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Abstract

The thesis evaluates several hundred one–day–ahead VaR forecasting models

in the time period between the years 2004 and 2009 on data from six world

stock indices — DJI, GSPC, IXIC, FTSE, GDAXI and N225. The models model

mean using the AR and MA processes with up to two lags and variance with

one of GARCH, EGARCH or TARCH processes with up to two lags. The models

are estimated on the data from the in–sample period and their forecasting ac-

curacy is evaluated on the out–of–sample data, which are more volatile. The

main aim of the thesis is to test whether a model estimated on data with lower

volatility can be used in periods with higher volatility. The evaluation is based

on the conditional coverage test and is performed on each stock index sepa-

rately. Unlike other works in this field of study, the thesis does not assume the

log–returns to be normally distributed and does not explicitly select a partic-

ular conditional volatility process. Moreover, the thesis takes advantage of a

less known conditional coverage framework for the measurement of forecasting

accuracy.
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Abstrakt

Tato práce vyhodnocuje několik set model̊u pro jednodenńı předpověď VaR

v obdob́ı mezi roky 2004 až 2009 na datech ze šesti světových akciových in-

dex̊u — DJI, GSPC, IXIC, FTSE, GDAXI a N225. Modely jsou založené na AR

a MA procesech s maximálně dvěma předešlými pozorováńımi a zároveň mod-

eluj́ı podmı́něnou volatilitu pomoćı jednoho z GARCH, EGARCH a TARCH pro-

ces̊u rovněž s maximálně dvěma předešlými pozorováńımi. Parametry model̊u

jsou odhadnuty na datech z prvńıho obdob́ı a jejich odhadovaćı přesnost je

otestována na datech z druhého obdob́ı, které vykazuje podstatně větš́ı volatil-

itu. Hlavńım ćılem práce je otestovat, zda modely s parametry odhadnutými

v obdob́ı menš́ı volatility mohou být použity i v obdob́ı s větš́ı volatilitou. Vy-

hodnoceńı je založeno na conditional coverage testu a je provedeno pro každý

index zvlášť. Na rozd́ıl od jiných praćı zabývaj́ıćıch se t́ımto tématem, tato

práce nepředpokládá normálńı rozděleńı logaritmovaných výnos̊u a neomezuje

se na jeden předem vybraný proces pro modelováńı podmı́něné volatility. Tato

práce nav́ıc využ́ıvá méně známý aparát, tzv. conditional coverage, pro vyhod-

noceńı přesnosti odhadu model̊u, který oproti standardńım metodám nab́ıźı

několik výhod.
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Chapter 1

Introduction

The modern financial world knows many types of assets and the vast majority

of them can be traded on various exchanges all over the world. The exchanges

— markets — react very quickly on any new information that enters the price

making process and therefore the prices of the traded assets are constantly

evolving. The market participants thus need to asses the influence of such

information entering the market on the price of the asset that they own —

market risk. There are several possible ways how to calculate or estimate

market risk, one of them being Value–at–Risk (VaR). VaR is a very popular

method and it is used by banks mainly for assessment of credit risk and by

portfolio managers in order to evaluate the level of loss that can occur with some

probability. There exist several approaches for the calculation of VaR such as

the historical approach, variance/covariance approach, Monte Carlo simulation,

methods based on the GARCH family of conditional volatility processes, and

many others.

The objective of the thesis is to analyze VaR forecasting methods based

on several conditional mean and conditional variance modeling processes in

the context of the recent financial crisis and several most traded stock indices.

Moreover, the methods are to be evaluated without any apriori assumptions on

the particular parameters of the conditional mean and conditional variance pro-

cesses as well as the shape of the distribution of the logarithmic returns. The

context of the financial crisis means that the thesis will focus on the evaluation

of forecasting accuracy of the models in times of increased volatility, commonly

observed during the financial crisis. Accuracy in this sense is represented by

ability to provide results that closely follow the actual market development.
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Such definition of accuracy is especially important in times of market turbu-

lences as it helps the market participants to better asses market risk.

The thesis is structured into four main parts. Chapter 2 provides the reader

with a theoretical introduction to the problematic of forecasting VaR, the theory

behind conditional mean processes, conditional variance processes, and back–

testing methods. After the necessary introduction follows Chapter 3, which

applies the selected VaR methods on the data from several market indices and

evaluates their accuracy. Finally, Chapter 4 summarizes the obtained results.



Chapter 2

Theoretical background

To measure risk, from the financial point of view, means to try to forecast

what are the possible losses that are caused by adverse movements of mar-

ket prices. Market prices are influenced by many variables such as interest

rates and foreign exchange rates. There are several methods, how risk can be

measured and translated into real financial figures that are required by the risk

managers in companies and banks in order to take appropriate investment deci-

sions. Probably the most popular method is the so–called Value–at–Risk (VaR),

which is the main risk measure that this thesis is concerned with. Several VaR

forecasting methods are introduced later on in the text together with methods

that are used to evaluate their accuracy — back–testing methods. The definition

of risk, however, has to be tackled first.

2.1 Risk

The main topic of the thesis is the measurement of financial risk on the mar-

ket and one of the first terms that is to be explained is risk. Even though there

is no exact definition of what risk actually is, one can find several explanations

of this word, such as the following one: “Risk can be defined as the volatility

of unexpected outcomes, which can represent the value of assets, equity, or earn-

ings” (Jorion 2007, pp. 3). This definition is, however, very broad and for

the purpose of this thesis it should be narrowed. Since the thesis is concerned

with financial markets, the main category of risk is financial risk.

Financial risk comprises all the typical sources of changes in the under-

lying variables that affect the price of an asset. The most known sources

are, for example, interest rate movements that influence a vast majority of as-
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sets, and foreign exchange rate changes, which are of particular interest while

trading with currency futures. In other words, financial risk represents the pos-

sibility of a loss stemming from participation on financial markets.

The importance of financial risks evaluation is easily illustrated on the de-

velopment of the financial markets during the past 40 years. In the period

between the year 1970 and the present day, there have been many significant

events that caused the markets to drop in value. Several examples include oil–

price shocks, Japanese stock–bubble, the Asian turmoil, the Russian default,

the terrorist attacks in 2001, and of course, the most recent financial crisis.

Each of these events was unexpected therefore it was not possible to avoid it,

when it actually occurred.

2.1.1 Risk components

The sources of risk are also diverse. Most of risk sources are connected with hu-

man activities that include running the economy such as inflation, interest rates,

innovations, political decisions, wars, and so on. Another source of risk comes

from the nature itself. There have always been bad weather, floods, earth-

quakes, bad crops, etc. Therefore, it is easy to see that the world we live in is

full of risk and financial markets are no exception. Since the term risk is quite

broad, the following groups of risks are typically considered — market risk,

liquidity risk, credit risk, and operational risk.

Market risk

Market risk is the main financial risk category that the thesis is concerned with.

It represents the losses that result from adverse price movements of assets on

the market. As it has already been said, market risk is caused by the move-

ments of interest rates, exchange rates, etc. To get a better grasp at such

virtual measure, the market risk value can be looked at from several points

of view. Many authors, such as for example Alexander (2009), distinguishes

the following:

• absolute risk — the absolute difference between the two prices over time,

• relative risk — the difference of the price of an asset and some arbitrary

benchmark index,

• directional risk — represents risk related to the movements of financial

variables such as interest rates, foreign exchange rates, etc.,
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• non–directional risk — other risk variables not included in directional

risk, usually exposures to hedged positions,

• basis risk — represents unexpected “movements of the relative prices

of an asset in a hedged position”,

• volatility risk — stems from changes of actual volatility.

Market risk is usually being closely monitored and it can be significantly

reduced by setting stop–loss limits, employing the VaR method, or even by su-

pervising market activities by an independent supervisor.

Liquidity risk

The second type of risk, included in the financial risks category, is liquidity

risk. This is a specific type of risk as it is not caused by movements of financial

variables. The main sources of liquidity risk are the market itself – the depth

of the market — and its participants. As well as in the previous discussion

of market risk, Jorion (2007) distinguishes two types of liquidity risk:

• market and product liquidity risk,

• cash–flow risk.

Market and product liquidity risk, sometimes called asset–liquidity risk,

is the case when a market transaction cannot be successfully closed due to some

constraints on the size or the price of the transaction. Transaction is consid-

ered as either too big or too small for the market, when there is no other entity

that has a desire to engage on the other side of the transaction, which usually

happens when the transaction size differs from a typical trading lot. This, how-

ever, does not seem to be a problem with major currencies or with treasury

bonds, as their markets are very deep. Exotic derivatives, on the other hand,

face higher liquidity risk.

The second subgroup, cash–flow risk, which is also known as funding–

liquidity risk, represents actual inability to provide funds. Cash–flow risk is par-

ticularly obvious in leveraged portfolios. Typically, this situation leads to in-

creased losses due to the fact that traders need to make marking–to–market

payments and if they fail to do so, they are forced to sell the portfolio, which

in turn translates into even higher losses.

Asset–liquidity risk can be effectively minimized by trading standardized

amounts of assets on sufficiently liquid markets, however, it might not always be
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possible to avoid. Cash–flow risk is a bit easier to manage. The easiest way is to

engage in proper cash–flow management in combination with portfolio hedging,

diversification and setting limits on maximum possible cash–flow differences.

Credit risk

The third major source of risk is credit risk. Credit risk represents losses that

stem from inability or unwillingness of a counter–party to meet its liabilities.

From the costs point of view, credit risk can be further on divided into two

components. The most obvious component is the nominal value that is lost

due to credit risk and the second component is the so called recovery rate.

The recovery rate states, how much from one lost dollar gets returned back

to the lender. Naturally, the recovery rate is in most situations smaller than

one, however, in rare situations it can even be slightly higher than one thanks

to additional fees related to the workout process. As Holton (2003) points out,

credit risk can be caused by the process of marking–to–market of debt, which

is often the result of changes in market prices of debt caused by a changed

credit rating of the debt.

Two more types of credit risk also belong to the same category. On the

contrary to company–specific risk as introduced in the previous paragraph,

there is also country–specific risk, sovereign risk, which is mainly caused by

political bodies that attempt to control the foreign exchange market. The result

of such control is inability to meet ones liabilities and therefore increased credit

risk.

Last risk belonging to the credit risk group is settlement risk. Settlement

risk occurs, as its name suggests, at the time of settling the transaction. Es-

pecially when different currencies are being traded and the physical settlement

occurs at two different times, settlement risk increases and the trader’s ex-

posure equals the full value of the transaction. Again there is a possibility

to manage credit risk. The minimization of credit risk is usually performed by

setting various limitations such as marking to market.

Operational risk

Finally, the fourth major source of risk is represented by operational risk.

This group comprises of several parts that do not fit in any of the previous cat-

egories, mainly due to the fact that they arise from internal processes in com-
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panies and banks. Typically, one can clearly identify the following sources

of operational risk:

• process risk,

• people risk,

• model risk,

• legal risk.

Process risk, as the name suggests, is present in every process connected

with the participation on financial markets. A typical example can be found

in the banking sector. The process of making a transaction on a financial

market, from the perspective of a bank, is a process instrumented by several

actors. First, there is a trader who enters the market and creates a deal.

Information about the deal is then sent to the back–office where it is entered

into banking information systems. It is clear that during the process there

can arise a problem due to false information provided and/or received and due

to incorrect information entered into banking systems.

People risk is closely related to process risk, as people are parts of processes,

but the definition is different. People risk actually represents a possibility

that some person intentionally provides false information or, in other words,

frauds the other party. This type of risk is often connected with market risk,

simply because traders might be tempted to falsely identify their position after

incurring a loss of some significant amount. An example could be the fall

of the Barings bank in England in 1995.

Third risk – model risk — is again partially correlated with process risk,

but it is considered as a specific type of operational risk. Model risk is rep-

resented by inaccurately valuated models that result in wrong decisions about

market position and later on incur a loss. Practically any used model can be

inaccurately valuated. The option pricing model is one example. This risk can

be largely minimized by “independent evaluation using market prices, when

available, or objective out–of–sample evaluations” (Jorion 2007, pp. 26).

The fourth mentioned source of operational risk is legal risk. Legal risk

stems from the legal environment, in which the entity lives and in which it op-

erates. In the modern largely globalized and integrated world, legal environ-

ment is very complex as it can include legal environments of many parties

that participate on a particular transaction. Therefore risk of doing something
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that is against the law or regulation can easily occur. Results of legal risk

are “fines, penalties, or punitive damages resulting from supervisory actions,

as well as private settlements” (Jorion 2007, pp. 26).

Operational risk can be largely minimized by engaging in several activities

such as minimizing the number of systems involved, preparing effective internal

controlling, and, probably the most important step, requiring a clear separation

of responsibilities. Operational risk and its minimization has been widely dis-

cussed in the recent years, especially in the banking industry. The BASEL II

regulatory framework, for example, clearly identifies operational risk as one

of the risks that banks face and it requires them to be prepared for possible

losses that might occur due to operational risk.

2.1.2 Value at risk

VaR is a widely used method for the assessment of financial risk. The history

of the method dates back to the beginning of the 1990s, when the method

was first introduced in response to the recent financial turmoils. At the time

VaR was published it was primarily intended to be used as measure of market

risk. However, in the past two decades VaR has evolved into a universal risk

management tool, which is now used to calculate both credit and operational

risk. This is, however, not the complete enumeration. Many authors, such as

Alexander (2009), provide a list of VaR applications as they evolved over time.

It is interesting to observe how a passive tool became an active daily–used

method in almost any financial institution in the world.

• Passive — At this time, VaR was used mainly for information report-

ing. Financial operations were assessed by this method and results were

presented to the management and shareholders.

• Defensive — Later on, as the potential of VaR was better understood,

the method began to represent virtual boundaries for traders, while trad-

ing on the markets. Position limits calculated by VaR were introduced.

• Active — Finally, VaR became an active tool in the risk management

industry. Its primary use now is to manage risk and it serves the pur-

posed of allocating capital inside a company or a bank. Another example

from this category is the employment of risk adjusted performance mea-

sures that serve the purpose of better assessing risks connected with an

investment.
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The evolution of VaR clearly shows how a simple statistical method can

become one of the mostly used tools in the financial industry. The clear benefits

are mainly for shareholders in general, because the management can see the risk

impact of some desired investment on the portfolio as a whole, before even

carrying out the investment. That is the reason, why VaR is being widely used

all over the world. Institutions that use VaR range from financial institutions

to non-financial institutions, as it is summarized in the following list:

• Financial institutions — Financial institutions and especially banks are

very sensitive to any negative changes in their portfolio, because they

usually manage very large portfolios consisting of many types of assets.

That is the reason why there is a strong tendency among these institutions

to create centralized rules for risk management.

• Regulators — Probably the largest growth of the VaR methodology em-

ployment can be seen by regulatory offices around the world. As examples

can very well server the Basel Committee on Banking Supervision or se-

curities commissions in the USA and in the European Union. BASEL II

requires banks to hold a certain amount of reserves for adverse situa-

tions and it also employs VaR in order to calculate credit and operational

risk.

• Non–financial institutions — It is very common that ordinary companies

hold assets in the form of foreign currencies, because they operate on

several foreign markets. These companies are also subjects to financial

risk that can be evaluated by the VaR method.

• Asset managers — Finally, asset managers heavily use VaR, because

it gives them the possibility to see a complex picture of risk that they

are undertaking, while trading with various assets. As it is described

in Holton (2003), there are even possibilities to show asset managers

the breakdown of total risk by markets, asset types and so on.

Holton (2003) arguments that transparent risk reporting procedures could

have prevented financial losses that occurred in the past. The application

of the VaR method has the advantage that it provides information about possi-

ble losses that could occur as a result of adverse movements of market variables.

Another benefit of employing VaR lies in the fact that it changes the way people
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think about risk. This results in a clear risk management governance in insti-

tutions and forces the institutions to consider risk more carefully than before.

Since the risk of a loss actually represents a dichotomy — there is exposure

to risk factors and then there are distributions of risky factors — there exist

several methods for VaR calculation. First, models that work with the exposure

can be divided into two groups — local valuation and full valuation methods.

The main difference between these two groups is in the frequency with which

they valuate the portfolio. The local valuation performs the valuation only once

and it is represented by the delta–normal method and the variance–covariance

approach. The second group, the full valuation, performs valuation of the port-

folio over a range of possible scenarios. The models that focus on the distri-

bution of risky factors are represented by both parametric approaches — such

as the normal distribution — and non–parametric approaches that work with

historical data.

2.2 Conditional mean

While working with time series data, it is quite common that data is timely

dependent. In other words, the value of the observed variable at time t might

be dependent upon some information that has been observed earlier. Quite

common are the lagged values of the observed variable and the lagged values of

the error term. Thus the two concepts of conditional mean covered by the thesis

are the Autoregressive (AR) process and the Moving Average (MA) process.

2.2.1 Autoregressive process

An AR process is described by the Equation 2.1 below. The order of the AR

process is given by the value of the lag parameter p. From the equation it

is clear that the value of the random variable yt at time t depends on the

previously realized values of yt. The other components in the equation are

constant mean µ and white noise εt. The importance of the previously realized

value of the random variable yt−i is captured by the parameter ρi, where i is

the i–th lag of the random variable. For simplicity, the constant µ is usually

omitted.

yt = µ+

p∑
i=1

ρiyt−i + εt (2.1)
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A typical constraint on a time series random variable is that the random

variable is stationary. The stationarity condition for the AR process is usually

described by restrictions on roots of the polynomial zp −
∑p

i=1 ρiz
p−i. In order

for the AR process to be wide–sense stationary, roots of the polynomial must

lie within a unit circle. In other words, for each zi it must hold that |zi| < 1.

Since the task of checking for the stationarity is quite common, there exist

several statistical tests, which test for stationarity and can be applied on the

time series.

One of the well known tests is the Dickey–Fuller test introduced by Dickey

& Fuller (1979), which tests the null–hypothesis that a unit root is present in

a time series. This test is available in most statistical software. A derivation

of the Dickey–Fuller test for larger datasets is the Augmented Dickey–Fuller

test introduced in Said & Dickey (1984). Based on the Dickey–Fuller test is

also the Phillips–Perron test. According to Phillips & Perron (1988), the test

is able to deal with autocorrelation and heteroskedasticity in the time series in

a more robust way. A complement to the unit–root tests described so far is the

Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test introduced by Kwiatkowski

et al. (1992). The null–hypothesis of the KPSS test is a stationarity of the time

series and it is typically used together with the three above mentioned tests.

2.2.2 Moving–average process

Another process that is commonly used with univariate time series is the MA

process. The mathematical representation of the MA process is provided in the

Equation 2.2 below. The order of the MA process is described by the parameter

q and it represents the number of lagged errors, on which the current value of

the random variable yt depends. The idea behind the MA process lies in the

inclusion of past unexpected shocks or errors εt−i as variables that help to

explain the value of the random variable at specific time. Errors are assumed

to be white noise and the importance of the lagged error εt−i is captured by

the θi parameter, the mean is represented by the variable µ and the error term

for the current period t is represented by εt.

yt = µ+

q∑
i=1

θiεt−i + εt (2.2)
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2.2.3 Autoregressive moving–average process

The two described processes for modeling the mean of a time series are often

combined in order to create an Autoregressive Moving Average (ARMA) process.

An ARMA process is able to capture both the autoregressive part of the time

series and lagged shocks introduced by the error term. Therefore the ARMA

process has two parameters, p and q, which specify orders of the AR process

and the MA process respectively. The equation of the ARMA process is provided

below in Equation 2.3.

yt = µ+

p∑
i=1

ρiyt−i +

q∑
i=1

θiεt−i + εt (2.3)

An ARMA process is a special case of the Autoregressive Integrated Moving

Average (ARIMA) process. In addition to the p and q parameters, the ARIMA

process has another parameter d that specifies the degree by which the random

variable is differenced. Differencing a random variable basically means calcu-

lating the differences between two adjacent realizations of the random variable.

Even thought, the time series random variable is typically differenced once to

become stationary, there might be cases when the first difference is not enough

or the model requires a higher order differencing. In case no differencing is nec-

essary, the parameter d is equal to zero. The ARMA process is thus an ARIMA

process with the d parameter equal to zero.

Processes that model the mean of the time series variable are not the only

dynamic part in the procedure of identifying an appropriate model for a time

series. Many authors, such as Ghahramani & Thavaneswaran (2008) argue

that it is quite common with time series random variables that the squared

error term is not homoskedastic. In order to improve the predicting capability

of the one–day–ahead VaR, conditional variance processes are often used. The

conditional process used in the thesis are described in the following section.

2.3 Conditional variance

The calculation methods used for one–day–ahead VaR forecasting range from

very simple ones to more advanced models. The first group is represented by

the Historical Simulation (HS) method, which is the easiest method to calculate.

Then there is the Monte Carlo (MC) method that is a part of the parametric

approach family of models. Some authors such as Huang (2010) employ an
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advanced modification of the MC method called the optimized MC method,

which is supposed to provide more accurate results. Since the MC method

is based on a simulation of different outcomes, there is usually a substantial

increase in the complexity of the calculation in comparison to the HS method

— especially the duration of the calculation. On the other side of the VaR fore-

casting spectrum lie models based on conditional volatility processes such as

the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) pro-

cess with all its special cases such as the Exponential Generalized Autoregres-

sive Conditional Heteroskedasticity (EGARCH) and Threshold Autoregressive

Conditional Heteroskedasticity (TARCH). These three mentioned processes will

be the main conditional volatility processes used in the thesis.

2.3.1 GARCH

Econometric models dealing with time series usually work under the assumption

of homoskedasticity, in other words, constant volatility. However, in the case

of financial time series, volatility is rarely a constant, as many authors such

as Akgiray (1989) proved. Therefore, volatility can vary at different points

in time. One of the models that is able to deal with conditional heteroskedastic-

ity is the Generalized Autoregressive Conditional Heteroskedasticity (GARCH)

model introduced by Bollerslev (1986), which is a generalization of the Auto-

regressive Conditional Heteroskedasticity (ARCH) model that was originally

developed by Engle (1982).

The ARCH family of models correctly distinguishes between unconditional

variance and conditional variance and allows conditional variance to change

over time, leaving unconditional variance constant. The ARCH model allows for

long lags in conditional variance and the GARCH model extends it in the way

that it allows for both long lags in conditional variance and a more flexible lag

structure.

Let’s start with the definition of the GARCH model, which is described

by the equations 2.4 and 2.6. The Equation 2.4 is a general equation for

the value of the error term denoted as εt. Under the assumption that the

distribution of the random variable zt is normally distributed with mean zero,

the Equation 2.4 can be replaced by the Equation 2.5. More details about

possible distributions of the random variable zt are provided later on in this

section.
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εt = zt
√
ht (2.4)

εt|Ft−1 ∼ N(0, ht) (2.5)

ht = α0 +

q∑
i=1

αiε
2
t−i +

p∑
i=1

βiht−i (2.6)

The Equation 2.5 says that the distribution of the random variable εt is nor-

mal with mean zero and variance ht conditional of Ft−1, which is an information

set of all information up to time t−1. The Equation 2.6 then models conditional

variance ht based on both past realizations of ht and the square of the past

realization of the random variable εt. By changing the parameters p and q,

the GARCH model can be transformed into other models, some of which are

well known.

To show how the GARCH model relates to the ARCH model, let’s consider

a special case when p = 0. The sum of lags of ht then drops from the equa-

tion of conditional variance ht and the equation is identical to the equation

of conditional variance in the ARCH model. Therefore, ARCH model is only

a special case of the GARCH model. Another special case takes place when

p = q = 0. In this case, the GARCH model simply becomes white noise εt. It is

therefore obvious that parameters p and q are crucial to the model, along with

estimates of parameters α and β. There are, however, several restrictions on

values of parameters α and β.

p ≥ 0, q > 0

α0 > 0, αi ≥ 0, i = 1, · · · , q (2.7)

βi ≥ 0, i = 1, · · · , p

The interpretation of above written conditions is straightforward. The value

of α0 must be greater than zero, so that conditional variance is also greater than

zero. Values of αi and βi must as well be greater than zero, in order to achieve

overall positive conditional variance. However, αi and βi are also allowed to be

equal to zero, which is typically the case when parameters are not significant

at some i. The last condition, as written in the Equation 2.8, assures that

the random process described by εt is covariance stationary. The Equation 2.9
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simply represents the value of unconditional variance of the GARCH model.

q∑
i=1

αi +

p∑
i=1

βi < 1 (2.8)

ht =
α0∑q

i=1 αi +
∑p

i=1 βi
(2.9)

A useful summary of above stated and described conditions and equations

is represented by the Theorem 2.1 introduced below. The proof of the theorem

can be found in Bollerslev (1986).

Theorem 2.1. The GARCH(p,q) process as defined in 2.5 and 2.6 is wide–sense

stationary with E(εt) = 0, var(εt) = α0∑q
i=1 αi+

∑p
i=1 βi

and cov(εt, εs) = 0 for

t 6= s if and only if
∑q

i=1 αi +
∑p

i=1 βi < 1.

Proof. See Bollerslev (1986, Appendix)

Distributions of zt

In his original work, Engle (1982) assumed that the distribution of the ran-

dom variable zt in the Equation 2.4 is normal. Therefore, this equation could

be simply replaced by the Expression 2.5. Normal distribution, however, is

not the only possible distribution of the random variable. Bollerslev (1986),

for example, suggested to use the standardized Student–t distribution with

υ > 2 degrees of freedom. The density function of the Student–t distribution

is in the form described by the Equation 2.10.

D(zt, υ) =
Γ
(
(υ + 1)/2

)
Γ(υ/2)

√
π(υ − 2)

(
1 +

z2
t

υ − 2

)−υ+1
2

, (2.10)

where Γ(υ) =
∫∞

0
e−xxυ−1dx is the gamma function and υ represents the so–

called tail–thickness parameter of the distribution.

The motivation for the use of the Student–t distribution lies in thick tails

of financial time series.1 The mean of the standardized Student–t distribution

is equal to zero and degrees of freedom, controlled by the parameter υ, influence

the tails–thickness. As the value of υ goes to infinity, the shape of the distri-

bution resembles the shape of the normal distribution.

Another popular distribution is the Generalized Error Distribution (GED),

1The presence of thick tails in financial time series has been reported by many authors
such as Bollerslev et al. (1994); Ghysels et al. (1996).
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which has been proposed by Nelson (1991). He suggested that the GED distri-

bution should be used in the EGARCH model. The density function of the GED

with zero mean is described by the Equation 2.11.

D(zt, υ) =
υ exp(−0.5|zt/λ|υ)

2(1+1/υ)Γ(υ−1)λ
, (2.11)

where −∞ < z <∞, 0 < υ ≤ ∞, Γ(·) is the gamma function and

λ ≡
[
2(−2/υ)Γ(1/υ)/Γ(3/υ)

]1/2
. (2.12)

The parameter υ is the tail–thickness parameter and its value effectively

changes the shape of the distribution function. For example, when υ = 2

then the random variable z is distributed as z ∼ N(0, 1). Thicker tails can be

achieved by setting υ < 2 and thinner tails vice versa by setting υ > 2. In case

υ =∞, zt has a uniform distribution on the interval 〈−
√

3,
√

3〉. Even though,

the three briefly introduced distributions are not the only distributions that can

be used in the GARCH family of models, they suffice for the scope of the thesis.

More information about other distributions and their use in the GARCH family

of models can be found in works of Guermat & Harris (2002) and Lambert &

Laurent (2001).

Parameter estimation

One possible procedure, how to obtain parameters of the GARCH model, is to

use the Maximum Likelihood Estimator (MLE), which provides an asymptoti-

cally efficient estimator.2 Under the assumption that innovations zt that enter

the MLE are independent and identically distributed (i.i.d.) and the density

function of innovations is D(zt, υ), the log–likelihood function of {yt(θ)} is de-

scribed by the Equation 2.13.

`({yt}, θ) =
T∑
t=1

[
ln
[
D
(
zt(θ), υ

)]
− 1

2
ln
(
ht(θ)

)]
, (2.13)

where T is the number of observations and θ is the vector of parameters that

are to be estimated. The likelihood estimator that maximizes the Equation

2.13 is denoted as θ̂. Angelidis et al. (2004) in their work provide equa-

tions for the three discussed distribution functions. Therefore, the derivation

2See Wooldridge (2008) for introduction to the MLE estimation.
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of these equation will not be done step–by–step in this thesis, instead, equations

from the referred source will be used.

Log–likelihood for zt that is normally distributed:

`({yt}, θ) = −1

2

[
T ln(2π) +

T∑
t=1

z2
t +

T∑
t=1

ln(ht)

]
. (2.14)

Log–likelihood for zt with Student–t distribution:

`({yt}, θ) = T

[
ln Γ

(
υ + 1

2

)
− ln Γ

(
υ

2

)
− 1

2
ln
[
π(υ − 2)

]]
−

1

2

T∑
t=1

[
ln(ht) + (1 + υ) ln

(
1 +

z2
t

υ − 2

)]
. (2.15)

Log–likelihood for zt with GED distribution:

`({yt}, θ) =
T∑
t=1

[
ln
(υ
λ

)
− 1

2

∣∣∣zt
λ

∣∣∣υ −
(1 + υ)−1 ln(2)− ln Γ

(
1

υ

)
− 1

2
ln(ht)

]
. (2.16)

The vector of estimated parameters θ̂ of the particular distribution function

of the random variable zt is then obtained by employing a standard maximiza-

tion method, in which Θ is the parameter space, as captured in the Equation

2.17.

θ̂ = arg max
θ∈Θ

`({yt}, θ) (2.17)

Value–at–risk forecast

Once parameters of the random variable zt with the desired distribution are

known, the calculation of the VaR forecast for time t+ 1 conditional on the in-

formation up to time t, is straightforward. The general formula for one–day–

ahead VaR is in 2.18, where F (α) is the α–quantile of the distribution of in-

novations and ĥ
1/2
t+1|t is the conditional standard deviation of the innovation

process at time t + 1, based on the information set up to time t, obtained

from the Equation 2.19.

V aRt+1|t = F (α)ĥ
1/2
t+1|t, (2.18)
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ĥt+1|t = α
(t)
0 +

q∑
i=1

α
(t)
i ε

2
t−i+1 +

p∑
i=1

β
(t)
i ht−i+1 (2.19)

Asymmetric models

The advantage of using the GARCH model lies in the fact that the model is able

to deal with some characteristics of typical time series. These characteristics

include, for example, thick tails and volatility clustering, as pointed out by

Mandelbrot (1963) and Mandelbrot (1967). There are, however, some char-

acteristics of financial time series that the GARCH model is not able to deal

with. The main disadvantage of the GARCH model is that conditional variance

depends on the squared value of εt, which in turn means that the model is sen-

sitive only to the absolute magnitude of the variable but not to its sign. This

represents a complication as Angelidis et al. (2004) point out, since a so called

leverage effect introduced by Black (1976) might be present.

The leverage effect represents a negative correlation between asset returns

and volatility of returns. In other words, volatility of returns has a tendency

to rise as a result of negative news on the market and decrease as a result

of positive news on the market, ie. when εt < 0 resp. εt > 0. Some authors

such as Brooks & Persand (2003) and Rabemananjara & Zaköıan (1993) there-

fore suggest that models that take into consideration asymmetries in volatility

of returns should be preferred. Failing to do so might, according to these

authors, result in inaccurate forecasts of VaR. The appropriate solution to han-

dle such asymmetry lies in using appropriate extensions of ARCH respectively

GARCH models. Two most popular asymmetric models are the EGARCH model

of Nelson (1991) and the TARCH model created by Zakoian (1994).

2.3.2 EGARCH

The introduction of the EGARCH model by Nelson (1991) reacted on the criti-

cism of the popular GARCH model. According to Teräsvirta (2006), Nelson saw

a problem especially in restrictions on parameters of the GARCH model, as rep-

resented by expressions 2.7 in the preceding section. The source of the criti-

cism was induced by the requirement on positivity of conditional variance at

all times. Second problem was the actual ignorance of possible asymmetries
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in volatility by the GARCH model.

lnht = α0 +

q∑
i=1

αi
(
θzt−i + γi(|zt−i| − E|zt−i|)

)
+

p∑
i=1

βi lnht−i (2.20)

The EGARCH model is represented by the Equation 2.20. At the first sight,

it is clear that the parameter γi is the asymmetric effect parameter and its value

is a direct determinant of the behavior of the model. In the case when γi = 0,

both positive and negative shocks are treated the same way. In general it holds

that the component θzt−i determines the sign of the change and the component

γi(|zt−i| − E|zt−i|), on the other hand, the magnitude of the change.

Considering the fact that the Equation 2.20 is a logarithmic transforma-

tion, restrictions on values of αi and βi parameters, as described by expressions

in 2.7, can be levied. Parameters αi and βi can therefore attain both pos-

itive and negative values. The logarithmic transformation also ensures that

the actual value of conditional volatility is always non–negative. Stationarity

conditions for the EGARCH model can be found in the original work of Nelson

(1991).

Value–at–risk forecast

The parameter estimation of the random variable zt can be obtained in the same

way as in the case of the GARCH model. The calculation of the VaR forecast

at time t + 1, conditional on the information up to time t, is again based on

the one–day–ahead VaR formula described by the Equation 2.18. The calcula-

tion of ĥt+1|t differs from the GARCH case though. The conditional standard

deviation of the innovation process in the EGARCH model at time t + 1 based

on the information set up to time t, is obtained from the Equation 2.21.

V aRt+1|t = F (α)ĥ
1/2
t+1|t ,

where

ln ĥt+1|t = α
(t)
0 +

q∑
i=1

α
(t)
i

(
θzt−i+1 + γ

(t)
i (|zt−i+1| − E|zt−i+1|)

)
+

p∑
i=1

β
(t)
i lnht−i+1. (2.21)
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Model discussion

In their work, He et al. (2002) suggest that for the popular EGARCH(1,1)

model, the decay of autocorrelations of squared residuals is faster at the begin-

ning and it slows down until it begins to decay at an approximately exponential

rate. Therefore, they do not recommend to use the EGARCH(1,1) model for

such time series where autocorrelations decay slowly. Moreover, Malmsten

& Teräsvirta (2004) reported that EGARCH(1,1) model with the assumption

of normally distributed errors is not appropriate for time series with slowly

decaying autocorrelations and high kurtosis. These findings are in line with

the recommendation of Nelson (1991) who suggested that errors should be mod-

eled using the GED. Nelson (1991) in his work considered also the Student–t

distribution with finite degrees of freedom, however, he found out that when

this distribution is used, infinite unconditional variance might occur. Therefore,

the distribution function of errors must be chosen carefully.

Engle & Ng (1993) provide criticism of the EGARCH model that is based

on empirical studies. They report that according to their results, the EGARCH

model has a tendency to overweight the effect of shocks with greater magnitude

on the volatility. As a result the EGARCH model should provide poorer results

than the GARCH model. Since the topic of this thesis is to investigate several

VaR models in times of increased volatility, own opinion on the criticism will

be provided later on.

2.3.3 TARCH

Another model from the family of asymmetric ARCH models is the TARCH

model. This model has been introduced by Zakoian (1994) and the idea be-

hind it is based on the work of Davidian & Carroll (1987) who found out that

not squared residuals, but absolute residuals provide better variance estimates.

It is important to note that Zakoian (1994) estimates conditional standard devi-

ation instead of conditional variance as it is the case with GARCH and EGARCH

models. The idea behind the model is to divided innovations εt into two inter-

vals that are disjunct and then to estimate parameters in the linear function

of conditional standard deviation. The TARCH model is thus described by

the Equation 2.22.

h
1/2
t = α0 +

q∑
i=1

(α+
i ε

+
t−i − α−i ε−t−i) +

p∑
i=1

βih
1/2
t−i , (2.22)
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where ε+
t = max(εt, 0) and ε−t = min(εt, 0).

Even though, it would be possible to leave out restrictions on values of pa-

rameters αi and βi, since the modeled conditional standard deviation can at-

tain negative values, Zakoian (1994) restricts these parameters, so they have

the same properties as in the standard GARCH model.

α0 > 0, α+
i ≥ 0, α−i ≥ 0, i = 1, · · · , q

βi ≥ 0, i = 1, · · · , p (2.23)

From the Equation 2.22 it is obvious that parameters α+
i and α−i allow

to have different values for positive and negative shocks. On the contrary to

the EGARCH model, the TARCH model allows for finer control over asymmetry

of squared residuals. The reason lies in the fact that various lags might result

in opposite contributions to conditional volatility; for example, α+
1 − α−1 < 0

and α+
2 − α−2 > 0. Second important difference between the two models stated

by Zakoian (1994) is that TARCH employs additive modeling and volatility

is a function of (non–normalized) innovations. Last but not least difference

is that the lnht process requires an ARMA process and “it does not provide any

linear equation in any function of ε” (Zakoian 1994, pp. 935).

Value–at–risk forecast

As well as in the two previous cases, the parameter estimation of the ran-

dom variable zt is obtained by employing the MLE method. The calculation

of the VaR forecast at time t + 1 conditional on the information up to time

t, is based on the one–day–ahead VaR formula provided in the Equation 2.18.

The calculation of ĥt+1|t, as in the case of the EGARCH model, differs from

the GARCH case. The conditional standard deviation of the innovation process

in the TARCH model at time t + 1 based on the information set up to time t,

is obtained from the Equation 2.24.

V aRt+1|t = F (α)ĥ
1/2
t+1|t ,
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where

ĥ
1/2
t+1|t = α

(t)
0 +

q∑
i=1

(
[α+
i ε

+
t−i+1](t) − [α−i ε

−
t−i+1](t)

)
+

p∑
i=1

β
(t)
i h

1/2
t−i+1. (2.24)

Model discussion

There exist several modifications of the TARCH model, such as the Double

Threshold Autoregressive Conditional Heteroskedasticity (DTARCH) model de-

veloped by Li & Li (1996), which is a non–linear threshold model. The TARCH

model is, on the contrary, linear in parameters, since it assumes that the value

of the threshold parameter is equal to zero. Another example of a nonlinear

TARCH model is the Tree–Structured Generalized Autoregressive Conditional

Heteroskedasticity (STGARCH) model by Audrino & Buhlmann (2001). This

thesis will, however, work solely with the two most popular asymmetric models,

namely the EGARCH model and the TARCH model described in this section.

2.4 Back testing

Since the topic of the thesis is to investigate which VaR model is more appro-

priate in times of increased volatility, evaluation methods shall be discussed.

The choice of a particular back–testing method is important decision and one

particular problem while evaluating the various VaR models is caused by the fact

that it is not possible to directly observe VaR. The back–testing methods should

be based on several criteria. Firstly, it should be the number of cases when

the actual market loss was greater than the forecasted VaR by a particular

model — from now on the number of violations. Moreover, methods should

also check that violations are i.i.d. i.e. that they are not correlated.

In the literature on VaR methods, several back–testing methods appear

very often and can therefore be considered as standard. One of them is the

(un)conditional coverage, as introduced by Christoffersen (1998). This method

is able to catch both above mentioned types of forecasting errors, therefore,

it will be employed in the thesis. Another approach to back–test VaR forecasts

that is sometimes used in the literature is the Engle & Manganelli (1999; 2004)

model, which tests for correlated VaR violations. This thesis, however, works

solely with the (un)conditional coverage. In the case when two or more VaR



2. Theoretical background 23

methods prove to provide comparable forecasts, the distinction among them

will be based on values of loss functions.

2.4.1 Conditional coverage

The first back–testing method described in this section is the conditional cov-

erage approach. The main source of information in this section comes from

the work of Christoffersen (1998), where the conditional coverage test was pre-

sented for the first time. In order to create a comprehensive test for the accu-

racy of a VaR model, the unconditional coverage test will first be introduced

and the conditional coverage test will follow. Together, these two test form

the so–called Christoffersen’s framework.

In order to adhere to the naming conventions, let’s denote yt the sequence

of realized returns. Forecasted VaR at time t + 1, based on the information

available at time t, is further on denoted as V aRt+1|t and p is the coverage

probability. An indicator function It+1, which simply indicates whether or not

the forecasted VaR value has been violated, has the following form:

It+1 =

1, when yt+1 < V aRt+1|t

0, when yt+1 ≥ V aRt+1|t

. (2.25)

The advantage of the above specified indicator function is clearly the lack

of any assumptions on the distribution of the underlying data generating pro-

cess. Therefore, it is usable even in situations when the actual distribution

of the time series in mind is not known. This is particularly advantageous

in the case of financial time series due to their non–standard properties as al-

ready discussed in previous sections. According to Christoffersen (1998), the

series of indicator function values is i.i.d. and has a Bernoulli distribution with

parameter p, ie. {It}
iid∼ Bern(p).

However, the variable of interest for back–testing purposes is the total num-

ber of violations N =
∑T

t=1 It, which thanks to the properties of It follows a Bi-

nomial distribution, ie. N ∼ B(T, p). The idea of the unconditional coverage

test is to test the actual violations ratio π = N
T

against the hypothetical ratio

denoted as p. Therefore the null and alternative hypotheses of the uncondi-
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tional coverage test are:

H0 : p = π = N
T

HA : p 6= π = N
T

In order to test the hypotheses, likelihood functions for both hypotheses

need to be specified as 2.26 and 2.27. The likelihood functions then form the un-

conditional Likelihood Ratio (LR) test as represented by the Equation 2.28.

The test statistics LRUC is asymptotically distributed according to the chi–

squared distribution with one degree of freedom, ie. LRUC
asy∼ χ2(1). There-

fore, critical values for particular significance levels can be obtained from this

distribution.

L(p; I1, · · · , IT ) = (1− p)T−NpN (2.26)

L(π; I1, · · · , IT ) = (1− π)T−NπN (2.27)

LRUC = −2 ln

[
L(p; I1, · · · , IT )

L(π; I1, · · · , IT )

]
= −2 ln

[
(1− p)T−NpN

(1− π)T−NπN

]
(2.28)

Even thought, the unconditional coverage test provides information about

whether or not the violations ratio actually equals the allowed violations ra-

tio, it is not the complete information that is needed in order to decide on

the adequacy of a VaR model. The problem is that the LRUC test does not say

anything about the time dependency of violations. Therefore, it is not possible

to asses the possible effect of clustered violations. Angelidis et al. (2004) points

out that the unconditional coverage test can rule out VaR models with both too

high and too low violations ratio. On the other hand, Kupiec (1995) argues

that the power of the test is generally low.

One possible way, how to test for independence is the Ljung–Box test pro-

posed by Ljung & Box (1978) or the conditional coverage test by Christoffersen

(1998). In addition to the unconditional coverage test, the conditional cover-

age test suggests a test for independence and a test for joint independence —

conditional coverage. The main advantage of the conditional coverage test lies

in a separation of a possible violations clustering effect from assumptions on

their distribution. To start with the independence test, it should be noted

that the test hypothesis of conditional coverage is tested against a binary first–

order Markov chain, represented by the indicator function It, with a transition
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probability matrix Π1, as in 2.29.

Π1 =

[
1− π01 π01

1− π11 π11

]
, πij = P (It = j|It−1 = i). (2.29)

The likelihood function for the independence test of violations has the form

presented in the Equation 2.30. The likelihood function is conditional on

the first observation. Parameters of the likelihood function can easily be ob-

tained by maximizing the log–likelihood function across its parameters. In this

case, maximum log–likelihood estimates of parameters are simple ratios as in

the matrix 2.31, where nij is a number of observations with value i that occur

after the observation j; i, j ∈ {0, 1}.

L(Π1; I1, · · · , IT ) = (1− π01)n00πn01
01 (1− π11)n10πn11

11 (2.30)

Π̂1 =

[
n00

n00+n01

n01

n00+n01

n10

n10+n11

n11

n10+n11

]
(2.31)

Denoting Π2 the independence matrix, the first–order Markov chain esti-

mated on violations can be used to test the null–hypothesis that violations are

independently distributed. Maximizing the log–likelihood function of Π2 yields

the estimate Π̂2.

Π2 =

[
1− π2 π2

1− π2 π2

]
(2.32)

L(Π2; I1, · · · , IT ) = (1− π2)n00+n01πn10+n11
2 (2.33)

Π̂2 = π̂2 =
n01 + n11

n00 + n01 + n10 + n11

(2.34)

As in the case of the unconditional coverage, the LR test denoted LRIND

is constructed from the likelihood functions 2.30 and 2.33. As well as LRUC ,

the test statistics LRIND is asymptotically distributed according to the chi–

squared distribution with one degree of freedom, ie. LRIND
asy∼ χ2(1). Christof-

fersen (1998) notes that this test is independent of the actual value of p, thus

it really tests only the independence of violations.

LRIND = −2 ln

[
L(Π̂2; I1, · · · , IT )

L(Π̂1; I1, · · · , IT )

]
= −2 ln

[
(1− π̂2)n00+n01 π̂n10+n11

2

(1− π̂01)n00 π̂n01
01 (1− π̂11)n10 π̂n11

11

]
(2.35)
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On behalf of the LRIND test, Angelidis et al. (2004) summarize that the test

can rule out models that “generate either too many or too few clustered vio-

lations”, however, they also point out that at least several hundred observa-

tions should be available for the test to provide accurate results. The deriva-

tion of the conditional coverage test, denoted LRCC , is then straightforward.

The test in constructed in the way that the null–hypothesis of the uncondi-

tional coverage LRUC is tested against the alternative of the independence

test LRIND. Since the distribution of both tests is chi–squared with one de-

gree of freedom and the distribution is additive, the distribution of the con-

ditional coverage test statistic is chi–squared with two degrees of freedom, ie.

LRCC
asy∼ χ2(2). The formula for the conditional coverage test can be written

in the form specified by the Equation 2.36.

LRCC = −2 ln

[
L(p; I1, · · · , IT )

L(Π̂1; I1, · · · , IT )

]
= LRUC + LRIND (2.36)

2.4.2 Loss function

Loss function is a simple tool that serves the purpose of measuring the accuracy

of various calculation methods. As it has been already said, back–testing ap-

proaches can mark several VaR methods as adequate — capable of forecasting

VaR at a given α-quantile. However, they do not say anything about the ac-

curacy of such forecasts. Therefore, measuring the accuracy of VaR methods

is the domain of the loss function.

A general example of a loss function is presented in the work of Lopez (1998),

who suggested a loss function derived from the binomial state loss function

of Kupiec (1995). The loss function is based on the squared difference between

the forecasted VaR and the actual VaR, which means that not only the actual

violation but also the magnitude of the violation is taken into account. The loss

function as of Lopez (1998), denoted Ct+1, is defined by the Expression 2.37,

where yt+1 is the actual realized return and V aRt+1|t is the forecasted VaR for

time period t+ 1 based on the information set available at time t.

Ct+1 =

1 + (yt+1 − V aRt+1|t)
2, if yt+1 < V aRt+1|t

0, if yt+1 ≥ V aRt+1|t

(2.37)

The above presented definition is a definition for a loss at time t + 1. In
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order to be able to compare the forecast accuracy over the entire sample size,

Ct+1 must be summed as C =
∑T

t=1Ct. From the definition it is obvious that

a VaR method that systematically underestimates the VaR will yield higher

value of the loss function than a more accurate method. However, the defined

loss function does not penalize systematic overestimation of the VaR. One

possibility how to solve this problem is a so–called Quantile Loss (QL) function

suggested by Angelidis et al. (2004). Another possibility how to overcome the

systematic overestimation is to use loss functions defined below. This is the

approach adopted by the thesis.

Loss functions defined by equations 2.38 – 2.43 represent several widely used

loss functions, as noted by Wei et al. (2010). Decision, which one of the provided

loss functions to use, is not simple. More information on the topic of choosing an

appropriate loss function can be found in the work of Lopez (2001) or Patton

(2006). Selected loss functions could be divided into several groups. First

there are the Mean Squared Error (MSE) and the Mean Absolute Error (MAE),

which are quite simple. Then there are the Heteroskedasticity Adjusted Mean

Squared Error (HMSE) and the Heteroskedasticity Adjusted Mean Absolute

Error (HMAE). These two loss functions are adjusted for heteroskedasticity.

Another widely used loss function is the QLIKE loss function that is calculated

as a loss implied by the Gaussian likelihood. The last mentioned loss function

is the R2LOG that “is similar to the R2 of the Mincer–Zarnowitz regressions”

(Wei et al. 2010, pp. 1480) .

MSE =
1

n

T∑
t=1

(
σ2
t − σ̂2

t

)2

(2.38)

MAE =
1

n

T∑
t=1

∣∣∣σ2
t − σ̂2

t

∣∣∣ (2.39)

HMSE =
1

n

T∑
t=1

(
1− σ2

t

σ̂2
t

)2

(2.40)

HMAE =
1

n

T∑
t=1

∣∣∣1− σ2
t

σ̂2
t

∣∣∣ (2.41)

QLIKE =
1

n

T∑
t=1

(
ln σ̂2

t +
σ2
t

σ̂2
t

)
(2.42)

R2LOG =
1

n

T∑
t=1

[
ln(

σ2
t

σ̂2
t

)

]2

, (2.43)
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where σ2
t = r2

t represents realized volatility at time t and the term σ̂2
t denotes

conditional volatility as predicted by one of the GARCH processes at time t,

as suggested by Sadorsky (2006).

In order to be able to compare the loss function of various models, one might

use the hypothesis test of Diebold & Mariano (2002), which serves the purpose

of evaluating the forecasting ability of various models. The hypothesis test

is able to work with various loss functions and violation distributions and its

null–hypothesis is no difference in the accuracy of two models. To be able

to use the hypothesis test, lets define a sequence {d}Tt=1 as :

dt+1 = CA
t+1 − CB

t+1, (2.44)

where CA
t+1 is the loss function of a method A and CB

t+1 is the loss function

of a method B. Since a lower value of the loss function is better then a higher

value, dt < 0 indicates that the model A was able to forecast the VaR more

accurately than the model B. The idea of the hypothesis test lies in a regression

of dt on a constant and using its Student–t statistic value as the test statistics.

The theoretical introduction to the problematic of the VaR forecast calcu-

lation is now complete and it can be applied on real data. To summarize, VaR

will be calculated using methods described in this chapter, namely the family

of GARCH models – the GARCH, EGARCH, and TARCH models. The forecasts

adequacy will be measured by a back–testing approach based on the conditional

coverage test. In the case that the back–testing approach suggests that several

VaR methods are adequate, the final decision on the accuracy of VaR meth-

ods will by provided by employing above introduced loss functions and testing

them for significance.



Chapter 3

Value-at-risk methods application

In order to test the forecasting accuracy of selected value–at–risk models, a

strategy has to be developed first. Models are tested on data from six stock

indices that are divided into two groups, as it will be described later in more

details. Moreover, models are evaluated first on the in–sample data and then

their forecasting capabilities are tested on the out–of–sample data. The out–

of–sample subset is further divided into four parts, each with 125 observations.

This allows for periodical reestimateion of the models in an interval approx-

imately equal to six months. The reason to include periodical re-estimation

of the models lies in the fact that in reality models are re-estimated in cer-

tain periods in order to improve their quality and to let them to adapt to new

situation on the market. Since the purpose of the thesis is to find out which

models have the best forecasting accuracy, the models are ranked according to

the theoretical framework described in the previous section.

3.1 Model specification

Even though the thesis tests several hundred models1, they can all be considered

dynamic models. Static models such as the HS method are not discussed in the

thesis. The 648 dynamic models, on the other hand, represent a great number

of tested models thanks to the variability of VaR model specification.

3.1.1 Dynamic models

The reason for such a high number of dynamic models that are to be tested in

the thesis is that dynamic VaR models allow for great variability thanks to pos-

1Precisely 648 models for each stock index.
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sible combinations of methods that model both mean and variance. Previous

sections introduced theoretical frameworks of conditional variance and condi-

tional mean, which are essential parts of dynamic models. The conditional

mean is modeled exclusively by the ARMA process and conditional volatility by

the GARCH family of processes. The Table 3.1 offers a quick illustration of the

dynamic model composition possibilities.

Conditional Mean Conditional Variance

ARMA
GARCH

EGARCH
TARCH

Table 3.1: Dynamic model composition

The decision to employ conditional mean while modeling log–returns was

based on the fact that there are no other explanatory variables of the model,

except for lagged log–returns. In other words, the mean is modeled as an AR

process. The stationarity condition of log–returns is achieved by differencing

logarithmic prices in the time series. Since the MA process might also be

present in a particular time series, it is included in the mean equation as well.

Therefore, modeling the mean using an ARMA process seems to be an optimal

choice, since it allows for a great variability in the model selection. The actual

choice of ARMA process parameters is subject to the following constraint:

(ar,ma) ∈ {(0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)}.

In the literature,2 it is often assumed that the GARCH(1, 1) model is the

most appropriate choice for the modeling of conditional variance. This thesis

does not consider this assumption as a fact that is always true for every financial

time series. Therefore, conditional variance in tested models will be modeled

using three GARCH based models — GARCH, EGARCH, and TARCH. Moreover,

each model will be subject to changing lagged parameters p and q, which will

be drawn from the following set:

(p, q) ∈ {(0, 0), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)}.

The distribution function that models residuals (error term) represents an-

other aspect in the definition of dynamic models. Most statistical software allow

2Ghahramani & Thavaneswaran (2008); Drost & Klaassen (1997) and others.
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to specify the distribution function for residuals in dynamic models. Typically,

the normal distribution function, the Student–t distribution function, and the

GED are available. Calculations in the thesis are performed using the STATA3

software, which is able to work with all three mentioned distribution functions.

Thus all possible combinations of parameters (ar,ma) and (p, q) used for the

modeling of conditional mean and conditional variance are extended by the

three distribution functions.

3.1.2 Ranking methodology

The theoretical framework in the previous chapter introduced several concepts

that are used in the practical part of the thesis. So far only the modeling

of conditional mean using the ARMA process and the modeling of conditional

volatility using the GARCH family of models were described. The process of

estimating and evaluating the various models on selected indices would not be

complete without the description of the selection procedure that ranks models

based on various criteria.

There are several different ways how to rank estimated models. Since mod-

els are first estimated on the in–sample subset, one could calculate the Akaike

Information Criterion (AIC) or Bayesian Information Criterion (BIC) and rank

models according to information criteria. Some authors such as Pagan & Schw-

ert (1990), however, discourage from evaluating models using the information

criteria, since a superior in–sample performance of a particular model does not

necessarily mean a superior out–of–sample performance. Another possibility is

to rank models according to the value of their log–likelihood function, but then

there is again the problem of the in–sample versus the out–of–sample perfor-

mance as mentioned with the AIC and the BIC criteria. For this reasons, the

evaluation procedure is based on the out–of–sample performance.

The main decision criteria used in the thesis depends on the percentage

of failures given a particular confidence interval, which is simply a number

of cases when the actual realized log–return rt+1|t is less than the forecasted

VaRt+1|t. Since this measure does not address issues described in the section

about unconditional and conditional coverage, p–values of the unconditional

and conditional coverage are included in the ranking procedure as well. There-

fore, the discussion about the ranking procedure lead to the decision to base

3The version of STATA used is 11.1. For more information about the software, visit
http://www.stata.com/

http://www.stata.com/
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the ranking on the unconditional and conditional coverage, since it is able to

capture both the violations rate and the independence of violations.

By ranking models according to above mentioned variables, it is meant to

simply sort models with respect to the p–value of the conditional coverage test

in an ascending order and incrementally assigning each model a number from

the set {1, 2, ..., N}, where N represents the total number of actually estimated

models. In the case when several models obtain the same p–value of conditional

coverage, values of selected loss functions provide final distinction between such

models. The comparison of loss function values is performed according to the

Diebold & Mariano (2002) framework described in the previous chapter. After

all ranking variables have been used to rank the models, there should be one

model left that is the most appropriate for the particular index and confidence

interval.

By inclusion of periodical re-estimation, as examined in the 3.3, the ranking

methodology must be further extended in order to grasp the performance of

the models after all re-estimations. As described in the previous paragraph,

the models are after each re-estimation ranked using the conditional coverage

framework and incrementally assigned number based on the their rank among

other models. To merge the individual performances into one overall perfor-

mance indicator, a geometrical average is computed from the product of both

the unconditional and conditional coverage for each model with respect to con-

fidence intervals. The geometrical average then serves as the main indicator of

the overall performance for each model after a series of re-estimations.

3.2 Model application

The analysis of the selected models is performed on six stock indices, which are

listed below. Datasets have been selected with the requirement to grasp indices

from different parts of the world and not just one or two usual US stock indices.

Therefore, in addition to indices from the US, datasets from Germany, Japan,

and the United Kingdom have been chosen. The indices are the following:

• Dow Jones Industrial Average (DJI) – US stock based index

• SPDR S&P 500 (GSPC) – US stock based index

• NASDAQ Composite (IXIC) – US stock based index

• FTSE 100 (FTSE) – UK stock based index
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• German DAX Index (GDAXI) – German stock based index

• NIKKEY 225 (N225) – Japanese stock based index

3.2.1 Data analysis

Each dataset includes exactly 1500 observations from which the first 1000 rep-

resent the initial in–sample subset and the remaining 500 represent the out–

of–sample subset. Observations in all datasets are centered around the end

of the year 2007 – more precisely 31st December 2007. The reason is to have

an artificial point for the division of each dataset into the in–sample and the

out–of–sample subsets. Since the stock indices come from several countries

and trading dates are not internationally standardized, the beginning of the

in–sample period and the end of the out–of–sample period vary by several days

across the indices. Thanks to the clear division point between the subsets and

the exact number of observations for each index, it is possible to evaluate the

models on all datasets under equal conditions.

In–sample subset

The descriptive summary of the log–returns in the in–sample subset for each

index is presented in the Table A.1. Log–returns are based on daily returns.

All indices have kurtosis higher than 3, which is the kurtosis of the normal

distribution. Moreover, all indices are characterized with a negative skewness,

mostly below −0.3, which is an indication of fat–tails on the left side of the

distribution. Histogram plots of the indices on Figure B.3 also indicate that

there are fat–tails on the left side of the distribution. Therefore, log–returns

might not be distributed normally. The hypothesis that log–returns are nor-

mally distributed is tested using the Jarque–Bera test statistic and the results

confirm that the null–hypothesis of normality is rejected at all significance lev-

els for each index, except for the IXIC index, where the null–hypothesis cannot

be rejected at 1% significance level. Values of the Jarque–Bera test statistic

and their corresponding p–values are presented in the Table A.1.

Log–return plots of the indices on Figure B.1 and realized volatility plots on

Figure B.2 provide a quick view at the volatility of the indices. The in–sample

subset is more or less stable and its volatility does not seem to be very high

either, which is in line with the data provided in the Table A.1. According to

the figures and the summary table, it seems that the indices behave relatively
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similarly. Both minimum and maximum values are quite similar and also mean

and variance values lie around the same values. Closer look at the Figure

B.4 with autocorrelation and the Figure B.5 with partial autocorrelation of

residuals4 suggests that AR and MA processes are present in all indices. The

order of AR and MA processes, however, cannot be clearly determined, since

partial autocorrelation graphs do not contain a clear pattern. Therefore, the

exact number of lags shall be determined by the log–likelihood maximization

procedure of a particular dynamic model in the statistical software.

In order to test for the possibility of GARCH family of processes in the

variance, figures with squared residuals plots represent a good starting point.

Autocorrelation functions are presented in the Figure B.6 and partial autocor-

relation functions in the Figure B.7. The IXIC and N225 indices do not seem to

include any GARCH family of processes. On the other hand, figures for the rest

of the indices do not reject the possibility of GARCH based processes in the in–

sample subset. The presence of a GARCH process in the in–sample subset could

be determined by maximizing the log–likelihood function of dynamic models,

as in the case of the AR process.

The application of the AR process, the MA process and GARCH family of

processes is conditioned by stationarity of the time series. Therefore, each in–

sample subset has been tested by the Augmented Dickey–Fuller test for the

presence of a unit root, which would effectively mean that the particular in–

sample subset is not stationary. The application of the mentioned process in the

presence of a unit root would not be possible. Tables A.3 – A.8 provide results of

the Augmented Dickey–Fuller test together with corresponding critical values

at three significance levels. From the tables it is clear that the differenced

log–returns are stationary, since the null–hypothesis of a unit root up to the

tenth lag has been rejected at all significance levels for each index, with the

exception of the N225 index, where the null–hypothesis has been rejected at all

significance levels only up to the fifth lag. Since models that are to be applied

work with a maximum of two lags, higher order autocorrelations should not

cause any problems.

Out–of–sample subset

The descriptive summary of the out–of–sample subset is presented in the Table

A.2. The subset contains 500 observations for each index, starting on 1st Jan-

4Residuals were obtained by regressing the log–returns of each index on a constant.
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uary 2008. From figures of log–returns and realized volatility, it is clear that

the out–of–sample subset has much different characteristics than the in–sample

subset. Both minimum and maximum values are more extreme and the mean

of the indices has shifted from positive values to negative values for all indices.

The skewness has actually improved in the sense that it is closer to the skewness

of the normal distribution, which is equal to zero. The reason for that might lie

in a lower number of observations and a higher number of both extreme positive

and negative realized returns. On the other hand, the kurtosis of the indices in

the out–of–sample subset has increased and reached values around 7. For most

indices, it is almost twice as much as in the in–sample subset. The kurtosis is

obvious from the histogram on the Figure B.8. To test the distribution of the

out–of–sample subset for normality, the Jarque–Bera test statistic is employed.

P–values of the test statistics reject the null–hypothesis of normality at all sig-

nificance levels for each index. Actual values of the Jarque–Bera test statistics

and their corresponding p–values are presented in the summary table, as well.

The variance of the out–of–sample has also increased. The increase amounts

to approximately 5 to 8 times the variance of the in–sample subset, depending

on the particular index. The volatility plot depicted on Figure B.2 provides

a better illustration of the increase in the log–returns variance. The out–of–

sample subset is therefore quite turbulent, which is very suitable for the purpose

of the thesis, since the topic is to evaluate various VaR calculation methods in

the period of higher volatility. There are also signs of volatility clustering, as

indicated on the figures B.1 and B.2.

The autocorrelation and partial autocorrelation functions of residuals5, de-

picted on figures B.9 and B.10 suggest that there might be AR and MA processes

in the subset for each index, since autocorrelation functions are slowly decreas-

ing and partial autocorrelation functions contain spikes at certain lags. As well

as in the in–sample subset, the actual order of AR and MA processes varies index

by index and it seems that AR and MA processes are of a high order, since there

are typically up to ten significant lags. This could be interpreted as a long–time

memory of the process, which means that the past realized log–returns might

play a significant role in the calculation of the conditional mean.

Graphical analysis of squared residuals, depicted on the autocorrelation

and partial autocorrelation function on figures B.11 and B.12, attempts to

provide an insight on the behavior of the variance of the indices during the

out–of–sample period. As well as in the in–sample subset, the GARCH family

5Residuals were obtained by regressing the log–returns of each index on a constant.
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of processes seems to be present in the out–of–sample subset for all indices

except for the GDAXI index. The highest order GARCH process seems to be

present in the FTSE and the N225 indices.

From the analysis of the in–sample and the out–of–sample subsets it is clear

that the data have quite different properties. Since the models are estimated on

the in–sample data and then applied on the out–of–sample data, it is interesting

to observe, whether or not the models are able to use the past realized log–

returns at time t in order to provide an appropriate VaR forecast for time

t + 1. Results of the models application are discussed in following sections.

The results are analyzed on per index basis, since every model is estimated

separately for each index. The evaluation of the models proceeds with the

analysis of the top in–sample estimated models, according to their rank based

on AIC and Log–Likelihood (LL) values. Then the top out–of–sample VaR model

evaluation, based on the rank of the unconditional and conditional coverage,

completes the analysis of the accuracy of the various models for a particular

index.

As well as in the case of the in–sample subset, the out–of–sample subset

must fulfill the condition of stationarity, when the AR process, the MA process

and the GARCH family of processes are to be applied. Stationarity of the indices

is tested using the Augmented Dickey–Fuller test and the results of the test

for each out–of–sample subset are available in tables A.9 – A.14. From the

results it is clear that the null–hypothesis of a unit root up to the tenth lag has

been rejected at all significance levels for each out–of–sample subset, with the

exception of the N225 index, as it was the case also for the in–sample subset.

The unit root of the N225 index has been rejected at all significance levels up to

the sixth lag. Since the considered models work with a maximum of two lags,

the autocorrelation of squared residuals at higher lags should not represent a

problem.

3.2.2 DJI index

In the in–sample subset summary section it is concluded that according to

the Jarque–Bera statistic, the DJI timeseries is not normally distributed. The

main reason is in the presence of a fat–tail on the left side of the distribution,

where negative log–returns are depicted. It is therefore not surprising that

when the estimated models are ranked by their AIC and LL values, the top

ranking models are the ones that assume either the Student-t or the GED for
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the distribution of the residuals. The residuals’ estimated degrees of freedom

parameter of the Student-t distribution lies in most cases between 7 and 8 and

the shape parameter for the GED lies between 1.4 and 1.5.

The results of the Portmanteau Q test for serial autocorrelation are pre-

sented in the Table 3.2. Even thought the test does not reject the null–

hypothesis of no serial autocorrelation of the squared residuals at 2 lags at

3% significance level, the best in–sample ranking models employ either the

TARCH(2,2) process or the EGARCH(2,1) for conditional variance. The list

of the top eight in–sample models is in the Table 3.3 and the estimated param-

eters of the model with the highest AIC are presented in the Table C.1. From

the Table 3.2 it is obvious that the application of the conditional volatility pro-

cess TARCH(2,2) has a positive effect on the serial autocorrelation of squared

residuals. The null–hypothesis of the Portmanteau Q test at the selected lags

cannot be rejected at 6.54% significance level in all cases.

Test statistic value p-value
In–sample before model application
Portmanteau Q(1) 1.5563 0.2122
Portmanteau Q(2) 6.7867 0.0336
Portmanteau Q(3) 16.7373 0.0008
Portmanteau Q(5) 66.3841 0.0000
Portmanteau Q(10) 164.6121 0.0000

In–sample after model application
Portmanteau Q(1) 0.0847 0.7711
Portmanteau Q(2) 0.3818 0.8262
Portmanteau Q(3) 0.5157 0.9154
Portmanteau Q(5) 6.6990 0.2440
Portmanteau Q(10) 17.4277 0.0654

Table 3.2: Serial autocorrelation tests for the DJI index

Quite surprising is the fact that the top ranking in–sample models are dom-

inated by the order of the particular TARCH or EGARCH process and the orders

of the AR and MA processes seem to play a minor role. In other words, the most

dominant factor, while estimating the in–sample models on the DJI index, is the

conditional volatility. It might, however, be possible that the process, which

models the conditional volatility, is of a higher order than in the estimated

models, since the models are estimated only up to p = q = 2. To summarize,
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the in–sample model estimates prove that the distribution of the log–returns is

not normally distributed and that the log–returns are not homoskedastic.

In–sample model AIC LL
AR(2)-MA(1)-TARCH(2,2)-GED -7172.359 3598.180
AR(2)-MA(2)-EGARCH(1,2)-GED -7164.760 3593.380
AR(2)-MA(2)-TARCH(2,2)-GED -7164.157 3595.079
AR(0)-MA(1)-TARCH(2,2)-GED -7163.590 3591.795
AR(1)-MA(0)-TARCH(2,2)-GED -7163.579 3591.790
AR(1)-MA(1)-EGARCH(2,1)-T -7163.299 3591.649
AR(2)-MA(2)-EGARCH(2,1)-GED -7162.218 3593.109
AR(2)-MA(0)-TARCH(2,2)-GED -7161.605 3591.803

Table 3.3: Top eight in–sample models for the DJI index

To test the accuracy of the one–day–ahead VaR forecast, the estimated

models are applied to the out–of–sample data. Since the out–of–sample data

exhibit higher volatility, it is not surprising that the best performing out–

of–sample models are different from the best performing in–sample models.

The evaluation of the accuracy of the models is calculated for the following

confidence intervals α = {0.90, 0.95, 0.99}. The top eight performing models

for the VaR forecasts for the DJI index are presented in the tables A.15, A.16

and A.17, according to the selected confidence level. It is interesting that even

though the TARCH and EGARCH models are selected during the in–sample

estimation, they exhibit very poor results in the out–of–sample evaluation.

None of the out–of–sample top performing models uses the TARCH and EGARCH

process for the conditional volatility.

Evaluation at α = 0.90

The most accurate forecasts of the one–day–ahead VaR are achieved with mod-

els that assume the Student-t distribution with 8 degrees of freedom as the

distribution for the error term. The degrees of freedom parameter is estimated

using the statistical software while estimating the models. The low number of

degrees of freedom corresponds to the presence of fat–tails discovered during

the in–sample data analysis. The top eight out–of–sample models are presented

in the Table A.15 in the Appendix A. Unlike the in–sample models, the out–of–

sample models are dominated by models that model conditional volatility using

the GARCH(2,1) process, as it is the case with five out of eight models. The
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remaining three models use GARCH(1,1) process for modeling the conditional

volatility.

All of the top eight models underestimate the VaR by a small amount, as

the percentage of cases, when the VaR forecast does not exceed the realized

log–return, lies between 12.4% and 12.6%. Since the unconditional coverage

measures whether the percentage of failures corresponds to the desired α level

and punishes deviations to both sides equally, the p–value of the unconditional

coverage, puc, is quite small. Nevertheless, at the significance level of 5% one

cannot reject the null–hypothesis in either of the eight models. Similar situation

is with the p–value of the conditional coverage, pcc. When this value is used

as the main selection criterion, there are only three models left that cannot be

rejected at the 5% significance level and all three of them have the same value

of pcc. The differences among them are quite small, however, the priority is

given to the model which performs better in means of the loss function values.

Therefore, the most accurate VaR model for the DJI index at confidence interval

α = 0.90 is the AR(1)-MA(2)-GARCH(1,1)-T model.

Evaluation at α = 0.95

As well as for the confidence interval α = 0.90, the most accurate VaR forecasts

are achieved with the Student-t distribution with 8 degrees of freedom as the

assumed distribution for the error term. The top eight out–of–sample models

are listed in the Table A.16. The prevailing process for modeling the conditional

volatility at this confidence level is the GARCH(1,1) process, with four out of

eight cases. The remaining conditional volatility processes are GARCH(2,1)

and GARCH(2,2). The conditional mean process does not seem to follow any

particular pattern, as the order of the AR processes varies from 0 to 2. The

same situation is with the MA process.

The models at this confidence level also underestimate the VaR. Quick look

at the failure rate proves that the failure rate, ranging from 7.0% to 7.4%, is

more than the expected rate of 5%. The result of such underestimation is pro-

jected to the p–value of the unconditional coverage, which is higher than 5%

only in two cases. The value of the conditional coverage p–value is somewhat

better, since six out of eight models pass the selection criterion at 5% signif-

icance level, however, based on the value of pcc, there are only two superior

models. To select a single model with the best performance, the realized values

of the loss functions are compared. The best performing VaR model for the
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DJI index at confidence interval α = 0.95 is the AR(1)-MA(0)-GARCH(2,2)-T

model.

Evaluation at α = 0.99

Concerning the distribution of the error term, the evaluation at the confidence

interval α = 0.99 does not differ from the previous confidence intervals. The

top eight performing out–of–sample models are presented in the Table A.17.

All of the eight best performing models model the conditional volatility as

a GARCH(1,1) process. The AR and MA processes do not seem to follow a

specific pattern and their orders range from 0 to 2.

At this confidence level, all eight models achieve the same failure rate of 1%,

which is exactly the expected value of the failure rate. The exact performance

is projected to the value of the conditional coverage pcc, as well as to the

value of the unconditional coverage, puc, which is equal to one. Moreover, each

model passes the selection criteria of unconditional and conditional coverage

at quite high significance levels. Since the models attain the same p–values

of the conditional coverage pcc they are compared using the values of the loss

functions, which leads to the conclusion that at the confidence interval α = 0.99

the model AR(1)-MA(1)-GARCH(1,1)-T is the best performing one for the DJI

index.

Note

There are three models that appear in all three tables (A.15, A.16 and A.17)

with the best performing models for the given confidence intervals. These

models are the AR(1)-MA(0)-GARCH(1,1)-T model, then the AR(1)-MA(2)-

GARCH(1,1)-T model and the AR(2)-MA(1)-GARCH(1,1)-T model. This

could be interpreted as three possibilities how to model the log–returns for

the DJI index, when the confidence interval is abstracted from. On the other

hand, at two of the three confidence intervals there is at least one model, which

outperforms the three mentioned models, in terms of the pcc value. Thus the

decision on whether or not to consider one of these models as an appropriate

general model for the DJI index, should be considered carefully.

The results prove that in the case of the DJI index it is not optimal to

calculate one–day–ahead VaR using models that attain the highest values of

either AIC or LL. Even though these models might perform relatively well on

the in–sample subset, they do not provide adequate results when applied to
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the out–of–sample subset. Conditional volatility processes such as EGARCH

and TARCH seem to be adequate in quite stable times in terms of volatility. On

the other hand, when a period with higher volatility is expected, the results

suggest to use a simple GARCH model, for example the GARCH(1,1) model,

since it outperforms the other models in terms of the conditional coverage test,

which captures both accuracy of the VaR forecast and the independence of the

realized violations of the predicted VaR.

3.2.3 GSPC index

Looking at the GSPC index histogram plot depicted on the Figure B.3, it is

clear that the log–returns distribution cannot be considered as the normal

distribution. There seems to be a quite high number of extremely negative

log–returns, which lie above the line representing the border of the normal

distribution. The hypothesis of normally distributed log–returns is therefore

rejected by the Jarque–Bera test, as presented in the in–sample summary table.

The value of the test statistic is even higher than for the DJI index. Thus

the best performing in–sample models, in terms of AIC and LL values, are

the ones working with either the Student-t or the GED as the distribution for

the error term. The estimated degrees of freedom parameter for the Student-

t distribution lies at 7.5 and the estimated shape parameter for the GED is

approximately 1.4. Both values indicate fat–tails in the distribution.

Test statistic value p-value
In–sample before model application
Portmanteau Q(1) 4.9255 0.0265
Portmanteau Q(2) 15.5650 0.0004
Portmanteau Q(3) 33.0938 0.0000
Portmanteau Q(5) 100.3342 0.0000
Portmanteau Q(10) 248.9185 0.0000

In–sample after model application
Portmanteau Q(1) 0.0001 0.9915
Portmanteau Q(2) 0.0001 0.9999
Portmanteau Q(3) 0.0003 1.0000
Portmanteau Q(5) 5.4464 0.3639
Portmanteau Q(10) 12.6551 0.2436

Table 3.4: Serial autocorrelation tests for the GSPC index
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The Table 3.4 with results of the Portmanteau Q test for serial autocorre-

lation of the squared residuals indicates that a serial autocorrelation process

is most likely part of the time series. Since the test for serial autocorrelation

of order two and more rejects the null–hypothesis of no serial autocorrelation

of the specified order, the best in–sample models should include a conditional

volatility modeling process. This is indeed the case, as all the best in–sample

models use the EGARCH(2,2) process in order to model conditional volatility,

as presented in the Table 3.5 and estimated parameters of the model with the

highest AIC are presented in the Table C.2. The Table 3.4 provides results of

the Portmanteau Q test after the application of the conditional volatility pro-

cess EGARCH(2,2). The process effectively captures the serial autocorrelation,

since the null–hypothesis of the Portmanteau Q test at selected lags cannot be

rejected even at 24.36% significance level in all cases.

In–sample model AIC LL
AR(1)-MA(1)-EGARCH(2,2)-T -7102.982 3562.491
AR(1)-MA(1)-EGARCH(2,2)-GED -7102.257 3562.129
AR(2)-MA(0)-EGARCH(2,2)-T -7101.815 3561.907
AR(0)-MA(2)-EGARCH(2,2)-GED -7100.620 3561.310
AR(0)-MA(1)-EGARCH(2,2)-GED -7100.537 3560.269
AR(2)-MA(0)-EGARCH(2,2)-GED -7100.476 3561.238
AR(1)-MA(2)-EGARCH(2,2)-T -7100.182 3562.091
AR(2)-MA(1)-EGARCH(2,2)-T -7100.044 3562.022

Table 3.5: Top eight in–sample models for the GSPC index

The best in–sample VaR models are dominated by the conditional volatility

part. The conditional mean is modeled with multiple combinations of AR and

MA processes with orders ranging from 0 to 2. Therefore, it is obvious that

volatility plays the most important role in the prediction of the one–day–ahead

VaR. It is possible that orders of the EGARCH process are not the most

optimal ones, since the tested models are of a maximum order p = q = 2. The

presence of the conditional volatility process corresponds with the outcomes of

the performed Portmanteau Q tests for serial autocorrelation.

The application of the estimated models on the out–of–sample data is a

good stress test, since the out–of–sample subset is more volatile than the in–

sample subset. This might be the reason, why the best in–sample models are all

outperformed by models with different conditional volatility modeling process.

In fact, none of the top eight in–sample models appears in the result tables
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for the out–of–sample period. All models are calculated for three confidence

intervals α ∈ {0.90, 0.95, 0.99} and the best performing out–of–sample models

are summarized in the tables A.18, A.19 and A.20.

Evaluation at α = 0.90

The best out–of–sample results of the GSPC index at the confidence interval

α = 0.90 are achieved under the assumption that the error term is distributed

according to the Student–t distribution with 7 to 8 degrees of freedom. This is

in line with the results of the DJI index, where the distribution and its parame-

ters are very similar. The top eight models for this confidence interval treat the

conditional volatility as a GARCH process, five out of them as GARCH(1,1)

process, one as a GARCH(1,2) and two as a GARCH(2,2). The top eight

models are summarized in the Table A.18.

All eight best performing models underestimate the VaR, since the fail-

ure rate lies between 12.0% and 13.2%, even thought the theoretical failure

rate should be 10%. The difference between the lowest and the highest values

amounts to 1.2%, which is the highest difference among the selected indices and

confidence intervals. On the other hand, the p–values of the unconditional cov-

erage test, puc, indicate that one cannot reject the null–hypothesis of the failure

rate being equal to 10% at a significance level 5% for five models. The p–values

of the conditional coverage test, however, are not as high. The null–hypothesis

cannot be rejected at the significance level of 1% at the most. It seems that

violations of the predicted VaR are not randomly distributed and they appear

repeatedly one after another. To conclude the evaluation at the α = 0.90

confidence interval, the most accurate model seems to be the AR(2)-MA(2)-

GARCH(1,1)-T model, since it exhibits the highest values of both conditional

and unconditional coverage and the values of its loss functions are the lowest

among the compared models.

Evaluation at α = 0.95

Although the best results at this confidence interval are achieved with the

Student–t distribution such as in the previous confidence interval, the estimated

number of degrees of freedom is closer to 7, for all models. The conditional vari-

ance process differs from the process at the α = 0.90 confidence interval. Even

though the conditional variance is still modeled using the GARCH process,

as opposed to the in–sample EGARCH process, its parameters are different.
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Five out of eight models are modeled using the GARCH(2,1) process, two with

GARCH(1,1) process and one with GARCH(2,2) process.

The top eight out–of-sample models underestimate the VaR, as the failure

rates lie between 7.2% and 8.2%. This fact is reflected in the p–value of the

unconditional coverage that suggests, that the null–hypothesis cannot be re-

jected at the 3.37% significance level only for two models. Even worse numbers

attains the p–value of the conditional coverage. The values do not even reach

1%, which indicates that even the best performing models are not very precise.

As well as in the previous case, the violations of the log–returns are followed

one by another, which worsens the value of the conditional coverage. Accord-

ing to the discussed p–values and the values of the loss functions, the best

performing model for the GSPC index at the α = 0.95 confidence interval is the

AR(1)-MA(0)-GARCH(2,1)-T model.

Evaluation at α = 0.99

The results of the evaluation at the highest confidence interval considered are

quite similar to the results of the evaluation at the same confidence interval

for the DJI index. The error term is assumed to be distributed according to

the Student–t distribution with 7 degrees of freedom. This is in line with the

presence of a fat–tail on the negative side of the log–returns for this stock

index. Six out of eight models take advantage of the conditional variance

process modeled as a GARCH(2,1) process. The remaining two models are

modeled using the GARCH(1,1) process. The models vary in the orders of the

AR and the MA process, as their orders attain values from 0 to 2. The table

with the results is presented in the appendix as the Table A.20.

None of the models overestimates the VaR, which means that the failure

rates are greater than 1% for all top eight models. Quite interesting is the fact

that all models have the same values of both the unconditional and conditional

coverage. Thus one cannot reject the null–hypothesis of either test even at

the significance level of 66.3%. On the other hand, the p-values of the tests in

mind are usually quite high for the α = 0.99 confidence interval. The decision

to select one model out of the eight as the best one therefore depends only

on the values of the loss functions. Surprising is the fact that according to

the values of the loss functions, the wining model is using the GARCH(1,1)

process for conditional volatility, even though the majority of the top eight

models uses GARCH(2,1) process for the conditional volatility. To conclude,
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the best performing model for the GSPC index at the α = 0.99 confidence

interval is the AR(1)-MA(0)-GARCH(1,1)-T model. One must, however, keep

in mind that all eight models exhibit the same values of both the conditional

and unconditional volatility.

Note

Unlike as in the case of the DJI index, there is not any particular model that

is present in each table with the best scoring models for a given confidence

interval. Important fact from the analysis of the GSPC index is that all models

at the α = 0.95 confidence interval are rejected based on the p–values of the

conditional coverage, since the p–values are less than 1%.

As well as for the DJI index, the most accurate one–day–ahead VaR forecasts

are not achieved with in–sample models that prove to be the best performing

ones based on AIC and LL values. The top in–sample models model conditional

volatility exclusively with the EGARCH process; however, the out–of–sample

data are quite different from the in–sample data and therefore the conditional

volatility process is not the same. Since the best results for the one–day–ahead

VaR are achieved using the GARCH process, this process is the recommended

conditional volatility process for the GSPC index in period with higher volatility.

3.2.4 IXIC index

The histogram plot of IXIC index log–returns is depicted on the Figure B.3.

The histogram indicates kurtosis greater than 3 and a negative skewness. The

negative skewness is an indicator of a fat–tail on the left side of the distribution,

which means that negative log–returns occur more often than they should ap-

pear according to the normal distribution. The summary table of the in–sample

subset confirms the information from the figure and provides exact numbers.

The normality of the log-returns of the IXIC index is tested using the Jarque–

Bera test statistic in the same way as by the previous indices. Interesting result

is that the normality test cannot be rejected at the 1% significance level. The

5% significance level, however, already rejects the null–hypothesis. Therefore

it could be expected that some of the best performing in–sample models should

use normal distribution as the distribution of the error term. This proves to

be true, since two out of the eight best performing models actually use nor-

mal distribution for the error term. The other six models use the Student–t

distribution with 16 to 21 degrees of freedom.
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Test statistic value p-value
In–sample before model application
Portmanteau Q(1) 0.4496 0.5025
Portmanteau Q(2) 12.6987 0.0017
Portmanteau Q(3) 16.6745 0.0008
Portmanteau Q(5) 41.7432 0.0000
Portmanteau Q(10) 111.6832 0.0000

In–sample after model application
Portmanteau Q(1) 0.4185 0.5177
Portmanteau Q(2) 0.4216 0.8100
Portmanteau Q(3) 0.9758 0.8071
Portmanteau Q(5) 1.8497 0.8695
Portmanteau Q(10) 9.4724 0.4879

Table 3.6: Serial autocorrelation tests for the IXIC index

The results of the Portmanteau test for serial autocorrelation of the squared

residuals are presented in the Table 3.6. There does not seem to be any serial

autocorrelation at lag one, since the null–hypothesis cannot be rejected at 50%

significance level. The tests for serial autocorrelation at 2 or more lags, however,

already reject the null–hypothesis of no serial autocorrelation. Therefore it can

be expected that the best performing in–sample models should be the ones that

model conditional variance with a process of at least two orders. Indeed, the

expectation is confirmed as all of the top eight in–sample models employ an

EGARCH process with two lags for the autocorrelation term as the conditional

volatility process. The table with the top eight in–sample models is provided

in Table 3.7 and the estimated parameters of the model with the highest AIC

are presented in the Table C.3. The top in–sample model seems to be an ap-

propriate one, considering the application of the conditional volatility process,

as presented in the Table 3.6, which provides the results of the Portmanteau Q

test after the application of the conditional volatility process EGARCH(2,2).

The serial autocorrelation is effectively captured, since the null–hypothesis of

the Portmanteau Q test at the selected lags cannot be rejected even at 48.79%

significance level in all cases.

The top eight in–sample models are all based on the EGARCH(2,1) or

the EGARCH(2,2) processes as the conditional volatility modeling part. It is

important to mention that the models are estimated for p = q = 2 at the most.

Thus it might be possible that the actual conditional volatility process is of a
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In–sample model AIC LL
AR(0)-MA(2)-EGARCH(2,2)-T -6525.862 3273.931
AR(1)-MA(1)-EGARCH(2,2)-N -6523.866 3271.933
AR(0)-MA(2)-EGARCH(2,2)-N -6523.205 3271.602
AR(0)-MA(1)-EGARCH(2,1)-T -6516.296 3267.148
AR(1)-MA(0)-EGARCH(2,1)-T -6516.290 3267.145
AR(0)-MA(2)-EGARCH(2,1)-T -6515.787 3267.893
AR(2)-MA(0)-EGARCH(2,1)-T -6515.675 3267.837
AR(1)-MA(2)-EGARCH(2,1)-T -6515.362 3268.681

Table 3.7: Top eight in–sample models for the IXIC index

higher order than the estimated ones. It has been noted that the Jarque–Bera

test did not reject the null–hypothesis of normality of the log–returns at the

1% significance level. Therefore it is not surprising that two out of the eight

models actually consider normal distribution as the distribution for the error

term.

Since the out–of–sample subset has greater volatility and kurtosis, the ap-

plication of the models on the out–of-sample subset might change the order of

the best performing models. A likely outcome is that the models that use nor-

mal distribution for the error term will not score among the top eight models.

The models are evaluated at three confidence intervals α ∈ {0.90, 0.95, 0.99}
and the best performing out–of–sample models are summarized in the tables

A.21, A.22 and A.23.

Evaluation at α = 0.90

The models evaluation results on the out–of–sample subset are quite consistent

in terms of the conditional volatility process. Six out of the top eight out–of–

sample models are modeled using the GARCH(1,1) process for the conditional

volatility with Student–t as the optimal distribution for the error term. The

degrees of freedom parameter ranges from 16 to 17. The other two models take

advantage of the GARCH(2,2) process with the same distribution function for

the error term as the GARCH(1,1) process. The results for the IXIC index at

this confidence interval are similar to the results for the two previous indices,

when the conditional volatility process is mostly GARCH(1,1).

A quick look at the table with the top eight models at this confidence inter-

val provides an indication that even the best performing models underestimate

the VaR. The failure rate is quite high, as it ranges from 13.2% to 14.2%,
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even though the required failure rate lies at 10%. The underlying conditional

volatility process is not able to capture the behavior of the out–of–sample sub-

set very precisely. This is also observable on the p–values of the unconditional

and conditional coverage. Ranking the models based on the unconditional cov-

erage, the models cannot be rejected only at the 2.23% significance level, at

the highest. The conditional coverage values provide even less convincing in-

formation about the predicting accuracy of the models, as the p–values are less

then 1%. Even though the results are not as good as expected, the best model

among the eight models at the α = 0.90 confidence interval can still be selected.

Based on the values of the conditional coverage and the loss functions, it is the

AR(1)-MA(1)-GARCH(1,1)-T model.

Evaluation at α = 0.95

Among the successful models at the α = 0.95 confidence interval there are

models with two types of the conditional volatility process. There are six

models that employ the GARCH(1,1) process for the conditional volatility,

such as at the α = 0.90 confidence interval. Moreover there are two models

that take advantage of the GARCH(2,2) process. All of the models use the

Student–t distribution for the error term, with 16 to 17 degrees of freedom.

Should the number of top performing models be greater than 20, there would

also be several models that use the normal distribution for the error term. This

observation is in line with the suggestion made in the introductory part of the

IXIC index.

As well as at the previous confidence interval, the results of models appli-

cations on the out–of–sample subset do not provide satisfactory results. The

failure rates range from 7.8% to 8.0%, which is significantly higher than the

expected 5% failure rate. Therefore, the p–values of the unconditional coverage

lie all below the 1% value. The null–hypothesis of the failure rate being equal to

5% can thus be rejected even at the significance level of 1%. The values of the

conditional coverage are even smaller, which means that the null–hypothesis

can be rejected at the significance level of 1% for all models. The four models

with the highest values of the conditional coverage are then compared based on

loss functions values. Based on this criteria, the AR(1)-MA(0)-GARCH(1,1)-T

model is selected as a model with the best performance at the confidence in-

terval of α = 0.95. It is important to note, however, that based on the values

of the conditional coverage, none of the models proves to be an adequate one.
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Evaluation at α = 0.99

The top eight performing out–of–sample models at the confidence interval of

α = 0.99 are the same models as for the confidence interval of α = 0.99 in the

DJI index, which is an interesting outcome. The distribution of the error term

is assumed to be the Student–t with 16 to 17 degrees of freedom. At the first

sight, it might seam that the behavior of the IXIC index can be captured with

the GARCH(1,1) process for the conditional volatility. On the other hand,

it must not be forgotten that the values of the unconditional and conditional

coverage — the main selection criteria — are not very convincing.

This is true also for the results of the evaluation at the α = 0.99 confidence

interval. Even though the expected failure rate of the one–day–ahead VaR

forecast is equal to 1%, the observed failure rates range from 1.8% to 2.0%.

This corresponds to the p–values of the unconditional coverage which indicate

that the null–hypothesis of a failure rate equal to 1% cannot be rejected at the

significance level of 10% only in two cases. In comparison with the p–values of

the unconditional coverage for DJI and GSPC indices, where the same p–values

are mostly over 60%, the p–values for the IXIC index are not very convincing.

The same situation is with the p–values of the conditional coverage, since only

two models reach a value greater than 20%. Based on this information and

the loss functions values, the most accurate model for the IXIC index at the

confidence interval α = 0.99 is the AR(1)-MA(0)-GARCH(1,1)-T model, even

though its p–values of both the unconditional and conditional coverage are not

very persuasive.

Note

The distribution of the IXIC index log–returns resembles the normal distribution

at the most among the selected indices. On the other hand, the shape of the

out–of–sample distribution is not the same, which is the most likely reason

why the results of the out–of–sample evaluation do not provide convincing

results. The models achieve low p–values of both unconditional and conditional

coverage and the failure rates are quite high. The AR(1)-MA(0)-GARCH(1,1)-

T model is selected as the best performing one for the confidence intervals

α = 0.95 and α = 0.99 and the AR(1)-MA(1)-GARCH(1,1)-T for the α = 0.90.

It seems that the underlying process for the conditional mean consists of an

autoregressive part of order one and that the conditional volatility is at the
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best modeled using the GARCH(1,1) process. Based on the selection criteria,

the decision to employ the wining models should be carefully considered.

The outcome of the analysis is quite similar to the outcomes of the previous

two indices. Even though the EGARCH process performs very well for the in–

sample subset, which exhibits lower volatility, the one–day–ahead VaR forecasts

based on the out–of–sample subset provide different results. The best accuracy

is achieved when the conditional volatility process is modeled using the GARCH

process. Thus also the results for the IXIC index confirm that the best in–

sample models based on the AIC and LL values are not the suggested models

for periods with higher volatility.

3.2.5 FTSE index

The properties of the in–sample subset of the FTSE index are provided in the

Table A.1. The histogram on Figure B.3 indicates that the FTSE index log–

returns exhibit a significant kurtosis and most likely also skewness. This sus-

picion is confirmed by the properties table referenced above, from which it is

obvious that the FTSE index has the highest kurtosis of all selected indices. The

same situation is with the skewness, which indicates a fat–tail on the side of the

negative log–returns. In order to test the log–returns for normality, the Jarque–

Bera test is employed. According to the test statistic, the null–hypothesis of

normality is rejected, which is in line with the observed characteristics from the

histogram. This is also the reason why the top eight in–sample models, which

are ranked according to the values of AIC and LL, work with the assumption

that the error term is distributed either according to Student–t distribution

with 16 to 22 degrees of freedom or the GED distribution with the shape pa-

rameter equal to 1.8. Both parameters indicate fat–tails in the log–returns

distribution.

To test for the possibility of serially correlated squared residuals, the Port-

manteau Q test is employed. The results of the test, as presented in the Table

3.8, provide an insight on the likely outcome of the top in–sample models. The

test at lag one rejects the null–hypothesis of no serial autocorrelation at lag

one and the subsequent tests at higher lags also reject the null–hypothesis. It

is therefore expected that the top in–sample models take advantage of a con-

ditional volatility process. The expectation is confirmed, since the top eight

in–sample models, as presented in the Table 3.9, all model volatility with either

the EGARCH or the TARCH process. The estimated parameters of the model
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Test statistic value p-value
In–sample before model application
Portmanteau Q(1) 78.6563 0.0000
Portmanteau Q(2) 109.4573 0.0000
Portmanteau Q(3) 172.0104 0.0000
Portmanteau Q(5) 329.7434 0.0000
Portmanteau Q(10) 466.1323 0.0000

In–sample after model application
Portmanteau Q(1) 0.0609 0.8052
Portmanteau Q(2) 0.2388 0.8874
Portmanteau Q(3) 0.2538 0.9685
Portmanteau Q(5) 0.3649 0.9962
Portmanteau Q(10) 4.1620 0.9397

Table 3.8: Serial autocorrelation tests for the FTSE index

with the highest AIC are presented in the Table C.4. The application of the

EGARCH(1,1) process while dealing with the serial autocorrelation of squared

residuals is able to remove the serial autocorrelation quite well. The Table 3.8

provides the results of the Portmanteau Q test. The serial autocorrelation is

effectively captured, since the null–hypothesis of the Portmanteau Q test at the

selected lags cannot be rejected even at 80.52% significance level in all cases.

In–sample model AIC LL
AR(2)-MA(2)-EGARCH(1,1)-T -7249.064 3634.532
AR(2)-MA(1)-TARCH(2,2)-T -7067.065 3545.533
AR(1)-MA(2)-TARCH(2,2)-T -7067.033 3545.517
AR(2)-MA(2)-TARCH(2,1)-T -7066.537 3545.268
AR(2)-MA(2)-TARCH(2,2)-T -7066.464 3546.232
AR(2)-MA(1)-TARCH(1,1)-T -7066.083 3542.042
AR(2)-MA(2)-TARCH(2,2)-GED -7066.015 3546.007
AR(1)-MA(0)-TARCH(1,1)-T -7065.887 3539.944

Table 3.9: Top eight in–sample models for the FTSE index

The top eight in–sample models are mostly the ones using the TARCH pro-

cess for the conditional volatility process, with one exception that is represented

by the EGARCH process. The parameters of the conditional volatility processes,

p and q, range from one to two, which is in line with the outcomes of the Port-

manteau Q test that rejects the null–hypothesis of no serial autocorrelation of
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the squared residuals at lags one and greater. It is, however, possible that the

maximum order of p = q = 2 is not large enough to capture the underlying

volatility process. Seven out of the eight models work under the assumption

of the Student–t distribution for the error term and one is taking advantage of

the GED distribution. As already mentioned, this is in line with the outcome

of the Jarque–Bera test statistic, which rejects normality of the log–returns.

Although the out–of–sample subset of the FTSE index exhibits a value of

skewness closer to zero, the kurtosis is higher. The value of the Jarque–Bera test

statistic is even higher than in the in–sample subset, which means that the out–

of–sample subset is not normally distributed. The variance of the log–returns

is also significantly higher. It is therefore expected that the order of the best

performing models might be quite different from order of the in–sample models.

The models are evaluated at three confidence intervals α ∈ {0.90, 0.95, 0.99}
and the best performing out–of–sample models are summarized in the tables

A.24, A.25 and A.26.

Evaluation at α = 0.90

The top out–of–sample models for the FTSE index at the α = 0.90 confidence

interval are all working under the assumption of the Student–t distribution with

11 degrees of freedom for the error term. Quite good results achieve also models

that assume the normal distribution for the error term, since they account for

almost half of the models in the top 50. The conditional volatility process is

among the top eight models modeled five times using the GARCH(1,1) process,

two models use the GARCH(2,1) process and one model the GARCH(2,2)

process.

The failure rates at this confidence interval are similar to the failure rates

of the IXIC index, since the failure rates range from 13.0% to 13.4%. Accord-

ing to the p–values of the unconditional coverage, the expected failure rate of

10% for the one–day–ahead VaR forecast cannot be rejected at 3.17% at the

highest. This indicates that even the top eight out–of–sample models are not

able to capture the behavior of the log–returns very well. The p–values of the

conditional coverage select three models with the same p–value pcc = 0.0979,

which means that the null–hypothesis cannot be rejected at the significance

level 9.79%. These results are better than the results of the DJI, GSPC and

IXIC indices. The values of the loss functions further distinguish the three

models. Based on their values, the best performing model for the FTSE in-
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dex at the confidence interval of α = 0.90 is the AR(1)-MA(2)-GARCH(1,1)-T

model.

Evaluation at α = 0.95

The results of the models evaluation on the out–of–sample data at this con-

fidence interval provide mixed results. Even though all models assume the

Student–t distribution for the error term, the degrees of freedom parameter

is estimated to be equal to 12, as opposed to 11 for the previous confidence

interval. The models indicate a presence of an autoregressive process in the

conditional volatility process and the order of the process ranges from one to

two.

Looking at the failure rates, it is obvious that the models are not able

to predict the one–day–ahead VaR very accurately. The failure rates range

from 7.8% to 8.0%, which is quite large. Therefore the unconditional coverage

test rejects the null–hypothesis of the failure rate equal to 5% even at the 1%

significance level. It is interesting to note that the p–values are similar to the

p–values of the IXIC index at the same confidence interval. On the other hand,

the p–values of the conditional coverage test are higher and four models achieve

the same value of 2.87%. When the models are further on compared based on

the values of their loss functions, there is one model with the lowest achieved

value in two of the three selected loss functions. Therefore, the AR(0)-MA(2)-

GARCH(2,1)-T model seems to be the most adequate one for the FTSE index

at the α = 0.95 confidence interval.

Evaluation at α = 0.99

As well as in the previous confidence interval, the top eight models for the

confidence interval α = 0.95 differ in the orders of the underlying conditional

volatility process. The Table A.26 provides a list of these models together

with the values of the selection criteria. The best results are achieve using the

Student–t distribution for the error term with 11 degrees of freedom. Models

assuming the normal distribution begin to appear in the results table staring

on the 35th position.

In comparison with the other five indices, the failure rates for the FTSE index

at the α = 0.99 confidence interval are the highest. Even the best performing

models are not able to forecast the one–day–ahead VaR with a failure rate lower

than 2.6%. To be precise, the failure rates range from 2.6% to 2.8%. This is the
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reason why none of the models attains the p–value of the unconditional coverage

greater than 1%, which means that the null–hypothesis of the failure rate being

equal to 1% is rejected for all models at the 1% significance level. The same

applies to the values of the conditional coverage, as the highest achieved value

is equal to 0.8%. Nevertheless, to continue with the same procedure as with

the previous indices, the values of the loss functions provide the final decision

on the models performance. The lowest loss functions values are achieved with

the AR(1)-MA(2)-GARCH(1,2)-T model, however, the model is still rejected

at the significance level of 1%.

Note

The results of the application of the models on the out–of–sample subset do

not provide satisfactory results. The reason is the same as for the IXIC index.

The in–sample subset is quite different from the out–of–sample subset and

the selected models are not able to accurately capture the difference. This is

apparent in the α = 0.99 confidence interval, where all models are rejected

at 1% significance level. The AR(0)-MA(2)-GARCH(2,1)-T model is present

among the top eight models for all three confidence intervals, however, it is

selected as the best performing one only for the α = 0.95 confidence interval.

Selecting this model as a general model for the FTSE index when the confidence

interval is abstracted from, is thus discouraged.

The application of the top AIC and LL based models on the FTSE index out–

of–sample data is not an optimal choice. None of the in–sample models is able

to accurately forecast the one–day–ahead VaR. Interesting observation is that

even for the FTSE index it is optimal to employ models that take advantage

of a GARCH conditional volatility process, as such models provide the best

forecasts. It is important to note, however, that even those models do not

provide acceptable forecasts. Thus it is obvious that a simple estimation of a

model in an in–sample subset does not ensure an adequate forecasting accuracy

on the out–of–sample subset.

3.2.6 GDAXI index

The log–returns histogram of the GDAXI index is presented on the Figure B.3,

such as the other indices. From the histogram it is apparent that the distribu-

tions suffers from a quite strong fat–tail on the side of the negative log–returns.

The kurtosis seems to be well above the kurtosis of the normal distribution.
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The detailed analysis of the in–sample subset in the Table A.1 confirms that

both the kurtosis and skewness deviate from the values of these properties in the

normal distribution. The Jarque–Bera test statistic rejects the null–hypothesis

of normally distributed log–returns at the 1% significance level. It is therefore

not surprising that the top in–sample models are not the ones that assume

normal distribution for the error term. The order of the in–sample models is

obtained in the same way as for the previous indices — the models are ranked

according to their AIC and LL values.

Test statistic value p-value
In–sample before model application
Portmanteau Q(1) 3.3375 0.0677
Portmanteau Q(2) 26.4240 0.0000
Portmanteau Q(3) 49.6646 0.0000
Portmanteau Q(5) 72.8182 0.0000
Portmanteau Q(10) 131.1777 0.0000

In–sample after model application
Portmanteau Q(1) 0.5895 0.4426
Portmanteau Q(2) 0.6652 0.7170
Portmanteau Q(3) 0.7002 0.8731
Portmanteau Q(5) 1.2781 0.9372
Portmanteau Q(10) 6.7858 0.7455

Table 3.10: Serial autocorrelation tests for the GDAXI index

The Table 3.10 provides the results of the Portmanteau Q test for serial

autocorrelation of the squared residuals for the GDAXI index. The test cannot

reject the null–hypothesis of no serial autocorrelation at lag one at 5% signifi-

cance level. On the other hand, when the test is applied on lags greater than

two, the value of the test statistic rejects the null–hypothesis. The interpreta-

tion of the test results is that the best in–sample models most likely contain

a conditional volatility process with order two. It might be possible that the

actual order of the serial autocorrelation is greater than two, however, the the-

sis works with conditional volatility processes of a maximum order p = q = 2,

so a higher order serial autocorrelation will not be estimated for. The Table

3.10 provides the results of the Portmanteau Q test after the application of the

conditional volatility process TARCH(2,2). The serial autocorrelation is effec-

tively captured, since the null–hypothesis of the Portmanteau Q test at the

selected lags cannot be rejected even at 44.26% significance level in all cases.
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In–sample model AIC LL
AR(2)-MA(2)-TARCH(2,2)-GED -6632.773 3329.387
AR(2)-MA(2)-TARCH(2,1)-GED -6631.912 3327.956
AR(2)-MA(2)-TARCH(1,1)-GED -6631.805 3325.902
AR(1)-MA(1)-TARCH(2,2)-GED -6630.230 3326.115
AR(1)-MA(0)-TARCH(2,2)-GED -6629.695 3324.848
AR(0)-MA(1)-TARCH(2,2)-GED -6629.664 3324.832
AR(1)-MA(2)-TARCH(2,2)-GED -6628.365 3326.182
AR(2)-MA(1)-TARCH(2,2)-GED -6628.364 3326.182

Table 3.11: Top eight in–sample models for the GDAXI index

As listed in the Table 3.11, all of the top performing models in terms of

their AIC value take advantage of the conditional volatility modeled as a TARCH

process. Interesting observation is that the models work exclusively with the

GED distribution as the distribution for the error term. The shape parameter

of the distribution is estimated to be approximately 1.5. As it is suggested by

the Portmanteau Q test, the order of the autoregressive part of the TARCH

process is equal to two in seven out of eight cases. There is one model though

that models the conditional volatility as a TARCH(1,1) process. The estimated

parameters of the model with the highest AIC are presented in the Table C.5.

The Table A.2 with the properties of the out–of–sample subset provides an

insight on the shape of the out–of–sample log–returns. Both the skewness and

kurtosis differ significantly and so does the volatility of the subset. Based on

the results of the evaluation of the previous indices, it is expected that the top

in–sample models might not score among the top out–of–sample models, simply

due to the changed properties of the subset. The models are again evaluated

at three confidence intervals α ∈ {0.90, 0.95, 0.99} and the best performing

out–of–sample models are summarized in the tables A.27, A.28 and A.29.

Evaluation at α = 0.90

The top eight out–of–sample models for the GDAXI index at the α = 0.90

confidence interval assume the Student–t distribution for the error term. The

estimated degrees of freedom parameter lies around 8. There does not seem to

be present any specific process for the conditional volatility, as the top eight

models employ four different conditional volatility process. On the other hand,

the presence of the GARCH process indicates that the decision to model the

conditional volatility is not out of question.
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The failure rates for this confidence interval range from 12.2% to 13.2%.

It is not surprising that the best p–values for the unconditional coverage are

achieved by the models with the failure rate equal to 12.2%. Quite interesting

is the fact that these three models are outperformed by the models with the

highest failure rates in terms of the conditional coverage p–value. The reason

lies on less independently distributed failures for the two models. To continue

with the evaluation, the values of the loss functions distinguish between the

two models with the highest p–values of the conditional coverage and select the

AR(1)-MA(2)-GARCH(2,2)-T model as the model with the best performance

for the GDAXI index at the α = 0.90 confidence interval. It is important to note,

however, that there are models with slightly lower p–values of the conditional

coverage, but also with lower values of the loss functions.

Evaluation at α = 0.95

The results of the application of the models at the α = 0.95 confidence interval

are not satisfactory, as it is described further on. The selected models employ

the Student–t distribution for the error term with 8 degrees of freedom. The

conditional volatility process is modeled by a GARCH processes with multiple

orders. None of the EGARCH or TARCH processes appears among the top eight

results for this confidence interval.

The one–day–ahead VaR forecasts are violated approximately in 8.0% to

8.2% cases, which is quite consistent. On the other hand, the rates are still

well above the expected failure rate of 5%. Therefore, the unconditional cover-

age test rejects the null–hypothesis at the 1% significance level for all models.

The p–values of the conditional coverage test are also low and the test rejects

the null–hypothesis also at the 1% significance level. The values of the loss

functions select the AR(1)-MA(2)-GARCH(1,1)-T model as the one with the

lowest realized loss and highest p–value of the conditional coverage test for the

GDAXI index at the α = 0.95 confidence interval.

Evaluation at α = 0.99

The models at the α = 0.99 confidence interval work with the assumption

of the error term distributed according to the Student–t distribution with 8

degrees of freedom. The conditional volatility processes is modeled using the

GARCH(1,1) process in seven cases and with the GARCH(2,2) process in the

eight case. The other tested conditional volatility process — EGARCH and
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TARCH — do not appear among the top eight models. The same outcome is

observed at the other indices as well.

An interesting observation at the α = 0.99 confidence interval is that all

models achieve the same failure rate of 1.6%. Considering the expected failure

rate of 1%, it is not an unsatisfactory result. This is the reason why the

top eight models share the same p–value of the unconditional coverage and

even of the conditional coverage. The p–values do not reject the models at

40% significance level. Therefore, the models must be ranked according to the

values of the loss functions. The preferred model for the GDAXI index at the

α = 0.99 confidence interval is thus the AR(1)-MA(1)-GARCH(1,2)-T.

Note

None of the models appears among the top eight performing models for all

confidence intervals. Moreover, the evaluation of the models at the α = 0.95

confidence interval does not provide satisfactory results, since all of the models

are rejected by both the unconditional and conditional coverage tests. There-

fore it cannot be confirmed that there is a one particular model that is able to

capture the behavior of the GDAXI index at the best.

Although the in–sample estimation suggest to use models that take advan-

tage of the TARCH process with GED as the distribution for the error term,

the application of these models on the out–of–sample subset provides quite dif-

ferent results. The best relative accuracy is achieved with models that model

conditional volatility with the GARCH process and the Student–t distribution.

Thus the conclusion is that even the GDAXI index confirms that top in–sample

performance does not automatically mean top out–of–sample performance.

3.2.7 N225 index

The Figure B.3 with the histogram of the log–returns of the N225 index indicates

that there is a fat–tail on the side of the negative log–returns. This is confirmed

by the detailed statistics in the in–sample summary Table A.1. The kurtosis of

the log–returns also seems to be above the value of 3, which is the kurtosis of

the normal distribution and it is confirmed by the statistics as well. In order

to test for the normality of the log–returns, the Jarque–Bera test is employed.

The test rejects the null–hypothesis of normality at the 1% significance level.

Even though the normality is rejected, two of the top eight in–sample models
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work with the assumption of normally distributed error term, as listed in the

Table 3.13.

Test statistic value p-value
In–sample before model application
Portmanteau Q(1) 7.5726 0.0059
Portmanteau Q(2) 21.1184 0.0000
Portmanteau Q(3) 43.3973 0.0000
Portmanteau Q(5) 68.3412 0.0000
Portmanteau Q(10) 93.9835 0.0000

In–sample after model application
Portmanteau Q(1) 0.0569 0.8115
Portmanteau Q(2) 3.0480 0.2178
Portmanteau Q(3) 3.3156 0.3455
Portmanteau Q(5) 7.8548 0.1644
Portmanteau Q(10) 15.5731 0.1125

Table 3.12: Serial autocorrelation tests for the N225 index

The Portmanteau Q test for serial autocorrelation of the squared residuals

at lag one rejects the null–hypothesis of no serial autocorrelation at 1% signif-

icance level. The results are provided in the Table 3.12. The tests for serial

autocorrelation at higher orders also reject the null–hypothesis, which leads

to the conclusion that the conditional volatility should be modeled using one

of the available conditional volatility processes. The Table 3.13 with the top

in–sample models proves that it is the case, since all models take advantage

of the EGARCH process for conditional volatility. The estimated parameters

of the model with the highest AIC are presented in the Table C.6. The Ta-

ble 3.12 proves that after the application of the conditional volatility process

EGARCH(2,1), the serial autocorrelation is effectively captured. The null–

hypothesis of the Portmanteau Q test at the selected lags cannot be rejected

even at the 11.25% significance level in all cases.

Even though the conditional volatility process, EGARCH, is the same for all

top in–sample models, its parameters differ and so does the assumed distribu-

tion of the error term. Five models assume the EGARCH(2,2) process, while

the other three assume the EGARCH(2,1) process. Quite interesting observa-

tion is that there are two models that work with the normal distribution, three

models that work with the GED distribution and three with the Student–t dis-

tribution. The shape parameter for the GED distribution is approximately 1.6
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In–sample model AIC LL
AR(0)-MA(1)-EGARCH(2,1)-T -35779.33 17898.67
AR(2)-MA(1)-EGARCH(2,1)-T -6470.151 3246.075
AR(1)-MA(1)-EGARCH(2,2)-T -6396.750 3209.375
AR(1)-MA(0)-EGARCH(2,2)-GED -6310.031 3165.015
AR(0)-MA(2)-EGARCH(2,2)-GED -6308.577 3165.288
AR(1)-MA(0)-EGARCH(2,2)-N -6304.140 3161.070
AR(1)-MA(2)-EGARCH(2,2)-N -6301.853 3161.927
AR(1)-MA(2)-EGARCH(2,1)-GED -6285.056 3153.528

Table 3.13: Top eight in–sample models for the N225 index

and the degrees of freedom parameter for the Student–t distribution is greater

than 1013.

The skewness of out–of–sample subset is very similar to the skewness of the

in–sample subset. On the other hand, the kurtosis is significantly higher. More-

over, the volatility on Figure B.2 is a clear indicator that the out–of–sample

subset of the N225 index is more turbulent. Therefore the top performing in–

sample models might most likely fail to capture the change in the parameters

of the subset and it is expected that the normal and GED distributions shall

be outperformed by the Student–t distribution, as it is the case with the previ-

ously analyzes indices. The models are evaluated at three confidence intervals

α ∈ {0.90, 0.95, 0.99} and the best performing out–of–sample models are sum-

marized in the tables A.30, A.31 and A.32.

Evaluation at α = 0.90

Neither the N225 index is an exception in the assumed distribution of the error

term. The best results at this confidence interval are achieved with the Student–

t distribution with estimated 11 degrees of freedom. This is an indication of

quite fat–tails of the log–returns. The only conditional volatility process among

the top eight out–of–sample models is the GARCH process. The parameters of

the process vary and are presented in the Table A.30.

The failure rate ranges from 12.6% to 13.0%. In comparison with the other

tested indices, these failure rates are not among the best one, neither are they

among the worst ones. According to the p–values of the unconditional coverage,

the null–hypothesis of the failure rates being equal to 10% cannot be rejected

at 6.14% at the best. The p–values of the conditional coverage are quite sim-

ilar to the values of the unconditional coverage and according to them, the
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null–hypothesis cannot be rejected at 4.19%. The values of the loss functions

indicate that the model with the lowest achieved values of the loss functions is

the AR(1)-MA(1)-GARCH(2,1)-T model. It is also one of the models with the

failure rate closest to the expected value of 10%.

Evaluation at α = 0.95

The top eight out–of–sample models at the α = 0.95 confidence interval employ

the Student–t distribution with estimated 10 degrees of freedom for the error

term. The degrees of freedom parameter is estimated using the statistical soft-

ware during the evaluation of the models. The conditional volatility processes

are modeled using the GARCH process, such as in the previous confidence in-

terval. Interesting observation is that models assuming the normal distribution

occupy the last third of the top 50 models.

The failure rates for the one–day–ahead VaR at the α = 0.95 confidence

interval are the lowest failure rates from the selected indices, as they range from

6.2% to 6.6%. This fact is also transformed to the p–values of the unconditional

coverage, since the highest achieved p–value is puc = 23.46%. Moreover, even

the other models in the top eight cannot be rejected even at 10% significance

level. The values of the conditional coverage are also quite satisfactory. Based

on these values, there is only one model with the highest score, namely the

AR(2)-MA(1)-GARCH(1,1)-T model. This model has also the highest realized

p–value of the conditional coverage of all tested models and all indices.

Evaluation at α = 0.99

The Student–t distribution with 10 degrees of freedom as the assumed distri-

bution for the error term provides the best results for the N225 index at the

α = 0.99 confidence interval. The conditional volatility process is in all eight

models modeled exclusively by the GARCH process. The EGARCH and TARCH

processes do not score even among the top 50 models. It is quite interesting

that the GARCH process dominates the EGARCH process, when the models are

applied on the out–of–sample subset.

The failure rates are equal for all of the top eight models, which is the same

situation as with the GDAXI index. The realized failure rate is equal to 1.4% as

opposed to the expected rate of 1%. The difference is captured by the p–value

of the unconditional coverage test. The p–value of the unconditional coverage

test suggest that the null–hypothesis cannot be rejected 39.66% significance
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level for all models. Since even the p–values of the conditional coverage are the

same and attain a value of 64.11%, the decision on which model is the most

appropriate one for the N225 index at the α = 0.99 confidence interval is based

on the realized values of the loss functions. The lowest values were achieved by

the AR(2)-MA(1)-GARCH(1,1)-T model.

Note

None of the models in the top eight models for the particular confidence interval

appear among the results for all confidence intervals. Therefore it cannot be

suggested to use one model as a general model for the N225 index when the

confidence interval is abstracted from. Interesting observation occurs in the

α = 0.95 confidence interval, where the closest match to the expected failure

rate of 5% is achieved among all indices.

The EGARCH process for conditional volatility is suggested by the in–sample

estimation procedure. However, the application of the estimated models on

the out–of–sample subset indicates that there are other models that are able

to achieve better VaR forecasting accuracy. As well as for the other indices, the

best accuracy is achieved when the conditional volatility is modeled using the

GARCH process. It is quite interesting that the GARCH process offers the best

performance in all indices. The likely reason lies in the fact that the GARCH

process treats both positive and negative shocks in the same way and that the

situation on the markets during the out–of–sample period probably exhibited

this exact behavior.

3.2.8 Summary

This section described the evaluation of 648 models based on the ARMA process

for modeling conditional mean and GARCH family of processes for modeling

conditional volatility. Models parameters were first estimated on the in–sample

subset, which consisted from data observed during the years 2004–2007, and

top eight models according to their AIC values were selected. The top AIC value

models were mostly EGARCH or TARCH based with either Student–t or the GED

as the most appropriate distribution for the error term. These estimates proved

that models that work with conditional volatility modeled as an asymmetric

process provided more accurate and significant estimates than typically used

models with a symmetric GARCH process. On the other hand, orders of AR and

MA processes did not seem to be of particular importance, as their orders quite
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varied and seemed to play a minor role in the actual models specification. The

implication of this result is that markets treat volatility of a particular stock

index as a dominant factor, rather than the previously realized value of the

stock index. For each stock index there were several models that failed to be

estimated by the statistical software. The number of failed models, however,

was quite small.

Quite interesting outcome of the analysis was the fact that the conditional

volatility of in–sample subsets was best modeled with either the EGARCH or

the TARCH process and in the majority of cases the Student–t distribution with

approximately 7–8 degrees of freedom. The interpretation of this outcome is

that markets treat positive shocks in a different manner than negative shocks.

Considering the fact that the in–sample subsets were less volatile than the

out–of–sample subsets, it seems that in periods with relatively stable volatil-

ity, asymmetric conditional volatility processes provide better estimates than

symmetric conditional volatility processes. This is, on the other hand, not true

in periods with relatively higher volatility, as it is described further on.

All estimated models were then applied on the out–of–sample subset with

data from years 2008–2009, in order to test the predictive accuracy of the one–

day–ahead VaR. Mdels were not periodically re–estimated. For each estimated

model there were 500 forecasts calculated and models were then compared

based on values of the conditional coverage test. The advantage of applying

the conditional coverage lies in the fact that it does not only test whether the

number of extreme cases corresponds to the selected confidence interval, it also

tests whether violations are clustered or not. This is an important factor in

the evaluation of the one–day–ahead VaR, since the occurrence probability of a

violation should not depend on the occurrence of previous violations. Therefore

the evaluation used in the thesis should have ruled out models with clustered

violations.

The models evaluation was performed for three most common confidence

intervals, namely α ∈ {0.90, 0.95, 0.99}. Results of the models application on

the out–of–sample subset were quite different from in–sample results. All of

the top scoring models were based on modeling conditional volatility using the

GARCH process. Even though most models underestimated the VaR by some

amount, as it is described in summary tables in appendices, the majority of

models was not rejected based on the p–value of the conditional coverage test.
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3.3 Model re-estimation

The models evaluated in the previous section suffered from the fact that the

process of estimating their parameters was performed only once on the initial

in–sample subset that contained 1000 observations and the estimated models

were then used to predict the time series behavior for the next 500 observations.

Moreover, as the aim of this work is to be able to tell which model has capa-

bility to most accurately simulate the real behavior of a time series in times of

increased volatility, the absence of periodical re-estimation put further stress

on the tested models.

When value–at–risk models are used in the financial sector, the models are

being periodically re-estimated in order to adapt to the real market situation

as precisely as possible. Therefore there is a need to re-estimate the models

more often than just once. This section summarizes the analysis of the models

introduced earlier with the difference that the models are re-estimated after

125 observations, which in the context of the available dataset represents four

re-estimations within the range of 500 out–of–sample observations.

3.3.1 Data analysis

As well as in the previous section, each dataset includes exactly 1500 observa-

tions. However, the periodical re-estimation of the models is performed on a

moving window of observations, where the in–sample subset has always 1000

observation and the out–of–sample subset has 125 observations immediately

following the end of the in–sample subset. The beginning of the in–sample

subset shifts by 125 observation for each re-estimation attempt. Thanks to

such division, each model will be re-estimated four times within the available

dataset.

For brevity the in–depth in–sample and out–of–sample dataset analysis is

not described in detail in this section. The primary focus is put on the analysis

of re-estimated models with respect to the smaller out–of–sample dataset sizes.

The motivation for periodical re-estimation is to answer the question whether

the reduction in size of the out–of–sample subset and models re-estimation lead

to more consolidated outcomes compared to the analysis in the previous section.

Further on, the analysis of re-estimated models is for all indices discussed for

the confidence interval α = 0.95.
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3.3.2 DJI index

The results of the analysis of the DJI index in the previous section showed that

the market can be at the best modeled using a GARCH process for the condi-

tional volatility part of the model with four models having GARCH parameters

equal to p = q = 1. Two other models actually showed tendency to model the

index with parameters p = q = 2. Therefore it was not a clear, which model is

a unique most adequate one for the time series. However, all best performing

models used the Student–t distribution for modeling the error term.

Results of the DJI index analysis performed on smaller out–of–sample datasets

and with periodically re-estimated parameters can be found in the Table A.33

in the Appendix A. Eight top performing models, based on the geometrical

average of their values of conditional coverage, exhibit a strong tendency to

the GARCH model with parameters p = 1 and q = 1. Six out of eight models

share these parameters, while the other two differ in the parameter q = 2. It

is therefore obvious that the overall performance of GARCH(1,1) based model

was not rejected by periodical re-estimation and shorter out–of–sample size.

The results, however, revealed quite interesting information. Taking look

at models’ characteristics as represented by the failure rate and values of both

conditional and unconditional coverage, it can be concluded that models did

not perform very well on the data from the interval 0 − 125, since all models

suffered from almost twice as high failure rates than the expected failure rate

of 5%. This observation is even more interesting given the fact that the out–

of–sample subset exhibits only a slightly higher volatility than the in–sample

subset, on which models were estimated. This result is naturally projected into

values of both unconditional and conditional coverage that were calculated as

puc = 0.0351 and pcc = 0.1084 respectively.

The second re-estimation with benchmark data coming from the range 126−
250 is in most case better than in the first part, which is quite interesting given

the fact that the second range contains the highest share of high volatility on

the market. The most interesting outcome, however, comes from results of

the third period. Models were estimated on high volatility in–sample subset,

which included also the data from the range 126−250 and this is most likely the

reason why models after third re-estimation performed with the best relative

results. Failure rates lie around the desired value of 5%, which consequently

improves values of unconditional and conditional coverage. Finally, the fourth

re-estimation with benchmark out–of–sample subset in the range 376 − 500
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exhibits the lowest failure rate for all models. Even though low failure rates

might seem desirable, the opposite is true, since models are supposed the fail

with certain rate and a departure in either direction decreases the predictive

potential of the model i.e. increases uncertainty in its behavior.

To conclude the analysis of the periodical model re-estimation on the DJI

index, the following results should be noted. The re-estimation did not shatter

the leading performance of the GARCH conditional volatility process with pa-

rameters p = q = 1 as the most appropriate conditional volatility process for

the DJI index. The results also showed that the Student–t distribution is an

appropriate distribution function for the error term.

3.3.3 GSPC index

The results of the analysis for the GSPC index in the previous section suggested

that the time series exhibited an autoregressive process in the form of the

GARCH process with parameters p = 2 and q = 1, since this was the case in six

out of eight best performing models. As well as in the case of the DJI index,

the Student–t distribution of the error term was the preferred distribution.

Periodically re-estimated models tested on the GSPC index are summarized

in the Table A.34, where eight models with the best overall performance mea-

sured as a geometrical average of their conditional coverage, are listed together

with their parameters and statistics. The results seem to prefer the GARCH

process for conditional volatility, however, it is not clear which parameters de-

liver the best performance. Five out of eight models worked with parameters

p = 1 and q = 2, which was not observed in the previous analysis of the large

out–of–sample. The other three models prefer parameters p = q = 1. All of the

models provided best results when working with Student–t as the error term

distribution just as in the previous analysis.

The results exhibit quite similar tendency as the DJI index to lower failure

rates with increasing shift in the position on the in–sample and out–of–sample

subsets. Failure rates in the first range of observations 0−125 are almost twice

as high as it was expected according to the model setup with respect to the

confidence interval of α = 0.95. The unsatisfactory results are projected into

the values of the unconditional and conditional coverage, which attain quite

low values puc = 0.0351 and pcc = 0.0335. The second subset shows only a

minor improvement in the failure rate, however, the failure rate still remains

quite high.
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The third re-estimation finally provided more promising results than pre-

vious two estimations. The failure rate lies approximately around the desired

failure rate of 5% as required by the selected confidence interval. Even though

failure rates are above the 5% threshold, values of both the unconditional and

conditional coverage improve dramatically. It is safe to assume that the pres-

ence of data with higher volatility in the third and fourth re-estimation process

led to the adaption of models to the volatility in the time series. The adaption

went well, since after the fourth re-estimation, models achieved the highest

accuracy so far. The actual failure rate was in six cases only by 0.2% points

lower than expected, which is a great result. Values of the unconditional cover-

age confirm that the violations were close to the expected failure rate and the

conditional coverage supports the fact that the violations were not clustered,

since puc = 0.9178 and pcc = 0.7330.

The analysis with periodical re-estimation showed that in the case of the

GSPC index it is recommended to model the time series using the GARCH model

with parameters p = q = 1. The preferred distribution for the error term is the

Student–t distribution, just as in the analysis in the previous section.

3.3.4 IXIC index

In the analysis of the IXIC index in the previous section, it has been detected

that the time series suffers from clustered violations and conditional volatility.

The analysis and application of models over the entire out–of–sample subset

showed that the time series should be modeled using the GARCH process with

parameters p = q = 1 in six out of eight cases and with parameters p = q = 2

in two remaining cases. The IXIC index is therefore not different from other

indices. The same statement can be said about the distribution of the error

term that was at the best modeled using the Student–t distribution.

The Table A.35 lists top eight models with the best overall performance as

geometrically averaged over the four re-estimation periods. From the results it

is obvious that the GARCH process with parameters p = q = 1 is the most ad-

equate conditional volatility process for the IXIC time series. From the results,

however, it is not clear what is the role of both autoregressive and moving av-

erage processes in the mean of the time series. Since parameters of the ARMA

processes do not show any preferred combination of parameters and even the

values of conditional coverage do not seem to help in discovering the answer,

the significance of the ARMA process is likely insignificant.
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When individual out–of–sample results are analyzed, it provides quite simi-

lar outcomes to outcomes of two previous indices. Failure rates tend to decrease

with the advance in the out–of–sample subset. Nevertheless, results of the sec-

ond part of the out–of–sample subset, represented by the range 126 − 250,

exhibit worse failure rates than results in the range 0− 125. In comparison to

previous indices, failure rates move in the opposite direction and reach almost

twice as high failure rate than the expected failure rate of 5%. The explanation

lies in the fact that models applied on the second range of out–of–sample data

were estimated on data that were not as volatile.

The predictive accuracy of models in last two ranges of out–of–sample data

indicate that re-estimations were able to accurately grasp the underlying pro-

cess in the time series, since failure rates tend to lie around the expected fail-

ure rate of 5%. Relatively successful estimates are also supported by values of

both unconditional and conditional coverage, since both puc and pcc values rose

sharply and reached values of 0.7330 and 0.9178 respectively.

The conclusion for the IXIC index is quite straightforward. The time series

suffered from a conditional volatility process, which was successfully removed

using the GARCH process with parameters p = q = 1. Moreover, distribution of

the error term random variable can be described at the best by the Student–t

distribution, just as in the case of two previous indices. The implication of this

result is that the error term is not normally distributed and there are fat tails.

Therefore the Student–t distribution is recommended.

3.3.5 FTSE index

The analysis of the FTSE index based on the entire out–of–sample subset was

not clear about the dominant process for conditional volatility. Even though

conditional volatility process has been detected, the best performing models

were in four cases based on the GARCH model with parameters p = q = 1,

however, other four models had each a different combination of parameters.

The distribution of the error term was by the analysis suggested as Student–t.

After the application of models on partial out–of–sample subsets, results

seem to be more concise. As it can be seen from the Table A.36, top eight overall

performing models are still modeled using the GARCH process with parameters

p = q = 1 in four cases and the other four cases have consolidated to the

GARCH process with parameters p = 2 and q = 1. It is quite interesting that

top eight overall performing models as suggested by the analysis, all share the
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same failure rate, the same unconditional coverage and the same conditional

coverage. It is therefore obvious that models behave consistently over the

analyzed out–of–sample subset.

It should be noted that the performance of all eight models declined in the

second range (observations 126 − 250), as the failure rate increased by 0.8%

points from the failure rate in the first range with out–of–sample data. The

increase in failure rate was caused by the increase in volatility in the second

out–of–sample range, which models were not able to capture successfully. The

third period provides results that are the closest ones to desired results. Values

of unconditional coverage reached the highest values for the FTSE index, when

they all reached the value puc = 0.4904.

The fourth re-estimation caused models to decrease the failure rate even

more to as low level as 3.2%. Unfortunately, such low failure rate is not de-

sirable, since models are supposed to fail with 5% probability. Therefore, the

value of the unconditional coverage test has decreased. On the other hand, the

value of conditional coverage has improved relatively to previous applications

and reached the highest level for the FTSE index, equal to pcc = 0.5383.

The periodical re-estimation performed on the FTSE index suggested that

the time series should be modeled with a consideration of including a condi-

tional volatility process. Two top performing conditional volatility processes

were both GARCH processes with two different sets of parameters. Four mod-

els were using parameters p = q = 1 and the other four models p = 2 and

q = 1. These two sets of parameters had the same effect on failure rates and on

values of both unconditional and conditional coverage. The FTSE index behav-

ior is not different from the other indices in the sense that the recommended

distribution for the error term is the Student–t distribution.

3.3.6 GDAXI index

Results of the application of various models on the GDAXI index suggested,

that the time series can be modeled with the highest accuracy with the GARCH

process. In other words, the time series contains conditional volatility process.

The suggested GARCH process is in seven out of eight top performing cases

estimated with parameters p = q = 1. The recommended distribution for the

error term is the Student–t distribution, just as by the other considered indices.

When the out–of–sample subset was further on divided into four parts and

periodically re-estimated, results turned to be quite different from results pre-
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sented in the previous section. From the Table A.37 with top overall performing

models it is obvious that the periodical re-estimation had a significant effect on

models performance. The new analysis indicated that the actual conditional

volatility process should be GARCH with parameters p = 1 and q = 2, since

models that took advantage of this process performed overall very well.

The predictive accuracy of models in the first part of the out–of–sample

dataset was approximately equal to the performance of models in the previous

section. Even though failure rates were not twice as high as it was the case with

previously analyzed indices, the failure rate still reached 8%, which is well over

the threshold of 5%. Values of both unconditional and conditional coverage

reflect high failure rates in their values as well.

The second part of the out–of–sample subset performed even worse than the

first part, since failure rates reached 8.8%. Naturally conditional coverage value

is quite small, nevertheless it is still better than values realized on the entire

out–of–sample subset in the previous section. This is a result of better model

adaption on the current market situation in the case of periodical re-estimation.

A positive observation can be deducted from a closer look at results of

the application on the third and the fourth part of the out–of–sample subset.

Failure rates lie very close to the desired value of 5% and also values of con-

ditional coverage tests suggest that re-estimated models were successfully able

to capture the underlying behavior of the GDAXI time series. To put results

in numbers, the failure rate in the fourth part of the out–of–sample subset

reached 4.8% and values of unconditional coverage and conditional coverage

reached puc = 0.9178, pcc = 0.7330 respectively. It is also worth noting that

the GARCH process with parameters p = 1 and q = 2 yields better results than

the same process with parameters p = q = 2 or parameters p = 2 and q = 1.

From the analysis it is clear that the GDAXI index benefits from the pe-

riodical re-estimation. Even though models suggested by the periodical re-

estimation differ from models suggested in the previous section, the important

benchmark is the predictive accuracy of VaR, which has improved by periodical

re-estimation. On the other hand, both analysis provided better results when

using the Student–t distribution as the preferred distribution for the error term.

3.3.7 N225 index

In the case of the N225 index, the previous analysis could not suggest a single

model that would dominate other models in performance. Although all models
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took advantage of the GARCH process for modeling conditional volatility, pa-

rameters of the GARCH process varied. However, all models had one common

point and that was the suggestion to use the Student–t distribution for the

distribution of the error term.

Results of the re-estimation after certain periods in time, as presented in

the Table A.38, indicate that in the case of the N225 index the re-estimation

improves the quality of the VaR application. With the exception of the second

part of the out–of–sample subset, where the failure rate reached 8%, its results

are better than results from the analysis in the previous section. Failure rates

in the first part of the out–of–sample ranged from 5.6% to 6.4%, which is

better than the 6.6% achieved in the previous section. Also values of both

unconditional and conditional coverage reach quite satisfactory values.

Just as it was the case with all other five preceding indices, also for the N225

index it holds that the further the out–of–sample subset begins, the better the

forecasting accuracy of the estimated models. From the table with results it

can be observed that the failure rate of 5.6% in the third part of the subset

and 4.8% in the fourth part of the subset are very good results. This is also

confirmed by values of both tests from the conditional coverage framework.

The unconditional coverage reached value puc = 0.9178 and the value of the

conditional coverage reached pcc = 0.5343. This is quite an improvement com-

pared to values puc = 0.2346 and pcc = 0.3775 achieved by the analysis in the

previous section.

The analysis showed that periodical estimation has positive effect on the

accuracy of models applied on the N225 index. The overall performance mea-

sured by the geometrical average of the unconditional and conditional coverage

has increased dramatically and failure rates narrowed to the desired level of

5% as required by the chosen confidence interval. As well as other indices,

the N225 index suffers from fat tails, which consequently ranks the Student–t

distribution as the most appropriate distribution for the error term from three

considered distribution functions.

3.3.8 Summary

Now that the analysis of the periodically re-estimated models has been com-

pleted, it is appropriate to summarize achieved results. This section described

outcomes of periodical re-estimation on a divided out–of–sample subset with

the aim to compare the overall model performance and predictive accuracy with
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respect to the analysis performed on the entire out–of–sample in the previous

section. Each model has been estimated on 1000 in–sample observations and

tested on immediately following 125 observations. This process has been re-

peated four times, since the entire out–of–sample subset had 500 observations

in total. The models performance was compared based on the geometrical av-

erage of their unconditional and conditional coverage, which is able to capture

both failure rate and clustering of violations.

Results showed several interesting outcomes. Firstly, quite often were se-

lected top performing models with same parameters as models in the previous

analysis of the entire out–of–sample. This leads to a conclusion that the un-

derlying conditional variance process has been successfully captured by both

approaches. Mean modeling processes were, however, not clearly identified, just

as it was the case in the previous analysis. One possible explanation is that

the mean process is not of much importance while calculating VaR on selected

stock indices.

The second interesting outcome is that models improved their accuracy

over time. Results indicate that the first estimation performed on data with

relatively low volatility was not very successful when applied on data with

relatively high volatility. However, as the data used for re-estimation of models

contained more observations with high volatility, the forecasting accuracy of

models has increased. For all indices, results in the third and the fourth part of

the out–of–sample subset seemed to be quite accurate thanks to the inclusion of

period two, which contained most volatility in the entire out–of–sample subset.

The third outcome of the analysis is concerned with the failure rate in the

fourth period. From the analysis it is obvious that when models are estimated

on data with relatively high volatility and the models are then applied on data

with relatively low volatility, models tend to fail in less occasions than expected.

In other words, models are more conservative about volatility. This is actually

the inverse of the situation on the second out–of–sample period, where models

systematically underestimated volatility thanks to being estimated on data

with low volatility.

To conclude, periodical re-estimation of VaR models based on a combination

of ARMA-GARCH processes has a positive effect on the overall performance of

models. It is, however, crucial to estimate models on a set of data which behave

similarly to the expected behavior of the analyzed time series. Departure in

either direction has the effect of either underestimating or overestimating the

risk.



Chapter 4

Conclusion

The value–at–risk forecasting theory has been applied on six selected stock

indices. Even though the most popular choice of stock indices includes either

the indices from central and eastern European economies or the US–based

indices, the thesis strived to provide a broader picture and based the analysis

on other less often used indices. At the same time, these indices (DJI, GSPC,

IXIC, FTSE, GDAXI, N225) were chosen as to incorporate indices from the most

important world stock exchanges. The data for the one–day–ahead VaR forecast

came from the years 2004 – 2007 for the in–sample subset, which serves the

purpose of estimating the coefficients of the models, and the years 2008 – 2009

for the out–of–sample subset, which served both as a source of data with higher

volatility and as a benchmark.

The decision to divide the dataset into two subsets was a logical step con-

sidering the aim of the thesis, which was to estimate various value–at–risk

forecasting models in the times of a relative mild volatility and to reevaluate

the same models based on data with higher volatility, such as during the recent

financial crisis. The methodology used in the thesis was similar to the method-

ology commonly used by commercial banks with the exception that the models

were not periodically re-estimated. Another important aspect of the thesis was

that in comparison to the methodology used by commercial banks, the thesis

worked with more advanced methods, such as the conditional volatility process.

Even though it is quite common in the literature to work with the assump-

tion of normally distributed log–returns, the thesis did not adhered to such

simplification and tested the log–returns for a variety of distributions includ-

ing the popular Student–t and the GED distributions. The results proved that

the log–returns of the selected indices cannot be considered as distributed ac-
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cording to the normal distribution. In fact, the more appropriate distribution

seemed to be the Student–t distribution with 7 to 8 degrees of freedom or the

GED with the shape parameter lying between 1.4 – 1.5. Thus the hypothesis of

normally distributed log–returns has been rejected at 5% significance level for

all selected indices and the decision to reject the null–hypothesis of normality

was based on the values of the Jarque–Bera test statistic and checked against

the histogram plots. Therefore in addition to the commonly assumed normal

distribution, the applied VaR models were parametrized with the Student–t

and the GED distribution functions, which proved to result in more accurate

estimates.

One of the most significant aspects of the thesis was the variability of

employed models, as the thesis attempted to estimate 648 dynamic models.

Moreover, all of the models were estimated on the six considered indices and

evaluated separately. The large number of tested models was a result of the

dynamic approach followed by the thesis, since the models were composed from

two components — the conditional mean, which was modeled with the AR and

the MA processes with up to two lags, and the conditional variance, which was

modeled using one of the GARCH, EGARCH or TARCH processes with up to

two lags. Moreover, each model was estimated for the three afore mentioned

distributions. The decision to include conditional volatility process was backed

by the results of the Portmanteau Q test statistic at several lags.

Although many authors suggest using the GARCH(1,1) process for mod-

eling the conditional volatility of stock indices, the thesis did not work with

such apriori assumption and tested a vast number of models. From the analysis

it stems that the suggestion of using GARCH(1,1) process for the conditional

volatility process while predicting VaR could not be rejected. Each one of the

suggested out–of–sample models took advantage of the GARCH process, how-

ever, the parameters of the GARCH process varied. It is therefore an interesting

outcome that even though the asymmetric models achieved the best results in

terms of the AIC and LL values, the actual forecast capabilities were dominated

by a symmetric conditional volatility process. A likely interpretation is that

in times of increased volatility, the markets treat both positive and negative

shocks in the same way, which is quite interesting. This outcome therefore con-

firms the hypothesis that an asymmetric EGARCH is outperformed by a GARCH

based model when the magnitude of shocks, volatility, is high.

Therefore the suggestion to forecast VaR only with models that have the

highest value of the AIC was not backed by the results of the thesis. None of
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the models with the highest in–sample AIC values was among the top out–of–

sample models. The results obtained in the thesis suggest to take advantage of

the commonly used GARCH process, which saves a lot of computation time and

provides satisfactory results. In order to improve the VaR forecasts, the most

obvious step was to periodically re-estimate the models. Another analysis was

therefore performed on the same set of data, however, with four periodical rees-

timations. The reestimation confirmed the dominant role of the GARCH(1,1)

process, which was suggested by the analysis earlier.

To conclude, the thesis loosely followed a typical one–day–ahead VaR evalu-

ation procedure with a number of improvements introduced into the procedure.

Such improvements included a no apriori assumption on the distribution of the

log–returns, which proved to be a step in the right direction. Further on, the

thesis estimated a quite large number of models that allowed to compare the

models with various conditional mean and conditional volatility processes, as

well as with three distribution functions for the error term. The final part

of the evaluation took advantage of a less known framework that is used to

measure the accuracy of the forecasted models. Thanks to this, the thesis was

able to provide a new insight on the topic, which certainly belongs to the most

discussed topics in the financial sector.
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Tables



A
.
T
ables

II

DJI GSPC IXIC FTSE GDAXI N225

Observations 1000 1000 1000 1000 1000 1000
Minimum -0.0334876 -0.0353427 -0.0393587 -0.0418503 -0.0351624 -0.0556955
Maximum 0.0252232 0.0287896 0.0340557 0.0344408 0.0260508 0.0360312
Median 0.0004412 0.0007385 0.0010444 0.0008293 0.0012235 0.0004349
Mean 0.0002377 0.0002692 0.0002397 0.0003638 0.0006870 0.0003891
Variance 0.0000527 0.0000580 0.0000938 0.0000644 0.0000870 0.0001263
Standard deviation 0.0072608 0.0076173 0.0096851 0.0080266 0.0093260 0.0112390
Skewness -0.3311214 -0.3099436 -0.1641089 -0.4295073 -0.4018695 -0.3622378
Kurtosis 4.5036750 4.8043270 3.4968970 5.7610460 3.7716550 4.3441480
Jarque–Bera 79.466 121.596 8.261 283.256 12.058 58.351
p–value 0.000 0.000 0.016 0.000 0.002 0.000

Table A.1: Properties of the in–sample subsets (log–returns)



A
.
T
ables

III

DJI GSPC IXIC FTSE GDAXI N225

Observations 500 500 500 500 500 500
Minimum -0.0820051 -0.0946951 0.0958770 -0.0926454 -0.0743346 -0.1211102
Maximum 0.1050835 0.1095720 0.1115944 0.0938424 0.1079747 0.1323459
Median 0.0001969 0.0009805 0.0006197 -0.0002057 0.0000000 0.0004258
Mean -0.0004739 -0.0005406 -0.0003116 -0.0003972 -0.0006591 -0.0006850
Variance 0.0004043 0.0004873 0.0005005 0.0003932 0.0004489 0.0005737
Standard deviation 0.0201077 0.0220739 0.0223708 0.0198284 0.0211864 0.0239522
Skewness 0.1293708 -0.1143677 -0.0654192 -0.0006206 0.2978910 -0.3142532
Kurtosis 7.5003250 7.2374020 6.3187880 7.1332600 7.4221750 7.9021570
Jarque–Bera 419.003 372.217 228.834 355.043 402.522 493.053
p–value 0.000 0.000 0.000 0.000 0.000 0.000

Table A.2: Properties of the out–of–sample subsets (log–returns)



A. Tables IV

lags DF-GLS 1% Critical value 5% Critical value 10% Critical value
10 -8.119 -3.480 -2.845 -2.558
9 -8.650 -3.480 -2.846 -2.559
8 -9.663 -3.480 -2.848 -2.560
7 -10.464 -3.480 -2.849 -2.562
6 -10.945 -3.480 -2.850 -2.563
5 -12.003 -3.480 -2.852 -2.564
4 -12.970 -3.480 -2.853 -2.565
3 -14.684 -3.480 -2.854 -2.567
2 -16.761 -3.480 -2.856 -2.568
1 -21.911 -3.480 -2.857 -2.569

Table A.3: In–sample DF-GLS stationarity test for DJI

lags DF-GLS 1% Critical value 5% Critical value 10% Critical value
10 -6.482 -3.480 -2.845 -2.558
9 -7.028 -3.480 -2.846 -2.559
8 -8.030 -3.480 -2.848 -2.560
7 -8.890 -3.480 -2.849 -2.562
6 -9.491 -3.480 -2.850 -2.563
5 -10.488 -3.480 -2.852 -2.564
4 -11.702 -3.480 -2.853 -2.565
3 -13.692 -3.480 -2.854 -2.567
2 -15.798 -3.480 -2.856 -2.568
1 -21.321 -3.480 -2.857 -2.569

Table A.4: In–sample DF-GLS stationarity test for GSPC

lags DF-GLS 1% Critical value 5% Critical value 10% Critical value
10 -4.085 -3.480 -2.845 -2.558
9 -4.563 -3.480 -2.846 -2.559
8 -5.209 -3.480 -2.848 -2.560
7 -5.923 -3.480 -2.849 -2.562
6 -6.375 -3.480 -2.850 -2.563
5 -7.119 -3.480 -2.852 -2.564
4 -8.223 -3.480 -2.853 -2.565
3 -9.997 -3.480 -2.854 -2.567
2 -11.822 -3.480 -2.856 -2.568
1 -16.291 -3.480 -2.857 -2.569

Table A.5: In–sample DF-GLS stationarity test for IXIC
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lags DF-GLS 1% Critical value 5% Critical value 10% Critical value
10 -5.807 -3.480 -2.845 -2.558
9 -6.359 -3.480 -2.846 -2.559
8 -7.140 -3.480 -2.848 -2.560
7 -7.782 -3.480 -2.849 -2.562
6 -8.502 -3.480 -2.850 -2.563
5 -9.373 -3.480 -2.852 -2.564
4 -10.684 -3.480 -2.853 -2.565
3 -12.501 -3.480 -2.854 -2.567
2 -15.001 -3.480 -2.856 -2.568
1 -19.301 -3.480 -2.857 -2.569

Table A.6: In–sample DF-GLS stationarity test for FTSE

lags DF-GLS 1% Critical value 5% Critical value 10% Critical value
10 -8.910 -3.480 -2.845 -2.558
9 -9.710 -3.480 -2.846 -2.559
8 -10.228 -3.480 -2.848 -2.560
7 -10.924 -3.480 -2.849 -2.562
6 -11.465 -3.480 -2.850 -2.563
5 -12.327 -3.480 -2.852 -2.564
4 -14.001 -3.480 -2.853 -2.565
3 -15.397 -3.480 -2.854 -2.567
2 -17.252 -3.480 -2.856 -2.568
1 -20.702 -3.480 -2.857 -2.569

Table A.7: In–sample DF-GLS stationarity test for GDAXI

lags DF-GLS 1% Critical value 5% Critical value 10% Critical value
10 -2.391 -3.480 -2.845 -2.558
9 -2.526 -3.480 -2.846 -2.559
8 -2.796 -3.480 -2.848 -2.560
7 -2.951 -3.480 -2.849 -2.562
6 -3.159 -3.480 -2.850 -2.563
5 -3.560 -3.480 -2.852 -2.564
4 -3.947 -3.480 -2.853 -2.565
3 -4.978 -3.480 -2.854 -2.567
2 -5.951 -3.480 -2.856 -2.568
1 -8.548 -3.480 -2.857 -2.569

Table A.8: In–sample DF-GLS stationarity test for N225
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lags DF-GLS 1% Critical value 5% Critical value 10% Critical value
10 -4.037 -3.480 -2.849 -2.563
9 -4.138 -3.480 -2.852 -2.567
8 -4.718 -3.480 -2.856 -2.570
7 -5.134 -3.480 -2.859 -2.572
6 -6.097 -3.480 -2.862 -2.575
5 -6.562 -3.480 -2.865 -2.578
4 -7.716 -3.480 -2.868 -2.581
3 -8.931 -3.480 -2.871 -2.583
2 -10.769 -3.480 -2.874 -2.586
1 -16.370 -3.480 -2.876 -2.588

Table A.9: Out–of–sample DF-GLS stationarity test for DJI

lags DF-GLS 1% Critical value 5% Critical value 10% Critical value
10 -4.805 -3.480 -2.849 -2.563
9 -4.826 -3.480 -2.852 -2.567
8 -5.488 -3.480 -2.856 -2.570
7 -5.899 -3.480 -2.859 -2.572
6 -6.898 -3.480 -2.862 -2.575
5 -7.415 -3.480 -2.865 -2.578
4 -8.682 -3.480 -2.868 -2.581
3 -10.004 -3.480 -2.871 -2.583
2 -11.870 -3.480 -2.874 -2.586
1 -17.421 -3.480 -2.876 -2.588

Table A.10: Out–of–sample DF-GLS stationarity test for GSPC

lags DF-GLS 1% Critical value 5% Critical value 10% Critical value
10 -4.481 -3.480 -2.849 -2.563
9 -4.590 -3.480 -2.852 -2.567
8 -5.095 -3.480 -2.856 -2.570
7 -5.518 -3.480 -2.859 -2.572
6 -6.333 -3.480 -2.862 -2.575
5 -7.081 -3.480 -2.865 -2.578
4 -8.232 -3.480 -2.868 -2.581
3 -9.627 -3.480 -2.871 -2.583
2 -11.267 -3.480 -2.874 -2.586
1 -16.545 -3.480 -2.876 -2.588

Table A.11: Out–of–sample DF-GLS stationarity test for IXIC
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lags DF-GLS 1% Critical value 5% Critical value 10% Critical value
10 -6.049 -3.480 -2.849 -2.563
9 -5.916 -3.480 -2.852 -2.567
8 -6.652 -3.480 -2.856 -2.570
7 -6.991 -3.480 -2.859 -2.572
6 -8.066 -3.480 -2.862 -2.575
5 -9.643 -3.480 -2.865 -2.578
4 -10.204 -3.480 -2.868 -2.581
3 -10.418 -3.480 -2.871 -2.583
2 -14.991 -3.480 -2.874 -2.586
1 -17.316 -3.480 -2.876 -2.588

Table A.12: Out–of–sample DF-GLS stationarity test for FTSE

lags DF-GLS 1% Critical value 5% Critical value 10% Critical value
10 -4.971 -3.480 -2.849 -2.563
9 -5.294 -3.480 -2.852 -2.567
8 -6.031 -3.480 -2.856 -2.570
7 -6.211 -3.480 -2.859 -2.572
6 -6.725 -3.480 -2.862 -2.575
5 -7.238 -3.480 -2.865 -2.578
4 -8.571 -3.480 -2.868 -2.581
3 -9.260 -3.480 -2.871 -2.583
2 -12.573 -3.480 -2.874 -2.586
1 -15.386 -3.480 -2.876 -2.588

Table A.13: Out–of–sample DF-GLS stationarity test for GDAXI

lags DF-GLS 1% Critical value 5% Critical value 10% Critical value
10 -2.227 -3.480 -2.849 -2.563
9 -2.529 -3.480 -2.852 -2.567
8 -2.926 -3.480 -2.856 -2.570
7 -3.036 -3.480 -2.859 -2.572
6 -3.497 -3.480 -2.862 -2.575
5 -4.240 -3.480 -2.865 -2.578
4 -5.002 -3.480 -2.868 -2.581
3 -5.752 -3.480 -2.871 -2.583
2 -7.754 -3.480 -2.874 -2.586
1 -9.965 -3.480 -2.876 -2.588

Table A.14: Out–of–sample DF-GLS stationarity test for N225
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Model LL AIC Failures puc pcc HMSE HMAE QLIKE
AR(1)-MA(2)-GARCH(1,1)-T 3564.386 -7112.772 12.4% 0.0834 0.0626 4.1841 1.2775 -7.2237
AR(2)-MA(1)-GARCH(1,1)-T 3564.409 -7112.817 12.4% 0.0834 0.0626 4.1908 1.2781 -7.2234
AR(2)-MA(1)-GARCH(2,1)-T 3565.928 -7113.856 12.4% 0.0834 0.0626 4.3819 1.2994 -7.2351
AR(1)-MA(0)-GARCH(1,1)-T 3562.726 -7113.452 12.6% 0.0614 0.0419 4.1958 1.2803 -7.2222

AR(2)-MA(0)-GARCH(2,1)-T 3565.285 -7114.571 12.6% 0.0614 0.0419 4.3731 1.2991 -7.2351
AR(1)-MA(2)-GARCH(2,1)-T 3565.911 -7113.821 12.6% 0.0614 0.0419 4.3733 1.2986 -7.2356
AR(2)-MA(2)-GARCH(2,1)-T 3565.939 -7111.878 12.6% 0.0614 0.0419 4.3946 1.3006 -7.2345
AR(1)-MA(0)-GARCH(2,1)-T 3564.423 -7114.846 12.6% 0.0614 0.0419 4.4387 1.3068 -7.2327

Table A.15: Best performing models for the DJI index at α = 0.9

Model LL AIC Failures puc pcc HMSE HMAE QLIKE
AR(1)-MA(0)-GARCH(2,2)-T 3564.402 -7112.804 7.0% 0.0523 0.0855 4.4548 1.3156 -7.2173
AR(0)-MA(1)-GARCH(2,2)-T 3564.453 -7112.905 7.0% 0.0523 0.0855 4.4573 1.3160 -7.2172
AR(1)-MA(0)-GARCH(1,1)-T 3562.726 -7113.452 7.2% 0.0337 0.0536 4.1958 1.2803 -7.2222
AR(0)-MA(1)-GARCH(1,1)-T 3562.785 -7113.571 7.2% 0.0337 0.0536 4.2015 1.2810 -7.2220

AR(2)-MA(1)-GARCH(2,1)-T 3565.928 -7113.856 7.2% 0.0337 0.0536 4.3819 1.2994 -7.2351
AR(2)-MA(2)-GARCH(2,1)-T 3565.939 -7111.878 7.2% 0.0337 0.0536 4.3946 1.3006 -7.2345
AR(1)-MA(2)-GARCH(1,1)-T 3564.386 -7112.772 7.4% 0.0211 0.0324 4.1841 1.2775 -7.2237
AR(2)-MA(1)-GARCH(1,1)-T 3564.409 -7112.817 7.4% 0.0211 0.0324 4.1908 1.2781 -7.2234

Table A.16: Best performing models for the DJI index at α = 0.95
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Model LL AIC Failures puc pcc HMSE HMAE QLIKE
AR(1)-MA(1)-GARCH(1,1)-T 3564.297 -7114.593 1.0% 1.0000 0.9507 4.0868 1.2686 -7.2284
AR(0)-MA(2)-GARCH(1,1)-T 3563.622 -7113.244 1.0% 1.0000 0.9507 4.1526 1.2746 -7.2241
AR(2)-MA(0)-GARCH(1,1)-T 3563.636 -7113.273 1.0% 1.0000 0.9507 4.1632 1.2758 -7.2236
AR(1)-MA(2)-GARCH(1,1)-T 3564.386 -7112.772 1.0% 1.0000 0.9507 4.1841 1.2775 -7.2237

AR(2)-MA(1)-GARCH(1,1)-T 3564.409 -7112.817 1.0% 1.0000 0.9507 4.1908 1.2781 -7.2234
AR(1)-MA(0)-GARCH(1,1)-T 3562.726 -7113.452 1.0% 1.0000 0.9507 4.1958 1.2803 -7.2222
AR(2)-MA(2)-GARCH(1,1)-T 3564.421 -7110.842 1.0% 1.0000 0.9507 4.1986 1.2788 -7.2229
AR(0)-MA(1)-GARCH(1,1)-T 3562.785 -7113.571 1.0% 1.0000 0.9507 4.2015 1.2810 -7.2220

Table A.17: Best performing models for the DJI index at α = 0.99
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Model LL AIC Failures puc pcc HMSE HMAE QLIKE
AR(2)-MA(2)-GARCH(1,1)-T 3533.573 -7049.146 12.0% 0.1471 0.0161 4.5987 1.2918 -7.0449
AR(1)-MA(2)-GARCH(1,1)-T 3532.033 -7048.066 12.0% 0.1471 0.0161 4.6963 1.2996 -7.0378
AR(2)-MA(1)-GARCH(1,1)-T 3531.902 -7047.805 12.0% 0.1471 0.0161 4.7054 1.3012 -7.0371
AR(1)-MA(1)-GARCH(2,2)-T 3537.306 -7056.612 12.6% 0.0614 0.0158 5.4108 1.4039 -7.0287

AR(0)-MA(2)-GARCH(2,2)-T 3536.429 -7054.857 13.2% 0.0223 0.0107 5.4762 1.4134 -7.0216
AR(2)-MA(0)-GARCH(1,1)-T 3531.308 -7048.616 12.2% 0.1116 0.0105 4.6663 1.2964 -7.0382
AR(1)-MA(1)-GARCH(1,2)-T 3536.402 -7056.804 12.2% 0.1116 0.0105 5.7563 1.4316 -7.0002
AR(1)-MA(1)-GARCH(1,1)-T 3532.643 -7051.286 12.4% 0.0834 0.0067 4.6086 1.2946 -7.0433

Table A.18: Best performing models for the GSPC index at α = 0.9

Model LL AIC Failures puc pcc HMSE HMAE QLIKE
AR(1)-MA(0)-GARCH(2,1)-T 3531.676 -7049.351 7.2% 0.0337 0.0069 4.9684 1.3413 -7.0450
AR(0)-MA(1)-GARCH(2,1)-T 3531.980 -7049.960 7.2% 0.0337 0.0069 5.0013 1.3437 -7.0440
AR(0)-MA(2)-GARCH(2,2)-T 3536.429 -7054.857 8.2% 0.0025 0.0030 5.4762 1.4134 -7.0216
AR(0)-MA(1)-GARCH(1,1)-T 3529.239 -7046.477 7.6% 0.0129 0.0022 4.6886 1.3046 -7.0364

AR(2)-MA(1)-GARCH(1,1)-T 3531.902 -7047.805 7.6% 0.0129 0.0022 4.7054 1.3012 -7.0371
AR(0)-MA(2)-GARCH(2,1)-T 3534.246 -7052.493 7.6% 0.0129 0.0022 4.8936 1.3284 -7.0489
AR(2)-MA(0)-GARCH(2,1)-T 3534.020 -7052.041 7.6% 0.0129 0.0022 4.9215 1.3320 -7.0471
AR(1)-MA(2)-GARCH(2,1)-T 3534.672 -7051.345 7.6% 0.0129 0.0022 4.9319 1.3327 -7.0473

Table A.19: Best performing models for the GSPC index at α = 0.95
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Model LL AIC Failures puc pcc HMSE HMAE QLIKE
AR(1)-MA(0)-GARCH(1,1)-T 3528.987 -7045.974 1.2% 0.6630 0.8454 4.6752 1.3038 -7.0368
AR(0)-MA(1)-GARCH(1,1)-T 3529.239 -7046.477 1.2% 0.6630 0.8454 4.6886 1.3046 -7.0364
AR(2)-MA(2)-GARCH(2,1)-T 3535.996 -7051.992 1.2% 0.6630 0.8454 4.7781 1.3171 -7.0574
AR(1)-MA(1)-GARCH(2,1)-T 3535.184 -7054.368 1.2% 0.6630 0.8454 4.8441 1.3244 -7.0540

AR(0)-MA(2)-GARCH(2,1)-T 3534.246 -7052.493 1.2% 0.6630 0.8454 4.8936 1.3284 -7.0489
AR(2)-MA(0)-GARCH(2,1)-T 3534.020 -7052.041 1.2% 0.6630 0.8454 4.9215 1.3320 -7.0471
AR(1)-MA(2)-GARCH(2,1)-T 3534.672 -7051.345 1.2% 0.6630 0.8454 4.9319 1.3327 -7.0473
AR(2)-MA(1)-GARCH(2,1)-T 3534.537 -7051.073 1.2% 0.6630 0.8454 4.9452 1.3348 -7.0463

Table A.20: Best performing models for the GSPC index at α = 0.99
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Model LL AIC Failures puc pcc HMSE HMAE QLIKE
AR(1)-MA(1)-GARCH(1,1)-T 3251.832 -6489.665 13.2% 0.0223 0.0036 4.5699 1.2338 -6.9376
AR(2)-MA(0)-GARCH(1,1)-T 3251.822 -6489.645 13.2% 0.0223 0.0036 4.5971 1.2332 -6.9365
AR(0)-MA(2)-GARCH(1,1)-T 3251.951 -6489.902 13.2% 0.0223 0.0036 4.5997 1.2337 -6.9367
AR(2)-MA(1)-GARCH(1,1)-T 3252.555 -6489.110 13.2% 0.0223 0.0036 4.6106 1.2343 -6.9365

AR(1)-MA(2)-GARCH(1,1)-T 3252.563 -6489.127 13.2% 0.0223 0.0036 4.6122 1.2345 -6.9366
AR(2)-MA(2)-GARCH(2,2)-T 3259.344 -6496.688 13.8% 0.0070 0.0022 5.3939 1.3671 -6.8973
AR(2)-MA(2)-GARCH(1,1)-T 3253.207 -6488.414 13.4% 0.0154 0.0021 4.5797 1.2351 -6.9390
AR(1)-MA(0)-GARCH(2,2)-T 3254.370 -6492.740 14.2% 0.0030 0.0018 5.6463 1.3124 -6.9053

Table A.21: Best performing models for the IXIC index at α = 0.9

Model LL AIC Failures puc pcc HMSE HMAE QLIKE
AR(1)-MA(0)-GARCH(1,1)-T 3250.677 -6489.353 7.8% 0.0077 0.0010 4.5522 1.2298 -6.9365
AR(0)-MA(1)-GARCH(1,1)-T 3250.682 -6489.365 7.8% 0.0077 0.0010 4.5534 1.2299 -6.9365
AR(1)-MA(0)-GARCH(2,2)-T 3254.370 -6492.740 7.8% 0.0077 0.0010 5.6463 1.3124 -6.9053
AR(0)-MA(1)-GARCH(2,2)-T 3254.400 -6492.799 7.8% 0.0077 0.0010 5.7314 1.3150 -6.9031

AR(1)-MA(1)-GARCH(1,1)-T 3251.832 -6489.665 8.0% 0.0045 0.0005 4.5699 1.2338 -6.9376
AR(2)-MA(0)-GARCH(1,1)-T 3251.822 -6489.645 8.0% 0.0045 0.0005 4.5971 1.2332 -6.9365
AR(0)-MA(2)-GARCH(1,1)-T 3251.951 -6489.902 8.0% 0.0045 0.0005 4.5997 1.2337 -6.9367
AR(2)-MA(1)-GARCH(1,1)-T 3252.555 -6489.110 8.0% 0.0045 0.0005 4.6106 1.2343 -6.9365

Table A.22: Best performing models for the IXIC index at α = 0.95
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Model LL AIC Failures puc pcc HMSE HMAE QLIKE
AR(1)-MA(0)-GARCH(1,1)-T 3250.677 -6489.353 1.8% 0.1060 0.2296 4.5522 1.2298 -6.9365
AR(0)-MA(1)-GARCH(1,1)-T 3250.682 -6489.365 1.8% 0.1060 0.2296 4.5534 1.2299 -6.9365
AR(1)-MA(1)-GARCH(1,1)-T 3251.832 -6489.665 2.0% 0.0479 0.1152 4.5699 1.2338 -6.9376
AR(2)-MA(2)-GARCH(1,1)-T 3253.207 -6488.414 2.0% 0.0479 0.1152 4.5797 1.2351 -6.9390

AR(2)-MA(0)-GARCH(1,1)-T 3251.822 -6489.645 2.0% 0.0479 0.1152 4.5971 1.2332 -6.9365
AR(0)-MA(2)-GARCH(1,1)-T 3251.951 -6489.902 2.0% 0.0479 0.1152 4.5997 1.2337 -6.9367
AR(2)-MA(1)-GARCH(1,1)-T 3252.555 -6489.110 2.0% 0.0479 0.1152 4.6106 1.2343 -6.9365
AR(1)-MA(2)-GARCH(1,1)-T 3252.563 -6489.127 2.0% 0.0479 0.1152 4.6122 1.2345 -6.9366

Table A.23: Best performing models for the IXIC index at α = 0.99
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Model LL AIC Failures puc pcc HMSE HMAE QLIKE
AR(1)-MA(2)-GARCH(1,1)-T 3530.794 -7045.588 13.0% 0.0317 0.0979 5.9519 1.3747 -7.0856
AR(2)-MA(2)-GARCH(1,1)-T 3530.817 -7043.635 13.0% 0.0317 0.0979 5.9612 1.3753 -7.0853
AR(0)-MA(2)-GARCH(1,1)-T 3525.995 -7037.990 13.0% 0.0317 0.0979 6.4857 1.4013 -7.0628
AR(0)-MA(2)-GARCH(2,1)-T 3526.516 -7037.032 13.2% 0.0223 0.0730 6.5590 1.4187 -7.0589

AR(2)-MA(0)-GARCH(2,1)-T 3526.504 -7037.009 13.2% 0.0223 0.0730 6.5670 1.4188 -7.0586
AR(2)-MA(0)-GARCH(1,1)-T 3525.990 -7037.981 13.2% 0.0223 0.0704 6.4919 1.4014 -7.0626
AR(2)-MA(1)-GARCH(1,1)-T 3526.030 -7036.060 13.2% 0.0223 0.0704 6.4925 1.4008 -7.0627
AR(0)-MA(2)-GARCH(2,2)-T 3526.715 -7035.430 13.4% 0.0154 0.0532 6.5694 1.4244 -7.0567

Table A.24: Best performing models for the FTSE index at α = 0.9

Model LL AIC Failures puc pcc HMSE HMAE QLIKE
AR(0)-MA(2)-GARCH(2,1)-T 3526.516 -7037.032 7.8% 0.0077 0.0287 6.5590 1.4187 -7.0589
AR(2)-MA(0)-GARCH(2,1)-T 3526.504 -7037.009 7.8% 0.0077 0.0287 6.5670 1.4188 -7.0586
AR(0)-MA(1)-GARCH(2,2)-T 3526.547 -7037.094 7.8% 0.0077 0.0287 6.5882 1.4242 -7.0565
AR(0)-MA(1)-GARCH(1,2)-T 3526.538 -7039.076 7.8% 0.0077 0.0287 6.5984 1.4246 -7.0559

AR(0)-MA(2)-GARCH(1,1)-T 3525.995 -7037.990 8.0% 0.0045 0.0175 6.4857 1.4013 -7.0628
AR(2)-MA(0)-GARCH(1,1)-T 3525.990 -7037.981 8.0% 0.0045 0.0175 6.4919 1.4014 -7.0626
AR(2)-MA(1)-GARCH(1,1)-T 3526.030 -7036.060 8.0% 0.0045 0.0175 6.4925 1.4008 -7.0627
AR(0)-MA(1)-GARCH(1,1)-T 3525.929 -7039.858 8.0% 0.0045 0.0175 6.5122 1.4023 -7.0621

Table A.25: Best performing models for the FTSE index at α = 0.95
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Model LL AIC Failures puc pcc HMSE HMAE QLIKE
AR(1)-MA(2)-GARCH(1,2)-T 3531.426 -7044.851 2.6% 0.0027 0.0080 6.0272 1.3919 -7.0815
AR(2)-MA(2)-GARCH(1,2)-T 3531.429 -7042.857 2.6% 0.0027 0.0080 6.0290 1.3919 -7.0814
AR(2)-MA(1)-GARCH(1,2)-T 3531.428 -7044.857 2.6% 0.0027 0.0080 6.0301 1.3920 -7.0814
AR(2)-MA(1)-GARCH(2,2)-T 3531.487 -7042.974 2.6% 0.0027 0.0080 6.0324 1.3919 -7.0822

AR(1)-MA(2)-GARCH(2,1)-T 3531.435 -7044.871 2.6% 0.0027 0.0080 6.0587 1.3923 -7.0817
AR(2)-MA(2)-GARCH(2,1)-T 3531.436 -7042.872 2.6% 0.0027 0.0080 6.0597 1.3924 -7.0816
AR(1)-MA(2)-GARCH(1,1)-T 3530.794 -7045.588 2.8% 0.0009 0.0027 5.9519 1.3747 -7.0856
AR(2)-MA(2)-GARCH(1,1)-T 3530.817 -7043.635 2.8% 0.0009 0.0027 5.9612 1.3753 -7.0853

Table A.26: Best performing models for the FTSE index at α = 0.99
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Model LL AIC Failures puc pcc HMSE HMAE QLIKE
AR(1)-MA(2)-GARCH(2,2)-T 3300.650 -6581.299 13.2% 0.0223 0.0417 8.3695 1.3811 -6.8956
AR(2)-MA(1)-GARCH(2,2)-T 3300.644 -6581.289 13.2% 0.0223 0.0417 8.3780 1.3814 -6.8954
AR(1)-MA(2)-GARCH(1,1)-T 3300.204 -6584.408 12.2% 0.1116 0.0374 8.1662 1.3620 -6.8950
AR(2)-MA(1)-GARCH(1,1)-T 3300.199 -6584.397 12.2% 0.1116 0.0374 8.1750 1.3622 -6.8949

AR(2)-MA(2)-GARCH(1,2)-T 3301.195 -6582.389 12.2% 0.1116 0.0374 8.4665 1.3857 -6.8896
AR(1)-MA(2)-GARCH(2,1)-T 3300.645 -6583.290 13.0% 0.0317 0.0370 8.3652 1.3784 -6.8965
AR(1)-MA(2)-GARCH(1,2)-T 3300.562 -6583.124 13.0% 0.0317 0.0370 8.3713 1.3863 -6.8908
AR(2)-MA(1)-GARCH(2,1)-T 3300.640 -6583.279 13.0% 0.0317 0.0370 8.3737 1.3787 -6.8964

Table A.27: Best performing models for the GDAXI index at α = 0.9

Model LL AIC Failures puc pcc HMSE HMAE QLIKE
AR(1)-MA(2)-GARCH(1,1)-T 3300.204 -6584.408 8.0% 0.0045 0.0054 8.1662 1.3620 -6.8950
AR(2)-MA(1)-GARCH(1,1)-T 3300.199 -6584.397 8.0% 0.0045 0.0054 8.1750 1.3622 -6.8949
AR(2)-MA(2)-GARCH(2,2)-T 3301.347 -6580.694 8.0% 0.0045 0.0054 8.4644 1.3799 -6.8956
AR(0)-MA(1)-GARCH(1,1)-T 3299.768 -6587.536 8.2% 0.0025 0.0028 8.0758 1.3555 -6.8978

AR(1)-MA(0)-GARCH(1,1)-T 3299.770 -6587.540 8.2% 0.0025 0.0028 8.0862 1.3558 -6.8976
AR(0)-MA(2)-GARCH(1,1)-T 3299.769 -6585.538 8.2% 0.0025 0.0028 8.0864 1.3558 -6.8976
AR(2)-MA(0)-GARCH(1,1)-T 3299.771 -6585.541 8.2% 0.0025 0.0028 8.0963 1.3561 -6.8974
AR(1)-MA(1)-GARCH(1,1)-T 3299.773 -6585.545 8.2% 0.0025 0.0028 8.1134 1.3566 -6.8971

Table A.28: Best performing models for the GDAXI index at α = 0.95
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Model LL AIC Failures puc pcc HMSE HMAE QLIKE
AR(1)-MA(1)-GARCH(1,2)-T 3302.260 -6588.520 1.6% 0.2149 0.4068 7.5561 1.3678 -6.9077
AR(0)-MA(1)-GARCH(1,1)-T 3299.768 -6587.536 1.6% 0.2149 0.4068 8.0758 1.3555 -6.8978
AR(1)-MA(0)-GARCH(1,1)-T 3299.770 -6587.540 1.6% 0.2149 0.4068 8.0862 1.3558 -6.8976
AR(0)-MA(2)-GARCH(1,1)-T 3299.769 -6585.538 1.6% 0.2149 0.4068 8.0864 1.3558 -6.8976

AR(2)-MA(0)-GARCH(1,1)-T 3299.771 -6585.541 1.6% 0.2149 0.4068 8.0963 1.3561 -6.8974
AR(1)-MA(1)-GARCH(1,1)-T 3299.773 -6585.545 1.6% 0.2149 0.4068 8.1134 1.3566 -6.8971
AR(1)-MA(2)-GARCH(1,1)-T 3300.204 -6584.408 1.6% 0.2149 0.4068 8.1662 1.3620 -6.8950
AR(2)-MA(1)-GARCH(1,1)-T 3300.199 -6584.397 1.6% 0.2149 0.4068 8.1750 1.3622 -6.8949

Table A.29: Best performing models for the GDAXI index at α = 0.99
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Model LL AIC Failures puc pcc HMSE HMAE QLIKE
AR(1)-MA(1)-GARCH(2,1)-T 3128.610 -6241.220 12.6% 0.0614 0.0419 3.5379 1.1337 -6.8480
AR(1)-MA(1)-GARCH(1,2)-T 3128.556 -6241.112 12.6% 0.0614 0.0419 3.5575 1.1362 -6.8454
AR(1)-MA(1)-GARCH(2,2)-T 3128.679 -6239.357 12.6% 0.0614 0.0419 3.5781 1.1361 -6.8467
AR(0)-MA(1)-GARCH(1,1)-T 3127.961 -6243.921 13.0% 0.0317 0.0370 3.4964 1.1379 -6.8454

AR(1)-MA(0)-GARCH(1,1)-T 3127.949 -6243.899 13.0% 0.0317 0.0370 3.4986 1.1381 -6.8454
AR(0)-MA(2)-GARCH(2,1)-T 3128.730 -6241.460 13.0% 0.0317 0.0370 3.5478 1.1388 -6.8492
AR(2)-MA(0)-GARCH(2,1)-T 3128.734 -6241.468 13.0% 0.0317 0.0370 3.5499 1.1389 -6.8491
AR(0)-MA(2)-GARCH(1,2)-T 3128.652 -6241.304 13.0% 0.0317 0.0370 3.5672 1.1417 -6.8463

Table A.30: Best performing models for the N225 index at α = 0.9

Model LL AIC Failures puc pcc HMSE HMAE QLIKE
AR(2)-MA(1)-GARCH(1,1)-T 3129.208 -6242.417 6.2% 0.2346 0.3775 3.3440 1.1209 -6.8485
AR(2)-MA(1)-GARCH(2,1)-T 3129.682 -6241.364 6.6% 0.1168 0.2913 3.4366 1.1256 -6.8505
AR(1)-MA(2)-GARCH(2,1)-T 3129.626 -6241.251 6.6% 0.1168 0.2913 3.4417 1.1262 -6.8505
AR(0)-MA(1)-GARCH(1,1)-T 3127.961 -6243.921 6.6% 0.1168 0.2913 3.4964 1.1379 -6.8454

AR(1)-MA(0)-GARCH(1,1)-T 3127.949 -6243.899 6.6% 0.1168 0.2913 3.4986 1.1381 -6.8454
AR(2)-MA(2)-GARCH(1,2)-T 3130.699 -6241.398 6.6% 0.1168 0.2913 3.5496 1.1374 -6.8457
AR(0)-MA(2)-GARCH(1,2)-T 3128.652 -6241.304 6.6% 0.1168 0.2913 3.5672 1.1417 -6.8463
AR(2)-MA(0)-GARCH(1,2)-T 3128.656 -6241.313 6.6% 0.1168 0.2913 3.5698 1.1418 -6.8462

Table A.31: Best performing models for the N225 index at α = 0.95
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Model LL AIC Failures puc pcc HMSE HMAE QLIKE
AR(2)-MA(1)-GARCH(1,1)-T 3129.208 -6242.417 1.4% 0.3966 0.6411 3.3440 1.1209 -6.8485
AR(1)-MA(2)-GARCH(1,1)-T 3129.146 -6242.293 1.4% 0.3966 0.6411 3.3479 1.1215 -6.8484
AR(1)-MA(2)-GARCH(2,2)-T 3129.162 -6238.324 1.4% 0.3966 0.6411 3.3518 1.1212 -6.8481
AR(2)-MA(2)-GARCH(2,1)-T 3129.346 -6238.693 1.4% 0.3966 0.6411 3.3972 1.1252 -6.8541

AR(2)-MA(1)-GARCH(2,2)-T 3129.687 -6239.375 1.4% 0.3966 0.6411 3.4204 1.1213 -6.8488
AR(2)-MA(2)-GARCH(1,1)-T 3130.185 -6242.371 1.4% 0.3966 0.6411 3.4248 1.1294 -6.8466
AR(2)-MA(1)-GARCH(2,1)-T 3129.682 -6241.364 1.4% 0.3966 0.6411 3.4366 1.1256 -6.8505
AR(1)-MA(1)-GARCH(1,1)-T 3128.111 -6242.221 1.4% 0.3966 0.6411 3.4399 1.1290 -6.8460

Table A.32: Best performing models for the N225 index at α = 0.99



A. Tables XX

Model Out–of–sample Failures puc pcc
AR(2)-MA(1)-GARCH(1,1)-T 1 to 125 9.6% 0.0351 0.1084

126 to 250 8.8% 0.0768 0.0715
251 to 375 5.6% 0.7624 0.6283
376 to 500 4.0% 0.5956 0.7039

AR(0)-MA(2)-GARCH(1,2)-T 1 to 125 11.2% 0.0058 0.0201
126 to 250 7.2% 0.2882 0.2811
251 to 375 5.6% 0.7624 0.6283
376 to 500 4.8% 0.9177 0.7330

AR(0)-MA(1)-GARCH(1,1)-T 1 to 125 9.6% 0.0351 0.1084
126 to 250 9.6% 0.0351 0.0299
251 to 375 4.8% 0.9177 0.7330
376 to 500 4.0% 0.5956 0.7039

AR(1)-MA(0)-GARCH(1,1)-T 1 to 125 9.6% 0.0351 0.1084
126 to 250 9.6% 0.0351 0.0299
251 to 375 4.8% 0.9177 0.7330
376 to 500 4.0% 0.5956 0.7039

AR(1)-MA(2)-GARCH(1,1)-T 1 to 125 9.6% 0.0351 0.1084
126 to 250 9.6% 0.0351 0.0299
251 to 375 4.8% 0.9177 0.7330
376 to 500 4.0% 0.5956 0.7039

AR(2)-MA(2)-GARCH(1,1)-T 1 to 125 9.6% 0.0351 0.1084
126 to 250 9.6% 0.0351 0.0299
251 to 375 4.8% 0.9177 0.7330
376 to 500 4.0% 0.5956 0.7039

AR(0)-MA(1)-GARCH(1,2)-T 1 to 125 11.2% 0.0058 0.0201
126 to 250 7.2% 0.2882 0.2811
251 to 375 5.6% 0.7624 0.6283
376 to 500 3.2% 0.3241 0.5382

AR(1)-MA(0)-GARCH(1,2)-T 1 to 125 11.2% 0.0058 0.0201
126 to 250 7.2% 0.2882 0.2811
251 to 375 5.6% 0.7624 0.6283
376 to 500 3.2% 0.3241 0.5382

Table A.33: Top overall models for the DJI index at α = 0.95



A. Tables XXI

Model Out–of–sample Failures puc pcc
AR(2)-MA(0)-GARCH(1,2)-T 1 to 125 9.6% 0.0351 0.0335

126 to 250 8.8% 0.0769 0.0716
251 to 375 5.6% 0.7625 0.6283
376 to 500 4.8% 0.9178 0.7330

AR(1)-MA(1)-GARCH(1,2)-T 1 to 125 9.6% 0.0351 0.0335
126 to 250 8.8% 0.0769 0.0716
251 to 375 6.4% 0.4904 0.4538
376 to 500 4.8% 0.9178 0.7330

AR(1)-MA(1)-GARCH(1,1)-T 1 to 125 9.6% 0.0351 0.0335
126 to 250 9.6% 0.0351 0.0300
251 to 375 5.6% 0.7625 0.6283
376 to 500 4.8% 0.9178 0.7330

AR(0)-MA(1)-GARCH(1,2)-T 1 to 125 9.6% 0.0351 0.0335
126 to 250 9.6% 0.0351 0.0300
251 to 375 5.6% 0.7625 0.6283
376 to 500 4.0% 0.5956 0.7040

AR(1)-MA(0)-GARCH(1,2)-T 1 to 125 9.6% 0.0351 0.0335
126 to 250 9.6% 0.0351 0.0300
251 to 375 5.6% 0.7625 0.6283
376 to 500 4.0% 0.5956 0.7040

AR(2)-MA(2)-GARCH(1,2)-T 1 to 125 10.4% 0.0149 0.0127
126 to 250 8.8% 0.0769 0.0716
251 to 375 6.4% 0.4904 0.4538
376 to 500 4.8% 0.9178 0.7330

AR(0)-MA(2)-GARCH(1,1)-T 1 to 125 10.4% 0.0149 0.0127
126 to 250 9.6% 0.0351 0.0300
251 to 375 5.6% 0.7625 0.6283
376 to 500 4.8% 0.9178 0.7330

AR(1)-MA(2)-GARCH(1,1)-T 1 to 125 10.4% 0.0149 0.0127
126 to 250 9.6% 0.0351 0.0300
251 to 375 5.6% 0.7625 0.6283
376 to 500 4.8% 0.9178 0.7330

Table A.34: Top overall models for the GSPC index at α = 0.95



A. Tables XXII

Model Out–of–sample Failures puc pcc
AR(1)-MA(2)-GARCH(1,1)-T 1 to 125 8.8% 0.0769 0.0716

126 to 250 9.6% 0.0351 0.0300
251 to 375 6.4% 0.4904 0.4538
376 to 500 4.8% 0.9178 0.7330

AR(2)-MA(1)-GARCH(1,1)-T 1 to 125 8.8% 0.0769 0.0716
126 to 250 9.6% 0.0351 0.0300
251 to 375 6.4% 0.4904 0.4538
376 to 500 4.8% 0.9178 0.7330

AR(1)-MA(0)-GARCH(1,1)-T 1 to 125 8.8% 0.0769 0.0716
126 to 250 10.4% 0.0149 0.0112
251 to 375 5.6% 0.7625 0.6283
376 to 500 4.0% 0.5956 0.7040

AR(0)-MA(1)-GARCH(1,1)-T 1 to 125 8.8% 0.0769 0.0716
126 to 250 10.4% 0.0149 0.0112
251 to 375 6.4% 0.4904 0.4538
376 to 500 4.0% 0.5956 0.7040

AR(1)-MA(1)-GARCH(1,1)-T 1 to 125 8.8% 0.0769 0.0716
126 to 250 10.4% 0.0149 0.0112
251 to 375 6.4% 0.4904 0.4538
376 to 500 4.0% 0.5956 0.7040

AR(0)-MA(2)-GARCH(1,1)-T 1 to 125 8.8% 0.0769 0.0716
126 to 250 10.4% 0.0149 0.0112
251 to 375 7.2% 0.2883 0.2811
376 to 500 4.8% 0.9178 0.7330

AR(2)-MA(0)-GARCH(1,1)-T 1 to 125 8.8% 0.0769 0.0716
126 to 250 10.4% 0.0149 0.0112
251 to 375 7.2% 0.2883 0.2811
376 to 500 4.8% 0.9178 0.7330

AR(2)-MA(2)-GARCH(1,1)-T 1 to 125 9.6% 0.0351 0.0300
126 to 250 10.4% 0.0149 0.0112
251 to 375 6.4% 0.4904 0.4538
376 to 500 4.8% 0.9178 0.7330

Table A.35: Top overall models for the IXIC index at α = 0.95



A. Tables XXIII

Model Out–of–sample Failures puc pcc
AR(0)-MA(1)-GARCH(1,1)-T 1 to 125 7.2% 0.2883 0.3049

126 to 250 8.0% 0.1553 0.0350
251 to 375 6.4% 0.4904 0.4538
376 to 500 3.2% 0.3242 0.5383

AR(0)-MA(1)-GARCH(2,1)-T 1 to 125 7.2% 0.2883 0.3049
126 to 250 8.0% 0.1553 0.0350
251 to 375 6.4% 0.4904 0.4538
376 to 500 3.2% 0.3242 0.5383

AR(0)-MA(2)-GARCH(1,1)-T 1 to 125 7.2% 0.2883 0.3049
126 to 250 8.0% 0.1553 0.0350
251 to 375 6.4% 0.4904 0.4538
376 to 500 3.2% 0.3242 0.5383

AR(0)-MA(2)-GARCH(2,1)-T 1 to 125 7.2% 0.2883 0.3049
126 to 250 8.0% 0.1553 0.0350
251 to 375 6.4% 0.4904 0.4538
376 to 500 3.2% 0.3242 0.5383

AR(1)-MA(0)-GARCH(1,1)-T 1 to 125 7.2% 0.2883 0.3049
126 to 250 8.0% 0.1553 0.0350
251 to 375 6.4% 0.4904 0.4538
376 to 500 3.2% 0.3242 0.5383

AR(1)-MA(0)-GARCH(2,1)-T 1 to 125 7.2% 0.2883 0.3049
126 to 250 8.0% 0.1553 0.0350
251 to 375 6.4% 0.4904 0.4538
376 to 500 3.2% 0.3242 0.5383

AR(2)-MA(0)-GARCH(1,1)-T 1 to 125 7.2% 0.2883 0.3049
126 to 250 8.0% 0.1553 0.0350
251 to 375 6.4% 0.4904 0.4538
376 to 500 3.2% 0.3242 0.5383

AR(2)-MA(0)-GARCH(2,1)-T 1 to 125 7.2% 0.2883 0.3049
126 to 250 8.0% 0.1553 0.0350
251 to 375 6.4% 0.4904 0.4538
376 to 500 3.2% 0.3242 0.5383

Table A.36: Top overall models for the FTSE index at α = 0.95



A. Tables XXIV

Model Out–of–sample Failures puc pcc
AR(2)-MA(2)-GARCH(2,2)-T 1 to 125 7.2% 0.2883 0.2811

126 to 250 8.8% 0.0769 0.2091
251 to 375 5.6% 0.7625 0.6681
376 to 500 4.0% 0.5956 0.7040

AR(0)-MA(1)-GARCH(1,2)-T 1 to 125 8.0% 0.1553 0.1513
126 to 250 8.8% 0.0769 0.2091
251 to 375 5.6% 0.7625 0.6681
376 to 500 4.8% 0.9178 0.7330

AR(0)-MA(2)-GARCH(1,2)-T 1 to 125 8.0% 0.1553 0.1513
126 to 250 8.8% 0.0769 0.2091
251 to 375 5.6% 0.7625 0.6681
376 to 500 4.8% 0.9178 0.7330

AR(1)-MA(0)-GARCH(1,2)-T 1 to 125 8.0% 0.1553 0.1513
126 to 250 8.8% 0.0769 0.2091
251 to 375 5.6% 0.7625 0.6681
376 to 500 4.8% 0.9178 0.7330

AR(2)-MA(0)-GARCH(1,2)-T 1 to 125 8.0% 0.1553 0.1513
126 to 250 8.8% 0.0769 0.2091
251 to 375 5.6% 0.7625 0.6681
376 to 500 4.8% 0.9178 0.7330

AR(2)-MA(2)-GARCH(1,2)-T 1 to 125 8.0% 0.1553 0.1513
126 to 250 8.8% 0.0769 0.2091
251 to 375 5.6% 0.7625 0.6283
376 to 500 4.8% 0.9178 0.7330

AR(0)-MA(1)-GARCH(2,1)-T 1 to 125 8.0% 0.1553 0.1513
126 to 250 8.8% 0.0769 0.2091
251 to 375 5.6% 0.7625 0.6681
376 to 500 5.6% 0.7625 0.6283

AR(0)-MA(1)-GARCH(2,2)-T 1 to 125 8.0% 0.1553 0.1513
126 to 250 8.8% 0.0769 0.2091
251 to 375 5.6% 0.7625 0.6681
376 to 500 5.6% 0.7625 0.6283

Table A.37: Top overall models for the GDAXI index at α = 0.95



A. Tables XXV

Model Out–of–sample Failures puc pcc
AR(0)-MA(1)-GARCH(2,1)-T 1 to 125 5.6% 0.7625 0.5809

126 to 250 8.0% 0.1553 0.1800
251 to 375 5.6% 0.7625 0.6283
376 to 500 4.8% 0.9178 0.5343

AR(0)-MA(2)-GARCH(2,2)-T 1 to 125 5.6% 0.7625 0.5809
126 to 250 8.0% 0.1553 0.1800
251 to 375 5.6% 0.7625 0.6283
376 to 500 4.8% 0.9178 0.5343

AR(1)-MA(0)-GARCH(2,1)-T 1 to 125 5.6% 0.7625 0.5809
126 to 250 8.0% 0.1553 0.1800
251 to 375 5.6% 0.7625 0.6283
376 to 500 4.8% 0.9178 0.5343

AR(1)-MA(0)-GARCH(2,2)-T 1 to 125 5.6% 0.7625 0.5809
126 to 250 8.0% 0.1553 0.1800
251 to 375 5.6% 0.7625 0.6283
376 to 500 4.8% 0.9178 0.5343

AR(0)-MA(2)-GARCH(2,1)-T 1 to 125 6.4% 0.4904 0.5887
126 to 250 8.0% 0.1553 0.1800
251 to 375 5.6% 0.7625 0.6283
376 to 500 4.8% 0.9178 0.5343

AR(1)-MA(1)-GARCH(2,2)-T 1 to 125 6.4% 0.4904 0.5887
126 to 250 8.0% 0.1553 0.1800
251 to 375 5.6% 0.7625 0.6283
376 to 500 4.8% 0.9178 0.5343

AR(1)-MA(2)-GARCH(2,2)-T 1 to 125 6.4% 0.4904 0.5887
126 to 250 8.0% 0.1553 0.1800
251 to 375 5.6% 0.7625 0.6283
376 to 500 4.8% 0.9178 0.5343

AR(2)-MA(0)-GARCH(2,1)-T 1 to 125 6.4% 0.4904 0.5887
126 to 250 8.0% 0.1553 0.1800
251 to 375 5.6% 0.7625 0.6283
376 to 500 4.8% 0.9178 0.5343

Table A.38: Top overall models for the N225 index at α = 0.95
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B. Figures XXVII

Figure B.1: Log–returns plots of the indices



B. Figures XXVIII

Figure B.2: Volatility of the log–returns



B. Figures XXIX

Figure B.3: In–sample histogram plots of the log–returns



B. Figures XXX

Figure B.4: In–sample autocorrelations of residuals



B. Figures XXXI

Figure B.5: In–sample partial autocorrelations of residuals



B. Figures XXXII

Figure B.6: In–sample autocorrelations of squared residuals



B. Figures XXXIII

Figure B.7: In–sample partial autocorrelations of squared residuals



B. Figures XXXIV

Figure B.8: Out–of–sample histogram plots of the log–returns



B. Figures XXXV

Figure B.9: Out–of–sample autocorrelations of residuals



B. Figures XXXVI

Figure B.10: Out–of–sample partial autocorrelations of residuals



B. Figures XXXVII

Figure B.11: Out–of–sample autocorrelations of squared residuals



B. Figures XXXVIII

Figure B.12: Out–of–sample partial autocorrelations of squared resid-
uals
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C. In–sample estimates XL

ARCH family regression -- ARMA disturbances

Sample: 1 - 1000 Number of obs = 1000

Distribution: GED Wald chi2(3) = 77054.16

Log likelihood = 3598.18 Prob > chi2 = 0.0000

------------------------------------------------------------------------------

| OPG

log_returns | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

log_returns |

_cons | -.0000605 .000219 -0.28 0.782 -.0004897 .0003686

-------------+----------------------------------------------------------------

ARMA |

ar |

L1. | .9836262 .0281988 34.88 0.000 .9283576 1.038895

L2. | .0233818 .027909 0.84 0.402 -.0313188 .0780825

|

ma |

L1. | -1.006093 .0042451 -237.00 0.000 -1.014414 -.9977731

-------------+----------------------------------------------------------------

ARCH |

abarch |

L1. | .0234357 .0450452 0.52 0.603 -.0648512 .1117227

L2. | .0209444 .0487933 0.43 0.668 -.0746888 .1165776

|

atarch |

L1. | -.2451851 .0413642 -5.93 0.000 -.3262574 -.1641128

L2. | .1722595 .0459106 3.75 0.000 .0822764 .2622426

|

sdgarch |

L1. | 1.526676 .1945302 7.85 0.000 1.145404 1.907949

L2. | -.5472296 .1880843 -2.91 0.004 -.9158681 -.1785912

|

_cons | .0001014 .0000547 1.85 0.064 -5.76e-06 .0002087

-------------+----------------------------------------------------------------

/lnshape | .4191231 .0610303 6.87 0.000 .2995059 .5387402

-------------+----------------------------------------------------------------

shape | 1.520627 .0928043 1.349192 1.713846

------------------------------------------------------------------------------

Table C.1: Top AIC value in–sample model for the DJI index



C. In–sample estimates XLI

ARCH family regression -- ARMA disturbances

Sample: 1 - 1000 Number of obs = 1000

Distribution: t Wald chi2(2) = 58.89

Log likelihood = 3562.491 Prob > chi2 = 0.0000

------------------------------------------------------------------------------

| OPG

log_returns | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

log_returns |

_cons | .000488 .0001656 2.95 0.003 .0001634 .0008125

-------------+----------------------------------------------------------------

ARMA |

ar |

L1. | .7153106 .1556689 4.60 0.000 .4102052 1.020416

|

ma |

L1. | -.7711534 .1446424 -5.33 0.000 -1.054647 -.4876594

-------------+----------------------------------------------------------------

ARCH |

earch |

L1. | -.273966 .0431201 -6.35 0.000 -.3584799 -.1894522

L2. | .2254824 .0395164 5.71 0.000 .1480317 .3029331

|

earch_a |

L1. | -.2938445 .0777547 -3.78 0.000 -.446241 -.1414479

L2. | .3231884 .0804692 4.02 0.000 .1654717 .4809051

|

egarch |

L1. | 1.530684 .127009 12.05 0.000 1.281751 1.779617

L2. | -.5414155 .1238022 -4.37 0.000 -.7840633 -.2987677

|

_cons | -.1073776 .0461632 -2.33 0.020 -.1978559 -.0168993

-------------+----------------------------------------------------------------

/lndfm2 | 1.70273 .2904605 5.86 0.000 1.133438 2.272022

-------------+----------------------------------------------------------------

df | 7.488912 1.594312 5.106317 11.69899

------------------------------------------------------------------------------

Table C.2: Top AIC value in–sample model for the GSPC index



C. In–sample estimates XLII

ARCH family regression -- MA disturbances

Sample: 1 - 1000 Number of obs = 1000

Distribution: t Wald chi2(2) = 1.69

Log likelihood = 3273.931 Prob > chi2 = 0.4286

------------------------------------------------------------------------------

| OPG

log_returns | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

log_returns |

_cons | .0003171 .0002731 1.16 0.246 -.0002182 .0008524

-------------+----------------------------------------------------------------

ARMA |

ma |

L1. | -.0117053 .0288429 -0.41 0.685 -.0682364 .0448258

L2. | -.0350109 .0288777 -1.21 0.225 -.09161 .0215883

-------------+----------------------------------------------------------------

ARCH |

earch |

L1. | -.2041116 .0432195 -4.72 0.000 -.2888203 -.1194028

L2. | .1679943 .0399851 4.20 0.000 .0896249 .2463636

|

earch_a |

L1. | -.214968 .078054 -2.75 0.006 -.367951 -.061985

L2. | .2547634 .0830723 3.07 0.002 .0919447 .4175821

|

egarch |

L1. | 1.532697 .1374248 11.15 0.000 1.263349 1.802044

L2. | -.5474957 .1332015 -4.11 0.000 -.8085659 -.2864255

|

_cons | -.1387147 .0621232 -2.23 0.026 -.260474 -.0169555

-------------+----------------------------------------------------------------

/lndfm2 | 2.937893 .489181 6.01 0.000 1.979116 3.89667

-------------+----------------------------------------------------------------

df | 20.87603 9.233797 9.236343 51.23822

------------------------------------------------------------------------------

Table C.3: Top AIC value in–sample model for the IXIC index



C. In–sample estimates XLIII

ARCH family regression -- ARMA disturbances

Sample: 1 - 1000 Number of obs = 1000

Distribution: t Wald chi2(4) = 5.11e+06

Log likelihood = 3634.532 Prob > chi2 = 0.0000

------------------------------------------------------------------------------

| OPG

log_returns | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

log_returns |

_cons | .000187 .0010007 0.19 0.852 -.0017743 .0021483

-------------+----------------------------------------------------------------

ARMA |

ar |

L1. | -.9838961 .0005555 -1771.18 0.000 -.9849849 -.9828073

L2. | .012365 .0012759 9.69 0.000 .0098643 .0148657

|

ma |

L1. | .9297054 .0007888 1178.67 0.000 .9281594 .9312513

L2. | -.0704104 .0003881 -181.44 0.000 -.0711709 -.0696498

-------------+----------------------------------------------------------------

ARCH |

earch |

L1. | -.1310023 .0010512 -124.62 0.000 -.1330626 -.128942

|

earch_a |

L1. | .1063809 .0060935 17.46 0.000 .0944378 .1183239

|

egarch |

L1. | .9711669 1.72e-06 5.6e+05 0.000 .9711635 .9711702

|

_cons | -.284319 .020903 -13.60 0.000 -.3252882 -.2433499

-------------+----------------------------------------------------------------

/lndfm2 | 31.14093 .0229207 1358.64 0.000 31.096 31.18585

-------------+----------------------------------------------------------------

df | 3.34e+13 7.67e+11 3.20e+13 3.50e+13

------------------------------------------------------------------------------

Table C.4: Top AIC value in–sample model for the FTSE index



C. In–sample estimates XLIV

ARCH family regression -- ARMA disturbances

Sample: 1 - 1000 Number of obs = 1000

Distribution: GED Wald chi2(4) = 1902.05

Log likelihood = 3329.387 Prob > chi2 = 0.0000

------------------------------------------------------------------------------

| OPG

log_returns | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

log_returns |

_cons | .0008273 .0002614 3.16 0.002 .000315 .0013397

-------------+----------------------------------------------------------------

ARMA |

ar |

L1. | .3179623 .0405725 7.84 0.000 .2384417 .3974829

L2. | -.9180841 .039051 -23.51 0.000 -.9946226 -.8415455

|

ma |

L1. | -.3307553 .0298507 -11.08 0.000 -.3892617 -.2722489

L2. | .9528917 .0290591 32.79 0.000 .8959369 1.009847

-------------+----------------------------------------------------------------

ARCH |

abarch |

L1. | .1263833 .0356596 3.54 0.000 .0564917 .1962749

L2. | -.106246 .0364772 -2.91 0.004 -.1777401 -.034752

|

atarch |

L1. | -.2456664 .042911 -5.73 0.000 -.3297705 -.1615624

L2. | .2262409 .0402146 5.63 0.000 .1474217 .3050601

|

sdgarch |

L1. | 1.751816 .0806066 21.73 0.000 1.59383 1.909802

L2. | -.766888 .0750138 -10.22 0.000 -.9139123 -.6198636

|

_cons | .0000625 .0000398 1.57 0.117 -.0000156 .0001406

-------------+----------------------------------------------------------------

/lnshape | .3692524 .0691173 5.34 0.000 .2337849 .5047199

-------------+----------------------------------------------------------------

shape | 1.446653 .0999888 1.263373 1.656521

------------------------------------------------------------------------------

Table C.5: Top AIC value in–sample model for the GDAXI index



C. In–sample estimates XLV

ARCH family regression -- MA disturbances

Sample: 1 - 1000 Number of obs = 1000

Distribution: t Wald chi2(1) = 0.03

Log likelihood = 17898.67 Prob > chi2 = 0.8593

------------------------------------------------------------------------------

| OPG

log_returns | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

log_returns |

_cons | .0002007 .003066 0.07 0.948 -.0058085 .00621

-------------+----------------------------------------------------------------

ARMA |

ma |

L1. | .0337188 .1902067 0.18 0.859 -.3390795 .4065171

-------------+----------------------------------------------------------------

ARCH |

earch |

L1. | -.2693833 .3097676 -0.87 0.385 -.8765166 .33775

L2. | .0410691 .1085756 0.38 0.705 -.1717351 .2538733

|

earch_a |

L1. | -.0281678 .0007323 -38.47 0.000 -.0296029 -.0267326

L2. | .2168371 .2267851 0.96 0.339 -.2276537 .6613278

|

egarch |

L1. | .8597736 .0533203 16.12 0.000 .7552677 .9642795

|

_cons | -1.282041 .6599377 -1.94 0.052 -2.575495 .0114131

-------------+----------------------------------------------------------------

/lndfm2 | 36.41557 8.72e-08 4.2e+08 0.000 36.41557 36.41557

-------------+----------------------------------------------------------------

df | 6.53e+15 5.70e+08 6.53e+15 6.53e+15

------------------------------------------------------------------------------

Table C.6: Top AIC value in–sample model for the N225 index
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