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and Astronomy, University of Århus whose enthusiasm and generous help has been of
tremendous value for me.
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Katedra / Ústav: Ústav teoretické fyziky, Univerzita Karlova v Praze
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hových interakćı. Daľśı sekce se zaob́ıraj́ı aspekty konstrukce CP potenciálu v DMR
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Title: Excitation of molecules by cold electrons

Author: Miroslav Šulc
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INTRODUCTION

The presented thesis intends to summarize and explain in more detail the work I have
been involved in during my doctoral study at the Faculty of Mathematics and Physics
of Charles University in Prague in the period from 2007 to 2011. From the concep-
tual point of view, the covered topics of interest could be divided into four essentially
independent logical blocks.

Firstly, I have picked up on my master thesis (Šulc, 2007) and investigated several
computational methods applicable for potential scattering problems. The attention was
especially devoted to examination of the properties and numerical behavior of a new-
ly proposed method capable of dealing with nonlocal potential terms. This approach
profits from combination of the R-matrix method, the basic properties of which are
summarized in Section 1.6, and Lanczos variational iterative procedure. For thorough
clarification of the latter gambit we refer to the literature cited in Section 1.6. Conse-
quently, we have also adapted this procedure to computational tasks, in which a long
range interaction plays a dominant role. Corresponding details are briefly covered by
Section 1.6 and discussed more thoroughly in Šulc et al. (2010). This publication is
also included as a part of this thesis in Attachment A.

Within the next subproject we have focused on development of the interaction
correlation-polarization potential in the framework of the Discrete Momentum Repre-
sentation (DMR) method canvassed in Section 1.1. The electron-molecule scattering
process is in the proposed approach described at the level of the Static Exchange ap-
proximation to which we devote the Chapter 2, especially the Section 2.1. In contrast
to the “classical” approaches, where one typically employs more or less succesful tweaks
in order to improve the adiabatic polarization potential (Section 2.3), we employ the
Local Density Approximation (LDA) within the Density Functional Theory (DFT) to
render the short range part of the correlation potential which is in turn matched with
known asymptotic polarization form. Consequently, we apply this tack for description
of electron scattering on small hydrocarbon molecules (Čuŕık and Šulc, 2010). Theo-
retical concepts are introduced mainly in Section 2.3 whereas corresponding results can
be found in Attachment B.

The third topic comprising the main contribution to the presented thesis consisted
in theoretical analysis of the experimental data regarding collisions of cold electrons
(incident energy below ∼ 250 meV) with small molecules in the gas phase. The work has
been done in collaboration with the group of Prof. David Field from the Department
of Physics and Astronomy of Århus University in Denmark. From the pure theoretical
point of view, there is a marked difference between polar and non-polar molecular
species.

In the former case, the electron-molecule interaction is governed by the dominant
long-range dipole part of the potential (Appendix C) the presence of which can be
actually conveniently utilized as explained in Subsection 4.1.1, where we demonstrate
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the applicability potential of this approach on the experimental data regarding CH3Cl.
Roughly speaking, the scattering formalism is reformulated with respect to the solutions
of the pure dipole interaction. In analogy with standard approach one is led to the
generalized phase shifts which are attributed to (unknown) short-range perturbation
to the dipole potential. These phase-shifts then play the role of free energy dependent
parameters in the entire model and are fitted in order to reproduce the experimental
integral and backward cross-sections data. Since we have two independent data sets
at our disposal, we take into account just two most dominant generalized phase-shifts
hoping in this sense for an one to one correspondence between the model and the
measurement (Chapter 3). Utilizing the knowledge of the energy dependence of these
phase shifts, we can consequently easily compute any scattering quantity, notably the
differential cross-sections for individual rotational state-to-state transitions.

For non-polar molecules, the situation is more involved since the interaction misses
a clearly dominant contribution. The identification of relevant fitting parameters as in
the polar case is thus accordingly hampered. In order to resolve this issue, we have
developed a computer program for laboratory frame close-coupling calculations in the
SE approximation including a correlation-polarization potential constructed in a very
similar DFT-fashion as for the hydrocarbons in the previous project. The numerical
implementation was based on the Volterra propagator method tailored for scattering
problems as elaborated succinctly in Section 1.5 and Appendix A. The resulting treat-
ment has been tested on a model mimicking electron scattering off carbon monoxide
(Section 1.4) representing a slightly polar molecule. For this particular system we
have achieved good accordance with published results. However, for the non-polar
N2 molecule, it turned out to be very difficult to obtain reliable converged laboratory
frame results. We have been thus forced to digress to the body frame (Section 1.2) and
exploit the Rotational Frame Transformation (RFT) abstracted in Subsection 1.2.2.
Decreasing the characteristic size of the problem by reducing the number of relevant
channels led indeed to a significant improved numerical behavior. By comparing these
ab initio results with available sources in the literature we have identified the body
frame K-matrix elements dominant for the prediction of the measured quantities. The
procedure then runs along the lines of the polar case treatment. As a byproduct of
this analysis, we have identified an interesting phenomena consisting in marked sup-
pression of the backward cross-section below 95 meV. After some consideration, we
have attributed this effect to a destructive interference in the l ≤ 1 angular space.
Corresponding publication is currently in the submission process and its actual version
is included as Attachment B.

Finally, in the last part of my doctoral study during my stay in the group of Prof. Jǐŕı
Vańıček at the Laboratory of Theoretical Physical Chemistry (LCPT) of the École Poly-
technique Fédérale de Lausanne (EPFL), I have devoted my interest to the study of
properties and numerical behavior of selected semiclassical methods (Kay, 2005) in the
framework of quantum dynamics with applicability in the field of time-resolved ultra-
fast spectroscopy. Specifically, we have implemented and consequently analyzed the
Frozen Gaussian approach of Heller (1981) and the Heller-Herman-Kluk-Kay propaga-
tor proposed in Herman and Kluk (1984). These methods were tested on a set of low
dimensional training systems, i.a. a two dimensional collinear model (Li et al., 1993)
for the NCO molecule. Even for this rather simple setting, we were led to the appar-
ently inevitable conclusion that the direct implementation of the original algorithms
suffers from several conceptual (Walton and Manolopoulos, 1995) and also numerical
drawbacks (Kay, 1994) reflecting itself in the fact that for sufficiently large time these
methods are typically brought to their computational demise. In this sense, several
improvements turned out to be of prominent importance (Elran and Kay, 1999; Kay,
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1994; Walton and Manolopoulos, 1996; Wang et al., 2001). Another closely related
aspect surprisingly overlooked in the literature is the possibility to employ simplectic
integrators for solving the classical equations of motion. This ingredient represents
actually a common denominator to a vast majority of semiclassical approximations to
the quantum dynamics. More importantly, within this approach, the equations of mo-
tion for the stability matrix are naturally formulated by means of a straightforward
iterative updating process amenable to simple implementation. Apart from standard
propagation routines such as symplectic Euler’s and Verlet’s schemes, we have also im-
plemented and tested a fourth order method (Chin, 1997) minimizing the number of
terms in the split operator formula for the evolution operator at additional costs consist-
ing in introducing an effective force containing terms depending on the Hessian matrix.
This gambit turned out to yield better numerical accuracy, nevertheless the update
process for the stability matrix then necessitates the knowledge of third derivatives of
the potential the requirement of which could in principle complicate combination with
ab initio calculation of the potential surfaces in an “on the fly” fashion. This work
doesn’t constitute a part of the presented thesis, nevertheless relevant references, more
detailed discussion, and a concise summary of achieved results can be found in Wehrle,
Šulc and Vańıček (2011).
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CHAPTER

ONE

COMPUTATIONAL TOOLS

1.1 Discrete momentum representation

This method could be considered as an example of “direct” methods, in the spirit of
which one tries to tackle the Lippmann-Schwinger (LS) equation for the transition
operator1 T.

The basic idea of the Discrete Momentum Representation (DMR) approach (Polášek
et al., 2000) is that one tries to solve the LS equation directly in three dimensional
momentum basis abandoning techniques such as partial wave decomposition. In one-
channel formalism considering only elastic scattering, the LS equation takes (Gell-Mann
and Goldberger, 1953) following form

〈
~kf
∣∣T∣∣~ki〉 =

〈
~kf
∣∣U∣∣~ki〉+

∫
d~k

〈
~kf
∣∣U∣∣~k〉〈~k∣∣T∣∣~ki〉
k2

0 − k2 + iε
, (1.1)

with k2
0/2 representing the energy of the incident electron, U denoting the potential

multiplied by two2 and finally presence of the term iε suggests the usual limiting process
ε→ 0+ performed after the integration.

The problem is now twofold. First of all, in oder to ensure successfulness of the
model, we certainly need to devise the interaction potential U as accurate as possible.
In the following, we shall confine ourselves only on issues connected with numerical
evaluation of the integral over ~k in Eq. (1.1). More detailed discussion regarding ap-
proximative treatments of the U -term can be found in Chapter 2.

The original paper (Polášek et al., 2000) doesn’t give detailed explanation regarding
simplifying procedure of the integral entering Eq. (1.1) and therefore in the following
we would like to make a few comments concerning this issue.

To simplify the integral in Eq. (1.1) as much as possible, it is convenient to split up
the integration into angular (over k̂) and radial part (over k). This readily yields

〈
~kf
∣∣T∣∣~ki〉 =

〈
~kf
∣∣U∣∣~ki〉+

∫ ∞
0

dk k2 f(~kf ,~ki, k)

k2
0 − k2 + iε

, (1.2)

where the function f is defined in terms of U and T as

f(~kf ,~ki, k) =

∫
dn̂
〈
~kf
∣∣U∣∣kn̂〉〈kn̂∣∣T∣∣~ki〉. (1.3)

1for economy of notation, we confine ourselves only to the one-channel Lippmann-Schwinger equation
in this chapter

2atomic units are used throughout this chapter – in more precise notation U = 2µV ,where µ is the
reduced mass of the target-scatterer system

5



The radial integral in Eq. (1.2) is singular in the sense that the upper limit of integration
is infinity and also due to the term in the denominator. In order to handle the iε-term,
we can employ slight modification of the well-known Plemelj-Sokhotsky formula3

1

x0 − x+ iε
= P 1

x0 − x
− iπδ(x− x0), (1.4)

where both sides have to be understood in the sense of the theory of distributions.
Using (1.4) for fixed x0 6= 0, the following identity is easily verified4

1

x2
0 − x2 + iε

=
1

2x0

(
1

x0 − x+ iε
+

1

x0 + x+ iε

)
=

= P 1

x2
0 − x2

− i
π

2x0

(
δ(x− x0) + δ(x+ x0)

)
.

(1.5)

The distributions introduced in (1.4) and (1.5) act on functions defined on the entire real
axis. However, the integration range in our integral of interest (1.1) is only the positive
real axis. Nevertheless, this nuisance is easily circumvented for all terms except f
appearing in the integrand of (1.1) are even in k. We can therefore replace the function
f by its even extension f̃ and consequently expand the integration range to (−∞,∞),
utilize formula (1.5) and take only half of the resulting integral. Explicitly, one has∫ ∞

0
dk k2 f(~kf ,~ki, k)

k2
0 − k2 + iε

=
1

2

∫ ∞
−∞

dk k2 f̃(~kf ,~ki, k)

k2
0 − k2 + iε

=
1

2
P
∫ ∞
−∞

dk k2 f̃(~kf ,~ki, k)

k2
0 − k2

− i
π

2
k0f̃(~kf ,~ki, k0)

= P
∫ ∞

0
dk k2 f(~kf ,~ki, k)

k2
0 − k2

− i
π

2
k0f(~kf ,~ki, k0).

(1.6)

From practical point of view, we are thus now faced with an integral of the type

P
∫ ∞

0
dk k2 f(~kf ,~ki, k)

k2
0 − k2

. (1.7)

Original DMR approach (Ingr et al., 2000; Polášek et al., 2000) tries to improve the
numerical behavior of (1.7) by a substitution chosen as

k = k0
a+ bx

a− bx
, for a, b > 0, (1.8)

which maps the singularity k = k0 to x = 0 and the points k = 0 and k = ∞ to
x = −a/b and x = a/b, respectively.5 Alternative approaches based on principal value
identities satisfied by Chebyshev polynomials of the first and second kind have been
also reported (Pichl and Horáček, 1996).

By applying the transformation (1.8) to (1.7), we obtain

P
∫ ∞

0
dk k2 f(~kf ,~ki, k)

k2
0 − k2

= −k0

2
P
∫ b/a

−b/a
dx

f̂(~kf ,~ki, x)

x

(a+ bx)2

(a− bx)2
, (1.9)

with f̂(~kf ,~ki, x) = f(~kf ,~ki, k(x)). Three minor observations regarding Eq. (1.9) deserve
further comment.

3symbol P denotes Cauchy principal value
4limit ε→ 0+ is automatically assumed
5actually only the ratio b/a is important in (1.8) and therefore one can set b = 1 with impunity
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• The integration in x is symmetric around 0. Because P
∫ A
−A 1/x = 0, one imme-

diately sees that following identity (Polášek et al., 2000) holds

P
∫
f(x)

x
= P

∫
f(x)− f(0)

x
. (1.10)

It is therefore perfectly possible to evaluate the rest of the integrand in (1.9) at
x = 0 and consequently subtract it from the original expression without changing
the value of the integral (1.9).

• It might seem that the upper integration limit x = b/a causes problems due to
the (a − bx)2 term. However, vicinity of x = b/a corresponds to high momenta
k and in this case it is not completely unreasonable to expect that the function
f(~kf ,~ki, k(x)) will decay fast enough to ensure convergence.

• If one uses Gauss-Legendre quadrature in x with even number of mesh points
(which are then distributed symmetrically around the origin), it is justifiable
simply to “forget” the principal value as had been already observed in the early
days of computational science (Sloan, 1968).

As concerns the angular integration in (1.3), Polášek et al. (2000) suggested to use an
efficient numerical scheme known in the literature as Lebedev quadrature. This method,
originally introduced by Lebedev (1976, 1977), is intended for numerical integration of
functions defined on a sphere. The grid points are chosen so that they are invariant
under operations belonging to G∗8 – the octahedral point group augmented by inversion.
It can be shown (Lebedev, 1976) that any point on a sphere has exactly 5,7,11,23
or 47 “conjugated” partners.6 The final grid is then chosen as an union of several
such “conjugated” groups and points belonging to the same group are equipped with
the same integration weight. These weights are in turn determined from the natural
requirement of exact integration of polynomials (or equivalently, spherical harmonics)
up to a given order. This yields a set of nonlinear equations, which are consequently
solved for the weights7 in a numerical fashion.

Finally, introducing radial and angular numerical quadrature, the original LS equa-
tion (1.1) is thus converted into a matrix equation amenable to standard treatment by
any of the plethora of methods available (Golub and Loan, 1996).

A detailed study regarding optimal choice of the radial as well as angular quadrature
parameters can be found in Čársky (2010a). For these purposes, the author employs
transformation (1.8) with b = 1 and presupposes that the error introduced by the nu-
merical quadrature in Eq. (1.1) won’t be significantly changed if one replaces the exact
transition operator by the matrix U digressing thus actually to the Born approxima-
tion of second order. For b = 1, a value of a greater than 1 corresponds effectively
to a cut-off in the momentum space (with x confined to the interval [−1, 1]). Čársky
(2010a) therefore investigates the minimal value of a ensuring a prescribed relative er-
ror in the numerical integration of the second term in Eq. (1.1) (in the second Born
approximation) as compared to the case a = 1 using several model potentials (H2O,
CH4, cyclopropane, etc.). For this particular value of a, the author consequently sup-
poses that the Lebedev’s grid with 5 180 points (precise up to the order of 131) yields
converged results. The angular grid density is then decreased until one reaches some
preselected relative error. This methodology has been later tested (Čársky, 2010b) in

6i.e., points belonging to one particular “conjugate” set are transformed among themselves with
respect to the group G∗8

7e.g., Lebedev and Laikov (1999) give these weights in tabulated form up to order 131 (corresponding
grid has then 5 810 points)
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case of elastic electron scattering on small molecules, where the author also discuss-
es numerical issues connected with the evaluation of matrix elements of the exchange
contribution to the potential U-term.

The above described method has found many useful applications in the field of
electron-molecule scattering. Ingr et al. (2000) have extended this approach also for
polar molecules, where special care has to be taken concerning the singular behavior of
the dipole potential. The underlying ideas are actually quite similar to the Born closure
techniques described in Subsection 1.4.3. Formalism for two-channel vibrationally in-
elastic scattering has been established and applied for H2 and H2O molecules by Čuŕık
and Čársky (2003). Study of elastic electron scattering on cyclopropane, where the
short-range correlation potential is modeled at the local density approximation in the
DFT framework has been recently given by Čuŕık and Šulc (2010). This paper is also
included into this thesis as Attachment C.

1.2 Electron-molecule scattering formalism

In description of electron-molecule collisions one usually employs (Lane, 1980) Born-
Oppenheimer approximation to simplify the theoretical treatment of the states of the
target molecule which is assumed to be comprised of M nuclei located at {~Ri}Mi=1 and
N electrons with coordinates {~ri}Ni=1. Following Chang and Fano (1972), we will adhere
to the convention8 that unprimed coordinates refer to the frame of reference fixed in
space (LF – laboratory frame) whereas primed coordinates are connected with a frame
of reference attached to the molecule (BF – body frame).9

With this convention, the total Hamiltonian for the composite system comprised by
an impinging electron with position vector ~r and the target molecule can be expressed
as

H = H(e)
m (~ri, ~Rj) + H(n)

m (~Rj) + Te(~r ) + Ve-m(~r, ~ri, ~Rj), (1.11)

where the meaning of the individual terms is as follows

• Te(~r ) is simply the kinetic energy operator of the incident electron

• H
(e)
m (~ri, ~Rj) stands for standard “electronic” Born-Oppenheimer Hamiltonian be-

ing merely given as a sum of kinetic energies of individual molecular electrons
and Coulombic repulsion terms to wit

H(e)
m (~ri, ~Rj) = −1

2

N∑
i=1

∆i −
N∑
i=1

M∑
j=1

Zj∣∣~ri − ~Rj
∣∣ +

N∑
i,j
i 6=j

1∣∣~ri − ~rj∣∣
• H

(n)
m (~Rj) contains in a very similar fashion the kinetic and potential terms re-

garding the nuclei, namely

H(n)
m (~Rk) = −1

2

M∑
i=1

1

Mi
∆i +

M∑
i 6=j

1∣∣~Ri − ~Rj
∣∣

• Ve-m(~r, ~ri, ~Rj) represents the (Coulombic) interaction of the incident electron with
the target molecule, i.e.,

Ve-m(~r, ~ri, ~Rj) = −
M∑
j=1

Zj∣∣~r − ~Rj
∣∣ +

N∑
i=1

1∣∣~r − ~ri∣∣
8Lane (1980); Morrison (1988) employ opposite notation
9coinciding in the rigid rotor approximation (Appendix E) with the principal axes of inertia
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In order to simplify notation as much as possible, we shall confine ourselves in the
following to diatomic targets having just one nuclear degree of freedom, the internu-
clear distance, R. To proceed further, one typically introduces (Morrison, 1988) a set
of target Born-Oppenheimer electronic states |α〉 to each of which there corresponds
a potential energy curve Eα(R). By definition, these kets satisfy

H(e)
m |α〉 = Eα(R) |α〉 .

The nuclear degrees of freedom are collectively taken into account by introducing a com-
mon label ν. The target states |αν〉 are consequently in the Born-Oppenheimer frame-
work rendered as [

H(n)
m + Eα(R)

]
|αν〉 = Eαν |αν〉 .

Central to the scattering process under investigation are the asymptotic free states
(Taylor, 2006), which can be in the present setting labeled naturally by the scattered
electron’s momentum vector ~kαν and the target quantum numbers α, ν introduced
above. Subscript on k denotes explicitly the dependence of the momentum on the
channel indices α, ν. In accordance with Morrison (1988); Taylor (2006), we denote
the stationary scattering states as

∣∣~kαν , α, ν〉. Since we are interested in low-energy
collisions only, it is not completely unreasonable to expect that only the lowest electronic
state will play a dominant role. This is manifested formally in the procedure (Burke,
1979; Morrison, 1988) in which one expands the sought total wave function

∣∣~kαν , α, ν〉
into individual electronic states, retains only the ground electronic state α0 and finally
applies the bound-free antisymmetrizer to enforce the indistinguishability of the incident
(free) and the molecular (bound) electrons, i.e.,∣∣~kα0ν , ν

〉
≡ A

∑
α′

δα0,α′
∣∣α′〉〈α′∣∣~kαν , α, ν〉. (1.12)

Projection of the Schrödinger equation corresponding to (1.11) for energy E onto the
ground electronic state α0 yields a Schrödinger-like equation in ~r, ~Rj for

∣∣~kα0ν , ν
〉

since

the electronic variables ~ri have been integrated out. By denoting
∣∣~kα0ν , ν

〉
in coordinate

representation as Ψ~k0,ν0
(~r, ~Rj), the resulting equation takes the form[

−1

2
∆~r + H(n)

m + Eα0(R) + Vint − E
]

Ψ~k0,ν0
(~r, ~Rj) = 0. (1.13)

All information about the scattering process can be then extracted from the wave
function Ψ~k0,ν0

, e.g., the scattering amplitude is closely linked with its asymptotic
behavior

Ψ~k0,ν0
(~r, ~Rj)

r→∞∼ ei~k0·~rφν0(~Rj) +
∑
ν

ei~kν~r

r
f
(
~k0, ν0 → ~kν , ν

)
φν(~Rj). (1.14)

Having obtained the scattering amplitude f , one consequently easily expresses the
corresponding differential scattering cross-section

dσ

dΩ

∣∣∣∣
ν0→ν

=
kν
k0

∣∣∣f(~k0, ν0 → ~kν , ν
)∣∣∣2, (1.15)

from which the integral cross-section σν0→ν is rendered by means of angular integration.
The interaction potential denoted by Vint in (1.13) consists of two important parts,

the so-called static Vst and exchange Vex potential. The former is merely the interac-
tion potential Ve-m averaged over the ground electronic state |α0〉 whereas the latter is

9



in general a nonlocal operator ensuing from the antisymmetrization in (1.12). Result-
ing approximation is widely known in the literature as Static Exchange Approximation
(Huo and Gianturco, 1995, ch. 4) and is in more detail discussed in Section 2.1. The
omission of excited electronic states in (1.12) is formally equivalent to neglecting of po-
larization effects, i.e., distortion of the target charge density by the impinging electron,
and it has to be accounted for by further modifications of the interaction potential Vint

as briefly mentioned in Chapter 2.

1.2.1 Laboratory vs. Body frame approach

The plane wave representation inherently present in the central equation (1.13) of the
static exchange approximation is not especially convenient for practical computational
purposes especially at very low energies. Therefore one is forced to seek more convenient
representations, two of which are the subject of the following discussion.

Laboratory frame approach (coupled angular momentum)

The laboratory frame approach in coupled angular momentum10 representation is tan-
tamount to considering one particular complete set of mutually commuting operators11,
namely

H(v)
m , l2, j2,J2,Jz, (1.16)

i.e., one takes into account the vibrational Hamiltonian H
(v)
m , squared orbital angular

momentum of the incident electron l2, squared rotational angular momentum j2 of the
target diatomic molecule and also the total angular momentum J2 together with its
projection Jz onto the space fixed z-axis. In coordinate representation, the relevant
basis functions are expressed as

ΦJM
υjl

(
r̂, ~R

)
= χυ(R)

∑
mj ,ml

(jl mjml| J M) Yj,mj

(
R̂
)
Yl,m

(
r̂
)
, (1.17)

with χυ representing the vibrational state υ. Transformation from the plane wave
representation is effected (Morrison, 1988) in a straightforward way. In the basis (1.17),
the wave function Ψ~k0,ν0

takes a similar form

ΨJM
υ0j0l0

(
~r, ~R

)
=

1

r

∑
υjl

ψJυjl,υ0j0l0(r) · ΦJM
υjl

(
r̂, ~R

)
, (1.18)

where one is interested in solving the Schrödinger equation for the r-dependent “expan-
sion coefficients”, the “radial” equations (Chang and Fano, 1972, Eq. (21)) for which[

−1

2

d2

dr2
+
l(l + 1)

2r2
− 1

2
k2
υj

]
ψJυjl,υ0j0l0(r) = −

∑
υ′j′l′

〈
υjl
∣∣Vint

∣∣υ′j′l′〉ψJυ′j′l′,υ0j0l0(r)

(1.19)
are easily obtained by projecting the Schrödinger equation for the total wave function
onto individual elements of the basis (1.17). Numerical methods designed for solving
systems of equations of the type (1.19) are the subject of Section 1.5.

The channel momentum kυj entering (1.19) results from conservation of the total
energy12

~k 2
υj = 2E − ω(2υ + 1)− 2Bj(j + 1). (1.20)

10denoted as (LAB-CAM) by Huo and Gianturco (1995); Morrison (1988)
11since we are considering only diatomic molecules, the rotational part H

(r)
m of the nuclear Hamilto-

nian H
(v)
m is directly linked with the operator j2

12assumption of the diatomic case manifests itself in the expression for the rotational energy de-
pending only on the quantum number j and the rotational constant B, ω stands for the vibrational
frequency in the harmonic approximation
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The interaction potential matrix element in (1.19) coupling individual channels depends
on r and in general is a nonlocal operator due to the presence of the exchange potential.
Approximate ways how to cope with its presence are discussed in Chapter 2. On the
other hand, in the rigid rotor approximation, Eq. (1.19) can be further simplified as
discussed in Section 1.4, where the LAB-CAM treatment is applied to investigation of
rotational excitations caused by electron impact.

Body frame approach

Although the above described approach is formally “exact”, it is easily seen that if
the incident electron penetrates closer to the molecule (i.e., for r → 0), the LAB-
CAM formalism is quite inconvenient. The reason for this (Lane, 1980) has to be
accounted to the strong attractive behavior of the interaction in the vicinity of the
molecule. Thus the movement (and therefore also the orbital angular momentum) of
the electron is strongly coupled with the molecular axis R̂. Consequently, the projection
of the electron’s angular momentum on R̂ is approximately well-defined. However, this
property is not directly reflected in (1.17) and therefore large number of basis functions
will be in general necessary to reproduce this effect bringing any numerical method
intended for solving (1.19) into considerable troubles.

Adequate description has to use therefore different set of commuting operators than
(1.16) to take these considerations into account. Two choices are widely used depending

whether one takes the vibrational Hamiltonian H
(v)
m directly into account or not.

• excluding H
(v)
m

The first choice13 ignores the vibrational Hamiltonian H
(v)
m and as such hinges on the

use of the following operators
l2, lz′ ,J

2,Jz′ ,Jz, (1.21)

namely the angular momenta of the incident electron, the total angular momentum and
their projections onto the body-fixed z′-axis coinciding with the internuclear axis, the
orientation of which is in the laboratory frame specified by a unit vector R̂. In order to
ensure completeness of the set of operators (1.21), it is necessary to take into account
also the space-fixed projection Jz of the total angular momentum. Instead of (1.17) as
in the LAB-CAM case one is thus led to slightly different basis14

|lΛ; JM〉 ∼ IXJM
lΛ ≡

√
2J + 1

4π
DJM,Λ

(
R̂
)
Yl,Λ

(
r̂′
)

(1.22)

with DJM,Λ being related to the symmetric top15 rotational wave function as discussed
in length in Appendix E. Along very similar lines as in the LAB-CAM approach, one
can expand the total wave function with respect to the basis (1.22)

ΨJM
l0Λ0

(
~r, ~R

)
=

1

r

∑
lΛ

φJυ0
lΛ,l0Λ0

(r,R) · IXJM
lΛ

(
r̂, R̂

)
, (1.23)

obtaining thus an analogue of the expansion (1.18). Since the basis (1.22) is not com-
plete in the variable R, the resulting radial functions φJυ0

lΛ,l0Λ0
(r,R) will be R-dependent

13denoted as BODY basis II by Morrison (1988) and also used in Lane (1980). Corresponding radial
functions are introduced in Chang and Fano (1972, Eq. (24)) as HJη

lΛ (r,R)
14for rigorous justification of the term containing the Wigner D-function Djk,m we refer to Appendix A

in Chang and Fano (1972)
15the factor 4π instead of 8π is just a consequence of the fact that we are considering diatomic targets

and therefore the Euler angle γ can be set to zero with impunity reducing thus the “volume of the
angular space” to 4π
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and it is also necessary to explicitly denote the initial vibrational state υ0. Radial
equations obtainable again by projecting the Schrödinger equation onto the individual
basis elements (1.22) take the form (Lane, 1980; Morrison, 1988)[
−1

2

d2

dr2
+
l(l + 1)

2r2
+ H(v)

m − E

]
φJυ0
lΛ,l0Λ0

(r,R) +
∑
l′Λ′

[〈
lΛ; JM

∣∣Vint

∣∣l′Λ′; JM〉 · δΛ,Λ′+

〈
lΛ; JM

∣∣H(r)
m

∣∣l′Λ′; JM〉 · δl,l′
]
φJυ0
l′Λ′,l0Λ0

(r,R) = 0. (1.24)

Since the target molecule is assumed to be diatomic, the interaction potential expressed
in the molecular body frame is cylindrically symmetric and therefore its matrix elements
are diagonal in Λ. Moreover, due to the overall rotational symmetry, they are also di-
agonal and actually independent on J,M . Similar considerations lead to the conclusion

that H
(r)
m is diagonal in J,M, l and independent on M .

Before proceeding to a slightly modified approach, we would like to make a few
comments concerning Eq. (1.24)

• the action of the vibrational Hamiltonian H
(v)
m on the radial functions (1.23)

might seem too abstract nevertheless using the spectral decomposition of H
(v)
m in

the harmonic approximation

H(v)
m =

∑
υ

ω(υ + 1/2) |υ〉〈υ| (1.25)

easily furnishes in the coordinate R-representation (χυ(R) denote individual vi-
brational wave functions)

H(v)
m φJυ0

lΛ,l0Λ0
(r,R) =

∑
υ

ω(υ + 1/2)

∫
dR′ χ∗υ(R)χυ(R′)φJυ0

lΛ,l0Λ0
(r,R′). (1.26)

in accordance with third term of Eq. (26) in Chang and Fano (1972).

• complexity of the equations (1.24) can be significantly reduced in the so-called
rigid rotor approximation, where one supposes that the internuclear distance R
is held fixed at its equilibrium value Re. In that case, we can afford to drop the
R-dependence of φJυ0

lΛ,l0Λ0
and also the initial vibrational label υ0.

• finally, neglecting the rotational Hamiltonian decouples the equations in Λ, this
approximation being known as body frame fixed nuclei (BF-FN) theory16

• presence of the rotational Λ-coupling
〈
lΛ; JM

∣∣H(r)
m

∣∣l′Λ′; JM〉 term has also sort
of unpleasant consequences for the asymptotic behavior of the radial functions.
Since this term does not depend on r, it is effectively incompatible with the usual
asymptotic form defining the scattering matrix. We have thus either to enforce
some approximations disregarding this term or to employ some techniques in the
frame transformation spirit as discussed below.

• taking H
(v)
m into account

Farther from the molecule, the interaction potential becomes weaker and therefore the
vibrational levels can not be considered as degenerate without impunity. The vibra-
tional frame transformation (VFT) discussed in more detail in subsequent section is

16on the other hand, the FNO – fixed nuclear orientation – approximation amounts to neglecting the
rotational Hamiltonian but allowing the molecule to vibrate
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essentially a procedure for transition form the previously introduced body frame basis

into a new one where one takes the vibrational Hamiltonian H
(v)
m directly into con-

sideration. Formally, this corresponds to augmenting the set (1.21) by the vibrational

Hamiltonian H
(v)
m yielding thus basis functions of the form

|υlΛ; JM〉 ∼ IIXJM
υlΛ ≡ χυ(R)

√
2J + 1

4π
DJM,Λ

(
R̂
)
Yl,Λ

(
r̂′
)

(1.27)

Employing the very same procedure as it has been done in the LAB-CAM and previous
body frame approach furnishes coupled differential equations for the radial functions
(the channels are in this case labeled by υ, l,Λ in accordance with (1.27))[
−1

2

d2

dr2
+
l(l + 1)

2r2
− 1

2
k2
υ

]
φJυlΛ,υ0l0Λ0

(r,R) +
∑
υ′l′Λ′

[〈
υlΛ; JM

∣∣Vint

∣∣υ′l′Λ′; JM〉 · δΛ,Λ′+

〈
υlΛ; JM

∣∣H(r)
m

∣∣υ′l′Λ′; JM〉 · δl,l′δυ,υ′
]
φJυ′l′Λ′,υ0l0Λ0

(r,R) = 0. (1.28)

Similarly as in (1.24), the matrix elements of the rotational Hamiltonian H
(r)
m are

diagonal in J,M, υ, l and independent on M , whereas the interaction potential Vint

couples channels differing only in υ, l and its matrix elements are independent on J,M .
Channel momentum kυ is again fixed by energy conservation17

1

2
k2
υ = E − ω

(
υ + 1/2

)
. (1.29)

1.2.2 Frame transformation

In light of the preceding discussion, it is clear that the laboratory as well as the body
frame approach are both convenient in different (mutually exclusive) portions of the
~r-space, the former being tailored for description of the “asymptotic” motion of the
electron (large r), where the individual angular momenta j2, l2 are approximately con-
served provided the electron-molecule interaction decays fast enough. On the other
hand, as it was already mentioned, the body frame approach is preferable for small r,
where, roughly speaking, the interaction term dominates rotational and vibrational ef-
fects and one is thus tempted to employ the FN approximation due to the approximate
degeneracy of the target (rovibrational) energy levels.

Therefore it might seem natural to profit from the merits of both methods. This is
actually the basic idea behind the famous frame transformation (FT) method originally
introduced in the landmark paper by Chang and Fano (1972). Due to the “partitioning”
of the space according to the variable r, this form of the frame transformation is known
as radial frame transformation. Alternative approaches based on partitioning according
to the angular momentum l of the incident electron have been also reported (Collins
and Norcross, 1978) and are known as angular frame transformations (Morrison, 1983).
Physical explanation in this case is based on the observation that for large angular
momenta l, the electron is effectively repelled from the molecule due to the centrifugal
barrier and thus “feels” predominantly only the long range part of the interaction
potential. On the other hand, one can expect that for small l the major role is played
by the short range interaction. Therefore it might be reasonable to introduce some
boundary angular momentum value lc such that for l < lc, the S-matrix elements can
be with sufficient accuracy computed in the body frame formalism whereas for l > lc,
these elements could be rendered successfully in the laboratory frame approach.

17harmonic approximation is presupposed
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Frame transformation according to Chang and Fano

In the original treatment (Chang and Fano, 1972), the interaction area is effectively
divided into three parts as depicted schematically in Figure 1.1.

1. in region I, i.e., for r ∈ [0, rv], where the scattered electron is very close to the
molecule, the strongly attractive interaction potential dominates other terms in
the Hamiltonian (1.11) washing out the energy dependency of the target states
(υ, j). The appropriate set of equations in this situation is therefore (1.24), where
one employs the FN approximation, i.e., the rovibrational Hamiltonian is disre-
garded.

2. in region II, i.e., for r ∈ [rv, rr], the dependence of the interaction potential on
the internuclear distance R will be much weaker. As a consequence, the radial
equations (1.28) can be considered as approximately decoupled in υ. On the other
hand, the upper boundary of region II is chosen in such a way that the rotational
Hamiltonian can be still neglected (as compared to the interaction potential)

3. finally, region III, r ∈ [rr,∞], representing the “asymptotic region” requires to
take the rotational Hamiltonian fully into account and the appropriate treatment
is thus the laboratory frame approach governed by Eq. (1.19).

Transition between regions I→II and II→III is known as vibrational frame transforma-
tion (VFT) and rotational frame transformation (RFT), respectively. Alternatively,
one might join regions I and II into one domain by setting rv = rr performing thus the
VFT and RFT simultaneously.

r

Region I Region II Region III

rv

rr

Body–frame (BF) treatment

Λ, l

Lab–frame (LF) treatment
j, l

Figure 1.1: Schematic representation of the r-partitioning used in the frame transfor-
mation theory. Physical meaning of individual regions is discussed in the text.

Rotational frame transformation (RFT)

The rotational frame transformation melts essentially down to the question how to
transform between angular parts of the respective laboratory (1.17) and body frame
(1.27) bases. More general derivation applicable also to diatomic molecules in non-Σ
electronic states can be found in Appendix of Chang and Fano (1972), nevertheless in
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case of Σ electronic states and ignoring parity designation it is possible to proceed as

YJ Mj l
(
R̂, r̂

) (1.17)
=

∑
mj ,ml

(jl mjml| J M) Yj,mj

(
R̂
)
Yl,ml

(
r̂
)

=

=
∑
k

√
2j + 1

4π
Yl, k

(
r̂′
) ∑
mj ,ml

(jl mjml| J M) Djmj ,0
(
R̂
)
Dlml,k

(
R̂
)

=

=
∑
k

√
2j + 1

4π
Yl, k

(
r̂′
) ∑
mj ,ml

∑
L,µ

DLµ,k
(
R̂
)

(jl mjml| J M)×
× (jl mjml| Lµ) (jl 0k| Lk) =

=
∑
k

√
2j + 1

4π
(jl 0k| Lk) Yl, k

(
r̂′
)
DJM,k

(
R̂
)

=
∑
k

√
2j + 1

2J + 1
(jl 0k| Lk) Yl, k

(
r̂′
)√2J + 1

4π
DJM,k

(
R̂
)
. (1.30)

Fleeting glance at (1.30) accompanied by comparison with (1.27) reveals that the trans-
formation coefficients AJΛ

jl connecting “angular parts” of (1.17) and (1.27) can be iden-
tified as

AJΛ
jl ≡

√
2j + 1

2J + 1
(jl 0Λ| J Λ) =

√
2j + 1

(
j l J
0 Λ −Λ

)
(−1)j−l−Λ

=
√

2j + 1

(
l J j
−Λ Λ 0

)
(−1)J−Λ,

(1.31)

in agreement with Morrison (1988). It is worth noting that the coefficients AJΛ
jl as

given18 by Chang and Fano (1972) differ at first sight from (1.31). The culprit is
hidden in the fact that Chang and Fano (1972) use slightly different angular laboratory
frame basis, namely

YJ Mj l
(
ρ̂, r̂

)
←

∑
mj ,ml

(lj mlmj | J M) Yj,mj

(
ρ̂
)
Yl,ml

(
r̂
)
,

which is seen by employing Eq. (B.1) to differ from (1.17) by a phase factor (−1)j+l+J .
Multiplying Chang and Fano’s coefficients by this factor yields indeed Eq. (1.31). In
Fabrikant (1983a), the author claims that the Chang and Fano (1972)’s coefficients
are mangled by improper inclusion of a (−1)j factor, nevertheless we haven’t found
a mistake in the derivation and (1.31) seems to correspond also with transformation
prescription used by Chandra (1975); Clark (1979) or Huo and Gianturco (1995).

1.3 Adiabatic approximation

The approach known in the literature as adiabatic approximation was adapted for scat-
tering applications originally by Chase in his eminent paper (Chase, 1956), where he
investigated approximative description of collisions involving composite targets.

For detailed derivation we refer to the original work (Chase, 1956), nevertheless the
basic idea underlying this method is actually very straightforward. One supposes that
the target is described by Hamiltonian HT defining a set of energy eigenvalues and
corresponding eigenvectors

HTΨΓ(ω) = εΓ ΨΓ(ω). (1.32)

18coefficient matrix U
(jJη)
jΛ defined by Eq. (7) in Chang and Fano (1972),matrix AJΛ

jl with no parity

η designation corresponds to U
(jJ+)
jΛ + U

(jJ−)
jΛ
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For the sake of notation, the target internal coordinates were subsumed into a collec-
tive symbol ω. The symbol Γ introduced in (1.32) encompasses all quantum numbers
uniquely determining a particular eigenstate.

The collisional process between the incident particle the position of which is de-
noted by ~r and the target is for fixed value of ω formally equivalent to scattering in
a potential V (~r, ω). The incident particle with momentum ~k is in this case described
by a wave function w~k(~r; ω) parametrically dependent on ω. From asymptotic behav-
ior of w~k(~r; ω), one can extract information about corresponding scattering amplitude
f(θ, φ;ω), which is called by Chase (1956) as “ω-modulated” for its parametric de-
pendence19 on ω. Since this amplitude is evaluated for fixed target coordinates, it
contains of course no information about possible inelastic Γ → Γ′ transitions of the
target. However, if one approximates the total wave function of the system in channel
Γ in a product-like form

w~kΓ
(~r; ω)ΨΓ(ω), (1.33)

then an approximation to the exact scattering amplitude fΓΓ′(θ, φ) corresponding to
the Γ→ Γ′ transition can be expressed as

fΓΓ′(θ, φ) ≈ −
√

2π

∫
dωΨ∗Γ′

(∫
d~r e−i~kΓ′ ·~r V (~r, ω)w~kΓ

(~r; ω)
)

ΨΓ(ω). (1.34)

One immediately observes that the integral (1.34) over ~r is apart from a multiplicative
factor equal to the ω-modulated amplitude f(θ, φ; ω) provided that the channel mo-
mentum ~kΓ′ were replaced by momentum in channel Γ, i.e., ~kΓ. The final prescription
given by Chase for the approximative Γ→ Γ′ scattering amplitude is thus

fΓΓ′(θ, φ) ≈ fad
ΓΓ′(θ, φ)

def
=

∫
dωΨ∗Γ′(ω)f(θ, φ; ω)ΨΓ(ω). (1.35)

In other words, this result is formally equivalent to the statement that the approxi-
mative amplitude adf is rendered by averaging the ω-modulated amplitude f(θ, φ; ω)
over the space of target coordinates. From the amplitude (1.35), the corresponding
differential cross-section results straightforwardly

dσ

dΩ

∣∣∣∣
Γ→Γ′

=
kΓ′

kΓ

∣∣∣ fad
ΓΓ′(θ, φ)

∣∣∣2, (1.36)

where the kinematic factor kΓ′/kΓ has been appended additionally in order to mimic
desired threshold (kΓ′ → 0+) behavior of Eq. (1.36).

To sum up, replacement of the exact amplitude fΓΓ′ by adfΓΓ′ is essentially based
on two assumptions – expressing the total wave function in a product form (1.33) and
the premise of negligible target level spacing ~kΓ ≈ ~kΓ′ .

The precise validity conditions of the adiabatic approximation are quite subtle to
formulate. However, one feels directly from the derivation above that this procedure
could work well if the ω-modulated amplitude is modulated only “weakly”, which is in
turn equivalent to the rather vague requirement that the characteristic interaction time
is much smaller as compared to the typical period of motion of the target.20 Formally,
this condition is a consequence of the replacement of ~kΓ′ by a vector ~kΓ′ having the
same direction as ~kΓ′ but with magnitude kΓ in the exponential term in (1.35) to wit

e−i~kΓ′ ·~r = e−i~kΓ·~r · e−i
(
~kΓ′−~kΓ

)
·~r

≈ e−i~kΓ·~r ·
(

1− i
(
~kΓ′ − ~kΓ

)
· ~r
)
.

(1.37)

19this parametric dependence is in f(θ, φ; ω) underlined by the convention that ω appears after
a semicolon

20or equivalently, as pointed out by Chase (1956), that the average width of the colliding particle
wave packet is much larger than average target level spacing
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A necessary condition is thus
∣∣~kΓ′ − ~kΓ

∣∣R � 1, with R denoting characteristic size of
the interaction area. Conservation of the total energy

1

2
~k2

Γ′ + εΓ′ =
1

2
~k2

Γ + εΓ

enables us to rewrite the momentum difference
∣∣~kΓ′ − ~kΓ

∣∣ as∣∣~kΓ′ − ~kΓ

∣∣ = 2
εΓ′ − εΓ
kΓ′ + kΓ

,

thus rendering the above stated validity condition in the form

2R
εΓ′ − εΓ
kΓ′ + kΓ

� 1. (1.38)

Since the passage time of the incident electron with average momentum k through
the interaction area is roughly given as R/k and the target period of motion can be
estimated as being inversely proportional to the level spacing, i.e., 1/(εΓ′ − εΓ), one
immediately sees that condition (1.38) is indeed equivalent to the adiabatic character
of the investigated collision process.

More care has to be taken regarding validity of Eq. (1.38) near excitation threshold,
i.e., if the outgoing momentum kΓ′ is very small. In that case, more relevant criterion
is to require the relative error of the approximation introduced in Eq. (1.37) to be small
instead of the condition on the absolute error leading to Eq. (1.38). Therefore, Chase
(1956) imposes following relation

R ·
∣∣~kΓ′ − ~kΓ

∣∣� R · kΓ.

Employing Eq. (1.38) finally yields

2
εΓ′ − εΓ

(kΓ′ + kΓ) · kΓ′
� 1, (1.39)

which reveals explicitly that the adiabatic approximation is expected to break down
close to the threshold kΓ′ → 0.

It is probably hardly viable to obtain generally applicable criterion regarding va-
lidity of the adiabatic approximation and its use has to be therefore justified in each
particular case separately. However, several numerical studies dealing with this topic
have been published in the past. Chang and Temkin (1970) investigated rigid-rotor
rotational excitations of H2 induced by electron impact in the framework of the adia-
batic approximation. The authors argue that this approach is justifiable for electron
incident energies E satisfying

E

∆ε
≥ 1.65, (1.40)

with ∆ε denoting the excitation energy of particular rotational transition. A compar-
ative numerical study of the adiabatic approximation with close-coupling calculations
modeling rovibrational excitations in case of e-–H2 scattering has been given by Morri-
son, Feldt and Austin (1984); Morrison, Feldt and Saha (1984), where the authors find
that the percent error of the total scattering cross-section for pure rotational transitions
at incident energies close to the lower bound (1.40) is typically around 10-20% as indi-
cated in Figure 1.2. More importantly, results for vibrational excitations indicate that
the relative error of the adiabatic approximation is in order of units even for energies
exceeding the threshold several times. This behavior is probably closely linked with the
fact that “approximating” target vibrational states as being energetically degenerate is
far less justifiable than in case of pure rotational excitations.
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Figure 1.2: Comparison of the adiabatic approach and Energy modified adiabatic
method of Nesbet (1979) with laboratory frame static exchange close coupling cal-
culations as reported by Morrison, Feldt and Austin (1984). The percentage error of
the excitation cross-section 0 → 2 is displayed as a function of the incident energy.
Dotted vertical line visualizes the excitation threshold.

1.4 Application to rotational excitations

In the following, the ideas of the preceding two sections are applied to theoretical in-
vestigation of electron-molecule scattering processes where we take into account merely
rotational excitations of the target molecule, described in the Born-Oppenheimer ap-
proximation, confining us thus to low-energy region such that the kinetic energy of the
incident electron is below the first vibrational (and therefore of course also electronic)
threshold.

1.4.1 Laboratory frame treatment

In order to describe the rotational excitations in the laboratory frame of reference,
where the molecule is allowed to rotate freely, we assume the rigid rotor approximation
discussed in more detail in Appendix E. In this framework, one is led to a simplified
form of the Hamiltonian (1.11), namely

H = −1

2
∇2
~r + Hrot + Vint

(
r, θ′

)
, (1.41)

where ~r specifies location of the incident21 electron, Hrot is the rotational Hamiltonian
and finally Vint represents the interaction potential, to the more thorough investigation
of which is devoted Chapter 2. Since our computational applications of laboratory frame
treatment for description of rotational excitations of small molecules were limited to
diatomics, we shall confine ourselves in the following discussion also to this case for
which the rotational Hamiltonian Hrot given by (E.1) is especially simple

HrotYj,mj

(
α, β

)
= B j(j + 1)Yj,mj

(
α, β

)
, (1.42)

with ρ̂ ≡ (α, β) specifying the orientation of the molecular axis and B standing for the
rotational constant of the target molecule. Decomposition of the plane wave represent-
ing the incident electron into spherical harmonics allows to label respective channels in
this setting by quantum numbers (j, l) with l denoting the angular momentum of the
electron.

21θ′ determines the angle between molecular axis and the vector ~r
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As proposed already decades ago (Arthurs and Dalgarno, 1960), the wave function
corresponding to the total angular momentum J (and its space fixed projection M)
can be then chosen as

ΨJM
jl (~r, ρ̂) =

1

r

∑
j′,l′

Juj lj′l′(r)Y
J M
j′ l′
(
r̂, ρ̂
)
. (1.43)

The angular part conforming to the LAB-CAM treatment of Subsection 1.2.1 is con-
structed in order to ensure conservation of the total angular momentum

YJ Mj l
(
r̂, ρ̂
)

=
∑
mj ,ml

(jl mjml| J M) Yj,mj

(
ρ̂
)
Yl,ml

(
r̂
)
. (1.44)

Substituting (1.43) into the Schrödinger equation and projecting out the angular part
(1.44) of the wave function readily yields a coupled set of differential equations for the

radial Juj lj′l′ components22

[
d2

dr2
− l′(l′ + 1)

r2
− k2

j′

]
Juj lj′l′(r) = 2

∑
j′′,l′′

〈
j′′l′′; JM

∣∣Vint

∣∣j′l′; JM〉 Juj lj′′l′′(r). (1.45)

The channel momentum kj entering (1.45) is determined naturally by conservation of
the total energy

1

2
k2
j′ = E −Bj′(j′ + 1). (1.46)

It is worth noting that the coupling matrix element containing the interaction potential
should be understood as a function of r. More explicitly stated, one has〈

j′l′; JM
∣∣Vint

∣∣jl; JM〉 =

∫
dr̂dρ̂ YJM∗j′ l′ Vint (r, r̂, ρ̂)YJ Mj l . (1.47)

This form of the potential matrix element automatically reflects the fact – stemming
from overall rotational invariance – that the set of equations (1.45) decouples23 in J and
M and can be therefore solved for each J independently offering thus the possibility of
an efficient parallel numerical implementation as discussed in Section 1.5.

The solution of (1.45) is uniquely determined by prescribing asymptotic condi-
tions24 for r → ∞. This is usually done (Arthurs and Dalgarno, 1960; Crawford and
Dalgarno, 1971) in complex domain, where one arrives in this way to the S-matrix and
consequently the T -matrix. If we restrict ourselves to the discussion of open channels,
then from the computational point of view it might be more convenient to formulate
the asymptotic behavior in the real domain (Chandra, 1977) as

Juj lj′l′(r)
r→∞−−−→ 1√

kj′

[
sin
(
kj′r − l′

π

2

)
δj′l′,jl + cos

(
kj′r − l′

π

2

)
JKj′l′,jl

]
. (1.48)

This equation defines the K-matrix, the connection of which25 with the S- and T -matrix
can be easily deduced

JT = JS − I = −2 JK ·
(
i+ JK

)−1
. (1.49)

22in Arthurs and Dalgarno (1960), there is probably a misprint concerning the order of indices in the
potential coupling term. Eq. (1.45) is in agreement with Crawford and Dalgarno (1971)

23actually it is independent on M
24apart from the natural zero boundary condition at the origin
25The T -matrix in Chandra (1977) has opposite sign than in Crawford and Dalgarno (1971). We

follow the convention of Chandra (1977). For other frequently used conventions in scattering theory
and their possible consequences we refer to an excellent overview given by Morrison and Feldt (2007).
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The T -matrix contains essentially all information about the scattering process. Some
extensive use of Racah algebra based on formulae presented in Appendix B leads finally
to the relation for differential cross-section corresponding to the j → j′ rotational
transition

dσ

dΩ

∣∣∣∣
j→j′

=
1

4k2
j

∑
λ

Aλ

(
j → j′

)
Pλ(cos θ), (1.50)

with

Aλ

(
j → j′

)
=

(−1)j
′−j

2j + 1

∑
J1,J2

∑
l1,l2

∑
l′1,l
′
2

Z (l1J1, l2J2; jL) ·

· Z
(
l′1J1, l

′
2J2; j′L

)
T J
∗
1

j′l′1,jl1
T J2

j′l′2,jl2
,

(1.51)

containing the algebraic Persival-Seaton (Percival and Seaton, 1957) Z-coefficients de-
fined as

Z (ab, cd; ef) ≡ (−1)(f−a+c)/2(−1)b+d [(2a+ 1)(2b+ 1)(2c+ 1)(2d+ 1)(2f + 1)]1/2

×
(
a c f
0 0 0

){
a b e
d c f

}
. (1.52)

For evaluation of the integral cross-section σj→j′ , just the coefficient A0 in (1.51) is
needed due to the mutual orthogonality of the Legendre polynomials. One therefore
obtains (Crawford and Dalgarno, 1971)

σj→j′ =
π

k2
j

A0

(
j → j′

)
=

=
π

k2
j (2j + 1)

∞∑
J=0

(2J + 1)
∑
l,l′

∣∣JTj′l′,jl∣∣2 . (1.53)

Note that as regards the backward scattering cross-section discussed extensively in
Chapter 4, only Aλ’s with odd λ are required since the “angular Jacobian” containing
term sin θ is itself an odd function of θ.

Potential matrix elements

In practical application, we need to be able to efficiently evaluate the potential matrix
elements (1.47). Along the lines of the methods based on single center expansion (SCE)
(Faisal, 1970) approach, we might therefore try to expand the potential into Legendre
polynomials

Vint (r, r̂, ρ̂) =

∞∑
λ=0

Vλ(r)Pλ(cos θ), (1.54)

in the variable cos θ ≡ r̂ · ρ̂, i.e., in the cosine of the angle spanned by the molecular
axis and unit vector pointing in the direction of the incident electron.

Although (1.54) represents a general form of the interaction potential only for di-
atomic molecules, we shall assume its validity in the following also in the symmetric
top case in order to obtain a direct connection between the formulae obtained in both
settings.
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By inserting (1.44) and (1.54) into (1.47) and performing some rather lengthy al-
gebra one arrives (Brink and Satchler, 1994; Child, 2010) at the relation26

〈
j′l′; JM

∣∣Vint

∣∣jl; JM〉 =
∞∑
λ=0

Vλ(r)(−1)J−λ
√

[ j ][ j′ ][ l ][ l′ ] ·

·
(
j j′ λ
0 0 0

)(
l l′ λ
0 0 0

){
j′ l′ J
l j λ

}
.

(1.55)

1.4.2 Born approximation in the laboratory frame

Further insight into the above stated approach can be obtained if one computes the
Born approximation to the total (1.53) and differential (1.50) excitation cross-sections
directly without employing the partial wave expansion. The incident electron is de-
scribed by a pure plane wave corresponding to the initial momentum ~ki. In order to
specify the rotational state of the target molecule, we shall use slightly more general
notation, for the explicit form of the rotational wave function depends on the type of
the target rigid rotor. The ith target rotational state will be thus denoted as Γi(ω),
where ω = (α, β, γ) is the set of Euler’s angles describing the orientation of the target.27

The unit vector ρ = (α, β) ≡ (φm, θm) then determines the orientation of the molecular
axis in the laboratory frame of reference. At large collision distance, the dynamics
of the electron and the target is not coupled and therefore the wave function of the
composite system will be given as a product of individual terms as

Xi

(
ω,~r

)
≡ Γi(ω) · ei~ki·~r, (1.56)

and we are interested in evaluation of the scattering amplitude corresponding to a tran-
sition to the final state

Xf

(
ω,~r

)
≡ Γf (ω) · ei~kf ·~r. (1.57)

Introducing the final momentum ~kf and momentum transfer

~K ≡ ~ki − ~kf ,

and inserting initial and final states into the well-known (Gell-Mann and Goldberger,
1953) formula for Born scattering amplitude yields

fi→f
(
~ki → ~kf

)
= − 1

2π

∞∑
λ=0

∫
d~r ei ~K·~r Vλ(r)

∫
dω Γ∗f (ω)Γi(ω)Pλ(r̂ · ρ̂), (1.58)

where we have already employed the “angular” decomposition of the interaction po-
tential (1.54). Expressing the exponential term containing the momentum transfer ~K
in terms of spherical harmonics according to (D.6) and restating Pλ(r̂ · ρ̂) as a product
of two spherical harmonics in ρ̂ and r̂ via (B.10) furnishes further simplification in the
form

fi→f
(
~ki → ~kf

)
= −2

∞∑
λ=0

iλ
λ∑

µ=−λ

[ ∫ ∞
0

dr r2Vλ(r)jλ(Kr)
]
Y∗λ, µ

(
K̂
) 4π

2λ+ 1
×

×
∫

dω Γ∗f (ω)Yλ, µ

(
ρ̂
)
Γi(ω).

(1.59)

In order to perform the angular integration over dω, we need to know of course the
explicit form of Γi,Γf . In the following, we will discuss two particular cases, namely
diatomic and symmetric top molecules considering interaction potential of the form
(1.54).

26in order to compress slightly the notation we have introduced the symbol [x ] ≡ 2x+ 1
27as in the preceding subsection, we are assuming rigid rotor model
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Diatomic molecules

The rotational wave functions labeled by quantum numbers j,m of a diatomic molecule
coincide with spherical harmonics Yj,m. Thus the initial and final state can be relabeled
as Γi(ω) ≡ Yj,m

(
ρ̂
)

and Γf (ω) ≡ Yj′,m′
(
ρ̂
)
, respectively. Inserting these expressions

into (1.59) and performing the integration using (B.11), one finally obtains

fjm→j′m′
(
~ki → ~kf

)
= −2(−1)m

′√
(2j + 1)(2j′ + 1) ·

·
∞∑
λ=0

iλ
[ ∫ ∞

0
dr r2 Vλ(r)jλ(Kr)

] λ∑
µ=−λ

Y∗λ, µ
(
K̂
)
×

×
√

4π

2λ+ 1

(
j j′ λ
m −m′ µ

)(
j j′ λ
0 0 0

)
.

(1.60)

Experimentally measurable quantity is however the differential cross-section corre-
sponding to the j → j′ rotational transition. This is expressible from (1.60) by taking
square of the modulus, summing over m′ and averaging over m, using (B.7a) to simplify
the final result in accordance with Crawford et al. (1967)

dσ

dΩ

∣∣∣∣
j→j′

=
4k′

k
(2j′ + 1)

∞∑
λ=0

[∫ ∞
0

dr r2 Vλ(r)jλ(Kr)

]2

·

· 1

2λ+ 1

(
j j′ λ
0 0 0

)2

.

(1.61)

Symmetric top molecules

The computational procedure is slightly more complicated in this case, since the ro-
tational states of a symmetric top molecule are described by Wigner Djm,k functions
introduced in (E.2)

Γi(ω) ≡
√

2J + 1

8π2
DJM,K(ω) , (1.62a)

Γf (ω) ≡
√

2J ′ + 1

8π2
DJ ′M ′,K′(ω) . (1.62b)

However, plugging these Γi,Γf into (1.59) and simplifying consequently the angular
integrals using Eqs. (E.21) and (E.22) yields after some effort the expression

fJ
′K′M ′

JKM

(
~ki → ~kf

)
= −2

√
(2J + 1)(2J ′ + 1)(−1)K

′−M ′
∑
λ=0

iλ
√

4π

2λ+ 1

λ∑
µ=−λ

Y∗λ, µ
(
K̂
)
·

[∫ ∞
0

dr r2 Vλ(r)jλ(Kr)

](
J J ′ λ
M −M ′ µ

)(
J J ′ λ
K −K ′ 0

)
,

(1.63)

which in the case of a degenerate symmetric top (i.e., in the formal limit K,K ′ → 0)
coincides with the diatomics formula (1.60). Differential cross-section for the JK →
J ′K ′ transition is computed as in the preceding case by taking squared modulus of
(1.63), summing over M ′ and averaging over M

dσ

dΩ

∣∣∣∣
JK→J ′K′

=
4k′

k
(2J ′ + 1)

∞∑
λ=0

[∫ ∞
0

dr r2Vλ(r)jλ(Kr)

]2

·

· 1

2λ+ 1

(
J J ′ λ
K −K 0

)2

δK,K′ .

(1.64)
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Specialization to the point dipole potential

Especially important is the case of a point dipole interaction, i.e., when the potential
expansion (1.54) contains only single term λ = 1 to wit

V1(r) ≈ − D

r2
.

Since
∫∞

0 j1(Kr) dr = 1/K, Eqs. (1.61) and (1.64) are amenable to further simplifica-
tion. With ε ≡ k′/k ≤ 1 one gets for diatomic molecules

dσ

dΩ

∣∣∣∣
j→j′

=
4D2

3k2
(2j′ + 1)

(
j j′ 1
0 0 0

)2
ε

1 + ε2 − 2ε cos θ
, (1.65)

and for symmetric tops

dσ

dΩ

∣∣∣∣
JK→J ′K′

=
4D2

3k2
(2J ′ + 1)

(
J J ′ 1
K −K 0

)2
ε

1 + ε2 − 2ε cos θ
δK,K′ . (1.66)

In order to obtain the corresponding angular coefficients Aλ introduced in (1.50), it is
necessary to expand (1.65) or (1.66) into Legendre polynomials. At first sight, this task
might seem quite formidable. As far as we know, a simple derivation is not available
in the literature and therefore we would like to present one possible approach based on
neat utilization of the Legendre polynomials recurrence properties (Abramowitz and
Stegun, 1965, ch. 8).

• Expansion of 1/K2 into Legendre polynomials

Our problem at hand can be actually reduced to the question how to efficiently find
the coefficients in the formal expansion28

1

α− βx
=
∞∑
n=0

anPn(x). (1.67)

Multiplying Eq. (1.67) by Pm(x), calling upon the orthogonality of Legendre polyno-
mials and integrating over the domain x ∈ [−1, 1] readily yields

am =
2m+ 1

2

∫ 1

−1
dx

Pm(x)

α− βx
=

2m+ 1

2β

∫ 1

−1
dx

Pm(x)

γ − x
, (1.68)

where γ ≡ α/β > 1. We are thus interested solely in the evaluation of the last integral
in (1.68) which we denote as Im. Using the well-known recurrence relation for Legendre
polynomials (Abramowitz and Stegun, 1965, chap. 8) furnishes after some manipulation
recurrence relations for Im>1, namely

(m+ 1)Im+1 =

∫ 1

−1
dx

m+ 1

γ − x
Pm(x) =

= (2m+ 1)

∫ 1

−1
dx

x

γ − x
Pm(x)−m

∫ 1

−1
dx

Pm−1(x)

γ − x.

(1.69)

Plugging further x/(γ − x) = −1 + γ/(γ − x) into (1.69) gives

(m+ 1)Im+1 = γ(2m+ 1)Im − (2m+ 1)

∫ 1

−1
dxPm(x)︸ ︷︷ ︸

0 for m>1

−mIm−1. (1.70)

28we are assuming that α, β are real constants and α > β > 0
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Since the integrals Im can be computed easily directly for m ∈ {0, 1} as

I0 = log

(
γ + 1

γ − 1

)
and I1 = 2γ arccoth γ − 2 = 2I0 − 2, (1.71)

the relation (1.70) yields finally the sought prescription how to generate the expansion
coefficients in (1.67). Strictly speaking, the coefficients (1.68) can be formally expressed
using the Legendre functions of the second kind, Qm, as

am =
2m+ 1

β
Qm(γ), (1.72)

nevertheless the contribution of the derivation above is that it actually furnishes an algo-
rithm intended for a practical numerical implementation. As a side effect we have there-
fore also obtained an algorithm how to generate the Ql(γ) functions. In actual numer-
ical tests this approach turned out to be superior to the method gsl sf legendre Ql

offered by the GSL numerical library (Galassi et al., 2009), which is unable to handle
arguments γ very close to 1 corresponding to higher incident energy or small rotational
constant B. As far as we know, functions Ql(γ) are not available in the, otherwise very
rich, numerical library CERNLIB (2006).

In notation compatible with (1.51) we thus finally obtain29

FBAAp.d.
λ

(
j → j′

)
=

8

3
D2(2j′ + 1)

(
j j′ 1
0 0 0

)2

(2λ+ 1) Qλ

(
1 + ε2

2ε

)
. (1.73)

Formula (1.73) is a theoretical justification of the so-called “quadratic scaling rule”
often used (Randell et al., 1996) in the analysis of experimental data stating that the
scattering cross-sections are proportional to the square of the dipole moment D.

1.4.3 Analytic Born completion in the laboratory frame

The main drawback of the close coupling approach is the fact that the number of
channels (target states) taken into account is limited. Depending on the problem un-
der investigation, convergence issues with respect to this truncation may arise. The
method known in the literature as Analytic Born Completion (ABC) or Born closure
approximation constitutes one attempt how to circumvent these issues by clever em-
ployment of the Born approximation. The main idea can be formally summarized as
follows. Suppose that we need to compute numerically the sum F =

∑∞
n=0 fn, where

the terms fn decay slowly to zero with increasing n so in general a lot of terms is
needed to assure proper convergence of F . Nevertheless if we can find a similar series∑∞

n=0 gn, the sum G of which is known analytically and whose terms gn exhibit similar
asymptotic (for n→∞) behavior as fn, then we can make following approximation

F ≈
N∑
n=0

(fn − gn) +G. (1.74)

As concerns scattering applications, the quantities g are typically Born approximations
of f which explains the name of the method. Ideas along these lines have been used
extensively in the past (Clark, 1977; Crawford and Dalgarno, 1971). The original idea
dates back probably to Thompson (1966), where the author applied the above discussed
technique in description of elastic electron scattering on neon and argon. More recent
review with applications can be found, e.g., in Feldt and Morrison (2008a); Isaacs and
Morrison (1996) or Itikawa (2000a,b).

29superscript p.d. reflects that (1.73) refers to the point dipole potential
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Illustration on e– – CO scattering

In the following we would like to present the simplest possible application of the ABC
procedure with some illustrations. For this purpose we chose system used by Crawford
and Dalgarno (1971) mimicking the electron interaction with carbon monoxide. The
potential expansion (1.54) in this model is considered only for λ ∈ {0, 1, 2}, therefore we
are taking effectively into account contributions stemming from spherical polarizability,
dipole, quadrupole and anisotropic polarizability interactions. For explicit form of
the potential we refer to Crawford and Dalgarno (1971). Moreover, we shall confine
ourselves to the evaluation of the integral scattering cross-section for the inelastic 0→ 1
rotational transition. In light of Eq. (1.53), it means that we need to evaluate the A0

coefficient defined by Eq. (1.51). Explicitly stated

σ0→1 =
π

k2
0

A0 (0→ 1) =

=
π

k2
0

∞∑
J=0

(2J + 1)
∑
l,l′

∣∣JT1l′,0l

∣∣2 . (1.75)

In numerical implementation, one needs to restrict the channel space by imposing
upper limits Jmax, lmax, jmax on J, l, j.30 Some testing revealed in accordance with
Garrett (1975) that the final cross-section (1.75) is rather insensitive to the value of
jmax if jmax ? 3. Thus according to the requirement 30, we have essentially one free
parameter lmax, the value of which influences the convergence of the sum in Eq. (1.75).

The quantities
∑

l,l′

∣∣JT1l′,0l

∣∣2 thus play the role of fn in Eq. (1.74).
By inspection of the Born prediction (1.73), we naturally expect that the main

contribution to the 0→ 1 transition is caused by the dipole contribution to the potential
and we might try to suppose that the T -matrix elements for high J in case of point
dipole potential31 won’t differ much from their counterparts resulting from the original
potential. Therefore gn in Eq. (1.74) would be interpreted as Born approximation to
the T -matrix elements for a point dipole potential.

However, the integral FBA scattering cross-section in this case can be obtained by
quadrature from (1.65). The result is

FBAσ0→1 =
8π

3k2
0

D2 log
1 + ε

1− ε
ε =

k1

k0
, 0 < ε < 1 (1.76)

Next, we need to evaluate the Born T -matrix elements for the dipole potential. The
Born T -matrix can be directly obtained from (1.124) by discarding terms O

(
V 2
)
. This

yields

FBAK = −2

∫ ∞
0

J · V · J. (1.77)

Plugging this approximative K-matrix into (1.49) and keeping only terms linear in K
(and thus linear in V) gives in turn the desired Born T -matrix in the form

FBAT = −4i

∫ ∞
0

J · V · J. (1.78)

The so-called unitarized Born approximation as discussed, e.g., by Padial et al. (1981) is
obtained by a modification of the second step, where one uses the “exact” prescription
for the T -matrix, i.e., even terms of higher order in K are retained.32

30we prefer to deal with “complete” J-subspaces, i.e., the value of Jmax is connected with lmax, jmax

by the requirement Jmax ≤ |lmax − jmax|
31with the same dipole moment as in the original potential
32nevertheless the K-matrix itself is still only linear in V
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From Eq. (1.78) we easily calculate (Clark, 1977) individual matrix elements as

TJFBA 1l′,0l = 4i(−1)JD
√
k0k1

(∫ ∞
0

dr jl′(k1r) jl(k0r)

)
·

·
√

2l + 1
√

2l′ + 1

(
l l′ 1
0 0 0

){
1 l′ J
l 0 1

}
.

(1.79)

The identity (D.8) allows us to perform the radial integration analytically33 yielding

TJFBA 1l′,0l = iπD(−1)J
k
l′+ 1

2
1

k
l′+ 1

2
0

√
2l + 1

√
2l′ + 1

(
l l′ 1
0 0 0

){
1 l′ J
l 0 1

}
·

·
Γ
(
l+l′+1

2

)
Γ
(
l−l′+2

2

)
Γ
(
l′ + 3

2

) 2F1

(
l + l′ + 1

2
,
l′ − l

2
, l′ +

3

2
;
k2

1

k2
0

)
.

(1.80)

Since the integral cross-section is proportional to the square of the T -matrix elements,
as a side product we obtain the prediction k2l′+1

1 for the threshold behavior of the
J-component of the integral cross-section, where l′ is the minimal orbital angular mo-
mentum accompanying j = 1 for a given value of J .

Putting everything together, the integral excitation cross-section (1.53) can be thus
approximated as

σ0→1 ≈
π

k2
0

Jmax∑
J=0

(2J + 1)

∑
l,l′

∣∣JT1l′,0l

∣∣2 −∑
l,l′

∣∣ TJFBA 1l′,0l

∣∣2+

+
8π

3k2
0

D2 log
k0 + k1

k0 − k1
,

(1.81)

with the last summand originating from Eq. (1.76). Behavior of individual J-components
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[Å

2
]

log
δ

total angular momentum J

σJ
0→1

δ≡ FBAσJ
0→1−σJ

0→1

0 10 20 30 40
-8
-7
-6
-5
-4
-3
-2
-1
0
1

log
σ
J0→

0

log σJ
0→0

Figure 1.3: Convergence of the excitation 0 → 1 (left panel) and elastic 0 → 0 (right
panel) cross-sections for incident energy of 100 meV. Left panel demonstrates the slow
convergence of σ0→1 with respect to J and its approaching to the Born approximation
results. Calculations were performed with close coupling parameters Jmax = 40, lmax =
43, jmax = 3.

33for more involved numerical methods intended for evaluation of oscillatory integrals of spherical
Bessel functions we refer to Lehman et al. (1981)
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of σ0→1 is demonstrated in the left panel of Figure 1.3, the results of which were ob-
tained using Volterra propagator method with adaptive grid discussed in more detail
in Section 1.5.

Even for Jmax = 40, straightforward application of Eq. (1.75) for incident ener-
gy 100 meV yields value of 2.59 Å2, whereas the Born closure formula (1.81) predicts
4.09 Å2 in accordance with Crawford and Dalgarno (1971). At lower energies, this
behavior is less pronounced, for example for 10 meV, formula (1.75) yields 25.29 Å2,
whereas the Born closure formula (1.81) predicts 26.89 Å2. The intuitive reason for
this is hidden possibly in the fact that higher partial waves won’t contribute due to the
centrifugal barrier and therefore also high J-components will be less important, since
the minimal angular momentum l in block J is given as lmin = max (J − jmax, 0).

Note that even within this rather “crude” model, the obtained result (1.81) for
10 meV is thanks to the dominant character of the dipole interaction in acceptable
agreement with the value 23.84 Å2 reported by Randell et al. (1996) and also with
results of Chandra (1977); Jain and Norcross (1992).

Finally, we would like to mention slightly different interpretation of the subtraction
technique (1.74) as proposed by Norcross and Padial (1982). The authors consider
the expression (1.51) for the differential cross-section and re-express it in the first step
following Crawford and Dalgarno (1971) as

dσ

dΩ

∣∣∣∣
j→j′

=
dσ

dΩ

∣∣∣∣FBA

j→j′
+ ∆

dσ

dΩ

∣∣∣∣
j→j′

, (1.82)

with

∆
dσ

dΩ

∣∣∣∣
j→j′

=
1

4k2
j

∑
λ

[
Aλ −AFBA

λ

]
Pλ(cos θ). (1.83)

They key observation rests again in the fact that for large angular momenta l, the
T -matrix elements entering coefficients Aλ in (1.83) will ultimately coincide with val-
ues calculated in the first Born approximation. Since Aλ does not couple T -matrix
elements differing in l by more than λ, the high l contributions effectively cancel in
(1.83). Therefore one could interpret the splitting (1.82) in such a way that it sepa-
rates the cross-section into low and high angular momenta components. Norcross and
Padial (1982) also made the observation that the high l cancellation in (1.83) is actually
equivalent to the fact that the long range part of the potential does not influence sig-
nificantly (1.83). The authors consequently argue that exactly because of this reason,
the adiabatic treatment might be appropriate for evaluation of (1.83) even if it is in-
applicable for evaluation of the original cross-section. Moreover, it is certainly possible
to go beyond Born approximation in the sense that one can introduce an approxima-
tive (APP) potential provided the T -matrix elements coincide with original T -matrix
elements for high l. Then a natural extension of (1.83) reads

dσ

dΩ

∣∣∣∣
j→j′

=
dσ

dΩ

∣∣∣∣APP

j→j′
+ ∆

dσ

dΩ

∣∣∣∣
j→j′

, (1.84)

with

∆
dσ

dΩ

∣∣∣∣
j→j′

=
1

4k2
B

∑
λ

[
Bλ −BAPP

λ

]
Pλ(cos θ). (1.85)

The central difference from the previous approach is however that the expression (1.85)
is evaluated in the adiabatic framework whereas (1.84) is not. The inherent body
frame approach is in Eq. (1.85) also indicated by introduction of the B coefficients
(1.97) and the body frame momentum kB. Norcross and Padial (1982) denote resulting
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approximation as Multipole Extracted Adiabatic Nuclei (MEAN). In the sense that this
method treats essentially low and high angular momenta components in substantially
different way, it can be considered closely linked to the Angular Frame Transformation
methods mentioned briefly in Subsection 1.2.2.

1.4.4 Body frame treatment & Rotational frame transformation

An alternative tack to the same problem is based on the body frame formalism which
is the subject of Subsection 1.2.1. In the parlance of the frame transformation theory,
one essentially works in the region I introduced on p. 14 in the section devoted to the
partitioning of the space according to the radial variable r. Since we are interested only
in the rotational excitations, we can afford to disregard the vibrational Hamiltonian

H
(v)
m , which means that the wave function expansion (1.23) is amenable to simplifi-

cations described below Eq. (1.23), namely omission of the designation of the initial
vibrational state and also the dependence of the radial functions on the internuclear
separation R. The coupled equations (1.24) for φJυ0

lΛ,l0Λ0
(r,R) thus reduce into

∑
l′

[(
d2

dr2
− l(l + 1)

r2
+ k2

B

)
δl,l0 − 2V Λ

l,l′

]
φΛ
l′,l0(r) = 0. (1.86)

In Eq. (1.86), we have also dropped the (redundant) label J since the potential matrix
elements34 V Λ

l,l′ in the body frame are not dependent on J . The symbol kB denotes
the so-called “body frame energy” of the incident electron. By imposing the usual
asymptotic behavior on φΛ

l′,l as in the laboratory frame treatment discussed previously

φΛ
l′,l(r)

r→∞
−−−−→ 1√

kB

[
sin
(
kBr − l′

π

2

)
δl′,l + cos

(
kBr − l′

π

2

)
KB Λ
l′,l

]
, (1.87)

we can readily obtain the body frame reactance matrix KB -matrix or the closely linked
body frame TB -matrix using a relation identical to (1.49)

TB Λ = 2 KB Λ
(
i+ KB Λ

)−1
. (1.88)

The first Born approximation (FBA) (1.77) to (1.88) can be derived again by retaining
only first order terms in KB Λ yielding

TB Λ
FBA = −2i KB Λ. (1.89)

However, this TB -matrix (or its FBA counterpart) still refers to the body frame and
as such contains of course no information about the rotational dynamics under inves-
tigation. Therefore one needs to perform the transition to the laboratory frame by
means of the frame transformation procedure. In the present setting the regions I and
II of Subsection 1.2.1 collapse into one and one has to deal just with the rotational
frame transformation (1.30) effecting the transition from body frame basis (1.17) to its
laboratory counterpart (1.27).

The matrices AJΛ
jl specified by (1.30) constitute a unitary transformation connecting

individual channels in the body and laboratory formalism. Since we work in the real
domain, the transformation properties of the wave functions are easily extended to the

KB -matrix defined by (1.87). An approximate laboratory frame K̃L -matrix is then

K̃L J
j′l′,jl

def
=
∑

Λ

AJΛ
j′l′ · KB Λ

l′,l ·AJΛ
jl . (1.90)

34slightly compressed notation has been used in (1.86) as compared to (1.24) – V Λ
l,l′ is just a con-

venient shorthand to
〈
lΛ; JM

∣∣Vint

∣∣l′Λ′; JM〉 used in (1.86)
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The approximate laboratory frame T̃L -matrix is then rendered analogously to (1.49)

T̃L J
j′l′,jl = −2 K̃L J

j′l′,jl ·
(
i+ K̃L J

j′l′,jl

)−1

= −2 K̃L J
j′l′,jl ·

(
1 + K̃L J

j′l′,jl

2 )−1
+ 2i K̃L J

j′l′,jl ·
(

1 + K̃L J
j′l′,jl

2 )−1
.

(1.91)

It has been shown (Chandra, 1975) that due to the unitarity of the transformation
AJΛ
jl , one can equivalently transform the body frame TB -matrix using prescription

analogous to (1.90), where one formally replaces all occurrences of “K by corresponding
T”, arriving at the same result as by using the “indirect” procedure via the KB -matrix.

Having obtained an approximation to the laboratory frame transition matrix, we
can formally follow the procedure outlined in the section devoted to the laboratory
frame treatment. Thus the individual (rotational) state-to-state cross-sections are

σ̃j→j′ =
π

k2
B(2j + 1)

∞∑
J=0

(2J + 1)
∑
l,l′

∣∣∣ T̃L J
j′l′,jl

∣∣∣2 . (1.92)

Analogously, the differential cross-section is given by relation (1.50) with T̃L J
j′l′,jl being

substituted for the TL -matrix.
Alternatively, one may be tempted to calculate the total scattering (body frame)

cross-section directly from the body frame TB -matrix according to Huo and Gianturco
(1995) via

σB =
∑

Λ

σΛ, (1.93)

with

σΛ =
π

k2
B

lmax∑
l= 0

lmax∑
l′= 0

∣∣ TB Λ
l′,l

∣∣2 . (1.94)

It has been shown (Chan et al., 1968; Temkin et al., 1969) that35 the quantity (1.93)
is, apart from possible kinematic factors, equal to

σj→ =
∑
j′

σ̃j→j′ (1.95)

and the sum on r.h.s. of Eq. (1.95) does not depend on the initial rotational state j.
Because of this summation over the final rotational states, the body frame total cross-
section σB in (1.93) is often termed as “rotationally-summed”. Finally, the body frame
equivalent to relation (1.50) can be written in quite similar form as

dσ

dΩ

∣∣∣∣
B

=
1

4k2
B

∑
L

(2L+ 1) BL PL(cos θ), (1.96)

where

BL =
∑

Λ1,Λ2
l1,l′1,l2,l

′
2

il
′
1−l1−l′2+l2

[
(2l′1 + 1)(2l1 + 1)(2l′2 + 1)(2l2 + 1)

]1/2
dL
(
l1, l2, l

′
1, l
′
2

)
T Λ1

l′1,l1
T Λ∗2
l′2,l2

,

(1.97)

35in light of results presented in Chandra (1975) regarding the equivalence of the adiabatic ap-
proximation and the RFT, this statement is actually explicitly proved by reasoning mentioned in
Subsection 1.4.5
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with coupling36 terms dL (Sun et al., 1995, p. 4)

dL
(
l1, l2, l

′
1, l
′
2

)
≡
(
l1 l2 L
0 0 0

)(
l′1 l′2 L
0 0 0

)(
l1 l2 L
−Λ1 Λ2 •

)(
l′1 l′2 L
−Λ1 Λ2 •

)
.

(1.98)

1.4.5 Adiabatic approximation

Section 1.3 shows that the central ingredient to the adiabatic approximation is the
elastic body frame “modulated” scattering amplitude. According to the Chase (1956)’s
prescription, the approximate laboratory frame (in principle inelastic) amplitude is
consequently rendered as a single matrix element of the transformed body frame am-
plitude sandwiched by respective rotational states of the target molecule. In this sense,
the approach based on adiabatic approximation (AA) thus resembles quite closely the
body frame approach accompanied by rotational frame transformation discussed in the
preceding section. One therefore expects that there must be some specific relation be-
tween these two approaches and it has been indeed shown (Chandra, 1975) that these
methods in their original form actually furnish identical cross-sections. Nevertheless
because of the different theoretical background, we have devoted a separate section to
the AA method.

Formalism of the adiabatic approximation

The subsequent analysis is most easily performed in the partial wave expansion which
finds a natural generalization in case of polar molecules as elaborated in more detail in
Chapter 4. The body frame elastic scattering amplitude is thus expressed37 as

f(~k′f ,
~k′i) =

2π

ik

∑
m,m′

l,l′

il−l
′ ·
{
− δl,l′δm,m′ + Sl′m′,lm

}︸ ︷︷ ︸
Tl′m′,lm

·Y∗l,m
(
k̂′i
)
Yl′,m′

(
k̂′f
)
,

with k ≡ kf = ki

(1.99)

with the term in curly braces Tl′m′,lm being known as the partial wave transition ma-
trix. Consequently, it is necessary to transform this amplitude to the laboratory frame
obtaining in this way the “ω-modulated” scattering amplitude required by the central
equation (1.35) of the adiabatic approximation. To this end, we conveniently employ
the Wigner Djm,k functions (the most important algebraic properties of which are sum-
marized by Appendix E) to transform spherical harmonics in (1.99) using relations
(E.5). The resulting (transformed) scattering amplitude takes the form

f(~kf , ~ki; ω) =
2π

ik

∑
m
l,l′

il−l
′
√

2l + 1

4π
Tml′,l

∑
k′

Yl′, k′
(
k̂f
)
Dl0,m(ω) Dl′ ∗k′,m(ω) , (1.100)

where we put the incident momentum ~ki into coincidence with the fixed laboratory
frame z-axis and the Euler angles specifying the orientation of the molecule have been
subsumed into a collective label ω. As already mentioned above, the amplitude (1.100)
is consequently sandwiched by rotational states of the molecule and resulting expression
is integrated over ω (i.e., averaged over possible molecular orientations). The result of
course depends on the explicit form of the rotational states. Since we have applied this

36notation of Appendix B has been used in (1.97), namely that the symbol • appearing in the
individual 3j-symbols represents the unique value for which the respective symbol doesn’t vanish

37in accordance with the convention introduced in Section 1.2, primed vectors refer to the body frame
of reference
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approach for studying rotational excitations of polar symmetric top molecules, we shall
confine ourselves in the following to this particular case. The approximative laboratory
frame amplitude rendered in the adiabatic approximation is thus

fLF J ′K′M ′
ad. JKM (k̂f ) =

〈
J ′K ′M ′

∣∣ f(~kf , ~ki; ω)
∣∣JKM〉 , (1.101)

with |JKM〉 representing the symmetric top rotational states introduced in Subsec-
tion E.1.1. Performing the integration over ω in Eq. (1.101) and utilizing composition
(E.24) and orthogonality (E.18) properties of the Djm,k functions yields after some
algebraic effort the final result

fLF J ′K′M ′
ad. JKM (k̂f ) =

2π

ik

√
(2J + 1)(2J ′ + 1)

4π
(−1)K−M

′
δK,K′

∑
m
l,l′

(−1)m
√

2l + 1

× il−l
′
Tml′,l

∑
L

(2L+ 1)

(
J J ′ L
M −M ′ ∆M

)(
J J ′ L
K −K 0

)
·

·
(
l l′ L
0 ∆M −∆M

)(
l l′ L
m −m 0

)
Yl′, M̄

(
k̂f
)
.

∆M = M ′ −M
M̄ = M −M ′

(1.102)

The form (1.102) is in agreement with expression given by Fabrikant (1983b), where
the author presents similar formula for diatomic molecules obtainable from Eq. (1.102)
in the formal limit K,K ′ → 0.

Having obtained the scattering amplitude in (1.102), it is then straightforward to
evaluate the differential scattering cross-section via standard formula

dσΓ′,Γ =
kΓ′

kΓ

∣∣∣ fLF
ad. Γ′,Γ(k̂f )

∣∣∣2dΩ, (1.103)

where Γ and Γ′ were introduced as shorthands for rotational quantum numbers JKM
and J ′K ′M ′, respectively.

The cross-section corresponding to all possible rotational transitions from an initial
energetically non-degenerate subspace evaluated in the adiabatic approximation has the
interesting property that it is independent on this initial subspace. The explicit analysis
for diatomic molecules has been carried out long time ago by Chang and Temkin (1969)
and Temkin et al. (1969). The underlying idea is quite simple and the proof can be
compressed just into a few lines as outlined below, where we extend the treatment also
to symmetric top molecules.

• Diatomic molecules

The energetically non-degenerate subspaces regarding diatomic molecules are labeled
just by the rotational quantum number j. Thus the physical quantity (cross-section
σj→) of interest as described above is

σj→ ≡
1

2j + 1

∑
m

∑
j′,m′

σj,m→j′,m′ . (1.104)

The first sum over m in (1.104) corresponds to averaging over initial energetically
degenerate states38 and the second sum over j′,m′ reflects summing over all possible
final rotational states. Expressing the individual cross-sections in Eq. (1.104) in terms

38the initial subspace is of dimension 2j + 1
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of adiabatically approximated scattering amplitude (1.101) yields

σj =
1

2j + 1

∑
m

∑
j′,m′

∣∣〈j′m′∣∣ f(~kf , ~ki; ω)
∣∣jm〉∣∣2 =

=
1

2j + 1

∑
m

∑
j′,m′

〈
jm
∣∣ f(~kf , ~ki; ω)∗

∣∣j′m′〉 〈j′m′∣∣ f(~kf , ~ki; ω)
∣∣jm〉 =

=
1

2j + 1

∑
m

∑
j′,m′

〈jm|
∣∣f(~kf , ~ki; ω)

∣∣2 |jm〉 =

=
1

2j + 1

∑
m

∑
j′,m′

∫
dω
∣∣f(~kf , ~ki; ω)

∣∣2 Yj,m

(
ω
)
Y∗j,m

(
ω
)

=
1

4π

∫ ∣∣f(~kf , ~ki; ω)
∣∣2 dω,

(1.105)

where we have utilized the closure property of the |j′m′〉 states in the second row
and the well-known relation 4π

∑
m Yj,m

(
ω
)
Y∗j,m

(
ω
)

= 2j + 1 in the final algebraic
manipulation. In other words, the result obtained in Eq. (1.105) can be also interpreted
as that the cross-section (1.104) is simply an angular average of the squared modulus
of the body-frame scattering amplitude transformed into the laboratory frame.

In the derivation (1.105), we have tacitly assumed that the target diatomic molecule
finds itself in a Σ electronic state. Therefore the expectation values of the operators Jz′

and lz′ coincide and the rotational wave functions are simply spherical harmonics. For
generalization to non-Σ states we refer to Temkin and Faisal (1971). Since a diatomic
molecule in a non-Σ state is, roughly speaking, almost a symmetrical top (as far as
angular momentum is concerned), it is not too surprising that the formalism quite
resembles the one given below.

• Symmetric top molecules

For symmetric top molecules, the rotational energy is determined by quantum numbers
J,K. Therefore one obtains the relevant cross-section σJK by summing over final states
and averaging over the (2J + 1)-fold degenerate initial quantum number M

σJK ≡
1

2J + 1

∑
M

∑
J ′K′M ′

σJKM→J ′K′M ′ . (1.106)

Consequently, one can proceed along very similar lines as for diatomic molecules to wit

σJK =
1

2J + 1

∑
M

∑
J ′K′M ′

∣∣〈J ′K ′M ′∣∣ f(~kf , ~ki; ω)
∣∣JKM〉∣∣2 =

=
1

2J + 1

∑
J ′K′M ′
M

〈
JKM

∣∣ f(~kf , ~ki; ω)∗
∣∣J ′K ′M ′〉 〈J ′K ′M ′∣∣ f(~kf , ~ki; ω)

∣∣JKM〉 =

=
1

2J + 1

∑
M

∑
J ′K′M ′

〈JKM |
∣∣f(~kf , ~ki; ω)

∣∣2 |JKM〉 =

=
1

8π2

∑
M

∑
J ′K′M ′

∫
dω
∣∣f(~kf , ~ki; ω)

∣∣2 · ∣∣DJK,M (ω)
∣∣2 =

1

8π2

∫ ∣∣f(~kf , ~ki; ω)
∣∣2 dω.

(1.107)

The essential algebraic simplification is again based on the closure property of the
DJ ′K′,M ′ functions and the orthogonality property (E.18) enabling to carry out the sum-
mation over M . The interpretation of Eq. (1.107) is almost identical as in the previous
case. The only distinction is present in the factor 8π2 which is due to the fact that the
orientation of a symmetric top is specified by all three Euler angles and therefore the
“angular space” size is correspondingly 2π× larger than in Eq. (1.105).
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Analytic Born completion in the body frame

The ideas outlined in Subsection 1.4.3 regarding the analytic Born closure techniques
are easily extended also to the framework of the body frame treatment facilitating
significantly numerical calculations especially in case of polar molecules as discussed
in Chapter 4. Following the procedure introduced in Subsection 1.4.3, we need first
to identify the dominant part of the electron-molecule interaction. In the following we
shall suppose that the dipole contribution does the job. For the subtraction technique
(1.74), it is again not necessary to consider exact form of the dipole potential since one
can assume that for high partial waves, the difference between point dipole and the
actual potential will be effectively washed out.

• Born point dipole amplitude

From the formal point of view, two main ingredients are required. Firstly, we need
to compute the Born approximation to the body frame elastic point dipole scattering
amplitude in the partial wave expansion obtaining thus the corresponding body frame
Born partial wave T-matrix (1.99). To this end we employ plane wave resolution (D.6)
in the standard expression for the Born amplitude obtaining39

f(~kf , ~ki) = 4π2
〈
~kf

∣∣∣ ~D · ~r
r3

∣∣∣~ki〉 =
1

2π

∫
d~r

~D · ~r
r3

ei(~ki−~kf )·~r =

= 8πD
∑
l,l′

m,m′

il−l
′
Y∗l,m

(
k̂i
)
Yl′,m′

(
k̂f
)
·
∫ ∞

0
dr jl(kir) jl′(kfr) ·

·
∫

dΩx̂ Yl,m

(
x̂
)

cos θY∗l′,m′
(
x̂
)

=
2π

ik

∑
m
l,l′

il−l
′ · ρFBA m

pd l′,l ·Y∗l,m
(
k̂i
)
Yl′,m′

(
k̂f
)
,

(1.108)

with ρFBA m
pd l′,l representing the mentioned Born point dipole partial wave T-matrix

ρFBA m
pd l′,l ≡ 2iD

δl′,l+1

l + 1

√
l′2 −m2

4l′2 − 1
+
δl′+1,l

l′ + 1

√
l2 −m2

4l2 − 1

 , (1.109)

the elements of which are immediately seen to decay only as 1/l confirming thus the
expected slow convergence of the resulting cross-sections with respect to the angular
momentum basis. Nevertheless if the dipole interaction dominates in the collisional
process under investigation, it is not completely unreasonable to expect that the “exact”
partial wave T-matrix elements will exhibit similar behavior for large l. One might be
thus tempted to subtract the matrix elements (1.109) from T-matrix elements (1.99)
computed in the body frame by solving the corresponding radial equations (1.24).
Consequently, we need something which we would add in the laboratory frame in order
to compensate for this subtraction. To this end, we evaluate in a straightforward way
the FBA body frame scattering amplitude in the plane wave basis to wit

f(~k′f ,
~k′i) = 4π2

〈
~k′f

∣∣∣ ~D · ~r
r3

∣∣∣~k′i〉 =

= −2i
~D′ · ~K ′

K2
with ~K ′ ≡ ~k′f − ~k′i.

(1.110)

39superscript FBA stands for First Born Approximation
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Now, it is necessary to transform the expression (1.110) to the laboratory frame. To this
end, it is convenient to rewrite the dot product ~D′ · ~K ′ in terms of spherical harmonics
and consequently employ the transformation rules (E.17)

~D′ · ~K ′

DK
= P1(D̂′ · K̂ ′) =

4π

3

1∑
m=−1

Y∗1,m
(
K̂ ′
)
Y1,m

(
D̂′
)

=

√
4π

3
Y∗1, 0

(
K̂ ′
)

=

√
4π

3

1∑
k=−1

D1
k,0(ω) Y1, k

(
K̂
)
.

(1.111)

Thus the body frame scattering amplitude (1.110) transformed into the laboratory
frame is

f(~kf , ~ki) = −2i
D

K

√
4π

3

1∑
k=−1

D1
k,0(ω) Y1, k

(
K̂
)
. (1.112)

Inserting this result into Eq. (1.100) and performing the angular integration using
relation (E.21) yields

fLF-FBA J ′K′M ′
ad. JKM (K̂) = −2iD

K

√
4π

3

√
[ J ][ J ′ ] (−1)M

′−KδK,K′×(
J J ′ 1
M −M ′ •

)(
J J ′ 1
K −K 0

)
Y1,M ′−M

(
K̂
)
.

(1.113)

Note that (1.113) is in contrast to (1.102) expressed in terms of the laboratory frame
transfer momentum ~K. Nevertheless the appropriate workaround is quite easy. Assum-
ing that the laboratory frame is chosen so that the incident electron momentum ~ki lies
in coincidence with the laboratory z-axis and denoting the polar (scattering) angles of
~kf as θf, φf, the magnitude of the momentum transfer is K2 = 2k2

i (1 − cos θf) and the
corresponding polar angles θK, φK obey

cosφK = −ki
K

(
1− cos θf

)
and φK = φf.

Strictly speaking, the final momentum expressed in the laboratory frame ~kf violates

energy conservation for it differs from ~ki only in the direction. This nuisance is closely
linked with our starting point, the body frame elastic amplitude (1.99). On the other
hand, from the formal point of view, this is not of much importance, since (1.113) is
used solely to compensate for the subtraction of the FBA partial wave T-matrix (1.109).

Finally, a natural question might be what is the connection between the FBA am-
plitude (1.113) obtained by digression to the body frame and the Born differential
cross-section (1.66) calculated directly in the laboratory frame. Taking squared mod-
ulus of (1.113), summing over final and averaging over initial energetically degenerate
states readily provides

dσ

dΩ

LF-FBA

ad.

∣∣∣∣
JK→J ′K′

=
1

2J + 1

∑
M,M ′

∣∣∣ fLF-FBA J ′K′M ′
ad. JKM (K̂)

∣∣∣2
= 4π

4D2

3K2
(2J ′ + 1)

(
J J ′ 1
K −K 0

)2 ∑
M,M ′

Y∗1,M ′−M
(
K̂
)
×

×Y1,M ′−M
(
K̂
)( J J ′ 1

M −M ′ •

)2

.

(1.114)
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The sums in (1.114) over M, M ′ are easily evaluated by introducing temporary variable
∆ = M ′ −M so that one has∑

∆

Y∗1,∆
(
K̂
)
Y1,∆

(
K̂
)

︸ ︷︷ ︸
3

4π
P1(K̂·K̂)= 3

4π

∑
M

(
J J ′ 1
M • ∆

)2

︸ ︷︷ ︸
1
3

. (1.115)

We thus immediately see that (1.114) reduces to (1.66) with ε = 1 reflecting the above
mentioned fact that the amplitude (1.113) is “artificially elastic”.

1.5 Radial equations

Vast majority of computational methods intended for description of electron-molecule
scattering lead in the end to a set of coupled second order differential equations for
the radial wave function components of the scattered electron. Quite generally, these
equations can be written in the following form[

d2

dr2
− lα(lα + 1)

r2
+ k2

α

]
ψαβ(r) = 2

∑
γ

V (r)αγψγβ(r). (1.116)

Greek subscripts α, β, . . . distinguish individual channels and in the following they
are used as a compressed notation for all relevant channel quantum numbers. These
depend of course on the problem under investigation, nevertheless we shall assume that
the angular momentum of the incident electron l is always included. This proviso is
already explicitly present in Eq. (1.116), where the symbol lα stands for the angular
momentum l in channel α. Similarly, kα denotes channel momentum given by energy
conservation

k2
α = 2(E − Eα), (1.117)

with E being the total initial energy of the system40 and Eα representing the energy
of the target in channel α. Finally, two subscripts on the wave function ψαβ are used
in order to distinguish outgoing (α) and ingoing (β) channels.

In the absence of the coupling potential term V , the real solutions41 of Eq. (1.116)
can be chosen as the Ricatti-Bessel functions introduced in Appendix D

ĵlα(kαr) ≡
1√
kα
ĵlα(kαr) n̂lα(kαr) ≡

1√
kα
n̂lα(kαr) . (1.118)

In (1.118), we have chosen slightly different normalization42 of the free solutions as
compared, e.g., to Huo and Gianturco (1995, chap. 6) in order to ensure unit Wronskian
and thus to eliminate kinematic factors in the real asymptotic form of the solution of
(1.116) as mentioned in Appendix D.

To determine the solutions of (1.116) uniquely, one further imposes scattering
boundary conditions, namely

ψαβ(0) = 0, (1.119a)

ψαβ(r)
r→∞−−−→ δαβ ĵlβ (kβr) +Kα,β n̂lβ (kβr) . (1.119b)

Condition (1.119a) has to be satisfied in order to ensure finite solutions of the three-
dimensional Schrödinger equation at the origin and condition (1.119b) can be under-
stood as a defining relation for the so-called K-matrix. Strictly speaking, condition

40energy of the incident electron + target
41in the following we shall refer to these functions as free solutions
42and therefore also different symbols j and n
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(1.119b) applies only for energetically accessible channels.43 The role of closed chan-
nels in all applications presented in this thesis seemed to be marginal. Therefore we
shall omit discussion of these topics and for additional details we refer to Norcross and
Seaton (1973).

Equations (1.116) can be interpreted as a set of equations with nonzero r.h.s., where
the r.h.s. contains the solution itself. At least from the theoretical point of view, the
Green’s function approach is specifically tailored for these situations. The particular
(channel α) Green’s function glα(r, r′) extensively used in Subsection 1.5.1 and vanishing
identically44 for r′ > r is

glα(r, r′) = θ
(
r − r′

){̂
jlα(kαr) n̂lα

(
kαr
′)− n̂lα(kαr) ĵlα

(
kαr
′)} . (1.120)

1.5.1 Numerical solution of the radial equations

In order to tackle equations (1.116) numerically, we have employed a technique based
on the possibility to reformulate the original set of differential equations into a set of
Volterra equations of the second kind, originally proposed and successfully applied in
a series of papers (Sams and Kouri, 1969a,b, 1970a,b; White and Hayes, 1972). This
approach yields an efficient and easily implementable iterative procedure as opposed
to standard methods based on discretization of the differential operator. The appli-
cability of the latter methods to quantum scattering problems has been investigated
very extensively in the past (Allison, 1989; Blatt, 1967; Sullivan and Temkin, 1982).
Approaches have been also reported, which are based on conversion of the second order
to first order equations amenable to treatment by exponential techniques (Chan et al.,
1968). Gordon (1969) has used a different strategy consisting in a piecewise linear ap-
proximation of the potential on several sectors. The solution on each sector can be then
constructed analytically and consequently matched at the sector boundaries to supply
an approximative wave function. For a recent overview of these and related methods
we refer to Anastassi and Simos (2009) and references therein.

Another possibility consists in restating the Schrödinger equation into a first order
differential equation for the log-derivative matrix of the solution. However, standard
discretization methods are not especially practical in this case due to the possible pole
singularities of the log-derivative matrix. An efficient numerical algorithm (although
without derivation) has been proposed in Johnson (1973) and later put on more rigorous
grounds by Manolopoulos et al. (1993). Mrugala (1985) has shown how to extend this
algorithm also to handle Schrödinger equation with inhomogeneous terms. From the
formal point of view, these methods are closely related to the Variable Phase Approach
of Calogero (1967). Adaptation of the approximative method of Gordon (1969) to
the framework of log-derivative methods can be found in Alexander and Manolopoulos
(1987).

Although closed channels in the close coupling approach don’t play a dominant role
in the presented applications, an elaboration on propagation under these circumstances
is contained, e.g., in Norcross and Seaton (1973).

Volterra integral method

Set of N equations (1.116) being of second order has in general 2N solutions. The
condition (1.119a) reduces this number to N . It turns out to be convenient to arrange
individual solutions ψαβ distinguished by the ingoing channel β into a square matrix

43i.e., channels α for which k2
α > 0

44θ(x) represents Heaviside step function
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Ψαβ. In the same spirit we introduce following diagonal square matrices

Jα,β ≡ ĵlα(kαr) δα,β Nα,β ≡ n̂lα(kαr) δα,β, (1.121)

representing the free solutions of Eq. (1.116). Taking into account the Green’s function
(1.120), the original set of equations can be easily restated into matrix form as

Ψα, β(r) =
∑
γ

(Jα,γ(r)Qγ,β(r)−Nα,γ(r)Pγ,β(r)) , (1.122)

where the matrices Q and P depend on r and are given as45

Q(r) ≡ I + 2

∫ r

0
dr′ N · V ·Ψ (1.123a)

P(r) ≡ 2

∫ r

0
dr′ J · V ·Ψ (1.123b)

Combining the boundary conditions (1.119) and Eq. (1.123) yields directly a relation
for the K-matrix

K = − lim
r→∞

P(r) ·Q(r)−1. (1.124)

Discretization of Eq. (1.123)

To obtain the numerical solution of Eq. (1.121), one follows typically these steps

• the radial variable r is confined into some prescribed interval [0, rmax],

• radial grid {rn}Nn=0 is introduced, where n labels the individual grid points and
r0 = 0, rN = rmax,

• the integrals in Eq. (1.123) are replaced by suitable numerical quadrature scheme.

The issues regarding the choice of particular quadrature and its influence on the numer-
ical properties of the resulting algorithm are discussed in more detail in Appendix A.
In light of the material presented there, an acceptable compromise between precision
and computational demands seems to be the Simpson’s method 2 with adaptive grid
spacing. In practical calculations it turned out that it is quite satisfactory to use just
simple trapezoidal rule with adaptive grid or “truncated” Simpson’s method introduced
in Section A.3.

This behavior is mainly due to the fact that the major error in the computed
scattering quantities stems from the truncation of the close coupling target expansion
and the error caused by the inaccuracy of the integrator can be remedied by increasing
the density of the grid. This is accompanied by linear increase of the computational
costs, whereas the scaling with respect to the number of target states is typically of
third order. In the following, we shall therefore assume that the integration weights wni
given by (A.3) don’t depend on n.

We thus readily obtain discretized versions of Eq. (1.123) as

Qn ≡ I + 2
n∑
i=0

wiNi · Vi ·Ψi (1.125a)

Pn ≡ 2
n∑
i=0

wi Ji · Vi ·Ψi (1.125b)

45indices are dropped and symbol · denotes matrix-matrix multiplication
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Subscript i indicates that the matrices Q,P, . . . are referred to the ith grid point. Plug-
ging (1.125) into Eq. (1.122) furnishes the final relation for propagating the solution

Ψn+1 = Jn+1 ·Qn −Nn+1 · Pn, (1.126)

which is a consequence of the fact that the contributions at the nth grid point from Q

and P cancel. Eq. (1.126) is thus a prescription how to generate the solution at grid
point n+ 1 using the knowledge of the solution at grid point n.

Initial conditions

Eq. (1.126) has to be of course accompanied with proper boundary conditions at the
origin. These can be obtained by direct inspection of Eq. (1.123), namely

Q(0) = I P(0) = 0. (1.127)

It is worth to note that the use of Green’s function (1.120) actually already fixes the
normalization of the resulting wave function and we are therefore not free to prescribe
the matrices Q,P at the second grid point r1, as it is usually done in, e.g., Numerov
type methods (Anastassi and Simos, 2009).

Numerical stabilization

The numerical errors arising in practical implementations of (1.126) are unavoidable.
Probably the main consequence is the fact that the linear independence of individual
solutions (i.e., columns of Ψ) degrades during the propagation. Several techniques how
to circumvent this nuisance have been proposed (Morrison et al., 1977; Rescigno and
Orel, 1981, 1982). The main idea is based on the observation that all columns of Ψ
are solutions of the original linear equation (1.116) and therefore Ψ post-multiplied by
some regular matrix A will be also a solution. From the mathematical point of view,
this approach essentially corresponds to a change of the initial conditions. The matrices
Q,P will be transformed into Q̃, P̃, given as

Q̃← Q ·A and P̃ ← P ·A.

However, the key element of scattering calculations, the K-matrix, is invariant under
this transformation as can be immediately seen from (1.124)

K̃ = − lim
r→∞

P̃(r) · Q̃(r)−1 = − lim
r→∞

P(r) ·A ·A−1 ·Q(r)−1 = K.

Various methods then differ in the choice of the matrix A. Rescigno and Orel (1982)
use in place of A the inverse of Q, i.e., Q−1. This yields the transformation

Q̃← I and P̃ ← P ·Q−1.

Another choice consists (Čuŕık et al., 2000) in employing the inverse of the solution
matrix Ψ, although it might seem strange to multiply by Ψ−1 in this case since the
matrix Ψ is close to singular. Therefore the stabilization procedure has to be performed
“soon enough” to prevent numerical deterioration of Ψ.

On the other hand, as pointed out by Huo and Gianturco (1995), this approach
suffers from the fact that it is not suitable for reproducing the wave function itself, for
it would be necessary to store all transformation matrices and finally undo all matrix
multiplications in order to return to the original initial conditions. But since we are
usually interested solely in the K-matrix, this poses no serious restriction.
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1.6 R-matrix formalism for potential scattering

As a part of the presented thesis, we have investigated computational methods for
determination of scattering lengths in case of long range potentials46 emerging, e.g., in
theoretical description of Cs2 or 4He2 dimer ground states. Our interest concerning this
topic was motivated mainly by theoretical significance of the scattering length quantity
in the low-temperature physics of molecular dimers for which the point of Bose-Einstein
condensation is experimentally attainable (Motovilov et al., 2001).

In this regard, we have proposed an alternative method which is based on combina-
tion of the R-matrix approach and the celebrated Schwinger-Lanczos (SL) variational
principle. Details concerning this approach can be found in Šulc et al. (2010) com-
prising also the Attachment A of this thesis. Briefly stated, the basic idea consists in
decomposing the interaction potential into a local V and non-local (possibly energy de-
pendent) W part. Solution of the Lippmann-Schwinger (LS) equation for the potential
V +W is then in turn rendered by means of the so-called “two-potential” formula (Tay-
lor, 2006, ch. 14), i.e., one first solves the local problem taking into account only the
potential V , the solution of which is then employed as a “source term” for an equation
of the LS type but with potential W only. For handling the local part of the potential,
we have employed Green’s function technique along the lines of the R-matrix method
as suggested in Mil’nikov et al. (2001). Finally, the non-local problem W is solved by
application of the SL variational principle following the implementation of Meyer et al.
(1991).

The purpose of this section is to merely summarize the basic principles and formal-
ism of the R-matrix framework constituting a common denominator to a vast amount
of methods in modern electron-molecule scattering theory. Originally, this approach
was proposed by Wigner and Eisenbud (1947) in the context of nuclear physics and
later adapted for scattering calculations by many authors (Burke et al., 1971, 1977;
Shimamura, 1977).

1.6.1 Non-variational derivation

In the simplest possible setting of one-channel s-wave potential scattering, the relevant
problematics is essentially reduced to solving the radial Schrödinger equation[

−1

2

d2

dr2
+ V (r)− 1

2
k2

0

]
ψ(r) = 0, (1.128)

with V (r) and k0 representing the interaction and incident momentum, respectively.
In the usual R-matrix derivation (Burke and Robb, 1976), one fixes a radius r = r0

and introduces a set {φn} of radial functions being comprised of solutions of[
−1

2

d2

dr2
+ V (r)− 1

2
k2
n

]
φn(r) = 0, (1.129)

satisfying moreover boundary conditions

φn(0) = 0, (1.130a)

1

φn(r0)

dφn
dr

∣∣∣∣∣
r0

=
b

r0
. (1.130b)

Following Lane and Thomas (1958), simple algebraic manipulations readily reveal that
functions φn corresponding to different kn are mutually orthogonal (and thus linearly

46decaying as some inverse power of r for r →∞
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independent) on the interval [0, r0].47 Consequently, the sought original solution of
Eq. (1.128) can be expanded into this basis. Formally, one has

ψ(r) =

∞∑
n=1

cnφn(r) for 0 ≤ r ≤ r0. (1.131)

Multiplying (1.128) by φn and (1.129) by ψ, integrating from 0 to r0 and finally sub-
tracting both equations yields∫ r0

0

[
φnψ

′′ − ψφ′′n
]

dr =
(
k2
n − k2

0

) ∫ r0

0
φnψ dr. (1.132)

Left hand side of (1.132) is simplified by employing Green’s theorem and taking into
account the boundary conditions (1.130). This procedure renders directly the expansion
coefficients cn in (1.131) as

cn =
1

r0

φn(r0)

k2
n − k2

0

[
r

dψ

dr
− bψ

]
r0
. (1.133)

Having obtained cn and introducing the R-matrix via

Rb ≡
1

r0

∞∑
n=1

φ2
n(r0)

k2
n − k2

0

(1.134)

one can restate (1.131) into a form

Rb = ψ(r0)

(
r0

dψ

dr

∣∣∣∣
r0

− b ψ(r0)

)−1

, (1.135)

where the R-matrix Rb manifests itself as a dimensionless quantity directly relating the
value of ψ and its derivative at the boundary r = r0. Knowledge of the logarithmic
derivative of the solution of (1.128) enables us then in turn either to continue in the
radial propagation by means of some other method or to extract relevant scattering
quantities such as the reactance matrix provided the potential V (r) is already negligible
at r = r0, the latter situation being abundant in the originally proposed nuclear physics
applications where the interactions are typically of short range.

However, from the practical point of view, this approach is of limited use since
to obtain the expansion basis φn by solving (1.129) is actually almost equivalent to
solving the original problem (1.128) directly. On the other hand, we can introduce
some approximative potential V0(r) and introduce functions ϕ0

n being solutions of[
−1

2

d2

dr2
+ V0(r)− 1

2
κ2
n

]
ϕ0
n(r) = 0 (1.136)

obeying the same boundary conditions (1.130) as before. The original functions φn can
be then approximated by linear combinations of ϕ0

n as

φi ≈ ϕ(N) ≡
N∑
j=1

α
(N)
ji ϕ0

j i = 1, . . . , N , (1.137)

where the coefficients α
(N)
ji are obtained by diagonalizing the differential operator

− 1

2

d2

dr2
+ V (r) (1.138)

47without loss of generality we can therefore assume that φn comprise an orthonormal set
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in the basis ϕ0
n. Resulting eigenvalues are denoted as k

(N)
j for j = 1, . . . , N . In order to

ensure completeness, this set of N functions and eigenvalues is for k ≥ N+1 augmented

by ϕ0
k and κ2

k, respectively. For the sake of clarity, the notation ϕ
(N)
j is used for the

entire basis with the proviso that ϕ
(N)
j = ϕ0

j for j > N . An N -term approximation

ψ(N)(r) to the solution of (1.128) is then analogically to (1.131) sought in the form

ψ(N)(r) =

∞∑
j=1

c
(N)
j ϕ

(N)
j (r) for 0 ≤ r ≤ r0. (1.139)

Assuming that the differential operator (1.138) is diagonal also in the augmented basis
and that ψ(N)(r) represents its eigenfunction corresponding to k2

0 one can perform

similar manipulations as leading to (1.133) obtaining a relation for the coefficients c
(N)
j

to wit

c
(N)
j =

1

r0

φ
(N)
j (r0)

κ2
n − k2

0

[
r

dψ(N)

dr
− b ψ(N)

]
r0
. (1.140)

Thus the approximative R-matrix expression is now

R
(N)
b ≡ 1

r0

∞∑
n=1

φ
(N)
n (r0)2

k
(N)
n

2
− k2

0

. (1.141)

Of course in practical applications, the infinite summation in (1.141) has to be somehow
truncated. However, it turns out that naive omission of terms with n > N leads to very
slow convergence due to the inherent discontinuity of the derivative of φ(N) at r0. An
alternative tack has been proposed by Buttle (1967), in the spirit of which the author
considers the part of the summation (1.141) for n > N , i.e.,

∆R
(N)
b ≡ 1

r0

∞∑
n=N+1

φ
(N)
n (r0)2

k
(N)
n

2
− k2

0

=
1

r0

∞∑
n=N+1

ϕ0
n(r0)2

κ2
n − k2

0

. (1.142)

The key observation rests then in the fact that (1.142) is actually equivalent to(
r0

χ0(r0)

dχ0

dr

∣∣∣∣
r0

− b χ0(r0)

)−1

− 1

r0

N∑
n=1

ϕ0
n(r0)2

κ2
n − k2

0

. (1.143)

The first term is linked with the logarithmic derivative of the solution of (1.136) corre-
sponding to the considered incident energy k2

0/2. Inserting (1.143) into (1.141) yields
“Buttle–corrected” expression for the approximate R-matrix, namely

R
(N)
b ≡ 1

r0

N∑
n=1

φ
(N)
n (r0)2

k
(N)
n

2
− k2

0

− 1

r0

N∑
n=1

ϕ0
n(r0)2

κ2
n − k2

0

+

[
r0

χ0(r0)

dχ0

dr

∣∣∣∣
r0

− b χ0(r0)

]−1

. (1.144)

Explicit form of analogical corrections to the constructed wave function are discussed
in terms of projection formalism by Zvijac et al. (1975).

Although it might seem that the introduction of the approximative potential V0(r)
in (1.136) for potential scattering calculations brings no computational merits since
the original problem (1.128) could be in principle attacked directly, the real “power”
of the approach (1.144) reveals itself in more complicated settings such as, e.g., in
description of electron molecule collisions for which it can be naturally generalized and
has proven to be quite powerful. For conceptual details as well as an overview of possible
applications of this approach we refer to Burke and Robb (1976); Lane and Thomas
(1958) or Aymar et al. (1996); Burke and Tennyson (2005) and references therein.
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From the usual derivation adumbrated above, it might seem that the R-matrix
method suffers by an internal inconsistency. To be more specific, the possible culprit
is hidden in the fact that in practical applications, the expansion sum (1.131) contains
a finite number of terms each of which satisfies the prescribed boundary conditions
(1.130). Therefore the logarithmic derivative of the constructed solution (1.131) being
a linear combination of φn will be also equal to b.48 From the mathematical point of
view, this is equivalent to the statement that the sum (1.131) converges uniformly only
for r < r0.

The actual value of the logarithmic derivative of the solution ψ is of course a priori
unknown and therefore the approximative solution will be in general discontinuous in
its first derivative. One possible way how to cope with this nuisance is to employ the
above mentioned Buttle’s correction. Techniques have been also proposed where the
parameter b is adjusted iteratively in order to conform with the actual logarithmic
derivative of ψ as elaborated by Fano and Lee (1973).

1.6.2 Variational approach

Alternatively, it turns out to be convenient to relax the requirements on the basis
(1.131) as demonstrated by Kohn (1948) in terms of variational reformulation of the R-
matrix approach, the extension of which for multichannel case is discussed by Jackson
(1951) or Oberoi and Nesbet (1973). Elucidating overview of the underlying ideas has
been summarized by Nesbet (2004, ch. 8).

In his milestone paper, Kohn (1948) introduces following functional

Ξλ[φ] ≡
∫ r0

0
dr φ(r)

(
−1

2

d2

dr2
+ V (r)− 1

2
k2

0

)
φ(r) =

=

∫ r0

0
dr

[
1

2

(
φ′(r)

)2
+
(
V − 1

2
k2

0

)
φ2(r)

]
− 1

2
λφ2(r0).

(1.145)

The second equality in (1.145) follows after performing integration by parts and denot-
ing the logarithmic derivative of φ at r0 as λ. Kohn (1948) further emphasizes that for
fixed energy, the value of λ as calculated from (1.145) is stationary.49 Corresponding
variation of the functional (1.145) with λ held fixed reads

δΞλ = 2

∫ r0

0
dr δφ

[
−1

2

d2

dr2
+ V (r)− 1

2
k2

0

]
+ δφ(r0)

[
φ′(r0)− λϕ(r0)

]
(1.146)

vanishing identically if and only if[
−1

2

d2

dr2
+ V (r)− 1

2
k2

0

]
ϕ(r) = 0 for 0 ≤ r ≤ r0, and

λ =
φ′(r0)

φ(r0)
.

(1.147)

The sought solution ψ is now expanded into a basis ηi the elements of which are solely
required to obey the zero boundary condition at the origin (1.130a) and be linearly
independent. The functional (1.145) can be consequently varied with respect to the
expansion coefficients ci yielding a matrix equation of the form∑

j

Aijcj = ληi(r0)ψ(r0) (1.148)

48 logarithmic derivative of a linear combination of terms each of which has logarithmic derivative λ
is again equal to λ

49this observation is actually closely linked with similar approach in bound state calculations where
one utilizes the stationarity property of k for fixed λ
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with

Aij ≡
∫ r0

0

[
η′iη
′
j + ηi

(
2V − k2

0

)
ηj

]
dr. (1.149)

It can be shown that solution of (1.148) exists only for one particular value of λ which
is thus in this way uniquely determined.50 Solving formally for the coefficients cj
in (1.148), expressing the wave function ψ as corresponding linear combination and
bearing in mind that the one channel R-matrix is related to λ as R = (r0λ)−1 furnishes
the final expression

R =
1

r0λ
=
∑
i,j

ηi(r0)
[
A−1

]
i,j
ηj(r0). (1.150)

An interesting connection between the variational approach and the original Wigner-
Eisenbud (Wigner and Eisenbud, 1947) treatment has been presented in Robicheaux
(1991), although essentially similar ideas can be found already in Jackson (1951). The
key step is to explicitly exclude from the matrix A in (1.149) its dependence on the
incident energy. By introducing the overlap matrix Sij =

∫ r0
0 ηiηj , we can restate

(1.149) as

Aij =≡
∫ r0

0
η′iη
′
j + 2ηiV ηj dr − k2

0

∫ r0

0
ηiηj dr =

= 2Gij − k2
0Si,j .

(1.151)

Diagonalizing the symmetric matrix G in the (nonorthogonal) basis {ηi} and storing
its eigenvectors in the columns of a matrix V yields the relation GV = SV. Matrix V
links two linearly independent bases so it is certainly regular. Moreover, the overlap
matrix S turns out to be positive-definite (Szabo and Ostlund, 1996, p. 143). Since
the eigenvectors are supposed to be normalized, one has by definition that V†SV is
an identity matrix. Expressing G as G = SVV−1 and substituting V†S for V−1 yields
finally the spectral decomposition

G = SV · εV†S.

Plugging this result into (1.149) and taking into account that S is identical with the
inverse of VV† enables to invert the matrix A explicitly

A−1 =
(
2G − k2

0S
)−1

= V ·
(
2ε− k2

0

)
· V†. (1.152)

In combination with (1.150) this recovers the usual expression for the R-matrix, namely

R =
1

2r0

∑
i

ϕi(r0)2

E0 − εi
, with ϕi(r0) =

∑
j

Vjiηj(r0). (1.153)

The functions ϕi represent the eigenfunctions of G and are in the literature also known
as surface amplitudes.

Finally, we find interesting that a connection between the “classical” approach
(Burke and Robb, 1976) and the variational treatment (Nesbet, 2004) can be also
achieved by calculating explicitly the variational R-matrix expression (1.150) in a ba-
sis with fixed logarithmic derivative at the boundary r0. Since we haven’t found this
derivation in other sources, we would like to present it briefly below. To this end, we

50this has been proven already in Kohn (1948) by means of the matrix-determinant lemma (Ding
and Zhou, 2007) intended for evaluation of determinant of a rank-one updated matrix in terms of the
original determinant
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consider an orthogonal basis {ηi} comprised of eigenfunctions of (1.129) obeying more-
over the boundary conditions (1.130). Matrix elements of the matrix A in this basis
are then easily expressible

Aij =
b

r0
ηi(r0)ηj(r0) +

(
k2
i − k2

0

)
δi,j . (1.154)

This follows by employing integration by parts in (1.149) and taking into account the
boundary conditions (1.130) together with the orthogonality property of the basis {ηi}.
Now we need to evaluate the inverse of this matrix. This is probably most easily done
by utilizing the Sherman-Morrison formula (Bartlett, 1951)

(C + |u〉 |v〉)−1 = C−1 − C
−1 |u〉 〈v| C−1

1 +
〈
v
∣∣C−1

∣∣u〉 (1.155)

applicable for any regular matrix C. In the present notation, we have that Ci,j =
(k2
i − k2

0)δi,j and |u〉i = |v〉i =
√
b/r0ηi(r0). Thus the matrix elements of the inverse

matrix are given as

(
A−1

)
ij

=
1

k2
i − k2

0

δi,j −
b

r0

1
k2
i−k2

0
ηi(r0)ηj(r0) 1

k2
j−k2

0

1 + b
r0

∑
l
ηl(r0)ηl(r0)
k2
l−k

2
0

(1.156)

Substituting into (1.150) and calling upon the definition of Rb in (1.134) yields a relation
between R and Rb

R = Rb −
R2
b

1 + bRb
=

Rb
1 + bRb

, (1.157)

which essentially recovers Eq. (1.135).
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CHAPTER

TWO

INTERACTIONS

2.1 Static Exchange approximation

The derivation of the static exchange approximation as given by Huo and Gianturco
(1995) contains several misprints and therefore we would like to present detailed sketch
of the entire procedure along very similar lines instead of just referring to this source.

The considered system comprised of the incident electron and target molecule is
expected to be described by a wave function Ψ that depends1 on the coordinates
~x1, . . . , ~xN of the bound electrons and ~xN+1 representing the scattered electron. Wave
function Ψ is of course sought as an eigenfunction of the total Hamiltonian H corre-
sponding to the total energy E to wit2

HΨ(1, . . . , N + 1) = EΨ(1, . . . , N + 1), (2.1)

where the Hamiltonian H takes the usual well-known form3

H = Hm(1, . . . , N) + Vint(1, . . . , N + 1) + TN+1, with (2.2a)

Vint = −
N∑
i=1

1∣∣~rN+1 − ~ri
∣∣ +

M∑
i=1

Zj∣∣~rN+1 − ~Rj
∣∣ . (2.2b)

The “molecular Hamiltonian” denoted as Hm in (2.2a) is just a shorthand for the
corresponding sum of one-electron Hamiltonians and electron-electron repulsion (with-
in the molecule) terms. The operator Hm(1, . . . , N) defines a set of eigenvalues and
eigenfunctions

Hm(1, . . . , N)Φm(1, . . . , N) = EmΦm(1, . . . , N), (2.3)

approximating the electronic levels of the target molecule rendered at the considered
fixed nuclear geometry. The wave function Ψ is a function of N + 1 electron variables
and as such can be expanded into (presumably) complete basis (2.3) comprised of the
functions Φm of N variables with expansion coefficients Fm depending thus on the
remaining variable

Ψ = A
∑
m

ΦmFm, (2.4)

where the Pauli exclusion principle reflects itself in the presence of the (N +1)-electron
antisymmetrizer A.

1the molecule (disposing of N electrons and M nuclei witch charges {Zj}Mj=1) is assumed to be rigid

therefore the nuclear positions specified by {~Rj}Mj=1 are constant
2the independent variables of the ith electron entering Ψ have been subsumed into a label i
3symbol (1, . . . , j) underlines explicitly that the corresponding quantity is dependent on the coor-

dinates of electrons 1, . . . , j
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The basic idea of static exchange (SE) approximation is then closely connected
with the product-like expansion (2.4), for which one can hope that keeping explicitly
just the first term m = 0 will furnish reasonable results. Approximate incorporation
of molecular terms m > 0 is in the literature known usually as static exchange +
polarization method.

Taking into account that Ψ0 is already antisymmetrized in its variables, a little
juggling with permutations reveals quickly that one can obtain normalized4 SE–approxi-
mation to Ψ in the form5

ΨSE =
1√
N + 1

N+1∑
i=1

(−1)N+i−1Φm

(
{1, . . . , N + 1}\{i}

)
F0(i), (2.5)

where we have employed the notation
(
{1, . . . , N+1}\{i}

)
for specifying the coordinates

of all N + 1 electrons excluding the ith. In order to obtain an equation for F0, it
is necessary to project the Schrödinger equation (2.1) onto the first target state Φ0.
Exploiting permutation symmetry and antisymmetry of H and Φ0, respectively, it is
quite straightforward to show that this projection procedure yields following condition∫

Φ∗0(1, . . . , N)
[
H(1, . . . , N)− E

][
Φ0

(
{1, . . . , N + 1}\{N + 1}

)
F0(N + 1)

−NΦ0

(
{1, . . . , N + 1}\{N}

)
F0(N)

]
dτ = 0.

(2.6)

Equation (2.6) admits further significant simplification provided one assumes that Φ0

corresponds to Hartree-Fock ground state of a closed shell molecule. In that case, since
ΨSE is presupposed in a form of a single determinant, the Pauli exclusion principle
reflects itself in the requirement that the one-electron continuum function F0 be or-
thogonal to all bound orbitals with the same symmetry comprising Ψ0. Employing
Slater rules (Szabo and Ostlund, 1996) for evaluation of the matrix elements between
functions in determinantal form readily furnishes sought integro-differential equation
for F0, namely[

−1

2
∆~r − (E − E0)︸ ︷︷ ︸

− 1
2
k2

+Vst.(~r )
]
F0(~r ) =

∫
d~s Vex.

(
~r,~s
)
F0(~s). (2.7)

The static potential Vst. is rendered via Coulombic repulsion terms

Vst.(~r ) =
N∑
i=1

∫
d~s
φ∗i (~s )φi(~s )∣∣~r − ~s ∣∣ +

M∑
j=1

Zj∣∣~r − ~Rj
∣∣ , (2.8)

whereas the kernel Vex. of the integral exchange operator is slightly more complicated

Vex.(~r,~s ) =

N∑
i=1

φ∗i (~s )φi(~r )∣∣~r − ~s ∣∣ . (2.9)

2.2 Exchange potential

In the preceding section, it has been shown how the incorporation of the Pauli ex-
clusion principle manifests itself in nonlocal potential terms which in turn complicate
significantly numerical treatment of the resulting Schrödinger equation (2.7) for the

4at least as long as Ψ0 is a single determinant and F0 is orthogonal to all orbitals entering Φ0
5the factor (−1)N is merely an overall phase and can be thus dropped with impunity, nevertheless

its presence is in accordance with Eq. (2.5) in Morrison and Collins (1978)
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“continuum orbital”, the function F0, introduced in Eq. (2.5). In principle, it is possi-
ble to handle the nonlocal term in Eq. (2.7) directly and such methods are known in
the literature as Exact Static Exchange (ESE). In this regard, one typically employs
some iterative approach (Collins et al., 1980) with possible incorporation of the cel-
ebrated Schwinger variational principle [e.g., (Lucchese and McKoy, 1979; Takatsuka
and McKoy, 1981) or (Winstead and McKoy, 2007) and references therein]. As regards
the direct methods, adaptation of the Volterra propagator method of Section 1.5 for the
ESE treatment is discussed by Collins and Schneider (1981) in the framework of their
Linear-Algebraic (LA) method. More recently, Feng et al. (2009) have incorporated the
exchange term in their study of vibrational excitations of N2 induced by low-energy
electrons by considering the exchange kernel (2.9) per se, expanding the bound orbitals
(parametrically depending on the internuclear distance R) using single center expan-
sion techniques, sandwiching resulting expression between initial and final vibrational
states, performing the integration over R and working in the partial wave formalism.
However, these methods are not subject of this section and for a concise overview we
refer to Huo and Gianturco (1995, ch. 4).

From the computational point view, much more tractable tack consists in replacing
the nonlocal potential part by some local approximation, the energy dependence of
which is practically unavoidable. Common denominator of a broad class of methods
is to use the free electron gas approximation for the bound electrons of the target,
i.e., to treat them as noninteracting fermions occupying some prescribed volume V .
Corresponding one-electron wave functions are just simple plane waves6 (normalized to

V ) ei~kj ·~r/
√
V . Moreover, for the purposes of evaluation of the exchange term, one might

suppose that the incident electron is not influenced significantly and therefore invoke

the first Born approximation, i.e., approximate F0(r) by a term proportional to ei~k·~r,
with ~k being related to the incident energy Ei as |~k| =

√
2Ei. Following the derivation

neatly delineated by Morrison and Collins (1978) one can plug these assumptions into
Eq. (2.7). By performing integration over the volume V and summing over bound
orbitals using techniques summarized in Slater (1960, Appendix 22), one obtains the
Free Electron Gas (FEG) approximation to the exchange potential

VFEG(~r ) ≡ − 2

π
kFF (η), (2.10)

with

F (η)
def
=

1

2
+

1− η2

4η
log

∣∣∣∣1 + η

1− η

∣∣∣∣ and η ≡ k

kF
. (2.11)

The symbol kF denotes the Fermi momentum expressible in terms of the target charge
density ρ by well-known formula

kF =
(
3π2ρ

) 1
3 . (2.12)

The potential (2.10) is directly connected with a class of so-called Xα potentials VXα(~r )
approximating exchange terms as

VXα(~r ) = −
(

3α

2π

)(
3π2ρ

) 1
3 . (2.13)

Bearing in mind the definition of the Fermi momentum (2.12) and comparing (2.13)
with (2.10) immediately reveals that the Xα potential can be actually obtained from
(2.10) by imposing further approximation on the F (η) term. The tack proposed by

6subscript j numbers individual bound orbitals
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Slater (1960) is equivalent to replacing F (η) in (2.10) by its average7 over the Fermi
sphere yielding thus α = 1. On the other hand, Gáspár (1954) and later Kohn and
Sham (1965) have shown that considerations based on utilization of the variational
principle result in smaller value of α = 2/3. Although the potential (2.13) has found its
practical use in the past (see, e.g., Tully and Berry (1969) or Riley and Truhlar (1975)
and references therein), its use for scattering calculations is rather limited as pointed
out by O’Connell and Lane (1983).

However, potential (2.10) is amenable to further modifications which make it in
turn much more satisfactory as has been observed8 by Hara (1967). First of all, the
charge density in (2.12) is of course not constant. In this sense, the Fermi momentum
and consequently also the parameter η can be made position dependent by assuming
that (2.12) holds for all ~r to wit

kF(~r ) =
(
3π2ρ(~r)

) 1
3 . (2.14)

Second step (Morrison and Collins, 1978) consists in replacing the momentum k in the
definition (2.11) by a “local momentum” κ(~r ), the value of which is fixed naturally by
energy conservation

1

2
κ(~r )2 + V (~r ) = Ei, (2.15)

where V denotes the potential governing the motion of the impinging electron. Further,
the outermost bound electron (its momentum being equal to the Fermi momentum kF)
can be approximatively considered as moving in the same potential V . Since its energy
is (apart from the sign) equal to the ionization potential I, energy conservation yields

1

2
kF(~r )2 + V (~r ) = −I. (2.16)

Solving (2.16) and (2.15) for κ readily gives

κ(~r )2 = 2(Ei + I) + kF(~r )2, (2.17)

which reflects itself in a modified formula for η

η(~r )2 = 1 + 2
(Ei + I)

kF(~r )2
. (2.18)

From the formal point of view, the local momentum κ(~r ) should far from the target
molecule correspond just to the incident energy Ei, i.e., κ(~r ) → 2Ei. However, this
natural requirement is not compatible with (2.17) due to the presence of the ionization
potential I. Therefore, it has been suggested by Riley and Truhlar (1975) to disregard
I in (2.17). Riley and Truhlar (1975) call resultant approximation as Asymptotically
Adjusted Free Electron Gas Exchange (AAFEGE). The authors also introduce another
approximative treatment, the Second Order Free Electron Gas Exchange (SOFEGE),
the idea of which is to employ instead of (2.17) a prescription of the form

1

2
κ(~r )2 = Ei − Vst.(~r ), (2.19)

where Vst. represents the static potential of Section 2.1. It is clear that (2.19) exhibits
proper asymptotic behavior in the sense mentioned above.

7being equal to 3/4
8by comparing formulae from various sources, one should be take into account that this paper

contains several misprints as pointed out by Riley and Truhlar (1975)
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Rather than disregarding the ionization potential I altogether, it turned out to be
much more convenient to treat I as a freely adjustable parameter the value of which is
numerically tuned in order to reproduce some chosen property of a particular quantity
of the scattering calculations. Because of this tunning, this modified method is known
as Tuned Free Electron Gas (TFEGE) approximation. Although I should be considered
as a “global” parameter characterizing the target molecule, Sun et al. (1995) in their
body-frame FNO e-–N2 scattering calculations have tuned I for the Σ and Π symmetries
independently in order to obtain better agreement with the experiment.

An interesting alternative to the former approach has been proposed by Riley and
Truhlar (1975). The authors approximate the exchange term on the right hand side
of (2.7) in an energy dependent local formal −L(~r,E0)F0(~r ). In this notation, they
restate Eq. (2.7) as[

∆~r + κ2
0(~r )

]
F0(~r ) = 0, with

1

2
κ2

0(~r ) = E0 − Vst. − L(~r,E0) (2.20)

The original individual contributions to the exchange integral

Mi(~r ) =

∫
d~s

φ∗i (~s )F0(~s )∣∣~r − ~s ∣∣ , (2.21)

understood as functions of ~r can be without loss of generality expressed as a product
of a presumably slowly varying amplitude Ai(~r ) and (rapidly oscillating) function F0.
Acting by ∆ on (2.21), plugging in the definition of the local momentum κ0 and rear-
ranging terms yields an expansion for Ai in inverse powers of κ2

0, the lowest order term
of which is

Mi(~r ) ≈ 4π
φ∗i (~r )

κ2
0(~r )

+ . . . . (2.22)

At this level of approximation, the exchange contribution thus reads

N∑
i=1

|φi(~r )|2 2π

E0 − Vst.(~r )− L(~r,E0)
F0(~r ). (2.23)

Compatibility requirement with the original local approximative form −L(~r,E0)F0(~r )
furnishes quadratic equation for the function L(~r,E0), the admissible9 solution of which
is10

2L(~r,E0) =
(
E0 − Vst.

)
−
[(
E0 − Vst.(~r )

)2
+ 4πρ(~r )

] 1
2
. (2.24)

Riley and Truhlar (1975) call the approximation obtained in this way as Semiclassical
Exchange approximation (SCE). In the limit of high energy E0, it is possible to ex-
pand the square root term in (2.24) by obtaining the High Energy Exchange (HEE)
approximation

L(~r,E0) ≈ − πρ(~r )

E0 − Vst.(~r )
+O

(
ρ2
)
. (2.25)

All these methods approximating the ESE approach are in the literature usually
collectively denoted as Static Model Exchange (SME). One of their serious drawbacks
is that in general, the orthogonality condition (mentioned below Eq. (2.6)) of the con-
tinuum orbital F0 to the bound target orbitals is not guaranteed. On benchmark e– – Li
scattering calculations, it has been demonstrated (Collins et al., 1980) that omission of
this property can lead to spurious resonant features in the K-matrix eigenphase sums

9i.e., the solution vanishing for E0 →∞
10closed shell molecule is assumed for which the sum

∑N
i=1 |φi(~r )|2 reduces to the charge density

ρ(~r )
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understood as functions of energy which are not at all present in the ESE treatment.
Therefore the authors suggest additional enforcement of the orthogonality requirement
along the lines of the ideas described in Burke and Chandra (1972). Due to this
“added” orthogonality constraint, Salvini and Thompson (1981) call modified versions
of the methods presented above as OFEGE and OAAFEGE.

2.3 Correlation–polarization potential

The Static Exchange approximation adumbrated briefly in Section 2.1 disregards one
important feature of the electron–molecule interaction. More specifically, the culprit is
hidden in the fact that in this framework, one does not take into account the distortion
(polarization) of the target charge density induced by the electric field of the impinging
electron. This effect can be qualitatively understood in a semi-classical picture (Lane,
1980) in which the slowly incoming electron causes redistribution of the target charge
density resulting in an induced dipole moment. This dipole moment can be consequent-
ly thought of as “acting” back on the electron giving rise to an attractive polarization
contribution to the interaction potential. However, this simple picture is unacceptable
in the vicinity of the nuclei, where the bound and the incoming electrons should be
treated on the same footing. In other words, indistinguishability of the electrons and
the inherent many-body character of the electron-target system in this region of space
reflect in correlation effects.

From the (formal) quantum mechanical point of view, these flaws of the SE approxi-
mation are closely linked with the fact that only one (ground) target state contributes to
the total wave function (2.4). In this sense, incorporation of these polarization effects is
usually attributed to virtual electronic excitations of the target (Castillejo et al., 1960).
However, direct inclusion of more electronic terms is far beyond the SE approximation
and would drastically increase the computational demands. Therefore in order to stay
within the SE framework, one seeks some compromise in terms of an approximative
optical potential, which is for reasons mentioned in the previous paragraph denoted
usually as correlation-polarization potential Vcp.

The situation is far more simple for the long range part of the correlation-polarization
potential where only the polarization effects come into play. The corresponding asymp-
totic form has been shown (Almbladh and von Barth, 1985) to exhibit following behav-
ior

− 1

2r6

3∑
i,j=1

αijxixj , (2.26)

with αij representing the molecular polarizability tensor. For diatomic molecules, being
the subject of the following discussion, only two components of αij are independent due
to the cylindrical symmetry. The polarizability in the direction of the molecular axis
αzz is denoted usually as parallel, α||, whereas the component corresponding to the
perpendicular direction αxx = αyy is known as perpendicular polarizability α⊥. In
this case, only two spherical irreducible components of the polarizability tensor are
nonvanishing. Namely (0, 0) and (2, 0) being given in terms of Cartesian components
(Edmonds, 1996) as −Trα/

√
3 and (3αzz − Trα)/

√
6, respectively. Utilizing the fact

that the position unit vector r̂ can be interpreted as a tensor operator with rank 1
corresponding to

√
4π/3Y, where Y has spherical components Y1, q, q = −1, . . . , 1,

forming the scalar product of the tensors αij , xixj implied by (2.26) in terms of spherical
components and taking into account that only (0, 0) and (2, 0) components contribute
yields after some manipulations a simplified form (Dalgarno and Lewis, 1956) of the
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potential

Vcp(~r )
r→∞−−−→ − α0

2r4
− α2

2r4
P2(cos θ), (2.27)

where the spherical α0 = (α||+2α⊥)/3 and non-spherical α2 = 2(α||−α⊥)/3 polarizabil-
ities have been introduced. In (2.27), one formally requires that r → ∞, nevertheless
the “asymptotic region” is for small diatomic molecules reached already for r & 10 a.u.
(Morrison and Hay, 1979).

Pioneering approaches to the problem of determination of the correlation-polarization
potential were based on the knowledge of this asymptotic form. It might be tempting
to suppose that (2.27) holds for all r. However, in the vicinity of the nuclei, the elec-
tron gains large local kinetic energy and the target charge density is not able to adjust
instantly. It turns then out that the potential (2.27) overestimates the actual interac-
tion for small r. For this reason, a simple phenomenological rectification consists in
multiplying the potential (2.27) by an cut-off function C(r) containing typically some
adjustable parameters which can be in turn fitted to reproduce some particular feature
in the experimental cross-section data. Typical form of C(r) which has been used in
the past reads

C(r) = 1− exp
[
−
( r
rc

)p ]
, (2.28)

with rc representing the cut-off radius (i.e., radius of the sphere from which one tries
to effectively “remove” the polarization interaction) and exponent p. This approach
can be traced back to the work of Biermann (1943), where the authors use (2.28) with
p = 5 for investigation of atomic polarizabilities. For an overview of other possible
choices of the cut-off function C(r) we refer to Breig and Lin (1965) or Truhlar and
Brandt (1976); Truhlar and Rice (1970) and references therein.11

The semiclassical picture of the incident electron at intermediate and large distances
from the target molecule is quantum mechanically equivalent to an adiabatic description
in which the scattered electron is supposed to be held fixed in space at location ~re and
the target charge density is allowed to relax under its influence. More explicitly, the
adiabatic Hamiltonian HA for the target plus the incident electron takes the form

HA (~re, ~ri, ~Rj) = H(e)
m (~ri, ~Rj) + Vint(~re, ~ri, ~Rj) (2.29)

where the H
(e)
m is the electronic Hamiltonian (1.11) and the Coulombic perturbation

Vint reads

Vint(~re, ~ri, ~Rj) =
N∑
i=1

1∣∣~re − ~ri
∣∣ − M∑

j=1

Zj∣∣~re − ~Rj
∣∣ . (2.30)

An essential step in the calculation of the polarization potential is to determine the

ground state wave function ψ
(p)
0 (~ri; ~re, ~Rj) of the “polarized” Hamiltonian (2.29). Cor-

responding “polarized” energy is then naturally given as12

E
(p)
0 (~re; ~Rj) =

〈
ψ

(p)
0 (~ri; ~re, ~Rj)

∣∣ HA (~re, ~ri, ~Rj)
∣∣ψ(p)

0 (~ri; ~re, ~Rj)
〉
~ri
. (2.31)

Since the target density is allowed to relax, this quantity is expected to be lower as

11e.g., Truhlar and Brandt (1976) suggest that the cut-off function (2.28) (for a diatomic molecule)
should be chosen in such a way that the polarization effect is attenuated not for r → 0 but in the vicinity
of the nuclei. Therefore the authors choose C(r) in the form g(r+)g(r−), where g(r) = 1−exp(−r3/b3)
and r+, r− represent distance of the incident electron from the respective nuclei.

12semicolon in (2.31) suggests parametric dependence on the nuclear geometry {~Rj} and the subscript
~ri symbolizes integration over the electronic coordinates
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compared to the ground state energy13 of the undistorted system14

E0(~re; ~Rj) =
〈
ψ0(~ri; ~Rj)

∣∣ HA (~re, ~ri, ~Rj)
∣∣ψ0(~ri; ~Rj)

〉
~ri
, (2.32)

when no distortion of the target is possible giving thus rise to an attractive potential as
has been already mentioned above. The adiabatic polarization potential is then simply
defined as the difference of (2.31) and (2.32)

VA
cp(~re; ~Rj) ≡ E(p)

0 (~re; ~Rj)− E0(~re; ~Rj). (2.33)

This gambit has been extensively studied in the past among others by Morrison and
Hay (1979) and Dixon et al. (1979); Truhlar et al. (1979) where the authors used this
approach in their calculations regarding electron scattering off H2 and Li2 molecules.
However, potential (2.33) suffers of course from the fact that the adiabatic picture
breaks down near the nuclei. Probably the simplest tack how to rectify this nuisance
is the so-called Non-Penetrating Approximation (NP) Henry and Lane (1969); Temkin
(1957); Temkin and Lamkin (1961). Roughly speaking, in the NP framework, one sim-
ply multiplies the adiabatic Hamiltonian (2.29) by a step-function which essentially
“switches off the interaction for target density outside the radial position of the projec-
tile” (Morrison et al., 1987). Following Gibson and Morrison (1984), one can express
the Coulombic term 1/|~re − ~ri| in (2.30) via modified multipole expansion

1∣∣~re − ~ri
∣∣ =

{ 1

re

∞∑
λ=0

λ∑
µ=−λ

4π

2λ+ 1
,
( r
re

)λ
Y∗λ, µ

(
r̂i
)
Yλ, µ

(
r̂e

)
. ri < re

0 ri > re

(2.34)

This expression is consequently used in all calculations leading to the potential (2.33)
which is now designated as non-adiabatic. For reasons discussed by Gibson and Mor-
rison (1984); Lane and Henry (1968) the monopole λ = 0 term in (2.34) is usually
disregarded. In their study of e– – N2 scattering, Morrison et al. (1987) have employed
further approximation to (2.34), namely they retained just the dipole (λ = 1) term.
The resulting approximation is then called by Morrison et al. (1987) as Better Than
Adiabatic Dipole (BTAD) potential. Their approach closely resembles the Polarized
Orbital (PO) method proposed thirty years earlier by Temkin (1957); Temkin and
Lamkin (1961). However, the Temkin (1957)’s PO treatment differs from the BTAD
approximation of Morrison et al. (1987) in several important aspects. Similarly to
the BTAD approach, it employs the non-penetrating approximation retaining only the
dipole term in (2.34). Unlike BTAD, in the PO method one then computes the polar-
ized wave function of the system (2.29) in the first order perturbation theory. Original
PO approach has been used, e.g., in Onda and Temkin (1983) in combination with the
FEGE exchange model potential for study of e– – N2 collisions.

An alternative way how to incorporate the non-adiabatic effects in the theoretical
description has been proposed by Bouferguene et al. (1999) and later extended by
Feng et al. (2003). In this innovative procedure, the incident electron is described as
a continuous normalized Gaussian charge density

ρ(~r ) ≡ −
(

2ξ

π

) 3
2

e−2ξ|~r−~re|2 , (2.35)

13being equal to the sum of the Born-Oppenheimer electronic energy of the target and the static
potential (2.8)

14Gibson and Morrison (1984) speak about the undistorted system as being described in “frozen-core”
approximation, i.e., the system is not allowed to relax
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where the parameter15 ξ depends on the radial distance of the impinging electron as

ξ = β re, (2.36)

ensuring that for re → 0+ the density (2.35) tends to be more diffuse while in the oppo-
site limit re →∞ this density becomes essentially localized around re. The Coulombic
contributions to the Hamiltonian (2.29) are then in turn converted to integrals over the
charge density (2.35)

Vint(~re, ~ri, ~Rj) =

N∑
i=1

∫
d~x

ρ(~x )∣∣~x− ~ri∣∣ −
M∑
j=1

∫
d~xZj

ρ(~x )∣∣~x− ~Rj
∣∣ . (2.37)

Due to the spreading indicated in (2.36) of the “incoming charge density” for re → 0,
these expressions give rise to weaker polarization potential than in the adiabatic case16

reflecting thus the desired behavior. From the formal point of view, this method is
actually equivalent to the adiabatic approach in the formal limit of ξ → ∞, i.e., also
for re →∞.

Moreover, presence of the Gaussian charge density (2.35) facilitates significantly
numerical evaluation of the matrix elements of (2.37) sandwiched by target molecular
orbitals in (2.31) since these are typically given also in a Gaussian basis and very
efficient numerical algorithms for this class of problems are known (Helgaker et al.,
2000, ch. 9).

Feng et al. (2003) have further modified the approach of Bouferguene et al. (1999)
by arguing that the parameter β introduced in (2.36) should in general depend on the
internuclear separation R (in case of diatomic molecules) and also on the “approach
angle” θe of the incident electron. Therefore whereas Bouferguene et al. (1999) consider
β as an adjustable parameter, Feng et al. (2003) suggested following form17

β
(
θe, R

)
≡ 1

RR2
0

(1 + cos θe) , (2.38)

reflecting the expected behavior that the polarization potential should be stronger for
greater R and also for the parallel approach, i.e., small θe.

Finally, following Callaway et al. (1968), the non-adiabatic effects can be also ac-
counted for by calculating explicitly a correction to the adiabatic potential (2.33) in
terms of

∆V (~re; ~Rj) ≡ −
1

2

N∑
k=1

〈
ψ

(p)
0 (~ri; ~re, ~Rj)

∣∣∆~rk

∣∣ψ(p)
0 (~ri; ~re, ~Rj)

〉
~ri
. (2.39)

Callaway et al. (1968) call this term as distortion potential. It can be shown that it is
positive and falls off as 1/r6 (Dalgarno and Lewis, 1956) weakening thus the polarization
potential at small distances.

A conceptually different approach allowing to go beyond the adiabatic approxima-
tion consists in employing the Density Functional Theory (DFT) for determination
of the short-range part of the correlation-polarization potential. This methodology
has been originally proposed for scattering calculation purposes in O’Connell and Lane
(1983); Padial and Norcross (1984) where the authors utilize the Local Density Approxi-
mation (LDA) originating from the local spin density (LSD) approximation well-known
in the field of solid state physics (Perdew and Zunger, 1981). In order to obtain the

15being of dimension inverse length cubed
16moreover, the potential terms (2.37) are not singular in the vicinity of the nuclei or bound electrons,

i.e., for re → Rj or re → ri
17R0 represents the equilibrium internuclear separation

53



correlation-polarization potential, O’Connell and Lane (1983) and Padial and Norcross
(1984) consider model calculations of the free electron gas correlation energy [for details
we refer to, e.g., Fetter and Walecka (2003, ch. 1) or Carr et al. (1961); Gordon and
Kim (1972) and references therein] being functionally dependent on the charge density.
The correlation energy is not obtainable analytically even at the free electron gas level,
nevertheless approximative fits18 are available (Cohen and Pack, 1974). O’Connell and
Lane (1983) consequently argue that the correlation energy density Ec[ρ(~r )] is directly
related to the correlation potential as

Vc(~r ) ≡ 2 Ec[ρ(~r )]. (2.40)

In (2.40), the subscript c instead of cp has been used for V in order to emphasize that
(2.40) describes only the short-range correlation effects. Among other reasons, this is
a direct consequence of the free electron gas model which can not be hoped to describe
the interaction adequately when the incident electron is “beyond the outer edge” of the
target molecule since this model contains the inherent limitation that it doesn’t allow
for polarization of the target by the impinging electron (O’Connell and Lane, 1983).
On the other hand, Padial and Norcross (1984) interpret the correlation energy density
differently. Along the lines of the Hohenberg-Kohn method, they define the correlation
potential by means of functional derivative of the correlation energy to wit19

V′c(~r ) ≡ δ

δρ
ρ Ec[ρ(~r )]. (2.41)

Similar approach has been later followed in Perdew and Zunger (1981) employing more
precise calculations of the free electron gas correlation energy based on numerical Monte
Carlo simulations (Ceperley and Alder, 1980). Corresponding fitted form of Ec[ρ] may
be found in Perdew and Zunger (1981) or in Conclusions of Padial and Norcross (1984).
Slightly modified (more precise) fit was later proposed in Perdew and Wang (1992).
According to Gianturco and Rodriguez-Ruiz (1992), this fit results generally in weaker
polarization potential near the origin, nevertheless in practical scattering calculations
in case of small hydrocarbon molecules (C3H6, C3H8), the difference turns out to be
rather negligible (Čuŕık and Šulc, 2010).

Colle and Salvetti (1975) computed the correlation energy density in an approxima-
tive manner by multiplying the Hartree-Fock wave function by an explicit “correlation
factor”

∏
i>j

(
1 − ϕ(~ri, ~rj)

)
with a suitably chosen function ϕ. For details of this pro-

cedure we refer to Colle and Salvetti (1975). Their chief result is a formula for the
correlation energy density expressed in terms of the electron density and Laplacian of
the second order Hartree-Fock density matrix, which was later restated into a DFT
form by Lee et al. (1988), where the authors establish in this way the well-known LYP
functional.

Alternative gradient based corrections to the LDA were suggested by Perdew et al.
(1992) in their Generalized Gradient Approximation. The resulting functional is known
in the literature as PW91.

As already discussed above, a common drawback of the DFT approaches introduced
above is that they are unable to furnish the long-range part (2.26) of the correlation-
polarization potential. A heuristic reason in the free electron gas framework is men-
tioned above, nevertheless in the general case the correlation energy/potential exhibits
exponential decay following similar behavior of the target charge density.

18the procedure usually applied in practice is to use known expansions of the correlation energy in
the limits of low and high charge densities ρ in terms of the variable rs ≡ (3/4πρ)1/3 and consequently
“smoothly” join these two forms. For details we refer to Padial and Norcross (1984).

19this approach would actually reduce to (2.40) provided that Ec[ρ(~r )] depends on ρ linearly
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O’Connell and Lane (1983) and Padial and Norcross (1984) therefore suggest for
linear molecules to augment the model by polarizabilities α0, α2 entering (2.27) deter-
mined by other means and consequently join individual Legendre λ components of the
short-range correlation potential with their asymptotic counterparts at some crossing
point rc. Since for homonuclear diatomic molecules (2.26) simplifies to (2.27), only two
terms λ ∈ 0, 2 come into play. The correlation potential components with λ > 2 can
be thus either disregarded or retained in the model with their exponential decay. For
example, Padial and Norcross (1984) neglect these components in description of elec-
tron scattering off small molecules (H2, HCl, N2, CO, . . . ) arguing they are negligible
as compared to corresponding components of the static exchange potential.

A modified “joining” procedure has been proposed in Gianturco et al. (1993); Telega
et al. (2004). First step in this tack is to find a “matching point” rm where the short-
and long-range spherically symmetric components intersect. The long-range part of
the potential is then augmented by additional terms

∑
lmClmr

−λYl,m

(
r̂
)

where the
coefficients Clm are determined by the requirement of the overall smoothness of the
potential.20

Čuŕık and Šulc (2010) used in a study of electron scattering on small hydrocarbons
molecules employing the DMR method (introduced in Section 1.1) a different approach
consisting in expanding the long-range polarization potential (2.26) analytically into
partial-wave components

Vp(~r ) =
2∑
l=0

l∑
m=−l

vlm(r)Yl,m

(
r̂
)
. (2.42)

The short-range correlation potential is accordingly decomposed into two mutually
orthogonal angular components

Vc(~r ) =
2∑
l=0

l∑
m=−l

wlm(r)Yl,m

(
r̂
)

+W (~r ), (2.43)

where the higher angular components are contained in W (~r ). One can then join the
radial functions in (2.42) and (2.43) independently. This results in a correlation-
polarization potential which is smooth in all partial-wave components up to l ≤ 2.
Components with l > 2 decay exponentially, nevertheless they are retained in the
model.

The DFT approach for incorporation of non-adiabatic effects into the correlation-
polarization potential has been quite popular. Among vast amount of relevant stud-
ies we refer to Gianturco and Rodriguez-Ruiz (1992, 1993) or Čuŕık and Gianturco
(2002a,b); Čuŕık and Šulc (2010); Telega et al. (2004) and references therein.

20the exponent λ depends on l and for each l it corresponds to the first neglected term in the
long-range part of the polarization potential, i.e., λ(l) = 6, 5, 6 for l = 0, 1, 2 and λ = l + 2 for l > 2
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CHAPTER

THREE

ANALYSIS OF THE EXPERIMENTAL DATA

3.1 Experimental setup

The theoretical ideas presented in Sections 4.1 and 4.2 were originally motivated by
an attempt to fully utilise and also explain the precise experimental data gathered at
the Institute for Storage Ring Facilities1 at the University of Århus by the group of
Prof. D. Field.

Crucial property of any apparatus intended for measuring low-energy scattering
is the requirement of high energy resolution of the resulting electron beam. On the
other hand, it is necessary to ensure also a sufficient current density. Technical details
concerning the Århus setup can be found in Field et al. (2001); Hoffmann et al. (2002).

In this apparatus, the electrons are generated by threshold photo-ionisation of Ar
at 15.75 eV using synchrotron radiation supplied by the ASTRID storage ring. Typical
energy resolution of the emerging electrons is approximately 1.6 meV. The electrons
are then focused by a zoom lens and enter the scattering chamber filled with the gas
under investigation, the density of which is assumed to be low enough so that multiple
scattering processes can be safely neglected. Unscattered electrons are in turn allowed
to leave the chamber via the exit slit. The total integral cross-section σT is measured
by examining the beam attenuation. The designation “total” underlines explicitly the
fact that σT includes elastic as well as inelastic processes, whereas “integral” refers to
integration over the full 4π sr.

Moreover, whole apparatus can be immersed in an axial magnetic field of typical
strength of 2 mT. For incident energies up to roughly 0.7 eV, the electrons scattered
into the forward hemisphere exhibit a spiral trajectory with radius smaller than the
radius of the exit slit (1.5 mm) and leave thus the chamber without being detected. It
is elementary to show that the necessary magnitude B of the magnetic field2 ensuring
that electrons with energy ≤ Emax scattered into the forward hemisphere leave the
chamber through the exit slit with radius r can be estimated as

B ≤ 1

er

√
2Emax.

For Emax = 1 meV we readily obtain B ≈ 2.25 mT.
On the basis of the facts mentioned in the preceding paragraph, we can thus assume

that only the electrons scattered into the rear hemisphere contribute to the measured
total backward cross-section σB in this case. These ideas are schematically presented in
a pictorial form in Figure 3.1. In the following we will also drop the designation “total”

1http://www.isa.au.dk/
2the conversion factor from atomic units to T is ~/ea2

0 ≈ 2.35 · 105
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unless stated otherwise and simply refer to the total integral and total backward cross-
section as σT and σB, respectively.

IfIb

IuIin Iout
Iout = Iu

0◦

180◦
90◦

Forward scattering measurement

no magnetic field

IfIb

IuIin Iout
Iout = Iu + If

0◦

180◦
90◦

B

Backward scattering measurement

axial magnetic field

Figure 3.1: Schema of the experimental apparatus: Iin and Iout stand for the ingoing
and outgoing flux, respectively. Intensity of the unscattered electrons is denoted as Iu

and finally If/Ib represent intensities corresponding to scattering into the forward/rear
hemisphere.

Finally, we would like to make a comment on the interpretation of the total scat-
tering cross-section σT. The gas in the experimental chamber is sufficiently diluted so
that multiple scattering events can be disregarded from our consideration with impuni-
ty. Nevertheless from Figure 3.1, it is immediately obvious that the minimum scattering
angle θmin contributing to σT is closely linked with the position on the chamber axis
where the collisional event occurred as schematically represented by Figure 3.2. If d
represents location of the collision, L denotes length of the scattering chamber and h
stands for the width of the exit slit, then θmin is easily determined by the conditions

θmin = arctan
1

2

h

L− d
and θmin ∈ [0, π].

The resulting total “integral” cross-section thus corresponds to scattering into angular
range θ ∈ [θmin, π]. In order to obtain theoretical quantity conforming to the experi-
ment in computations described in Chapter 4, we are therefore forced to average the
calculated cross-sections over the scattering chamber.

θmind
h

L
1.5

1.9

2.3

2.7

3.1

0 0.2 0.4 0.6 0.8 1

∆
θ

=
π
−
θ m

in

η

∆θ = π − arctan
h

2L

1

1 − η

Figure 3.2: The dependence of the minimum scattering angle θmin contributing to the
total cross-section σT on the location d of the scattering event in a chamber of length L
with an exit slit of width h. The location of the event is characterized by a dimensionless
parameter η = d/L which for the actual experimental setup attains the value of 0.1.
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3.2 Phase-shifts fitting

The energy dependence of the generalized phase shifts introduced in Subsection 4.1.2 by
Eq. (4.6) is determined via a numerical fitting procedure. In this way we thus obtain
a “bridge” between theoretical considerations and direct experimental measurement.
This short section should provide a more detailed explanation of the method itself.

In the following, we will confine ourselves on two generalized phase shifts η0, η1 and
denote their energy dependence explicitly as η0(E), η1(E). Then the integral σT and
backward σB cross-sections – being functions of η0, η1 – depend on the energy through
these two quantities (apart from possible kinematic factors). The experiment furnishes
us for given collision energy E0 with two numbers – σe

T and σe
B – representing the

observed values of the integral and backward cross-section, respectively.3 One is then
naturally interested in finding the numerical values of η0(E0) and η1(E0) which give the
best4 agreement with the experiment. To this end, we introduce an auxiliary function
χ2 of two variables x, y according to the following relation

χ2(x, y) ≡
(
σe

T − σT(x, y)

σe
T

)2

+

(
σB − σB(x, y)

σB

)2

. (3.1)

The original question can now be thought of as an minimisation problem, where we
are looking for the (preferably global) minimum of the function (3.1) in an open set
containing some specified initial point (x0, y0).

Unfortunately, there is of course no guarantee that the physical values of η0, η1

will coincide with the (presumably existing) global minimum of χ2. Another issue
is then also connected with the dilemma which minimum (probably one of many in
general) of χ2 should we choose. Although it is tempting to argue that when we have
two experimental quantities σT, σB and two fitting parameters η0, η1, there should be
a bijective mapping, the situation is actually not so clearly cut. On the other hand, it
is essential to take into account that also the experimental values are “contaminated”
by systematical errors – the upper bound estimate on this error (Hoffmann et al., 2002)
is in our case approximately 8%.

Figure 3.3 supports the ideas of the preceding paragraph in a pictorial form. It
depicts a contour plot of the function χ2 interpreted as a function of η0, η1 on given
domain for two collisional energies, namely 20 meV (left panel) and 150 meV (right
panel). As can be readily observed, even for 20 meV we experience two comparable
minima. The 4%– and 8%–“trust-areas”5 are denoted by solid black and dashed white
lines, respectively. With increasing collisional energy, these domains tend to “evolve”
in the η0, η1–space.

In order to approach this issue more systematically, we employed following proce-
dure

1. for the considered energy range [Emin, Emax] construct discrete grid

{Ei}Ni=0, where E0 = Emin and EN = Emax,

2. for i = 0 set the initial guess on η0(E0), η1(E0) to zero which is an approximation
to the assumed threshold behavior provided that E0 is sufficiently “small”

3. via minimizing the expression (3.1) find the appropriate values of η0
0, η

0
1 in the

vicinity of the starting point

3superscript e denotes that these quantities are obtained by experiment
4This formulation is rather vague. However, a slightly more precise definition is given below Eq. (3.1)
5i.e., values of η0, η1 for which χ2 ≤ 32 · 10−4. That in turn corresponds to 4% relative errors in σT

and σB. Similarly, condition χ2 ≤ 128 · 10−4 is compatible with the relative error being less than 8%.
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Figure 3.3: Dependence of χ2 defined in Eq. (3.1) as a function of two generalized
phase shifts η0, η1 for collision energy of 20 meV (left panel) and 150 meV (right panel).
Experimental data for CH3Cl molecule recorded in the right panel of Figure 4.1 are
assumed.

4. then proceed recursively:

• for energy point k+ 1 use as the initial guess the phase shifts from previous
step, i.e., ηk0 , η

k
1 and repeat the procedure

Heuristically, this approach should ensure smoothness of the resulting phase shifts in
the considered energy range provided that the grid spacing is not too large and the
experimental values are also sufficiently smooth. To guarantee the latter, we have
approximated the σe

T and σe
B with piece-wise spline fit prior to the entire procedure.

Alternative modification to this method is to use for each energy grid point Ek
directly the experimental values in the role of the initial guess. However, in practical
computations it turned out that this doesn’t make any significant difference.

As concerns the minimisation procedure itself, our implementation for polar molecules
relied on standard gradient based Fletcher-Powell (Press et al., 2007, p. 521) algorithm,
where we have conveniently utilised the fact that it is very cheap to compute the deriva-
tives of χ2 analytically since the scattering amplitude (4.5) depends on the short-range
S-matrix (4.6) linearly.

The entire approach can be easily extended to more phase shifts than just two,
i.e., in general we would deal with a set of fitting parameters of ηj for j = 1, . . . , N ,
nevertheless the physical meaning of the obtained phase shifts certainly decreases with
increasing k.

3.2.1 Uniqueness of the phase shifts

The fact that the obtained generalized phase shifts are not guaranteed to be unique
has been demonstrated in Figure 3.3. In this regard, we think that it is worth to men-
tion a very similar problem consisting in the question, originally posed by Crichton
(1966), whether the knowledge of the differential cross-section for one particular en-
ergy uniquely determines the phase shifts (assuming spherically symmetric potential).
This resembles our situation, for the quantities σT, σB can be naturally understood
as functionals of the differential cross-section. Crichton (1966) considered one particu-
lar differential cross-section taking into account s-,p- and d- partial waves (l ≤ 2) and
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found two sets of phase shifts yielding the same angular dependence of the cross-section.
The same question for a general spd- cross section was later studied by Atkinson et al.
(1973). The authors show that if one considers only partial waves with l ≤ 2 then for
a given set of phase shifts δ0, δ1, δ2 and for certain intervals of δ2, there exists anoth-
er set δ′0 = δ0 − ε0, δ′1 = δ1 − ε1, δ′2 = δ2 which yields exactly the same differential
cross-section, where the ε0, ε1 are defined in terms of

2∆ cos ε0 = κ2 −∆2 − 1

2∆κ cos ε1 = κ2 + ∆2 − 1,
(3.2)

with constants κ,∆ being given by

κ = −3
sinα1

sinα0

∆ = −2
sinα1

sin(α0 − α1)

α1 = δ2 −
π

2

tanα0 =
sin 2δ2

cos 2δ2 − 3
5

.
(3.3)

Similar analysis was later extended for l ≤ 3 (Berends and Ruijsenaars, 1973) and l ≤ 4
(Cornille and Drouffe, 1974). Case of an arbitrary finite number of contributing partial
waves has been discussed in Berends and Van Reisen (1976) and a more general study
for infinitely many partial waves was provided later by Atkinson et al. (1978).

In the light of the arguments presented above, it seems thus necessary to amend the
fitting procedure by some additional physical information such as low-energy thresh-
old behavior of the phase shifts, which could in principle help to remove unphysical
“branches” of the resulting phase shifts.
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CHAPTER

FOUR

APPLICATIONS

The following sections should present several applications of the theoretical concepts
discussed previously. Special attention is devoted predominantly to the content of
Chapter 1 and Chapter 3. Since the theoretical treatment of electron-molecule scatter-
ing in case of polar molecular is markedly different as opposite to the non-polar case,
the discussion is divided accordingly.

An explanatory intuitive argument explaining the reason why molecules without
a permanent dipole moment exhibit much smaller cross-sections at low incident en-
ergies has been given by Gerjuoy and Stein (1955). The reasoning is as follows. To
induce a rotational transition of the target molecule, the incident electron has also to
experience a change in its angular momentum l for the total angular momentum is
conserved. However, at low energies only l = 0 electrons can penetrate the (missing)
centrifugal barrier to the vicinity of the molecule. Electrons with l > 0 capable of rota-
tional excitation are thus found far from the molecule and the resulting cross-section is
therefore small. On the other hand, the situation is drastically changed in case of dipo-
lar potential, the strength of which is comparable with the centrifugal barrier and the
preceding argument is thus invalid as had been already observed decades ago (Massey,
1932).

These arguments are supported in pictorial form by Figure 4.1 depicting the energy
dependence of the total integral and backward scattering cross-sections as introduced in
Chapter 3. By comparing the experimental data for a polar [CH3Cl (Field and Jones,
n.d.) in the right panel] and non-polar [N2 (Hoffmann et al., 2002) in the left panel]
molecule, one immediately observes the marked qualitative difference at lower incident
energies.
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Figure 4.1: Typical experimental data of integral and backward cross-sections in case of
a nonpolar (N2 – left panel) and polar (CH3Cl – right panel) molecule demonstrating the
marked difference at low incident energies. Insets show the ratio R of the backward and
integral cross-sections as a function of the incident energy. This quantity is discussed
in more detail in Section 4.2.

4.1 Polar molecules

When the dominant long-range dipole potential is present, it seems that instead of
fighting this fact it is more natural to take advantage of it. In this regard, one could
try to express the scattering matrix, as formulated neatly by Clark (1984), to “describe
the state of the system relative to what it would be if all other, short-range, interactions
were absent”. This idea has been actually known for a long time and stems originally
from the description of electron-ion scattering (Burgess et al., 1970).

4.1.1 Short-range S matrix

Along these lines, one can try to re-express the body frame scattering amplitude not
with respect to the usual angular basis comprised of spherical harmonics but with
respect to the eigenfunctions (C.5) of the dipole operator (C.3). Following almost
identical procedure as in basis comprised of spherical harmonics, one finally arrives
(Fabrikant, 1976) at the expression

f(~kf , ~ki) =
2π

ik

∑
m,m′

λ,λ′

Zλ′,m′
(
k̂f
)[
−δλ,λ′δm,m′Z∗λ,m

(
k̂i
)
+

+
1

i<λ′+ <λ
Šλ′m′,λmZ∗λ,m

(
− k̂i

)]
,

(4.1)

which in the limit of zero dipole moment D → 0 naturally coincides with the well-
known partial wave decomposition (1.99). The symbol Š introduced in (4.1) denotes
so-called short-range S-matrix, which reflects effects of the short-range perturbations
to the dipole potential and in this sense describes the scattering state relative to the
dipole interaction.

Matrix elements of Š are easily expressible in terms of ordinary partial wave S-matrix.
Utilizing transformation relations (C.5) between angular bases Yl,m and Zλ,m readily
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furnishes the desired transformation together with its inversion as

1

il′+ l
Sl′m′,lm =

∑
λ,λ′

Am′l′λ′ ·
1

i<λ′+ <λ
Šλ′m′,λm · Am∗lλ , (4.2a)

1

i<λ′+ <λ
Šλ′m′,λm =

∑
l,l′

Am′∗l′λ′ ·
1

il′+ l
Sl′m′,lm · Amlλ. (4.2b)

It is worth noting that this transformation is not unitary for overcritical1 dipole mo-
ments due to the renormalization (D.5) of the radial solutions ensuring unit ingoing
and outgoing fluxes.

If we further suppose that the short-range interaction preserves the symmetry of
the potential, then it follows that the short-range S-matrix will be diagonal in m so
that formulae (4.1) and (4.2) simplify to

f(~kf , ~ki) =
2π

ik

∑
m
λ,λ′

Zλ′,m
(
k̂f
)[
−δλ,λ′Z∗λ,m

(
k̂i
)
+

+
1

i<λ′+ <λ
Šmλ′,λZ∗λ,m

(
− k̂i

)]
,

(4.3)

and

1

il′+ l
Sml′,l =

∑
λ,λ′

Aml′λ′ ·
1

i<λ′+ <λ
Šmλ′,λ · Am∗lλ , (4.4a)

1

i<λ′+ <λ
Šmλ′,λ =

∑
l,l′

Am∗l′λ′ ·
1

il′+ l
Sml′,l · Amlλ. (4.4b)

Spherical symmetry of the short-range perturbation to the dipole potential ensures the
short-range S-matrix being diagonal in λ. In this case, more insight into the structure of
Eq. (4.3) is gained if one substitutes into it the transformation relations (C.5) directly.
Performing this substitution, taking into account that Yl,m

(
−n̂
)

= (−1)lYl,m

(
n̂
)

and
rearranging terms finally yields2

f(~kf , ~ki) =
2π

ik

∑
m
l,l′

Yl′,m

(
k̂f
)
Y∗l,m

(
k̂i
)∑

λ

[
−Aml′λ · Am∗lλ +Aml′λ · (−1)<λ Šmλ,λ · Am∗lλ (−1)l

]
.

(4.5)

4.1.2 Parametrization of the short-range S matrix

Popular technique in the field of low-energy electron-molecule scattering in case of
short-range potentials is parametrization of the phase shifts since for sufficiently low
energy only a few partial l-waves will be significant. In the very same spirit, one
might assume that for sufficiently low energy, the electron scattered in dipole potential
modified by some presumably unknown short-range perturbation will be reasonably
described by just a few λ-components, i.e., by just a few “dipole waves”. Assuming
spherical symmetry of the short-range interaction, one might be then tempted to use
following Ansatz for the short-range S-matrix

Š = diag
(
Š0
, Š1

, . . .
)

, where Šj =


ei2ηj

ei2ηj+1

. . .

 . (4.6)

1explanation of the overcritical dipole moment concept can be found in Appendix C
2the term Aml′λ · Am∗lλ summed over λ is equal to δl,l′ provided that one doesn’t perform truncation

of the matrices Aml′λ to achieve better numerical precision of the eigenvalues (C.5) – in actual numerical
implementation, we keep the form as indicated by (4.5)

65



Individual steps of the subsequent procedure are consequently as follows

• the short-range S-matrix is parametrized by two generalized (short-range) phase
shifts η0, η1 as implied by Eq. (4.6)

• using the transformation relations (4.4a), one obtains the partial wave compo-
nents of the ordinary S-matrix which are central for construction of the body
frame scattering amplitude (1.99) in the Yl,m angular basis

• having done so, one can consequently transform (1.99) into the laboratory frame
via (1.100) obtaining thus the Chase’s “ω-modulated” amplitude

• this expression is then finally the essential ingredient for the adiabatic approxima-
tion discussed in Section 1.3, which provides an approximative laboratory frame
amplitude (1.101) in the form of a single matrix element between respective ro-
tational states. Based on the knowledge of this quantity, we can easily calculate
differential cross-sections for individual rotational transitions.

f(~kf , ~ki) =
2π

ik

∑
m
l,l′

il−l
′
Tml′,l ·Y∗l,m

(
k̂i
)
Yl′,m

(
k̂f
)

f(~kf , ~ki; ω) =
2π

ik

∑
m,l,l′

il−l
′
√

2l + 1

4π
Tml′,l

∑
k′

Yl′, k′
(
k̂f
)
Dl0,m(ω) Dl′ ∗k′,m(ω)

fLF J ′K′M ′
ad. JKM (k̂f ) =

〈
J ′K ′M ′

∣∣ f(~kf , ~ki; ω)
∣∣JKM〉

dσ

dΩ

∣∣∣∣
J,K

=
1

2J + 1

∑
J ′,K′,M ′

M

∣∣∣ fLF J ′K′M ′
ad. JKM (k̂f )

∣∣∣2

σtot =
∑
J,K

P (J,K)σJ,K

body-frame amplitude (1.99) is trans-

formed to the laboratory frame, orien-

tation of the molecule is determined

by Euler angles specified by ω

the state-to-state amplitude is in

the adiabatic approximation (1.101)

computed as a single matrix element

summing over all possible final states

and averaging over energy degenerate

initial states furnishes measurable

cross-sections (1.103)

finally, the thermal average (taken at room temperature

300 K) over all initial energy subspaces is needed in order

to obtain the total cross-section

Figure 4.2: Schematic summary of individual steps in the description of rotational ex-
citations of polar molecules in the framework of the adiabatic approximation discussed
in Section 1.3

At this point, we would like to make a few comments regarding the connection of
the theoretical values with the experimental data generated by the setup discussed in
Section 3.1. First of all, the resulting cross-sections should be thermally averaged. To
this end, it is necessary to introduce corresponding partition function Z which takes

66



the form

Z =
∞∑
J=0

J∑
K=−J

gJ,K e−β EJK , (4.7)

with β = 1/kT denoting the usual Boltzmann factor3 and gJ,K representing statisti-
cal weights of individual levels as elaborated in more detail in Section E.4. Thus in
evaluation of the total cross-section, contribution from level J,K are weighted by

P (J,K) =
1

Z
gJ,K e−β EJK . (4.8)

The total cross-section σtot of the last step in Figure 4.2 is therefore expressible via

σtot =
1

Z
∑
J,K

gJ,K σJ,K e−β EJK . (4.9)

It might seem that evaluation of the total cross-section is accompanied by significant
computational demands since at the room temperature of ∼ 300 K, tens of rotational
states contribute typically to the partition function (4.7). However, an approximative
value can be easily obtained in light of the result (1.107) stating that the cross-sections
σJ,K are in the adiabatic approximation independent on the initial J,K state desig-
nation. The only dependence is introduced by the kinematic factor kΓ′/kΓ in (1.36).
If the incident energy is therefore not too low, one might assume that kΓ′/kΓ ≈ 1.
Consequently, the terms σJ,K can be taken out of the sum (4.9) which in turn reduces
by definition to one. For evaluation of σtot, it is then permissible to choose arbitrary
values of J,K and since σ0,0 is the most easily computable quantity, one obtains an
interesting approximation

σtot ≈ σ0,0. (4.10)

4.1.3 Connection with the experiment

Following the above described procedure, we thus introduce two generalized phase
shifts η0, η1 in order to parametrize the short-range S-matrix. We might hope that
these two quantities will be in 1-1 correspondence with the two values furnished by the
experiment, namely the total σT and backward σB cross-section. Equipped with the
experimental energy dependence of σT, σB, we perform consequently the fitting proce-
dure described in detail in Chapter 3 obtaining thus corresponding energy dependence
of η0, η1 denoted as η0(E), η1(E).

Using η0(E), η1(E) and plugging it back into the model we can, in turn, easily
calculate individual state-to-state cross-sections. In this way, it is therefore possible to
separate the total cross-section σT into its elastic and inelastic components.

This approach has been used in the past to study rotational excitations of water
molecules induced by electron impact (Čuŕık et al., 2006). The authors report energy
dependence of various state-to-state cross-sections for incident energies up to 200 meV
and above 100 meV, where other data are available, they find quite good agreement
with ab initio prediction based on the R-matrix theory (Faure et al., 2004).

Following similar treatment, we have employed the procedure of Subsection 4.1.2 in
case of two polar molecules, namely CH3Cl and SO2, for which accurate experimental
data regarding total integral and backward scattering cross-sections are available (Field
and Jones, n.d.). The results for both molecules are summarized in graphical form
below.

3Boltzmann constant k expressed in atomic units per Kelvin attains approximately the numerical
value of 3.1668 · 10−6
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The agreement of the theoretical prediction with the experimental data of another
group (Gulley and Buckman, 1994) regarding differential cross-sections in case of the
SO2 molecule presented in Figure 4.6(b) is remarkable. On the other hand, this model
is apparently less successful for CH3Cl as can be seen in Figure 4.4(b). We think
that the principal culprit could be hidden in the inherent assumption present in the
model concerning the spherical symmetry of the short-range perturbation to the dipole
potential disregarding thus the significantly prolate character of CH3Cl. To remedy this,
one would be forced to consider also the non-diagonal terms in the parametrization
of the short-range S-matrix in (4.6). On the other hand, this would spoil the 1-1
correspondence between the elements of the short-range S-matrix and directly available
experimental data turning thus the entire approach to a mere fitting procedure.
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Figure 4.3: Experimental data of the total integral and total backward scattering cross-
sections for CH3Cl. Black solid line represent fit of the experimental values by the η0, η1-
model described above. Dashed green line denotes range of cross-sections achievable
with two generalized phase shifts η0, η1 independently ranging over [0, 2π].
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2
]

Collision energy E [meV]

0 → 0
0 → 1
0 → 2

(a) Rotationally resolved cross-sections

0

5

10

15

20

25

25 50 75 100 125

cr
os

s-
se

ct
io

n
[ Å
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Figure 4.6: Rotationally resolved (4.6(a)) and summed (4.6(b)) differential cross-section
for SO2 at incident energy of 1 eV as calculated using phases in Figure 4.5(b) extrap-
olated constantly up to 1 eV by their values for 400 meV. Experimental data in Fig-
ure 4.6(b) are taken from Gulley and Buckman (1994).

4.2 Non-polar molecules

As an representative example of a non-polar molecule, we have chosen molecular nitro-
gen N2 since (possibly apart from H2) it represents one of the most studied systems in
the field of electron-molecule scattering (see Itikawa and Mason (2005) and references
therein) and the experimental data for total integral σT and backward σB cross-sections
are also available (Hoffmann et al., 2002).

The experimental energy dependence of σT and σB from various sources up to
250 meV is depicted in Fig. 1 of Attachment B. A fleeting glance reveals the anoma-
lous behavior of the backward scattering cross-section σB for incident energies around
80 meV exhibiting a significant dip in value which is not at all present in the integral
cross-section data. This behavior is even more pronounced in the inset of the left panel
of Figure 4.1 showing the ratio R being equal to σB/σT as a function of the incident
energy. Since we are not aware of any theoretical study dealing with this phenomenon,
we have investigated the possible causes of the backward scattering cross-section sup-
pression in this energy region coming consequently to the conclusion that it can be
satisfactory explained by destructive p-wave interference.

The relevant details regarding the theoretical treatment can be found in the At-
tachment B of the presented work in the form of a standalone paper and we will thus
confine ourselves in the following just to the principal ideas.

In order to gain a notion about the most important features of the system under
consideration, we have employed an ab initio theory exploiting the material presented in
Chapter 2. Briefly stated, the calculations were done in the fixed nuclei approximation
(see Section 1.2) with the interaction between the incident electron and the target N2

molecule being described in the framework of the static exchange plus polarization
approximation. The static part (2.8) of the potential was rendered using the Hartree-
Fock wave function for the N2 ground state. As concerns the approximative treatment
of the exchange component (2.9), we have utilized the TFEGE method described in
more detail in Section 2.2. The free TFEGE parameter in (2.16) was tuned in order to
reproduce the position of the Πg resonance in the integral cross-section.

In this regard, the results reported in Telega and Gianturco (2006) and shown in
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Fig. 3 of Attachment B, were obtained in a similar fashion, whereas for the calculation
of the simultaneously displayed “SCME” data (Telega et al., 2004), the authors used
a semiclassical exchange description elaborated in Section 2.2.

Finally, the correlation-polarization part of the interaction potential was determined
at the local density approximation level (Gianturco and Rodriguez-Ruiz, 1993) in the
DFT framework as adumbrated in Section 2.3. For adjusting the long-range part of the
potential, we have used experimental values of the polarizabilities (see Morrison et al.
(1997) and references therein).

The fixed nuclei body frame radial equations were solved using the Volterra integral
propagator of Section 1.5, the details about the use of which can be found in the
attached paper.

The main outcome of the fixed nuclei calculations are the converged body frame
K-matrices. Fig. 2 of Attachemnt B records the energy dependence of selected K-matrix
elements as compared to the results of Morrison et al. (1997). Another important result
stemming from the ab initio calculations is the observation that the influence of the
l > 1 partial waves is insignificant for incident energies up to 250 meV.

Therefore to connect the ab initio calculations with the experiment, we have em-
ployed a truncated K-matrix presented in Figure 4.7 excluding thus the partial waves
with l > 1. The body frame K-matrix in Figure 4.7 is directly related, via Eq. (1.88),
to the T -matrix, from which one can readily evaluate the rotationally summed integral
σT and backward σB cross-sections by means of Eq. (1.96). Although it is possible to

Σ00 0

0 Σ11

Λ=0

Π11

|Λ|=1

Figure 4.7: Reduced K-matrix used in the fitting procedure described in the text. Since
Σ00 is the only nonzero element in the Λ = 0 block with gerade symmetry, we adhere
to the notation Σg. With the same proviso, the symbols Σu and Πu are used instead
of Σ11 and Π11, respectively.

obtain the expression for σT,σB understood as functions of Σg, Σu, Πu in closed form,
it is instructive to consider the case of small energies E since then the T -matrix is actu-
ally directly proportional to the K-matrix as T = −2iK. Evaluating the cross-sections
σT, σB with this proviso yields

σtot =
4π

k2

(
Σ2

g + Σ2
u + 2Π2

u

)
, (4.11a)

σback =
1

2
σtot −

2π

k2
Σg (Σu + 2Πu) . (4.11b)

We thus immediately recognize that the departure from the backward/forward symme-
try for low energies reflecting itself in R differing from 0.5 is mainly on behalf of the
interplay between the Σu and Πu phases. Since the Σg phase is rather dominant we fix
its energy dependence according to the ab initio prediction and consider the phases Σu,
Πu as free parameters which can be in turn fitted to the experimental data of σT, σB

in a very similar fashion as we have employed for the polar molecules and described in
Chapter 3.
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In case of quadrupole potential, it can be actually shown analytically (Fabrikant,
1984; Isaacs and Morrison, 1992) that the power expansion of the K-matrix elements
Σu, Πu in the incident momentum k attains the form

Σu
k→ 0−−−→ +

Q

5
k +O

(
k2
)
, (4.12a)

Πu
k→ 0−−−→ −Q

10
k +O

(
k2
)
, (4.12b)

confirming thus the expected result that R→ 0.5 for k → 0+.
The results of the fitting procedure are summarized in Fig. 5 of Attachment B,

the main message of which is that the employed ab initio model seems to greatly
underestimate the Σu component of the K-matrix. Moreover, for incident energies
around 90 meV, the phases Σu and Πu act indeed in opposite rendering thus the desired
behavior. For physical arguments supporting this observed behavior we refer again to
the attached paper.
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CONCLUSIONS

In the first part of the presented thesis we have proposed a numerical method based
on the R-matrix framework (Mil’nikov et al., 2001) adapted for potential scattering in
case of long range potentials. Moreover, combination with Schwinger-Lanzcos method
(Meyer et al., 1991) turned out to represent an efficient extension of this approach for
handling nonlocal interactions. We have studied the numerical behavior of the resulting
numerical procedure Šulc et al. (2010) and performed several tests on simple (bench-
mark) systems, namely ground state potentials of Cs2 and 4He2 dimers. Comparison
with relevant results available in the literature demonstrates that the robustness of
the R-matrix renders an efficient and computationally effective algorithm superior to
standard treatments usually employed for this class of problems.

In the second project we diverted our interest to the development of the correlation-
polarization potential component in the static exchange + polarization approximation
as discussed in Section 2.1 and Section 2.3. Following ideas of Gianturco et al. (1993)
we profited from the possibility to construct the short-range part of the correlation
potential by means of the local density approximation within the density functional
theory framework. The long range polarization component obeying known asymptotic
behavior specified in (2.26) is subsequently added by means of a joining procedure
elaborated in Section 2.3. Complete SEP potential is then implemented into the DMR
method reviewed in Section 1.1. Practical applications in case of electron scattering off
small hydrocarbon molecules (propane, cyclopropane) indicate good agreement with
other theoretical methods as well as experimental measurements. Further details and
relevant references can be found in the Attachment C of the presented thesis.

The main contribution to this work was however comprised by investigation of
mechanisms of rotational excitations of small molecules in the gas phase induced by
electron impact. Since the necessary theoretical treatment exhibits significant differ-
ence in case of polar molecules as compared to nonpolar species, we have divided our
approach accordingly. In the former case, it has turned out to be convenient to work in
the dipole asymptotic formalism (Fabrikant, 1976), introduce generalized phase shifts
and interpret these quantities as free parameters of the model. These are in turn fitted
to the experimental data of integral and backward cross-sections. Their knowledge
enables us then to compute other scattering quantities, notably the differential and
individual state-to-state cross-sections resolving thus actually the total integral cross-
sections into elastic and inelastic components. In the light of the encouraging results
for water molecules (Čuŕık et al., 2006), we have adapted this approach for symmetric
tops and tested on the experimental data for CH3Cl molecule. Obtained results are
discussed in Section 4.1. To our knowledge, there is only one relevant independent
experimental source (Shi et al., 1996) of low energy differential data for CH3Cl. The
agreement is not that impressive as in the H2O or (so far) unpublished SO2 case al-
so presented in Section 4.1. The culprit could be hidden in the inherent assumption
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of diagonal short-range S-matrix. This is actually equivalent to assuming a spherical
symmetric perturbation to the dipole potential. This limitation is probably much more
pronounced for strongly prolate CH3Cl than for the SO2 molecule. Unfortunately, lack
of usable experimental data didn’t allow us to resolve this issue in some systematic
manner.

For nonpolar molecular species, the dominant dipole contribution is clearly missing
and therefore we had to identify other crucial parameters which could be employed in
a similar fashion as the generalized phase shifts for polar molecules. Several attempts
to obtain converged laboratory frame SEP cross-sections turned out to be rather un-
realistic in case of N2 molecule and we have therefore digressed to the body frame and
employed rotational frame transformation as explained in Subsection 1.4.4. Since the
number of relevant channels is significantly reduced, the resulting cross-sections exhib-
ited much more favorable numerical behavior. Comparison of these ab initio results
with available literature (Morrison et al., 1997) enabled us to identify the body frame
K-matrix elements dominant for the prediction of the measured quantities as recorded
by Figure 4.7. In notation of Section 4.2, we have fixed the Σg phase and employed
Σu, Πu as fitting parameters in a similar fashion as in the polar case. This gambit has
turned out not only to be compatible with the measured data of integral and back-
ward cross-sections but it furnished also an explanation for the observed suppression
of the backward cross-section below 95 meV apparent from Figure 4.1. Succinct elab-
oration on these topics comprises Section 4.2 and is also included as Attachment B.
Corresponding publication is currently in the submission process.
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APPENDIX

A

VOLTERRA EQUATIONS OF THE 2nd KIND

In connection with their use in Section 1.5 this appendix intends to summarize essen-
tial descriptive ideas concerning Volterra integral equations of the second kind. The
attention is especially devoted to the topics regarding numerical discretisation.

The scattering theory is usually formulated in multichannel formalism, nevertheless
for the economy of notation we shall confine ourselves to the simplest setting of the
one-dimensional case. Formally, the general equation of interest can be then written as

ψ(x) = φ(x) +

∫ x

0
K(x, y, ψ(y)) dy, for 0 ≤ x ≤ R, (A.1)

where the range of the independent variable x is restricted to the interval [0, R]. Stan-
dard result (Linz, 1985) concerning the existence and uniqueness of possible solutions
of Eq. (A.1) is summarized by

Theorem 1
Equation (A.1) has an unique (continuous) solution provided that

1. φ(x) is continuous in [0, R],

2. the kernel K(x, y, z) is continuous for 0 ≤ y ≤ x ≤ R, −∞ < z <∞,

3. K(x, y, z) satisfies further the Lipschitz condition

|K(x, y, z1)−K(x, y, z2)| ≤ L |z1 − z2| .

In applications connected with this work we shall always assume that the kernel K of
Eq. (A.1) is a linear function1 in the third variable z and therefore fulfills the Lipschitz
condition automatically.

Alternatively, existence and uniqueness of an L2 (0, R) solution is guaranteed by the
following assumptions

• φ(x) belongs to L2 (0, R),

• the kernel fulfills ∫ R

0

∫ R

0
|K(x, y)|2 dx dy <∞. (A.2)

1we will use the same symbol K also for the “rest” of the kernel, i.e., K(x, y, z) = K(x, y)z
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A.1 Numerical methods of solution

What we are most interested in is the numerical solution of Eq. (A.1) for given kernel2

which is determined by the particular potential under investigation. In this regard, it
is practical to introduce discrete grid xk, where in the simplest case xk = k · h with
h denoting the grid spacing.3 The numerical integration rule is then assumed in the
standard form ∫ nh

0
φ(x) dx ≈ h

n∑
i=0

wni φ(xi), (A.3)

where the quantities wni represent the integration weights. Approximating integrals in
Eq. (A.1) viaEq. (A.3) yields directly a numerical method of the form

ψn = φn + h

n∑
i=0

wni K (xn, xi, ψi) for n ≥ r, (A.4)

with φn = φ(xn) and ψn representing the value of the numerical solution at grid point
n. The restriction on n stems from the fact that higher order integration rules require
some minimum number of points and therefore it is necessary to supply these “starting”
values ψ0, . . . , ψr−1 in some other way. Typical candidate for the underlying integration
scheme would be probably a rule of the Newton-Cotes type. However, these rules pose
some restrictions on the number of grid points – e.g., the well-known Simpson’s rule
is applicable only for even n. Nevertheless it is quite easy to circumvent this nuisance
by combining rules of even and odd orders. For example, we can apply the 3/8-rule
for the first 4 grid points and the Simpson’s rule for the rest of the interval. Another
possibility is to employ the 3/8-rule at the end of the interval (i.e., for the last 4 points).
The former and latter approach is by Linz (1985) denoted as Simpson’s method 1 and
Simpson’s method 2, respectively. For both methods we need to supply somehow the
“starting” values ψ0, ψ1. Corresponding weights (A.3) obtainable by straightforward
calculation are summarized in Table A.1.

A.1.1 Discretization and local-consistency errors

In order to investigate the numerical accuracy of general numerical method of the type
(A.4) in more detail it is practical to establish some more formalism and notation.

If the exact analytical solution of Eq. (A.1) is denoted as ψ(x) then the discretisation
error ε is defined as

εi = ψi − ψ(xi). (A.5)

The properties of a particular numerical method (A.4) reflect itself directly in the
behavior of εi for h→ 0. The method of the type (A.4) is said to be (on a grid {xi}Ni=1)
of order p if

max
0≤i≤N

|εi| = O(hp). (A.6)

It is natural to expect that this order of convergence will be directly connected with the
accuracy of the employed numerical integration, the precision of which can be quantified
by

2the employment of the Green’s function of Section 1.5 actually fixes the non-homogeneous term as
the regular Bessel function

3More generally, the grid can be made of course adaptive in the sense that the spacing h can vary
according to the local behavior of the potential. However, the necessary modifications of subsequent
discussion in this regard are straightforward.
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Definition 1 – local consistency error

δ(h, xi) =

∫ xi

0
K(xi, z, ψ(z)) dz − h

i∑
j=0

wijK(xi, xj , ψ(xj)). (A.7)

If δ satisfies the condition

max
0≤i≤N

|δ(h, xi)| = O (hp) , (A.8)

then the numerical method (A.4) is said to be consistent of order p with Eq. (A.1). Basic
theorem (Linz, 1985, chap. 7) connecting the conception of consistency and convergence
can be stated as follows

Theorem 2 – consistency vs. convergence
Assume that

• the solution ψ(x) of Eq. (A.1) and the kernel K are such that the numerical
method (A.4) is consistent of order p with (A.1),

• the weights wni satisfy
sup
n,i
|wni | <∞,

• the errors of the “starting” values satisfy

|ψi − ψ (xi)| = O
(
hp−1

)
.

Then the numerical method (A.4) is convergent of order p.

The important message of this theorem is that the “starting” values can be of lower
order without decreasing the order of the method itself.

A.2 Numerical stability

Apart from the concept of numerical discretization errors, the issues regarding numer-
ical stability are also important in actual computations. The reason is that even with
a high order method the error for given h can in general grow (with x) much faster
than the actual solution which makes the method essentially unusable.

For the sake of further analysis, the discretization error (A.5) is usually decomposed
into two parts as

ε = εS + εC,

where εS stems from the propagation of “starting” errors and εC originates in the
consistency error (A.7).

Definition 2 – stability
A method of the type (A.4) is said to be numerically stable with respect to an error
component εi if this error can be expressed as

εi = hpe (xi) +O (hq) with q > p > 0,

where e(x) is the solution of

e(x) = Q(x) +

∫ x

0
k(x, y)e(y) dy, (A.9)

for some function Q(x).
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This definition can be understood as follows. If we denote the difference of the
inhomogeneous terms in Eq. (A.9) and Eq. (A.1) by ∆Q(x) and assume that this
function is bounded, i.e., |∆Q(x)| ≤ ∆Q, then the solutions to Eq. (A.9) and Eq. (A.1)
will behave in a “similar way”, more precisely their difference will be bounded as
O (∆Q).

Definition 3 – repetition factor
If ρ is the smallest integer such that

wn+ρ
i = wni , (A.10)

then the numerical method in Eq. (A.4) is said to have repetition factor ρ.

The main conclusions of a theorem about regarding numerical stability of methods of
the type (A.4) are as follows

• all methods (A.4) are stable with respect to the consistency error

• methods (A.4) with repetition factor (A.10) equal to 1 are also stable with respect
to the starting errors

For the precise formulation of this statement we refer to (Linz, 1985, p. 106), where it is
also proven that the Simpson’s method 1 has repetition factor 2, whereas the Simpson’s
method 2 exhibits repetition factor 1 an should be thus preferred in actual numerical
applications.

A.3 Integration weights for particular discretization schemes

A.3.1 Simpson’s 1/2 methods

Simpson 1 Simpson 2

n = 2k wn0 = wnn 1/3 n = 2k wn0 = wnn 1/3

wn2i 2/3† wn2i 2/3†

wn2i+1 4/3† wn2i+1 4/3†

†i ∈ {0, . . . , k − 1} †i ∈ {0, . . . , k − 1}

n = 2k + 1 wn0 3/8 n = 2k + 1 wn0 1/3†

wn1 = wn2 9/8 wn2i 2/3†

wn3
17
24 −

1
3δn,3 wn2i+1 4/3†

wn2i 4/3† wnn−3
17
24 −

1
3δn,3

wn2i+1 2/3† wnn−1 = wnn−2 9/8

wnn 1/3† wnn 3/8

†n ≥ 5, i ∈ {2, . . . , k} †n ≥ 5, i ∈ {2, . . . , k}

Table A.1: Integration weights (A.3) for Simpson’s 1/2 methods
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A.3.2 Trapezoidal & “Truncated” Simpson’s methods

The “truncated” Simpson’s method, the integration weights of which are summarized
by Table A.2, is actually formally equivalent to constructing an “infinite” grid using or-
dinary composite Simpson’s rule and consequently truncating the grid points as well as
the integration weights at the upper limit of integration. A practical advantage is that
the weights in Table A.2 don’t depend on n and therefore it is very straightforward to
advance repeatedly the numerical solution in (A.4). On the other hand, these method
are of lower order. Trapezoidal method exhibits second order behavior, whereas “trun-
cated” Simpson’s method is supposed to be just of first order due to the truncation at
the end of the integration interval. This procedure introduces a quadrature error of or-
der O(h) into the propagated solution and thus the overall accuracy can’t be remedied
by higher accuracy of the Simpson’s integration itself.

trapezoidal “truncated” Simpson’s

n ≥ 1 wn,i = 1/(1 + δi,0 + δi,n) n ≥ 1 wn,2i
2
3 − δi,0

1
3

wn,2i+1 4/3†

†i ∈ {1, . . . , n− 1}

Table A.2: Integration weights (A.3) for trapezoidal and “truncated” Simpson’s meth-
ods
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APPENDIX

B

ANGULAR MOMENTUM

The purpose of this appendix is by no means to be a cheap substitute to the existing
rich collection of literature covering the angular momentum topics. Instead, it should
merely provide a condensed overview of angular momentum algebra identities collected
from various sources and converted to a form suitable for direct application for the
algebraic manipulations regarding the body/laboratory frame treatments discussed in
previous chapters. Apart from the standard book sources (Brink and Satchler, 1994;
Edmonds, 1996; Rose, 1995; Thompson, 2004), we would like also to mention a well-
written older overview by Biedenharn et al. (1952) dealing with this subject.

B.1 Symmetries of the Clebsch-Gordan coefficients

(j1j2m1m2| j m) = (−1)j1−m1

√
2j + 1

2j2 + 1
(j1j m1 −m| j2 −m2)

= (−1)j2+m2

√
2j + 1

2j1 + 1
(jj2 −mm2| j1 −m1)

= (−1)j1+j2−j3 (j1j2 −m1 −m2| j −m)

= (−1)j1+j2−j3 (j2j1m2m1| j m)

= (j2j1 −m2 −m1| j −m)

(B.1)

B.2 3j-, 6j-, Racah W- and Z- coefficients

3j-symbol (
j1 j2 j3
m1 m2 m3

)
= (−1)j1−j2−m3

(j1j2m1m2| j3 −m3)√
2j3 + 1

(B.2)

6j-symbol1 {
j1 j2 j3
j4 j5 j6

}
=

(−1)j1+j2+j4+j5
√

2j3 + 1
√

2j6 + 1

∑
m1,m2

(j1j2m1m2| j3 • ) (j3j4m1 +m2 • | j5M)

(j1j6m1 • | j5M) (j2j4m2 • | j6M −m1)

(B.3)

1symbol • denotes the uniquely determined value for which the corresponding Clebsch-Gordan
coefficient has nonzero value
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Racah W-coefficients{
a b e
d c f

}
= (−1)a+b+c+dW(abcd; ef) (B.4)

From the various symmetries of the 3j- and 6j- symbols, especially the following are
very useful in formal manipulations:

1. 3j- symbols

• interchange of any two columns of the 3j- symbol (B.2) is equivalent to
a multiplication of its value by (−1)j1+j2+j3

• sign reversal of the second row in (B.2) is governed also by the previous rule

2. 6j- symbols

• the value of the 6j-symbol (B.3) is invariant under interchange of any two
columns (i.e., under any column permutation)

• the value is also unaltered by interchanging the upper and lower arguments
in each of any two columns

From these properties, the symmetries of the Racah coefficients can be easily deduced

W(abcd; ef) = W(cdab; ef) = W(badc; ef) =

= W(acbd; fe) = W(dbca; fe) =

= W(aefd; bc) = W(ebcf ; ad) .

(B.5)

Especially in the laboratory frame treatment (Arthurs and Dalgarno, 1960) of rotational
excitations of rigid rotor2 it turns out to be convenient to introduce additional algebraic
Percival-Seaton (Percival and Seaton, 1957) Z-coefficients defined as

Z (ab, cd; ef) ≡ (−1)(f−a+c)/2(−1)b+d [(2a+ 1)(2b+ 1)(2c+ 1)(2d+ 1)(2f + 1)]1/2

×
(
a c f
0 0 0

){
a b e
d c f

}
.

(B.6)

B.3 Orthogonality relations

(2j3 + 1)
∑
m1,m2

(
j1 j2 j3
m1 m2 m3

)(
j1 j2 j′3
m1 m2 m′3

)
= δj3,j′3δm3,m′3δj1,j2,j3 (B.7a)

∑
j3,m3

(2j3 + 1)

(
j1 j2 j3
m1 m2 m3

)(
j1 j2 j3
m′1 m′2 m3

)
= δm1,m′1δm2,m′2 (B.7b)

B.4 Relations between 6j- and 3j- symbols

Using the defining and orthogonality relations regarding 3j- and 6j- symbols stemming
from their relation to unitary transformations between various bases in angular mo-

2the essential theoretical framework was actually introduced earlier by Blatt and Biedenharn (1952)
although in this work the authors deal just with two particle collisions
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mentum recoupling schemes, it is possible to derive a plethora of identities. Let us just
mention two of them, which turned out to be most useful for our purposes.

Defining relation of the 6j-symbol using the 3j- symbols

δγ1,γ1′ δc,c1
2c+ 1

{
a b c
A B C

}
=

∑
α,β,γ,α′,β′

(−1)A+B+C+α+β+γ

(
A B c
α −β γ′

)
(
B C a
β −γ α′

)(
C A b
γ −α β′

)(
a b c1

α′ β′ γ′1

)(B.8)

Sum over three Clebsch-Gordan coefficients√
(2e+ 1)(2f + 1) (af αM3| c γ) W(abcd; ef) =∑

β

(abαβ| eM1) (edM1M2| c γ) (bd βM2| f M3) (B.9)

B.5 Other relations

Although following identities are not directly connected with the properties of the 3j-
and/or 6j- symbols, we found useful to include them also in this appendix mainly be-
cause of the fact that in the context of this work, they were typically used in connection
with formulae mentioned above.

Composition of spherical harmonics

Pl( ~n1 · ~n2) =
4π

2l + 1

l∑
m=−l

Y ∗l,m ( ~n1)Yl,m ( ~n2) (B.10)

Integration of a product of three spherical harmonics

Gaunt’s formula∫
d2~nY ∗j,mj (~n)Yl,m (~n)Yj′,mj′ (~n) =

(−1)mj

√
(2j + 1)(2j′ + 1)(2l + 1)

4π

(
j j′ l
0 0 0

)(
j j′ l
−mj mj′ m

) (B.11)

Product of spherical harmonics with the same argument

Y ∗l1,m1
(~n)Yl2,m2 (~n) = (−1)m1

1

4π

∑
l,m

(2l1 + 1)(2l2 + 1)

(2l + 1)
δm,m2−m1

× (l1l2 00| l 0) (l1l2 −m1m2| l m) · Yl,m (~n)

(B.12)
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APPENDIX

C

DIPOLE POTENTIAL

Classically, the interaction between an electrical dipole ~D and a particle with charge q,
mass m is naturally given as

q
~D · ~r
r3

, (C.1)

where the vector ~r specifies the position of the particle. Utilizing the correspondence
principle, the relevant Hamiltonian for an electron can be1 written in the following form

H = −1

2

[
1

r2

∂

∂r

(
r2 ∂

∂r

)
− 1

r2
L2

]
+ q

~D · ~r
r3

, (C.2)

with L2 representing the square of the angular momentum. This Hamiltonian clearly
resembles the free particle Hamiltonian, nevertheless in the dipole case, its part acting
on the angular variables

L2 − 2 ~D · r̂ (C.3)

is modified by a term proportional linearly to D representing the magnitude of the
dipole moment ~D.

C.1 Fixed point dipole

In the simplest possible setting, we can assume that the orientation of the dipole mo-
ment ~D is fixed and choose the laboratory frame of reference so as the quantization
ẑ-axis coincides with ~D. In order to explore the properties of the operator (C.3) it turns
out to be convenient to evaluate its matrix elements using a basis |l m〉 comprised of
the eigenstates of L2 and Lz. The resulting matrix will be diagonal in the quantum
number m with each block being in turn tridiagonal in l. This observation immediately
results from the Wigner-Eckart theorem. Thus we obtain

Gml′, l ≡
〈
l′m′

∣∣L2 − 2Dẑ · r̂ |l m〉 =

= l(l + 1)δl, l′δm′,m − 2Dδm′,m

δl′, l+1

√
l′2 −m2

4l′2 − 1
+ δl′+1, l

√
l2 −m2

4l2 − 1

 . (C.4)

From this equation we see that the matrix elements do not depend on the sign of m
as a direct consequence of the axial symmetry. Of course, the eigenvalues of Gm will
reduce to the well-known eigenvalues of L2, i.e., 0, 2, 6, · · ·, for zero dipole moment. On
the other hand, for D 6= 0, the off-diagonal elements of Gm, i.e., Gml,l+1, are nonzero and

1atomic units are presumed
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the matrix is itself symmetric. Arguments based on the Minimax theorem (Wilkinson,
1988, p. 299) and Sturm sequence properties lead to the interesting conclusion that
such matrices have non-degenerate eigenvalues.

C.1.1 Dipole harmonics

The spectrum and corresponding eigenvectors of the matrix Gm defined in (C.4) can
be for practical purposes obtained most easily by a numerical procedure. To this end,
one restricts2 the quantum number l to 0, 1, . . . lmax, evaluates corresponding matrix
elements and performs then the diagonalization numerically.

Along the lines of the standard approach, one could try to express the eigenvalues
of (C.3) as λ(λ+ 1) for non-integer λ being function of l,m and the magnitude of the
dipole moment D. In a more pedantic notation following Lévy-Leblond and Provost
(1967), the eigenvalues should be therefore labeled as λl,m(D) nevertheless for the
sakes of brevity, we shall omit this cumbersome designation. With this proviso, we will
call the eigenfunction of the operator (C.3) as dipole harmonics – Zλ,m – in analogy
with spherical harmonics Yl,m. Transformation between these two angular bases is
established by means of a transformation Am, namely

Zλ,m ≡ |λm〉 =
∑
l

〈l m|λm〉 |l m〉 def
=
∑
l

AmlλYl,m, (C.5)

the matrices Am being unitary3, i.e.,∑
λ

AmlλAm∗l′λ = δl,l′
∑
l

Am∗lλ Amlλ′ = δλ,λ′ . (C.6)

Momentum normalized eigenfunctions (k =
√

2E) of the Hamiltonian (C.2) can be
consequently specified according to the following formula

ψklm(~r) =

√
2

π
kjλ(kr)Zλ,m (r̂) , (C.7)

with jλ(z) representing regular spherical Bessel function of order λ (Watson, 2008).
Alternative approach to the solution of the radial Schrödinger equation for pure point
dipole potential based on an expansion into Laguerre and Gegenbauer polynomials has
been given by Alhaidari and Bahlouli (2008).

The dependence of the eigenvalues on the magnitude D of the dipole moment is
depicted in Figure C.1. Each eigenvalue l(l + 1) of L2 is split into l + 1 components
due to the above mentioned symmetry in |m|. Although an analytic expression for
the eigenvalues is probably not available, it is possible to derive (Lévy-Leblond, 1967)
a continued fraction expansion of λl,m(D) from which one can easily obtain the power
expansion of these quantities in the variable α = 2D. For example the lowest eigenvalue
for m = 0 is given as

λ00(D) ≈ −α
2

6
+

11

30

(
α2

6

)2

− 133

450

(
α2

6

)3

+O
(
α8
)
. (C.8)

2each matrix Gm will be of order lmax − |m|+ 1
3in an actual numerical implementation, the truncation in l causes typically some error in the highest

eigenvalues. One countermeasure is to increase slightly lmax and crop the vector of eigenvalues and
also the transformation matrices after the diagonalization to correspond with the original lmax. This
technique produces more precise eigenvalues, on the other hand it can compromise the unitary property
in (C.6).

86



−1/4

1

2

3

4

5

6

7

8

0.0 0.5 1.0 1.5 2.0

λ
(λ

+
1)

D [a.u.]

|M |–blocks

critical value

D
cr
it
≈

0
.6
39

0
1
2

Figure C.1: Dependence of the eigenvalues of the angular operator (C.3) on the mag-
nitude of the dipole moment

For large l one can alternatively consider the dipole term as a perturbation to L2 and
in that case it is possible (Clark, 1984) to derive an approximation to λl,m(D) as

λl,m(D) ≈ l +
D2

4l3
+O

(
l−4
)
.

The dipole harmonics also naturally transform to spherical harmonics in the limit
D → 0+. Figure C.2 depicts the square of the absolute value of three selected |λ,m〉’s
understood as functions of the angular variables θ, φ for fixed4 angle φ = 0.

C.1.2 Critical dipole

The operators L2 and −2D cos θ are certainly bounded from below by 0 and −2D,
respectively. This means that also the operator (C.3), being their sum, is bounded
from below by −2D. Its lowest eigenvalue is thus greater than −2D. If we insist
on the eigenvalue parametrization as λ(λ + 1), we immediately see that λ has to be
complex for eigenvalues smaller than −1/4 (highlighted in Figure C.1). This situation
may (and indeed does) thus occur for D & 1/2 and is directly connected with the
question concerning the existence of possible bound states of the electron in the dipole
field as discussed in the following section. To avoid unnecessary confusion, it should
be noted that each eigenvalue λl,m(D) has its own “critical value” of D. The critical
dipole moment usually mentioned in the literature refers to the lowest eigenvalue λ0,0.

To numerically render these critical values forcing λ to be complex can be done
using standard methods for root searching (Press et al., 2007, p. 442). To this end, we
interpret the eigenvalue λl,m(D) as a function of D and define f(x) = λl,m(x) + 1/4.
The critical value of D then coincides with roots of f and even the simplest bisection
method yields very satisfactory results. Table C.1 contains the critical values for several
eigenvalues λl,m localized by means of this procedure as compared to Crawford (1967).

4because of the axial symmetry, the three dimensional shape would be obtained by rotating the slice
depicted in Figure C.2 around the z-axis
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Figure C.2: Selected dipole harmonics for D = 1.0 a.u. and φ = 0 – gray lines represent
corresponding spherical harmonics (i.e., limiting case for D → 0+), axial symmetry of
the dipole harmonics is preserved, nevertheless the overall shape is deformed.

m l D†crit [a.u.] Dcrit [a.u.]

0 0 0.63928 0.639314877

0 1 7.5463 7.546955713

0 2 21.299 21.30090331

1 1 3.7916 3.791967926

Table C.1: Magnitude of the critical dipole moment Dcrit for several eigenvalues λl,m.

Values D†crit in the second column are taken from Crawford (1967). More accurate
results can be found in Alhaidari and Bahlouli (2008).

88



C.2 Other forms of the dipole potential

The dipole interaction model presented in the preceding section is clearly the most
simple. In the literature, three additional cases are usually distinguished:

• fixed finite dipole – in this case, it is assumed that the electrical field is gen-
erated by two point particles fixed in space with opposite charges q separated
by a distance R. For r → ∞ the form of the potential coincides naturally with
Eq. (C.1).

• point dipole rotor – the direction of the dipole moment ~D in Eq. (C.1) can
in general depend on time. A crude model of a polar molecule would consist in
fixing the dipole moment in the frame of reference of the molecule. The vector
~D will consequently depend on the Euler angles specifying the orientation of the
molecule in space.

• finite dipole rotor – the last case is a combination of the preceding two schemes,
i.e., the dipole is assumed to be finite as well as free to rotate.

C.3 Existence of electron bound states in a dipole field

The question whether and under which conditions can a dipole field bind an electron
has aroused the attention of many investigators in the past few decades. Lucid overview
regarding this topic can be found in Turner (1977) or in Appendix B of Itikawa (1978).
In this section we would like to provide a short summary of the relevant results.

The analysis in the framework of classical mechanics is much simpler as shown by
Fox (1968); Turner and Fox (1968). Their conclusions can be summarized as follows:

• fixed finite dipole supports electron bound states for arbitrarily small dipole mo-
ment D (Turner and Fox, 1968),

• in the case of a point dipole, the only stable electron orbits are such that r = const.
and total energy E = 0. Moreover, a necessary condition is D > 3

√
3/4p2

φ, where

p2
φ is the electron’s angular momentum along the dipole axis (Fox, 1968).

The notion of quantum mechanical critical dipole can be dated back to the work by
Fermi and Teller (1947) almost sixty years ago. Nevertheless as pointed out by Turner
(1977), their results didn’t attract sufficient attention at that time and thus the ex-
istence of the minimal dipole moment required to bind an electron was rediscovered
twenty years later by several authors as discussed below. On the other hand, it should
be noted that the principal ideas applicable also in the general case are mentioned
already in the book by Landau and Lifschitz (1977), the first edition of which is dat-
ed to 1958. Landau and Lifschitz (1977) analyze the radial differential equation for
an electron in a spherically symmetric fixed point dipole field

V (r) ∼ β/r2. (C.9)

The form of the potential (C.9) poses actually no restriction, since the Schrödinger
equation for the “proper” dipole potential (C.1) is separable in radial/angular vari-
ables. The eigenvalues of (C.3) will then only reflect itself in a particular value of the
parameter β. Arguments based on the oscillation theorem lead to the following con-
clusions, for the concise statement of which it is convenient to introduce a parameter
γ as

γ = 2β − l(l + 1), (C.10)

where l is the orbital angular momentum of the electron.
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• If the potential is of the form (C.9) in the entire space then

1. γ > 1/4 – the particle is said5 to “fall to the centre”,

2. γ < 1/4 – the dipole field supports no bound states.

• If the potential (C.9) is modified by some short-range perturbation6 to mitigate
the singular behavior at the origin, then

1. γ > 1/4 – there are infinitely many negative energy states for the zero energy
radial wave function has infinitely many nodes (i.e., its ordinal number is
infinite),

2. γ < 1/4 – only a finite number of bound states can exist in this case, de-
pending on the form of the short range perturbation.

In the following discussion, let us distinguish two cases according to the fact whether
the rotational degrees of freedom of the dipole moment are taken into account or not.
We shall also confine ourselves only on the discussion of negative energy states. For
implications of the properties of the dipole potential for scattering calculations we refer
to Section 4.1.

C.3.1 Fixed dipole

The bound state problem for a fixed finite dipole was first studied probably by Wallis
et al. (1960) who separated the Schrödinger equation in spheroidal coordinates (ξ, η),
expressed the sought negative energy wave function in a basis comprised of associated
Laguerre (ξ) and Legendre (η) polynomials and thus converted the differential equation
into an algebraic problem. These equations were solved for dipole moments in the
interval 0.84 - 30.0 a.u. Later, the same problem was variationally solved by Turner
et al. (1968) with a basis composed of functions of the type exp{−1/2α(ξ + η)}ξpηq.
Resulting energies for the lowest bound state are given in Table C.2 for a few values
of the dipole moment D. The theoretical dependence of the binding energies on D
has been investigated by Abramov and Komarov (1972). Analogical calculations to
Turner et al. (1968) were performed by Garrett et al. (1969) in spherical coordinates.
As opposed to Wallis et al. (1960), Turner et al. (1968) present not only the energies
but also the form of corresponding eigenfunctions for a much wider range of the dipole
moment, namely 0.639 - 400.0 a.u. A very similar numerical approach as in Turner et al.
(1968) led Turner and Fox (1966) to the conclusion that fixed finite dipole doesn’t
support bound electron states for D < Dcrit ≈ 0.6393 a.u. In this work, the variation
principle was applied to D for fixed energy E = 0 – this corresponds to the fact that we
seek the smallest value of D which is compatible with zero energy bound state (critical
binding). A surprisingly simple argument can be made to verify this claim (Crawford
and Dalgarno, 1967). The reasoning goes as follows. The potential for a fixed finite
dipole q~d is given by

V (~r ) = q

(
1∣∣~r − ~d
∣∣ − 1∣∣~r ∣∣

)
.

This expression is everywhere less negative than the lower bound −q/r2, for which
we can apply the results of Landau and Lifschitz (1977) and therefore confirm the

5This is an interpretation of the fact that the radial part of the wave function can be shown to
exhibit infinite number of zeros for any finite energy E. On the other hand, the ground state with
energy E0 has no radial nodes and one is then forced to the conclusion that E0 → −∞. This in turn
leads to the closure that the electron should be confined to an infinitesimal vicinity of the origin r = 0.

6short-range meaning that the perturbation decays faster than 1/r2 for r →∞
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numerical results of Turner and Fox (1966). The independence of the lower bound on
the size or direction of ~q enables us to extend this result also to the case of a fixed/freely
rotating finite/point dipole.

Recently, Giri et al. (2008) claimed to prove that the fixed point dipole does support
bound states even for undercritical dipole moments. Their argument is based on the
statement that the radial Hamiltonian is actually not self-adjoint, nevertheless by direct
computation of its deficiency indices they prove that it admits self-adjoint extension.
Giri et al. (2008) then aver that this extension (parametrized by ω) posses a bound
state, which is in contradiction with previous works. On one hand, Giri et al. (2008)
claim that their results are incompatible with older findings, on the other hand, on
p. 3 the authors state that “ω encodes the effect of the boundary conditions arising
from the short range physics of the system”. If this should be understood as a result of
particular short range modification to the point dipole potential, then their conclusions
essentially reduce to the findings in Crawford (1967), who generalized the analysis of
Landau and Lifschitz (1977) to the case of anisotropic dipole potential (C.1) modified
by a short-range perturbation.

It could seem tempting to apply the Crawford’s results also to the class of potentials
modeling rotating polar molecules. Nevertheless, as pointed out in Crawford (1967),
this would require the incorporation of the Born-Oppenheimer approximation. How-
ever, the predicted discrete spectrum has an accumulation point for E = 0, which in
turn means that the Born-Oppenheimer approach is itself questionable.

C.3.2 Rotating dipole

If the dipole moment is allowed to freely rotate in space, one would naturally expect
that the strength of the dipole potential could be “averaged out” thus altering the
conditions for electron binding. From the formal point of view, the incorporation of
the rotational degrees of freedom means that we are forced to include additional terms
into Eq. (C.2), typically rigid rotor Hamiltonian as introduced in Appendix E.

In the simplest possible setting of a diatomic polar molecule, the radial components
of the electron’s wave function UJj,l in the laboratory frame close coupling treatment will
satisfy a set of coupled differential equations (Bottcher, 1969; Garrett, 1971b), namely[

1

2

d2

dr2
− l(l + 1)

2r2
+

(
E − j(j + 1)

2I

)]
UJj,l(r) =

=
∑
j′,l′

〈
jl, J

∣∣V ∣∣j′l′, J〉UJj′,l′(r), (C.11)

where j, l are the channel quantum numbers, I stands for the moment of inertia of the
molecule and J represents the total angular momentum. In the past, it has been argued

D [a.u.] E [eV] D [a.u.] E [eV]

0.667 1.2208·10−18 1.000 2.7882·10−2

0.693 1.1340·10−10 2.000 2.3982·100

0.741 9.9116·10−7 4.000 7.0285·100

0.797 8.5596·10−5 8.000 1.0219·101

Table C.2: Lowest bound state energies for a fixed finite dipole with magnitude D as
given by Turner et al. (1968)
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that the critical binding properties of an electron in a field of rotating dipole should
be identical to the fixed case (Bottcher, 1970), nevertheless as pointed out by Garrett
(1971a), this argument is flawed by the omission of the difference in the electron’s
channel momenta. Garrett (1980a) showed later that the arguments of Bottcher (1970)
are actually valid in the (purely mathematical) limit of point dipole rotor.

The system of a rotating finite dipole moment was thoroughly studied by Garrett
(Garrett, 1970, 1971b, 1980a,b). He investigated the radial laboratory frame close-
coupling equations for the presumably bound electron. His findings are as follows

• the number of bound states is finite (Garrett, 1971b, p. 966),

• the critical dipole moment Dcrit required to bind an electron depends on I (Gar-
rett, 1970) and decreases monotonically with I → ∞. Moreover, Dcrit converges
in this limit to the value for the fixed point dipole as depicted in Figure C.3
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Figure C.3: Dependence of the critical dipole moment on the moment of inertia I and
the charge separation in case of rotating finite dipole. Value of Dcrit is influenced by
total angular momentum J . Data taken from Garrett (1970) and Garrett (1980a).

• for fixed moment of inertia I and dipole length, Dcrit is an increasing function of
the total angular momentum J

• with decreasing charge separation in the finite dipole rotor model, Dcrit converges
to the value for the point dipole case as demonstrated graphically in the right
panel of Figure C.3

Generalization to “real” molecules

Because the binding properties are mainly attributed to the long range behavior of
the dipole potential, the finite dipole rotor model could furnish in principle a reliable
approximation. However, exact treatment is hardly possible. Employing Rayleigh-
Ritz variational principle, Crawford (1971) showed that in the framework of Born-
Oppenheimer approximation, all polar molecules with dipole moment higher than the
point dipole value 0.693 do support electron bound states. His generalization to freely
rotating molecules based on an analysis of critical dipole moments calculated by Garrett
(1970) and by using arguments about presumably small influence of the short-range
interaction is nonetheless little bit vague – “the facts strongly suggest that any real gas
phase molecule or radical with D > 0.79 a.u. probably can bind an extra electron, and
almost certainly can if D > 0.98 a.u.”.
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Ab initio studies regarding electron affinities of simple polar molecules have been
also reported (Jordan and Luken, 1976). Their theoretical value of the affinity for
LiCl 0.54 eV is in good agreement with experimental value 0.61 eV (Carlsten et al.,
1976). Calculations performed on other small polar molecules suggest that the electron
affinity increases with increasing dipole moment and the binding energies are very small
as compared to values predicted by finite dipole rotor model. Also no “multiple” bound
states have been observed.

In connection with the question about the role of the Born-Oppenheimer approx-
imation in Crawford’s results, Crawford and Garrett (1977) have shown for typical
values of I,R (only spherical rotors are considered) that the negative ion is still stable
provided that the Born-Oppenheimer electron affinity is larger than roughly 1/10 of the
rotational constant of the molecule (and thus the energy increase by adding positive
semidefinite rotational term j(j+ 1)/2I to the Hamiltonian is still compatible with the
bound character of the respective state).
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APPENDIX

D

SPHERICAL BESSEL FUNCTIONS

The purpose of this short appendix is to furnish a concise overview of the normalization
(and other possible definition related) conventions regarding the use of various special
functions appearing in the presented work in order to avoid confusion with the plethora
of other sources in the available literature.

D.1 Spherical & Ricatti-Bessel functions

Spherical Bessel functions naturally enter the stage of quantum mechanics as solutions
of the radial Schrödinger equation and are defined in terms of Bessel J,N functions of
fractional (Abramowitz and Stegun, 1965, ch. 10) order as

jl(z) ≡
√

π

2z
Jl+ 1

2
(z) jl(z) ≡

√
π

2z
Nl+ 1

2
(z). (D.1)

Standard substitution R ← 1
r ξ in the radial Schrödinger equation eliminates the first

derivative term and yields thus a simpler differential equation for ξ, the two independent
solutions of which are the so-called Ricatti-Bessel functions

ĵl(z) ≡ zjl(z) n̂l(z) ≡ − zjl(z) . (D.2)

Two particular linear combinations of (D.2) turn out to be especially useful, namely
the Ricatti-Hankel functions given by

ĥ+
l (z) ≡ iĵl(z) + n̂l(z) ĥ−l (z) ≡ − iĵl(z) + n̂l(z) . (D.3)

In multichannel scattering formalism, to each channel a with channel momentum ka,
there correspond two radial functions fa, ga (regular and irregular solution) which are
just conveniently chosen linear combinations of (D.2). However, as discussed by Zemach
(1964), the necessary condition ensuring symmetry of the resulting K-matrix is that
the absolute value of the Wronskian of these fa, ga is 1.

D.1.1 Extension to complex orders

In connection with the radial Schrödinger equation in dipole potential, it turns out to
be convenient to define functions (D.1) and (D.2) also for complex orders. In order
to distinguish this case we shall denote the order as λ instead of l. Bessel functions
are analytic functions of their order in the entire complex plane (possibly except the
origin) – for details we refer to an excellent overview by Watson (2008). The well-known
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(Taylor, 2006, ch. 11) asymptotic behavior of (D.2) can be thus directly extended for
complex orders λ as

ĥ±l (z) ≈ e±=λ
π
2 e±i(z−<λπ2 ) (1 +O

(
z−1
))

for z →∞. (D.4)

However, in scattering applications, one prefers radial solutions yielding unit ingoing
and outgoing flux. To ensure this, it is necessary to renormalize (Clark, 1984) functions
(D.4) as

̂̂h±λ (z)
def
= ĥ±l (z) · e∓=λ

π
2 ≈ e±i(z−<λπ2 ) (1 +O

(
z−1
))

for z →∞. (D.5)

D.2 Scattering integrals

Finally, following set of relations entails an overview of integrals, which appear frequent-
ly in the first Born approximation framework in computations of scattering amplitudes
and transition operator matrix elements. The formal mathematical reason is that in
this approximation, the radial wave function is typically described by a regular spherical
Bessel function of corresponding order. Another possible use is for integrals the inte-
grand of which contains plane wave terms exp(i~k ·~r ). This expression can be expanded
into spherical harmonics as

ei~k·~r = 4π

∞∑
l=0

l∑
m=−l

iljl(kr) Y∗l,m
(
k̂
)
Yl,m

(
r̂
)
, (D.6)

where the radial term is again given by a regular spherical Bessel function so the
integration over r or k can in principle benefit from formulae presented below. For
other useful properties and relations we refer to Gradshteyn and Ryzhik (2007) or
Erdélyi (1954).

Combination of jl and power1 of r

η > 1,<λ > η − 3∫ ∞
0

jλ(kr) r2−η dr =
√
π 21−ηkη−3 Γ

(
3
2 + λ

2 −
η
2

)
Γ
(
λ
2 + η

2

) (D.7)

Combination of two jl’s with different k and power of r

0 < k0 < k, η > 0, <λ+ <λ0 > η − 3

∫ ∞
0

jλ(kr) jλ0(k0r) r
2−η dr =

( π
2η

) kλ0
0

k3+λ0−η

Γ
(
λ+λ0−η+3

2

)
Γ
(
λ0 + 3

2

)
Γ
(
λ−λ0+η

2

) ·
· 2F1

(
λ+ λ0 − η + 3

2
,
λ0 − λ− η + 2

2
, λ0 +

3

2
;
k2

0

k2

)(D.8)

The symbol 2F1 denotes the standard hypergeometric function (Abramowitz and Ste-
gun, 1965, ch. 15). Although at first sight it might seem that Eq. (D.8) should be
symmetrical under simultaneous exchange of λ ↔ λ0 and k ↔ k0, the situation is

1in Feldt and Morrison (2008b), there is probably a misprint concerning the validity conditions of
this formula
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slightly more complicated by the fact that the right hand side of Eq. (D.8) is not
analytic in the variable k0/k (Gradshteyn and Ryzhik, 2007, p. 683).

Combination of two jl’s with the same k and power of r

0 < k, η > 1, <λ+ <λ0 > η − 2

∫ ∞
0
jλ(kr) jλ0(kr) r2−η dr =

( π
2η

) Γ(η − 1) Γ
(
λ+λ0−η+3

2

)
Γ
(
λ0−λ+η

2

)
Γ
(
λ+λ0+η+1

2

)
Γ
(
λ−λ0+η

2

) · kη−3 (D.9)

A noteworthy special case of Eq. (D.9) is obtained for η = 2 since then the radial term
r2−η vanishes. Using a slightly modified Euler’s reflection formula for Γ(z)

Γ(1 + z)Γ(1− z) = zΓ(z)Γ(1− z) =
πz

sinπz
(D.10)

readily yields for <λ+ <λ0 > 0, k > 0∫ ∞
0
jλ(kr) jλ0(kr) dr =

sin
(
(λ0 − λ)π2

)
(λ0 − λ)(λ+ λ0 + 1)

· k−1. (D.11)

More specifically, Eq. (D.11) reduces for λ0 = λ± 1 to∫ ∞
0
jλ(kr) jλ±1(kr) dr =

1

2λ+ 1± 1
· k−1. (D.12)

Combination of two jl’s of order λ with different k and power of r

k > 0, k0 > 0, <η > 0, <λ > −1∫ ∞
0
jλ(kr) jλ(k0r) r

2−η dr =
( π

2η

) (kk0)λ Γ
(
λ+ 3

2 −
η
2

)
(k + k0)2λ+3−η Γ

(
λ+ 3

2

)
Γ
(η

2

)
· 2F1

(
λ+

3

2
− η

2
, λ+ 1, 2λ+ 2;

4kk0

(k + k0)2

) (D.13)

97



98



APPENDIX

E

RIGID ROTOR APPROXIMATION

In the standard treatment of molecular vibrations/rotations, the electronic structure of
the molecule is usually disregarded and the molecule is simply modeled by charged point
particles representing the nuclei. In order to obtain (Watson, 1970; Wilson et al., 1980)
the quantum-mechanical Hamiltonian, it is necessary to perform several steps. First-
ly, the translational motion is separated by coordinate transformation into a frame of
reference “moving” with the molecule determined by Eckart conditions. Consequently,
normal coordinates are introduced and the (actually still classical) Hamiltonian is re-
stated in terms of angular momenta and momenta conjugate to the normal coordinates.
In order to utilize the correspondence principle, it is further essential to determine the
relation between the angular momenta and momenta conjugated to the Euler angles
and finally apply a procedure, originally proposed in the early days of quantum me-
chanics by Podolsky (1928), which yields the “exact” rovibronic Hamiltonian. However,
if the coupling between rotations and vibrations is neglected, the total energy separates
into the energy of a rotating rigid molecule plus vibrational energy of a non-rotating
body and one speaks then about rigid rotor approximation.

E.1 Symmetric tops

The rotational Hamiltonian takes in the rigid rotor approximation the following form

Hr =
1

2

[
LA

IA
+

LB

IB
+

LC

IC

]
, (E.1)

where the subscripts A,B,C identify body fixed coordinate axes and the L represent
corresponding angular momentum projections. The rotational constants A,B,C are
then defined by means of the moments of inertia I as, e.g., A = 1/2IA etc. By con-
vention IA ≤ IB ≤ IC and therefore A ≥ B ≥ C. It may happen that A > B = C or
A = B > C. In that case, the molecule is denoted as a symmetric top. This relation
is automatically satisfied if the molecule exhibits an n-fold symmetry axis with n ≥ 3.
On the other hand, it may happen that even if the molecule is not itself symmetric, its
rotational behavior is close to a symmetric top. This case is denoted as an accidental
symmetric top (Winnewisser, 1972).

Two cases are distinguished:

prolate top A > B = C e.g., CH3Cl, CH3Br, CF3Cl

oblate top A = B > C e.g., NH3
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E.1.1 Rotational eigenfunctions

It can be shown that in the Euler angles representation, the normalized (E.20) rotational
eigenstates |j km〉 of a symmetric top are rendered as

|j km〉 =

√
2j + 1

8π2
Djm,k(α, β, γ) . (E.2)

Each ket |j km〉 is an eigenstate of the total angular momentum, projection of the an-
gular momentum onto the space fixed z-axis and also of the projection of the angular
momentum onto the (rotating) molecular z′-axis of symmetry with eigenvalues j(j+1),
m and k, respectively. The Euler angles (α, β, γ) are defined in the y-convention as
discussed in length, e.g., in Goldstein et al. (2001, p. 154) and determine the orienta-
tion of the principal axes frame of reference fixed in the molecule. More importantly,
the symbol Djm,k represents a Wigner function1 the properties of which are concisely
summarized in Section E.3.

When comparing relations from various sources in the available literature, proper
care has to be taken as concerns the variety of possible conventions regarding Euler
angles, Wigner Djm,k functions and active/passive interpretation of rotation operators.

We adhere to the convection used by Davydov (1965), where the Djm,k functions are
defined as matrix elements of the rotation operator expressed in the passive conven-
tion, i.e., the set of Euler angles (α, β, γ) defines a sequence of three successive rota-
tions applied to the original space fixed coordinate system (x, y, z) ending up with the
molecule-fixed reference frame (ξ, η, ζ) coinciding with the principal axes of inertia.
Explicitly written, one has

Djm,m′(α, β, γ) ≡
〈
jm′

∣∣R (α, β, γ)
∣∣jm〉 , (E.3)

with the rotation operator R being given by

R (α, β, γ) = e
i
~γJze

i
~βJye

i
~αJz .

Simplifying (E.3) and appending a subscript D for Davydov, one obtains

DDjm,m′(α, β, γ) = eimα
〈
jm′

∣∣∣ e i
~βJy

∣∣∣jm〉 eim′γ , (E.4)

where the states |jm〉,|jm′〉 can be considered as referring to the space-fixed frame
of reference. Davydov consequently obtains the transformation relation of spherical
harmonics resulting from the definition (E.3) as

Yl,m

(
θ, φ

)
=
∑
k

DDlm,k(α, β, γ) Yj, k

(
θ′, φ′

)
, (E.5a)

Yl, k

(
θ′, φ′

)
=
∑
m

DDl ∗m,k(α, β, γ) Yj,m

(
θ, φ

)
, (E.5b)

where the angular variables θ, φ and θ′, φ′ refer to the space fixed (laboratory) and
rotated (fixed in the molecule) frame of reference, respectively.

On the other hand, Brink and Satchler (1994) use the same convention regarding
Euler angles (α, β, γ) but works in the active convention, i.e., they consider the frame
of reference as being fixed in space and rotate the physical states. Their D-matrices

1also known as generalized spherical function or alternatively D-function
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(distinguished by subscript B) are thus rendered as matrix elements of the rotation
operator in active convention to wit

BDjm,m′(α, β, γ) =
〈
jm
∣∣∣ e− i

~αJze−
i
~βJye−

i
~γJz

∣∣∣jm′〉
= e−imγ

〈
jm
∣∣∣ e− i

~βJy
∣∣∣jm′〉 e−im′α.

(E.6)

Quick simultaneous glance at Eqs. (E.4) and (E.6) reveals that D-matrices given by
Brink and Satchler (1994) are just complex conjugated D-matrices of the D-matrices
of Davydov (1965)

DDjm,m′(α, β, γ) = BDj ∗m,m′(α, β, γ) . (E.7)

In the active convention, if one rotates a state |jm〉 by (α, β, γ), the resulting state
|jm〉′ ≡ R |jm〉 is naturally an eigenstate (with the same eigenvalue m) of the angular
momentum projection onto the z′-axis, i.e., the rotated z-axis. Expanding |jm〉′ in the
original basis |jm〉 yields

|jm〉′ ≡ R |jm〉 =
∑
k

|jk〉 〈jk|R |jm〉 , (E.8)

with 〈jk|R |jm〉 being identical to Brink’s D-matrix (E.6). In coordinate (θ, φ) repre-
sentation, Eq. (E.8) is equivalent to

Yl,m

(
θ′, φ′

)
=
∑
k

BDlk,m(α, β, γ) Yj, k

(
θ, φ

)
. (E.9)

Taking into account the “compatibility” relation (E.7) recovers Davydov’s result (E.5b).
Other books preferring the active convention such as Inui et al. (1996) or Bohr and
Mottelson (1998) are fortunately in accordance with the results stated previously.

Another heavily cited source on angular momentum, the book by Edmonds (1996),
also chooses the passive view point and consequently avers to define the D-matrices
as matrix elements of the rotation operator in passive convention as it is done also by
Davydov (1965). The defining relation (Eq. 4.1.10 in Edmonds (1996)) is2

EDjm,m′(α, β, γ) =
〈
jm
∣∣∣ e i

~αJze
i
~βJye

i
~γJz

∣∣∣jm′〉
= eimγ

〈
jm
∣∣∣ e i

~βJy
∣∣∣jm′〉 eim′α

(E.10)

and a discrepancy with Davydov’s results is apparent. The nasty culprit is deeply
hidden in the fact that the rotation operator in passive convention used by Edmonds
(1996) is seriously flawed for reasons discussed thoroughly in Bouten (1969). One of
the immediate consequences is the violation of the group-property which can be easily
shown (Bouten, 1969) as follows. Let’s suppose that that the correct form of the passive
rotation operator RP(α, β, γ) is as considered by Edmonds (1996), namely

RP(α, β, γ) = e
i
~αJze

i
~βJye

i
~γJz .

To a composition of two rotations, there should correspond a product of the respective
rotation operators. Now let’s consider two particular rotations (α, 0, 0) and (0, β, γ) in
the passive view point. It is easily verified that their composition is (α, 0, 0) ◦ (0, β, γ) =
(0, β, α + γ), nevertheless corresponding relation for the rotation operators is clearly
invalid

RP(α, 0, 0) ·RP(0, β, γ) = e
i
~αJz · e

i
~βJye

i
~γJz 6= e

i
~βJye

i
~ (α+γ)Jz = RP(0, β, α+ γ).

2subscript E should distinguish Edmonds’s notation from two previously discussed cases
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We would like to note that the same misconception has unfortunately penetrated also
into the, otherwise very elucidating, work by Morrison and Parker (1987). Correct form
of the passive rotation operator is on the other hand used, e.g., by Davydov (1965) or
Fano and Racah (1959). Discussion regarding these topics found in Rose (1995) is even
more confusing in the sense that the author claims to work in the passive viewpoint,
nevertheless his rotation operators are actually active as pointed out by Morrison and
Parker (1987) and Bouten (1969).

In order to remedy the error in Edmonds’s approach one has two possibilities.
Either it is possible to interpret his D-matrices as describing an active rotation by
angles (−α,−β,−γ) or to formally interchange the Euler angles α and γ.3. The former
approach is mentioned (but without discussing the reasons) in Brink and Satchler (1994,
p. 21). On the other hand, the latter tack might be the reason that Chang and Fano
(1972) who adhere to the Edmonds’s notation for the D-functions, interchange the
Euler angles ξ ≡ γ and φ ≡ α, i.e., the orientation of the molecular frame of reference
is specified by Euler angles (φ, θ, ξ = 0) but the authors use Edmonds’s D-matrices
in the form Djm,k(0, θ, φ), which makes the relation (A3) of Chang and Fano (1972)
compatible with equation (43.9) in Davydov (1965).

There are several possibilities how to proceed in order to obtain the eigenfunctions
of a symmetrical top. More thorough analysis based on the investigation of the
properties of the body-fixed angular momentum components (especially their action
on Wigner functions D) is given by Davydov (1965, § 43). Nevertheless, it is
possible to arrive to the same conclusion more straightforward way as discussed,
e.g., by Brink and Satchler (1994, p. 25) or Landau and Lifschitz (1977). The
reasoning is as follows. Suppose that the rigid rotor eigenfunction is φ(R), where
R specifies the orientation of the rotor. If we now rotate the function φ by an
amount R1, the transformed function φ′ will be given by

φ′(R) = D(R1)φ(R) = φ(R′),

where R′ is transformed to R by rotation R1. Without loss of generality, one can
now assume that φ is an eigenfunction of L2, Lz and H with eigenvalues J(J+1),
N and E, respectively. Consequently, φ′ will be also an eigenfunction of L2, H
with the same eigenvalues. Moreover, if the energy level E is only rotationally
degenerated, we can expand φ′ into φJM (R) as

φ′(R) = φJN (R′) =
∑
M

φJM (R) 〈JM |D(R1) |JN〉 .

For the particular choice R1 = R, it follows that R′ = (0), i.e., R1 is an identity
transformation. Therefore the preceding equation can be restated into the following
form

φJM (R) =
∑
N

〈
JN
∣∣∣D†(R)

∣∣∣JM〉φJN (0). (E.11)

In other words, the eigenfunction is determined in all space just by its value for
R = (0). The symmetry around the body fixed z′-axis then requires that only one
term in the sum in (E.11) can be nonzero.4. Thus the sought wave function will
be indeed proportional to the matrix element of the rotational operator.

3Landau and Lifschitz (1977) actually mention in § 58 that Edmonds interchanges angles α and γ
but no detailed comment is given

4N will be then equal to the corresponding eigenvalue of Lz′

102



E.1.2 Rotational energy levels

The rotational energy corresponding to (E.2) can be expressed as

prolate top A > B = C EJKM = BJ(J + 1) + (A−B)K2

oblate top A = B > C EJKM = BJ(J + 1) + (C −B)K2

and is clearly independent on the quantum number M as well as the sign of K due
to the inherent rotational symmetry. Rotational constants together with a graphical
depiction of rotational levels for one particular example of a prolate symmetrical top
molecule (CH3Cl) are displayed in Figure E.1. Values for other molecules can be found
in Appendix F.

E.2 Asymmetric tops

If A > B > C, the body fixed angular momentum projection Lz′ does not represent
a good quantum number. However, L2 and Lz is still conserved and the rotational
eigenfunctions of an asymmetric top can be expressed as linear combinations of sym-
metrical top states |JKM〉 introduced in (E.2). It is convenient (Kroto, 1975; Winter,
1954) to express the rotational Hamiltonian (E.1) in a slightly more general form as

Hr =
1

2
(a+ b)

(
L2
a + L2

b

)
+ cL2

c +
1

2
(a− b)

(
L2
a − L2

b

)
= αL2 + βLc + γ

(
J+2

+ J−
2
)
.

α = (a+ b)/2

β = c− (a+ b)/2

γ = (a− b)/4
(E.12)

The body fixed axes are in (E.12) labeled as a, b, c. It is worth noting that in (E.12),
there is no connection between this designation and the rotational constants A, B, C.
Actually, the only assumption requires the axis c to be the quantization axis of the
symmetric top eigenfunctions but otherwise one is free to “distribute” A,B,C onto
the a, b, c axes in any manner. There are in principle six (Kroto, 1975) such possible
mappings. The right-handed versions are summarized in Table E.1. If a molecule is

I II III

a B C A

b C A B

c A B C

Table E.1: Axes mapping in the asymmetric rotor problem

a near prolate top then it is convenient to use mapping I for in this case the quantization
axis c nearly coincides with the “prefered” axis A. Analogically, mapping III is suitable
for a near oblate top.

For practical calculations, another form of the rotational Hamiltonian turns out to
be profitable

Hr =
1

2
(A+ C)L2 +

1

2
(A− C)H(κ)

H(κ) = L2
A + κL2

B + LC

κ =
2B −A− C
A− C

, (E.13)
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Rotational constants

A 0.4806 · 10−4 a.u. 1.307 meV

B 0.4055 · 10−5 a.u. 0.110 meV

Dipole moment

D 0.7461 a.u. 1.895 D
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Figure E.1: Rotational constants and dipole moment for CH3Cl, a symmetric prolate
top molecule, together with graphical depiction of the rotational levels specified by
quantum numbers J, K. Levels in each “K-stack” are labeled by J .

with −1 ≤ κ ≤ 1 being the Ray’s asymmetry parameter. Prolate top (B = C) corre-
sponds to κ = −1 whereas the oblate top limiting case (A = B) is equivalent to κ = 1.
The matrix elements of H(κ) are easily determined

〈JK|H(κ) |JK〉 = FJ(J + 1) + (G− F )K2,

〈JK|H(κ) |JK ± 2〉 = H g(J, K).
(E.14)

Specific form of the function g(J, K) is for our purposes not important and can be
found in Kroto (1975, p. 41). The values F, G, H in (E.14) depend on the chosen
mapping according to Table E.1. Direct evaluation yields expressions given in Table E.2.
Eigenvalues and eigenvectors of the matrix H(κ) are usually denoted as |Jτ〉 and EJτ (κ)

I II III

F 1
2(κ− 1) 0 1

2(κ+ 1)

G 1 κ −1

H −1
2(κ+ 1) 1 1

2(κ− 1)

Table E.2: Factors appearing in matrix elements of H(κ) in (E.14)

respectively where τ numbers the eigenvalues in order of increasing magnitude. It
is often stated without proof in the literature that there are exactly 2J + 1 distinct
energy levels EJτ (κ) for −1 < κ < 1 and that for fixed τ and −1 < κ1 < κ2 < 1 the
corresponding energies satisfy EJτ (κ1) < EJτ (κ2).

However, if we consider the mapping II, it is not difficult to see where these prop-
erties originate. In this case, the off-diagonal part of IIH(κ) is independent on κ and
the diagonal part is reduced just to κK2. The set of eigenvalues of the matrix −IIH(κ)
will be apart from the sign identical to eigenvalues of IIH(κ). Because change of sign
in the off-diagonal elements does not affect the spectrum of a Hermitian matrix, the
spectrum of −IIH(κ) coincides with the spectrum of IIH(−κ), therefore we obtain
following relation

EJτ (κ) = −EJ−τ (−κ). (E.15)
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Further, a direct application of the minimax principle (Golub and Loan, 1996, p. 395)
yields

EJτ (κ) + dκ · 0 ≤ EJτ (κ+ dκ) ≤ EJτ (κ) + dκ · J2,

so that the energy levels are not decreasing with κ. The terms on left/right hand side
of this inequality are the smallest/largest eigenvalues of the perturbation dκK2δK,K′

between H(κ + dκ) and H(κ). Numerical values for one particular case of J = 3 are
recorded in Figure E.2.

E.2.1 Symmetry classification of asymmetric rotor states

Although the molecule itself doesn’t need to be geometrically symmetric, its rotational
Hamiltonian (E.1) is invariant under the point group D2 and therefore the rotational
states of an asymmetric rotor can be classified according to the four one-dimensional
irreducible representations of this group. Bases of these representations can be con-
structed by considering proper linear combinations of the states in Eq. (E.2), namely

|J KM γ〉 def
=

1√
2

[
|J KM〉+ (−1)γ |J −KM〉

]
(E.16)

The matrix (E.14) decomposes in this basis into four blocks, designated in the notation
of King et al. (1943) as E+, E−, O+, O−, where +/− denotes the sign of γ in (E.16)
and E/O specifies whether the corresponding block is comprised by functions (E.16)
with even/odd K only.5

The transition from an oblate to a prolate rotor can be understood as a continuous
transformation in κ. Because the “incremental” perturbation κLB is also invariant in
D2, the symmetry classification of the asymmetric rotor states is independent on κ.
These states, however, coincide with rotational states of prolate or oblate symmetric
top for κ = −1 or κ = 1. Therefore, their symmetry properties are uniquely determined
by two numbers – K−1, K1 – which specify the angular momentum projection onto the
symmetry axis in the prolate/oblate limit.

Easily deduced (Townes and Schalow, 1975) transformation properties6 of the sym-
metrical top wave functions (E.2) lead directly to the classification7 summarized in
Table E.3.

Symmetry designation
CA CB CC

K−1 K1

e e + + + A

e o + − − BA

o o − + − BB

o e − − + BC

Table E.3: Symmetry classification of the asymmetric rotor rotational wave functions
(E.16) under the operations of the point group D2.

5this formally follows from the fact that only states with ∆K = 0 or |∆K| = 2 are coupled in (E.16)
6strictly speaking, rules for transformation of the symmetric top wave functions furnish directly

only symmetry labels for the CA and CC rotations, nevertheless CB = CA ◦ CC so the middle column
in Table E.3 is also easily obtained.

7a slightly different convention is used by Herzberg (1956, p. 52) regarding the +/− symmetry labels
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Figure E.2: Eigenvalues of the matrix H(κ) defined in (E.13) as a function of κ for
J = 2 (left panel) and J = 3 (right panel).

E.3 Wigner function properties

Transformation properties

Yl,m

(
θ, φ

)
=
∑
k

Dlm,k(α, β, γ) Yj, k

(
θ′, φ′

)
(E.17)

In this useful formula, the angle variables θ, φ refer to the fixed laboratory frame of
reference whereas θ′, φ′ are connected with the rotating body frame.

Orthogonality relations∑
m

Dj ∗m,k D
j
m,k′ =

∑
m

Dj ∗k,mD
j
k′,m = δk,k′ (E.18)

Djm,k(θ) =
∑
m1,k1

(j1j2m1m2| j m) Dj1m1,k1
(θ) Dj2m2,k2

(θ) (j1j2 k1k2| j m) (E.19)

∫
Dj ∗m,k(θ) D

j′

m′,k′(θ) dθ = (−1)k−m
∫
Dj−m,−k(θ) D

j′

m′,k′(θ) dθ =

=
8π2

2j + 1
δj j′δmm′δk k′

(E.20)

This relation holds only for integer angular momenta j, j′. For detailed discussion and
possible generalisations of relation (E.20), we refer to Jonker and Vries (1967).

∫
Dj3 ∗m3,k3

(θ) Dj2m2,k2
(θ) Dj1m1,k1

(θ) dθ =
8π2

2j3 + 1
(j1j2m1m2| j3m3)

× (j1j2 k1k2| j3 k3)

(E.21)
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Special cases – relation to spherical harmonics

DL0,0(0, β, 0) = PL(cosβ) (E.22a)

DLm,0(α, β, 0) =

√
4π

2l + 1
Yl,m

(
β, α

)
(E.22b)

DL0,k(0, β, γ) = (−1)k
√

4π

2l + 1
Yl, k

(
β, γ

)
(E.22c)

Composition properties∑
m

Djm,k(θ2) Djm,k′(θ1) =
∑
m

Djk′,m(θ2 ◦ θ1) (E.23)

Dj1m1,k1
(θ) Dj2m2,k2

(θ) =

j1+j2∑
j=|j1−j2|

(j1j2m1m2| j m) Djm,k(θ) (j1j2 k1k2| j k) (E.24)

E.4 Statistical weights

The rigid rotor complete wave function ψ is typically approximated as a product of
several terms, each of which corresponds to different type of degrees of freedom. In this
sense, we can schematically write

ψ ≈ ψEψVψRψns, (E.25)

where the individual subscripts E, V, R and ns represent electronic, vibrational, ro-
tational and nuclear spin parts of the complete wave function, respectively. To fully
utilize the Pauli exclusion principle, it is necessary to take properly into account sym-
metry properties of the individual parts of the complete approximate wave function
(E.25). To this end, it is essential to identify the convenient group, the irreducible
representations of which will furnish the appropriate symmetry labels.

The analysis is more complicated for molecules with several alternative “configu-
rations”8 as discussed originally by Longuet-Higgins (1962) and Hougen (1962, 1963).
Nevertheless, it may happen that transitions between these configurations are in the
considered model not energetically possible. In that case, we say that the molecule is
rigid, following Bunker and Jensen (2004).

Regardless of the geometrical configuration of the molecule, the molecular Hamilto-
nian is invariant under operations belonging to the so-called CNPI group9 comprised
of all permutations of identical nuclei present in the molecule together with spatial
inversion of all coordinates. If one removes from this group all elements which inter-
change individual energetically inaccessible configurations10, one obtains the so-called
MS group.11 Each operation from this MS group will affect vibronic, rotational
and nuclear spin coordinate in a different way. The key observation is that for rigid
molecules, its effect on the vibronic variables is identical to the effect of molecular

8by two distinct configurations of a given molecule we mean two specific permutations of identical
particles which are not interchangeable by a simple rotation of the molecule as a whole

9CNPI meaning “complete nuclear permutation group + inversion”
10in the terminology of Hougen (1962), these operations are said to be not “feasible”
11MS stands for “molecular symmetry”
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point group defined in the usual way.12 Thus in the case of rigid molecules, the anal-
ysis reduces actually to that given much earlier by Wilson (1935) for spherical and
symmetrical top molecules. Similar treatment for asymmetric tops has been presented
by Mulliken (1941).

For symmetry classification of the entire wave function (E.25), Wilson (1935) con-
siders only the rotational subgroup GR (having σ elements) of the full molecular point
group GP (of order N). This stems from the fact that the effect of improper operations
in GP on the rotational variables (Euler angles) is not clearly defined. Wilson (1935)
further assumes that each rotationally configuration of the molecule can be described
by a wave function ψi of the type (E.25). Since GP can be decomposed into N/σ cosets,
one has precisely N/σ such functions. However, ψi have good transformation properties
only under operations belonging to GR. The total wave function Ψ obeying the Pauli
principle for all operations in GP can be expressed as an linear combination of ψi’s.
The question at hand is now how many of such Ψ’s it is possible to construct. Simple
argument leads to the conclusion that there is only one such Ψ.

Let’s consider the reducible representation of GP generated by functions ψi. Number
of Ψ’s is then the same as the multiplicity of the totally symmetric representation A
of GP in the aforementioned reducible representation. On the other hand, there are
exactly σ elements of GP which leave each of the ψi’s invariant. Their contribution
into the expression

∑
j χj , where j runs over all elements of GP will be then just σ.

But there are N/σ such functions, therefore one has in total that
∑

j χj = N . The
multiplicity of the totally symmetric representation is then according to the character
orthogonality formula (Inui et al., 1996) equal13 to 1

N

∑
j χj · 1 = 1.

The symmetry of the complete wave function will be finally given as a product of the
symmetries of its individual components. For low energy electron molecule scattering
it is usually justifiable to consider the molecule in its ground electronic and vibrational
state, each of which are supposed to be totally symmetric. In that case, it is sufficient
to investigate just ψR and ψns.

E.4.1 Application to symmetric tops

In connection with the results presented in Chapter 4 we would like to mention one
particular application of the above mentioned procedure to a class of symmetric top
molecules with point group symmetry C3v, i.e., molecules having threefold symmetry
axis14 and three vertical mirror planes – typical representatives of this class are for
example molecules such as CH3Cl or NH3. In the following we shall discuss the former
case.

CH3X molecules

For the sake of brevity, let’s suppose that spin SX of the nucleus X is zero. If this is
not the case, it is sufficient just to multiply the final statistical weights by 2SX + 1.
For example in the case15 of CH3Cl/CH3Br and CH3I, SX = 3/2 and SX = 5/2,
respectively. Because spin of the hydrogen nuclei is 1/2, we have in total 8 nuclear
spin functions ψi. These functions form an eight dimensional reducible representation
of the rotational subgroup C3 of the full point group C3v. It is easily deduced that this
representation will decompose into irreducible representations of C3 as

4A⊕ 2E. (E.26)

12in this sense, these two groups are therefore isomorphic
13the one-dimensional totally symmetric representation has all characters equal to 1
14in case of polar molecules this axis coincides with the dipole moment
15these values are valid for stable isotopes, e.g., 36Cl and 129I have nuclear spin 2 and 7/2, respectively
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Moreover for SX = 0, the value of the total spin can attain only 1/2 or 3/2, where
the doublet and quadruplet states transform according to the E and A representation,
respectively. Transformation properties of the rotational functions can be demonstrated
in a similar way.16 Results are summarized in the first two columns of Table E.4. Third
column contains symmetry classification of the vibrational normal modes together with
corresponding energies (Shimanouchi, 1972). Finally, employing decomposition rules
regarding direct product of two irreducible representations, one readily obtains the
resulting statistical weights recorded in Table E.5.

ψns ψrot ψvib

S = 3/2 A

S =
1

2
E

K = 0 A

|K| = 3n 2A

|K| 6= 3n E

C-Cl stretch ν3 A 90.9
C-Cl rocking ν6 E 126.1
C-H sym. bending ν2 A 168.3
C-H asym. bending ν5 E 180.7
C-H sym. stretch ν1 A 368.4
C-H asym. stretch ν4 E 377.8

Table E.4: Symmetry properties of nuclear-spin ψns, rotational ψrot and vibrational
ψvib functions of a CH3X molecule with respect to the rotational subgroup of C3v.
In the first column it is assumed that nuclei X has zero spin. Vibrational energies
(Shimanouchi, 1972) of the normal modes are given in meV.

ψEV A E

K = 0 4 4

|K| = 3n 8 8

|K| 6= 3n 4 12

Table E.5: Nuclear-spin statistical weights for a molecule of the type CH3X. All weights
should be multiplied by 2J + 1 due to the rotational degeneracy and by 2SX + 1, where
SX stands for the spin of the nuclei X. The columns of the table distinguish two possible
symmetry species of the vibronic part of the wave function (E.25).

Selection rules consequences

In all electron-molecule collision models considered in this work, the incident electron
can not change the value of the total spin. In case of SX = 0, to each value of S,
there exists uniquely determined rotational state with symmetry given by Table E.5.
For example the rotational states |K| 6= 3n correspond to S = 1/2 and states with
|K| = 3n17 correspond on the other hand to S = 3/2. Therefore rotational transitions
between these two sets of states induced by electron collisions are not allowed. However,
this analysis is not applicable in case of SX > 0. For example if SX = 3/2 as in CH3Cl
then the total spin can attain values 0, 1, 2, 3. The S = 0, 3 states are of A symmetry,
nevertheless the S = 1, 2 states can be of A as well as E symmetry. On the other hand,
it should be noted that in the framework of the adiabatic approximation, only ∆K = 0
transitions are allowed due to the inherent body frame formulation and the anticipated
symmetry around the body fixed z′-axis.

16functions with K = 0 and K > 0 span one and two dimensional representations, respectively
17including the case n = 0
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In low energy electron-molecule collisions, the assumption that the molecule is in its
ground electronic state is typically well justified, nevertheless the assumption concern-
ing vibrations is by no means so clear as can be observed by considering the energies
in Table E.4. Symmetry difference between initial and final states could in principle
render some of the ∆K = 0 transitions to be forbidden. Then it would be necessary to
incorporate these additional selection rules into the model by hand. On the other hand,
these effects should play a considerable role only in the case that the corresponding vi-
brational excitation (VE) cross-section is comparable to the rotational cross-sections
under investigations. Theoretical predictions concerning VE for CH3Cl suggest that in
the energy range considered in this work, the VE cross-sections are much smaller as
compared to rotational excitation (Fabrikant, 1991).

E.4.2 Application to asymmetric tops

The procedure briefly outlined in Section E.4 can be directly applied also to the asym-
metric top case. As regards asymmetric tops in our scattering calculations, we have
dealt only with water H2O and sulfur dioxide SO2 molecules and therefore in the
following we will confine our attention to these two particular cases. The symmetry
point group of interest is now C2v having 4 one-dimensional irreducible representations.
Because these molecules are planar, the moment of inertia around the axis parallel to

r
θ

Iπ

Iσ

I⊥

m m

M Iπ = 2mr2 sin2 θ/2

Iσ = 2mr2 M

M + 2m
cos2 θ/2

I⊥ = Iπ + Iσ

(E.27)

Figure E.3: Configuration of a planar triatomic molecule with two identical nuclei of
mass m and center nuclei with mass M . Quantities r and θ denote the bond length
and angle, respectively. “Classical” expressions for principal moments of inertia are
summarized in Eq. (E.27).

this plane I⊥ is just sum of the other two principal moments of inertia and this axis is
thus in notation employed above denoted as C. Relation between Iσ and Iπ introduced
in Figure E.3 depends on the particular geometry and masses of the nuclei, nevertheless
Iπ > Iσ for H2O as well as SO2. The C2 symmetry axis is thus axis B (middle moment
of inertia). If the moments of inertia are computed from Figure E.3 “classicaly”, one
obtains quite reasonable values. For example in H2O, the experimental (Hall and Dowl-
ing, 1967) value of 1/2Iπ is 1.799 meV, whereas corresponding formula in Figure E.3
yields for the equilibrium geometry the value of 1.807 meV.

H2O

Oxygen and hydrogen nuclei in H2O have spin 0 and 1/2, respectively. We thus have
4 nuclear spin functions which generate 4-dimensional reducible representation of the
rotational subgroup C2 of C2v. Point group C2 has just two one dimensional irreducible
representations A, B. Direct calculation reveals that the mentioned representation
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reduces as
3A⊕ B. (E.28)

Finally, we need to determine the symmetries of the rotational states labeled byK−1, K1

as introduced in Subsection E.2.1. Because the C2 axis is the axis B, the sought sym-
metry labels are directly contained in the middle column of Table E.3. Therefore e, e
or o, o and e, o or o, e states transform according to the A and B representation of
C2, respectively. Combination with decomposition (E.28) immediately yields the cor-
responding weights summarized in the left part of Table E.6.

SO2

The situation for SO2 is slightly different than in the H2O case in the sense that
sulfur and also oxygen nuclei have zero spin. The nuclear spin wave function is thus
totally symmetric and therefore only rotational states transforming according to the A
representation of the point group C2 are allowed. In other words, the effective statistical
weights of e, o and o, e states are zero as indicated in the right part of Table E.6.

H2O SO2

K−1 K1 weight K−1 K1 weight

even even 3 even even 1

even odd 1 even odd 0

odd even 1 odd even 0

odd odd 3 odd odd 1

Table E.6: Statistical weights for the H2O (left panel) and SO2 (right panel) asymmetric
rotor states classified by the parity of K−1, K1.
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APPENDIX

F

UNITS, DIPOLE MOMENTS & ROTATIONAL CONSTANTS

F.1 Energy units

a.u. meV cm−1 MHz

a.u. 1
27.2114 · 103 2.1947 · 105 6.5797 · 109

{mec
2α2/e} · 103 {mecα

2/h} · 10−2 {mec
2α2/h} · 10−6

meV
3.6749 · 10−5

1
8.0655 2.4180 · 105

{e/mec
2α2} · 10−3 {e/hc} · 10−5 {e/h} · 10−9

cm−1
4.5563 · 10−6 1.2398 · 10−1

1
2.9979 · 104

{h/mecα
2} · 102 {hc/e} · 105 {c} · 10−4

MHz
1.5198 · 10−10 4.1357 · 10−6 3.3356 · 10−5

1
{h/mec

2α2} · 106 {h/e} · 109 {1/c} · 104

Table F.1: Conversion factors for various energy units – displayed numerical values are
merely informational, full available precision can be found, e.g., in National Institute
of Standars and Technology (2008). Quantities enclosed in curly braces are to be
evaluated numerically in SI units.
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F.2 Dipole moment units

a.u. D esu·cm esu·Å

a.u. 1
2.5417 2.5417 · 10−18 2.5417 · 10−10

{cea0} · 1021 {cea0} · 103 {cea0} · 1011

D
0.3934

1 10−18 10−10
{1/cea0} · 10−21

esu·cm
0.3934 · 1018

1018 1 108
{1/cea0} · 10−3

esu·Å
0.3934 · 1010

1010 10−8 1
{1/cea0} · 10−11

Table F.2: Conversion factors for various dipole moment units – displayed numeri-
cal values are merely informational, full available precision is listed, e.g., by National
Institute of Standars and Technology (2008).

F.3 Rotational constants & Dipole moments

Asymmetric top molecules

D [D] A [meV] B [meV] C [meV]

H2O 1.855 3.456757(4) 1.800470(4) 1.150289(4)

SO2 1.633 0.25135988(2) 0.042671452(4) 0.036392429(4)

Table F.3: Dipole moments (Debye) and rotational constants (meV) of H2O and SO2

being representative examples of polar asymmetric top molecules. Values of dipole mo-
ments taken from Lide (2009), rotational constants of water and sulfur dioxide adopted
from DeLucia et al. (1974) and Lovas (1978), respectively.
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Symmetric top molecules

D [D] A [meV] B [meV]

CH3Cl 1.896 0.630 0.061

CH3I 1.641 0.628 0.035

Table F.4: Dipole moments (Debye) and rotational constants (meV) of CH3Cl and CH3I
being representative examples of polar symmetric top molecules. Dipole moment and
rotational constants values adopted from Lide (2009) and Herzberg (1991), respectively.

Spherical top molecules

B [meV] Q [a.u.] α0 [a.u.] α2 [a.u.]

N2 0.247750† −1.09± 0.07a 11.744± 0.004a 3.080± 0.002a

H2 7.5448† 0.474± 0.034b 5.179c 1.202c

† adopted from Lide (2009)
a experimental values – (Morrison et al., 1997) and references therein
b experimental values – (Morrison, Feldt and Austin, 1984) and references
therein
c accurate CI (equilibrium) values – (Ko los and Wolniewicz, 1965)

Table F.5: Rotational constants (meV), quadrupole moments (a.u.), spherical and
nonspherical polarizabilities of H2 and N2 – homonuclear spherical top molecules. The
dipole moment vanishes due to the symmetry reasons.
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Solution of Scattering Integral Equations’, AIP Conf. Proc. 1046(1), 142–145.
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Abstract. We propose a fast and economical computational method for solving scattering Lippmann-
Schwinger integral equation. Our approach benefits from the accurate construction of the Green’s function
based on the R-matrix theory combined with the Schwinger-Lanczos variational principle. No principal
restrictions on the form of the potential are assumed. Theoretical description of our method in the first
part of this paper is then followed by numerical examples. In particular we demonstrate how to adapt
our method for computation of partial wave phase-shifts in the case of electron-hydrogen atom scattering.
Then we also investigate the properties of a family of long-range potentials (emerging e.g. in the theoretical
description of the Cs2 or 4He2 dimer ground state interaction). As demonstrated on these particular cases,
our approach turns out to be very accurate in comparison with other computational methods.

1 Introduction

In the last decades there has been expended great deal of
effort to study the collisions of slow electrons and positrons
with atoms and molecules as well as collisions of cold
atoms [1–3]. This subject is appealing not only from the
theoretical point of view the main reason being that these
scattering processes find an application in a wide variety
of problems as in atmospheric or plasma physics, astro-
physics, radiative processes etc.

The theoretical description usually leads to Fredholm
type integral equations of the second kind which can be
hardly solved analytically except in a few simple cases.
Therefore it turns out to be important to have a numerical
method which would be accurate and robust in the sense
that its implementation should be essentially independent
of the interaction under investigation.

Our aim in this paper is to propose one such approach.
In the following we restrict ourselves to the one dimen-
sional case (utilizing the standard partial-wave decompo-
sition) and assume the interaction being given in the form
V (r) +W (r, r′), where V and W represent the local and
nonlocal part of the potential respectively.

As is well known [4], the scattering wave function is
then governed by the Lippmann-Schwinger equation

|φ〉 = |u〉 +G0(E)(V +W ) |φ〉 , (1)

where |u〉 describes the incident plane wave and G0(E) =
(E − H0)−1 stands for the free propagator. Simple al-
gebraic manipulations furnish another insight onto this

a e-mail: miroslav.sulc@jh-inst.cas.cz

equation. Explicitly written

|φ〉 = (1 −G0(E)V )−1 |u〉+(1 −G0(E)V )−1
G0(E)W |φ〉

≡ |u〉 +G(E)W |φ〉 , (2)

where we have introduced the symbol |u〉 for the “dis-
torted” wave obeying an equation of the same structure
as equation (1), namely

|u〉= |u〉 +G0(E)V |u〉 . (3)

Having solved equation (2) we are consequently in posi-
tion to evaluate the quantity 〈u|V +W |φ〉 which can be
shown to be directly related to the tangent of the scatter-
ing phase shift. According to the two-potential formula [5],
p. 271 this matrix element can be equivalently computed
as a sum 〈u|V |u〉 + 〈u|W |φ〉. We exploit the latter ap-
proach in our method – the first term is computed using
the R-matrix framework and the second summand is ren-
dered as a byproduct of the Schwinger-Lanczos iterative
algorithm described below.

The numerical section of this paper is divided into two
parts. In the first one we focus on the application of our
method to electron-hydrogen atom scattering in the static
exchange approximation [6], p. 412. In this case both lo-
cal V and nonlocal terms W have to be taken into ac-
count. In the second part we consider long-range spher-
ically symmetric potentials which decay as O (1/rn) for
large r. Due to this symmetry we are allowed to exploit,
in the standard manner, the partial wave decomposition
of the radial Schrödinger equation and study consequently
the low-energy behavior of each partial wave phase shift δl
independently.
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However, we are particularly interested in the s-wave
(i.e. in the properties of δ0 understood as a function of
the wave number k). We can assume that under usual
circumstances and for sufficiently small k only this wave
yields significant contribution to the total scattering cross-
section due to the absence of the centrifugal barrier in the
zero angular momentum case.

It is well known [7] that the quantity k2l+1 cot δl is an
even function of k and for potentials decaying fast enough
(typically exponentially or of finite range) it is even an-
alytic in the complex plane in some neighborhood of the
origin k = 0. The leading terms of the expansion in k are
then given by the effective range theory (ERT for future
reference), namely

k2l+1 cot δl ≈ − 1
al

+
1
2
r0k

2 + . . . , (4)

where the parameter a0 has (for l = 0) the dimension
of length and is called the scattering length whereas the
quantity r0 is known [7] as the effective range.

For long-range potentials (decaying as r−n), these nice
analytic properties are unfortunately violated, neverthe-
less k2l+1 cot δl is still an even function of k and it is es-
sentially again possible to find an expansion in k similar
to equation (4) termed usually MERT (modified effective
range theory) [8,9]. It is an interesting question to deter-
mine the lower bound which needs to be imposed on n in
order to guarantee the existence of al ([8], p. 492) and rl
as introduced in equation (4). Following simple arguments
given in [10], p. 546 one can show that the corresponding
condition as regards al is n ≥ 2l + 3. For more thorough
discussion extending these arguments see e.g. [8], where it
is also shown that n ≥ 6 is required for the existence of
the effective range r0.

The n = 4 case, i.e. the r−4 interaction, describing
polarizability effects deserves particular interest. An elab-
orate review can be found in the pioneering works [8,11].
Unfortunately for a general interaction of the type r−n,
the investigation has to be carried through for each n sep-
arately. In the second part of this paper we are concerned
with the “van der Waals”-like ≈ 1/r6 terms. Relevant
analysis regarding the applicability of MERT in this case
is given in [12] including a formula similar to equation (4)
for the s-wave

1
k

tan δ0 = −A0 − 1
2
r0A

2
0k

2 +
1
15
πγ4k4

+
4
15
A0γ

4k5 ln |2kd| + O (
k5, γ5

)
, (5)

where the leading term of the potential is assumed to be of
the form −γ4/r6 2. Higher partial waves are then discussed
in [13]. It is of particular interest that even an analytic
solution of the full Schrödinger equation is known for this
interaction [14].

2 RHS of equation (5) seems to violate the statement that
tan δ0/k is odd function of k, nevertheless as discussed on
p. 496 in [8], for k < 0 an alternative derivation of equation (5)
is necessary having as result the need to replace all occurrences
of k by −k.

2 Theoretical background

In this section we introduce concisely the main theoreti-
cal concepts used in our method. For details we refer to
original papers. Consequently we show how to adapt these
general procedures for our particular needs.

2.1 R-matrix method

The theory behind R-matrix approach is described elabo-
rately in the original work [15] so we present only a short
summary below.

In general we can restate the LS-equation as a sec-
ond order differential equation supplemented with proper
boundary conditions, actually an equation of Schrödinger
type with nonzero right hand side. R-matrix method is
in the simplest possible case devised just for solving this
class of problems, i.e.

− 1
2μ

d2Ψ(r)
dr2

+ (Veff(r) − E)Ψ(r) = χ(r), (6)

where Ψ is required to satisfy

Ψ(0) = 0, and (7a)
(
A− d

dr

)
Ψ(r)

∣∣
∣
∣
rf

= 0. (7b)

The cutoff radius rf is required to lie in the asymptotic
region where the interaction can be neglected in compar-
ison with the electron energy. Main idea of this method
is to divide the radial range [0, rf] into several sectors,
expanding on each sector the sought wave function into
basis formed by the eigenfunctions of the homogeneous
Schrödinger equation supplemented by the so-called Bloch
term [16] (ensuring actually hermiticity of the resulting
differential operator). The expansion coefficients are then
determined by the natural requirement of continuity of
the logarithmic derivative at the respective sector bound-
aries. For the sake of simplicity we describe this technique
in the simplest case of just one sector. For more details
and general discussion also in the three dimensional case
see [15].

As already mentioned above, in the first step we need
to construct a basis comprised of the eigenfunctions of the
operator K̃ + Veff(r), i.e.

K̃Ψn(r) + (Veff(r) − En)Ψn(r) = 0, (8)

where K̃ is the operator of “modified kinetic energy” and
is usually written in the form K̃ ≡ − 1

2μ
d2

dr2 + L, where
L stands for the Bloch operator, the matrix elements of
which are in the respective basis given as

Lij =
1
2μ
Ψi(rf)

dΨj(r)
dr

∣
∣
∣
∣
rf

. (9)

Its domain of definition is the space of square integrable
functions satisfying the boundary condition (7a). Integra-
tion per-partes and using the boundary condition gives for
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the matrix elements of the modified kinetic energy follow-
ing relation

K̃ij =
1
2μ

∫ rf

0

dΨi(r)
dr

dΨj(r)
dr

dr. (10)

We see that the operator K̃ + Veff(r) is indeed symmetric
thus has real eigenvalues En and its eigenvectors Ψn(r)
build basis of the corresponding function space. Incorpo-
rating the Bloch operator into equation (6) yields

K̃Ψ(r) + (Veff(r) − E)Ψ(r) = χ(r) + LΨ(r). (11)

By expanding Ψ(r) into basis Ψn(r) as Ψ(r) =∑
n CnΨn(r) and plugging into equation (11) we obtain

a relation for the coefficients Cn,

Cn =
1

En − E

[
χn +

1
2μ
Ψn (rf )λ

]
, (12)

where

χn =
∫ rf

0

Ψn(r)χ(r)dr

and the parameter λ is equal to the ordinary derivative of
the complete wave function Ψ(r) at r = rf, i.e.

λ =
dΨ(r)
dr

∣∣
∣
∣
rf

.

It can be related to the parameter A introduced in equa-
tion (7b) by using equation (12), namely

λ =
A

1 −AR
∑

k

χkΨk(rf)
Ek − E

, (13)

where R stands for

R =
1
2μ

∑

n

Ψn(rf)Ψn(rf)
En − E

.

This expression understood as a function of rf has a di-
rect physical meaning. It can be shown to be equal to the
inverse logarithmic derivative of the complete wave func-
tion at r = rf. Its knowledge is in the one dimensional
case equivalent to the information contained in 〈χ|V |Ψ〉.

At this point, equation (6) is solved completely because
the coefficients Cn are known. However, according to [15],
the solution can be expressed in a slightly different form
more suitable for computational needs. Namely

Ψ(r) =
∫ rf

0

G(E, r, r′)χ(r′)dr′, (14)

whereG(E, r, r′) is indeed the Green’s function of the orig-
inal equation (6) being the solution of this equation for
the special source term χ(r) = δ(r − r′). Explicit expres-
sion (unimportant for our purposes) can be found again
in [15], p. 4.

2.2 Schwinger-Lanczos variational method

Schwinger-Lanczos method is an iterative approach to the
problem of T-matrix elements calculation. Its use is practi-
cal especially in the presence of nonlocal interactions and
relies on the complex Schwinger variational principle as
described in the fundamental work [17]. According to this
principle the desired T-matrix element

Tβα = 〈φβ |V (V − V G0V )−1
V |φα〉

is given as the stationary value of the following functional

T [ψ−, ψ+] = 〈φβ |W |ψ+〉 + 〈ψ−|W |φα〉
− 〈ψ−|W −WG0W |ψ+〉 ,

which can be shown to attain its stationary value for
ψ−, ψ+ being the corresponding solutions of the associated
Lippmann-Schwinger equations. The Schwinger-Lanczos
method expands the sought solution into a properly cho-
sen basis and solves consequently for these expansion co-
efficients.

If we denote the basis under consideration as {|gk〉}N
k=1

and the variational coefficients as c(±)
k , then we can write

|ψ±〉 =
N∑

k=1

c
(±)
k |gk〉 .

The final T-matrix element is then approximated as

TN
βα =

N∑

k,l=1

〈φβ |W |gk〉
(
M−1

)
kl
〈gl|W |φα〉 , (15)

where the elements of the matrix M are given as Mkl =
〈gk|W − WG0W |gl〉. Although the choice of the basis
seems to be quite arbitrary, it is a fundamental ingredient
of this method. In principle, all we need is the matrix M
being regular. However, this requirement is only a neces-
sary and not a sufficient condition on the basis to ensure
fast convergence of the entire method.

According to [18] it turns out to be convenient to con-
struct the basis so as to be “W-orthogonal”, i.e.

〈gk|W |gl〉 = δkl. (16)

In addition, the matrix WG0W is required to be tridiag-
onal, i.e.

〈gk−1|WG0W |gk〉 = 〈gk|WG0W |gk−1〉 = βk−1

〈gk|WG0W |gk〉 = αk

〈gk|WG0W |gl〉 = 0, for |k − l| ≥ 2. (17)

The basis that fulfills these conditions is constructed it-
eratively with the first vector |g1〉 chosen in the form
〈φ|V |φ〉−1/2. Because of the W-orthogonality condi-
tion (16) only the matrix element

(
M−1

)
11

is required
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in equation (15). Some rather tedious calculations furnish
this element in the form of a continued fraction, namely

TN = 〈φ|W |g1〉
(
M−1

)
11

〈g1|W |φ〉

=
〈φ|W |φ〉

1 − α1 − β2
1

1 − α2 − β2
2

1 − α3 − · · · β2
N−1

1 − αN

. (18)

Complete recurrent relations according to [18] are

|rk〉 = G0W |gk〉 − βk−1 |gk−1〉 , (19a)
αk = 〈gk|W |rk〉 ,
|sk〉 = |rk〉 − αk |gk〉 , (19b)

βk = 〈sk|W |sk〉1/2
,

|gk+1〉 = β−1
k |sk〉 , (19c)

where we set β0 = 0 and |g1〉 = 〈φ|V |φ〉−1/2.

2.3 RLS algorithm

We have already mentioned partly in the introduction how
to adapt the two cornerstones described above for our
computational needs so let us now sum up the details. For
purposes of future reference we hereafter call our method
as the RLS -algorithm – R standing for R-matrix and LS
for Lippmann-Schwinger principle. Following the ideas de-
picted in the previous sections, the overall strategy of the
proposed method can be summarized according to the fol-
lowing prescription using the “two-potential” formula.

1. Solve equation (1) with source term |u〉 considering
only the local potential V using the R-matrix tech-
nique and obtain the solution |u〉 as:
(a) write the sought solution |u〉 as a sum of two parts

|u〉 = |u〉+ |ξ〉, where |ξ〉 represents a “correction”
to the source term |u〉;

(b) |u〉 is also an eigenvector (corresponding to the
same energy E) of the Hamiltonian HV ≡ KT +V ,
where KT is the operator of free particle’s kinetic
energy with reduced mass μ. The following rela-
tions are thus easily seen to hold

(KT + V ) {|u〉 + |ξ〉} = E {|u〉 + |ξ〉} , (20a)
V |u〉 +HV |ξ〉 = E |ξ〉 , (20b)

|ξ〉 = (E −HV )−1
V |u〉

≡ G(E)V |u〉 , (20c)

where the symbol G(E) has been used for (E −
HV )−1 in accordance with the former definition
given by equation (2). This handy observation can
be checked immediately by means of the following
operator identity (A − B)−1 = A−1 + A−1B(A −
B)−1.

2. Obtain the solution |u〉 according to equation (20c)
as a sum of the source term |u〉 and the ket
G(E)V |u〉. The Green’s function is constructed us-
ing the R-matrix method as described above. This ap-
proach ensures that the desired boundary condition at
the end of the integration interval is correctly incorpo-
rated into the Green’s function under construction.

3. Solve the LS-equation considering only the nonlo-
cal potential W with source term |u〉 by means of
Schwinger-Lanczos iterative algorithm obtaining the
final solution |φ〉 and also the T-matrix element as
a byproduct of the iterative procedure [18].

In the second part of the next section where we apply our
method to the local “van der Waals”-like potentials, we
merely skip the third step in the previous scheme since no
nonlocal interaction W enters the stage in this case.

The most time consuming part of the entire compu-
tation is the construction of the R-matrix basis specified
by equation (8). But it should be noted that this proce-
dure is energy independent and needs to be carried out
only once. Therefore we can render the phase-shift energy
dependence for various energies at almost negligible ad-
ditional cost. This positive feature is profitably employed
especially in the computation of the scattering length as
we discuss elaborately in Section 3.2.

As concerns the construction of numerical solutions of
equation (8), we use a polynomial basis to restate this
equation to an algebraic matrix eigenvalue problem. In
the case of the first sector 0 ≤ r ≤ r1, we utilized a set
of modified Jacobi polynomials rP (0,2)

n (2r/r1 − 1), which
are orthogonal in [0, r1] with respect to r and obey natu-
rally the zero boundary condition at the origin, whereas
Legendre polynomials adapted for the respective interval
were used for the remaining sectors. In order to evaluate
the integrals appearing in the R-matrix framework we em-
ployed standard Gauss-Legendre or Clenshaw-Curtis (in
the case of potentials diverging at the origin) quadrature.
In practice, the number of mesh points N in each sec-
tor should be set slightly higher than the number of basis
functions Nb to assure exact integration of basis functions
products.

3 Numerical examples

In this section we demonstrate the use of our method
for tackling two different class of problems. Namely de-
termining the phase-shift energy dependence for e−−H
scattering in the static exchange approximation and con-
sequently computation of scattering length and effective
range for a family of potentials decreasing as O (

1/r6
)

for
r → ∞. These model potentials appear e.g. in description
of ground state interactions of particular dimers such as
Cs2 or 4He2.

3.1 e−−H scattering

The numerical tests of the presented algorithm consisted
in the calculation of the s-wave phase shift for electron
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scattering off the ground state of hydrogen atom in the
presence of exchange terms, both for the spin singlet δ(+)

and triplet δ(−) state. We have chosen this model as our
subject of interest because similar calculations using dif-
ferent approaches can be found in the literature [19] offer-
ing the possibility to compare the results.

From the mathematical point of view, we need to solve
following integral equation for the radial part R0(r) of the
l = 0 wave function. Namely
(
d2

d r2
+ k2

)
R0(r) = V (r)R0(r) ±

∫ ∞

0

K(r, r′)R0(r′) dr′.

(21)
In our particular case we set

V (r) = −2re−2r

(
1 +

1
r

)
(22)

K(r, r′) = 2v(r)u(r′) + γu(r)u(r′) for r′ < r (23)

K(r, r′) = 2u(r)v(r′) + γu(r)u(r′) for r′ > r,

where (k denotes incident momentum)

γ = −k2 − 1,

u(r) = 2re−r and v(r) =
u(r)
r

= 2e−r.

We compare our results with outcomes of the following
alternative methods

– S–IEM is an spectral (the convergence with increas-
ing number of mesh points n is under some assump-
tions faster than O (n−p) for p ∈ N ) integral equation
method developed by Gonzales et al. by extending the
approach outlined originally in [20,21]. In [22] a new
method is introduced for solving the LS-equation with
local potentials. With a slight generalization [19] it is
possible to handle properly also the nonlocal terms in
the form (23). The LS-equation for the s-wave wave
function can be schematically written in operator form
as (I+K)ψ(x) = sin(kx). The radial integration range
is further divided into several subsectors and the re-
striction of K on the i-th subsector is denoted as Ki.
It is shown in [19] that the final solution on each of the
subsectors can be found as a linear combination of four
functions which are obtained by acting of (I+Ki)−1 on
four different “source” terms. These do not depend on
i and are determined by the particular potential. The
original problem is then reduced to solving a sparse
set of linear equations for the coefficients of the linear
combinations on each subsector. For practical imple-
mentation details we refer to [19] and [22].

– M–IEM is an iterative method originally introduced
by Kim and Udagawa in [23]. The core of this method
relies on utilizing of the algebraic Lanczos method
for the nonlocal potential W while the local problem
(with potential V ) is handled in similar manner as
in [24]. The authors use some additional computational
tweaks in order to improve the convergence properties.
Namely an additional term V0 is subtracted from the

Table 1. Accuracy of the calculated singlet phase shift δ(+)

for several reference methods.

Method δ(+) (mod π) Number of m.p.
RLS 1.87015788 64

S–IEM 1.8701579 80
MCFV 1.8701579 128
M–IEM 1.870156 4000
N–IEM 1.87015 4000

nonlocality W and consequently added to V . Never-
theless they do not discuss effects of this approach in
detail and we have not investigated this issue further.

– N–IEM stands for an older non-iterative integral
equation method based on the work [25] of Sams and
Kouri. In principle, the final solution ψ of the original
one channel LS-equation is expressed as a linear com-
bination of two auxiliary functions ψ0 and ψ2. Each
function is required to solve a Volterra type integral
equation which is easily handled by standard quadra-
ture methods. It turns further out [25] that the two
coefficients in the mentioned linear combination are
given as a solution of a set of two linear equations
the matrix of which depends functionally on ψ0,2. The
general discussion and a slight generalization of this
method can be found in [25].

– MCFV is an iterative technique based on series of
papers [26–28] by Horáček and Sasakawa. In this ap-
proach the local and nonlocal parts of the poten-
tial are also handled separately as in the presented
RLS method. Nevertheless the Green’s function is con-
structed in this case directly from the two independent
solutions of the free Schrödinger equation. This proce-
dure seems to be less numerically accurate than the
R-matrix approach especially in the classically forbid-
den region where the difference in the order of mag-
nitude of the two independent solutions is consider-
able. The nonlocal part W is then handled iteratively
by successive subtractions of separable terms from the
potential until it is weak enough so the remaining term
can be neglected. Moreover the trapezoidal rule used
in this method allows to incorporate e.g. the Romberg
extrapolation scheme. The implementation details are
given in [29].

Relatively detailed accuracy study of the N–IEM method
is contained in [25], so we have decided to test our RLS
method for the same set of parameters. Explicit results
relevant to the other mentioned approaches for this set of
parameters can be found in [19,29]. The case chosen is the
singlet phase shift with exchange −δ(+). The magnitude
of the wave number of the incident particle is in atomic
units k = 0.2 and the maximum radial distance rf is set
to 20.

Obtained results are summarized in Table 1, where the
number of significant figures in the second column is de-
termined from the stability of the phase shift value after
rounding, when compared to the result corresponding to
higher number of mesh points. The overall energy depen-
dence of δ(±) is depicted in Figure 1.
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Fig. 1. Energy dependence of the calculated phase shifts δ(±).
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Fig. 2. Comparison of the accuracy of the tested methods. For
details see text.

More transparent overview of the convergence proper-
ties of the tested methods is contained in Figure 2 in which
we are dealing essentially with an “inverse” task. That is
with determining the number of mesh points necessary to
obtain some prescribed number of significant figures. As
can be seen from Figure 2 the proposed RLS method is
very stable even for low number of mesh points. We believe
that it is primarily ensured by the accurate construction
of the Green’s function in the R-matrix framework.

3.2 Cs–Cs dimer

We have tested our method on the model potential for
the Cs−Cs dimer 3Σu ground state interaction described
according to [30] by potential

Vd(r) =
1
2
Brμe−ηr −

[
C6

r6
+
C8

r8
+
C10

r10

]

×
{
θ(r −Rc) + θ(Rc − r)e−( Rc

r −1)2}
, (24)

where θ represents the Heaviside step-function. The first
term in equation (24) is related to the exchange repulsion
of the valence electrons whereas the remaining part in the
form of a sum of van der Waals terms corresponds to the
long-range interaction. Suitable cutoff function (term in
the curly braces) is introduced to cancel the divergent be-
havior of 1/rn at the origin. For r → 0 the potential tends

𝑅c = 23.215 a.u.

𝑅c = 23.115 a.u.
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Fig. 3. Model potential for the Cs–Cs ground state interaction
as given by equation (24).

Table 2. Parameters of the local potential Vd(r) introduced
in equation (24).

μ η B C6 C8 C10

5.53 1.072 1.6 × 10−3 7.02 × 103 1.10 × 106 1.70 × 108

erroneously (the exchange repulsion should increase expo-
nentially) to zero but this discrepancy is physically irrel-
evant because the wave function vanishes rapidly in this
classically forbidden region (especially for low energy).

The numerical values of the constants μ, η,B and
C6,8,10 that enter equation (24) are listed in Table 2 and
the Cs reduced mass was set to mCs = 2.422 × 105. The
cutoff radius Rc is considered as a free parameter. Com-
paring the potential curve with ab-initio results in the
radial range from 7 to 20 a.u. shows [31] that best fit is
obtained by Rc = 23.615. However, since the potential is
by no means exact, we have performed the calculations for
several values of Rc to partly reveal its influence on the
scattering length. Typical behavior of Vd(r) is depicted in
Figure 3 for two values of Rc.

In connection with the formula (24), we would like to
point out, that this function dependence is not smooth
in the vicinity of r = Rc (actually, already the second
derivative exhibits a jump discontinuity). This poses some
subtle complications in our R-matrix approach based on
polynomial approximation and Gaussian quadrature and
we are forced to set one sector boundary precisely at Rc.

3.2.1 Bound states of Vd(r)

As a first practical application of our method in this case
we demonstrate its use on the determination of the num-
ber of s-wave bound states of the potential (24) with Rc

set to 23.215 by calculating the zero energy solution of the
full Schrödinger equation using the R-matrix machinery.
We postpone the stability and convergence questions for
further discussion and merely show the shape of the full
zero energy solution in Figure 4.

We see that the wave function attains slowly its asymp-
totic behavior approximately at r ≈ 400. According to the
well-known oscillation theorem [10], the number of bound
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Fig. 4. The zero-energy solution of the Schrödinger equation
with the potential (24) for Rc = 23.215 a.u.

states should be no less than 58 (total count of the nodes)
in this case. However, equipped only with the results of
the numerical computation, we can be hardly sure that the
potential is not strong enough to bend the wave function
once (or perhaps several times) again even for r > 400.

We shall show now that this is actually not the case
and we have exactly 58 bound states. Our argument is
based on the Bargmann condition [32,33] – stating that
the number of bound states nl in the partial wave l is
bounded from above by

nl ≤ 1
2l+ 1

∫ ∞

0

r|V (r)| dr.

According to Figure 4, the last found node of ψ0 is located
at r0 ≈ 350. Using the Bargmann condition, it is easy to
see that the number of s-wave nodes in the interval (r0,∞)
is bounded by the quantity

I (r0)
def=

1
2 · 0 + 1

∫ ∞

r0

(r − r0) |Vd(r)| dr.

Straightforward inspection of this integral yields that
I(r0) is non-increasing function of r0 for r0 > rmin, where
rmin ≈ 12 a.u. locates the minimum of Vd(r), and that
I(r0) < 1 for r0 � 100 a.u., i.e. the wave function has no
additional nodes for r ≥ r0.

3.2.2 Computation of the scattering length a0

and effective range re

We have devoted our main computational effort to the
evaluation of the scattering length a0 and effective range
r0. Although it is mathematically possible to apply the
R-matrix method directly for zero energy, we have used
different approach based on extrapolation of the phase-
shift towards zero energy according to the modified ERT
formula (5). Because for zero energy the scattered par-
ticle can never be considered as free for an infinite-range
potential we need to propagate the wave-function theoret-
ically to r → ∞. Moreover, if we denote the maximal dis-
tance of propagation as rmax, then the inverse logarithmic

Table 3. Accuracy of the calculated quantity k cot δ0 vs. in-
creasing grid density (together with the number of basis func-
tions).

No. of basis functions 24 26 28 30 34
No. of significant digits 5 6 8 9 11

derivative R (supplied by R-matrix calculations) diverges
as rmax. The scattering length can be further shown to
be equal to (rmax − R) for zero energy. But in this ex-
pression we would subtract large numbers comparable in
magnitude and the numerical precision will be probably
significantly decreased.

On the other hand, for non-zero k it is sufficient to
propagate until the energy dominates the potential by sev-
eral orders of magnitude.

Quick glance at Figure 4 reveals that the full wave
function is almost identically equal to zero in the radial
range r ∈ 〈0, 10〉, rapidly oscillates in 〈10, 30〉 and for
r � 30 the oscillations slow down attaining gradually the
asymptotic behavior.

As concerns the numerical stability and convergence
properties of our method, two important factors enter the
stage. Firstly, it is the structure and density of the grid in
the oscillatory region and secondly the particular value of
maximal propagation distance rmax.

1. In order to gain insight onto the influence of the first
factor we have tested our method with several grids for
rmax = 30 a.u. (this corresponds to phase shift compu-
tation for the potential given by (24) for r ≤ rmax and
zero elsewhere). We have used equisized sectors (2 a.u.
wide) with increasing grid density together with the
basis functions count and observed consequently the
influence on the quantity k cot δ0. Results are summa-
rized in Table 3.
We always assume that the number of grid points in
each sector is set approximately slightly higher than
the number of basis functions to ensure exact numer-
ical integration of basis functions products. It seems
that for more basis functions no further refinement is
achieved – we account this to the non-smoothness of
the potential at r = Rc.

2. Equipped with a stabilized “short-range” grid ob-
tained in the previous step we have investigated con-
sequently the influence of rmax on k cot δ0. Because it
is not especially convenient nor desirable to have too
many sectors for large r, we have used for the grid den-
sity for r > r0 the following rule of thumb. We have
found out that 10 significant digits of k cot δ0 are re-
tained in the considered energy region when we use ap-
proximately 18−20 mesh points per local wave length
given by

λ =
2π

√
k2 − 2μVd(r)

.

This enables us to fix the grid for small r while expanding
the last sector by increasing the corresponding number
of mesh points resp. basis functions in it and observing
the convergence properties of our method. Of course we
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Table 4. Dependence of the scattering length a0 and the effective range re on the “cutoff” parameter Rc.

I II III IV

Rc [a.u.] a0
1 a0

2 a0
3 re

3 a0 re

23.215 376 352.5 350.6305 169.9843 350.6305570 169.9

23.190 140 144.2 145.4336 157.5894 145.4335866 157.2

23.165 65 68.0 68.21596 624.5533 68.21596735 622.7

23.140 -69 -67.7 -72.24305 2069.113 -72.24304633 2067.4

23.115 467 485.3 477.1465 1916.246 477.1465226 191.6

1 Extrapolation procedure [30]; 2 semi-classical WKB based method [30]; 3 results taken from [34] – the last value of re is
probably a misprint.

can take only those decimal places seriously which were
guaranteed by the stabilization of the “short-range” grid
because further propagation introduces additional numer-
ical error so we can hardly expect to gain higher accuracy.

As concerns the MERT extrapolation procedure, com-
parison with independent sources [30,34] revealed that
best the fit is obtained for wave numbers k from 10−8 to
10−5. This interval was chosen mostly by trial and error
since for lower energies the method starts to exhibit con-
vergence problems similar to the zero energy case while for
higher k the use of the modified effective range theory (5)
could be dubious.

In connection with this question we would like to men-
tion an alternative approach developed in the work of
Sasakawa and Horáček [35], and Nowak et al. [36] based
on rational approximation of k cot δ0 in k which is sup-
posed to be convergent in larger domain of k as well as
being able to cope with possible Ramsauer-like effects ac-
companied by zeros of δ0 for certain values of k where the
standard power expansion breaks down completely ([35],
p. 169).

The typical behavior regarding the convergence with
respect to increasing rmax is shown for two distinct ener-
gies in Figure 5, where we display the behavior of the rela-
tive error of k cot δ0 understood as a function of rmax with
respect to its “limiting” value obtained for rmax = 50×104.

We see that in order to ensure ten-eleven significant
decimal places, we need to propagate up to ca. r ≈
150 × 103. For determination of the scattering length a0

we use this “asymptotic value”, while the effective range
re is computed via standard Levenberg-Marquardt fit of
k cot δ0 understood as a function of energy determined
by (5). An important advantage of the presented method is
the ease of repetitive calculations for several energy values
because the most time consuming (≈95% of total running
time) part is the construction of the energy independent
basis. We haven’t performed thorough time complexity
benchmarks of our computations nevertheless the typical
running time for calculating k cot δ0 for 500 energy points
is on a today’s low-end computer (Intel P4 3 GHz, 2 GB
RAM) in order of seconds.

Using the presented method and following [34], we
have computed the quantities a0, re for several values of
the cutoff parameter Rc. The relevant numerical values
are listed in the column IV of Table 4. In this table we
also show results of other authors for comparison.

Fig. 5. Number of significant digits in the quantity k cot δ0

as a function of rmax for k = 10−5 (in the upper panel) and
k = 10−8 (lower panel).

Details of these alternative methods can be found in
corresponding papers so let us only briefly mention the
essential basic ideas.

Col. I The first column of Table 4 contains values of
scattering length computed by direct extrapola-
tion of the s-wave phase shift δ0 for k tending to
0, where δ0 is determined simply via integration
of the Schrödinger equation starting at the origin
with zero boundary condition and comparing the
obtained wave function at some large r with its
presumed asymptotic form sin(kr + δ0) [30].

Col. II These results adopted also from [30] were gained
using the WKB approximation. The radial range
is divided by some R into an asymptotic r > R
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(where only the long-range part of the potential is
supposed to be significant) and inner region part
r ∈ (0, R). In the inner region, the solution of
Schrödinger equation for zero-energy is expressed
in terms of WKB and then matched at the bound-
ary of these two regions, i.e. at r = R, with the
known analytic solution for r > R.

Col. III The main idea behind the method used in [34]
is to express the zero energy solution U(r) of
the Schrödinger equation for large r as a sum of
two independent free solutions U(r) = αεα(r) +
βεβ(r), where εα and εβ tend to r and 1 for
r → ∞, respectively. Functions εα,β solve the
same equation as U(r) but can not be obtained
exactly for a general potential. Nevertheless we
can try to solve the Schrödinger equation in an
iterative manner as it is often done in the the-
ory of integral equations. Sufficient approxima-
tion of εα,β is then used in the expression for
U(r) and matched at some (set fixed in advance)
r = R0 with the numerical solution obtained by
integration for r < R0 in order to determine the
constants α, β. Scattering length a is then easily
evaluated as −β/α.

Col. IV Finally the last column summarizes our results
obtained by means of the presented method de-
noted as RLS-algorithm.

As demonstrated by Table 4, our results regarding the
scattering length are in full accordance with [34], more-
over we were able to secure typically 4 additional signifi-
cant decimal places. As concerns the effective range, our
method suffers from the fact that re is determined indi-
rectly by fitting because two contradictory requirements
are essential here. On one hand we need small k for va-
lidity of (5) and on the other hand the change Δk cot δ0 in
k cot δ0 induced by a slight variation Δre in re is given as
(assumed a0 fixed)

Δk cot δ0 ≈ 1
2
Δre k

2. (25)

Using the values from Table 4 we see that e.g. for k =
10−5 and Δre = 0.1 we have Δk cot δ0 ≈ 10−11 so, since
k cot δ0 ≈ 10−3, it is desirable to compute eight significant
decimal places of k cot δ0 in order to being able to detect
this tilt in re.

The effective range in the last row of Table 4 exhibits
large discrepancy but we believe that the corresponding
value in [34] is merely a misprint.

3.3 4He2 dimer

We have also tested the presented method with three dif-
ferent forms of 4He2 dimer ground state semiempirical po-
tential by Aziz et al., namely HFDHE2 [37], HFD-B [38]
and LM2M2 [39]. For the explicit form of these potentials
we refer to [40]. The computational procedure is almost
identical as in the previous case of the Cs2 dimer so we
merely state the results in Table 5.

Table 5. The scattering length a0 and the effective range re

for various model potentials of the 4He2 dimer ground state.

I1 Present calculations

a0 [Å] a0 [Å] re [Å]

HFDHE2 124.65 124.645898672 26.4

HFDB 88.50 88.6009728852 26.0

LM2M2 100.23 100.233913812 26.2

1 Data taken from [40].

4 Conclusion

In this paper we have proposed a general, practical and
very efficient method for handling the basic equation
of scattering theory, namely the one-channel Lippmann-
Schwinger integral equation containing local as well as
nonlocal interactions. Our approach makes use of the
R-matrix framework to construct the Green’s function of
the local problem while the potential nonlocality is han-
dled by the Schwinger-Lanczos iterative algorithm. Com-
parison with results of other alternative approaches in-
dicates that our technique is superior to all standard
methods based on the direct numerical integration of the
Schrödinger equation. This was demonstrated on the ex-
ample of electron scattering with hydrogen atom in the
static exchange approximation. This is a standard test for
any numerical method designated for solving the scatter-
ing equations. The RLS method is so efficient that using
only 64 meshpoints in the calculation yields phaseshifts
correct to nine significant digits. Using 20 meshpoints we
obtain results correct to about four significant digits. This
accuracy surpasses the accuracy of any experimental data.
In addition, it was shown that, contrary to the previous
electron-atom case where all interactions were of short
range, excellent numerical accuracy was also obtained for
a class of long range local potentials decaying as r−n at
infinity. This problem is of great importance in the field
of collisions of cold atoms. The precise knowledge of the
scattering length is an important factor for understanding
the formation of Bose-Einstein condensate. Even in this
case we obtain results with an excellent accuracy.
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agency of the Academy of Sciences of the Czech Repub-
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is also greatly indebted to Dr. Michal Tarana and Dr. Přemysl
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18. H.D. Meyer, J. Horáček, L. Cederbaum, Phys. Rev. A 43,

3587 (1991)
19. G.H. Rawitscher, S.Y. Kang, I. Koltracht, J. Chem. Phys.

118, 9149 (2003)

20. L. Greengard, SIAM J. Numer. Anal. 28, 1071 (1991)
21. L. Greengard, V. Rokhlin, Commun. Pure Appl. Math. 44,

419 (1991)
22. R. Gonzales, J. Eisert, I. Koltracht, M. Neumann, G.

Rawitscher, J. Comput. Phys. 134, 134 (1997)
23. B. Kim, T. Udagawa, Phys. Rev. C 42, 1147 (1990)
24. F. Perey, B. Buck, Nucl. Phys. 32, 353 (1962)
25. W. Sams, D. Kouri, J. Chem. Phys. 51, 4809 (1969)
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35. T. Sasakawa, J. Horáček, J. Phys. B 15, L169 (1982)
36. E. Nowak, L. Rosenberg, L. Spruch, J. Phys. B 13, L599

(1980)
37. R. Aziz, V. Nain, J. Carley, W. Taylor, G. McConville, J.

Chem. Phys. 70, 4330 (1979)
38. R. Aziz, F. McCourt, C. Wong, Molec. Phys. 61, 1487

(1987)
39. R. Aziz, M. Slaman, J. Chem. Phys. 94, 8047 (1991)
40. A. Motovilov, W. Sandhas, S. Sofianos, E. Kolganova, Eur.

Phys. J. D 13, 33 (2001)

130



Attachment B

A new type of interference phenomenon in cold

collisions of electrons with N2

M Šulc1,2, R Čuŕık2, J P Ziesel3, N C Jones4 and D Field4

1Institute of Theoretical Physics, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
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1. Introduction

A new phenomenon in cold scattering is described involving explicit interference effects

between the x-, y- and the z-components of unit angular momentum matter waves.

Results are relevant to all charged particle interactions with target species where the

dominant static pole in the interaction is a quadrupole, for example for homonuclear

diatomics and non-polar triatomics. The phenomenon is potentially of interest in

the closely related field of cold collisions involving heavy particle scattering (Weiner

et al. 1999, Field & Madsen 2003). The Ramsauer-Townsend effect, involving only the

s-wave and based on somewhat different physics (e.g. Field & Madsen 2003), is the only

other hitherto known quantum interference effect in cold collisions with which this new

phenomenon may be compared.

Electron scattering in N2 is a test-bed of our understanding of electron-molecule

collisions and has been studied extensively in the cold regime. Computational studies

available in the literature employ different levels of close-coupling schemes. Body-frame

fixed-nuclei approach was used in Isaacs & Morrison (1992). The method was later

extended by including vibrational dynamics via close-coupling (Morrison et al. 1997).

Recently, laboratory-frame calculations with vibrational and rotational close-coupling

procedure were reported by Telega & Gianturco (2006). Although the agreement of

the calculated integral cross-sections with the experimental data (Sohn et al. 1986, Sun

et al. 1995) is quite good, it has been demonstrated (Telega & Gianturco 2006) that

computed results strongly depend on the short-range interaction model. In particular,

it has been shown (Telega & Gianturco 2006) that different local exchange models may

lead to cross-sections that differ by 30% in absolute value.

These findings are in accord with modified effective-range theory (MERT)

(Fabrikant 1984) studies by Isaacs & Morrison (1992) and Morrison et al. (1997).

In both works authors concluded that in the case of N2 molecule the original MERT

model (Fabrikant 1984) fails to describe integral cross-sections above collision energies

of approx. 20meV. Such a surprising result was attributed to a small value of scattering

length A that was determined to the range of 0.36 - 0.44 a.u. (Fabrikant 1984, Isaacs

& Morrison 1992, Morrison et al. 1997). Therefore, the leading terms in the MERT

expansion may not be dominant and the introduction of higher-order terms (proportional

to k3 and k4) becomes necessary to describe cross-sections in the range of 20 - 200meV

(Isaacs & Morrison 1992, Morrison et al. 1997). These higher-order contributions are

due to forces of a short or intermediate range and predicted cross-sections were found

to be sensitive to their presence.

In present analysis of the experimental data we therefore refrain from employing

MERT. We instead attempt to determine the absolute value of the phase shifts from the

experimental integral and backward cross-sections. Since the full information about the

computed values of the phase shifts for all the partial waves with l ≤ 2 is unavailable in

the literature we also decided to carry out body-frame fixed-nuclei calculations. These

calculations then serve us as a guide to determine the dominant partial waves necessary

132



Attachment B

A new type of interference phenomenon in cold collisions of electrons with N2 3

IfIb

IuIin Iout
Iout = Iu

0�

180�
90�

IfIb

IuIin Iout
Iout = Iu + If

0�

180�
90�

B

Figure 1. Schematic representation of the experimental apparatus: the ingoing

electron beam intensity Iin splits into the unscattered component Iu plus the parts

If and Ib corresponding to the forward and backward scattering, respectively. With

no magnetic field (left panel), the outgoing intensity Iout is essentially equivalent to

Iu and thus the outcome of the experiment is the total integral cross-section σT. In

presence of an axial magnetic field (right panel), If also contributes to Iout (see text),

therefore the total backward cross-section σB is measured in this case.

to describe e− –N2 collisions in the measured range of 10 - 250meV. Using an analytic

approach we then show how our experimental data may be reproduced using phase shifts

as fitting parameters. This yields a graphic physical description of how interference

effects arise in the p-manifold.

2. Experimental details

In our experiments (Hoffmann et al. 2002, Field, Lunt & Ziesel 2001), synchrotron

radiation from the ASTRID storage ring at Aarhus University provides a high resolution

photon source and through threshold photoionization of Argon at 15.75 eV creates

photoelectrons with an energy resolution determined by the energy resolution in the

photon beam. This is set here to ∼ 1.5meV full-width half-maximum. Electrons, formed

into a beam, pass through room temperature target gas (99.999% purity) contained in

a collision cell of length 30mm. The intensity of the electron beam, in the presence

and absence of target gas, is recorded as a function of electron energy. This yields

the variation of the total integral scattering cross-section, σT,I, where “total” refers to

all elastic and rotationally inelastic events and “integral” to integration over the full

4π sr. σT,I is given by (Nl)−1 ln(I0/It) where N is the target gas number density, l is

the path length in the gas and I0 and It are respectively the intensities of the incident

and transmitted electron beams. Absolute values of total integral scattering cross-

section at 1 to 4 eV show excellent agreement with those reported by Kennerly (1980).

In independent experiments, an axial magnetic field of strength ∼ 2 × 10−3 T was

introduced. Electrons scattered into the forward hemisphere exhibit a spiral trajectory

with radius smaller than the radius of the exit hole of the collision chamber (1.5mm) and,

guided onto the detector, are recorded as unscattered. Thus only electrons scattered

into the backward 2π sr are recorded as lost to the incident beam and the cross-section

measured is the total backward scattering cross-section σB. The absolute electron
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energy scale is calibrated to ±1meV and ±2meV (Hoffmann et al. 2002, Field, Lunt &

Ziesel 2001, Jones et al. 2002) by observing the peak in the N−

2
2Πg resonance around

2.442 eV (Kennerly 1980). We estimate errors in cross-sections of ±5% to ±8% (2σ),

the latter at the lowest energies for integral scattering data. Pictorial scheme of the

two independent experimental settings (with and without an axial magnetic field) is

presented in Figure 1.
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Figure 2. Experimental cross-sections – grey • and N are present integral and

backward hemisphere data respectively. ◦, � and ♦ are data of Jost, Ferch and Sun

respectively (Brunger & Buckman 2002, Sun et al. 1995). The inset shows the ratio of

backward and integral data, R, as a function of energy.

Experimental results for cross-sections for N2 are shown in Figure 2. The anomalous

behaviour of the backward scattering cross-section between 70 and 90meV is apparent,

showing a marked dip in value with no such feature in the integral cross-section. This

represents a destructive interference of scattered waves in the backward hemisphere

compensated by a rise in the forward hemisphere. Discussion of the data of other groups,

shown in Figure 2 may be found in Itikawa (2006) or Sun et al. (1995). There are no

data suitable for comparison for scattering into the backward hemisphere as a function

of energy in the energy range shown. The inset to Figure 2 records the variation with

energy of the ratio of the backward to integral cross-section, R, as a function of electron

kinetic energy. As a useful check on the data at very low energy, the inset shows that R

is asymptotically 0.5, within experimental error, representing pure s-wave scattering as

E → 0. Note that the ratio passes below 0.5 at ∼ 95meV. The remainder of the article

is devoted to the origin of the suppression of backward scattering and a demonstration

that it can be explained through p-wave interference.
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3. Ab initio calculations

We describe first an ab initio theory whose results will be used as a guide to identify

the partial waves that are dominant at low energy and their relative importance, in

particular in relation to the pz and px,y contributions. In the following ab initio

calculations we use a model potential in a local form

Vint(~r ) = Vst + Vex + Vcp, (1)

where Vst is the Coulombic potential characterized by a highly anisotropic short-

range part, with a weak long range quadrupole interaction, and Vex representing the

exchange interaction. This is estimated using the TFEGE approximation (Telega

et al. 2004, Morrison & Collins 1978) in which the target electron cloud is represented

by a free electron gas and the incident electron as a plane wave. Vcp is the correlation-

polarization potential which incorporates dynamical effects which distort the target

electron cloud. The electron correlation at long range essentially describes the charge-

induced dipole effect, computed here using the local density approximation (Perdew &

Zunger 1981). Asymptotically leading terms in Vst and Vcp may be written as

Vst + Vcp
r→∞−→ −Q

r3
P2(cos θ)−

α0

2r4
− α2

2r4
P2(cos θ) . (2)

Experimental values of the polarizabilities are used: α0 = 11.8 au, α2 = 13.08 au

(Morrison et al. 1997). The quadrupole moment is computed here from the target

Hartree-Fock wave function and has the value of −1.107 au; the experimental value is

−1.09± 0.07 au (Morrison et al. 1997). In the region close to the molecule, the value of

Vex is typically an order of magnitude greater than Vcp. Vex however falls exponentially

outside the charge density of bound electrons.

3.1. Body-frame approach

Scattering calculations are performed in a body-fixed frame of reference exploiting the

conservation of the projection of angular momentum Λ of the scattered electron onto

the molecular axis. Using the partial waves expansion, the Schrödinger equation for the

incident electron can be written (Boardman et al. 1967), (Lane 1980, p. 48) as

∑

l′

[(

d2

dr2
− l(l + 1)

r2
+ k2B

)

δ
l,l′

− 2V Λ

l,l′
(r)

]

ψΛ

l′,l
(r) = 0, (3)

where kB denotes the body-frame momentum of the incident electron, Λ stands for the

projection of its orbital angular momentum onto the molecular axis and finally V Λ
l,l′(r)

represents the matrix element of the interaction potential (1) between respective angular

basis elements, namely

V Λ
l,l′(r) = 〈l,Λ|Vint(~r ) |l′,Λ〉 , (4)

while the interaction potential is expanded into Legendre polynomials (Lane 1980)

Vint(~r ) = Vint(r, θ, φ) =
∑

L

VL(r) PL(cos(θ)) . (5)
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This explicitly underlines the anticipated cylindrical symmetry of the potential. We

note that only terms VL with even L contribute in case of homonuclear molecules.

Substituting (5) into (4) yields

V Λ
l,l′(r) =

∑

L

VL(r) 〈l,Λ|PL(cos(θ)) |l′,Λ〉 =

= (−1)Λ
√
2l + 1

√
2l′ + 1

∑

L

VL(r)

2L+ 1
C (l, l′, L; 0, 0)C (l, l′, L; −Λ,Λ)

. (6)

By imposing the usual asymptotic behaviour on ψΛ
l′,l according to

ψΛ
l′,l(r)

r→∞−→ 1√
kB

[

sin
(

kBr − l′
π

2

)

δl′,l + cos
(

kBr − l′
π

2

)

KΛ
l′,l

]

, (7)

we can readily obtain the reactance KΛ−matrix and consequently also the cornerstone

of the scattering theory, the T −matrix (Morrison & Feldt 2007)

T Λ = 2KΛ
(

i+KΛ
)

−1
. (8)

Having obtained the body frame T −matrix we evaluate the total body-frame cross-

section according to Huo & Gianturco (1995) via

σ =
lmax
∑

Λ=−lmax

σΛ, with σΛ =
π

k2B

lmax
∑

l=0

lmax
∑

l′=0

∣

∣T Λ
l,l′

∣

∣

2
. (9)

The angular dependence needed for computation of the backward scattering cross-

section σB, is most readily evaluated using the expansion into Legendre polynomials

dσ

dΩ

∣

∣

∣

∣

BF

=
1

4k20

∑

L

BBF
L PL(cos θ) , (10)

where

BBF
L =

∑

Λ1,Λ2

l1,l′1,l2,l
′

2

il
′

1
−l1−l′

2
+l2 dL (l1, l2, l

′

1, l
′

2) T Λ1

l′
1
,l1
T Λ∗

2

l′
2
,l2
, (11)

with coupling terms (Sun et al. 1995, p. 4)

dL (l1, l2, l
′

1, l
′

2) ≡
1

2L+ 1
[(2l′1 + 1)(2l1 + 1)(2l′2 + 1)(2l2 + 1)]

1/2
C (l1, l2, L; 0, 0) ·

C (l′1, l
′

2, L; 0, 0)C (l1, l2, L; −Λ1,Λ2)C (l′1, l
′

2, L; −Λ1,Λ2) .
(12)

3.2. Transformation to the laboratory frame

The T −matrix (8) refers to the body-frame and as such contains no information about

the rotational dynamics. For its transformation to the laboratory-frame we employ the

adiabatic rotational frame transformation (e.g. Fano & Dill 1972) which connects the

body-frame quantum numbers (Λ, l) with laboratory-frame quantization expressed by

(j, l), with total angular momentum J = j+ l conserved.

This procedure (Huo & Gianturco 1995, Lane 1980) is formally achieved by

LFT J
j′l′,jl

def
=
∑

Λ

AJΛ
j′l′ T Λ

l′,lA
JΛ
jl , (13)

136



Attachment B

A new type of interference phenomenon in cold collisions of electrons with N2 7

−0.16

−0.12

−0.08

−0.04

0.00

0 50 100 150 200

K
-m

at
ri
x
el
em

en
ts

energy E [meV]

Σ00

Σ00 ab initio

Σ00 Morrison
−0.02

0.00

0.02

0.04

0 50 100 150 200
energy E [meV]

Σ02

Σ11

Π11

ab initio

Σ02 Morrison

Figure 3. K-matrix elements resulting from the ab initio calculations. Dashed lines

show the results presented by Morrison et al. (1997).

where the transformation coefficients introduced originally by Fano & Dill (1972) are in

simplified form defined as

AJΛ
jl

def
=

√

2j + 1

2J + 1
(jl J0 |ΛΛ) = (−1)J−Λ

(

J l j

−Λ Λ 0

)

. (14)

The individual rotationally elastic and inelastic state-to-state cross-sections are then

evaluated as

σj→j′ =
π

k2B(2j + 1)

∞
∑

J=0

(2J + 1)
∑

l,l′

∣

∣

LFT J
j′l′,jl

∣

∣

2
. (15)

The formulae for the differential cross-section in the laboratory frame are not needed

explicitly in the presented paper and because of their rather lengthy form we refer to

Huo & Gianturco (1995).

3.3. Ab initio results

The crux of the numerical procedure consists in the solution of the coupled set of

differential equations (3). In our implementation we have used the Volterra integral

propagator method (Sams & Kouri 1969, White & Hayes 1972). As mentioned in

Huo & Gianturco (1995, p. 154), this technique finds limited use for the wave-function

computation, nevertheless it turns out to be a very efficient and fast approach to render

the K−matrix.

For practical details concerning the numerical procedure we refer to Huo &

Gianturco (1995). In the present calculations we have expanded the continuum wave

function ψΛ
l,l′(r) in Eq. (3) up to l, l′ = 40. Strictly speaking, these partial waves are then

coupled by the radial coefficients VL(R) in (5) up to L = 80. However we found that

such a high degree of angular anisotropy is necessary only for the nuclear contribution

137



Attachment B

A new type of interference phenomenon in cold collisions of electrons with N2 8

0

1

2

3

4

5

6

7

8

0 50 100 150 200 250

cr
os
s-
se
ct
io
n
[

Å
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Figure 4. Comparison of theoretical results with the experimental data. Integral

and backward cross-sections are displayed in left and right panel, respectively. Present

ab initio results: solid lines. Telega & Gianturco (2006): dashed; Sun et al. (1995):

dash-dot. Fits to experimental data using Σg, Σu and Πu phase shifts: dotted.

to Vst, while the remaining contributions to Vint, namely Vex, Vcp and electronic part of

Vst, are sufficiently accurate with L ≤ 40.

The numerical integration in the framework of the Volterra method (Rescigno &

Orel 1981, Čuŕık et al. 2000) was done on a discrete radial mesh using composite

Simpson’s rule with adaptive step size and additional stabilization described for example

by Rescigno & Orel (1982) or Morrison et al. (1977). As a practical convergence criterion

we have used the eigenphase sums of the various K−matrix Λ-blocks. It has turned

out that a radial propagation distance of approx. 400 - 600 a.u. is sufficient to ensure

convergence of all the presented quantities below 0.1% for the energy range of 10 -

300meV. We found this simple approach to the propagation robust and stable and

thus we have not incorporated additional tweaks such as Born r- or Λ-completion (Sun

et al. 1995).

Figure 3 shows various ab initio K−matrix elements compared to the results of other

authors (Morrison et al. 1997). Values for the total σT and backward σB cross-section

are depicted in Figure 4. The integral scattering is well reproduced but the method

fails to obtain the backward data below 300meV and gives no hint of the anomalous

behaviour below 100meV. Also shown are results reported by Telega & Gianturco

(2006). In passing we note that the present ab initio theory reproduces experimental

values of rotationally inelastic J=0 to 2 cross-sections with high precision (Morrison

et al. 1997, Itikawa & Mason 2005, Telega et al. 2004) as displayed in Figure 5.

4. Connection to the experiment

The goal of this section is to create a simple analytic model for explanation of the

anomalous behaviour of the R-ratio visible in the inset of Figure 2. In order to restrict

our number of parameters we use our ab initio calculations as a guide to tell us what
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Figure 5. Ab initio prediction of 0 → 2 rotational cross-section compared with swarm

experiment (Itikawa & Mason 2005) (full circles), Morrison et al.’s (1997) results (dash-

dot line), computations by Telega et al. (2004) (dotted line) and Kutz & Meyer (1995)

(open diamonds).

are the important partial wave contributions. A significant result stemming from the

previous section is that at energies up to 250meV contributions from waves of l > 1

are insignificant. Thus d-waves can be excluded from the analysis with impunity up

to ∼ 250meV, greatly reducing the problem of uniqueness in the subsequent fitting

procedure involving partial wave phase shifts. We therefore express the integral and

backward cross-sections in terms of s- and p- wave phase shifts only. Tangents of phase

shifts, which are the elements of the K−matrix, are denoted by Σg for the s-wave and

Σu and Πu for the p-waves.

It follows that a truncated representation of the K-matrix describing the collisional

event takes the form:

K =











Σg 0

0 Σu

Πu

Λ=0

|Λ|=1











(16)

Cross-sections and scattering amplitudes are then obtained by an inversion T =

2K(i+K)−1, where the T-matrix is essentially the matrix of scattering amplitudes. In

our numerical implementation full inversion is used; however the phase shifts here are

small and for didactic purposes one may write, to first order in K, that T = −2iK. The

integral cross-section and the cross-section for scattering into the backward hemisphere,

which include rotationally inelastic events through off diagonal terms not shown in the
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the fits to integral and backward scattering data (dotted lines in Figure 4). Values of
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the experiment. Dash-dot line shows the results for Σg of Morrison et al. (1997)

truncated matrix in (16), result in the simple formulae:

σtot =
4π

k2
(

Σ2
g + Σ2

u + 2Π2
u

)

(17a)

σback =
1

2
σtot −

2π

k2
Σg (Σu + 2Πu) (17b)

where k represents the momentum of the incident electron. Note that in the full

representation there occur terms in the backward hemisphere scattering cross-section

which multiply Σu, Πu and Σg phase shifts, illustrating that interference between these

waves is somewhat more complex than (17b) suggests. Note that terms which generate

rotationally inelastic events result in backward-forward symmetric scattering and do not

influence our subsequent discussion.

Equation (17b) is the crux of the explanation for the anomalous behaviour of the

ratio, R, of backward and integral cross-sections shown in Figure 2. The second term

in (17b) generates a departure from backward-forward equality, that is, R 6= 0.5. Our

explanation for the variation of R with electron energy is that at energies < 95meV, the

values of Σu and Πu are such as to depress the value of R below 0.5. At 95meV the terms

Σu and 2Πu become exactly equal and opposite in value, whereby they cancel to zero in

(17b) giving R = 0.5. Thus R starts at 0.5 at zero energy, where Σu + 2Πu equals zero

(see below), and returns to 0.5 once more at 95meV, reflecting the experimental values

of R shown in the inset to Figure 2. The effects of p-wave interference are especially

apparent in N2 since the Σg phase shift is small, reflected in the small integral scattering

cross-section. The p-waves are therefore able to influence the angular scattering at

rather low energy since their values, while considerably less than that of Σg, become

non-negligible at energies as low as tens of meV.

Our analysis also allows us to determine empirical values of Σu and Πu phase shifts
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as follows. A comparison of the spherical component Σg calculated using our ab initio

model with results of Morrison et al. (1997) is shown in Figure 3. Since we see good

agreement, we proceed by assuming that the s-wave phase-shift is well described by our

ab initio model and fix the values of this phase shift to those shown in Figure 3. The

phase shifts Σu and Πu then can be determined uniquely by the two sets of experimental

data for integral and backward-hemisphere cross sections displayed in Figures 2 and 4.

Resulting tangents of phase shifts which create the exact fit to experimental data, shown

in Figure 4, are given in Figure 6. It is clear that experimentally determined value of

the Πu phase shift is close to the calculated one. However, the calculated Σu phase

shift is very small in comparison to the value extracted from the present experiment.

This is not surprising, since the experiment requires Σu = −2Πu at 95meV. It is

necessary to emphasize here that this single discrepancy (shown in Figure 6) between

Σu determined from experimental data and calculated above is sufficient to explain

the difference between calculated and measured backward cross sections displayed in

Figure 4. The discrepancy may be attributed to the quality of the local exchange

potential Vex used in the computational model (1) since this contribution brings the

largest uncertainity to our calculated results.

In the remaining part of this section we first comment on very low-energy

(< 20meV) behaviour of the phase shifts. We include these remarks for the sake

of completness as they do not impact our discussion at higher energies. Then we

continue with a simplified and pictorial explanation of the p-wave cancelation that

occurs at 95meV.

Returning to the near zero energy regime, the first term in (17a), involving Σ2
g,

corresponds to pure s-wave scattering of particles in the zero collision energy limit. In

the case of quadrupole interactions, it may be shown analytically that the following

limits hold for the Σu and Πu phase shifts:

Σu
k→ 0−→ +

Q

5
k +O

(

k2
)

, (18a)

Πu
k→ 0−→ − Q

10
k +O

(

k2
)

. (18b)

The behaviour in (18a) differs from the Wigner threshold law which requires that the

phase shift is proportional to k2l+1 for short-range interaction. This discrepancy arises

from the long-range nature of the quadrupole field, as described in modified effective

range theory (Fabrikant 1984, Isaacs & Morrison 1992). However, as k → 0, the Σu and

Πu phase shifts both fall to zero and tend to cancel in the second term of (17b). Thus

p-wave phase shifts are well-behaved at very low energy and tend to the analytical form

shown in (18a). Note in this connection that (18a) contains only first order terms in

MERT and therefore is restricted to energies very close to zero.

The physical explanation for interference within the p-manifold is as follows. The

distribution of charge around the N2 molecule is such as to concentrate electrons at

each end of the species while between the atoms there is a relative depletion of electron

density. This is shown in Figure 7. If we now superpose the Σu and Πu waves on
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potential Vst as defined by the expansion (5). Both Σu and Πu waves are subject

to the same centrifugal barrier, nevertheless the sign of the quadrupole interaction

differs as explained in the text.

this charge distribution, we see that the Πu wave interrogates the positive region of the

quadrupole and the Σu the negative region. Thus in (2), the Σu wave sees the quadrupole

potential as a repulsion and the Πu wave sees it as an attraction. For both waves there

are equal centrifugal barriers, but for that part of the wave that penetrates into the

central region, the Σu wave sees the quadrupole as presenting a barrier of maximum

height 0.015 au (325meV) whereas the Πu wave sees a similar attraction. This behavior

can be more formally justified by noting the different sign of the angular prefactor in

the potential expansion (6) for Σu as compared to Πu. The barrier quoted is displayed

in Figure 8. Its value is derived from our ab initio results which show a maximum

at ∼ 3.7 au, noting that our ab initio theory gives a very accurate description of the

static potential in (2). On the basis of this description, the Σu wave is repelled from

the central part of the molecule which by convention gives rise to a negative phase shift,
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increasing in absolute magnitude with increasing energy, and the Πu wave is attracted,

which gives rise to a positive phase shift, as shown in Figure 6. The two phases therefore

act in opposition and, as our experimental data show, cancel in their effect at 95meV.

5. Conclusions

We have identified a new form of interference involving interference within the p-

manifold of pz and px,y waves, which arises from the presence of a quadrupole on the

target. This is a general phenomenon but will have readily detectable consequences only

if the s-wave interaction is not strongly dominant. Thus it would be difficult to observe

in electron scattering in CO2, with a strong virtual state effect (Field, Jones, Lunt &

Ziesel 2001), but could be found for example in H2 and O2. The phenomenon could also

prove observable in cold ion-molecule scattering with quadrupolar targets.

We have also found that the ab initio potential used, sophisticated and adequate as

it is in other respects, is unable to describe the necessary Σu and Πu phase shifts. The

only means of reproducing this phenomenon is through fitting to the experimental data

to obtain the phase shifts. This underlines the general problem in obtaining reliable

phase shifts at very low energy, a difficulty well-known in the theoretical determination

of scattering lengths.
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Abstract
We explore an implementation of correlation–polarization interactions for electron scattering
by polyatomic molecules. The short-range correlation is approximated by local and nonlocal
density functional theory (DFT) models commonly used in quantum chemistry and solid-state
physics. The long-range polarization is represented by general full tensor components.
Furthermore, we propose a robust and stable technique to calculate momentum-space matrix
elements of such a composite potential. The quality of several selected DFT potentials is
tested by elastic scattering calculations for a class of small hydrocarbon molecules represented
by propane and cyclopropane.

1. Introduction

Modification of the static-exchange potential (outlined in the
following section) by a local form of interaction accounting
for correlation and even polarization of the target’s bound
orbitals is not a new idea. The first models used the long-
range asymptotic form Vp = −α0/2r4 with a short-range
cutoff function in order to remove the singular behaviour at the
origin (Morrison and Collins 1978). A single parameter of this
model, the cutoff radius, was then determined by adjusting the
calculated cross sections to some well-established feature of
the results. For modelling the short-range correlation between
the scattered electron and the target electron density, use of the
density functional theory (DFT) was proposed (O’Connell and
Lane 1983, Padial and Norcross 1984). They employed a local
spin density (LSD) approximation emerging from the field of
solid-state physics (Vosko et al 1980, Perdew and Zunger 1981,
both later refined by Perdew and Wang (1992)). All these
forms of the LSD correlation are based on Green’s function
Monte Carlo simulation for electrons in a finite volume, subject
to periodic boundary conditions. The correlation energy per
electron was then extrapolated to infinite volume (Caperley
and Alder 1980). The practical accuracy of all these LSD

approximations is similar and they are a core component of
all modern DFT functionals used in quantum chemistry. They
are often referred to as LDA (local density approximation) in
the literature of electron–molecule collisions.

A further way to improve LSD approximation came in
the form of a generalized gradient approximation (GGA)
by Perdew et al (1992) (the functional is referred to in the
literature as PW91). A different way to incorporate the density
gradient corrections was used by Lee et al (1988), who turned
the correlation-energy formula of Colle and Salvetti (1975)
into a DFT functional form by the use of the first and second
gradients of electron density (LYP functional).

Development of DFT correlation functionals was
accompanied by a simultaneous development of the exchange
functionals. Although a Hartree–Fock exchange energy,
in principle exact, is computationally cheap, most of the
successful exchange-correlation functionals (PBE0, B3LYP,
etc) contain a weighted mixture of the Hartree–Fock exchange
and gradient-corrected exchange functionals. For example,
PBE0 contains 75% of exchange functional constructed by
Perdew et al (1996). Another highly accurate, gradient-
corrected functional is from Becke (1988), which takes 80%
of the exchange energy present in the B3LYP exchange-
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correlation functional. Both exchange-correlation functionals
have been successfully applied to a vast number of molecular
systems during the last decade.

We feel that despite the intense development of DFT in
solid-state physics and bound-state quantum chemistry, its
adaptation for modelling the electron–molecule collisions has
been rather slow. One reason may be lack of Hohenberg–Kohn
theorem for a continuum (N + 1)-electron state describing the
scattering event. Therefore, many authors employed the DFT
correlation potential generated by a closed-shell ground-state
density of the target with the density of the continuum orbital
excluded. Even with such a minor conceptual discrepancy
the addition of a simple LDA correlation potential resulted
in calculated cross section being in better agreement with
experimental data (among many examples we chose Gianturco
and Rodriguez-Ruiz 1993, Čurı́k and Gianturco 2002a, Telega
et al 2004, Tonzani and Greene 2005).

Motivated by the success of the LDA exchange
and correlation functionals in the electron–molecule
computational modelling, here we explore the possibility of
their implementation in a framework of discrete momentum
representation (DMR) method. Previously Čurı́k et al
(2008) employed LDA correlation in the DMR method for
calculations of vibrationally inelastic collisions of electrons
with methane molecules. The spherically symmetric case is
extended in section 3 to a general asymptotic polarization
represented by a polarizability tensor. For the short-range
parts of the correlation interaction we make use of several
DFT functionals commonly used in quantum chemistry. Their
quality is assessed in section 4 for propane and cyclopropane
molecules.

2. Optical potential

The DMR method belongs to the class of one-electron methods
that make use of an optical potential. The method calculates
elastic body-frame scattering amplitudes by solving the one-
electron Lippmann–Schwinger equation (Polášek et al 2000,
Čurı́k and Čársky 2003)

〈ko|T |ki〉 = 〈ko|V |ki〉 +
∫

d3k
〈ko|V |k〉〈k|T |ki〉

k2
0 − k2 + iε

, (1)

where ki and ko are the momenta of the incoming and
outgoing electrons, respectively. Optical potential describing
an interaction between the scattered electron and the target
molecule is denoted by V. The collision energy E is defined as
E = k2

0

/
2. After some careful treatment of the singular kernel

in the above equation one can discretize the integral on the rhs
of (1) as shown in greater detail in part I of this series (Čársky
2010a). This technique leads to a set of a linear algebraic
equations that can be solved by a matrix inversion (Čurı́k and
Čársky 2003). The optical potential used in the DMR method
has been recently extended and now it contains static, exchange
and correlation–polarization contributions (Čurı́k et al 2008)

V = Vs + Vx + Vcp. (2)

The static Vs contribution to the optical potential (2) is obtained
from a set of N doubly occupied Hartree–Fock orbitals ϕi(r)

of the closed-shell target as

〈r|Vs |f 〉 = 2
N∑
i

∫
d3r′ |ϕi(r

′)|2
|r − r′| f (r) −

∑
j

Zj

|r − Rj |f (r).

(3)

The first term in this equation describes a repulsion with the
electronic charge density, while the second term corresponds
to an attraction to the molecular nuclei positioned at Rj .
Similarly, action of the exchange interaction on the continuum
function f can be written as

〈r|Vx |f 〉 = −
N∑
i

∫
d3r′ ϕi(r

′)f (r′)
|r − r′| ϕi(r). (4)

The sum Vs + Vx is an exact static-exchange approximation
in the literature of electron–molecule collisions and it has
been employed by many authors to successfully describe
the interaction of continuum electron with a target molecular
system. For extensive reviews see Huo and Gianturco (1995),
p 79, Lane (1980), p 47.

As can be seen from equation (1) the DMR method
requires momentum-space representation of the optical
potential. The local parts Vs and Vcp are then obtained by FT
integrals, while the nonlocal exchange contribution is more
computationally demanding. Its efficient implementation via
interpolation of complex Shavitt functions is described in part
II of this series (Čársky 2010b).

3. Correlation and polarization interaction

The short-range correlation potential is obtained by the DFT
models mentioned in section 1. We have chosen to examine
three correlation functionals that are widely used and known
in quantum chemistry calculations. The first is the LDA
correlation potential of Perdew and Wang (1992), although the
alternative choices due to Vosko et al (1980) or Perdew and
Zunger (1981) lead to the same results. Gradient corrections
to this potential are then applied with the GGA potential of
Perdew et al (1992) (PW91 potential) and independently we
also employ the gradient corrections of Lee et al (1988) (LYP
functional).

It is appropriate to address the confusing vocabulary
used in two different fields of quantum calculations. In the
literature of solid-state physics and quantum chemistry the
gradient corrected functionals are referred to as nonlocal as
they gather information of the electron density surrounding a
point of interest. It is achieved via terms with first and second
gradients of the electron density that enter the functional.
However, from the strict point of view of quantum mechanics,
the corresponding potentials are local as they simply multiply
the wavefunction in the Schrödinger equation.

All the three correlation potentials that we explore
decrease exponentially outside the molecule following the
exponential decay of the bound electron density. This defect

2
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in DFT was noted a long time ago (Umrigar and Gonze 1994,
Almbladh and von Barth 1985). Such an incorrect long-range
behaviour of the DFT potentials causes many problems in
the description of induced moments of delocalized charge
densities. Accordingly, special treatment has been undertaken
in calculations of charge transfers (Dreuw and Head-Gordon
2004) or dispersion forces (Antony and Grimme 2006, Zhao
and Truhlar 2007). Rigourously, the long-range correlation
potential should be taken as (Almbladh and von Barth 1985,
Umrigar and Gonze 1994)

Vp(r) = − 1

2r6

3∑
i,j

αij xixj , (5)

where the symmetric 3 × 3 matrix αij is a polarizability tensor
and r2 = x2

1 + x2
2 + x2

3 . Therefore, guided by the previous
works of Padial and Norcross (1984) or Telega et al (2004),
we connect the correct long-range term Vp of the correlation
interaction (5) with the short-range term Vc described by one
of the DFT correlation potentials. Since our technique of such
a connection differs from the above-mentioned procedures, we
describe it in more detail.

A smooth connection of a general and anisotropic
asymptotic form (5) to a short-range anisotropic potential is
not uniquely defined. Telega et al (2004) suggest finding
a crossing point rc of a spherically symmetric component
of the long- and short-range parts. Of course rc is not a
proper crossing point of the higher partial-wave components.
Overall smoothness is then achieved by adding the higher
order-induced multipoles leading to a modification of the
asymptotic form (5) where faster decaying terms are added.
In our approach we prefer to keep the asymptotic form (5) and
perform the smooth connection for each of the partial waves
that come into play. As the first step, we expand the general
tensor form (5) into partial waves

Vp(r) =
2∑

l=0

l∑
m=−l

vm
l (r)Sm

l (r̂), (6)

where Sm
l (r̂) are the normalized real spherical harmonics:

Sm
l (ϑ, ϕ) =

[
2l + 1

2π(1 + δ0m)

(l − m)!

(l + m)!

] 1
2

×P m
l (cos ϑ)

{
cos mϕ, m � 0
sin mϕ, m < 0.

(7)

The radial functions vm
l (r) of equation (6) can be obtained

analytically as

vm
l (r) = − αm

l

2r4
, (8)

where αm
l are the irreducible components of the Cartesian

tensor of rank 2 (Weissbluth 1978, p 174)

α0
0 =

√
4π

3
(αxx + αyy + αxx)

α0
1 = α1

1 = α−1
1 = 0

α0
2 =

√
4π

5

(
αzz − αxx + αyy + αxx

3

)
α1

2 = −2

√
4π

15
αxz

α−1
2 = −2

√
4π

15
αyz

α2
2 = 2

√
4π

15

αxx − αyy

2

α−2
2 = 2

√
4π

15
αxy.

(9)

For the short-range part Vc we separate the interaction into
two orthogonal angular subspaces:

Vc(r) =
2∑

l=0

l∑
m=−l

wm
l (r)Sm

l (r̂) + W0(r). (10)

All the terms on the left- and right-hand sides of equation (10)
decay exponentially. Because the DFT form of the short-range
correlation potential Vc(r) is numerical the radial functions
wm

l (r) are obtained by a numerical angular projection. It
follows that W0(r) contains only partial components with
l > 2.

Having both (short- and long-range) interactions split
into the partial waves the connection procedure is readily
available. We connect each partial wave of vm

l (r) and wm
l (r)

independently up to l = 2 forming six crossing points
Rm

l . Three short-range functions wm
l (r) with l = 1 decay

exponentially as they do not have the long-range counterparts
vm

l (r) to connect to. It is a consequence of a symmetry of the
polarizability tensor. Therefore, we can define the connected
radial functions as

um
l (r) =

{
wm

l (r) for r < Rm
l

vm
l (r) for r � Rm

l .
(11)

The total correlation–polarization potential Vcp is then
evaluated by the following formula:

Vcp(r) =
2∑

l=0

l∑
m=−l

um
l (r)Sm

l (r̂) + W0(r). (12)

The above procedure exploited the simple fact that the
asymptotic polarization potential Vp is fully contained in
the angular space defined by l = 0 and l = 2. Hence, we
made sure that the connection between the short- and long-
range parts is smooth in every partial component up to l = 2.
All the higher components of the resulting potential Vcp then
decay exponentially.

The final step needed to obtain the momentum-
space matrix elements entering the Lippmann–Schwinger
equation (1) is a Fourier transform (FT) integral

〈k1|Vcp|k2〉 = 1

(2π)3

∫
d3r Vcp(r) ei(k2−k1).r. (13)

The integral in the above equation is typically solved by a
discrete fast Fourier transform (FFT) method. This is achieved

3

147



Attachment C

J. Phys. B: At. Mol. Opt. Phys. 43 (2010) 175205 R Čurı́k and M Šulc
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Figure 1. Visual comparison of different correlation functionals used in the present study. For simplicity only the dominant spherical
components u0

0(r) of equations (11) and (12) are displayed. The left panel shows the data for the cyclopropane molecule, and the right panel
for the propane molecule.

by bounding the integral in a three-dimensional rectangular
volume and by evaluating the argument on a three-dimensional
rectangular grid. In our implementation we used a cubic
volume. We observed that a cube size of several hundred
bohrs is needed in order to achieve a sufficient accuracy of
the resulting integrals for the small k2 − k1 vectors. The
cause of the slow size convergence is the long-range nature (5)
of the Vcp potential. However, with such a large integration
volume it becomes difficult to sample the potential with a
sufficient density in the area of the molecule, where Vcp

changes rapidly.
In order to solve this dilemma we subtract and add a well-

behaved analytical function that cancels the Vcp potential at the
long range. We also require this function to have an analytical
FT form:

Vcp =
⎡
⎣Vcp +

1

2(r6 + a6)

3∑
i,j

αij xixj

⎤
⎦

︸ ︷︷ ︸
numerical FFTV n

cp

− 1

2(r6 + a6)

3∑
i,j

αij xixj

︸ ︷︷ ︸
analytical FTV a

cp

. (14)

The parameter a is chosen to be sufficiently small in order to
achieve the long-range cancellation in the V n

cp term. However,
if the cutoff a is chosen too small it may produce a rapidly
changing behaviour at the origin. To compromise we have
found the procedure very robust and accurate for a being
anywhere between 5% and 15% of the FFT cube size.
Evaluation of the FT integral for the V a

cp term is described
in the appendix. Here we present only the final results:

1

(2π)3

3∑
i,j

αij

∫
d3r eik.r xixj

2(r6 + a6)
= 1

(2π)3

3∑
ij

αij Gij (k),

(15)

with

Gij (k) = F ′(k)

k
δij +

[
F ′′(k)

k2
− F ′(k)

k3

]
kikj , (16)

and

F(k) = − π2

3a4k
e−ka/2

[
e−ka/2 +

√
3 sin

(
ka

√
3

2

)

− cos

(
ka

√
3

2

) ]
. (17)

For practical implementation one also needs the limit at the
origin

lim
k→0

Gij (k) = 2π2

9a
. (18)

4. Application to elastic scattering on small
hydrocarbons

In order to test the current implementation of correlation–
polarization forces within the DMR method we have selected
two similar molecular systems, namely cyclopropane and
propane molecules. Both molecules have been intensively
studied experimentally (Allan 1994, Allan and Andric 1996,
Szmytkowski and Kwitnewski 2002a, 2002b, Makochekanwa
et al 2006, Boesten et al 1994, Tanaka et al 1999). While
the number of theoretical calculations is thorough for the
cyclopropane molecule (Winstead et al 1992, Beyer et al
1997, Čurı́k and Gianturco 2002a, 2002b, Makochekanwa et al
2006), to our knowledge there is only one SE calculation by
Winstead et al (1991) for the propane molecule.

A visual comparison of the spherical components u0
0(r)

defined by equation (11) is displayed in figure 1 for both
studied polyatomic molecules. The general features of the
correlation potentials are as expected. The cyclic C3H6

exhibits slightly stronger correlation in the core area of
the molecule while the open ring of C3H8 allows stronger
correlation in the low-density outskirt regions of the molecule
resulting in a stronger asymptotic polarizability. As far as the
differences among different functionals go, the LYP gradient
correction to the LDA potential results in a stronger correlation
especially on the peripheral low-density region. This feature is
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Figure 2. The elastic integral cross sections for electron scattering by cyclopropane molecules. The left panel compares results of various
correlation models with available experimental data. The right panel shows the comparison of available calculations.

valid for both presented molecules and it extends even for more
unpublished results of polyatomic molecules. On the other
hand a behaviour for the PBE potential is not as predictable in
the low-density region, as seen for C3H6 and C3H8 in figure 1.
All the calculated correlation potentials smoothly connect to
the asymptotic form (5). Polarizability tensor components
used in the present calculations were obtained as linear
response functions in Kohn–Sham DFT (Rinkevicius et al
2003) calculations with B3LYP hybrid functional and Sadlej’s
polarized VTZ basis sets (Sadlej 1988) as implemented in
program Dalton Release 2.0 (2005). The body frame of the
reference was chosen by principal axes; thus, the calculated
polarizability tensors are diagonal:

α(C3H6) =
⎛
⎝38.8

38.8
33.8

⎞
⎠ ,

α(C3H8) =
⎛
⎝38.0

45.6
40.2

⎞
⎠ .

Both tensors compare favourably with experimental data for
spherical polarizabilities α0(C3H6) = 38.2 au (Khristenko et
al 1998) and α0(C3H8) = 42.5 au (Lide 1994).

Parameters for the numerical quadrature of the integral on
the rhs of equation (1) are taken, for these two molecules, from
table 1 in part I of this series (Čársky 2010a). Calculated fixed-
nuclei integral cross sections for all the present correlation–
polarization models applied to the cyclopropane molecule
are displayed in figure 2. It is clear that the presence of
the correlation–polarization interaction leads to some major
changes in the magnitude and shape of the cross sections
below 10 eV. Moreover, we found the differences among all
the three correlation models fairly minor and therefore we
chose the LYP model as their representative in the following
discussion. The right panel of figure 2 shows a comparison
of the available theoretical predictions for the elastic integral
cross section. Our calculations are in very good agreement
with the calculations of Čurı́k et al (2002a) as a result of very
similar interaction models. Čurı́k and Gianturco (2002a) used
a nonlocal separable approximation of the exchange part to

be compared to the present exact exchange model. Previous
work employed the LDA short-range functional smoothly
connected to the spherical polarization potential; however,
all the polarization tensor components are used in the present
calculations. These small differences between the two models
may explain the pronounced structure around 6 eV visible
in the present results. The structure was identified by Čurı́k
and Gianturco (2002b) and Allan and Andric (1996) as A′

2
shape resonance leading to a selective vibrational excitation
of C–C ring stretching mode. Fixed-nuclei calculations of
Makochekanwa et al (2006) and Beyer et al (1997) predict
a lower integral cross section than the SEP results discussed
above. However, they both predict the presence of the A′

2
shape resonance at 6.2 eV and 5.4 eV, respectively.

The elastic DCSs of electrons scattered by cyclopropane
are displayed in figure 3. The agreement of the present
ESE+LYP model with the experimental angular distributions
is again very good at both collision energies: 5 eV (left panel)
and 10 eV (right panel). In comparison to the experimental
data at 10 eV, present calculations predict a slightly higher
cross section at small and large scattering angles. This
difference, especially at angles above 140◦, may lead to a
different experimental extrapolation of the DCS, consequently
resulting in a smaller integral cross section visible in figure 2.

In order to make a full use of our tensor description of
the asymptotic polarization, we selected a molecular system
with a smaller symmetry yet of similar size to our second
testing case: the propane molecule. Figure 4 summarizes
the available experimental and theoretical data for elastic
collisions of electrons with the propane molecules. The left
panel compares our correlation models with the measurements
of Szmytkowski and Kwitnewski (2002b), Tanaka et al (1999)
and Boesten et al (1994). The experimental cross sections
exhibit a strong maximum around 8 eV. Again the presence
of the correlation-polarization forces in our model strongly
affects the value of our calculated integral cross section below
the collision energy of 12 eV. The difference among correlation
models is more visible for this system, as seen in figure 1. The
strongest correlation provided by the LYP functional shifts the
peak in the integral cross section down to 8.5 eV while the PBE
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Figure 3. Elastic differential cross sections (DCSs) for electron scattering by cyclopropane molecules. The left panel shows data for the
collision energy of 5 eV while the right panel for 10 eV. The data of Čurı́k and Gianturco (2002a) and Allan (1994) are shown on the left
panel for the collision energy 5.5 eV.
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Figure 4. Elastic integral cross sections for electron scattering by propane molecules. The left panel compares results of various correlation
models with available experimental data. The right panel shows present results with the LYP functional and the previous SE calculations of
Winstead et al (1991).
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Figure 5. Elastic DCSs for electron scattering by propane molecules. We compare our LYP calculations (full curve) with experimental data
of Boesten et al (1994) (diamonds) and Tanaka et al (1999) (crosses). The broken curve represents the SE calculations of Winstead et al
(1991).

and LDA functionals point to 9.5 eV. The right panel of figure 4
also shows the SE calculations of Winstead et al (1991)
that are similar to the present ESE results (the left panel of
figure 4).

In order to complete our comparisons we likewise
present the angular distributions for the propane molecule in
figure 5. The agreement between our calculated results and
the experimental data is very good for 5 eV (left panel) while
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for 10 eV we observe behaviour similar to the case of the
cyclopropane molecule. Our predicted DCSs are slightly
higher for the small and large scattering angles resulting in
larger integral cross section shown in figure 4.

5. Conclusions

The present study has several goals: first, to extend a
previously published spherical polarization model in the
DMR method (Čurik et al 2008) to a form of the general
polarizability tensor; second, to implement and discuss several
correlation potentials commonly used in the DFT community
and codes (the LDA, PBE and LYP potentials) and third, to
test the reliability of the constructed potentials on two simple
hydrocarbon molecules, propane and cyclopropane.

Regarding the second and third objectives, the reliability
of the potentials is gauged by their agreement with
experimental data. In the case of the cyclopropane molecule,
all three correlation models led to very similar results.
Elastic integral cross sections presented in this paper agree
very well with calculations by Čurı́k and Gianturco (2002b)
and total cross-section measurements of Szmytkowski et al
(2002). Experimental and theoretical integral cross sections
of Makochekanwa et al (2006) are distinctly lower. However,
in terms of angular distributions, the present calculations
agree very well with the experimental data suggesting the
difference between our integral cross sections and cross-
beam integral cross sections might rest in the extrapolation
of the cross-beam data to large scattering angles. Similar
conclusions can be drawn in the case of the propane molecule
with one distinct difference. The stronger LYP correlation
model performs considerably better than the LDA and PBE
correlation potentials.

In order to draw some general conclusions about the
quality of the correlation models in the electron molecule
collisions, many more molecular systems should be studied.
Computationally, the presented implementation of correlation
potentials is very efficient and can be applied to molecules
larger than propane and cyclopropane. We hope to provide
some data to this open issue in the near future using the
methods and model presented in this paper.
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Figure A1. Contour integration path used in equation (A.3) together
with the three residual points in the upper plane.

Appendix. Fourier transform of the full tensor
asymptotic potential

The aim of the appendix is to evaluate the following FT
integrals:

Gij (k) =
∫

d3r eik.r xixj

2(r6 + a6)
. (A.1)

As a first step we define the FT F(k) of the radial component
of the potential. The angular part is then integrated out with
the only radial integral remaining:

F(k) = −
∫

d3r eik.r 1

2(r6 + a6)
= −2π

k

∫ ∞

0
dr

r sin kr

r6 + a6
.

(A.2)

The radial integral can be transformed to a contour integral in
the complex plane as follows:∫ ∞

0
dr

r sin kr

r6 + a6
= 1

2

∫ ∞

−∞
dr

r sin kr

r6 + a6
= 1

2
Im

∫
C

dz
zeikz

z6 + a6
,

(A.3)

with the contour C shown in figure A1. There are three residual
points in the upper complex plane that count for the residue
theorem:

z1 = a eiπ/6,

z2 = ia,

z3 = a ei5π/6.

(A.4)

By employing the residue theorem for the last integral in (A.3)
we obtain the radial FT F(k) defined in equation (A.2) as
follows:

F(k) = − π2

3a4k
e−ka/2

[
e−ka/2 +

√
3 sin

(
ka

√
3

2

)

− cos

(
ka

√
3

2

) ]
. (A.5)

By comparing equations (A.1) and (A.2), one can easily see
that the general tensor components Gij (k) may be obtained
by the partial derivatives of the radial function F(k):

Gij (k) = ∂2

∂ki∂kj

F (k). (A.6)

The second-order partial derivatives directly lead to
equation (16).
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Čuŕık, R. and Gianturco, F. A. (2002a), ‘A computational analysis of low-energy elec-
tron scattering from gaseous cyclopropane’, J. Phys. B 35(3), 717.
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Mil’nikov, G., Nakamura, H. and Horáček, J. (2001), ‘Stable and efficient evaluation of
Green’s function in scattering problem’, 135(3), 278–292.

Morrison, M. A. (1983), ‘The physics of low-energy electron-molecule collisions: A guide
for the perplexed and the uninitiated’, 36, 239–286.

Morrison, M. A. (1988), Near-Threshold Electron-Molecule Scattering, Vol. 24 of Ad-
vances in Atomic and Molecular Physics, Academic Press, pp. 51–156.

Morrison, M. A. and Collins, L. A. (1978), ‘Exchange in low-energy electron-molecule
scattering: Free-electron-gas model exchange potentials and applications to e– – H2

and e– – N2 collisions’, Phys. Rev. A 17(3), 918–938.

Morrison, M. A. and Feldt, A. N. (2007), ‘Through scattering theory with gun and
camera: Coping with conventions in collision theory’, Am. J. Phys. 75, 67–80.

Morrison, M. A., Feldt, A. N. and Austin, D. (1984), ‘Adiabatic approximations for the
nuclear excitation of molecules by low-energy electron impact: Rotational excitation
of H2’, Phys. Rev. A 29(5), 2518–2540.

Morrison, M. A., Feldt, A. N. and Saha, B. C. (1984), ‘Validity of the adiabatic nuclei
theory for vibrational excitation of molecules by electron impact: The e– – H2 system’,
Phys. Rev. A 30(5), 2811–2813.

Morrison, M. A. and Hay, P. J. (1979), ‘Ab initio adiabatic polarization potentials
for low-energy electron-molecule and positronmolecule collisions: The e– – N2 and
e– – CO2 systems’, Phys. Rev. A 20(3), 740–748.

166



BIBLIOGRAPHY

Morrison, M. A., Lane, N. F. and Collins, L. A. (1977), ‘Low-energy electron-
molecule scattering: Application of coupled-channel theory to e– – CO2 collisions’,
Phys. Rev. A 15(6), 2186–2201.

Morrison, M. A. and Parker, G. A. (1987), ‘A Guide to Rotations in Quantum Me-
chanics’, Aust. J. Phys. 40(4), 465–497.

Morrison, M. A., Saha, B. C. and Gibson, T. L. (1987), ‘Electron-N2 scattering calcula-
tions with a parameter-free model polarization potential’, Phys. Rev. A 36(8), 3682–
3698.

Morrison, M. A., Sun, W., Isaacs, W. A. and Trail, W. K. (1997), ‘Ultrasimple calcula-
tion of very-low-energy momentum-transferand rotational-excitation cross sections:
e-N2 scattering’, Phys. Rev. A 55(4), 2786–2798.

Motovilov, A. K., Sandhas, W., Sofianos, S. A. and Kolganova, E. A. (2001), ‘Binding
energies and scattering observables in the 4He3 atomic system’, Eur. Phys. J. D
13, 33–41.

Mrugala, F. (1985), ‘Log-derivative method for two-potential scattering problems’,
J. Comput. Phys. 58(1), 113–133.

Mulliken, R. S. (1941), ‘Species Classification and Rotational Energy Level Patterns of
Non-Linear Triatomic Molecules’, Phys. Rev. 59(11), 873–889.

National Institute of Standars and Technology (2008).
URL: http://physics.nist.gov/cuu/Units/

Nesbet, R. K. (1979), ‘Energy-modified adiabatic approximation for scattering theory’,
Phys. Rev. A 19(2), 551–556.

Nesbet, R. K. (2004), Variational Principles and Methods in Theoretical Physics and
Chemistry, Cambridge Univeristy Press.

Norcross, D. W. and Padial, N. T. (1982), ‘The multipole-extracted adiabatic-nuclei
approximation for electron-molecule collisions’, Phys. Rev. A 25(1), 226–238.

Norcross, D. W. and Seaton, M. J. (1973), ‘Asymptotic solutions of the coupled equa-
tions of electron-atom collision theory for the case of some channels closed’, J. Phys. B
6(4), 614.

Oberoi, R. S. and Nesbet, R. K. (1973), ‘Variational Formulation of the R Matrix
Method for Multichannel Scattering’, Phys. Rev. A 8(1), 215–219.

O’Connell, J. K. and Lane, N. F. (1983), ‘Nonadjustable exchange-correlation model for
electron scattering from closed-shell atoms and molecules’, Phys. Rev. A 27(4), 1893–
1903.

Onda, K. and Temkin, A. (1983), ‘Calculation of the polarization potential for e– – N2

collisions’, Phys. Rev. A 28(2), 621–631.

Padial, N. T. and Norcross, D. W. (1984), ‘Parameter-free model of the correlation-
polarization potential for electron-molecule collisions’, Phys. Rev. A 29(4), 1742–
1748.

Padial, N. T., Norcross, D. W. and Collins, L. A. (1981), ‘On the use of the uni-
tarised Born approximation in electron collisions with polar molecules’, J. Phys. B
14(16), 2901.

167



BIBLIOGRAPHY

Percival, I. and Seaton, M. (1957), ‘The partial wave theory of electron-hydrogen atom
collisions’, Proc. Cambridge Philos. Soc. 53, 654–662.

Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh,
D. J. and Fiolhais, C. (1992), ‘Atoms, molecules, solids, and surfaces: Applications of
the generalized gradient approximation for exchange and correlation’, Phys. Rev. B
46(11), 6671–6687.

Perdew, J. P. and Wang, Y. (1992), ‘Accurate and simple analytic representation of
the electron-gas correlation energy’, Phys. Rev. B 45(23), 13244–13249.

Perdew, J. P. and Zunger, A. (1981), ‘Self-interaction correction to density-functional
approximations for many-electron systems’, Phys. Rev. B 23(10), 5048–5079.

Pichl, L. and Horáček, J. (1996), ‘Analytical treatment of the Green function singularity
in integral equations of scattering theory’, J. Phys. A 29(16), L405.

Podolsky, B. (1928), ‘Quantum-Mechanically Correct Form of Hamiltonian Function
for Conservative Systems’, Phys. Rev. 32(5), 812–816.
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