− =

1

4

(

Ā+
1

3
Z̄ +

2

3
X̄ + ω̄ + 3χ̄

)

, (I.34)

Ã+
00 =

1

2

(

Ā+
1

3
Z̄ − 1

3
X̄

)

, Ã+
+0 =

1

4

(

Ā+ Z̄ + ω̄ − 3χ̄
)

, (I.35)

ÃL
00 =

1

3

(

2Ȳ + W̄
)

, ÃS
00 = 0, (I.36)

ÃL
+− =

1

3

(

Ȳ − W̄
)

, ÃS
+− = −χ̄ + φ̄, (I.37)

ÃL
+0 =

1

2

(

Ȳ − ψ̄
)

, ÃS
+0 =

1

2

(

−Ā + χ̄+ 2φ̄
)

, (I.38)
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ÃL
0− =

1

2

(

Ȳ + ψ̄
)

, ÃS
0− =

1

2

(

Ā+ χ̄+ 2φ̄
)

. (I.39)

Note that the relations from the ultimate line are just CP conjugations to the ones from
the penultimate line.

We have already used the isospin symmetry, the electric charge conservation and the
CP invariance. The last symmetry that restricts the form of the amplitudes is the crossing
symmetry. There are lucidly listed in Table 5 on page 108.

We begin with the processes containing KL. Amplitude ÃL
00 is symmetric with respect

to all changes s↔ t↔ u, temporally we use it as a formfactor which we use for expressing
formfactor W̄ and rewriting

ÃL
+−(s, t, u) = Ȳ (s, t, u)− ÃL

00(s, t, u). (I.40)

Since this amplitude is connected by crossing with ÃL
+0, we obtain the relation

ψ̄(s, t, u) = Ȳ (s, t, u) + 2Ȳ (u, t, s)− 2ÃL
00(s, t, u). (I.41)

However, ψ̄(s, t, u) is antisymmetric with respect to the exchange of t and u. This can
happen only if

ÃL
00(s, t, u) =

1

2

(

Ȳ (s, t, u) + Ȳ (t, s, u) + Ȳ (u, t, s)
)

. (I.42)

For the sake of simplicity, it is worth to denote the amplitude ÃL
+− as A(s, t, u). Then the

formfactor Ȳ is expressed in its terms as

Ȳ (s, t, u) = − (A(t, s, u) +A(u, t, s)) . (I.43)

Now, let us step to KS processes. We denote amplitude ÃS
+− as B(s, t, u). It is anti-

symmetric in t↔ u exchange. The crossing connection to ÃS
+0 then lead to

φ̄(s, t, u) = B(s, t, u) + χ̄(s, t, u), (I.44)

χ̄(s, t, u) =
1

3

(

Ā(s, t, u)− 2B(s, t, u)− 2B(u, t, s)
)

. (I.45)

The symmetry of formfactor χ̄(s, t, u) then dictates in turn

Ā(s, t, u) = B(u, t, s)− B(t, s, u), (I.46)

χ̄(s, t, u) = −1

3
(2B(s, t, u) + B(t, s, u) + B(u, t, s)) , (I.47)

φ̄(s, t, u) =
1

3
(B(s, t, u)− B(t, s, u)− B(u, t, s)) . (I.48)

The isospin structure of K+ is more complicated. We begin with Ã+
00. Using the

previous relations for Ā and χ̄, we see that B(s, t, u) factorizes out of the crossing relations
between Ã+

00 and Ã+
+0 and there remains

ω̄(s, t, u) =
1

3

(

3Z̄(s, t, u) + 2Z̄(u, t, s)− 2X̄(u, t, s)
)

. (I.49)
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The t↔ u antisymmetry of ω̄ then leads to the condition

X̄(s, t, u) = Z̄(s, t, u) + 3Z̄(t, s, u) + Z̄(u, t, s)− X̄(u, t, s). (I.50)

Similarly, the crossing between Ã+
++ and Ã+

+− implies the constraint

X̄(s, t, u) + 2Z̄(s, t, u) = X̄(u, t, s) + 2Z̄(u, t, s). (I.51)

These two relations together give

X̄(s, t, u) =
1

2

(

−Z̄(s, t, u) + 3Z̄(t, s, u) + 3Z̄(u, t, s)
)

. (I.52)

Again for the sake of simplicity we take the following combination of the formactors as the
basic one,

C(s, t, u) = 1

2

(

Z̄(s, t, u)− Z̄(t, s, u)− Z̄(u, t, s)
)

(I.53)

and express the formfactor Z̄ it terms of it as

Z̄(s, t, u) = − (C(t, s, u) + C(u, t, s)) . (I.54)

In summary, the amplitudes can be written in the form

Ã+
++ = −1

2
(B(u, t, s)− B(t, s, u) + C(t, s, u) + C(u, t, s)) , (I.55)

Ã+
00 =

1

2
(B(u, t, s)− B(t, s, u) + C(s, t, u)) , (I.56)

ÃL
00 = − (A(s, t, u) +A(t, s, u) +A(u, t, s)) , (I.57)

ÃS
00 = 0, (I.58)

ÃL
+− = A(s, t, u), (I.59)

ÃS
+− = B(s, t, u), (I.60)

where A(s, t, u) and C(s, t, u) are symmetric with respect to t ↔ u interchange, whereas
B(s, t, u) is antisymmetric.

From this reprezentation we infer the following relations between the amplitudes

Ã+
++(s, t, u) = ÃS

+−(t, s, u)− ÃS
+−(u, t, s)− Ã+

00(t, s, u)− Ã+
00(u, t, s), (I.61)

ÃL
00(s, t, u) = −

(

ÃL
+−(s, t, u) + ÃL

+−(t, s, u) + ÃL
+−(u, t, s)

)

(I.62)

and therefore we conclude with the observation that in the isospin limit the only indepen-
dent amplitudes are ÃL

00, Ã
+
++ and ÃS

+−. [Naturally, instead of ÃL
00 we could have chosen

ÃL
++ as the amplitude independent on the others.]
For the book-keeping reasons, we list here also a connection of the formfactors from our

results with the ones used in [32] (and in [53]). Its straightforward derivation is disturbed
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by the fact that in [32] they use different sign conventions. We start therefore with a
dictionary between the amplitudes in our convention and in their one (the right-most
amplitudes in the following relations are those from [32])

M̃L
0 (s1, s2, s3) = ÃL

00(s3, s1, s2) = AL
000(s1, s2, s3), (I.63)

M̃L
x (s1, s2, s3) = ÃL

+−(s3, s1, s2) = −AL
+−0(s1, s2, s3), (I.64)

M̃S
x(s1, s2, s3) = ÃS

+−(s3, s1, s2) = −AS
+−0(s1, s2, s3), (I.65)

M̃+
x (s1, s2, s3) = − Ã+

00(s3, s1, s2) = − A00+(s1, s2, s3), (I.66)

M̃+
c (s1, s2, s3) = −Ã+

++(s3, s1, s2) = A++−(s1, s2, s3). (I.67)

The formfactors appearing in (24) of [32] are then

An(s1, s2, s3) = −1

3
(A(s1, s2, s3) +A(s2, s3, s1) +A(s3, s1, s2)) , (I.68)

Bn(s1, s2, s3) = −1

3
(A(s1, s2, s3) +A(s2, s3, s1)− 2A(s3, s1, s2)) , (I.69)

Ac(s1, s2, s3) =
1

6
(C(s1, s2, s3) + C(s2, s3, s1) + C(s3, s1, s2)) , (I.70)

Bc(s1, s2, s3) =
1

6
(C(s1, s2, s3) + C(s2, s3, s1)− 2C(s3, s1, s2)) , (I.71)

Bt(s1, s2, s3) =
1

2
(B(s1, s2, s3)− B(s2, s3, s1)) , (I.72)

C0(s1, s2, s3) = −1

3
(B(s1, s2, s3) + B(s2, s3, s1) + B(s3, s1, s2)) . (I.73)

These formfactors are connected to the three-pion states with a given isotopic spin [134],
C0 is associated to the I = 0 three-pion state, Bt to the I = 2 one and finally Ac,n and Bc,n

correspond to the I = 1 final state. It is obvious that they posses the properties discussed
in [32].
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Appendix J

Analytic properties of Pπ → ππ amplitudes

Similarly as in Appendix C, we shall discuss here analytic properties of another sort of
amplitudes for which we want to use the reconstruction theorem. As was pointed out in
that appendix, the methods of S-matrix theory summarized there are not applicable for
the processes where K or η can decay into three pions. However, in order to enable the
use of the dispersion relations and of the further assumptions that lead to the reconstruc-
tion theorem, we do not need to know the complete analytic properties of the complete
amplitudes that are considered, but it is enough to verify that the analytic structure of the
perturbative amplitudes to the considered order within the considered regions is suitable.
Since we deal with the amplitudes only in the kinematic regions, where the usual Feynman
diagram methods are applicable, we can proceed in the following way. We determine the
analytic structures of all diagrams that would contribute to the perturbative amplitude
of the given order and from them we conclude the analytic structure of this amplitude
as it cannot be worse than the structure of the individual diagrams. Note also that the
presented analysis is independent on the particular form of the Lagrangians that would be
used for such a computation as we use only methods dealing with the denominators of the
Feynman integrals and they are determined just by the propagator structure. Nevertheless,
since we use the chiral expansion for classification of the diagrams, the natural framework
within which these diagrams exist is chiral perturbation theory.

J.1 Feynman diagrams contributing to Pπ → ππ process up to

two loops

In correspondence with the beginning of Chapter 3 we assume that the only diagrams
that are contributing to our amplitudes are those containing vertices with even number of
particles. On Figure 30 we have displayed all different topologies of such diagrams con-
tributing to two-loop-level Pπ → ππ amplitude. Naturally, at tree level there contributes
only the diagram denoted by (a). At one-loop level, in addition to the counter-term dia-
grams of topology (a), there contribute diagrams of type (b), having, however, the same

269
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(a) (b) (c) (d)

(e) (f) (g)

(h) (i)

(j)

Figure 30: Various topologies of Feynman diagrams contributing to P → 3π processes.



J.2. SINGULARITIES OF FEYNMAN INTEGRALS. LANDAU

EQUATIONS. 271

trivial analytic structure, and the bubble diagrams (f). At the two-loop order all diagrams
of Figure 30 contribute. Their analytic structures are as follows: diagrams (a)–(e) have
the trivial analytic structure of the contact interaction, diagrams (f)-(h) have the structure
of the bubble diagram (discussed in Appendix J.3), diagram (i) of the double-bubble dia-
gram and finally diagram (j), which we call fish-diagram, has the most complex analytic
structure which is studied in Appendix J.4. Before we start with these discussions for the
particular topologies just summarized, let us comment on the sunset-diagram (e). At first
sight it could seem that such diagram does contribute to the unitarity cut of the Pπ → ππ
amplitude but it is important to note that in the decay region its contribution is analytic
and can be thus expanded into a polynomial. However, this polynomial can be complex
for mP unstable.

J.2 Singularities of Feynman integrals. Landau equations.

We begin with recalling some basic facts about the appearance of singularities for the
Feynman integrals. We summarize here only the results important for our applications
and refer the interested reader to [65] for more details. These topics are to a certain level
also discussed in some general textbooks on quantum field theory such as [84].

If we have a function defined by its integral representation, all its singularities are
connected with the singularities of the integrand in this representation. Starting at some
point, where this function is analytic (i.e. at some point where the integration contour does
not meet the singularities of the integrand), we can move in its variables and the function
remains analytic until some of the singularities of the integrand reaches the integration
contour. Even then, one can usually continue the function analytically further by deforming
the integration contour in such a way that it avoids the singularities (this possibility is
a consequence of the Cauchy’s theorem). Therefore, the function constructed this way
is analytic for all values of its variables for which such deformation can be done. The
singularities of the function can then occur only due to one of the following three possible
reasons: (i) end-point singularity — if one of the singularities dragging the integration
contour reaches an end-point of integrations, which prevents us from a further deformation
of the contour that would avoid the singularities; (ii) pinch singularity — if two singularities
approach the contour from the opposite sides and then coincide, the contour is trapped
between them and has no other possibility than passing through one of the singularities;
(iii) infinite deformations — if one singularity dragging the integration contour goes to
infinity and such loss of finiteness of the contour can cause the appearance of a singularity.

Any contribution to an amplitude corresponding to some Feynman diagram is repre-
sented by the appropriate Feynman integral

∫

d4q1 . . .d
4qL

(2π)4l
1

(k21 −m2
1 + iε) . . . (k2N −m2

N + iε)
, (J.1)

where we have leaved out all multiplicative factors in numerator since we assume that the
singularities of the integrand are connected just with the propagators (denominators). ki
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and mi are momenta and masses connected with the i-th internal line and qj are loop
momenta. As each of the integrations is infinite, the contour has no boundaries and there
cannot happen the possibility (i). Ignoring for the moment also the possibility (iii), the
singularities of the amplitude can occur only if the following equations (Landau equations)
are fulfilled,

α̂i(k
2
i −m2

i ) = 0 for all internal lines i, (J.2)
∑

i

α̂iki ·
∂ki
∂ql

= 0 for all loops l. (J.3)

In the case all the numbers α̂i are non-zero, such singularity is called leading singularity.
Having some of the α̂i = 0 is equivalent to a study of singularities of the diagram, which
is obtained from the original one by contracting the corresponding ith line to a point.

Similarly, by using Feynman identity we can rewrite the (UV-finite) amplitude into the
parametric representation

∫ 1

0

dα1 . . .dαN
δ (
∑

i αi − 1)C(α)N−2L−2

D(α)N−2L
, (J.4)

where N is the number of internal lines and L the number of loops. Functions C(α)
and D(α) can be obtained by the explicit integration using the Feynman trick or by the
following set of rules. We perform a set of cuts in internal lines of the diagram such
that the diagram (containing all the original vertices) remains connected and any further
contraction would disconnect it — we call such diagram as minimal connected diagram.
C(α) then involves the sum of products of the αi’s corresponding to the cut lines.

The denominator reads

D(α) = Q(α)− C(α)
∑

i

αim
2
i , (J.5)

where Q(α) can be reproduced again by cutting the internal lines — this time in such
a way that we obtain two disjoint parts, which are both minimal connected and each of
them is connected to at least one of the external lines. Any such set of cuts yields again
a product of αis, which is in addition multiplied by (

∑

Pj)
2 of all external momenta Pj

connected to one of those disjoint parts of the diagram. Q(α) is the sum of such terms
corresponding to all distinct sets of such cuts.

Landau equations for the parametric representation read (note that the boundaries of
integration correspond to αi = 0)

αi
∂D

∂αi
= 0 for each internal line i, (J.6)

D = 0. (J.7)

Since D is a homogeneous function of αi’s
(

D ∝
∑

αi
∂D
∂αi

)

, the last constraint is automat-

ically fulfilled when the others are. From the same reason we can ignore the δ-function
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in (J.4). Note that there exist also a third representation of the Feynman diagrams (so-
called mixed one) with the corresponding set of Landau equations. All of the three sets of
equations are equivalent.

A singularity can occur also because of the pinching in infinity [point (iii) from above].
Such singularities would be independent on the internal masses and do not directly fol-
low from Landau equations. There have been therefore called by Cutkosky [52], who first
noticed their existence, as non-Landau singularities. Nowadays there is used the more suit-
able name for them, the second-type singularities. They are connected with the degeneracy
of the vector space spanned by the external momenta.

Final note is that the analysis described above leads only to the necessary conditions
for the occurrence of the singularities. Thus, the amplitude on the physical sheet does not
need to be singular in all of them (it can be singular there just for some other Riemann
sheets or it can even happen that it is not singular there on any sheet). In our analysis we
are interested in the question whether the amplitude is on the physical sheet singular also
in some other points than those coming from unitarity (called normal thresholds) since
then the methods of reconstruction theorem could not be used without modifications.

J.3 Bubble diagram singularities

We return back to Figure 30 and discuss the analytic properties of the individual diagrams.
The simplest diagram bringing singularities to the amplitude is the bubble diagram from
Figure 30f. Denoting the external and the loop momenta by P and q respectively and the
masses corresponding to the internal lines by m1 and m2, the Landau equations read

α̂1(k
2
1 −m2

1) = α̂1(q
2 −m2

1) = 0, (J.8)

α̂2(k
2
2 −m2

2) = α̂2((P − q)2 −m2
2) = 0, (J.9)

α̂1q + α̂2(q − P ) = 0. (J.10)

Their only non-trivial solutions are

α̂1 = ±α̂2
m2

m1
, P 2 = (m1 ±m2)

2. (J.11)

After subtracting the ultraviolet divergence of this diagram, we can also work in the para-
metric space, where the denominator reads

D = α1α2P
2 − (α1 + α2)(α1m

2
1 + α2m

2
2). (J.12)

The solutions of the corresponding Landau equations are naturally the same — given by
(J.11), where we drop the hats above α’s.

Note that the suspected points can be identified also by the following heuristic analysis.
We search for the situations when the hyperboloids k2i −m2

i = 0 are tangent. In Euclidean
space they correspond to spheres with radii m1 and m2 and their centers at 0 and at P
respectively. They are tangent only in the case |P | = m1 ±m2, which remains valid also
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in the Minkowski case. In addition, in the case these hyperboloids (spheres) differ by zero-
vector (are concentric), they can be tangent also in infinity. This situation corresponds
to the non-Landau singularity P 2 = 0. Therefore, we end up with the normal threshold
P 2 = (m1 +m2)

2 and two anomalous thresholds P 2 = (m1 −m2)
2 and P 2 = 0.

We are now interested in the question, in which of these points the amplitude is singular
on the physical sheet. The original integration contour in the parametric space is for
all αi > 0. We see that for such α’s the denominator (J.12) never vanishes for P 2 <
(m1+m2)

2. We therefore do not need to deform the integration contour on this interval and
the amplitude has no singularity on the physical sheet. At P 2 = (m1+m2)

2 a deformation
of the integration contour is necessary but because of the pinch, such deformation does
not exist and we get the singularity. The analytic continuation above this point then
depends on the path. The Feynman prescription chooses the appropriate physical sheet by
an addition of a small imaginary part to all internal masses m2

i → m2
i − iǫ, it means that

the physical continuation corresponds to P 2 + iǫ (for such choice D does not vanish even
with Feynman imaginary parts).

In conclusion, the physical amplitude possesses only the normal threshold singularity
and one can employ the regular unitarity and dispersion relations.

It is obvious that the double-bubble diagram have independent singularities of the
individual bubbles constituting it, i.e. again the reconstruction method can be used also
for this diagram.

J.4 Singularities of fish diagrams

The situation is more complicated for the fish diagram (Figure 30j). For the momenta and
masses denoted according to Figure 31, the Landau equations read

α̂1

(

q21 −m2
1

)

= 0, (J.13)

α̂2

(

(q1 − P3)
2 −m2

2

)

= 0, (J.14)

α̂3

(

(q1 − P2 − q2)
2 − m̂2

3

)

= 0, (J.15)

α̂4

(

q22 − m̂2
4

)

= 0, (J.16)

α̂1q1 + α̂2(q1 − P3) + α̂3(q1 − P2 − q2) = 0, (J.17)

α̂3(q1 − P2 − q2)− α̂4q2 = 0. (J.18)

Note that to the triangle diagram on the right-hand side of Figure 31, there belong the
following Landau equations

α1

(

q21 −m2
1

)

= 0, (J.19)

α2

(

(q1 − P3)
2 −m2

2

)

= 0, (J.20)

α3

(

(q1 − P2)
2 − µ2

)

= 0, (J.21)

α1q1 + α2(q1 − P3) + α3(q1 − P2) = 0. (J.22)
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P3

P1

P2

m̂3 m̂4

m2

m1

P3

P1

P2

µ ≡ m3

m2

m1

Figure 31: The fish diagram together with the corresponding triangle diagram

By comparison of these two sets, we observe that if some α̂i and Pi are solution of the first
set of equations, the values of parameters

α1 = α̂1, α2 = α̂2, α3 =
α̂3α̂4

α̂3 + α̂4
, (J.23)

with the same Pi solve the second set of equations with µ2 = m̂2
3 + m̂2

4 + 2 α̂4

α̂3
m̂2

4. This
correspondence could be used for the study of the fish diagram singularities using the
simpler triangle diagram.

However, the connection between the fish and the triangle diagrams goes even further.
We can write [18,40,76] the additional loop in the fish diagram in the dispersive form, and
the integral can be obtained from

∞
∫

(m̂3+m̂4)2

σ(µ2)dµ2

∫

d4q1
(2π)4

1

(k21 −m2
1)(k

2
2 −m2

2)(k
2
3 − µ2)

, (J.24)

where we have again left out multiplicative factors from the nominator. The important
observation is therefore that the analytic structure of the fish diagram can be obtained
from the studies of the analytic structure of the simpler triangle diagram with variable
µ within the interval ((m̂3 + m̂4)

2,∞) as the additional integration can bring only the
endpoint singularity at µ = (m̂3 + m̂4)

2.

J.4.1 Singularities of triangle diagrams

The Landau equations for the triangle diagram are listed in (J.19)–(J.22). The denominator
of the parametric representation can be written in the form

D = −αizijαj + iǫ, (J.25)
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where we have added the Feynman iǫ prescription and the symmetric matrix zij reads (in
the following we interchange freely between µ and m3 in order to simplify the notation)







m2
1

m2
1+m2

2−P 2
3

2

m2
1+m2

3−P 2
2

2
m2

1+m2
2−P 2

3

2
m2

2
m2

2+m2
3−P 2

1

2
m2

1+m2
3−P 2

2

2

m2
2+m2

3−P 2
1

2
m2

3






. (J.26)

We can even simplify the following analysis by rescaling the parameters α according to

βi = miαi. (J.27)

The denominator then becomes (we have dropped the overall minus sign)

D = βiyijβj − iǫ, (J.28)

where the matrix Y has ones on its diagonal and its off-diagonal elements are given by

yij =
m2

i +m2
j − P 2

k

2mimj
, (J.29)

where k 6= i, j, i.e. in each yij there appear just the quantities that meet in one of the
vertices of the diagram.

The leading singularities (i.e. all αi 6= 0) lie on the curve

det Y = 1 + 2y12y23y31 − y212 − y223 − y231 = 0. (J.30)

The subleading singularities correspond to yij = ±1, i.e. they are normal and anomalous
thresholds. The second-type singularity curve is

λ(P 2
1 , P

2
2 , P

2
3 ) = 0 (J.31)

with the triangle function from (2.10).
As was already stated in the general discussion of Section J.2, not all the singularities

do occur on the physical sheet. For the more detailed analysis it is useful to identify the
domains where D never vanishes in the undistorted region of parametric integration. Since
the rescaling (J.27) does not change the sign of the parameters, we can work also with the
simplified expressions with β’s. Such domains are

(a) imaginary part of two of yi is less than zero (adding an imaginary part to one of them
can be insufficient as one of the β’s multiplying it can be zero);

(b) all yi ≥ 0; this means (for all mi > 0) that all P 2
k ≤ m2

i +m2
j ;

(c) for any permutation of 1, 2, 3 equaling to i, j, k, yi ≥ 1, yj ≥ 0, yk > −1.
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M1

M2

µ

m2

m1

s

M1

mP

µ

m2

m1

s

Figure 32: Two basic types of triangle (fish) diagrams contributing to Pπ → ππ amplitudes.
The first diagram with mP hidden in s we call π-diagram, whereas the second we call P -
diagram. The zigzag line denotes the particle P , the double line indicates the dispersive
loop and all the other lines correspond to pions.

J.4.2 Triangle diagrams contributing to Pπ → ππ amplitudes. π-diagrams.

Equipped with all the theoretical knowledge of the previous subsection, we can now study
the individual triangle (fish) diagrams contributing to Pπ → ππ. As was discussed in
Sections 5.3 and 6.1 we can restrict ourselves just to the studies of singularity structure
of the diagrams that contain pions in the internal lines. We therefore start with them
and postpone the discussion of the other diagrams to the end of this appendix. To the
process Pπ → ππ there contribute two distinct types of the triangle diagrams depicted on
Figure 32. We begin with the first type, whose analysis remains the same also in the case
of ππ scattering (mP is hidden inside s) — we call them therefore π-diagrams and they will
turn up to be very simple. As we are interested in the analytic structure of the diagrams
in variable s with all the other Mi and mi fixed at their physical values, we do not release
the other quantities unless it is inevitable. We thus do not deform the integration contour
in µ, being the line µ ≥ (m̂3 + m̂4)

2, if not required in order to avoid some singularity.
Conservation of the electric charge guarantees that either both M1 =M2 and m1 = m2

or both M1 6= M2 and m1 6= m2. Before we discuss the individual possibilities for the
charges of the pions appearing in the diagram, we recall that in the following domains
the original integration contour in parametric space does not need to be deformed and
therefore the singularities belonging to these domains do not appear on the physical sheet
(here i 6= j are 1 and 2):

(a) Im s > 0 and either β1,2 6= 0 or ImM2
i > 0 for one of Mi;

(b) since µ2 ≥ 4m2
π0 > ∆ ≥ (M2

i −m2
j ), y13 > 0 and y23 > 0 are fulfilled automatically

and this domain corresponds to s ≤ m2
1 +m2

2;

(c) if in addition µ ≥ (Mi + mj), the physical singularity does not occur also for s ≤
(m1 +m2)

2.



278 APPENDIX J. ANALYTIC PROPERTIES OF Pπ → ππ AMPLITUDES

In any case we thus need to be concerned only with the singularities with s > m2
1 +m2

2.
The distinct possibilities for the charge states of pions are

• M1 = M2 = m1 = m2: Then we study the amplitudes with fixed µ ≥ 2mπ0 and the
safe domain for physical amplitude is for s ≤ 2m2

1. The leading Landau singularities
read s = 0 and s = 4m2

1−µ2. The subleading singularities are s = 0, s = 4m2
1, µ

2 = 0,
and µ2 = 4m2

1. There appears no new singularity from pinching in infinity. The
singularity at µ2 = 0 does not influence the integration contour of the µ integration
and at the anomalous threshold µ2 = 4m2

1 there is no singularity on the physical
sheet. As expected it means that the only relevant are singularities in s and since
only the normal threshold singularity s = 4m2

1 does not belong to the safe region in
s, the only relevant singularity for the physical amplitudes is this normal threshold.

• M1 =M2 = m5, m1 = m2 6= m5: µ is fixed with µ ≥ mπ0+mπ± and the condition (c)
from above is fulfilled automatically and no singularity occurs for s ≤ (mπ± +mπ0)2

on the physical sheet. The suspected points are: leading Landau singularities at

s = 0, or s = −λ(µ
2, m2

1, m
2
5)

µ2
< 4m2

π0; (J.32)

subleading singularities at s = 0, s = 4m2
1, µ

2 = (m1 ± m5)
2; and finally, there

appears a non-Landau singularity s = 4m2
5. Therefore, in this case in addition to the

normal threshold s = 4m2
1, there occurs a non-Landau singularity at the beginning

of the physical region s = 4m2
5, provided m5 = mπ± and m1 = mπ0 .

• M1 = m1 = mπ±, M2 = m2 = mπ0 : again µ ≥ mπ0 +mπ± and no singularity appears
on the physical sheet for s ≤ (mπ± +mπ0)2. All the possible singularities are [Note
µ± = (mπ± ±mπ0)2.]

s =
∆2

µ2
< µ−, s = 2Σ− µ2 ≤ µ−, s = µ±, µ2 = µ±. (J.33)

Thus, we have again only the normal threshold singularity on the physical sheet,
s = µ+.

• M1 = m2 = mπ± , M2 = m1 = mπ0 : µ ≥ 2mπ0 and no singularity occurs on the
physical sheet for s ≤ m2

π± +m2
π0 . The singularities in this case read

s =
2Σ− µ2 ±

√

(

µ2 − 4m2
π±

) (

µ2 − 4m2
π0

)

2
, s = µ±, µ2 = 4m2

π±, µ2 = 0.

(J.34)
Since the first point lies for any µ ≥ 2mπ0 left from s = ∆, the only remaining
singularity on the physical sheet is the normal threshold s = µ+.

In conclusion the only π-diagram, where there appears an anomalous threshold on the
physical sheet is the diagram with M1 = M2 = mπ± , m1 = m2 = mπ0 and m3 + m4 =
mπ± +mπ0 , which have singularity at the beginning of the physical region s = 4m2

π±.
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J.4.3 Triangle diagrams contributing to Pπ → ππ amplitudes. P -diagrams.

The second type of diagrams from Figure 32, which we call P -diagrams, needs a more
careful analysis. In the following, we denotem5 ≡M1. For the leading Landau singularities
we obtain from (J.30)

Σ : 2µ2s = −µ4 + µ2(m2
P +m2

1 +m2
2 +m2

5) + ∆25∆P1 ± λ1/2(µ2, m2
P , m

2
1)λ

1/2(µ2, m2
2, m

2
5).

(J.35)
The subleading singularities read

σs± : s = (m1 ±m2)
2, σP± : m2

P = (µ±m1)
2, σµ± : µ2 = (m2 ±m5)

2. (J.36)

The second type singularity may occur on the curve

Γ : s = (mP ±m5)
2. (J.37)

Note that we have denoted these curves with the Greek letters Σ, σi± and Γ.
Again in the end we are interested in the analytic properties in s with mP and all

the other masses fixed at their physical value. However, in the case mP > 3mπ we need
to perform an analytic continuation in some other variable from the values, where the
diagram is analytic. Inspired by the isospin analysis by Kacser and Bronzan [40, 86], we
perform such analytic by starting just with continuation in the external momenta P 2

i and
deform the integration contour in µ from the original line µ ≥ (m̂3 + m̂4) [with m̂3 and
m̂4 being the appropriate masses of the pions that can appear in the original fish diagram
of Figure 31] only when inevitable. The singularity curve σµ− is therefore again irrelevant
and the curve σµ+ corresponding to the anomalous subleading threshold can be in the
discussed cases avoided by an addition of a small imaginary part to µ2 without any change
of the analytic structure of s.

For the considered diagrams the domains, where the β integrations do not need to be
deformed from the original physical integration contour, are the following

(a) Im s > 0 together with Imm2
P > 0;

(b) again y23 > 0 is fulfilled automatically and the domain yi ≥ 0 corresponds to s ≤
m2

1 +m2
2 together with m2

P ≤ µ2 +m2
1;

(c1) for µ ≥ (M1 +m2) and m
2
P ≤ µ2 +m2

1, we can go with s up to s ≤ (m1 +m2)
2;

(c2) similarly for µ ≥ (M1 +m2) and s ≤ m2
1 +m2

2, m
2
P ≤ (µ+m1)

2;

(c3) the other possibility for the extension in s is when m2
P ≤ (µ−m1)

2, s ≤ (m1 +m2)
2;

(c4) similarly for s ≤ (m1 −m2)
2, m2

P ≤ (µ+m1)
2.

We therefore see that the anomalous thresholds σs− and σP− bring no singularity to the
physical sheet, but for mP > 3mπ there are always some parts of Σ and Γ which do not
belong to the regions (b) or (c) and we therefore need to perform the analysis very carefully,
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mπ0

mP 0
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s

mπ±

mP 0
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mπ0
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mπ±

mP 0

µ

mπ0

mπ±

s

Figure 33: P-diagrams contributing to P 0π → ππ scattering. The zigzag line denotes the
particle P , the double line indicates the dispersive loop and all the other lines correspond
to pions.

in order to see whether it is possible to continue the amplitude there without the appearance
of singularities. It depends on the relative positions of the individual singularity curves.
An important observation is that the remaining curves of potential singularities meet only
in the following points

A1,2 = Σ ∩ Γ : m2
P = µ2 +m2

1 +
λ(µ2, m2

2, m
2
5)

2m2
5

± (µ2 +m2
5 −m2

2)
√

λ(µ2, m2
2, m

2
5) + 4m2

1m
2
5

2m2
5

, s = s(A1,2), (J.38)

B = Σ ∩ σP+ : m2
P = (µ+m1)

2, s = m2
1 +m2

2 +
m1

µ
(µ2 +m2

2 −m2
5), (J.39)

C = Σ ∩ σs+ : m2
P = µ2 +m2

1 +
m1

m2
(µ2 +m2

2 −m2
5), s = (m1 +m2)

2, (J.40)

D1,2 = Γ ∩ σP+ : m2
P = (µ+m1)

2, s = (µ+m1 ±m5)
2, (J.41)

E1,2 = Γ ∩ σs+ : m2
P = (m1 +m2 ±m5)

2, s = (m1 +m2)
2. (J.42)

Now, we proceed to the individual diagrams. The distinct types of diagrams with the
neutral P 0 are displayed on Figure 33.

Analytic properties of the first diagram from Figure 33

For the first of these diagrams (m2 = m1, m5 = mπ0), the singularity curves are:

• leading Landau curve Σ:

2µ2s = −µ4+µ2(m2
P+m

2
π0+2m2

1)+∆10∆P1±λ1/2(µ2, m2
P , m

2
1)λ

1/2(µ2, m2
π0 , m2

1). (J.43)

• subleading singularities

σs− : s = 0, σs+ : s = 4m2
1, σP± : m2

P = (µ±m1)
2. (J.44)
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A1
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s

(b)

(c1)

(c2)

Figure 34: The real section of the singularity curves for the diagrams without the occurrence
of the anomalous threshold on the physical Riemann sheet. The labels of the various curves
as well as of the points of intersections are introduced in main text.

• second-type singularities

Γ : s = (mP ±mπ0)2. (J.45)

The integration contour for the dispersive loop is the line µ ≥ (mπ0 +m1). For m1 = mπ0 ,
the situation simplifies into the one studied by Kacser and Bronzan in [86, 40]. However,
the relative position of the curves is the same also form1 = mπ± as is depicted on Figure 34,
and one therefore expects that also the singularity structure will remain the same.

Since µ ≥ (M1 +m2), the denominator of the parametric integrand does not vanish for
αi ≥ 0 also in the regions (c1) and (c2) and the contribution of this diagram is without
singularities on the physical sheet for all s and mP left or below from the dashed lines
on Figure 34. Since the normal-threshold lines σs+ and σP+ correspond to the singularity
curves with one of the α’s equal to zero and the other two positive, the only part of the real
section of the singularity curve Σ where D vanishes for all αi > 0 is the arc between the
points B and C and this remains true for the appropriate complex hypercontours connected
to this real arc. All the other parts of Σ are non-singular since we can continue the integral
analytically in the following way. We start in the domain (c1), where the integration
contour in α’s is the original one, we add a small imaginary part to s and mP (coming
so to the domain (a)), which is non-singular for any values of s and mP without the need
of deformation of the contour. This way we can come to any point, where the singularity
does not occur for positive α’s, by limiting the added imaginary parts to zero (without
deformation of the integration curve).

However, the arc CB is connected to the non-singular lower-left part of Σ by a con-
tinuous complex parts of Σ. Since all intersections of Σ with the other curves are just
the real points from above, by performing the analytic continuation from the lower-left
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part by the path along Σ, we do not pass through any branch cut until we come to the
real arc CB, where either σP+ or σs+ have to be crossed. Similarly in all the points of Γ
the function can be made analytic by continuation along this complex curve. Therefore,
there are no complex singularities in this case and the only singularities occurring for the
diagram considered on the physical sheet are the normal thresholds σs+ and σP+ and the
anomalous threshold on the real arc BC (cf. [65]). [Note that the CB section can be made
analytic without the appearance of singularities by deforming the integration contour of
the parametric integration to α1α2 < 0.]

The singularity at this anomalous threshold occurs only for m2
P within the interval

m2
P ∈

(

(µ+m1)
2, 2µ2 + 2m2

1 −m2
π0

)

. By addition to µ2 a small negative imaginary part,
we can avoid this singularity. The only point where this is not possible is the endpoint
of the integration µ = mπ0 +m1. In conclusion, for the fish diagram connected with the
first diagram of Figure 33 there appears the anomalous threshold singularity in s-plane
only for m2

P ∈
(

(mπ0 + 2m1)
2, 4m2

1 + 4m1mπ0 +m2
π0

)

. For the physical mπ± and mπ0

masses this corresponds1 to mP < 415MeV, which is not the case of kaons or eta. For
the physical masses the only singularities appearing for this diagram are therefore just
the regular normal thresholds. The important observation is that we obtain the correct
physical analytic continuation of the amplitude also on the leading singularity curve by
taking m2

P → m2
P + iε.

Analytic properties of the second diagram from Figure 33

The singularity curves for the second of these diagrams (m1 = mπ0 , m2 = m5 = mπ±) read

• leading Landau curve Σ

2s = m2
P +m2

π0 + 2m2
π± − µ2 ± λ1/2(µ2, m2

P , m
2
π±)σ+(µ

2). (J.46)

• subleading singularities

σs± : s = µ±, σP± : m2
P = (µ±mπ0)2. (J.47)

• second-type singularities
Γ : s = (mP ±mπ±)2. (J.48)

For µ ≥ 2mπ± the relative position of these curves is again the one depicted on Figure 34
and thus by the same procedure as in the previous case we obtain the contributions, whose
singularities on the physical sheet are just the normal thresholds. However, the integration
in the dispersive loop start at µ = 2mπ0 < 2mπ±. For these values of µ the real section of
the curves moves into the situation depicted on Figure 35 and the analytic continuation
proceeds as follows.

1Note that for the physical masses and µ corresponding to end-point even the extremal value of the
position of C, m2

P = 5m2
π± +

m
π±

m
π0

(

5m2
π± −m2

π0

)

corresponds to mP ≈ 423MeV. For kaons and eta we

can therefore this complication with the BC section ignore.
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E1 E2

m2
P

s

(b)

Figure 35: The real section of the singularity curves for the diagrams with the anomalous
threshold on the physical Riemann sheet. The labels of the various curves as well as of the
points of intersections are introduced in main text.

The original integration contour in parametric space is free of singularities in the domain
(b), i.e. left and below from the dashed lines of Figure 35. We can continue the contribution
of this diagram along the ellipsis Σ further up to B and C without the appearance of
the singularities on the physical sheet even without deforming the original integration
contour similarly as in the previous case since the only part of the real section of Σ which
corresponds to αi > 0 is the arc BC. In order to avoid singularities also on this arc we would
need to deform the integration contour there. However, all paths from the parts we have
identified to be non-singular to the arc BC along Σ pass through a singularity curve, either
σP+ or σs+. Since the curve Σ is here real for real mP , for any complex singularity curve
in the α space there exists a complex conjugated one and therefore if we want to evade
the complex singularities in one side, we encounter the complex conjugated one (cf. [65]).
We have therefore no way how to avoid singularities on the BC arc. This diagram thus
possesses on the physical sheet in addition to the normal threshold also the anomalous
threshold (J.46) on the arc BC and on all the corresponding complex hypercontours.

We can try to avoid these singularities by an addition of small imaginary part also to
µ2. However, this does not work again for the endpoint of µ2 integrations, in this case for
µ = 2mπ0 and even though the real arc BC is again to the left of the physical m2

P for both
the kaons and eta, the singular complex hypercontour connected with this arc extends
to the region, where mP > 3mπ0 . We are therefore left with two complex conjugated
anomalous thresholds in s for the physical mP > 3mπ0 ,

2s = m2
P + 2m2

π± − 3m2
π0 ± λ1/2(m2

P , m
2
π±, 4m2

π0)σ+(4m
2
π0). (J.49)

Thus, for the amplitudes to which this diagram contributes we cannot use the recon-
struction theorem without serious modifications.
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Analytic properties of further diagrams

We have seen that the appearance of the anomalous thresholds on the physical sheet is
connected with the position of the real section of the curve Σ between the σs± and the
σP± subleading curves, in which case we cannot evade the corresponding normal threshold
branch cuts when trying to avoid the singularities Σ on the complex hypercontours con-
nected with the arc BC. We can therefore observe a simple condition for this appearance of
the anomalous threshold. It occurs on the physical sheet only in the case (J.35) is real in the
intervalm2

P ∈ ((µ−m1)
2, (µ+m1)

2). Since the first triangle function appearing there is on
this interval imaginary, the condition means that the second triangle function λ(µ2, m2

2, m
2
5)

has to be imaginary as well. It occurs in the interval µ2 ∈ ((m2 −m5)
2, (m2 +m5)

2).
From this condition is we can make the following simple rule of thumb telling that

the ππ fish diagram has the anomalous threshold singularity on the physical sheet in the
variable s only in the case when in the corresponding triangle diagram one of the other
vertices (than the one adjacent to s) is stable and the second one is unstable, where for µ
we take its endpoint value (m̂3 + m̂4). The vertex is called unstable if the masses on the
adjoined lines are such that for at least one of them the following inequality holds

mi ≥ mj +mk, (J.50)

i.e. at least one of them is greater than the sum of the other two. Note that this rule
does not take into account the singularity on the real arc BC of Figure 34 (we have found
that for the pion lines this singularity never occurs) and the non-Landau singularities as
is obvious from its application to the π-diagrams (the only unstable mass there can be µ
which appears in both vertices, i.e. this rule tells there is no anomalous threshold for all
π-diagrams). However, in our previous analysis we have taken also its existence into the
account and there is no other change with respect to it.

Since the vertex with mP in P-diagrams is for µ = (m̂3 + m̂4) always unstable, the
anomalous threshold appears only in the case (m̂3 + m̂4) < (m2+m5). Furthermore, since
all m̂3, m̂4, m2 and m5 are pion masses and we do not want to violate the electric charge
conservation, the only possibility is m̂3 = m̂4 = mπ0 and m2 = m5 = mπ± .

In conclusion the only P-diagrams possessing the anomalous threshold singularity on
the physical sheet for the physical masses of mP and of the pions are those depicted on
Figure 36. These diagrams contribute to the processes P 0 → π0π+π−, P+ → π−π+π+ and
P+ → π+π0π0. Therefore, the only P → 3π decay processes, where such singularity does
not occur is the process P 0 → 3π0.

J.4.4 Fish diagrams containing also other than pion internal lines

We can perform the same analysis also for the diagrams containing also kaons and η in
internal lines. Naturally, then it can happen that there will occur anomalous threshold sin-
gularity for some value of mP . However, thanks to the hierarchy of the masses prohibiting
decays of the type P → P ′π, where P and P ′ are kaons or η, the physical mass mP will be
each time smaller than the mass, where such anomalous threshold singularity can occur.
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Figure 36: P-diagrams possessing anomalous threshold singularity on the physical sheet
for the physical masses of mP and of the pions

In other words in all the cases the physical mass mP is left to the points B and C in one
of the situation from Figures 34 and 35, i.e. in the region, where the anomalous threshold
singularity does not appear.

The inclusion of these other internal lines, therefore, does not change the conclusions
of our analysis from the previous sections.
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Appendix K

Analytic continuation of NLO partial waves of

Pπ → ππ amplitudes

In this appendix we derive relations, which will be used for computation of S and P
partial waves of NLO Pπ → ππ amplitudes. In Section 6.6 we have discussed that in
order to obtain the correct physical result for (some of) the NNLO Pπ → ππ amplitudes
from the reconstruction process of Chapter 3, we start by performing the computation
for an unphysical mass mP such that the decay into three pions becomes kinematically
impossible and eventually continue the result analytically in m2

P according to (6.46). In
the previous appendix we have shown that such simple procedure is possible only for
process Pπ0 → π0π0 in IB and for all the other Pπ → ππ processes just in the case we
take mπ± = mπ0 . Thus, in the following we will deal with these two situations.

For finding the continuation in mP of the results, we will use its integral form. As
is obvious from its computation, to that end we need to know analytic structure of the
continuation of partial waves of the intermediate processes. Since the continuation is
written in terms of mP and in the reconstruction process we take into account just the ππ
intermediate states, the only non-trivial continuation is connected with the one of NLO
Pπ → ππ partial waves, what is discussed here.

For the construction of Pπ0 → π0π0, we need S and P waves of the Pπ0 → πaπb

amplitudes, where πaπb are mutually charge conjugated pion states, i.e. either π0π0 or
π+π−. Subsequently, the kinematic functions appearing in the case of the same-mass
amplitudes Pπ → ππ can be obtained from those with Pπ0 → πaπb by limiting

q =
mπ0

mπ±
→ 1 (K.1)

as is shown in Section K.4.

The computation of partial waves employs again the general results of Section 3.4.

287
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K.1 Endpoints of integration

We start with the analysis of endpoints of integration (3.30) and (3.31) for Pπ0 → πaπb.
In accordance to the papers [40, 86] we write (3.28) and (3.29) as

t±(s) =
1

2

(

3s̃0 − s± K̃1/2(s)
)

= u∓(s), (K.2)

where s̃0 denotes generically the center of Dalitz plot of this process and

K̃(s) =
s− 4m2

a

s

(

s− µ̃−
0

) (

s− µ̃+
0

)

(K.3)

with µ̃±
0 from (6.20) is called Kacser function. They take its square root to be positive

within the physical decay limits 4m2
a < s < µ̃−

0 and continue it analytically into the complex
plane according to

0 4m2
a µ̃−

0 µ̃+
0

+|K̃|1/2 +|K̃|1/2 −|K̃|1/2+i|K̃|1/2

−i|K̃|1/2

−i|K̃|1/2

+i|K̃|1/2 s
.

(K.4)
The perturbative analysis [40, 86] tells us that the right physical continuation leading

to the correct values of (K.2) is given by prescription m2
P → m2

P + iε with s keeping real.
Nevertheless, for K̃1/2(s) this is equivalent to taking s → s − iε and keeping a real m2

P

(but this equivalence is valid only for K̃1/2(s) and not as a general feature).
To enable some further simplifications of the results we split the square root into

K̃1/2(s) = σa(s)λ̃
1/2
0 (s), (K.5)

where σa(s) is the kinematic square root for pion of mass ma and λ̃0(s) is Källen function
(2.10) for mP and mπ0 . In order to keep the definition of the cut and of the branches
of σa(s) as they were in the pion case (Section 3.2) while preserving (K.4), the analytic

structure of λ̃
1/2
0 (s) has to be chosen in the way

µ̃−
0 µ̃+

0

+|λ̃0|1/2 −|λ̃0|1/2−i|λ̃0|1/2

+i|λ̃0|1/2 s
(K.6)

and the physical branch of σa(s) has to be taken as the one stemming from s → s − iε.
However, since we need these partial waves only for s > 4m2

a, the choice for σa(s) is not
so important and we obtain the same physical results even if we take the opposite choice.
Nevertheless, one should pay attention to the fact that the [40, 86] choice (K.4) leads
to the square root of λ̃0(s) that is defined exactly opposite to the general definition we
made in (3.16). This has the consequence that for Kπ partial waves the t±(s) endpoints
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of integrations (3.30)–(3.31) are formally interchanged with respect to other processes.
Naturally, this change of sign of integrals (3.30)–(3.31) is compensated by the change of

sign of λ
1/2
AB(s) appearing in (3.28)–(3.31) and so the final forms of the partial waves are

not affected by this sign. The only thing we should keep in mind is using this definition of
λ̃0(s) consistently in all expressions. (This should be reminded to us by the tilde.)

Since in the reconstruction procedure for these processes we take into account only
the intermediate states containing two pions (we neglect the non-analytic structure of the
amplitudes connected with particle P ), all the kinematic functions appearing in integrals
(3.30) and (3.31) remain the same as they were in the case of ππ scattering. (Naturally,
the polynomials occurring here are different and depend now also on mP .) Therefore, after
factoring the polynomials out of the integrals, the only source of change of them with
respect to the ππ case will be the endpoints and with them connected choice of the right
physical branches of the resulting functions, which is given by Kacser prescription for the
analytic continuation in m2

P . In fact we anticipate thus also that it will be possible to use
the (analytically continued) results of integrations based on the primitive functions from
Section 3.4.1 evaluated in these endpoints.

After this general consideration let us proceed to the particular processes.

K.2 Computation of S and P partial waves of process Pπ0 → π+π−

Since the only intermediate state appearing in T- and U- channels of process Pπ0 → π+π−

is π+π0, there appear in UT and UU, which have to be integrated, solely the functions
J̄±0(t) and

¯̄J±0(t). Their branch cuts begin in common at t = (mπ± +mπ0)2 = µ+ and the
contours of these integrations have to avoid them.

The traveling of endpoints (K.2) in dependence on s in this case is outlined on Figure 37.
We present there something like a blueprint for the construction of these trajectories, which
consists of three parts. First three plots describe the course of dependencies of t+ and t−
on s. They are deformed in order to have the important points equidistant, to make the
sign of these functions together with the one of their first derivative evident on the whole
range of s, and finally they are compactified by making ∞ and ǫ finite. We will need
the partial waves only for s > 4m2

π±, which is denoted by the bold vertical line and the
situation for lower values is depicted just for the sake of completeness. The trajectories of
these endpoints in the complex t-plane for s > 4m2

π± are then depicted on the next plot.
The significant points of these dependencies are labeled by roman capital letters according
to the table displayed next to it, where also the values of t± for these points are presented.
For sake of brevity we have used there the shortcuts defined in (5.2)–(5.4), (6.19)–(6.20),
(K.8) together with

Q =
mP

mπ±
, ς̃ = m2

Pm
2
π0 −m4

π± . (K.7)

From the t-plane plot it is obvious that the routes of t± avoid the branch cut of the
amplitude starting at t = µ+ (this branch cut is indicated there by the bold line starting
near the gray point C), i.e. indeed we can obtain the results for the physical value of m2

P
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Figure 37: Blueprints for construction of the trajectories of endpoints of integration t±(s)
that occur in the computation of partial waves of Pπ0 → π+π− amplitude. Details are
presented in the text around relation (K.7).
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III
IIIIV Re t

Im t

Figure 38: Four types of integration contours for computation of partial waves of Pπ0 →
π+π−. Contour I corresponds to s ∈

(

4m2
π±,

∆̃0

1+q

)

, contour II then to s ∈
(

∆̃0

1+q
, µ̃−

0

)

,

contour III to s ∈ (µ̃−
0 , µ̃

+
0 ), and finally contour IV corresponds to s > µ̃+

0 . With the open
dot there is denoted the position of t−, whereas the full dot identifies the position of t+.
The wiggled line represents the branch-cut of the amplitude.

by employing a simple analytic continuation in m2
P without any distortion of dispersion

relations.
Note that the only principal difference with respect to the isospin case discussed in

Section K.4 and [40, 86] is the existence of the interval s > ξ̃ with

ξ̃ =
m2

π±

∆

∆̃2
0

∆̃+

, t−(ξ̃) = 0, (K.8)

where t−(s) rises above zero, then reaches the value µ− for s = ∆̃0

1−q
and after that descends

back to zero. (In the isospin limit whole this interval falls into infinity and t−(s) is then
for s > µ̃+

0 monotonously ascending function of s.) Since this change happens below the
branch cut of UT [t−(I) = µ− < t−(C) = µ+], it brings no principal difference to the
analysis with respect to [40, 86].

Contours of integrations C(t−, t+) from (3.30) and (3.31) avoiding the branch cut t > µ+

are of the four types depicted on Figure 38. Since all the discontinuities of the integrands
and of the primitive functions from Section 3.4.1 lie solely on that branch cut, there always
exists an open neighborhood of every point of the contour, where the integrand and its
primitive functions are continuous, and the results of these integrations are thus equal to
the differences of values of these primitive functions evaluated in the endpoints. (The only

complication occurs for the point s = ∆̃0

1+q
, for which we need to employ an infinitesimal

displacement to fulfill these requirements.)
Therefore, we focus our interest to primitive functions (3.51)–(3.56) and find here their

values in these endpoints, or better to say we find here just some simplifications of these
expressions without writing here the results explicitly. To that end we use conformal
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−∞ − ∆̃0
Q+1 0 4m2

π±
∆̃0
Q−1

∆̃0
1+q µ̃−

0 ∆̃0 3s0 µ̃+
0 ξ̃ ∆̃0
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Imλ1/2

+0

(

t−(s)
)

Im λ̂1/2

− (s)

Figure 39: The correct square root of the triangle function, λ
1/2
±0 (t), evaluated in the end-

points of integration t±(s) from Figure 37, together with its naive counterpart, λ̂
1/2
± (s) from

(K.10). In these plots ζ̃ = mπ0

√

µ̃+
0 − 4m2

π±.

transformation (3.36) [cf. also Figure 2]. After some straightforward algebra we find

λ±0(t±(s)) =
1

4

(

λ̃
1/2
0 (s)± σ±(s)(∆̃0 − s)

)2

. (K.9)

From that one would naively expect the square root of this function merely equal to

λ̂
1/2
± (s) =

1

2

(

λ̃
1/2
0 (s)± σ±(s)(∆̃0 − s)

)

. (K.10)

However, the correct sign of this square root has to correspond to our choice from
Section 3.2, i.e. for instance for t < µ− there should hold λ

1/2
±0 (t) = −|λ±0(t)|1/2.

The course of the correct function λ±0(t±(s)) together with the one of the naive square

root λ̂
1/2
± (s) are sketched on Figure 39 (it is deformed in the same way as the plots

from Figure 37). We observe that the naive square root reproduces the correct result

λ
1/2
±0 (t±(s)) = λ̂

1/2
± (s) for every s with the exception of interval s ∈

(

∆̃0

1+q
, ∆̃0

1−q

)

, where



K.2. COMPUTATION OF S AND P PARTIAL WAVES OF PROCESS

Pπ0 → π+π− 293

λ
1/2
±0 (t−(s)) = −λ̂1/2− (s). In both cases the sign of the infinitesimal imaginary displacement

is determined by Kacser prescription
∂λ

1/2
±0 (t±(s))

∂m2
P

.

Using this naive square root, conformal transformation (3.36) simplifies into

τ̂±(s) = − 1

4mπ±mπ0

(1∓ σ+(s))
(

∆̃0 − s− λ̃
1/2
0 (s)

)

(K.11)

with a small imaginary part

− τ̂±(s)

λ
1/2
L0 (s)

iǫ. (K.12)

According to the discussion of λ
1/2
±0 (t±(s)), the correct conformal transformation τ(t±(s))

coincides with the naive one

τ±(s) ≡ τ(t±(s)) = τ̂±(s)−
τ̂±(s)

λ
1/2
L0 (s)

iǫ (K.13)

with the exception of

τ−(s) ≡ τ(t−(s)) =
1

τ̂−(s)
+

1

τ̂−(s)λ
1/2
L0 (s)

iǫ, for s ∈
( ∆̃0

1 + q
,

∆̃0

1− q

)

. (K.14)

The small displacement is needed only for negative real τ (where the cut of J̄±0 is
mapped into). On Figure 40 we present the trajectories of the endpoints in this transformed
plane. We plot there the absolute values of τ±(s) and the values of their complex arguments,
which are chosen in correspondence with the mapping of the branch cut so that they fall
into interval 〈−π, π〉. The only deformation we have done in these plots is making the
significant points to be equidistant.

Note that the correct τ±(s) indeed lies inside the unit circle and we see also in this
transformed plane that there is no problem to find the contours of integration avoiding the
branch cut [=segment (−1, 0)] and fulfilling the conditions for the computation of integral
using the primitive functions.

When computing values of primitive functions (3.51)–(3.56) at the endpoint t−(s), we
can use the fact that these functions are invariant with respect to the change τ ↔ 1/τ
and so working everywhere with the naive functions λ̂±(s) and τ̂±(s) yields also the correct
values of the primitive functions. In addition, the use of these naive quantities has the
advantage that then all the imaginary displacements for s > 4m2

π± are positive, i.e. for
instance that arguments of τ̂±(s) fall into (−π, π〉, what is the standardly used choice for
the definition of branches of logarithms and dilogarithms, which appear in (3.51)–(3.56).
(Therefore, among other simplifications we can use then symbolic manipulation programs
for their computation without much concerns.)

The form of (K.11) implies validity of the following formulae

log τ̂+ − log τ̂− = L+(s), (K.15)
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−∞ − ∆̃0
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1
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arg τ+(s)
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Figure 40: Trajectories of endpoints of integration from the computation of partial waves of
Pπ0 → π+π− amplitude transformed using (3.36), τ±(s), together with their naive values
τ̂±(s) stemming from (K.11).
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log τ̂+ + log τ̂− = −M0(s), (K.16)

log2 τ̂+ − log2 τ̂− = −L+(s)M0(s), (K.17)

which can be used for simplification of the results. For s > 4m2
π± the function L+(s)

coincides1 with (5.74) from Chapter 5 and

−M0(s) = 2 log

(

1− ∆̃0

s
+
λ̃
1/2
0 (s)

s

)

− log
4m2

π0

s
. (K.19)

The results of integrations (3.32)–(3.33)

In = In(t+)− In(t−) (K.20)

are then given by

I2

λ̃
1/2
0 σ+

= 2m2
π±m2

π0 M2L+(s) +
1

12

(

(

s− ∆̃0

)

(

2s− (2m2
P + 9m2

π± + 3m2
π0) + 2m2

π0

∆̃0

s

− 6m2
π±

∆̃+

s

)

− 2m2
π0

∆̃2
0

s

)

M1+(s)

+
1

12

(

(

1− ∆̃0

s

)(

2s2 − s(4m2
P + 5Σ) + 2∆̃2

0 + ∆̃0(7m
2
π± + 3m2

π0) + 6m2
π0Σ

+ 2(3m2
π0Σ−m2

π±∆̃0)
∆̃0

s

)

+ 6m2
π0Σ

∆̃2
0

s2

)

M1L(s)

+
1

36

(

16s2 − s(32∆̃0 + 61Σ) + 16∆̃2
0 + ∆̃0(77m

2
π± + 45m2

π0)

+ 4(9Σ2 + 4m2
π±m2

π0)− 16m2
π±

∆̃2
0

s

)

+
1

6

(

2s2 − s
(

4∆̃0 + 5Σ +
12m2

π±m2
π0

Σ

)

+ 2∆̃2
0 + ∆̃0

(

3Σ + 4
m2

π± + 4m2
π0

Σ

)

+ 32m2
π±m2

π0 − 2m2
π±

∆̃2
0

s

)

M0q(s),

(K.21)

I0

λ̃
1/2
0 σ+

= −M7Lx(s)−M2L+(s) +
1

2
M1+(s) +

1

2

(

1− ∆̃0

s

)

M1L(s) +M0q(s) + 2,

(K.22)

1 The validity of (K.15)–(K.17) can be extended to any value of s by changing on their right-hand sides

L+(s) → L+(s)− 2πi χ(0,4m2

π±)
(s), −M0(s) → −M0(s)− 2πi χ(0,4m2

π±)
(s), (K.18)

where χ(a,b)(s) is the characteristic function of interval (a, b) (equal to 1 within this interval and 0 else-
where), and taking the s → s − iǫ branch of σ+(s) on the interval s ∈ (0, 4m2

π±) [cf. the note below
(K.6)].
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I1

λ̃
1/2
0 σ+

=
2m2

π±m2
π0

Σ
M2L+(s) +

(s− ∆̃0)(2m
2
π± − s)

4s
M1+(s)

− 1

4

(

2m2
π0 +

λ̃0(s)

s

)

M1L(s) +
1

4

(

3(m2
P − s) + 4m2

π± +m2
π0

)

+
1

2

(8m2
π±m2

π0

Σ
− s+ ∆̃0

)

M0q(s),

(K.23)

I−1

λ̃
1/2
0 σ+

=
Σ

∆2
M7Lx(s)−

1

Σ
M2L+(s) +

1

∆̃+

S1(s), (K.24)

I−2

λ̃
1/2
0 σ+

=
2m2

π±m2
π0

∆4
M7Lx(s)−

Σ

2∆2∆̃+

S1(s) +
1

2∆̃+∆
S2(s). (K.25)

In these relations, we have introduced functions S1(s) and S2(s) which comprise terms
containing single pole and double pole in s = ξ̃ respectively,

S1(s) =
2∆̃0m

2
π± − s∆

2∆(s− ξ̃)
M1+(s)−

∆̃0Σ− s∆

2∆(s− ξ̃)
M1L(s) +

s∆

Σ(s− ξ̃)
M0q(s), (K.26)

S2(s) =
s

s− ξ̃

(

s− 2Σ− ∆̃0

∆̃+

S1 −
1

2
M1+(s)−

1

2

(

1− ∆̃0

s

)

M1L(s)−M0q(s)− 1

)

(K.27)

However, in these functions these poles are canceled and their values at the point s = ξ̃
are

S1(ξ̃) =
∆̃2

+∆

(∆̃+ −∆) ς̃
+

∆∆̃2
+

(

∆2m2
π± − ∆̃2

+m
2
π0

)

(∆̃+ −∆)2 ς̃2
log

∆̃+

∆
− 2m2

π±m2
π0∆̃2

+

ς̃2
log q, (K.28)

S2(ξ̃) = −∆̃+∆(∆2 − 4m2
π±m2

π0) + Σ
(

∆̃2
+m

2
π0 +∆2m2

π±

)

2(∆̃+ −∆)2 ς̃2
∆̃2

+

− ∆̃3
+∆

3(∆2m2
π± − ∆̃2

+m
2
π0)

(∆̃+ −∆)3 ς̃3
log

∆̃+

∆
+

2m2
π±m2

π0∆̃2
+(∆m

4
π± − ∆̃+m

4
π0)

∆ ς̃3
log q.

(K.29)

The shortcut variable ς̃ was introduced in (K.7).

K.3 Computation of S and P waves of process Pπ0 → π0π0

Endpoints of integration (K.2) for Pπ0 → π0π0 can be obtained from the ones computed
in the previous case by limiting mπ± → mπ0 . We can therefore employ the blueprints from
Figure 37 with these changes. Besides the natural change of all appearances of mπ± into
mπ0 , what implies among others ∆ → 0, the main difference is that the points H, I, and J
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(
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Figure 41: Course of the kinematic square root, σ±(t), evaluated in the endpoints of
integration t±(s) from Figure 43.

melt into one point. Note the following relation valid for all s

t+(s)t−(s) = m2
π0

∆̃2
0

s
. (K.30)

Since in the equations for these endpoints only one mass of pion mπ0 occurs, they
reproduce the isolimit case of Section K.4. This implies that the trajectories of these
endpoints are the same as the one plotted on Figure 43 with the change mπ → mπ0 .
Similarly, when computing integrals of tnJ̄0(t), the whole computation including the results
of the primitive functions is the same as the one in the isospin limit.

In T- and U-channels of this process there appear two possible intermediate states,
either π0π0 or π+π−. This corresponds to the appearance of J̄0(t) and J̄±(t) in UT and
UU. Since their branch cuts begin at 4m2

π0 and 4m2
π± respectively, while the turning point

t−(C) moved into 4m2
π0 , the trajectories of the endpoints avoid the branch points of the

integrands and we are again safe to use the simple analytic continuation in m2
P with no

distortion of the dispersion relations.

From the reasons we have stated above, we postpone the discussion of the integrations
with J̄0(t) to the next section and for now we fully concentrate on the integrations of
the functions tnJ̄±(t). Since the turning point is now far below the branch point of these
functions, 4m2

π± > t−(C) = 4m2
π0, the arguments leading to the possibility of using the

primitive functions are even more obvious than in the previous section.

We discuss again carefully the behavior of the results of conformal transformation
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Figure 42: Conformal transformation (K.33) of the endpoints of integration t±(s) from
Figure 43.

(3.37). In this case the kinematic square root simplifies into

σ2
+(t±(s)) = 1− 4m2

π±

t±(s)
=

1

m2
π0∆̃2

0

(

m2
π±

(

λ̃
1/2
0 (s)± sσ0(s)

)2

−∆∆̃2
0

)

(K.31)

but, unfortunately, we do not see any simpler algebraic form of the square root (even the
naive one).

The choices of the branches of σ±(t) from Section 3.2, and of σ0(s) and λ̃
1/2
0 (s) from

Section K.1 together with the Kacser prescription

dσ2
+(t±(s))

dm2
P

=
4m2

π±

t2±(s)

dt±(s)

dm2
P

(K.32)

lead to the courses of the square roots σ+(t±(s)) depicted on Figure 41. To the set of
significant points there we have added the points s = t±(4m

2
π±), where t−(s) = 4m2

π± and
so the value of σ+(t) at these points is zero. Note that σ+(t±) are complex in intervals
s ∈ (0, 4m2

π0) and s ∈ (µ̃−
0 , µ̃

+
0 ), where the values of these two functions are mutually

complex conjugated, σ+(t+(s)) = (σ+(t+(s)))
⋆. Further on, the value of σ+(t−(s)) is for

s ∈ (t−(4m
2
π±), t+(4m

2
π±)) purely imaginary. Everywhere else they are real.

From this, we compute the conformal transformation of the endpoints

τ±(s) ≡ τ(t±(s)) = 1 +
t±

2m2
π±

(σ+(t±)− 1) + iǫ

(

σ+(t±)− 1

2m2
π±

+
1

σ+(t±)t±

)

dt±
dm2

P

(K.33)

which are plotted on Figure 42.
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In analogy to relations (K.15)–(K.17), we introduce a couple of functional combinations

log τ+ − log τ− = N∇(s), (K.34)

log τ+ + log τ− = −M∇(s), (K.35)

log2 τ+ − log2 τ− = −N∇(s)M∇(s), (K.36)

t+σ+(t+)± t−σ+(t−) = Λ±
∇(s). (K.37)

This functions, however, have no simple algebraic representation other the the direct form
stemming from these relations. Fortunately, in the results of integrations using primitive
functions (3.73)–(3.73) there appear only the following combinations2

K0
∇(s) = (t+ − t−) = σ0(s)λ̃

1/2
0 (s), (K.38)

K1
∇(s) = (N∇Λ

−
∇ −M∇Λ

+
∇)(t+ − t−) = 2 (t+σ+(t+) log τ+ + t−σ+(t−) log τ−) σ0(s)λ̃

1/2
0 (s),
(K.39)

K2
∇(s) = N∇Λ

+
∇ −M∇Λ

−
∇ = 2 (t+σ+(t+) log τ+ − t−σ+(t−) log τ−) , (K.40)

K3
∇(s) = −N∇M∇ = log2 τ+ − log2 τ−. (K.41)

These functions are discussed in Appendix F.1.4. In terms of them the results of integra-
tions

In = In(t+)− In(t−) (K.42)

read

I0 = 3K0
∇(s) +

1

2
K2

∇(s) +m2
π±K3

∇(s), (K.43)

I1 =

(

5

4
(3s̃0 − s)−m2

π±

)

K0
∇(s) +

1

8

(

K1
∇(s) + (∆̃0 − 4∆− s)K2

∇(s)
)

+m4
π±K3

∇(s),

(K.44)

I2 =

(

7

9

(

(3s̃0 − s)2 −m2
π0

∆̃2
0

s

)

− m2
π±

6
(3s̃0 − s)− 2m4

π±

)

K0
∇(s) + 2m6

π±K3
∇(s)

+
1

12

(

(∆̃c + 3m2
π0 − s)K1

∇(s)

+
(

(3s̃0 − s)2 −m2
π±(3s̃0 − s+ 12m2

π±)− 2m2
π0

∆̃2
0

s

)

K2
∇(s)

)

,

(K.45)

2For s > 1
2∆̃0 we could again use the τ ↔ 1

τ symmetry of the primitive functions and use σ̂−(s) =
−σ+(t−(s)) and τ̂−(s) =

1
τ−(s) , whose complex argument belongs to the interval (−π, π〉. This would then

simplify again the computation of functions Ki
∇(s) using some computer algebra system.
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I3 = 5m8
π±K3

∇(s) +
1

48

(

3(3s̃0 − s)2 − 2m2
π±(3s̃0 − s)− 10m4

π± − 3m2
π0

∆̃2
0

s

)

K1
∇(s)

+
1

16

(

9(3s̃0 − s)

(

(3s̃0 − s)2 − 2m2
π0

∆̃2
0

s

)

− 8

9
m2

π±

(

(3s̃0 − s)2 −m2
π0

∆̃2
0

s

)

− 20

3
m4

π±(3s̃0 − s)− 80m6
π±

)

K0
∇(s)

+
1

48

(

3(3s̃0 − s)
(

(3s̃0 − s)2 − 3m2
π0

∆̃2
0

s

)

− 2m2
π±

(

(3s̃0 − s)2 − 2m2
π0

∆̃2
0

s

)

− 10m4
π±(3s̃0 − s)− 120m6

π±

)

K2
∇(s),

(K.46)

I−1 =
s

2m2
π0∆̃2

0

(

K1
∇(s)− (3s̃0 − s)K2

∇(s)
)

− 1

2
K3

∇(s), (K.47)

I−2 =
s2

24m2
π±m4

π0∆̃4
0

(

(

− 4m2
π±(3s̃0 − s)2 +m2

π0

∆̃2
0

s
(3s̃0 − s+ 8m2

π±)
)

K2
∇(s) (K.48)

+
(

4m2
π±(3s̃0 − s)−m2

π0

∆̃2
0

s

)

K1
∇(s)

)

+
4s

3m2
π0∆̃2

0

K0
∇(s). (K.49)

K.4 Computation of S and P waves of Pπ → ππ processes in the

isospin limit

As was already stated, we can obtain the results of integrations (3.30) and (3.31) for
Pπ → ππ in the isospin case simply by limiting mπ± → mπ0 in the results of either
the previous section or of Section K.2. This fact can be used as a partial check of the
computations of those two sections.

We proceed here very briefly. Trajectories of endpoints of integration (K.2) simplify
with respect to the situation on Figure 37 into the ones depicted on Figure 43. Note that
here the points H, I, and J melt into s = ∞. Similarly, the points where t−(s) = 4m2

π, i.e.
where σπ(t−) = 0, coincide now with the point C.

Relations (K.9) and (K.31) for the square of the kinematic square root simplify into

σ2
π(t±(s)) =

1

4t2±(s)

(

λ̃1/2(s)± σπ(s)(∆̃− s)
)2

=

(

λ̃1/2(s)± sσπ(s)

∆̃

)2

. (K.50)

It implies the possibility to define a naive square root equal

σ̂±(s) =
λ̃1/2(s)± sσπ(s)

∆̃
. (K.51)
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s t+(s) t−(s)

−∞ ∞ 0

m2
π(1−Q) µ̃+ m2

π(1−Q)

0 3
2 s̃0 ∓ i∞

A 4m2
π

1
2∆̃

B m2
π(1 +Q) µ̃− m2

π(1 +Q)

C 1
2∆̃

1
2∆̃ 4m2

π

D µ̃− m2
π(1 +Q)

F 3s̃0 0± imπ∆̃√
3s̃0

G µ̃+ m2
π(1−Q)

J ∞ −∞ 0

Figure 43: Trajectories of the endpoints of integration t±(s) that occur in the computation
of partial waves of Pπ → ππ amplitude in the isospin limit.

The correct square root has the course similar to Figure 41, where we have to shrink the
interval s ∈ (t−(4m

2
π±), t+(4m

2
π±)) into one point s = 1

2
∆̃. The naive square root σ̂±(s)

differs only for s > 1
2
∆̃, where σ̂−(s) = −σ−(s). The real part of the naive square root

σ̂−(s) is therefore monotonously decreasing function of s.

From that there follows the naive value of the transformed endpoints

τ̂±(s) = − 1

4m2
π

(1∓ σπ(s))
(

∆̃− s− λ̃1/2(s)
)

, (K.52)

which is in correspondence with relation (K.11).

The behavior of the correct values of τ±(s) is displayed on Figure 44, the only difference
between these and the naive values are in τ−(s) for s >

1
2
∆̃, where they are reciprocal values

to each other, i.e.

Re τ̂−(s) =
1

Re τ−(s)
, Im τ̂−(s) = − Im τ−(s) for s >

1

2
∆̃ . (K.53)

However, thanks to the symmetries of the primitive functions we can also use instead
of σ(t−) and τ−(s) the naive values (K.51) and (K.52) with all the advantages we have
discussed in the previous two situations.

For the sum and for the difference of logarithms we have again the simple relations
(K.15)–(K.17). This means that the functions appearing in (K.34)–(K.37) have simple
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−∞ m2
π(1 −Q) 0 4m2

π m2
π(1 +Q) 1

2∆̃ µ̃− µ̃+ ∞
0

1
|τ+(s)|
|τ−(s)|

π

0

−π

arg τ+(s)

arg τ−(s)

Figure 44: Transformed trajectories of endpoints of integrations from the computation of
partial waves of Pπ → ππ amplitude in the isospin limit.

limits3

N∇(s) → L0(s), Λ+
∇(s) → λ̃1/2(s), (K.55)

M∇(s) →M0(s), Λ−
∇(s) → σπ(s)(∆̃− s). (K.56)

Thus, we know that in the primitive functions there will appear only the functions

K0
∇(s) → σπ(s)λ̃

1/2(s), (K.57)

K1
∇(s) →

(

3s̃0 − s− 4m2
π

∆̃

s

)

L0(s)λ̃
1/2(s)− λ̃(s)M0(s)σπ(s) (K.58)

K2
∇(s) → L0(s)λ̃

1/2(s)− (∆̃− s)M0(s)σπ(s) (K.59)

K3
∇(s) → −M0(s)L0(s). (K.60)

Finally, limiting (K.43)–(K.49), we obtain the following results for differences of prim-
itive functions evaluated in the endpoints

I0 = 3σπ(s)λ̃
1/2(s) +

1

2

(

L0(s)λ̃
1/2(s)− (∆̃− s)M0(s)σπ(s)

)

−m2
πM0(s)L0(s), (K.61)

3This relations hold in this form only if we take there instead of τ−(s) the naive value τ̂−(s), otherwise
for s > 1

2∆̃ there are interchanged

N∇(s) ↔ −M∇(s), Λ+
∇(s) ↔ Λ−

∇(s) (K.54)

in these relations for limits.
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I1 =
1

4

(

−5s+ 5m2
P + 11m2

π

)

σπ(s)λ̃
1/2(s)−m4

πM0(s)L0(s)

+
1

4

(

1

s
(s− 2m2

π)(∆̃− s)L0(s)λ̃
1/2(s)− (s2 − 2sm2

P + ∆̃2)M0(s)σ0(s)

)

,
(K.62)

I2 =
1

6

(

(s−m2
P )

2 −m2
π

(

5s+ 2m2
π − 7m2

P + 3Σ̃
∆̃

s

)

)

L0(s)λ̃
1/2(s)

+
1

6

(

(s−m2
P )

3 −m2
π

(

4s2 + 3s(m2
π − 2m2

P ) + 5m4
π − 9m2

πm
2
P + 3m4

P − ∆̃3

s

)

)

M0(s)σπ(s)

+

(

7

9
(s−m2

P )
2 +

9

2
m2

π(Σ̃− s)− 7

9
m2

π

∆̃2

s

)

σπ(s)λ̃
1/2(s)− 2m6

πM0(s)L0(s),

(K.63)

I3 = −5m8
πM0(s)L0(s)

+
1

144

(

m2
π

(

721s2 − 7s(206m2
P + 297m2

π) + (883m4
P + 1755m2

Pm
2
π + 1377m4

π)

− 2
∆̃2

s
(81m2

P + 239m2
π)
)

+ 81(m2
P − s)3

)

σπ(s)λ̃
1/2(s)

+
1

24

(

m2
π

(

25s2 − s(56m2
P + 53m2

π) + 43m4
P + 67m2

Pm
2
π − 53m4

π

− 6
∆̃

s
(2m4

P + 7m2
Pm

2
π +m4

π) + 6m2
π

∆̃3

s2

)

+ 3(m2
P − s)3

)

L0(s)λ̃
1/2(s)

+
1

12

(

m2
π

(

11s3 − 10s2(3m2
P + 2m2

π) + 6s(5m4
P + 3m2

Pm
2
π − 4m4

π)− 14m6
P + 3m4

Pm
2
π

+ 42m2
Pm

4
π −

59

2
m6

π + (3m2
P + 5m2

π)
∆̃3

s

)

− 3

2
(m2

P − s)4
)

M0(s)σπ(s),

(K.64)

I−1 =
2

∆̃

(

sM0(s)σπ(s)− L0(s)λ̃
1/2(s)

)

+
1

2
M0(s)L0(s), (K.65)

I−2 =
4s

3m2
π∆̃

2
σ0(s)λ̃

1/2(s) +
1

6m2
π∆̃

3

(

4s2 − 2s(m2
P + 7m2

π) + ∆̃2
)

L0(s)λ̃
1/2(s)

− 1

6m2
π∆̃

3

(

4s2 − 2s(3m2
P + 5m2

π) + 3∆̃2
)

M0(s)σπ(s).
(K.66)

K.5 Construction of partial waves of Pπ → ππ for mP < 3mπ

We want to add a short comment on computation of the partial waves in the case that the
mass of particle P kinematically forbids its decay into those three pions, i.e. the case when
there should be no problem with the definition of the partial waves and with the validity
of the dispersion relations. For the sake of concreteness, we will speak here about process
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Re t

Im t

A

F

G

µ+

t+

t−

A

F

G H

IJ

Figure 45: Trajectories of the endpoints of integration t±(s) that occur in computation of
partial waves of Pπ → ππ amplitude for an unphysical mass of mP .

Pπ0 → π+π− from Section K.2 and take some unphysical mass mP < 2mπ± +mπ0 , but it
should be obvious that the similar situation arises for any such process.

In this case the threshold s = 4m2
π± from which we need to integrate the partial waves

is larger than µ̃−
0 (point D on Figure 37), so here we are interested only in the part of the

trajectory that begins at point D. In addition, this point is in this case moved left from
the branching point t = µ+, i.e. Re t±(s) < µ+, for s > 4m2

π±.

Therefore, these trajectories (cf. Figure 45) never meet the branch cut of the integrands,
where the contour of the dispersion integrals is located, and we have no problem in their
computation. Moreover, any infinitesimal displacement of all contours C(t−, t+) leaves the
results of integrations (3.30) and (3.31) the same and so in principle there exists only one
analytic continuation of the partial waves of Pπ → ππ below their physical threshold µ̃+

0 .
With that we have verified the statement of Appendix J that the complications appear
not until we want to continue the partial waves below the point D (i.e. when we compute
them for mP > 2mπ± +mπ0, when 4m2

π± goes below µ̃−
0 ), where t±(s) approach the branch

cut and we need to find the right infinitesimal displacement that avoids this branch cut [=
contour of dispersion integration].

Computation of partial waves of π0π0 → π+π− process

As a specific example of this type we can take the process π0π0 → π+π− that was discussed
in Section 5.7.2. Repeating the discussions of Section K.2 in the limitmP → mπ0 , we should
reproduce the results of Section 5.7.2. Note, however, that the particular choice of signs
of K̃1/2(s) in (K.4) in this limit is the opposite to the choice used in Section 5.7.2 for the
computations with t±(s), or more specifically

lim
mP→mπ0

λ̃
1/2
0 (s) = −sσ0(s). (K.67)
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Thus, as is discussed below relation (K.6), by performing this limit we obtain the expres-
sions for t+(s) and t−(s) interchanged — this change of sign in integrals (3.30)–(3.31)
should be afterwards compensated by the limit (K.67) of all the further appearances of

λ̃
1/2
0 (s) in the expressions (3.30)–(3.31). Since now the threshold for the dispersion rela-

tions s = 4m2
π± is even larger than µ̃+

0 → 4m2
π0, the endpoints t±(s) move with the values

of s that are needed just on the real part of the axis — on Figure 45 this corresponds to
the part of GHIJ trajectories, far below the branch point µ+.

The triangle function in these endpoints simplifies into [by taking the limit of (K.9)]

λ(t±(s)) =
1

4

(

−sσ0(s)± (−s)σ±(s)
)2

=
1

4

(

s(σ0(s)± σ+(s))
)2
. (K.68)

The choice of sign from (3.16) leads to [cf. with (5.85)]

λ1/2(t±(s)) = −s
2
(σ0(s)± σ+(s)) . (K.69)

The conformal transformation (3.36) then reads

τ(t±(s)) =
s

4mπ0mπ±

(

1∓ σ+(s)
)(

1− σ0(s)
)

(K.70)

and since function M0(s) from (K.19) goes in the limit

lim
mP→mπ0

M0(s) = −L0(s), (K.71)

to function L0(s) from (5.68), relations (K.15)–(K.17) simplify in this case into

log τ̂+ − log τ̂− = L+(s), (K.72)

log τ̂+ + log τ̂− = L0(s), (K.73)

log2 τ̂+ − log2 τ̂− = L+(s)L0(s), (K.74)

which is in correspondence with (5.89)–(5.91) taking into account the interchange of t+
and t− here.
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Appendix L

Polynomials of the NLO partial waves of the

Pπ → ππ scatterings

We list here the polynomials multiplying the dimensionless functions from Appendix F in
our expressions for the NLO partial waves of Pπ → ππ amplitudes and also in our NNLO
results for these amplitudes.

L.1 Isospin limit

• K±π± → π±π±

p̃Cd;0
λ =

Cc

F 4
π

(s− s̃0)
2 +

2Dc

3F 4
π

(

s2 − 3ss̃0 + 3s̃20 −m2
π

∆̃2

s

)

, (L.1)

p̃Cd;0
0 = Ax

(

31a− b

4F 2
π

(

23s− 15m2
P + 335m2

π

)

)

+
Bx

4F 2
π

(

b

9F 2
π

(

28s2 − s(41m2
P − 63m2

π) + 13m4
P + 48m2

Pm
2
π + 99m4

π − 28m2
π

∆̃2

s

)

− a
(

5s− ∆̃
)

)

+
Bc

6F 2
π

(

b

18F 2
π

(

181s2 − s(137m2
P − 1215m2

π) + 2(14m4
P − 135m2

Pm
2
π − 279m4

π)

− 28m2
π

∆̃2

s

)

− a
(

27s− 7m2
P − 9m2

π

)

)

,

(L.2)

p̃Cd;0
1 =

Ax

2

(

9a− b

2F 2
π

(

3s− 3m2
P + 53m2

π + 6m2
π

∆̃

s

)

)

+
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+
Bx

12F 2
π

(

b

F 2
π

(

2s2 − s(3m2
P − 5m2

π) + (m2
P + 5m2

π)Σ̃− 4m2
π(m

2
P − 6m2

π)
∆̃

s

)

− a
(

3s−m2
P + 3m2

π + 6m2
π

∆̃

s

)

)

+
Bc

6F 2
π

(

b

6F 2
π

(

5s2 − s(7m2
P − 59m2

π) + 2(∆̃2 + 6m4
π)− 6m2

π(m
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π)
∆̃

s
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π + 6m2
π

∆̃

s
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(L.3)
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Ax

2

(
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(

1− ∆̃

s

)
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2F 2
π

(

3s− 6m2
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s

)

)

+
Bx

12F 2
π

(

b

F 2
π

(
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− (m4
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2
π + 29m4
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∆̃3
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P + 6m2

π + (m2
P − 9m2
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∆̃
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6F 2
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(L.4)
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π
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(L.5)

p̃Cd;0
3 =

(

Ax −
Bc

2F 2
π

(s− s̃0)

)(

2a− b

F 2
π

(s+ 4m2
π)

)

. (L.6)

• K±π∓ → π±π∓
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λ =
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(L.15)
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π) +m4
P + 10m2

Pm
2
π + 37m4

π

− 6m2
π(m

2
P − 9m2

π)
∆̃

s

)

− am2
π

(

1 +
∆̃

s

)

)

− Bx

24F 2
πm

2
π

(

b

3F 2
π

(

3s3 − 4s2(2m2
P + 3m2

π) + s(7m4
P + 22m2

Pm
2
π − 39m4

π)

− 2(m6
P + 13m4

Pm
2
π − 50m2

Pm
4
π − 42m6

π)

+ 6m2
π(2m

4
P + 3m2

Pm
2
π + 33m4

π)
∆̃

s
− 18m4

π

∆̃3

s2

)

− a
(

s2 − 2s(m2
P + 4m2

π) + Σ̃2 + 12m2
Pm

2
π − 2m2

π(m
2
P − 9m2

π)
∆̃

s

)

)

+
Bc

6F 2
πm

2
π

(

b

12F 2
π

(

2s3 − s2(5m2
P + 49m2
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(L.16)
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(L.17)
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(L.18)

p̃Cc;1
3 =

Bcb

36F 4
π

(s− 4m2
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• K±π∓ → π0π0

p̃Cx;0
λ =

Cx

F 4
π

(s− s̃0)
2 +

2Dx

3F 4
π
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s2 − 3ss̃0 + 3s̃20 −m2
π

∆̃2

s

)

, (L.20)
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π
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(

a+
b

F 2
π

(s− 4m2
π)

)

− Bx

4F 2
π

(

b

27F 2
π

(

11s2 − s(22m2
P + 1566m2
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(L.22)
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(L.23)
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3 = −Ax
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+
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(L.25)

• K±π0 → π±π0

p̃Ct;0
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(L.26)
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+
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(L.29)
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λ =
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+
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13a+
b

4F 2
π

(

21s− 5m2
P − 155m2

π

)

)

− Bx

12F 2
π

(

b

9F 2
π

(

119s2 − s(58m2
P + 2106m2

π) + 11m4
P + 702m2

Pm
2
π + 1719m4

π

− 56m2
π

∆̃2

s

)

+ a
(

63s− 19m2
P − 45m2

π

)

)

(L.39)

p̃Lx;01 = −Ax

(

a+
b

4F 2
π

(

s−m2
P − 9m2

π + 2m2
π

∆̃

s

)

)

− Bx

12F 2
π

(

b

3F 2
π

(

s2 − 2s(m2
P + 22m2

π) + Σ̃2 + 20m2
Pm

2
π − 18m2

πs̃0
∆̃

s

)

+ a
(

3s−m2
P + 3m2

π + 6m2
π

∆̃

s

)

)

,

(L.40)

p̃Lx;01P = −Ax

(

a
(

1− ∆̃

s

)

+
b

4F 2
π

(

s− 2m2
P − 8m2

π + (m2
P + 7m2

π)
∆̃

s

)

)

− Bx

12F 2
π

(

b

3F 2
π

(

s2 − s(3m2
P + 43m2

π) + 3m4
P + 60m2

Pm
2
π − 39m4

π − (m2
P + 23m2

π)
∆̃2

s

+ 4m2
π

∆̃3

s2

)

+ a
(

3s− 4m2
P + 6m2

π + (m2
P − 9m2

π)
∆̃

s

)

)

,

(L.41)

p̃Lx;02P = −Ax

(

2a− 5b

F 2
π

m2
π

)

− Bx

3F 2
π

(

am2
P − b

F 2
π

m2
π(3s+m2

P − 5m2
π)
)

, (L.42)

p̃Lx;03 = −Ax

(7a

2
+

2b

F 2
π

(s− 6m2
π)
)

− Bx

2F 2
π

(

4a+
b

F 2
π

(s− 12m2
π)
)

(s− s̃0). (L.43)

• KLπ± → π0π±

p̃Lt;0λ = − Cx

3F 4
π

(

s2 − 3ss̃0 + 3s̃20 −m2
π

∆̃2

s

)

− Dx

3F 4
π

(

4s2 − 9ss̃0 + 6s̃20 −m2
π

∆̃2

s

)

,

(L.44)

p̃Lt;00 =
Ax

2

(

31a− b

4F 2
π

(23s− 15m2
P + 335m2

π)

)

+
Bx

24F 2
π

(

b

9F 2
π

(

265s2 − 52s(5m2
P − 27m2

π) + 67m4
P − 126m2

Pm
2
π − 261m4

π

− 112m2
π

∆̃2

s

)

− a
(

69s− 17m2
P − 15m2

π

)

)

,

(L.45)
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p̃Lt;01 =
Ax

4

(

9a− b

2F 2
π

(

3s− 3m2
P + 53m2

π + 6m2
π

∆̃

s

)

)

+
Bx

8F 2
π

(

b

9F 2
π

(

11s2 − s(16m2
P − 74m2

π) + 5m4
P + 14m2

Pm
2
π + 29m4

π

− 18m2
π(m

2
P − 9m2

π)
∆̃

s

)

− a
(

3s−m2
P + 3m2

π + 6m2
π

∆̃

s

)

)

,

(L.46)

p̃Lt;01P =
Ax

4

(

9a
(

1− ∆̃

s

)

− b

2F 2
π

(

3s− 6m2
P + 56m2

π + (3m2
P − 59m2

π)
∆̃

s

)

)

+
Bx

8F 2
π

(

b

9F 2
π

(

11s2 − s(27m2
P − 85m2

π) + 3(7m4
P − 40m2

Pm
2
π + 49m4

π)

− (5∆̃2 + 192m4
π)
∆̃

s
+ 8m2

π

∆̃3

s2

)

− a
(

3s− 4m2
P + 6m2

π + (m2
P − 9m2

π)
∆̃

s

)

)

,

(L.47)

p̃Lt;02P =
Ax

2

(

9a− 25b

F 2
π

m2
π

)

− Bx

6F 2
π

(

3am2
P − b

F 2
π

m2
π(3s+ 7m2

P +m2
π)

)

, (L.48)

p̃Lt;03 =

(

Ax −
Bx

2F 2
π

(s− s̃0)

)(

a− b

2F 2
π

(s+ 4m2
π)

)

. (L.49)

p̃Lt;1λ =
Cx −Dx

6F 4
π

(s− s̃0) , (L.50)

p̃Lt;10 =
5Ax

4m2
π

(

b

18F 2
π

(

11s2 − 2s(11m2
P + 81m2

π) + 11m4
P + 162m2

Pm
2
π + 531m4

π

− 56m2
π

∆̃2

s

)

+ a(s−m2
P − 7m2

π)

)

− Bx

36F 2
πm

2
π

(

b

3F 2
π

(

s3 − 3s2(3m2
P − 95m2

π) + 3s(5m4
P − 214m2

Pm
2
π − 873m4

π)

− 7m6
P + 356m4

Pm
2
π + 3323m2

Pm
4
π + 3752m6

π

+m2
π(25m

2
P − 1257m2

π)
∆̃2

s

)

− 5a

2

(

11s2 − 4s(7m2
P + 27m2

π) + 17m4
P + 150m2

Pm
2
π + 153m4

π − 56m2
π

∆̃2

s

)

)

,

(L.51)

p̃Lt;11 =
5Ax

2m2
π

(

b

12F 2
π

(

s2 − 2s(m2
P + 4m2

π) +m4
P + 10m2

Pm
2
π + 37m4

π

− 6m2
π(m

2
P − 9m2

π)
∆̃

s

)

− am2
π

(

1 +
∆̃

s

)

)

+
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− Bx

24F 2
πm

2
π

(

b

3F 2
π

(

s3 − s2(3m2
P − 37m2

π) + s(3m4
P − 72m2

Pm
2
π − 359m4

π)

− (m6
P − 29m4

Pm
2
π − 533m2

Pm
4
π − 183m6

π)

+ 6m2
π(m

4
P − 8m2

Pm
2
π + 139m4

π)
∆̃

s
− 12m4

π

∆̃3

s2

)

− 5a
(

s2 − 2s(m2
P + 4m2

π) +m4
P + 14m2

Pm
2
π +m4

π − 2m2
π(m

2
P − 9m2

π)
∆̃

s

)

)

,

(L.52)

p̃Lt;11P =
5Ax

2m2
π

(

b

12F 2
π

(

s2 − s(3m2
P + 7m2

π) + 3(m4
P + 4m2

Pm
2
π + 11m4

π)

− (m4
P + 10m2

Pm
2
π + 85m4

π)
∆̃

s
+ 4m2

π

∆̃3

s2

)

− am2
π

(

1− 2
∆̃

s

)

)

− Bx

24F 2
πm

2
π

(

b

3F 2
π

(

s3 − 2s2(2m2
P − 19m2

π) + 2s(3m4
P − 58m2

Pm
2
π − 159m4

π)

− 2(2m6
P − 57m4

Pm
2
π − 384m2

Pm
4
π + 67m6

π)

+ (m6
P − 31m4

Pm
2
π − 805m2

Pm
4
π − 701m6

π)
∆̃

s
− 4m2

π(m
2
P − 45m2

π)
∆̃3

s2

)

− 5a
(

s2 − s(3m2
P + 7m2

π) + 3m4
P + 16m2

Pm
2
π − 3m4

π

− (m4
P + 18m2

Pm
2
π + 13m4

π)
∆̃

s
+ 4m2

π

∆̃3

s2

)

)

,

(L.53)

p̃Lt;12P =
5Ax

2m2
π

(

a(s− Σ̃)− b

F 2
π

m2
π(3s− 3m2

P − 5m2
π)

)

− Bx

6F 2
πm

2
π

( b

F 2
π

m2
π(3s

2 − 2s(9m2
P + 5m2

π) + 15m4
P + 22m2

Pm
2
π + 87m4

π)

+ 5a(sm2
P −m4

P −m2
Pm

2
π − 6m4

π)
)

,

(L.54)

p̃Lt;13 =
Bxb

36F 4
π

(s− 4m2
π). (L.55)

• KLπ0 → π0π0

p̃Ln;00 = Ax

(

44a− b

2F 2
π

(

s− 5m2
P + 245m2

π

)

)

+
Bx

6F 2
π

(

b

3F 2
π

(

64s2 − s(53m2
P + 117m2

π) + 13m4
P + 96m2

Pm
2
π + 243m4

π

− 28m2
π

∆̃2

s

)

− a
(

3s+m2
P + 15m2

π

)

)

,

(L.56)
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p̃Ln;0λ = −Cx + 2Dx

3F 4
π

(

5s2 − 12ss̃0 + 9s̃20 − 2m2
π

∆̃2

s

)

, (L.57)

p̃Ln;01 =
Ax

2

(

11a− b

F 2
π

(

s−m2
P + 31m2

π + 2m2
π

∆̃

s

)

)

+
Bx

6F 2
π

(

b

F 2
π

(

2s2 − s(3m2
P − 5m2

π) + (m2
P + 5m2

π)Σ̃− 4m2
π(m

2
P − 6m2

π)
∆̃

s

)

− a
(

3s−m2
P + 3m2

π + 6m2
π

∆̃

s

)

)

,

(L.58)

p̃Ln;01P =
Ax

2

(

11a
(

1− ∆̃

s

)

− b

F 2
π

(

s− 2m2
P + 32m2

π + (m2
P − 33m2

π)
∆̃

s

)

)

+
Bx

6F 2
π

(

b

F 2
π

(

2s2 − s(5m2
P − 7m2

π) + 4m4
P − 10m2

Pm
2
π + 18m4

π − (Σ̃2 + 28m4
π)
∆̃

s

+ 2m2
π

∆̃3

s2

)

− a
(

3s− 4m2
P + 6m2

π + (m2
P − 9m2

π)
∆̃

s

)

)

,

(L.59)

p̃Ln;02P = Ax

(

11a− 30b

F 2
π

m2
π

)

− 2Bx

3F 2
π

(

am2
P − 3b

F 2
π

m2
πΣ̃
)

, (L.60)

p̃Ln;03 = Ax

(11a

2
+

b

F 2
π

(s− 16m2
π)
)

+
Bx

F 2
π

(

a+
b

F 2
π

(s− 4m2
π)
)

(s− s̃0). (L.61)

• KSπ0 → π+π−

p̃Sx;1λ =
Cx

3F 4
π

(s− s̃0) , (L.62)

p̃Sx;10 = − Bx

12F 2
πm

2
π

(

b

9F 2
π

(

73s3 − s2(185m2
P + 927m2

π) + s(151m4
P + 1674m2

Pm
2
π + 4455m4

π)

− 39m6
P − 1063m4

Pm
2
π − 4165m2

Pm
4
π − 4717m6

π

+ 12m2
π(13m

2
P + 147m2

π)
∆̃2

s

)

+ a
(

11s2 − 4s(7m2
P + 27m2

π) + 17m4
P + 150m2

Pm
2
π + 153m4

π − 56m2
π

∆̃2

s

)

)

,

(L.63)

p̃Sx;11 = − Bx

4F 2
πm

2
π

(

b

9F 2
π

(

5s3 − s2(13m2
P + 61m2

π) + s(11m4
P + 116m2

Pm
2
π + 281m4

π)

− 3(m2
P + 5m2

π)(Σ̃
2 + 20m2

Pm
2
π)

+ 6m2
π(3m

4
P + 14m2

Pm
2
π − 73m4

π)
∆̃

s
− 24m4

π

∆̃3

s2

)

+
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+ a
(

s2 − 2s(m2
P + 4m2

π) +m4
P + 14m2

Pm
2
π +m4

π − 2m2
π(m

2
P − 9m2

π)
∆̃

s

)

)

,

(L.64)

p̃Sx;11P = − Bx

4F 2
πm

2
π

(

b

9F 2
π

(

5s3 − 2s2(9m2
P + 28m2

π) + 24s(m4
P + 6m2

Pm
2
π + 10m4

π)

− 2(7m6
P + 72m4

Pm
2
π + 243m2

Pm
4
π − 106m6

π)

+ (3m6
P + 71m4

Pm
2
π + 425m2

Pm
4
π + 269m6

π)
∆̃

s
− 12m2

π(m
2
P + 7m2

π)
∆̃3

s2

)

+ a
(

s2 − s(3m2
P + 7m2

π) + 3m4
P + 16m2

Pm
2
π − 3m4

π

− (m4
P + 18m2

Pm
2
π + 13m4

π)
∆̃

s
+ 4m2

π

∆̃3

s2

)

)

,

(L.65)

p̃Sx;12P =
Bx

3F 2
πm

2
π

( b

F 2
π

m2
π(3s

2 − 4s(3m2
P +m2

π) + 9m4
P + 6m2

Pm
2
π + 57m4

π)

+ 3a(sm2
P −m4

P −m2
Pm

2
π − 6m4

π)
)

,

(L.66)

p̃Sx;13 = − Bxb

18F 4
π

(s− 4m2
π). (L.67)

• KSπ+ → π0π+

p̃St;0λ = − Cx

3F 4
π

(2s− ∆̃)

(

s− 2m2
π −m2

π

∆̃

s

)

, (L.68)

p̃St;00 =
Bx

8F 2
π

(

b

9F 2
π

(

97s2 − 2s(7m2
P − 513m2

π)− 11m4
P − 414m2

Pm
2
π − 855m4

π

+ 56m2
π

∆̃2

s

)

− a
(

39s− 11m2
P − 21m2

π

)

)

,

(L.69)

p̃St;01 = − Bx

8F 2
π

(

b

3F 2
π

(

s2 − 2s(m2
P + 22m2

π) + (m4
P + 22m2

Pm
2
π +m4

π)

− 6m2
π(m

2
P + 3m2

π)
∆̃

s

)

+ a
(

3s− (m2
P − 3m2

π) + 6m2
π

∆̃

s

)

)

,

(L.70)

p̃St;01P = − Bx

8F 2
π

(

b

3F 2
π

(

s2 − s(3m2
P + 43m2

π) + 3(m4
P + 20m2

Pm
2
π − 13m4

π)

− (m2
P + 23m2

π)
∆̃2

s
+ 4m2

π

∆̃3

s2

)

+ a
(

3s− 2(2m2
P − 3m2

π) + (m2
P − 9m2

π)
∆̃

s

)

)

,

(L.71)
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p̃St;02P = − Bx

2F 2
π

(

am2
P − b

F 2
π

m2
π(3s+m2

P − 5m2
π)
)

, (L.72)

p̃St;03 = −3Bx

2F 2
π

(s− s̃0)
(

a− b

2F 2
π

(s+ 4m2
π)
)

. (L.73)

p̃St;1λ =
Cx

6F 4
π

(s− s̃0) , (L.74)

p̃St;10 = − Bx

24F 2
πm

2
π

(

b

9F 2
π

(

73s3 − s2(185m2
P + 927m2

π) + s(151m4
P + 1674m2

Pm
2
π + 4455m4

π)

− 39m6
P − 1063m4

Pm
2
π − 4165m2

Pm
4
π − 4717m6

π

+ 12m2
π(13m

2
P + 147m2

π)
∆̃2

s

)

+ a
(

11s2 − 4s(7m2
P + 27m2

π) + 17m4
P + 150m2

Pm
2
π + 153m4

π − 56m2
π

∆̃2

s

)

)

,

(L.75)

p̃St;11 = − Bx

8F 2
πm

2
π

(

b

9F 2
π

(

5s3 − s2(13m2
P + 61m2

π) + s(11m4
P + 116m2

Pm
2
π + 281m4

π)

− 3(m2
P + 5m2

π)(m
4
P + 22m2

Pm
2
π +m4

π)

+ 6m2
π(3m

4
P + 14m2

Pm
2
π − 73m4

π)
∆̃

s
+ 24m4

π

∆̃3

s2

)

+

+ a
(

s2 − 2s(m2
P + 4m2

π) +m4
P + 14m2

Pm
2
π +m4

π − 2m2
π(m

2
P − 9m2

π)
∆̃

s

)

)

,

(L.76)

p̃St;11P = − Bx

8F 2
πm

2
π

(

b

9F 2
π

(

5s3 − 2s2(9m2
P + 28m2

π) + 24s(m4
P + 6m2

Pm
2
π + 10m4

π)

− 2(7m6
P + 72m4

Pm
2
π + 243m2

Pm
4
π − 106m6

π)

+ (3m6
P + 71m4

Pm
2
π + 425m2

Pm
4
π + 269m6

π)
∆̃

s
+ 12m2

π(m
2
P + 7m2

π)
∆̃3

s2

)

+ a
(

s2 − s(3m2
P + 7m2

π) + 3m4
P + 16m2

Pm
2
π − 3m4

π

− (m4
P + 18m2

Pm
2
π + 13m4

π)
∆̃

s
+ 4m2

π

∆̃3

s2

)

)

,

(L.77)

p̃St;12P =
Bx

2F 2
πm

2
π

( b

3F 2
π

m2
π(3s

2 − 4s(3m2
P +m2

π) + 3(3m4
P + 2m2

Pm
2
π + 19m4

π))

+ a(sm2
P −m4

P −m2
Pm

2
π − 6m4

π)
)

,

(L.78)

p̃St;13 = − Bxb

36F 4
π

(s− 4m2
π). (L.79)
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L.2 The case with mπ± 6= mπ0

• KLπ
0 → π0π0

p̃Ln;0λ =
Cn

3F 4
π

(

5s2 − 12ss̃0 + 9s̃20 − 2m2
π0

(3s̃0 − 4m2
π0)2

s

)

, (L.80)

p̃Ln;00 =
Bx

2F 2
π

(

bx
9F 2

π

(

64s2 + 3s(16m2
π± − 2m2

π0 − 53s̃0)− 28m2
π0

(3s̃0 − 4m2
π0)2

s

+ 3
(

39s̃20 − 6s̃0(2m
2
π± − 5m2

π0) + 8m2
π±(20m2

π± − 17m2
π0)
)

)

− ax(s+ s̃x + 14m2
π± − 10m2

π0)

)

+ Ax

(

8ax −
bx
2F 2

π

(s− 15s̃0 + 68m2
π±)
)

+ 4A0a0,

(L.81)

p̃Ln;01n =
1

2
A0a0, (L.82)

p̃Ln;01L =
1

2
A0a0

(

1− ∆̃0

s

)

, (L.83)

p̃Ln;02Ln = A0a0, (L.84)

p̃Ln;03n =
1

2
A0a0, (L.85)
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[II] M. Zdráhal and J. Novotný, “Dispersive Approach to Chiral Perturbation
Theory”, Phys. Rev. D 78 (2008) 116016 [arXiv:0806.4529[hep-ph]].

[III] K. Kampf, M. Knecht, J. Novotný and M. Zdráhal, “Dispersive repre-
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struction of two-loop P → 3π (P = K, η) amplitudes”, PoS EFT09 (2009) 063
[arXiv:0905.4868[hep-ph]].
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construction of η → 3π amplitude: First order in isospin breaking”, Phys. Rev.
D 84 (2011) 114015 [arXiv:1103.0982[hep-ph]].
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