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Abstrakt: Multivrstevnaté nanoštruktúry so zosilneným magneto-optickým (MO) efek-

tom boli skúmané metódou MO polárnej a longitudinálnej spektroskopie pri rôznych

uhloch dopadu v rozmedźı energíı od 1.2eV do 5eV. Pomocov Yehovho formalizmu boli

spoč́ıtané MO odozvy pre štruktúry využ́ıvajúce Fabry-Protov rezonančný jav na zosilne-

nie MO efektu. Dve sady vzoriek, FeF2/Fe/FeF2 a AlN/Fe/AlN, boli pripravné metódou

molekulárnej epitaxie a naprašovańım a pomocou MO spektroskopie bol zištovaný vzájomný

vzťah medzi poźıciou maxima v MO spektre a štruktúrou vzorky. Druhá čašt disertačnej

práce sa zaoberala vplyvom iontovej implantácie na MO spektra pre vzorky Pt/Co/Pt.

Tu dochádza k zosilneniu MO efektu vďaka vrstve CoPt zliatiny tvoriacej sa na Co-Pt

rozhraniach. Študované nanovrstvy predstavujú šlubné štruktúry pre MO záznam a sen-

zory.
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Abstract: Magneto-optical (MO) spectra of multilayered structures with enhanced MO

effect were studied using the polar and longitudinal Kerr spectroscopy with oblique angle

of light incidence in the photon energy range 1.2 eV to 5 eV. The samples with Fabry-

Perot cavity like architecture, were modeled using Yeh matrix formalism. Two sets of

samples, with composition FeF2/Fe/FeF2 and AlN/Fe/AlN, were prepared by molecular

beam epitaxy and sputtering. The relations were studied between the position of the

enhanced peak in the MO spectra and the structure. Second part of this work was

devoted to the Pt/Co/Pt structures and the influence of the ion implantation on MO

spectra and structural composition. The studied multilayer structures present interest for

MO sensor and memory applications.
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Chapter 1

Introduction

The magneto-optic (MO) effects cover an interaction between an electromagnetic (EM)

polarized wave and a magnetic field in a medium. First mention of the MO effects was in

1846 by Faraday [1]. He was observing an azimuth rotation of a polarization plane, while

the light was passing through a magnetized medium. In 1876 Kerr discovered suchlike

effect in a reflected light from an iron surface [2]. Nowadays, MO effects are highly

appreciated as a cheap, noninvasive and very precise technique for characterization of

thin films and nanostructures.

In a commercial sphere the MO effects are used in MO discs [5], [27], [7]. MO discs

were first introduced in 1985. While they never had their expansion on a common market,

the 130 mm drives were often used in corporate storage and retrieval. Main advantage of

the discs was an option of the data storage without the current. The MO discs use laser

and an electromagnet to record the information. The laser is heating the platter above

its Curie temperature and the electromagnet reorients the magnetization of the bit and

with it set its the logical value to 1 or 0. To read the information, the laser is operated

at a lower intensity and the reflected light from the observed bit is analyzed showing a

noticeable difference between a 0 or 1 1.1.

Figure 1.1: Schematic picture of MO disc drive.

Other application, often applied in science and industry, is the Kerr microscopy [34].

The microscope is built on the idea, that the plane of polarization is changing with
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reflection upon a magnetized surface and the change is proportional to direction and

magnitude of the magnetic field in the sample. Schematically is this device shown in

figure 1.2. Kerr microscopy is an inexpensive and easy way to imagine the magnetic

microstructure or magnetic domains visualization.

Figure 1.2: Kerr microscope [83].

From many other applications we will also mention the magnetoresistive random ac-

cess memory (MRAM) [31], [32], [33]. The data in MRAM are not stored as electric

charge or current flows, as it is in convenient RAMs, but with use of magnetic storage

elements. The basic elements, or storage units, are formed by two ferromagnetic thin

layers, separated by one thin insulating layer, see figure 1.3. One of the two ferromag-

netic layers is a permanent magnet set to a particular polarity. The magnetization of

the second ferromagnetic layer can be changed by external field. This mechanism serves

to store the information. Mentioned configuration is known as a spin valve and is the

simplest structure for a MRAM bit. Structure for a memory device can be built as a grid

of such units.

Idea of this work was to study new structures, which could be suitable for MO devices,

mainly MO sensor for weak parasite fluxes on highly dense electronics chips and devices,

with magnetic properties tuned by ion irradiation. Many new materials and techniques are

currently developing with emphasis on the enhancing of the MO effect, such as materials

doped with magnetic particles (Bi in YIG garnets [29], [30]) or layered structure designed

as Fabry-Perot like resonator [24], [26]. Two main directions of the thesis were:

• Studying of the dielectric/Fe/dielectric structures with enhanced MO effect due to

Fabry-Perot cavity like architecture for utilization as a MO sensor of weak current

fluxes on microelectronic chips.

• Studying of the Pt/Co/Pt structure irradiated by Ga+ ions to change the orientation

of the magnetization in Co layer.

The thesis is composed as follows. Introduction for both parts of the work follows.
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CHAPTER 1. INTRODUCTION

Figure 1.3: Schematic picture of MRAM [36].

In chapter 2, the Polarization and MO parameters are defined together with the Jones

calculus, which is utilized as a method to calculate the polarization state of a propagation

vector.

Chapter 3 reveals optical properties from microscopic and macroscopic point of view

and the impact of symmetry to permittivity tensor.

EM theory for magnetic layer and multilayers are covered in chapter 4. The EM

theory for complicated layered structures is solved with help of Yeh matrix formalism.

Chapter 5 deals with the MO spectroscopic set-ups, which are commonly used for

measuring MO effects for a various magnetic field orientations and with a different preci-

sions. The set-up used to measure the MO spectra in this work was based on a azimuth

rotation modulation technique with feedback circuit, which is described in detail.

In chapter 6, the theoretical multilayered problem for enhancement of the MO effect

in Fabry-Perot like structure is solved with help of the Yeh formalism.

Structures calculated in chapter 6 were prepared by modern preparation technique

and MO Kerr spectroscopy was measured on them. Two sets of samples with different

dielectric were studied and the results are compiled in chapter 7.

In chapter 8 are shown the MO spectroscopy results for Pt/Co/Pt irradiated lay-

ers. The spectra are compared with the Yeh formalism model using data from previous

published works.
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1.1. MOTIVATION FOR STUDYING THE ENHANCEMENT OF THE MO EFFECT IN
LAYERED STRUCTURES WITH FERROMAGNETIC LAYER

1.1 Motivation for studying the enhancement of the

MO effect in layered structures with ferromag-

netic layer

Nowadays a high density of the semiconductor chips leads to the increasing demands for

the chip architecture, because of the problem with parasitics current on the chip surface.

Mapping microwave (mw) currents inside semiconductor chips are potentially useful for

improving this architecture as well as chip diagnostics. On the surface of the chip, the

mw currents generate weak fringing magnetic fields which decay rapidly with the distance

from the surface. These oscillatory magnetic fields can be measured by time-resolved

magneto-optical (MO) effects, using a MO sensor. Advantages of this method are in its

noninvasive, hight speed nature of measurements which combined with its high spatial

resolution leads to very powerful method to chips diagnosis [19]. Because the current-

carrying chips are non-transparent the sensor needs to be used in reflection geometry.

The sensor can be deposited at the end of an optical fibre or a cantilever.

The mw magnetic field causes the magnetization in the sensor to precess. The mag-

netization component perpendicular to the surface of the sensor can be detected via the

polar Kerr effect. The precessional angle is proportional to the magnitude of the mw

magnetic field and the polar Kerr effect is proportional to the precessional angle of the

magnetization, leading to linearity of the sensor.

In this thesis, the MO structures suitable for such sensors are investigated with the

ability to detect weak magnetic fields at frequencies which may exceed 10 GHz. These

structures were optimized to be used in reflection geometry with a violet pulsed laser of

wavelength λ = 410 nm or at a Ti:sapphire laser wavelength of about λ = 810 nm. Three

key requirements on the MO active material have to be satisfied. First, the medium should

display reasonable intrinsic MO activity (characterized by its permittivity tensor), which

can be achieved only in media with spontaneous magnetic ordering. Second, the highest

frequency, at a low external magnetic field, to which the MO medium can efficiently re-

spond, is determined by medium saturation magnetization and its magnetic anisotropies.

Third, the total thickness of the sensor needs to be thin in order to allow for the use of

the sensor for 3D imaging of inhomogeneous mw fields.

The favorable intrinsic parameters of a MO medium represent only the necessary

conditions for optimum performance. To fully exploit the potential of a MO medium, it

should be embedded in an appropriate structure. The simplest and oldest arrangement

for the enhancement of MO effects in reflection uses a single interference dielectric coating

deposited on the top of a ferromagnetic layer [26], [37]. In this case, the energy of the

incident wave is partially reflected and partially absorbed without any transmission on

a path length much longer than the penetration depth. The MO effect can be further

enhanced by sandwiching the magnetic layer of a thickness smaller than the penetration

depth between two dielectric layers and deposited on a reflector. Such structures were,
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CHAPTER 1. INTRODUCTION

for example, used in MO discs [27]. Here we discuss a similar sequence, but with different

requirements and objectives.

In the studied structures, the magnetic material is Fe and the dielectric materials are

chosen to maximize the MO effect in the region close to the demanded. For the λ = 410

nm an non-absorbing and non-vulnerable to absorbtion AlN dielectric was selected and

for the λ = 810 nm a FeF2 dielectrics was used. As FeF2 can oxidize in the atmosphere

additional layer of gold was placed on the top layer for protection. Thick Cu layer is used

as a reflector at the bottom of the structure for AlN dielectric. Ag layer is used for FeF2.

Fe was chosen since it satisfies the three requirements mentioned above. Fe displays

MO polar Kerr rotation (Ωr ) and ellipticity (ϵr) angles of 0.2 at 3 eV [10], [79], [38]. The

Fe layer high saturation magnetization permits operation in the tens of gigahertz range.

Finally, the MO effects in the optical spectra range reach the maximum values for the

Fe thickness on the order of 10 nm. Fe layers of this thickness can be relatively easily

deposited with high purity. Further increase in the Fe thickness does not result in an

additional improvement in the MO signal, as it exceed the penetration depth and come

to bulk results on the Fe.

There are other important features of Fe worth mentioning. High-purity Fe layers

display low coercivity, which is essential for detecting weak magnetic fields. A drawback

of Fe is the vulnerability to oxidation, which may lead to performance deterioration when

exposed to ambient conditions.

1.2 Motivation for studying the MO effect in Pt/Co/Pt

layers after Ga+ ions irradiation

The topographic patterning of magnetic materials has become of huge importance dur-

ing the last two decades due to the application potential for magnetic data storage and

magneto-logic devices [45]. Ten years ago, it has been demonstrated that the magnetic

properties of thin films with perpendicular magnetic anisotropy (PMA) of interfacial origin

may be tuned by light ion irradiation under moderate doses [42], [41], since ion irradiation

can provide desired energy transfer and thermal exchange by the energetic incident ions.

It was used to tune the anisotropy direction of Co/Pt, to manipulate the magnitude and

the direction of exchange field and to rotate the magnetic hysteresis [46], [40], [47], [48].

First the Pt/Co multilayers with PMA was irradiated by He+ ions [40], [49]. This

generates an out-of-plane to in-plane spin reorientation transitions with the increasing

of ions dose. In such samples, He+ irradiation-induced magnetic changes are essentially

interpreted from pure ballistic ion collision, intermixing and disordering at CoPt inter-

faces, then reducing the anisotropy, coercivity, and Curie temperature[42]. Changing the

ions from light He+ to heavy ions of Ga+ is very promising nowadays, as it sustains the

common focused ion beam technique, which enables patterning with resolution below

10 nm.

5



1.3. MAIN TASKS OF THE PHD THESIS

In this work, two different sets of samples will be studied. First a multilayer Pt/Co/Pt

prepared by sputtering on Al2O3 substrate as deposited and irradiated by Ga+ ions with

the energy of 30 keV and the dose of D = 1 ∗ 1014 ions/cm2. Other broader set of

samples was prepared by molecular beam epitaxy (MBE), with nominal composition of

Pt(5 nm)/Co(3.3 nm)/Pt(20 nm)/Mo(20 nm) on Al2O3 substrate. Series consisted of non-

irradiated sample and three Ga+ ions irradiated samples with different doses (2.8 ∗ 1014,
1∗ 1015 and 6∗ 1015 ions/cm2). These four samples featured spin reorientation transitions

(SRT) form in-plane (as deposited sample) to out-of-plane to in-plane and again out-of-

plane depending on the dose of the ion irradiation. The relations between SRT and dose of

irradiation was studied by Jaworowicz et al.[42] for wide range of samples. These results

are concluded in figure 1.4.

Figure 1.4: The relations between the SRT and dose of Ga+ ions irradiation in Pt/Co(3.3

nm)/Pt multilayer [42].

Distinctive changes in the MO spectra in Pt/Co interfaces were published previously

by Visnovsky et al. [50] and Brändle et al., [51] and led to extensive analysis and further

measurements of various PtCo alloy films. Platina and cobalt are very reactive materials

within each other and during the growth process they are vulnerable to form an alloy layer.

Therefore preparing a Pt/Co sharp interface is difficult. Many techniques of preparation

were tried, but presence of the intermixing PtCo layer is still observed, even in samples

produced by molecular beam epitaxy.

1.3 Main tasks of the PhD thesis

• Understand and prepare a program for calculating the MO effects

• Design a multilayer with enhance MO effect

• Preparation of the samples and measurements of the MO spectra

• Evaluation and simulation of the MO spectra

• Measurements of other structures with enhance MO effect
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Chapter 2

Polarized light

Magneto-optic (MO) spectroscopy is a polarimetric optical measurement technique. Ac-

cordingly, to understand this technique, accurate knowledge of polarization and techniques

of describing the polarization changes is required. Although there are several mechanisms

to describe the polarization, in detail in [25], the focus will be on the Jones formalism,

where the changes in polarization of fully polarized light are described with help of the

matrix formalism.

2.1 The ellipse of polarization

A monochromatic light wave will be treated as a time-harmonic electromagnetic wave.

Since in the optical range, the electric component is dominating in the interaction of light

with medium, it will be considered as a polarization vector. Further the light will be

restricted to the fully polarized in a non-dispersive medium, which is usually a vacuum or

an air. From the wave equation, considering propagation in z direction, the optical field

in free space is described as

Ex = E0x cos(ωt− γz + δx),

Ey = E0y cos(ωt− γz + δy),
(2.1)

where E0x, E0y are the corresponding amplitudes and δx, δy are corresponding phase shifts

of the electric field in x and y direction. Further, ω, t and γ are the angular frequency,

time and propagation vector respectively. To simplify the equation (2.1), new parameters

are defined

φ = ωt− γz + δx,

δ = δy − δx.
(2.2)

With the parameters (2.2) the equation (2.1) is, with help of linear algebra [25], modified

to

8



CHAPTER 2. POLARIZED LIGHT

Ex

E0x

= cosφ,

Ey

E0y

= cos(φ+ δ) = cosφ cos δ + sinφ sin δ.
(2.3)

The polarization state of light can be expressed by eliminating the time dependence

included in parameter φ. Combining of both expressions (2.3) leads to the equation of

ellipse (
Ey

E0y

)2

− 2
ExEy

E0xE0y

cos δ +

(
Ex

E0x

)2

= 0. (2.4)

Equation (2.4) shows, that elliptically polarized light can be fully described with help of

Ellipse of polarization, see figure 2.1.

Figure 2.1: Polarization Ellipse.

From figure 2.1, basic parameters of the polarization ellipse are defined

• Azimuth Θ
(
−π

2
≤ Θ <

π

2

)
,

Azimuth is defined as angle between positive part of x axis and major half-axis of

the ellipse. Clockwise orientation is taken as negative, counterclockwise as positive,

as viewed by an observer who faces the source of light.

• Ellipticity e,

Ellipticity is defined as a ratio of major axis a and minor axis b of the half-axis of

ellipse

(
e = ± b

a

)
. Another parameter linked to ellipticity is an angle of ellipticity

9



2.2. JONES CALCULUS

ϵ, defined as e = tan ϵ, with its values in range −π

4
≤ ϵ ≤ π

4
. The positive sign of

ellipticity is assigned to a right elliptically polarized wave, which is a wave with E

rotating in a clockwise sense at a given point in space as viewed by an observer who

faces the source of light.

• Amplitude of the wave E00 =
√
a2 + b2.

• Initial phase δ0,

Initial phase is defined as angle between initial position of the electric vectorE (t = 0)

and the main half-axis of the ellipse, measured as a projection of the E (t = 0) to a

circle, see figure 2.1 .

2.2 Jones calculus

Polarization state of light can be described with different methods, according to the

accuracy of the polarization state. A partially polarized light can be treated using Müller

formalism or Stokes formalism. To describe the changes of fully polarized light Jones

4x4 matrix calculus can be used. This formalism describes polarization state of light with

help of a two-dimensional vector. Optical elements changing the polarization state, are

represented by 2x2 matrices. Schematically it is illustrated in figure 2.2, where Jones

matrix has been assigned to every optical element, JM1 and JM2, and the polarization

state before and after passing through optical elements are represented by vectors, JV 1

and JV 2.

Figure 2.2: Transformation of the state of polarization by the optical elements.

For light with propagation vector in z direction, Jones vector (JV) consist of two parts.

First part is given as a projection of the electric field of the wave, E, to x axis and second

part is a projection to y axis [8]

E(z, t) =

[
JX

JY

]
=

[
E0x exp(i(ωt− γz + δx))

E0y exp(i(ωt− γz + δy))

]
, (2.5)

10



CHAPTER 2. POLARIZED LIGHT

where the notation from (2.1) was used. Without time dependence, which is not necessary

for description of polarization, we get the simplified form

Exy =

[
E0x exp(iδx)

E0y exp(iδy)

]
. (2.6)

Intensity, I, of the light and Jones vector, Exy, are related by expression [25]

I = |Ex|2 + |Ey|2 = E†
xyExy , (2.7)

where † stands for Hermitian adjoint. For the present purpose, it is sufficient to use Jones

normalized vectors, which are JV with a unit intensity I = 1

1 = |Ex|2 + |Ey|2 = E†
xyExy . (2.8)

Using Jones normalized vectors discards the amplitude information needed for absorption

calculations. Examples of selected normalized JV can be found in table 2.1.

Table 2.1: Jones normalized vectors for selected polarization states.

Linearly polarized light Θ= 0, x direction

[
1

0

]

Θ= π/2, y direction

[
0

1

]

Θ= π/4, 45 deg from x direction 1√
2

[
1

1

]

Θ= −π/4, −45 deg from x direction 1√
2

[
1

−1

]

Circularly polarized light ϵ = π
4
, right handed 1√

2

[
1

i

]

ϵ = −π
4
, left handed 1√

2

[
1

−i

]

Jones normalized vectors are orthonormal and in agreement with condition Ei
†Ej =

δij, where δij is the Krönecker delta. They form a closed group, therefore superposition of

two Jones normalized vectors, which is a group operation, forms another Jones normalized

vector. When angle of the polarization, α, defined as

tanα =
E0y

E0x

(2.9)

and absolute phase, δ, is known, then the Jones normalized vector for elliptically polarized

light is written as
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2.2. JONES CALCULUS

Jxy =

[
cosα

sinαeiδ

]
. (2.10)

Jones calculus operates on a two dimensional space. Linearly polarized, LP, waves (in x

and y directions) or circularly polarized, CP, waves (right and left-handed polarizations)

can be taken as a basis vectors, with respect to a problem symmetry. The change from

Cartesian basis (the LP basis) to CP as basis vectors, and vice versa, is made with the

transformation matrices

FXY →LR =
1√
2

[
1 1

−i i

]
, (2.11)

FLR→XY = FXY →LR
−1 =

1√
2

[
1 i

1 −i

]
. (2.12)

2.2.1 Jones calculus for polarizing optical systems

The focus in this section will be on transformation of the polarization state by optical

elements described by Jones formalism, see figure 2.2. Optical elements are represented

by 2x2 Jones matrices, JM1 and JM2. An initial polarization state of polarization is

expressed by a Jones vector JV 1 and final polarization state is marked as JV 2. Relation

between the initial and final polarization states can be expressed by the transformation

matrix M [25]

JV 1 = MJV 2. (2.13)

Equation (2.13) corresponds to replacement of many optical elements by one. This trans-

formation matrix M is given by the product with JM1 and JM2 as follows [25]

M = JM2JM1. (2.14)

In an optical system with n different optical elements the formula (2.14) can be generalized

to

M = JMnJMn−1...JM1, (2.15)

where each optical element is represented by its own Jones matrix. The Jones matrices for

selected optical elements in the LP basis are listed in table 2.2. Transformation into the

CP basis can be performed with the transformation matrices (2.11) and (2.12) as follows

[25]

JLR = F−1
XY→LRJXYFXY→LR. (2.16)

12



CHAPTER 2. POLARIZED LIGHT

Table 2.2: Jones matrices for selected optical components.

Linear polarizer horizontal

[
1 0

0 0

]

vertical

[
0 0

0 1

]

Phase plate shift φ/2

[
exp(i(φ

2
)) 0

0 exp(−i(φ
2
))

]
→

[
1 0

0 exp(−iθ))

]

Quatre wave plate φ = π
2

[
1 0

0 −i

]

φ = π

[
1 0

0 −1

]

Rotator angle Θ

[
cosΘ sinΘ

− sinΘ cosΘ

]

Rotated linear polarizer vertical, angle Θ

[
cos2Θ sinΘ cosΘ

sinΘ cosΘ sin2 Θ

]

In the Cartesian coordinates system the elliptically polarized light, with azimuth θ

and angle of ellipticity ϵ, can be expressed by an ellipse, with major axis parallel to the

x axis, azimuth θ = 0 and ellipticity ϵ. To induce the azimuth this ellipse is rotated with

rotation matrix

[
JX

JY

]
=

[
cos θ − sin θ

sin θ cos θ

][
cos ϵ

i sin ϵ

]
=

[
cos θ cos ϵ− i sin θ sin ϵ

sin θ cos ϵ+ i cos θ sin ϵ

]
. (2.17)

Polarization ellipse is characterized by the external parameters, such as angle of ellipticity

ϵ and azimuth θ, in contrast to (2.4), where the internal parameters were used as angle

of polarization α and absolute phase δ. These two sets of parameters are related by a

relations [8]

tan 2θ = tan 2α cos δ, (2.18)

sin 2ϵ = sin 2α sin δ . (2.19)

For further calculation, the complex polarization parameter [25] will be defined as a ratio

of the second to first JV components

χ = tanα eiδ. (2.20)

The absolute value |χ| and the argument δ of the complex polarization parameter will be

useful for further calculations

13



2.3. MAGNETO-OPTICAL PARAMETERS

|χ| = tanα, (2.21)

arg(χ) = δ. (2.22)

Each polarization state has been assigned one point in the complex plane and this repre-

sentation is called the complex plane representations. The complex representation for the

arbitrary elliptically polarized light in the Cartesian coordinates system can be deduced

from (2.17)

χXY =
JY
JX

=
sin θ cos ϵ+ i sin θ cos ϵ

cos θ cos ϵ− i sin θ sin ϵ
=

tan θ + i tan ϵ

1− i tan θ tan ϵ
(2.23)

and in the CP basis

χLR =
JR

JL
=

(cos ϵ+ sin ϵ)e−iθ

(cos ϵ− sin ϵ)eiθ
=

1 + tan ϵ

1− tan ϵ
e−2iθ = tan(

π

4
+ ϵ)e−2iθ. (2.24)

Further calculation will be performed in the Cartesian representations. When the

azimuth θ and ellipticity ϵ of the elliptically polarized light are small (θ ≪ 1, ϵ ≪ 1) it

is possible to replace the tangential functions with the first term of the Taylor series as

tan θ ≈ θ and tan ϵ ≈ ϵ. Neglecting the second term of the denominator of (2.23) leads to

χXY ≈ θ + iϵ (2.25)

If the complex parameter of polarization, χ, is known the parameter of the polarization

ellipse θ and tan ϵ can be obtained as [25]

θ =
1

2
arg(χLR), (2.26)

tan ϵ =
|χLR| − 1

|χLR|+ 1
. (2.27)

2.3 Magneto-optical parameters

Magneto-optical (MO) methods describe the change of the polarization state of light in

presence of magnetized medium. The MO effect at different geometries can be expressed

using the phenomenological approach based on the Jones formalism summarized in the

previous section.

For the purpose of definition, the polarization state of the incident light is taken as

linear. The coordinates systems are taken as Cartesian and they are different for incident

and reflected light, defined in figure 3.1.

The effect of the magnetized sample on the light reflected from its surface is expressed

by Jones matrix as

14



CHAPTER 2. POLARIZED LIGHT

Figure 2.3: Definition of system coordinates for incident and reflected waves.

Sxy =

[
rxx rxy

ryx ryy

]
(2.28)

and the effect of the light passing through the sample as

T xy =

[
txx txy

tyx tyy

]
. (2.29)

The matrix elements are the reflection and transmission coefficients for the x and y po-

larization wave, with plane of incidence in z direction.

The Jones matrices Sxy and T xy are diagonal for isotropic medium. This means no

interaction between the x and y wave. The diagonal parts are bound to the optical proper-

ties of the sample, and can be determined by optical ellipsometry. The off-diagonal parts

of the Jones reflection and transmission matrices occur when the sample is magnetized.

Polar configuration (magnetic field perpendicular to the sample surface) at normal

light incidence implies specific symmetry conditions [86] for the Jones matrices above.

They should be invariant with respect to any rotation along the z axis. Conditions

between the parts of the matrices are brought together in table 2.3. As expected there is

no difference between the x and y polarization in this geometry.

Table 2.3: Relations between the parts of Jones reflection and transmission matrix.

diagonal parts off-diagonal parts

Reflection ryy = −rxx rxy = ryx

Transmission tyy = txx txy = −tyx
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2.3. MAGNETO-OPTICAL PARAMETERS

Other important geometry for the MO study is the longitudinal one where the mag-

netic field is in the plane of sample surface and parallel with the plane of incidence. With

help of symmetry of the problem [86] the conditions between the off-diagonal parts of the

Jones reflection matrix is found as

rxy = −ryx. (2.30)

The symmetry implies no conditions on the diagonal parts of the matrix.

Furthermore, the Jones reflection matrix for polar magnetization and normal light

incidence will be linked to the MO parameters, Kerr rotation and Kerr ellipticity. Since

the ratio of the off-diagonal to the diagonal element is usually small, the equation (2.25)

can be used to introduce the Kerr rotation and ellipticity as follows

• x LP light incident

−ryx
rxx

= ΦKx ≈ θKx − iϵKx (2.31)

• y LP light incident
rxy
ryy

= ΦKy ≈ θKy − iϵKy (2.32)

The Jones reflection matrix is simpler in the basis of CP waves. For the transformation

purpose, the dependence (2.16) is applied

SLR =

[
0 rxx + iryx

rxx − iryx 0

]
. (2.33)

The off-diagonal form of the SLR matrix indicates that the CP waves in the cause of polar

magnetization and normal incidence, are reflected as CP, only with different coefficients

of the reflection. Absence of diagonal parts indicates that CP modes do not interact with

each other.

The reflection coefficient for the CP waves is marked as r− for left-handed CP and r+

for the right-handed CP. From the equation (2.33) can be expressed the useful relation

between reflection coefficient in the Cartesian basis and reflection coefficient in the CP

basis

r+ = rxx + iryx, (2.34)

r− = rxx − iryx. (2.35)
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Chapter 3

Basic principles of Optics and

Magnetooptics

Magnetooptical (MO) phenomenon deals with the interactions between light and medium

subjected to a magnetic field. In a case of magnetically ordered medium, such as ferromag-

net or ferrimagnet, magnetooptical effect may as well appear in the absence of external

field. In order to understand the magnetooptical effects proper knowledge of basic optical

principles are necessary. This chapter will be dedicated to optical and magnetooptical

material characteristics from microscopic and macroscopic point of view.

3.1 Magnetooptical effects

There are several types of MO effect, among which we choose the MO Kerr effect (MOKE)

to discuss. MOKE deals with the changes of light reflected from the medium, with the

coordinates systems defined in figure 3.1.

Three configuration of MO Kerr effect can be distinguished. In the polar MOKE effect,

see figure 3.2 a), the magnetization vector is perpendicular to the reflecting surface. In

longitudinal MOKE effect, see figure 3.2 b), the magnetization lays parallel to the plane

of surface and in the plane of incidence. Finally, in the transverse MOKE effect, see figure

3.2 c), the magnetization is aligned parallel to the surface and perpendicular to the plane

of incidence.

The rotation of polarization plane azimuth, so called Kerr rotation, and change of

ellipticity of polarization state, known as Kerr ellipticity, are observed in polar and lon-

gitudinal MOKE. In the transverse MOKE effect, where the electric vector of light is

parallel with the propagation vector, the change in reflectivity of the light after reflection

is observed.

The main concern in the chapter will be on a permittivity tensor and its symmetry

for different MOKE geometries. The quantum theory would not be discussed but can be

found elsewhere [52].
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3.2. OPTICAL PROPERTIES OF MATERIALS

Figure 3.1: Definition of system coordinates for incident and reflected waves.

Figure 3.2: Three configurations of Kerr MO effect.

3.2 Optical properties of materials

The magnetooptical effects are often calculated from macroscopic model based on Maxwell

equations. Basic relations between optical constants will be derived from Maxwell equa-

tions. The ratio of magnetic and electric part of the EM wave is equal to the v/c. For

majority of materials in the optical range, v/c ≪ 1. Therefore only interaction of the elec-

tric part with the medium can be taken into account. As a result, the optical properties

of solids are described by the complex permittivity tensor. The magnetic permeability is

18



CHAPTER 3. BASIC PRINCIPLES OF OPTICS AND MAGNETOOPTICS

assumed to be equal to its vacuum value..

Maxwell equations for isotropic, homogenous, absorbing material can be written as

[32]

∇×E +
∂B

∂t
= 0 , (3.1)

∇×H − ∂D

∂t
− σE = 0 , (3.2)

∇ ·D = 0 , (3.3)

∇ ·B = 0 , (3.4)

where E, D, H , B denote as follows electric field strength, electric displacement density,

magnetic strength and magnetic flux density, and σ is an optical conductance. The vectors

E, D, H , B are linked by the mutual relations, known as material equations and Ohm’s

law [32]

D = εE , (3.5)

B = µH . (3.6)

Here ε stands for permittivity and µ for permeability. In optical frequency range the

permeability is reduced to permeability of the vacuum, µ0.

Action of (∇×) on the equation (3.1) leads to the vector identity [67] on the left side of

the equation

∇× (∇×E) = ∇(∇ ·E)−∇2E (3.7)

Using the identity (3.7) in the Maxwell equations together with a few algebraic operations

[32], leads to the telegraph equation, which describes propagation of light in a conducting

medium

∇2E − µ0ε
∂2E

∂t2
− σµ0

∂E

∂t
= 0 . (3.8)

Solution of telegraph equation (3.8) can be found in the form of an infinite plane wave

[32],

E = E0 exp[i(ωt− γ · r)], (3.9)

where γ, ω, E0, r, t are complex propagation vector, angular frequency, amplitude of

the electric field vector, position vector and time, respectively. The plane wave (3.9) as

a solution of the telegraph equation (3.8) relates the complex propagation vector, γ and

conductivity, σ and electric permittivity ε

γ2 = µ0ω
2(ε− i

σ

ω
) . (3.10)
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3.2. OPTICAL PROPERTIES OF MATERIALS

The complex permittivity ε̂, as defined in [32], is related to the material constants, in

(3.10), as

ε̂ = ε1 − iε2 = µ

(
ε− i

σ

ωε0

)
. (3.11)

Relations between real refractive index, n, extinction coefficient, k, and complex per-

mittivity ε are needed for further calculations. The complex refractive index is defined in

[8]

N̂2 = (n− ik)2 = ε̂, (3.12)

and correlation between n, k and ε from equation (3.12) and (3.10) is hence acquired as

γ2 =
(ω
c

)2
N̂2 = (n− ik)2

(ω
c

)2
= ω2µ0ε̂ . (3.13)

Relations between the real and imaginary part of complex refractive index and complex

permittivity are

n2 − k2 = ε1 = ε, (3.14)

2nk = ε2 =
σ

ωε0
(3.15)

n2 =
1

2

(√
ε21 + ε22 + ε1

)
, (3.16)

k2 =
1

2

(√
ε21 + ε22 − ε1

)
. (3.17)

The real and imaginary part of permittivity, ε1 and ε2, are not independent, as they are

interlinked by Kramers-Krönig dispersion relations [66]

ε1(ω)− 1 =
2

π
P

∫ ∞

0

ω′ε2(ω
′)

(ω′)2 − ω2
dω′ , (3.18)

ε2(ω) = −2ω

π
P

∫ ∞

0

[ε1(ω
′)− 1]

(ω′)2 − ω2
, (3.19)

where P is the main value of the integral.

Using the complex propagation vector expressed with complex refractive index (3.13)

as

N =
c

ω
γ = n− ik (3.20)

in the plane wave formula (3.9)

E = E0 exp
[
−
(ω
c
k · r

)]
exp

[
i
(
ωt− ω

c
n · r

)]
. (3.21)

the exponential function splits into two parts. The second part describes the propagation

of the wave in the medium with refractive index n, while the first part is proportional
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to the damping of the wave in the absorbing medium. The absorbtion coefficient, αA, is

related to a light intensity I, (3.21) as [8]

αA = −1

I

dI

dr
, (3.22)

The absorption coefficient can then be further expressed as [8]

αA = 2
ωk

c
=

4πk

λ
. (3.23)

Here λ is a wavelength of the light in vacuum. For describing propagation of light in an

absorbing medium penetration depth is often used. It represents a length from the surface

of the medium where the intensity of the penetrating light decreases to the value of 1/e,

δp =
4πk

λ
. (3.24)

In anisotropic material scalar form of the permittivity is change to a tensor and detailed

knowledge of its exact form is crucial.

3.3 Permittivity tensor

The general form of the permittivity tensor will be deduced from a macroscopic model

based on symmetry considerations, without the necessity of a microscopic description.

All optical properties will be represented by matrices instead of scalar values, in contrast

to isotropic materials, and therefore simple scalar equations from previous section will

be changed to tensor equations. The permittivity tensor for anisotropic medium can be

expressed as  εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

 . (3.25)

Further we will consider isotropic medium inserted into a magnetic field, which induces

internal magnetization, M . The effect of magnetic field on permittivity tensor can be

expanded to the MacLaurin series with respect to the magnetization. As the effect of

magnetization on medium is small, only the first terms of MacLaurin series have to be

considered, and the permittivity tensor expansion takes the following form [10]

εij = ε
(0)
ij +

[
∂εij
∂Mk

]
M=0

Mk+
1

2

[
∂2εij

∂Mk∂Ml

]
M=0

MkMl+ . . . = ε
(0)
ij +KijkMk+GijklMkMl ,

(3.26)

where ε
(0)
ij , ε

(0)
ji are elements of the permittivity tensor of medium without magnetic field,

Mk, Ml are components of magnetization vector and Kijk, Gijkl are components of the

linear respectively quadratic magneto-optical tensor.
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Form of the permittivity tensor is influenced by the symmetry of the system [15].

From a microscopic theory studying general properties of relaxation functions and of a

conductance, the known Onsager reciprocal principle can be deduced [17]. From this

principle the relations between simultaneous reversal of time and magnetization show,

that during this change the system remain unaffected. Onsager principle implies the

relations between the elements of permittivity tensor

εij(M ) = εji(−M ). (3.27)

Equation (3.27) affects the components of linear MO tensor and leads to the relations

between the elements of the permittivity tensor

ε
(1)
ij = KijkMk = −KjikMk = −ε

(1)
ji . (3.28)

By combining (3.27) and (3.28) some parts of the linear MO tensor are cancelled out and

relation between others reveals, using the Levy Civitta symbol

Kiik = 0 , Kijk = −Kjik . (3.29)

For quadratic MO tensor the same Onsager principle leads to the relation between per-

mittivity tensor

ε
(2)
ij = GijklMkMl = Gijkl(−Mk)(−Ml) = ε

(2)
ji , (3.30)

and the relations between few parts of the tensor is found

Gijkl = Gjikl = Gijkl = Gjilk . (3.31)

According to previous relations, from 27 elements of the linear MO tensor only 9 indepen-

dent parts remain, and for quadratic MO tensor from 81 independent components only

24 independent elements remain.

Other important principles tell us about the symmetry of external forces. Any sym-

metry in the medium leads to a symmetry of the corresponding physical forces. The

following principles characterizing this behavior are obeyed [15], [18]

• Neumann principle: Each physical property of the crystal has the symmetry of

the proper crystal symmetry group or higher.

• Voigt principle: Operation in symmetry group of the crystal cannot lead to any

changes of the tensor representing physical property of this crystal.

• Curie principle: A crystal changing group of symmetry under pressure of external

action is preserving only symmetry elements which are consistent with this action.
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Symmetry principles applied to isotropic medium inserted into a homogeneous mag-

netic field along the z axis, affect the form of permittivity tensor. As a reaction on the

magnetic field, the internal magnetic order occurs in the medium. This order has the

same symmetry as the applied force (Curie principle). The applied magnetic field can be

generated by an electric circuit with huge radius lying in the xy plain (see figure 3.3).

To find symmetry elements, one has to look for transformation where physical properties

remain invariant. In our case of the electrical current loop, it is an arbitrary rotation

angle around the z axis, and reflection around the xy plain [16].

Figure 3.3: Magnetic field generated by the huge electric circuit.

From Voigt principle, the permittivity tensor should be invariant to the operation on

symmetry elements. For C∞h symmetry group, these are expressed by the matrix of

rotation and reflection [16]. The permittivity tensor must be invariant to the symmetry

operations. According to above condition the permittivity tensor obeys the equality

ε(M ) =

 cosφ sinφ 0

− sinφ cosφ 0

0 0 ±1

 ε(M )

 cosφ − sinφ 0

sinφ cosφ 0

0 0 ±1

 , (3.32)

where φ represents arbitrary angle around z axis, and the ±1 stands for the reflection

around xy plain. Evaluation of above mentioned condition leads to a tensor of permittivity

in the specific form

ε(M ) =

 εxx εxy 0

−εxy εxx 0

0 0 εzz

 . (3.33)

Reflection in the plain containing z axis leads to the reversal of the current in the electrical

circuit, which rotates the vector of magnetization by π. Contemplating above symmetry

conducts the condition [9]
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ε(−Mz) =

 − cos 2β sin 2β 0

sin 2β cos 2β 0

0 0 1

 ε(Mz)

 − cos 2β sin 2β 0

sin 2β cos 2β 0

0 0 1

 , (3.34)

declares the affiliations between particular parts of permittivity tensor

εxx(−Mz) = εxx(Mz), (3.35)

εzz(−Mz) = εzz(Mz), (3.36)

εxy(−Mz) = −εxy(Mz). (3.37)

The diagonal and off-diagonal elements of permittivity tensor are even and odd in mag-

netization, respectively as it was shown in (3.35), (3.36), (3.37). At zero magnetization,

the off-diagonal elements are zero, and the isotropic material is again obtained.

x
z

y

q

f

M

Figure 3.4: The magnetization vector in spherical polar coordinates.

So far, the permittivity tensor for magnetic field perpendicular to the sample surface

has been derived, when applying magnetic field to the isotropic medium orientated at the

common angle with respect to the surface of the incidence perpendicular to the z direction

(see figure 3.4). The permittivity tensor for common orientation of magnetization, M in

polar coordinates is written as [10]

ε =

 εxx εxy cos θM εxy sin θM cosϕM

−εxy cos θM εxx −εxy sin θM sinϕM

−εxy sin θM cosϕM εxy sin θM sinϕM εzz

 . (3.38)

For further calculation the permittivity tensor for longitudinal Kerr effect will be deduced

from the form (3.38). The magnetic field vector for longitudinal configuration is set to

the plane of sample, xy plane, and perpendicular to the z axis (θM = 0 and ϕM = π). De-

scribed condition assigned to (3.38) gives the form of permittivity tensor for longitudinal

effect at arbitrary angle of incidence

ε(M ) =

 εxx 0 εxy

0 εxx 0

−εxy 0 εzz

 . (3.39)

24



CHAPTER 3. BASIC PRINCIPLES OF OPTICS AND MAGNETOOPTICS

3.4 Classical Lorentz oscillator model

The Lorentz oscillator model offers fully classical picture of particle - field interaction.

The model describes electro-magnetic isotropic and elastic interaction between classical

charged particle and magnetic field, without time dependence. Hamilton equation of this

system is

H(r,p, t) =
1

2m
[p− eA(r, t)]2 + eU (r, t) + V (r), (3.40)

where m, e, r a p are mass, charge, position vector and impulse of the particle and

A(r, t) a U (r, t) are vector and scalar potential of the EM field. From formula (3.40),

the corresponding magnetic and electric fields are calculated [11]

E(r, t) = −∇U (r, t)− ∂

∂t
A(r, t), (3.41)

B(r, t) = ∇×A(r, t). (3.42)

With calibration of the EM field set as U (r, t) = 0 , the potential V (r, t) has central

character characterized by the parabolic dependence

V (r, t) =
1

2
mω2

0 r
2 . (3.43)

After applying the Hamilton equations

∂qi
∂t

=
∂H

∂pi
, (3.44)

dpi
dt

= −∂H

∂qi
, (3.45)

and inserting a phenomenological damping constant

Γ
d

dt
r = τ−1 (3.46)

the equation for interaction of charged particle and EM field becomes

m
∂2r

∂t2
+mΓ

∂r

∂t
+mω2

0r − e
∂r

∂t
×B = eE0 e

iωt . (3.47)

The above described equation (3.47) will be used for examination of the problem of

charged particle inserted into a magnetic field orientated along the z axis with a magnitude

Bz. Applied magnetic field changes the equation (3.47) and expressions for the cartesian

components can be separated as

∂2x

∂t2
+ Γ

∂x

∂t
+ ω2

0x− ωc
∂y

∂t
= E0x

e

m
eiωt , (3.48)

∂2y

∂t2
+ Γ

∂y

∂t
+ ω2

0y + ωc
∂x

∂t
= E0y

e

m
eiωt , (3.49)

∂2z

∂t2
+ Γ

∂z

∂t
+ ω2

0z = E0z
e

m
eiωt . (3.50)
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Here the position vector r = (x, y, z) was separated to the Cartesian components. ωc

stands for the cyclotron frequency, defined as

ωc = −eBz

m
. (3.51)

Magnetic field along the z axis only affects the equations for the x (3.48) and y (3.49)

components and has no effect on the z component (3.50).

Choosing the solution of the equation (3.50) in the form of plane wave, z = z0e
iωt

leads to the solution for z component of the position vector as

z =

eE0ze
iωt

m
(ω2

0 − ω2) + iωΓ
. (3.52)

The average dipole moment per volume unit is defined by product of concentration of

charged particles, the charge, e, and an average displacement of the electrons. It can be

expressed in terms of susceptibility tensor, χ, external electric field, E and permittivity

of the vacuum, ε0, [11]

P = Ner = ε0χE (3.53)

The relative permittivity is then given by

εij = χij + δij =
Ne

ε0

∂ri
∂Ej

+ δij , (3.54)

with N corresponding to the number of charged particles in volume unit. According

to material parameters and equation (3.52), the formula for the zz component of the

permittivity tensor is written as

εzz = 1 +
Ne2

mε0

1

ω2
0 − ω2 + iΓω

= 1 + ω2
p

1

ω2
0 − ω2 + iΓω

. (3.55)

Equation (3.55) describes the known relation for isotropic absorbing medium, where ωp

stands for the frequency of plasmon vibrations. Magnetic field couples the equations (3.48)

and (3.49). The coupling of motion in x and y direction expresses optical anisotropy. From

(3.48) and (3.49) following material parameters can be calculated

εxx = εyy = 1 + ω2
p

ω2
0 − ω2 + iΓω

(ω2
0 − ω2 + iΓω)2 − ω2

cω
2
, (3.56)

εxy = εyx = ω2
p

iωωc

(ω2
0 − ω2 + iΓω)2 − ω2

cω
2
, (3.57)

εxz = εzx = εyz = εzy = 0 . (3.58)

Elements of the permittivity tensor are in accordance with the relations, which were de-

duced earlier from the macroscopic point of view. For ωc → 0, corresponding to vanishing

of the magnetic field, the off-diagonal elements of the tensor are cancelled. The diagonal
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elements are approaching the value of εzz, and for the zero field the tensor of permittivity

is only reflecting permittivity of an isotropic medium.

For ω0 = 0, the formulas (3.55), (3.56) and (3.57) describe the permittivity of free

electrons - Drude model. The Drude model explains a contribution of the intraband

transition to the permittivity at lower energies.
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Chapter 4

Optical waves in magnetic

sandwiches and multilayers

In the present chapter, the electro-magnetic (EM) theory of anisotropic materials will

be reviewed for anisotropic material. Furthermore, the propagation of EM wave will be

determined in isotropic medium with applied magnetic field, for the polar and longitudinal

magneto-optic Kerr effect (MOKE). As the next step, the EM theory will be enlarged for

the multilayered structure.

An EM wave propagating in a linear medium can be resolved in four eigenmodes with

proper eigenvalues of refractive index calculated from the wave equation with permittivity

tensor of the medium. The calculation for the multilayer can be simplified with the matrix

formalism, described by Yeh [13].

4.1 Wave equation in anisotropic medium

The wave equation for an anisotropic medium is derived from the Maxwell’s equation

(3.1-3.4) without source

∇×E +
∂B

∂t
= 0 , (4.1)

∇×H − ∂D

∂t
= 0 , (4.2)

∇ ·D = 0 , (4.3)

∇ ·B = 0 , (4.4)

together with the material relations between the E, D, H , B, which are electric field

strength, electric displacement density, magnetic strength and magnetic flux density, re-

spectively

D = εE, (4.5)

B = µH . (4.6)
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Here ε stands for electric permittivity and µ for magnetic permeability. As was shown

in chapter 3, the permeability of the medium can be taken as the permeability of the

vacuum, µ = µ0 in the optical spectra range. The telegraph equation, which was deduced

in previous chapter (3.8), leads in the nonconducting ambient to the wave equation

∇2E − µε
∂2E

∂t2
− = 0. (4.7)

The monochromatic plane EM wave, with its electric and magnetic field in form

E = E0 exp[i(ωt− γ · r)], (4.8)

B = B0 exp[i(ωt− γ · r)], (4.9)

can be considered as a solution of the wave equation (4.12). Reduced wave vector, N̂ , will

be defined and used, as the wave vector in the medium γ divided by the magnitude of the

wave vector in vacuum

N̂ =
c

ω
γ = (Nxx̂+Nyŷ +Nzẑ) . (4.10)

The relation between electric, E and magnetic, B field of the EM field can be calculated

from Maxwell equations

B =
1

c
N̂ ×E, (4.11)

which can reduce the problem of the EM field propagation through the medium to calcu-

lation of the electric field vector. According to (4.11), magnetic field can be derived from

electric part of the EM wave.

The wave equation (4.12) can be solved with the plane wave (4.8)

∇2E − µ0ε
∂2E

∂t2
= 0. (4.12)

For the present purpose, the anisotropic medium may be characterized by a complex

permittivity tensor of a general form [12]

ε =

 εxx εxy εxz

εyx εyy εyz

εxz εzy εzz

 . (4.13)

For the general form of complex permittivity tensor in Cartesian coordinates system, it is

possible without any loss of generality of the solution, to choose the Cartesian coordinates

system for which Nx = 0. Evaluating the wave equation (4.12) with the electric field

part of the monochromatic plane wave (4.8) in anisotropic medium (6.4) leads to three

equations, one for every component of the electric field vector εxx −N2
y −N2

z εxy εxz

εyx εyy −N2
z εyz +NyNz

εzx εzy +NyNz εzz −N2
y


 Ex

Ey

Ez

 = 0. (4.14)
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A nontrivial solution for the set of homogeneous linear equations imposes a condition,

that the determinant of the coefficient matrix has to be equal zero [67], which leads to a

characteristic equation. The characteristic equation for the set of equations (4.14) gives

a four values of Nz, so called eigenvalues of the refractive index

N4
z εzz +N3

z [Ny(εyz + εzy)]−
N2

z

[
εyy(εzz −N2

y ) + εzz(εxx −N2
y )− εxzεzx − εyzεzy

]
−

Nz

[
(εxx −N2

y )(εyz + εzy)− εxyεzx − εyxεxz
]
Ny+

εyy
[
(εxx −N2

y )(εzz −N2
y )− εxzεzx

]
−

εxyεyx(εzz −N2
y )− εyzεzy(εxx −N2

y ) + εxyεzxεyz + εyxεxzεzy = 0.

(4.15)

Each of the different refractive indexes has been assigned its polarization vector in form

[12]

ej =

 −εxy(εzz −N2
y ) + εxz(εzy +NyNzj)

(εzz −N2
y )(εxx −N2

y −N2
zj)− εxzεzx

−(εxx −N2
y −N2

zj)(εzy +NyNzj) + εzxεxy

 . (4.16)

To conclude, the light in a common anisotropic medium propagates in four modes. Each

mode has been assigned a refractive index, calculated from the characteristic equation

(4.15). The polarization vector for these eigenmodes is calculated with the eigenvalues

of the refractive index and has the form of (4.16). The electric field in an anisotropic

medium can be expressed as a superposition of these four proper modes with respective

amplitude coefficients

E =
4∑

j=1

E0jej exp
[
i
(
ωt− ω

c
N̂ j · r

)]
. (4.17)

The magnetic part of the EM field is evaluated using the equation (4.11)

cB =
4∑

j=1

E0jbj exp
[
i
(
ωt− ω

c
N̂ j · r

)]
, (4.18)

where the proper modes of the polarization for magnetic field are also obtained from

(4.11)

bj = (Nyŷ +Nzjẑ)× ej. (4.19)

All the calculations sofar was for a general anisotropic medium. The characteristic equa-

tion and appropriate eigenmodes can be further specified, accordingly to presence of

symmetry.

4.2 Isotropic medium in external magnetic field

Characteristic equation and proper modes will be examined for EM field in isotropic

medium inserted in a magnetic field. When an optically isotropic medium is inserted into
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a magnetic field, the permittivity tensor imposes a symmetry of the magnetic field. For

the first order of the magnetooptical (MO) effects the permittivity tensor of medium can

be expressed with (3.38). This form of permittivity tensor used in characteristic equation

(4.15) extinguished the parts proportional to N3
z . Closer look will be given to special

cases - the longitudinal and polar MO Kerr effect. This setup leads to vanishing of the

elements proportional to Ny and the characteristic equation is biquadratic.

4.2.1 Polar MO Kerr effect

Configuration of polar Kerr effect is shown in figure 4.1. Magnetic field is perpendicular

to the sample surface, parallel to the z axis. The sample surface is in xy plane. The

incident propagation vector restricted to the plane of incidence forms an arbitrary angle

φ with the z axis.

Figure 4.1: Direction of magnetic field and propagation vector of light in polar Kerr effect

configuration.

In chapter 3, the permittivity tensor was deduced for isotropic medium in magnetic field

perpendicular to the sample surface. This form applied to a situation in figure (4.1)

assuming only the effects linear in magnetization leads to the permittivity tensor

ε =

 ε1 −iε2 0

iε2 ε1 0

0 0 ε1

 . (4.20)

The characteristic equation (4.15) derived from the wave equation with the form of per-

mittivity tensor (4.20) leads to the biquadratic equation for Nz

N4
z ε1 − 2N2

z ε1
(
ε1 −N2

y

)
+
(
ε1 −N2

y

) [
ε1
(
ε1 −N2

y

)
− ε22

]
= 0. (4.21)
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Quadratic solution can be found for eigenvalues of the refractive indexes, Nz as

N2
z± =

(
ε1 −N2

y

)
± ε2

√
ε1 −N2

y

ε1
. (4.22)

These are the squares of the complex refractive indexes, therefore the square roots

should be calculated to satisfy the condition, that the real part of the refractive index has

to be nonnegative. The aimed solutions for (4.21) are

Nz1 = Nz+, (4.23)

Nz2 = −Nz+, (4.24)

Nz3 = Nz−, (4.25)

Nz4 = −Nz−, (4.26)

where Nz± stands for

Nz± =

√√√√(ε1 −N2
y

)
±

ε2
(
ε1 −N2

y

)√
ε1
(
ε1 −N2

y

) . (4.27)

Corresponding proper polarization vectors are calculated from (4.16) with the eigenvalues

of refractive indexes above

ej =

 −iε2
(
ε1 −N2

y

)
−
(
ε1 −N2

y

) (
ε1 −N2

y −N2
zj

)
NyNzj

(
ε1 −N2

y −N2
zj

)
 . (4.28)

Polar MO Kerr effect with normal light incidence

A specific case will be discussed further for the polar MO Kerr effect with the propagation

vector parallel to the magnetization vector, along the z direction. In this configuration,

the Ny part of the reduced complex refractive index is equal to zero. The refractive

indexes can be calculated with the results obtained in previous section (4.23) involving

the condition Ny = 0, the normal incidence,

N2
z± = ε1 ± ε2, (4.29)

Nz+ =
√
ε1 + ε2, Nz− =

√
ε1 − ε2. (4.30)

and the four eigenvalues of refractive index Nz are

Nz1 = Nz+, (4.31)

Nz2 = −Nz+, (4.32)

Nz3 = Nz−, (4.33)
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Nz4 = −Nz−, (4.34)

The proper modes change with condition Ny = 0 from general elliptically polarized to

four circularly polarized (CP) vectors. The pairs of eigenvalues of refractive indexes and

respective eigenvectors of polarization are summarized in table 4.1.

Table 4.1: Eigenvalues of refractive indexes and eigenmodes for polarizations for polar

Kerr effect at normal light incidence.

Nz1 = Nz+ Nz2 = −Nz+ Nz3 = Nz− Nz4 = −Nz−

e1 =

[
1

i

]
e2 =

[
1

i

]
e3 =

[
1

−i

]
e4 =

[
1

−i

]

The light propagating parallel with magnetic field applied to magnetized medium is de-

composed to four CP modes, as can be found in table 4.1. Two of them are propagating

forward from the front surface to back of the structure and two are going backwards.

For further calculation, the relations between elements of permittivity tensor and real

and imaginary part of the refractive index will be necessary. The permittivity tensor

elements can be decomposed into the real and imaginary parts

ε1 = εre1 − iεim1 , (4.35)

and can be inserted into the equation from previous chapter for the real and imaginary

part of refractive index (3.27), (3.28). This leads to complicated dependencies

n2
± =

1

2

[√
(εre1 ± εre2 )2 + (εim1 ± εim2 )

2
+ (εre1 ± εre2 )

]
, (4.36)

k2
± =

1

2

[√
(εre1 ± εre2 )2 + (εim1 ± εim2 )

2 − (εre1 ± εre2 )

]
. (4.37)

As the perturbation in optical properties caused by magnetic ordering are small, only

effects linear in magnetization are taken into account. The refractive index of the magne-

tized medium can be separated into the refractive index of the isotropic medium N and

small perturbation introduced by the magnetic ordering ∆N

N± ≈ N ±∆N. (4.38)

Equations (4.36) and (4.37) can be hence simplified to

ε1 =
1

2

(
N2

+ +N2
−
)
, (4.39)

ε2 =
1

2

(
N2

+ −N2
−
)
. (4.40)

Refractive index of the isotropic medium can be expressed with permittivity tensor

element, as N ≈ √
ε1 [8]. The ∆N part of refractive index can be described in the terms

of permittivity tensor elements [9] as
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∆N ≈ ε2
2
√
ε1

=
iεxy

2
√
εxx

. (4.41)

4.2.2 Longitudinal MO Kerr effect

Longitudinal MO Kerr effect deals with the magnetooptical effect arising from inserting

the medium into the magnetic field oriented in the plane of incidence and perpendicular

to the z direction. The configuration is shown in figure 4.2.

Figure 4.2: Direction of magnetic field and propagation vector of light in longitudinal

Kerr effect configuration.

The form of permittivity tensor for isotropic medium inserted in y-oriented magnetic field

was evolved in previous chapter (3.39)

ε =

 ε1 0 −iε2

0 ε1 0

iε2 0 ε1

 . (4.42)

The characteristic equation (4.15) with permittivity tensor for longitudinal magnetic field

(4.42) leads to the quadratic equation for N2
z

N4
z −N2

z

[
2(ε1 −N2

y )−
ε22
ε1
)

]
+ (ε1 −N2

y )
2 − ε22. (4.43)

The quadratic solution of the eigenvalues of refractive indexes Nz are from the (4.43)

N2
z± = ε1 −N2

y − ε22
ε1

[
±
√

4ε1N2
y + ε22 − ε2

]
. (4.44)
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With condition for real part of refractive index ℜ(Nz± ≥ 0), all four eigenvalues of refrac-

tive indexes are calculated as

Nz1 = Nz+, Nz2 = −Nz+, Nz3 = Nz−, Nz4 = −Nz−. (4.45)

The proper eigenvalues of the polarization vectors are calculated from equation (4.16) as

ej =

 −iε2NyNzj

(ε1 −N2
y )(ε1 −N2

y −Nzj2)− ε22
−NyNzj(ε1 −N2

y −Nzj2)

 (4.46)

When the wave propagates along z direction, e.g. normal light incidence, the Ny part

of the reduced refractive index is equal to zero. Involving the condition Ny = 0 to the

eigenvalues of refractive index (4.46), impose no condition on the form of the eigenmodes

of polarization, as it is for isotropic medium. The light is not affected by the magnetic

field applied to medium. The longitudinal Kerr effect vanishes at normal light incidence.

4.3 Multilayered structure

The development of the sample preparation techniques leads to preparation of more com-

plicated structures. Nowadays, photonic crystals with layers only nm’s thick and many

layers in one structure are often investigated. Investigation of the EM field in multilayered

structures will be afterwards described.

Calculation of the EM field in multilayered structure will be performed in few steps

• calculation of the EM field in one individual layer - performed in the previous section

• evaluation of the condition for continuity of tangential EM field components at

interfaces of two different layers

• introduction of the Yeh formalism

• usage of the Yeh formalism for the calculation of polar and longitudinal MO Kerr

effect

4.3.1 Yeh matrix formalism

A multilayered structure with profile described in figure 4.3 will be investigated. Each

layer is assigned a permittivity tensor, εn and the hole structure is defined by function

of permittivity tensor ε(z), with jumping dependent in z direction. Sharp interfaces are

anticipated between layers.

EM field in simple layer was calculated in previous section. Electric and magnetic vectors

of EM wave are superpositions of four eigenmodes propagating throughout the layer, ej
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Figure 4.3: Layered structure.

and bj , with four different eigenvalues of the refractive index, Nzj assigned to them. The

EM field in n− th layer can be described as

E(n) =
4∑

j=1

E
(n)
0j e

(n)
j exp

[
iωt− i

ω

c

(
Nyy +N

(n)
zj (z − zn)

)]
, (4.47)

cB(n) =
4∑

j=1

E
(n)
0j b

(n)
j exp

[
iωt− i

ω

c

(
Nyy +N

(n)
zj (z − zn)

)]
, (4.48)

where E0j are the amplitudes of proper eigenmodes. The Ny part of the refractive index

isn’t assigned with layer label as it is not affected by the magnetic ordering in each layer

and it only obeys the Snell law.

EM field in each point in space and time has to carry out the continuity of tangential

EM field components. On the boundary of the n-th and (n + 1)-th layer, this condition

can be written with help of a set of equations describing the x and y part of the electric

and magnetic field vector at the interface of each layer

4∑
j=1

E
(n−1)
0j e

(n−1)
j · x̂ =

4∑
j=1

E
(n)
0j e

(n)
j · x̂ exp

(
i
ω

c
N

(n)
zj tn

)
, (4.49)

4∑
j=1

E
(n−1)
0j e

(n−1)
j · ŷ =

4∑
j=1

E
(n)
0j e

(n)
j · ŷ exp

(
i
ω

c
N

(n)
zj tn

)
, (4.50)

4∑
j=1

E
(n−1)
0j b

(n−1)
j · x̂ =

4∑
j=1

E
(n)
0j b

(n)
j · x̂ exp

(
i
ω

c
N

(n)
zj tn

)
, (4.51)

4∑
j=1

E
(n−1)
0j b

(n−1)
j · ŷ =

4∑
j=1

E
(n)
0j b

(n)
j · ŷ exp

(
i
ω

c
N

(n)
zj tn

)
, (4.52)

where tn stands for the thickness of the n− th layer. Described situation is illustrated in

figure 4.4 in details.
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Figure 4.4: Boundary conditions.

Equations (4.49)-(4.52) can be divided into two subgroups, represented the propagation in

the layer (equal to exp (iω/cNzjtn)) and the part corresponds to the boundary conditions

(equal to ej .x or ej .y). Each of this part can be assigned a matrix form and equations

(4.49)-(4.52) can be convert to

D(n−1)E
(n−1)
0 = D(n)P (n)E

(n)
0 . (4.53)

Here four parts of vector E
(n)
0 stands for eigenmodes amplitudes of the electric field.

Propagation matrix, P (n), describes the propagation through the layer and it is defined

as

P
(n)
ij = δijexp

(
i
ω

c
Nzjtn

)
, (4.54)

where δij is the Krönecker delta. The boundary conditions are included into the dynamic

matrix, D(n). The dynamic matrix is defined as

D
(n)
1j = e

(n)
j · x̂, (4.55)

D
(n)
2j = b

(n)
j · ŷ, (4.56)

D
(n)
3j = e

(n)
j · ŷ, (4.57)

D
(n)
4j = b

(n)
j · x̂. (4.58)
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The mutual relation between the electric field in the (n−1)-th layer close to the interface

with n-th layer and the electric field in the (n + 1)-th layer close to the interface with

n-th layer can be calculated from equation (4.53) as

E
(n−1)
0 =

(
D(n−1)

)−1

D(n)P (n)E
(n)
0 = T n−1,nE

(n)
0 . (4.59)

The matrix T n−1,n performs a transfer of the wave between two adjacent layers and it

is therefore called the transfer matrix. Onward reproducing of this procedure on every

interface in the structure, leads to the connection between the electric field before, (E
(0)
0 ),

and after, (E
(m+1)
0 ), the structure

E
(0)
0 =

(
m+1∏
n=1

T n−1,n

)
Em+1

0 = ME
(m+1)
0 . (4.60)

The problem of EM wave propagation through the layered structure is converted to cal-

culation of the structure matrix, M . For known eigenvalues and eigenmodes of proper

polarization for each layer the propagation and dynamic matrix can be constructed and

the structure matrix can be evaluated by their multiplication. This matrix formalism was

described in detail by Pocchi Yeh [13] and it is therefore known as Yeh formalism.

4.3.2 Eigenmodes for isotropic medium

At the beginning of this section, the propagation of the EM wave was considered in

anisotropic layer. It is not difficult to justify that in isotropic layer, where the layer is

characterized by diagonal permittivity tensor with εjj = ε1 = N̂2, the calculated eigen-

vectors of polarization, ej, are equal to zero. Therefore other solution of characteristic

equation has to be found. The orientation of the propagation vector is determined by

condition Ny = const, which allows two orientation of the propagation vector

γ1,2 =
ω

c
[Nyŷ ±Qiz] , (4.61)

Here new parameter Q is introduced, with condition ℜ(Q) ≥ 0, as

Q =
√

ε1 −N2
y =

√
N̂2 −N2

y . (4.62)

As the medium is isotropic, the eigenmodes can be chosen arbitrarily [12]. They are often

taken as circularly (CP) or linearly (LP) polarized waves [9], in relation to symmetry of a

problem. Further the calculation for isotropic medium will be performed in the Cartesian

coordinates with LP waves as eigenmodes. After choosing the eigenmodes of polarization

vectors, the dynamic matrix is constructed

D =


1 1 0 0

Q −Q 0 0

0 0 Q/N̂ Q/N̂

0 0 −N̂ N̂

 . (4.63)
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With dynamic matrix in form (4.63), the multilayer containing isotropic medium can be

calculated with Yeh formalism. The isotropic layer can form the surroundings in front

and after the structure, or nonmagnetic layer in the structure.

As was said before, the Ny part of the refractive index is related to the angle of incident

light, φ(0). The change of Ny through the structure is calculated with the Snell law

Ny = N̂ (0) sinφ(0). (4.64)

4.3.3 Reflection and transmission coefficients

EM theory of light in the multilayered structure allows us to calculate the flows of energy

through the structure, and the corresponding reflection and transmission coefficients.

Furthermore it is also possible to acquire the Kerr and Faraday rotation and ellipticity,

with help of reflection and transmission coefficients.

Further a situation, where a EM wave propagates towards the structure from the

vacuum with angle of incidence φ(0) will be considered. No energy strikes on the back

of the structure. These conditions reset certain amplitudes of the EM field after the

structure, concretely E
(m+1)
02 (zm) = 0 and E

(m+1)
04 (zm) = 0. The EM field (4.60) before

and after structure is related as
E

(0)
01 (z0)

E
(0)
02 (z0)

E
(0)
03 (z0)

E
(0)
04 (z0)

 =


M11 M12 M13 M14

M12 M22 M23 M24

M13 M32 M33 M34

M14 M34 M43 M44




E
(m+1)
01 (zm)

0

E
(m+1)
03 (zm)

0

 . (4.65)

Reflection coefficients are defined as ratio of the incident to reflected energy. From

(4.65) they can be calculated

r12 =

(
E

(0)
02 (z0)

E
(0)
01 (z0)

)
E

(0)
03 (z0)=0

=
M21M33 −M23M31

M11M33 −M13M31

, (4.66)

r14 =

(
E

(0)
04 (z0)

E
(0)
01 (z0)

)
E

(0)
03 (z0)=0

=
M41M33 −M43M31

M11M33 −M13M31

, (4.67)

r34 =

(
E

(0)
04 (z0)

E
(0)
03 (z0)

)
E

(0)
01 (z0)=0

=
M11M43 −M41M13

M11M33 −M13M31

, (4.68)

r32 =

(
E

(0)
02 (z0)

E
(0)
03 (z0)

)
E

(0)
01 (z0)=0

=
M11M23 −M21M13

M11M33 −M13M31

. (4.69)

Transmission coefficients are defined as ratio of the incident to transmitted energy.

They can be acquired from (4.65) as

t11 =

(
E

(m+1)
01 (zm)

E
(0)
01 (z0)

)
E

(0)
03 (z0)=0

=
M33

M11M33 −M13M31

, (4.70)
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t13 =

(
E

(m+1)
03 (zm)

E
(0)
01 (z0)

)
E

(0)
03 (z0)=0

=
−M31

M11M33 −M13M31

, (4.71)

t33 =

(
E

(m+1)
03 (zm)

E
(0)
03 (z0)

)
E

(0)
01 (z0)=0

=
M11

M11M33 −M13M31

, (4.72)

t31 =

(
E

(m+1)
01 (zm)

E
(0)
03 (z0)

)
E

(0)
01 (z0)=0

=
−M13

M11M33 −M13M31

. (4.73)

The reflection Jones matrix for the magnetic structure in Cartesian coordinates system

(2.29) is coupled with Yeh formalism with the reflection coefficients (4.66)-(4.69) as

Ssp =

[
rss rsp

rps rpp

]
=

[
r12 r32

−r14 −r34

]
. (4.74)

In chapter 2 was shown that the Kerr rotation and ellipticity can be calculated from

Jones reflection matrix. Alike Jones reflection matrix also Jones transmission matrix can

be defined and related to the transmission coefficients [9]

Ssp
T =

[
tss tsp

tps tpp

]
=

[
t11 t31

t13 t33

]
. (4.75)

4.3.4 Polar Kerr MO effect at normal light incidence

Optical response was determinate for single magnetic layer magnetized perpendicular to

the surface with normal light incidence according to the medium surface. The eigenmodes

in such layer are four CP waves. The multilayered structure in polar configuration with

normal light incidence will be investigated in this section. CP basis of Jones calculus

was chosen for further calculation due to symmetry of the problem. The eigenvectors of

polarization for isotropic layers and the half space between and after the structure are in

CP basis described as [9]

e
(n)
1 = e

(n)
2 =

1√
2

 1

i

0

 , (4.76)

e
(n)
3 = e

(n)
4 =

1√
2

 1

−i

0

 . (4.77)

Eigenmodes for magnetic layer are complicated and were derived earlier (4.19)

b
(n)
1 = b

(n)
2 = ∓iN

(n)
+√
2

 1

i

0

 , (4.78)
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b
(n)
3 = b

(n)
4 = ±iN

(n)
−√
2

 1

−i

0

 . (4.79)

Dynamic and propagation matrix can be constructed with information about eigenmodes

and the eigenvalues of the refractive indexes, all summarized in table 4.1. The dynamic

matrix is obtained from (4.55)-(4.58) as

D(n) =

√
2

2


1 1 1 1

N
(n)
+ −N

(n)
+ N

(n)
− −N

(n)
−

i i −i −i

−iN
(n)
+ iN

(n)
+ iN

(n)
− −iN

(n)
−

 (4.80)

and the Propagation matrix is constructed with (4.54)

P (n) =


exp iω

c
N

(n)
+ tn 0 0 0

0 exp−iω
c
N

(n)
+ tn 0 0

0 0 exp iω
c
N

(n)
− tn 0

0 0 0 exp−iω
c
N

(n)
− tn

 . (4.81)

The structure matrix, M , can be obtained by multiplication of matrices (4.80) and (4.81)

for each layer in structure according to the structure architecture and dependencies (4.59),

(4.60).

Further we can proceed to the situation with the thickness of the (m+ 1)-th set to

zero. The E
(m+1)
0 hence describes the field close to the surface of the structure. Closer

look to the structure matrix M indicates that eight of its component are equal to zero,

and the matrix can be decomposed to 2x2 sub-matrices

M =


M11 M12 0 0

M12 M22 0 0

0 0 M33 M34

0 0 M43 M44

 . (4.82)

The upper block represents the changes in the eigenmodes e
(n)
1 and e

(n)
2 , with the index of

the refraction N+ and the lower block correspond to the propagation of the eigenmodes

e
(n)
3 and e

(n)
4 , with refraction index N−. From the form of the M matrix is obvious, that

in hole structure the CP eigenmodes don’t interact with each other. Sub-matrix form of

the matrix structure divides the problem into two similar smaller tasks, the propagation

of the e
(n)
1 a e

(n)
2 and propagation of the e

(n)
3 a e

(n)
4 modes. To find the field in the

structure, only one problem need to be solved and the other is obtained by the change of

the refraction index

N
(n)
+ ⇐⇒ N

(n)
− . (4.83)
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The reflection coefficients are calculated from the M matrix as

r+ =
M21

M11

, (4.84)

r− =
M43

M33

(4.85)

and the MO parameters, Kerr rotation and ellipticity are acquired with the help of rela-

tions derived in section 2 (6.2), (6.3) as

θK =
1

2
arg(

r−

r+
), (4.86)

tan ϵK =
| r−
r+
| − 1

| r−
r+
|+ 1

(4.87)
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Chapter 5

Magneto-optical spectroscopic

measurements

Magneto-optical (MO) effects are a small perturbation of optical properties. As such,

the MO effects are difficult to detect and analyzing requires very precise measurement

methods.

There are two basic methods commonly used for detection of the MO effects. Both of

them will be discussed with the emphasis on the accuracy and detection limits. First, the

dc-method, which is sensitive to the intensity of the light at the output of the measured

optical setup. Two different working principles of dc-method will be discussed - either the

measurement between two crossed polarizers or the measurement with different intensity

detection.

Second group of measurement techniques consists of a modulation techniques, where

azimuth or ellipticity of the light can be modulated. The azimuth modulation technique

with feedback circuit was used in this work. Exact description of this method will be held

at the end of this chapter.

5.1 dc method measurements

Two most commonly known dc methods for MO Kerr measurements are nearly crossed

polarizers method and differential intensity method.

While the first, nearly crossed polarizers method, is rather old and not too precise, it

is still favorite for its simplicity. Nowadays it is used in Kerr microscopes for visualization

of the magnetic domains [89], [90] and mapping the stress in glass [91]. Experimental

setup of this method comprises of polarizer, sample and analyzer (in cross position with

the polarizer), see figure 5.1. Intensity of the light incident on the detector is described

by the Malus law, [8]

I = I0 sin
2 α . (5.1)

Here I0 and I stand for intensities before and after analyzer, respectively. A sinusoidal
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square function differs slowly close to the maximum. The crossed position of the polarizer

and analyzer is therefore rather difficult and inaccurate to found.

Figure 5.1: DC method with crossed polarizer used for measuring MO effect.

On the other hand, the second method of differential intensity improves significantly

signal to noise ratio [27]. It is based on using the optical bridge detection scheme, see

figure 5.2. Optical setup consists of polarizer (oriented at angle α), sample, Wollaston

prism (oriented at angle π/4), which provides the decomposition of the light into two

orthogonal components. These are detected by two identical detectors. The detectors

measure difference between intensity in the individual detection arms, which corresponds

to the rotation of the polarization plane [9].

5.2 Modulation technique measurements

Measurement of the small MO effect requires more precise technique. Modulation tech-

niques are suitable for this measurement, which are based on harmonic change of po-

larization state of light in time. The detected light can be separated to the oscillating

part and the background with the lock-in amplifier. This technique strongly increases the

noise-to-signal ratio.

5.2.1 Ellipticity modulation technique

Ellipticity modulation technique is based on change of wave shift between two orthogonal

directions using a photo-elastic modulator (PEM). PEM is a device, which periodically

presses and draws photo-elastic material (glass or silica) on the frequency ωm, [93]. With

special adjustment it enables to measure Kerr rotation and ellipticity simultaneously, one
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Figure 5.2: dc method with differential intensity detection used for measuring MO effect.

of them detected at the frequency ωm and the second on ω2m, [84],[85]. A scheme of setup

is shown in figure 5.3

Figure 5.3: Set-up for the MO measurements using ellipticity modulation technique.

5.2.2 Azimuth modulation technique

Azimuth modulation technique with feedback circuit will be described in this section [9].

This modulation method was used to measure the MO effect in this work.
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Modulation of the azimuth angle is provided by a device called Faraday cell, which is

based on a Faraday effect in quartz. Light enters quartz cylinder inserted in solenoid coil

through polished faces and its polarization state is changed. Scheme of the Faraday cell

can be found in figure 5.4. Since the Faraday rotation is proportional to the magnetic

field, the angle of rotation can be varied with the change of current in solenoid coil. Very

precise high power audio amplifier is needed to control the current in the Faraday cell.

Figure 5.4: Scheme of Faraday modulation cell with water-cooling circuit.

Faraday rotation is also dependent on optical properties of the quartz cylinder. As they

vary with temperature, the quartz cylinder has to be protected from the heat produced by

a solenoid coil. This is achieved by a water cooled circuit that controls the temperature

of the whole system.

The form of Faraday cell in Jones formalism will be needed for theoretical description

of the setup. The form is derived from the Jones rotation matrix, with angle of rotation

periodically dependent on time

M =

[
cos(β0 sinωt) − sin(β0 sinωt)

sin(β0 sinωt) cos(β0 sinωt)

]
. (5.2)

Here ω stands for angular modulation of the frequency and β0 represents the modulation

amplitude, which is normally smaller than 3 degrees.

Design of the set-up, which was used for our precise experiments (resolution up to

10−4deg) consists of the following components, see figure 5.5,

• Light source

450W Xe lamp (OSRAM XBO 450W/1), which allows measurements in the spectral

range of 250 nm - 1000 nm (1.2 eV - 5.0 eV in energy)
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• Monochromator

prism monochromator (SPM-2 Carl Zeiss Jena)

• Polarizer

calcit prism, to be replaced by Wollaston and Rochon prism for experiment under

240 nm

• Faraday cell - compensator

suprasil quartz glass, temperature kept constant by the means of water circuit with

thermoregulator

• Faraday cell - modulator

suprasil quartz glass, temperature kept constant by the means of water circuit with

thermoregulator, the signal is modulated at frequency 2kHz

• Phase plate

• Sample hold in electromagnet

temperature kept constant by the help of water circuit, for polar measurements the

field up to 0.47T is available, while for longitudinal 0.03T

• Analyzer

calcit prism, to be replaced by Wollaston and Rochon prism for experiment under

240 nm

• Detector - photomultiplier

a photomultiplier EMI with S20 cathode in quartz envelope (UV region) or Hama-

matsu R3310-02 with InGaAs photocathode (visible and infrared region)

• Analyzer

The polarization state of the light that reaches the detector can be written in Jones

formalism as

JO
XY =

[
cos2 ξ cos ξ sin ξ

cos ξ sin ξ sin2 ξ

][
rss rsp

rps rpp

][
ei

δ
2 0

0 e−i δ
2

][
cos η − sin η

sin η cos η

]
×

×

[
cos(β0 sinωt) − sin(β0 sinωt)

sin(β0 sinωr) cos(β0 sinωt)

][
cosα

sinα

]
.

(5.3)

Two important orientation of the analyzer will be considered. At the position ξ = 0 -

analyzer transmits the s-polarized wave and at the position ξ = π/2 - analyzer transmits

the p-polarized wave. Under this restriction, the polarization at the detector simplifies to
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Figure 5.5: Set-up for the MO measurements using azimuth modulation technique with

feedback circuit.

JO
XY =

 cos2 ξ(rsse
i δ
2 cosΩ + rspe

−i δ
2 sinΩ)

sin2 ξ(rpse
i δ
2 cosΩ + rppe

−i δ
2 sinΩ)

 , (5.4)

where new notation was used

Ω = α+ η + β0 sinωt. (5.5)

The situation with analyzer at the position ξ = π/2 will be discussed. For small angles α,

β, and η (|α| << 1, |β| << 1, and |η| << 1), the intensity on detector can be rewritten

as

I ≈ 1

2

[
|rps|2 + |rpp|2Ω2 + (rpsr

∗
ppe

iδ + r∗psrppe
−iδ)Ω

]
. (5.6)

The part of the signal on the frequency ωm

Iω ≈
[
α+ η + ℜ

(
rps
rpp

eiδ
)]

, (5.7)

is a linear function of the α, η and ℜ
(

rps
rpp

eiδ
)
.

Sofar the calculation was performed without the benefit of the feedback circuit. The

angle Γ (δ) represents for a given δ the contribution of the MO effect to the intensity Iω.

Feedback circuit is inserted into the setup as ac Faraday cell, compensating the presence

of MO effect. The function of the circuit is shown in figure 5.6, with proper definitions.

The total amplification of the circuit without feedback is

48



CHAPTER 5. MAGNETO-OPTICAL SPECTROSCOPIC MEASUREMENTS

Figure 5.6: Scheme of the electronic feedback circuit

As =
∂Uout

∂ (α+ η − Γ (δ))

[
V.deg−1

]
, (5.8)

and it is changed to

Ar =
∂η

∂Uout

[
deg.V −1

]
. (5.9)

with feedback regulation part inserted. The total amplification, with use of (5.8) and

(5.9) is given by

g = AsAr. (5.10)

The following dependencies can be deduced form the scheme of the feedback circuit, figure

5.6

Uout = As(α− Γ (δ)− ArUout), (5.11)

and

η = −ArUout. (5.12)

These yields to

Uout =
As

1 + ArAs

(α− Γ (δ)) (5.13)

and also

η = − ArAs

1 + ArAs

(α− Γ (δ)) = − g

1 + g
(α− Γ (δ)) . (5.14)

For high amplification |g| >> 1, the equation (5.14) is simplified to
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η + α− Γ (δ) ≈ 0. (5.15)

Comparison of the results (5.15) with the equation representing the output intensity at the

ωm frequency (5.7) shows, that all the changes related to MO effect are compensated by the

current in the ac Faraday cell. The measured signal at the output for high amplification

is also proportional to the MO change of the sample and it decreases with the increased

amplification of the feedback regulator, see equations (5.12) and (5.15)

Uout ≈
α− Γ (δ)

Ar

. (5.16)

Total change of the polarization state of light after passing through polarizer and Faraday

compensating cell (5.15) is written as

Γ(δ) = α+ η ≈ −ℜ
(
rps
rpp

eiδ
)
. (5.17)

The analyzer oriented at ξ = 0 and the polarizer switch to the position α π
2
+ ζ, gives the

equation (5.5) in form

Ω =
π

2
+ ζ + η + β0 sinωmt. (5.18)

For the small angles |ξ| << 1, |η| << 1, and |β0| << 1 the oscillating intensity (5.7) leads

to

Iω ≈
[
ζ + η −ℜ

(
rps
rpp

e−iδ

)]
β0 sinωmt. (5.19)

With high amplification of the feedback circuit the measured signal becomes

ζ + η ≈ Γ′ (δ) ≡ ℜ
(
rps
rpp

e−iδ

)
. (5.20)

Definition of the MO parameters, as was set in (6.2) and (6.3), now helps to relate the

angles Γ(δ) and Γ′(δ) to the MO Kerr rotation θK and ellipticity εK . For MO polar Kerr

effect, where rsp = rps, final relations are

Γ(δ) = −θK cos δ − εk sin δ, (5.21)

Γ′(δ) = −θK cos δ + εk sin δ, (5.22)

and for longitudinal Kerr effect, where rsp = −rps, they are

Γ(δ) = θK cos δ + εk sin δ, (5.23)

Γ′(δ) = θK cos δ − εk sin δ, (5.24)

For common δ, the output signal is a mixture of MO rotation and ellipticity contributions.

In order to detect only MO Kerr rotation, the retarder should be excluded, δ = 0, while

the ellipticity is measured with the retarder set to the position of δ = π/2.
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The phase retardation δ in the plate depends on the photon energy [8] and the position

for δ = π/2 is changed with energy.

Therefore in our experiment, first the MO Kerr rotation is measured without the

retarder and afterwards the retarder is inserted in the position 0 < δ < π/2 and the

mixture of MO Kerr rotation and ellipticity is measured. The MO Kerr ellipticity is

calculated using the values of the MO Kerr rotation and the second measured values. All

measurements are performed for two opposite values of the magnetic field. The final value

is calculated as half of the difference in order to separate the signal from the background

noise

Γ(δ) =
∆(α+ η)

2
. (5.25)

Calibration procedure

The mutual relation should be found between the current in the Null cell and the MO

Kerr rotation and ellipticity during the calibration procedure. Also the calibration of

the phase plate should be performed. The setup for calibration purpose is changed to:

polarizer - retarder - Null cell - modulator - analyzer. The setup is shown in

figure 5.7. One method to find the relation is to calculate the change of the polarization

state with use of Jones matrix algebra and the dependence is revealed from setting the

final intensity equal to zero. Second option is to take advantage of relations, which were

derived in chapter 2.

Figure 5.7: Setup for calibration procedure.

A light enters the setup in figure 5.7 and after passing through the polarizer, linearly

polarized light with angle α according to x axis, is acquired. Decomposition of the polar-
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ization state of the light into x and y components with fixed phase difference, a1 and a2

leads to

a2
a1

= tanα. (5.26)

Retarder, as the next optical element, embedded a phase shift δ and from the definition

of the internal parameters of the polarization ellipse (2.18) it is

tan 2θ = tan 2α cos δ, (5.27)

Null cell is adjusted to the position crossed with previous alignment, and therefore it

rotates the polarization by the angle η

η = −θ. (5.28)

By putting together the above derived expressions, the final dependence can be established

with two measurements and relation

tan 2η = − tan 2α cos δ. (5.29)

Firstly, the measurement without the retarder (δ = 0) has to be performed in order to

simplify relation (5.29) to the following form

α+ η = 0. (5.30)

As has already been shown, the rotation in the Null cell relates to the current in the cell,

IN as

η(λ) = CN(λ)IN , (5.31)

where CN is a calibration constant dependent on experimental parameters as wiring,

material, length of active medium or photon energy of light. Change in the current in

Null cell leads to rotation of the polarizer, from where the value of CN can be established

CN = − ∆α

∆IN
=

∆η

∆IN
. (5.32)

Dependence between the phase change, δ, and energy can be also extracted from calibra-

tion setup. First the constant of proportionality between the change of current and the

angle of polarizer is measured

DN = − ∆α

∆IN
. (5.33)

For small angles δ and α the equation (5.29) has a linear form

η ≈ −α cos δ, (5.34)
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and with the derivation of the current IN and use of (5.32), (5.33) the dependence for

phase shift with help of CN and DN is found to be

cos δ ≈ CN

DN

. (5.35)
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Chapter 6

Enhancement of magneto-optical

effect for optical probe purpose

Nowadays the magneto-optical (MO) probes are using ferrimagnetic Bi doped rare-earth

iron garnet (Bi:REIG) films as sensing elements. Several micrometer thick films are

transparent in most part of visible range and display significant Faraday rotation. This

material is readily available because it is used in optical isolators. The MO current sensors

are nowadays working up to 10 GHz range [22], [23]. The frequency range can be extended

using ferromagnetic iron films, displaying one order in magnitude higher magnetization

with respect to iron garnets [19], [5]. Optically flat ultrathin Fe films can be grown with

high purity, displaying very low coercivity and a significant MO activity at the wavelength

of 632.8 nm. High metallic absorption in Fe restricts the penetration depth at 632.8 nm

(HeNe laser) to 16.4 nm (3.24). The efficient path length for the MO interaction should

be close to this value.

The increase of the MO Kerr rotation with use of dielectrics coating of ferromagnetic

film are known for several years [26]. The MO signal enhancement is due to a Fabry-

Perot cavity like effect, where the dielectric layer and the bottom reflector form a Fabry-

Perot etalon for ferromagnetic layer thinner then the penetration depth. With right

adjustment of layers thicknesses and properly chosen dielectric, the multiple reflections

in the ferromagnetic layer add up in phase and the MO Kerr rotation upon reflection is

increased. To prevent the oxidation at inner interface of ferromagnetic film, oxygen free

dielectrics, e.g., FeF2 or AlN are preferred [5], [24]. Unfortunately, these dielectrics are

also vulnerable to oxidation and may required capping with a noble metal (e.g., Au or

Pt).

In this chapter, the MO effect in the structure consisting of a Ferromagnetic (Fe) layer

sandwiched between dielectrics (AlN) is modeled, firstly. Furthermore, another layer pro-

tecting the structure from the oxidation is added. The schematic of structures evaluated

are shown in figure 6.1. In all structures a gold layer is utilized as a reflector, which is

compatible with the AlN dielectric layer used.
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Figure 6.1: Structures used for modeling of the enhancement of the MO effect. In part

a) is a structure without protection capping, in part b), structure with capping layer

protecting against oxidation.

6.1 Matrix model and analytical simplification

The MO effect calculation was for MO polar Kerr effect with normal light incidence. The

reflection of light was considered in a multilayer at polar magnetization in a Cartesian

coordinate system with the z-axis normal to the interface. The propagation vectors of

the incident and reflected plane waves and the magnetization in the Fe layer were all set

parallel to the z-axis. In experimental setup, the normal light incidence is not practical,

because the source and detector should be at the same place, but the calculation is

sufficient for effect at nearly normal light incidence (less than 7 degree).

The Jones calculus and Yeh formalism for MO polar Kerr effect were studied in chap-

ters 2 and 4. The MO parameters are included in a complex parameter of polarization,

[25], as

χK
LR =

ryx
rxx

. (6.1)

and the Kerr rotation and ellipticity are calculated, (6.2), (6.3) as

θK =
1

2
arg(χK

LR), (6.2)

tan ϵK =
|χK

LR| − 1

|χK
LR|+ 1

. (6.3)

The simplified formula (2.25) can not be used as it is only sufficient for small MO effects.

According to Yeh [13], the electric field vectors in the isotropic half-spaces (0) and (N +

1) sandwiching the multilayer consisting of N layers are related with a 4x4 matrix of

structure, M (4.60)
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
E

(i)
x

E
(r)
x

E
(i)
y

E
(r)
y

 =


M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44




E
(r)
x

0

E
(r)
y

0

 . (6.4)

The reflection coefficients are defined as the ratio of corresponding reflected and incident

waves. The reflection coefficient of the x incident and x reflected wave, rxx, (4.66), is

rxx =

(
E

(r)
x

E
(i)
x

)
=

M21M33 −M23M31

M11M33 −M13M31

(6.5)

and the reflection coefficient of the x incident and partially transform to y wave upon

reflection, ryx, (4.67), is

ryx =

(
E

(r)
y

E
(i)
x

)
=

M41M33 −M43M31

M11M33 −M13M31

. (6.6)

The structure matrix for structure in figure 6.1b) is a multiplication product of transfer

D (4.55) - (4.58) and propagation P (4.54) matrices for each layer

M = D(0)−1D(Au)P (Au)D(Au)−1

D(AlN)P (AlN1)D(AlN)−1D(Fe)P (Fe)D(Fe)−1D(AlN)P (AlN)D(AlN)−1D(Au). (6.7)

From matrix formalism, with assumption of linearity in εxy, the analytical formulas for

reflection coefficients can be extracted [53].

Other simplification requires an ultrathin magnetic film, where the exponential func-

tion in propagation matrix can be decomposed with MacLaurin formula and afterwards

substituted by the first two terms

e(−2iω
c
Nt) ≈ 1− 2i

ω

c
Nt. (6.8)

With use of the first simplification, the linearity of εxy, the reflection coefficient will be

deduced for a structure consisting of a magnetic layer (1) on demagnetized substrate (2)

in air (0). The structure matrix, M , has a form

M = D(0)−1D(1)P (1)D(1)−1D(2) (6.9)

and the reflection coefficient, r
(02)
yx , is

r(02)yx =
ε(1)yx

4ε(1)xx

(
1− r(01)2

) [
4β(1)e−2iβ(1)

r(12)−

− i
(
1− e−2iβ(1)

)(
1 + r(12)2e−2iβ(1)

) [
1 + r(01)r(12)e−2iβ(1)

]−2

,
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(6.11)

here the r(01) and r(12) are the Fresnel coefficients of the proper interfaces and β(1) =
2π

λ
N (1)t(1), with t(1) corresponding to the thickness of the magnetic layer. The coefficient

is split up into two parts corresponds to the propagation in magnetic layer, proportional

to i
(
1− e−2iβ(1)

)
and the interface part, commensurate to

(
β(1)e−2iβ(1)

)
. When the

thickness of the magnetic layer grows, the interface part saturates and the propagation

part vanishes. Expression (6.10) is then rendering coefficient for pure air/magnetic layer

interface or bulk material.

The reflection coefficient, rxx, in the same approximation is

r(02)xx =
r(01) + r(12)e−2iβ(1)

1 + r(01)r(12)e−2iβ(1)
, (6.12)

which is a condition for a Fabry-Perot resonator.

6.2 Modeling of enhanced MO effect for selected sand-

wich structures

This section evaluates the complex problem of finding structure which gives rise to an

optimized MO effect. Two sort of multilayers are taken into account, with its schematic

structure in figure 6.1. AlN is chosen as a dielectric thanks to its non-absorbing nature

in visible spectra [78]. Gold layer is selected as reflector and also for upper capping layer,

protecting against the oxidation. The optical and magneto-optical parameters for all the

materials used, are summarized in table 6.1 and were taken from [55], [54], [56], [57], [78]

Table 6.1: Optical and magneto-optical constants for selected materials at a wavelength

632.8 nm.
Fe εxx −0.8845− 17.938i

εxy −0.6676− 0.008988i

AlN n 2.0

k 0

Au εxx −13.29− 1.27i

The enhancement of the MO effect will be described with parameters rxy, rxx and χ.

Formula (6.1) shows, that enhancement of the MO effect can be due to increase of the

rxy component or decrease of the rxx component. The thicknesses of dielectrics layers and

iron are variable during the calculation process according to the maximum MO response.

In figure 6.2, the absolute values of reflection coefficients, rxx and rxy are shown for the

structure AlN/Fe/AlN/Au and compared to the pure iron on gold reflector structure.
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Figure 6.2: Absolute values of the reflection coefficients, |ryx| and |rxx| as a function of

iron layer thickness d(Fe) for AlN(43 nm)/Fe(d(Fe))/AlN(24 nm)/Au (dotted line) and

AlN(58.9 nm)/Fe(d(Fe))/AlN(30.4 nm)/Au (dash-dotted line) systems. The dependence

in the structure Fe(d(Fe))/Au is included for comparison (full line).

The sandwiching of the iron layer with AlN leads to double increase in |ryx| component,

with broad maximum and sharp minimum in |rxx|. Therefore the position of |rxx| mini-

mum is more important, then the position of maximum of |ryx| for finding the optimum

structure. This is also presented in figure 6.3, where the maximum of |χ| corresponds to
minimum in |rxx|.
For proper functioning of the MO sensor based on Fabry-Perot cavity like structure, the

multilayer with |rxx| nearly zero is not the optimum choice. In this case all the energy

of the incident wave is absorbed and only little of it is again reflected which gives weak

detected signal. The optimum structure should be therefore found close to the minimum

of |rxx|. In figure 6.4 the Kerr rotation and ellipticity are calculated from equations (6.2)

and (6.3) for such structure.

The MO Kerr rotation exceeds 45 degree and therefore the formula (6.2) has to be adjusted

as follows [58]

θK =
1

2
arctan

(
2ℜ(χ)
1− |χ|2

)
+ θK0, (6.13)

where θK0 = 0 degree for |χ|2 ≤ 1, θK0 = 90 degree for |χ|2 > 1, ℜ(χ) ≥ 0 and

θK0 = −90 degree for |χ|2 ≤ 1, ℜ(χ) ≤ 0. Also the definition range of Kerr rotation, (−90

degree≤ θK < 90 degree, needs to be considered [25]. The formula for Kerr ellipticity, εK

preserves the same. In figure 6.4 the rapid change for Kerr rotation from 90 degree to
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Figure 6.3: Absolute values of the complex parameter of polarization, |χ| as a function

of iron layer thickness d(Fe) for AlN(43 nm)/Fe(d(Fe))/AlN(24 nm)/Au (dotted line) and

AlN(58.9 nm)/Fe(d(Fe))/AlN(30.4 nm)/Au (dash-dotted line) systems. The dependence

in the structure Fe(d(Fe))/Au is included for comparison (full line).

Figure 6.4: Polar Kerr rotation, θK , and ellipticity, εK , for

AlN(43 nm)/Fe(d(Fe))/AlN(24 nm)/Au structure.

-90 degree is observed. This change was previously modeled and also measured in CeSb

structure [58], [59], [60].
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The other considered structure was a structure with Au layer at top, see figure 6.1b),

used as a protection against the oxidation. By adding additional absorbing layer, the

decrease of the MO effect is expected, but for practical use of the future sensor, chemical

stability in the ambient space is necessary.

Figure 6.5: The effect of Au capping on |ryx| and |rxx| as a function of the Fe layer

thickness, d(Fe), in multilayer systems for different thicknesses of Au layer. The thick full

line shows the dependence of |ryx| on d(Fe) in the structure Fe(d(Fe))/Au.

The simulation was performed for different thickness of the top Au layer and the calculated

reflection coefficients are shown in figure 6.5. For each thickness of the gold layer, the

variation of thicknesses of upper and lower AlN layers were calculated to find the optimum

structure and the final thicknesses are written down in table 6.2.

Table 6.2: Thicknesses of layers in optimum structures with different thickness of the

capping gold layer.

d(Au) = 0 nm Au(0 nm)/AlN1(58.9 nm)/Fe(d(Fe))/AlN2(30.4 nm)/Au

d(Au) = 3 nm Au(3 nm)/AlN1(60.5 nm)/Fe(d(Fe))/AlN2(25.3 nm)/Au

d(Au) = 5 nm Au(5 nm)/AlN1(62.0 nm)/Fe(d(Fe))/AlN2(24.7 nm)/Au

d(Au) = 9 nm Au(9 nm)/AlN1(86.0 nm)/Fe(d(Fe))/AlN2(154 nm)/Au

The first handed prediction that with the increasing thickness of the gold layer, the MO

effect will decrease is found false. As it is shown in figure 6.5, the Fabry-Perot condition

for |rxx| is executed better with 9 nm thick capping layer, then with the thinners variants.

Hence the optimum structure with thick enough capping layer to protect layers underneath
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is the structure with 9 nm Au layer. The complex polarization parameter |χ| was also

calculated and can be found in figure 6.6

Figure 6.6: Absolute values of the complex parameter of polarization, |χ| as a function of

iron layer thickness d(Fe) in multilayer systems Au/AlN1/Fe(d(Fe))/AlN2/Au for different

thicknesses of Au layer.

6.3 Conclusions

Upon reflection on multilayer, an incident wave linearly polarized parallel to the x-axis

is partially reflected with the same x-polarization and partially absorbed. There are

several absorption mechanisms. The absorption due to MO active electron transitions in

Fe produces desirable mode conversion and generates the wave with y-polarization. On

their background, there are inevitably electron transitions in Fe, which do not contribute

to the mode conversion. The efficiency of the mode conversion is evaluated with |ryx|.
The maximum of |ryx| corresponds to the situation where the incident x-polarized wave

is completely absorbed in Fe and converted to y-polarized wave, i.e., rxx → 0. According

to Mansuripur, the condition is set as [6]

|ryx|max =

∣∣∣∣∣ εFe
xy

2ℑ(εFe
xx )

∣∣∣∣∣ . (6.14)

The optimal condition for the enhancement of the MO polar Kerr effect corresponds to

maximum |ryx| which is situated close to minimum of |rxx|, where the multilayer behaves

as an antireflection coating with respect to the incident x-polarized wave. To fully exploit

the incident photon energy for MO mode conversion the layers behind Fe layer must act
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as a perfect reflector. These conditions are most easily met with dielectric multilayers. In

situations where the thickness of sandwiching layers and the cost are not a limiting factor

very efficient antireflection and antireflection multilayers can be designed with help of

gradual transitions layers [61]. With our choice of multilayer profile, we were able to get

the amplitude of the off-diagonal reflection coefficient reasonably close to its maximum

value, (6.14), predicted by Mansuripur [6].
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Chapter 7

Dielectric/Fe/Dielectric structures

Structures with an iron layer were proposed for magneto-optical (MO) sensors for its high

sensitivity and low coercitivity. In the previous chapter the enhancement of MO effects in

Fabry-Perot like structures was studied. As a next step these structures were grown using

MBE and rf sputtering techniques and investigated using MO spectroscopy at polar and

longitudinal magnetizations and varying angles of incidence.

Two set of samples were prepared with with AlN and FeF2 dielectrics sandwiching the

iron layer with the aim to enhance the MO response at 410 and 810 nm, respectively. The

measured spectra were modeled with use of the Yeh formalism introduced in chapter 4.

The comparison of the measured spectra and the modeled provides the information about

changes in composition of the layers during preparation and specifies the thicknesses of

the individual layers.

7.1 FeF2/Fe/FeF2 structure

The interest in FeF2 in last year’s is motivated by exchange bias studies [62],[63], [64],

[65]. The anti-ferromagnetic FeF2 has a strong uniaxial anisotropy that makes modeling

of the exchange bias Fe/FeF2/Fe nanostructures easier and shows the compatibility of Fe

and FeF2. This compatibility of FeF2 was considered in choosing it as a dielectric for

nanostructures for reflection MO sensors operating at a Ti:Sapphire laser wavelength of

810 nm (1.53 eV), with composition FeF2/Fe/FeF2.

Although FeF2 is an oxygen free dielectric it is vulnerable to the oxidation and an-

other layer is needed to protect the structure. Here the Au/FeF2/Fe/FeF2 sandwich were

deposited on a reflecting Ag layer. The entire structure is grown on a GaAs substrate

with a Fe seed layer to form an epitaxial Ag reflector. Magneto-optical spectroscopic

measurements in reflection at polar magnetization and either nearly normal incidence or

at na angle of 65 degree were carried out on samples with varying thickness of the bottom

and top FeF2 layer and measured spectra are described below.
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7.1.1 Sample preparation and overview

Two sets of samples with different thicknesses of the bottom and top FeF2 layer were

prepared by molecular beam epitaxy (MBE). The structure characterized by composi-

tion Au(1 nm)/FeF2/Fe(8 nm)/FeF2/Fe(0.6 nm)/Ag(50-75 nm)/GaAs as substrate, were

grown in an ultrahigh vacuum using thermal cells, except of FeF2, where electron-beam

evaporation cells were used. The basic pressure during deposition was set to 10−9 Torr.

The GaAs substrate was periodically sputtered and high temperature annealed to ensure

good surface quality for growth. A thin layer of Fe was deposited on a substrate as a seed

layer, to ensure good interface quality for Ag deposition. The 50 or 75 nm thick Ag layer

serves as a reflector. Before further deposition, the samples were annealed for 24 hours

to improve surface smoothness and crystallinity. The FeF2 film was grown using a 6 kW

e-beam source with a low emission current of 3 mA. After deposition of the structure, the

Au capping layer was added before exposing the sample to the ambient humidity.

Table 7.1: Overview of the samples with different thickness of FeF2 layer prepared by

MBE for magneto-optical studies.

Sample # Au(nm) FeF2(nm) Fe(nm) FeF2(nm) Ag(nm) Fe(nm) GaAs(nm)

C1 1 2.5 8 40 50 0.6 substrate

C2 1 2.5 8 49 50 0.6 substrate

C3 1 2.5 8 58 50 0.6 substrate

C4 1 2.5 8 70.5 50 0.6 substrate

C5 1 2.5 8 80.5 50 0.6 substrate

C6 1 2.5 8 110 50 0.6 substrate

D1 1 2 8 49 75 0.6 substrate

D2 1 4 8 49 75 0.6 substrate

D3 1 6 8 49 75 0.6 substrate

Six samples with a varying thickness of the bottom FeF2 and three samples with a

varying thickness of the upper FeF2 layer were studied. All these are put together in table

7.1. Samples for optical studies (optical ellipsometry) of FeF2 were prepared without the

Fe layer and with additional Au layer, with composition

Au(0.5 nm)/FeF2(120 nm)/Au(30 nm)/Ag(20 nm)/Fe(0.6 nm)/GaAs.

7.1.2 Polar magneto-optic spectroscopy for varying angles of in-

cidence

The polar magneto-optical spectroscopy in a reflection was carried out on set-up described

in chapter 5. The maximum applied magnetic field, 0.3 T, was not sufficient for saturation

of the Fe layer. The ferromagnetic resonance studies performed at Colorado University
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show the saturation field for thin iron layer to be 2.1 T. The applied magnetic field during

the spectroscopy was therefore 7 times smaller. All graphs in this section are presented

as measured, in non-saturated sample.

Figure 7.1: Polar Kerr rotation spectra for structures

Au(1 nm)/FeF2(2.5 nm)/Fe(8 nm)/FeF2(d(FeF2))/Ag(50 nm)/Fe(0.6 nm)/GaAs.

The measurement with nearly normal light incidence (about 5 degree) was performed

on all samples. The polar Kerr rotation and ellipticity spectra on C-series samples, with

variation of the bottom FeF2 thickness, can be found in figure 7.1 and 7.2, respectively.

The spectra of the MO polar Kerr rotation exhibits a weak peak around 4 eV for all

samples and a strong peak with a changing position on the photon energy scale for each

sample, see figure 7.1. The strong peak of the MO polar Kerr rotation shifts from 1.65 eV

for sample C1 (40 nm thick FeF2 layer) to 1.35 eV for C4 (70.5 nm thick FeF2 layer).

The sensitivity of set-up decreases rapidly below 1.2 eV, due to the sensitivity of the

used photomultiplier, therefore the maximum of the sample C5 can not be measured, but

can be predicted under 1.35 eV, as the signal has the growing tendency. The MO Kerr

rotation increases with the peak moving to the lower energies, from 0.58 degree for C1

sample to maximum 1.1 degree for the C4 sample, in non-saturated state. The structure

C6 has very different spectrum compared to others as new peak arises near 2.45 eV with

an amplitude reduced with respect to the others. The peak observed near 4 eV observed

in all samples originates from shifted plasma resonance in Ag citeWooten.

The MO polar Kerr ellipticity spectra also display one strong peak, which changes the

position in energy with a varying thickness of the bottom FeF2 layer. The comparison
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Figure 7.2: Polar Kerr ellipticity spectra for structures

Au(1 nm)/FeF2(2.5 nm)/Fe(8 nm)/FeF2(d(FeF2))/Ag(50 nm)/Fe(0.6 nm)/GaAs.

Figure 7.3: Polar Kerr rotation spectra for structures

Au(1 nm)/FeF2(d(FeF2))/Fe(8 nm)/FeF2(49 nm)/Ag(75 nm)/Fe(0.6 nm)/GaAs.
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Figure 7.4: Polar Kerr ellipticity spectra for structures

Au(1 nm)/FeF2(d(FeF2))/Fe(8 nm)/FeF2(49 nm)/Ag(75 nm)/Fe(0.6 nm)/GaAs.

with the MO polar Kerr rotation shows, that the peak for C1 sample is much more

broaden, with a maximum situated between 2.1 and 2.2 eV and reaching the amplitude of

0.37 degree. With the increasing thickness of the bottom the peak shifts towards smaller

energies and increases in amplitude. For samples C2, C3 and C4 the maximum is sharper

and located at 2.0 eV, 1.65 eV and 1.53 eV with the MO Kerr ellipticity of 0.67 eV,

0.72 eV and 0.9 eV, respectively. Again the peak for C5 sample is not measurable but

it can be predicted to be situated below 1.5 eV, with magnitude of the effect more than

1.2 degree. The sample C5 contains a peak around 3.7 eV with the MO Kerr polar

ellipticity of 0.3 degree and it is shifted with the increasing bottom FeF2 layer thickness

to the lower energies and can be observed at energy 2.75 eV for sample C6 with the MO

polar Kerr ellipticity of 0.35 degree.

The D series contains three samples with the different thickness of the upper FeF2

layer. Here the difference is smaller compared to the C series. Measured spectra of the

MO polar Kerr rotation can be found in figure 7.3 and ellipticity in figure 7.4.

Spectra of the MO polar Kerr rotation show a strong peak around 1.8 eV followed by

shallow minimum around 3.2 eV and again the weak structure at 4 eV. The maximum

MO polar Kerr rotation for D1 is at 1.69 eV, 1.67 eV for D2 and 1.65 eV for D3. The

maximum MO Kerr rotation was measured for D2 sample - 0.72 degree. The Kerr rotation

maximum for sample D1 and D3 was 0.67 degree and 0.69 degree, in non-saturated state.

The structure under 4 eV is observable and it is the same for all three samples and can
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be linked to the shifted plasma resonance of Ag reflector at the bottom of the structure.

Figure 7.5: Polar Kerr rotation spectra for structures

Au(1 nm)/FeF2(2.5 nm)/Fe(8 nm)/FeF2(d(FeF2))/Ag(50 nm)/Fe(0.6 nm)/GaAs.

At angle of incidence 65 degree and p - incidental polarization

The MO Kerr ellipticity spectra is very similar for all samples in D series. They

exhibits one broaden peak around 2.2 eV, shallow minimum around 3.8 eV and small

peak around 4 eV. Compared to spectra of MO polar Kerr rotation, greater changes in

the magnitude of the MO effect and also in the shift of the maximum is observed. The

peak grows steadily with increasing the thickness of the upper FeF2 layer from 0.4 degree

for D1, 0.43 degree for D2 to 0.48 degree for D3.

As next step, the MO polar Kerr spectra with angle of incidence 65 degree were

measured for p− and s− incidental light polarization. The MO polar Kerr rotation and

ellipticity can be found in figures 7.5 - 7.8. These spectra were taken only for the C series.

The measured data of the MO polar Kerr rotation for p− (figure 7.5) and s− (figure

7.6) incidental polarization differs in both magnitude of the effect and position of the

maximum peak. For all samples the effect for s− incidental polarization is stronger,

almost twice in magnitude and the peak is shifted to the lower energies compared to the

p−incidental polarization. All samples display a strong peak around 1.2 eV to 2.2 eV

for p−incidental polarization. Sample C6 has one broaden peak located around 3.3 eV.

The MO polar Kerr rotation spectra for s−incidental polarization consists of one strong

peak with its position distributed through the whole measured spectrum (from 1.75 eV

for sample C5 to 3.4 eV for sample C6).
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Figure 7.6: Polar Kerr rotation spectra for structures

Au(1 nm)/FeF2(2.5 nm)/Fe(8 nm)/FeF2(d(FeF2))/Ag(50 nm)/Fe(0.6 nm)/GaAs.

At angle of incidence 65 degree and s - incidental polarization

The position and magnitude of the peak in the MO polar Kerr spectra are summarized

in table 7.2. From this table, the shift in energy (about 0.8 eV) in the maximum position

for s− and p−polarization is obvious. The position of the peak for sample C5 is given

only approximately, as the maximum may be out of the measured range. The magnitude

of the peak for both polarizations is much smaller compared to the nearly normal light

incidence.

The MO polar Kerr ellipticity spectra for C series, the samples with varying FeF2

bottom layer thickness, displays the same behavior and can be found in figures 7.7 and

7.8, for p−incidental and s−incidental polarization respectively. Again one strong peak

is observed in the MO polar Kerr ellipticity spectra for each sample at different position

in energy. The MO polar Kerr ellipticity spectra for s−incidental polarization displays

higher magnitude of the peak and the peak is shifted to the higher energy compared to

the peak observed in the MO polar Kerr ellipticity spectra for p−incidental polarization.

To show the difference between the incidental polarizations, MO spectra were summarized

for MO polar Kerr rotation and ellipticity for both polarization for sample C3 in figure

7.9.
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Table 7.2: Position and magnitude of the maxima in the MO polar Kerr rotation spectra

for s− and p− incidental polarization with angle of incidence 65 degree, in non-saturated

state.

# position s−polar. position p−polar. magnitude s−polar. magnitude p−polar.

C2 3.15 1.55 0.35 0.255

C3 2.2 1.4 0.77 0.33

C4 2.1 1.3 0.55 0.35

C5 1.75 1.25 0.5 0.36

C6 3.4 2.8 0.41 0.11

Figure 7.7: Polar Kerr ellipticity spectra for structures

Au(1 nm)/FeF2(2.5 nm)/Fe(8 nm)/FeF2(d(FeF2))/Ag(50 nm)/Fe(0.6 nm)/GaAs.

At angle of incidence 65 degree and p - incidental polarization
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Figure 7.8: Polar Kerr ellipticity spectra for structures

Au(1 nm)/FeF2(2.5 nm)/Fe(8 nm)/FeF2(d(FeF2))/Ag(50 nm)/Fe(0.6 nm)/GaAs.

At angle of incidence 65 degree and s - incidental polarization

Figure 7.9: Comparison of polar Kerr spectra for structure C3 -

Au(1 nm)/FeF2(2.5 nm)/Fe(8 nm)/FeF2(58 nm)/Ag(50 nm)/Fe(0.6 nm)/GaAs measured

at p− and s− incidental polarization at angle of incidence 65 degree.
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7.1.3 Model with magneto-optical effective medium theory

The comparison of the measured spectra with the model of the MO spectra in a wide

energy range (1.2 eV to 5 eV), can be used to extract information on the thickness of

individual layers, interface composition, roughness of the surface and others.

The calculation based on Yeh matrix formalism requires optical and magneto-optical

parameters for all the materials involved. For Fe, Au, GaAs and Ag optical parameters

can be found in [56], [57], [68]. Magneto-optical constants of iron were taken from the

magneto-optical spectra measured by Krinchik et. al. [54] and Visnovsky et. al. [55].

Only a rather incomplete studies of the optical constants for FeF2 were performed sofar.

Giordano et al., [69] published the infrared reflectivity spectra at photon energies between

0.05 and 0.6 eV on an optically clear light yellow 4 mm thick FeF2 single crystal. McClure

et al. [71] and Cheng et al. [70] reported two bands in the absorption spectrum: one near

2.67 eV and another stronger one positioned at 3.20 eV.

Figure 7.10: Real and imaginary part of the permittivity for FeF2

The optical constants of FeF2 used in further calculation were taken from the recent

ellipsometric measurements performed at Ostrava University on structures

Au(0.5 nm)/FeF2(120 nm)/Au(30 nm)/Ag(20 nm)/Fe(0.6 nm)/GaAs. The complex per-

mittivity was computed by the SCOUT software for optical spectroscopy [72]. The Kim

extended oscillator model was chosen for analytical expression [73]. The acquired optical

constants for FeF2 are shown in figure 7.10 and published in [21], were the details of the

measurement setup is also given.

The Yeh matrix formalism was used for modeling the MO polar Kerr spectra for nearly
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Figure 7.11: Structure a) without and b) with MO effective medium layer inserted at

Fe/FeF2 interfaces.

normal light incidence. The design of the seventh layer structure with abrupt interfaces

is shown in figure 7.11a). The fitting process consists of the simulation of the different

spectra with variation of the thicknesses from the declared values for top four layer. In

first step the variation was small in range (±10%), but to explain the maximum wider

range was necessary. The modeled structure for sample C2 with sharp interfaces between

layers can be found in figure 7.12 as a dash-dotted line, and the thicknesses of the upper

four layer acquired from the fitted model can be found in table 7.3. In figure 7.12, the

experimental MO spectra are scaled to the saturation magnetization.

Table 7.3: Thicknesses of the top four layers for sample C2 from preparation, model with

sharp interfaces and model with effective medium.

Sample C2 Au(nm) FeF2(nm) eff.m.(nm) Fe(nm) eff.m.(nm) FeF2(nm)

declared 1 2.5 - 8 - 49

model 0.3 3 - 8.5 - 63

eff. medium theory 0.3 1 2 6.8 2 58

The noticeable difference is found between the declared thickness for the bottom FeF2

layer and modeled one. Here the change, compared to thickness taken from deposition, is

close to 30 percent. To improve the model, the roughness at the iron and FeF2 interface

is important. As was published before [74], [75], the Fe and FeF2 grows in column like

fashion at each other interfaces, which leads to arise of an intermixing layer. In this case,

the effective medium theory by Aspens et al. [76] was used to simulate the changes at

Fe/FeF2 interface. Here optical constants of the effective medium, εeff , are calculated

from optical constants of both layers at the interface, where one layer is taken as host
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layer, εH and the other is taken as inclusion, ε1

εeff − εH
εeff + 2εH

= v1
ε1 − εH
ε1 + εH

, (7.1)

where v1 represents the volume fraction of the material 1. From the studies performed

sofar [74], [75], the intermixing layer involved small islands of the pure Fe and therefore

the layer is expected to contribute to the MO effect. Therefore an extension of the Aspens

theory with permittivity taken as a tensor element, the MO effective medium theory, was

also considered.

Figure 7.12: Comparison of measured polar Kerr spectra for structure

Au(1 nm)/FeF2(2.5 nm)/Fe(8 nm)/FeF2(49 nm)/Ag(50 nm)/Fe(0.6 nm)/GaAs with

modeled data with and without MO effective medium layer inserted of Fe/FeF2 interfaces.

The intermixing layer of 2 nm thickness were included into the model, with composition

Fe(50%)/FeF2(50%) on both Fe/FeF2 interfaces. The structure is shown in figure 7.11b).

Calculations with variation of thicknesses for the upper four layer were performed and

the final modeled structure is shown in figure 7.12 as a full line. Thicknesses of the four

upper layer can be found in table 7.3, labeled as eff. medium theory. The shape of the

modeled spectra remains the same compared to the model with abrupt interfaces, but the

difference between the declared thickness of the bottom FeF2 layer and modeled one was

reduced in the model with MO effective medium theory included. The distribution of the

MO effective medium between upper and lower interface was examined and the model

was found insensitive to thickness redistribution between the two interfaces, provided the

total transition layer thickness 4 nm.
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7.1.4 Conclusions on FeF2/Fe/FeF2 structure

The study of changes in the MO polar Kerr spectra for different thicknesses of the bottom

and top FeF2 layer in the structure Au(1 nm)/FeF2/Fe/FeF2/Ag/Fe(0.6 nm)/GaAs were

performed. The figure 7.1 shows, that the position of the maximum MO Kerr rotation

can be tuned to the desired energy by changing the bottom thickness of FeF2 layer. In

this work, the shift from 1.35 eV to 1.65 eV was observed by changing the thickness from

70 nm to 40 nm.

The fine tuning of the position of the maximum MO polar Kerr rotation was proved

for small change in thicknesses of the upper FeF2 layer. Here the 2 nm change in thickness

of the upper layer leads to the 0.02 eV change in position of the extreme. The same was

observed for the MO polar Kerr ellipticity.

To evaluate the performance at different angles, the MO polar spectra were measured

at the 65 degree angle of incidence. For all samples, the MO response for s−incidental

polarization was higher compare to p−incidental polarization. The measurement was

performed on the series with different thicknesses of the bottom FeF2 layer. The same

behavior of the shifting position of the maximum MO effect to the lower energy with

the increasing thickness of the bottom FeF2 layer was observed, as in the MO polar Kerr

spectra at nearly normal light incidence.

The optical constants for the FeF2 thin layer, extracted from the ellipsometry measure-

ments, were used to calculate the MO spectra at nearly normal light incidence. First the

model with abrupt interfaces was used. This model described the position of the maxima

in the spectrum, but the thicknesses predicted from the model were in contradiction with

the thicknesses measured during the deposition. To improve the model, effective medium

theory by Aspens [76] was used with the extension to MO active layer. The change in

shape of the MO spectra was small, but the modeled and predicted thicknesses became

closer, which justifies this approach..

The comparison of the sharp peak in the model and a rather broader peak in measured

spectra can indicates that interface roughness may play some role.

7.2 AlN/Fe/AlN structure

In the second sample series, the dielectric FeF2 was replaced by the dielectric AlN. Optical

properties of the AlN are favorable in the visible range, as there is practically no absorption

or very low absorption in the visible range k ≈ 0 and it has rather high index of refraction,

n ≈ 2, which is good for the internal reflection in the cavity structure. The sandwiching

with AlN provides protection for Fe against oxidation and serves as an anti-reflecting

coating at the front interface as well as a matching layer for the Cu reflector at the back

of the structure.

The samples were prepared by sputtering, which is a cheaper method, compared to

MBE used for the FeF2/Fe/FeF2 structures and more practical for commercial purposes.
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The structure studied is a pentalayer with composition AlN/Fe/AlN/Cu/Si. The Cu

layer was chosen as a reflector for the compatibility with AlN and great reflection around

the 3 eV. The thicknesses of each layer were chosen to position the maximum MO effect

around the energy of 3.02 eV, λ = 410 nm, the wavelength of diode laser systems.

In the next section, the MO data from polar and longitudinal spectroscopy measure-

ments will be presented. The strongest MO response is attained from the polar magneti-

zation component, but the demagnetizing field reduces the sensitivity to external currents.

It is therefore interesting to evaluate the MO contributions originating from the in plane

magnetization also.

7.2.1 Sample preparation and overview

Rf/dc magnetron sputtering system was used to prepare two sets of samples, with differ-

ent thicknesses of both AlN and the Fe layer. Thicknesses of each layer were calculated

with the model described in chapter 6, with the schematic structure

AlN(dAlN1)/Fe(dFe)/AlN(dAlN2)/Cu(50 nm)/Si. The thickness of the Cu layer were set

to 50 nm, to avoid the penetration of the light to the Si substrate.

Table 7.4: Overview of the samples AlN/Fe/AlN/Cu/Si, prepared by rf/dc sputtering

for magneto-optical studies.

Sample # AlN(nm) Fe(nm) AlN(nm) Cu(nm) Si(nm)

A1 42 16 10 50 substrate

A2 42 16 23 50 substrate

A3 42 16 26 50 substrate

A4 42 16 30 50 substrate

A5 42 16 37 50 substrate

A6 42 16 76 50 substrate

B1 20 17 26 50 substrate

B2 35 17 26 50 substrate

B3 40 17 26 50 substrate

B4 40 16 26 50 substrate

The sputtering system was kept at a basic pressure of≈ 6∗10−5 Pa and the Si substrate

was not cooled during the whole deposition. The maximum observed temperature was

308 K, during the AlN growth. There was no problem with heating of the substrate

during the deposition of the other materials. The Cu and Fe were dc sputtered in a pure

Ar atmosphere, with pressure 0.27 Pa, at power levels of 50 W and 12 W, respectively,

which results in growth rates of 40.0 nm*min−1 for Cu and 2.2 nm*min−1 for iron.

Two methods were used to prepare the AlN layer. These layers were examined by

ellipsometry measurements with He-Ne laser, using a Gaertner variable-angle ellipsometer.
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First method was using AlN target sputtered in pure Ar atmosphere. This layer, however,

exhibits a strong extinction coefficient at 632.8 nm, the He-Ne laser. This indicates, that

the Al islands were included in the AlN sputtered layer. Second method used the AlN

target as well, but it was sputtered in a mixture of the Ar and the N2 atmosphere,

(20 sccm Ar flow and 8 sccm N2 flow, at pressure 0.33 Pa). The optical constants, found

by ellipsometric measurements for this AlN layer, were in agreement with the data known

for AlN from literature, [77]. For both sets of samples, the rf power was set to 50 W,

which resulted in a deposition rate of 1.0 nm*min−1 for AlN in both types of preparation.

Two sets of samples were prepared. A series, consists of 6 samples with wide range of

bottom AlN layer thickness and a set, B series, consists of three samples with the different

upper AlN layers and two with different Fe layers. All the thicknesses are brought together

in table 7.4.

7.2.2 Polar magneto-optical spectroscopy

The MO polar spectroscopy was measured at about 5 degree angle of incidence, so called

nearly normal light incidence. The sample was exposed to the magnetic field of 0.3 T,

which is seven times smaller, then the saturation magnetization for thin Fe layer. The

temperature of the sample was kept constant during the whole measurement, close to the

room temperature.

Figure 7.13: The measured MO polar Kerr rotation spectra for structures

AlN(42 nm)/Fe(15 nm)/AlN(dAlN2)/Cu(50 nm)/Si.
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Figure 7.14: The measured MO polar Kerr ellipticity spectra for structures

AlN(42 nm)/Fe(15 nm)/AlN(dAlN2)/Cu(50 nm)/Si.

The measured MO polar Kerr rotation and ellipticity for A series can be found in figure

7.13 and 7.14, respectively. All the experimental data in this section will be presented in

non-saturated state, in the field of 0.3 T. Full lines were chosen rather than markers to

indicate the experimental data for better lucidity.

The MO polar Kerr rotation for sample A2-A5, figure 7.13, exhibits one strong

resonant-like peak in the spectrum. It is positioned at the energy 3.1 eV for A2 sam-

ple with the minimum MO polar Kerr rotation close to -1.8 degree, under 3 eV for sample

A3 with the maximum MO polar Kerr rotation of around 3 degree and at the energy

over 3 eV and the maximum magnitude of 1.9 degree for sample A5. The MO polar Kerr

rotation close to 3 degree in non-saturated state for sample A3 means the saturation MO

Kerr rotation close to 20 degree. The sample A6 exhibits no resonance extreme, only

a weak structure around 1.8 eV with the maximum MO polar Kerr rotation of 0.5 de-

gree and sample A1 embodied a broad extreme around 3.1 eV with the magnitude about

0.8 degree.

The spectra for the MO polar Kerr ellipticity, 7.14 shows an dispersive shape for the

sample A1-A5 positioned close to 3 eV, which can be predicted as the MO polar Kerr

rotation and ellipticity are linked together by Kramers-Krönig relations [25]. Therefore

the bell-like shape of the MO polar Kerr rotation corresponds to up-and-down shape in

the MO polar Kerr ellipticity spectra at the same energy. The maximum Kerr ellipticity

is again assigned with sample A3, at the energy around 3 eV with the MO polar Kerr
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ellipticity minimum of -2.5 degree. The sample A6 displays no resonant extreme.

Figure 7.15: The measured MO polar Kerr rotation spectra for structures

AlN(dAlN1)/Fe(17 nm)/AlN(26 nm)/Cu(50 nm)/Si.

The MO polar Kerr study of the structures with different thickness of the upper AlN

layer are shown in figure 7.15 for the MO polar Kerr rotation and in figure 7.16, for the MO

polar Kerr ellipticity. All data are presented in non-saturated state. Three samples were

measured, labeled as B1, B2 and B3. These spectra show sharp maximum for sample B3

with magnitude of the MO polar Kerr rotation of 0.85 degree and a maximum for sample

B2 at energy around 4 eV with the MO polar Kerr ellipticity of 1.5 degree. The sample

B1 exhibits only a weak structure around 1.7 eV.

MO Kerr ellipticity spectra, figure 7.16, display the up-and-down shape for sample B2

and B3. In both cases the sharp minimum (at 3.2 eV for sample B3 and at 3.9 eV for

sample B2) is followed by maximum in the MO polar Kerr ellipticity (at position 3.4 eV

for sample B3 and 4.1 eV for sample B2). The maximum MO polar Kerr ellipticity is

achieved for sample B3 with magnitude -1.2 degree. The sample B1 exhibits no sharp

peak in the whole spectrum.

Last measurements were performed to check the change in the spectra, with the change

of the Fe layer thickness. Only two samples were prepared in this series, B3 and B4, with

the 1 nm difference in the Fe layer thickness. The measured MO polar Kerr rotation can

be found in figure 7.17 and the MO polar Kerr ellipticity in figure 7.18.

The spectra for both samples show strong resonant-like character with the MO polar

Kerr rotation maximum placed near 3.25 eV and the polar Kerr ellipticity minimum
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Figure 7.16: The measured MO polar Kerr ellipticity spectra for structures

AlN(dAlN1)/Fe(17 nm)/AlN(26 nm)/Cu(50 nm)/Si.

Figure 7.17: The measured MO polar Kerr rotation spectra for structures

AlN(40 nm)/Fe(dFe)/AlN(26 nm)/Cu(50 nm)/Si.
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Figure 7.18: The measured MO polar Kerr ellipticity spectra for structures

AlN(40 nm)/Fe(dFe)/AlN(26 nm)/Cu(50 nm)/Si.

placed near 3.2 eV. The difference between the magnitude in both MO polar Kerr rotation,

1.8 degree for B3 and 0.85 degree for B4, and MO Kerr ellipticity, -2.0 eV for B3 and

-1.2 eV for B4 are significant and point out, that the precision in a thickness of each layer

during the preparation is very important to achieve the maximum performance, as a small

change in Fe thickness, can lead to decrease of the maximum MO polar Kerr effect to half

of the predicted value.

7.2.3 Longitudinal magneto-optical spectroscopy

The spectra at longitudinal magnetization (parallel to the sample surface and to the plane

of incidence) were taken at a 45 degree angle of incidence in the magnetic field B = 0.03 T,

which was sufficient for the in-plane saturation. The incident linear polarization (LP) was

either perpendicular (s) or parallel (p) to the plane of incidence.

Longitudinal measurements were performed on the A series, with different thicknesses

of the bottom AlN layer. The longitudinal Kerr rotation for p− and s−incidental LP

wave are in figures 7.19 and 7.20, respectively. Again the experimental data are drawn

as full line for lucidity. Spectra for both incidental polarizations show extremes in the

longitudinal Kerr rotation in the energy range from 3.0 eV to 3.5 eV. In comparison with

MO polar Kerr rotation, these peaks are rather broad. Only the sample A1 and A6 show

a narrow peak at p-polarized incident beam. For comparison, the sample A1 exhibited

only a small peak and the sample A6 had no peak in the MO polar Kerr rotation spectra.
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Figure 7.19: The measured MO longitudinal Kerr rotation spectra for structures

AlN(42 nm)/Fe(15 nm)/AlN(dAlN2)/Cu(50 nm)/Si, with angle of incidence 45 degree

and p - incidental polarization.

Furthermore, measured data show one order in magnitude smaller amplitudes compared

to the MO polar Kerr rotation spectra.

The data for the longitudinal MO Kerr ellipticity can be found in figures 7.21 and 7.22

for p− and s− LP waves, respectively. the strongest longitudinal MO Kerr ellipticity is

measured on sample A1 for p−incidental polarization, with magnitude close to -1 degree.

In the MO longitudinal Kerr ellipticity for s−incidental polarization, the maximum effect

is observed on the A5 sample (about 0.7 degree at energy 3.4 eV). The sample A6 shows

peak-like maximum again only in spectra of p−incidental polarization at the energy 3.5 eV

with magnitude close to 0.5 degree.

For better comparison, the longitudinal MO spectra for samples A1, maximum effect

observed for p−incidental polarization, and A5, maximum effect observed for s−incidental

polarization, were summarized in figures 7.23 (A1 sample) and 7.24 (A5 sample).
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Figure 7.20: The measured MO longitudinal Kerr rotation spectra for structures

AlN(42 nm)/Fe(15 nm)/AlN(dAlN2)/Cu(50 nm)/Si, with angle of incidence 45 degree

and s - incidental polarization.

Figure 7.21: The measured MO longitudinal Kerr ellipticity spectra for structures

AlN(42 nm)/Fe(15 nm)/AlN(dAlN2)/Cu(50 nm)/Si, with angle of incidence 45 degree

and p - incidental polarization.
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Figure 7.22: The measured MO longitudinal Kerr ellipticity spectra for structures

AlN(42 nm)/Fe(15 nm)/AlN(dAlN2)/Cu(50 nm)/Si, with angle of incidence 45 degree

and s - incidental polarization.

Figure 7.23: Comparison of the measured MO longitudinal Kerr spectra for structure

AlN(42 nm)/Fe(15 nm)/AlN(10 nm)/Cu(50 nm)/Si measured at p− and s− incidental

polarization at angle of incidence 45 degree.
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Figure 7.24: Comparison of the measured MO longitudinal Kerr spectra for structure

AlN(42 nm)/Fe(15 nm)/AlN(37 nm)/Cu(50 nm)/Si measured at p− and s− incidental

polarization at angle of incidence 45 degree.
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The change in the energy position of the longitudinal MO Kerr rotation maximum is

clear, where the maximum in p−incidental polarization is shifted to the lower energies

compared to the maximum for s−incidetal polarization. Furthermore, figure 7.23 shows,

that the resonant condition is different for s− and p− incident polarization.

In the s−incidental longitudinal MO Kerr rotation and ellipticity spectra a weak

structure around the 2.0 eV energy is observed. This can be due to the Cu reflector at

the bottom of the structure.

7.2.4 Modeling the MO effect

The MO polar and longitudinal Kerr spectra were modeled with help of the EM theory

and the Yeh formalism. The schematic structure used in model calculation is shown in

figure 7.25.

Figure 7.25: Structure of Aln/Fe/AlN sample used for the Yeh matrix model calculation.

The optical and magneto-optical data for Fe were used the same, as for the FeF2

structures [56],[57],[54],[55]. The optical constants for Cu and Si were taken from [38],

[80], [79].

The refractive index for AlN was approximated with the analytical expression by

Legrand et al.,[77].

Results from the ellipsometric measurement on the sputtered AlN thin layers at the

energy 632.8 nm (He-Ne laser) were taken as the starting position, with n = 1.85 and

k = 0. The analytical formula for AlN refractive index was calculated as

n = 2.09 exp

(
− λ

131.9

)
+ 1.833. (7.2)

The model with infinite Cu layer was used in first approximation. Even though the

nominal thickness of the Cu layer, dCu = 50 nm, exceeds the penetration depth (3.24) by

a factor of more then three at the energy of 3 eV, in our model it still slightly affected the

position of the peak. Therefore the structure with dCu = 50 nm and Si layer as infinite was
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taken for calculation. In finding the optimum model, the variation of the thicknesses for

both AlN layers and Fe layer was allowed in the range of ±15% from declared thicknesses.

As the MO polar Kerr spectra has the sharpest maxima, the modeled structure were

calculated to fit them. The results of the fitting process for samples A2, A3 and A5 can be

found in figures 7.26a), 7.27a) and 7.28a), respectively. The structure thicknesses resulting

from the fitting are written down in table 7.5 together with the nominal thicknesses.

Table 7.5: The composition of the measured and modeled spectra for A2, A3 and A5

sample.

Sample # AlN(nm) Fe(nm) AlN(nm) Cu(nm) Si(nm)

A2 42 16 23 50 substrate

A2 model 37 14.8 29.5 50 substrate

A3 42 16 26 50 substrate

A3 model 41.5 14.7 27.8 50 substrate

A5 42 16 37 50 substrate

A5 model 43 14.7 34 50 substrate

The modeled thicknesses are in good agreement with declared one, with maximum

difference around 10%. Only the sample A2 exhibits larger difference in bottom AlN

layer. The acquired thicknesses were used to model the MO longitudinal Kerr effect,

again with use of Yeh formalism. The modeled data are embedded in the figures 7.26,

7.27 and 7.28 as subpart b), for s−incidental polarization and subpart c) for p−incidental

polarization.

The good agreement between the model and experiment in the whole energy range of

the spectra indicates sharp interfaces between layers and fine quality of each layer. The

agreement in the higher energy range shows good surface quality of the samples as no

scattering occurs.
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Figure 7.26: Comparison of measured and model data for sample A2 in polar and longi-

tudinal Kerr spectra. The details about the structure can be found in table 7.5.
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Figure 7.27: Comparison of measured and model data for sample A3 in polar and longi-

tudinal Kerr spectra. The details about the structure can be found in table 7.5.
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Figure 7.28: Comparison of measured and model data for sample A5 in polar and longi-

tudinal Kerr spectra. The details about the structure can be found in table 7.5.
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7.2.5 Conclusions on AlN/Fe/AlN structure

A systematic study of changes in MO spectra with different thicknesses of top three layer in

structure AlN/Fe/AlN were studied by MO polar Kerr spectroscopy. Strong dependence

were found on all three thicknesses for the final position and magnitude of the maximum

effect.

A maximum enhancement of the polar Kerr rotation was measured on sample A3 with

composition AlN(42 nm)/Fe(15 nm)/AlN(26 nm)/Cu(50 nm)/Si. The observed MO Kerr

rotation of about 3 degree in non-saturated state leads to the approximately 20 degree in

saturated state.

The results of MO spectroscopy are in good agreement with simulated predictions.

This confirms good sample quality, validity of the model used, proper choice of the optical

and magneto-optical data and sharp interfaces between layers.

Comparing the polar and longitudinal spectra shows that the condition for maximal

MO response is different for different orientation of the magnetic field applied. An insight

into the effect of the multilayer profile on the MO response can be obtained from ana-

lytic expressions developed under realistic simplifying assumptions [82]. Analyzing the

analytical formula for reflection coefficient rxy, leads to separation of the coefficient into

two parts, the one corresponding to the propagation and the one corresponding to the

interface component. These are

• Propagation component, factor at β exp
(
−2iβ(2)

)
– Polar magnetization

r
(24)
ss + r

(24)
pp

– Longitudinal magnetization

r
(24)
ss − r

(24)
pp

• Interface component, factor at i
(
1− exp

(
−2iβ(2)

))
– Polar magnetization

1
2

(
1 + r

(24)
ss r

(24)
pp e(−2iβ(2))

)
– Longitudinal magnetization

1
2

(
1− r

(24)
ss r

(24)
pp e(−2iβ(2))

)
Reflection coefficients r(24) refer to AlN/Fe/AlN/Cu structure. At polar and longi-

tudinal magnetization, the phase between the complex ”interface” and ”propagation”

components in absorbing magnetic layers can be partially controlled by the choice of

sandwiching media. The factors show that the conditions for the maximal MO response

are different for each magnetization and the optimal response is therefore a matter of a

trade-off.

The MO response for a 15 nm thick Fe layer sandwiched by AlN gives a reasonable

signal useful for sensing external currents for perpendicular and in-plane magnetization
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components. The MO response can be optimized for specific orientation of the magnetiza-

tion vector, for a chosen wavelength and angle of incidence, using the criteria summarized

above.

For a proper function of the future sensor based on this structure, possible upper

layer of gold or silver can be added to protect it against the oxidation. As was shown

in work of Easwarakhanthan et al., [81], the layer of AlN can absorb the oxygen and

transform partially to Al2O3. Nevertheless, the longitudinal MO spectra on A3 sample

were measured again after one year, and no change in shape or magnitude was found.
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Chapter 8

Pt/Co/Pt structures irradiated with

Ga+ ions

In Pt/Co/Pt film structures magnetic anisotropy can be controlled by means of ion irra-

diation at low or moderate dose [40] [41]. This possibility of controlling the magnetization

reversal properties in submicron magnetic elements is crucial for high density data stor-

age applications [41]. Uniform dose of Ga+ ion irradiation of Pt/Co/Pt sandwiches was

found to transform interface induced magnetic anisotropy from in-plane to out-of-plane

and back to in-plane [42].

In this chapter, our focus will be on two sets of samples with composition Pt/Co/Pt

prepared by different thin film preparation techniques. The magneto-optical (MO) polar

Kerr spectroscopy was used to study Pt/Co/Pt sandwiches and the fitting of the measured

data revealed the structural changes upon irradiation.

8.1 Sample overview

The study was focused on two sets of sample. The first set consists of two samples,

prepared by rf sputtering on a (0001) sapphire substrate. The schematic composition

can be found in figure 8.1a). The details of the sample preparation can be found in [42].

Previous work of Kisielewski et al.[94] shows that with increasing thickness of the

Co layer, the as grown Pt/Co/Pt structure on Al2O3 substrate exhibits an out-of-plane

to in-plane spin reorientation transition (SRT) at the thickness of the Co, tCo = 2 nm.

Therefore, the thickness of the Co layer was chosen as tCo = 2.6 nm to assure the in-plane

anisotropy in as deposited sample.

To achieve the out-of-plane anisotropy, part of the sample was exposed to uniform

irradiation by 30 keV Ga+ ions at low dose, D = 1014 Ga+ions/cm2. The MO Kerr

polar rotation hysteresis loops were taken at the wavelength of 634 nm to show the in-

plane to out-of-plane spin reorientation transition. The comparison of hysteresis loops for

the non-irradiated and irradiated sample is shown in figure 8.2. The saturation field for

the non-irradiated sample was about 1 kOe, while the saturation field for the irradiated
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Figure 8.1: Profile of the structure Pt(4.5 nm)/Co(2.6 nm)/Pt(3.5 nm)/Al2O3 as de-

clared (a), before and after irradiation (b). The profile of the structures before and after

irradiation was deduced from comparison of the experimental data and modeled spectra.

Figure 8.2: MO polar Kerr hysteresis loops of the sputtered

Pt(4.5 nm)/Co(2.6 nm)/Pt(3.5 nm)/Al2O3 sandwich before (circles) and after irra-

diation (triangles) measured at a laser wavelength of 634 nm.

sample was increased to 5 kOe. The figure 8.2 confirms the in-plane to out-of-plane SRT

achieved by Ga+ ions irradiation.

The second set of samples was prepared by molecular beam epitaxy (MBE) on single

crystal sapphire substrate. The bottom Pt layer was set to 20 nm on top of 20 nm thick

Mo layer to stop the penetration of the light to sapphire substrate. The structural scheme

of the prepared samples are shown in figure 8.3a). The thickness of the Co layer was set

to 3.3 nm to ensure the in-plane magnetization in the as deposited sample. Four samples
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were prepared, and afterwards three of them were exposed to Ga+ ions irradiation.

Figure 8.3: Profile of the structure Pt(5.0 nm)/Co(3.3 nm)/Pt(20 nm)/Mo(20 nm)/Al2O3

as declared (a), before (b), and after irradiation (b and c) with different doses. The

profile of the structures after irradiation was deduced from the comparison of measured

and modeled MO spectra.

Irradiation process was performed using Ga+ ions with energy 30 keV. Doses for the

irradiation were chosen corresponding to appearance of out-of-plane (2.8*1014, 6*1015

ions/cm2) or in-plane (1*1015 ions/cm2) magnetization state for the same Co layer thick-

ness. The MO polar Kerr rotation, θ, hysteresis loops were measured to determine the

magnetization state below or above SRT. They can be found in figure 8.4. The field

required for the sample saturation at polar magnetization was below 4 kOe.

Figure 8.4: MO polar Kerr hysteresis loops of the MBE prepared

Pt(5.0 nm)/Co(3.3 nm)/Pt(20 nm)/Mo(20 nm)/Al2O3 sandwich measured at a

laser wavelength of 634 nm [101].
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8.2 Polar magneto-optical spectroscopy

The MO polar Kerr spectroscopy with nearly normal light incidence (below 6 degree) was

measured for all samples. The measurements were based on azimuth modulation technique

described in chapter 5. The sample was positioned on the black depolarizing holder in

contact with the water-cooled pole piece of an electromagnet producing the magnetic field

of 4.3 kOe. The magnetic field was sufficient to saturate all samples prepared by MBE

deposition and the irradiated sample prepared by sputtering. The field was a little smaller

that needed to saturate the non-irradiated sample prepared by sputtering, see figure 8.2.

8.2.1 Pt/Co/Pt/Al2O3 samples prepared by sputtering

The MO polar Kerr rotation (PKR)spectra were measured on a non-irradiated area and

on an area irradiated with the dose of 1014 Ga+ ions/cm2 of the sample. The mea-

sured data are shown in figure 8.5. The irradiation produces a large enhancement of the

PKR amplitude over the whole spectral range. The irradiated sample shows one shallow

maximum around 2.1 eV followed by a minimum around 3.2 eV. The spectrum for the

non-irradiated sample was recalculated to the saturation magnetization and is presented

in the saturated state.

Figure 8.5: Polar Kerr rotation spectra for structure

Pt(4.5 nm)/Co(2.6 nm)/Pt(3.5 nm)/Al2O3 before (circles) and after irradiation

(triangles).
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8.2.2 Pt/Co/Pt/Mo/Al2O3 samples prepared by MBE

Four samples prepared by MBE with composition showed in the figure 8.3a) were studied

by the MO polar Kerr spectroscopy. One of them as deposited and three with different

doses of irradiation. The MO polar Kerr rotation (PKR) and ellipticity (PKE) are shown

in figure 8.6 and 8.7, respectively.

Figure 8.6: Polar Kerr rotation spectra for structure

Pt(5.0 nm)/Co(3.3 nm)/Pt(20 nm)/Mo(20 nm)/Al2O3 before and after irradiation.

The non-irradiated sample, represented by circles, exhibits one shallow maximum

around 4.7 eV in PKR spectra and no distinguished structure in PKE spectra. Samples

irradiated with dose 2.8*1014 Ga+ ions/cm2, represented by green triangles and 1.0*1015

Ga+ ions/cm2, represented by black triangles, show large enhancement in the whole spec-

tral region in both PKR and PKE compared to the non-irradiated sample. The sample

with irradiation dose 6.0*1015 Ga+ ions/cm2, represented by rhombs, shows huge decrease

in PKR and PKE, where the measured values for PKR are even smaller compared to the

non-irradiated sample. Strong peaks located at 4.6 and 4.5 eV can be observed in the

PKR spectra of samples irradiated with doses 2.8*1014 Ga+ ions/cm2 and 1.0*1015 Ga+

ions/cm2, respectively. The corresponding peak in PKE spectra can be seen at 3.5 eV. The

level of the noise in both PKR and PKE spectra above 5 eV indicates higher roughness

of the sample surface accompanied by scattering of the incident light.
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Figure 8.7: Polar Kerr ellipticity spectra for structure

Pt(5.0 nm)/Co(3.3 nm)/Pt(20 nm)/Mo(20 nm)/Al2O3 before and after irradiation.

8.3 Model with CoxPt1−x alloy interface

The simulation of the MO polar Kerr spectra was performed using the 4x4 matrix Yeh

formalism described in chapter 4. The optical data needed for the calculation can be

found in literature - for Pt in [97], for Co in [56], for Al2O3 in [99] and Mo in [98]. The

MO parameters for Co were taken from [95].

Previous works on Pt/Co/Pt sandwiches propose a presence of the CoxPt1−x alloy

at both Pt/Co and Co/Pt interfaces also at non-irradiated samples. Devolder et al, [96]

performed an X-ray studies on a similar film with two times thinner Co layer and observed

a slight alloying at the interfaces. In the model, the actual profile of the alloyed layer with

x smoothly varying with distance from the Co interface was approximated by a stepwise

one consisting of five steps of constant x at both Pt-Co interfaces.

For CoxPt1−x, the only MO polar Kerr rotations and ellipticities are available. For-

tunately, optical constants for Pt and Co are little different from each other and the

reflectivity data by Brändle et al. [51] indicate that n and k for CoxPt1−x will remain

within the region bound by the end compositions x=0 and x=1. Unlike optical con-

stants, the MO polar Kerr rotation and ellipticity for CoxPt1−x alloy display a strong

x dependence favorable for the explanation of interface alloying on MO spectra. In our

calculation, the MO constants of CoxPt1−x were acquired from the MO polar Kerr spectra

on ”bulk”(more than 100 nm thick). Two sets of MO constants for x = 0.28 and 0.47

by Brändle et al. [51] and three sets of constant for x = 0.59, 0.72, 0.83, acquired from
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Visnovsky et al. [95], will be used. The optical constants for the CoxPt1−x alloys were

calculated with help of effective medium theory by Aspens et al. [76].

8.3.1 Pt/Co/Pt/Al2O3 samples prepared by sputtering

Figure 8.8: Polar Kerr rotation spectra for structure

Pt(4.5 nm)/Co(2.6 nm)/Pt(3.5 nm)/Al2O3 before, circles, and after, triangles, ir-

radiation. The model for declared thicknesses is embedded as dash-dotted line. The

black line corresponds to the model structures with alloy layers at the interface between

Pt and Co.

Calculation for the PKR was first performed for the structure with sharp interfaces as

shown in figure 8.1a). The modeled spectrum, the dotted line in figure 8.8, underestimates

the measured values of the non-irradiated sample, red circles. A reasonable agreement

between modeled spectrum and measured data for non-irradiated sample was achieved

by adding the same thick five layer alloy structure at both interfaces, as demonstrated in

figure 8.1b). The modeled data are presented as the dash-dotted line in figure 8.8. The

thicknesses of each layer are shown in figure 8.9. The model confirms appearance of the

alloying layer already in the non-irradiated sample.

The magnitude of the experimental PKR spectrum of the irradiated film (triangles

in figure 8.8) is strongly enhanced with respect to that of the as-grown non-irradiated

one. Such a PKR enhancement is explained by simulations if thicker alloyed layers with

smaller Pt content, are incorporated. The modeled spectra are presented in figure 8.8
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Figure 8.9: Thickness and composition profile of the non-irradiated Pt/Co/Pt sandwich

as deduced from the fit of PKR spectrum with five CoxPt1−x layers.

and the thicknesses of each layer can be found in figure 8.10. Under Ga+ irradiation the

alloying is no more symmetric and thicker alloy layer arises at the upper Pt/Co interface.

Figure 8.10: Thickness and composition profile of the irradiated Pt/Co/Pt sandwich as

deduced from the fit of PKR spectrum with five CoxPt1−x layers.

Figure 8.11 summarizes the thickness dependence of x in an non-irradiated sample,

irradiated sample and thicknesses from the deposition (sharp interfaces).
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Figure 8.11: Stepwise thickness dependence of x in CoxPt1−x employed for fitting mag-

neto optical polar Kerr rotation spectra (a) for an ideal Pt/Co/Pt sandwich with sharp

interfaces (dotted lines), (b) for the as grown Pt/Co/Pt sandwich before irradiation, in-

corporating CoxPt1−x alloy layers at Pt-Co interfaces (dot dashed lines), (c) for the irra-

diated Pt/Co/Pt sandwich incorporating other CoxPt1−x alloy layers at Pt-Co interfaces

(full lines). The zero in the thickness scale corresponds to the ambient-Pt interface.
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8.3.2 Pt/Co/Pt/Mo/Al2O3 samples prepared by MBE

The first model proposed for MBE prepared samples involved only a five layer structure

consisting of Pt/CoxPt1−x/Co/CoxPt1−x/Pt. But for better agreement the adding of the

bottom Mo layer and afterwards the Al2O3 substrate was necessary. From the TRIDYN

simulation [100] performed at the Helmholtz-Zentrum Dresden-Rossendorf, the level of

etching was calculated and considered during modeling. The final structure proposed for

the model can be found in figure 8.3 as subpart b).

Figure 8.12: Polar Kerr experimental spectra and Yeh formalism model for structure

Pt(5.0 nm)/Co(3.3 nm)/Pt(20 nm)/Mo(20 nm)/Al2O3 before irradiation.

The model for the non-irradiated sample shows presence of the alloy layers at the both

Pt-Co interfaces. The thickness of both alloy layers is similar, 1.2 nm. The comparison of

the modeled, full line, and measured data can be found in figure 8.12. Here circles stand

for PKR and triangles for PKE experimental data.

The sample after irradiation with doseD = 2.8*1014 ions/cm2 exhibits strong enhance-

ment in both PKR and PKE. The model used involve thicker alloy layer on the upper

interface, almost 5 nm thick, see figure 8.13. The thickness of the bottom alloy layer is

increased to 3.08 nm. The Co layer has transformed totally to alloy layers.

The magnitude of the PKR and PKE for the sample irradiated with the dose of Ga+

ions D = 1.0*1015 ions/cm2 is enhanced compared to the sample with dose D = 2.8*1014

ions/cm2. The model and measured data are compared in figure 8.14. The upper layer of

Pt is almost gone due to etching and alloying. The upper and bottom layer of alloys are

mixed together, as no Co layer is presented.
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Figure 8.13: Polar Kerr experimental spectra and Yeh formalism model for struc-

ture Pt(5.0 nm)/Co(3.3 nm)/Pt(20 nm)/Mo(20 nm)/Al2O3 after irradiation with dose

D =2.8*1014Ga+/cm2.

After the irradiation with dose D = 6.0*1015 ions/cm2, the sample exhibits strong

change in MO spectra. Amplitudes of PKR and PKE decrease strongly, the values for

PKR are even smaller than the PKR data for the non-irradiated sample. The model

predicts etching of most of the sample. The penetration of the Ga+ ions is expected as

far as the Pt/Mo interface, [100]. Therefore other layer of Mo(50%)/Pt(50%) effective

medium was inserted, see figure 8.3c). The comparison of the measured data and modeled

structure is shown in figure 8.15.
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Figure 8.14: Polar Kerr experimental spectra and Yeh formalism model for struc-

ture Pt(5.0 nm)/Co(3.3 nm)/Pt(20 nm)/Mo(20 nm)/Al2O3 after irradiation with dose

D =1.0*1015Ga+/cm2.

Figure 8.15: Polar Kerr experimental spectra and Yeh formalism model for struc-

ture Pt(5.0 nm)/Co(3.3 nm)/Pt(20 nm)/Mo(20 nm)/Al2O3 after irradiation with dose

D =6.0*1015Ga+/cm2.
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Modeled data for all samples are summarized in figure 8.16.

Figure 8.16: Nominal and modeled thicknesses for samples Pt/Co/Pt/Mo/Al2O3.

8.4 Conclusion on Pt/Co/Pt sandwiches

It was demonstrated that irradiation of the Pt/Co/Pt sandwiches by Ga+ ions enhance

the MO polar Kerr effect up to the dose D = 1.0*1015 ions/cm2. This effect originates

from the uneven increase of the alloy layer at Pt/Co interfaces. The interface closer to

the source of the irradiation suffers stronger alloying. The agreement between modeled

and measured data indicates that the use of step-wise five layer alloy interface between

Pt and Co layer was sufficient.

The comparison of the model with the measured MO data for non-irradiated sample

for both preparation technique shows, that the alloy layer is present in both samples at

both Pt/Co interfaces. As Pt and Co are very easy to form an alloy, the preparation of

the sample with sharp interfaces is rather difficult.

With increasing the dose up to D = 6.0*1015 ions/cm2, the magnitude of the MO

polar Kerr effect drops as the sample is mostly etched away.

As for CoxPt1−x alloy films for x = 0.75 [51], [102], in particular in chemically ordered

ones [103], a minimum around 3.2 eV appears on the PKR spectrum of our Ga+ irradiated

film at low dose. This can be the signature of a Co0.75Pt0.25 phase that exhibits a large

perpendicular magnetic anisotropy [103].
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Chapter 9

Summary

Favorable magnetic and magnetooptic (MO) properties of iron may be exploited in opti-

cal sensors detecting weak magnetic fluxes with high speed and high spatial resolution.

Structure consisting of an ultrathin Fe layer sandwiched between dielectric (AlN and

FeF2) was studied first theoretically and afterwards the MO polar and longitudinal Kerr

spectroscopy was measured on them. The sandwiching layers provide a protection against

ambient and maximize the MO response of the structure at polar magnetization and nor-

mal light incidence, as the dielectrics form a Fabry-Perot like cavity. Two different nanos-

tructures were prepared, AlN/Fe/AlN with the maximum MO effect around λ = 410 nm

and Au/FeF2/Fe/FeF2 with the enhancement of the MO effect around λ = 810 nm. The

structure with the FeF2 dielectrics requires another layer of Au at top to protect the Fe

and FeF2 against oxidation.

The polar MO spectra display a peak, which change its position in the energy range

with varying thickness of both top and bottom layers. This peak arises from the enhance-

ment of the MO effect with the Fabry-Perot cavity like architecture, which was predicted

and calculated in chapter 6. The MO response on a AlN/Fe/AlN structure to perpen-

dicular and in plane magnetization components give reasonable signals useful for sensing

external currents. The use of sputtering is practical for fabrication of the optical sensor

for weak fluxes based on the AlN/Fe/AlN structure.

The second part of the thesis was dedicated to the Pt/Co/Pt multilayers irradiated by

different doses of Ga+ ions. The magnetic anisotropy of thin Co layer sandwiched with Pt

may be tuned by ion irradiation under moderate doses. The samples for this study were

prepared by two different preparation technique, with the magnetic anisotropy in the in-

plane state for non-irradiated sample. The magnetic anisotropy were then changed by ion

irradiation to out-of-plane and in-plane again. Overall, two samples (non-irradiated and

irradiated with dose D = 1014 Ga+ions/cm2) prepared by sputtering and four samples

(non-irradiated and three irradiated with doses - 2.8*1014, 1*1015, 6*1015 ions/cm2) were

investigated by means of the MO polar Kerr spectroscopy.

The experimental results were simulated using the Yeh matrix formalism, which in-

dicated a structural changes at the Pt-Co interfaces. From the comparison of the model
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and measured data the presence of CoxPt1−x alloy layers of the same thickness at both

interfaces was indicated even in the non-irradiated sample. The thickness of the alloy

layer become thicker after irradiation with thicker layer at the interface closer to the ir-

radiation source. The use of five alloyed layer model instead of the smooth variation of

the x through the interface alloy was found sufficient.

As for Co0.75Pt0.25 chemically ordered layer [103], a minimum around 3.2 eV appears

on the MO polar Kerr rotation (PKR) spectrum, which is also noticeable on the PKR

spectra measured on the Ga+ irradiated film at low dose. This can be the signature of a

presence of the Co0.75Pt0.25 phase that exhibits a large perpendicular magnetic anisotropy.

More detailed MO spectroscopic studies of composition profile in irradiated films would

require the information on MO spectroscopy of CoxPt1−x films of defined composition and

degree of ordering.

For the purpose of the present thesis, a new code for modeling MO effects at oblique

angle of incidence at both polar and longitudinal magnetizations based on Yeh matrix

formalism was developed.

Effective medium theory was extended to magnetooptics and applied in modeling of

MO spectra of Au/FeF2/Fe/FeF2 multilayers.

For future plans the MO study of the multilayers at transverse geometry is proposed, to

evaluate the MO response of all three magnetization components. A complete information

on multilayer response to all three magnetization components will be most useful in the

development of new sensor and recording media.
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