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[α∗
n, 1 − α∗
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Preface

The thesis deals with stochastic inference oriented on extremal properties of random

samples. However, the topic would be in its full generality obviously beyond the possi-

bility of any dissertation thesis. An introduction to the general methodology how to deal

with extremes in samples, extreme value theory, is provided in the first chapter. Extreme

value theory is now an independent discipline of statistics and has been treated in many

books and in a vast number of articles (cf. de Haan and Ferreira (2006), Beirlant et al.

(2004), Resnick (2007) and others mentioned in the first chapter). Therefore, the topic of

this thesis is much more modest. We shall concentrate on the inference of extremal prop-

erties of linear models. While the univariate and multivariate branches of extreme value

theory have been examined extensively during past years, the special case of linear mod-

els attracted far less attention. Moreover, many findings and approaches of the current

theory have not been based on firm theoretical grounds. The thesis should be a humble

contribution to the discussion about this narrowly defined topic. My wish is to shed light

on the theoretical backgrounds of extreme value inference in linear models. The main

tools in this task are the quantile sensitive regression methods such as regression quan-

tiles or two-step quantiles (cf. Koenker and Basset (1978), Jurečková and Picek (2005))

whose properties in connection with the theory of empirical quantiles are described in the

second chapter. The asymptotic approximation of regression quantiles provided therein

is an important conclusion of the thesis. The techniques developed in last chapters are

all based on this approximation.

Extreme value theory is a theory of assumptions. As long as one can hope that these

assumptions hold it is possible to provide answers. For real life datasets the standing point

of a statistician is much more complicated, as it is no longer clear which assumptions hold.

Extreme value theory with its basic purpose to provide at least some conclusions even

on a very weak basis of facts, cannot often provide unambiguous solutions. It has turned

out in many situations that an expert guess is a valuable addition to the theoretically

grounded procedures. This is certainly nothing against the theory, as without it one

would be even blinder facing the facts, but it means that the theory is just a tool in hands

of a statistician who has the responsibility for the decision. This belief was crucial in

formulating the thesis conclusions. Rather than provide just answers concerning extremes

in linear models, I sought to provide questions which should be asked, as only questioning

the very nature of investigations can guarantee that our description of the reality would

not be flawed from the very beginning.

I could not complete the thesis without the help of many among my teachers, col-

leagues and friends. First of all I would like to express my gratitude to doc. RNDr.

Jan Picek, PhD., who fairly exceeded his duty as a supervisor and I would have never

finished this work without his friendly support. My thanks also belong to my teachers

and colleagues from the Department of Probability and Statistics on Faculty of mathe-
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Chapter 1

Extreme value theory

The purpose of this chapter is to provide an introduction to extreme value theory (EVT).

The following survey of mathematical, probabilistic, and statistical tools of EVT is just

a brief one – a reader can find a suitable treatment of the topic in any modern book

covering EVT. Let me mention some of them.

Firstly I would like to point to the recent book by de Haan and Ferreira (2006) that

offers a thorough introduction to the theory from the mathematical point of view. The

authors present the subject in its full generality as well as the precise details. To un-

derstand the inner nature of the theory, it is useful to look also at the treatment of

heavy-tailed phenomena by Sidney L. Resnick. The book Resnick (2007) goes pretty

much to the core of the regular variation problematic from the point process point of

view. It can be recommended for a clear and lively explanation of the basic concepts hid-

den behind EVT. Finally, I should mention Beirlant et al. (2004), which is valuable for

the wide range of covered statistical and computations techniques. A wide range of real

data cases illuminates these techniques. These three books have been the most influential

for the conception of this chapter, but the chapter also contains a lot from other sources

for example from the articles Drees (1998b), Dietrich et al. (2002), Buch-Kromann (2006)

and others.

1.1 Why extreme value theory?

Extreme value theory is a branch of statistics devoted to the study of rare phenomena

occurring in sample observations. The theory itself represents an independent statistical

discipline which has been developing steadily during the past years.

Uniformed observer may ask, why one should pay special attention to the problem of

an inference of extreme phenomena at all. Are not they covered by the classical theory

of statistic? Is it desirable to concentrate on rarely observable events at all? While rare

events do not play a principal role in the “classical” methods concerned by average values,

1



2 CHAPTER 1. EXTREME VALUE THEORY

they can be crucial for a significant number of real life problems. A flood is a perfect

example of a rare event, but extremes appear in many other fields. Extreme losses on

financial markets, enormous insurance claims, or peaks of teletraffic communication in

computer nets are just few cases that can be dealt with the theory. In all these examples

there exists a considerable demand for any information about the rare events, their inner

structure and probability distributions.

Nevertheless, it should also be clarified why to demand a special theory concerning

the extremes only. Simply, “traditional” techniques of mathematical statistics are not

suitable for the the task. We shall demonstrate it on the following example:

Have a random sample X = {X1, . . . , Xn}, i.e. independent identically dis-

tributed observations generated by an unknown random variable with a dis-

tribution function F . The task is to estimate the probability of exceedance

of quantiles of F , p = P (X > x) on the basis of the data.

The simplest and in some sense also the most efficient way to estimate the probability is

by the empirical distribution function

Fn :=
1

n

n∑
i=1

I[x ≥ Xi],

where I[ · ] stands for the indicator function. The estimate is p̂ = 1 − Fn(x). However,

this approach is clearly inadequate if x > Xn:n, where X1:n ≤ . . . ≤ Xn:n denotes the

order statistics of the sample X1, . . . , Xn, as in that case p̂ = 0 regardless of the exact

distribution function of the sample. It is obvious that underestimate severely the risk if

the distribution is heavy-tailed. Similarly one can expect that even the estimate of p for

Xn−1:n < x < Xn:n is not the fully accurate one. The conclusion of such an observation

holds to some extent also for other high quantiles.

The conclusion is that the reliability and usefulness of the estimates based on empiri-

cal distribution functions are questionable considering high quantiles of the distribution.

The events corresponding to the distribution tails are commonly called extreme events.

From similar arguments one could also derive that also other common strategies to esti-

mate the density or the distribution function of the sample distribution are inefficient for

“extreme” areas. Namely kernel estimators typically work with the preselected “heavi-

ness” of the tail (i.e. the rate of the decreasing tail probability) which again results in

an underestimation (or overestimation) of the risk of extreme events.

On the other hand, the motivation to estimate high quantiles of sample distribution

is obvious and demanded in various areas of human activity. As an example consider

the situation appearing in actuarial practice, especially in reinsurance. The success of

insurance companies depends on the estimation of this probability or indices derived from

it. The mean excess function or mean residual life function e(·) is used as a common

tool. It is defined as
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e(t) := E(X − t|X > t),

provided that E(X) < ∞. Estimating e(t) for a high threshold t brings the same type

of problems as in our introductory example and it is clearly desirable to have a solution

adaptable to the extreme phenomena (for some possibilities and their application on the

real data cases see Beirlant et al. (2004), pp. 14–19).

The actuarial practice resembles the situation in hydrology. Hydrologists are often

occupied with an estimation of the T-year flood discharge, which is a level exceeded

every T years on average. A time span of 100 years is usually taken, but the estimation

must be often carried out on the basis of water discharges for a much shorter period.

Moreover, it is advantageous to provide even a more detailed high-quantile estimation

of the water level. The knowledge of high-quantile properties of flood discharges is

important for modelling of the effective water course systems capacity, urban drainage

and water runoff.

Similar motivation stands behind the urge to estimate the extreme rainfall or wind

speed. The real case data studies demand even more complicated models adaptive to

dependency in the data set. As an example consider data from two different locations

which have something in common (they are on the same river separated by a longer

distance or in the same location and in a close vicinity for the case of rainfall).

Even the decision which observations are rare or extreme is not an easy one. Deriving

from a (so far only vague) definition of rare or extreme events, we can expect that in a

dataset there are none or at best just a few observations appllying to an area of extreme

events. However, the number of really extreme observations should also depend on a

sample size. But how? To come up with at least partial conclusion we must assume

stricter rules governing the sample distribution. At least, one should assume that the

really extreme observations of the tails share the same pattern regardless of given high

threshold (at least asymptotically). As events {X > t} and {X < t} are independent

for any single t ∈ R, we can require that such an assumption holds only for the tail

data greater than any given fixed threshold. Hence we can readily restrict ourselves on

areas {X > tn} for a suitable sequence of thresholds tn ∈ R according to the sample size

n ∈ N. We shall see later on that this type of approach leads to a general theory of

extreme events.

However, at least a bit should be also said about other possible solutions. In some

situations it is reasonable to approximate the tail by some ad hoc chosen distribution.

For example in insurance practice so called Champernowne distribution is used, see

Buch-Kromann (2006). The distribution function of the modified Champernowne distri-

bution is defined

Fα,M,c =
(x+ c)α − cα

(x+ c)α + (M + c)α − 2cα
, for x ∈ R+, (1.1)
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where α > 0, M > 0, and c ≥ 0 are parameters of the distribution. The parameters

can be estimated from the data using the maximum likelihood method. Buch-Kromann

proposes (in the cited article) further corrections of estimates by the means of kernel

density estimator. Finally the tail is approximated by the suitably transformed kernel

density estimator to obtain exceedance probabilities etc.

The treatment by EVT represents a general alternative to such more or less ad

hoc solutions. Again, have a sample X1, . . . , Xn generated by an unknown distribu-

tion F . We are interested in an approximation of the distribution of the maxima

Xn:n := maxi=1,...,n {Xi} for n → ∞. The distribution itself tends to be degenerate

in infinity, which is not too much informative – by the strong law of large numbers it

holds P (Xn:n → F (x∗)) = 1, where x∗ is the right upper end-point of the distribution

F .

However, much more information can be obtained by an approach similar to the

concept of the central limit theorem (CLT) or the stable laws. The main idea is worth

of more detailed explanation. Let Sn := X1 + . . .+Xn by the CLT holds Sn−nµ√
nσ

P−→
n→∞

Z,

where Z has the standard normal distribution N(0, 1), provided that EX1 = µ and

varX2
1 = σ2 <∞. Similar idea stands behind the concept of stable domain of attraction.

Suppose there exist some An > 0 and Bn such that,

Sn −An

Bn

D−→
n→∞

Y ∼ Φ. (1.2)

We say in that case that F belongs to the stable domain of attraction of Φ or, in other

words, Φ possesses the stable domain of attraction. It can be proven that a set of the

stable distributions is closed, as any distribution F posseses a stable domain of attraction

if and only if F has a stable distribution, i.e. it holds for some constants an and bn > 0

that Sn ∼ bnX1 + an. This is just an introductory idea of the more extensive theory of

stable laws, see Shorack (2000), pp. 407-411, for more.

Similar ideas can be used even if the maxima are on the spot of the sums in (1.2).

Define for the sample X1, . . . , Xn order statistics X1:n ≤ · · · ≤ Xn:n. Suppose that there

exist constants an ∈ R and bn > 0 that it holds

Xn:n − an
bn

D−→
n→∞

Y ∼ G, (1.3)

where G is some nondegenerate distribution of Y . The question is what are the possible

forms of the distribution G.

1.2 Domains of attraction

Suppose X1, . . . , Xn are independent random variables (i.i.d. ) with a common distribu-

tion function F . Let X1:n ≤ · · · ≤ Xn:n be the order statistics of X1, . . . , Xn. Extreme

value theory is based on the following assumption:
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(EVT.1) Suppose there exist constants an > 0 and bn ∈ R such that

P (Xn:n ≤ anx+ bn) = Fn(anx+ bn) → G(x) (1.4)

for all x ∈ R, where G is a non-degenerate function.

Assuming (EVT.1) holds we say that G is the extreme value distribution and F is in

the domain of attraction of G (notation F ∈ MDA(G)). The following theorem is fun-

damental result of EVT. It provides a characterization of the possible non-degenerate

distributions that can occur in (1.4).

Theorem 1.2.1 (Fisher-Tippet-Gnedenko). The class of non-degenerate limit distribu-

tions G(x) which can fulfill (1.4) is G(x) = Gγ(ax+ b) with a > 0, b ∈ R, where

Gγ(x) =

{
exp

(
−(1− γx)−1/γ

)
, 1 + γx > 0,

exp(−e−x) γ = 0,
(1.5)

and γ ∈ R.

Proof. See de Haan and Ferreira (2006), Theorem 1.1.3.

The parameter γ in (1.5) is called extreme value index. This parameter has a central

role in the theory. We divide the distributions fulfilling (1.4) into groups of domains of

attraction according to γ ∈ R and its sign. The sign itself has an important meaning as a

delimiter between three basic classes of distributions according to the mass concentrated

on the tail (see below). Note that a similar condition can be formulated for the minima

X1:n of the sample as well. In that case similar version of Theorem 1.2.1 holds and the

characterizations remains principally the same (consider the properties of the maxima of

{−X1, . . . ,−Xn}).
The versatility of the condition (1.4) is demonstrated by the fact that the different

criteria on F lead to the same domains of attraction.

Theorem 1.2.2. For γ ∈ R the following statements are equivalent:

(i) There exist real constants an > 0 and bn ∈ R such that

lim
n→∞

Fn(anx+ bn) = Gγ(x) = exp
(
−(1 + γx)−1/γ

)
,

for all x with 1 + γx > 0 and G0(x) defined by the limit as in (1.5).

(ii) There is a positive function a(·) such that for x > 0,

lim
t↓0

F−1(1− tx)− F−1(1− t)

a(t)
=
x−γ − 1

γ
, (1.6)

where for γ = 0 the right-hand side is interpreted as log x.
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(iii) There exists a positive function h such that

lim
t↑x∗

1− F (t+ xh(t))

1− F (t)
= (1 + γx)−1/γ (1.7)

for all x such that 1 + γx > 0, where x∗ = sup {x : F (x) < 1}.

Proof. See de Haan and Ferreira (2006), Theorem 1.1.6.

The condition (EVT.1) can be simplified for smooth and differentiable distributions. In

that case a sufficient condition for belonging to a domain of attraction is given by so

called von Mises condition.

Theorem 1.2.3 (von Mises condition). Let F be a distribution function and x∗ its right

endpoint. Suppose F has a density f that is positive and differentiable for all x in some

left neighbourhood of x∗. If

lim
t↑x∗

(1− F (t))f ′(t)

f2(t)
= −γ − 1 (1.8)

then F is in the domain of attraction of Gγ , defined in (1.5).

Proof. See de Haan and Ferreira (2006), Theorem 1.1.8.

Furthermore, if γ is positive or negative, the notation (1.8) can be simplified even a little

bit more.

Theorem 1.2.4 (von Mises condition for γ > 0). Suppose x∗ = ∞ and there exists f ,

the positive density of F . If for some γ > 0 holds

lim
t→∞

tf(t)

1− F (t)
=

1

γ
, (1.9)

then F is in the domain of attraction of Gγ defined in (1.5).

Proof. See de Haan and Ferreira (2006), Theorem 1.1.11.

An analogue assertion holds also in the case γ < 0.

Theorem 1.2.5 (von Mises condition for γ < 0). Suppose x∗ <∞ and for x < x∗ there

exists f , the density of F . If

lim
t↑x∗

(x∗ − t)f(t)

1− F (t)
= − 1

γ
(1.10)

for some γ < 0, then F is in the domain of attractions of Gγ defined in (1.5).

Proof. See de Haan and Ferreira (2006), Theorem 1.1.13.
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Theorems 1.2.4 and 1.2.5 show that the sign of γ really matters. By Theorem 1.2.4 one

gets that smooth distribution functions appertaining to {Gγ , γ ∈ R+} have an infinite

upper endpoint x∗. Similarly for the distributions in {Gγ , γ ∈ R−} it holds that their

left tails are restricted by finite x∗. The third important class arises from the case γ = 0.

In the following part we will also use the word “domain” in a wider sense when refer-

ring to the three larger classes respective to the sign of γ. The above described property

concerning finiteness of their tails holds also for the distributions fulfilling only the domain

of attraction condition and not von Mises condition, for details see de Haan and Ferreira

(2006), Theorem 1.2.1. The characteristics of these three classes are summed up in the

following subsections.

1.2.1 Fréchet-Pareto domain, γ > 0

Fréchet-Pareto (or just Fréchet) domain traditionally receives the largest attention of

researchers. The distributions, which lie in the domain are called heavy tailed. They

have an infinite endpoint x∗ = ∞ and their higher moments are not finite depending on

the value of γ. Relation (1.7) can be simplified to

lim
t→∞

1− F (tx)

1− F (t)
= x−1/γ , for x > 0 (1.11)

or in terms of quantile function

lim
t↓0

F−1(1− tx)

F−1(1− t)
= x−γ , for x > 0 (1.12)

see de Haan and Ferreira (2006), Theorem 1.2.1., which in terms of regular variation

means that 1 − F is regularly varying in infinity with index −1/γ, provided that F ∈
MDA(Gγ), γ > 0. Hence,

1− F (x) = x−
1
γ ℓF (x) and F−1(1− x) = x−γℓQ(x), (1.13)

where ℓF and ℓQ are two slowly varying functions (ℓQ is slowly varying at zero) linked

together via de Bruyn conjugation, for the definition of de Bruyn conjugation and more

details see Beirlant et al. (2004), pp. 79–82.

Representation (1.13) reveals that with the increasing value of γ the tail becomes

heavier, or in other words, it is more likely that large outliers appear in the sample. This

also reflects the dispersion of the data (its structure not the variance) and finiteness of

the moments. For γ > 0.5 the variance of the distribution does not exist. For γ > 1

there does not exist even expected value EX. More precisely,

E(Xa
+)

{
= ∞, aγ > 1.

<∞, aγ < 1,

where X+ denotes the positive part of X, see Beirlant et al. (2004), pp. 58.
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The distributions of Fréchet–Pareto domain have an important role in practical ap-

plications and have been successfully used to model many real life situations. To give

some examples, the financial data such as insurance claims, log returns of the stocks

values, teletraffic data or high water levels are often heavy tailed. The importance of

studying the theoretical properties of the class is even stronger considering the fact that

many traditional statistical methods can be severely affected by the tail properties of the

sample (consider e.g. least-square linear regression). EVT provides a general framework

to treat the extremal aspects of the inference. Thorough attention gained by the class has

resulted in specific inferential methods usable for Fréchet class, which are not consistent

if γ ≤ 0. The most prominent example of this kind of estimators is Hill’s estimator, see

page 14. The following table shows some examples of the distributions belonging to the

Fréchet domain.

Distribution Notation F (x) γ

Pareto Pa(α) 1− x−α 1
α

x > 1; γ > 0

Generalized Pareto GP(σ, γ) 1−
(
1 + γx

σ

)− 1
γ γ

x > 0;σ, γ > 0

Fréchet Fr(α) 1− exp(−x−α) 1
α

x > 1;α > 0

Student’s t-distribution |tn| 1−
∫∞
x

2Γ(n+1
2 )

√
nπΓ(n

2 )

(
1 + ω2

n

)−n+1
2

dω, 1
n

(absolute values) x > 0;n > 0

Cauchy 1
π arctan (x) 1

x ∈ R

Burrleigh Burr(η, τ, λ) 1−
(

η
η+xτ

)λ
1
λτ

x > 0; η, τ, λ > 0

1.2.2 Weibull domain, γ < 0

The distributions in this domain are chiefly characterized by the finite upper endpoint x∗.

As such, they represent the opposite of the previously described heavy-tailed distributions

of Fréchet domain. The extremes of the distributions in the class are bounded and

EXa <∞, a ∈ R+. The basic characterization of the distributions in the domain can be

written as

lim
t↓0

1− F (x∗ − tx)

1− F (x∗ − t)
= x−1/γ (1.14)

The relation (1.14) can be rewritten in terms of regular variation

1− F (x∗ − 1/x) = x−1/γℓF (x) and F−1(x) = x∗ − x−γℓQ(x) (1.15)
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where ℓF and ℓU are slowly varying functions linked together by de Bruyn conjugation

similarly as in the case γ > 0, again see Beirlant et al. (2004), pp. 79–82.

The problem of an inference of γ in the Weibull domain has attracted far less attention

than that of Fréchet and Gumbel domains (see next section). In fact for γ < −1 one

gets better estimates of the distribution tails using standard statistical methods than the

methods of EVT, see section 1.6 and the references cited therein.

Nevertheless, techniques dealing specially with the Weibull case have been developing

during the past years, e.g. Negative Hill’s estimator of γ is estimator of the extreme value

index working only for the Weibull class. This estimator can be seen as a counterpart of

Hill’s estimator, whose consistency is limited to the case of γ > 0.

Distribution Notation F (x) γ

Uniform U[0, 1] x, x ∈ [0, 1] −1

Beta Beta(p, q)
∫ x

0
1

B(p,q) t
p−1(1− t)q−1dt, −1

q

x ∈ (0, 1)

Extreme value Weibull exp ((x∗ − x)α) − 1
α

x ∈ (0, x∗)

The distribution which have finite extremes may seem easy to deal with. Nevertheless,

these distribution requires special treatment and normalizations in many applications,

especially in the case γ < −1/2. Note, that some of the distributions in Weibull domain

have an infinite density near the upper endpoint. As an example consider the distribution

given by the distribution function

F (x) = 1−
√
1− x, x ∈ [0, 1].

It has the positive density f(x) = 1√
1−x

for which holds

lim
x→1

1√
1− x

= ∞, (1.16)

i.e. the density f tends to infinity when approaching the upper endpoint. Moreover

f ′(x) = 1
2 (1− x)−3/2 and

lim
x→1

√
1− x · 1

2 (1− x)−3/2

(1− x)−1
=

1

2
. (1.17)

Hence F fulfills von Mises condition (1.8) with γ = −3/2 and belongs to Weibull domain

of attraction. This is a reason why we will restrict ourselves mainly to the assumption

γ > −1/2 .

1.2.3 Gumbel domain, γ = 0

The Gumbel domain of attraction is more diverse than the previous ones. The upper

right endpoint x∗ of the distributions within the domain can be finite as well as infinite
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and also the basic classification of the domain is more complex than in the case of Fréchet

or Weibull domains: For any distribution function F appertaining to Gumbel domain

there exists a positive function h such that

lim
t↑x∗

1− F (t+ xh(t))

1− F (t)
= exp(−x), (1.18)

for x ∈ R. Function h can be defined as

h(t) :=

∫ x∗

t
(1− F (s))ds

1− F (t)
,

see de Haan and Ferreira (2006), Theorem 1.2.1. The distributions in the domain also

fulfill relation
∫ x∗

t
(1 − F (s))ds < ∞ for t < x∗. Such distributions are often called

exponentially light-tailed. Indeed, there exists EXa for any a ∈ R+. Exponential distri-

bution as well as Normal distribution are typical example of distribution appertaining to

Gumbel domain of attraction.

Distribution Notation F (x)

Exponential Exp(λ) 1− exp (−λx)m
x > 0;λ > 0

Normal N (µ, σ2)
∫ x

−∞
1√

2πσ2
exp

(
− (u−µ)2

2σ2

)
du = σ(Φ(x) + µ),

x ∈ R;µ ∈ R, σ > 0

Gamma Γ(λ,m) λm

Γ(m)

∫ x

−∞ um−1 exp(−λu)du,
x > 0;λ,m > 0

Logistic Log 1− 1/(1 + exp(x)),

x ∈ R
Log-normal LN (µ, σ2)

∫ x

−∞
1√

2πσ2x
exp

(
− (log(u)−µ)2

2σ2

)
du,

x > 0;µ ∈ R, σ > 0

Weibull 1− exp(−λxτ ),
x > 0;λ, τ > 0

1.2.4 Distributions which do not lie in any domain

We have seen that the distributions meeting the extreme value condition can be divided

into three classes distinguished by the sign of γ which reflects their properties. At least

something should be written also about the distributions, which do not fulfill condition

(1.4). Not much attention has been paid to them in EVT as such distributions can be

seen to be contradicting to the philosophy of the theory. Nevertheless, one should be

aware of their existence. In fact they actually appear in a limited field of applications. To

meet these purposes and to distinguish these distributions from the distributions fulfilling

the extreme value condition, some tools have been recently developed.
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It has been shown on previous pages that it is the unifying concept of regular variation,

which characterizes the properties of distribution tails. The distributions falling outside

any domain of attraction simply do not have regularly varying tails. In few examples we

shall try to summarize some sources of such an irregularity.

Rather surprisingly, one reason, why some distributions do not fall in any domain of

attraction, is that they are “too heavy”. Consider the distribution given by distribution

function

F (x) = 1− 1

log ex
, x ∈ [1,∞]. (1.19)

For any a ∈ R+ it holds that EXa = ∞, therefore the distribution can lie only in the

Fréchet sphere. On the other hand 1 − F (x) = 1/log ex is not regularly varying and

cannot be represented as in (1.13) – the tails of the distribution F are “too heavy” even

for Fréchet sphere.

In some cases, the problem lies in the smoothness of the distribution function. Dis-

crete distributions are not often in any domain of attraction, e.g. it is such in case of the

Poisson distribution. Another example is the truncated exponential distribution

X ∼ exp[E], (1.20)

where E is a random variable with the standard exponential distribution and [·] denotes
the function returning the whole number of the input value. Again distribution (1.20)

does not fulfill the domain of attraction condition, see Hüsler and Li (2006).

The changes in tails causing that asymptotic of (1.20) can not be described by regular

variation can be also smooth. The following classical example have been introduced by

R. von Mises:

F (x) = 1− exp(−x− sinx), x > 0. (1.21)

This distribution does not belong to any domain of attraction, see de Haan and Ferreira

(2006), pp. 36. In the example (1.21) the crucial element causing that the distribution

does not lie in any domain of attraction is the function sinx.

Nevertheless, the assumption that the sample distribution belongs to some domain

of attraction is still reasonable in majority of real life situations. The opposite case can

be tested by means of recently developed tests, see below. However, the falsehood of

the domain of attraction condition is also indicated by the results of the estimations

and other simple observations. Simulations results in Dienstbier (2009) indicate that the

problems with assumption (1.4) can also detected by a suspicious behaviour of the com-

mon estimators of γ being compared together. Calculation of more than one estimator

is highly recommended as the estimation is often based on a different property of the

limiting distribution Gγ .
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The tests are testing the hypothesis

H0 : F ∈ MDA(Gγ) for some γ ∈ R (1.22)

against various alternatives. These tests were derived by Dietrich et al. (2002) and

Drees et al. (2006), while Hüsler and Li (2006) provided extensive simulation study com-

paring the both methods. A reader can find an extensive overview of these methods and

other alternatives such as a modification of goodness of fit tests in Neves and Fraga-Alves

(2008).

1.3 Assumptions of the second order

Suppose that condition (EVT.1) holds, hence the tail of the distribution can be described

by its regularly varying component. A natural question arises what is the difference

between the exact tails of the distribution and their approximation by the regularly

varying function, i.e. the remains after the tail approximation (1.6). We shall define

R(t, x) :=
F−1(1− tx)− F−1(1− t)

a(t)
− zγ(x). (1.23)

where

zγ(x) :=

{
x−γ−1

γ γ ̸= 0,

− log(x) γ = 0.
(1.24)

We shall see that the properties of R(t, x) are important when considering the rate of

convergence for various estimators of γ. It is a natural idea to assume that the remainder

can also be described in terms of regular variation. The following assumption is was

formulated in de Haan and Resnick (1996), but equivalent formulations can be found

also by other authors.

(EVT.2) Suppose there exists a function A(t) → 0 (as t→ ∞) with constant sign near

infinity such that

lim
t↓0

F−1(1−tx)−F−1(1−t)
a(t) − zγ(x)

A(t)
= lim

t↓0

R(t, x)

A(t)
= K(x) (1.25)

for all x > 0, where K(x) is assumed not to be a multiple of zγ(x).

Condition (EVT.2) is called the second order condition. It describes the variation of the

remainder between the first order approximation and the real distribution. Functions

K(x) and A(x) can be obtained in exact forms, see de Haan and Ferreira (2006), pp.

43–49. Chiefly there exist constants c1, c2 ∈ R and a parameter ρ ≤ 0 such that

K(x) = c1
1

ρ
(zγ+ρ(x)− zγ(x)) + c2zγ+ρ(x) (1.26)
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if γ ̸= 0 ̸= ρ,

K(x) = c1
1

ρ
(zγ+ρ(x)− zγ(x)) + c2zγ(x) (1.27)

if γ ̸= 0 = ρ, and finally

K(x) = c1
1

2
(log x)2 − c2 log x, (1.28)

if γ = 0 = ρ, with zγ as in (1.24).

Moreover, the normalising function A is regularly varying at zero, i.e.

lim
t↓0

A(tx)

A(t)
= x−ρ (1.29)

Relations (1.26), (1.27), (1.28), and (1.29) show that the parameter ρ has an analogous

role in this second order approximation as γ has in the approximation of the first order.

We call ρ the second order index of regular variation. We shall see that the asymptotic

bias of an γ estimators is tied to ρ in next section.

For the sake of simplicity, some authors introduce a less general assumption than

(EVT.2):

(H.1) Assume γ > 0, then F belong to the so called Hall class if

F−1(1− t) = ct−γ(1 + dt−ρ + o(t−ρ)), t ∈ (0, 1) (1.30)

for some c > 0, ρ ≤ 0, and d ∈ R.

Note that if F is a member of the Hall class (1.30), it also fulfills the second order

condition (1.25) with the parameter ρ, which is identical with that in the definition (1.30).

While the assumption (1.30) is stricter than (1.25), many properties associated with

the second order approximation can be readily described in somewhat simpler version.

Also the definition of the Hall class itself can be expanded to more general version, see

Beirlant et al. (2004), pp. 93 (cf. also the literature cited therein).

Introducing the second order condition can be seen problematic as in the real data

analysis one does not know that at least the first order condition, i.e. domain of at-

traction, holds. Indeed, following the steps of von Mises example (1.21) we can derive

distributions, which fulfill the domain of attraction condition (EVT.1), but do not fulfill

(EVT.2). An example is

F (x) = 1− x−1

(
1 +

1

x
exp (sin log x)

)
, (1.31)

see de Haan and Ferreira (2006), pp. 61. On the other hand at least the consistency

of the estimation of γ is usually assured by the domain of attraction condition alone.
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Generally, the second order condition is assumed in the theory. However, at least some

violations of the condition are can be seen as favourable for the usual estimation pro-

cedures: the Pareto distribution F (x) = 1 − x−α, α > 0 naturally does not fulfill the

second order condition as the remainder R(t, x) is equal to zero and thus not regularly

varying. On the other hand the estimation methods are based on the fact that the prop-

erly standardized tail has asymptotically the Pareto distribution and hence they perform

very well on a Pareto distributed sample.

In the following lines we will generally assume that the second order condition (EVT.2)

holds, but similarly as in Drees (1998b) we shall also cover these cases where the remain-

der (1.23) converge to 0 fast enough and the second order condition does not hold. We

will see that in this case the bias of the estimation tends to be zero, which indicated the

example with the Pareto distribution.

1.4 Estimating γ and intermediate sequences

In the previous section we have described the basic ideas of EVT. We have shown that an

extremal part of the distribution can be approximated by one-parameter extreme value

distribution. For a real data sample we naturally do not know the exact value of the

parameter, even if we assume that the domain of attraction condition holds. As it was

stated in the beginning, the strategy shall be to approximate the tails of the distribution

by its associated extreme value distribution. Hence γ must be estimated on the basis of

the data sample. We shall see later that a good implementation of this task is usually a

sufficient step forward (at least from the asymptotic point of view) to the estimation of

conditional extreme quantiles and other goals of the theory, see section 1.6. All in all, a

good estimate of γ matters.

There are many known estimators of γ and the literature covering the problem is very

rich. On the following pages we thus cover only a brief selection of the possible estimators

of γ. For a broader overview of possible methods we refer the reader to Beirlant et al.

(2004), where the additional literature can be also found.

1.4.1 Scale invariant estimators

Rather surprisingly (at least at the first sight) many popular estimators used in EVT

practice are only scale but not location invariant. This is also true for the most popular

one – Hill’s estimator. It is defined as

γ̂Hn,k =
1

k

n∑
i=1

logXn−k+1:n − logXn−k:n, (1.32)

where k = kn ∈ N is an intermediate integer sequence, i.e., k → ∞ and k/n → 0 as

n→ ∞. Hill’s estimator is traditionally one of the most popular estimators and probably

the one which has received the greatest attention among all estimators proposed in the



1.4. ESTIMATING γ AND INTERMEDIATE SEQUENCES 15

literature. It was introduced during the early stage of the development of EVT by Hill

(1975), but its consistency and asymptotic normality were not been fully established

until Mason (1982). The estimator has a lot of notable properties which it shares with

many other estimators of γ. This is the reason we shall speak about it in a more detail.

Firstly, note the special role of k in the definition (1.32). The selection of k determines

the number of k = kn highest order statistics out of a total size n which are used for the

estimation. The estimator is consistent if γ > 0 and k is an intermediate sequence or goes

to the infinity with even faster rate. The rate of k = kn has an important consequences

for the form of the asymptotic distribution of the estimator. Suppose that the second

order condition (EVT.2) holds and for A as in (1.25) holds

lim
n→∞

√
kA

(
k

n

)
= λ ∈ [0,∞) (1.33)

Then

√
k(γ̂Hn,k − γ)

D−→
n→∞

N
(

λ

1− ρ
, γ2
)

(1.34)

provided that k = kn → ∞, k/n→ 0, n→ ∞, see de Haan and Ferreira (2006), Theorem

3.2.5. The optimal rate of k in γ̂Hn,k coincides through the relations (1.33) and (1.34) with

the second order index ρ. Assume for simplicity, that F is in the Hall class defined by

(1.30) for some ρ < 0 and γ > 0 (hence also F ∈ MDA(Gγ)). The optimal rate of γ̂Hn,k

is attained for k ∼ n
2ρ

2ρ−1 , while for
√
kA(k/n) → 0 and k = o

(
n

2ρ
2ρ−1

)
the rate is also

slower in the situation
√
k|A(k/n)| → ∞ when

γ̂n,k − γ

A
(
k
n

) P−→
n→∞

1

1− ρ
. (1.35)

see de Haan and Ferreira (2006), pp. 77. An interesting coverage of the problematic

under more general condition is provided in Resnick (2007), pp. 291–303. The condensed

conclusion of Resnick’s observations and reviews of older results is that the asymptotic

normality of Hill’s estimator is equivalent to some kind of the second order regular

variation.

The relation (1.34) leads to the following conclusion: When kn is small, the variance

of the estimator is large and on the contrary, large kn results in a serious bias of the

estimation. Note that the optimal rate of kn depends on an unknown parameter ρ linked

together with the second order condition, cf. with (1.30) – it holds also in the general case

when we do not assume that F belongs to the Hall class but just fulfills the second order

condition. As we do not know ρ, there is not any golden rule how to achieve the optimal

proportion between kn and n for a given sample of observations. The only possibility is

to learn more by the further inference and assume stricter conditions on the underlying

distribution of the sample.

The problem with the selection of “optimal” k and the reduction of the bias of the

estimation has gained a considerable attention in the literature, see a brief overview in



16 CHAPTER 1. EXTREME VALUE THEORY

Beirlant et al. (2004), pp. 113–129. However, these refined and sometimes a little bit

complicated methods usually cause a greater asymptotic variance than the one attain by

the Hill’s estimator. In fact it can be proven, that the Hill’s estimator attain the lowest

asymptotic variance, see Drees (1998a), while for all the estimators for γ > 0 achieve the

best rate of convergence, see Drees (1998c).

Asymptotic variance in a combination with an ambiguous selection of kn poses a

practical problem with the Hill’s estimator (and also with other estimators), the estimate

usually differs considerably for a different selection of kn. Which estimate should be

used? The mentioned methods calculating “the best” k on the basis of the data cannot

be seen as a final and all-time dependable solutions of the problem – naturally, each

of these methods is based on a different strategies and leads to a different value of k.

It is questionable, whether to depend on any of these methods in a real data analysis.

Any researcher using EVT should double check any assumptions of his analysis. Hence

blindly choosing just a one out of different possible kn to obtain the estimate of γ seems

to be against the philosophy of the theory. An expert guess or a combination of various

methods based on various aspects of the tail distribution seem to be a wiser solution.

In the real data analysis so called Hill plot is often used as an auxiliary tool in decision

which k should be used

{
(k, γ̂Hn,k), 1 ≤ k ≤ n

}
. (1.36)

An example of the practical realisation of the plot is shown in Figure 1.1. As an estimate

of γ we accept such a value of γ̂Hn,k that lies on the plot in a region which seems to

be stable. Sometimes this works satisfactory (as in Figure 1.1), sometimes less (as in

Figure 1.2) and sometimes the plot is not very revealing. This happens for example for

the sample generated by the perturbed Pareto distribution given by its quantile function

F−1(1 − t) = (t| log(t)|2)−1, see Figure 1.3. This distribution has by (1.12) regularly

varying tails with γ = 1. Nevertheless, its slowly varying factor ∥ log(t)∥2, which does

not play any role from the asymptotic point of view in (1.12) as log2(tx)/ log2(t) → 1

with t → ∞, stands behind the severe bias of the estimation as indicated on Figure

1.3. The region of stability does not coincide with real value of γ for any k ∈ N. In

fact slowly varying factor in perturbed Pareto distribution dies out very slowly and even

considerable amount of observations does not solve the problem as is indicated on Figure

1.4.

A different scaling of the Hill plot leads in some cases to the wider region of the

stability, e.g. this is the case of Starica plot, see Resnick (2007), pp. 314–321. However,

in some cases we cannot decide without a more complex methodology aiming at the

reduction of the bias itself through some estimation, see Resnick (2007), pp. 88–89 and

Beirlant et al. (2004), pp. 113–129 for some possibilities. We do not stick to details, but

the conclusion is clear – the estimation of γ is a complex task whose difficulty should not

be underestimated by no means.
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Figure 1.1: Different estimates of γ according to the Hill’s estimator and a

different number of k. The data consists of 250 random values

generated from Fréchet distribution with γ = 1 (indicated by the

dashed line).

Hill’s estimator is suitable only for the Fréchet domain, i.e. γ > 0, however the esti-

mation can be extended to any domain, an example is the moment estimator introduced

by Dekkers et al. (1989)

γ̂Mn,k :=M
(1)
n,k + 1− 1

2

(
1− 2

M
(1)
n,k

M
(2)
n,k

)−1

(1.37)

where

M
(j)
n,k =

1

k

k∑
i=1

(logXn−i+1:n − logXn−k:n)
j
, j = 1, 2. (1.38)

This estimator which can be seen as a correction of Hill’s estimator (note that M
(1)
n,k =

γ̂Hn,k) is consistent for γ ∈ R, see de Haan and Ferreira (2006), pp. 100–109.

Both estimators introduced in this section are scale invariant only. This can pose a

serious problem during the analysis of a real dataset as even adding a constant to all

values of the sample can affect the estimation. Even worse, Hill’s estimator is actually

surprisingly sensitive to such changes in location, some examples are provided by Resnick

(2007), pp. 88. A natural question arises at this point: Why to use the Hill’s estimator

at all? In fact, if using carefully, Hill estimator can be a very efficient estimator, which

can be also seen as the best solution from one point of view. For γ > 0 it has the lowest
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Figure 1.2: Different estimates of γ according to the Hill’s estimator and a

different number of k. The data consists of 250 absolute values

of random values generated from Student’s t-distribution with 2

degrees of freedom (γ = 0.5 is indicated by the dashed line).

Notice that the bias is larger and faster growing than in Figure 1.1.

asymptotic variance among all location and scale invariant estimators of γ. Moreover, if

γ > 0 and γ > ρ the asymptotic variance of the Hill’s estimator cannot be attained by

estimators which are also location and not only scale invariant, see Drees (1998a). Taking

also the bias into account, it turns out that no estimator having minimal mean-squared

error simultaneously for all underlying distribution functions satisfying the second order

condition exits, see Drees (1998b). Each of the estimators aims at a slightly different

aspect of the underlying extreme value distribution of the sample and none of them can

hold the title “the best one”. It is therefore strongly advisable to estimate γ using more

procedures if possible.

1.4.2 Location and scale invariant estimators

In this thesis we would rather deal with the estimators which are not only scale but also

location invariant. As in the previous section we provide only very basic ideas and refer

to a survey literature such as Beirlant et al. (2004) for further details.

One of the simplest, oldest, but also one of the most commonly used estimator is
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Figure 1.3: Different estimates of γ according to the Hill estimator and a

different number of k. The data consists of 250 random val-

ues generated from the perturbed Pareto distribution given by

F−1(1 − t) = (t| log(t)|2)−1 (real value of γ = 1 is indicated by

the dashed line).

Pickands estimator,

γ̂Pn,k :=
1

log 2
log

Xn−[k/4]:n −Xn−[k/2]:n

Xn−[k/2]:n −Xn−k:n
. (1.39)

The estimator is consistent if k = kn is an intermediate sequence, asymptotic normality

can be proven under the second order condition provided that

lim
n→∞

√
knA

(
kn
n

)
= λ (1.40)

see de Haan and Ferreira (2006), pp. 83–89. Note that the Pickands estimator is calcu-

lated from just four values of higher order statistics, the other values of the sample are

just determining the order of observations. This is a slightly different approach from that

of Hill’s estimator and also other estimators mentioned so far, which are based on kn

values of observations. An inauspicious consequence is that the volatility of the Pickands

plot
{
(k, γ̂Pn,k), 1 ≤ k ≤ n

}
is usually considerably higher than that of estimators based

on infinitely growing number of high order statistics like the Hill estimator. It often re-

quires to have several thousands of observations to guess a stability region of the Pickands

plot more accurately, but even in such case one needs to solve similar problems as in the

case of the Hill’s estimator explained previously.
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Figure 1.4: Different estimates of γ according to the Hill estimator and a

different number of k. The data consists of 105 random val-

ues generated from perturbed Pareto distribution with given by

F−1(1 − t) = (t| log(t)|2)−1 (real value of γ = 1 is indicated by

the dashed line).

Another popular estimator, which is widely used, is the maximum likelihood estimator.

The idea is as follows: Using relation (1.7) one gets that for some positive function h

lim
t↑x∗

P

(
X − t

h(t)
> x

∣∣∣∣X > t

)
= 1−Hγ(x) := (1 + γx)−1/γ . (1.41)

In other words, the largest observations approximately follow a generalized Pareto (GP)

distribution which opens a possibility of applying the maximum likelihood procedure to

the largest observations and using GP distribution as a model. The careful treatment

of the threshold t in (1.41) is necessary. It shows up that it is equivalent to consider

excesses over Xn−k:n where k is an intermediate sequence, see de Haan and Ferreira

(2006), pp. 89–91. Using the usual procedure we are looking for a maximum of the

density of an approximative likelihood
∏k

i=1 hγ(Zi) where hγ,σ(x) = ∂Hγ(x/σ)/∂x is

the density of Hγ(x/σ) (it is also necessary to estimate the scale parameter σ ∈ (0,∞))

and Zi = Xn−i+1:n−Xn−k:n. The likelihood equations are given by the partial derivatives

∂ log hγ,σ(z)

∂γ
=

1

γ
log
(
1 +

γ

σ
z
)
−
(
1

γ

) z
σ

1 + γ
σ z

∂ log hγ,σ(z)

∂σ
= − 1

σ
−
(
1

γ
+ 1

) − γ
σ2 z

1 + γ
σ z
, (1.42)



1.4. ESTIMATING γ AND INTERMEDIATE SEQUENCES 21

0 50 100 150 200

−2
−1

0
1

2
3

k

Es
tim

at
e 

of
 E

VI

Figure 1.5: Different estimates of γ according to the Pickands estimator and

a different number of k. The data consists of 250 absolute values

from the sample generated from Student t-distibution with 2 de-

grees of freedom (real value of γ = 0.5 is indicated by the dashed

line). Note a considerable volatility of the plot in comparison with

the Hill estimate on Figure 1.2.

which are for γ = 0 interpreted as their limits γ → 0. From (1.42) follows likelihood

equations

k∑
i=1

1

γ2
log
(
1 +

γ

σ
(Xn−i+1:n −Xn−k:n)

)
−
(
1

γ
+ 1

) 1
σ (Xn−i+1:n −Xn−k:n)

1 + γ
σ (Xn−i+1:n −Xn−k:n)

= 0, (1.43)

k∑
i=1

(
1

γ
+ 1

) γ
σ (Xn−i+1:n −Xn−k:n)

1 + γ
σ (Xn−i+1:n −Xn−k:n)

= k.

which for γ ̸= 0 can be finally simplified to

1

k

k∑
i=1

log
(
1 +

γ

σ
(Xn−i+i:n −Xn−k:n)

)
= γ,

1

k

k∑
i=1

1

1 + γ
σ (Xn−i+1:n −Xn−k:n)

=
1

γ + 1
, (1.44)

see de Haan and Ferreira (2006), p. 91. The equations (1.44) can be solved only if
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γ ≥ − 1 as otherwise (1.42) cannot be correctly defined if γ/σ ↓ −(Xn:n −Xn−k:n)
−1.

It has been proven that the estimator γ̂ML
n,k = γ0, where γ+ is the solution of (1.44),

is consistent for γ > −1 if kn is an intermediate sequence and under the second order

condition with an intermediate sequence satisfying (1.40) also asymptotically normal, see

de Haan and Ferreira (2006), Theorem 3.4.2. for the region −1/2 < γ < ∞ and Zhou

(2010) for the remaining case −1 < γ ≤ −1/2.

The last estimator we would like to mention in this section is the probability weighted

moments estimator. It is defined as

γ̂PWM
n,k :=

Mn − 4Jn
Mn − 2Jn

= 1−
(
Mn

2Jn
− 1

)−1

, (1.45)

where

Jn :=
1

k

k∑
i=1

Xn−i+1:n −Xn−k:n (1.46)

and

Jn :=
1

k

k∑
i=1

i

k
(Xn−i+1:n −Xn−k:n) . (1.47)

As the estimator si based on moments of approximate Pareto distribution of the tails

and these moments exist only if γ < 1, the estimator is consistent for intermediate

sequences kn and γ < 1. The asymptotic normality can be obtained under the second

order condition only if γ < 1/2 with kn fulfilling (1.40), see de Haan and Ferreira (2006),

Theorem 3.6.1.

1.5 Smooth statistical tail functionals

In the previous sections we introduced some popular estimators of γ out of the vast

number of estimators suggested by the literature. Each of them has its own asymptotic

theory, a different proof of consistency and asymptotic normality, but the conditions un-

der which the properties hold are very similar (they have already shown up at this point,

it is some sort of the second order condition must with appropriate rate of intermediate

sequence fulfilling (1.40)). The question arises, whether can be the theoretical properties

of the estimators dealt on one common ground. The positive answer to this question is

given by the theory of smooth functionals of the empirical tail quantile function. The

theory was established in Drees (1998b) and Drees (1998a) and we shall give a brief

introduction to it on the following lines.

The central idea of H. Drees’ approach is that all the estimators considered previously

(and many more) can be (at least approximately) represented as smooth functionals T (·)
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Figure 1.6: Different estimates of γ according to the ML-estimator and a dif-

ferent number of k. The data consists of 250 absolute values of

sample generated from Student t-distribution with 2 degrees of

freedom (γ = 1/2 is indicated by the dashed line).

of the empirical tail quantile function which is defined by

Qn,k(t) := F−1
n

(
1− kn

n
t

)
= Xn−[knt]:n, t ∈ [0, 1]. (1.48)

Note that the distribution of Qn,k is fully determined by the distribution of kn+1 largest

observations. Qn,k can be approximated by

F−1

(
1− kn

n
t

)
, t ∈ [0, 1]., (1.49)

which in turn can be approximated (for a suitable standardization and with kn being an

intermediate sequence) by a generalized extreme value distribution as shown in Theo-

rem 1.2.2. In order to get asymptotic results for T (Qn,k), it is reasonable to assume that

T is both smooth and location and scale invariant, i.e.

T (az + b) = T (z) (1.50)

for all a > 0, b ∈ R and all z belonging to an appropriate function space over which T

is smooth. The case where T is only scale invariant, i.e. T (az) = T (z), is analogical

to T (az + b) = T (z), but we shall not discuss its details, see Drees (1998a) for the full

explanation of the problem. The reason why we largely omit this class of estimators is
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Figure 1.7: Different estimates of γ according to the PWM-estimator and a

different number of k. The data consists of 250 absolute values

of sample generated from Student t-distribution with 2 degrees of

freedom (γ = 1/2 is indicated by the dashed line).

that they have usually a poor performance when applied to the case of linear models as

we shall seen in final sections on simulation of our methods.

The estimator definition as a functional is a natural approach for the both cases

(location and scale invariant estimators as well as only scale invariant estimators), one

can write all important estimators in this way – e.g. the Hill’s estimator is given simply

by the functional

TH(z) :=

∫ 1

0

log+(z(t)/z(1))dt, (1.51)

if the right-hand side is positive and finite and with TH(z) := 0 otherwise; log+ means

the positive value of log function. Similarly Pickands estimator can be defined as

TPick(z) :=
1

log 2
log

(
z(1/4)− z(1/2)

z(1/2)− z(1)

)
I

[
z(1/4)− z(1/2)

z(1/2)− z(1)
> 0

]
. (1.52)

It can be easily verified that (1.51) and (1.52) applied to empirical tail quantile function

Qn,k(t) created by the largest observations of Xi with k = kn being an intermediate

sequence generate the estimators (1.32) and (1.39) respectively.

More interesting is the reverse idea. If the functional T is smooth in a sequence of

neighbourhoods of Qn,k(t) a consistency of the estimator T (Qn,k(t)) is assured under

the condition that T returns γ when applied to the theoretical counterpart of Qn,k(t).
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Figure 1.8: Different estimates of γ according to the ML-estimator and a dif-

ferent number of k. The data (absolute values of sample generated

from Cauchy distribution) are the same set as in Figure 1.7 (γ = 1

is indicated by the dashed line). Note large volatility of the plot.

The natural counterpart of Qn,k(t) is the tail quantile function of the associated extreme

value distribution zγ (or zγ+1/γ in the case of estimators which are only scale invariant).

The suitable uniform approximation of Qn,k(t) to zγ , or, more precisely, that of

standardization (Qn,k(t)−F−1(1−kn/n))/a(kn/n) can be established only in a suitable

metric space of functions similar to Qn,k(t) living on [0, 1]. Moreover, as F−1(1− t) and

its theoretical counterpart zγ(t) diverges as t ↓ 0 if the right endpoint is infinite (which is

true in the case of heavy tailed distribution with γ > 0 as well as for many distributions

with γ = 0), it is plausible to built the metric in a way which would reflect this fact.

A natural way is to introduce weight functions to tie down the empirical tail quantile

function Qn,k(t) at t = 0. Let

h̃(t) := (t/ log log(3/t))1/2, for t ∈ [0, 1] (1.53)

and define accordingly an appropriate space of auxiliary weight functions

H :=

{
h : [0, 1] 7→ [0,∞)

∣∣∣∣h ∈ C[0, 1], lim
t↓0

h(t)/h̃(t) = 0

}
, (1.54)

where C[0, 1] is the space of continuous functions on the closed interval [0, 1]. For each

γ ∈ R and h ∈ H we define a weighted seminorm ∥ · ∥γ,h on the space of real functions
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Figure 1.9: Different estimates of γ according to the PWM-estimator and a

different number of k. The data, the data are the same set of

absolute values from Cauchy distribution as used in Figure 1.8

(γ = 1 is indicated by the dashed line). The estimator is not

consistent for this value of γ, which is in fact indicated by the

plot showing that the real value of γ lies is 1 or larger.

on the unit interval by

∥z∥γ,h := sup
t∈[0,1]

tγh(t)|z(t)|. (1.55)

(We suppose the convention 0 · ∞ = 0). Note that ∥t−γ−1W (t)∥γ,h < ∞ with W (t)

being a Wiener process. Finally the space containing all possible empirical tail quantile

functions and their theoretical counterparts is the space of real functions on the unit

interval equipped with seminorm ∥ · ∥γ,h is

Dγ,h :=

{
z : [0, 1] → R

∣∣∣∣limt↓0 tγh(t)z(t) = 0, (tγh(t)z(t))t∈[0,1] ∈ D[0, 1]

}
. (1.56)

Now we can finally establish the approximation of Qn,k.

Theorem 1.5.1. Under the second order condition (EVT.2), there exists a sequence of

Wiener processes {Wn(t)}n∈N such that for all h ∈ H and functions a, A and K as in

(1.25) it holds
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∥∥∥∥∥Qn,k(t)− F−1
(
1− k

n

)
a
(
k
n

) −
(
zγ(t)− k−1/2t−(γ+1)W (t) +A

(
k

n

)
K(t)

)∥∥∥∥∥
γ,h

= oP

(
k−1/2 + |A(k/n)|

)
, (1.57)

where k = kn is an intermediate sequence k → ∞, k/n→ 0, n→ ∞.

Proof. See Theorem 2.1 in Drees (1998b). A slightly different formulation can be found

in de Haan and Ferreira (2006), Theorem 2.4.2.

An analogue to Theorem 1.5.1 can be also written if we can assume only the domain of

attraction condition (EVT.1). Nevertheless, to write an approximation similar to (1.57)

we need to specify the rate of convergence of R(t, x) in (1.25) to zero.

Theorem 1.5.2. Suppose that it holds (EVT.1). Then there exists a sequence of Wiener

processes {Wn(t)}n∈N such that for all h ∈ H and ε > 0 and the function a as in (1.6)

it holds

∥∥∥∥∥Qn,k(t)− F−1
(
1− k

n

)
a
(
k
n

) −
(
zγ(t)− k−1/2t−(γ+1)Wn(t)

)∥∥∥∥∥
γ,h

= oP

(
k−1/2

)
+O

(
sup

x∈(0,1+ε)

xγ+
1
2

∣∣∣∣R(kn, x
)∣∣∣∣
)
, (1.58)

where k = kn is an intermediate sequence k → ∞, k/n→ 0, n→ ∞.

Proof. See Theorem 2.1 in Drees (1998b).

Notably, if the convergence of (F−1(1−tx)−F−1(t))/a(t) to zγ is faster than any negative

power of t, i.e.

lim
t→0

tα
(
F−1(1− tx)− F−1(t)

a(t)
− x−γ − 1)

γ

)
= 0 (1.59)

for all x ∈ [0, 1] and α < 0, then the right side of (1.58) is obviously o(k
−1/2
n ).

Theorems 1.5.1 and 1.5.2 describe the remainder of Qn,k(t) or the joint distribution

of the upper order statistics. While any reasonable estimator of γ is supposed to be a

function of the upper order statistics it can be also written in terms of Qn,k(t). Hence any

such an estimator can be written as a functional applied on the empirical tail quantile

function: T (Qn,k(t)). If T is smooth and it returns γ for zγ , it returns similar values

for functions nearby the associated Pareto distribution of the sample or in other words

T (Qn,k(t)) is consistent. We shall consider a class of statistical functionals fulfilling the

following properties:

Assume that for γ ∈ R and some h ∈ H the functional T : span(Dγ,h, 1) → R satisfies
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(T.1) T|Dγ,h
is B(Dγ,h), B(R)-measurable (with B(·) denoting the appertaining Borel-

σ-field)

(T.2) T (az + b) = T (z) for all z ∈ Dγ,h, a > 0, b ∈ R,

(T.3) T (zγ) = γ,

where the zγ is defined same as in (1.24).

Theorem 1.5.3. If F ∈ MDA(Gγ), and kn is an intermediate sequence, T satisfies

conditions (T.1–3) and, in addition, T|Dγ,h
is continuous in zγ , then

T (Qn,k)
P−→

n→∞
γ. (1.60)

Proof. See Drees (1998b), Theorem 3.1.

If functional T|Dγ,h
is also differentiable, one can obtain an asymptotic normality as well.

(T.4) T|Dγ,h
is Hadamard differentiable tangentially to Cγ,h at zγ with derivative T ′

γ ,

where

Cγ,h :=
{
z ∈ Dγ,h

∣∣z|(0,1] ∈ C(0, 1]
}
,

i.e. there exists signed measure νT,γ and continuous linear map T ′
γ : Cγ,h → R

such that

T (zγ + εnyn)− T (zγ)

εn

ε→0−→ T ′
γ(y) =

∫ 1

0

yd νT,γ (1.61)

for any yn ∈ Cγ,h converging to y ∈ Cγ,h and for all sequences εn ↓ 0.

The asymptotic normality of functional T|Dγ,h
can be then written in terms of Riesz

representation of its Hadamard derivative defined by (1.61).

Theorem 1.5.4. Assume that T : span(Dγ,h, 1) → R satisfies conditions (T.1)–(T.4).

Let

σT,γ :=

∫
[0,1]×[0,1]

(st)−γ+1 min(s, t)ν2T,γ (d s,d t) (1.62)

and

µT,γ,Kγ,ρ :=

∫ 1

0

Kγ,ρd νT,γ (1.63)

Then under the condition (EVT.2) and limn→∞ knA (k/n) = λ ∈ [0,∞] follows

(i) λ ∈ (0,∞)

k1/2 (T (Qn)− γ)
D−→

n→∞
N (λµT,γ,ρ, σ

2
T,γ). (1.64)
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(ii) λ = ∞
k1/2 (T (Qn)− γ)

P−→
n→∞

µT,γ,ρ (1.65)

Moreover, if only (EVT.1) holds and

sup
x∈(0,1+ε]

xγ+1/2 |R (kn/n, x)| = o
(
k−1/2
n

)
for some ε > 0, (1.66)

then

k1/2 (T (Qn)− γ)
D−→

n→∞
N (0, σ2

T,γ). (1.67)

Proof. See Drees (1998b), Theorem 3.2.

An analogue to Theorems 1.5.3 and 1.5.4 can be derived for scale invariant estimators,

which are not location invariant as well (which is the case of (1.51). In this case it is

plausible to assume, that instead of (T.2)–(T.3) it holds

(T.5) T (az) = T (z) for all z ∈ Dγ,h, a > 0,

(T.5) T (zγ) = γ,

where

zγ(x) :=


x−γ γ > 0,

− log(x) if γ = 0,

−x−γ γ < 0.

(1.68)

If it holds (T.1) and (T.5)–(T.6), the estimator T (Qn,k(t) is consistent. Moreover if the

functional is also Hadamard differentiable tangentially to Cγ,h at zγ , T (Qn,k(t) is also

asymptotically normal, see Drees (1998a) for details.

Virtually almost any location and scale invariant estimator can be written in terms

of functionals fulfilling (T.1)–(T.4) (resp. (T.5)–(T.6)). We have already introduced the

functional generating Pickands estimator

TPick(z) =
1

log 2
log

(
z(1/4)− z(1/2)

z(1/2)− z(1)

)
I

[
z(1/4)− z(1/2)

z(1/2)− z(1)
> 0

]
(1.69)

Functional (1.52) is location and scale invariant and also Hadamadard differentiable in

zγ with derivative

T ′
Pick,γ(z) :=

γ

(2γ − 1) log 2

(
z(1)− (1 + 2−γ)z(1/2) + 2−γz(1/4)

)
(1.70)

and appertaining signed measure

νPick,γ =
γ

(2γ − 1) log 2

(
δ1 − (1 + 2−γ)δ1/2 + 2−γδ1/4

)
, (1.71)
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where δx denotes the Dirac measure with mass 1 at x. If the second order condition

(EVT.2) holds and λ = limn→∞
√
knA(kn/n) then

k1/2n (TPick(Qn,k)− γ)
D−→

n→∞
N
(
λµPick,γ,ρ, σ

2
Pick,γ

)
(1.72)

with

µPick,γ,ρ =
γ

log(2) (2γ − 1)

(
−1
(
1 + 2−γ

)
A(1/2) + 2−γA(1/4)

)
(1.73)

and

σ2
Pick,γ =

(
γ

log(2) (2γ − 1)

)2 (
1 + 22γ+1

)
. (1.74)

A generalized version of PWM-estimator introduced in (1.45) can be generated by

TGPWM,ν1,ν2(z) :=

∫ 1

0
zdν1∫ 1

0
zdν2

I

[∫ 1

0

zdν2 ̸= 0

]
(1.75)

for suitable finite signed Borel measures ν1 and ν2 on [0, 1], e.g. the basic version of

PWM-estimator defined in (1.45) is generated by

TPWM(z) :=

∫ 1

0
(z(t)− z(1))(1− 4t)dt∫ 1

0
(z(t)− z(1))(1− 2t)dt

I

[∫ 1

0

(z(t)− z(1))(1− 2t)dt > 0

]
(1.76)

By simple arithmetic one immediately gets that TPWM(zγ) = γ. As that the estimator

is continuous and Hadamard differentiable in zγ , TPWM(Qn,k) is consistent and asymp-

totically normal in the region described on page 22.

The concept of smooth tail functionals is broad enough to cover the estimators, which

can be defined only in an implicit form. The most important example of such estimators

is the ML-estimator defined by the equations (1.44). In terms of functions we define the

estimator as the first coordinate of a solution of the equations

η(Qn,k, γ, σ) = (η1 (Qn,k, γ, σ) , η2 (Qn,k, γ, σ)) = (0, 0), (1.77)

where

η1(z, γ, σ) :=

∫ 1

0

dt

1 + γ
σ (z(t)− z(1))

− 1

γ + 1
, (1.78)

η2(z, γ, σ) :=

∫ 1

0

log
(
1 +

γ

σ
(z(t)− z(1))

)
dt− γ, (1.79)



1.6. HIGH QUANTILES AND OTHER CHARACTERISTICS 31

see relations (1.44). Have for simplicity γ0 > 0, then consider η (zγ , ·, ·) as an element of

two dimensional continuous functions C2(Θ), where Θ is some neighbourhood of (γ0, 1).

Then η(zγ , ·, ·) is differentiable at (γ0, 1) with an invertible Jacobian matrix

Jη,γ0
=

γ0
1 + γ0

(
1

(γ0+1)(2γ0+1)
1

(2γ0+1)

−1 −1

)
. (1.80)

Hence using implicit function theorems 1.4.7. and 1.4.2 in Rieder (1994) there exist a

neighbourhood U of function η(zγ , ·, ·) and a map M : U → Θ such that ξ(M(ξ)) = 0 for

all functions ξ ∈ U . Moreover, M is uniquely determined on the subset of continuously

differentiable functions in U and it is Hadamard differentiable at η(zγ , ·, ·) with derivative

M ′
γ0

= −J−1
η,γ0

ξ(γ0, 1).

Define η as continuous mapping from D∗
γ0,h

→ C2(Θ), where

D∗
γ0,h := {z ∈ Dγ0,h|z non-increasing}

for some suitable weight function h ∈ H. Drees (1998b) have shown that η is Hadamard

differentiable at zγ tangentially to Cγ0,h with derivative

η′γ0
(z)(γ, σ) :=

−
∫ 1

0

γ(z(t)− z(1))

σ
(
1 + γ

γ0σ(t−γ0−1)

)2 dt,∫ 1

0

γ(z(t)− z(1))

σ
(
1 + γ

γ0σ(t−γ0−1)

)dt
 . (1.81)

Finally we can define the functional for ML-estimate as the first coordinate of M ◦ η, i.e.
map Dγ0,h → R. One gets functional T which is unique on a neighbourhood of zγ and

Hadamard differentiable in zγ tangentially to Cγ0,h. Its derivative is given by the chain

rule from (1.81) and (1.80), which gives after some calculations

T ′
γ0
(z) =

(γ0 + 1)2

γ0

∫ 1

0

(
tγ0 − (2γ0 + 1)t2γ0

)
(z(t)− z(1)) dt,

see Drees (1998b) for more details.

1.6 High quantiles and other characteristics

Recall again the introductory example of this chapter on page 2. We shall estimate

F−1(1 − p) for a small probability p = pn → 0 as n → ∞. If npn → ∞, then the

estimator F−1
n (1 − p) = Xn−[np]:n is reasonable and EVT is not needed. On the other

hand if npn = O(1) as n → ∞, then the empirical quantile Xn:n is usually a poor

estimate and some approximation by EVT could be a better match.
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We shall restrict ourselves to the heavy tailed case, i.e. F ∈ MDA(Gγ), γ > 0. Using

(1.11) we get also

lim
t→0

F−1(1− tx)

F−1(1− t)
= x−γ . (1.82)

Replacing t with k/n, where k = kn is an intermediate sequence, i.e. k → ∞ and

k/n→ 0, and x with np/k one gets an approximation

F−1(1− p) ≈ F−1

(
1− k

n

)(np
k

)−γ

≈ Xn−k:n

(np
k

)−γ̂n,k

(1.83)

where γ̂n,k is some consistent estimate of γ. Hence we shall define the estimate of high

quantile F−1(1− p) as

X̂p,n,k := Xn−k:n

(np
k

)−γ̂n,k

(1.84)

It remains to solve, how far the estimate from its theoretical value is. We get

log
X̂p,n,k

F−1(1− p)
= log

Xn−k:n

F−1(1− k/n)
+ log

(
F−1(1− k/n)

F−1(1− p)

(np
k

)−γ̂n,k
)

= log
Xn−k:n

F−1(1− k/n)
+ log

(
F−1(1− k/n)

F−1(1− p)

(np
k

)−γ
)

−(γ̂n,k − γ) log
(np
k

)
. (1.85)

For the sake of simplicity suppose that F is a member of the Hall class, i.e. F−1(1− t) =
ct−γ(1 + dt−ρ + o(t−ρ)) for some c > 0, ρ ≤ 0, and d ∈ R. Moreover we shall suppose

that k is optimal, i.e. k = O(n2ρ/(2ρ−1)). Let {U1:n, . . . , Un:n} be an ordered sample of

the uniform U [0, 1] distribution then

log
(n
k
Uk:n

)−γ D
= γ

(
En−k:n − log

n

k

)
, (1.86)

where {Ek:n}nk=1 is an ordered sample generated by the standard exponential distribution.

Moreover as
√
k
(
En−k:n − log k

n

) D−→
n→∞

N (0, 1) by the central limit theorem as k → ∞
and k/n → 0, it holds that (1.86) is O(k−1/2). For the first term on the right side of

(1.85) it holds

log
Xn−k:n

F−1(1− k/n)

D
= log

F−1(1− Uk+1:n)

F−1(1− k/n)

= log

((n
k
Uk+1:n

)−γ
(
1 +O

((
k

n

)−ρ
)))

= O(k−1/2 + (k/n)−ρ). (1.87)

The second term of (1.85) can be approximated using the property of Hall class by
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log

(
F−1(1− k/n)

F−1(1− p)

(np
k

)−γ
)

= O
(
(k/n)−ρ

)
. (1.88)

For the rate of the estimation it follows from Theorem 1.5.4 that (γ̂n,k − γ) = OP (k
1/2),

see also Drees (1998c) for detailed discussion on the possible rates of convergence of the

γ-estimators. Have now p such that log(np) = o(k1/2). It follows

k1/2

log(np/k)

(
X̂p,n,k

F−1(1− p)
− 1

)
= O

(
k1/2

log(np/k)
log

X̂p,n,k

F−1(1− p)

)
= O

(
−k−1/2(γ̂n,k − γ)

)
(1.89)

where the first approximation is due to the property of the logarithm and the second by

(1.85), (1.87), and (1.88).

It follows from (1.89) that from the asymptotic point of view only the asymptotic

error of γ̂n,k matters if the optimal fraction of k is attained. Only in the case of the

moderate sample size (i.e. k1/2 = o(log(np))), next term which could not be omitted in

the approximations leading to (1.89) would have been of order log(np/k), cf. with (1.88).

The previous can be seen as a justification why we shall concentrate solely on the

development of the asymptotic theory of γ estimation. The question, how to deal with

high quantile estimates and a moderate sample size, is neither trivial nor automatically

solved, but he problem how to develop asymptotically consistent and normal estimates

of γ seems to be more crucial.

The situation slightly differs if γ ≤ 0. Relation (1.82) does not hold, hence also

the estimate introduced in (1.83) needs some correction. By the domain of attraction

condition and (1.6) one gets by some approximations the general version of the estimate

for highest quantiles as

F−1(1− p) ≈ F−1(1− k/n) + a(k/n)
(np/k)−γ − 1

γ

≈ Xn−k:n + â(k/n)
(np/k)−γ̂n,k − 1

γ̂n,k
=: X̂p,n,k, (1.90)

where an estimate of of the scale parameter â(k/n) and its asymptotic properties have

to be considered, see some clues in Beirlant et al. (2004), pp. 156–159, and Drees (2003).

The estimator suggested in (1.90) is profitable only if γ ≥ −1/2, as in the other case

it turns out that it is better to use rather the empirical quantile alone then any ap-

proximation by EVT. Suppose p = o(1/n), then with the probability tending to 1 it

follows

∣∣F−1(1− p)−Xn:n

∣∣ ≤ ∣∣F−1(1)−Xn:n

∣∣ = O(nγ) ≪ n
ρ

1−2ρ ,
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for any ρ ≤ 0. In other words, Xn:n is itself tending to F−1(1 − p) faster than any

estimator using EVT correction such as (1.90).

.



Chapter 2

Regression quantiles and their

approximations

This chapter deals with linear models and the concept of quantile regression. We shall

describe the properties of regression quantiles aiming at their asymptotic representations

and approximations by Brownian bridges. The key result is the extension of represen-

tations of regression quantiles established by Gutenbrunner et al. (1993) and Jurečková

(1999). Under somewhat stronger conditions we get a linear representation of regression

quantiles holding uniformly on some interval [α∗
n, 1− α∗

n] ⊂ [0, 1], where of α∗
n → 0 with

a rate almost 1/n . It shows up that important condition is linked with von Mises con-

dition. Finally we shall formulate the approximation of high regression quantiles which

provides an analogy to the approximation of the tail quantile function, c.f. with the

previous chapter and articles Drees (1998b) and Drees (1998a).

2.1 Basic model of quantile regression

Consider the linear regression model

Yn = Xnβ +E (2.1)

where Yn = Y = (Y1, . . . , Yn)
⊤ is a vector of n-observations, Xn = X is an (n × p)

known design matrix, β = (β1, . . . , βp)
⊤ ∈ Rp is an unknown p-dimensional parameter

and En = E = (E1, . . . , En)
⊤ is the vector of i.i.d. errors with a (generally unknown)

distribution function F . We assume that 0 < F (x) < 1 for x ∈ (x∗, x
∗). This define the

lower left and the upper right endpoint x∗ respectively x∗ as

−∞ ≤ x∗ := sup {x : F (x) = 0} and +∞ ≥ x∗ := inf {x : F (x) = 1} . (2.2)

35
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For the design matrix assume throughout this text that β1 is an intercept, i.e. the first

column of Xn equal to 1n = (1, . . . , 1)⊤. For the notational purpose we shall denote

xi ∈ Rp the i-th row of matrix Xn (xi ∈ Rp, i = 1, . . . , n, is treated as a column vector).

We define the regression quantiles of model (2.1) as the solution of the minimization

problem

β̂(α) = β̂n (α|Y,x) := arg min
b∈Rp

n∑
i=1

ρα
(
Yi − x⊤

i b
)
, (2.3)

where ρα denotes the loss function

ρα(u) := uψα(u), ψα(u) := (α− I[u < 0 ]) , u ∈ R1. (2.4)

Regression quantiles were introduced by Koenker and Basset (1978) to provide a genera-

lization of quantile idea to linear models. The concept has been widely accepted and has

gained a steady popularity. Due to the interest of various authors the theory of quantile

regression has undergone fast development during the past years. Currently, the quantile

regression is successfully used in various fields of statistics and brought a vast number

of interesting applications, for an overview of the recent developments it the theory see

Koenker (2005).

By their definition (2.3) regression quantiles are members of the M-estimators class.

An M-estimator Mn is defined for an appropriate loss function ρ as

Mn := arg min
b∈Rp

n∑
i=1

ρ(Yi − x⊤
i b). (2.5)

Thus regression quantiles are special cases of M -estimators with ρ = ρα(·) while least

square regression is also a member of the class with ρ = (·)2. The class covers various

important estimators of linear regression coefficients from the mentioned non-robust least

squares estimators to fairly robust Huber’s M-estimate. The class was proposed by Peter

J. Huber in the sixties in his endeavour to stimulate the development of the robust statis-

tical analysis and derive new robust methods. A detailed description of the M-estimators

class can be find in Huber (1981) and in various newer books, e.g. Dodge and Jurečková

(2000), pp. 21–25. The asymptotic theory of M-estimators was thoroughly investigated

in Jurečková and Sen (1996). We refer to M-estimators class in our context as there are

many properties which are common for all members of the class.

The regression quantiles are a little bit more than just arbitrary chosen M-estimators.

They also represent a natural generalization of the notion of sample quantiles and order

statistics to linear regression models. Note, that the loss ρ1/2 = |u|/2 leads directly to

Laplace’s median regression. Thus regression quantiles generalize the ℓ1-median regres-

sion for other quantiles depending on α in ρα. The parameter α of the loss function thus

determines the probability level of the estimated regression quantile.
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Consider the residuals Yi − x⊤
i b, i = 1, . . . , n for some b ∈ Rp and plug it to ρα(·).

The loss is (1− α) times the size of the residual if the observation Yi is below the plane

x⊤b, where x ∈ Rp is inside a space generated by rows of covariate matrix X. On the

other hand the loss is α-times the residual, if the observation Yi is above the plane.

Accordingly, in an univariate one sample location model regression quantiles coincide

with the empirical quantile function

F−1
n (α) = Qn(α) = Xk:n if

k − 1

n
< α ≤ k

n
, 0 < α < 1, k = 1, . . . , n. (2.6)

This special case is worth of a further attention. It corresponds to X = 1n, cf. the

definition in (2.3). β̂n is one dimensional for any n ∈ N in this case and if we suppose

that the errors are not shifted by a location parameter, i.e. Yi = Ei, for i = 1, . . . , n,

then β̂n(α) = F−1
n (α) for α ∈ (0, 1). In the course of this chapter we shall formulate

various approximations of regression quantiles of different dimensions and we shall also

discuss the possibility of strengthening such assertions. Yet, one must keep in mind that

all approximations of regression quantiles are limited by the properties of the empirical

quantile function. The multivariate theory cannot be expanded farther then is possible

with the univariate quantile case.

A few lines should be written about the computational aspects of the theory. We

shall important that the minimization (2.3) problem can be written in the parametric

linear programming form

α1′
nr

+ + (1− α)1′
nr

− := min

Xβ + r+ − r− = Y (2.7)

(β, r+, r−) ∈ Rp × Rn
+ × Rn

−, 0 < α < 1,

where the regression quantile β̂n (α|Y,x) coincides with the component β of the optimal

solution. This representation is important both from theoretical and practical point of

view. We can formulate also the dual linear programming problem to (2.7) thus obtaining

Y⊤â(α) := max

X⊤ (â(α)− (1− α))1n = 0 (2.8)

â(α) ∈ [0, 1]n, 0 < α < 0.

The optimal solution â(α) = (ân,1(α), . . . , ânn(α)) forms the vector of so-called regres-

sion rank scores. Each âni is a continuous, piecewise linear function of α ∈ [0, 1],

âni = 0 for i = 1, . . . , n. The theory of regression rank scores was developed by

Gutenbrunner and Jurečková (1992). They proposed tests based on regression rank

scores generated by different score functions, which are parallel to classical rank tests.
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The theory was later expanded to cover wider class of tests, see Gutenbrunner et al.

(1993).

Assertion (2.7) allows to compute regression quantiles quite easily using well known

routines of parametric linear programming, which are usually included in statistical soft-

ware. Computations in this thesis have been obtained using free statistical software

R. In R, quantile regression is widely supported through the library quantreg. Roger

Koenker himself collaborated on the development of quantreg library and also wrote its

documentation, see Koenker (2006).

If the idea of quantile regression is to provide a generalization of the univariate quan-

tile idea, we require some kind of consistency when n → ∞. We are interested what is

the theoretical counterpart of the α-regression quantile considering conditional (under

X = x) quantile function of Y ,

F−1
Y (α|X = x) = x⊤β(α). (2.9)

Consider the simplest setting, the case of univariate one sample quantiles without location

parameter. In that case x = 1 and the theoretical counterpart β(α) of β̂n(α) is simply

β(α) = F−1(α). In this case, the consistency for any α ∈ (0, 1) is a direct consequence

of Glivenko-Cantelli theorem. Rates of convergence depend on the behaviour of F−1(·)
in a neighbourhood of α. It is easy to show that if F has a continuous density f and

f(F−1(α)) is bounded away from 0 and ∞ at α, one gets also

√
n(β̂n(α)− F−1(α))

D−→
n→∞

N(0, σ2
α),

where

σα :=
(α(1− α))1/2

f2(F−1(α))
, (2.10)

see e.g. Koenker (2005), pp. 71–72. When f(F−1(·)) tends to infinity at α, improvements

on the rate of convergence beyond O(n−1/2) are possible, while slower rates may prevail

in the case f(F−1(·)) tends to zero at α. If F (·) is constant on some neighbourhood of

F−1(α) it is not possible to distinguish between different estimates in the neighbourhood,

i.e. suppose F (α) is constant for α ∈ [α∗, α
∗], for some 0 < α∗ < α∗ < 1. Then we can

only say that the sum of probabilities that β̂n(α) falls near β(α) tends to 1 as n → ∞.

A necessary and sufficient condition that β̂n(α) → F−1(α) in the model of univariate

i.i.d. sample is

F (F−1(α)− ε) < α < F (F−1(α) + ε)

for all ε > 0. A reader can find more details about the topic, particularly about the

establishment of the consistency for non-i.i.d. cases in Koenker (2005), pp. 117–118.

Consider a slight modification of the univariate model above Yi = β1+Ei, i = 1, . . . , n.

The theoretical counterpart of the sample (regression) quantile
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β̂(α) = argmin
t∈R

n∑
i=1

ρα(Yi − β1 + t), α ∈ (0, 1)

is β(α) = β1 + F−1(α). This observation can be generalised even for higher dimensions.

In the general linear regression model with i.i.d. errors we get that β(α) in (2.9) should

take the form

β(α) = (β1 + F−1(α), β2, . . . , βp)
⊤ (2.11)

If the dimension is higher then one, the consistency of β̂(α) also depends on the prop-

erties of the sequence of design matrices Xn. In fact, different consistency laws can be

established depending on the delicate interplay between conditions imposed on condi-

tional distribution function F = P (Yi < y|x) (with a suitable set of assumptions the

consistency can be achieved also in the case of heteroscedasticity) and the conditions

on Xn. We will not go to details here as different rates of asymptotic convergence are

possible, see Koenker (2005), pp. 118–119, and we shall aim our attention to the problem

of establishing asymptotic normality, where many can be gained from a genaral theory

of M-estimators. In fact the following assertions hold for the whole M-estimators class,

see Jurečková and Sen (1996), pp. 80–88 and Dodge and Jurečková (2000), pp. 23–24

for a more condensed version.

We shall assume that the distribution function F has a density.

(F.A) There exists a density f of distribution function F and it is bounded away from

0 and ∞ in F−1(α).

Then under assumption that

D := lim
n→∞

1

n

 n∑
j=1

xjx
⊤
j


is positive definite matrix and Noether condition on the sequence of design matrices Xn

(X.N)

max

x⊤
i

 n∑
j=1

xjx
⊤
j

xi : 1 ≤ i ≤ n

→ 0 as n→ ∞

it holds

n1/2(β̂n(α)− β(α))
D−→

n→∞
N (0, σ2

αD
−1), (2.12)

where σ2
α is as in (2.10) and β(α) as in (2.11), see Jurečková and Sen (1996), pp. 85.
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2.2 Asymptotic of regression quantile process

Having established the asymptotics of any single regression quantile for α ∈ (0, 1) we

may ask whether β̂(α) could be asymptotically approximated uniformly with respect to

α ∈ (0, 1) at least in some subset A ⊂ (0, 1). We shall thus seek an asymptotic theory of

the (empirical) regression quantiles process
{
β̂n(α) : α ∈ A

}
or equivalently some of its

standardized variant. In relation to point-wise consistency (2.12) of β̂(α) we define the

process

qn(α) := n1/2f(F−1(α))(β̂n(α)− β(α)). (2.13)

Observe the special univariate one-sample case at first, i.e. Xn = 1n and Yn = En. It

turns up that this case was already studied thoroughly studied, as (2.13) is identical with

the empirical quantile process

qn(α) = n1/2f(F−1(α))(F−1
n (α)− F−1(α)), 0 < α < 1, (2.14)

where F−1
n (α) is the empirical quantile function defined as

F−1
n (α) =

{
X1:n, if t = 0,

Xk:n, if k−1
n < t ≤ k

n , 1 ≤ k ≤ n.
(2.15)

Therefore in this special case we can naturally extend the process {qn(α), α ∈ (0, 1)} to

{qn(α), α ∈ [0, 1]} by redefining the missing regression quantiles in 0 and 1 using the

definition (2.15). In fact this approach corresponds with the definition of the largest

regression quantile

β̂(1) := arg min
b∈Rp

{
n∑

i=1

x⊤
i b

∣∣∣∣∣Yi ≤ x⊤
i b, i = 1, . . . , n

}
(2.16)

and its counterpart, the minimum regression quantile

β̂(0) := arg max
b∈Rp

{
n∑

i=1

x⊤
i b

∣∣∣∣∣Yi ≥ x⊤
i b, i = 1, . . . , n

}
, (2.17)

Note that this definition corresponds also with the definition of the regression quantiles

we introduced in (2.3). It is

β̂(1) = arg min
b∈Rp

n∑
i=1

ρ1
(
Yi − x⊤

i b
)
, (2.18)

β̂(0) = arg min
b∈Rp

n∑
i=1

ρ0
(
Yi − x⊤

i b
)
, (2.19)

where ρ1(u) = u(1 − I[u < 0]) and ρ1(u) = u(−I[u < 0]), i.e. ρ1(u) and ρ0(u) is a left

side or right side limit of ρα(u) with α→ 1 or α→ 0. Nevertheless the task to establish
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an asymptotic theory of the largest and smallest regression quantile is a little bit different

from the case α ∈ [ε, 1− ε], see Portnoy and Jurečková (2000), Smith (1994).

The theory of asymptotic representations of qn(α) is quite elaborate and we can

present just a few of the most important results. Our aim is to develop at least the very

basic analogies of these results for qn(α), for dimensions p ≥ 2. For more thorough ex-

planation of the asymptotic theory of regression quantiles we refer to Csörgő and Révész

(1981) and Csörgő and Horváth (1993) written by the authors of famous “Hungarian

construction”. While the first one Csörgő and Révész (1981) represents the most com-

prehensive explanation of the theory and its goals, some more advanced results can be

found only in Csörgő and Horváth (1993), which in fact replenishes and develop the ideas

of the first book.

One of the central ideas of the theory is that qn is by sup-norm distance in a close

vicinity of the uniform quantile function defined as

un(α) = n1/2(α− F (F−1
n (α))). (2.20)

The process (2.20) is in turn equivalent (in distribution) with the process generated by

sample U1, . . . , Un, the uniformly distributed variables on unite interval U [0, 1], i.e.

ũn(α) = n1/2(α− U[αn]:n). (2.21)

It is the celebrated Komlós-Major-Tunsnády result, see e.g. Csörgő and Révész (1981),

Theorem 4.4.1., which opened the possibilities how to establish the strong approximation

of un(α). The consequences proposed for the asymptotic behaviour of the empirical

quantile process, see Csörgő and Révész (1981), Theorem 4.5.5., were refined even more

in Csörgő and Horváth (1993).

Theorem 2.2.1. Assume following conditions. Let F be a continuous distribution func-

tion F and

(F.U.1) F is twice differentiable on (x∗, x
∗), where x∗ and x∗ are given by (2.2).

(F.U.2) F ′(x) = f(x) > 0, x ∈ (x∗, x
∗)

(F.U.3) for some Kγ we have

sup
0<α<1

α(1− α)
|f ′(F−1(α))|

f2(α)
≤ Kγ

Then we have

sup
1

n+1≤α≤ n
n+1

|qn(α)− un(α)|
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a.s.
=

 O
(
n−1/2 (log log n)

1+Kγ

)
, if Kγ ≤ 1

O
(
n−1/2 (log log n)

Kγ (log n)
(1+ε)(Kγ−1)

)
, if Kγ > 1

(2.22)

for all ε > 0.

Proof. See Csörgő and Horváth (1993), Theorem 6.1.3., pp. 372–375.

If we want to estimate the distance between un and qn only in probability (and that is

enough for the applications proposed in the next chapter), then we can get somewhat

better rates.

Theorem 2.2.2. Assume that it holds the conditions of of Theorem 2.2.1. Then for the

version of uniform quantile process defined as in (2.20) it holds

sup
1

n+1≤α≤ n
n+1

|qn(α)− un(α)| = OP (n
−1/2 log log n) (2.23)

Proof. See Csörgő and Horváth (1993), Theorem 6.1.5, pp. 377–378.

The consequence of the Komlós-Major-Tusnády construction states that for α ∈ (0, 1)

the suitably standardized uniform quantile process is from the asymptotic point of view

near Brownian bridges. The relation holds also for the weighted uniform quantile process.

Theorem 2.2.3. Have any version of the uniform quantile process (cf. (2.20) and

(2.21)). Then we can define a sequence of Brownian bridges {Bn(α), 0 ≤ α ≤ 1} such

that

sup
0≤α≤1

|un(α)−Bn(α)|
a.s.
= O(n−1/2 log n) (2.24)

and

n
1
2−ν sup

λ/n≤α≤1−λ/n

|un(α)−Bn(α)|
(α(1− α))ν

= OP (1) (2.25)

for all 0 < ν ≤ 1/2 and 0 < λ <∞.

Proof. See Csörgő and Horváth (1993), Theorem 4.2.1, pp. 195–202.

In turn the weighted empirical quantile process can be approximated by Brownian bridges

as is clarified by the following theorem,

Theorem 2.2.4. Assume that F is a continuous distribution function which fulfills

(i) F is twice differentiable on (x∗, x
∗),

(ii) F ′(x) = f(x) > 0, x ∈ (x∗, x
∗),
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(iii) for some Kγ > 0 it holds

sup
0<t<1

t(1− t)

∣∣f ′(F−1(t))
∣∣

f2(F−1(t))
≤ Kγ . (2.26)

Then for 0 ≤ ν ≤ 1
2 we can define a sequence of Brownian bridges {Bn(t), 0 ≤ t ≤ 1}

such that

n
1
2−ν sup

1
n+1≤α≤ n

n+1

|qn(α)−Bn(α)|
(α(1− α))ν

=

{
OP (logn), if ν = 0

OP (1), if 0 < ν ≤ 1
2

(2.27)

for all 0 < ν ≤ 1/2 and 0 < λ <∞.

Proof. See Csörgő and Horváth (1993), Theorem 4.2.1, pp. 195–202.

The previous asymptotic approximations can be also used to obtain an analogy of the law

of iterated logarithm (LIL) for the empirical quantile process. This follows from Theorem

2.2.1 and the LIL established for the uniform quantile process.

Theorem 2.2.5. Assume that conditions of Theorem 2.2.1 hold with Kγ < 1. Then

there exists a C > 0 such that

lim sup
n→∞

sup
1

n+1≤α≤ n
n+1

(α(1− α) log log n)
−1/2 ∣∣f(F−1(α)qn(α)

∣∣ ≤ C a.s. (2.28)

Proof. Follows from Theorem 2.2.1 similarly as Theorem 5.3.1 of Csörgő and Révész

(1981) follows from Theorem 4.5.6 ibid. See Csörgő and Révész (1981), pp. 162.

Note that the condition Kγ < 1 in the previous theorem can be relaxed at the cost of a

different rate of convegence in (2.28). However, it is a terminological question whether

such a relation could be called “the law of iterated logarithm”.

While regression quantiles can be seen as a generalization of the quantile idea suit-

able for linear moderl (2.1) a natural question arises, which of the interesting properties

introduced on the previous pages hold also for the process based on regression quan-

tiles instead of order statistics. We seek a generalization of the univariate (or location)

case, or in other words, an approximations getting as close as possible to the rates and

boundaries imposed on α ∈ [0, 1] in the univariate case. Actually, the boundaries for α

derived for the univariate case are the best, which are possible. This fact is clarified by

Mogul’skĭı theorem, see Csörgő and Révész (1981), pp. 159–160. Therefore, the rates

and boundaries on α in the multivariate case cannot be better.

A general theory of the regression quantile process requires an appropriate defini-

tion of the multivariate uniform quantile process. The analogies of the approximations

thus leads to a p-variate processes of independent Brownian bridges, which have been
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considered in Koenker and Machado (1999) and Koenker and Xiao (2002). The goal of

this thesis is more modest. We shall establish LIL for regression quantile process as

an analogy to (2.28). However, such theorem differs a lot from its univariate location

counterpart (2.2.5). The proof in i.i.d. univariate case can be based on the fact that for

any random variable X and its distribution function F we have

F (X)
D
= U, U ∼ U [0, 1]. (2.29)

Consequently U1 = F (X1), U2 = F (X2), . . . are independent U [0, 1] random variables and

the order statistics X1:n ≤ . . . ≤ Xn:n of the random sample X1, . . . , Xn induce the order

statistics U1:n = F (X1:n) ≤ . . . ≤ Un:n = F (Xn:n) of the uniform-[0, 1] random sample

U1, . . . , Un. Therefore, if one one has an approximation of the uniform quantile process,

the relation (2.29) leads to quite straightforward modifications for a general distribution.

This is not true in the more complicated case of regression quantiles, which are defined

as a solution of minimization (2.3). This definition is not easy to handle with and many

properties which hold for univariate order statistics hold for regression quantiles only

asymptotically. There is no direct correspondence between the regression quantiles and

the order statistics of the error. The information about the distribution of the errors (and

its tails) is mixed in regression quantiles with the information about the covariate matrix

X. In fact, the number of regression quantiles calculated from n observations of Y is not

n but it depends on the exact form of X. Usually the number of regression quantiles is

much less than np if β̂(α) ∈ Rp; it is approximately OP (n log(n)) if the matrix is random

and fulfills some reasonable assumptions, see Portnoy (1991).

A tool that can overcome this lack of correspondence as well as the implicit definition

of regression quantiles is the Bahadur representation. Well know for the empirical quan-

tile process, see Bahadur (1966), this representation can be established for regression

quantile process as well, for more possibilities of construction see Koenker (2005), pp.

122 and the literature cited therein. The basic idea is to establish a representation of the

regression quantile process by a sum of weighted random variables

n1/2
(
β̂n(α)− β(α)

)
= D−1 1

n1/2

n∑
i=1

xiψα

(
Yi − F−1

Y (α|xi)
)
+Rn (2.30)

where ψα is as in (2.4) and Rn is suitably small (i.e. Rn = oP (1)). The relation (2.30)

stands behind many useful approximations of regression quantile process established so

far.

Considering assumptions (F.A) and (X.N), c.f. (2.12), we introduce the following set

of assumptions on the distribution function F :

(F.B.1) F has a continuous density f , which is positive and finite on {t : 0 < F (t) < 1},

and the covariate matrix X:
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(X.B.1) xi1 = 1, i = 1, . . . , n and the other columns of Xn are orthogonal to the first

one,

(X.B.2) max1≤i≤n ∥xi∥ = n1/2,

(X.B.3) Dn = 1
nX

⊤
nXn → D, where D is a positive definite p× p matrix.

Under these assumptions the Bahadur representation of the regression quantile pro-

cesss holds uniformly on [ε, 1− ε] for any ε ∈ (0, 1/2).

Theorem 2.2.6. Suppose that it holds conditions (F.B.1) and (X.B.1-3), then for em-

pirical regression quantile process qn(·) and any ε ∈ (0, 1/2) holds

sup
α∈[ε,1−ε]

(f(F−1(α)))−1
∥∥qn(α)−D−1

n Bn(α)
∥∥ = oP (1) (2.31)

where Bn(α) is a vector of p independent Brownian bridges on (0, 1).

Proof. See Gutenbrunner and Jurečková (1992), Theorem 1.

Theorem 2.2.6 provide uniform asymptotic representation of the process qn. This

extension expands the potential scope of both estimation and inference methods based

on β̂n(α) albeit at the cost of somewhat stronger conditions than (F.A) and (X.N), which

were sufficient to assure consistency of a single regression quantile. The result holds on

a compact subset [ε, 1− ε] of the unite interval.

Similarly as in the univariate approximations we shall strenghten the result by ex-

tending its validity to the edge of unit interval as much as possible. In the ideal case we

would get the approxination of the regression quantile process over whole unit interval

as in the univariate case. However, this goal has not been achieved so far. Nevertheless,

various analogies to Theorem 2.2.6 holding on [αn, 1−αn], where αn → 0 with a suitable

order have been already introduced in the literature.

The relation was studied by Gutenbrunner et al. (1993). They assume the following

set of assumptions on the distribution function of errors F :

(F.G.1) |F−1(α)| ≤ (α(1− α)−a for 0 < α ≤ α0, 1− α0 ≤ α < 1, where 0 < a ≤ 1
4 − ε,

ε > 0 and c > 0,

(F.G.2) 1/f(F−1(α)) ≤ c(α(1− α))−1−a for 0 < α ≤ α0 and 1− α0 ≤ α < 1, c > 0.

(F.G.3) f(x) > 0 is absolutely continuous, bounded and monotonically decreasing as

x → x∗ and x → x∗, where x∗ and x∗ are given by (2.2). Moreover the

derivative f ′ is bounded almost everywhere.

(F.G.4)
|f ′(x)|
|f(x)|

≤ c|x| for |x| ≥ K ≥ 0, c > 0.

Another set of assumptions is imposed on the sequence of covariate matrices Xn
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(X.G.1) n−1
∑n

i=1 ∥xi∥4 = O(1) as n→ ∞.

(X.G.2) max1≤i≤n ∥xi∥ = O(n(2(b−a)−δ)/(1+4b)) for some b > 0 and δ > 0 such that

0 < b− a < ε/2 (hence 0 < b < 1
4 − ε/2).

For the parameter b, which is related to a from (F.G.1–4) by (X.G.2), define

α∗
n := n−

1
1+4b . (2.32)

Following theorem establishes the uniform asymptotic representation of regression quan-

tiles on [α∗
n, 1− α∗

n].

Theorem 2.2.7. Under the conditions (F.G.1–4), (X.B.1–2), and (X.G.1–2) it holds

n1/2f(F−1(α))

(α(1− α))1/2

(
β̂n (α|Y,x)− β(α)

)
= n−1/2(α(1− α))−1/2D−1

n

n∑
i=1

xniψα(Eiα) + oP (1) (2.33)

uniformly in α∗
n ≤ α ≤ 1− α∗

n, where Eiα = Ei − F−1(α). Consequently,

sup
α∗

n≤α≤1−α∗
n

∥∥∥∥ f(F−1(α))

(α(1− α))1/2
(β̂n (α|Y,x)− β(α))

∥∥∥∥ =

sup
α∗

n≤α≤1−α∗
n

∥∥∥∥ qn(α)

(nα(1− α))1/2

∥∥∥∥ = OP (n
−1/2Cn) (2.34)

Proof. See Gutenbrunner et al. (1993), Theorem 3.1.

Though the preceding theorem is a big leap forward, its applications are strictly lim-

ited by its assumptions. While the conditions (F.G.1)–(F.G.4) are satisfied by some

common distributions, e.g. by the normal, logistic, double exponential and even t dis-

tributions with 5, or more, degrees of freedom, a lot of distributions is excluded. For

example, the heavy tailed distributions with γ ≥ 1/4 and even the uniform distribution

on [0, 1] do not fulfill these conditions. Moreover, by the definition of α∗
n in (2.32) we

cannot get to the edge of the unit interval with a better rate than O(n−1/2), c.f. with

the rate (n+ 1)−1 in Theorem 2.2.1, and the rate of αn depends on the heaviness of the

tails of F (by condition (F.G.1)).

These constraints was partly overcome by Jurečková (1999). She extended the The-

orem 2.2.7 to a broader class of distributions covered by the conditions

(F. J.1) F is absolutely continuous with absolutely continuous, positive and bounded

density f(x). Derivatives f ′, f ′′ of f are bounded almost everywhere in x ∈ R.
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(F. J.2) f is monotonically decreasing to 0 as x→ −∞ and x→ +∞,

lim
x→−∞

−a logF (x)
log |x|

= 1, lim
x→∞

−a log(1− F (x))

log x
= 1, (2.35)

for some a (the same in each tail), 0 < a <∞.

For some fixed b satisfying 0 < a+ δ ≤ b ≤ 2a+ δ for some δ > 0, α∗
n given by

α∗
n := n−1/(1+2b), (2.36)

and a set of design matrix conditions equivalent with (X.G.1)–(X.G.4). She concluded

that under these conditions (2.34) and (2.33) hold uniformly on [α∗
n, 1−α∗

n] for α
∗
n given

by (2.36), c.f. Theorem 2.1 in Jurečková (1999).

The conditions (F.J.1) and (F.J.2) are more natural than (F.G.1)–(F.G.4) as they are

equivalent with von Mises conditions for the distributions from Fréchet domain of attrac-

tion, c.f. Theorem 1.2.4. Nevertheless, the conditions proposed by Jurečková (1999) do

not admit some heavy-tailed distributions with light tails, as the t-distribution with less

than 5 degrees of freedom due to the conditions on covariate matrix (X.G.1)–(X.G.4);

Jurečková (1999) recommends to use Theorem 2.2.7 in such a case. What is worse,

through the assumptions and the definition of (2.36) follows that heavier tails of the dis-

tribution means the more restricted interval [α∗
n, 1− α∗

n] similarly as in Theorem 2.2.7.

In the following section we shall overcome these boundaries by introducing an im-

proved version of the Bahadur representation approximation of regression quantile pro-

cess based on the previous results of Gutenbrunner et al. (1993) and Jurečková (1999).

This result hold under assumption that von Mises type of condition is fulfilled for

γ > −1/2. Our result not only covers broader class of distribution functions but also

extends the boundaries [α∗
n, 1−α∗

n] closer to the edge of the unit interval with the rate of

αn, which does not depend on the heaviness of the tails of F . From the point of assump-

tions on the distribution functions this is a generalization of the Gutenbrunner et al.

(1993) and Jurečková (1999) results and it enables to establish LIL representation more

suitable for EVT applications.

2.3 Extending approximations of r.q. process

Consider again the linear model (2.1) with i.i.d. errors E1, . . . , En with a common dis-

tribution function F . We shall assume that F fulfills the following conditions

(F.1) F is absolutely continuous with positive density f on (x∗, x
∗). There exists f ′,

the derivative of density f .
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(F.2) There exists some 0 < Kγ <∞ such that

sup
x∗<x<x∗

F (x)(1− F (x))

∣∣∣∣ f ′(x)f2(x)

∣∣∣∣ ≤ Kγ (2.37)

(F.3) There exists limits

lim
x↑x∗

(1− F (x))f ′(x)

f2(x))
= −1− γ∗ (2.38)

and

lim
x↓x∗

F (x)f ′(x)

f2(x)
= −1− γ∗. (2.39)

for some γ∗, γ
∗ ∈ R.

(F.4) It holds that γ := min {γ∗, γ∗} > −1/2.

Another set of regularity conditions will be imposed on the design matrix X:

(X.1) xi1 = 1, i = 1, . . . , n.

(X.2) limn→∞ Dn = D, where Dn = n−1X⊤
nXn and D is a positive definite (p × p)

matrix.

(X.3) n−1
∑n

i=1 ∥xi∥4 = O(1) as n→ ∞.

(X.4) max1≤i≤n ∥xi∥ = O(n∆) as n→ ∞ for some ∆ ≤ 1/6

Assumptions on F coincide with the concept of regular variation in tails, which is

tied with the domain of attraction condition introduced in section 1.2. The concept has

its meaning also in other fields of statistics. Particularly, the term inside (2.37) plays

an important role in non-parametric and robust statistical analysis. Hájek et al. (1999)

(among others) introduced the score function J , which is defined as

J(t) = −f
′(F−1(α))

f(F−1(α))
=

d

dα
f(F−1(α)). (2.40)

Thus, the condition (F.2) can be rewritten as

sup
0<α<1

(α(1− α))
|J(α)|

f(F−1(α))
≤ Kγ . (2.41)

Parzen (1979) studied the relation of the score function to the tails of the distribution.

He provides an asymptotic theory based on the behaviour of the density quantile function

f(F−1(α)) for α→ 1 and establishes the domains of attraction we know from EVT (with

a different parametrization) based on J(α).

Actually, the conditions (F.1)–(F.4) imply the domain of attraction condition for some

γ > −1/2 for both tails of F . The properties of the distribution inside the interval (x∗, x
∗)
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are controlled by relation (2.37), which together with (F.1) implies the finite second

derivatives of F . If the density function f of F is bounded, positive and differentiable

inside (x∗, x
∗), the conditions are (F.1)–(F.4) are fulfilled if F satisfies the domain of

attraction conditions for both of its tails with tail indices greater than −1/2. Note that

the boundary γ > −1/2 is important also in other applications of EVT, c.f. with the

role of normalizing weights in the tail approximations of Drees (1998b) for γ ≤ −1/2 and

γ > −1/2 or the properties of ML-estimator in Zhou (2010) as referred on page 21.

If the distribution have a density, then its regularly varying tails are reflected in

the properties of the density function f(x) and its derivative f ′(x) as is shown by the

following Lemma.

Lemma 2.3.1. Suppose that F (x) have a density f(x) which is positive on some left

neighbourhood of x∗. Moreover assume that F (x) fulfills von Mises condition (1.8) for

its upper tail with some γ ∈ R. Moreover suppose that also f ′(x), the derivative of f(x),

exists. Then it holds

(i) If x∗ = ∞ then limt→∞ f(t) = 0.

(ii) If γ > 0 (and thus x∗ = ∞ and limt→∞ f(t) = 0) then limt→∞ f ′(t) = 0

(iii) If γ < 0 then x∗ <∞ and there exists limt→x∗ f(t) = K ∈ [0,+∞]

Proof. (i) Suppose x∗ = ∞. As f(t) is positive on some left neighbourhood of +∞ due

to the finiteness of distribution function and its relation to density as
∫ x

−∞ f(t)dt it holds

limt→∞ f(t) = 0.

(ii) As for γ > 0 holds simplified version of von Mises condition (1.9) also

lim
t→∞

1− F (t)

f2(t)
= lim

t→∞

1− F (t)

tf(t)
· t

f(t)
= γ lim

t→∞

t

f(t)
= ∞

one gets by the general form of von Mises condition (1.8) that limt→∞ f ′(t) = 0.

(iii) Suppose that γ < 0. Then by (1.8) holds

lim
t→∞

1− F (t)

(x∗ − t)f(t)
= −γ <∞.

Moreover as F (t) is monotone on some left neighbourhood of x∗ it exists limt→x∗
1−F (t)
x∗−t =

K ∈ [0,+∞]. If K = ∞ then limt→∞ f(t) = 0 as 0 < −γ <∞. If 0 < K <∞ then must

be limt→∞ f(t) = −γ/K and finally if K = 0 then limt→∞ f(t) = ∞.

Similarly as in one sample i.i.d. case (see Csörgő and Révész (1981), pp. 143–155

and Csörgő and Horváth (1993), pp. 369–375) we can hope in an asymptotic theory of

regression quantile process only if we can “regulate” the ratio f(F−1(α))/f(F−1(α+ ξ))

with some suitably small ξ > 0. To accomplish this task we will use the following lemma.
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Lemma 2.3.2. Under conditions (F.1) and (F.2) we have

f(F−1(α1))

f(F−1(α2))
≤
(
α1 ∨ α2

α1 ∧ α2
· 1− (α1 ∧ α2)

1− (α1 ∨ α2)

)Kγ

, (2.42)

for every pair α1, α2 ∈ (0, 1).

Proof. Lemma 4.5.2. in Csörgő and Révész (1981).

Denote

σα :=
(α(1− α))1/2

f(F−1(α))
. (2.43)

and set

α∗
n := n−1+δ, 1 > δ > 6∆. (2.44)

Before stating our main result we shall consider a crucial approximation of the function

minimized in (2.3) by a quadratic function of t. The approximation holds uniformly in

an appropriate neighbourhood of β for α ∈ [α∗
n, 1− α∗

n].

Lemma 2.3.3. Assume that the distribution function F (x) fulfills conditions (F.1)-(F.4)

and for the design matrix X holds (X.1)–(X.4). Have α∗
n defined as in (2.44). For t ∈ Rp

and α ∈ (0, 1), denote

rn(t, α) := (α(1− α))−1/2σ−1
α

n∑
i=1

[
ρα

(
Eiα − n−1/2σαx

⊤
i t
)
− ρα(Eiα)

]
+n−1/2(α(1− α))−1/2t⊤

n∑
i=1

xiψα(Eiα)−
1

2
t⊤Dnt (2.45)

with

ψα(z) := α− I[z < 0], z ∈ R1 (2.46)

Eiα := Ei − F−1(α), i = 1, . . . , n, 0 < α < 1. (2.47)

Then

sup {|rn(t, α)| : α∗
n ≤ α ≤ 1− α∗

n, ∥t∥ ≤ Cn} = OP

(
n−

1
4 δ+

3
2∆C

3
2
n (log(n))

1
2

)
, (2.48)

where Cn = C(log log n)1/2, 0 < C <∞.
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Proof. For a fixed t ∈ Rp denote

εitα = εi := n−1/2σαx
⊤
i t, i = 1, . . . , n. (2.49)

By (X.4) it holds that max1≤i≤n |εiσ−1
α | = O(n−

1
2+∆Cn). Denote, for i = 1, . . . , n,

Qi(t, α) = Qi := (α(1− α))−1/2σ−1
α [ρα(Eiα − εi)− ρα(Eiα) + εiψα (Eiα)] (2.50)

with ψα as in (2.46) and Eiα as in (2.47). Then we obtain by simple arithmetic that

Qi = (α(1− α))−1/2σ−1
α {(Eiα − εi)(ψα(Eiα − εi)− ψα(Eiα))}

=
σ−1
α

(α(1− α))1/2
{(Eiα − εi)I[εi < Eiα < 0] + (εi − Eiα)I[0 < Eiα < εi]} . (2.51)

By (2.49), (2.50), and (2.51), for εi > 0

(α(1− α))1/2σαEQi =

∫ F−1(α)+εi

F−1(α)

(
εi − x+ F−1(α)

)
dF (x)

=

∫ F−1(α)+εi

F−1(α)

(
F−1(α) + εi − x

)
f
(
F−1(α)

)
dx (2.52)

+

∫ F−1(α)+εi

F−1(α)

(
F−1(α) + εi − x

) (
f(x)− f

(
F−1(α)

))
dx.

For the first term on the right side of (2.52) it holds that

f
(
F−1(α)

) ∫ F−1(α)+εi

F−1(α)

(
F−1(α) + εi − x

)
dx = f

(
F−1(α)

) ε2i
2
. (2.53)

Using the mean value theorem we can approximate the second term of (2.52) as∣∣∣∣∫ εi

0

(εi − u)
(
f
(
F−1(α) + u

)
− f

(
F−1(α)

))
du

∣∣∣∣
≤

∫ εi

0

(uεi − u2) sup
F−1(α)≤θ≤F−1(α)+u

|f ′(θ)|du

≤
∫ εi

0

(uεi − u2) sup
α≤ξ≤F (F−1(α)+εi)

∣∣f ′(F−1(ξ))
∣∣ du

=
|ei|3

6
sup

α≤ξ≤F (F−1(α)+εi)

∣∣f ′(F−1(ξ))
∣∣ . (2.54)

We shall prove that for some Cγ <∞

(α(1− α))

(f(F−1(α)))2
sup

α≤ξ≤F (F−1(α)+εi)

|f ′(F−1(ξ))| ≤ Cγ . (2.55)
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It holds that

(α(1− α))

(f(F−1(α)))2
sup

α≤ξ≤F (F−1(α)+εi)

|f ′(F−1(ξ))|

≤ sup
α≤ξ≤F (F−1(α)+εi)

ξ(1− ξ)|f ′(F−1(ξ))|
(f(F−1(ξ)))2

×

× 1

(f(F−1(α)))2
sup

α≤ξ≤F (F−1(α)+εi)

(f(F−1(ξ)))2

ξ(1− ξ)

=
Kγ(α(1− α))

(f(F−1(α)))2
sup

α≤ξ≤F (F−1(α)+εi)

(f(F−1(ξ)))2

ξ(1− ξ)
. (2.56)

Moreover

d

dx

(F (x)(1− F (x))1/2

f(x)
= (F (x)(1− F (x)))−1/2

(
1

2
− F (x)− F (x)(1− F (x))f ′(x)

f2(x)

)
.

Thus for γ > −1/2

lim
x→∞

(
1

2
− F (x)− F (x)(1− F (x))f ′(x)

f2(x)

)
=

1

2
+ γ > 0

and there exists some τ∗ such that for all α ∈ [τ∗, 1) the function (f(F−1(·)))2/(·(1− ·))
is decreasing and the supremum in (2.56) is attained at α. Hence on [τ∗, 1) from (2.56)

follows that also (2.55) with Cγ = Kγ .

On the other hand for any 0 < τ < τ∗ and α ∈ [τ, τ∗) we get by Lemma 2.3.2 that

sup
α≤ξ≤F (F−1(α)+εi)

α(1− α)(f(F−1(ξ)))2

ξ(1− ξ)(f(F−1(α)))2

≤ sup
α≤ξ≤τ∗

α(1− α) · (ξ(1− α))2Kγ

ξ(1− ξ) · (α(1− ξ))2Kγ

≤
supα≤ξ≤τ∗ ξ2Kγ−1(1− α)2Kγ+1

infα≤ξ≤τ∗ α2Kγ−1(1− ξ)2Kγ+1
(2.57)

≤ (τ∗)2Kγ−1(1− τ)2Kγ+1

τ2Kγ−1(1− τ∗)2Kγ+1
=: K (2.58)

for some K <∞ and (2.55) follows with Cγ = K ·Kγ .

Therefore also the relation (2.55) holds for γ > −1/2 for all α on [τ, 1) for any 0 < τ <

1/2. Similarly we get that (2.55) also for the left tail under assumption that γ∗ > −1/2.

Combining (2.54) with (2.55) yields that for some n ≥ n0

∣∣∣∣EQi − σ−2
α

ε2i
2

∣∣∣∣ ≤ Cγ

6
n−3/2(α(1− α))−1/2|x⊤

i t|3 (2.59)
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And by (F.4) combined with the definition of α∗
n in (2.44) we arrive to∣∣∣∣EQi − σ−2

α

ε2i
2

∣∣∣∣ = OP (n
−1+3∆−δ/2C3

n). (2.60)

Moreover from (2.60) follows

∣∣∣∣∣
n∑

i=1

[
EQi −

ε2i
2
σ−2
α

]∣∣∣∣∣ ≤ 1

n

n∑
i=1

|x⊤
i t|3 ·

Cγn
−1/2

6(α(1− α))1/2
(2.61)

and finally by (X.3) also

∣∣∣∣∣
n∑

i=1

[
EQi −

ε2i
2
σ−2
α

]∣∣∣∣∣ = OP (C
3
nn

−1/2(α∗
n))

−1/2)

= OP (C
3
nn

−δ/2) = oP (1). (2.62)

In the following we shall first prove that

P

{∣∣∣∣∣
n∑

i=1

(Qi − EQi)

∣∣∣∣∣ ≥ ζBn

}
≤ 2n−ζ2/4 (2.63)

for any ζ > 0 and n ≥ n0, where

Bn = n−
1
4 δ+

3
2∆C

3
2
n (logn)

1/2 (2.64)

Actually, by the third Bernstein inequality (see e.g. (2.13) in Hoeffding (1963)),

P

{
n∑

i=1

(Qi − EQi)) ≥ nt

}
≤ exp

{
−τ λ

2
(
1 + 1

3λ
)} , (2.65)

for t < b, provided Qi − EQi ≤ b, i = 1, . . . , n, where

τ =
nt

b
, λ =

bt

σ2
, σ2 =

1

n

n∑
i=1

varQi. (2.66)

By (2.49) and (2.51), as n→ ∞

Qi ≤ n−
δ
2+∆Cn (2.67)

and by (2.60)

EQi ≤ n−1+2∆C2
n(1 + n−

δ
2+∆Cn)

= n−1+2∆C2
n(1 + o(1)), (2.68)

By (2.51) it is Qi − EQi ≤ Qi, thus one can set

b := bn = n−δ/2+∆Cn forn ≥ n0 (2.69)
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By simple aritmetic

varQi ≤ EQ2
i ≤ (α(1− α))−1/2σ−1

α |εi|EQi

thus by (2.49) and (2.68)

σ2 ≤ n−1−δ/2+3∆C3
n(1 + o(1)) ≤ 3

2
n−1−δ/2+3∆C3

n forn ≥ n0 (2.70)

Put ntn = ζBn, that is, t = tn = ζn−1− δ
4+3∆/2C

3/2
n (logn)1/2. Then tn < bn and using

λ = bntn/σ
2 one gets by (2.65)

P

{
n∑

i=1

(Qi − EQi) ≥ ζBn

}
≤ exp

{
−nt

2
n

2
· 1

σ2 + bntn
3

}

≤ exp

{
− ζ2n−1−δ/2+3∆C3

n(log n)

2( 32n
−1+ δ

2+3∆C3
n + ζ

3n
−1− 3

4 δ+
5∆
2 C

5
2
n (logn)

1
2

}

= exp

{
ζ2(logn)

3 + 2ζ
3 n

− δ
4−

∆
2 C

− 1
2

n (logn)1/2

}

≤ exp

{
−ζ2 log n

4

}
= n−ζ2/4, (2.71)

for n ≥ n0. Because Qi are non-negative random variables, we obtain analogous inequal-

ity for P (
∑n

i=1(Qi − EQi) ≤ −ζBn) ≤ n−ζ2/4 and thus we arrive at (2.63). As

∣∣∣∣∣
n∑

i=1

(Qi − f(F−1(α))
ε2i
2
)

∣∣∣∣∣ ≤
∣∣∣∣∣

n∑
i=1

(Qi − EQi)

∣∣∣∣∣+
∣∣∣∣∣

n∑
i=1

(EQi − f(F−1(α))
ε2i
2

∣∣∣∣∣ (2.72)

and Bn = n−
1
4 δ+

3
2∆C

3
2
n (logn)

1/2 ≥ C3
nn

−δ/2, for some n ≥ n0, we finally get that regard-

ing (2.49), (2.62), and (2.63) it holds

P {|rn(t, α)| ≥ (ζ + 1)Bn} ≤ 2n−ζ2/4, (2.73)

for n ≥ n0, any ζ > 0, and Bn given as (2.64).

Let us now choose intervals [αν , αν+1] of length n
−5 covering [α∗

n, 1 − α∗
n] and balls

of radius n−5 covering {t : ∥t∥ ≤ Cn}. Let (α1, α2) ⊂ (αν , αν+1) and let t1, t2 lie in the

same ball. We shall prove that for some 0 < K <∞ and n ≥ n0

|σα1/σα2 − 1| ≤ Kn−5(α∗
n)

−1 (2.74)

Let α := α1. Then, there exists ξ ∈ [−1, 1] such that α2 = α1 + ξn−5. By Lemma 2.3.2

we get
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σα1

σα2

− 1 =
(α1(1− α1))

1/2f(F−1(α2))

(α2(1− α2))1/2f(F−1(α1))
− 1

≤ α
Kγ−1/2
1 (1− α2)

Kγ+1/2

α
Kγ−1/2
2 (1− α1)Kγ+1/2

− 1

=
α
Kγ−1/2
1 (1− α2)

Kγ+1/2 − α
Kγ−1/2
2 (1− α1)

Kγ+1/2

α
Kγ−1/2
2 (1− α1)Kγ+1/2

(2.75)

and comparing with n−5 by L’Hospital’s rule yields

lim
n→∞

αKγ−1/2(1− α− ξn−5)Kγ+1/2 − (α+ ξn−5)Kγ−1/2(1− α)Kγ+1/2

n−5(α+ ξn−5)Kγ−1/2(1− α)Kγ+1/2

= lim
n→∞

[
− 5ξ

n6 (Kγ + 1
2 )α

Kγ− 1
2 (1− α− ξ

n5 )
Kγ− 1

2

5
n6 (α+ ξ

n5 )Kγ− 1
2 (1− α)Kγ+

1
2 + 1

n11 5ξ(Kγ − 1
2 )(α+ ξ

n5 )Kγ− 3
2 (1− α)Kγ+

1
2

−
5ξ
n6 (Kγ − 1

2 )(α+ ξ
n5 )

Kγ− 3
2 (1− α)Kγ+

1
2

5
n6 (α+ ξ

n5 )Kγ− 1
2 (1− α)Kγ+

1
2 + 1

n11 5ξ(Kγ − 1
2 )(α+ ξ

n5 )Kγ− 3
2 (1− α)Kγ+

1
2

]

=
ξ((Kγ − 1/2)αKγ−3/2(1− α)Kγ+1/2 − (Kγ + 1/2)(α(1− α))Kγ−1/2)

αKγ−1/2(1− α)Kγ+1/2

= ξ((Kγ − 1/2)α−1 + (Kγ + 1/2)(1− α)−1). (2.76)

Hence it holds that

∣∣∣∣σα1

σα2

− 1

∣∣∣∣ ≤ n−5 sup
α∗

n≤α≤1−αn∗

∣∣ξ((Kγ − 1/2)α−1 + (Kγ + 1/2)(1− α)−1)
∣∣

= O
(
n−5(α∗

n)
−1
)

thus (2.74) holds.

Moreover, for (α1, α2) ⊂ (αν , αν+1) also holds

f(F−1(α1))|F−1(α1)− F−1(α2)| ≤ n−5 (2.77)

as by mean value theorem and again Lemma 4.5.2. in Csörgő and Révész (1981) there

exist some η > 0 such that

|F−1(α1)− F−1(α2)| ≤ |α1 − α2| sup
ξ∈(α1,α2)

f(F−1(α1))

f(F−1(ξ))

≤ n−5 sup
ξ∈(α1,α2)

[
(ξ ∨ α1)(1− ξ ∧ α1)

(ξ ∧ α1)(1− ξ ∨ α)

]Kγ

≤ n−5

[
supξ∈(α1,α2)(ξ ∨ α1)(1− ξ ∧ α1)

infξ∈(α1,α2)(ξ ∧ α1)(1− ξ ∨ α)

]Kγ

= n−5

[
α2(1− α1)

α1(1− α2)

]Kγ

≤ (1 + η)n−5.
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For fixed i, 1 ≤ i ≤ n, write

|Qi(t2, α2)−Qi(t1, α1)| ≤ |Qi(t2, α2)−Qi(t1, α2)|+ |Qi(t1, α2)−Qi(t1, α1)| (2.78)

and consider the terms on the right-hand side separetely. By (2.78), (2.49),

|Qi(t2, α2)−Qi(t1, α2)| ≤ (α2(1− α2))
−1/2σ−1

α2
|εiα2t2 − εiα2t1 |

≤ n−1/2(α2(1− α2))
−1/2|x⊤

i (t2 − t1)|

= O(n−5−δ/2+∆) (2.79)

For the corresponding centring term σ−2
α

ε2iα
2 we obtain the bound

∣∣∣∣12 (ε2iα2t2 − ε2iα2t1

)
σ−2
α2

∣∣∣∣ = ∣∣∣∣12n−1
(
(x⊤

i t2)
2 − (x⊤

i t1)
2
)∣∣∣∣

=

∣∣∣∣12n−1(x⊤
i (t1 − t2)) · (x⊤

i (t1 + t2))

∣∣∣∣
≤

∣∣n−6+∆n∆Cn

∣∣ = O(n−6+2∆Cn) (2.80)

Consider the second term on the right-hand side of (2.78), which we denote Q∗ for the

sake of brevity. We should distinguish two case:

1. If εiα2t1 < Eiα2 < 0 and εiα1t1 < Eiα1 < 0 (or 0 < Eiα2 < εiα2t1 and 0 < Eiα1 <

εiα1t1)

|Q∗| = |(α2(1− α2))
−1/2σ−1

α2
Eiα2 − (α1(1− α1))

−1/2σ−1
α1
Eiα1)|

≤ (α∗
n)

−1/2(|(σ−1
α2

− σ−1
α1

)Eiα2 |+ |σ−1
α1

(Eiα1 − Eiα2)|)

≤ (α∗
n)

−1/2(|(σ−1
α2

− σ−1
α1

)| · |εiα2t1 |+ |σ−1
α1

| · |F−1(α1)− F−1(α2)|)

≤ (α∗
n)

−1/2(2n−1/2|1− (σα2
/σα1

)| · |x⊤
i t1|+ (α1(1− α1)

−1/2n−5)

= O(Cnn
−5.5+∆(α∗

n)
−3/2) = o(n−5.2(α∗

n)
−3/2) (2.81)

by (2.74), (2.77), and (X.3).

2. If εiα1t1 < Eiα1 < 0 and 0 < Eiα2 < εiα2t1 (or εiα2t1 < Eiα2 < 0 and 0 < Eiα1t1 <

εiα1t1)

|Q∗| ≤
∣∣∣∣σ−1

α2
(Eiα2 − εiα2t1)

(α2(1− α2))1/2

∣∣∣∣+ ∣∣∣∣σ−1
α1

(εiα1t1 − Eiα1)

(α1(1− α1))1/2

∣∣∣∣
≤ (α∗

n)
−1/2

(
σ−1
α2

|εiα1t1 − εiα2t1 |+ σ−1
α1

|εiα1t1 − εiα2t1 |
)

= (α∗
n)

−1/2
(
n−1/2|x⊤

i t1| · (|1− σα1/σα2 |+ |1− σα2/σα1 |)
)

= O(Cnn
−4.5+∆(α∗

n)
−1/2) = o(n−4.2(α∗

n)
−1/2) (2.82)
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Finally notice that as the both centring terms are independent on α it holds in both

cases

1

2
|σ−2

α2
ε2iα2t1 − σ−2

α1
ε2iα1t1 | = 0. (2.83)

Let us fix one set Sν in the decomposition of the set [α∗
n, 1 − α∗

n] × {t, ∥t∥ ≤ Cn}; the
number of such sets is at most (2Cn)

pn5(p+1). As α∗
n ≥ n−4, it follows from (2.78), (2.79),

(2.80) (2.81), (2.82), and (2.83) that

sup
Sν

|rn(t2, α2)− rn(t1, α1)| ≤ K1n
−1, (2.84)

where 0 < K1 <∞. As n−1 < Bn for some n ≥ n0 by (2.73) it holds

P

{
sup
Sν

|rn(t, α)| ≥ (ζ + 2)Bn

}
≤ 2n−ζ2/4 (2.85)

and finally

P

{
sup

∥t∥≤Cn,α∗
n≤α≤1−α∗

n

|rn(t, α)| ≥ (ζ + 2)

}
≤

∑
ν

P

{
sup
Sν

|rn(t, α)| ≥ (ζ + 2)Bn

}
≤ 2p+1Cp

nn
5(p+1)n−ζ2/4 = oP (1)

for ζ2 > 20(p+ 1); and this entails

sup {|rn(t, α) : ∥t∥ ≤ Cn, α
∗
n ≤ α ≤ 1− α∗

n} = OP (Bn)

= OP (n
− 1

4 δ+
3
2∆C

3
2
n (logn)

1
2 )

as n→ ∞.

Theorem 2.3.1. Assume that the distribution function F (x) of errors in model (2.1)

fulfills conditions (F.1)–(F.4) and for the design matrix X it holds (X.1)–(X.4). Then

for α∗
n as in (2.44) holds

sup
α∗

n≤α≤1−α∗
n

∥∥∥∥n1/2 f(F−1(α))

(α(1− α))1/2
(β̂n (α|Y,x)− β(α))

∥∥∥∥ =

sup
α∗

n≤α≤1−α∗
n

∥∥∥∥ qn(α)

(α(1− α))1/2

∥∥∥∥ = OP (log log n) (2.86)

and

n1/2f(F−1(α))

(α(1− α))1/2

(
β̂n (α|Y,x)− β(α)

)
= n−1/2(α(1− α))−1/2D−1

n

n∑
i=1

xniψα(Eiα) + oP (1) (2.87)
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uniformly in α∗
n ≤ α ≤ 1 − α∗

n, where β(α) = (β1 + F−1(α), β2, . . . , βp)
⊤, Eiα = Ei −

F−1(α) and Cn = C(log log n)1/2, 0 < C <∞.

Proof. If βn(α) minimizes (2.3) then

Tnα = n1/2σ−1
α (β̂n(α)− β(α)) (2.88)

minimizes the convex function

Gnα (t) = (α(1− α))−1/2σ−1
α

n∑
i=1

[
ρα(Eiα − n−1/2σαx

⊤
i t)− ρα(Eiα)

]
(2.89)

with respect to t ∈ Rd. By Lemma 2.3.3 for any fixed C > 0

min
∥t∥<C

Gnα(t) = min
∥t∥<C

{
−t⊤Znα +

1

2
t⊤Dnt

}
+ op(1) (2.90)

uniformly in α∗
n ≤ α ≤ 1− α∗

n, where

Znα = n−1/2(α(1− α))−1/2
n∑

i=1

xiψα(Eiα). (2.91)

We would like to examine the second minimization problem in (2.90). Denote its solution

as

Unα := arg min
t∈Rp

{
−t⊤Znα +

1

2
t⊤Dnt

}
. (2.92)

Have t = u+D−1
n Znα for any u ∈ Rp, then

− t⊤Znα +
1

2
t⊤Dnt = −(u+D−1

n Znα)
⊤Znα +

1

2
(u+D−1

n Znα)
⊤Dn(u+D−1

n Znα)

= −1

2
Z⊤

nαD
−1
n Znα +

1

2
u⊤Dnu. (2.93)

Dn is positive definite matrix and hence 1
2u

⊤Dnu > 0. It follows that Unα = D−1
n Znα

and

min
t∈Rp

{
−t⊤Znα +

1

2
t⊤Dnt

}
=

1

2
Z⊤

nαD
−1
n Znα. (2.94)

It will be necessary to provide a probabilistic bound for sup {Unα, α
∗
n ≤ α ≤ 1− α∗

n}. As

Dn → D, this can be accomplished by a bound for B := sup {Znα, α
∗
n ≤ α ≤ 1− α∗

n}.
Rewriting (2.91) yields

Znα =
n−1/2

(α(1− α))1/2

n∑
i=1

xi

(
(1− α)(I[F (Ei)≤α] − α) + α(I[F (Ei)≤1−α] − (1− α))

)
,
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and the invariance theorem of Shorack (1991) can be applied on process Znα. By con-

ditions (X.3) and (X.4) for any α∗
n > n−1, equation (1.10) or (1.11) of Shorack (1991)

implies that

B ≤ Op(1) + c sup
α∗

n≤α≤1−α∗
n

(α(1− α))−1/2W (s) (2.95)

for some constant c where W (s) is a Brownian Bridge. The supremum in (2.95) is

bounded by c(log log n)1/2 +OP (1) using the law of iterated logarithm (see, for example

Shorack and Wellner (1986), pp. 599). Thus Znα = OP ((log logn)
1/2) uniformly on

α∗
n ≤ α ≤ 1− α∗

n and consequently Unα = OP

(
(log log n)1/2

)
.

Using (2.94) we can rewrite the minimization (2.92) as

−t⊤Znα +
1

2
t⊤Dnt =

1

2

[
(t−Unα)

⊤Dn(t−Unα)−U⊤
nαDnUnα

]
(2.96)

and hence by rewriting (2.45) in the same fashion we come to

sup
(α,t)∈S

|rn(t, α)| =

sup
(α,t)∈S

∣∣∣∣Gnα(t)−
1

2

[
(t−Unα)

⊤Dn(t−Unα)−U⊤
nαDnUnα

]∣∣∣∣ = oP (1) (2.97)

for any set S of couples (α, t) fulfilling the assumptions of Lemma 2.3.3. Finally as we

have Unα = OP

(
(log log n)1/2

)
, inserting t = Unα in (2.97) we further obtain

sup
α∗

n≤α≤1−α∗
n

{∣∣∣∣Gnα(Unα) +
1

2
U⊤

nαDnUnα

∣∣∣∣} = oP (1). (2.98)

Using the previous, we shall show that

sup
α∗

n≤α≤1−α∗
n

{|Tnα −Unα|} = oP (1). (2.99)

Have any ϱ > 0. Consider the ball Bnα with center Unα and radius ϱ. Then, for t ∈ Bnα,

∥t∥ ≤ ∥t−Unα∥+ ∥Unα∥ ≤ ϱ+K1(log log n)
1/2

for some K1 with probability exceeding 1− ε for n ≥ n0. Hence, again by Lemma 2.3.3,

∆nα := sup
α∗

n≤α≤1−α∗
n

sup
t∈Bnα

|rn(t, α)|
P−→

n→∞
0 (2.100)

Accordingly by (2.97) and (2.98) and by the fact that both terms on left side of (2.97)

and (2.98) are positive (this is due to the fact that Dn is positive definite matrix).

1

2

[
(t−Unα)

⊤Dn(t−Unα)−U⊤
nαDnUnα

]
≤ Gnα(t) + ∆nα, (2.101)

−1

2
U⊤

nαDnUnα ≥ Gnα(Unα)−∆nα (2.102)
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Consider the behaviour of Gnα outside Bnα. Suppose tα = Unα+kξ, k > ϱ and ∥ξ∥ = 1.

Let t∗α be the boundary point of Bnα that lies on the line from Unα to tα, i.e., t
∗
α =

Unα + ϱξ. Then as it holds ξ = tα/k−Unα/k, it follows t
∗
α = (1− (ϱ/k))Unα +(ϱ/k)tα

and hence, by the convexity of Gnα(·)

ϱ/kGnα(t) + (1− ϱ/k)Gnα(Unα) ≥ Gnα(t
∗
α). (2.103)

Moreover using (2.101) and (2.102) we get that

Gnα(t
∗
α) ≥ 1

2

[
(t∗α −Unα)

⊤Dn(t
∗
α −Unα)−UnαDnUnα

]
−∆nα

≥ 1

2
(t∗α −Unα)

⊤Dn(t
∗
α −Unα) +Gnα(Unα)− 2∆nα

=
1

2
ϱ2λ0 +Gnα(Unα)− 2∆nα. (2.104)

where λ0 > 0 is the minimal eigenvalue of D. Hence

inf
∥t−Unα∥>ϱ

Gnα(t) ≥ Gnα(Unα) + (k/ϱ)(
1

2
ϱ2λ0 − 2∆nα). (2.105)

As 1/2ϱ2λ0 is positive and ∆nα
P−→

n→∞
0, the last term in (2.105) is positive with the

probability tending to one uniformly in α∗
n ≤ α ≤ 1− α∗

n for any fixed ϱ > 0. Therefore

we have shown, that given any ϱ > 0 and ε > 0, there exists n0 and η > 0 such that for

n ≥ n0,

P

(
inf

α∗
n≤α≤1−α∗

n

[
inf

∥t−Unα∥≥δ
Gnα(t)−Gnα(Unα)

]
> η

)
> 1− ε (2.106)

As Gnα(t) is positive function for t ∈ Rp due to (2.106) Gnα must be minimized inside

the ball of radius ϱ > 0 with a probability tending to one. Thus for any fixed ϱ > 0

P
(
supα∗

n≤α≤1−α∗
n
∥Tnα −Unα∥ ≤ ϱ

)
→ 1 as n → ∞, which is equivalent to (2.87).

Finally, equation (2.86) follows from invariance theorem of Shorack (1991) as noted in

lines after (2.91).

As we see in the proof of (2.3.3), the “censoring” parameter δ depends on the max-

imum of the components of the covariance matrix X. If we assume somewhat stronger

conditions instead of (X.4), we can obtain wider bounds. The previous statements holds

even if the assumtions holds only almost surely. Suppose the following assumptions

(X.5) n−1
∑n

i=1 ∥xni∥4
a.s.
= O(1) as n→ ∞

(X.6) max1≤i≤n ∥xni∥
a.s.
= O(C∆

n ) as n→ ∞ for some ∆ > 0.

and in accordance with (X.6) set

α∗
n :=

(logn)2+δ

n
, δ > 0 (2.107)
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Lemma 2.3.4. Assume that the distribution function F (x) of the errors in model (2.1)

fulfills the conditions (F.1)–(F.4) and for the design matrix X it holds (X.1)–(X.2) and

(X.5)–(X.6). Then for α∗
n as in (2.107), t ∈ Rp and α ∈ (0, 1), and rn(t, α) as in (2.45)

it holds

sup {|rn(t, α)| : α∗
n ≤ α ≤ 1− α∗

n, ∥t∥ ≤ Cn} = OP

(
(logn)1−δ/4C

3
2
n

)
. (2.108)

Proof. Have again εi and Qi(t, α) as in (2.49) and (2.50). As in the proof of Lemma

2.3.3 we get

∣∣∣∣EQi − σ−2
α

ε2i
2

∣∣∣∣ ≤ Cγ

6
n−3/2α(1− α))−1/2|x⊤

i t|3 (2.109)

and thus also

∣∣∣∣∣
n∑

i=1

[
EQi −

ε2i
2
σ−2
α

]∣∣∣∣∣ ≤ 1

n

n∑
i=1

|x⊤
i t|3 ·

Cγn
−1/2

6(α(1− α))1/2
. (2.110)

From (X.6) and (2.107) it follows

∣∣∣∣EQi − σ−2
α

ε2i
2

∣∣∣∣ = OP (n
−1(logn)−1− δ

2C3+3∆
n ) (2.111)

and from (X.5) and (2.107)

∣∣∣∣∣
n∑

i=1

[
EQi −

ε2i
2
σ−2
α

]∣∣∣∣∣ = OP (C
3
n(logn)

−1− δ
2 ) = oP (1) (2.112)

Similarly as in the proof of Lemma 2.3.3 we will use Bernstein inequality to prove

P

{∣∣∣∣∣
n∑

i=1

(Qi − EQi)

∣∣∣∣∣ ≥ ζBn

}
≤ 2n−ζ2/4 (2.113)

for any ζ > 0, and n ≥ n0, where

Bn = (logn)−δ/4C3/2+3∆/2
n = o(1). (2.114)

By (2.49) and (2.50) and (X.6)

Qi − EQi ≤ Qi ≤ C1+∆
n (log n)−1−δ/2 =: bn (2.115)

and by (2.111) it holds almost surely
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EQi ≤ n−1(log n)−1−δ/2C3+3∆
n + n−1C2+2∆

n

= n−1C2+2∆
n

(
1 + (log n)−1− δ

2C1+∆
n

)
= n−1C2+2∆

n (1 + o(1)) . (2.116)

Hence as

varQi ≤ (α(1− α))−1/2σ−1
α |εi|EQi

we get by (2.116) that for σ2 defined in (2.66) and for n ≥ n0 holds

σ2 ≤ n−1(log n)−1−δ/2C3+3∆
n (1 + o(1)) ≤ 3

2
n−1(logn)−1−δ/2C3+3∆

n . (2.117)

Put ntn = ζBn, that is t = tn = ζn−1(logn)−δ/4C
3/2+3∆/2
n . Then tn < bn and it yields

for n ≥ n0 by (2.65)

P

{
n∑

i=1

(Qi − EQi) ≥ ζBn

}
≤ exp

{
−nt

2
n

2
· 1

σ2 + bntn
3

}

≤ exp

{
− ζ2n−1(logn)−1− δ

2C3+3∆
n (logn)

2( 32n
−1(logn)−1− δ

2C3+3∆
n + ζ

3n
−1(logn)−1− 3

4 δC
5
2+

5
2∆

n

}

= exp

{
ζ2(log n)

3 + 2ζ
3 C

− 1
2−

1
2∆

n (logn)−
δ
4

}

≤ exp

{
−ζ2 log n

4

}
= n−ζ2/4. (2.118)

Again as Qi are non-negative random variables, we obtain analogous inequality for

P (
∑n

i=1(Qi − EQi) ≤ −ζBn) ≤ n−ζ2/4 and we arrive at (2.113). By (2.72) and the

fact that Bn = (logn)1−δ/4C
3/2
n ≥ C3

n(logn)
− 1

2−
δ
2 we get from (2.49), (2.112), and

(2.113)

P {|rn(t, α)| ≥ (ζ + 1)Bn} ≤ 2n−ζ2/4 (2.119)

for n ≥ n0, any ζ > 0, and Bn given by (2.114).

As it holds that α∗
n ≥ n−4 we finally get (2.108) by (2.78), (2.79), (2.80) (2.81), (2.82),

and (2.83) using chaining arguments as in the proof of Lemma 2.3.3 after (2.73).

Theorem 2.3.2. Assume that the distribution function F (x) fulfills conditions (F.1)-

(F.4) and for the design matrix X it holds (X.1)–(X.2) and (X.5)–(X.6). Then for any

δ > 4 and α ∈ [α∗
n, 1− α∗

n] it holds
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n1/2f(F−1(α))

(α(1− α))1/2

(
β̂n (α|Y,x)− β(α)

)
= n−1/2(α(1− α))−1/2D−1

n

n∑
i=1

xniψα(Eiα) + oP (1)

and

sup
α∗

n≤α≤1−α∗
n

∥∥∥∥n1/2 f(F−1(α))

(α(1− α))1/2
(β̂n (α|Y,x)− β(α))

∥∥∥∥ =

sup
α∗

n≤α≤1−α∗
n

∥∥∥∥ qn(α)

(α(1− α))1/2

∥∥∥∥ = OP (log log n),

where α∗
n = (log n)1+δ

n .

Proof. It follows from the same convex arguments as in the proof of Theorem 2.3.1.

A few notes should be made to the assumptions of Theorems 2.3.1 and 2.3.2 and the as-

sumptions of the other approximations of the regression quantiles process established

so far. Comparing (X.G.1)–(X.G.2) with (X.3)–(X.4) it yields that Theorem 3.1 of

Gutenbrunner et al. (1993) is stronger in the sense that it admits more design matri-

ces than our Theorem 2.3.1. On the contrary, our conditions (F.1–3) allow more general

distribution functions than (F.G.1)–(F.G.4). Same conclusions hold also for the approx-

imation theorem provided by Jurečková (1999) as the assumptions on design matrix are

the same as in Gutenbrunner et al. (1993).

However, the situation in this case is not clear. Mainly, Lemma 2.2 of Jurečková

(1999) is not an analogy of Lemma 3.1 of Gutenbrunner et al. (1993) (and our Lemma

2.3.3), as the sum of losses Qi is not weighted by (α(1−α))−1/2. A careful observation of

the proof of Theorem 3.1. in Gutenbrunner et al. (1993) (similar as the convex arguments

in the proof of our Theorem 2.3.1) reveals that Theorem 2.1. of Jurečková (1999) do not

follow from the convex arguments and Lemma 2.2 stated therein. Precisely, an equivalent

of Gnα(t
∗
α) used by Jurečková (1999) would not be bounded away from zero in (2.105)

and (2.105) due to the different weights. It is therefore questionable whether Theorem

2.1. of Jurečková (1999) really holds in the form given in the article. Moreover, the proof

of Lemma 2.2. of Jurečková (1999) is not clear at some points, cf. the transition between

(A.7) and (A.8) ibidem. Lemma 2.3.3 in this thesis can be thus seen as a correction of the

assertions of Jurečková (1999). Different weights enable a relaxation of the assumptions

on the distribution function and also a considerable extension of the interval where the

relation (2.87) holds. This is at the cost of more strict conditions on the design matrix X.

Theorems 2.3.1 and 2.3.2 in fact enable an approximation to Brownian bridges as well.

This is a consequence of Theorem 2.1. of Shorack (1979) as have been already mentioned

in Gutenbrunner and Jurečková (1992).
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Lemma 2.3.5. Suppose that it holds

(X.S.1) n−1
∑n

i=1 ∥xi∥2 = O(1) as n→ ∞.

(X.S.2) max1≤i≤n ∥xi∥ = O(n1/2)

(X.S.3) limn→∞ Dn = D, where Dn = n−1X⊤
nXn and D is a positive definite (p × p)

matrix.

Then for the sequence

Zn(α) := n−1/2(α(1− α))−1/2
n∑

i=1

xniψα(Eiα)

holds

D−1
n Zn(α) → D−1Bp(α), on D[0, 1]p, (2.120)

with Bp being the vector of p independent Brownian bridges.

Proof. See Shorack (1979), Theorem 2.1.

Note that the conditions (X.S.1)–(X.S.3) follows from the already stronger assump-

tions (X.1)–(X.4). By Lemma 2.3.5 and Theorem 2.3.1 (or Theorem 2.3.2) we thus have

that the regression quantile process is with n → ∞ near to a p-dimensional Brownian

bridge uniformly in [α∗
n, 1− α∗

n].

While we are not able to establish the Bahadur representation of regression quantiles

for α ∈ [1 − α∗
n, 1 − 1/n] (or [α∗

n, 1]), we can at least establish a boundary for process

x⊤qn, where

x :=
1

n

n∑
i=1

xi. (2.121)

Note that the first component x1 of x is equal to one, as for the first component of

xi holds xi,1 = 1, 1 ≤ i ≤ n. The process x⊤qn(α) is monotone for α ∈ [0, 1] which

enables to provide a bound for x⊤qn(α) using relation x⊤qn(α) ≤ x⊤qn(1), where

qn(1) := n1/2f
(
F−1(1− 1/n

) (
β̂n(1)− β(1)

)
.

Theorem 2.3.3. Suppose that the distribution of errors in model (2.1) fulfills the as-

sumptions of Theorem 2.3.2, i.e. (F.1)–(F.4), (X.1)–(X.2), and (X.5)–(X.6). Moreover

suppose that for γ in (F.4) it holds that γ > 0 and max1≤i≤n ∥xni∥ = O(1). Then for

α∗
n as in (2.107) follows

sup
1−α∗

n≤α≤n−1
n

∣∣x⊤qn(α)
∣∣ = sup

1−α∗
n≤α≤n−1

n

∣∣∣n1/2f (F−1 (α)
)
x⊤
(
β̂n(α)− β(α)

)∣∣∣
= OP (n

−1/2(logn)(2+δ)(1∨γ∗)) = oP (1) (2.122)
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and

sup
1/n≤α≤α∗

n

∣∣x⊤qn(α)
∣∣ = sup

1/n≤α≤α∗
n

∣∣∣n1/2f (F−1 (α)
)
x⊤
(
β̂n(α)− β(α)

)∣∣∣
= OP (n

−1/2(logn)(2+δ)(1∨γ∗)) = oP (1), (2.123)

where δ > 0 is as in (2.107) and γ∗, γ∗ > 0 as in (F.4).

Proof. It suffices to prove the relation for the upper tail, the case of the lower tail is

analogous. Have for some n0 ∈ N and n ≥ n0 sequence zn defined such that

zn := n

(
1− arg max

1−α∗
n≤α≤1−1/n

n1/2f(F−1(α))x⊤
(
β̂n(α)− β(α)

))
. (2.124)

As (1 − zn/n) ∈ [1 − α∗
n, 1 − 1/n], by (2.107) follows that 1 ≤ zn ≤ log2+δ. We shall

prove that

n1/2f(F−1(1− zn/n))x
⊤β(α) = n1/2f(F−1(1− zn/n))x

⊤β

+n1/2f(F−1(1− zn/n))F
−1 (1− zn/n)β1 = O(n−1/2zn), (2.125)

As γ∗ > 0 we get by von Mises condition (1.9) that it holds

n1/2f
(
F−1

(
1− zn

n

))
F−1

(
1− zn

n

)
= O(znn

−1/2). (2.126)

Hence it follows also (2.125) as x⊤β ≤ ∥x∥ · ∥β∥ = O(1). We shall see that also

n1/2f(F−1(1−zn))x⊤β̂n(1−zn/n) is tending to zero in infinity. First note that x⊤β̂n(1−
zn/n) ≤ x⊤β̂n(1), which is due to the relation in Dodge and Jurečková (2000), pp. 127–

128, saying that x⊤β̂n(α1) ≤ x⊤β̂n(α2) whenever 0 ≤ α1 ≤ α2 ≤ 1. Hence

n1/2f
(
F−1

(
1− zn

n

))
x⊤β̂n

(
1− zn

n

)
≤ n1/2f

(
F−1

(
1− zn

n

))
x⊤β̂n (1)

≤ O
(
zγ

∗

n f

(
F−1

(
1− 1

n

)) ∣∣∣x⊤β̂n(1)
∣∣∣)

= O
(

zγ
∗

n n−1/2

F−1 (1− 1/n)

∣∣∣x⊤β̂n(1)
∣∣∣) ,

where the second row follows from Lemma 2.3.2 (as we are applying the Lemma only on

the right tail, where the density is continuous and monotone we can set Kγ = γ∗) and

the third row from von Mises condition (1.9).

Now we shall prove that x⊤β̂n(1) = OP (F
−1(1 − 1/n)), which completes the proof.

This can be done through the technique involving regression rank scores, which was used

in Portnoy and Jurečková (2000).
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Recall the definition of regression rank scores in (2.8). It follows that for the continuity

points of any single regression quantile β̂n(α) it holds

n∑
i=1

xij
d

dα
âni(α) = −

n∑
i=1

xij , 1 ≤ i ≤ n, 1 ≤ j ≤ p. (2.127)

Note that there exists an ε > 0 such that âni(α) are nonincreasing in 1− ε < α < 1, for

i = 1, . . . , n. Hence, by continuity of a(α) it follows

n∑
i=1

xij â
′
i(1) = −

n∑
i=1

xij , j = 1, . . . , p, (2.128)

where â′i(1) is the left-hand derivative of âi(α) at α = 1). Hence, similarly as in the case

of regression quantiles defined for α ∈ (0, 1) we get the identity

1

n

n∑
i=1

x⊤
i β̂n(1) = − 1

n

n∑
i=1

Yiâ
′
i(1), (2.129)

which by the definition of the model (2.1) implies

1

n

n∑
i=1

x⊤
i

(
β̂n(1)− β

)
= − 1

n

n∑
i=1

Eiâ
′
i(1). (2.130)

As the largest regression quantile is any solution of the linear program

min
b∈Rp

n∑
i=1

x⊤
i b, s.t. Yi ≤ x⊤

i b, i = 1, . . . , n, (2.131)

we get by duality theory that (−â′1(1), . . . ,−a′n(1))⊤ is a solution of the linear program-

ming problem

Y⊤
nA = max

X⊤
nA = X⊤

n 1n (2.132)

Ai ≥ 0, i = 1, . . . , n.

This implies (2.129) as the equality between the primal and the dual optima. It follows

from the linear programming theory that there exists an optimal basis of problem (2.133)

consisting of the p columns of X⊤
n . Assume, without loss of generality, that the rows of

Xn = X are ordered such that

X =

[
X1

X2

]
,

where X⊤
1 is p×p matrix containing the optimal basis of the problem (2.133), X2 = BX1

is the matrix of order (n− p)× p, and B is a matrix of linear transformation of the basis

contained in X1. Writing Y = (Y⊤
1 ,Y

⊤
2 ) we get the optimality criterion as BY1 =
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X2X
−1
1 Y1 ≥ Y2, where the inequality holds component wise. The optimal solution then

would be

â′p+1(1) = . . . = â′n(1) = 0, (2.133)(
â′1(1), . . . , â

′
p(1)

)
= 1⊤

p + 1⊤
n−pX2X

−1
1 .

Rewriting (2.128) for j = 1 and the fact that the first column of X is intercept yields∑n
i=1 â

′
i(1) = −n and thus we have for t ∈ R that

Pβ

(
n∑

i=1

x⊤
i (β(1)− β) ≥ nt

)
= P0

(
n∑

i=1

x⊤
i β̂n(1) ≥ nt

)

= P0

(
−

n∑
i=1

Eiâ
′(1) ≥ nt

)
≤ P (En:n ≥ t) . (2.134)

Have any ζ ∈ R and for n ≥ n0 set t = tn := ζF−1(1− 1/n). By (2.134) it follows

Pβ

(
x⊤ (β(1)− β) ≥ ζF−1

(
1− 1

n

))
≤ P

(
En:n

F−1 (1− 1/n)
≥ ζ

)
for any ζ ∈ R. But as n→ ∞

P

(
En:n

F−1 (1− 1/n)
≥ ζ

)
D−→

n→∞
1− exp

(
−ζ−

1
γ

)
, (2.135)

see Beirlant et al. (2004), pp. 58. Letting ζ → ∞ gives that the right side of (2.135)

converge to zero, hence x⊤(β̂n(1) − β) = OP (F
−1(1 − 1/n)) which by ∥x∥ = O(1) and

F−1(1− 1/n) → ∞ finally gives

O
(

zγ
∗

n n−1/2

F−1 (1− 1/n)

∣∣∣x⊤β̂n(1)
∣∣∣) = OP

(
zγ

∗

n n−1/2
)
,

which completes the proof.

The bounds we have deduced for process qn(α) are not the optimal ones as they

are linked to α∗
n of (2.107), which was defined in such order to enable the proof of

Theorem 2.3.2 through the Bernstein inequality and the convex arguments.

We shall see that results have a profound theoretical impact on the following section,

as they enable us to treat the tails of regression quantiles more precisely.

2.4 Tails of regression quantiles

The approximation theorems of the previous section open a possibility to approximate the

tails of regression quantile and use this approximation to construct new class of estimates

in the fashion described in section 1.5. Have again model (2.1) with i.i.d. errors, where

Ei ∼ F, i = 1, . . . , n, X fulfill the assumptions (F.1)–(F.3) and X fulfills (X.1)–(X.4) (or
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(X.1)–(X.2) and (X.5)–(X.6)). Throughout this section we shall moreover suppose that

γ∗ = γ > 0 (we are interested only in the right tail, so we may change without loss of

generality the distribution near the left endpoint to reflect this fact), i.e. the distribution

of errors in (2.1) belongs to the Fréchet domain.

While β̂n(α) ∈ Rp, the key information about the distribution function is concen-

trated (at least under i.i.d. errors) in its first component, intercept. As Theorems 2.3.1

and 2.3.2 state, the theoretical counterpart of the first component of β̂n(α) is F
−1(α)+β1.

Hence the tails of regression quantiles can be approximated with the probability tend-

ing to one uniformly on [α∗
n, 1 − α∗

n] similarily as in Theorems 1.5.1 and 1.5.2. Nev-

ertheless, as we do not have the weighted Bahadur representation for regression quan-

tiles which woul be analogous to Theorem 6.2.1 in Csörgő and Horváth (1993), see also

de Haan and Ferreira (2006), Theorem 2.4.2, as well as we cannot use an easy approxi-

mation of regression quantiles by uniform quantile process, see Drees (1998b), Theorem

2.1., we cannot proceed directly. The cost is, that we obtain only an upper boundary for

the desired regression tail quantile process.

Theorem 2.4.1. Suppose that the distribution function F of errors in (2.1) satisfies

(EVT.2) for some γ ∈ R and ρ ≤ 0. Suppose that the assumptions of Theorem 2.3.2

are fulfilled. Then we can define a Wiener processes {Wn(t)}t≥0 such that for suitable

chosen functions A, K, zγ and a(·) as in (1.25) and on space Dγ,h equipped with metric

seminorm

∥z∥γ,h,α∗
n
:= sup

t∈[0,1]

tγh(t)|z(t)|. (2.136)

defined for any ε > 0 through the space of weights as in (1.54) by function

h(t) = t1/2+ε, t ∈ [0, 1], (2.137)

it holds

∥∥∥∥∥∥k1/2
x⊤

(
β̂n(α)− β

)
F−1

(
1− k

n

) − t−γ

− γt−γ−1Wn(t)

−k1/2A
(
k

n

)
t−γ t

−ρ − 1

ρ

∥∥∥∥
γ,h

≤
∥∥∥∥γt−γ(n/k)1/2x⊤D−1

n Zn

(
1− tk

n

)∥∥∥∥
γ,h

+ oP (1), (2.138)

n→ ∞, provided that k = k(n) → ∞, k/n→ 0 and
√
kA(k/n) = O(1) and k ≥ log∆(1∨γ)

with ∆ > 4 + 2δ.

Proof. If γ > 0 and (EVT.2) holds we can formulate Theorem 1.5.1 and write it in a

slightly different form introduced by de Haan and Ferreira (2006), Theorem 2.4.8. Hence
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we have that for E1:n, . . . , En:n we can define a sequence of Wiener processes {Wn(s)}
such that with A as in 1.25 we have for ε > 0 sufficiently small

sup
0≤t≤1

tγ+1/2+ε

∣∣∣∣∣k1/2
(

En−[kt],n

F−1
(
1− k

n

) − t−γ

)
− γt−γ−1Wn(t)

−k1/2A
(
k

n

)
t−γ t

−ρ − 1

ρ

∣∣∣∣ P−→
n→∞

0. (2.139)

By Theorem 6.1.5 of Csörgő and Horváth (1993) and by the law of the iterated logarithm

for uniform quantile process, i.e. Theorem 5.2.4, ibidem, we get by Theorem 2.3.2

x⊤
(
β̂n

(
1− kt

n

)
− β

)
− En−[kt]:n = (2.140)

x⊤D−1
n Zn

(
1− tk

n

)
n1/2f

(
F−1

(
1− tk

n

)) + oP (1)
(
kt
n

(
1− kt

n

))1/2
n1/2f

(
F−1

(
1− tk

n

)) (2.141)

uniformly on [α∗
n/k, 1] with α

∗
n as in (2.107) for any intermediate sequence k → ∞, k/n→

0 such that k ≤ nα∗
n. Similarly Theorem 2.3.3 yields that uniformly on [1/(n+1), nα∗

n/k]

holds

x⊤
(
β̂n

(
1− kt

n

)
− β

)
− En−[kt]:n =

OP (n
−1(α∗

n)
(1∨γ))

f
(
F−1

(
1− tk

n

)) . (2.142)

For any k such that k−1 = o((nα∗
n)

2(1∨γ)), i.e. for k ≥ log∆(1∨γ) with ∆ > 4+ 2δ, where

δ > 0 is as in (2.107), it holds uniformly for t ∈ [0, 1] and any ε > 0 suitably small that

tγ+1/2+εk1/2OP

(
n−1(α∗

n)
(1∨γ)

)
F−1

(
1− k

n

)
f
(
F−1

(
1− tk

n

)) ≤
t1/2+εk1/2OP

(
n−1(α∗

n)
(1∨γ)

)
F−1

(
1− k

n

)
f
(
F−1

(
1− k

n

))
≤ t1/2+εOP

(
(α∗

n)
(1∨γ)

)
k1/2

= oP (1), (2.143)

where the first inequality is by Lemma 2.3.2 and the second by von Mises condition (1.9).

Similarly

oP (1) t
γ+1/2+εk1/2

(
kt
n

(
1− kt

n

))1/2
n1/2F−1

(
1− k

n

)
f
(
F−1

(
1− tk

n

)) ≤
oP (1) t

1/2+εk1/2
(
kt
n

(
1− kt

n

))1/2
n1/2F−1

(
1− k

n

)
f
(
F−1

(
1− k

n

))
≤

oP (1) t
1+ε

(
k
n

)
F−1

(
1− k

n

)
f
(
F−1

(
1− k

n

))
= t1+εoP (1) = oP (1). (2.144)

uniformly t ∈ [0, 1] again by Lemma 2.3.2 and by von Mises condition (1.9). Hence it

follows

sup
t∈[0,1]

tγ+1/2+ε max {Mn(t), Nn(t)} = oP (1), (2.145)
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where

Mn(t) :=
k1/2OP

(
n−1(α∗

n)
(1∨γ)

)
F−1

(
1− k

n

)
f
(
F−1

(
1− tk

n

))
and

Nn(t) :=
oP (1) t

γ+1/2+εk1/2
(
kt
n

(
1− kt

n

))1/2
n1/2F−1

(
1− k

n

)
f
(
F−1

(
1− tk

n

)) .
Moreover by Lemma 2.3.2 and von Mises condition (1.9) we have

Ln(t) := t1/2+ε+γ

(
(k)1/2

n1/2F−1
(
1− k

n

)
f
(
F−1

(
1− tk

n

)) − γ
(n
k

)1/2
t−γ

)

x⊤D−1
n Zn

(
1− tk

n

)
= o(1) t1/2ε

(n
k

)1/2
x⊤D−1

n Zn

(
1− tk

n

)
(2.146)

By Lemma 2.3.5 we have that D−1
n Zn → D−1

n Bp on D[0, 1]p with Bp being a vector of

p independent Brownian bridges on [0, 1]. Similary as in 1-diemensional case it holds by

the defintion for p-dimensional Brownian bridges that

B

(
1− kt

n

)
D
= B

(
kt

n

)
D
= W

(
kt

n

)
− kt

n
W(1), (2.147)

where W is a vector of p independent Wiener processes. Note that as k is an intermediate

seequence it is

sup
t∈[0,1]

∥∥∥∥∥
(
kt

n

)1/2

tεW(1)

∥∥∥∥∥ = oP (1). (2.148)

Moreover as
√
n/kW(kt/n)

W−→
n→∞

W(t) and ∥x⊤D−1
n ∥ = O(1), we have by Lemma 2.3.5,

(2.146), (2.147) and (2.148) that for the process Ln(t) holds uniformly in t ∈ [0, 1]

Ln(t)
W−→

n→∞
0.

which yields

sup
t∈[0,1]

|Ln(t)|
P−→

n→∞
0. (2.149)

By (2.139), (2.141), (2.142), (2.145), and (2.149) we finally get that



2.4. TAILS OF REGRESSION QUANTILES 71

sup
k−1≤t≤1

tγ+1/2+ε

∣∣∣∣∣∣k1/2
x⊤

(
β̂n(α)− β

)
F−1

(
1− k

n

) − t−γ

− γt−γ−1Wn(t)

−k1/2A
(
k

n

)
t−γ t

−ρ − 1

ρ

∣∣∣∣
≤ sup

0≤t≤1
tγ+1/2+ε

∣∣∣∣γt−γ(n/k)1/2x⊤D−1
n Zn

(
1− tk

n

)∣∣∣∣+ oP (1). (2.150)

To extend relation (2.150) over the whole unit interval it suffices to show that

sup
1− 1

n+1≤α≤1− 1
n

∣∣∣n1/2f (F−1(α
) (

x⊤
(
β̂n(α)− β

)
− En:n

)∣∣∣ = OP

(
n−1/2

)
,

which can be done using the arguments in the proof of Theorem 2.3.3 (note that if

(1− zn/n) ∈ [1− 1/(n+ 1), 1− 1/n] then zn = O(1)).

Theorem 2.4.2. Suppose that the assumptions of Theorem 2.3.2 are fulfilled (thus F

fullfils (EVT.1)). Assume that γ > 0. Then we can define a Wiener processes {Wn(t)}t≥0

such that on Dγ,h equipped with metric seminorm ∥ · ∥γ,h,ε defined in (2.136) it holds for

any ε > 0

∥∥∥∥∥∥k1/2
x⊤

(
β̂n(α)− β

)
F−1

(
1− k

n

) − t−γ

− γt−γ−1Wn(t)

∥∥∥∥∥∥
γ,h

≤
∥∥∥∥γt−γ(n/k)1/2x⊤D−1

n Zn

(
1− tk

n

)∥∥∥∥
γ,h

+ oP (1)

+O

(
k1/2 sup

x∈(0,1+ε)

xγ+
1
2

∣∣∣∣R(kn, x
)∣∣∣∣
)

(2.151)

n→ ∞, provided that k = k(n) → ∞, k/n→ 0 and k ≥ log∆(1∨γ) with ∆ > 4 + 2δ.

Proof. Follows analogously as Theorem 2.4.1 from the different paramaterization of

(2.138) introduced in Theorem 1.5.2.

Although Theorem 2.4.1 is not a direct analogue of Theorem 1.5.1 as it provides only

an upper bound for the probability, we can use it to deduce some important facts about

smooth functionals of the tail regression quantiles applied on tail regression quantile

process defined as

Q̂x,n,k(t,X,Y) = Q̂x,n,k(t) :=

{
x⊤
(
β̂n

(
1− kt

n

))}
t∈[0,1]

. (2.152)

Define following Gaussian processes:
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Vγ(t) := t−(γ+1)W (t), t ∈ [0, 1]

UD(t) := t−γx⊤D−1W (t), t ∈ [0, 1]. (2.153)

It holds By Lemma 2.3.5 that (n/k)1/2D−1
n Zn → D−1W weakly in D[0, 1]p. Hence,

(n/k)1/2x⊤D−1
n Zn → x⊤D−1W weakly inD[0, 1], which yields t−γ(n/k)1/2x⊤D−1

n Zn →
t−γx⊤D−1W in Dγ,h and thus

γt−γ(n/k)1/2x⊤D−1
n Zn

(
1− tk

n

)
→ t−γx⊤D−1

n W(t) (2.154)

weakly on D[0, 1] as well as on Dγ,h. Using this result we can establish the consistency

of any suitable smooth scale and location invariant functional applied on Q̂x,n,k.

Theorem 2.4.3. Suppose that the assumptions of Theorem 2.4.1 or Theorem 2.4.2 are

fulfilled, k = kn is an intermediate sequence and T satisfies conditions (T.1)–(T.3).

Moreover assume that T|Dγ,h
is continuous in zγ , then

T
(
Q̂x,n,k

)
P−→

n→∞
γ. (2.155)

Proof. By Theorem 2.4.1 or Theorem 2.4.2 we get due to (2.154) that

Q̂x,n,k − x⊤β

F−1
(
1− k

n

) −→
n→∞

zγ + 1/γ (2.156)

weakly in Dγ,h and thus the result hold due to the continuity of T in zγ and its location

and scale invariance.

Under Hadamard differentiability, we can also deduce an asymptotic normality of any

functional fulfilling (T.1)–(T.3).

Theorem 2.4.4. Assume that T : span(Dγ,h, 1) → R satisfies conditions (T.1)–(T.4).

Moreover, suppose that the assumptions of Theorem 2.4.1 or Theorem 2.4.2 are fulfilled

and let σT,γ be as in (1.62), µT,γ,ρ as in (1.63),

ςT,X,γ :=

∫
[0,1]×[0,1]

x⊤D−1(st)−γ min(s, t)ν2T,γ (d s,d t) . (2.157)

Then under the condition (EVT.2) on distribution function F of errors in model (2.1)

and limn→∞ k1/2A (k/n) = λ ∈ [0,∞] follows

(i) λ ∈ (0,∞)

k1/2
(
T
(
Q̂x,n,k

)
− γ
)

D−→
n→∞

N (λµT,γ,ρ, σ̃
2
T,γ). (2.158)

for some σ̃2
T,γ ≤ σ2

T,γ + ς2T,X,γ .
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(ii) λ = ∞

k1/2
(
T
(
Q̂x,n,k

)
− γ
)

P−→
n→∞

µT,γ,ρ (2.159)

If (EVT.2) does not hold and it holds (1.66), i.e. supx∈(0,1+ε] x
γ+1/2 |R (kn/n, x)| =

o
(
k
−1/2
n

)
for some ε > 0, then

k1/2
(
T
(
Q̂x,n,k

)
− γ
)

D−→
n→∞

N (0, σ̃2
T,γ). (2.160)

with some σ̃2
T,γ ≤ σ2

T,γ + ς2T,X,γ .

Proof. By the proof of Theorem 2.4.1 we get that there are some versions of U of UD

and V of Vγ,t and Q̂
∗
x,n,k such that

k1/2n

(
Q̂∗

x,n,k − x⊤β

F−1
(
1− k

n

) − zγ

)
= U + V + λK + oP (1).

Note that T (zγ) = T (zγ) for zγ and zγ defined in (1.24) and (1.68) and that the

limiting process is continuous. Therefore Hadamard differentiability (1.61) implies that

with ε = k
−1/2
n ↓ 0 and yn = k

1/2
n

((
Q̂∗

x,n,k − x⊤β
)
/F−1(1− k/n)− zγ

)
implies

k1/2n

(
T

(
Q̂∗

x,n,k − x⊤β

F−1(1− k/n)

)
− T (zγ)

)
P−→

n→∞
T ′(V + U + λK(t)).

and thus by location and scale invariancy of T and T (zγ) = γ it follows

k1/2n

(
T
(
Q̂x,n,k

)
− γ
)

W−→
n→∞

∫ 1

0

Vγ + UD + λK(t)dνT,γ . (2.161)

Note that λK(t) is a deterministic process. Hence, if we assume that the processes Vγ

and UD are not dependent, we get from the fact that the both processes are Gaussian

that the right side of (2.161) is a normal distributed random variable with mean µT,γ

and variance σ2
T,γ + ς2T,X,γ , see Proposition 2.2.1 in Shorack and Wellner (1986). The

assumption that the processes Vγ and Uγ are independent cannot be deduced in the

proof of Theorem 2.4.1, thus we got for the variance only the upper bound.

The other assertions of the theorem follows analogously from Theorem 2.4.2.

Theorems 2.4.3 and 2.4.4 provide a basic framework to establish the asymptotic prop-

erties of various estimators based on smooth functionals of Q̂x,n,k. It follows that for

functionals such as (1.52) or (1.76) that T (Q̂x,n,k) is a consistent and asymptotically

normal estimate of γ, with a specified mean and variance limited by the upper boundary.

An important conclusion of Theorem 2.4.4 is that the regression quantile estimation (i.e.

using T (Q̂x,n,k) instead of T (Q̂n,k), where Q̂n,k is the empirical tail quantile function

of errors in (2.1)) can affect only the variance of the resulting γ-estimator and not the
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bias. Hence the quantile regression case in model (2.1) can be reduced with ease to the

univariate i.i.d. case. As an example, consider

γ̂RQ,Pick
k,n,x :=

1

log 2
log

(
x⊤β̂n

(
τm−[k/4]

)
− x⊤β̂n

(
τm−[k/2]

)
x⊤β̂n

(
τm−[k/2]

)
− x⊤β̂n (τm−k)

)
, (2.162)

where 0 < τ1 < . . . < τm < 1 corresponds to m(n,Y,X) unique solutions β̂n(τi), i =

1, . . . ,m of minimization problem (2.3). Hence Q̂x,n,k is a step function on [0, 1] as k

is an intermediate sequence and m(n) → ∞. Hence estimator (2.162) is an analogue to

Pickands estimator, as γ̂RQ,Pick
k,n,x = TPick(Q̂x,n,k), with TPick introduced in (1.52). It is

consistent and has an asymptotic normal distribution according to Theorems 2.4.3 and

2.4.4 provided that [n(1− τm−k)] is a suitable intermediate sequence. This estimator is

identical for some k̃ with the estimator

γ̂RQ,Pick

k̃,n,x
:=

1

log 2
log

x⊤β̂n

(
1− k̃

4n

)
− x⊤β̂n

(
1− k̃

2n

)
x⊤β̂n

(
1− k̃

2n

)
− x⊤β̂n

(
1− k̃

n

)
 . (2.163)

Two estimators (2.162) and (2.163) differ only in their parametrization of the interme-

diate sequence. We get the consistency and asymptotical normality of (2.163) if k̃ is

a suitable intermediate sequence. The estimator (2.163) is similar to the one proposed

by Chernozhukov (2005), c.f. statistic (6.1) therein and his Theorem 6.1. He uses an

arbitrary vector x to have a general theory of γ̂RQ,Pick
k,n,x . The theory for his estimator is

more general and he obtained its consistency under various cases of heteroscedasticity.

On the other hand our improvement is that we obtained consistency and asymptotic

normality for a much larger class of similar estimators as have been suggested by the

literature so far. Our method is convenient particularly for the estimators based on

functionals which can be written as T
(∫ 1

0
h1dν1

)
or T

(∫ 1

0
h1(t)dν1,

∫ 1

0
h2dν2

)
, where νi

are suitable finite signed Borel measures on [0, 1] and hi are suitable measurable functions.

Hill’s estimator (with h1 = log+(·) and ν1 being Lebesgue measure on [0, 1]) as well as

PWM-estimator (see (1.76)) can be written in this fashion. Unlike of Pickands estimator,

the asymptotic properties of these functionals cannot be covered by the older results of

Chernozhukov (2005). For example let

PRQ
n,j :=

1

j

j∑
i=1

(
x⊤β̂n(τm−i+1)− x⊤β̂n(τm−k)

)
(2.164)

and

QRQ
n,j :=

1

j

j∑
i=1

i

j

(
x⊤β̂n(τm−i+1)− x⊤β̂n(τm−k)

)
, (2.165)

where 0 < τ1 < . . . < τm < 1 corresponds to m(n,Y,X) unique solutions β̂n(τi), i =

1, . . . ,m of minimization problem (2.3). Note that PRQ
n,k =

∫ 1

0
Q̂x,n,k(t)dµ(t) and P

RQ
n,k =
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∫ 1

0
tQ̂x,n,k(t)dµ(t) where µ(t) is Lebesgue measure on [0, 1]. Then we can define for a

suitable intermediate sequence k estimator

γ̂RQ,PWM
n,k :=

PRQ
n,k − 4QRQ

n,k

PRQ
n,k − 2QRQ

n,k

. (2.166)

It holds γ̂RQ,PWM
n,k = TPWM

(
Q̂x,n,k

)
and thus by Theorems 2.4.3 and 2.4.4 this estimator

is consistent and asymptotic normal. Note also that for k ∈ N and k/n→ 0 the process

Q̂x,n,k is a step function with j(k,Y,X) ≥ k steps. Comparing estimator γ̂RQ,PWM
n,k

with γ̂PWM
n,k , i.e. classical estimate applied on errors of the model, we get that γ̂RQ,PWM

n,k

is calculated from different number of values j(k,Y,X), than estimator γ̂PWM
n,k . The

beauty of our functional representation lies in the fact, that it is universal for the both

cases. Indeed, asymptotic properties of γ̂RQ,PWM
n,k and γ̂PWM

n,k are similar except of the

asymptotic variance. In a similar way we can obtain a consistency and an asymptotic

normality of the functionals which are defined only in an implicit way, which is the case

of ML-estimator generated by functionals (1.77) and (1.79).

Note also that the information about the regular variation of the tails can be concen-

trated just to the intercept, as was already indicated by the asymptotic properties of the

largest regression quantile. Consider following reparametrization of the model (2.1):

β∗
1 = β1 + x2β2 + . . .+ xpβp

β∗
i = β2, i = 2, . . . , p,

and (2.167)

x⋆1i = 1 = x1i, i = 1, . . . , n

x⋆ji = xji −
1

n

n∑
i=1

xji, i = 1, . . . , n.

Then the model (2.1) can be rewritten as

Y = X∗β∗ +E. (2.168)

It is easy to see that if 1
nX

⊤X → D, where D is a positive definite matrix, then also
1
nX

∗⊤X∗ → D∗, where D∗ differs from D only in the first row and column which equals

to (1, 0, . . . , 0)⊤ ∈ Rp, see Dodge and Jurečková (2000), pp. 128–129. It follows that

under this reparametrization x∗⊤
(
β̂
∗
n(α)− β∗

)
= β∗

1 = β1 + x2β2 + . . . + xpβp and it

holds that for any two quantile regression estimates of the intercept

β̂∗
n,1(α1) ≤ β̂∗

n,1(α2), 0 ≤ α1 ≤ α2 ≤ 1. (2.169)

As x∗ = (1, 0, . . . , 0)⊤ ∈ Rp we obtain the consistency and asymptotic normality of

estimators based on regression quantile estimates of intercept in model (2.168). The
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estimator (2.162) can be thus simplified to

γ̂∗RQ,Pick
k,n :=

1

log 2
log

(
β̂
∗
n,1

(
1− k

4n

)
− β̂

∗
n,1

(
1− k

2n

)
β̂
∗
n,1

(
1− k

2n

)
− β̂

∗
n,1

(
1− k

n

) ) . (2.170)

We can write in a similar fashion the other estimators such as (2.166) as well.

.



Chapter 3

Residuals and two-step

regression quantiles

It is fairly complicate to establish a theory of “extreme” intercepts of regression quantiles.

Moreover, one can ask, whether it is desirable at all. The regression quantiles for α near

to the largest regression quantile, for quantiles α < αmax, where

αmax := min
α∈[0,1]

{
α
∣∣∣I[β̂n(α)− β̂n(1) = 0]

}
,

with β̂n(1) being the largest regression quantile (2.16), are sensitive to few extremal

data even for moderate sample sizes. As we mentione Smith (1994) alongside with

Portnoy and Jurečková (2000) proved the consistency of the largest regression quantile,

but due to the fact that for any α ∈ (0, 1) at least d + 1 data points lie on the line

β̂n(α), the largest regression quantiles usually remain far away from their theoretical

counterparts. The question is whether this behaviour reflects more the properties of the

design matrix X or the extremal behaviour of the underlying error distribution.

To reveal more about the distribution of the very high regression quantiles we shall dis-

cuss the properties of exceedances over given quantile regression threshold. The method

has been already discussed in the literature, cf. Beirlant et al. (2004), pp. 226–229, but

their approach has not been supported by theoretical asymptotical results. The simplest

settings can be described as follows. Have a linear model as in (2.1) with the intercept

β1 (i.e. the first column of Xn is 1) and denote by X the matrix X without its first

column (i.e. X is n× (p−1) matrix and we shall call it’s rows as xi). Consider the set of

positive residuals calculated with respect to one specific (theoretical) regression quantile

β(α) = (β1 + F−1(α), β2, · · · , βp)

R(α) := {Yi − x⊤
i β(α);Yi − x⊤

i β(α) > 0}

and their order statistics Ri:l = Ri:l(α) ∈ R(α), where l = card(R(α)) and i = 1, . . . , l.

77
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From the EVT point of view such residuals contain for suitable α whole information

about the extremes of the errors Ei as the errors itself. A natural approach is to describe

how much of the information about the tails is preserved in

R̂(α) := {Yi − x⊤
i β̂(α);Yi − x⊤

i β̂(α) > 0}, (3.1)

where β̂(α) is some empirical quantile regression estimator. Apart from the regression

quantiles of Koenker and Basset (1978) there are also other possibilities how to estimate

theoretical regression quantile β(α). The approach sketched by (3.1) itself have very

much in common with two-step regression quantiles introduced by Jurečková and Picek

(2005). These quantiles are defined as R-estimates and their residuals and they are

asymptotically equivalent to the regression quantiles of Koenker and Basset (1978). The

two-step regression approach is worth of further examination. The following lines are

reworked version of the joint work of the author with Jan Picek which appeared in

Picek and Dienstbier (2010).

3.1 Extremes of two-step regression quantiles

The two-step regression quantiles have been introduced by Jurečková and Picek (2005)

as an alternative of the α-regression quantiles of Koenker and Basset (1978). They are

defined as follows:

Let β̂nR(α) be an appropriate R-estimate of the slope parameter β and let β̃n,1 denote

[nα]-order statistic of the residuals Yi − x⊤
i β̂nR(α), then the vector

β̃n(α) :=
(
β̃n,1, β̂nR(α)

)⊤
(3.2)

is called two-step α-regression quantile.

The initial R-estimator of the slope parameters is constructed as an inverse of the

rank test statistic calculated in the Hodges-Lehmann manner, see Hodges and Lehmann

(1963): Denote Denote Rni(Y −Xb) the rank of Yi − x⊤
i b among (Y1 − x⊤

1 b, . . . , Yn −
x⊤
nb),b ∈ Rp−1, i = 1, . . . , n. Note that Rni(Y −Xb) is also the rank of Yi − b0 − x⊤

i b

among (Y1 − b1(α) − x⊤
1 b, . . . , Yn − b1(α) − x⊤

nb) for any α ∈ (0, 1) because the ranks

are translation invariant. Hence the initial estimation of the slope parameter is invariant

to any shift of the data. Consider the vector Sn(b) = (Sn,1(b), . . . , Sn,p−1(b))
⊤

of the

linear rank statistics, where

Sn,j(b) =

n∑
i=1

xi,j+1ψα

(
Rni(Y −Xb)

n+ 1

)
, b ∈ Rp−1, j = 1, . . . , p− 1. (3.3)

and ψα(x) = α− I[x < 0], x ∈ R as in (2.46). Then the estimator β̂nR is defined as

β̂nR = argminb∈Rp−1∥Sn(b)∥1, (3.4)



3.1. EXTREMES OF TWO-STEP REGRESSION QUANTILES 79

where ∥S∥1 =
∑p−1

j=1 |Sj | is the L1 norm of S, see Jurečková (1971); or

β̂nR = argminb∈Rp−1Dn(b), (3.5)

where

Dn(b) =
n∑

i=1

(Yi − x⊤
i b)ψα

(
Rni(Y −Xb)

n+ 1

)
(3.6)

is the Jaeckel’s measure of rank dispersion, see Jaeckel (1972).

The estimate β̂nR estimates only the slope parameters and the computation is in-

variant to the size of the intercept. Solutions (3.4) and (3.5) are generally not unique,

nevertheless the asymptotic representations apply to any of such solution; e.g. one can

take the center of gravity of the set of all solutions Bn or the expecatation of a random

vector uniformly distributed over Bn to obtain suitable single value.

The asymptotic of the two-step regression quantiles coincides with the asymptotics

of the R-estimators. Assume that the design matrix X fulfills the conditions (X.1–3) and

the distribution function F of errors in model (2.1) fulfills the condition

(F.F1) F has a continuous density f that is positive on the support of F and has finite

Fisher’s information, i.e. 0 <
∫ ( f ′(x)

f(x)

)2
dF (x) <∞.

Under these conditions the R-estimator (3.4) and (3.5) admits the following asymp-

totic representation,

n
1
2 (β̂nR − β) =

n−
1
2 (f(F−1(α))−1D−1

n∑
i=1

xi

(
α− I[Ei < F−1(α)]

)
+ op(n

−1/4), (3.7)

where again D = limn→∞ Dn, Dn = 1
n

∑n
i=1 xix

⊤
i , and β = (β2, . . . , βp) is the slope

component of β, for detailed proof see Jurečková and Sen (1996). Using this relation

Jurečková and Picek (2005) showed that also the two-step regression quantiles defined

in (3.2) are asymptotically equivalent to the regression quantiles of Koenker and Basset

(1978), i.e.

n1/2
∥∥∥β̂n(α)− β̃n(α)

∥∥∥ P−→
n→∞

0, as n→ ∞, (3.8)

see Jurečková and Picek (2005), Corollary 2.1. Not only asymptotically, two-step re-

gression quantiles lies close to regression quantiles of Koenker and Basset (1978) also

numerically as indicate simulation studies. While they are more difficult to calculate

and their definition is somehow tricky, they are also more simple to deal with. The main

advantage is that their number is identical with that of order statistics of the errors. This

fact enables to establish a connection between the multivariate distribution of two-step

regression quantiles and the univariate distribution of the errors in model (2.1). The fact
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plays an important role in establishing the extreme value theory on two-step regression

quantiles.

We have previously seen that the population counterpart of α-regression quantile

is vector β(α) = (β1 + F−1(α), β2, . . . , βp)
⊤. The difference between empirical regres-

sion quantile and its theoretical population counterpart is OP (n
−1/2(log log n)1/2) under

general conditions on X and F , cf. Theorem 2.3.1 and the previous discussion. The co-

incidence of two-step regression quantiles is stressed by the fact, that the order statistics

of residuals can be written in terms of regression quantiles as

E[nα] = argmin
b

{
n∑

i=1

ρα
(
Yi − b− x⊤

i β
)
, b ∈ R

}
.

While we usually do not know the value of β, we can replace it by an R-estimate, which

(as we have seen) is ivariant to the exact value of the intercept containing the information

about quantiles of the error distribution. Under the condition that β1 = 0 in (2.1) the

intercept of α-two-step quantile can be thus seen as an estimate of the [nα]-order staitistic

of errors.

Ê[nα] = Ê[nα](β̂nR(α)) = argmin
b

{
n∑

i=1

ρα

(
Yi − b− x⊤

i β̂nR(α)
)
, b ∈ R

}
. (3.9)

Nevertheless, there is a considerable question about the tail behaviour of such estimates

as we do not know much about the asymptotic properties of extreme R-estimates. For

our applications it is enough to develop a less ambitious theory dealing with extreme of

two-step regression quantiles. In fact we shall not diverge from the previous developments

of the theory.

In Jurečková and Picek (2005) the authors considered the extreme two-step quantile

Ên:n, which they define as the maximum of the residuals

Ên:n = max{Y1 − x⊤
1 β̂nR, . . . , Yn − x⊤

n β̂nR} (3.10)

calculated with respect to an appropriate R-estimate β̂nR of β. Similarly as in the case

of regression quantiles if one admits the assumption controlling maximum over ∥xi∥,
i = 1, . . . , n as in (X.4), Ên:n is a consistent estimate of En:n + β1 and

|Ên:n − En:n − β1| = Op(n
−δ) as n→ ∞, 0 < δ < 1

2 (3.11)

Let β̂
+

nR be the initial R-estimate generated by the score function φ1− 1
n
(u) = I[u ≥

1− 1
n ]−

1
n , 0 < u < 1. In this case the Jaeckel measure of the rank dispersion (3.6) takes

the form

max
1≤i≤n

{Yi − x⊤
i b} − Ȳn, (3.12)
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where Ȳn = 1
n

∑n
i=1 Yi. Hence,

β̂
+

nR = min
b∈Rp−1

n∑
i=1

(
Yi − x⊤

i b
)+
. (3.13)

Then we can define the largest two-step regression quantile as
(
Ên:n, β̂

+

nR

)
. For this

estimate it holds that Ên:n + x⊤
i β̂

+

nR ≥ Yi, i = 1, . . . , n, while for some i0 the inequality

reduces to equality. Hence the largest two-step regression quantile coincides with the

largest regression quantile considered by Portnoy and Jurečková (2000) defined as

β̂(1) := arg min
b∈Rp

{
n∑

i=1

x⊤
i b

∣∣∣∣∣Yi ≤ x⊤
i b, i = 1, . . . , n

}
This estimator can be obtained from the usual definition of regression quantile by let-

ting α → 1. The properties of the largest regression quantile have been already stud-

ied from the extremal point of view in Jurečková (2007), where the author derives a

simple test on domain of attraction. The two-step regression quantile coincides ex-

actly with the extreme regression quantile considered in Portnoy and Jurečková (2000).

However, as the methods of EVT are often based not only on the maxima but also

on other higher empirical quantiles, we shall proceed beyond largest two-step regres-

sion quantile. In the following we consider the properties of residuals appertaining

to any single R-estimate discussed above. Denote
{
Ê1, . . . , Ên

}
the set of residuals{

Y1 − x⊤
1 (β̂nR − β), . . . , Yn − x⊤

n (β̂nR − β)
}
. The following lemma shows that k-th or-

dered residual Êk:n is an appropriate estimate of Ek:n.

Lemma 3.1.1. Let β̂nR be an R-estimate of β, generated by a fixed nondecreasing and

integrable score function φ : (0, 1) 7→ R, independent of n, as in (3.3) and (3.4). Assume

the conditions (A1) – (A3) and

max
1≤i≤n

∥xi∥ = O
(
n

1
2−δ
)

as n→ ∞, 0 < δ < 1
2 . (3.14)

then

sup
1≤k≤n

∣∣∣Êk:n − Ek:n − β1

∣∣∣ = OP (n
−δ), as n→ ∞ (3.15)

Proof. Let D1, . . . , Dn denote the antiranks of E1, . . . , En, i.e. the indices satisfying

Ei:n = EDi , i = 1, . . . , n. Moreover for an R-estimate β̂nR of the slope components of β

and n ∈ N

un := un(β̂nR) := max
i=1,...,n

|x⊤
i (β̂nR − β)|.

From the asymptotic representation of β̂nR (3.7) and (3.14) we get un = OP (n
−δ) as

n→ ∞.
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Notice that Ê1:n ≤ E1:n + β1 + un, because the opposite case Ê1:n > E1:n + β1 + un

implies

ÊD1
= E1:n + β1 + xD1

(β − β̂nR) ≤ E1:n + β1 + un < Ê1:n.

Hence, Ê1:n is the smallest observation among
{
Êi, i = 1, . . . , n

}
, therefore it cannot be

greater than ÊD1
.

Similarly, Ê2:n ≤ E2:n + β1 + un because Ê2:n > E2:n + β1 + un leads to

ÊD2
= E2:n + β1 + xD2

(β − β̂nR) ≤ E2:n + β1 + un < Ê2:n

and

ÊD1
= E1:n + β1 + xD1

(β − β̂nR) ≤ E2:n + β1 + un < Ê2:n.

If we proceed analogously, we get

Êi,n ≤ Ei,n + β1 + un, i = 1, . . . , n. (3.16)

On the other hand, it holds for the highest two-step ordered residual Ên:n ≥ En:n +

β1 − un, because Ên:n < En:n + β1 − un implies

ÊDn
= En:n + β1 + xDn

(β − β̂nR) ≥ En:n + β1 − un > Ên:n.

We get by the similar arguments as in (3.16)

Êi,n ≥ Ei,n + β1 − un, i = 1, . . . , n. (3.17)

Finally, un = Op(n
−δ) together with (3.17) and (3.16) imply (3.15).

In the introductory chapter we have seen that many EVT estimators can be written

as smooth functionals T (Qn) of the empirical tail quantile function. If we would have

been able to observe the errors of (2.1) directly, the appropriate tail quantile function

would take the form

Qn(t) := F−1
n

(
1− kn

n
t

)
= En−[knt]:n, t ∈ [0, 1],

In the next step, we replace the unobservable errors with the residuals Ê1, . . . , Ên and

establish EVT for the tail quantile function of the residuals. Let any k ∈ N be such that

Êk:n > 0. We define the tail quantile function of the residuals as

Q̂n,k(t) := Ên−[kt]:n, t ∈ [0, 1]. (3.18)

By Lemma (3.1.1) Q̂n,k is the consistent estimate of the empirical tail function of the

errors Qn,k(t) = En−[kt]:n uniformly in t ∈ [0, 1]. Hence following Drees (1998b), we can
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provide an approximation of Q̂n,k for the intermediate sequences of k(n). Suppose that

F in (2.1) fulfills (EVT.2) with a, A, and K as in (1.25), i.e. there is some is some ρ ≤ 0

that K takes the form (1.26), (1.27), or (1.28) respectively to γ and ρ. Define again

seminorm ∥ · ∥γ,h on metric space Dγ,h for any h ∈ H defined as in (1.55), (1.56), and

(1.54). Then Theorem 1.5.1 can be reformulated to establish an approximation of Q̂n,k

defined in (3.18).

Theorem 3.1.1. Suppose that the distribution function F of errors in (2.1) satisfies

(EVT.2) for some γ ∈ R and ρ ≤ 0. Suppose that the assumptions of Lemma 3.1.1 are

fulfilled. Then we can define a sequence of Wiener processes {Wn(t)}t≥0 such that for

suitable chosen functions A, K, and a as in (1.25), metric seminorm ∥·∥γ,h as in (1.55)

and each ε > 0,

∥∥∥∥∥ Q̂n,k(t)− F−1
(
1− k

n

)
− β1

a
(
k
n

) −
(
zγ(t)− k−1/2t−(γ+1)Wn(t) +A

(
k

n

)
K(t)

)∥∥∥∥∥
γ,h

= oP

(
k−1/2 + |A(k/n)|

)
(3.19)

n→ ∞, provided that k = k(n) → ∞, k/n→ 0 and
√
kA(k/n) = O(1)

Proof. Immediately follows from (3.15) and the approximation of the tail quantile func-

tion derived in Theorem 2.1 of Drees (1998b).

If it holds only the domain of attraction condition (EVT.1) an analogue of Theorem 1.5.2

can be formulated.

Theorem 3.1.2. Suppose that it holds (EVT.1). Then we can define Wiener processes

{Wn(t)}t≥0 such that almost surely for all h ∈ H as in (1.54) and ε > 0

∥∥∥∥∥ Q̂n,k(t)− F−1
(
1− k

n

)
− β1

a
(
k
n

) −
(
zγ(t)− k−1/2t−(γ+1)Wn(t)

)∥∥∥∥∥
γ,h

= oP

(
k−1/2

)
+O

(
sup

x∈(0,1+ε)

xγ+
1
2

∣∣∣∣R(kn, x
)∣∣∣∣
)

(3.20)

where k = k(n) is an intermediate sequence k → ∞, k/n→ 0, n→ ∞.

Proof. See Theorem 2.1 in Drees (1998b).

We have already shown in the first chapter that various estimators of γ can be in the

i.i.d. case written as functionals of the empirical tail quantile function, i.e. γ̂n,k =

T (Q̂n,k). The asymptotic properties of these estimators are under suitable conditions

on T given by the Theorem 1.5.1, cf. Theorem 1.5.3 and Drees (1998b). Theorems 3.1.1

and 3.1.2 enable to define the estimates of γ as functionals of Q̂n,k. While Qn,k is not

observable in the regression case, it can be estimated using Q̂n,k. Again we shall establish
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the convergence using weighted supremum seminorm |·|γ,h on Dγ,h with h ∈ H for any

fixed γ ∈ R. Moreover have Cγ,h :=
{
z ∈ Dγ,h|z|(0,1] ∈ C(0, 1]

}
be a subset of continu-

ous functions on (0, 1] of Dγ,h. The following theorem shows consistence and asymptotic

normality of a broad class of functionals Q̂n,k.

Theorem 3.1.3. Suppose that the assumptions of Lemma 3.1.1 are fulfilled. If for

the distribution function F of errors in model (2.1 holds F ∈ MDA(Gγ), k = kn is

an intermediate sequence, T satisfies conditions (T.1)–(T.3), and in addition T|Dγ,h
is

continuous in zγ , then

T
(
Q̂k,n

)
P−→

n→∞
γ. (3.21)

Proof. Immediately follows from Lemma 3.1.1 and Theorem 1.5.3 by Theorem 3.1.1 and

Theorem 3.1.2.

Similarly as in the location i.i.d.model an asymptotical normality of any estimator

T (Q̂k,n) follows from the second order condition under Hadamard differentiability of T ,

which was introduced in the condition (T.4) on page 28.

Theorem 3.1.4. Assume that T : span(Dγ,h, 1) → R satisfies conditions (T.1)–(T.4).

Let σT,γ be as in (1.62) and µT,γ,ρ as in (1.63). Then under the condition (EVT.2)

on distribution function F of errors in model (2.1) and limn→∞ kA (k/n) = λ ∈ [0,∞]

follows

(i) λ ∈ (0,∞)

k1/2
(
T (Q̂k,n)− γ

)
D−→

n→∞
N (λµT,γ,ρ, σ

2
T,γ). (3.22)

(ii) λ = ∞
k1/2

(
T (Q̂k,n)− γ

)
P−→

n→∞
µT,γ,ρ (3.23)

Moreover, if only (EVT.1) holds and it holds (1.66), i.e. supx∈(0,1+ε] x
γ+1/2 |R (kn/n, x)| =

o
(
k
−1/2
n

)
for some ε > 0, then

k1/2
(
T (Q̂k,n)− γ

)
D−→

n→∞
N (0, σ2

T,γ). (3.24)

Proof. Immediately follows from Lemma 3.1.1 and Theorem 1.5.4 by Theorem 3.1.1 and

Theorem 3.1.2.

Theorems 3.1.3 and 3.1.4 have profound practical implications – virtually any esti-

mator, i.e. anyone which can be written in the form of a smooth tail quantile function

functional, gives consistent and asymptotically normal results when applied on extreme

two-step regression quantiles. The class of estimators covers practically all frequently

used estimators as discussed in section 1.5. While we consider only the location and

scale invariant estimators of γ, the nuisance parameter of real intercept β1 does not play
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any role in the estimation. Nevertheless a suitable standardization, e.g. through sub-

tracting the regression median, allows to generalize to the case of estimators which are

only scale invariant similarly as in Drees (1998a). However, any such extension cannot

be recommended from the practical point of view. As we shall see in the next section,

simulation results show that such estimators have a large bias. While Hill’s estimator is

consistent for a suitable k = k(n) and large n → ∞ any shift in location can severely

affect the estimation and any error in the estimation of β1 can multiply the bias of the

estimation of γ.

3.2 Residuals of regression quantiles

We defined extreme two-step regression quantiles as the residuals over a given R-estimate.

Nevertheless, the assertions in the previous section hold for any consistent estimator of

the slope. The proof of Lemma 3.1.1 is quite universal and can be immediately rewritten

in terms of residuals of regression quantiles if β̂nR is replaced by β̂n(α), α ∈ [0, 1].

Consider the set of nonnegative residuals over this regression quantile threshold

Ẽ(α) =

{(
Yi − x⊤

i β̂n(α)
)+

, i = 1, . . . , n

}
, (3.25)

where x+ := max (0, x). We shall denote the order of lowest positive residual as k =

k(α) ∈ {1, . . . , n} for any n ∈ N , i.e. it holds

Ẽn−k−1,n = 0 and Ẽn−k,n > 0.

In such case we can estimate the tail quantile function as

Q̃n,k(t) := Ẽn−[kt]:n = Ẽn−[k(α)t]:n, t ∈ [0, 1]. (3.26)

For suitably chosen α = α(n) ∈ [0, 1] we get k(α) as an intermediate sequence. Accord-

ingly we can base the estimation of γ appertaining to distribution function F of the errors

in model (2.1) on k(α) positive residuals En−k,n, . . . , En,n or, using functional notation,

any such estimator can be written as T (Q̃k(α),n), for some functional functional fulfilling

(T.1)–(T.3).

Another possibility is to choose a fixed regression quantile threshold β̂n(τ) for some

τ ∈ [0, 1]. In this case one gets Rτ ≤ n positive residuals Ĕi = Yi − x⊤
i β̂n(τ), i ∈

1, . . . , Rτ , where Rτ tends to infinity with n→ ∞. The appropriate estimate of the tail

quantile function shall be the k largest residuals, i.e.

Q̆n,k(t) := Ĕn−[knt]:n, t ∈ [0, 1]. (3.27)

for a suitable intermediate sequence k = kn. Again the consistency of the estimate Q̆n,k

immediately follows from an analogue of Lemmma 3.1.1.
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In the situation of model 2.1 with i.i.d. errors it does not matter if the estimate Q̂n,k or

Q̆n,k is used. However in real data analysis a suitable selection of the regression quantile

threshold can filter out irregularities among the distributions of error Ei, i = 1, . . . , n

occurring bellow high quantiles.

The approach has been already discussed in the literature, c.f. Beirlant et al. (2004),

pp. 226–229 and also Kyselý et al. (2010) or Northrop and Jonathan (2011), but the

asymptotic properties of such estimators have not been considered. The methodological

approach based on functionals of the estimated tail quantile function allows to develop

an asymptotic theory of such estimators in a simple case of linear model (2.1) with

i.i.d. errors. The consistency and asymptotical normality of the estimators based on

residuals of the regression quantiles immediately follows from the theory explained in the

previous pages. An extension of the uniform approximation of the regression quantile

process as it was introduced by Theorems 2.3.1 and 2.3.2 on the other hand allows to

admit intermediate sequences of αn = kn/n in (3.25).

While these methods have proven to provide reasonable solutions in the real data

modelling, considerable theoretical problems remain unresolved. The most important

is the behaviour of the tails of regression quantile process under various forms of a

dependency in the errors of model (2.1). The property of the regression quantile process

has been studied in the case of long range dependence by Koul and Mukherjee (1994),

which represent a generalization of Gutenbrunner and Jurečková (1992).

.



Chapter 4

Real data and simulations

In this chapter we shall discuss the methods of an estimation of γ developed in the

previous chapters from the computational point of view. We shall again work in the

linear model setting (2.1) and our interest shall be to estimate the extremal properties

of errors E1, . . . , En of the model. As it is difficult to test the efficiency of the inference

procedures of EVT on the real data – typically the datasets consists of only limited

number of observations and/or it is difficult to obtain more “rare” observations of the

given random sample – the simulation results are very important decisive tool to evaluate

the performance of the inferential methods.

4.1 Simulations

4.1.1 Intercepts of regression quantiles

We tested the estimators of γ on simple linear models with a different distribution func-

tions of error. There have been generated 1000 observations from the selected models.

(a) Y = 20− 1
10Xi,j + Ei,j , Xi,j = i, i = 1, . . . , 20, j = 1, . . . , 50

(b) Y = 1 + 1
2Xi + Ei, Xi ∼ U(0, 5), i = 1, . . . , 1000,

The first model is with a fixed covariate matrix and the second is with a random covariate

matrix. Both covariate matrix fulfills conditions (X.1)–(X.2) and (X.5)–(X.6) introduced

in section 2.3.

Each of the models was generated with a two different distributions of errors:

(i) Burrleigh distribution Burr(1, 2, 1)

(ii) Fréchet distribution with a shape parameter α = 3

F (x) = exp
(
−x−3

)
, x > 0.

87
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We reparametrized the models using (2.167) to get an alternate expression of (a) and (b)

in the form

(a) Yij = 20− 1
10

(
Xi,j − 21

2

)
+ Eij , i = 1, . . . , 20, j = 1, . . . , 50

(b) Yi = 1 + 1
2

(
Xi − 1

1000

∑1000
i=1 Xi

)
+ Ei, i = 1, . . . , 1000.

It follows that x⊤ = (1, 0) ∈ R2 in the both cases and hence due to the theorems of the

previous chapter we can base our estimation on the intercepts of regression quantiles,

which form a non-increasing process q∗n,1,k(t) := β̂n,1(1 − tk
n ) ∈ R1 for t ∈ [0, 1] for

any k being an intermediate sequence (note that we omit the asterisk notation β̂n,1 we

introduced in the section 2.4 for the purpose of this chapter as we consider her only the

reparametrized model).

As for each n, Yn = Y1, . . . , Yn and Xn×p there exists m ∈ N unique solutions of

the minimization problem (2.3) and β̂n,1(τ) forms for τ ∈ [0, 1] a step function with m

steps. As we have already noted previously m depends on the exact numerical form

of the matrix X and vector Y, see Koenker (2005), pp. 34–38. For the sake of the

notation we assign each step the lowest probability level {τj}j∈{1,...,m} such that β̂n,1(τi)

equals to the i-th step. More precisely this means 0 = τ1 < τ2 < . . . < τm ≤ 1 and

for each i ∈ {1, . . . ,m} it holds β̂n,1(α) = β̂n,1(τi), i = 1, . . . , n for each α in some right

neighborhood of τi and β̂n,1(α) = β̂n,1(τi−1) < β̂n,1(τi), i = 2, · · · , n for α in an arbitrary

left neighborhood of τi.

We calculated our estimators for different k = 1, . . . , l ∈ N such that k = τm−k, hence

they are based on the k largest unique solutions of the process of regression quantiles

intercept. This can be done due to our construction of the estimators, it is T (q∗n,1,k1
) =

T (q∗n,1,k2
), for any τi ≤ k1/n ≤ k2/nτi+1, i = 1, . . . , n.

We used the following estimators, which can be deduced by applying functionals

(1.77) and (1.79), (1.76), (1.52) on the realizations of q∗n,1,k:

(1) Maximum likelihood estimator (ML) γ̂RQ,ML
m,k (ML-estimator) of the extreme value in-

dex based on the k largest unique estimates of β̂n,1(τ), τ ∈ (0, 1), i.e. the estimator

fits generalized Pareto distribution (GPD) on the exceedances of {β̂n,1(τj)}j=m−k,...,m

over β̂n,1(τm−k−1). To calculate ML-estimate we used evir package from R.

(2) Probability weighted moments estimator (PWM)

γ̂RQ,PWM
m,k =

1
k

∑k
j=1

(
4 j
k+1 − 3

)
β̂n,1(τm−i+1)

1
k

∑k
j=1

(
2 j
k+1 − 1

)
β̂n,1(τm−i+1)

(3) Pickands estimator

γ̂RQ,P
m,k =

1

log 2
log

(
β̂n,1(τm−[k/4])− β̂n,1(τm−[k/2])

β̂n,1(τm−[k/2])− β̂n,1(τm−k)

)
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For the sake of comparison we also observed the properties of estimators, which are not

scale invariant. We used functional generating Hill’s estimator (1.51) to obtain:

(4) Hill’s estimator

γ̂
HQ

n,k =
1

k

k∑
i=0

(
log β̂n,1(τm−i)− log β̂n,1(τm−k)

)
(4) An attempt to fix the problem with intercept part of the estimation by subtracting

the median of intercepts and plug the corrected data to Hill’s estimator

γ̂
HQ

n,k =
1

k

k∑
i=0

(
log

ˆ̂
βn,1(τm−i)− log

ˆ̂
βn,1(τm−k)

)
(4.1)

where we used

ˆ̂
βn,1( · ) := β̂n,1( · )− β̂n,1(1/2) (4.2)

We randomly generated (a) and (b) 1000 times for both distributions of error and cal-

culated estimates for k = 1, . . . , 600. Afterwards we calculated the medians and the

5th, 10th, 90th, and 95th percentiles of the estimates for each k = 1, . . . , 600. The

results are shown on the accompanying figures (in each of them these medians and

percentiles are plotted by the solid line, correct number of gamma is indicated by the

straight line). For the sake of comparison we also estimated γ from the errors Eij ,

i = 1, . . . , 20, j = 1, . . . , 50 (respectively Ei, i = 1, . . . , 1000) we used to construct our

models. We applied respective classical version of the estimators: ML-estimate defined

in (1.44), PWM-estimate (1.45), Pickands estimate (1.39), and Hill’s estimate (1.32).

Again we calculated these estimates for each replication of the model and k = 1, . . . , 600.

We calculated the medians and the 5th, 10th, 90th, and 95th percentiles of the estimates

for each k = 1, . . . , 600 and included them in each estimator plot for comparison (dashed

lines).

The figures demonstrate that our estimators are adequate for the regression situation

(2.1). Their performance is (on average) only slightly worse than the performance of their

univariate analogies applied on the errors of the model. This holds with the exception of

Hill’s estimate (Figure 4.3) as well as with the version of Hill’s estimate which is applied

on the data “corrected” by subtracting the median (Figure 4.4). This is clearly due to

the fact that Hill’s estimator is not location invariant. As our estimates are based on the

intercept, whose theoretical counterpart is β1+F
−1(α) and not just F−1(α), β1 represent

a nuisance factor in our estimations. While this does not matter in the case of location

and scale invariant estimators, any such nuisance can enlarge the bias of the estimation in

the case of estimators, which are only scale and not location invariant. This bias can be

eliminated only in the case when n is large and k is sufficiently small with a rate indicated
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by our theoretical results, compare our Theorem 1.5.3 with Theorem 2.1 in Drees (1998a).

However, this is at the cost of an increased variance of the estimation. Note that this

behaviour is nicely demonstrated on Figure 4.3: the median of the estimations is close

to the correct value of γ if k is small, but the variance is very large in that area. Note

that this problem cannot be solved by any simple correction as is the subtraction of the

medians (or means) – we do not subtract only the nuisance parameter β1 but medians of

Ei as well. This stands behind the bias on Figure 4.4. The Figure indicate that this is

the reason of the bias of our estimate – the bias is same in the case estimation performed

on i.i.d. errors, where we also subtracted the medians.

On the contrary to the case of Hill’s estimator, the other figures demonstrate that the

properties of the location and scale invariant estimators are very similar if the generating

functional is applied on empirical tail quantile function as well as on extreme regression

quantile process. It seems that the estimation in a linear model only slightly increases

the variance of the estimation, if the model is correctly reparametrized in the sense of

(2.167), while the bias of the estimation remains unchanged. This fact is supported by

our theoretical results. Hence, the location and scale invariant estimators are clearly

preferable to the estimators, which are only scale invariant.

4.1.2 Residuals of R-estimates

For the sake of comparison, we also calculated estimates introduced in Chapter 3. These

estimators were already examined in Picek and Dienstbier (2010), where is included a

small simulation study. The results indicate that the estimators have a nice performance,

which is similar to the performance of the respective estimators on a simple i.i.d. sample.

Therefore we restricted ourselves to a direct comparison of these estimators with

the estimators based on intercepts of regression quantiles. We used three estimators,

equivalents to ML-estimator, PWM-estimator and Pickands estimator. They were calcu-

lated by applying functionals (1.77) and (1.79), (1.76), (1.52) on Q̂n,k(t) = Q̂n,k,β̂nR
(t) :=

Ên−[kt]:n, with Ên−k:n being the k-th largest ordered residual Yi−x⊤i β̂nR, for R-estimate

of the slope β̂nR defined in (3.5). For our estimation we used β̂nR(1/2) and compared it

also with β̂nR(4/5). Note that these estimators differs in their form of Jaeckel’s measure

of dispersion Dn(α) defined in (3.6). From the computational point of view, there was no

considerable difference in both methods, except that β̂nR(1/2) is naturaly more stable

for small data samples. The results presented are calculated with β̂nR(1/2).

Hence we obtained following estimators:

(1) Maximum likelihood estimator (ML) γ̂2RQ,ML
n,k (ML-estimator) of the extreme value

index based on the k+1 largest residuals Ên:n, . . . , Ên−k:n from
{
Yi − x⊤

i β̂nR

}
i=1,...,n

,

i.e. the estimator fits generalized Pareto distribution (GPD) to these residuals. To

calculate ML-estimate we used evir package from R.

(2) Probability weighted moments estimator (PWM)
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γ̂2RQ,PWM
n,k =

1
k

∑k
j=1

(
4 j
k+1 − 3

)
Ên−i+1:n

1
k

∑k
j=1

(
2 j
k+1 − 1

)
Ên−i+1:n

(3) Pickands estimator

γ̂2RQ,P
n,k =

1

log 2
log

(
Ên−[k/4]:n − Ên−[k/2]:n

Ên−[k/2]:n − Ên−k:n

)

We applied these estimators on the data simulated from models (a) and (b) introduced

in the previous subsection. Both models were generated with Fréchet and Burrleigh

distribution of errors. The results in both cases were almost identical (similary as it is in

the case of estimators based on regression quantile intercepts), therefore we present only

the results for model (b) with a random covariate matrix. The results are on Figures 4.15

– 4.20. We did not applied an analogy of Hill’s estimate, as the result is similar as can

bee seen on Figure 4.3. Scale invariant estimators are severely biased by the approach

similarly as by the estimation through intercepts of the regression quantiles. This was

already noted in Picek and Dienstbier (2010).

We see that the results are indeed almost identical with the results calculated by the

respective ML, PWM or Pickands estimator applied on the errors of our model (grey

dashed lines). It seems that this is due to a fast convergence β̂nR → β. From the

comparison with the estimators based on intercepts of regression quantiles it appears

that it is clearly preferable to use residuals of R-estimates rather than the intercepts

of regression quantiles. This observation is supported by our theoretical results which

states that the estimator T (Q̂n,k(t)) have the same asymptotic bias and variance as the

estimator T (En−[kt]:n) for any functional T fulfilling (T.1)–(T.4). We were not able to

prove this relation in case of regression quantiles and their intercepts, as we calculated

only the upper bound for the variance of the functional. Nevertheless the approach

based on intercepts of regression quantiles is more general and offers more possibilities

to generalize the results if some of the assumptions on the model are not met (e.g.

autoregressive dependence of the errors). The approach based on the residuals of R-

estimate seems to be a less robust to these violations.

4.2 Condroz data

The Condroz data consists of the pH-values and the Calcium (Ca) contents in soil sam-

ples, collected in different districts of the Condroz region in Belgium. The data have

been introduced in Goegebeur et al. (2005) and subsequently studied by various authors,

see e.g. Vandewalle et al. (2004), Beirlant et al. (2004), pp. 34–39 and 226–240, and

Hubert and Vandervieren (2006). Ca-content is expressed in mg/kg (values are 10 times

multiplied in the data set) of dry soil. The dataset contains 1505 observations and it is a
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part of a larger database collected by the Belgian non-profit organization REQUASUD

(Réseau Qualité Sud).1

As in Goegebeur et al. (2005) our main interest shall be to describe the extremal

properties of Ca levels with pH-values as an explanatory variable. The data set is plotted

on Figures 4.21 and 4.22. The pictures indicate that there are very few observations for

the lowest as well as the highest pH levels (particularly only 5 observations for pH =

5.1).

We do not provide an exhaustive study concerning this dataset. Instead of that, we

just apply the methods, we have developed in the previous chapters in some sort of a

“naive” uninformed approach about the dataset. Consecutively, we shall try to analyze

the results in an attempt to either justify them or reject.

We suppose, that there is some additive model between the levels of pH and Ca and

we also suppose that the extremal properties of Ca remains the same for different pH

levels, i.e. γ is same throughout all levels of pH. We will later see, whether our results

indicate the assumption or not. As the Figure 4.21 does not indicate that the situation

can be described by a linear trend, we fitted a linear model with quadratic trend:

Yi = β1 + β2Xi + β3X
2
i + Ei, i = 1, . . . , n. (4.3)

where Xi = xi − 1
n

∑n
i=1 xi and X2

i = x2i − 1
n

∑n
i=1 x

2
i with xi being pH levels in the

dataset and Yi observations of Ca i = 1, . . . , n. Initially there was n = 1505 values of

Yi and Xi in the dataset. We calculated the process of regression quantile intercepts

obtaining m = 1872 unique intercepts, i.e. β̂1(τm) > β̂1(τm−1) > . . . > β̂1(τ1) for some

suitable sequence 1 > τm > τm−1 > . . . > τ1 > 0. We used three different estimators on

the data set: ML-estimator, PWM-estimator, Pickands-estimator, i.e.

(1) Maximum likelihood estimator (ML) γ̂RQ,ML
m,k (ML-estimator) of the extreme value in-

dex based on the k largest unique estimates of β̂n,1(τ), τ ∈ (0, 1), i.e. the estimator

fits generalized Pareto distribution (GPD) on the exceedances of {β̂n,1(τj)}j=m−k,...,m

over β̂n,1(τm−k−1). To calculate ML-estimate we used evir package from R.

(2) Probability weighted moments estimator (PWM)

γ̂RQ,PWM
m,k =

1
k

∑k
j=1

(
4 j
k+1 − 3

)
β̂n,1(τm−i+1)

1
k

∑k
j=1

(
2 j
k+1 − 1

)
β̂n,1(τm−i+1)

(3) Pickands estimator

γ̂RQ,P
m,k =

1

log 2
log

(
β̂n,1(τm−[k/4])− β̂n,1(τm−[k/2])

β̂n,1(τm−[k/2])− β̂n,1(τm−k)

)
1The data set is available as a supplement of Beirlant et al. (2004) on

http://lstat.kuleuven.be/Wiley/.
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We obtained different estimates with respect to k, which are plotted on Figure 4.23 and

4.24. Except of the well known fact about the large variance of Pickands estimators,

there seems to be a stability region indicating that γ
.
= 0.5 is a reasonable estimate.

However, we should ask, if this result is not affected by the flat tails (or is it by the low

number of observations?) in the regions where pH is small.

To answer on this question we calculated linear model (4.3) for pH levels > 6.5.

We got n = 956 observations resulting in m = 1154 unique intercept values. Again,

we plugged intercepts in ML, PWM and Pickands estimator and plotted the estimates

versus k, the results are on Figure 4.25. We see that similarly to Figure 4.23 there is a

region of stability interrupted only briefly by a narrow peak for k
.
= 200. Otherwise the

estimate of γ remains principally the same. We can again accept that γ
.
= 0.5.

Finally, we restricted pH levels one more time such that 6.8 < pH < 7.4 and obtained

n = 544 observations resulting in m = 616 unique intercepts of regression quantiles.

The results on Figure 4.26 again indicate that γ lies in the vicinity of 0.5. The fact

that Pickands estimator fall off to the region bellow zero can be attributed to its larger

variance in comparison to PWM and ML estimators.

We said in the beginning, that the Condroz dataset was analysed many times. Hence,

there are different estimates of γ based on different assumptions, which authors made. In

Beirlant et al. (2004), pp. 226–231, the authors fitted the data assuming that γ(pH) =

exp(β0 + β1pH), i.e. that gamma depends on pH. This was supported by the non-

parametric approach estimating γ for each level of pH, see Beirlant et al. (2004), pp.

238–241. As we have seen this extremal dependence of γ on pH can be attributed to

the different number of observations in each pH level. In Vandewalle et al. (2004) the

authors proposed, that the largest observations are in fact outliers, claiming that they

appertain to the border regions of Condroz and have therefore a different distribution.

Using robust methods removing (or down-weighting) these “outliers” they got an esti-

mate of γ
.
= 0.2. While, we can criticize this approach on the ground that it is unreliable

that Ca contents and pH are linked in a different way across Belgium, we should realize

that also our approach is based on the assumption that there is a quadratic (or linear)

dependence between pH and Ca. Moreover, the given task seems to be odd from the

beginning – pH is rather a function of Ca levels (and other elements in the soil) than

the physical level of Ca is derived from pH. These considerations one more time stresses

the importance of assumptions, which are in EVT crucial and in practical data analysis

much more important than any theoretical results. However, this could be stated about

any method of mathematical statistics.
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Figure 4.1: Quantile regression ML-estimator applied in model (a) with Fréchet distribution

of errors. The 5th, 10th, 50th, 90th, and 95th percentiles of 1000 replicates are

shown vs k (solid lines). The estimator is compared with ML-estimator applied on

the sample of errors, again the 5th, 10th, 50th, 90th, and 95th percentiles of 1000

estimations are indicated for each k (dashed lines).
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Figure 4.2: Quantile regression PWM-estimator applied in model (a) with Fréchet distribution

of errors. The 5th, 10th, 50th, 90th, and 95th percentiles of 1000 replicates are

shown vs k (solid lines). The estimator is compared with PWM-estimator applied

on the sample of errors, again the 5th, 10th, 50th, 90th, and 95th percentiles of 1000

estimations for each k are indicated (dashed lines).
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Figure 4.3: Quantile regression Hill’s estimator applied in model (a) with Fréchet distribution of

errors. The 5th, 10th, 50th, 90th, and 95th percentiles of 1000 replicates are shown

versus growing k (solid lines). The estimator is compared with Hill’s estimator

applied on the sample of the errors, again the 5th, 10th, 50th, 90th, and 95th

percentiles of 1000 estimations for each k are indicated (dashed lines).
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Figure 4.4: Quantile regression Hill’s estimator applied in model (a) with Fréchet distribution of

errors. The Medians and the 5th, 10th, 90th, and 95th percentiles of 1000 replicates

are shown versus growing k (solid lines). The estimated intercepts were normalized

thus obtaining the estimator (4.1). The estimator is compared with Hill’s estimator

applied on normalized errors, again the medians and the 5th, 10th, 50th, 90th, and

95th percentiles of 1000 estimations for each k are indicated (dashed lines). For

the results of Hill’s estimator applied on the same unaltered errors see Figure 4.3

(dashed).
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Figure 4.5: Quantile regression Pickands estimator applied in model (a) with Fréchet distribu-

tion of errors. The 5th, 10th, 50th, 90th, and 95th percentiles of 1000 replicates

are shown versus growing k (solid lines). The estimator is compared with Pickands

estimator applied on the sample of errors, again 5th, 10th, 50th, 90th, and 95th

percentiles of 1000 estimations for each k are indicated (dashed lines).
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Figure 4.6: Quantile regression ML estimator applied in model (a) with Burrleigh distribution

of errors. The 5th, 10th, 50th, 90th, and 95th percentiles of 1000 replicates are

shown versus growing k (solid lines). The estimator is compared with ML estimator

applied on the sample of errors, again 5th, 10th, 50th, 90th, and 95th percentiles of

1000 estimations for each k are indicated (dashed lines).
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Figure 4.7: Quantile regression PWM estimator applied in model (a) with Burrleigh distribution

of errors. The 5th, 10th, 50th, 90th, and 95th percentiles of 1000 replicates are shown

versus growing k (solid lines). The estimator is compared with PWM estimator

applied on the sample of errors, again 5th, 10th, 50th, 90th, and 95th percentiles of

1000 estimations for each k are indicated (dashed lines).
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Figure 4.8: Quantile regression Pickands estimator applied in model (a) with Burrleigh distri-

bution of errors. The 5th, 10th, 50th, 90th, and 95th percentiles of 1000 replicates

are shown versus growing k (solid lines). The estimator is compared with Pickands

estimator applied on the sample of errors, again 5th, 10th, 50th, 90th, and 95th

percentiles of 1000 estimations for each k are indicated (dashed lines).
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Figure 4.9: Quantile regression ML estimator applied in model (b) with Fréchet distribution of

errors. The 5th, 10th, 50th, 90th, and 95th percentiles of 1000 replicates are shown

versus growing k (solid lines). The estimator is compared with ML estimator applied

on the sample of errors, again 5th, 10th, 50th, 90th, and 95th percentiles of 1000

estimations for each k are indicated (dashed lines).
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Figure 4.10: Quantile regression PWM estimator applied in model (b) with Fréchet distribu-

tion of errors. The 5th, 10th, 50th, 90th, and 95th percentiles of 1000 replicates

are shown versus growing k (solid lines). The estimator is compared with PWM

estimator applied on the sample of errors, again 5th, 10th, 50th, 90th, and 95th

percentiles of 1000 estimations for each k are indicated (dashed lines).
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Figure 4.11: Quantile regression Pickands estimator applied in model (b) with Fréchet distribu-

tion of errors. The 5th, 10th, 50th, 90th, and 95th percentiles of 1000 replicates are

shown versus growing k (solid lines). The estimator is compared with ML estimator

applied on the sample of errors, again 5th, 10th, 50th, 90th, and 95th percentiles

of 1000 estimations for each k are indicated (dashed lines).

0 100 200 300 400 500 600

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k

Es
tim

at
e 

of
 E

VI

Figure 4.12: Quantile regression PWM estimator applied in model (b) with Burrleigh distribu-

tion of errors. The 5th, 10th, 50th, 90th, and 95th percentiles of 1000 replicates

are shown versus growing k (solid lines). The estimator is compared with PWM

estimator applied on the sample of errors, again 5th, 10th, 50th, 90th, and 95th

percentiles of 1000 estimations for each k are indicated (dashed lines).
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Figure 4.13: Quantile regression PWM estimator applied in model (b) with Burrleigh distribu-

tion of errors. The 5th, 10th, 50th, 90th, and 95th percentiles of 1000 replicates are

shown versus growing k (solid lines). The estimator is compared with ML estimator

applied on the sample of errors, again 5th, 10th, 50th, 90th, and 95th percentiles

of 1000 estimations for each k are indicated (dashed lines).

0 100 200 300 400 500 600

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k

Es
tim

at
e 

of
 E

VI

Figure 4.14: Quantile regression PWM estimator applied in model (b) with Burrleigh distribu-

tion of errors. The 5th, 10th, 50th, 90th, and 95th percentiles of 1000 replicates

are shown versus growing k (solid lines). The estimator is compared with PWM

estimator applied on the sample of errors, again 5th, 10th, 50th, 90th, and 95th

percentiles of 1000 estimations for each k are indicated (dashed lines).
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Figure 4.15: Residuals of β̂nR ML-estimator applied in model (b) with Fréchet distribution of

errors. The 5th, 10th, 50th, 90th, and 95th percentiles of 1000 replicates are shown

vs k (solid lines). The estimator is compared with ML-estimator applied on the

sample of errors, again the 5th, 10th, 50th, 90th, and 95th percentiles of 1000

estimations are indicated for each k (grey dashed lines).
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Figure 4.16: Residuals of β̂nR PWM-estimator applied in model (b) with Fréchet distribution

of errors. The 5th, 10th, 50th, 90th, and 95th percentiles of 1000 replicates are

shown vs k (solid lines). The estimator is compared with PWM-estimator applied

on the sample of errors, again the 5th, 10th, 50th, 90th, and 95th percentiles of

1000 estimations for each k are indicated (grey dashed lines).
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Figure 4.17: Residuals of β̂nR Pickands estimator applied in model (b) with Fréchet distribution

of errors. The 5th, 10th, 50th, 90th, and 95th percentiles of 1000 replicates are

shown vs k (solid lines). The estimator is compared with Pickands estimator applied

on the sample of errors, again the 5th, 10th, 50th, 90th, and 95th percentiles of

1000 estimations are indicated for each k (grey dashed lines).
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Figure 4.18: Residuals of β̂nR ML-estimator applied in model (b) with Burrleigh distribution

of errors. The 5th, 10th, 50th, 90th, and 95th percentiles of 1000 replicates are

shown vs k (solid lines). The estimator is compared with ML-estimator applied on

the sample of errors, again the 5th, 10th, 50th, 90th, and 95th percentiles of 1000

estimations for each k are indicated (grey dashed lines).
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Figure 4.19: Residuals of β̂nR PWM-estimator applied in model (b) with Burrleigh distribution

of errors. The 5th, 10th, 50th, 90th, and 95th percentiles of 1000 replicates are

shown vs k (solid lines). The estimator is compared with PWM-estimator applied

on the sample of errors, again the 5th, 10th, 50th, 90th, and 95th percentiles of

1000 estimations are indicated for each k (grey dashed lines).
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Figure 4.20: Residuals of β̂nR Pickands estimator applied in model (b) with Burrleigh distribu-

tion of errors. The 5th, 10th, 50th, 90th, and 95th percentiles of 1000 replicates are

shown vs k (solid lines). The estimator is compared with Pickands estimator ap-

plied on the sample of errors, again the 5th, 10th, 50th, 90th, and 95th percentiles

of 1000 estimations for each k are indicated (grey dashed lines).
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Figure 4.21: Condroz data: 1505 observations of Ca-levels in various district of Condroz region

plotted against their respective pH.
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Figure 4.22: Condroz data: Only observations of Ca levels bellow 700 are shown on this plot. It

is clearly visible that there is very few observations of some pH levels particularly

in the lower part of the plot.
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Figure 4.23: Estimator plots of ML-estimator (solid), PWM-estimator (dashed) and Pickands

estimator (grey, dotted) performed on intercepts of regression quantiles on normal-

ized in reparametrized quadratic model.
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Figure 4.24: Estimator plots of ML-estimator (solid), PWM-estimator (dashed) and Pickands

estimator (grey, dotted) performed on intercepts of regression quantiles in

reparametrized quadratic model, k ≤ 500.
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Figure 4.25: Estimator plots of ML-estimator (solid), PWM-estimator (dashed) and Pickands

estimator (grey, dotted) performed on intercepts of regression quantiles on normal-

ized in reparametrized quadratic model.
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Figure 4.26: Estimator plots of ML-estimator (solid), PWM-estimator (dashed) and Pickands

estimator (grey, dotted) performed on intercepts of regression quantiles in

reparametrized quadratic model.
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Appendix - Regular variation

Here we provide only a brief introduction into the concept of regular variation. For

the more detailed explanation and proofs we refer to de Haan and Ferreira (2006), pp.

361–407. A reader can find a brief summary also in Beirlant et al. (2004), pp. 76–80.

Let f be an ultimately positive function on R+. We say that the function f is regularly

varying at ∞ if and only if there exists a real constant α for which

lim
x→∞

f(xt)

f(x)
= tα, for all t > 0.

We call α the index of regular variation and write f ∈ Rα. In the case α = 0, i.e.

lim
x→∞

f(xt)

f(x)
= 1, for all t > 0,

we call the f to be slowly varying. We will reserve symbol ℓ for such functions. The class

of slowly varying functions R0 is an important one in the context of EVT and have a lot

of properties of the class appear in the proofs. We note just a few of them.

(i) R0 is closed under addition, multiplication and division.

(ii) If ℓ is slowly varying, then ℓa is slowly varying for all a ∈ R

(iii) If ℓ ∈ R0, then

lim
x→∞

ℓ(xt)

ℓ(x)
= 1

uniformly for t ∈ S for any compact S ⊂ R+.

(iv) If ℓ is slowly varying, then

lim
x→∞

ℓ(x)

log x
= 0.

(v) If f ∈ Rα then for any ℓ ∈ R0

lim
x→∞

f(x)

xαℓ(x)
= 1

hence as the regular variation is a property holding only if x → ∞, we can write

that f(x) = xαℓf (x) for some ℓf (x) ∈ R0.

To link two regularly varying functions we introduce the notation of de Bruyn conjugate:

If ℓ(x) is a slowly varying function, then there exists a slowly varying ℓ∗(x), the de Bruyn

conjugate of ℓ such that

lim
x→∞

ℓ(x)ℓ∗(xℓ(x)) = 1
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The de Bruyn conjugate is asymptotically unique in the sense that if also ℓ̃ is a slowly

varying function and ℓ(x)ℓ̃(xℓ(x)) → 1 then

lim
x→∞

ℓ∗(x)

ℓ̃(x)
= 1.

Furthermore

lim
x→∞

(ℓ∗)∗(x)

ℓ(x)
= 1.

The concept of regular variation can be easily modified for any x→ ζ ∈ R such that f is

ultimately positive on some left or right neighbourhood of ζ. We say that f is regularly

varying at ζ+ with some index α, i.e. f ∈ Rα(ζ
+), if and only if

lim
x↓ζ

f(tx)

f(x)
= tα, for all t > 0.

Similarly we can define the concept of regular variation on the left neighbourhood of ζ,

we say that f is regularly varying in ζ− for some index α if and only if

lim
x↑ζ

f(tx)

f(x)
= tα, for all t > 0.
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