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Abstract

Název práce: Zeeman̊uv jev v polovodičových kvantových strukturách
Autor: Josef Stráský
Katedra: Fyzikálńı ústav Univerzity Karlovy
Vedoućı diplomové práce: Doc. RNDr. Roman Grill, CSc.
E-mail vedoućıho: grill@karlov.mff.cuni.cz
Abstrakt:
Tato teoretická práce prezentuje detailńı studii záporně nabitých exciton̊u - trion̊u - v
jednoduché potenciálové jámě a kolmém magnetickém poli. Složitý valenčńı pás sloučeniny
GaAs/GaAlAs je popsán pomoćı Luttingerova Hamiltoniánu. Po zavedeńı singletńıch a
tripletńıch stav̊u záporného trionu je provedena detatilńı teoretická analýza Zeemanova
jevu pro r̊uzné stavy trionu. Pro popis magnetického pole je zvolena Landauova kalibrace.
Vhodnost souvisej́ıćı neobvyklé báze vlnových funkćı je testována. Závislost energie
základńıho stavu a fotoluminiscenčńıch spekter na magnetickém poli je vyhodnocena pro
r̊uzné volby Landého g-faktor̊u. Dále je zkoumána prostorová distribuce pravděpodobnosti
výskytu elektronu vzhledem k poloze d́ıry a vzájemná prostorová korelačńı funkce
elektron̊u.

Kĺıčová slova: záporný trion, Luttinger̊uv Hamiltonián, Zeeman̊uv jev, jednoduchá
kvantová jáma, mı́cháńı stav̊u valenčńıho pásu, Landého g-faktor

Title: Zeeman Effect in Semiconductor Quantum Structures
Author: Josef Stráský
Supervisor: Assoc. Prof. Roman Grill, PhD
Supervisor’s e-mail address: grill@karlov.mff.cuni.cz
Abstract:
This theoretical thesis presents detailed study of negatively charged excitons - trions -
confined in single quantum well in presence of perpendicular magnetic field. Complex
valence band of GaAs/GaAlAs compound is described within Luttinger Hamiltonian
framework. Singlet and triplet states of negative trion are introduced. Advanced
theoretical analysis of Zeeman effect for different states of trion is performed. Landau
gauge of magnetic field and unusual wavefunctions basis is chosen and its accuracy is tested.
Evolution of ground state energy and photoluminescence spectra with magnetic field is
evaluated for different values of Landé g-factors. Probability of occurrence of electrons
with respect to the hole position and their spatial correlation function are investigated.

Keywords: negative trion, Luttinger Hamiltonian, Zeeman effect, single quantum well,
valence subband mixing, Landé g-factor
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1 Introduction and properties of GaAlAs

1.1 Introduction

The development of advanced epitaxial techniques such as molecular beam epitaxy (MBE)
or metal-organic chemical vapour deposition (MOCVD) allows growing interfaces between
two semiconductors flat up to one atomic layer. Quantum heterostructures that are
created by these techniques found various practical applications like light emitting diodes
(LED), diode lasers, high electron mobility transistors (HEMT) etc. The most used
materials are pseudo-binary compounds of GaAs and AlAs. These materials are perfectly
lattice-matched and bandgap width is tunable by the Al additions.

The most simple structure is a single quantum well. Such heterostructure is considered
in this thesis. Quantum heterostructures along with advanced optical and cryogenic
techniques allow observation of bound states of electron and hole in semiconductors called
excitons. Such bound states are well known and well described both experimentally and
theoretically. However, more complicated structure of charged exciton has been also
observed. Charged exciton - trion - problem is much more complicated than the excitonic
one, since it is a three body problem. Whereas exciton is created by charge-charge Coulomb
interaction, the trion is based on charge-dipole interaction. Positive trion consists of
two holes and one electron and negative trion consists of two electrons and one hole.
Both types of trions have been observed (even at one sample), however theoretically the
problems are quite different. The main problem of positive trion analysis lies in the
interaction between holes that is generally complicated due to complex valence band of
GaAs/GaAlAs compound. The analysis of negative trion must take into account that
negative trion involving two electrons is multifermionic system and thus Pauli principle
must be obeyed. Symmetry considerations along with Pauli principle give rise to singlet
and triplet states of the negative trion.

Main contribution of this thesis is simultaneous analysis of the negative trion using
Luttinger Hamiltonian and very detailed analysis of the Zeeman effect. Luttinger
Hamiltonian is popular semi-empirical method describing complex valence band. Most
importantly, the Luttinger Hamiltonian mixes the heavy hole and light hole states. One
trion state is thus crated by both heavy and light holed. This is extremely important in
connection with the Zeeman effect. Since the heavy hole and the light hole have different
projections of total angular momentum, they are affected by the Zeeman effect differently.
However, due to Luttinger Hamiltonian they are both involved in one state. This has
non-trivial consequences that are exploited in this thesis.

The rest of this chapter and part of the following chapter comprise wide theoretical
introduction and these follow two most influential sources for theoretical part of this
diploma thesis. These are Master’s thesis Magnetooptical Properties of Semiconductor
Quantum Structures by Štěpán Uxa [1] and basic text-book Wave Mechanics Applied to
Semiconductor Heterostructures by Gerald Bastard [2].
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1.2 Basic crystalline and electronic properties

GaAlAs is the most important member of III-V semiconductors group. III-V compounds
crystallize in the sphalerite (zinc-blende) crystalographic structure. This structure consists
of two interpenetrating face-centered cubic lattices. Each is displaced from the other by one
fourth of the cube main diagonal. The reciprocal lattice of Bravais lattice corresponding to
sphalerite structure is body centered cubic lattice. Finally, the first Brillouin zone of such
structure is truncated octahedron 1.1. High symmetry points received specific notations,
most importantly the center of the Brilloun zone (center of momentum space) - Γ point.

Figure 1.1: First Brillouin zone of
semiconductor with sphalerite structure

Figure 1.2: Band structure of a direct gap
semiconductor in the vicinity of the Γ point

8 outter electrons per unit cell in III-V binary compounds are responsible for electrical
and optical properties (in the case of GaAs - 3 electrons from Ga and 5 from As). Orbitals
of every atom (e.g. Ga) hybridize with an orbital of the nearest neighbouring atoms (As)
producing two levels: bonding and antibonding. Since there is a large number of unit cells,
these levels broaden into bands. The bonding s-orbitals are deeply bound and always filled
by two electrons. The remaining six electrons occupy three bonding p-orbitals. The lowest
lying antibonding orbital (s-orbital) forms the conduction band of the material.

The top of the valence band occurs at the Γ point in all III-V semiconductors. The
potential sixfold degeneracy of valence band (six electrons in the three p-orbitals) in this
point is partly lifted by spin-orbit coupling. Resulting structure is depicted in Fig. 1.2.
The three valence bands are split into a quadruplet (symmetry Γ8) and doublet (symmetry
Γ7). Quadruplet refers to total angular momentum of J = 3

2 whereas doublet is associated
with J = 3

2 . Antibonding s-orbitals form the conduction band (symmetry Γ6, J = 1
2 ). For

GaAs is the edge of the conduction band also in the center of Brillouin zone (Γ point).
Thus this compound is of the direct bandgap. In the figure 1.2, the bandgap is denoted
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E0 = EΓ6 − EΓ8 and energetic split due to spin-orbit coupling ∆ = EΓ8 − EΓ7 .

Our main interest lies in AlGaAs (aluminium gallium arsenide) compound. This is ternary
(or pseudo-binary) III-V semiconductor material. Since AlAs and GaAs are perfectly
lattice matched, so is GaAs and AlGaAs. However, AlGaAs is of larger bandgap. Thus
AlGaAs can be used as a barrier material in GaAs based heterostructres. The AlGaAs
barrier confines the electrons to GaAs region.

Due to broken translational symmetry in AlGaAs (due to random distribution of Ga and
Al atoms), we employ virtual crystal approximation to describe alloy electronic states.
In the case of AlxGa1−xAs alloy we can write average potential (thus transnationally
symmetric potential) as VAlGaAs = xVAl + (1 − x)VGa + VAs, where VAl, VGa, VAs are
potentials created by different atoms separately. Once we introduce periodic potential, we
can employ Bloch functions, Brillouin zone, etc.

AlxGa1−xAs is a direct gap semiconductor for x < 0, 45. The bandgap is a linearly
dependent on x (thus virtual crystal approximation is applicable) [1]:

EAlGaAs
g = 1, 424 + 1, 247x eV. (1.1)

The electron effective mass mAlGaAs
e at the room temperature can be computed (for x <

0.45) [1]:

mAlGaAs
e = (0.063 + 0.083x)m0. (1.2)

1.3 Effective mass approximation

This section covers the basic approach how to compute electronic dispersion relations in
the vicinity of the centre of Brillouin zone. The one electron Schrödinger equation in a
bulk crystal can be written [2]:

[

p̂2

2me
+ V (r) +

h̄

4m2
ec

2
(σ ×∇V ) .p̂

]

ψ (r) = Eψ (r) , (1.3)

where me is the free-electron mass, V (r) is the periodic crystalline potential and σ is the
vector of Pauli spin matrices. The third term refers to the spin-orbit coupling. Other
relativistic corrections are ignored.

In a search for eigenfunctions of such Hamiltonian we employ Bloch theorem (due to
periodicity of potential V (r)):

ψnk (r) = Nunk (r) exp (ik.r) , (1.4)

where N is normalization constant and unk (r) are functions with periodicity of the lattice.

For many aspects of semiconductor electronic properties (effective masses,
wavefunctions...), the important knowledge is Enk relationship over small k range.
If we insert Bloch form (Eq. 1.4) into Schrödinger equation 1.3 we get:
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[ p̂2

2m0
+ V (r) +

h̄

4m2
0c

2
(σ ×∇V ) .p̂+

h̄2k2

2m0
+

+
h̄k

m0

(

p+
h̄

4m2
0c

2
(σ ×∇V )

)

]

unk (r) = Enkunk (r) (1.5)

Hamiltonian can be formally but advantageously divided into two parts:

H (k = 0) =
p̂2

2m0
+ V (r) +

h̄

4m2
0c

2
(σ ×∇V ) .p̂ (1.6)

W (k) =
h̄2k2

2m0
+
h̄k

m0

(

p+
h̄

4m2
0c

2
(σ ×∇V )

)

(1.7)

Eigenfunctions of H (k = 0) are equivalently un0 or ψn0:

H (k = 0) un0 = En0un0 (1.8)

Moreover, W (k) commutes with operator of translational symmetry and vanish for k = 0.
Thus we can expand the solution of Eq. 1.5:

unk =
∑

m

cm (k)un0 (1.9)

We insert this expansion into Eq. 1.5, we multiply whole equation by u∗n0 and integrate
over unit cell. After some manipulation we get:

∑

m

[

(

En0 − Enk +
h̄2k2

2m0

)

δnm +
h̄k

m0
. 〈n0|π |m0〉]cm (k) = 0, (1.10)

where we denoted

π = p+
h̄

4m2
0c

2
(σ ×∇V ) (1.11)

and employ notation

〈n0|π |m0〉 =
∫

u∗n0πum0d
3r = πnm. (1.12)

Somewhat tricky part follows. Some more details can be found in [2]. Equation 1.10 can
be solved by perturbative approach. We need to assume that n-th band (energy En0) is
not degenerate, k is assumed to be small enough, such that Enk − En0 << En0 − Em0.
Moreover, it might be found out that equation 1.10 does not contain terms proportional
to k for m = n. As a result of these considerations, we find that cm (k) is proportional
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to k and cn (k) ≈ 1 (it also follows that cm (0) = δmn and cm (k) << cn (k) for m 6= n).
Then finally it must hold that

cm (k) =
h̄k

m0
.πnm

1

En0 − Em0
(1.13)

in the first order of the perturbation theory.

This result can be inserted back to (1.10):

En0 − Enk +
h̄2k2

2m0
+

∑

m6=n

[

h̄k

m0
.πmn

h̄k

m0
.πnm

1

En0 − Em0

]

= 0 (1.14)

and by simple manipulation we get second order correction to energy:

Enk = En0 +
h̄2k2

2m0
+
h̄2

m2
0

∑

m6=n

|πmn.k|2
En0 − Em0

. (1.15)

This equation can be formally rewritten to get dispersion relation in the vicinity of the
center of the first Brillouin zone in effective mass approximation:

Enk = En0 +
h̄2

2

∑

α,β

kα
1

µα,βn

kβ , (1.16)

where
1

µα,βn

=
1

m0
δαβ +

2

m2
0

∑

m6=n

παmn.π
β
nm

En0 − Em0
(1.17)

is the effective mass tensor of the n-th band edge and

α, β = x, y, z.

Under effective mass approximation we get parabolic dispersion relations. This
approximation can be generally improved by extending the perturbative treatment of
W (k) beyond the second order. However this is very troublesome and not particularly
useful. Different approach has been taken by Kane [3].

1.4 Kane model

Although this section is not particularly useful for computations and results achieved in
this work. However, the construction of new basis states is of considerable importance
and framework of Kane model is further employed in crucial Luttinger approach.

Kane noticed that the three topmost valence states (previously denoted Γ7 and Γ8) and
the lowest-lying conduction band (Γ6) are very close to each other but fairly well separated
from other bands. With this limited set of bands, W (k) can be exactly diagonalized and
the coupling with other states can be introduced by perturbative treatment.
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It is desirable to choose such basis in that spin-orbit coupling is diagonal for k = 0. Such
basis can be achieved by forming linear combinations of 8 Bloch eigenfunctions that are
associated with four bands under consideration (|S ↑〉, |S ↓〉, |X ↑〉, |X ↓〉, |Y ↑〉, |Y ↓〉,
|Z ↑〉, |Z ↓〉). These new basis functions are created according to table 1.1, they are
described in means of total angular momentum J = L + σ and its projection to z-axis
mJ since these are diagonal in the new basis. For the S edge, L = 0 and σ = 1

2 , thus
J = 1

2 and mJ is either 1
2 or −1

2 . On the other hand, for P edges, adding L = 1 and σ = 1
2

results in either J = 3
2 and J = 1

2 . For J = 3
2 , there are four z-axis projections available

(mJ = ±3
2 , mJ = ±1

2). Thus it is associated quadruplet that is always higher energy
(for III-V compounds) than the doublet J = 1

2 . It might be helpful to recall figure 1.2
for easier understanding. It is worth noting that that states

∣

∣

3
2 ,

3
2

〉

and
∣

∣

3
2 ,−1

2

〉

(similarly
∣

∣

3
2 ,−3

2

〉

and
∣

∣

3
2 ,

1
2

〉

) are constructed from states with the same spins (in directions X and
Y ).

ui |J,mJ〉 ψJ,mJ
Ei (k = 0)

u1
∣

∣

1
2 ,

1
2

〉

i |S ↑〉 0

u3
∣

∣

3
2 ,

1
2

〉

1√
6
|(X + iY ) ↓〉 −

√

2
3 |Z ↑〉 −E0

u5
∣

∣

3
2 ,

3
2

〉

1√
2
|(X + iY ) ↑〉 −E0

u7
∣

∣

1
2 ,

1
2

〉

1√
3
|(X + iY ) ↓〉+ 1√

3
|Z ↑〉 −E0 −∆

u2
∣

∣

1
2 ,−1

2

〉

i |S ↓〉 0

u4
∣

∣

3
2 ,−1

2

〉

− 1√
6
|(X + iY ) ↑〉 −

√

2
3 |Z ↓〉 −E0

u6
∣

∣

3
2 ,−3

2

〉

1√
2
|(X + iY ) ↓〉 −E0

u8
∣

∣

1
2 ,−1

2

〉

− 1√
3
|(X + iY ) ↑〉+ 1√

3
|Z ↓〉 −E0 −∆

Table 1.1: Kane model - construction of new basis functions

Now we would like to construct the Hamiltonian. Matrix elements of W (k) must be
combined according to just constructed new basis. We further drop k-dependent spin-orbit
term and finally get Kane Hamiltonian (Table 1.2). We employ following notation:

k± =
1√
2
(kx ± iky) (1.18)

E0 = EΓ6 − EΓ8 ∆ = EΓ8 − EΓ7 (1.19)

P =
−i
m0

〈S|px|X〉 = −i
m0

〈S|py|Y 〉 = −i
m0

〈S|pz|Z〉 (1.20)

For the sake of brevity we define new symbol λ (k):

λ (k) = E (k)− h̄2k2

2m0
(1.21)

Solving the eigen-problem of Kane Hamiltonian we get following two equations:

λ (k) = −E0 (1.22)
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h̄2k2

2m0
−
√

2
3
P h̄kz P h̄k+ − 1√

3
P h̄kz 0 − 1√

3
P h̄k− 0 −

√

2
3
P h̄k−

−
√

2
3
P h̄kz

h̄2k2

2m0
−E0 0 0 − 1√

3
P h̄ 0 0 0

P h̄k− 0 h̄2k2

2m0
−E0 0 0 0 0 0

1√
3
P h̄kz 0 0 h̄2k2

2m0
−E0−∆ −

√

2
3
P h̄k− 0 0 0

0 1√
3
P h̄k+ 0

√

2
3
P h̄k+

h̄2k2

2m0
−
√

2
3
P h̄kz P h̄k−

1√
3
P h̄kz

− 1√
3
P h̄k+ 0 0 0 −

√

2
3
P h̄kz

h̄2k2

2m0
−E0 0 0

0 0 0 0 P h̄k+ 0 h̄2k2

2m0
−E0 0

−
√

2
3
P h̄k+ 0 0 0 1√

3
P h̄kz 0 0 h̄2k2

2m0
−E0−∆

Table 1.2: Kane model Hamiltonian

λ (k) [λ (k) + E0] [λ (k) + E0 +∆] = h̄2k2P 2

[

λ (k) + E0 +
2∆

3

]

(1.23)

Each solution of these equations is twice degenerate (thus we have two solutions associated
with the first equation and six more associated with the second one). Equation 1.22 refers
to heavy holes mJ = ±3

2 - this follows from no interaction between Γ8

(

mJ = ±3
2

)

and
Γ6. Thus of both heavy holes and electrons have the same effective mass:

mh
Γ8

= m0 (1.24)

The effective masses for other bands can be found by extending the equation 1.23 to the
second order in k:

1

mΓ6

=
1

m0
+

4P 2

3E0
+

2P 2

3 (E0 +∆)
(1.25)

1

ml
Γ8

=
1

m0
− 4P 2

3E0
(1.26)

1

mΓ7

=
1

m0
− 2P 2

3 (E0 +∆)
(1.27)

The major shortcoming of this solution is that effective mass of heavy holes is not in
accordance with experimental values. However, this can be improved by inserting the
effect of other remote bands e.g. in the effective mass approximation:

1

mh
Γ8

=
1

m0
+

2

m2
0

∑

m6=Γ6,Γ7,Γ8

∣

∣

〈

3
2 ,±3

2 |pz|um
〉∣

∣

Em − E0
(1.28)

More details can be found in [2]. For example, it can be shown in a straightforward manner
that dispersion relations are not parabolic under Kane model framework.
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1.5 Heterostructures and the envelope function

approximation

Heterostructure is created from two semiconductors with different bandgaps. In this work,
we focus on the interface GaAs/GaAlAs. This interface has several basic advantages. It
is direct bandgap semiconductor with tunable bandgap (by Al addition) from 1.4 eV
up to 2 eV (to preserve direct bandgap). Both materials GaAs and AlAs are almost
perfectly lattice matched which allows layers to be grown almost arbitrarily thick thanks
to low induced stress. Advanced epitaxial techniques such as molecular beam epitaxy
(MBE) or metal-organic chemical vapour deposition (MOCVD) made it possible to grow
interfaces flat up to one atomic monolayer, which is obviously the ultimate available
resolution. The possibility of fabricating a heterostructure with given parameters brought
theoretical attention to the quasi-two-dimensional nature. Heterostructures shortly found
various applications: laser emitting diodes (LED), diode lasers, quantum well infra-red
photodetectors (QWIP), high electron mobility transistors (HEMT) and many more
[13],[14],[15].

Here we assume that materials constituting the heterostructure are perfectly lattice
matched and the interfaces are ideal (i.e. perfectly two-dimensionally grown). Thus,
an electron in material A experiences perfect potential of bulk material A (VA (r))whereas
in material B the electron feels perfect potential of bulk material B (VB (r)). On the
interface the potential changes step-like. In this work we deal only with single quantum
well (SQW), whose potential function is schematically depicted in figure 1.3.

Figure 1.3: Schematic depicting of the potential of single quantum well (SQW)

Envelope function approximation is based on two crucial assumptions. The first one states
that inside each layer the wave function can be expanded to the periodic parts of the Bloch
functions of the states under consideration:

ψ (r) =
∑

l

fA,B
l (r) uA,B

l,k0
(r), (1.29)

k0 is the point of Brillouin zone around which the heterostructure states are built, l denotes

all the states that are included in calculations and u
(A,B)
l,k0

(r) is a periodic part of Bloch
function, that is periodic with the period of the potential V (r). The truncation to finite
sum over l states can be made by the assumption that the host wavevectors kA a kB
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are close to k0. This assumption is fulfilled for heterostructures consisting of materials
with the same points of extreme of valence and conduction bands (e.g. both GaAs and
AlxGa1−xAs for x < 0, 45 are of Γ-related states).

The second assumption states that periodic parts of Bloch functions are the same in both
layers:

u
(A)
l,k0

(r) = u
(B)
l,k0

(r) = ul,k0 (r) . (1.30)

Here, we in fact assume that interband matrix element px = 〈S|p̂x|X〉 is equal for both A
and B layers. Our actual aim is to find f

(A,B)
l (r).

We denote the growth direction of the heterostructure (quantum well) as z-axis. Since
we assume ideal properties of the interface, we have translational symmetry in so-called
in-plane directions (xy plane). We thus introduce two-dimensional in-plane vector r‖ and
in-plane wave vector k‖ = (kx, ky).

We can factorize the slowly-varying envelope function

f
(A,B)
l

(

r‖, z
)

=
1√
S
exp

(

ik‖.r‖
)

χ
(A,B)
l (z) , (1.31)

where S is the sample area.

The simplest possible Hamiltonian takes the form

H =
p̂2

2m0
+ VA (r) θA (r) + VB (r) θB (r) , (1.32)

where θ(A,B) (r) are step functions. θA and θB equal to one for r associated with A and B,
respectively. When we act with this Hamiltonian on rapid-varying periodic part of Bloch
function, we get:

Hul0 (r) =
(

EA
l0θA (r) + EA

l0θB (r)
)

ul0 (r) (1.33)

However, now we let act H on the whole ψ (r), subsequently we multiply by complex

conjugates: u∗l0 (r) exp
(

−ik‖.r‖
)

χ
∗(A,B)
l (z) and integrate over the space. Moreover pz =

−ih̄ ∂
∂z

is used. It can be found [2] that we get following equation for χ

D(0)

(

z,−ih̄ ∂
∂z

)

χ = Eχ, (1.34)

where

D
(0)
lm

(

z,−ih̄ ∂
∂z

)

=

[

EA
l0θA (r) + EA

l0θB (r) +
h̄2k2‖
2m0

− h̄2

2m0

∂

∂z

]

δlm +

+
h̄k‖

m0
〈l|p‖ |m〉 − ih̄

m0
〈l|pz |m〉 ∂

∂z
. (1.35)

D
(0)
lm might be generally N × N matrix, however calculations are restricted to bands Γ6,

Γ8 (light and heavy holes) and Γ7 band that is shifted due to spin-orbit coupling (recall
Fig. 1.2), the matrix is then of size 8× 8.
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It is important to note that the in-plane terms are treated separately from the terms that
affect z-direction. The effect of the remote bands can be added by perturbative approach
similarly to the effective mass approximation discussed in section 1.3. At the end, the
microstructural details of heterostructure are substituted by effective parameters, namely
matrix elements 〈l| p̂α| |ν〉 and so called band offsets Vν (z), which represent the difference
between energy of given band ν in the layer A and the energy of the band in the layer
B. The index ν labels all states that are included into computations (including remote
bands). This approach is further developed in Ben Daniel-Duke model. Even though this
model is well applicable to electronic states in quantum wells, the applicability to holes is
limited, due to assumption that k‖ = 0 for band Γ8. This simplification is impractical for
our purpose. Detailed analysis of Ben Daniel-Duke model can be found in [2].

For our computations, it is more important to emphasize that we assume infinitely deep
quantum well. The solution of this problem is fairly easy and well known. We focus only
on ground states of electrons, light holes and heavy holes and further on first excited state
of heavy holes. We can then simply write appropriate wave functions in z-direction:

ϕe (ze) =

√

2

L
cos

(

π

Lz
ze

)

(1.36)

ϕh0 (zh) =

√

2

L
cos

(

π

Lz
zh

)

(1.37)

ϕl (zh) =

√

2

L
cos

(

π

Lz
zh

)

(1.38)

ϕh1 (zh) =

√

2

L
sin

(

2π

Lz
zh

)

(1.39)

These wavefunctions are obviously defined only inside the well, more specifically ze, zh ∈
(

−L
2 ,

L
2

)

. The confinement energy of particle in infinitely deep quantum well is:

En =
n2h̄2π2

2mL2
z

(1.40)

where the ground state is characterized by n = 1 and the first excited state is characterized
by n = 2. The ground states confinement energy might be omitted during the
computations but it contributes to the energy of optical transition and to the binding
energy. The difference in confinement energies between the ground and the excited states
defines the band offsets. However, the real band offset is in reality lower, because the
potential well is in fact finite and thus the true wavefunctions tunnel into the barriers,
which effectively means lower difference in confinement energies. (E.g. for the width of
quantum well Lz = 10 nm we use the offset between ground and the first excited state
equal to 16 nm, which would correspond to the infinitely deep quantum well with width
of 13.7 nm.)
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1.6 Luttinger Hamiltonian

When the in-plane wave vector k‖ 6= 0, the heavy hole and the light hole states (denoted

Γh
8 and Γl

8) become coupled. This originates from the degeneracy of these two bands. In
the isotropic material the Γ8 Hamiltonian may be written as

H = αk2 + β (k.J)2 (1.41)

This Hamiltonian form was developed by Luttinger [4], [5] from somewhat abstract
considerations about symmetry group theory and by precise perturbative approach.

It must be stressed that in bulk material it is always possible to rotate axes (choose z

direction) such that k‖J‖z and thus both H and Jz become diagonalized. However, in
heterostructure, the direction z is given and diagonalization is not possible. The most
favourable option is to quantize J along the heterostructure growth axis (z-axis) - this we
have already done when dealing with Kane model. The analytical results, however, can
be obtained only under very special and too restrictive conditions.

For GaAs-AlGaAs the coupling with Γ6 band is relatively weak and can be omitted. The
parabolic description of this host conduction band is also reasonable. Finally, the Luttinger
Hamiltonian for the topmost valence band - Γ8 band - of semiconductor with Td symmetry
in the basis composed of eigenfunctions of the total angular momentum takes the form

Ĥh =











Ĥhh b̂ ĉ 0

b̂∗ Ĥlh 0 ĉ

ĉ∗ 0 Ĥlh −b̂
0 ĉ∗ −b̂∗ Ĥhh











∣

∣

3
2 ,+

3
2

〉

∣

∣

3
2 ,+

1
2

〉

∣

∣

3
2 ,−1

2

〉

∣

∣

3
2 ,−3

2

〉

(1.42)

Where we employed the notation:

Ĥhh =
γ1 − 2γ2
2m0

p̂2z +
γ1 + γ2
2m0

(

p̂2x + p̂2y
)

(1.43)

Ĥlh =
γ1 + 2γ2
2m0

p̂2z +
γ1 − γ2
2m0

(

p̂2x + p̂2y
)

(1.44)

b̂ =

√
3γ3

2m0
[(p̂yp̂z + p̂z p̂y) + i (p̂xp̂z + p̂zp̂x)] (1.45)

ĉ =

√
3

2m0

[

γ2
(

p̂2x − p̂2y
)

− iγ3 (p̂xp̂y + p̂yp̂x)
]

(1.46)

Parameters γi are so called Luttinger parameters. These empirical parameters embody
the interaction between Γ8 band and other bands including Γ6. Luttinger parameters
are considered to be position independent. It might be found from the inspection of
the diagonal terms of Luttinger Hamiltonian that in-plane effective masses and effective
masses in the z-direction differ and following identities hold:
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γ1 + γ2
2m0

=
1

2mhh‖

γ1 − 2γ2
2m0

=
1

2mz
hh

(1.47)

γ1 − γ2
2m0

=
1

2mlh‖

γ1 + 2γ2
2m0

=
1

2mz
lh

(1.48)

Let us focus for a while on the b̂ term. This term involves symmetrized products of p̂z
operator and in plane momentum operators. In our case these operators commute since we
assume (and we will assume throughout this thesis) that z-component of vector potential
of magnetic field is zero (Az = 0) and complete vector potential A is z-independent.
Moreover, the part of wavefunctions that depends on z is separated, thus we can finally
write:

b̂ =

√
3γ3

2m0
[(p̂y p̂z + p̂z p̂y) + i (p̂xp̂z + p̂z p̂x)] =

√
3γ3
m0

p̂z (p̂y + ip̂x) (1.49)

The operator p̂z acts on z part of wavefunction so that we get the first derivative. Thus if
we compute the term involving only the ground states (〈ϕl (zh) |p̂z|ϕh0 (zh)〉) we always get
zero because both wavefunctions in this term are in fact cosine functions. By differentiation
we get sine function that is orthogonal to the cosine one. This means that the b̂ term may
be omitted at positions of Hamiltonian matrix that combine ground state of heavy holes
and light holes. But this also implies that we must include at least one excited hole state
to utilize complete Luttinger framework. We include the first excited heavy hole state
because of its small energy split (compared to the first excited light hole state).

To incorporate the first excited heavy hole state, the Hamiltonian matrix must be expanded
by two states that correspond to the two different spin states (projections of total angular
momentum). The Hamiltonian is then represented by 6 x 6 matrix. Before writing it
explicitly we may inspect in a more detail Luttinger terms b̂ and ĉ.

First, note that both terms b̂ and ĉ interconnect heavy hole and light hole states. Also
note that ĉ term does not act on the separated z-dependent part of the wavefunction. But
these z-dependent parts are solution of confinement in the indefinitely deep quantum well
and thus are orthogonal. Since the ĉ term does not modify these functions, it is clear that
all the terms involving any ground state, the ĉ term and the excited state must be zero.
ĉ term combining these two states in Hamiltonian matrix can then be omitted. Remind
that the b̂ term can on the other hand be omitted when combining two ground states. We
can thus finally write (with some reordering) extended 6 x 6 Hamiltonian.

Ĥh =



















Ĥhh0 0 0 0 0 ĉ

0 Ĥhh1 0 0 0 b̂

0 0 Ĥlh ĉ −b̂ 0

0 0 ĉ∗ Ĥhh0 0 0

0 0 -b̂∗ 0 Ĥhh1 0

ĉ∗ b̂∗ 0 0 0 Ĥlh



















∣

∣

3
2 ,+

3
2

〉

|hh0〉
∣

∣

3
2 ,+

3
2

〉

|hh1〉
∣

∣

3
2 ,+

1
2

〉

|lh〉
∣

∣

3
2 ,−3

2

〉

|hh0〉
∣

∣

3
2 ,−3

2

〉

|hh1〉
∣

∣

3
2 ,−1

2

〉

|lh〉

(1.50)
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The minus sign in front of some of the b̂ terms appears due to reverse order of the
z-dependent parts of the wavefunctions in these terms, which is responsible for the sign
reversal.

It is of extreme importance that this Hamiltonian can be divided into two independent
matrices that can be diagonalized separately. These 3x3 Hamiltonian matrices are
following:

Ĥh =





Ĥhh0 0 ĉ

0 Ĥhh1 b̂

ĉ∗ b̂∗ Ĥlh





∣

∣

3
2 ,+

3
2

〉

|hh0〉
∣

∣

3
2 ,+

3
2

〉

|hh1〉
∣

∣

3
2 ,−1

2

〉

|lh〉
(1.51)

Ĥh =





Ĥhh0 0 ĉ

0 Ĥhh1 b̂

ĉ∗ b̂∗ Ĥlh





∣

∣

3
2 ,−3

2

〉

|hh0〉
∣

∣

3
2 ,−3

2

〉

|hh1〉
∣

∣

3
2 ,+

1
2

〉

|lh〉
(1.52)

The Hamiltonians differ only by projection of total angular momentum (actually spin).
In our computations these two Hamiltonians will differ only by signs of Zeeman terms
and can be treated separately throughout the work. With no magnetic field included,
the dispersion relations can be easily computed and depicted. Figure 1.4 (taken from [1])
shows the in-plane dispersion relations of a hole in a single quantum well with parameters

• γ1 = 6.85, γ2 = 2.10, γ3 = 2.90, Lz = 10nm

• a) E
(0)
HH1 = 0meV, E

(0)
LH1 = −10meV, E

(0)
HH2 = −16meV

• b) E
(0)
HH1 = 0meV, E

(0)
LH1 = −20meV, E

(0)
HH2 = −40meV

HH1 refers to the heavy hole state on lowest energy level in quantum well. LH1 is the

lowest light hole state and HH2 is the first excited heavy hole state. E
(0)
LH1 and E

(0)
HH2

are appropriate energy splits at k‖ = 0. Dashed lines represent dispersion relations for

diagonal approximation (omitting of Luttinger terms b̂ and ĉ - parabolic dispersion). Note
the mass reversal (the mass of the heavy hole is lower then the mass of the light hole)
which results in crossing of the bands. On the other hand, solid lines represent computed
dispersion relations for full Luttinger Hamiltonian. The mixing of light hole and heavy
hole states leads to anticrossing of the bands and even to negative effective mass of the
light hole in the vicinity of the origin (actually, notation of the bands as heavy hole or
light hole states loses its physical significance due to mutual mixing).

It is useful now to introduce the simple electronic Hamiltonian:

He =
p2

2me
=
p2x + p2y
2me

+
p2z
2me

(1.53)

This simple Hamiltonian is diagonal in the basis of Luttinger Hamiltonian, thus it must
be added to all diagonal elements of the Hamiltonian matrix in the case if we want to
investigate system of hole and electron (exciton - see further).

18



Figure 1.4: Dispersion relations for two different sets of parameters. Dashed lines represent
parabolic dispersion whereas solid lines represent the dispersion according to complete
Luttinger Hamiltonian.

1.7 Inclusion of Magnetic Field

Magnetic field is included in fundamental and straightforward way. The momentum
operator p̂ is substituted by p̂− eA, where A is vector potential.

In this work, we assume magnetic field only perpendicular to the quantum well: B =
(0, 0, Bz). It is well known that the vector potential is not uniquely determined. The
calibration must be chosen in accordance with chosen wave function basis. In this respect,
an important example is an approach utilized by Whittaker and Shields [6]. They chose
symmetric calibration which is seemingly the most appropriate considering the cylindrical
symmetry of the problem. However, this calibration inevitably leads to computation in
polar coordinates and to wave functions involving complicated Laguerre polynomials.

Our approach is based on the Landau calibration in a form: A = (0, Bzx, 0) or in compact
form Ay = Bzx. From now on we write only B, implicitly assuming that it is in z-direction.
The Hamiltonian in x-direction takes the form of the linear harmonic oscillator. In this
instructive approach, the x-dependent part of the eigenfunction is the eigenfunction of
linear harmonic oscillator problem, whereas y-dependent part is a simple plane wave. It
is useful to introduce magnetic length

λ =

√

h̄

eB
=

25.66
√

B[T ]
nm (1.54)

which depends only on B and thus it is a measure of magnetic field, that is in fact measured
in metres, in our case usually more conveniently in nanometres. We can derive the in-plane
parts of diagonal terms of Luttinger Hamiltonian (the term is the same for both heavy
and light holes - just differs in the effective masses) and also in-plane parts of electronic
Hamiltonian. Note that after the inclusion of magnetic field we write the remaining
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momentum operators without hat and these operators now represents only pj = −ih̄ ∂
∂j

j = x, y, z and all these operators commute.

Hh =
p2xh

2mh
+

1

2mh
(pyh − eBxh)

2 =
1

2mh

(

p2xh
+ p2yh − 2

h̄

λ2
xhpyh +

h̄2

λ4
x2h

)

(1.55)

He =
p2xe

2me
+

1

2me
(pye + eBxe)

2 =
1

2me

(

p2xe
+ p2ye + 2

h̄

λ2
xepye +

h̄2

λ4
x21

)

(1.56)

Note that e refers to absolute value of elementary charge. We derive further the Luttinger
terms in the presence of the magnetic field

b̂ =

√
3γ3

2m0
pz (px − ipy + ieBx) =

√
3γ3

2m0
pz

(

px − ipy + i
h̄x

λ2

)

(1.57)

ĉ =

√
3

2m0

[

γ2
(

p2x − p2y + 2pyeBx− e2B2x2
)

− iγ3 (2pxpy − pxeBx− eBxpx)
]

(1.58)

=

√
3

2m0

[

γ2

(

p2x − p2y + 2py
h̄x

λ2
− h̄2x2

λ4

)

− iγ3

(

2pxpy − px
h̄x

λ2
− h̄x

λ2
px

)]

(1.59)

It is illustrative to exploit these terms further. Let us focus only on the terms affecting
the x-component and let us omit some constants

b̂x ∼
(

px + i
h̄x

λ2

)

∼
(

d

dx
− x

λ2

)

(1.60)

This representation of b̂x immediately reminds of a creation operator of linear harmonic
oscillator problem. The eigenfunctions in the Landau quantization considering only
x-direction can be written as follows (quantum number n actually labels the Landau
levels):

Ψn =
1

√

λ
√
π

√

1

2nn!
Hn

(x

λ

)

e−
x2

2λ2 (1.61)

where Hn are Hermitian polynomials. It might be easily found that the operator b̂x acts
on Ψn as a creation operator. Due to the orthogonality of the linear harmonic oscillator

eigenfunctions the term
〈

Ψm|b̂|Ψn

〉

is non-zero only for m = n+1. Similarly, the complex

conjugate b̂∗x ∼
(

px − i h̄x
λ2

)

∼
(

d
dx

+ x
λ2

)

acts as an annihilation operator on Landau levels.

Interestingly enough, similar analysis can be done for ĉ term (under the assumption γ2 =
γ3)

20



ĉx ∼
(

p2x −
h̄2x2

λ4
+ ipx

h̄x

λ2
+ i

h̄x

λ2
px

)

(1.62)

ĉx ∼
(

d2

dx2
+
x2

λ4
− d

dx

x

λ2
− x

λ2
d

dx

)

∼
(

d

dx
− x

λ2

)(

d

dx
− x

λ2

)

(1.63)

The operator ĉx acts twice as a creation operator. Similarly the complex conjugate ĉ∗

acts as two annihilation operators. We can finally conclude that minimum of two Landau
levels must be included in the analysis for both Luttinger terms to take effect.

1.8 Zeeman terms

The shift and splitting of the energy spectra due to the presence of external magnetic field
are called Zeeman effect. The study of such Zeeman splitting of bound complexes such as
excitons or trions give us information about the binding energies, coupling of states, etc.
Moreover some bound complexes are only stable in the presence of the external magnetic
field inducing corresponding Zeeman energy shift. Basic theory of Zeeman splitting in
atoms is given in many textbooks (e.g. [7]). The most important concepts that are
obviously relevant for these thesis are the introduction of Bohr magneton µB = h̄e

2m0
and

the introduction of Landé g-factor, which can be exactly computed for simple systems.
The energy splitting for spinless particles is referred to as normal Zeeman effects with the
split of adjacent energies

∆E = µBB (1.64)

whereas for systems with spin there is additional coefficient - Lande g-factor - and the
energy splitting of so called anomalous Zeeman effect is given as

∆E = gµBB (1.65)

The Zeeman term for electrons and holes in semiconductors has been derived by Luttinger
purely from symmetric consideration. Actually, very careful handling with wavevectors
(or momentum operators) that do not commute is the most important. The derivation
can be found in a very detail in [4], however, very schematically, the Zeeman term evolves
from the commutation relations of momentum operators in the presence of magnetic field.
In the Luttinger analysis, there appears following term that leads to Zeeman the term

i

2m0
[p̂x, p̂y] =

i

2m0
(px (py − eBx)− (py − eBx) px) (1.66)

=
i

2m0

(

−ih̄ ∂
∂x
eBx

)

(1.67)

=
h̄eB

2m0
= µBB (1.68)
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The theory of Zeeman splitting in systems related to this thesis will be further developed
in the next section after introduction of exciton and trion concepts. Some experimental
results of g-factor measurements are presented in the Literature review section.
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2 Excitons and Trions

2.1 Exciton

Exciton is an electrically neutral quasiparticle that represents bound state of an electron
and hole that are attracted to each other by the Coulomb force. This attractive force
ensures that exciton has lower energy than unbound electron and hole thus new excitonic
energy level inside the forbidden gap is created. When dealing computationally with the
excitonic problem, the fundamental step is always the decomposition of centre-of-motion
movement and the relative coordinate that describes just the distance between the hole
and the electron. Let us now outline the solution for three gradually more complicated
cases. The first describes excitons in a bulk semiconductor, the second takes into account
quantum heterostructure and the third includes the magnetic field.

2.1.1 Excitons in an idealized bulk semiconductor

Let us consider simple semiconductor that can be characterized by single conduction band
and single valence band that are both described by parabolic dispersion relations:

Ec (k) = Eg +
h̄2k2

2mc
(2.1)

Ev (k) = − h̄
2k2

2mv
(2.2)

mc andmv are corresponding effective masses. The ground state is a state with completely
filled valence band and empty conduction band. However, if an electron is excited into
the conduction band, one place in the valence band is left unoccupied. It is useful then
to introduce the concept of hole. The valence band with one unoccupied state can be
considered as the filled band plus a hole. The hole is characterized by wavevector kh =
−kv, effective mass mh = −mv and positive charge +e. For unbound state, the energy
of the first excited state would be Eg, but for the excitonic bound state, the particles are
attracted by Coulombic force and the energy is modified and it can be determined by the
solution of Schrödinger equation:

[

p̂2
e

2me
+

p̂2
h

2mh

− e2

4πε |re − rh|

]

ψ (re, rh) = (E −Eg)ψ (re, rh) (2.3)

Electronic effective mass can be identified as me ≡ mc and ε is the static dielectric
constant of the semiconductor. The structure of this Schrödinger equation is equivalent
to that describing the hydrogen atom and can be treated in the same way. The first
and crucial step is defining of new coordinate system, in other words, the introduction of
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centre-of-mass.

r = re − rh (2.4)

R =
mere +mhrh

me +mh
(2.5)

p̂ = −ih̄ ∂
∂r

(2.6)

P̂ = −ih̄ ∂

∂R
(2.7)

P̂ = p̂e + p̂h (2.8)

p̂ =
mhp̂e −mep̂h

me +mh
(2.9)

M = me +mh (2.10)

µ =
memh

me +mh

(2.11)

By this set of substitutions we obtain following equation:

[

P̂ 2

2M
+

p̂2

2µ
− e2

4πεr

]

ψ (r,R) = (E − Eg)ψ (r,R) (2.12)

The main importance of this substitution is that the Hamiltonian terms acting on r and R

are well separated. The Hamiltonian structure thus enables to separate the wave function
into parts that depend on r and R, respectively. Moreover, the centre-of-mass moves like
the free particle since Hamiltonian acting on R is a free particle Hamiltonian. In other
words P̂ = h̄K is a good quantum number, thus we can decompose the wavefunction as:

ψ (r,R) =
1√
W
exp (iK.R) φ (r) (2.13)

The constant W just normalizes the wavefunctions. In order to solve the Schrödinger
equation for relative coordinate r only, it is necessary to rescale the energy:

E = Eg +
h̄K2

2M
+ E (2.14)

We thus finally obtained following equation, that is formally equivalent to the hydrogen
atom problem:

[

p̂2

2µ
− e2

4πεr

]

φ (r) = Eφ (r) (2.15)

The solutions to this equation are the hydrogen like wavefunctions (e.g. [7]). Most
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importantly, for the ground state holds:

φ (r) =
1

√

πa3B

exp

(−r
aB

)

(2.16)

E = − µe4

32π2ε2h̄2
(2.17)

aB =
4πεh̄2

µe2
(2.18)

aB is the effective excitonic Bohr radius. Exciton can be thus considered as quasi particle
with the mass of M = me +mh and the ground energy E < Eg.

2.1.2 Excitons in an idealized heterostructure

Now, let us consider single quantum well that is created by a layer of material A in between
of material B. We need to assume that both materials A and B have the same dielectric
constant ε and that effective masses mh and me are equal in both A and B. We also
assume now that dispersion relations of both electrons and holes are simple parabolic.
Under these assumptions we can write Schrödinger equation as follows:

[

p̂2
e

2me
+

p̂2
h

2mh

− e2

4πε |re − rh|
+ Ue(ze) + Uh(zh)

]

ψ (re, rh) =

= (E − Eg)ψ (re, rh) (2.19)

Ue(ze) and Uh(zh) are step-like quantum well potentials for electrons and holes. Under the
assumption of infinitely deep quantum well, these potentials effectively confine the excitons
inside the quantum well. Anyway, due to the confining potentials, it is not possible to
carry out the centre-of-mass transformation in the z-direction. It is only possible to define
new coordinate system for the in-plane components x and y.

r‖ = re‖ − rh‖ (2.20)

R‖ =
mere‖ +mhrh‖

me +mh
(2.21)

p̂‖ = −ih̄ ∂

∂r‖
(2.22)

P̂‖ = −ih̄ ∂

∂R‖
(2.23)

P̂‖ = p̂e‖ + ˆph‖ (2.24)

p̂‖ =
mh ˆpe‖ −me ˆph‖

me +mh

(2.25)
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Resulting Schrödinger equation can be written as follows using already defined M and µ:




P̂ 2

2M
+

p̂2

2µ
+

p̂2
ze

me
+

p̂2
zh

2mh

− e2

4πε
√

r2‖ + (ze − zh)
2
+ Ue(ze) + Uh(zh)



×

×ψ
(

r‖,R‖, ze, zh
)

= (E − Eg)ψ
(

r‖,R‖, ze, zh
)

(2.26)

We can again factorize the wavefunction ψ
(

r‖,R‖, ze, zh
)

. Moreover the
’xy-centre-of-mass’ moves in the xy-plane like the free particle thus we can write

ψ
(

r‖,R‖, ze, zh
)

=
1√
W
exp

(

iK‖.R‖
)

φ
(

r‖, ze, zh
)

(2.27)

The solution of Eq.2.26 for φ
(

r‖, ze, zh
)

is still uneasy, but the decomposition of movement
into relative coordinates is perfectly feasible as it has been shown. The solution of this
problem is out of sight of this thesis since the formulation of the problem does not involve
the real valence-band structure.

2.1.3 Excitons in an idealized heterostructure with inclusion of magnetic field

Let us first remind that we assume only magnetic field perpendicular to the quantum well
B = (0, 0, Bz) and Landau calibration in the form: A = (0, Bzx, 0). Hamiltonian can thus
be written as:

[p2xe + (pye + eBxe)
2

2me
+
p2xh + (pyh − eBxh)

2

2mh
+

p2ze
2me

+
p2zh
2mh

− e2

4πε |re − rh|
+ Ue(ze) + Uh(zh)

]

ψ (re, rh) =

= (E − Eg)ψ (re, rh) (2.28)

Showing that even this Hamiltonian is well decomposed by centre-of-mass transform is
still straightforward but it needs some computational effort. We use the same set of
identities to defining the new coordinate system as in the previous part. That transform
does not affect the z-components and the Coulombic potential term includes apart of the
z-components only the relative coordinate r‖. This means that we need to deal only with
the first two fractions. To be very explicit we write the exact substitutions that must be
made

rh‖ = R‖ −
me

me +mh

r‖ (2.29)

re‖ = R‖ +
mh

me +mh

r‖ (2.30)

ph‖ = −p‖ +
mh

me +mh

P‖ (2.31)

pe‖ = p‖ +
me

me +mh

P‖ (2.32)
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and the used notation

rh‖ = (xh, yh) re‖ = (xe, ye) r‖ = (x, y) R‖ = (X,Y )

ph‖ = (pxh, pyh) pe‖ = (pxe, pye) p‖ = (px, py) P‖ = (Px, Py)

After straightforward but lengthy computation we get following formula describing the
first two fractions in the Hamiltonian 2.28:

P̂ 2

2M
+

p̂2

2µ
+ eB

(

pyX

µ
+
Pyx

M
+ pyx(m

−1
e −m−1

h )

)

+

+e2B2

(

X2

2µ
+
m2

h +m2
e −memh

2memh(me +mh)
x2 +Xx(m−1

e −m−1
h )

)

(2.33)

This part of the Hamiltonian does not seem to be decomposed at all. However, it is
possible to choose following wavefunctions that leads to intended decomposition:

Ψ = ψ(X,Y, y)φ(x, y, ze, zh) = exp

[

i

(

Kx −
eBy

h̄

)

X + iKyY

]

φ(x, y, ze, zh) (2.34)

Let us now act with the important part of Hamiltonian on such wavefunction. We need
to avoid all the terms that include X or Y , thus we write only those problematic terms
(extreme caution must be paid when dealing with the first following term since double
differentiation of product results in three terms altogether):

p̂2

2µ
Ψ =

e2B2X2

2µ
Ψ+

ih̄eBX

µ
ψ
∂φ

∂y
+ ... (2.35)

eB
pyX

µ
Ψ = −e

2B2X2

µ
Ψ− ih̄eBX

µ
ψ
∂φ

∂y
(2.36)

eBpyx(m
−1
e −m−1

h )Ψ = −e2B2Xx(m−1
e −m−1

h )Ψ (2.37)

e2B2

(

X2

2µ
+Xx(m−1

e −m−1
h )

)

Ψ =
e2B2X2

2µ
Ψ+ e2B2Xx(m−1

e −m−1
h )Ψ (2.38)

It is now obvious that if we sum the right hand sides we get zero. Thus no term involving
the centre-of-mass coordinates is left and the problem is reduced to find eignefunctions
φ(x, y, ze, zh) that are independent of the centre-of-mass motion.

2.1.4 Excitons and Luttinger Hamiltonian

In the previous chapter, we used Luttinger Hamiltonian framework to describe the
valence band. Now, we would like to describe whole exciton in this framework.
However, this is rather simple. The electronic Hamiltonian is diagonal in the basis of
Luttinger Hamiltonian, as well as confining potentials and Coulombic term. The excitonic
Hamiltonian can thus be shortly written as:

Ĥ = Ĥh +
(

Ĥe + Ue + Uh − Ve−h

)

1 = Ĥh + Ĥ1 (2.39)
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where 1 means 4× 4 identity matrix. We can write the Hamiltonian in a more detail:

Ĥ |ψ〉 =











Ĥhh + Ĥ b̂ ĉ 0

b̂∗ Ĥlh + Ĥ 0 ĉ

ĉ∗ 0 Ĥlh + Ĥ −b̂
0 ĉ∗ −b̂∗ Ĥhh + Ĥ











∣

∣

3
2 ,+

3
2

〉

∣

∣

3
2 ,+

1
2

〉

∣

∣

3
2 ,−1

2

〉

∣

∣

3
2 ,−3

2

〉

(2.40)

Note that if we assume infinitely deep quantum well, the confining potentials Ue and Uh

can be omitted since exciton is completely confined inside the well. Luttinger Hamiltonian
effectively mixes the light and heavy hole states. As a result, the exciton can consist of
both heavy and light holes at once. Due to energetic shift of light holes, the exciton involves
heavy hole with much higher probability, thus the light hole exciton is often omitted.

Let us remind the simple electronic Hamiltonian:

Ĥe =
p̂2
e

2me
=

p̂2ze
2me

+
p̂2xe

+ p̂2ye
2me

(2.41)

It is notable that we assume the same electron effective mass me in both z and r‖
directions. The magnetic field can be formally included through momentum operators,
however Zeeman term has not been explicitly mentioned since it is the topic of following
section.

2.1.5 Excitons and Zeeman effect

The literature considering Zeeman splitting of the excitons in different systems is
completely inconclusive. Moreover, even the basic description differs among the authors
which makes brief overview almost impossible. In the most cases, authors consider only
such exciton that includes the heavy hole. Such exciton contains an electron that has
spin either −1

2 or 1
2 and heavy hole that can possess two different values of total angular

momentum ±3
2 . This is the case of excitonic spectrum shown in Fig. 2.1. In the presence

of magnetic field the degenerate excitonic energy level splits into four levels due to Zeeman
effect. The exciton can annihilate and corresponding energy is emitted, but this is the case
only for optically active - allowed transitions. These allowed transitions always involve the
change of total spin by ±1. This means that we can observe two allowed photoluminiscence
(PL) optical transitions from heavy hole exciton annihilation. Actually, the transition
during which the spin changes by +1 can be observed in right-handed circularly polarized
PL light (σ+) and the transition associated with the spin change by −1 in left-handed
circularly polarized PL light (σ−). However, there is no complete agreement about which
transition belongs to which polarization. Moreover some authors possibly just confuse σ+

and σ− polarizations. Under this simplified framework we can observe two transitions
whose energetic splitting can be written as:

∆E = geffµBB. (2.42)

geff denotes the effective excitonic g-factor. In experimental works, the energy difference
is usually taken positive and thus the effective g-factor is also assumed to be positive
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Figure 2.1: Zeeman splitting - heavy hole exciton

according to this definition, which sometimes appear to be quite impractical. Setting the
value of such effective g-factor is an important experimental result, however, we want now
to establish some theoretical underpinning.

The spin Hamiltonian of the exciton has been derived by Van Kesteren et al. [8] from
symmetric considerations. Here we point out only parts that are important for this thesis
(mainly focusing on magnetic field perpendicular to quantum well - in z-direction). Spin
Hamiltonian of electron can be written as:

Hez
S = µBgeSezBz (2.43)

where ge is an electronic g-factor and Sez takes the values ±1
2 . For the hole we can write:

Hhz

S = −2µBκJhzBz (2.44)

where κ is another Luttinger parameter (see [4]). For the heavy hole Jhz takes the values
±3

2 . In this simple analysis we omitted (apart of anything that may happen in x and
y directions) cubic term (∼ J3

hi) and the spin-spin coupling of the electron and the hole
forming the exciton. Putting these terms together we may write:

Hexcitonz

S = geSezµBBz − ghJhzµBBz (2.45)

Here we introduce also the hole g-factor gh. By this definition the ge and gh respect the
energetic shift (e.g. in case that gh is positive and the spin of the actual hole is also
positive, the energy level is shifted down). First thing to note is that ge is negative in
both GaAs and AlAs(ge = −0.44, [11]) thus the negative electron spin in fact raises the
energy level. The concept of gh is the source of the most confusions. We assume that gh
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must always multiplied by the total angular momentum of the hole, the effective g-factor
is for the heavy hole exciton geff = |ge − 3gh|. On the other hand - some authors, who
assume only heavy holes, incorporate the triple total angular moment already into gh,
which makes the effective g-factor galternativeeff = |ge − gh| only. In order to draw the energy
schemes for Zeeman splitting we need to choose the sign of gh. According to the scheme
in Fig. 2.1 we choose gh to be positive. The topmost energy level thus consists of negative
spins of both electron and hole. Moreover we assume that 3 |gh| > |ge|. It must be stressed
that the scheme might be inappropriate in the case that either gh or ge have different sign
than assumed or the assumption of the mutual relationship is not fulfilled.

The important conceptual step is to allow for the existence of light-hole exciton. Fig.
2.2 shows the Zeeman splitting for exciton involving the light hole with the assumptions:
ge < 0, gh > 0 and |ge| > |gh|. In the case that |ge| < |gh|, the two middle energy levels
interchange their position, what actually does not have qualitative impact on the observed
spectra.

Figure 2.2: Zeeman splitting - light hole exciton

The optical properties of both heavy and light hole excitons are qualitatively given by
the allowed optical transitions. The allowed transitions are those transitions for that
total angular momentum changes exactly by +1 or −1. The transition associated with
the change of momentum by +1 is visible in the right handed circularly polarized light
(σ+),whereas the transition associated with the change of momentum by −1 is visible in
the left handed circularly polarized light (σ−). For each heavy and light hole exciton we
thus have two allowed optical transition, each of those visible in one polarization.

Our approach is, however, based on the Luttinger Hamiltonian that mixes both light hole
and heavy hole excitons into one quantum state. The Zeeman terms in the Luttinger
Hamiltonian framework have been instructively developed by Winkler et al. [12]. The
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Zeeman terms of the holes can be written as (under assumption of only perpendicular
magnetic field):

Ĥs |ψ〉 = −ghµB
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(2.46)

This form is instructive in a way how to add the Zeeman terms into the Hamiltonian.
The resulting Zeeman splitting does not follow any of the depicted schemes, since heavy
and light holes are mixed. The mixed state thus does not possess any well defined spin,
because the spin operator is not the eigenoperator of the problem. The optical activity
of given mixed state depends on the relative weights of heavy hole and light hole, thus
any suitable excitonic state might be visible in both σ+ and σ− polarizations. Evolution
of the Zeeman splitting with magnetic field and quantum well width of such complicated
structures like exciton (or even trion) can be rather complex and it is an active field of
current research.

Whole this section about excitons provided an introduction to the most important concepts
and serves for instant comparison with the features of more complicated structures of
charged excitons - trions.

2.2 Trion

Neutral exciton (X0) can be bound with one additional electron or one additional hole and
form charged exciton denoted as trion. Obviously, two fundamental types of trions exist.
Positive trion (X+) consists of one electron and two holes and negative trion consists of
two electrons and one hole (X−). Exciton can be considered as a solid state analogue
of hydrogen atom. Similarly, the trion is an analogical problem to either H− or He+.
However, the computational treatment is quite different since in the case of both excitons
and trions all the charge carriers are of comparable masses.

The creation of an exciton results from the interaction between two charges, whereas trion
results from the interaction between dipole and charge. This means that the binding
energy of trion is much lower. However, the precise definition of binding energy, mainly
in the presence of magnetic field is ambiguous and differs substantially among various
authors. That is why we postpone the discussion about binding energy and the energy of
transition to the foregoing section.

In this thesis we want to use the Luttinger Hamiltonian framework that describes the
hole states in a very detail. Positive trion consists of two such holes and in the Luttinger
framework the two hole system would substantially complicate the computations (mainly
it would increase the size of the Hamiltonian matrix at least by the factor of two). It
should be possible to analyse the positive trion in the Luttinger framework, however it is
beyond the scope of this thesis, which focuses solely on the negative trion.
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2.2.1 Trion in an idealized heterostructure

In this part we discuss the possibility of centre-of-mass transform for the trion. This
transform has been already derived for the exciton, so we will focus on the important
differences.

The Hamiltonian of the negative trion in the effective mass approximation with no external
field can be written as:

[ p̂2
e1

2me
+

p̂2
e2

2me
+

p̂2
h

2mh

− e2

4πε |re1 − rh|
− e2

4πε |re2 − rh|
+

e2

4πε |re1 − re2|
+Ue1(ze1) + Ue2(ze2) + Uh(zh)

]

ψ (re1, re2, rh) = (E − Eg)ψ (re1, re2, rh) (2.47)

Subscripts e1 and e2 obviously refer to first and second electron, respectively. Note that
Hamiltonian involves additionally the kinetic energy term for the second electron and
mainly two new Coulombic terms. Hamiltonian eigenfunctions depend on three spatial
variables, that consist of nine parameters altogether. The centre-of-mass transformation
can be carried out similarly to the exciton in in-plane components only.

r1‖ = re1‖ − rh‖ (2.48)

r2‖ = re2‖ − rh‖ (2.49)

R‖ =
mere1‖ +mere2‖ +mhrh‖

2me +mh
(2.50)

P̂‖ = ˆpe1‖ + ˆpe2‖ + ˆph‖ (2.51)

p̂1‖ =
(me +mh) ˆpe1‖ −me ˆpe2‖ −me ˆph‖

2me +mh
(2.52)

p̂2‖ =
(me +mh) ˆpe2‖ −me ˆpe1‖ −me ˆph‖

2me +mh
(2.53)

Resulting Schrödinger equation can be written as follows:

[ P̂ 2

2M ′ +
(p̂1 + p̂2)

2

2µ′
+
mh

me

p̂1
2 + p̂2

2

2µ′
+

p̂2
ze1

me
+

p̂2
ze2

me
+

p̂2
zh

2mh

− e2

4πε
√

r21‖ + (ze1 − zh)
2
− e2

4πε
√

r22‖ + (ze2 − zh)
2
+

e2

4πε
√

(

r1‖ − r2‖
)

+ (ze1 − ze2)
2

+ Ue1(ze1) + Ue2(ze2) + Uh(zh)
]

ψ (re1, re2, rh) = (E − Eg)ψ (re1, re2, rh) (2.54)

We employed new notationM ′ = 2me+mh and µ′ = mhM
′2

(me+mh)2
. Note that the movement of

the centre-of-mass is well separated from the evolution of relative coordinates. We can thus
factorize the wavefunction ψ

(

r1‖, r2‖,R‖, ze1, ze2, zh
)

. Moreover the ’xy-centre-of-mass’
moves in the xy-plane like the free particle thus we can write

ψ
(

r1‖, r2‖,R‖, ze1, ze2, zh
)

=
1√
W
exp

(

iK‖.R‖
)

φ
(

r1‖, r2‖, ze1, ze2, zh
)

(2.55)
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The situation becomes incomparably more complicated in the case of non-zero magnetic
field. The Hamiltonian in the effective mass approximation can be written as:

[p2xe1 + (pye1 + eBxe1)
2

2me
+
p2xe12 + (pye2 + eBxe2)

2

2me
+
p2xh + (pyh − eBxh)

2

2mh

+

+
p2ze1
2me

+
p2ze2
2me

− e2

4πε |re1 − rh|
− e2

4πε |re2 − rh|
+

e2

4πε |re1 − re2|
+ Ue1(ze1) + Ue2(ze2) + Uh(zh)

]

ψ (re1, re2, rh) = (E − Eg)ψ (re1, re2, rh) (2.56)

It is lengthy, though straightforward, to develop the Hamiltonian in the transformed
coordinates and new momentum operators and the result is not shown here. Similarly as
in the case of exciton, there appear terms (actually much more such terms than in the case
of exciton) that combine the movement of the centre-of-mass and the relative coordinates.
The Hamiltonian itself is thus not well decomposed. In the excitonic case we were able to
choose such function that effectively allows for the Hamiltonian decomposition. However,
in the case of trion, the situation is much more complicated. The main reason is that the
trion has non-zero charge. Thus in the magnetic field its centre-of-mass does not propagate
as free particle and cannot be described as a plane wave. Actually, due to Landau
calibration, in the Y direction, the centre-of-mass moves freely and can be described
as a plane wave. But this does not hold in the X direction, in which the centre-of-mass
movement should be described by eigenfunctions of Landau level quantization. The ground
state eigenfunction can be written in a form:

Ψ(X,Y, x1, y1, x2, y2, ze1, ze2, zh) = exp

[

−
(

X −Kyλ
2
)2

λ2
+ iKyY

]

φ(x1, y1, x2, y2, ze1, ze2, zh)

(2.57)
It is of extreme importance that if the Hamiltonian act on this wavefunction, the X and Y
coordinates and the relative coordinates will not separate and this centre-of-mass transform
does not lead to the desired decomposition. This is in accordance with Whittaker
and Shields [6] who claim that Hamiltonian involves terms coupling the relative and
center-of-mass parts. The problem may lay in the fact that the centre-of-mass does not
coincide with the centre-of-charge, which becomes important due to Lorentz force in the
magnetic field. On the other hand, Redlinski and Kossut used center-of-mass transform.
They used functions with separated relative and centre-of-mass parts for their variational
treatment, but more details about the transform and its consequences are not provided.

The impossibility (or at least extreme complications) of center-of-mass transform is caused
by fundamental difference between exciton and trion computational treatment. The
centre-of-mass transform is not used in this thesis.

2.2.2 Singlet and triplet

Negative trion contains two electrons. It is thus multi-fermionic system that must obey
the Pauli principle. This means that the total wavefunction (including the spin part)
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must be antisymmetric. This allows for two situations, either the spin wavefunction is
antisymmetric and the orbital function is symmetric or the other way round.

There is only one possibility how to construct antisymmetric spin wavefunction for the
two fermions:

ψsinglet
Se =

1√
2
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(2.58)

This sole spin function thus define so called singlet. The orbital function of the singlet
must be symmetric with respect to the exchange of electrons.

On the other hand, there are three possibilities how to construct symmetric wave function.

ψtriplet1
Se =
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(2.59)

ψtriplet2
Se =
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(2.60)

ψtriplet3
Se =

∣
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〉

(2.61)

The states consisting of these functions are denoted as triplet. The orbital function of
the tripet state must be antisymmetric with respect to the exchange of electrons. The
binding energies for the triplet and singlet state may differ. Note that two triplet states
have a non-zero total electron spin, which contributes to the Zeeman splitting.

2.2.3 Binding energy and energy of transition

Binding energy E(X)binding of the exciton is the difference between the energy of the
electron that creates the exciton and the free electron in the conduction band. Note that
the centr-of-mass of any optically active exciton must not move, otherwise the particles
cannot annihilate. Thus the energy of the excitonic state E(X) can be associated to
the binding energy E(X)binding . We assume that we measure the energy of exciton in
negative values (the higher is the absolute value of the energy the stronger is the binding).
The energy of the transition that is observable in the optical spectra can be written as
E(X)transition = Eg+E(X). It is clear, that this energy is smaller for the bound electrons
than the energy of the forbidden gap. Note that for now we omit the confinement energy
of the exciton that is set in the quantum well.

Binding energy of the negative trion E(X−)binding is verbally defined as the energy drop
when the exciton becomes bounded with an additional electron. If we thus measure the
energy of the trion E(X−) we need to know the energy of the corresponding exciton to
establish the binding energy E(X−)binding = E(X−) − E(X). The optical transition in
the negative trion involves the annihilation of one electron and one hole which leaves
one electron remaining. The own energy of such electron must not be forgotten in the
definition of the transition energy and we may write: E(X−)transition = Eg + E(X−) −
Ee. In the experimental works, the binding energy of the trion is usually established as
E(X−)binding = E(X−)transition − E(X)transition, which agrees with the definition of the
binding energy only in the special case when Ee = 0.
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Serious problems arise with the definition of the trion binding energy if we allow for the
magnetic field. The Zeeman effect splits the energies for both exciton and trion and
moreover since the effective g-factors for exciton and trion differ, the splitting may also be
different. This problem occurs even if we assume only the singlet state of the trion. Such
situation is depicted in Fig. 2.3 [10]. Due to different effective g-factors of exciton and
trion, the binding energy under scheme I depends on the magnetic field. On the other hand,
the scheme II refers only to the binding energy of trion in zero magnetic field. However,
this is quite inappropriate since some trion states are not bounded without presence of the
magnetic field and these states become bounded thanks to the Zeeman effect. Scheme I is
thus more useful, however it must be considered that the binding energy depends on the
magnetic field, the g-factor of the trion and moreover on the g-factor of the corresponding
exciton.

Figure 2.3: Possible definitions of trion binding energy; X0 - exciton; X∗ - singlet state of
the trion [10]

2.2.4 Negative trion under Luttinger Hamitlonian framework

The treatment of the negative trion under Luttinger Hamiltonian framework is a
straightforward extension to the excitonic case. Note that the Luttinger Hamiltonian
for positive trion would be much more complicated. In the case of negative trion, both
electronic Hamiltonians are diagonal and so are three Coulombic terms. We can thus write
shortly:

Ĥ = Ĥh+
(

Ĥe1 + Ĥe2 + Ue1 + Ue2 + Uh − Ve1−h − Ve2−h + Ve1−e2

)

1 = Ĥh+ Ĥ1 (2.62)

where 1 means 4× 4 unity matrix. The meaning of other terms is obvious. Ĥe1 and Ĥe2

are Hamiltonians corresponding to the two electrons. Ue1, Ue2, and Uh are quantum well
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confining potentials - may be omitted in the case of infinitely deep QW. Ve1−h, Ve2−h, and
Ve1−e2 are Coloumbic potentials describing mutual interactions of three particles involved.

Compare this Hamiltonian to the excitonic one defined by Eq. 2.39. This trion
Hamiltonian might be rewritten in a detail as 4 × 4 matrix, but such equation would be
equivalent to Eq. 2.40 just with different meaning of Ĥ. It is also notable that even though
three Coulombic terms do not involve anything conceptually new, it represents substantial
complication for computations since these terms are usually treated numerically.

2.2.5 Negative trion and Zeeman effect

Similarly to the Eq. 2.45 we can derive the z-direction spin Hamiltonian for the negative
trion:

Htrionz

S = ge (Se1z + Se2z)µBBz − ghJhzµBBz (2.63)

The effective g-factor for trion remains the same (i.e. geff = |ge − 3gh| for the heavy hole
trion and geff = |ge − gh| for the light hole one). The energy levels structure is more
complicated for the case of trion and so are the optical spectra due to higher amount of
allowed optical transitions. We assume the relationships following relationship between
g-factors: ge < 0; gh > 0; 3 |gh| > 2 |ge|; and 2 |ge| > |gh|). We can thus draw the Zeeman
splitting for the heavy hole negative trion in the triplet state Fig 2.4 and the light hole
negative trion in the triplet state Fig 2.5. The total spin of the electrons is always zero for
the singlet state and this leads to the simple Zeeman splitting for the heavy hole negative
trion in the singlet state Fig 2.6 and the light hole negative trion in the singlet state Fig
2.7.

The spins of two electrons give rise to three different energy levels for the triplet and that
is why this state may be found in any of the three spin states of the electron pair. Each
of the three energy levels is further split to the two levels due to total angular momentum
of the hole. Thus the Zeeman effect causes the energy split to the six energy levels. The
annihilation of trion means that one of the electrons recombine with the hole, whereas
the other remains unbounded in the conduction band. Thus even the final state of the
trion annihilation is split into two levels due to Zeeman splitting of single electron. The
allowed optical transitions involve the change of total angular momentum by +1 or −1.
For heavy-hole trion triplet we thus have four allowed transitions, whereas for light-hole
trion all six energy levels transitions may contribute to the optical spectra.

As in the case of excitons, the heavy-hole negative trion state is much more probable than
the light-hole one. Thus only the heavy-hole trions are observed in the experiments and
usually only those are considered in the theoretical works. Let us thus consider only the
heavy-hole trion triplet scheme (Fig 2.4) for now. No allowed optical transition exists for
the lowest energetic state, which is actually triplet state. That is why it is called dark

triplet. Although it is not explicitly mentioned in the literature, it must be noted that in
the case that ge > 0 and gh remaining positive the order of electronic levels flips. The
ground state would then be described by Se = −1 and the total angular momentum of
heavy hole +3/2, which would mean that the ground state is not dark anymore. Moreover,
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Figure 2.4: Zeeman splitting - heavy hole negative trion in triplet state

Figure 2.5: Zeeman splitting - light hole negative trion in triplet state

as argued by Volkov [16], the triplet is often localized near the impurity in the potential
barrier and due to break of symmetry even the dark triplet state might be visible. Under
our original assumptions on g-factors, it is the topmost energy level that is also dark.

The other four states in triplet schemes are referred to as bright triplet states. Note that
both bright triplet states associated with heavy hole trion that are visible in σ− light have
the same transition energy and thus are optically indistinguishable (see Fig 2.4). The
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Figure 2.6: Zeeman splitting - heavy hole negative trion in singlet state

Figure 2.7: Zeeman splitting - light hole negative trion in singlet state

same holds for the two states that are visible in the σ+ light.

Both heavy-hole singlet states are visible and are often denoted as bright singlet. Some of
these states are usually visible trion states in the photo-luminescence experiments. In the
case of light-hole trion, there are no dark states since for each level there exists an allowed
optical transition.

The real situation is, however, more complicated. It has already been mentioned in the
case of excitons that the light and heavy holes states become coupled under Luttinger
Hamiltonian framework. The Zeeman terms of the holes are the same in the case of
negative trion as they were for the exciton and so they are defined by equation 2.46. The
new point is that we have three different spin levels for the pair of electrons. Moreover, the
orbital wavefunctions differ for the singlet and triplet states of trion. We thus have four
different states of the two electrons in the negative trion and the corresponding Zeeman
Hamiltonian can be written as:
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Ĥse |ψ〉 = geµb
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(2.64)

where |ψ〉singlet is symmetric with respect to the exchange of the electrons whereas |ψ〉triplet
is antisymmetric. The complete wavefunction of two electrons is thus antisymmetric as
it is required for fermions. The singlet and triplet thus differ in the symmetry of orbital
function and moreover, for triplet there are three allowed values of spin projection of
electron pair: Se = −1, 0, 1, whereas for singlet we have only Se = 0. Altogether this
gives rise to four different electronic states of negative trion. Note that we must combine
all four electronic states as defined by this Hamiltonian and four hole states defined by
Luttinger Hamiltonian. Thus putting these two Hamiltonians together results in the 16×16
Hamiltonian, which may be divided into four blocks of size 4×4. Let us recall the discussion
about the involvement of one excited heavy hole state, which leads to the 6× 6 Luttinger
Hamitonian. Thus the Hamiltonian under considerations that describes the negative trion
under Luttinger framework is of the size 24 × 24. However, this Hamiltonian can also be
divided into four blocks, and moreover each of these blocks can be further decomposed into
two separate Hamiltonians (recall Eqs. 1.51 and 1.52). Thus we need to solve 8 separate
Schrödinger’s equations each involving Hamiltonian of the size 3 × 3. The exact form of
the Hamiltonian is further developed in the ’Own computations’ chapter after detailed
explanation of the chosen wavefunction basis.

2.3 Literature review

This section should serve as a brief overview of the state-of-the-art in the research relevant
to the charged excitons. This survey is not comprehensive but presents the most important
experimental results and theoretical approaches that were the most influential for this
thesis. Although the research papers usually include theoretical part, we present the
experimental results separately.

2.3.1 Experimental results

For the purpose of this thesis, two types of experimental results are of extreme importance.
Firstly, these are optical spectra of excitons and trions from photo-luminescence and
absorption experiments, because this thesis attempts to explain such results theoretically.
Secondly experimentally evaluated values of g-factors of Zeeman splitting are of
fundamental importance, since the holes and electrons g-factors are exogenous parameters
of our theoretical model and thus must be inserted according to suitable experimental
results.

Optical spectra
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Optical properties of thin GaAl-AlGaAs quantum wells in the presence of perpendicular
magnetic field were studied by Schmitt-Rink et al. (1991) [17]. Authors investigated
optical properties of 8.5 nm wide GaAs/AlGaAs quantum well sample. The absorption
optical spectra (σ− light) for magnetic field up to 12 T are depicted in Figs 2.8 and
2.9 in two different graphical representations. The absorption spectrum for B = 12 T is
also depicted separately in Fig 2.10 for both light polarizations. Authors also attempt to
explain experimental results theoretically. Their sophisticated approach takes into account
even biexcitons or triexcitons, but the concept of charged exciton is not introduced.

Figure 2.8: Linear absorption spectra vs.
magnetic field for σ− circularly polarized
light [17]

Figure 2.9: Mean absorption curvature
vs. magnetic field for σ− circularly
polarized light [17]

The charged exciton has been observed for the first time by Kheng et al. (1993) [20] in the
absorption spectra of CdTe - CdZnTe multiple quantum wells. Finkelstein et al. (1995)
[21] observed the charge excitons on the GaAs-AlGaAs interface for the first time. The
excess electrons enable negative trion to be observable. The binding energy of the negative
trion is established to be 1.2 meV without presence of magnetic field.

An influential article by Shields et al. (1998) [31] reports observation of negative trion
on n-type structure with quantum well width of 30 nm and also of positive trion on
p-type structure with QW width od 20 nm. Singlet and triplet states of negative trion are
observed and dependence of their binding energies on electric field is investigated. Authors
also claim that high sensitivity of resonance of both neutral and charged trions can be
used in electro-absorption modulators and other optical devices. Experimental results
are supported by theoretical model in effective-mass approximation and wavefunctions
constructed from a finite set of Landau level states. Singlet wave function is found to be
relatively compact compared to the triplet wavefunction.

More comprehensive view on both negatively and positively charged excitons is given by
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Figure 2.10: Linear absorption spectra at 12 T for σ− (dashed line) and σ+ (solid line)
circularly polarized light [17]

Glasberg et al. (1999) [22]. Authors could tune the experiment via illumination intensity
so that they were able to observe both positive and negative trion on one sample. The
resulting spectra were measured for 20 nm wide quantum well and are shown in the Fig
2.11. In addition to the visible peaks in this spectrum, authors claim that weak satellite
peaks that are observed in the lower energies may result from shakeup process, in which
a recombination of one of the electrons in the X− with the hole is accompanied by an
ejection of the remaining electron to a higher Landau level (i.e. an effect analogous to
Auger recombination). The paper also examines the evolution of transition energies with
magnetic field up to 7 T. Fig 2.12 shows transition energies for exciton (X), negative trion
in singlet state (X−

s ) and negative trion in triplet state (X−
t ).

One of the most influential experimental article for this thesis is by Vanhoucke (2001) [9].
After invaluable introduction to negative trions, authors present the evolution of transition
energies for both exciton and negative trion and for both light polarizations. Moreover,
Zeeman splittings for exciton and trion are separately depicted. The experiment was
repeated for three different widths of quantum well (10 nm, 12 nm, 15 nm). Authors do
not define, which negative trion state is actually observed.

Teran et al. observed both positive and negative trions in a 9 nm GaAs quantum well.
Authors identified the negative trion peak at the energy of 1.5597 eV and established its
binding energy as E(X−)binding = 2.1meV in zero magnetic field.

Finally, brief and consistent article by Yusa et al. [32] must be mentioned. Authors
studied photo-luminescence of 20 nm GaAs quantum well under very low temperature (20
mK) and dilute 2DEG with low density (5× 109cm−2). The dark triplet state, being the
ground one, is well observable, which might be attributed to fluctuating potential of remote
donors that may scatter the dark triplet and transfer its excess angular momentum so that

41



Figure 2.11: Evolution of σ+ polarized PL
spectra at 7 T from X+ to X− spectrum
through a neutral exciton [22]

Figure 2.12: The energy dispersion of the
X− PL peaks as function of magnetic field
[22]

Figure 2.13: Field dependence of the PL energy. Upper inset shows the Zeeman splitting
of the neutral exciton (X0), whereas the lower inset refers to the splitting of the states of
negative trion.

dark triplet undergoes radiative recombination. The PL spectrum and its dependence on
temperature is shown in Fig 2.14 and the dependence of binding energies of singlet, bright
triplet and dark triplet is shown in Fig 2.15. The connection between charged exciton
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states and fractional quantum Hall effect is discussed in the paper.

Figure 2.14: PL spectrum as a function of
temperature. X0 - exciton; X−

s - singlet;
X−

t1 - bright triplet; X−
t2 - dark triplet [32]

Figure 2.15: The binding energies as a
function of B. X0 - exciton; X−

s - singlet;
X−

t1 - bright triplet; X−
t2 - dark triplet [32]

Landé g-factors

The determination of g-factors experimentally is an uneasy task. The current literature is
inconclusive in this respect. Some authors believe that the g-factors do not change with
the quantum well size and the magnetic field, while others claim that g-factor depends on
magnetic field and/or the well width. Experimentally determined values of g-factors are
rarely in mutual accordance.

Following list of important experimental results is based on rather comprehensive summary
by Groholová (2006) [23]. However, all original research papers have been checked and
few more experimental results added.

Van Kesteren et al. (1990) studied the excitons in narrow (up to 2.5 nm) typeII GaAs/AlAs
quantum wells employing optically detected magnetic resonance. Landé g-factor for
electrons has been found independent on quantum well width and has value of ge = 1.9.
The hole g-factor is found to be the lowest for the widest examined QW, gh = 2.3, whereas
for QW width of 1.7 nm it is gh = 2.9. Snelling et al. [24] studied the magnitude and the
sign of the g-factor for electrons as a function of width of type I GaAs/AlGaAs quantum
well. For L < 5 nm the electron spend most of time in the Al0.3Ga0.7As barrier and thus
the g-factor attains the bulk value for Al0.3Ga0.7As being ∼ +0.4. With increasing well
width the g-value approaches the GaAs bulk value of −0.44. ge therefore must reverse its
sign and it is reported to cross zero for L = 5 nm. For the width that is relevant for this
thesis (L = 10 nm) the reported value of electron g-factor is roughly ge = −0.2. Hole and
exciton g-factors have been studied in another paper by Snelling et al. (1992) [25]. The
PL spectra have been studied in type I GaAs/AlGaAs quantum well with barrier content
of 0.36. Substantial increase of g-factor of holes has been reported for growing width of
QW. For L < 8 nm, the holes g-factor is negative and for wider wells it becomes positive.
Due to bigger absolute values of gh and its stronger dependence on the well width when
compared to electron g-factor (ge), the complete exciton g-factor (gexc) is driven by the
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hole one. For narrow wells, the value of gexc might reach −2 and it also reverses sign
for the L ∼ 10 nm reaching the values of gexc = 0.5 for L = 20 nm. The authors also
inspected the dependence of Zeeman spitting on the magnetic field. For relevant QW
width (L = 11.2 nm) the Zeeman splitting reverses its sign at around 2 Tesla.

Two already cited papers by Glasberg et al.[22] and Vanhoucke et al.[9] also report g-factors
values for excitons and moreover for trions. Glasberg used 20 nm QW and relatively low
magnetic field up to 7 T. The dependence of effective g-factor geff on the magnetic field
is shown in Fig 2.16. On the other hand, Vanhoucke used high magnetic field (23 - 50
T) and found geff to be independent on the magnetic field. The dependence of geff on
quantum well width is shown in Tab 2.1.

Figure 2.16: geff for exciton X, negative trion in singlet state X−
s and positive trion X+

s

[22]

QW Singlet Triplet Exciton

10nm geff = 1.9 geff = 1.9 geff = 1.5
12nm geff = 1.9 geff = 2.1
15nm geff = 1.3 geff = 1.4

Table 2.1: Experimental values for geff for negative trion in singlet and triplet state and
for exciton for three different QW widths. [9]

Two influential papers brought the attention to the dependence of g-factor on the density
of the charge carriers. Tutuc et al. (2002) [26] focused on the dependence of electron
g-factor on the total density of the two-dimensional dilute electron gas (2DEG) using
Shubnikov-de-Haas oscillations and in-plane magnetoresistance. The ge is reported to
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vary from 1.3 up to 2.6. However, the g-factor elicitation is in-direct and the g-factor is
defined by the field that achieve full polarization.

Similarly, Proskuryakov et al. (2002) [27] studied two-dimensional dilute hole gas (2DHG).
Hole g-factor is again defined through field that corresponds to the full spin polarization.
A linear growth of the gh has been found with values varying from 0.4 up to 1.45.

It must be, unfortunately, concluded, that experimental determination g-factors values is
indistinct. This might be attributed to prevailing uncertainty which parameters affect the
g-factors, and moreover often some parameters of substantial importance are not reported.
It is thus problematic to use some g-factor value as an input of the model presented in this
thesis. Another option is to tune the g-factor so that the theoretical results fit measured
optical spectra of exciton - negative trion system.

2.3.2 Theoretical works

Several important theoretical research works have already been mentioned when deriving
the important concepts for this thesis. In this survey, we summarize the most important
research results dealing with charged excitons. Many of the theoretical approaches were
very influential for this thesis.

The first article to mention is Bauer and Ando (1988) [11], although dealing with neutral
excitons only. Conceptually important is that authors used the Luttinger Hamiltonian
framework that implies the mixing of light hole and heavy hole states. Moreover, authors
described the complex energy splitting due to the lack of symmetry caused by quantum
well confinement and moreover due to Zeeman splitting in the mixed heavy hole and light
hole states of exciton. Authors performed exact diagonalization of the Hamiltonian in the
radial basis involving Laguerre polynomials. Energy dispersion as well as dependence of
binding energies on well width and applied magnetic field are comprehensively presented.

The most influential theoretical article for this thesis is written by Whittaker and Shields
[6], which deals comprehensively with negative trion. Some concepts and notes from
this source are recalled in the ’Own computations’ section. Authors do not use any
centre-of-mass transform, however they use wavefunction basis that respects the symmetry
(antisymmetry) for singlet (triplet) state and also involves Laguerre polynomials. There
are three independent quantum numbers for each particle, however, only eight independent
quantum numbers altogether, because total angular momentum is a constant of motion.
The whole trion is treated as quantized to Landau levels and symmetric gauge is chosen
for the vector potential of magnetic field. The most complicated task represents the
computation of Coulomb term for particles in the finite potential well. The most important
result is the binding energy of X− for 10 nm quantum well Fig (2.17) and also for 30 nm
quantum well. Some results are compared to the previously reported experimental results
and they are in good agreement. Moreover, radial probabilities of two electrons with
respect to the hole are shown along with electron-electron radial correlation functions.
Authors also claim that they carried out some calculations using Luttinger Hamiltonian.
However, no details are provided and authors only claim that this approach does not lead
to better theoretical description of experimental data.
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Figure 2.17: Binding energies of the singlet and triplet state of X− relative to the neutral
exciton. Dotted lines - lowest Landau level approximation; dashed lines - lowest subband
approximation; solid lines - full results

Riva, Peeters and Varga studied trions in quantum wells in the series of research articles:
[28], [29] and [30]. Authors use the effective-mass approximation and stochastic variational
method with ’deformed’ correlated Gaussian functions (DCG) as trial functions. The
results of the calculations are compared to different experimental results by other authors
e.g. Glasberg et al. [22] and Yusa et al. [32], see Fig 2.18. The binding energies evolution
with magnetic field is also compared to other theoretical results, e.g. by Whittaker and
Shields [6] for 10 nm quantum well, see Fig 2.19.

Redliński and Kossut [33] performed centre-of-mass transformation and employing trial
envelope wavefunctions they computed transition and binding energies of negative trion
in CdTe quantum wells. The authors claim that the singlet state is an example of an
entangled state (opposite to the triplet state). By application of magnetic field, it is then
possible to entangle or disentangle the ground state, which opens opportunities for the
physics of quantum computers and quantum cryptography.

Elaborated and comprehensive article by Wójs and Quinn (2007) [34] exploit the
dependence of binding energies of trion with respect to quantum well width, magnetic
field and electron concentration. The computation accounts for finite depth and width of
quantum well and the asymmetry caused by one-side doping, moreover several accuracy
and convergence tests are undertaken. Anyway it is beyond the scope of this thesis to
explain complete theoretical approach. The resulting computed binding energies are shown
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Figure 2.18: Theoretical results (curves)
compared to experimental results from
Refs. [22] (full symbols) and [32] (open
triangles)for a QW of width 20 nm [30]

Figure 2.19: The binding energies of
charged excitons from Ref [28] (solid and
dashed lines, different approximations) as a
function of B. Compared with results from
by Whittaker and Shields [6]. Taken from
[28]

in Fig 2.20. The appropriate Zeeman terms must be added to determine absolute ground
state or splitting in the PL spectra. These terms of course shift the magnetic field for that
occurs crossing of the singlet and triplet states. The computations also allow for so-called
dark singlet that may become weakly bound for very high fields. The effect of remote
donors is also discussed and it is established that the effect on the singlet is relatively
weak, whereas the trion may be essentially unbind. Despite indisputable complexity of
the paper, the off-diagonal terms of Luttinger Hamiltonian have been neglected.

During last years, there have been several attempts to describe the negative trion system
in the GaAs quantum wells. However, only few works used the Luttinger Hamiltonian
framework and moreover none of those works provided necessary details of computation
that would allow for replication of the procedure. This thesis aims to fill this gap in the
literature. Moreover, the Zeeman splitting of negative trion system is elaborated in a more
detail than it is common in the research papers. At the expense of this improvements,
some substantial simplifications (e.g. infinite depth of a quantum well) are made and some
effects that might be of physical importance are omitted. Nevertheless, it is the literature
review section that should warn about possible shortcomings of our approach and may
inspire future readers for improvements of our model and calculations.
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Figure 2.20: Dependence of the trion binding energies ∆ on magnetic field B for undoped
or symmetric GaAs quantum well. The thick lines correspond to results after inclusion
of two subbands confined in quantum well, whereas thin lines correspond only two lowest
subband calculations. [34]

3 Own Computations

3.1 Wavefunction basis

In this section, we construct the novel asymmetric wavefunction basis for the trion problem.
The total wavefunction basis consists of three blocks according to the structure of 3 × 3
Hamiltonian given by (1.51) and (1.52). Each block then consists of the wavefunctions
that correspond to the Landau theory of charged particles in magnetic field. The functions
respect the Landau gauge A = (0, Bzx, 0). Note that these functions are not symmetric
in xy-plane. This unusual choice does not respect the symmetry of the physical problem.
However, it will be later shown that the basis functions are almost symmetric for sufficient
size of the basis. The main advantage is that the basis wavefunctions involve relatively
simple Hermite polynomials. The construction of the wavefunction basis is now exploited
in detail.

The basis functions depend altogether on nine spatial variables. However, in the
z-direction the particles are confined in the infinitely deep quantum well. Thus the total
wavefunction can be decomposed as:

Ψtotal(x1, x2, xh, y1, y2, yh, z1, z2, zh) = Ψin−plane(x1, x2, xh, y1, y2, yh).Φ(z1, z2, zh) (3.1)

The subscripts 1 and 2 refers to the electrons of the negative trion, whereas subscript h
naturally denotes the hole. The wavefunction in the z-direction can be further decomposed
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as:
Φ(z1, z2, zh) = φ(z1)φ(z2)φ(zh) (3.2)

The electron functions φ(z1) and φ(z2) are defined by equation (1.36), whereas the hole
function φ(zh) is defined by one of the equations (1.37) - (1.39) depending whether the hole
state is the ground state of the heavy hole, the first excited state of the heavy hole or the
ground state of the light hole. This difference in the hole wavefunction in the z-direction
is the only difference between the three groups of wavefunction basis functions that are
associated with the three blocks of the Hamiltonian defined by (1.51) and (1.52). Thus
further derived in-plane wavefunction basis is valid for each of the three blocks.

The in-plane wavefuncitons can be decomposed into the single-particle wavefunctions:

Ψin−plane(x1, x2, xh, y1, y2, yh) = ψe1(x1, y1)ψ
e2(x2, y2)ψ

h(xh, yh) (3.3)

Each of this wavefunctions is eigenfunction of the problem of one charged particle in the
magnetic field under Landau calibration. Let us remind that we chose vector potential
A = (0, Bzx, 0). It implies that in the y-direction the particle is described as the plane
wave with wave vector k. On the other hand in the x-direction the eigenfunctions are the
harmonic oscillator eigenstates shifted by x0 =

h̄k
mωc

= λ2k. The one particle eigenfunction
can thus be, according to Landau quantization theory written as:
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The function involves two quantum numbers. Quantum number n defines the Landau
level. Throughout this thesis, we restrict ourselves to n = 0, 1, 2 due to computation
burden. The other quantum number is the wave-vector k, nevertheless wave vector is
represented by single number only, since we assume plane wave in y-direction only. Note
also that change in k efficiently shifts the wave function along the x-axis due to shift λ2k.

The trion is assumed to be enclosed in the y-direction in the box of the size Ly. The
periodic boundaries are assumed and the values of the wave-vector are quantized as k =
2πnk

Ly
, where nk is an integer and −N ≤ nk ≤ N . According to the Landau quantization, it

is further assumed that the center of the oscillator must physically lie within −Lx

2 < x0 <
Lx

2 . It immediately follows that the upper limit N =
LxLy

4πλ2 . Following table illustrates the
values of magnetic length λ and values of N for different magnetic fields under assumption
Lx = Ly = 100 nm

The maximum range of the wave vectors is usually not utilized, since the set of the wave
vectors is usually truncated due to the computational burden.
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B [T] λ[nm] N

1 25.6554 1

5 11.4734 6

10 8.1130 12

15 6.6242 18

20 5.7367 24

50 3.6282 60

100 2.5655 120

Table 3.1: Dependence of magnetic length λ and wavevector value bounds N on magnetic
field B

The three one-particle wavefunctions can be described as:
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The in-plane wavefunction Ψin−plane(x1, x2, xh, y1, y2, yh) is thus characterized by six
quantum numbers n1, n2, nh, k1, k2 and kh. However, the total momentumK = k1+k2−kh
is constant of motion and thus it is conserved. Note that minus sing for kh term is due
to convention in chosen wavefunction ψh

nh
(xh, yh). The both signs might be reversed with

equivalent result. We set K = 0 and thus only such in-plane trion functions for that holds
k1 + k2 − kh = 0 are included in the wavefunction basis.

The size of the wave basis grows rapidly with growing upper bound for the wave vectors
N . It can be found out that the size of the basis (for one Landau level and one type of
hole states) can be computed as Sizen = 3N2 + 3N + 1. For N = 5 it makes the size
76× 76. We also consider three Landau levels for each particle, which makes 27 different
combinations. Moreover, three different hole states are involved. The basis size is then
altogether 6156 × 6156. The value of N thus imply the total size of the wavefunction
basis. The appropriate value of N is chosen according to the numerical analysis that is
undertaken after the evaluation of Coulomb terms (see below).

3.2 Diagonal terms of the Hamiltonian

The only non-diagonal terms are Coulomb and Luttinger terms that will be discussed
separately. The diagonal terms consist of the energies of the Landau levels and of the
offsets of the light holes and the excited heavy holes state. The Landau levels energies are
defined by:

50



Eh
Landau =

h̄2(nh + 1)

2λ2mh
, (3.8)

Ee1
Landau =

h̄2(n1 + 1)

2λ2me
, (3.9)

Ee2
Landau =

h̄2(n2 + 1)

2λ2me
, (3.10)

Etrion
Landau = Eh

Landau + Ee1
Landau + Ee2

Landau. (3.11)

The Landau energy of the trion ground state is thus:

Etrion
ground =

h̄2

2λ2mh
+ 2

h̄2

2λ2me
(3.12)

We consider n = 0, 1, 2 for each particle. We thus have 27 combinations of Landau levels
for three particles involved.

Let us now evaluate the effective masses of each particle. The mass of the free electron can
be expressed as m0 = 511 keV. All the effective masses are then related to this value. We
recall the values of the Luttinger parameters γ1 = 6.85 γ2 = 2.10 γ3 = 2.90. The effective
masses are then defined by equations (1.47) and (1.48).

mhh‖ = 0.112m0 mz
hh = 0.377m0 (3.13)

mlh‖ = 0.211m0 mz
lh = 0.090m0 (3.14)

Note the mass reversal in the in-plane coordinates in that the light holes are heavier than
the heavy holes. For illustration we can establish ground Landau energy for magnetic field
of 15 T Etrion

ground(15T ) = 33.7 meV.

Confinement energy of the particles in the hole ground state is set to zero. However, the
confinement energy of the excited heavy hole must be added as the offset of ground state
and excited state heavy holes. The correct value for the infinite quantum well of the width
Lz = 10 nm is according to (1.40):

Eoffset =
4h̄2π2

2mL2
z

− h̄2π2

2mL2
z

= 30meV (3.15)

However, this value substantially overestimates the real value. The quantum well is
not infinitely deep in reality. Thus the particles’ wavefunctions tend to tunnel into the
barrier. As the result the effective width of the quantum well increases. Throughout the
computations, we use the offset of 16 meV that corresponds to the effective quantum well
width of 13.7 nm.

We also need to use the offset parameter that is associated with the light holes. We assume
light holes’ states to be shifted from ground state heavy hole states by 10 meV [18].
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To sum up, the diagonal terms (except of Coulomb terms) consist of the appropriate
energies of the Landau levels of each particle, the offset for the light hole states and the
confinement offset for the first excited heavy hole states.

3.3 Coulomb terms

The evaluation of all Coulomb terms lies in the center of computations. Due to competition
between spherical symmetry of Coulomb interaction, cylindrical symmetry of magnetic
field and quantum well confinement, it is impossible to diagonalize the Coulomb terms
[28]. Coulomb interaction involves two particles and so in Cartesian coordinate system it
depends on six coordinates. Using simplified notation we may write Coulomb potential
between two particles as:

V12(~r) = V12(x1, y1, z1, x2, y2, z2) =
q1q2
4πε

1
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2
. (3.16)

Coulomb interaction is (except of sign reversion) equal between hole and electron and
between two electrons thus we use indices 1 and 2 irrespective whether the particle is an
electron or a hole. If we multiply Coulomb potential from both sides with wavefunctions
of both particles involved and generally integrating over all space, we get the Coulomb
term of Hamiltonian (we skip the constant prefactor):

V =

∫

Ψ∗(x1, y1, z1)Ψ
∗(x2, y2, z2)V12(|x2 − x1|, |y2 − y1|, |z2 − z1|)×

×Ψ′(x1, y1, z1)Ψ
′(x2, y2, z2)dx1dx2dy1dy2dz1dz2 (3.17)

The strategy of evaluating such Coulomb term is of course based on the chosen wave
function basis. We know that in the x-direction the particles are localized (the integration
over all space is finite) thanks to the Gaussian type wave function (though modified by
Hermite polynomials for higher Landau levels). Similarly, in the z-direction the particles
are localized in the quantum well. Since we assume indefinitely deep QW, the particles
cannot appear outside the well and thus are localized in the interval

(

−Lz

2 ,
Lz

2

)

. In the
y-direction, there is no such confinement, however,trion is assumed to be localized in a
’box’ of side Ly in the y-direction (since trion is either confined or localized in both other
directions we can really consider the situation as if trion is closed in a ’box’). Coulomb
potential affects the trion both within our assumed ’box’ but also between these ’boxes’.
Each ’box’ contains one elementary charge (negative charge in the case of negative trion),
but the system as a whole must be neutral. Thus we need to assume (positive) charge that
is uniformly distributed in each ’box’ and so the overall charge is zero. This construct can
be efficiently used when dealing with Coulomb term and it is a variant of so called Ewald
summation [19].

We need to deal with following integration:
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1

L2
y

∫ Lz
2

−Lz
2

dz1

∫ Lz
2

−Lz
2

dz2

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2

∫

Ly

2

−Ly

2

dy2

∫ y2+
Ly

2

y2−Ly

2

dy1 (3.18)

V12(|x2 − x1|, |y2 − y1|, |z2 − z1|)ei(k
′
2−k2)y2ei(k

′
1−k1)y1× (3.19)

× ψn′
1,k

′
1
(x1)ψn1,k1(x1)ψn′

2,k
′
2
(x2)ψn2,k2(x2)ϕ

2
1(z1)ϕ

2
2(z2). (3.20)

We define ψn,k(x) in accordance with Eqs. (3.5) - (3.6):

ψn,k(x) =

√

1

2nn!

1
√

λ
√
π
Hn

(

x− λ2k

λ

)

e−
(x−λ2k)2

2λ2 (3.21)

Let us first focus on the most complicated integrating over y1 and y2. For the sake of
brevity we denote: a2 = (x1 − x2)

2 + (z1 − z2)
2, a ≥ 0:

1

L2
y

∫

Ly

2

−Ly

2

dy2

∫ y2+
Ly

2

y2−Ly

2

dy1V12(a, |y2 − y1|)ei(k
′
2−k2)y2ei(k

′
1−k1)y1 (3.22)

We use following substitution:

y = y1 − y2 (3.23)

y1 = y + y2 (3.24)

1

L2
y

∫

Ly

2

−Ly

2

dy2

∫

Ly

2

−Ly

2

dy
1

√

a2 + y2
ei(k

′
2−k2+k′1−k1)y2ei(k

′
1−k1)y (3.25)

This integral is non-zero only if k′2−k2+k′1−k1 = 0 holds and we deal with the integration:

1

Ly

∫

Ly

2

−Ly

2

dy
1

√

a2 + y2
ei(k

′
1−k1)y (3.26)

Now, let us employ the Ewald summation. The main trick is that we integrate inverse
Fourier transform of Fourier transform (instead of direct integration). Following previous
computations, Coulomb potential can be written as:

V (y) =
1

√

a2 + y2
(3.27)

However, this potential acts between charges separately in each ’box’ in y direction. Thus
it is periodic function in y with period Ly and total potential can be written as:

Ṽ (y) =
∞
∑

j=−∞

1
√

a2 + (y + jLy)
2
, (3.28)
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where j is integer. Now, let us formally write the Coulomb potential as a one dimensional
Fourier expansion:

Ṽ (y) =
∞
∑

n=−∞
Vqe

−iqny, (3.29)

where qn = 2π
Ly
n and n is integer.

It clearly follows from the periodicity of Ṽ (y) that:

∫

Ly

2

−Ly

2

dyṼ (y) eiqny = LyVq (3.30)

This identity gives us a hint how to compute the Fourier transform Vq:

Vq =
1

Ly

∫

Ly

2

−Ly

2

dyṼ (y) eiqny =
1

Ly

∫

Ly

2

−Ly

2

dy

∞
∑

j=−∞

∞
∑

n=−∞

eiqny
√

a2 + (y + jLy)
2

(3.31)

=

∞
∑

j=−∞

∞
∑

n=−∞

1

Ly

∫

Ly

2

−Ly

2

dy
eiqny

√

a2 + (y + jLy)
2

(3.32)

Let us now focus on the sum over j and evaluation of the integrals. If we substitute in
integral for each j in a manner: y′ = y + jLy we must add a term jLy to the integration
limits. Each of these integrals is thus performed in ’its own box’. The sum over j can thus
be written as one integral but over all y.

Vq =

∞
∑

n=−∞

1

Ly

∫ ∞

−∞
dy

eiqny√
a2 + z2

, (3.33)

This formula can be evaluated analytically:

Vq =
2

Ly
K0 (|qn| |a|) , (3.34)

where K0 is Bessel K-function of zeroth order. Now we finally perform integration over y
as defined by Eq. (3.40) of inverse Fourier transform:

2

L2
y

∫

Ly

2

−Ly

2

dy
∞
∑

n=−∞
K0 (|qn| |a|) ei(k

′
1−k1)ye−iqny (3.35)

From exponentials we get following condition: qn = k′1−k1 (note that |k′1−k1| = |k′2−k2|).
By this we got rid of integration over y and summation over n. The result is following
formula:

2

Ly
K0

(∣

∣k′1 − k1
∣

∣ |a|
)

(3.36)
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We have thus simplified the original integral to the following form:

2

Ly

∫ Lz
2

−Lz
2

dz1

∫ Lz
2

−Lz
2

dz2

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2K0

(

∣

∣k′1 − k1
∣

∣

√

(x1 − x2)2 + (z1 − z2)2
)

(3.37)

ψn1,k
′
1
(x1)ψn1,k1(x1)ψn2,k

′
2
(x2)ψn2,k2(x2)ϕ

2
1(z1)ϕ

2
2(z2). (3.38)

We thus reduced the problem to integration over four variables z1, z2, x1, x2. However, it
is possible to get rid of one of the z and one of the x variables analytically. The derivation
is straightforward but not simple at all and is shown in Appendix A.

Using the results from Appendix A, we finally get the integral:

V12 =

∫ Lz

0
dz

∫ ∞

−∞
dx

2

Ly
K0

(

∣

∣k′1 − k1
∣

∣

√

(x2 + z2
)

f(x)g(z), (3.39)

where functions f(x) and g(z) are appropriate functions resulting from partial analytical
integration. This integral can be solved numerically for |k′1 − k1| 6= 0.

For |k′1 − k1| = 0, this integral diverges to infinity. However, such infinite potential
is compensated by assumed uniformly distributed positive charge (note that Fourier
transform of uniform distribution is delta function).

We, therefore, need to treat Coulomb terms for that k′1−k1 = 0 holds in a different manner
(note that this condition is for non-zero Coulomb terms equivalent to k′2 − k2 = 0). The
singularity is of Coulombic term is weakened by integrating only over the assumed ’box’.
Recall Eq. (3.26):

1

Ly

∫

Ly

2

−Ly

2

dy
1

√

a2 + y2
ei(k

′
1−k1)y =

1

Ly

∫

Ly

2

−Ly

2

dy
1

√

a2 + y2
(3.40)

Using results form Appendix A we can write final formula for Coulomb terms Vk1=k′1
:

Vk1=k′1
=

∫ Lz

0
dz

∫ ∞

−∞
dx

∫

Ly

2

−Ly

2

dy
1

Ly

1
√

x2 + y2 + z2
f(x)g(z) (3.41)

This triple integral must then be evaluated numerically.

3.4 Luttinger terms

In this section, we compute the Luttinger terms given by (1.57) and (1.58) for chosen
wavefunctions basis. The computation is rather simple and straightforward, however
deserves some comments. Luttinger terms couple the hole wavefunctions. Let us recall
the definition of Luttinger b̂ term under Landau calibration of magnetic field

b̂ =

√
3γ3

2m0
pz

(

px − ipy + i
h̄x

λ2

)

= g

(

px − ipy + i
h̄x

λ2

)

(3.42)
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where g =
√
3γ3

2m0
pz. Observe that g is non-zero only when mixing the ground state and the

first excited state of the heavy hole. Let us first act by g on the excited state.

〈ϕh0(z)|g01|ϕh1(z)〉 =
√
3γ3

2m0

2

Lz

∫ Lz
2

−Lz
2

dzcos

(

π

Lz
z

)

(−ih̄) ∂
∂z
sin

(

2π

Lz
z

)

(3.43)

= − 8iγ3h̄√
3Lzm0

(3.44)

Now let g act on the ground state:

〈ϕh1(z)|g10|ϕh0(z)〉 =
√
3γ3

2m0

2

Lz

∫ Lz
2

−Lz
2

dzsin

(

2π

Lz
z

)

(−ih̄) ∂
∂z
cos

(

π

Lz
z

)

(3.45)

=
8iγ3h̄√
3Lzm0

(3.46)

The acting by g on the ground state leads only to the sign reversal when compared to the
previous case. Note that the changing of the order of the wavefunctions is equivalent to
the complex conjugation of g. We thus have four different possibilities (g01, g10,g

∗
01, g

∗
10)

with two possible outcomes.

It has been already discussed that b̂ terms act like the creation operators, thus they mix
only states on the ground Landau level with the first excited and the states on the first
excited level with those on the second excited level. Let us first act on the ground state.

〈

ψh
1 (x, y)

∣

∣

∣
b̂
∣

∣

∣
ψh
0 (x, y)

〉

= g

∫

Ly

2

−Ly

2

dy

∫ ∞

−∞
dxψh∗

1 (x, y)

(

−ih̄ ∂

∂x
+ h̄

∂

∂y
+ i

h̄x

λ2

)

ψh
0 (x, y)

(3.47)

= g
ih̄
√
2

λ
(3.48)

Note that
〈

ψh
0 (x, y)

∣

∣ b̂
∣

∣ψh
1 (x, y)

〉

= 0. We can now compute the complex conjugated term

b̂∗ that behaves like an annihilation operator.

〈

ψh
0 (x, y)

∣

∣

∣
b̂∗

∣

∣

∣
ψh
1 (x, y)

〉

= g

∫

Ly

2

−Ly

2

dy

∫ ∞

−∞
dxψh∗

0 (x, y)

(

−ih̄ ∂
∂x

+ h̄
∂

∂y
+ i

h̄x

λ2

)

ψh
1 (x, y)

(3.49)

= −g∗ ih̄
√
2

λ
(3.50)

Under assumption that the order of ϕh0(z) and ϕh1(z) remains unchanged, the numerical
value of 〈 Ψ1| b̂ |Ψ0〉 is equal to 〈 Ψ0| b̂ |Ψ1〉.
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Similarly we can compute terms that mix the first and the second excited Landau levels.

〈

ψh
2 (x, y)

∣

∣

∣ b̂
∣

∣

∣ψh
1 (x, y)

〉

= g

∫

Ly

2

−Ly

2

dy

∫ ∞

−∞
dxψh∗

2 (x, y)

(

−ih̄ ∂

∂x
+ h̄

∂

∂y
+ i

h̄x

λ2

)

ψh
1 (x, y)

(3.51)

= g
2ih̄

λ
(3.52)

〈

ψh
1 (x, y)

∣

∣

∣
b̂∗

∣

∣

∣
ψh
2 (x, y)

〉

= g

∫

Ly

2

−Ly

2

dy

∫ ∞

−∞
dxψh∗

1 (x, y)

(

−ih̄ ∂
∂x

+ h̄
∂

∂y
+ i

h̄x

λ2

)

ψh
2 (x, y)

(3.53)

= −g∗ 2ih̄
λ

(3.54)

Now, we treat the ĉ terms. It has been shown that ĉ mixes only states on the ground
Landau level with the the states on the second excited level.

ĉ =

√
3

2m0

[

γ2

(

p2x − p2y + 2py
h̄x

λ2
− h̄2x2

λ4

)

− iγ3

(

2pxpy − px
h̄x

λ2
− h̄x

λ2
px

)]

(3.55)

〈

ψh
0 (x, y)

∣

∣

∣
ĉ
∣

∣

∣
ψh
2 (x, y)

〉

= (3.56)

√
3

2m0

∫

Ly

2

−Ly

2

dy

∫ ∞

−∞
dxψh∗

0

[

γ2

(

−h̄2 ∂
2

∂x2
+ h̄2

∂2

∂y2
− 2ih̄

∂

∂y

h̄x

λ2
− h̄2x2

λ4

)

(3.57)

− iγ3

(

−2h̄2
∂2

∂x∂y
+ ih̄

∂

∂x

h̄x

λ2
+ ih̄

h̄x

λ2
∂

∂x

)

]

ψh
2 (x, y) (3.58)

〈

ψh
0 (x, y)

∣

∣

∣ ĉ
∣

∣

∣ψh
2 (x, y)

〉

=
h̄2

√
6(−γ2 + 2γ3
2λ2m0

(3.59)

(3.60)

It can be easily found and that
〈

ψh
2 (x, y)

∣

∣ ĉ
∣

∣ψh
0 (x, y)

〉

= 0, however the complex conjugate
ĉ∗ acts like two annihilation operators:

〈

ψh
0 (x, y)

∣

∣

∣
ĉ∗

∣

∣

∣
ψh
2 (x, y)

〉

= (3.61)

√
3

2m0

∫

Ly

2

−Ly

2

dy

∫ ∞

−∞
dxψh∗

0

[

γ2

(

−h̄2 ∂
2

∂x2
+ h̄2

∂2

∂y2
− 2ih̄

∂

∂y

h̄x

λ2
− h̄2x2

λ4

)

(3.62)

+ iγ3

(

−2h̄2
∂2

∂x∂y
+ ih̄

∂

∂x

h̄x

λ2
+ ih̄

h̄x

λ2
∂

∂x

)

]

ψh
2 (x, y) (3.63)
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〈

ψh
0 (x, y)

∣

∣

∣
ĉ∗

∣

∣

∣
ψh
2 (x, y)

〉

=
h̄2

√
6(−γ2 − 2γ3)

2λ2m0
(3.64)

(3.65)

The value of Luttinger terms thus depends, apart of physical constants, only on the
magnetic field. Appropriate pre-calculated Luttinger terms are simply added to the correct
positions in the Hamiltonian matrix.

3.5 Numerical analysis of the basis size

Apart of theoretical and conceptual progress that has been derived in the last few sections,
this thesis aims also in quantitative computations and reliable results. The choice of the
size of the wavebasis is then crucial. The most time-consuming procedure is the numerical
computation of Coulomb terms. Even for big matrices, the evaluation of all Coulomb terms
takes longer time than the matrix diagonalization. Since the procedures takes substantial
computing time, the size of the Hamiltonian matrix must be restricted by appropriate
choice of the wavefunctions basis size.

It has been already pointed out that, we restrict the computations to the ground and the
two excited Landau levels. This is not only due to substantial computational effort when
dealing with numerical integration, but also because of substantial amount of analytical
integrations over variable x that have to be performed for all combinations of Landau
levels independently.

The other parameter determining the size of the basis is the number of the wave vectors
k1, k2 and kh that are taken to account. We consider the same number of the wave
vectors for each particle, thus the key parameter of the size of the Hamiltonian matrix is
N = N1 = N2 = Nh.

The final size of the basis has been chosen according to three criteria:

• Convergence of the Coulomb terms

• Symmetry of the ground wavefunction

• Computational time

3.5.1 Convergence of the Coulomb terms

The Coulomb terms are real physical quantities that should not depend on the choice of
the basis size. We thus need sufficiently large basis so that the Coulomb terms are not
affected by too restrictive choice. In the testing procedure, we construct the small block
of Hamiltonian matrix that involves only particles in the ground Landau level and the
hole wavefunctions describe only the heavy hole ground state. Generalization to complete
matrix (involving 3 Landau levels for each particle and 3 different hole states) would make
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the complete analysis extremely time-demanding, however we confirmed for some that
analysis of this small block is sufficient.

Such small block may involve only the Coulomb terms, since other terms would shift all
eigen-energies. Simplified Hamiltonians for different choices or parameters are diagonalized
and the convergence of the smallest eigenvalue (ground energy) is investigated. Note that
the Coulomb terms depend on parameter N , on the size of the box in the y-direction Ly

and the magnetic length λ associated with given magnetic field B. It can be found out that
the smaller is the Ly, the faster is the convergence of Coulomb terms with increasing N .
However, the parameter Ly has no real physical significance and occurs due to construction
of the basis. Thus the Coulomb terms need to converge also with growing Ly. It is thus
necessary to find sufficient values of N and Ly so that Coulomb terms do not change with
increasing values of those parameters.

B [T] 15 15 15 15

λ[nm] 6.62 6.62 6.62 6.62

Ly 10 50 100 200

N = 1 -21.7 -14.7 -12.0 -8.4

N = 2 -21.7 -15.1 -14.2 -11.0

N = 3 -21.7 -15.1 -15.0 -12.8

N = 4 -15.1 -15.2 -13.9

N = 5 -15.1 -15.3 -14.6

N = 6 -15.3 -15.0

N = 7 -15.3 -15.2

N = 8 -15.3

N = 9 -15.3

B [T] 5 5 30 30 50 50

λ[nm] 11.47 11.47 4.68 4.68 3.63 3.63

Ly 100 200 50 100 50 100

N = 1 -8.9 -6.9 -18.2 -13.7 -20.6 -15.2

N = 2 -9.4 -8.5 -19.8 -17.1 -24.1 -19.6

N = 3 -9.4 -9.1 -20.1 -18.9 -24.9 -21.9

N = 4 -9.4 -9.4 -20.1 -19.7 -25.1 -23.4

N = 5 -9.5 -20.1 -20.1 -25.1 -24.2

N = 6 -9.5 -20.2 -25.1 -24.6

N = 7 -24.8

N = 8 -24.9

N = 9

Table 3.2: Dependence of the lowest eigenvalue of the Hamiltonian matrix containing
Coulomb terms only on the size of ’box’ in y-direction (Ly), magnetic field (B, λ) and size
of the basis N (lowest Landau level approximation).

The left panel of Table 3.5.1 shows the dependence of the lowest energy on the size of the
box Ly and on the size of the basis for magnetic field B = 15 T. For large Ly there is a
need for large basis to attain the convergence. However, the value of the eigen-energy is
more reliable. We can thus inspect the convergence for smaller Ly. It might be observed
that for Ly = 50 nm the final value is unreliable (consider resolution ±0.1 meV. Optimal
choice is thus Ly = 100 nm and convergence is attained for N = 5.

The right panel of Table 3.5.1 shows the same analysis but for different magnetic fields.
For low magnetic field of B = 5 T the convergence is faster, however it is found to be more
reliable for larger Ly. This is not surprising result since lower magnetic field allows larger
movement of particles and therefore Ly is more restrictive. On the other hand, for higher
magnetic fields the convergence is slower but reliable for lower values of Ly. Throughout
this thesis we consider Ly = 100 nm for magnetic fields B ≤ 30 T and Ly = 50 nm for
B = 50 T.
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3.5.2 Symmetry of the ground wavefunction

The special feature of the chosen wavefunction basis is that the basis is not a priori

radially symmetrical. This choice allows relatively easier manipulations but does not
reflect the physical reality. However, it might be shown that for sufficiently big basis the
wavefunctions become fairly symmetric.

We undertook simple symmetry analysis. Hamiltonian matrix under lowest Landau level
approximation has been constructed and diagonalized. The wavefunction associated with
the lowest energetic state has been depicted. Two different graphical representation are
chosen. The first is attractive 3D representation, whereas the second is more synoptical
depiction by contour plots. Both series of graphs (3.1) - (3.4) and (3.5) - (3.8) show
the dependence of the wavefunction over xy-plane on the basis size. It is clear that the
circularity of the wavefunction improves with rising N . For N ≥ 5, the wavefunction is
already fairly symmetrical. The laceration of the graph for N = 7 is unresolved, however
it may be associated with change of the sign of wavefunction or with some numerical
imperfections.

More exact analysis of the wavefunction symmetry is carried out by evaluation of
eccentricity. We treat the contour that labels the half of the maximum of the wavefunction
as if it is an ellipse. Such ellipse obviously has its major semi-axis a in the y-direction
and minor semi-axis b in the x-direction. We may now construct some non-symmetry
parameter e = a−b

a
. (Note that this construction is similar to the definition of eccentricity,

however the eccentricity is based on the deviation in squares.) e = 0 represents
perfectly symmetric wavefunction, where as e→ 1 reflects very elongated wavefunction in
y-direction. We state that e ≤ 0.5 describes sufficiently symmetric wavefunction.

B [T] 5 15 30

N = 1 0.72 0.88 0.92

N = 2 0.62 0.80 0.86

N = 3 0.45 0.71 0.80

N = 4 0.29 0.61 0.73

N = 5 0.17 0.52 0.67

N = 6 0.12 0.42 0.61

N = 7 0.11 0.33 0.54

Table 3.3: Dependence of the basis wavefunction non-symmetry on magnetic field and the
size of the basis (only the lowest Landau level included)

Table 3.5.2 contains the values of e for different magnetic fields and different sizes of
basis. It is obvious and not surprising that for lower magnetic fields sufficient symmetry
is attained already by smaller basis. Larger magnetic fields have adverse effect on the
chosen wavefunctions basis due to non-symmetric Landau gauge. Depending on its
size, the wavefunctions basis might be inappropriate for very high magnetic fields. The
wavefunction symmetry is also illustrated by figures (3.9) - (3.12) for different magnetic
fields.
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Figure 3.1: 3D plot of probability density of
electron with respect to the position of the
hole; B = 15 T; N = 1

Figure 3.2: 3D plot of probability density of
electron with respect to the position of the
hole; B = 15 T; N = 5

Figure 3.3: 3D plot of probability density of
electron with respect to the position of the
hole; B = 15 T; N = 3

Figure 3.4: 3D plot of probability density of
electron with respect to the position of the
hole; B = 15 T; N = 7

3.5.3 Computational issues

All computations have been carried out in Mathematica, version 6.0, 64 bit version.
Mathematica proved its superior ability to deal with presented problems. Well-arranged
graphical interface allows easier development of programming procedures in particular
it allows immediate modifications to functions, what is extremely favourable for quick
testing computations. Well-established documentation, block arrangement of programs
and functions that do not require any compiling is appreciated mainly for programming
beginners. Important developed functions are described in Appendix B.

61



Figure 3.5: Contour plot of probability
density of electron with respect to the
position of the hole; B = 15 T; N = 1

Figure 3.6: Contour plot of probability
density of electron with respect to the
position of the hole; B = 15 T; N = 5

Figure 3.7: Contour plot of probability
density of electron with respect to the
position of the hole; B = 15 T; N = 3

Figure 3.8: Contour plot of probability
density of electron with respect to the
position of the hole; B = 15 T; N = 7

The computations were carried only on ordinary PC with four core 3 GHz processor and
4 GB RAM memory. The size of the basis has been set to N = 5 for all computations.
Recall that this might be inappropriate for higher magnetic fields (B > 30 T). Note also
that restriction to three Landau levels only may be inappropriate for low magnetic fields
for that Landau levels are close to each other. Our approach is thus well suited for middle
fields around B = 15 T.

The most time-demanding procedure is computation of all Coulomb terms and their
arrangement into Hamiltonian matrix. For full setting (3 Landau levels and three types
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Figure 3.9: 3D plot of probability density of
electron with respect to the position of the
hole; B = 5 T; N = 5

Figure 3.10: 3D plot of probability density of
electron with respect to the position of the
hole; B = 30 T; N = 5

Figure 3.11: Contour plot of probability
density of electron with respect to the
position of the hole; B = 5 T; N = 5

Figure 3.12: Contour plot of probability
density of electron with respect to the
position of the hole; B = 30 T; N = 5

of hole states) this procedure takes around 4-5 hours (running on one processor core) even
after optimization described in the following subsection. Diagonalization then takes less
then one hour. Mathematica automatically chooses appropriate diagonalization method.
For the numeric input it uses so-called LAPACK method and takes into account that
the matrix is symmetric. Other manipulations are generally fast apart of construction
of singlet and triplet Hamiltonian matrices as described in following section, which may
take over an hour. Allowing more time for computations or using more powerful machine
may allow for larger basis and thus more accurate results. This is an open issue for future
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work.

3.6 Symmetry considerations

This section covers two related problems. The first part describes optimized computation
of Coulomb terms by considering their symmetry. The second one then explains extremely
important creation of two Hamiltonian matrices that are related to the singlet and to the
triplet states.

3.6.1 Coulomb terms

We have already pointed out that computation of Coulomb terms is hurtful. It is quite
clear that the Coulomb terms does not have to be computed for each and every position
in the Hailtonian matrix. Not only that majority of the terms are zero but also many
terms are equal and thus should be computed only once. The procedure that computes
independently all the distinct Coulomb terms has been developed. The procedure is based
on inspection of Coulomb terms computation and considering their symmetry with respect
to the wavevectors k1 and k2 and Landau levels n1 and n2 of the two particles involved. The
list that contains all distinct Coulomb terms that appears in the Hamiltonian matrix for
given settings is computed first. The Hamiltonian matrix of Coulomb terms is subsequently
compiled. The addition of diagonal terms and Luttinger terms is then straightforward and
fast.

3.6.2 Construction of singlet and triplet Hamiltonian

It has been explained in the theory that the orbital wavefunction must be either perfectly
symmetric or perfectly antisymmetric with respect to the interchange of the electrons. The
symmetric wavefunctions belong to the singlet, whereas the antisymmetric are triplet. The
total antisymmetry that is required by Pauli principle is then attained by spin part. Note
that spin part does not enter the Hamiltonian in any way (except of Zeeman terms that
are somewhat associated with spin).

Once we construct and diagonalize developed Hamiltonian and inspect the eigenvectors,
we find that each eigenvector is either perfectly symmetric or perfectly antisymmetric
with respect to electrons interchange. Each eigenvector and its eigen-energy thus belong
to either singlet or triplet. In other words, our basis contains both singlet and triplet
states since no special symmetry issues have been considered until now.

We now reconstruct the basis so that we introduce new singlet and triplet basis states.
As a result, we get the basis of the same size but the singlet and triplet states will be
separated. This allows for separate diagonalization of singlet and triplet Hamiltonian and
more importantly correct addition of Zeeman terms is then possible. The construction of
new states is related to the Slater determinant and is rather straightforward. Each of the
basis functions is defined by nine quantum numbers - nh, kh, n1, k1, n2, k2. Note that one
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of the wave-vectors is not independent. The construction of symmetric and antisymmetric
states for singlet and triplet is following:

|nh, kh, n1, k1, n2, k2〉S =
1√
2
(|nh, kh, n1, k1, n2, k2〉+ |nh, kh, n2, k2, n1, k1〉) (3.66)

|nh, kh, n1, k1, n2, k2〉T =
1√
2
(|nh, kh, n1, k1, n2, k2〉 − |nh, kh, n2, k2, n1, k1〉) (3.67)

Note in particular that state for that holds nh = kh = n1 = k1 = n2 = k2 = 0 is included
in the singlet states only. The Hamiltonian matrix must be rearranged (two Hamiltonians
are created) so that it corresponds to those new states. The eigen-energies are retained
and eigenvectors (when reconstructed for the original basis states) are retained as well.
This rearranging procedure is one of the most complicated procedures that have been
newly developed.

3.7 Zeeman terms

Provided the two Hamiltoinians for singlet and triplet respecitvely, the addition of Zeeman
terms is simple. These terms appear on the diagonal. We have two Zeeman effects, one
for electrons and one for holes.

Considering the hole effect we recall that the Luttinger Hamiltonian is split into two parts
defined by (1.51) and (1.52). The first one mixes heavy hole with total angular momentum
projection +3

2 and light hole −1
2 and the second one mixes +3

2 with −1
2 . For the sake

of brevity we denote the first case as +3/2 and the second one −3/2. The appropriate
added hole Zeeman term in the case of +3/2 Hamiltonian is +3

2ghµbB for the heavy hole
states and −1

2ghµbB. In the case of −3/2 Hamiltonian the signs of Zeeman terms are just
switched. Assuming gh 6= 0, these two Hamiltonians have clearly different eigen-energies
and eigenstates.

Now let us consider the electron Zeeman effect. The splitting due to electron Zeeman effect
is best described by the Schrödinnger equation (2.64). Singlet Hamiltonian is unaffected
by electronic splitting due to its antisymmetric spin part of wavefunction. On the other
hand, triplet splits into three levels according to the sum of the spins of the two electrons
involved. These three states can be naturally labelled as −1, 0 and +1. The associated
Zeeman terms are then −geµbB, 0 and +geµbB.

Since we have two different settings due to hole Zeeman splitting and four settings (singlet
+ 3 triplets) due to electron Zeeman splitting, we need to construct eight Hamiltonians
with Zeeman terms that are summarized in following table:

Note that hole Zeeman terms must be added before diagonalization because of mixing
between light and heavy holes. On the other hand, electron Zeeman terms only shift all
eigen-energies and such shift might be added after diagonalization.
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Symmetry El. split Hole split Heavy h. Zeeman Light h. Zeeman El. Zeeman

Singlet 0 +3/2 +3
2ghµbB −1

2ghµbB 0

Singlet 0 -3/2 −3
2ghµbB +1

2ghµbB 0

Triplet 0 +3/2 +3
2ghµbB −1

2ghµbB 0

Triplet 0 -3/2 −3
2ghµbB +1

2ghµbB 0

Triplet -1 +3/2 +3
2ghµbB −1

2ghµbB −geµbB
Triplet -1 -3/2 −3

2ghµbB +1
2ghµbB −geµbB

Triplet +1 +3/2 +3
2ghµbB −1

2ghµbB +geµbB

Triplet +1 -3/2 −3
2ghµbB +1

2ghµbB +geµbB

Table 3.4: Overview of Zeeman terms added to the diagonal of eight different Hamiltonian
matrices

3.8 Photoluminescence spectra

Evaluated photoluminescence spectra of negative trion under different settings are one of
the important results of this thesis. The photoluminiscence associated with trion is the
result of annihilation of one of the electrons and the hole. There remains one electron after
such annihilation. The transition can thus be illustrated as |Ψtrion〉 → |e1(2)〉. The energy
of such transition is thus the energy difference between the energy of the trion that results
from the Hamiltonian diagonalization and the energy of remaining electron. The electron
can be generally on any considered Landau level. The remaining electron is assumed not
to change neither its Landau level nor its spin (we thus rule out recombination of Auger
type).

The spectra are independently computed for σ+ and σ− polarizations (equal when zero
Zeeman effect assumed). The selection rules are employed so that each σ+ and σ−

spectrum contains only allowed transitions. Now we use Fermi golden rule to evaluate
the probability of transition:

Pi→f ∼ |〈|Ψtrion|Hint|e1(2)〉|2δ (Etrion − Ee − E) (3.68)

We omit the energy of the gap and the quantum well confinement for simplicity.

It can be found in [2] and it also follows from the construction of basis states summarized in
table (1.1) that for the light propagating parallel to z-axis, the intensity of light polarized
in the x, y direction is three times higher for the heavy hole - electron transitions than for
the light hole - electron transitions and thus it is proposed to take:

Ihh = 〈uhhtrion|Hint|ue〉 =
1√
2

(3.69)

Ilh = 〈ulhtrion|Hint|ue〉 =
1√
6

(3.70)

The occupancy of the trion states is driven by Boltzmann distribution. The occupancy of
given state is thus:
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fB(Ei, T ) =
exp

(

−Ei

kBT

)

Z
, (3.71)

where Z is the state sum given by Z =
∑

i exp
(

−Ei

kBT

)

. Index i may generally run over all

trion states, however it is sufficient to include only several lowest states (in our case 100
states). We choose for this thesis T = 10 K.

The intensity of the transition is thus simply given by:

Ii =
∑

j

c2jfB(Ei, T )Ihh(lh), (3.72)

where j runs over the basis states for that at least one of the electrons is allowed to
annihilate with the hole and cj are the appropriate coefficients in the eigenvector associated
with Ei. In the case that both electrons can annihilate, the probability of transition is
doubled. Note that the excited heavy hole states do not contribute to the spectra in our
approximation, since we do not assume any excited electrons and thus all wavefunctions
of remaining electron are orthogonal to the excited heavy hole wavefunctions due to the
z-dependent part.

We consider that individual transitions appear in the spectrum in the shape of
Cauchy-Lorentz distribution with scale parameter ∆ (half width at half maximum -
HWHM), we set ∆ = 0.03meV . The complete spectrum can finally be evaluated as:

PL(E) =
∑

i

Ii
∆

π

1

(E − Ei)2 +∆2
(3.73)
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4 Results and Discussion

The results of this thesis are presented in the form of charts and figures. The results can
be generally divided into three groups:

• The evolution of the ground state energy

• The images of the probability density

• Photoluminescence (PL) spectra

In the first section, we focus on energies and wavefunctions of the negative trion without
Zeeman terms. We further proceed by inclusion of Zeeman terms with different g-factors.
For chosen combination of g-factors we also investigate the Zeeman splitting. Finally we
introduce ’Fixed hole’ approximation.

4.1 Evolution of energies without Zeeman terms with magnetic field

Figure 4.1: Trion dissociation energy -
Singlet state

Figure 4.2: Trion dissociation energy -
Triplet state

Charts (4.1) and (4.2) show the evolution of dissociation energy of trion in singlet and
triplet state with respect to magnetic field. We would have to provide this energy to the
trion to dissociate it into free particles on the lowest Landau levels. This energy should not
be confused with binding energy that is related to the energy of eciton and thus cannot be
evaluated here. Nevertheless, the concave behaviour is common also for binding energies
[32].

With rising magnetic field, the particles are becoming squeezed together. As a result the
Coulombic interaction becomes larger and thus the dissociation energy rises. We thus
get qualitatively correct result. However, very disappointing is that singlet and triplet
energies are almost equal and no systematic relation between singlet and triplet energy
can be established, which is in contradiction to the literature. Several reasons for such
behaviour might be mentioned.
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The main reason for that triplet should have higher ground energy is that the lowest basis
state (lowest Landau levels and zero wave vectors or other quantum numbers - depending
on the basis choice) is never attainable for triplet, because of its unique symmetry.
However, under our choice we do not punish triplet for not occupying the lowest state,
because with changing the values of the wave vectors we can attain several wave functions
with no direct energy lost. However, the Coulombic interaction itself should be weaker
for triplet since the electrons are further apart. This effect seems to be negligible and is
related to the second explanation.

Under our basis choice, we allow the movement of the hole. Even if one electron is remote
from the hole-electron pair, this pair may polarize purely using the movement of the hole.
This strengthens the charge-dipole interaction and the triplet attains low energetic state
even if the electrons are relatively further apart.

The inconclusive relation between the energy state of singlet and triplet should be verified
in detail. However, the cited theoretical papers may have underestimated the possibility
of hole movement and the experimental works may only reveal the trion with hole fixed
on some impurity as argued by Volkov [16].

Figure 4.3: B = 1 T, Singlet, probability
density P(x)

Figure 4.4: B = 1 T, Triplet, probability
density P(x)

The series of figures (4.3) - (4.20) shows the spatial probabilities of electron(s) for both
singlet and triplet states for different magnetic fields. These wavefunctions are associated
with the lowest energy states. The line plots show always the probability of one electron
occurrence with respect to the direction x. Such probability is calculated by:

P (x1) =

∫

Ψ2(xh, x1, x2)dxhdx2. (4.1)

We formally integrate also over y and z coordinates but this integration results only in
the factor 1 since wavefunctions are normalized. From line plots we can establish that the
highest probability of the electron occurrence is in the position of the hole for the singlet
state. The exception occurs for B = 15 T, however the center peak is present though
overlapped by surrounding peaks. No center peak might be found for triplet, however two
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Figure 4.5: B = 1 T, Singlet, probability
density P(x1,x2)

Figure 4.6: B = 1 T, Triplet, probability
density P(x1,x2)

Figure 4.7: B = 1 T, Singlet, corr(x1,x2) Figure 4.8: B = 1 T, Triplet, corr(x1,x2)

symmetric side peaks are present. For high magnetic field, those peaks are squeezed to
the vicinity of the hole.

The 3D plots depict the spatial distribution of two electrons with respect to coordinates
x1 and x2 associated with electron 1 and 2 respectively. If x1 and x2 have opposite signs,
the electron 1 is situated then on the opposite side of the hole than the electron 2. This
joint probability P (x1, x2) is evaluated by:

P (x1, x2) =

∫

Ψ2(xh, x1, x2)dxh. (4.2)

Finally, the contour plot shows the correlation of the positions of the two electrons. The
correlation is simply calculated as:
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Figure 4.9: B = 15 T, Singlet, probability
density P(x)

Figure 4.10: B = 15 T, Triplet, probability
density P(x)

Figure 4.11: B = 15 T, Singlet, probability
density P(x1,x2)

Figure 4.12: B = 15 T, Triplet, probability
density P(x1,x2)

corr(x1, x2) = P (x1, x2)− P (x1)P (x2) (4.3)

In the contour plots, the lighter areas express positive correlation, whereas dark areas
negative correlation. The colouring of the plots is normalized independently for each plot,
thus the comparison can be made only qualitatively. The correlation plots confirm that
electrons occupy the opposite sides of the holes, which is not surprising considering that
we deal with charge-dipole interaction. Such behaviour might be found also at the 3D
plots. However, correlation plots reveal the difference between singlet and triplet. In the
case of singlet, both electrons might be in the vicinity of the hole at once, but this is not
possible for the trion. Big correlations are also situated for electrons being on the opposte
sides of the hole, whereas visible anticorrelation areas disallow electrons to be on the same
spot.
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Figure 4.13: B = 15 T, Singlet, corr(x1,x2) Figure 4.14: B = 15 T, Triplet, corr(x1,x2)

Figure 4.15: B = 30 T, Singlet, probability
density P(x)

Figure 4.16: B = 30 T, Triplet, probability
density P(x)

Figures (4.21) - (4.23) show the photoluminescence spectra of the trion without Zeeman
terms. Such spectra are experimentally unattainable. Note that horizontal axis varies
for different plots. The relative energetic distance of peaks in the spectra can be directly
evaluated, but the energy gap and the confinement must be considered in order to get
absolute energy of the transition. Without Zeeman terms, the σ+ and σ− spectra are
equivalent.

4.2 Energies of trion with Zeeman terms

Since the literature is very inconsistent about the g-factor of hole (gh) and of electron (ge),
we consider several combinations of ge and gh. 3D scatter plots (4.24) - (4.28) show the
evolution of the ground energy of given triplet state with changing ge and gh. Charts (4.24)
- (4.26) always compare two triplet states with equal contribution of electron Zeeman term
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Figure 4.17: B = 30 T, Singlet, probability
density P(x1,x2)

Figure 4.18: B = 30 T, Triplet, probability
density P(x1,x2)

Figure 4.19: B = 30 T, Singlet, corr(x1,x2) Figure 4.20: B = 30 T, Triplet, corr(x1,x2)

but different hole Zeeman effect. Note that for gh = 0 the energies of two compared states
coincide. The ’Triplet -3/2 0’ and ’Triplet +3/2 0’ are independent on ge (chart 4.25).

The charts (4.27) and (4.28) compare the triplets of triplet states with equal contribution
of hole Zeeman effect. All three states always coincide for ge = 0. Monotonous behaviour
of all states with both ge and gh is of no surprise.

4.3 Computed spectra with Zeeman terms

The series of figures (4.29) - (4.34) shows the dependence of the trion PL spectra for both
polarizations on the hole gh-factor with ge = 0. The series of figures (4.41) - (4.40) shows
the same but with respect to ge (gh = 0). Finally, figures (??) - (4.46) show the PL spectra
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Figure 4.21: PL spectrum; B = 1 T; ge = 0,
gh = 0
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Figure 4.22: PL spectrum; B = 15 T; ge = 0,
gh = 0
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Figure 4.23: PL spectrum; B = 30 T; ge = 0, gh = 0

for some non-zero combinations of gh and ge. All visible states for given polarization are
included in the spectra disregarding whether it is singlet or triplet state. We consider
magnetic field B = 15 T in all figures.

Main observation is that the peaks for switched polarization do not shift but mainly change
their magnitudes. The mixing of heavy and light holes due to Luttinger Hamiltonian
approach is the reason for such behaviour. Each of the considered Hamiltonians mixes
either heavy hole state

∣

∣+3
2

〉

with light hole state
∣

∣−1
2

〉

or heavy hole state
∣

∣−3
2

〉

with light
hole state

∣

∣+1
2

〉

. One energetic state of the trion thus consists of both heavy hole states
and light hole states. It can be found out that the heavy hole states and the light hole
states within these combinations are visible in the opposite polarizations according to the
selection rules. However, once the states are mixed, one energetic state is then visible in
both polarizations.

Usually in given trion state either heavy hole states or light hole states prevail, but peaks
are visible in both polarization. This is supported by the thermal occupancy distribution
function. Even relatively weak state according to the probability of the transition can be
heavily populated if it has sufficiently low energy and thus it is visible in both σ+ and σ−

polarizations.
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Figure 4.24: Dependence of ground energy on
possible choice of g-factors; Triplets ±3/2; -1;
B = 15 T

Figure 4.25: Dependence of ground energy on
possible choice of g-factors; Triplets ±3/2; 0;
B = 15 T

Figure 4.26: Dependence of ground energy on possible choice of g-factors; Triplets ±3/2;
+1; B = 15 T
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Figure 4.27: Dependence of ground energy
on possible choice of g-factors; Triplets −3/2;
-1,0,+1; B = 15 T

Figure 4.28: Dependence of ground energy
on possible choice of g-factors; Triplets +3/2,
-1,0,+1; B = 15 T
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Figure 4.29: PL spectrum σ+; B = 15 T;
ge = 0, gh = 1
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Figure 4.30: PL spectrum σ−; B = 15 T;
ge = 0, gh = 1
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Figure 4.31: PL spectrum σ+; B = 15 T;
ge = 0, gh = 2
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Figure 4.32: PL spectrum σ−; B = 15 T;
ge = 0, gh = 2

1 2 3 4 5 6 7 8
@meVD

Figure 4.33: PL spectrum σ+; B = 15 T;
ge = 0, gh = 3
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Figure 4.34: PL spectrum σ−; B = 15 T;
ge = 0, gh = 3
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Figure 4.35: PL spectrum σ+; B = 15 T;
ge = −0.5, gh = 0
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Figure 4.36: PL spectrum σ−; B = 15 T;
ge = −0.5, gh = 0
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Figure 4.37: PL spectrum σ+; B = 15 T;
ge = 1, gh = 0
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Figure 4.38: PL spectrum σ−; B = 15 T;
ge = 1, gh = 0
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Figure 4.39: PL spectrum σ+; B = 15 T;
ge = 2, gh = 0
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Figure 4.40: PL spectrum σ−; B = 15 T;
ge = 2, gh = 0
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Figure 4.41: PL spectrum σ+; B = 15 T;
ge = −0.5, gh = 1

2 3 4 5 6 7 8
@meVD

Figure 4.42: PL spectrum σ−; B = 15 T;
ge = −0.5, gh = 1
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Figure 4.43: PL spectrum σ+; B = 15 T;
ge = 1, gh = 2
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Figure 4.44: PL spectrum σ−; B = 15 T;
ge = 1, gh = 2
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Figure 4.45: PL spectrum σ+; B = 15 T;
ge = 2, gh = 3
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Figure 4.46: PL spectrum σ−; B = 15 T;
ge = 2, gh = 3
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4.4 Zeeman splitting

Figure 4.47: Zeeman splitting of ground energies with respect to magnetic field B; ge = 1,
gh = 1

Chart (4.47) presents computed Zeeman splitting with respect to the magnetic field. We
assume following values of the g-factor: ge = 1 and gh = 1, which implies for the effective
Landé g-factor of negative trion geff = 2 as reported by Vanhoucke. This can be well
compared to the experimental result by Vanhoucke (lower inset of Figure (2.13), however
direct comparison suggests that Vanhoucke measured the photoluminescence of so-called
dark trion. This finding is surprising, but it is considered possible in the case of breaking
of symmetry or fixing holes, both caused by impurities [16].

Figures (4.48) - (4.53) show the evolution of PL spectra with magnetic field with Zeeman
terms included. The change of the polarization is accompanied more by the change of
the magnitude of the peaks rather than their shift. However, it must be stressed that
the change of the mutual magnitudes of two surrounding peaks with such high theoretical
resolution may appear as a shift of one wide peak just because of lower resolution of
experiment .
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Figure 4.48: PL spectrum σ+; B = 1 T; ge =
1, gh = 1
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Figure 4.49: PL spectrum σ−; B = 1 T; ge =
1, gh = 1
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Figure 4.50: PL spectrum σ+; B = 15 T;
ge = 1, gh = 1
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Figure 4.51: PL spectrum σ−; B = 15 T;
ge = 1, gh = 1
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Figure 4.52: PL spectrum σ+; B = 30 T;
ge = 1, gh = 1
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Figure 4.53: PL spectrum σ−; B = 30 T;
ge = 1, gh = 1
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4.5 Energies of singlet and triplet with fixed hole

Figure 4.54: Dependence of the ground
energies on magnetic field using the bases
with fixed and moving hole

Figure 4.55: Difference in energies of the
ground singlet state and the ground triplet
state as a function of magnetic field using the
basis with fixed hole

Figure 4.56: B = 1 T, Singlet, probability
density P(x), Fixed hole

Figure 4.57: B = 1 T, Triplet, probability
density P(x), Fixed hole

In the beginning of this Results and Discussion chapter, we discussed unsatisfactory results
considering offset between singlet and triplet ground energy. Among other possible reasons,
it might be attributed to the almost free movement of the hole. We thus undertook
following changes. We restrict the wavefunction basis to the states for that kh = 0. The
hole is thus fixed in the middle of the assumed ’box’.

We then calculated the ground energies of the lowest triplet and the lowest singlet state for
this new settings. Figure (4.54) shows the evolution of dissociation energy with magnetic
field for both original (’moving hole’) and new (’fixed hole’) settings. For the ’fixed hole’
the lowest state is always singlet.

Contrary to the full basis settings, we can now observe systematic behaviour of the
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Figure 4.58: B = 1 T, Singlet, probability
density P(x1,x2), Fixed hole

Figure 4.59: B = 1 T, Triplet, probability
density P(x1,x2), Fixed hole

Figure 4.60: B = 1 T, Singlet, corr(x1,x2),
Fixed hole

Figure 4.61: B = 1 T, Triplet, corr(x1,x2),
Fixed hole

energy gap between singlet and triplet ground states as depicted in Fig. (4.55). This
systematic behaviour under ’fixed hole’ settings supports the reasoning that the energy
difference between singlet and triplet is negligible for moving hole basis. The energy gap
between singlet and triplet decreases with rising magnetic field up to B = 30 T. This can
be attributed to the squeezing of the triplet state (actually for both states but having
prominent effect on expanded triplet), which results in diminishing difference between
singlet and triplet. The last value for B = 50T might be only artefact since the reduced
basis is very inappropriate for such high fields.

Series of figures (4.60) - (4.73) shows the spatial probability of electron occurrence and the
correlations. The squeezing of wavefunctions with rising magnetic field is clearly visible.
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Figure 4.62: B = 15 T, Singlet, probability
density P(x), Fixed hole

Figure 4.63: B = 15 T, Triplet, probability
density P(x), Fixed hole

Figure 4.64: B = 15 T, Singlet, probability
density P(x1,x2), Fixed hole

Figure 4.65: B = 15 T, Triplet, probability
density P(x1,x2), Fixed hole

Such squeezing is more pronounced for the triplet and as a result the wavefunctions of
singlet and triplet do not differ much for high magnetic fields. This effect can be best
observed on the correlation plots. Completely different correlations are observed in the
case of B = 1 T where singlet shows typical centered correlation. Correlation plots for
triplet and singlet states become almost indistinguishable for B = 30 T.
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Figure 4.66: B = 15 T, Singlet, corr(x1,x2),
Fixed hole

Figure 4.67: B = 15 T, Triplet, corr(x1,x2),
Fixed hole

Figure 4.68: B = 30 T, Singlet, probability
density P(x), Fixed hole

Figure 4.69: B = 30 T, Triplet, probability
density P(x), Fixed hole
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Figure 4.70: B = 30 T, Singlet, probability
density P(x1,x2), Fixed hole

Figure 4.71: B = 30 T, Triplet, probability
density P(x1,x2), Fixed hole

Figure 4.72: B = 30 T, Singlet, corr(x1,x2),
Fixed hole

Figure 4.73: B = 30 T, Triplet, corr(x1,x2),
Fixed hole
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5 Conclusion

This theoretical thesis provides theoretical and computational analysis of negative trion
quantum system confined in a single quantum well in a presence of perpendicular magnetic
field. Main attention is paid to the Zeeman effect of such multi-particle system.

Properties of GaAs-GaAlAs compounds are discussed focusing on the complex valence
band structure. Effective mass approximation and Kane model are introduced as a
benchmark for the Luttinger Hamiltonian method that is used throughout this thesis.
Envelope function approximation for heterostructures is briefly introduced. Luttinger
Hamiltonian framework is exploited in a detail and the origin of Zeeman terms is discussed.

Well-known problem of the exciton is solved using the centre-of-mass transform and the
description of exciton using Luttinger Hamiltonian and with inclusion of the Zeeman
effect is developed. The three-particle problem of charged exciton - trion - is compared
to the simple excitonic problem. Mainly, the extreme complications of centre-of-mass
transform for trion are discussed. Further development focuses on negative trion that is
multi-fermionic system and thus must obey Pauli principle. Singlet and triplet states are
introduced along with concepts of binding, dissociation and transition energies. Zeeman
terms for singlet and triplet states and for both heavy holes and light holes are discussed in
a very detail. The analysis of the Zeeman effect of mixed light and heavy hole states due to
Luttinger Hamiltonian in negative trion system goes beyond the considerations in current
literature. Comprehensive literature review of related experimental and theoretical works
is provided.

Crucial part for subsequent computations is the choice of the wavefunction basis. Unusual
basis choice that does not a priori respect the radial symmetry of the problem is based on
rarely chosen Landau gauge of magnetic field. The main advantage is inclusion of relatively
simple Hermite polynomials. One of the most demanding tasks is the analytical and
subsequent numerical evaluation of terms describing Coulomb interaction. The evaluation
is based on so-called Ewald summation and several tricky analytical integrations.
Time-demanding numerical computations must be finally performed. Numerical analysis
of the basis size sufficiency is performed. Special procedure for decomposing singlet and
triplet states from complete Hamiltonian has been developed. Such separation allows then
for exact treatment of Zeeman effect.

Rising and concave dependence of the dissociation energy of trion on the magnetic field is
in accordance with the literature. It is attributed to the squeezing of the trion particles
due to the magnetic field, which is accompanied by increasing effect of binding Coulomb
interaction. Contrary to the literature, no systematic relation between singlet and triplet
ground energies can be established. This contradiction is attributed to the almost free
movement of the hole that is allowed by the chosen wavefunction basis. This reasoning
is supported by so-called ’fixed hole’ approximation. Basis is reduced to the states, such
that the hole remains in one place. In this case the ground state of the trion is always
singlet state. The difference in energies between singlet and triplet decreases for rising
magnetic field from 1 meV to 0.4 meV for B = 1 T and B = 30 T respectively. Spatial
probabilities of occurrence of one or both electrons with respect to the hole positions have
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been depicted in 2D and 3D representations. The electrons of the trion in the singlet state
are squeezed closer to the hole, whereas trion is more expanded and two side peaks are
dominant. Correlation functions images prove qualitative difference between singlet and
triplet states. Both electrons in a singlet state may occupy the same lowest state. As
a result both electrons at once are with big probability in the position of the hole. The
ground state is forbidden for trion states and therefore both electrons never occupy the
hole position. Not surprisingly, electrons are usually placed on the mutually opposite side
of the hole. The correlation evolves with the rising magnetic field. The trion is being
squeezed by the magnetic field and the correlation effects are amplified.

Due to inconclusive results from literature about values of Landé g-factors, several values of
electron and hole g-factors have been considered. The evolution of the ground energies with
hole and electron g-factors is depicted and demonstrates the intuition behind combining
hole and electron Zeeman effects.

Finally, photoluminescence (PL) spectra have been evaluated and depicted for trions
without Zeeman effect, with Zeeman effect and different g-factors and for different
magnetic fields. The main finding concerning change of magnitude of peaks instead of
their shift due to Zeeman effect has never been explicitly discussed in the literature. The
considered Luttinger Hamiltonian mixes heavy hole and light hole trion states and thus
one trion state includes both light and heavy hole. However, heavy hole and light hole
included in one trion state are visible in different light polarizations. As the result the peak
on the same energy can be found in the PL spectra for both polarizations. The Zeeman
effect thus in this case does not cause the shift of the peaks but significantly changes their
magnitude. However, mutual change of the magnitude of two surrounding peaks might
appear as a shift of one wide peak in a case of experiment with lower resolution.

High amount of the parameters that enter the computations disable direct comparison
to the experimental results, since not all the necessary parameters are provided in the
literature. Realization of relevant experiments and direct interrelation to the computations
in this thesis would be highly appreciated.
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6 Appendix A - Coulombic terms

This Appendix includes evaluation of important analytical integrals of Coulomb terms.
The tricky integration over y variables is shown in the main text. Here we focus on
possible simplification of integrals over x and z variables.

Integration over x

We deal with following integral:

∫ Lz
2

−Lz
2

dz1

∫ Lz
2

−Lz
2

dz2

∫ ∞

−∞
dx1

∫ ∞

−∞
dxhV (|x2 − x1|, y, |z2 − z1|)

ψn′
1,k

′
1
(x1)ψn1,k1(x1)ψn′

2,k
′
2
(x2)ψn2,k2(x2)ϕ

2
1(z1)ϕ

2
2(z2) (6.1)

We now introduce some useful substitution:

x = x1 − x2 (6.2)

x2 = x1 − x (6.3)

(6.4)

∫ Lz
2

−Lz
2

dz1

∫ Lz
2

−Lz
2

dz2

∫ ∞

−∞
dxV (x, y, |z2 − z1|)ϕ2

1(z1)ϕ
2
2(z2) (6.5)

∫ ∞

−∞
dx1ψn′

1,k
′
1
(x1)ψn1,k1(x1)ψn′

2,k
′
2
(x1 − x)ψn2,k2(x1 − x) (6.6)

Integration over x1 is analytical. In the case that all four interacting states are in the
lowest level, the integration is based on the integration of the Gaussian and it is relatively
simple:

f(x) =

∫ ∞

−∞
dx1ψ0,k′1

(x1)ψ0,k1(x1)ψ0,k′2
(x1 − x)ψ0,k2(x1 − x) (6.7)

=
1

λ
√
2π
e

λ2

8

(

(k1+k′1+k2+k′2+
2x
λ2

)2−4(k21+k′21 +k22+k′22 +
2k2x

λ2
+

2k′2x

λ2
+ 2x2

λ4
)

)

(6.8)

In the particular case when k1 = k′1, k2 = k′2:

f(x) =

∫ ∞

−∞
dx1ψ

2
0,k1(x1)ψ

2
0,kh

(x1 − x) =
1

λ
√
2π
e−

(x−λ2k1+λ2k2)
2

2λ2 (6.9)

For higher Landau levels the integration involves integrating Gaussians multiplied by
Hermite polynomials. Such analytical integrations must be performed for all combinations
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of Landau levels of interacting states. It is straightforward to proceed, however
several time-demanding manipulations with the polynomials and lengthy step-by-step
integrations must be undertaken. Integrals involving higher Landau levels for more
particles are considerably lengthy and cannot be written here explicitly, but those have
been pre-computed and stored in order to save computing time of subsequent repetitive
calculations.

Integration over z

Now, we would like to integrate over one of the variables in the z-direction. Recall the
assumption that the heavy hole can be also in the first excited state. We thus want to
perform following two integrations:

V00 =
4

L2
z

∫ Lz
2

−Lz
2

dz2

∫ Lz
2

−Lz
2

dz1 cos
2

(

π

Lz
z1

)

cos2
(

π

Lz
z2

)

V (|z2 − z1|) (6.10)

V01 =
4

L2
z

∫ Lz
2

−Lz
2

dze

∫ Lz
2

−Lz
2

dzh cos
2

(

π

Lz
z1

)

sin2
(

2π

Lz
z2

)

V (|z2 − z1|) (6.11)

The first integration corresponds to the interaction between two quantum well ground
states, whereas the second one is the interaction between the ground state and the first
excited state, in which the heavy hole may occur. The following steps can be performed
equivalently for both integrations thus we consider only the first one.

Now we use substitution

z = z1 − z2 (6.12)

z1 = z2 + z (6.13)

V00 =
4

L2
z

∫ Lz
2

−Lz
2

dz2

∫ Lz
2
−z2

−Lz
2
−z2

dz cos2
[

π

Lz
(z2 + z)

]

cos2
(

π

Lz
z2

)

V (|z|) (6.14)

For upper bound of the integration holds z = Lz

2 − ze and thus ze =
Lz

2 − z. Similarly for

the lower bound z = −Lz

2 − ze and thus ze = −Lz

2 − z. Thus we can write:

V00 =
4

L2
z
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−Lz

dzV (|z|)
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2
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2
−z)
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2
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2
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[

π
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(

π
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)

(6.15)

V00 =
4

L2
z

[

∫ 0

−Lz

dzV (|z|)
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π
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(
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(6.16)
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In the first term inside the bracket, we now substitute −z2 for z2.

V00 =
4

L2
z

∫ Lz

0
dzV (|z|) (6.17)

[
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2

−Lz
2
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]
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(

π
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)

(6.18)

After substituting z for −z in the first term, we get the final result:
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The second cosine function is left unchanged throughout computations, thus we can use
the result also for the second integration.
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8
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2
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]
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(
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(6.20)

The integrals over z2 can now be easily performed. The following functions are the
z-dependent parts of Coulombic term that are to be integrated along with the Coulomb
potential with respect to z over interval (0, Lz).

g00(z) =
8

L2
z

∫ Lz
2
−z

−Lz
2
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2

[

π
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]

cos2
(

π
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=
(Lz − z)[2 + sin( 2π
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z)]

L2
z

+
sin( 2π
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(6.22)

g01(z) =
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4π
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7 Appendix B - List of functions

Development of processes that lead to all the results in this thesis has not been
straightforward. Following lists of functions and files (Mathematica notebooks) include
functions that are sufficient for repeating all the results in the presented thesis. These files
are available on the enclosed CD. However, at least ten times more functions and their
variants and hundred times more testing Mathematica notebooks have been created on
the way.

Parameters

Lz = 10 nm - size of the quantum well Ly = 100 nm - size of the box in y-direction
m0 = 511 000 eV - mass of the electron
me = 0.067 ∗m0 - effective mass of the electron
mhh = 0.112 ∗m0- effective mass of the heavy hole in-plane
mlh = 0.211 ∗m0 - effective mass of the light hole in-plane
c = 2.998 ∗ 1017 nm/s - speed of light
eps = 12.9 ∗ 8.853 ∗ 10−12 - permitivity
q = 1.60218 ∗ 10−19 C - elementary charge
h = 6.582 ∗ 10−16 eV.s - Planck constant
Bm = 0.05788 mev/T - Bohr magneton
gam1 = 6.85, gam1 = 2.1, gam3 = 2.9 - Luttinger parameters
Splith1 = 16 meV - excited heavy hole states offset
Splitl = 10 meV - light hole states offset

Principle variables

B - magnetic field
lam - associated magnetic length nmax - size of the basis
Landaumax = 0, 1, 2 - maximal included Landau level
Landau - boolean type, if true - Landau levels energies included
Heavyhole - boolean type, true denotes heavy hole, false denotes light hole
Hlevel = 0, 1 - describes either ground or first excited heavy hole states
ghh - hole g-factor ge - electron g-factor shh = ±3/2 - total angular momentum projection
for heavy hole slh = ±1/2 - total angular momentum projection for light hole

Functions

Intz = INTz[Hlevel, Lz]
- stores two analytical integrals over z-variable

Intx = INTx[Landau1, Landau2, Landau1a, Landau2a, c1, c1a, c2, c2a]
- stores all 81 analytical integrals over x-variable
- inputs Landau1 - Landau2a describes the combination of Landau levels of four interacting
particle states
- inputs c1 - c2a denote wavevectors of interacting particle states

Vnondiag = Coulombnondiag[c1, c1a, c2, c2a, lam, Lz, Ly, Prec, q, eps, Hlevel, Landau1,
Landau2, Landau1a, Landau2a]
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- computes single non-diagonal Coulom term with precision Prec

Vdiag = Coulombdiag[c1, c1a, c2, c2a, lam, Lz, Ly, Prec, q, eps, Hlevel, Landau1,
Landau2, Landau1a, Landau2a]
- computes single non-diagonal Coulom term with precision Prec

Bigmat = BIGMAT[Landaumax, nmax, Ly, lam, Lz, Prec, q, eps, Hlevel]
- returns list of all Coulombic terms that are involved in the Hamitonian

kmatc, kmatcl = Kmatc[nmax]
- constructs all allowed combinations of wavevectors

Lmat = LMAT[Landaumax]
- constructs all combinations of Landau levels

LVtri = Vblock[Bigmat, kmatc, kmatcl, Landauh, Landaue1, Landaue2, Landauha,
Landaue1a, Landaue2a, Heavyhole, me, mhh, mlh, Landau, Hlevel, Splith1, Splitl]
- construct the matrix of all Coulomb term involved for one combination of Landau levels

Mathhtri = MATHEAVY[Bigmat, kmatc, kmatcl, Heavyhole, me, mhh, mlh, Landau,
Lmat, Hlevel, Splith1, Splitl]
- construct the Hamiltonian matrix for either all the heavy hole ground states or all the
first excited states or all the light hole states

LutC, LutCcc, LutB, LutBcc = Lutmat[kmatcl, Lmat, Luttinger]
- construct the off diagonal matrices with Luttinger terms

Completetrihalf = COMPLETETRIHALF[Lmat, kmatcl, Mathh1tri, Mathhtri, Matlhtri,
LutC, LutB, LutBcc, LutCcc];
- constructs complete Hamiltonian matrix for trion (based on 3× 3 Hamiltonian)

Etri = ECOMPLETE[Completetrihalf, eigprec]
- Hamitonian matrix diagonalization with precision eigprec

Mathhtri2 = AddLandau[Mathhtri, Heavyhole, Hlevel, me, mhh, mlh, Splith1, Splitl,
Lmat]
- allows separate addition of Landau levels energies

kmatsing, kmatsingl = Kmatsing[nmax]
- constructs all allowed combinations of wavevectors for singlet

kmattripl, kmattripll = Kmattripl[nmax]
- constructs all allowed combinations of wavevectors for triplet

Mathhsing, Describesing = MatSing[kmatsing, kmatsingl, kmattripl, kmattripll, kmatc,
kmatcl, Lmat, Mathhtri]
- performs the rearranging procedure so that final Hamiltonian includes only singlet states
- matrix Describesing includes quantum numbers description of each state

Mathhtripl, Describetripl = MatTripl[kmatsing, kmatsingl, kmattripl, kmattripll, kmatc,
kmatcl, Lmat, Mathhtri]
- performs the rearranging procedure so that final Hamiltonian includes only triplet states

LutCsing, LutCccsing, LutBsing, LutBccsing = Lutmatsing[Describesing, Luttinger]
LutCtripl, LutCcctripl, LutBtripl, LutBcctripl = Lutmattripl[Describetripl, Luttinger]
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- compute Luttinger matrices for singlet and triplet states respectively

Completetrising = COMPLETETRIsing[Describesing, Mathh1sing, Mathhsing,
Matlhsing, LutCsing, LutBsing, LutBccsing, LutCccsing]
Completetritripl = COMPLETETRItripl[Describetripl, Mathh1tripl, Mathhtripl,
Matlhtripl, LutCtripl, LutBtripl, LutBcctripl, LutCcctripl]
- construct complete Hamitonian matrices for singlet and triplet states, respectively

Etriz = Zeeman2[Completetrising, ghh, glh, shh, slh, B, eigprec]
- adds hole Zeeman terms and provides diagonalization of Hamiltonian matrix

EtrizsM32, EtriztM32, EtrizsP32, EtriztP32 = Eigspin2[Completetrising,
Completetritripl, ghh, glh, ge, B, eigprec]
- adds electron Zeeman terms

kmatc, kmatcl = Kmatc2[nmax]
- constructs all allowed combinations of wavevectors for ’fixed hole’ approximation

A0 = Amat1[delka, Etriz, Describetripl, Eg, lam, me, c, h]
- computes the transition probabilities for low energy states

ProbINT[Landauh, Landaue1, Landaue2, kh, k1, k2, X]
- contains the analytical integration over x for plotting the probability densities and
correlation of electrons

Files

functions1.mnb
functions2.mnb
AS fun.mnb
intx fun.mnb
- contain all previously described functions

putmat.mnb
putmat 0h.mnb
- evaluate the complete Hamiltonian matrix for trion for moving hole and fixed hole cases
and save them

get4.mnb
- loads previously saved Hamiltonian matrix and separates it to singlet and triplet states
- allows also for investigation of energies and eigenvectors

matice3 wavfun2.mnb
- performs testing of wavefunctions basis size, creates appropriate plots and computes
eccentricity

prob final.mnb
prob final 0h.mnb
- evaluate and plot the probability densities and correlations of electrons for both moving
hole and fixed hole cases

AS5.mnb
- evaluates and plots photoluminescence spectra for different settings
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