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Abstrakt: V této práci jsem studoval Beanův model kritického stavu (BCMS) v tvrdých 

supravodičích II typu. Cílem práce bylo zjistit kritickou proudovou hustotu Jc a její 

teplotní závislost pomocí analýzy teplotní závislosti magnetické susceptibility χac 

naměřené bezkontaktní metodou pomocí skvidového magnetometru. Srovnával jsem 

výsledky BCSM pro čtyři geometrie vzorku: desku a dlouhý válec v podélném poli a 

disk a pásek v příčném poli. Tato práce se soustředí na χac tenkých supravodivých filmů 

(disk a pásek). Měřil jsem magnetickou odezvu tenkých Nb filmů a drátů 

vysokoteplotního supravodiče YBa2Cu3Ox v příčném poli jako funkci teploty, dále 

objemový vzorek NEG-123 v podélném poli. Prezentuji zde metodu propojení modelu a 

experimentální susceptibility. Dobrý souhlas naměřené susceptibility s modelem 2D 

disku umožňuje bezkontaktně určit kritickou proudovou hustotu a její teplotní závislost. 

Harmonická analýza teplotní závislosti nelineární χac výborně souhlasí se susceptibilitou 

vypočtenou na základě 2D modelu disku. 

Klíčová slova: Střídavá susceptibilita, kritický stav v supravodičich II. typu, kritická 

proudová hustota, vyšší harmonické, tenký film.  
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Abstract: In this work we have studied the Bean critical state model (BCSM) in hard 

type II superconductors. The study has been aimed towards the determination of the 

critical current density Jc and its temperature dependence using analyses of a 

temperature dependence of a magnetic susceptibility χac measured by a contactless 

method using SQUID magnetometer. We have compared the predictions of the BCSM 

for the four geometries: slab in a parallel field, long cylinder in an axial field, and disk 

and strip in a transverse field. The main interest of the present study is the χac of the 

superconducting thin films (disk and strip). We have measured the magnetic response of 

Nb thin films and second-generation high temperature superconductor YBa2Cu3Ox wire 

in a perpendicular AC field as a function of temperature as well as bulk NEG-123 

sample in parallel magnetic field. We have presented a method of linking model and 

experimental susceptibility. The good agreement of experimental susceptibility with 

model of 2D disk allows noncontact estimation of the critical depinning current density 

and its temperature dependence. Harmonic analysis of the temperature dependence of 

the nonlinear χac gives excellent agreement with the susceptibility calculated on basis of 

2D BCSM to disk.  

Keywords: AC susceptibility, critical state in type II superconductors, critical current 

density, harmonics, thin film.  
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1. Introduction 

1.1. Motivation 

This thesis was devoted to study the Bean critical state model (BCSM) in hard 

type II superconductors. Fundamentally, this study was aimed towards the 

determination of the critical current density and its temperature dependence using 

analyses of a temperature dependence of a magnetic susceptibility χac of samples and 

hence determine the critical current density by contactless method using SQUID 

magnetometer. Contactless measurements are based on measuring the magnetic flux of 

the current induced in the sample by applied magnetic field. On the other hand contact 

measurements of electronic transport commonly require the measurement of a voltage 

and current. Many factors contribute to the accuracy of the final measurement, 

including the voltage and current measurement accuracies and noise. Testing of low 

resistance samples requires higher currents and very sensitive voltage measuring 

instruments. When such a high current produces local field and Joule heating the pulse 

measurements are preferred, which may make an interpretation more difficult. The 

measuring system must minimize voltage noise, drifts, and thermal EMFs to obtain 

accurate low-voltage measurements. In addition attachment of the electrical leads may 

introduce impurities or strains into the sample. The contacts must be of high quality and 

low resistivity. Also, one should avoid local modification of the material such as 

diffusion of solder, temperature degradation, etc. 

The thesis compared the predictions of the BCSM for the four geometries: the 

slab in a parallel field, the long cylinder in an axial field, and disk and strip in transverse 

field. The main interest of the present study is the χac of the superconducting thin film 

(disk and strip) due to its important applications.  

This thesis is organized as follows: Chapter 2 is devoted to study the general basic 

concepts which are important for understanding the critical state in superconductors, 

Chapter 3 focuses on the study of the Bean critical state model, Chapter 4 is dedicated 

to the experimental work and model calculations and Chapter 5 demonstrates the 

experimental results and the discussions. 
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1.2. Superconducting state 

When an electric current flows in a normal conductor, there is some resistance to 

the motion of electrons through the conductor. It is necessary to apply a voltage to keep 

the current going on, to replace the energy dissipated by the resistance. However at low 

temperatures some materials have the ability to conduct electricity without energy 

dissipation, theses materials are said to be in the superconducting state. 

The superconducting state literally means that, charge transport is frictionless. It is 

an anomalous phenomenon. In some metals, the superconducting state occurs due to the 

presence of a 0.01% fraction of abnormal (superconducting) electrons, while the other 

99.99% free (conduction) electrons remain normal. The correlated behaviour of this 

abnormal small fraction predominates the rest and the metal loses its resistivity. The 

presence of the normal conduction electrons is completely masked by the abnormal 

electrons. The superconducting state is a quantum state occurring in the macroscopic 

scale. 

To understand why superconductivity occurs, it is better to consider quantum 

statistics. According to the quantum statistics, there are two types of elementary 

particles: bosons and fermions. Bosons have an integer spin, while fermions possess a 

half integer spin. Electrons have spin 1/2 (in units of ħ = h/2π, where h is the Planck‟s 

constant) so they are fermions and follow the Pauli exclusion principle i.e. no two 

electrons can occupy the same energy state. At the same time, many bosons can occupy 

the same state. This is the main difference between fermions and bosons. Thus, they 

belong to different quantum statistics. Fermions follow Fermi-Dirac distribution 

function, Eq. (1), while bosons obey Bose-Einstein distribution function Eq. (2). 

 
 

1
,

exp / 1
F

B

f E
E k T


      

(1)    

 
 

1
,

exp / 1
B

B

f E
E k T


      

(2) 

where fF(E) and fB(E) are the probabilities of occupation of an energy level E, for 

fermions and bosons, respectively, T is temperature, μ is the chemical potential, and kB 

is Boltzmann constant. Below some critical temperature, electrons can form pairs with 
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opposite spins and momentum. These pairs, called Cooper pairs, are bosons. They 

appear due to a net attractive force between electrons mediated by an exchange of 

phonons. In fact, many experimental and theoretical studies of superconductivity are 

devoted to find an origin of the attractive force between the Cooper pairs constituents. 

The electron energy in the superconducting state is lower than that in the normal state. 

The difference in the energy per electron between the two states is the energy gap below 

the Fermi energy level. The energy gap provides a barrier against the transition of 

electrons from the superconducting state to the normal state, even when the electrons 

are scattered by lattice defects, impurities, or thermally oscillating ions and the electric 

resistivity may not appear. 

Superconductivity is by its nature a quantum effect. It originates from quantum 

coherence in macroscopically large sample, where all electrons carrying the current in a 

sample of macroscopic size can be described by a single wavefunction. This leads to a 

number of observable macroscopic quantum effects such as the flux quantization. If a 

superconducting ring carries a supercurrent, magnetic flux inside the ring can have only 

values which are integer multiples of a flux quantum Φ0 [1, 2].  

The superconducting state is a state of matter. It is not a property of isolated atoms 

but is a collective effect determined by the structure of the whole sample. One of the 

features of superconductivity is that the electrical resistance of a material suddenly 

drops to zero as the temperature decreases through a transition point, the critical 

temperature Tc, see Fig. 1. The superconductor is not only a perfect conductor but also a 

perfectly diamagnetic material which excludes a magnetic field from its interior. This 

effect is called Meissner effect. The perfect diamagnetism is broken at sufficiently high 

applied magnetic field. This break down can take place in two ways depending on 

whether the superconductor is type I or type II. The magnetic field enters to a type I at a 

specific critical field Bc and the material completely converts to the normal state. In type 

II, the magnetic field starts to penetrate into the sample in microscopic filaments called 

vortices at lower critical field Bc1, while the sample is converted to the normal state at a 

higher critical field called Bc2. The region between Bc1 and Bc2 is called the mixed state. 

An important characteristic of a superconductor is the maximum transport current, 

which can flow without dissipation, i.e. the critical current, Ic. The value of the critical 

current depends on the sample geometry and quality. According to Silsbee‟s criterion 

[3], a superconductor loses its zero resistance when at any point on the surface the total  
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Fig. 1: The resistance versus temperature curve of mercury shows the vanishing of the 

electrical resistivity ρ as discovered by Heike Kamerling Onnes in 1911. 

magnetic field strength, due to the transport current and applied magnetic field, exceeds 

the critical field strength, Bc. The Ic is called the thermodynamic critical current or the 

depairing current and depends on the external magnetic field and temperature.  

Another manifestation of the quantum nature of superconductivity is the 

Josephson effect [4]. This phenomenon has a large number of applications in 

microelectronics, the best known examples being SQUIDs (superconducting quantum 

interference devices). Josephson effect predicts the tunnelling of Cooper pairs through a 

thin insulating barrier (in the order of a few nanometres thick). In a junction composed 

of two superconductors separated by thin insulating layer, a zero voltage current flow 

resulting from the tunnelling of Cooper pairs is known as DC Josephson effect. If a 

nonzero voltage V is maintained across the tunnel barrier, an alternating supercurrent 

will flow through the barrier in addition to the DC current produced by the tunnelling of 

normal electrons. The angular frequency of the AC supercurrent is ω = 2eV/ћ and ћ = 

h/2π, where h is Plank‟s constant. This oscillating current is known as the AC 

Josephson effect. 
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2. Two types of superconductors  

In practical applications, a major use of superconductors is to produce high 

magnetic fields. Therefore hard superconductors (type II superconductors with a strong 

flux pinning) are used in most applications since they remain superconducting in much 

higher magnetic fields than type I superconductors. The Bean critical state model was 

developed to explain the irreversible magnetic properties of hard superconductors. In 

this chapter, properties of hard superconductors will be described. In the first part of the 

chapter, the Ginzburg Landau theory and type I superconductors will be briefly 

mentioned. In latter part of the chapter we will study the properties of type II 

superconductors, the vortices, flux pinning, vortex motion and critical current.  

2.1. The Ginzburg Landau theory       

The phenomenology of superconductivity is based on the Ginzburg Landau (GL) 

theory [5]. Within this theory Ginzburg and Landau introduced an order parameter ψ to 

describe the phenomena of superconductivity. In its simplest version, ψ = |ψ(r)| exp(iφ) 

is a complex order parameter, where φ is the phase of the order parameter. In the 

superconducting phase, which is the ordered phase, |ψ| ≠ 0, while for temperatures 

above Tc, |ψ| = 0 in the state of thermodynamic equilibrium. The absolute value of the 

order parameter is related to the density of superconducting electrons, ns/2 = |ψ(r)|
2
. 

Based on Landau‟s theory of second-order phase transition [6], the free energy of 

the superconducting state can be written as a power series in |ψ(r)|
2
. Near the critical 

temperature it is sufficient to retain only the first two terms in this expansion. 

Furthermore, if a wavefunction ψ(r) is not constant in space, this gives rise to a kinetic 

energy, and to take this into account, an additional term is added to the free energy, 

which is proportional to the square of the gradient of | ψ(r)|
2
. As a result the difference 

between the free energy densities of superconducting and normal phases is written in 

the following form  

   
 

       
 

2
2 4 2

0

1
,

2 2 2
s n s

s

T
F F T i q

m


    




       

A
r r r A r r

 
(3) 
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where FS and Fn are the values of the free energy density in a superconducting and 

normal state, respectively, and A is a vector potential generating the magnetic flux 

density, B A . mS and qS are the mass and charge of Cooper pairs respectively, i.e. 

mS = 2me, and qS = 2e, where me  and e are the mass and charge of the electron 

respectively. The GL expansion (3) is valid only near Tc where the order parameter ψ(r) 

is small enough. The GL coefficients α(T) and β(T) are phenomenological parameters.  

When the superconductor coexists with the magnetic field, ψ(r) and A(r) can be 

determined by minimizing the free energy with respect to the order parameter and 

vector potential. One arrives to the two GL equations.  

             
221

2 0
4 e

i e T T
m

          A r r r r ,

 
(4) 

          
2

2* * 2

2 e e

i e e

m m
    


    J r r r r r A.

 
(5) 

2.1.1. Coherence length and flux penetration depth 

The set of Eqs (4) and (5) permits one to define two fundamental lengths: λ, the 

penetration depth of magnetic field, and ξ, the coherence length. The electromagnetic 

properties in the superconductor are determined by these two characteristic lengths. 

They are related to the spatial variations in the magnetic flux density B and the order 

parameter ψ(r) see Fig. 2. Temperature dependence of the penetration length is 

      
1/2

0 1 ,
c

T T T 


 

 
(6) 

where λ(0) denotes the penetration length at zero absolute temperature. The magnitude 

of the penetration depth depends on the material and temperature. On the other hand the 

coherence length is given by 

      
1/2

0 1 .
c

T T T 


 

 
(7) 

At T → Tc both quantities λ(T) and ξ(T) approach infinity.  

The ratio of these two characteristic lengths is defined by    /T T   . 

According to the GL theory, λ(T) and ξ(T) have the same temperature dependence, and 
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Fig. 2: The coherence length ξ and penetration depth λ associated with the change in ns and the 

magnetic induction B inside the superconductor. (a) Type I superconductor, with ξ > λ, 

and (b) Type II superconductor, with λ > ξ, and Ba < Bc1, where Ba is the applied 

magnetic field and Bc1 is the lower critical field.  

hence κ is independent of temperature. As a matter of fact, κ decreases slightly with 

increasing temperature. The GL parameter κ plays an important role in a description of 

the magnetic properties of superconductors. In particular classifies the superconductors 

into type I and type II.  

The GL theory was constructed, in particular, to explain the positive surface 

energy of the superconductors. Abrikosov has studied this possibility in detail [7]. He 

demonstrated that GL theory predicts the division of superconductors into two 

categories according to the magnitude of the GL parameter κ. These categories are 

referred to as type I and type II superconductors. For type I superconductors 1 2 

with a positive surface energy associated with a domain wall between normal and 

superconducting material. This positive surface energy stabilizes a domain pattern in 

intermediate state. On the other hand, in type II superconductors 1 2   that leads to 

the negative surface energy and a process of subdivision into domains would proceed 

until it is limited by the coherence length ξ. Abrikosov has shown that the magnetic 

field starts to penetrate type II superconductors at lower critical field Bc1 in a regular 

array of flux tubes (vortices), instead of laminar domains in case of type I, and reaches 

the applied field Ba at higher critical field Bc2, i.e. B = Ba. Each vortex carries a quantum 

of a magnetic flux, Ф0 = h/2e. Between Bc1 and Bc2 the sample is said to be in the mixed 

state or Shubnikov phase. 
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2.2. Type I superconductors 

 Type I superconductors include all superconducting elements except for Nb, V 

and Tc. Behaviour of a long superconducting rod in an external magnetic field Ba is 

demonstrated in Fig. 3. At sufficiently small applied field, |Ba| < Bc, where Bc is the 

critical magnetic field, the interior of the sample is completely screened by induced 

shielding currents that flow near a surface and magnetization M acts opposite to the 

applied field Ba. The magnetic flux is completely expelled and the magnetic flux 

density inside the sample is B = µ0 (H + M), where H is the magnetic field strength.   A 

magnetic susceptibility of a superconductor is χ = M/H = –1, which is equal to the 

ideally diamagnetic material. If the external magnetic field is increased, screening 

breaks down at the critical magnetic field Bc and a transition to a normal state takes 

place. The single value M(Ba) curve demonstrates that the superconducting state is a 

thermodynamic equilibrium state and the transition from the normal to the 

superconducting state represents a phase transition. Bc depends on temperature, as is 

shown in Fig. 4. This figure is in fact the B-T phase diagram of an ideal superconductor. 

At Ba < Bc, penetration of a magnetic field in superconductor is thermodynamically 

unfavourable. Thus, a superconductor can be characterized by perfect conductivity and 

perfect diamagnetism. The dependence of Bc on temperature can be expressed 

approximately by the empirical relation 

  

 

Fig. 3: (a) Magnetic field B inside a type I superconductor, and (b) its magnetization as a 

function of the applied magnetic field Ba. The material shows a perfect diamagnetism 

below the critical magnetic field Bc. 
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Fig. 4: Phase diagram of type I superconductors.    

 

 

Fig. 5: The curve of the free energy of a superconducting sample. When the applied magnetic 

field exceeds Bc it is energetically favourable for the sample to be in the normal state.  
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According to the thermodynamic principle, that the free energy is always 

minimized at equilibrium, the superconducting state must have the lowest free energy 

below the critical temperature Tc, while the normal state has the lowest free energy 

at temperature higher than Tc. The free energy of a sample in the superconducting state 

is shown in Fig. 5. It is represented by a parabolic curve crossing the free energy line of 

the sample in the normal state at Ba = Bc.  The change in the free energy density of a 

superconducting sample when the magnetic field decreased through Bc is 

2

0

,
2

cB
F


 

 
(9) 

which means that the superconducting state has a lower energy and is preserved up to 

Bc, which is called the thermodynamic critical field. 

In many real situations the effect of sample geometry causes the flux density to 

exceed Bc at some part of the sample surface due to a large demagnetization factors. As 

a result, a flux penetrates into the type I superconductor in a field smaller than Bc. A 

good example is a thin superconducting film in a perpendicular magnetic field. 

Therefore some volume fractions of the sample suffer a transition from a 

superconducting state to a normal state. In this case the sample is said to be in the 

intermediate state [6, 8].  

Type I superconductors have limited practical applications due to the small values 

of the critical magnetic field Bc and the critical current density Jc.  

2.3. Type II superconductors 

Type II superconductors are characterized by the GL parameter 1 2  , i.e. by 

negative surface energy. Therefore the appearance of normal regions in the interior of a 

specimen placed in a magnetic field is energetically favourable and the material should 

split into a fine-scale mixture of superconducting and normal regions, with the 

arrangement being such as to give the maximum possible boundary area. Such a state is 

called a mixed state. It was first demonstrated by Shubnikov [9] in 1937. However, it 

was not understood until the work of Abrikosov [7] twenty years later, who explained  
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the full consequences of a negative surface energy and the nature of type II 

superconductors.   

The typical B-T phase diagram for a type II superconductor of a cylindrical 

sample placed in a parallel magnetic field is shown in Fig. 6. For weak applied fields 

Ba < Bc1 there is complete flux expulsion (Meissner phase). At Ba = Bc1 it becomes 

energetically favourable for the magnetic flux to penetrate the sample. When Ba > Bc1 

the magnetic flux penetrates the superconductor partially in the form of flux lines 

(vortices). Complete penetration of a flux takes place at a much higher field Bc2 > Bc 

which is called the upper critical field. The curve Bc2(T) on the phase diagram is the line 

of the second-order phase transition between superconducting and normal states. In the 

field range, Bc1 < Ba < Bc2, a superconductor is said to be in a mixed state. In equilibrium 

conditions the vortices form a regular vortex lattice. The existence of the vortex lattice 

was first confirmed by a direct experimental observation using a decoration technique 

by Essman and Träuble [10].  

The dependence of internal magnetic flux density B and magnetization M on an 

applied magnetic field Ba in ideal type II superconductors without pinning is shown in 

Fig. 7.a. The Meissner state exists at low fields Ba < Bc1, while the mixed state exists in 

the range between Bc1 and Bc2.  There is a second-order phase transition to the mixed 

state at Bc1 and to normal state at Bc2. The two shaded areas separated by the 

thermodynamic field, Bc, are equal. It can be defined by the expression 

   
2

1

0 0 .
c c

c c

B B

a a a

B B

B M dB M dB    
 

(10) 

  The real magnetization and internal magnetic flux unlike Fig. 7.a are rounded as 

indicated in Fig. 7.b. Both type I and type II superconductors exhibit a thermodynamic 

field Bc. The Gibbs free energy between the normal and the superconducting state in 

type I (Eq.(9)) is given by
2

0 12 .c cB B  and Bc2 can be expressed in terms of Bc as 

follows,  
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 (11) 
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Fig. 6: The B–T phase diagram of type II superconductors. 

 

 

Fig. 7:  Dependence of the magnetic flux B and magnetization M on an applied magnetic field 

Ba for (a) an ideal type II superconductor. The two shaded areas separated by Bc are 

equal. (b) non–ideal type II superconductors. The curves near the lower-critical field 

are rounded. 
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When the applied magnetic field is perpendicular to the surface of the 

superconductor, the upper critical field is Bc2. When it is parallel to the surface, the 

superconducting state can persist in a thin surface layer of the order of ξ(T). This surface 

superconductivity exists in an interval Bc2 < Ba < Bc3, where the so-called surface 

nucleation field Bc3 = 1.69 Bc2 [11, 12]. The existence of the surface superconductivity 

may manifest itself in measuring the resistance between two surface probes, but has 

minor influence on the magnetization curve of a macroscopic sample. The lower and 

upper critical fields of type II superconductors have similar temperature dependence. 

Type II superconductors are preferred in practical applications, due to their relatively 

high transition temperatures. They also carry large currents and often operate in large 

magnetic fields. 

2.3.1. Vortex state 

In a pioneering paper A. Abrikosov [7] predicted that in the mixed state type II 

superconductors could retain superconductivity in strong magnetic fields by allowing 

the magnetic flux to penetrate the sample as a periodic arrangement of quantized 

magnetic flux lines, i.e. flux line lattice (FLL). Within the framework of the Ginzburg 

Landau theory the structure of an Abrikosov vortex is characterized by two fundamental 

length scales: the magnetic penetration depth λ and the coherence length ξ, where λ > ξ. 

In simple way the vortex can be described as a cylindrical normal core with radius ξ and 

a superconducting current circulating around it with radius λ.  The structure of the 

Abrikosov vortex is depicted in Fig. 8. A maximum of the magnetic flux density is in 

the centre of the vortex and at large distance from the core decays roughly exponentially 

with the penetration depth λ. The order parameter ψ(r) or the Cooper pair density is 

reduced in a small core region with radius of the order of the coherence length ξ, 

therefore the vortex core can be represented as a region of normal phase of an area ~ ξ
2
. 

The vortex enters and leaves the superconductor at the surface. 

Each vortex carries one magnetic flux quantum Ф0. Vortices exert a Lorentz–like 

force on each other. The energy associated with the repulsive interaction between 

vortices decreases as the separation increases. Inside the superconductor, the vortices 

arrange themselves at distances ∼ λ from each other, so that in the cross-section, they 

form a regular triangular or square lattice (Fig. 9). Once formed at B > Bc1, the flux line 

lattice (FLL) persists at much higher fields. As the external field increases, the lattice 
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Fig. 8: Spatial variation of the superconducting current, the magnetic flux density and the 

magnitude of the order parameter, ψ(r), in isolated vortex. The magnetic flux density 

decreases from the maximum value at the vortex centre to zero at a distance λ in the 

superconductor. The order parameter grows from zero to maximum value in the 

superconductor at a distance ξ. 

 

Fig. 9:  Mixed state of a type II superconductor. Superconducting vortices form a regular 

triangular (hexagonal) (a) or square (b) lattice. Vortex cores (dashed regions) are 

normal [13]. 
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Fig. 10: (a) Pancake vortices and strings. (b) Vortices of high-Tc cuprates for inclined magnetic 

field. (c) Josephson vortices [14].  

period steadily decreases and the density of the vortices rises. At a field B = Bc2, the 

vortex lattice becomes so dense that the distance between the neighbouring vortices 

reaches the order of ξ. This means that the normal cores of the vortices come into 

contact with each other and the order parameter ψ(r) becomes zero over the total 

volume of the superconductor. 

In the absence of a driving current the FLL is in equilibrium. Consequently, each 

vortex has no net force acting on it because the forces from all the other vortices in the 

array exactly cancel each other. The presence of external currents and crystal lattice 

defects is usually referred to as a non–equilibrium situation. The existence of an ideal 

equilibrium FLL would result in finite resistance at any small value of external current. 

The drag force by an external current on a vortex is usually referred to as the Lorentz 

force.  It is directed perpendicular to the current flow and results in a vortex motion in 

this direction. Magnetic flux motion under an external current results in the generation 

of an electric field. Direct evidence of a voltage generation under flux motion was first 

given by Giaever in 1965 [15]. This leads to the importance of creating flux pinning in 

type II superconductors.  

In general, there are three important energy scales to discuss the physics of vortex 

matter. They are (a) interaction between vortices, which favours the ordered state such 

as FLL, (b) pinning by disorder, which hinders ordering and favours the glassy state, (c) 
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thermal energy, which also hinders the vortices ordering. For conventional 

superconductors, (a) is much stronger than the other two cases, and the ordered FLL 

dominates [14].  

In high Tc cuprates, the physics of the vortex matter is changed due  to the strong 

two–dimensionality [16]. The circulating current around the quantized vortex is 

confined in each CuO2 plane. These confined vortices are called pancake vortices (Fig. 

10.a and Fig. 10.b) [17-19]. Pancake vortices in adjacent layers interact with each other 

through Josephson coupling [20]. When the magnetic field is applied parallel to the 

CuO2 plane we can have coreless Josephson vortices (Fig. 10.c) [21, 22]. The coreless 

feature leads to ultra high speed motion in the presence of a driving current. 

2.3.2. Vortex pinning 

The origin of pinning forces is a subject of a detailed research. There are many 

models and theories which have been proposed to explain it [23-26]. A pinning force Fp 

is a short-range force that holds the core of a vortex in a pinning centre and allows the 

formation of a static vortex density gradient. Usually the pinning centres are related to 

impurities and the defect structure of a material.  In a real superconductor there are 

always lattice defects such as dislocations, normal precipitates, voids, grain boundaries, 

etc. It is important that the introduction of pinning defects does not generally lead to a 

degradation of the critical temperature of the sample. The density of pinning centres can 

be high with average separations of 10
–8

 m or less [27, 28]. Pinning centres act most 

efficiently if their spatial extension is of the order of the coherence length. This implies 

that in the high temperature superconducting materials the pinning sites of atomic size 

have to be introduced. In hard superconductors, pinning properties play an important 

role to attain high critical current density Jc where the limit of J is reached when 

vortices leave their pinning sites and move through the lattice.  

There are two regimes of pinning forces: the elementary pinning force at the level 

of an individual flux line and the bulk pinning force density. The simplest example of 

elementary pinning interaction between a flux line and crystal lattice is a void which 

may be present due to the manufacturing process of type II superconductors. When a 

vortex passes through the void, its energy is lowered by roughly the product of the 

condensation energy density and the void dimensions hence the vortex prefers to pin to 

the defect. The bulk pinning force density, which is the pinning force per unit volume of 
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a pinning centres, is given as a product of the critical current density and the 

corresponding magnetic flux density. It is rarely possible to sum the local pinning forces 

directly. The summation usually depends on the strength and distributions of the 

pinning centres and on the distortions they are able to produce in the vortex lattice [29, 

30].  

Vortices can undergo thermally activated hopping between pinning centres [31-

33]. The Lorentz force needed to depin a single vortex equals to the pinning force. The 

force per unit length needed to produce this depinning, Fp, has been found to have the 

temperature dependence 

     0 1 / ,
n

p p cF T F T T       (12) 

with Fp (0) varying over a wide range from 10
−12

 to 4×10
−4

 N/m and n ranging from 1.5 

to 3.5 [34-39].  

The existence of pinning in type II superconductor has several consequences [40]: 

(i)   The I – V curve of a superconductor in a magnetic field is highly nonlinear. At 

T = 0 or for conventional superconductors, one has the electric field, E = 0, for 

J  < Jc and E = ρF J for J >> Jc, where ρF is the flux flow resistivity.  For J 

slightly above Jc various concave or convex shapes of E(J) are observed, 

depending on the type of pinning and on the geometry of the sample. 

(ii)  The magnetization curve M(Ba) is irreversible and performs a hysteresis loop 

when the applied magnetic field Ba  is cycled.  

(iii) In general, the current density in type II superconductors can have three different 

origins: (a) surface currents (Meissner currents) within the penetration depth λ. 

(b) a gradient of the flux-line density, or (c) a curvature of the flux lines. Since 

in simple geometries a deformation of the flux line lattice (FLL) is caused 

mainly by pinning, it is sometimes said that „the current flows in regions where 

the FLL is pinned‟ [41, 42].  

(iv) The flux pinning suppresses the voltage drop induced by vortex motion when 

J < Jc [43]. 

(v)  Pinned vortices exert a force on the atomic lattice which leads to magneto-

mechanical effects [44, 45] and to a change of the velocity and damping of 



2. Two types of superconductors 

18 

 

ultrasound [46-49].  Another mechanical effect of pinning is a strong internal 

friction [50-52].  

 A successful theory dealing with random pinning centres is the collective pinning 

theory [30]. The central idea of this theory is the assumption that the long-range order 

of the vortex lattice is destroyed by the presence of the disorder (weak pinning centres), 

leaving a short range order over a correlation length Lc. When Lc is much larger than the 

coherence length ξ, i.e. Lc >> ξ, the pinning is considered to be weak, while it is 

considered to be strong when Lc ~ ξ.  Within this theory the critical current density Jc is 

given by 

2

0 ,c

c

J J
L

 
  

   
(13) 

where J0 is the depairing current density. The dimenensionless ratio Jc/J0 is a measure of 

the strength of the pinning force density Fp [53]. The regime of weak collective pinning 

(Lc >> ξ) is characterized by a large reduction of the critical current density Jc with 

respect to the depairing current J0. On the other hand, in the strong pinning regime, 

when Lc ~ ξ , the critical current density Jc achieves its maximum possible value of the 

order of the depairing current J0 which is important for practical applications of type II 

superconductors.  

2.3.3. Motion of vortices 

Vortices can move as a unit or in large groups (flux bundle) under the action of 

perturbing forces. When an electric current density J flows through type II 

superconductor in the mixed state, it exerts a Lorentz force density, FL = B × J, on the 

flux-line lattice (FLL), which causes the vortices to move with mean velocity vL, see 

Fig. 11. This vortex drift generates an electric field E = B × vL where B is the flux 

density in the sample.  There are two regimes of flux motion, both of which involve 

dissipation [54]. The first is flux creep, when the pinning force dominates [55], and the 

second is flux flow, when the Lorentz force dominates [56]. 

Moving flux lines dissipate energy by two effects which give approximately equal 

contributions: 

(a) By dipolar eddy currents that surround each moving flux line and have to pass  
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Fig. 11: A superconductor carries current in a magnetic field. The Lorentz force acts on the flux 

lines in the direction shown by the arrow. 

 through the vortex core, which in the model of Bardeen and Stephen [57] is 

approximated by a normal conducting cylinder. 

(b) By the retarded recovery of the order parameter ψ(r) at places where the 

vortex core (a region of suppressed |ψ| ) has passed by [56]. 

2.3.3.1. Flux flow 

When a pin free type II superconductor carries a current in presence of a magnetic 

field B or if the Lorentz force FL is so strong that it exceeds the pinning force Fp, the 

vortices move under the effect of two forces: the Lorentz force FL and viscous drag 

force Fv.  The latter force is due to the electric field generated in the region around a 

vortex core which leads to energy losses in the process  of  the vortex motion and  is  

usually  represented  in  the  form Fv = -η υL , where υL is the vortex velocity and η is the 

viscous drag coefficient [57].  

The most widely accepted theory of flux-flow was worked out by Bardeen and 

Stephen [57]. They considered a vortex core of radius ξ, which can be treated as if it 

were in the normal state. When a vortex moves, it generates an electric field in its 

surroundings. This state of a type II superconductor is called the resistive state. The 

corresponding resistivity is called the flux flow resistivity ρF.  The induced resistive 

Current

Lorentz Force

Magnetic

field



2. Two types of superconductors 

20 

 

currents   in   the vortex core create   a   loss W = ρF J 
2
, and thereby a flux-flow 

resistivity ρF ; 

0
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,F n
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B B
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
 


   (14) 

where ρn is the normal state resistivity. The flux flow resistivity ρF equals ρn when B 

reaches Bc2 and goes to zero when B is zero. The factor B/Bc2 is simply the fraction of 

the material occupied by the vortex cores, ρF is therefore equal to ρn times this fraction. 

The result is the same as if a uniformly distributed current were passed through the 

material and losses would appear from the fraction of the current which passed through 

the core regions. Thus the resistivity of type II superconductors in the flux-flow regime 

in high fields is rather large and usually is much higher than the resistivity of copper at a 

corresponding temperature.  

2.3.3.2. Flux creep  

When the DC magnetization of superconducting sample is measured for a long 

period, it decreases slightly. This indicates that the superconducting current decays with 

time and it is not persistent current. The decay of the current is a result of the decrease 

in the gradient of flux lines distribution. Such flux motion, which can be caused by 

thermal activation is called “flux creep” [58]. Thermally activated flux motion is not a 

macroscopic and continuous phenomenon like flux flow, but it is a partial and 

discontinuous one.   

Consider a single vortex moving in the direction of the Lorentz force under the 

influence of the transport current. The variation of its energy is indicated schematically 

in Fig. 12.a. When the vortex moves in the Lorentz force direction, its energy decreases 

gradually, but when it moves in the opposite direction its energy increases. To 

overcome the pinning force the vortex should overcome the barrier with height U. If 

there is no thermal activation the vortex will stay in the pinned state. When the current 

increases, the height of the barrier decreases until the peak and the bottom of the barrier 

coincide with each other as shown in Fig. 12.b. In this case the sample is said to be in 

the critical state i.e. J = Jc. At a higher current density continuous flux motion, i.e. flux 

flow, is expected to occur as in Fig. 12.c. In high Tc superconductors (HTSCs), thermal 

activation enables the flux lines to overcome the energy barrier at finite temperatures 
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Fig. 12: Energy of flux line vs. its position: (a) the case of J < Jc, the flux line must overcome 

the barrier U to be depinned from the potential. (b) The critical state, J = Jc and (c) the 

flux flow state (J > Jc). 

   

 

Fig. 13: A sketch for the definition of Ic or Jc by transport measurement in the presence of an 

external magnetic field. This curve has a linear V versus I at low I followed by a highly 

nonlinear region at intermediate values of I, and finally a linear relation again. The 

effective resistance is quite different in the two regions where ohmic behaviour is found. 

The plot can be read either as an E–J characteristic or as a I –V characteristic [59]. 
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even in the state represented by Fig. 12.a. This phenomenon is called thermally assisted 

flux flow (TAFF) see Fig. 13. The importance of TAFF for HTSCs arises from the fact 

that, the ratio of the pinning potential barrier U to the thermal activation energy is much 

smaller than the same ratio in conventional superconductors. 

In the flux flow regime, for current J > Jc, the resistivity is given by Eq.(14), 

while at J < Jc the flux creep phenomenon manifests itself in the existence of a finite 

resistivity. As a result, a type II superconductor at a finite temperature can be generally 

characterized by a I–V curve (Fig. 13)  

0

exp 1 ,
B c

U J
E B f d

k T J

  
    
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where E is the generated electric field, d is the distance between pinning centres, Jc0 is 

the zero-temperature critical current density and  f is the attempt frequency of the flux 

bundle. The mechanism responsible for the appearance of the electric field is essentially 

the same as that for flux flow in spite of the quantitative difference and hence a 

distinction in experiments between flux creep and flow is difficult. The exponential I–V 

characteristic of a hard type II superconductor (Fig. 13) suggests the existence of a 

nonzero resistivity at any temperature above absolute zero, ρ = ρ0 exp(–U/kBT ). This 

behaviour is usually referred to as thermally activated flux flow (TAFF). The thermally 

activated resistivity is exponentially small at low temperatures. At higher temperatures 

the effect of thermal activation becomes much more pronounced. The pinning potential 

well U → 0 as T → Tc and thus the resistivity increases rapidly near Tc. Fig. 13 shows 

the characteristic I–V curve or E–J curve in the presence of an external magnetic field at 

T > 0. In the curve we can distinguish three different regions; thermally assisted flux 

flow (TAFF) in the low current end, flux flow in the high current region, and flux creep 

in the transition region. The particularly important feature of this plot is the highly 

nonlinear region, where the critical current Ic is marked in the region crossing over 

between TAFF and flux flow. It is common to define Ic at the point where E = 1 μV/cm.  

The field at which the M versus B curve is no longer double valued is known as 

the irreversibility field Birr. In the field range between Birr and Bc2 thermal activation 

leads to flux motion, and only below Birr does the superconductor become hard and the 

magnetization becomes irreversible. In practical low temperature superconductors this 
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field is very close to Bc2 while in high temperature superconductors, thermal activation 

effects cannot be neglected since Birr is appreciably smaller than Bc2. 

2.4. Critical current density in type II superconductors 

The maximum superconducting current density that the superconductor can carry 

is a very important factor in practical applications. According to the GL theory, [6] the 

maximum superconducting current density is given by 

 
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where Bc is the critical thermodynamic magnetic field. Sometimes, J0 is called the 

depairing current density. However, the size of the superconductor should be smaller 

than ξ or λ to attain the depairing current density over its entire cross section.  

In the Meissner state the current passing through a thick superconductor is 

restricted to a thin surface layer where the magnetic field can penetrate. Otherwise the 

magnetic field due to the current would exist inside the superconductor. On the other 

hand, in the mixed state the magnetic flux penetrates into type II superconductors in the 

form of quantized flux lines (FLs). The microscopic currents, connected with them, 

flow essentially at a length λ around their core as shown in Fig. 8 however, J0 is reached 

at a distance comparable with the coherence length ξ. The macroscopic currents are the 

result of the spatial gradients in the density of FLs or due to their curvature. This is 

possible only due to the existence of pinning centres, which can compensate the Lorentz 

force. When the Lorentz force acting on the FLs is balanced by the pinning force 

density, i.e.  FL = Fp, and the electromotive force starts to appear, the current density is 

called the depinning current density Jc. The main difference between the two 

parameters, Jc and J0 is that, Jc marks onset of dissipation in a sample still in 

superconducting state, while at J0 the material loses its superconductivity. 

The external currents applied to a superconductor are referred to as transport 

currents, in contrast to the shielding currents appearing in the superconductor as 

circulating currents. According to the Silsbee hypothesis [3] in the case of thick 

superconductors, i.e. for superconductors with a fully developed shielding layer, the 

critical current is reached exactly when the magnetic field of the current at the surface 

attains its critical value. In other words the magnetic field and the current density at a 

surface with a well developed shielding layer are strongly correlated. The critical value 
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of the current density Jc is associated with the critical value of the applied magnetic 

field, i.e. Bc for type I and Bc2 for type II superconductors, where it is completely 

irrelevant whether the current density is due to shielding currents or a transport current.  

When a type II superconductor is in the mixed state, the transport current can be 

distributed over the total cross section of the superconductor in the regions where the 

magnetic field exists, which would allow very high transport current, i.e. the current is 

no longer restricted to a thin surface layer as the case of type I or type II superconductor 

in the Meissner state. In this case the Lorentz force acts between the vortices and the 

current. Under the influence of the Lorentz force the vortices move perpendicular to the 

current direction and to the magnetic field. Hence we have losses and electrical 

resistance. Since in an ideal type II superconductor arbitrarily small transport currents 

already lead to vortex motion, the critical current of such a superconductor in the mixed 

state is zero [60]. Therefore, such superconductors are useless for technical applications. 

In other words its applications are restricted by Bc1 instead of Bc2, where the maximum 

critical current density is µ0 Jc1 ≈ Bc1/λ which is too small in comparison with J0. 

In hard superconductors the vortices are bound to their locations by flux pinning 

and energy dissipation does not occur until the Lorentz force exceeds the pinning force 

Fp. Hence, the critical current is given by 
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c

a

F
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   (17) 

Eq. (17)  implies that the critical current density Jc is not an intrinsic property as the 

depairing current density J0, but it is an acquired property determined by the 

macroscopic structure of the introduced defects. It is necessary to increase the flux 

pinning strength in order to increase the critical current density. The determination of 

the exact value of Jc experimentally is very difficult due to some excitations of the FLs 

or flux bundles [58], i.e. TAFF and flux creep. There are different models which include 

the exponential and power-like form of the current– voltage characteristics [58], 
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where Ec is a critical electric field which corresponds to Jc, see Fig. 14, therefore the 

determination of Jc is dependent on the definition of Ec. Generally, the most widely used 
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criterion of Ec = 1 μV cm
–1

 is well suited for practical superconducting samples, 

although some resistance criteria can be more useful for magnet applications. For 

classical low temperature superconductors, the values of n and γ are large, hence the 

critical state model (CSM) is adequate, stating that the currents in regions of changing B 

(or finite electric field E) are given by ± Jc, being zero otherwise. The general validity 

of the simple CSM is mainly due to the fact that the induced currents are usually not 

considerably larger than Jc. However, there are only a few analytical solutions, which 

can be used, see the next chapter. 

 

Fig. 14: Current-voltage curve and methods of determination of critical current density using 

respective criteria. 
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3. Bean critical state model 

A useful model to describe superconductors with strong pinning in  applied 

magnetic field is the critical state model (CSM) introduced by Bean [61, 62]. It is a 

simple model that captures the essential features of some irreversible behaviour of hard 

superconductors. In Bean‟s model only two states are possible to occur in the 

superconductor, zero current for regions with no magnetic flux penetration, and full 

current with density Jc in regions with partial or complete flux penetration, with a sharp 

transition and it has thus been named the critical state model. We begin this chapter 

with a discussion of critical state models in general, and then we introduce the Bean 

model to a number of cases. 

3.1. Critical state 

The concept of critical state plays a central role in understanding the irreversible 

magnetization in hard type II superconductors. In the critical state, a superconductor 

responds to the change in the applied magnetic field by inducing a shielding current that 

flows with a critical current density Jc. When the applied field exceeds Bc1, the vortices 

start to penetrate into the superconductor. The vortices arrange themselves so that the 

driving force which arises from the flux density gradient is equal to the maximum 

pinning force. In the static state the spatial distribution of the vortices does not vary 

with time, i.e. FL  = FP. High values of the applied fields or currents cause the critical 

state to penetrate to the inner parts of the superconductor.  

The critical state models postulate that for low applied fields or currents, the outer 

parts of the sample are in a so-called “critical state” with special values of the current 

density and magnetic flux, and that the interior part is shielded from these fields and 

currents. These models do not take into account the existence of the lower critical field 

Bc1 or the difference between the Meissner and the mixed states. However, they provide 

a convenient means of describing some experimentally observed phenomena. In all 

these models the magnetic field B and the superconducting current density J are 

coupled through the Maxwell relation 

  B = 0J,  (19) 
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 Fig. 15: Superconducting slab of thickness 2a oriented in the y – z plane with an externally 

applied magnetic field Ba directed along z – direction. The induced shielding current 

density Jy flowing in y – direction inside the front and back faces is shown [63]. 

which means that the B and J vectors are perpendicular at every point in space and 

either one can be calculated from the knowledge of the other. 

 Consider a superconducting slab oriented parallel to the applied magnetic field Ba 

along the z– direction as shown in  Fig. 15. We assume that the magnetic flux inside the 

slab, |B| = Bz, is along the z– direction and that the current density |J| = Jy has a 

component only in y- direction. The current density component Jx at the ends of the 

loops is neglected. For this case the magnetization effect can be neglected, then Eq. (19) 

is reduced to 

   0 .z y

d
B x J x

dx
   (20) 

This implies that the flux density and current density depend only on x. Other result is 

that there is a gradient in the internal flux Bz(x) in a direction perpendicular to the 

current flow direction and hence in the vortex density if it is considered to be in a static 

equilibrium. For the present case the pinning force density Fp only has x–component 

with magnitude 
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.

2

z
px

dB
F

dx
   (21) 

 Equations from (19) to (21) must be satisfied when B is in the z-direction and J is 

in the y-direction. There are many configurations for Bz(x), Jy(x), and Fp(x) that meet 

this requirement.  For example the Bean model assumes Jy = const, while the fixed 

pinning model assumes Fp = const, all other models assume a more complex 

relationship between the internal field and the current density. For most models the 

relationship between Jy(x) and Bz(x) for the slab geometry [63] is of the form  

 
 

,k
y z

z

J
J B

f B
   (22) 

where f (Bz) is a function of the magnetic flux and Jk is a parameter associated with the 

critical current density independent of the magnetic flux, but can depend on the 

temperature. Jy is substituted into Eq. (20) and the resultant differential equation is 

solved to obtain, Bz(x), the position dependence of the internal magnetic flux. Finally, 

this result is substituted back in Eq. (22) to give Jy(x), while Eq. (21) immediately 

provides Fp(x). 

Table 1 [63] gives the current–field relationships for several well known critical 

state models. In these expressions the internal flux density is B = B(x), where x is the 

distance from the centre toward the surface. In most of the models Jc is the critical 

current in the absence of an applied field. Each of the critical-state models depends on a 

parameter Bk associated with the internal field and a parameter Jk associated with the 

critical current density. Both of these parameters can depend on the temperature. A 

general power law model can be written as J(B) = A |B(x)|
−n

  [64, 65], which reduces to 

the Bean, square root and fixed pinning models for  n = 0, ½  and 1 respectively. Kim 

model resembles the fixed pinning model for high applied fields, |B(x)|
 
>> Bk, while the 

exponential model, linear model with Jk = J'K , and Kim model  all reduce to the Bean 

model for low applied fields, |B(x)|
 
<< Bk. 

The explicit expressions for B(x) and J(x) that are obtained by solving the 

differential Eq. (20) for the functions of Eq. (22) for various cases depend on boundary 

conditions, such as the strength of the applied field, size, shape, orientation of the 

sample, and previous magnetic history.  
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Fig. 16: The E – J relation in (a) Bean model (b) linear critical state model (c) generalized 

critical state model, where ρn is the normal resistivity and ρ0 and ρc have very small and 

high values respectively (d) power law model.   
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Table 1: Current–field relationships corresponding to Eq. (22) for several critical state models 

[63].The quantity, [Bk – |B(x)|], is the Heaviside step function. 

  cJ B J  Bean  [61, 62] 

 
 

c

k

J
J B

B x B
  Fixed Pinning [66] 

 
 

1/2

c

k

J
J B

B x B
  Square Root [66] 

 
 1

c

k

J
J B

B x B



 Kim [67, 68] 

   expc kJ B J B x B      Exponential [69] 

   c c kJ B J J B x B    Linear [70] 

       J B 1 B Bc k kJ x B B x   

  
Triangular Pulse [71]  

 
 1

c

k

J
J B

B x B



  

  Generalized [72, 73] 

The E – J relation in the critical state models can take different shapes. In Ohm‟s 

law this relation is given by E = ρJ, where ρ is the resistivity of the material. The main 

problem in the modelling of type II superconductors is the definition of the resistivity, 

which is not constant and consequently Ohm‟s law is nonlinear. The E – J curves due to 

dynamic effects are shown in Fig. 13 and Fig. 14.  Fig. 16 depicts the theoretical E – J 

curves in a number of critical state models. In Bean model (Fig. 16.a), the relation is 

discontinuous step–like function where the current density cannot exceed some critical 

value Jc and until this threshold is reached, the electric field is zero. Because of its 

simplicity, the Bean model is widely used for theoretical derivations of AC losses in 

simple geometries such as disk, strip, slab and cylinder. Instead of a sharp transition of 

the Bean model, a linear part above Jc can be introduced [16, 74], where it takes into 

account the flux-flow resistance as can be seen in Fig. 16.b. Another possible relation is 

introduced by generalizing the Bean model [75] as shown in Fig. 16.c. The transition to 

the normal state is introduced at the point where the resistivity reached the normal value 

ρn. The power law [76-78] is shown in Fig. 16.c. The E–J relation is a smooth function. 

The limiting cases of n = 1 and n = ∞ correspond to the linear Ohm‟s law and Bean 

model respectively. 
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3.2. Bean model 

The Bean critical state model (BCSM) [61, 62] is the simplest and the most 

widely used one of the critical state models that have been proposed for describing the 

field and current distribution in hard superconductors. The model serves as a 

straightforward phenomenological explanation for many experimental results on hard 

superconductors in the critical state, even for many results in high temperature 

superconductor (HTSC) materials. However the model does not give any explanation 

for the microscopic origin of pinning. 

These are the basic assumptions of the Bean critical state model [79]: 

 The critical current density is independent of the external magnetic field. 

 Only the critical state is considered. There is no reversible magnetization and Bc1 = 0.  

 There is a critical current density Jc which can be carried by the superconductor. 

 Even very low electromagnetic forces induce the full critical current density. 

 In any region of the superconductor where magnetic flux has penetrated, the critical 

current density is perpendicular to the magnetic induction B, everywhere else Jc = 0 

is valid. 

Nevertheless, there are some important limitations to the Bean critical state 

model: 

 There is no Meissner state in Bean‟s considerations. 

 In some cases the critical current density depends strongly on the external magnetic 

field. 

 The model does not consider the origin of the critical current density. 

 The model neglects geometric barriers and dynamic effects like the flux creep effect. 

The solution of Bean model depends on the sample shape and the arrangement of 

the applied magnetic field. Analytical solutions are found only in a few cases. 

 3.2.1. Bean critical state in longitudinal geometry 

Infinitely long superconductors in parallel applied field Ba exhibit no 

demagnetizing effects. For infinite slabs and circular cylinders the problem is 1D and 

for general cross-section (e.g. rectangular bars) it is 2D. The linear or nonlinear 

response is obtained by solving a 1D or 2D linear or nonlinear diffusion equation. Many 

papers have discussed this problem, see for example [41, 80, 81] and the references 
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within them. The resulting expressions are often used to evaluate experiments even 

when this longitudinal geometry does not apply.  

In this case the current density can take only three values J = ± Jc at the flux 

penetrated regions, where the slope of B(r) is constant, and J = 0 at the flux free regions. 

The flux profile and critical current density distribution for a long slab of width 2a in a 

longitudinal applied magnetic field Ba along z-direction are shown in Fig. 17. The 

following is seen in Fig. 17 from left to right: 

a) When the applied magnetic field Ba increases from zero, following Lenz‟s law, 

screening currents are induced at the outer parts of the slab. These induced currents 

have direction such as to oppose the variation of the field and screen the interior of the 

sample. The flux partially penetrates the sample and decreases linearly towards its 

centre with a slope ∂Bz/∂x = ± µ0Jc. In the penetrated regions the current density is ± Jc, 

otherwise it is zero. 

b) As the amplitude of Ba reaches the full penetration field, Bp , the flux will 

penetrate into the centre of the sample and the whole sample will carry current with 

density ± Jc.  

c) Further enhancement of Ba leads to the introduction of more flux into the 

sample. Since the screening current density cannot exceed Jc, they will not oppose any 

further to the increase of the field inside the superconductor and the penetration pattern 

will simply shift upwards. The difference between the magnetic flux at the edge and the 

centre of the specimen remains constant and equal to Bp. 

d) When the external field decreases, the screening currents have to oppose this 

change and near the edges of the sample areas an inverted current will exist. In the rest 

of the sample the field and the current density remain unchanged. 

e) At |Ba| = 0 there is still flux inside the superconductor and the flux distribution 

takes the form of a cone, which is referred as Bean cone, while the current patterns are 

completely reversed.  

Once the applied field increases again, new regions with inverse currents appear 

at the edges and the previous steps can be repeated. We can see from the figure that the 

distribution of Bz(x) is symmetric about the point x = 0, while the critical current density 
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Fig. 17: Bean model to a slab in a parallel magnetic field Ba. (Top left) A slab with width 2a in 

longitudinal magnetic field.  (Top right) The magnetization versus applied magnetic 

field. The virgin curve from Eq. (43) saturates when full penetration is reached at Ba 

=Bp. The hysteresis loop follows from Eq. (47). (Middle) Profiles of the current and 

field distribution. The letters correspond to the letters in the magnetization curve.  
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Jy(x) is anti–symmetric about this point. Following from Eq. (20), the critical state 

profile in a long slab geometry which corresponds to Fig. 17 in low fields |Ba| < Bp is 

given by 

   0

c

y

c

J a x b

J x b x b

J b x a

   


   
     

(23) 
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

    
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(24) 

These expressions match the boundary condition Bz(±a) = Ba on the two surfaces 

at x = ± a. The quantities Jc and Ba are related to each other by the expression Jc 

= Ba /μ0(a - b). At high fields |Ba| ≥ Bp the magnetic field and the critical current reach to 

the centre of the sample, hence equations (23) and (24) become 

 
0

 
0
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y

c
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 (26) 

It is worth mentioning that the current density distribution and the magnetic profile in a 

long slab (Fig. 17) is qualitatively the same as in a long cylinder. 

3.2.2. Bean critical state in transverse geometry  

In previous section we have discussed the application of Bean model to hard type 

II superconductors when the specimen is an almost infinitely extended cylinder or slab 

with constant Jc in a parallel magnetic field, where demagnetizing effects are neglected. 

However, most experiments deal with thin flat samples in a perpendicular applied 

magnetic field Ba.  

In general the current and field profiles in thin type II superconductors in a 

perpendicular applied magnetic field are qualitatively different from the Bean model for 

parallel magnetic field in many ways [82]. 
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1) In transverse geometries, the flux penetration initially is quadratic in Ba, i.e. it looks 

delayed as if there were a surface barrier or large lower critical field Bc1. While in 

longitudinal geometries it is linear.  

2) The deviation of the magnetic moment from linearity and remaining moment 

initially are cubic in Ba. On the other side it is quadratic in longitudinal geometries.  

3) The AC losses initially grow with the fourth power of the applied field amplitude, 

while in longitudinal geometries grow with third power of Ba.  

4) The penetrating flux front has vertical slope, while in longitudinal geometries it is 

constant.  

5) When the flux has partially penetrated and the critical state is established in the 

outer regions, the currents flow in the entire width of the sample to shield the 

central flux free region. On the other hand in longitudinal geometries the flux free 

regions are current free.  

6) The screening current density is continuous with a vertical slope at the flux front 

where J = Jc, whereas in longitudinal geometries it is a piecewise constant. 

7) As soon as the direction of Ba is changed or reversed, the current density in thin 

films (d < λ, where d is the thickness of the sample) falls below Jc everywhere, 

while in longitudinal geometries J = Jc.  

8) In a perpendicular field the shielding current is mainly caused by curvature of the 

magnetic field lines and not by the gradient of the flux lines, i.e. shielding currents 

mainly come from the flux radial gradient µ0J = ∂Bz/∂r in case of cylinder and slab 

while mainly from the flux axial gradient µ0J = ∂Br/∂z in the case of disk and strip. 

 In this section we will concentrate on thin disk and strip in a perpendicular 

applied magnetic field.  

3.2.2.1. Thin disk in a perpendicular applied magnetic field 

Mikheenko and Kuzovlev created the Bean critical state model for 2D disk-

shaped superconductor [83]. They found the complete analytical solutions of field and 

current patterns in a thin superconducting disk in perpendicular time-varying periodic 

applied magnetic fields. This model was extended and corrected by Zhu  et al. [84]. 

They proved that the current density decreases continuously in vortex-free annulus from 

Jc
 
to zero in the centre of the disk as shown in Fig. 18. They also gave analytical 

solutions to the magnetic moment and the effective magnetic susceptibility. They 

showed that the analogy of current patterns between a thin film disk and a long 
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cylindrical superconductor is not valid. They explained that because of strong 

demagnetizing effects, the flux density bends around the disk and shielding currents 

flow over the entire surface of the disk. In general the circular shielding current density 

is given by [85] 

 
0

1
.r zB B

J r
z r

  
  

  
  (27) 

 In case of a thin disk the magnitude of ∂Br/∂z is much larger than the magnitude 

of ∂Bz/∂r for weak external fields except at the centre of the disk. Thus, the shielding 

current mainly comes from the term ∂Br/∂z in contrast to the case of a long cylindrical 

sample. The model is constrained for the film thickness d ≤ 2λ, where λ is the London 

flux penetration length, to assure that the circulating currents in the film plane may be 

treated as having uniform density in the thickness direction. Also, the external field is 

assumed to be weak enough so that the critical current density in the film is independent 

of the local density of trapped vortices, i.e. Jc d = const. A characteristic field for disk 

geometry is defined as Bd = µ0 Jc d/2.  

In 2D disk-shaped superconductors, as the external field is decreased from the 

maximum field B0, the current density flowing in the outer annulus b1 < r < R is the 

critical current density +Jc. In the inner annulus 0 < r < b1 the current density J(r) is a 

function of location r as is indicated in Fig. 18. In the region where 0 < r < b2, there is 

no flux penetration. In any case the critical current density must satisfy constraint 

|J(r)| ≤  Jc.  

Clem and Sanchez  extended this model for either d ≥ λ or, if d < λ, that Λ = 

2λ
2

/d << R, where Λ is the two-dimensional screening length [86]. They introduced 

analytical solution to hysteretic current density, magnetic flux density profiles in the 

critical state and hysteretic magnetization curves. They presented limiting expressions 

for fundamental complex AC susceptibility components χ(B0/Jcd) on basis of this model 

and gave an approximate behaviour. They concluded that for finite applied fields the 

annular region where the current density is Jc
 
never fills the entire disk, and the critical 

state flux density profiles never penetrate all the way to the centre, where Bz remains 

equal to zero. In real thin films however, the above 2D approach breaks down and Bz 

becomes nonzero when the vortex free radius b2 approaches the largest of the quantities 

d, λ and Λ. They summarized that independently of geometry of the sample the  
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Fig. 18:  Normalized current patterns in a 2D disk-shaped superconductor for B0 = 2Bd and 

Ba = Bd. The solid line is Zhu et al. solution while the dashed line is Mikheenko and 

Kuzovlev solution [84]. 

hysteretic critical state behaviour is that during quasi-static changes of an applied 

magnetic field, vortices move and thus the local flux density B changes. 

Let us consider the Clem and Sanchez solution for a thin type II superconducting 

disk in the critical state [86]. The distribution of a current density and magnetic field for 

a disk of radius R and uniform thickness d, where λ ≤ d << R is shown in Fig. 19. The 

disk is considered to be in x – y plane and centred in the z – axis. In cylindrical 

coordinates ρ = (x
2 

+ y
2
) 

½
 and  1

tan y x


 . If d < λ, the screening length Λ = 

 2λ
2
/d << R. We can distinguish two cases: for increasing and decreasing field.  

For increasing fields: 

Consider the disk is initially cooled to low temperature in the absence of a 

magnetic field. The disk contains no vortices. Application of a weak magnetic field 

induces azimuthal screening currents in the disk. Due to the high demagnetization 

factor, the applied magnetic field bends around the disk as is shown in Fig. 19.a, hence 

screening currents arise from the discontinuity of radial magnetic induction at z = ± d/2. 

These currents flow on the surface of the specimen even without field penetration. 
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Strong demagnetizing factor is responsible for the sharp rise in the value of the flux 

density near the edge of the film. The distribution of the current and the flux density 

profile for Ba< Bc1 are given as  

     
1/2

2 2

04 / / ,aJ B d R          (28) 
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(29) 

When the local magnetic field at the edge of the sample exceeds Bc1 the vortices 

start to penetrate into the superconductor from the edges of the sample in the absence of 

the edge barrier. In the presence of pinning centres vortices penetrate only as far as 

necessary to reduce the magnitude of the current density J  to Jc, where the magnitude 

of  J   is equal to Jc throughout the annular filled region, whose inner radius b2 is 

given by b2 = R/cosh(Ba/Bd). The current can not change discontinuously in the interior 

of the film, so its magnitude decreases continuously from J = Jc at  = b2, to zero at 

 = 0 at the centre of the disk. In this case (Ba >Bc1) equations (28) and (29) have to be 

changed to 
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where 
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The value of b2 suggests that the annular region where the current density equals 

to Jc never fills the entire disk and the critical state flux density profile never penetrates 
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to the centre where Bz(0,0) remains equal to zero. However, in practice the field at the 

centre of the film becomes nonzero when b2 approaches the largest of quantities d, λ and 

the screening length  Λ = 2λ
2
/d << R [87]. The induced azimuthal current density 

Jø(ρ)/Jc and the corresponding  flux density distribution Bz(ρ,0)/Bd, where Bd = µ0 Jc d/2 

is shown in Fig. 19.c for B0/Bd = 0.75, 1.5, 2.5 and 3. Theses curves have been 

calculated from Eq. (30) and Eq. (31).  

For decreasing field: 

When Ba is decreased, i.e. is reduced from B0 to –B0, both the current density 

profile and the magnetic flux density distribution change, where they can be given by   
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(34) 

Within an annulus of inner and outer radii b1 and R the critical current density is 

equal to Jc as indicated in Fig. 18. In this annulus the vortices experience a Lorentz 

force, which drives them out of the sample as the field initially decreases. The inner 

radius of the annulus where J = Jc and the flux density is decreasing is 

b1 = R/cosh[(B0 - Bd)/2Bd]. On the other hand, the vortex free radius is 

b2 = R/cosh(B0/Bd). The current density changes as a continuous function of the position 

and increases from its minimum at ρ = b2, to +Jc at ρ = b1. This leads to a superposition 
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Fig. 19: Bean model for a type II superconducting disk in a perpendicular magnetic field. (a) 

Due to strong demagnetizing factor, the magnetic flux density bends around the disk. 

(b) The magnetization curve where the numbers are corresponding to the numbers in 

current and field profiles. (c) The current distribution and magnetic field profile in 

increasing applied fields B0/Bd = 0.75, 1.5, 2.5 and 3, (d) in decreasing fields B0/Bd = 3, 

1.5, 0.75, 0, -0.75 and -3.  
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of the frozen flux contribution and the reverse field contribution. When the applied field 

is decreased continuously, the current density and flux density profile inside the sample 

completely reverse their direction. Fig. 19.d shows the profiles of both the magnet flux 

density and the current density for B0/Bd = 3, 1.5, 0.75, 0, -0.75 and -3. It is worth 

mentioning that, the current density profiles are antisymmetric around the origin point 

where the flux density profiles are symmetric. In Fig. 19.b, the complete hysteresis 

magnetization loop is demonstrated. The numbers in the curve correspond to the 

numbers in Fig. 19.c and Fig. 19.d.   

3.2.2.2. Thin strip in a perpendicular applied magnetic field  

The Bean critical state model of thin strips of constant thickness was first solved 

for current carrying strips by Norris [88]. This classical work was extended to strips in a 

perpendicular magnetic field without transport current [89]  and with transport current 

[82, 90]  and later to current carrying strips with an elliptical cross section by Yang et al. 

[91]. 

Brandt et al. [82, 89] calculated analytically the current density and local magnetic 

field for a strip of type II superconductors in perpendicular magnetic field, Ba, assuming 

constant Jc. He found that the exact solution for a strip is different from the original 

Bean model. As a matter of fact, the magnetic flux density and current density profiles 

in a thin strip and circular disk are qualitatively the same. Hence Fig. 19.b, c and d also 

describe the critical state distributions in a flat superconducting strip. The strip is 

considered to be with width 2a >> d and filling the space |x| ≤ d/2, |y| ≤ a, |z| < ∞, in 

which a spatially constant magnetic field Ba applied along x induces a supercurrent 

density J(x, y) along z–direction. When d >> λ the current is completely pure Meissner 

current. This current flows in two surface layers of thickness λ and leaves the central 

free region, current free. On the other hand if d < λ the current is vortex current, which 

is nearly constant over the thickness d. As soon as the flux penetrates, the current 

density is limited to Jc. If J is |J | = Jc, the flux lines move and rearrange such that 

|J | < Jc is held everywhere. In Meissner state the ideal shielding current is given by 

   
1/2

2 2

0
2 .

a
J y y B a y   (35) 

While the magnetic flux density profile outside the sample is expressed as  
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When the applied magnetic field is increased, the shielding current saturates near 

the edges of the strip to J (y > b) = Jc and the vortices penetrate within a region where 

b < y < a. In this case the current distribution and the magnetic flux density are given by 
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 (38) 

where b = a/cosh(Ba/Bd),  c = tanh(Ba/Bd) and Bd =µ0 Jc d/π is a special critical field for 

the strip. 

When the applied field Ba is decreased from +B0 to –B0, the current density 

J (y, Ba, Jc) and the magnetic field B (y, Ba, Jc) are given by a linear superposition from 

the virgin results in equations (35) to (38) 
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 (39) 

3.2.3. Magnetization curve 

The magnetization M of a sample is related to B(r) and Ba = µ0Ha by the relation 

 0 ,aM B r B  

 
(40) 

where < > denotes the average over the whole sample volume, thus the magnetization 

determines how great is the difference between the average internal field and the 

applied field. Calculation of the magnetization from a series of flux distributions and 

critical current density profiles yields a diamagnetic hysteresis loop as indicated in Fig. 

17 and Fig. 19. The area of the hysteresis is a measure of the energy dissipation. For a 

slab case depicted in Fig. 15, the energy loss, W, per unit volume per cycle is [63] 
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where Γ(h0) is the loss factor [63] and h0 is a dimensionless factor, h0 = B0/Bp , where 

Bp = µ0 Jc a is the field of full penetration. On the basis of Bean model, this enables the 

quantitative determination of Jc from magnetization hysteresis, but only where the 

magnetization curve does not have a significant slope where Jc can be given by 

,c

M
J K

R




 
(42) 

where ΔM = M↑ −M↓ and M↓  and M↑ are the branches in increasing and decreasing Ba 

respectively. Here R is the dimension of the sample perpendicular to the field direction 

and K is a constant that depends on the geometry of the sample. From Eq. (42)  we can 

notice that the wider the magnetization loop is, the higher is Jc. Before computing the 

value of Jc one should attempt to remove the equilibrium part of the magnetization 

curve, i.e. the M(Ba) curve which is obtained without pinning.  

As it was mentioned above, virgin and hysteresis curve calculations for an 

infinitely long cylinder and slab in parallel magnetic field were presented by Bean [62], 

while Campbell and Evetts [41] considered the case of a finite rectangle, and provided a 

method for elliptic and arbitrary cross-sections in small fields. On the other hand Brandt 

et al. [82, 89], and Clem and Sanchez [86] gave the analytical virgin and hysteresis 

curve for a thin strip and disk in perpendicular field respectively. In general the total 

magnetic moment m due to a current density J(r) in an arbitrarily shaped sample is 

given by  |m| = MV = ½ ∫ r × J(r) d
3
r,  where V is total volume of the sample. Within 

Bean model, m depends only on the sample shape and on the orientation of the applied 

field Ba. Being irreversible, m depends on the history of Ba(t), but it does not depend 

explicitly on time t. The magnetic moment of a long superconducting slab of width  2a 

and area A, and a long cylinder with radius a and length L, in a parallel field can be 

given by [41, 61, 62]  

2 2
(2 ),

slab c
m J a A h h     (43) 

3 2 3( / 3),cly cm J a L h h h   

                                                                        
(44) 
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for 0 < h < 1 with h = Ba/Bp , where Bp = µ0 Jc a is the field of full penetration. For 

Ba  ≥ Bp or h  ≥ 1, m stays constant since the current density has saturated to J = Jc in the 

entire sample. The magnetic moment is saturated to ms = m(Ba  ≥ Bp) =  Jc a
2
L in a slab 

geometry [40] and ms = π Jc a
3
L/3 in a cylinder geometry [92].  

The magnetic moments of a thin strip [82, 89] of width  2a and length L >> a and 

a circular disk [40, 86, 93, 94] of radius a, both with thickness d << a, in a transverse 

applied field Ba  are given by 

2
  tanh ,

strip c
m J d a L h    (45) 
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  (46) 

for 0 ≤ h < ∞  with h = Ba/Bd , where Bd = µ0 Jc d/π for a strip and Bd = µ0 Jc d/2 for a 

disk. Above the penetration field Bd, the magnetic moment saturates to the values 

msat (strip) = Jc d a
2
L and msat(disk) = Jc d a

3
π/3. In the considered limit d/a → 0 the 

transverse moments mstrip(Ba) and   mdisk(Ba) saturate only at infinitely large field Ba. The 

magnetic moments of a strip, disk, and square geometries in the Bean model are very 

similar when normalized to the same initial slope and same saturation value; the 

magnetic moment m(Ba) of a strip Eq. (45) then exceeds that of a disk Eq. (46) only by 

0.01 m(∞) [40], and the magnetic moment of a square differs from a disk only by less 

than 0.002 m(∞) along the entire curve [40, 76, 80]. 

A general consequence of the Bean assumption of a field independent Jc is that the 

virgin curve m(h)  with h increased from zero determines the full hysteresis loop of m 

when h is cycled between -h0 and +h0 [41, 93], where h0 = B0/B
*
 and B

*
= Bp for slab and 

cylinder geometries and Bd for disk and strip geometries, 

0
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  (47) 

where m↓  and m↑ are the branches in increasing and decreasing Ba respectively. Fig. 20 

shows magnetization loops of a thin disk calculated from equations (46) and (47) for 

h0 = B0/Bd = 0.75, 1.5, 2.5 and 3. The applied magnetic field is normalized to Bd = 

µ0 Jcd/2, while the magnetization is normalized to msat(disk) = Jc d a
3 

π/3.  
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Fig. 20: Magnetization vs applied field for a thin superconducting disk. The applied field is 

cycled between + h0 and – h0. The curves are for h0 = B0/Bd = 0.75, 1.5, 2.5 and 3. The 

magnetization are normalized to Msat = Jc d a
3
 π/3. 

3.2.4. Response to AC fields 

Consider a hard type II superconducting sample placed in an applied field of the 

form Ba(t) = Bdc + B0 cos (ωt), where the frequency ω is small enough for the sample to 

respond quasi-statically. For Bdc = 0, the response is fully described by the hysteresis 

curve, where the B field in the sample will show a phase lag φ behind the applied 

magnetic field Ba. Characteristic of such a hysteretic behaviour is the distorted periodic 

waveform, where neither B nor M can be expressed as a sinusoidal function of single 

frequency. The area enclosed within the hysteresis curve is equal to the power loss per 

cycle, W, and can be written as [95] 
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(48) 
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where 
1  is the imaginary part of the AC susceptibility. The non-linear magnetic 

response implies that the magnetization in an AC field of frequency ω will contain a 

response at higher harmonics nω, and this magnetization will not be in-phase with the 

applied field. The magnetization of the sample can be generalized to be in the form 

     0 0

1

cos sin ,n n

n

M t B n t n t    
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(49) 

where   n  and n  are referred to the real and imaginary parts of the harmonics of the 

complex susceptibility respectively. The complex AC susceptibility is given by 

n n ni     , (n = 1, 2, 3,…) where n = 1 denotes the fundamental susceptibility [96]. 

The fundamental susceptibility 
1  has clear physical meaning. The real part 

1  

corresponds to the dispersive magnetic response and reflects supercurrent shielding for 

superconductors while the imaginary part 
1corresponds to energy dissipation. Eq. (48) 

implies that the higher harmonics are not responsible for any power dissipations, and 

hence the fundamental term remains the key component for loss analyses [95]. Bean‟s 

model predicts the existence of odd harmonics only because of the symmetry of the 

magnetization curve, i.e. M(Ba) = –M(–Ba). The susceptibility coefficients n  and n  

can be obtained from: 
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The same definition is used when a DC magnetic field is superimposed on the AC 

field [96]. Usually the χn are normalized such that for B0 → 0 or ω → ∞ the ideally 

diamagnetic susceptibility χ(0,ω) results [97]. The AC susceptibilities obtained from the 

critical state model are quasi-static (i.e. χ depends only on the amplitude B0 but not on 

the frequency ω). 
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4. Experimental work and model calculations 

To measure the susceptibility and magnetization we used the non-commercial 

home made SQUID magnetometer. In this chapter there is a brief description to the 

experimental measurement technique and the method of simulation and fitting the 

model data to the experimental ones.  

4.1. SQUID magnetometers 

SQUID is an acronym for Superconducting Quantum Interference Device. These 

devices are the most sensitive detectors of magnetic flux currently known, where 

physical quantities which can be converted to the magnetic flux can be measured with 

an extreme sensitivity. The SQUIDs can be used, for example, for measuring  

magnetization, magnetic susceptibility, magnetic fields, current and voltage [98].  

The principle of operation of the SQUID is based on two physical phenomena, 

namely Josephson tunnelling and flux quantization. The first key element is the 

Josephson junction which is characterized by a limited critical current at zero voltage 

and by switching to the voltage state above a current threshold. The second basic 

element of the SQUID is a closed superconducting loop for which the flux is quantized 

in units of the flux quantum Ф0 = h/2e = 2.07 × 10
–15 

Wb.   

The theory of different types of SQUIDs is described in detail in the literature [98-

100]. SQUIDs are operated as either RF or DC SQUIDs. The prefix RF or DC refers to 

whether the Josephson junction is biased with an alternating current (RF) or a DC 

current. The DC SQUID consists of a superconducting loop interrupted by two 

junctions and is biased by a current source. The output is the voltage across the parallel 

junctions. On the other hand the radiofrequency (RF) SQUID has only one junction in 

the loop and the readout uses a resonant LC circuit inductively coupled to the 

superconducting loop. In both cases the output is a periodic function of the magnetic 

flux applied to the loop with a period of Ф0. 

SQUIDs can be fabricated from low and high Tc materials. Low Tc SQUIDs are 

made from niobium (Tc = 9.2 K), while YBa2Cu3O7 (Tc = 92 K) is the most frequently 

used material for high Tc SQUIDs.  
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Fig. 21: Above: Schematic diagram of the HR magnetometer. Below: Schematic diagram of the 

SR magnetometer [101].   
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 In our laboratory we use two non-commercial RF SQUID magnetometers: a 

standard sensitivity magnetometer (SR) [102] and  high sensitivity magnetometer (HR) 

[103]. The HR magnetometer possesses a more effective screening of an external 

magnetic field, higher temperature stability, and higher sensitivity. Its disadvantage is 

more complicated and time-consuming exchange of a sample in comparison with the 

SR magnetometer. Both magnetometers are fully computer controlled using non-

commercial software. Table 2 summarizes the basic parameters of the HR and SR 

SQUID magnetometers.  

Unlike the commercial magnetometers, the sample is static with  respect to the 

detection system and the superconducting magnet [104]. This technique eliminates 

disturbing effects caused by reciprocating the sample. Furthermore, it allows fast 

continuous reading of the magnetic moment of the sample, required for harmonic 

analysis, and accurate sample temperature reading. The response of the sample which is 

placed in or near one of gradiometer coils can be continuously readout without 

interference from the stimulus (stimulus is the applied homogeneous field). 

The SQUID system contains various building blocks in addition to the SQUID 

itself (Fig. 21). In the following sections we consider the issues relating to these 

components for both SR and HS SQUID magnetometers.  

Table 2:  The basic parameters of SR and HR SQUID magnetometer. 

 SR HR 

Maximum sample size       7   mm         5  mm 

Field range 

 

± 25    mT ±  4   mT 

± 2.5   mT ± 400 μT 

± 0.25 mT ± 40   μT 

Heat exchange 
4
He exchange gas 

Fibre–glass support, sample is 

placed in a vacuum 

 

Temperature sweep rate 0.001 – 10 K/min 0.001–10 K/min 

Temperature range 4.2 – 300 K 4.2 – 150 K 

Frequency range 0 – 100 Hz 0 – 100 Hz 

Sensitivity 7.4 pAm
2 
Hz

–1/2
 5 fAm

2 
Hz

–1/2
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4.1.1. Shielding 

SQUID operation can be disturbed by stray low-frequency and RF 

electromagnetic fields from various sources such as permanent magnets, power cables, 

transformers, motors, television or communication transmission towers, radars or 

railways. An interference can also originate from the Earth‟s magnetic field (about 50 

μT) and electronics or computers in the vicinity. In order to take advantage of the high 

sensitivity of SQUIDs, the sample space must be shielded from external fields.  

In the HR magnetometer, three layers of μ-metal shield the whole cryostat and the 

HR magnetometer. The μ-metal has very high magnetic permeability (80000–100000 

compared to several thousands for ordinary steel). This high permeability makes it very 

effective to screen static or low frequency magnetic fields. SQUID, flux transformer 

with a gradiometer, solenoid, temperature sensor, heater, and sample are placed in a 

copper vacuum chamber with an inset superconducting lead can. The shields attenuate 

external fields at the place of the sample to flux density noise lower than 100 pT Hz
-1/2

.  

A cryostat with a SR magnetometer is inserted in a stand made of a magnetically 

soft iron tube. The SQUID, flux transformer with a gradiometer, solenoid, sample, 

sample temperature sensor, and so on, are placed in a superconducting lead can. A flux 

density noise at a sample place is lower than 100 nT Hz
-1/2

. 

4.1.2. Flux transformer 

In both SR and HR SQUID magnetometers the flux transformers are 

superconducting made of Nb wire so they do not generate thermal noise and their gain 

in flux density is noiseless. Transformer consists of a first order gradiometer pickup coil 

which is exposed to the measured fields, and a SQUID input coil. Two coils forming the 

gradiometer are wound in opposite direction so a homogeneous field does not induce 

any net current while field gradient does.  

The use of the flux transformer to couple the SQUID with the measured object, 

instead of direct coupling, increases the sensitivity to magnetic flux density and 

separates the SQUID from strong static magnetic field which may interfere with the 

SQUID operation.  

4.1.3. Field generation 

The field is generated by a low–noise and highly linear field source. It consists of 
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analogue to digital converters, voltage driven current sources and superconducting 

solenoid. The superconducting solenoid operates in continuous (non–persistent) mode. 

The maximum field generated by the superconducting solenoid is ± 25 mT for the SR 

magnetometer and ± 4 mT for the HR magnetometer.  

4.1.4. Residual field 

It is easy to detect the residual field in the case of a superconducting sample. If the 

sample is cooled through its critical temperature the signal of expelled magnetic flux 

can be detected. The residual field may be compensated by a countervailing current into 

the solenoid. In case of HR magnetometer, the residual field is typically 145 nT in the 

sample space. It can vary by about 1 nT between subsequent cooling (He refilling).     

4.1.5. Temperature measurement and control 

The temperature is regulated and controlled by Cryocon model 34 temperature 

controller. It automatically regulates the temperature by controlling the amount of heat 

supplied to a resistive wire (nickel-chrome) heater.  

In the SR magnetometer, the sample temperature is controlled in the range from 

4.2 to 300 K with temperature stability better than 10 mK and cooling or warming rate 

from 1 mK/min. The sample is mounted by varnish or Apiezon grease on the bottom 

surface of a cylindrical sapphire holder. The sapphire is an excellent thermal conductor 

but an electrical insulator. The sample temperature sensor (GaAlAs diode) is mounted 

on the upper surface of the holder. The holder is suspended on an electrically and 

thermally insulating support, which is connected to a stainless tube. This insert is placed 

in the anti-cryostat in a 
4
He exchange gas at atmospheric pressure. The anti-cryostat 

temperature is measured using a Si diode temperature sensor. 

In the HR magnetometer, the sample is mounted on a sapphire holder using 

varnish or grease. The holder is placed in a copper vacuum chamber. Warming is 

achieved by heating the whole holder, which is placed in a copper block including a Si 

diode temperature sensor and heater. The temperature controller reads the temperature 

with a six digit resolution. The relative temperature stability is better than 10
-5

, and the 

lowest cooling or warming rate is 1 mK/min. The temperature range is from 4.2 K to 

150 K. A temperature response “Lake Shore Curve 10” is used to convert a measured 

voltage on Si diodes to temperature (see Lake Shore catalogue).  
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4.1.6. Signal processing 

Generation of the applied magnetic field, data acquisition, and signal processing 

are fully computer controlled, using 16-bit analogue to digital (AD) and digital to 

analogue (DA) converters and non-commercial software. The SQUID output voltage 

m(t) and the voltage monitoring current to the solenoid h(t) are simultaneously digitized 

with 16 bit resolution at a sampling rate of 6.4 kS/s and recorded on a hard disk. Real 

time data processing yields DC moments of a flux and field and fundamental AC 

susceptibility. Typically, these values represent a floating average over a time interval 

of 2.56 s, and together with the sample and control temperature readings are stored 

every 0.64 s. Digital records of the measured flux and applied field allow later post–

processing, particularly for harmonic analysis and reconstruction of magnetization 

loops. 

The experimental complex susceptibility is computed from digitized m(t) and h(t) 

readings using a discrete fast Fourier transform method (FFT). The nth harmonic of the 

AC susceptibility is given by  

 

 
0 0

0

,
exp

n

M n f

B ni







 
(51) 

where f0 is the fundamental frequency and B0 is the amplitude of the magnetic field. 

Complex B0 exp(niφ) ≡ |B(f0)| exp (ni arg (B(f0)) takes into account a phase of the 

Fourier component of the applied field B(f0), i.e time shift between a Fourier 

transformation data segment and cosine field. The M(f ) and B(f ) are Fourier transforms 

of the SQUID magnetometer signal response and applied field, respectively. The FFT is 

real time calculated by the digital signal processing from the realisation. While one 

realisation data are under acquisition, the previous realisation data are processed.  

4.2. Model calculations 

4.2.1. Generating the magnetization loops 

In the previous chapter the virgin magnetic moment curves for different 

geometries namely slab, cylinder, disk and strip were mentioned, i.e. Eq. (43) to Eq. 

(46). The model magnetization curves m(h) or rather m[h(φ)] were computed using the 

equations from (43) to (47). The magnetic field h(φ)= h0 cos φ series were computed for 
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the discrete phase values  as a function of h0 = B0/B
*
, where B

* 
= Bd for disk and strip, 

and B
* 

= Bp for cylinder and slab. The values of φ change from 0 to 2π in 1024 steps for 

each value of h0. The data length per period (magnetization loop) is 1024, which is the 

same as for the experimental loop.  

 4.2.2. Model AC susceptibility 

The model susceptibility χ(h0) is computed from the model magnetization data 

m(φ) and h(φ) series in the same way and for the same number of points per cycle as the 

experimental susceptibility. The magnetic moments for different geometries i.e. 

cylinder, slab, disk and strip, give a similar fundamental AC susceptibility, see Fig. 22, 

and in fact they must because 
1  shows the Meissner effect and 1  the AC losses 

[105]. The differences appear only in the higher harmonics as indicated in Fig. 23. This 

leads to the importance of taking into an account the behaviour of the higher harmonics 

when choosing a model. 

The third harmonic of the model AC susceptibilities is shown in Fig. 23 (on the 

top). Unlike the fundamental AC susceptibilities, the third harmonic exhibits some  

  

         

Fig. 22: Fundamental AC susceptibility for different sample geometries; disk, strip, slab, and 

cylinder. The four geometries have similar behaviours. 
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Fig. 23: The higher harmonics of the AC susceptibility of the disk, strip, cylinder, and slab in 

the Bean critical state. Third harmonics are on the top and fifth harmonics on the 

bottom. The solid line is the imaginary part and the dashed line is the real part. 



4. Experimental work and model calculations 

55 

 

differences. A hump on the real part of the third harmonic for the model to disk and 

strip is observed. The hump precedes negative values at decreasing current density 

(increasing temperature). Such a hump is also seen on the third harmonic of the 

experimental susceptibility [106-108]. The fifth harmonic of the model AC 

susceptibilities is shown in Fig. 23 (on the bottom). The hump is present in all four 

model data, but for the model to cylinder it is much narrower and smaller. In the model 

to slab it makes small dip (negative values) and turns to positive values to make a 

higher hump. Another difference is a small kink on the imaginary part of the 

susceptibility of the model to cylinder and negative values dip and hump on the model 

to slab. The models to disk and strip are very similar and have the same behaviour and 

the differences appear only in case of the models to slab and cylinder.  

It is worth to mention that within the Bean critical state model, the height of the 

peak 1p   in the imaginary part 
1  is independent of the amplitude of the applied 

magnetic field, B0. Table 3 shows the values of the height of the peaks in different 

geometries. 

Table 3: Peak values of normalized AC susceptibility.  

Geometry Slab Cylinder Disk Strip 

The height of the peak ( 1p ) 0.239 0.212 0.241 0.236 

4.2.3. Mapping of model susceptibility to experimental one 

We have two data arrays, experimental susceptibility [T, χ] and model 

susceptibility [h0, χ] to find the critical depinning current density and its temperature 

dependence. We assume that the critical depinning current density is a monotonically 

decreasing function of temperature, 

 

 
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(52) 

Model magnetization hysteresis loops and consequently the model susceptibility 

depends only on the dimensionless ratio h0. The relation between temperature T and 

ratio h0, i.e. the experimental and model susceptibilities, is obtained using the inverse 

function for equation (52) and multiplying both the numerator and denominator  

B
*
(T)/B

*
(0) by B0, 
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(53) 

In Eq. (53) we have four free parameters, c ≡ B0/B
*
(0), n, m, and Tc, to match the model 

and experimental susceptibilities 
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(54) 

When we find c, n, m, and Tc the zero temperature critical depinning current 

density can be determined where 
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(55) 

and its temperature dependence is given by Eq.(52). 
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5. Results and discussion 

Magnetic measurements using alternating fields have long been recognized as an 

important tool in the verification of models for pinning and motion of vortices in the 

mixed state of type II superconductors [41, 62, 109]. However, the physical models to 

calculate the complex AC susceptibility ac still remain controversial. Among the 

proposed interpretations, the critical state model may be the most used one for 

explaining the temperature and field dependent characteristics of ac especially Bean 

model. It is probably the most used model for comparison with experimental data. In 

this chapter we will discuss our experimental results.  

This chapter is divided into three parts. In the first part we will discuss the 

application of Bean critical state model (BCSM) to a conventional superconductor in 

the form of thin film in perpendicular applied magnetic field, i.e. Nb thin films. In the 

second part we will apply the BCSM to unconventional superconductor YBCO thin film 

in a perpendicular applied magnetic field. In the third part we will apply the BCSM to a 

bulk unconventional superconductor YBCO. 

5.1. Critical state response in Nb Thin Films 

   Niobium has the highest critical temperature of the elementary superconductors: 

9.2 K. Also it has the largest London penetration length, λL of any element. It is one of 

only four elementary superconductors which are type II thus it may sustain the mixed 

state with quantized vortices. The Nb thin films are starting material for 

superconducting electronics. The SQUIDs, chips for Josephson voltage standard, 

electromagnetic cavity resonators, filters, etc. are made by lithographic processes on 

these films.  

 5.1.1. Dimensions and preparation of the sample 

The Nb thin film of thickness of 250 nm was deposited by DC magnetron 

sputtering in Ar gas on 400 nm thick silicon-dioxide buffer layer which was grown by a 

thermal oxidation of silicon single crystal wafer [110]. The film is poly-crystalline with 

texture of a preferred orientation in the (110) direction and is highly tensile. Grain size 
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is about 100 nm. The square samples of 5 mm × 5 mm in dimensions were cut out from 

a 3-inch wafer. 

5.1.2. Meeting the model assumptions 

Our Nb thin film sample fulfils the model assumptions in the case of disk and 

strip. For a model disk:  a) The film thickness, d = 250 nm, is larger than the flux 

penetration length for Nb, λ(0) = 40 nm, thus the first Clem and Sanchez condition [86], 

d ≥ λ is fulfilled. However, λ may become larger than the thickness near Tc. Considering 

Gorter-Casimir or Ginzburg-Landau model for temperature dependence of λ¸ the λ(T) ≈ 

d for T ≈ 0.99-0.999 Tc. However, in this case, the second Clem and Sanchez 

assumption on the two-dimensional screening length Λ is fulfilled as 

λ
2
 <<  a d/2 ≈ 0.5 × 2.5 mm × 250 nm, i.e. λ << 18 μm and a is the radius of the disk. b) 

The AC susceptibilities were measured in a low frequency field for frequencies from 

1.5625 up to 12.5 Hz. As the susceptibilities do not change with a frequency, the field 

may be considered quasi-static.  

On the other hand the important condition for strip is that d << a [82, 89] (where 

d = 250 nm << a = 2.5 mm, a is the half width of the strip). When d >> λ the current is 

completely pure Meissner current and flows in two surface layers of thickness λ leaving 

the central free region current free while for d < λ the current is vortex current, which is 

nearly constant over the thickness d. Both cases are allowed.  

5.1.3. AC susceptibility and the model validity 

The fundamental AC susceptibility and the 3
rd

 and 5
th

 harmonics are shown in 

Fig. 24. The experimental data have been fitted to the 2D BCSM to disk and strip. The 

experimental data have been plotted as function of the reduced temperature, T/Tc, while 

the model data have been plotted against, 1– (cBd/Ba)
3/2

, using  reduced temperature 

defined in Eq. (53). Both models predict that the transition is completed at reduced 

temperature, T/Tc ≈ 0.985, in the AC field of B0 = 10 μT. Hence we have scaled the 

model susceptibility (the fundamental and the 3
rd

 and 5
th

 harmonics, i.e. the vertical 

scale, while the horizontal scale, i.e. reduced temperature, was left as it is) by a factor of 

s = 0.97, χ → sχ, to fit experimental data. This vertical scaling has no influence on an 

estimated critical current density and its temperature dependence since these are given 

by concord in temperature axis. 
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Fig. 24: The fundamental AC susceptibility and third and fifth harmonics as a function of 

temperature for B0= 10 μT, frequency 1.5625 Hz, zero DC field, and cooling rate 

0.1 K/min. The marks are experimental data. The curves are susceptibilities calculated 

on the basis of the 2D BCSM model to disk (a) and strip (b). In both models the data 

(χ1, χ3 and χ5) are scaled by a factor s = 0.97, i.e. χ → sχ. 

(a) 

(b) 
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Fig. 25 : Temperature dependence of the real and imaginary parts of even (2nd and 4th) 

harmonics of complex AC susceptibility.  

The hysteretic nonlinear relationship between the applied magnetic field and the 

magnetization due to the existence of the flux pinning is reflected in the appearance of 

the higher harmonics [41, 61, 62, 96, 111]. According to BCSM the symmetry of the 

magnetization hysteresis curves is odd, i.e. M (Ba) = -M (-Ba). Hence only the odd 

harmonics can be generated. In Fig. 24 we can see that both the model to strip and disk 

successfully describe the experimental data, specially the higher harmonics.  

The generation of even harmonics has not been reported in well fabricated 

conventional superconductors [112]. The probable reason is that for this generation to 

be noticeable, the following conditions must be satisfied: (1) the critical current is field 

dependent, (2) DC and AC fields are of the same order of magnitude, and (3) the total 

field is much greater than Bcl. Since Bcl is rather larger for conventional materials except 

near Tc, the generation of even harmonics may not be observable with the small AC 

field amplitudes typically used in this type of experiment. However, we detect even 

harmonics in our measurements [106, 107]. Fig. 25 depicts the even harmonics of the 

AC susceptibility. The second harmonic is of the level of 10
–2

 and the forth harmonic is 

of the level of 10
–4

. The second harmonic is small compared to the third harmonic, 
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while the forth is small compared to the fifth harmonic. Their appearance may be 

attributed to residual ambient DC field [96].  

Cole–cole plot 

In Bean model the penetration field Bd is proportional to the critical current 

density Jc (T) with the proportionality coefficient being determined by the geometrical 

length scales of the sample. Thus, the reduced field h0 = B0 /Bd ∝ Jc
–1

 with a 

proportionality constant containing geometrical factors. If the model is tested by 

plotting the imaginary part 
1  versus the real part

1 , the reduced field h0 can be treated 

as a curve parameter within 0 ≤ h0 < ∞. Any specific sample shape then yields a 

characteristic curve in the Cole-Cole plot. Hence, there should be no difference whether 

the experimental data were obtained by a variation of the applied field Ba or temperature 

T.  

The method is demonstrated in Fig. 26, where the imaginary part of the 

fundamental AC susceptibility 
1  is plotted versus the real part 

1  for experimental  

 

 

Fig. 26 : Cole-Cole plot as obtained from the temperature dependence of the AC susceptibility 

at B0 = 10 μT, frequency 1.5625 Hz, and zero DC field. The corresponding theoretical 

predictions of Bean model to the disk, strip, cylinder and slab are added. The model 

susceptibility data have been scaled by a factor s = 0.97. 
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data of a square Nb sample. In addition, the prediction of the Bean model for an infinite 

cylinder and slab geometries in a longitudinal magnetic field is included in the figure 

for comparison. The data are characterised by a dome shape. It is clear that the small 

part of the experimental data near 
1 1    does not belong to the critical state 

behaviour, hence all theoretical model data are scaled by ratio, s = 0.97, i.e. χ → 0.97 χ,  

as explained above. The curves at the high temperature end (
1  → 0) are found to be 

independent of the sample shape. There is, however, a significant difference at the low 

temperature end  1 1   . Only the model to disk and strip predict the experimental 

data. The maximum height of the 
1  in the experimental data is in agreement with the 

theoretical predictions of the model to disk and strip. The models to cylinder and slab 

fail to describe the data obtained for the Nb thin film sample. 

Critical current evaluation 

The actual temperature dependence of the critical current density can be 

determined by best fitting to 
1  and 

1  
with aiding of the third and fifth harmonics. 

The fitting is shown in Fig. 24. It was found that both models to disk and strip can fit 

the experimental data well with the fitting parameters m = 1, n = 3/2 and Tc = 8.972 K 

(we note that our temperature sensor is not calibrated to such absolute accuracy even if 

the temperature resolution is of the order of ppm). Other parameters can be found in 

Table 4. The estimated temperature dependence of the critical current density is Jc(T) = 

Jc0 ( 1– T/Tc )
3/2

 with zero temperature critical depinning current density 

Jc0 = 3.32 × 10
11

 A/m
2
 and 4.62 × 10

11
 A/m

2
 for disk and strip geometry, respectively, at  

B0 = 10 μT, frequency f = 1.5625 Hz, and zero DC field. These values sound 

reasonably. The zero temperature critical current is Ic(0) = 2 Jc0 a d ≈ 0.42 kA and 0.53 

kA for the model to disk and strip, respectively, where 2a is the width of the sample and 

d is its thickness. Using the temperature dependence given by Eq. (52), the critical 

depinning current is Ic(4.2) ≈ 161 A and 206 A for disk and strip geometries 

respectively at liquid 
4
He temperature.  

The difference in calculations of the critical current using 2D Bean model to strip 

and disk is nearly 22%. Since our sample is square and the difference between the 

virgin magnetization curve of square and disk geometry is smaller than the difference 

between square and strip geometry [40, 76, 80, 94], it is expected that the 2D Bean 

model to disk should give better results than the 2D Bean model to strip. 
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5.1.4. AC field dependence of the AC susceptibility  

The AC field dependence of the fundamental AC susceptibility 

The fundamental AC susceptibility as a function of temperature at various AC 

field amplitudes (B0 = 1, 2, 5 and 10 μT), for frequency f = 1.5625 Hz and zero DC 

field, is shown in Fig. 27. As discussed previously the model susceptibility data were 

scaled by a factor s = 0.97 to fit the experimental data. A typical trend towards a shift of 

the maximum 1p   in 
1  to lower temperatures for increasing field amplitudes can be 

noticed clearly. Within the Bean model, 1p   is attained at a temperature Tp, at which the 

applied field amplitude B0 approaches the penetration field B
*
 for the corresponding 

sample geometry, i.e. for B0 = Bd (Tp). The scaling of Bd  with Jc(T), which is expected 

to be a monotonically decreasing function of temperature, immediately leads to the 

observed shift of Tp to lower values. Once the applied field exceeds Bd  at a fixed 

temperature or T exceeds Tp at a constant B0, the magnetic moment of the sample 

approaches saturation and the susceptibility decreases, respectively. Another general 

trend found for the susceptibility curves presented in Fig. 27 is the developing 

asymmetry of the 
1  peaks towards lower temperatures for increasing amplitudes B0 

accompanied by a corresponding broadening of the 
1 (T) transition. This behaviour 

reflects the temperature dependence of the critical depinning current density and 

dependence of the susceptibility on Ba/Bd. 

There is another point worth mentioning. Within the BCSM, the height of the 
1  

peak, 1p  , is independent of the AC field amplitude B0. For disk 1p  = 0.241 at reduced 

field, h0 = B0 /Bd = 1.94, while for strip 1p = 0.235 at h0 = 2.568 according to the 

calculations performed using equations from (45) to (47). Using this criterion the model 

fits the experimental data for B0 = 10 and 5 μT. For B0 < 5 μT, the 1p   is smaller than 

the theoretically predicted values and disappears with decreasing amplitude of the AC 

field. This is demonstrated more quantitatively in Fig. 28, where the values of 1p  are 

plotted versus the amplitude of the applied magnetic field, B0. We can notice that there 

is an increase on 1p   values for small applied field amplitudes B0  followed by 

saturation like behaviour. It is important to mention that any experimental test of 

theories based on the Bean model should be performed applying amplitudes B0 
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Fig. 27: Temperature dependence of the fundamental AC susceptibility for different AC field 

amplitudes measured with frequency f = 1.5625 Hz and cooling rate 0.1 K/min in zero 

DC field. The marks are the experimental data while curves are susceptibility 

calculated on basis of 2D BCSM to disk (top) and strip (bottom). Model susceptibility 

data have been scaled by a factor s = 0.97, i.e. χ → sχ.   
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Fig. 28 : The variation of the maximum height of 
1


 
and the calculated zero temperature 

critical current density with the amplitude of the applied magnetic field.   

Table 4: Parameters as a function of the amplitude of the applied magnetic field B0.  

Bean 

model 
 (T) c Jc0 (A/m

2
) Ic0 (A) Ic(4.2) (A) Tc Tp 1p  

 

Disk 
 

 

10 1.92 × 10–4
 3.32 × 1011

 415 161 8.972 8.954 0.231 

5 1.05 × 10–4
 3.04 × 1011

 380 148 8.977 8.963 0.224 

2 6.08 × 10–5
 2.09 × 1011

 262 102 8.982 8.973 0.191 

1 3.88 × 10–5
 1.64 × 1011

 205 80 8.988 8.980 0.162 

 

Strip 
 

 

10 2.35 × 10–4
 4.26 × 1011

 532 206 8.972 8.954 0.231 

5 1.29 × 10–4
 3.88 × 1011

 485 188 8.977 8.963 0.224 

2 7.47 × 10–5
 2.68 × 1011

 335 130 8.982 8.973 0.191 

1 4.77 × 10–5
 2.10 × 1011

 262 102 8.988 8.980 0.162 

corresponding to 1p 
 
values on the saturation regime. Applying this criterion to our 

results, the models are valid for AC field amplitudes, B0  ≥  5 µT. The increase of 1p   

with increasing the applied magnetic field amplitude B0 will be investigated in the next 

subsection. 

The values of Tc, c, Tp, 
"

1p , and the calculated Jc0, for set of amplitudes B0 are 

listed in Table 4. As the field is increased, the critical temperature Tc shifts down, in 

agreement with expected suppression of the superconductivity by the applied magnetic 

field. At the same time, the transition region broadens and the absorption peak shifts to 
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lower temperature. The values of the critical current and critical current density in Table 

4 show that the difference between the results of the 2D Bean model to disk and strip is 

nearly 22% for B0 = 10 µT. As explained previously it is expected that the 2D model to 

disk should give better results than 2D model to strip.   

AC loss mechanism 

When an AC magnetic field is applied, the sample is taken through a complete 

hysteresis loop within time period t = 1/f. Because the hysteretic loss is proportional to 

the area of the magnetization loop, the peak in 
1  

and the changes in the peak height of 

1p
 
can be explained by considering the magnetization loops at different temperatures. 

In Fig. 29, we plot the magnetization loops at four reduced temperatures T/Tc = 0.993,  

 

 

Fig. 29: The magnetic moment of Nb sample measured in B0 = 10 µT, f = 1.5625 and zero DC 

field. The letters from a to d are corresponding to reduced temperatures T/Tc = 0.993, 

0.998, 0.999 and 1.018. These reduced temperatures are corresponding to T/Tp = 

0.995, 1, 1.001 and 1.020 respectively.    
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0.998, 0.999 and 1.018 for f = 1.5625 Hz, B0 = 10 µT, and zero DC magnetic field. 

These reduced temperatures are corresponding to T/Tp = 0.995, 1, 1.001 and 1.020 

respectively. For T/Tc = 0.993, the applied AC field causes shielding currents to flow on 

the surface of the sample and a line to be traced out in the M – Ba plane (Fig. 29 curve 

a ). This means that there is no hysteresis, 
1= 0 and the current density J < Jc. When T 

is somewhat below Tc, Jc has decreased and shielding currents have to flow within the 

sample. The hysteresis loop in the M– Ba plane has an area associated with it, and
1 0 . 

The losses and 
1  attain their maximum values after supercurrents and penetrated flux 

reach the centre of the sample at T ≈ Tp (curve b in Fig. 29). When T  > Tp, the 

magnetization loops start to saturate (see curve c in Fig. 29), which is theoretically 

predicted by Bean model [86, 93]. As T approaches Tc, Jc approaches 0 and the 

magnetization loops have collapsed, hence there is no area to the loops, no hysteretic 

loss and 
1= 0 (curve d in Fig. 29). This interpretation is in accordance with the 

expectations of the critical state model, in which all energy losses are hysteretic and 

frequency independent. 

When the applied magnetic field is not large enough, it is expected that the flux 

and current front cannot penetrate to the centre of the sample, since the total 

displacement of the vortices in each cycle is proportional to the local amplitude of the 

AC field. There is a threshold value of B0, below which the vortices will not be able to 

leave the pinning centres [41, 113, 114]. In this situation each vortex will oscillate 

inside its effective pinning potential well rather than jumping from one to another. 

Therefore the transverse moments will not saturate. These concepts can be explored in 

Fig. 30, where the AC magnetic loops are plotted at different temperatures in the 

transition regime for different AC applied magnetic fields which were shown in Fig. 27 

and Fig. 28. At B0 = 10 and 5 µT the magnetic flux and current front penetrate to the 

centre of the sample at T ≈ Tp. The height of 
1  in this case is in agreement with the 

Bean model prediction, and the AC losses reach its maximum. For B0 = 2 and 1 µT, it is 

clear from Fig. 30, that the magnetic moment does not reach saturation. This can 

explain the decreasing of 1p   and Jc0 with decreasing the AC magnetic field amplitude, 

B0, which were indicated in Fig. 28. Since the critical state model deals with 

macroscopic magnetization, supercurrent, flux density and field, the decrease in both 

quantities 1p   and Jc0 is clearly understood. It is worth to mention that, in Fig. 30, we 
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Fig. 30: Hysteresis magnetization loops for AC fields B0 = 10, 5, 2 and 1 µT at frequency f = 

1.5625 Hz and zero DC field. For B0 = 2 and 1 µT, the magnetization loops 

corresponding to Meissner and normal state are omitted because the background noise 

is high. 
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Fig. 31:  The AC field dependence of the experimental and theoretical 2D BCSM model data of 

third harmonic of AC susceptibility. The marks are the experimental data, while dashed 

and solid lines are the model to strip and disk data respectively. The sample has been 

measured in zero DC field, f = 1.5625 and cooling rate 0.1 K/min. Model susceptibility 

data have been scaled by a factor s = 0.97, i.e. χ → sχ.   
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Fig. 32: The AC field dependence of the experimental and theoretical 2D BCSM model data of 

fifth harmonic of AC susceptibility. The marks are the experimental data, while dashed 

and solid lines are the model to strip and disk data respectively. The sample has been 

measured in zero DC field, f = 1.5625 and cooling rate 0.1 K/min. The experimental 

data for B0 < 5 µT were omitted because of high background noise. Model susceptibility 

data have been scaled by a factor s = 0.97, i.e. χ → sχ. 
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have plotted the AC magnetization loops, which cover the transition region, i.e. the last 

loop in the Meissner state towards Tc, the most saturated curve before converting to the 

normal state and the first curve in the normal state in addition to the curve 

corresponding to T ≈ Tp. For B0 = 2 and 1 µT the curves corresponding to the Meissner 

and normal state are omitted because of high background noise. 

The AC field dependence of higher harmonics 

The AC field dependence of the third and fifth harmonic measurements for the 

data which were shown previously in Fig. 27, can be found in Fig. 31 and Fig. 32 

respectively. We noticed that there is a big similarity between the experimental and 

theoretical data. The differences are only quantitative. The higher harmonics show 

pronounced field dependence. The imaginary and real components of the third harmonic 

oscillate between positive and negative values. For B0 = 10 µT the negative and positive 

peaks take the maximum values. When the AC field is decreased the two peaks decrease 

and shift to higher temperature. In addition their broadness also decreases. This is 

consistent with the results of critical state model (see the discussion above). The fifth 

harmonic (Fig. 32 ) shows the same trend like the third one, i.e. by decreasing the 

applied AC field the peaks shift to higher temperatures and there broadness decreases. 

Comparing our results to that in references [115, 116], the behaviour of the positive 

peak in 
3  is different, where it increases with decreasing AC field amplitude. In our 

sample the decreasing in the positive peaks may be due to the increasing of linear 

response, where at small AC field amplitudes the vortices will not be able to leave the 

pinning centres [41, 113, 114]. In this situation each vortex will oscillate inside its 

effective pinning potential well rather than jumping from one to another. 

In fact, the measurements of the higher harmonics have big advantages, where it 

can help in investigating the properties of the superconductors, see for example table 1 

in reference [105]. Other thing is that the behaviour of the higher harmonics is 

important to determine the theoretical model to fit our data.  
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5. 2. Critical state response in YBa2Cu3Ox wire  

It was recognized soon after the discovery of high temperature superconductors 

(HTSC) that their magnetic properties are irreversible and show thermo-magnetic 

history effects [117]. The magnetic irreversibility properties observed under quasi-static 

changes of magnetic field are similar to those observed in conventional "hard" 

superconductors. Therefore they are understood within the same phenomenological 

models, i.e. the critical state model, which was applied earlier to the conventional hard 

superconductors.  

Recently, highly sophisticated second generation high temperature 

superconducting (2G HTS) wires, namely YBa2Cu3Ox (YBCO), were prepared with 

much more favourable flux pinning conditions at high temperatures. The conductors 

with critical current densities exceeding 10
10

 A m
–2

 at 77 K and self field have been 

fabricated. In particular, 2G HTS wire holds enormous promise for the efficient and 

reliable supply of electricity in applications such as electric power cables, fault current 

limiters, motors, generators, transformers and superconducting magnetic energy storage 

systems. These materials allow the validity of models to flux dynamics to be studied.  

5.2.1. Dimensions and preparation of the sample 

The sample of 2G HTS wire made by Super Power, Inc. is cut into 4 mm long 

segment of 4 mm wide wire [118, 119]. The structure of the wire is shown in Fig. 33. 

The wire consists of a 50 micrometers substrate, ~0.2 micrometer buffer stack, ~1 

micrometer YBCO layer, ~2 micrometers of Ag with 40 micrometers total thickness of 

surround copper stabilizer. The substrate serves for two purposes: it provides the 

mechanical backbone of the conductor and is the base for growing the subsequent 

layers. The nickel alloy substrate (typically Hastelloy ® C276) is either 50 or 100 

micrometers thick. The thin substrate thickness enables a high engineering current 

density, J in the final tape that is critical for many applications. It is electrochemically 

polished to a surface roughness of less than 2 nm and is smooth enough for ion beam 

assisted deposition of a textured MgO-based buffer stack that serves several functions 

including diffusion barrier, lattice matching and as the critical aligned template for 

growing the current carrying HTS film. Metallo-organic chemical vapour deposition 

(MOCVD) is used to grow the YBCO HTS film. The advantages of the MOCVD 

method include its extremely high deposition rate, ~0.7 m/min, and ability to extend its 
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Fig. 33: The structure of the second generation wire ( 2G HTS wire ) [120]. 

deposition area resulting in very high throughput. The YBCO HTS film is then capped 

by a thin Ag layer to provide good electrical contact. When required, stabilization of the 

conductor is provided by an electroplated copper layer that surrounds the entire 

structure. The thickness of the copper layer can be varied to meet the operational 

requirements of the wire in a specific application. 

5.2.2. Meeting the model assumptions 

The YBCO 2G wire sample satisfies the model assumptions. For 2D Bean critical 

state model (BCSM) to disk, the thickness d = 1 μm << 2a = 4 mm, where 2a is the 

width of the sample. But d ≥ λ is fulfilled only up to reduced temperature T/Tc = 0.99 for 

either linear or quadratic temperature dependence of λ using λ(0) ≈ 150–200 nm. 

However in this case the condition for the two-dimensional screening length, Λ = 

2 λ
2
/d << 2a, is fulfilled [108]. On the other hand the important assumption to apply the 

2D BCSM to strip, d << 2a [82, 89], is fulfilled. As mentioned previously, both cases 

d < λ and d > λ are allowed in case of strip model. 

 5.2.3. Mapping of model data to the experimental data 

The fundamental AC susceptibility of the 2G HTS wire sample in a slowly 

varying perpendicular field as a function of temperature T at an AC field amplitude of 

B0 = 10 µT and frequency  f  = 1.5625 Hz is shown in Fig. 34. a. The Cole – Cole plot 

of 1  versus 
1  is depicted in Fig. 34. b. The transition region near Tc is shown in 

detail in Fig. 35. The fundamental, third and fifth harmonics of the AC susceptibility for 

the 2G HTS wire in a perpendicular applied magnetic field as a function of reduced 

temperature, χ(T/Tc),  are demonstrated in Fig. 35. The data are fitted to the 2D Bean 
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Fig. 34:  Fundamental AC susceptibility measured at B0=10 μT, frequency of 1.5625 Hz, zero 

DC field and cooling rate of 2 K/min. (a) As a function of temperature. (b) The Cole – 

Cole plot of 
1

  versus
1
 .  The transition is complete at T= 89 K, while the real part 

decreases slowly to –1.   

(a) 

(b) 
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Fig. 35: Fundamental AC susceptibility, third harmonic (top) and fifth harmonic (bottom) as a 

function of reduced temperature at B0 =10 μT, frequency of 1.5625 Hz, zero DC field, 

and cooling rate of 1 K/min. The marks are experimental data. The curves are 

susceptibilities calculated on the basis of the 2D Bean model to disk (dashed line) and 

strip (solid line) in a perpendicular applied magnetic field. The model susceptibility is 

scaled by a factor s=0.92, i.e. χ → sχ. 
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model for disk and strip. To fit the transition region the model susceptibility data were 

scaled by a factor s = 0.92, i.e. χ → sχ. The temperature dependent real part of the 

fundamental susceptibility 
1( )T  below the transition is evidently not related to the 

critical state, see Fig. 34. At 
1~ 0.914, i.e. T ~ 89 K, the imaginary part of the 

fundamental susceptibility, 
1  = 0, results in no loss, which is an indication that the 

transition is completed. However, the real part of the fundamental susceptibility 
1

 decreases slowly to –1. It is not clear if this response is due to the temperature 

dependent flux penetration length. While its dependence is linear in pure YBCO crystals 

and quadratic when impurities and other defects are present [121], we have observed 

different temperature dependence. In the range of 4.2–85 K the temperature dependence 

may be approximated using a single term polynomial by   2.5

1 1T aT    , where 

a ~ 6.4 × 10–7,  with residuals being less than 0.3% [108]. 

The frequency dependence of the AC susceptibility was measured for applied 

field frequencies of 0.78125, 1.5625, 3.125, 6.25, and 12.5 Hz at B0 = 10 μT. With 

increasing AC field frequency the transition shifts weakly toward higher temperature. 

The shift in temperature is 0.1 K for frequencies of 0.78125 and 12.5 Hz, i.e., ≈ 10
–3

 of 

the reduced temperature. 

Using Eq. (54), the best fit parameters are m = 1, n = 2,  and  Tc = 90.41 K (we 

note that our temperature sensor is not calibrated to such absolute accuracy even if the 

temperature resolution is on the order of ppm). For a model to disk, c = 1.68 × 10
-5

 and 

the estimated zero temperature critical current density is Jc(0)disk= B0 /µ0cd ≈ 9.47×10
11 

A/m
2 

at B0 = 10 µT and d = 1 μm. The zero temperature current is Ic(0)disk= Jc(0)disk 2a d 

≈ 3.8 kA using a wire width of 2a = 4 mm.  We have found that the critical current 

density has the temperature dependence, Jc(T) = Jc(0)(1- T/Tc)
2
, 

 
for both of models to 

disk and strip. Hence the calculated fundamental susceptibility of both models is plotted 

against [1-(c/h0)
1/2

 ], where h0 = B0/Bd. Therefore the critical depinning current for a disk 

geometry at a temperature of 77 K or 0.85T is Ic(77) = 83.4 A. While for a strip 

geometry the c parameter is given by, c = 2.10×10
-5

, results in zero temperature critical 

depinning current, Jc(0)strip = 1.19 × 10
12

 A/m
2
. The zero temperature current is given 

by, Ic (0) = 4.8 kA, while the critical depinning current at 77 K is given by Ic(77) = 

105 A. It is worth to mention here that the 2D Bean model to disk gives lower results 
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than the model to strip by nearly 18%. Since our sample is square, it is expected that the 

model to disk is more accurate than the model to strip as explained above.       

5.2.4. AC field dependence of the susceptibility  

The fundamental AC susceptibility as a function of temperature for different 

driving AC field amplitude is shown in Fig. 36. We note that measurements upon 

cooling and warming yield identical results. The experimental data are fitted to the 2D 

BCSM model to disk and strip (here we show only model to disk since the difference 

between both models is too small). With increasing AC field amplitude the transition 

extends toward lower temperatures accompanied by a corresponding broadening of the 

χ(T) transition as both models predict. The height of the absorption peak 1p
 
remains 

nearly unchanged unlike the case of Nb thin films. The best fit parameters found by 

linking the model curves to the experimental AC susceptibility are listed in Table 5.  

The comparison with the complex AC susceptibility calculated for the model to 

the disk and strip shows that these models properly predict behaviour, particularly of 

harmonics as can be seen in Fig. 37 and Fig. 38 (here we show only the prediction of 

the model to disk, where the differences between both models are very small ). The 

estimated critical current is between 77.8 A and 96.1 A for the model to disk while it is 

between 95.6 A and 118.3 A for the model to strip at 5 μT < B0 < 20 μT in zero DC field 

and at 77 K. For this specific piece of the YBCO wire, the critical current estimated 

using a four probe method and 1 μV/cm criterion is 97 A at 77 K in self-field. This 

indicates that both models predict values close to the measured one. In case of the 

model to disk there is an error nearly from 19%, for B0 = 5 μT, to 0.9% for B0 = 20 μT. 

On the other hand, the model to strip gives an error between 1.4% for B0 = 5 μT to -21% 

for B0 = 20 μT. This indicates that the results in case of the model to disk are better as 

expected especially at high AC field amplitude, where the magnetic flux reaches to the 

centre of the sample and the moment saturates. The difference between the four probe 

method and the Bean model‟s data may result from the fact that the model assumes an 

infinite rise of resistance when the current density exceeds the critical depinning current 

density. On the other hand, a critical current  estimated using a finite voltage criterion is 

influenced by a slope of the current-voltage characteristic  [122].  

The third and fifth harmonics for the same data shown in Fig. 36 are depicted in 

Fig. 37 and Fig. 38 respectively. Because of higher background noise, the data for 
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Fig. 36: Temperature dependence of the fundamental AC susceptibility for different AC field 

amplitudes, frequency 1.5625 Hz, zero DC field, and cooling rate 1 K/min. The curves 

are susceptibility calculated on the basis of the 2D Bean model to disk, marks are the 

experimental data. The model susceptibility data are scaled by a factor s = 0.92, i.e. 

χ → sχ. 

 Table 5: Parameters as a function of the AC applied field amplitude B0. 

Bean model 0 (T) c Jc0 (A/m
2
) Ic0 (KA) Ic (77) (A) TP(K) 

Disk 

1 2.90 × 10-6
 5.49 × 1011

 22.0 48.2 90.30 

2 4.50 × 10-6
 7.07 × 1011

 28.3 62.2 90.27 

5 9.00 × 10-6
 8.84 × 1011

 35.4 77.8 90.21 

10 1.68 × 10-5
 9.47 × 1011

 37.9 83.4 90.14 

20 2.90 × 10-5
 1.10 × 1012

 43.9 96.1 90.03 

Strip 

1 3.50 × 10-6
 7.14 × 1011

 28.6 62.8 90.30 

2 5.40 × 10-6
 9.26 × 1011

 37.0 81.4 90.27 

5 1.15 × 10-5
 1.09 × 1012

 43.5 95.6 90.21 

10 2.10 × 10-5
 1.19 × 1012

 47.6 105 90.14 

20 3.70 × 10-5
 1.35 × 1012

 54.1 118 90.03 
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Fig. 37: The temperature dependence of the third harmonic for different AC field amplitudes, 

frequency 1.5625 Hz, zero DC field and cooling rate 1 K/min. The curves are 

susceptibility calculated on basis of the 2D Bean model to disk, the marks are the 

experimental data. The model susceptibility is scaled by a factor s=0.92, i.e. χ → sχ. 
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Fig. 38: The temperature dependence of the fifth harmonic for different AC field amplitudes, 

frequency 1.5625 Hz, zero DC field and cooling rate 1 K/min. The curves are 

susceptibility calculated on the basis of the 2D Bean model to disk, marks are the 

experimental data. The model susceptibility is scaled by a factor s=0.92, i.e. χ → sχ. 
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B0 < 5 µT were removed in Fig. 38. The height of the positive peaks in both real and 

imaginary part of the third harmonic don‟t change with changing the AC field 

amplitude, while the depth of the negative peaks slightly increased with increasing the 

AC field amplitude. The behaviour of the real part on the fifth harmonic is similar, 

while the positive peak in 
5  decreases with decreasing the AC field amplitude. An 

inspection of AC magnetization loops proves that the magnetic flux does not reach 

saturation for small amplitudes, B0 < 5 µT. Since the total displacement of the vortices 

in each cycle is proportional to the local amplitude of the AC field, the vortices will not 

be able to leave the pinning centres in small AC field, where the vortices oscillate inside 

their effective pinning potential wells rather than jump from one to another. Therefore 

the magnetic flux and critical current do not reach the centre of the sample. This can 

easily explain the increase of the zero critical current density with increasing AC field 

amplitude, which listed in Table 5. For more details see discussion above.   

5.2.5. DC field dependence of the susceptibility  

The effect of the DC magnetic field on the AC susceptibility can be seen in Fig. 

39, where the measured 
1  and 

1  as a function of temperature at various DC applied 

fields Bdc = 0, 0.5, 1, 2, 5 and 10 mT for f = 1.5652 Hz and AC field amplitude 

B0 = 10 µT are plotted. The measurements in DC field were performed at field–cooling 

with subsequent field warming. Afterward, a DC field polarity was reversed and the DC 

field eventually changed. As the DC field increases, the transition in  1 T  and  1 T  

becomes slightly broader and shifts toward lower temperature. The position of the 

absorption peak depends strongly on the DC field amplitude, Bdc. With increasing Bdc 

vortices are able to leave the flux pinning potential wells and move toward the centre of 

the sample [109]. Therefore the temperature where the dissipation peak occurs shifts to 

lower values, which is the case shown in Fig. 39. The peak height 1p   in  1 T  slightly 

increases with increasing the DC field. As the DC field amplitude further increases, 1p   

reaches saturation. The values of 1p  can be found in Table 6. Experimentally, it has 

also been observed that with increasing DC fields, the peak height in  1 T  increases 

to a certain value and remains constant for further increasing DC field amplitude Bdc 

[123]. Values of the Tc, c, Jc0, Ic0, Ic(77), Tp and 1p    as a function of the applied DC 

field Bdc are listed  in Table 6. In  the range  of our applied  DC and  AC fields, the  DC  



5. Results and discussion 

82 

 

 

Fig. 39: Fundamental AC susceptibility as a function of temperature for different DC fields Bdc 

= 0, 0.5, 1, 2, 5 and 10 mT (from right to left), AC field amplitude B0 = 10 µT, 

frequency of 1.5625 Hz, and cooling rate of 1 K/min. Curves are susceptibility 

calculated  based on 2D Bean model to disk. The model susceptibility is scaled by a 

factor s = 0.92, i.e. χ → sχ. 

 

Table 6: Parameters as a function of DC field amplitude Bdc. 

Bean model dc (mT) c Jc0 (A/m2) Ic0 (KA) Ic (77) (A) Tc (K) TP(K) 1p  

 

 

 

Disk 
 

 

0 1.57× 10–5 1.01 × 1012 4.05 89.8 90.46 90.21 0.241 

0.5 1.70× 10–5 9.36 × 1011 3.74 82.3 90.4 90.14 0.247 

1 1.75× 10–5 9.09 × 1011 3.64 79.8 90.38 90.13 0.249 

2 1.95× 10–5 8.16 × 1011 3.26 71.1 90.33 90.05 0.256 

5 2.25× 10–5 7.07 × 1011 2.83 61.3 90.29 89.97 0.282 

10 2.90× 10–5 5.49 × 1011 2.20 47.2 90.23 89.89 0.2817 

 

 

Strip 

 

 

 

0 2.10× 10–5 1.19 × 1012 4.76 106 90.46 90.21 0.241 

0.5 2.02× 10–5 1.24 × 1012 4.96 109 90.40 90.14 0.247 

1 2.10× 10–5 1.19 × 1012 4.76 104 90.38 90.13 0.249 

2 2.40× 10–5 1.04× 1012 4.17 90.7 90.33 90.05 0.256 

5 3.10× 10–5 8.06 × 1011 3.23 70.0 90.29 89.97 0.282 

10 3.60× 10–5 6.94 × 1011 2.78 59.6 90.23 89.89 0.2817 
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Fig. 40: Temperature dependence of the third harmonic of susceptibility of 2G YBCO wire for 

different DC field amplitudes, frequency 1.5625 Hz, B0 =10 µT and cooling rate 1 

K/min. Curves are the susceptibility calculated on basis of 2D Bean model to disk, 

while marks are the experimental data. The model susceptibility data are scaled by a 

factor s = 0.92, i.e. χ → sχ.  
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Fig. 41: Temperature dependence of the fifth harmonic of susceptibility of 2G YBCO wire for 

different DC field amplitudes, frequency 1.5625 Hz, B0 =10 µT and cooling rate 

1 K/min. Curves are the susceptibility calculated on basis of 2D disk mode, while marks 

are the experimental data. The model susceptibility is scaled by a factor s=0.92, i.e. 

χ → sχ. 
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field nearly does not affect the AC susceptibility, i.e. response to the applied AC field. It 

only reduces the critical current. The estimated critical current Ic = 47.2 A for disk 

geometry and 59.64 A for strip geometry, at 77 K and 0.01 T agrees with the value 

Ic = 16 A (Sm) and 32 A (Zr : Gd) at 77 K and 1 T estimated using a four probe method 

[124]. However it is expected that the 2D Bean model to disk should give better results 

as explained previously.  

The effect of the DC applied magnetic field on the third and fifth harmonics can 

be seen in Fig. 40 and Fig. 41 respectively (these are the same data which were 

represented in Fig. 39). As the DC field increases the peaks shift to lower temperatures. 

The same trend was found by Shalove and Dorman [125]. They reported measurements 

of the third harmonic amplitude in a small constant AC field as a function of 

temperature for various DC fields ranging from 0 to 0.1 T.  As they increased the DC 

field, the peak moved to lower temperatures. This is consistent with the result of critical 

state model since Bd, which is proportional to Jc, decreases as the DC field is increased.  

The same behaviour has been reported by other experimental groups, see reference 

[126] and the references within it. 
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5.3. Critical state response in bulk (Nd, Eu,Gd)-123 superconductors 

The magnetic irreversibility observed under the quasi-static changes of magnetic 

field, or of temperature, has been explained using the critical state model. The Bean 

critical state model, BCSM, was solved for long samples, having a zero 

demagnetization factor, in parallel applied magnetic field such as long cylinder and 

slab. Also the model was solved for samples with finite thickness in perpendicular 

applied magnetic field such as 2D disk and strip, where the demagnetization factor is 

high.  

The light rare earth (LRE) compounds of the 123 family, LRE = Sm, Nd, Eu, Gd, 

possess a significantly better pinning potential than Y-123. Thus, they could achieve 

high critical current and trap high magnetic field at a significantly higher temperature. 

These materials can soon become magnetic hearts of small mobile diagnostic and other 

devices. Their main advantages will be compactness and magnetic field strength. The 

dominance of the LRE-123 blocks in the field of bulk superconducting magnets lies in 

the ability of LRE elements to exchange positions with Ba atoms and form so called 

LRE/Ba solid solution. Clusters of such a locally varied composition represent very 

effective point-like pinning disorder. Excellence in this direction belongs to the 

compounds with two or three different LRE atoms mixed on the rare earth sites. The 

different atomic radii allow for a new degree of freedom in tailoring pinning properties 

of such superconductors. (Nd, Eu,Gd)-123 is the best-known example of this class. In 

this part we apply the BCSM to a thick (Nd, Eu,Gd)-123 sample.  

5.3.1. Preparation and dimensions of the sample 

The (Nd0.33Eu0.38Gd0.28)Ba2Cu3Oy “NEG-123” pellet, doped by 0.035 mol% ZnO, 

0.5 mol% Pt, 5 mol% Gd-211, and 1 wt.% Ag, was produced from high-purity 

commercial powders of Nd2O3, Eu2O3, Gd2O3, BaCO3 and CuO mixed in nominal 

composition. The starting powders were three times thoroughly ground and calcined at 

880 
º
C for 24 hours with intermediate grinding. Sintering was carried out at 900

 º
C for 

15 hours at Ar/0.1% O2. Platinum was added to help in refining the Gd-211 particles, 

ZnO to improve growth control of the compound, and silver to enhance mechanical 

strength of the material. The well-mixed powders were pressed into pellets 20 mm in 

diameter and 10 mm thick, and consolidated by cold isostatic pressing to 200 MPa. The 

sample was grown in Ar/0.1% O2 atmosphere, at the gas flow of 300 ml/min [127]. The 
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structure was determined with a RINT2200 (Rigaku) high-resolution automated X-ray 

powder diffractometer. The sample was found to be single-phase with less than 3 mol% 

Gd-211[128].  

For measurements a platelet of 1.5 mm thick was cut from the pellet (Fig. 42. a). 

From the platelet, three series of small samples for magnetic susceptibility 

measurements, each of a × b × c = 1.5 mm × 1.5 mm × 0.4 mm in size, were sliced from 

three piles cut out in the pellet centre, periphery, and in-between, as indicated in Fig. 42. 

b. We have measured two samples, number 6 from the centre and number 15 from the 

periphery. The sample number 15 has been measured in two orientations, i.e. c axis is 

parallel and perpendicular to the applied magnetic field Ba. In this section we show only 

the results of sample number 15 with c // Ba. 

 

    Fig. 42: (a) Sketch of the investigated pellet with the marked position of the studied platelet. 

(b) Scheme of the platelet with marked positions of samples 1.5 mm ×1.5 mm × 0.4 mm 

in size, shown as small boxes [128].  

5.3.2. Results and discussion of NEG-123 bulk sample   

The temperature dependence of the fundamental AC susceptibility of the bulk 

NEG-123 sample is shown in Fig. 43. The sample has been measured at warming rate of 

1 K/min for AC field amplitude B0 = 0.5 mT, frequency of 1.5625 Hz and zero DC 

field. The experimental data have been fitted to the BCSM to disk, strip, slab and 

cylinder (the fitting to model to strip is not shown here). We have found that the real 

part of the experimental fundamental susceptibility, 1 , can be fitted well in case of the 

models to strip and disk, while the absorption peak in the imaginary part, 1 , is smaller 

than the value predicted by the models. The fitting parameters m, n, c and Tc can be 

found in Table 7. The absolute zero critical current density Jc0 has been calculated with 
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Fig. 43: Temperature dependence of the fundamental AC susceptibility of NEG-123 bulk sample 

measured in AC magnetic field B0 = 0.5 mT with  frequency 1.5625 Hz and zero DC 

field in warming rate 1 K/min. Curves are the susceptibility calculated on basis of Bean 

model to disk, slab and cylinder. The susceptibility of Bean model to disk is reduced by 

a factor s = 0.97. 

the aid of Eq. (55) (see Table 7).  Using Eq. (52) we have found that, the temperature 

dependence of the critical current density in case of the models to disk and strip is given 

by Jc(T) = Jc0(1-T/Tc)
5/2

, while for the models to slab and cylinder it is given by 

Jc(T) = Jc0(1-T/Tc)
3
. The values of the critical current density at 77 K are in between 

4.60 × 10
10

 A/m
2
 for the model to disk and 2.34 × 10

11
 A/m

2 
for the model to cylinder 

respectively. These values are two to three orders of magnitude higher than Jc (77) ≈ 

4 × 10
8 

A/m
2
, which was estimated in reference [128] for the same sample using  the 

extended Bean‟s critical state model method [129]. 

Table 7: Fit parameters and results of fitting to Bean model in different geometries.  

Model m n c Jc0 (A/m
2
) Jc(77) (A/m

2
) Ic0 (A) Ic(77) (A) 

Disk 1 2.5 4.70×10
-7

 4.23×10
12

 4.60×10
10

 2.53×10
6
 2.76×10

3
 

Strip 1 2.5 5.90×10
-7

 5.29×10
12

 5.76×10
10

 3.17×10
6
 3.45×10

3
 

Slab 1 3 1.56×10
-8

 3.40×10
13

 1.49×10
11

 2.04×10
7
 8.99×10

4
 

Cylinder 1 3 1.00×10
-8

 5.30×10
13

 2.34×10
11

 3.18×10
7
 1.40×10

5
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Fig. 44: Temperature dependence of the third and fifth harmonics of the AC susceptibility of the 

bulk  NEG-123 sample measured in AC magnetic field B0 = 0.5 mT with  frequency 

1.5625 Hz and zero DC field in warming rate 1 K/min. Marks are experimental data 

while curves are model data.  

A crucial parameter in choosing a model of fitting is the behaviour of higher 

harmonics. At least it should agree qualitatively with the model. Fig. 44 depicts the third 

and fifth harmonics of the AC susceptibility of NEG-123 bulk sample with the 

theoretical Bean models data. For third harmonic all the models nearly fail to describe 

the imaginary part, 3 , where the positive hump which is predicted by the models does 

not exist. On the other hand the models to disk and strip predict the positive hump in the 

real part, 3 , while the negative peak in the theoretical curves looks deeper than the 

experimental one. At the same time all models nearly fail to describe the behaviour of 



5. Results and discussion 

90 

 

the fifth harmonic in both the imaginary, 5 , and the real part, 5 . 

The disagreement between the experimental data and the theoretical models can 

be attributed to the sample geometry. In case of 2D Bean critical state model to disk and 

strip, it is assumed that the sample has very low thickness, d, i.e. the ratio d/2a → 0, 

where 2a is the width of the sample. On the other hand, for parallel geometries namely 

slab and cylinder, the ratio d/2a is assumed to be very high or infinite. The values of the 

ratio d/2a for different samples can be found in Table 8. From the table we can see that, 

the d/2a ratio for NEG-123 bulk sample is nearly 1000 times greater than the d/2a ratio 

for 2G HTS wire and more than 5000 times greater than the d/2a ratio for Nb thin film. 

From numerical calculations, Brandt [130] found that for d/2a < 0.02 the computed 

virgin magnetization m(h) practically coincides with the thin strip result mstrip(h) = 

tanh(h), while  the parallel limit (slab geometry) mslab(h) = h
 
– h

2
/4 is reached only at 

relatively large side ratios d/2a > 6. For d >> a the difference mstrip(h) – h + h
2
/4 is 

proportional to 2a/d. In case of our bulk sample the ratio, 0.02 < d/2a = 0.267 < 6. This 

value is in between the two limits, which explains why the four analytical models to 

disk, strip, slab and cylinder do not fit the experimental data particularly higher 

harmonics and hence there is a need to use numerical methods to fit our data. However 

Brandt claims that, for different d/2a ratios, the normalized m(h) magnetization curve 

differs by < 0.03 from some average curve mav(h). In other words the maximum 

difference between the virgin magnetization curve in the two limits (strip and slab) 

should be 6%. 

Other thing that needs to be stressed in is that, although the difference between the 

model susceptibility curves and the experimental susceptibility in Fig. 43 is not so high, 

the error in calculation of the critical current density is high. This result indicates the 

importance of considering the behaviour of higher harmonics, when choosing the model 

to apply.      

Table 8: Comparisons between the dimensions of Nb, 2G HTS wire thin films and NEG-123 

bulk sample.  

 NEG-123 bulk  2G HTS wire Nb 

a (m) 1.50 × 10-3
 4.00 × 10-3

 5.00 × 10-3
 

d (m) 4.00 × 10-4
 1.00 × 10-6

 2.50 × 10-7
 

d/2a 0.267 2.50 × 10-4
 5.00 × 10-5
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Conclusion 

In the framework of this thesis, we have introduced a new contactless method to 

determine the critical current density and hence critical current in hard type II 

superconducting samples. This method is based on the analytical solutions of the Bean 

critical state model (BCSM), i.e. a slab in a parallel field, as originally studied by Bean 

[61, 62], the long cylinder in an axial field [41], the strip in transverse field [82, 89] and 

the disk in perpendicular field [84, 86]. Unlike others, our method is easier to use and 

the sample is not damaged during the measurements.  

We have found that the model susceptibility calculated on the basis of the BCSM 

can fit our experimental data when the model susceptibility is plotted against 

 
1/

1/
*

01
m

n

c B B 
  

and the experimental susceptibility versus reduced temperature 

T/Tc, where B0 is the amplitude of the applied field and B
*
 is the full penetrated field, Bp, 

for cylinder and slab or Bd for disk and strip. This enables us to match the experimental 

and model data using only four free parameters, c, n, m, and Tc, hence the critical 

depinning current density Jc can be easily calculated, since B
*
 is proportional to Jc. 

We have measured temperature dependence of magnetization of Nb thin films in 

slowly varying perpendicular applied field. We have found that both fundamental-

frequency and harmonics of the experimental AC susceptibility agree well with the AC 

susceptibility computed on basis of the Bean critical state model to disk and strip. We 

have found that the temperature dependence of the critical depinning current density can 

be expressed as; J(T) = Jc0(1-T/Tc)
3/2

, where Jc0 is the zero temperature critical current 

density. The estimated critical depinning current values using this contactless method 

sound reasonably. The measurements of the fundamental AC susceptibility as a function 

of temperature for set of amplitudes B0 indicate that, as the field is increased, the Tc shifts 

down, in agreement with expected suppression of the superconductivity by the applied 

magnetic field. At the same time, the transition region broadens and the absorption peak 

shifts to lower temperature. An inspection of AC magnetization loops proves that the 

magnetic flux does not reach a saturation for B0 < 5 µT. Below this threshold field the 

vortices will not be able to leave the pinning centres [41]. In this situation each vortex 

will oscillate inside its effective pinning potential well rather than jumping from one to 
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another. This can easily explain the increase of the absolute critical current density and 

height of the imaginary peak 1p  with increasing AC field amplitude in our sample. 

This allows us to conclude that to apply BCSM, the amplitude of the applied magnetic 

field should be higher than a threshold amplitude, where the magnetic front and the 

critical current penetrate entire the sample to the centre.   

We have checked out the validity of the BCSM on high temperature 

unconventional superconductors, i.e. 2G YBCO thin films. We have measured the 

response of the critical state in the HTS wire to a slowly varying AC field as a function 

of temperature. The comparison with a complex AC susceptibility calculated from 

models to disk and strip shows that these models properly predict behaviour, 

particularly of the harmonics. It has been found that the temperature dependence of the 

critical current density is Jc(T) = Jc0(1- T/Tc)
2 

for both models, which allowed us to 

calculate the critical depinning current at temperature T. The estimated critical 

depinning current using this contactless method agrees well with the values estimated 

using a four probe contact measurement. However in case of the model to disk there is 

an error nearly from 19%, for B0 = 5 μT, to 0.9% for B0 = 20 μT. While for the model to 

strip the error is in-between 1.4%, for B0 = 5 μT, to –21% for B0 = 20 μT. It has been 

noticed that the values estimated using BCSM to disk is always lower than the model to 

strip and more accurate especially at higher amplitude of the AC applied magnetic field. 

Our measurements prove a strong pinning and quasi-static Bean critical state up to the 

critical temperature. The measurements in changing AC field amplitude show that the 

height of 1p   remains nearly unchanged with increasing B0, unlike the case of Nb thin 

films. When a DC field is applied the transition shifts toward a lower temperature as the 

field increases, while the shape of the transition remains unchanged. In the range of our 

applied DC and AC fields, the DC field nearly does not affect the AC susceptibility, i.e. 

response to the applied field. It only reduces the critical current.  

It is important to apply our contactless method, which is based on the BCSM to 

determine the critical depinning current, to other geometries rather than thin films to see 

the differences.  For this purpose we have measured the response of the critical state in 

the bulk NEG-123 sample to a slowly varying AC field as a function of temperature. 

We have compared the experimental measured χac data to theoretical χac which were 

computed on the basis of the analytical BCSM model in case of models to disk, strip, 

slab and cylinder. We have found that none of these four analytical models correctly 
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predicts the behaviour of our bulk sample especially the higher harmonics. The 

disagreement between the experimental and theoretical data can be attributed to the 

sample geometry. The ratio d/2a, where d is the thickness of the sample and 2a is its 

width, is in between the two limits of thin films (strips and disks) and infinite long 

samples in parallel applied magnetic field (slabs and cylinders). However the 

temperature dependence of the critical current density for the models to disk and strip 

can be given by Jc(T) = Jc0(1–T/Tc)
5/2

, while for the models to slab and cylinder is given 

by Jc(T) = Jc0 (1-T/Tc)
3
. Although there is small difference between the theoretical and 

experimental fundamental susceptibility, the error in the estimated critical current 

density is high, that suggests an importance of the finding of a behaviour of the higher 

harmonics when choosing a theoretical model to fit the experimental data. 
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CSM critical state model  

DA digital to analogue  

DC direct current 

EMF electromotive force 

FFT fast Fourier transform 

FLL flux line lattice  

FL flux line  

GL Ginzburg-Landau  

HS high sensitivity magnetometer  

HTSC high temperature superconductors  

LRE light rare earth 

SR standard sensitivity magnetometer  

SQUID superconducting quantum interference devices 

TAFF thermally assisted flux flow  
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