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v
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Abstrakt: Působenı́ silné gravitace v okolı́ černých děr může vést k urychlenı́ hmoty.
V této práci zkoumáme vlastnosti systému tvořeného rotujı́cı́ černou dı́rou ve velko-
rozměrovém uspořádaném magnetickém poli. Nabité částice v blı́zkosti horizontu
jsou kromě silné gravitace ovlivňovány magnetickým polem a indukovaným polem
elektrickým. Oproti již dřı́ve v literatuře diskutovaným situacı́m přidáváme některá
významná zobecněnı́. Magnetické pole v našem přı́padě nemusı́ být koaxiálnı́ s ro-
tačnı́ osou černé dı́ry, takže systém ztrácı́ osovou symetrii. Kromě toho předpo-
kládáme translačnı́ pohyb černé dı́ry s obecným směrem i rychlostı́. Ukážeme, že
dı́ky tomu docházı́ k novým efektům. V komplikované struktuře výsledného mag-
netického pole pozorujeme v ergosféře jeho rychlé prostorové změny provázené
vznikem nulových bodů, které dokazujı́, že gravitačnı́ působenı́ rotujı́cı́ho zdroje
může podněcovat rekonekci magnetických siločar. Dále zkoumáme dynamické vlast-
nosti nabitých částic vystavených působenı́ tohoto typu polı́. Předevšı́m se zajı́máme
o přechody mezi regulárnı́m režimem a deterministickým chaosem, ke kterým do-
cházı́ v závislosti na volbě parametrů. Při numerickém zkoumánı́ částicové dy-
namiky aplikujeme v kontextu obecné relativity zatı́m nepoužitou metodu rekurenčnı́
analýzy.
Klı́čová slova: obecná relativita, kompaktnı́ tělesa, astrofyzikálnı́ koróna, deter-
ministický chaos
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does not have to remain at rest but it can instead perform fast translational motion
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aratrices and identify magnetic neutral points forming in certain circumstances.
We suggest that these structures can represent signatures of magnetic reconnection
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Chapter 1

Introduction

1.1 Astrophysical black holes

Nowadays it is a consensus that black holes are a vivid part of physical reality.
Astrophysicist’s attitude toward the possibility of a real existence of completely
gravitationally collapsed bodies, i.e. black holes (BHs), has undergone profound
changes since 1935 when sir Eddington commented recent theoretical results of
Chandrasekhar (1935), suggesting that black hole could be the endpoint of star
evolution, by these words: “I think there should be a law of Nature to prevent a star
from behaving in this absurd way”. At present, due to discoveries and observations
made in recent decades, it seems highly probable that there is actually no such
power which would save a heavy star from collapsing into the black hole.

Until the late 1960’s there had not been much progress made in this field. Al-
though Karl Schwarzschild had given an exact solution to Einstein’s equations for a
spherically symmetrical source (Swcharzschild black hole in the case of collapsed
body) already in 1916 (just one year after publishing the theory of relativity), it
was not believed that such objects really exist. Almost a half century later, Kerr
(1963) gave a new exact solution to Einstein’s field equations describing the geom-
etry around a rotating compact object, which naturally appears to be more relevant
in astrophysical context than prior non-rotating Schwarzschild solution. But this
progress still would not become a concern of astrophysicists unless there had not
been made important observational discoveries during 1960’s.

Astronomers discovered sources of radio waves with highly redshifted (with
redshift factor z ≈ 0.1−6) spectrum (Schmidt, 1963) which proved them (accord-
ing to Hubble’s law) to be very distant from us (≈ 0.3− 3 Gpc ). Combined with
observed visual magnitude of these objects – called quasars (quasi-stellar radio
sources) – there comes a conclusion of their huge power output of about 100 times
that of the total luminosity of average galaxy (Lquasar ≈ 1035 − 1040 W). Quasars
also appeared to emit significantly in X-ray and even in gamma part of the spec-
trum.

Quasars were not the only peculiar objects observed during those decades. Ac-
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CHAPTER 1. INTRODUCTION 2

cording to the type of their spectrum and luminosity time dependence of those
“new” objects they were classified as Seyfert galaxies (being observed and stud-
ied since the 1940’s actually), blazars, or radio galaxies (RGs) with all of them
consisting of further subclasses. They are all characterized by extraordinarily high
luminosity coming from a small volume (≈ 10−6 pc3). As there is no consistent
way to explain the mechanism of those energy sources conventionally (i.e. regard-
ing stars and therein running nuclear synthesis as the most efficient energy source
in the universe), attention was turned to hypothesis employing strong gravitational
fields considering compact objects and subsequently the black holes. Now it is gen-
erally believed that above mentioned phenomenons are of the same origin which
was given the name active galactic nuclei (AGN). Galaxies with active galactic
nuclei and subsequently also those with non-active nuclei are suspected of hosting
a supermassive black hole (MBH) of M ≈ 106 −109 M⊙ in their centres, e.g. M87
– AGN of ≈ 109 M⊙ or Sagittarius A* – nonactive nucleus of our Galaxy – with
M ≈ 4.4×106 M⊙ (Genzel et al., 2010).

Figure 1.1: Same physical mechanism is supposed to operate in different types of
cosmic objects. Central black hole is accreting matter which forms an accretion
disk. Collimated jets are launched from the central part of the system. Illustration
credit: Mirabel (2007b).

The main reason for such an assumption is that it provides a clarification of
the observed luminosity of active galaxies. When the Kerr black hole is employed
to model the properties of AGN we conclude that the matter accreted from its
vicinity would form an accretion disk which becomes heated by accretion process
and subsequently emits radiation of various types (depending on temperature and
many other properties of the disk). Doing so there could be as much as ≈ 40%
(Misner et al. (1973) p. 885) of accreted material rest mass turned into emitted
radiation which is considerably more than in the case of thermonuclear synthesis
of helium (≈ 7% of the rest mass).
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Whether we regard observed AGN as quasar, radio galaxy, blazar or Seyfert
galaxy depends mostly on the spatial orientation of the surrounding galaxy which
acts as the shield for some parts of the spectrum while being a source in some
other parts (see Urry & Padovani, 1995, for a review of unified schemes of radio
sources).

Tolman-Oppenheimer-Volkoff (TOV) limit sets the upper bound to the mass
of neutron star (Oppenheimer & Volkoff, 1939). Today’s estimates of the value of
TOV limit range among ≈ 1.44− 3 M⊙ (Lattimer & Prakash, 2004) and the un-
certainty is due to unknown equation of state. Pressure of degenerate neutron gas
in the neutron star reaching this limit cannot oppose gravitational pressure and in-
evitably collapses into the black hole (while collapse is being accompanied with
gamma ray burst, GRB). Stellar mass black hole (M ≈ 4−15M⊙) should thus rep-
resent the final state of stellar evolution of every heavier star. To be observed it
needs to be a part of the binary system. Under certain circumstances black hole
accretes matter from its companion star (flowing via Lagrange point when bound-
aries of a Roche lobe are exceeded). Similarly like in the supermassive black hole
case there establishes accretion disk emitting in X-ray part of the spectrum. Due to
recent observation from the satellites Chandra and XMM-Newton equipped with
high resolution X-ray detectors we now have many stellar mass black hole can-
didates in our Galaxy (e.g. Cygnus X-1). The key to distinguish accretion disk
of a compact object (typically neutron star) from the one surrounding the black
hole is the nonexistence of the surface in the black hole case. Thus irregular flares
of gamma rays accompanying thermonuclear reaction of accreted material on the
compact object surface are not detected.

Intermediate-mass black holes (IMBHs) are those with M ≈ 102 − 104 M⊙.
Existence of IMBHs is still uncertain although a number of candidates was iden-
tified. IMBH might be possibly formed in globular star clusters (Maccarone et al.,
2007). Ultra-luminous X-ray sources (ULXs) in close galaxies are suspected to be
powered by IMBH. An ULX source HLX1 located on the edge of spiral galaxy
ESO243-49 was claimed (Farrell et al., 2009) to host an IMBH of over 500 M⊙,
though the interpretation was recently disputed by Soria et al. (2011). A stellar
complex IRS 13E residing close to our galactic center Sagittarius A* is yet another
candidate for the IMBH system (Schoedel et al., 2005).

Primordial black holes (PBHs) are hypothetical objects whose origin differs
fundamentally from all above mentioned types. They have not been established
by gravitational collapse of stars or other astronomical bodies since they might
have been born from density fluctuation during early stages of the evolution of
the Universe. On the theoretical grounds it has been argued (Carr & Hawking,
1974) that PBHs of mass from 10−5 g upwards might exist in the present Universe.
Updated constraints on PBHs were given recently by Carr et al. (2010). Primordial
black holes could be detected due to the Hawking radiation which black holes emit
according to the quantum relativity (Page, 1976).

Hawking radiation has ordinary thermal spectra and energy it radiates away
goes on account of the mass – the black hole evaporates. Predicted evaporation
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times for stellar mass black holes exceed present age of the universe by many
orders but for primordial black holes with the mass M ≈ 1012 kg evaporation time
approaches its current age. Rate of evaporation escalates as the mass decreases
(power output P ∝ 1

M2 ). Endpoint of the primordial black hole existence should
thus be explosive (Hawking, 1974) and is believed to be accompanied with loud
GRB. Search for these GRB signatures is one of the key scientific objectives of
current mission of Fermi Gamma-ray Space Telescope which is operating since
2008.

Figure 1.2: Evidence for fast motion of the emerging jets in the microquasar GRS
1915+105 (observed at radio frequency of 8.6 GHz) and in the quasar 3C 279 (at
22 GHz). Synchrotron emission has been reported in infrared wavelengths and, in
some cases, even up to X-rays, implying the presence of electrons in the jets with
TeV energies. Figure credit: Mirabel (2007a).

1.2 Magnetic field: trigger for accretion and outflow

Recent observations of microquasars, pulsars, gamma-ray bursts indicate that the
astrophysical jets play an important role everywhere (not only in the case of AGNs).
There is plenty of observational evidence suggesting that the initial acceleration of
jets takes place very near black holes (or other compact object) and proceeds via
electromagnetic forces. Jets and accretion disks in the vicinity of compact objects
probably create symbiotic magnetically driven system (e.g. Falcke & Biermann,
1995).

The current promising model of the dynamics (i.e. launching, accelerating
and collimating) of the astrophysical jets is based on the magnetohydrodynamics
(MHD). The results of the simulations employing general relativistic MHD equa-
tions (Krolik & Hawley, 2010) correlate with observations of M87 (Junor et al.,
1999) where the formation and the collimation of the jet were analyzed.
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Moreover, the 3D relativistic MHD simulations carried out by Hawley & Krolik
(2006) demonstrate clearly the essential role which the accretion disk’s coronae
play in the collimation and acceleration of the jet. Indeed the dominant force accel-
erating the matter outward in a given numerical model originates from the coronal
pressure. Regions above and below the equatorial plane become dominated by the
magnetic pressure and large-scale magnetic fields may also develop by the dynamo
action.

Recent numerical relativistic study by Rezzolla et al. (2011) reveals the for-
mation of ordered jet-like structure of ultrastrong magnetic field in the merger of
binary neutron stars. Such system thus might serve as an astrophysical engine for
observed short gamma ray bursts.

In accretion models the magnetic field was also employed – the so called mag-
netorotational instability (MRI) must operate in accretion disc, generating the ef-
fective viscosity necessary for the accretion process (Balbus, 1991). Magnetic re-
connection is likely to be responsible for rapid flares, which are observed in X-
rays. Finally, Faraday rotation measurements suggest that tangled magnetic fields
are present in jets (Begelman et al., 1984).

Observations of the Galactic Center (GC) reveal the presence of another re-
markable large-scale magnetic structure – nonthermal filaments (NTFs). NTFs
cross the Galactic plane and their length reaches tens of parsecs while they are
only tenths of parsec wide. The strength of the magnetic field within the NTF may
approach ≈ 1 mG while the typical interstellar value is ≈ 10 µG (LaRosa et al.,
2004). Initially, it was thought that NTFs trace the pervasive poloidal magnetic
field present throughout the GC (Morris, 1990). Later, however, it became ap-
parent that the structure of the magnetic field in the central region of the Galaxy
is more complex (Ferrière, 2010). See fig. 1.3 for the snapshot of the GC at
90 cm (330 MHz) which shows the NTFs clearly.

Overall it is quite likely that electromagnetic mechanisms play a major role
and operate both near supermassive black holes in quasars as well as stellar-mass
black holes and neutron stars in accreting binary systems (see figures 1.1 and 1.2).
Besides that a faint magnetic field is present throughout the interstellar medium,
being locally intensified in NTFs.

Electro-vacuum fields

The survey of the vacuum electromagnetic (EM) fields may be regarded as the fun-
damental starting point in studying the dynamics of astrophysical plasma. If the
examination of the fields itselves represents the initial step in a given direction, at
succeeding stage we would consider the motion of a non-interacting test particles
exposed to these fields. In this work we will be dealing with both issues. Structure
of a particular astrophysically motivated EM field emerging in the vicinity of rotat-
ing black hole will be studied in detail. Subsequently we shall discuss the motion
of charged particles exposed to the field representing a special case of a general
solution explored before. Primarily we concern ourselves with the stable orbits oc-



CHAPTER 1. INTRODUCTION 6

Figure 1.3: Milky way’s Galactic Center penetrated by the narrow nonthermal fil-
aments (NTFs). The strength of ordered magnetic field may approach ≈ 1 mG
within NTFs. Length of NTFs reaches tens of parsecs. Inner region of 0.8◦ × 1.0◦

is shown at wavelength 90 cm (330MHz). Snapshot was taken by the Very Large
Array (VLA). Credit: Nord et al. (2004); LaRosa et al. (2004).

cupying off-equatorial potential lobes. Particles on these orbits are relevant for the
description of astrophysical corona comprising of diluted plasma residing outside
the equatorial plane in the inner parts of accreting black hole systems.

Gaseous corona is supposed to play a key role in the formation of observed X-
ray spectra of both active galactic nuclei (AGNs) and microquasars (Done, 2001).
Power law component of the spectra is believed to result from the inverse Compton
scattering of the thermal photons emitted in the inner parts of the disk. Relativistic
electrons residing in the corona serve as a scatterers in this process. Their dynamic
properties (e.g. resonances) thus shall have imprint on the observed spectra.

The role of magnetic fields near strongly gravitating objects has been subject of
many investigations (e.g. Punsly, 2008). They are relevant for accretion disks that
may be embedded in large-scale magnetic fields, for example when the accretion
flow penetrates close to a neutron star (Lipunov et al., 1992; Mestel, 1999). Outside
the main body of the accretion disk, i.e. above and below the equatorial plane, the
accreted material forms a highly diluted environment, a corona, where the density
of matter is low and the mean free path of particles is large in comparison with the
characteristic length-scale, i.e. the gravitational radius of the central body, Rg ≡
GM/c2 ≈ 1.5(M/M⊙) km, where M is the central mass. The origin of the coronal
flows and the relevant processes governing their structure are still unclear. In this
context we discuss motion of electrically charged particles outside the equatorial
plane.
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Regular and chaotic dynamics

Accretion onto black holes and compact stars brings material in a zone of strong
gravitational and electromagnetic fields. We study dynamical properties of motion
of electrically charged particles forming a highly diluted medium (a corona) in the
regime of strong gravity and large-scale (ordered) magnetic field.

We start our discussion from a system that allows regular motion, then we
focus on the onset of chaos. To this end, we investigate the case of a rotating black
hole immersed in a weak, asymptotically uniform magnetic field. We also consider
a magnetic star, approximated by the Schwarzschild metric and a test magnetic
field of a rotating dipole. These are two model examples of systems permitting
energetically bound, off-equatorial motion of matter confined to the halo lobes
that encircle the central body. Our approach allows us to address the question of
whether the spin parameter of the black hole plays any major role in determining
the degree of the chaoticness.

The both dynamic systems may be regarded as different instances of the orig-
inally integrable systems which were perturbed by the electromagnetic test field.
Complete integrability of geodesic motion of a free particle in Schwarzschild space-
time is easy to verify (Misner et al., 1973). To some surprise it was later found that
also free particle motion in Kerr spacetime and even the charged particle motion in
Kerr-Newman is completely integrable (Carter, 1968) since separation of the equa-
tions of motion is possible as there exists additional integral of motion – Carter’s
constant L . Trajectories found in such a systems are merely regular.

In the non-integrable system, however, both regular and chaotic trajectories
may coexist in the phase space. Standard method of a qualitative survey of the
non-linear dynamics is based on the construction of Poincaré surfaces of section
which allow to visually discriminate between the chaotic and regular regime of
motion.

On the other hand quantifying the chaos by Lyapunov characteristic exponents
(LCEs), as its standard and commonly used indicator, becomes problematic in the
general relativity (GR) since LCEs are not invariant under the coordinate transfor-
mations. Besides that the usual method of computing LCEs involves evaluation of
the distances between the neighboring trajectories which becomes intricate in GR.
Although there are operational workabouts to partially overcome these difficulties
(e.g. Wu & Huang, 2003) the need for a consistent treatment is apparent. Perhaps
the geometrical approach suggested recently by Stachowiak & Szydlowski (2010)
could eventually provide a covariant method of the evaluation of the Lyapunov
spectra in GR.

In this context we adopt a different tool to investigate the dynamic system –
Recurrence Analysis (Marwan et al., 2007). To characterize the motion, we con-
struct the Recurrence Plots (RPs) and we compare them with Poincaré surfaces of
section. We describe the Recurrence Plots in terms of the Recurrence Quantifica-
tion Analysis (RQA), which allows us to identify the transition between different
dynamical regimes. We demonstrate that this new technique is able to detect the
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chaos onset very efficiently, and to provide its quantitative measure. The chaos
typically occurs when the conserved energy is raised to a sufficiently high level
that allows the particles to traverse the equatorial plane. We find that the role of the
black-hole spin in setting the chaos is more complicated than initially thought.

1.3 Structure of Thesis

The thesis is organized as follows. Most of its contents are contained in chap. 2. We
begin with technical preliminaries, namely in sec. 2.2 we introduce several alterna-
tive definitions of electric and magnetic vector fields. In sec. 2.3 we give explicitly
the components of the electromagnetic tensor Fµν describing the field around the
Kerr black hole drifting in the arbitrary direction through the asymptotically ho-
mogeneous magnetic field which is generally inclined with respect to the rotation
axis of the BH. Choice of the observer’s frame is discussed in sec. 2.4. Structure
of the both electric and magnetic fields is explored in detail in sec. 2.5. First in
sec. 2.5.1 we revisit the issue of the magnetic expulsion (Meissner effect) which is
present in the case of aligned field. Subsequently we study field structures in the
case of inclined field. Finally, in sec. 2.5.2 we introduce a drift of the black hole
and explore the both electric and magnetic fields emerging in this general setup.

In the remaining part of the chap. 2 we shall deal with the dynamics of the
charged test particles exposed to the test fields analyzed in the previous sections. In
sec. 2.7 we review the equations of particle motion, which we then integrate to ob-
tain trajectories. In sec. 2.8 we introduce the basic properties of Recurrence Plots.
Sec. 2.9 analyses the motion around a Kerr black hole endowed with a uniform
magnetic test field. We employ Poincaré surfaces of section and Recurrence Plots.
The two approaches allow us to show the onset of chaos in different, complemen-
tary ways. We examine the motion in off-equatorial lobes, pay special attention
to the spin dependence of the stability of motion, and we notice the emergence
of ‘potential valleys’ that allow the particles to escape from the equatorial plane
along a narrow collimated corridor. Analysis of the off-equatorial motion around a
magnetic star is presented in sec. 2.10. We consider a dipole-type magnetic field,
which sets different limits on the off-equatorial range of allowed motion of charged
particles. It also defines different regimes of chaoticness in the comparison with
the uniform magnetic field.

Finally, results of the analysis are summarized in chap. 3. Chapter 4 represents
a brief outlook to the future as it specifies several topics suggesting the direction in
which our research could continue.

In Appendix A we list conversion factors between SI and geometrized units.
Scaling of the quantities by the central mass M is also discussed. Appendix B gives
detailed comparison of numerical integrators applicable to our system. Benefits
of symplectic routines are discussed therein. In Appendix C we introduce our
program tool vfexplorer2 which provides a simple graphic user interface (GUI) for
the effective exploration of a complex vector fields.
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At different phases of my doctoral studies I took part in several research projects.
Namely I acknowledge support from the doctoral student program of the Czech
Science Foundation (project No. 205/09/H033), Plan for European Cooperating
States of the European Space Agency (ESA PECS 98040) and two projects of the
Grant Agency of Charles University (GAUK 119210/2010 and SVV-263301).





Chapter 2

Regular and chaotic motion
in black hole magnetospheres

2.1 Electromagnetic field around drifting Kerr black hole

In this section we construct a test field solution describing the electromagnetic field
around a Kerr black hole which is drifting in an arbitrary direction with respect to
the asymptotically uniform magnetic field with the general orientation with respect
to the rotation axis. Definition of the electric and magnetic field intensities is dis-
cussed as well as the choice of the physical observer. Structure of the field is
explored in detail.

Electromagnetic (EM) test field solutions of Maxwell equations in curved space-
time play an important role in astrophysics since we can usually suppose that as-
trophysically relevant EM fields are weak enough, so that their influence upon
background geometry may be neglected.

We are interested in the solutions describing an originally uniform magnetic
field under the influence of the Kerr black hole. Since the Kerr metric is asymptot-
ically flat, this EM field reduces to the original homogeneous magnetic field in the
asymptotic region. First such a test field solution was given by Wald (1974) for the
special case of perfect alignment of the asymptotically uniform magnetic field with
the symmetry axis. Using a different approach of Newman Penrose formalism a
more general solution for an arbitrary orientation of the asymptotic field was in-
ferred by Bičák & Dvořák (1980). We use their solution to construct the EM field
around the Kerr black hole which is drifting through the asymptotically uniform
magnetic field.

Such generalized setup shall represent an astrophysically relevant model. In
the actual accreting BH system the misaligned ordered field may arise if the accre-
tion disk is inclined with respect to the rotation axis of the BH and the Bardeen-
Petterson effect does not operate to align the axes. Such misaligned accretion was
observed in some numerical simulations (e.g. Rockefeller et al., 2005). A possible
scenario how the BH could receive substantial velocity with respect to its accre-

11
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tion disk is suggested by the simulations of a merger process (e.g. Rezzolla, 2009;
Gonzáles et al., 2007).

In the context of black hole mergers Lyutikov (2011) recently studied electro-
dynamic properties of the simplified model consisting of the Schwarzschild black
hole in the uniform transversal motion with respect to the homogeneous magnetic
field. The author considers the interaction of the field with the plasma generated
from the pair production due to the vacuum breakdown. Analyzing the resulting
situation in the force-free approximation, Lyutikov concludes that observed elec-
trodynamic properties resemble in many aspects the pulsar magnetosphere.

2.2 Lines of force

Kerr metric in Boyer-Lindquist coordinates xµ = (t, r, θ, φ) may be expressed as
follows (Misner et al., 1973):

ds2 = −∆
Σ

[dt −asinθdφ]2 +
sin2 θ

Σ
[(r2 +a2)dφ−adt]2 +

Σ
∆

dr2 +Σdθ2, (2.1)

where
∆ ≡ r2 −2Mr +a2, Σ ≡ r2 +a2 cos2 θ. (2.2)

We stress that geometrized units G = c = k = kC = 1 are used throughout the text.
See Appendix A for details.

For the sake of reference it might be useful to list both covariant and contravari-
ant components of the Kerr metric explicitly

gtt =
a2 sin2 θ−∆

Σ
, grr =

Σ
∆

, gθθ = Σ, gφφ =
A sin2 θ

Σ
, (2.3)

gtφ = gφt =
a sin2 θ

Σ
(
∆− r2 −a2) ,

gtt =
−A
∆ Σ

, grr =
∆
Σ

, gθθ =
1
Σ

, gφφ =
1
Σ

(
1

sin2 θ
− a2

∆

)
, (2.4)

gtφ = gφt =
a

∆ Σ
(
∆− r2 −a2) ,

denoting A ≡ (r2 + a2)2 − a2 sinθ2∆. Following relation proved useful in the cal-
culations: ∆ Σ = A−2Mr(r2 +a2).

Radial metric component grr and contravariant components gtt , gφφ and gtφ

are singular at ∆ = 0 which defines the outer (+) and the inner (-) horizon r± =
M ±

√
M2 −a2 of the black hole. By querying the curvature scalars one finds

that the singularities present at r± are purely coordinate singularities rather than
physical ones. Both horizons merge at r = M in the case of extreme Kerr black
hole a = M. For a > M the horizon disappears and the central singularity becomes
naked. In the following, however, we will be concerned with the cases a ≤ M only.
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Dragging of the inertial frames caused by the rotation of the source may be
characterized by the quantity Ω = −gtφ/gφφ = 2Mra/A. Coordinate angular ve-
locity dφ/dt = uφ/ut (“angular velocity as measured at infinity“) of the observer
freely falling from the rest at infinity reads Ω (see eq. 2.53).

In the classical electrodynamics we spontaneously define electric and magnetic
lines of force as a field lines of three-vectors E⃗ = (Ex,Ey,Ez) and B⃗ = (Bx,By,Bz)
which form a solution of Maxwell equations for a given problem. Definition con-
dition of the field line r⃗ = (x(s),y(s),z(s)) parametrized by the parameter s is such
that its tangent vector d⃗r

ds is at each point parallel to the vector field itself. Thus for
(e.g. electric) lines of force we obtain equation

d⃗r
ds

× E⃗ = 0 =⇒ dx
Ex

=
dy
Ey

=
dz
Ez

, (2.5)

where × stands for the ordinary cross product of two vectors.
If we recall Lorentz relation specifying the force felt by a particle with electric

test charge qe and hypothetical magnetic monopole test charge qm moving with the
velocity v⃗ in the external fields E⃗, B⃗

F⃗ = qe(E⃗ + v⃗× B⃗)+qm(B⃗− v⃗× E⃗), (2.6)

we conclude that in a given reference frame we can identify the electric intensity
E⃗ with the force felt by the unit electric charge and magnetic induction B⃗ with the
force felt by the unit magnetic monopole charge provided that these charges are
static in a given reference frame.

In the covariant language of general relativity the Lorentz force felt by the test
particle of mass m and the electric charge qe or the magnetic monopole charge qm

is expressed as follows:

aµ =
Duµ

dτ
=

duµ

dτ
+Γµ

αβuαuβ =
qe

m
Fµ

νuν (2.7)

aµ =
Duµ

dτ
=

duµ

dτ
+Γµ

αβuαuβ = −qm

m

∗
Fµ

νuν, (2.8)

where τ stands for the proper time, a is particle’s four-acceleration, u its four-
velocity and Γµ

αβ are Christoffel symbols. Fµν is electromagnetic tensor and ∗Fµν
its dual.

In the close analogy with the classical case it appears natural to define coor-
dinate components of magnetic and electric fields as follows (Hanni & Ruffini,
1973)

Bµ = −∗Fµ
νuν, Eµ = Fµ

νuν. (2.9)

However, the demand on the test charge to be static in a given reference frame, i.e.
to have 4-velocity of a form uµ = (ut ,0,0,0), becomes highly problematic when
dealing with the non-static geometry of the Kerr spacetime. It is well known that
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in this case no physical observer may remain static inside the ergosphere whose
boundary is defined by

rs = M +
√

M2 −a2 cosθ2. (2.10)

Since the region near the horizon is typically of a big interest when investigating the
effects of a strong gravity we do not content us with being limited to the region out-
side the ergosphere. To this end we generalize the above definition eq. (2.9) in such
a way that we allow general four-velocity of the test charge uµ = (ut ,ur,uθ,uφ). In
the classical analogy this would mean not insisting on v⃗ = 0 when defining the
vector fields E⃗ and B⃗ using the classical form of the Lorentz force equation (2.6).
Nevertheless all the cases we shall discuss actually have uθ = 0 therefore we may
write explicitely

Br = −grr (∗Frtut +∗Frφuφ)
, (2.11)

Bθ = −gθθ (∗Fθtut +∗Fθrur +∗Fθφuφ)
, (2.12)

Bφ = −
[
gφφ (∗Fφtut +∗Fφrur)+gφt (∗Ftrur +∗Ftφuφ)]

. (2.13)

Equation for the lines of force eq. (2.5) takes following form in the poloidal plane:
dr/dθ = Br/Bθ and similarly in the equatorial plane: dr/dφ = Br/Bφ. To obtain
analogical expressions for the components of electric field Er, Eθ, Eφ we just need
to omit the minus sign at the beginning of each term and replace ∗Fµν components
with Fµν in eqs. (2.11)–(2.13).

Another issue connected with the definition (2.9) is a question of the normal-
ization of the basis vectors. We notice that components of magnetic and electric
fields Bµ and Eµ are provided in the canonical basis of Boyer-Lindquist coordinates,
namely in the basis of vectors ∂

∂t , ∂
∂r , ∂

∂θ , ∂
∂φ which are not normalized. This prob-

lem may be seemingly easily overcome by expressing ”physical components” of
the fields1 (Hanni & Ruffini, 1973) as follows

Br
physical = sign(Br)

√
BrBr =

√
grr Br, (2.14)

Bθ
physical = sign(Bθ)

√
BθBθ =

√
gθθ Bθ, (2.15)

Bφ
physical = sign(Bφ)

√
BφBφ = sign(Bφ)

√
Bφ

(
∗Ftφut −∗Fφrur

)
, (2.16)

and analogically for physical components of electric field Er,θ,φ
physical.

However, in the case of Boyer-Lindquist coordinate system which is singular
at the horizon (namely the radial metric component grr diverges here) using above
defined physical components turns out to be a controversial choice since it intro-
duces this divergence directly into the radial component of electric and magnetic
fields.

1The adjective physical is sometimes used to refer to the quantities measured in the frame attached
to a given physical observer. We stress that our usage of the term differs as our physical components
are expressed in the coordinate frame.
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To fix this problem we suggest to define “renormalized components“ of the
fields as follows

Br
renormalized = Br hr, Er

renormalized = Er hr, (2.17)

Bθ
renormalized = Bθ hθ, Eθ

renormalized = Eθ hθ, (2.18)

Bφ
renormalized = Bφ hφ, Eφ

renormalized = Eφ hφ, (2.19)

where hr = 1, hθ = r, hφ = r sinθ are ordinary Lamé coefficients of spherical co-
ordinates in flat space. Correspondence between physical and renormalized com-
ponents lies in the asymptotic region where they become identical since the Kerr
spacetime is asymptotically flat and Boyer-Lindquist coordinates r,θ,φ asymptot-
ically turn into spherical coordinates describing the spatial part of Minkowskian
spacetime. Explicitly given the asymptotic behaviour of the metric coefficients is
grr → 1 = h2

r , gθθ → r2 = h2
θ and gφφ → r2 sin2 θ = h2

φ and gtφ → 0.
Going even further in ”operational flattening“ of the curved background one

could eventually identify the components of magnetic and electric fields directly
with the components of the electromagnetic tensor Fµν. Such an identification
is fully justified in any local Lorentz frame where Fµν takes the form given by
eq. (2.25). Nevertheless although the asymptotics of Kerr background is flat, its
Boyer-Lindquist coordinate basis 1-forms are not normalized and normalization
factors hr, hθ and hφ must be used accordingly. We define asymptotically moti-
vated (AMO) components of the fields

Br
AMO =

Fθφ

hθhφ
, Er

AMO =
Frt

hr
, (2.20)

Bθ
AMO =

Fφr

hφhr
, Eθ

AMO =
Fθt

hθ
, (2.21)

Bφ
AMO =

Frθ

hrhθ
Eφ

AMO =
Fφt

hφ
. (2.22)

AMO components asymptotically coincide with the physical and renormalized
components provided that the test charge is static. Although AMO components
do not allow for a direct physical interpretation when applied outside the asymp-
totic region, it may still be useful to explore them since they do not employ any
particular observer (four-velocity of a test charge) in their definition and therefore
it may be easier to acquire intuitive insight into the nature of a given EM field.

Nevertheless a consistent way to define the electric and magnetic fields should
provide obvious physical interpretation of the observables measured by a certain
physical observer at any distance from the center. We let such an observer with
four-velocity uµ equipped with the orthonormal tetrad eµ

(α) measure the Lorentz
force of eq. (2.9) using his tetrad basis. Tetrad components of the vector fields
determining desired lines of force are given as the spatial part of the projection

B(i) = B(i) = −e(i) ∗
µ Fµ

νuν = −e µ ∗
(i) Fµνeν

(t) = −∗F(i)(t), (2.23)

E(i) = E(i) = e(i)
µ Fµ

νuν = eµ
(i)Fµνeν

(t) = F(i)(t), (2.24)
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where e(α)
µ are 1-forms dual to the tetrad vectors eµ

(α). Lowering/raising of the
spatial tetrad indices does not matter since the tetrad is supposed to be orthonormal:
g(µ)(ν) = η(µ)(ν).

For the sake of the future reference we review both tetrad components of EM
tensor F(α)(β) and its dual ∗F(α)(β). We remind that such an interpretation of these
tensors is possible only in any local Lorentz frame which may be attached to any
physical observer, not necessarily inertial. Magnetic and electric test charges which
are used to measure the fields are at rest in this frame.

F(α)(β) =


0 −E(r) −E(θ) −E(φ)

E(r) 0 B(φ) −B(θ)
E(θ) −B(φ) 0 B(r)
E(φ) B(θ) −B(r) 0

 , (2.25)

∗F(α)(β) =


0 B(r) B(θ) B(φ)

−B(r) 0 E(φ) −E(θ)
−B(θ) −E(φ) 0 E(r)
−B(φ) E(θ) −E(r) 0

 . (2.26)

Several ways to define electric and magnetic field have been described in this
section. Coordinate components of the Lorentz force felt by the unit electric/mag-
netic test charge (eq. 2.9) provide a natural generalization of the classical defini-
tion. In the case of the Kerr background, however, we cannot insist upon the usage
of the static test charges in the definition as no static observers may penetrate in-
side the ergosphere. Since the structure of the fields in the vicinity of the horizon
is usually of the utmost interest we have assumed more general four-velocity of
the test charge in the form uµ = (ut ,ur,0,uφ). The Lorentz force may be projected
onto the tetrad basis attached to the test charge.

Nevertheless if we remain in the Boyer-Lindquist coordinate basis we note that
the fields do not come with the proper dimension because the coordinate basis vec-
tors are not normalized. To correct this in a rigorous manner we define physical
components of the fields by eqs. (2.14)–(2.16). It appears, however, that this def-
inition amplifies the effect of the coordinate singularity at the horizon. Thus we
suggested to define renormalized components (eqs. 2.17–2.19) as an useful ap-
proximation which is less problematic near the horizon. Far more approximative
(in the sense of treating the curved background as flat) are asymptotically motivated
AMO components (eqs. 2.20–2.22) which in fact map Fµν onto the flat surface di-
rectly. Brief discussion regarding the definition of the lines of force of electric and
magnetic fields was also held by Bičák & Dvořák (1980).

2.3 Electromagnetic field

Stationary and axisymmetric test field solutions to the Maxwell equations on the
Kerr background traditionally attract attention by both relativistic theoreticians and
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astrophysicists. The latter are usually concerned with the solutions describing some
potentially realistic electrodynamic scenario. In particular we mention test fields of
axisymmetric current loops (Petterson, 1975; Moss, 2011) and uniform magnetic
field (Wald, 1974; Bičák & Dvořák, 1976).

We start out from the Fµν describing the test field with asymptotic form of a
general (i.e. not necessarily parallel) uniform magnetic field given by Bičák & Janiš
(1985). Due to the axial symmetry of Kerr space-time only two components of
asymptotic field were considered in that paper without any loss of generality (asymp-
totic components B0 (parallel) and B1 (equatorial) to be specific). We rewrite com-
ponents of EM tensor (eq. (A3) of Bičák & Janiš, 1985) denoting Bx ≡ B1, Bz ≡ B0
and splitting the result into two parts according to the asymptotic component. We
obtain the asymptotically perpendicular part of the field:

FBx
tr =BxaMrΣ−2∆−1 sinθcosθ[(r3 −2Mr2 + ra2(1+ sin2 θ)+2Ma2 cos2 θ)cosψ

−a(r2 −4Mr +a2(1+ sin2 θ))sinψ],

FBx
tθ =BxaMΣ−2(r2 cos2θ+a2 cos2 θ)(asinψ− r cosψ),

FBx
tφ =BxaMΣ−1 sinθcosθ(acosψ+ r sinψ),

FBx
rθ =−Bx(acosψ+ r sinψ)

−Bxa∆−1 [
(Mr−a2 sin2 θ)cosψ−a(r sin2 θ+M cos2 θ)sinψ

]
, (2.27)

FBx
rφ =−Bx sinθcosθ

[
(r−Ma2∆−1)cosψ−a(1+ rM∆−1)sinψ

]
+asin2 θFBx

tr ,

FBx
θφ =Bx

[
(r2 sin2 θ+Mr cos2θ)cosψ−a(r sin2 θ+M cos2 θ)sinψ

]
+(r2 +a2)BxMΣ−2(r2 cos2θ+a2 cos2 θ)(asinψ− r cosψ)

and the part which approaches uniform field aligned along the axis:

FBz
tr =BzaMΣ−2(r2 −a2 cos2 θ)(1+ cos2 θ),

FBz
tθ =2BzaMrΣ−2 sinθcosθ(r2 −a2), (2.28)

FBz
rφ =Bzr sin2 θ+Bza2 sin2 θMΣ−2(r2 −a2 cos2 θ)(1+ cos2 θ),

FBz
θφ =Bz∆sinθcosθ+2(r4 −a4)BzMrΣ−2 sinθcosθ,

where we use the azimuthal coordinate ψ of Kerr ingoing coordinates, which is
related to Boyer–Lindquist coordinates as follows:

ψ = φ+
a

r+− r−
ln

r− r+

r− r−
, (2.29)

with r± ≡ M±
√

M2 −a2 denoting the outer and the inner horizon. We notice that
limr→∞ ψ = φ.
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As we shall introduce a drift of the black hole in the general direction we lose
axial symmetry and need to consider all spatial components of the asymptotic mag-
netic field. We obtain FBy

µν (which may only appear due to nonzero drift) by rotating
FBx

µν along the z-axis by angle π
2 - i.e. FBy

µν = FBx
µν

(
φ → φ− π

2 ,Bx → By
)

which only
causes sinψ →−cosψ and cosψ → sinψ.

Since the drift shall induce uniform electric field in the asymptotic region we
need to have appropriate FEx,y,z

µν handy. We get them easily by performing dual
transformation of FBx,y,z

µν . Dual transformation is carried out as follows:

∗Fαβ =
1
2

Fµνεµναβ, (2.30)

where εµναβ is the Levi-Civita tensor whose components are given as:

εµναβ =
√

−det||gσω||[µναβ] ≡
√
−g[µναβ], (2.31)

with [µναβ] denoting completely antisymmetric symbol. Determinant of the Kerr
metric is g = gttgrrgθθgφφ −g2

φtgrrgθθ = −sin2 θ Σ2.
Performing the dual transformation we immediately obtain EM tensors with

desired asymptotics of uniform electric field:

FEx,y,z
µν =∗FBx,y,z

µν (Bx,y,z →−Ex,y,z). (2.32)

In the explicit form we get:

FEx,y,z
tr = sinθ Σ

(
FBx,y,z

θt (Bx,y,z →−Ex,y,z)gφt +FBx,y,z
θφ (Bx,y,z →−Ex,y,z)gφφ

)
gθθ,

FEx,y,z
tθ = sinθ Σ

(
FBx,y,z

tr (Bx,y,z →−Ex,y,z)gφt +FBx,y,z
φr (Bx,y,z →−Ex,y,z)gφφ

)
grr,

FEx,y,z
tφ = sinθ Σ FBx,y,z

rθ (Bx,y,z →−Ex,y,z)grrgθθ, (2.33)

FEx,y,z
rθ = sinθ Σ FBx,y,z

φt (Bx,y,z →−Ex,y,z)
(
(gφt)2 −gφφgtt) ,

FEx,y,z
rφ = sinθ Σ

(
FBx,y,z

θφ (Bx,y,z →−Ex,y,z)gφt +FBx,y,z
θt (Bx,y,z →−Ex,y,z)gtt

)
gθθ,

FEx,y,z
θφ = sinθ Σ

(
FBx,y,z

φr (Bx,y,z →−Ex,y,z)gφt +FBx,y,z
tr (Bx,y,z →−Ex,y,z)gtt

)
grr.

Now we are fully equipped to construct any asymptotically uniform test field
on the Kerr background just by linear superposing of the above EM tensors. As
we are concerned in constructing Fµν which describes the test field around the
black hole drifting through asymptotically uniform magnetic field in general di-
rection, we shall employ Lorentz transformation to find the correct asymptotic
components of such a field. Once obtained we just use them to replace the orig-
inal “non-drifting” quantities Ex,Ey,Ez,Bx,By and Bz. Matrix of general Lorentz
transformation is (Jackson, 1999):

||Λν′
µ || =


γ −γvx γvy −γvz

−γvx 1+ (γ−1)v2
x

v2
(γ−1)vxvy

v2
(γ−1)vxvz

v2

−γvy
(γ−1)vxvy

v2 1+ (γ−1)v2
y

v2
(γ−1)vyvz

v2

−γvz
(γ−1)vxvz

v2
(γ−1)vyvz

v2 1+ (γ−1)v2
z

v2

 , (2.34)
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where v = (v2
x + v2

y + v2
z )

1
2 and γ = (1− v2)−

1
2 .

Our original field, Fµν = FBx
µν +FBz

µν , has a simple asymptotic form in Minkows-
kian coordinates,

||Fasymptotic
µν || =


0 0 0 0
0 0 Bz 0
0 −Bz 0 Bx

0 0 −Bx 0

 . (2.35)

To transform the covariant tensor Fµν, the inverse Lorentz transformation Λµ
ν′ =

(Λν′
µ)

−1 would be used. But we realize that the Boyer–Lindquist coordinate system
which we use to perform all the calculations (and also to express the EM tensor of
the final field) is centered around black hole and the rest frame of the black hole
is thus our “laboratory” reference frame. As we consider a drift of the black hole
against the field eq. (2.35), we need to perform inverse Lorentz transformation.
Quantities Bx and Bz appearing therein would be primed in standard notation. For
inverse transformation of covariant tensors we use original Λν′

µ . Thus for “drifting”
Fµν we have (denoting Fµ′ν′ that of eq. (2.35)):

Fasymptotic
µν = Fasymptotic

µ′ν′ Λµ′
µΛν′

ν, (2.36)

which may be written in the matrix formalism as follows:

||Fasymptotic
µν || = ||Λµ′

µ||t ||F
asymptotic

µ′ν′ || ||Λν′
ν|| = ||Λµ′

µ|| ||F
asymptotic

µ′ν′ || ||Λν′
ν||, (2.37)

and results in:

||Fasymptotic
µν || =


0 vyγBz −γ(vxBz − vzBx) −vyγBx

−vyγBz 0 γBz − vzN vyN
γ(vxBz − vzBx) −γBz + vzN 0 γBx − vxN

vyγBx −vyN −γBx + vxN 0

 ,

(2.38)
with N ≡ γ2

γ+1(vzBz + vxBx).
Final step of the derivation is thus substitution of “non-drifting” quantities

Ex,y,z and Bx,y,z in the tensors FEx,y,z
µν and FBx,y,z

µν by Lorentz transformed values from
eq. (2.38) and superposing the components to acquire general EM tensor describ-
ing the field around the Kerr black hole drifting through asymptotically uniform
magnetic field of general orientation:

Fµν =FEx
µν (Ex →−vyγBz)+FEy

µν (Ey → γ(vxBz − vzBx))+

+FEz
µν (Ez → vyγBx)+FBx

µν (Bx → γBx − vxN)+ (2.39)

+FBy
µν (By →−vyN)+FBz

µν (Bz → γBz − vzN).
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2.4 Choice of the tetrad

To settle our notation of the tetrad formalism we review basic relations between
the tetrad basis vectors eµ

(α) and dual basis 1-forms e(α)
µ

eµ
(α)e

(β)
ν = δ(β)

(α)δ
µ
ν, (2.40)

η(µ)(ν) = gαβeα
(µ)e

β
(ν), (2.41)

gµν = η(α)(β)e
(α)
µ e(β)

ν , (2.42)

e(α)µe(β)ν = gµνη(α)(β), (2.43)

i.e. tetrad indices are raised/lowered using the Minkowskian metric tensor η(α)(β).
Tetrad basis vector eµ

(t) is defined by the four-velocity of the observer carrying
the tetrad eµ

(t) = uµ. Covariant components uµ are thus related to the tetrad basis as

follows uµ = e(t)µ = −e(t)
µ .

2.4.1 Locally non-rotating frame

One of the standard tetrads which are often used when dealing with Kerr geometry
is the one carried by the zero angular momentum observer (ZAMO). ZAMO’s rest
frame is usually called locally non-rotating frame (LNRF) since it seemingly
suppresses intrinsic rotation of the geometry. LNRF basis vectors and dual basis
1-forms may be expressed as follows (Bardeen et al., 1972)

eµ
(t) = uµ =

A1/2

∆1/2Σ1/2 [1,0,0,Ω] , (2.44)

eµ
(r) =

[
0,

∆1/2

Σ1/2 ,0,0

]
, (2.45)

eµ
(θ) =

[
0,0,

1
Σ1/2 ,0

]
, (2.46)

eµ
(φ) =

[
0,0,0,

Σ1/2

A1/2 sinθ

]
, (2.47)

e(t)
µ = uµ =

[
Σ1/2∆1/2

A1/2 ,0,0,0

]
, (2.48)

e(r)
µ =

[
0,

Σ1/2

∆1/2 ,0,0

]
, (2.49)

e(θ)
µ =

[
0,0,Σ1/2,0

]
, (2.50)

e(φ)
µ =

A1/2 sinθ
Σ1/2 [−Ω,0,0,1] , (2.51)
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where Ω = − gtφ
gφφ

. The way in which ZAMO “fits the geometry” may be expressed

by relation gtφut
ZAMO = gttuφ

ZAMO which appears useful in the calculations. For
a detailed discussion of the properties of LNRF and other stationary frames see
Semerák (1993).

Elegant way to calculate tetrad basis vectors of any other frame is Lorentz
transformation of LNRF basis vectors. In order to do this one needs to express
linear velocity v(i) of the new frame relative to ZAMO:

v(i) =
u(i)

u(t) =
e(i)

µ uµ

e(t)
µ uµ

. (2.52)

This speed defines the Lorentz boost with factor γ = (1− v2)−1/2. Change of the
basis matrix for this transformation is the inverse Lorentz matrix (Λν′

µ)
−1. For the

transformation of basis 1-forms the direct Λν′
µ is used.

2.4.2 Frame of the free-falling observer

We shall calculate the basis vectors of the frame attached to the inertial observer
who is free-falling from the rest at infinity (FFOFI). Substituting L = 0 and E =
m (particle’s rest energy in geometrized units) into Carter’s equations of motion
(Carter, 1968) yields

ut
FFOFI =

A
∆Σ

, ur
FFOFI = −

(
2Mr(r2 +a2)

Σ2

)1/2

, uθ
FFOFI = 0, uφ

FFOFI =
2Mar

∆Σ
,

(2.53)

which we substitute into eq. (2.52) obtaining single nonzero component v(r) =

−
(

2r(r2+a2)
A

)1/2
. The boost is indeed purely radial: v(φ) = 0 although uφ

FFOFI ̸=

uφ
LNRF. Lorentz factor reads γ = A1/2

∆1/2Σ1/2 . New (primed) basis is then obtained
straightforwardly from the LNRF (unprimed) basis by the matrix multiplication


e′ t(t) e′ t(r) e′ t(θ) e′ t(φ)
e′ r(t) e′ r(r) e′ r(θ) e′ r(φ)
e′θ(t) e′θ(r) e′θ(θ) e′θ(φ)
e′φ(t) e′φ(r) e′φ(θ) e′φ(φ)

 =


e t
(t) e t

(r) e t
(θ) e t

(φ)
e r
(t) e r

(r) e r
(θ) e r

(φ)
eθ
(t) eθ

(r) eθ
(θ) eθ

(φ)
eφ
(t) eφ

(r) eφ
(θ) eφ

(φ)




γ v(r)γ 0 0
v(r)γ γ 0 0

0 0 1 0
0 0 0 1

 .

(2.54)
We read FFOFI tetrad basis vectors from the above-given matrix equation. Cor-

responding 1-forms are obtained from the analogous equation by arranging their
components in a very same manner as those of basis vectors and switching to di-
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rect Lorentz transformation (v(r) →−v(r) in the matrix of transformation).

eµ
(t) = uµ =

[
A

∆Σ
,−

(
2Mr(r2 +a2)

Σ2

)1/2

,0,
2Mar

∆Σ

]
, (2.55)

eµ
(r) =

[
−(2Mr(r2 +a2))1/2A1/2

∆Σ
,
A1/2

Σ
,0,−2Mar(2Mr(r2 +a2))1/2

∆ΣA1/2

]
, (2.56)

eµ
(θ) =

[
0,0,

1
Σ1/2 ,0

]
, (2.57)

eµ
(φ) =

[
0,0,0,

Σ1/2

A1/2 sinθ

]
, (2.58)

e(t)
µ = uµ =

[
1,

(2Mr(r2 +a2))1/2

∆
,0,0

]
, (2.59)

e(r)
µ =

[
(2Mr(r2 +a2))1/2

A1/2 ,
A1/2

∆
,0,0

]
, (2.60)

e(θ)
µ =

[
0,0,Σ1/2,0

]
, (2.61)

e(φ)
µ =

A1/2 sinθ
Σ1/2 [−Ω,0,0,1] , (2.62)

we notice that eµ
(θ) and eµ

(φ) are common to both LNRF and FFOFI frames.
Both ZAMO and FFOFI observers are physical everywhere above the horizon.

In the following, however, we shall set up an observer which is restricted to the
equatorial plane θ = π/2.

2.4.3 Frame of Keplerian observer

As we are primarily interested in astrophysically relevant situations we will employ
the orthonormal tetrad carried by the inertial observer on the circular Keplerian
orbit around the black hole (KEP tetrad). Such an orbit is specified by the values
of constants of motion – by specific angular momentum L̃ ≡ uφ and specific energy
Ẽ ≡−ut which are expressed as follows (Bardeen et al., 1972):

Ẽ(r) =
r2 −2Mr±a

√
Mr

r
√

r2 −3Mr±2a
√

Mr
, L̃(r) =

±
√

M(r2 +a2 ∓2a
√

Mr)√
r(r2 −3Mr±2a

√
Mr)

, (2.63)

where the upper signs are valid for the prograde (direct) orbits and the lower ones
for the retrograde (counter–revolving) orbits. Such a tetrad is physical only above
marginally stable orbit rms which represents a radial boundary for the stationary
geodesic motion in the equatorial plane:

rms = M
(

3+Z2 ∓
√

(3−Z1)(3+Z1 +2Z2)
)

, (2.64)
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where Z1 ≡ 1+
(

1− a2

M2

)1/3 [(
1+ a

M

)1/3 +
(
1− a

M

)1/3
]

and Z2 ≡
√

3a2

M2 +Z2
1 . Po-

sition of the marginally stable orbit is plotted as a function of spin a in fig. 2.1.
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Figure 2.1: Position of the marginally stable orbit for both co-rotating and counter-
rotating equatorial circular geodesics as well as the position of the outer horizon is
plotted as a function of BH spin parameter a.

Angular velocity of a circular orbit is ΩKep = ±1
M−1/2r3/2±a where the upper

signs are for prograde orbits and the lower ones for the retrograde orbits. Lin-
ear velocity eq. (2.52) of the orbiting tetrad as measured by ZAMO observer in
LNRF reads v(φ) = Asinθ

Σ∆1/2

(
ΩKep −Ω

)
. Lorentz factor of this azimuthal boost is

γ = (1− [v(φ)]2)−1/2. By means of Lorentz transformation of LNRF basis we ob-
tain basis vectors of the orbiting frame (Yokosawa & Inui, 2005):

eµ
(t) = uµ = γ

(
A

∆Σ

)1/2

[1,0,0,ΩKep],

eµ
(r) =

(
∆
Σ

)1/2

[0,1,0,0], (2.65)

eµ
(θ) =

1√
Σ

[0,0,1,0],

eµ
(φ) = γ

[
v(φ)

(
A

∆Σ

)1/2

,0,0,

√
Σ

sinθ
√

A
+ v(φ)Ω

(
A

∆Σ

)1/2
]

.

where we define A ≡ (r2 + a2)2 − a2∆sin2 θ to express the coordinate angular ve-
locity of LNRF (i.e. angular velocity of the frame-dragging) Ω = 2a

A Mr.
For r < rms there are no more circular orbits. Thus we suppose that the orbiting

observer who reaches this limit performs a free fall to the black hole keeping the
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values of the constants of motion corresponding to the marginally stable orbit at
rms (FFO tetrad). He is falling with Ẽms ≡ Ẽ(rms) and L̃ms ≡ L̃(rms) given by eqs.
(2.63) – (2.64). Having fixed ut(r < rms) = −Ẽms, uφ(r < rms) = L̃ms and uθ = 0
we get radial component ur easily from the normalisation condition uµuµ = −1.
Contravariant components of the 4-velocity are then:

ut =
1

r∆
[(r[r2 +a2]+2Ma2)Ẽms −2MaL̃ms],

ur = − 1
r3/2

√
[r(r2 +a2)+2Ma2]Ẽ2

ms −4MaẼmsL̃ms − (r−2M)L̃2
ms − r∆,

(2.66)

uθ = 0,

uφ =
1

r∆
[2M2aẼms +M(r−2M)L̃ms].

Spatial 1-forms of the tetrad of this falling observer may be expressed as follows
(Dovčiak, 2004):

e(r)
µ =

r√
∆(1+urur)

(ur[ut ,ur,0,uφ]+ [0,1,0,0]),

e(θ)
µ = [0,0,r,0], (2.67)

e(φ)
µ =

√
∆

1+urur
[−uφ,0,0,ut ].

We conclude the we are now equipped with three distinct tetrads to be applied
in the equatorial plain, namely non-inertial LNRF and two inertial tetrads FFOFI
and KEP+FFO. Outside the equatorial plain only LNRF and FFOFI may be ap-
plied.

2.5 Structure of the electromagnetic field

2.5.1 Stationary electromagnetic field

First we shall review several aspects of the stationary, i.e. non-drifting, asymptoti-
cally homogeneous test fields given by eqs. (2.27) and (2.28). Since the stationary
fields of this type has already been discussed thoroughly in the literature (see e.g.
Bičák et al., 1989, and references therein) we will focus mainly on the comparison
of the field line structures resulting from the alternative definitions of the field com-
ponents which were given in sec. 2.2. We also discuss the choice of the test charge
four-velocity profile (ZAMO versus FFOFI basically). Besides that we shall in-
troduce various techniques to visualize the vector fields in both, two-dimensional
plane sections as well as the stereometric projections of three-dimensional space.
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Expulsion of the aligned magnetic field (Meissner effect)

We briefly revisit the issue of the expulsion of the axisymmetric stationary mag-
netic field out of the horizon of the extreme Kerr black hole (a = M) which is known
as Meissner or Meissner-type effect in the analogy with similar effect which super-
conducting bodies exhibit upon the external magnetic fields (e.g. Dovčiak et al.,
2000; Bičák & Ledvinka, 2000, and references therein). In particular we shall dis-
cuss the role of the definition of the lines of force and the observer dependence of
this effect.
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Figure 2.2: Meissner effect captured by AMO components which translate the van-
ishing of the Fθφ at the horizon directly into the radial component of the magnetic
field Br

AMO. Upper left panel shows the case a = 0 (Schwarzschild limit) where the
field lines penetrate the horizon completely indifferently. Increasing the spin the
lines of force start to bend slightly which becomes obvious for higher spin values
only. Upper right panel captures the situation for a = 0.9 M. For a = 0.99 M the
effect becomes more apparent (bottom left panel) and in the extreme case a = M
the magnetic field is expelled from the horizon completely (bottom right panel).

Scalar magnetic/electric flux ϕe/m through the given surface S may be calcu-
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lated as another quantity revealing the structure of the field. In particular the gen-
eral expression for the magnetic flux

ϕm =
Z

S
F∧dS, (2.68)

reduces to the simple form ϕm =
R

Fθφ dθdφ if we choose the surface to be a part
of the sphere of constant r. If we consider the case of aligned field of the strength
Bz given by eq. (2.28) and further specify the surface to be an axisymmetric polar
cap determined by the polar angle θ we may integrate straightforwardly to obtain
ϕm = πBz

[
∆+ 2Mr

Σ (r2 −a2)
]

sin2 θ. The flux through the horizon vanishes in the
case of extreme black hole and magnetic field is fully expelled from the horizon.
Poloidal section of the surfaces of the constant flux discussed by Dovčiak et al.
(2000) coincide with the AMO field lines since they both directly reflect the be-
haviour of the FBz

θφ which is zero at the horizon of the extreme BH. Expulsion of
the magnetic field in AMO definition is visualized in figs. 2.2 and 2.3. The latter
employs the linear integral convolution (LIC) method (Shambo, 2005) which en-
codes the field structure into the texture resembling iron filings. The strength of
the field is expressed by the color scale. Visualisation of the vector fields using
LIC method proves especially useful when dealing with complex field structures
for which the usual field lines do not keep up with the sudden spatial changes (e.g.
dense zigzag structures, crack propagation etc).
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Figure 2.3: Alternative visualization of the field lines employing linear integral
convolution (LIC) method (Shambo, 2005). Strength of the field is encoded by a
colormap: brighter color means stronger field. Amplification of the magnetic field
in the equatorial zone in the vicinity of the horizon is observed.

In figs. 2.4 and 2.5 we review behaviour of the magnetic field lines of various
definitions for both ZAMO and FFOFI velocity profiles of the test charge in the
case of extreme BH a = M. We observe that coordinate components Bi for both
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ZAMO and FFOFI four-velocities exhibit the Meissner effect and magnetic field is
expelled from the horizon (top panels of figs. 2.4 and 2.5).

Large-scale bending of the field lines is necessarily artificial since both ZAMO
and FFOFI are asymptotically static and the distant test charge thus shall perceive
asymptotic shape of the field which is aligned uniform magnetic field in this case.
Bending is caused by the lack of normalization of the coordinate basis vectors
which led us to the definition of the physical components given by eqs. (2.14)–
(2.16). In the second rows of figs. 2.4 and 2.5 we observe, however, that physical
components do not exhibit the expulsion of the magnetic field; neither for ZAMO
nor for FFOFI. This is caused by the fact that the definition of physical compo-
nents incorporates the coordinate singularity at the horizon directly into the field
component Br

physical as commented above. By exploring the behaviour of the un-
derlying expressions we learn that in ZAMO case the radial component has finite
limit at the horizon limr→r+ Br

physical = − 2 cos3θ B
(1+cos2 θ)2 while in FFOFI case it diverges

as Br
physical ∝ 1

r−r+
. We thus confirm that physical components Bi

physical, Ei
physical

are inappropriate when working in Boyer-Lindquist coordinates.
Renormalized components which we suggested to use to overcome this prob-

lem actually eliminate the divergence of the radial component at the horizon (in the
limit r → r+ renormalized components behave in the same manner as the coordi-
nate ones) and also provide the proper asymptotic behaviour (see the third rows in
figs. 2.4 and 2.5). Finally we notice that FFOFI observer in his frame observes the
expulsion (bottom panels of fig. 2.5) while the ZAMO observer sees the magnetic
field lines penetrating the horizon (fig. 2.4). Expression for B(r) involves factor
terms et

(r)u
r − er

(r)u
t and er

(r)u
φ − eφ

(r)u
r which are both zero in the limit r → r+ in

the FFOFI case and B(r) thus cancels out. For ZAMO which has ur = 0, how-
ever, these terms do not cancel and thus allow B(r) to acquire nonzero value at the
horizon of the extreme Kerr BH.

On the other hand ur ̸= 0 causes that FFOFI measures nonzero azimuthal com-
ponent of the magnetic field given as B(φ)

FFOFI = −eφ ∗
(φ)Fφrur which has real valued

limit limr→r+ B(φ)
FFOFI =− B sin2θ

(1+cos2 θ)3/2 at the horizon of the extreme Kerr BH. We fur-
ther notice that renormalized components of the field felt by the FFOFI test charge
encompass the azimuthal component Bφ

renormalized = −urr sinθ
(
gφφ ∗Fφr +gφt ∗Ftr

)
which actually diverges as Bφ

renormalized ∝ 1
(r−r+)2 for r → r+ in the extreme Kerr

geometry a = M where r+ = M.
Due to the presence of the azimuthal component the FFOFI field lines are not

confined to the given poloidal plane φ = {const, const +π} and the ordinary two-
dimensional plane plots of the lines of force thus represent a projection of the
vector field rather then the true field lines. Under these circumstances one should
occasionally check the stereometric projection of the field lines in order to reveal its
azimuthal component since it may change the picture profoundly. We emphasize,
however, that the axial symmetry is maintained and the azimuthal component is
independent of φ.
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Figure 2.4: Magnetic field felt by ZAMO test charge orbiting above the horizon
of the extremal Kerr black hole immersed into the aligned field. We compare (top
to bottom) coordinate, physical, renormalized and tetrad components of the field
showing both, the overall shape of the field lines as well as the detailed bahaviour
in the vicinity of the horizon.
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Figure 2.5: Magnetic field felt by the FFOFI test charge freely falling onto the
extremal Kerr black hole immersed into the aligned field. We compare (top to bot-
tom) coordinate, physical, renormalized and tetrad components of the field show-
ing both, the overall shape of the field lines as well as the detailed bahaviour in the
vicinity of the horizon.
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We introduce stereometric plots by showing the simple AMO case (which has
no azimuthal component since FBz

rθ = 0) for the two values of spin a = 0.9M and
a = M in the upper panels of fig. 2.6. These may be directly compared with the
corresponding plane figures of fig. 2.2. Then we move to the FFOFI case where the
azimuthal component is present. In bottom panels of fig. 2.6 we compare FFOFI
tetrad components with renormalized FFOFI components. The latter exhibit diver-
gence in the azimuthal component at the horizon which causes strong winding of
nearby field lines while the tetrad field lines are twisted only partially, shifted by
the finite angle in the r → r+ asymptotics.

In the following sections we shall preferently work with the tetrad components
of the fields as they provide a consistent interpretation of quantities measurable
by a physical observer. When occasionally switching to the coordinate basis we
use renormalized components for their properties. Sometimes it appears useful to
visualize the components of the EM tensor itselves without notion of the specific
four-velocity of the test charge – then the AMO components are employed.
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Figure 2.6: Meissner-type expulsion of the magnetic field from the horizon of the
extreme Kerr black hole. In the upper left panel for a = 0.9M we observe slightly
bent AMO field lines piercing the horizon. Upper right panel shows the extreme
case a = M for which the AMO magnetic field is fully expelled. Bottom panels
show the field as felt by FFOFI. In the bottom left panel we observe tetrad compo-
nents of the magnetic field with nonzero azimuthal component which approaches
finite nonzero value on the horizon. Renormalized FFOFI components, however,
exhibit divergence in the azimuthal component as we approach the horizon. In
the close neighborhood of the horizon we observe strong azimuthal winding of the
field lines (bottom right panel). Width of the “tubes of force“ is chosen arbitrarily
to optimize legibility of the plots.
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Non-aligned uniform magnetic field

In the following we shall in brief consider also a field component Bx perpendicular
to the rotation axis. We therefore lose the axial symmetry. Lines of force are not
anymore confined to the poloidal sections as they were in the case of stationary
observers/test charges in the axisymmetric situation. We therefore plot the sections
in couples of (x,z) and (y,z) plane projections (by setting φ = {0,π} and φ =
{π/2,3π/2}, respectively) of the field lines to capture at least fractionally their
azimuthal dependence. Stereometric projections are often employed to provide
more insightful view on the complex field structure.

Figure 2.7: AMO components of the asymptotically homogeneous magnetic field
perpendicular to the symmetry axis (Bz = 0). Left panel depicts the Schwarzschild
limit a = 0 for which the black hole does not affect the field at all as we have
already observed in the analogical aligned case in fig. 2.2. The behaviour of the
field lines, however, differs profoundly once the rotation is switched on. In the
right panel we observe the field lines twisted by the extreme spin a = M. Unlike
the aligned case, here we observe no expulsion of the field.

First we mention that by eq. (2.27) the FBx
θφ component does not diminish at

the horizon of the extreme Kerr black hole as FBz
θφ does. Magnetic field lines thus

penetrate the horizon; effect of the magnetic expulsion is not present in the AMO
field components which we illustrate in fig. 2.7 where we compare AMO mag-
netic field lines for two extremal values of spin, namely a = 0 and a = M, setting
purely perpendicular magnetic field on the background: Bx = M−1, Bz = 0. In the
Schwarzschild limit the field lines are not affected by the black hole since the FBx

µν
components reduce to its asymptotic form immediately by setting a = 0. Setting
nonzero spin the symmetry is lost and the field lines are twisted in a rather compli-
cated way as we observe in the right panel of the fig. 2.7. In general the field lines
may penetrate the horizon even in the extreme case a = M which we confirm also
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for other definitions of the field lines and for both ZAMO and FFOFI four-velocity
profiles by exploring the underlying formulae.

We further notice that in the equatorial plane the asymptotically perpendicular
magnetic field (Bx ̸= 0, Bz = 0) will have zero longitudinal component Bθ = B(θ) =
0 regardless the field definition also in the vicinity of the black hole (only equatori-
ally vanishing terms from (2.27) appear in the definition of Bθ in eq. 2.11). In other
words the field lines reside in the equatorial plane in this special case. This might
not be that visually apparent from the right panel of fig. 2.7. Therefore we add a
series of equatorial sections in fig. 2.8 to reveal the field in the equatorial plane.
Three equatorial observers, namely FFOFI, co-rotating KEP+FFO and counter-
rotating KEP+FFO are involved in the comparison. We observe that free fall with
L = 0 (FFOFI) results in the aligned magnetic field lines in the Schwarzschild limit
which we observed also in AMO components in fig. 2.7 as a result of FBx

µν taking
its asymptotic form for a = 0. On the other hand, nonzero angular momentum
of KEP+FFO observers which are freely falling with L = L(rms) under rms causes
twisting of the field lines even in the Schwarzschild case since the four-velocity
and other tetrad vectors components do not take their asymptotic form with a = 0
although the Fµν does. When the spin is employed the lines of force twist in a rather
complex way regardless the choice of the observer. Complex layering of the field
lines emerges in the narrow zone above the horizon. In order to stretch this tiny
yet very interesting area and make it more convenient for visualisation we rescale
the radial component introducing the dimension-less coordinate R ≡ r−r+

r which
squeezes the horizon into a single point R = 0 and radial infinity into the circle
R = 1. Rescaled coordinate R is employed in bottom panels of fig. 2.8.

In the series of stereometric projections in fig. 2.9 we observe the interplay be-
tween the aligned and perpendicular magnetic field components using AMO def-
inition of the field on the extreme Kerr background. We start with the aligned
situation where the expulsion of the field is observed and gradually increase the
perpendicular Bx component to see that it generally causes intricate deformations
of the field lines and allows them to penetrate the horizon even in the extreme Kerr
case.

In fig. 2.8 we observe that the field twisting caused by the interplay between
the black hole rotation and the horizontal component of the prescribed magnetic
field is accompanied by intensive layering of the magnetic field in the narrow zone
above the horizon. In fig. 2.10 we compare the detailed structure of the magnetic
layer zone as measured by several distinct observers. We observe that magnetic
layers are present regardless the choice of the frame although their actual shape
changes as we switch between them. It is thus apparent that magnetic layers do not
emerge as a observer effect. They rather originate directly from the interplay be-
tween the frame-dragging effect and prescribed magnetic field which is confirmed
by observing layered magnetic structures also in observer independent AMO com-
ponents.

Simulations of non-vacuum magnetospheres carried out in the framework of
force-free electrodynamics (FFE) often reveal similar magnetic layers in which the
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Figure 2.8: Equatorial behaviour of the magnetic field with purely perpendicular
asymptotics (Bx ̸= 0, Bz = 0) for three slightly distinct tetrads. We remind that
FFOFI stands for the observer which is freely falling from the rest at infinity (an-
gular momentum L = 0) while KEP+FFO is the tetrad attached to the Keplerian
observer being stable above the marginally stable orbit rms (eq. 2.64) and falling
freely below this orbit keeping L(rms). The top row presents the FFOFI tetrad,
the second the prograde KEP+FFO and the third is for the retrograde KEP+FFO.
Schwarzschild limit a = 0 is shown in the first column, middle column corresponds
with a = 0.9M and the last one represents the extreme case a = M. In the bottom
row the rescaled dimensionless radial coordinate R ≡ r−r+

r is used to stretch the re-
gion close to the horizon which is of the utmost interest. Panels of the bottom row
show the fields measured by FFOFI and the both, co-rotating and counter-rotating
KEP+FFO for extremal BH case.
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Figure 2.9: Series of stereometric projections illustrates the impact of the perpen-
dicular component Bx upon the originally axisymmetric magnetic AMO field lines
of Bz origin in the case of extreme Kerr BH. Upper left panel shows aligned case
(Bx = 0) where the field is expelled, upper right Bx

Bz
= 0.1, bottom left Bx

Bz
= 0.5 and

bottom right with Bx = Bz. Perpendicular component Bx generally causes complex
twisting of the field lines and allows the field to penetrate the horizon even in the
extreme case.
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Figure 2.10: Magnetic layers above the horizon of extreme Kerr BH that develop as
a consequence of an interplay between the spin induced frame-dragging effect and
perpendicular component of the prescribed magnetic field. Fraction of the layered
zone is shown. We remind that in this case the field lines reside in the equatorial
plane. Panels show the field measured by (from the top left to the bottom right):
FFOFI observer, co-rotating Keplerian observer, observer freely falling from the
counter-rotating marginally stable orbit and ZAMO. Last two panels show observer
independent AMO components of the field in which the layering is also apparent
proving it to be an intrinsic feature of the system rather than a pure observer effect.

direction of the field changes sharply. FFE assumes that plasma is streaming solely
along the magnetic field lines and such layers thus become current sheets. See
Spitkovsky (2006) for the simulation of pulsar magnetosphere in which the current
sheets develop.

Electric field

Until now we have paid hardly any attention to the electric fields felt by the test
charges in a given setup of Kerr black hole embedded in the asymptotically uni-
form magnetic field with general orientation with respect to the rotation axis. To
correct this we present a summary of nonzero electric field components for var-
ious field definitions, observers and values of the spin parameter a in tab. 2.5.1.
We distinguish whether FBz

µν or FBx
µν components (or actually both) act as a source

terms of a given electric field component. We treat separately the case of equatorial
plane θ = π

2 where part of the components diminish. Exploring tab. 2.5.1 we notice
particularly that nonzero electric field is measured even in the Schwarzschild limit
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a = 0 in the case of FFOFI and KEP observers.

Figure 2.11: AMO components of the electric field above the extreme Kerr BH. In
the left panel we depict the aligned case Bz = M−1, Bx = 0 for which no azimuthal
field components is measured. In the equatorial plane this field becomes purely
radial. On the other hand the non-aligned situation Bz = Bx = M−1 presented in the
right panel brings azimuthal electric component into the play.

Stereometric projections of AMO electric fields above extreme Kerr BH are
presented in fig. 2.11 to illustrate the profound changes in the field line structure
which accompany the onset of perpendicular magnetic field component Bx which
disrupts the symmetry of aligned case.

In the series of plane sections in figs. 2.12 and 2.13 we compare the structures
of the electric fields as measured by ZAMO and FFOFI observers. First we present
the situation of aligned field (Bx = 0) in which all poloidal sections of the fields
coincide due to the symmetry (top panels of fig. 2.12). We notice that in the FFOFI
tetrad (unlike the ZAMO tetrad) the electric field is expelled from the horizon of
the extreme BH. Once the non-aligned field is considered (by setting Bx ̸= 0) the
symmetry is lost and poloidal sections for different values of φ generally differ
(see the bottom panels of fig. 2.12 and fig. 2.13). The effect of electric expulsion is
gone once the non-aligned field is considered.

Stereometric projections in fig. 2.14 reveal that in the renormalized components
the expulsion of the electric field out of the horizon of the extreme Kerr is present
not only for the FFOFI test charge but also for the test charge with ZAMO four-
velocity (while in the ZAMO tetrad the field lines are not expelled). Azimuthal
component Eφ which is present in the FFOFI case causes winding of the field lines
while the ZAMO field lines remain confined to a given poloidal sections. Bottom
panels of fig. 2.14 illustrate that setting Bx ̸= 0 generally disrupts the symmetry and
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field definition a[M] θ Bz Bx

AMO
0

π
2 , 0, π /0 /0

̸= π
2 , 0, π /0 /0

̸= 0
π
2 , 0, π Er Eθ

̸= π
2 , 0, π Er, Eθ Er, Eθ, Eφ

ZAMO coord.
0

π
2 , 0, π /0 /0

̸= π
2 , 0, π /0 /0

̸= 0
π
2 , 0, π Er Eθ

̸= π
2 , 0, π Er, Eθ Er, Eθ, Eφ

ZAMO tetrad
0

π
2 , 0, π /0 /0

̸= π
2 , 0, π /0 /0

̸= 0
π
2 , 0, π E(r) E(θ)

̸= π
2 , 0, π E(r), E(θ) E(r), E(θ), E(φ)

FFOFI coord.
0

π
2 , 0, π Eφ Eθ

̸= π
2 , 0, π Eφ Eθ, Eφ

̸= 0
π
2 , 0, π Er, Eφ Eθ

̸= π
2 , 0, π Er, Eθ, Eφ Er, Eθ, Eφ

FFOFI tetrad
0

π
2 , 0, π E(φ) E(θ)

̸= π
2 , 0, π E(φ) E(θ), E(φ)

̸= 0
π
2 , 0, π E(r), E(φ) E(θ)

̸= π
2 , 0, π E(r), E(θ), E(φ) E(r), E(θ), E(φ)

KEP coord.
0 π

2 Er Eθ

̸= 0 π
2 Er Eθ

KEP tetrad
0 π

2 E(r) E(θ)

̸= 0 π
2 E(r) E(θ)

Table 2.1: Summary of the electric field components depending on the definition
of the field, spin of the black hole and employed preset magnetic field (which may
be aligned or not). We treat separately the situation in the equatorial plane θ = π

2
since the field tends to simplify here profoundly. Separate columns labeled Bz and
Bx suggest for which components of measured electric field is given component
of the asymptotic magnetic field being ”responsible”. In other words electric field
components found in e.g. Bx column are “generated” by Bx. We notice particularly
that in the case of free-falling test particle (for both coordinate and tetrad compo-
nents) as well as for Keplerian four-velocity we measure nonzero components of
electric field even if there is zero spin (Schwarzschild limit). We emphasize that the
fact that we arrive at the very same components being nonzero (though not of the
same values!) both in the coordinate frame and the tetrad frame for a given four-
velocity of the test charge is not in any sense automatic or generally guaranteed as
we could easily think of such Fµν for which it would not be the case.
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allows the field lines to penetrate the horizon regardless the spin value.
The expulsion of the electric field as observed in the FFOFI tetrad is further

studied in fig. 2.15 where we provide series of poloidal plane sections for the
aligned background field which differ in the spin value. Such discussion allows
us to visually reveal the mechanism of the expulsion which takes place in the case
of the extreme spin value. LIC patterns are also employed to help to reveal this
effect.

Electric field is generally very sensitive to the value of spin parameter which
is not that surprising since the field itself has gravitomagnetic origin by which we
mean that it arises from the interplay between the background magnetic field and
spin induced frame-dragging effect. As a consequence we measure no AMO elec-
tric field in the Schwarzschild limit since all Fti vanish with a = 0. Naturally this
does not necessarily mean that all observers will measure zero electric field. We
have seen, for instance, that even in the case of zero spin the non-stationary FFOFI
observer may observe nonzero electric field induced due to his radial velocity com-
ponent ur. Nevertheless these electric components asymptotically diminish since
the observer is asymptotically static.

The question of the expulsion of the electric field has been addressed in the case
of aligned background field. Unlike the magnetic expulsion where the radial AMO

component Br
AMO =

FBz
θφ

r2 sinθ vanishes at the horizon for a = M here the analogical
component Er

AMO = FBz
rt does not vanish. Thus the electric expulsion is merely an

observer effect. We have seen that in the ZAMO tetrad the electric field was not
expelled while in the FFOFI one it was. We recall that also the magnetic field is
fully expelled in the FFOFI frame.
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Figure 2.12: Projections of the electric field onto the (x,z), (y,z) and (x,y) planes
in the case of the extreme Kerr BH with the asymptotic magnetic field. Top six
panels capture the situation in the aligned setup, Bx = 0 and Bz = M−1. Due to the
axial symmetry the poloidal projections (x,z) and (y,z) coincide in this case. We
compare ZAMO tetrad components in the first row with the FFOFI tetrad compo-
nents in the second one. FFOFI differs from ZAMO most strikingly in measuring
nonzero azimuthal components E(φ). Second series of six panels represent the sit-
uation of transversal orientation of the magnetic field, Bx = M−1 and Bz = 0. Axial
symmetry is lost, projections onto different poloidal planes generally differ. We
compare ZAMO tetrad components in the third row with the FFOFI tetrad compo-
nents in the fourth one.
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Figure 2.13: Projections of the electric field onto the (x,z), (y,z) and (x,y) planes
in the case of the extreme Kerr BH with the asymptotic magnetic field components
Bx = M−1 and Bz = M−1. We compare ZAMO tetrad components in the upper
panels with the FFOFI tetrad components in the bottom ones. ZAMO measures
azimuthal field E(φ) outside the equatorial plane only, see tab. 2.5.1 for the sum-
mary.
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Figure 2.14: Electric field is expelled from the horizon of the extreme Kerr black
hole in both ZAMO and FFOFI renormalized components in the case of aligned
magnetic field on the background (Bx = 0). In the case of ZAMO (upper left
panel) there is no azimuthal component while the FFOFI observer measures also
azimuthal electric field causing winding of the field lines (upper right panel). How-
ever, considering Bx ̸= 0 brings azimuthal electric component also for ZAMO as
we observe in the bottom panels. The bottom left shows the situation for Bx

Bz
= 0.1

while the right one for Bx
Bz

= 0.3. Electric field is not expelled in general, some field
lines penetrate the horizon.
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Figure 2.15: Evolution of the FFOFI measured electric field in the case of aligned
background magnetic field (Bx = 0) when the spin is gradually increased is shown
in the series of poloidal plane sections. We begin with the low value a = 0.1M
(upper left panel) which is increased to the medium value a = 0.5M (upper right
panel), high value a = 0.9M (middle left) and eventually to the extreme value
a = M in the middle right panel. We observe the effect of the expulsion of the
electric field in the extreme case. Bottom panels show LIC patterns reflecting the
expulsion. Bottom left panel shows a = 0.9M case with only partial expulsion, the
right one captures the complete expulsion occurring for a = M. Color bar suggests
the strength scale of the field (units are arbitrary).
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2.5.2 Electromagnetic field around drifting black hole

In this section we shall discuss the electromagnetic fields around Kerr black hole
which is drifting in a general direction through the oblique uniform magnetic field.
Components of EM tensor Fµν describing such field were derived in sec. 2.3 in
terms of Lorentz transformation of former non-drifting solution given by eqs. 2.27,
2.28.

Resulting system provides highly simplified though not unrealistic model of
conditions occurring in a diluted gaseous medium in the vicinity of the inner edge
of the accretion disk. This region may be threaded by the external large-scale
magnetic field which we model by oblique uniform field in our setup. Gravitomag-
netic effect acts on the field enriching profoundly its structure as we have seen in
previous section. Observer dependence of the EM field components has also been
discussed previously. In addition to these effects we introduce the translational uni-
form motion of the black hole itself bringing extra parameters to the system. See
Karas & Kopáček (2009) for a discussion of astrophysical relevance of our model.

Lorentz transformation of the field changes its asymptotical form – in gen-
eral it changes the direction of the former magnetic field and induces electric field
which was not present in the asymptotic region of non-drifting BH (for asymp-
totically static observers at least). In the previous section we observed that inter-
action between BH’s rotation and perpendicular component of the magnetic field
causes complex twisting of the field lines and that a narrow zone of magnetic layers
emerges above the horizon regardless the choice of the observer.

In fig. 2.16 we introduce the drift in the case of extreme BH embedded in the
aligned field in order to detect the drift impact upon the field most clearly. We
observe that the Meissner effect is suppressed by the drift. We note that with the
drift velocity increasing the shock front develops in which the field has complex
layered structure which gradually enhances as the velocity rises. Besides the mag-
netic layers we newly observe the pair of magnetic null points which emerge for
the sufficiently rapid drift. Sites of zero magnetic intensity leave the charged parti-
cles prone to the acceleration by the electric field which is generally not vanishing
here. The layered field structures which surround the neutral point present the
sites of possible magnetic reconnection (Karas & Kopáček, 2009, and references
therein). Magnetic layers and neutral points are further explored in fig. 2.17 using
LIC patterns with the strength of the field being encoded by the color scale.

From fig. 2.10 we recall that magnetic layers emerge also in the non-drifting
case as a consequence of a perpendicular Bx component of the field. Layering
accompanied with the drift through the aligned field thus may be attributed to the
tilt arising from the Lorentz transformation. The neutral points, however, only
appear in the drifting case.

In stereometric projections fig. 2.18 we compare magnetic field measured in
the FFOFI frame to that captured by the ZAMO renormalized components. In both
the cases the aligned non-drifting field above the extremal BH is fully expelled,
the only difference being that the FFOFI field is slightly azimuthally twisted (see
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fig. 2.6). When the drift is introduced, however, the behaviour of the field lines
differs strikingly as they are dragged in the opposite direction. FFOFI lines stretch
in the drift direction in an intuitive way while in the ZAMO renormalized compo-
nents they are dragged backwards manifesting profound differences between the
two field definitions.

Electric field also reacts markedly when the drift is introduced. In fig. 2.19
we explore its impact upon the FFOFI electric components above the horizon of
the extremal BH in the poloidal (x,z) plane section. Gradually increasing the drift
velocity we observe how the topology of the field evolves. We note that without
the drift the electric field asymptotically decays whereas the drift induces non-
vanishing electric field which overruns the original one. Thus the global impact of
the drift is more dramatic compared to what we observed in the case of magnetic
field. Besides overall changes of the field we also notice progressive layering in the
narrow region above the horizon. Similarly to their magnetic analogue, the electric
layers are also present regardless of the choice of the observer and their origin may
be attributed to the tilting of the originally aligned magnetic field due to the drift.

We also explore the electric field in the equatorial plane in fig. 2.20. Since we
start out from the aligned magnetic field and the drift is restricted to be perpen-
dicular to the axis (vz = 0) the field lines will reside in the plane (see tab. 2.5.1).
The rescaled radial coordinate R ≡ r−r+

r is employed. We compare the tetrad com-
ponents of ZAMO, FFOFI and both co-rotating and counter-rotating KEP+FFO.
The drift changes the structure of the field completely including the asymptotic re-
gion. Although the fields differ from each other noticeably for different frames, in
all the cases the neutral points are formed (at different location, though) once the
sufficiently rapid drift is introduced.

We conclude that the translational motion of the black hole through the uni-
form magnetic field enriches profoundly the structure of the resulting electric and
magnetic fields. We observed that in the case of axisymmetric background the drift
causes a formation of a narrow zone in which the fields (both electric and mag-
netic) are heavily layered and the layering progressively enhances with the rising
drift velocity. However, we observe such effect also for nondrifting oblique fields
(see fig. 2.10) and therefore we attribute the formation of the layers to the perpen-
dicular component which arises from the field’s tilt in the case of drift through the
aligned magnetic field. Nevertheless only in the drifting scenario we can observe
such topology of layers which leads to the formation of neutral points. These were
observed for both, magnetic as well as electric fields.
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Figure 2.16: In the series of first five panels we observe the impact which the
gradually increased velocity vx = 0, 0.2, 0.5, 0.8 and 0.99 of the drift along the
positive direction of the horizontal axis has upon the FFOFI measured magnetic
field. Spin is set to the extreme value a = M. Prescribed aligned magnetic field
is originally expelled from the horizon. When the drift is introduced, however,
the field lines are allowed to penetrate the horizon. Increasing the drift speed we
observe that the layered bumper zone develops being further enhanced with rising
drift velocity. Right panel of the middle row and the left one on the bottom row
show the magnetic layer structures which arise for vx = 0.5 in detail. Layered
patterns further enhance when the speed increases – next panel (middle bottom)
shows the rapidly moving case vx = 0.99. Last panel reveals the null point of the
magnetic field which develops with high drift velocity.
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Figure 2.17: Drift induced effects upon the structure of the FFOFI tetrad com-
ponents of the aligned magnetic field in the case of extreme spin value a = M.
Translational motion is restricted to be parallel with the horizontal axis, vx ̸= 0,
vy = vz = 0. Upper figures reveal the situation for vx = 0.5. We observe that a
narrow buffer zone develops above the horizon in which the field lines have com-
plex layered structure. Zones of antiparallely oriented magnetic field are brought
to the close contact here. Bottom panels show the case of extremely rapid mo-
tion vx = 0.99. Null point of the magnetic field appears in this case (bottom left
panel). In the right panel we observe self-similar tightly folded layered structures
which are considerably enhanced when compared to the case of slower motion in
the upper right panel.
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Figure 2.18: Drift induced deformations of the originally aligned magnetic field
lines above the horizon of the extreme Kerr black hole. FFOFI tetrad components
in the upper row are compared to the renormalized ZAMO components in the bot-
tom row. In both the cases the field is expelled for the zero drift velocity (see
fig. 2.6) the only difference being that FFOFI field is slightly twisted in the az-
imuthal direction. Drift direction is set to coincide with the horizontal axis of the
stereometric projection, vx > 0, vy = −vx and vz = 0. Velocity is increased in the
following sequence: vx = 0.1, 0.3, 0.7. FFOFI tetrad and ZAMO renormalized
components exhibit completely different behaviour when the drift is introduced as
ZAMO field is dragged in the opposite direction compared to FFOFI.
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Figure 2.19: Poloidal (x,z) plane sections of FFOFI measured electric field
around drifting extreme Kerr BH. First six panels show the overall changes of
the field topology as the drift velocity increases in a following sequence vx =
0, 0.1, 0.2, 0.3, 0.5 and 0.99. Bottom series of six panels presents detailed view on
the progressive layering which takes place in a narrow region above the horizon.
We observe that as the drift velocity rises the layering enhances profoundly.
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Figure 2.20: Equatorial behaviour of the electric field around extremal Kerr BH
drifting in the aligned magnetic field. Employing the rescaled radial coordinate
R ≡ r−r+

r makes the horizon shrink into the single point residing at the origin. First
column presents non-drifting case, in the second we set vx = 0.5, vy = 0 and in
the third vx = 0.5, vy = 0.5. Four distinct frames are compared in the rows (top to
bottom): ZAMO, FFOFI, co-rotating KEP+FFO and counter-rotating KEP+FFO.
We observe that in all the cases the neutral electric points develop as the drift is
introduced. We stress that as the original field is aligned (Bx = 0) we measure
E(θ) = 0 in the equatorial plane provided that vz = 0. In other words above plots
present true field lines rather than mere section.
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2.6 Motion of charged test particles

Off-equatorial, energetically bound motion of charged particles in strong gravi-
tational and electromagnetic fields is pertinent to the description of accretion disk
coronae around black holes and compact stars. In recent papers (Kovář et al., 2008,
2010) we discussed the existence of energetically-bound stable orbits of charged
particles occurring outside the equatorial plane, extending thus a large variety of
complementary studies (e.g., Bičák et al., 1989; Stuchlı́k et al., 1999; Prasanna,
1980; Prasanna & Sengupta, 1994; Aliev & Özdemir, 2002, and further references
cited therein). Particles on off-equatorial stable trajectories form a coronal flow that
is possible at certain radii and for certain combinations of the model parameters,
namely, the specific charge of the particles, the conserved energy and the angu-
lar momentum of the particle motion, the strength and orientation of the magnetic
field, and the spin of the central body.

We assume that the magnetic field permeating the corona has a large-scale
(ordered) component (Bisnovatyi-Kogan & Lovelace, 2007). In this case, charged
particles can be trapped in toroidal regions, extending symmetrically above and
below the equatorial plane and forming two halo lobes. However, this trapping
happens only for certain combinations of model parameters (Kovář et al., 2010).

We consider two types of the model setup: a rotating (Kerr) black hole in
an asymptotically uniform magnetic field parallel to the symmetry axis (Wald,
1974; Tomimatsu & Takahashi, 2001; Koide, 2004; Koide et al., 2006), and a non-
rotating star (described by the Schwarzschild metric) endowed with a rotating mag-
netic dipole field (Petterson, 1975; Sengupta, 1995). Both cases can be regarded as
integrable systems with the electromagnetic field acting as a perturbation.

The above-mentioned lobes are defined by the figures of the effective potential
in the poloidal plane. These were previously studied in the context of charge sep-
aration that is expected to occur in pulsar magnetospheres (e.g. Neukirch, 1993).
Here, we address whether the trajectories within these lobes are regular (i.e., whether
the system is integrable), or if they instead exhibit a chaotic behavior. A related
problem was studied recently by Takahashi & Koyama (2009) in an attempt to find
a connection between chaoticness of the motion and the spin of a rotating black
hole residing in the center. These authors suggest that chaotic behavior occurs for
certain values of the black hole spin, while for others the system is indeed regular.

The idea of investigating the connection between the spin of a black hole and
chaoticness of motion of matter near its horizon is very interesting for the follow-
ing reason. Because of high degree of symmetry of the background spacetime,
the unperturbed motion is regular (Carter, 1968); no chaos is present. The electro-
magnetic perturbation may trigger the chaos, however, its effect can be expected
to diminish very near the horizon, where strong gravity of the black hole should
prevail. This is also the region where the spin effects are most prominent. Further
out various other influences become important due to distant matter and the tur-
bulence in accreted material. Therefore the connection between the spin and the
motion chaoticness is best applicable in the immediate vicinity of the black hole,
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Figure 2.21: In the left panel we present a poloidal section of the selected isocon-
tours of the effective potential Veff(r,θ), eq. (2.73), for a charged particle (q̃Q̃ = 2,
L̃ = 5 M) on the Kerr background (a = 0.5 M). We assume the presence of
Wald uniform magnetic field (q̃B0 = 2M−1). The off-equatorial potential lobes
are present, allowing stable motion. Two exemplary trajectories of test particles
are shown – in the left lobe a chaotic orbit of energy Ẽ = 1.796, while in the right
lobe the regular, purely off-equatorial trajectory of Ẽ = 1.78. Both particles were
launched at r(0) = 3.11, θ(0) = π/4 with ur(0) = 0 and their trajectories inter-
weave with each other. We plot the poloidal (r,θ) projection of the trajectory; what
appears as a lobe in the poloidal plane is an axially symmetric 3-dimensional ro-
tational structure. The latter is illustrated in the right panel where the case of the
off-equatorial regular trajectory is shown.

i.e. within the inner parts of corona.
The recurrence analysis (Marwan et al., 2007) provides us with a powerful tool

for the investigation of complex dynamical systems. The method examines the
recurrences of the system to the vicinity of previously reached phase space points.
It has been typically adopted to study the experimental data, where often only some
(if not just one) of the phase space variables are known from the measurements.
Takens’ embedding theorems (Takens, 1981) are then used to reconstruct the phase
space portrait of such a system. In our study we are equipped with the full phase
space trajectory from the numerical integration of the equations of motion, so that
we can use the recurrence analysis directly.

It appears that the method of Recurrence Plots has not been employed in the
context of relativistic astrophysical systems yet. To this end, one needs a consistent
definition of the neighborhood of a point in the phase space in a curved spacetime.
Below, we discuss the phase space distance and suggest a form of the distance
norm suitable in such circumstances.
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Figure 2.22: The overview of possible topologies of the off-equatorial potential
structure above the event horizon (thick line in plots) of Kerr black hole endowed
with the Wald test field.

2.7 Equations of motion and the effective potential

The phase space trajectories of integrable systems are regular, meaning that they
are bound to the surface of an n-dimensional torus, where n is the number of de-
grees of freedom. The torus is determined uniquely by n constants of motion that
are present in such a system. Its behavior can be explored by Poincaré surfaces
of section, which are defined by intersections of the phase space trajectory with a
2-dimensional plane (Lichtenberg & Lieberman, 1992). On the other hand, non-
integrable chaotic systems generally have fewer integrals than the number of de-
grees of freedom. In general, both the regular and the chaotic orbits may coexist in
the phase space of a single system.

Chaotic orbits are ergodic on the given hypersurface. Its dimension is now
larger than n, and the section points thus fill areas in the plot of the Poincaré
surface. However, depending on the initial conditions, regular orbits can also
appear in non-integrable systems. Such orbits maintain the value of some ad-
ditional constant of motion, although it is not generally possible to write this
constant in an explicit form. In the context of motion around black holes per-
turbed by (weak) external sources, various aspects of chaos were studied e.g. by
Karas & Vokrouhlický (1992); Nakamura & Ishizuka (1993); Podolský & Veselý
(1998), and very recently by Semerák & Suková (2010).

A standard approach to an integrable system with a non-integrable perturbation
assumes complete control over the strength of the perturbation (i.e., the perturba-
tion can be set to be arbitrarily weak). If this were the case, we could first switch
the perturbation completely off, analyze the orbits, and then observe the impact
of gradually increasing the perturbation strength upon these orbits. However, the
class of off-equatorial bound orbits only exists when the electromagnetic term is
strong enough to balance the gravitational attraction of the central body. Then the
(sufficiently strong) perturbation is by itself the cause of the new kind of the regular
motion that happens outside the equatorial plane.



CHAPTER 2. MOTION IN BLACK HOLE MAGNETOSPHERES 54

32.5 33 33.5 34 34.5 35 35.5 36 36.5

−8

−6

−4

−2

0

2

4

6

8

x 10
−3

r [M]

ur

time

tim
e

Figure 2.23: Regular motion in the equatorial potential lobe in the fully integrable
system of charged test particle (Ẽ = 0.99, L̃ = 5M, q̃ = 104, r(0) = 32.02M, θ(0) =
1.54) in the pure Kerr-Newman spacetime (Q̃ = 3× 10−5, a = 0.5 M) endowed
with the fourth Carter constant of motion L . Long diagonals parallel to the LOI
are general hallmark of regularity in the RPs.

Having this delicacy on mind, we shall use the usual Hamiltonian formalism
to express equations of motion governing the trajectories. We first construct the
super-Hamiltonian H (Misner et al., 1973),

H = 1
2 gµν(πµ −qAµ)(πν −qAν), (2.69)

where m and q are the rest mass and charge of the test particle, πµ is the generalized
(canonical) momentum, gµν is the metric tensor, and Aµ denotes the vector potential
of the electromagnetic field. The latter is related to the electromagnetic tensor
Fµν by Fµν = Aν,µ −Aµ,ν. Unless otherwise stated, we will use geometrical units,
G = c = 1 (see Appendix A).

The Hamiltonian equations are given as

dxµ

dλ
≡ pµ =

∂H

∂πµ
,

dπµ

dλ
= −∂H

∂xµ , (2.70)

where λ = τ/m is the affine parameter, τ denotes the proper time, and pµ is the
standard kinematical four-momentum for which the first equation reads pµ = πµ −
qAµ.

In the case of stationary and axially-symmetric systems, we identify two con-
stants of motion, namely, the energy E and angular momentum L. From the second
Hamiltonian equation (2.70) we obtain

πt = pt +qAt ≡−E (2.71)

πφ = pφ +qAφ ≡ L. (2.72)
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Figure 2.24: Regular off-equatorial motion of a charged test particle (Ẽ = 1.77,
L̃ = 5M, r(0) = 2.9 M, θ(0) = 0.856 and ur(0) = 0) on the Kerr background (a =
0.5 M) enriched with the Wald test field (q̃B0 = 2M−1, q̃Q̃ = 2). The diagonal
structures typical for trajectories in integrable systems are preserved, though the
pattern is more complicated.

The trajectory is specified by the integrals of motion E, L, and the initial values
r(0), θ(0) and ur(0). The initial uθ(0) can be calculated from the normalization
condition, gµνuµuν = −1 (we always choose the non-negative root).

The effective potential can be derived in the following form:

Veff =
−β+

√
β2 −4αγ

2α
, (2.73)

where

α = −gtt , (2.74)

β = 2[gtφ(L̃− q̃Aφ)−gtt q̃At ], (2.75)

γ = −gφφ(L̃− q̃Aφ)2 −gtt q̃2A2
t +2gtφq̃At(L̃− q̃Aφ)−1, (2.76)

and where we introduce specific quantities L̃ ≡ L
m , Ẽ ≡ E

m and the specific charge
q̃ ≡ q

m . Local minima of Veff(r,θ) reflect the location of stable orbits of test parti-
cles. Off-equatorial potential minima were identified and various types of potential
lobes were discussed elsewhere (see Kovář et al., 2010)1. We can express the ef-
fective potential (2.73) also as a function of r and ur, and use it to determine the
boundaries of allowed regions in Poincaré surfaces of section for a given value of
θ.

1We have employed the method of effective potential to study the stability of the motion, however,
we note that the force formalism (Abramowicz et al., 1995; Kovář & Stuchlı́k, 2007) can serve as a
very efficient alternative tool. In particular, the off-equatorial motion of charged particles can be
examined via the procedure described in Kovář et al. (2010). This allows us to localize minima of
the effective potential around which the stable orbits occur.
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Figure 2.25: A transitional state between the regular and chaotic regimes of mo-
tion of a highly charged test particle which only differs from the previous case
by increasing the energy to Ẽ = 1.796. The diagonal lines in the RP are partially
disrupted, indicating the onset of chaos.

We employ the Kerr metric in standard Boyer-Lindquist coordinates t, r, θ, φ
given by eq. (2.1). It is sufficient to consider positive values of the spin parame-
ter a without loss of generality (the cases of prograde and retrograde motion are
distinguished by the sign of the particle charge and the orientation of the magnetic
field). By setting a = 0 the metric (2.1) reduces to the static one describing the
Schwarzschild spacetime.

At this point, a note is worth on the adopted computational scheme which
we have employed to study the trajectories and to detect the chaotical behavior.
In order to reach reliable results, we coded several approaches and we checked
their stability and precision. We employ the multi-step Adams-Bashforth-Moulton
solver to determine the phase-space trajectory by numerical integration of eqs.
(2.70). In some cases, when a higher precision is demanded, we use the 7-8th
order Dormand-Prince method that belongs to the family of explicit Runge-Kutta
solvers with adaptive stepsize. This method improves the accuracy significantly, as
can be verified by checking the conservation of the integrals of motion along the
trajectory. However, the improved accuracy comes at the expense of computational
time, as the adopted Dormand-Prince scheme is more computationally demanding
than the Adams-Bashforth-Moulton solver.

Furthermore, it is well-know that, when dealing with Hamiltonian systems, the
most appropriate solvers are those which respect the symplectic nature of Hamil-
tonian dynamics (e.g. Yoshida, 1993). We therefore employed also the implicit
Gauss-Legendre Runge-Kutta (GLRK) method, which is a symplectic scheme. In-
deed, we confirm that this code provides the most reliable results, especially in
the case of long-term integration. The difference in the accuracy between GLRK
and non-symplectic solvers reaches several orders of magnitude and it is generally
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Figure 2.26: The chaotic motion of a highly charged test particle which only differs
from the previous case by increasing the energy to Ẽ = 1.7975. The diagonal lines
in the RP are now disrupted and complex large-scale structures appear which are a
characteristic indication of deterministic chaos.

more apparent in the case of chaotic trajectories, as expected. However, the cost
in terms of the computational time is also non-negligible, and so we only use the
GLRK method to achieve very accurate long-time determination of the trajectory
in several exemplary runs. Detailed comparison of the integrators is presented in
Appendix B.

2.8 Recurrence analysis

The Kerr metric is well-known and the analysis of test particle motion in this space-
time was carried out in many papers (Misner et al., 1973). Among important fea-
tures of the Kerr metric is the fact that the particle trajectories are integrable, and
so the chaos can set in only when perturbations of the background gravitational
field are introduced or additional electromagnetic interaction with fields of exter-
nal sources are allowed. This is also where recurrence analysis can be helpful.

Methods of phase space recurrences have been successfully applied to a wide
range of various empirical data, not only in physics but also related to physiology,
geology, finances and other fields. Recurrence plots are especially suitable for the
investigation of rather short and nonstationary data. On the other hand, the method
of recurrence analysis has not yet been widely applied to study the dynamical prop-
erties of motion in relativistic systems. We thus briefly summarize this approach
for our context.

Besides more traditional methods of the numerical analysis of dynamical sys-
tems, such as a visual survey of Poincaré surfaces of section or the evaluation
of the Lyapunov spectra (Skokos, 2010), the recurrence analysis is a rather novel
technique, based on the analysis of recurrences of the system into the vicinity of
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Figure 2.27: The test particle (L̃ = 6M, q̃B0 = M−1 and q̃Q̃ = 1) is launched from
the locus of the off-equatorial potential minima r(0) = 3.68 M, θ(0) = 1.18 with
ur(0) = 0 and various values of the energy Ẽ. In the left panel we set Ẽ = 1.58
and we observe ordered off-equatorial motion. For the energy of Ẽ = 1.65 cross-
equatorial regular motion is observed (middle panel). The trajectory occupies only
a part of allowed potential lobe, regardless the length of the integration period. Fi-
nally in the right panel with Ẽ = 1.75 we observe irregular motion whose trajectory
would ergodically fill whole allowed region after the sufficiently long integration
time. We show that the motion is chaotic in this case. Spin of the black hole
is a = 0.9 M and its event horizon is depicted by the bold line. Topology of the
potential lobes corresponds to the type Id of our classification (see fig. 2.22).

its previous states.
Recurrence Plots (RP) are introduced as a tool of visualizing the recurrences

of a trajectory in the phase space (Eckmann et al., 1987). The method is based on
examination of the binary values that are constructed from the trajectory x⃗(t). Re-
sults of the orbit analysis can be quantified statistically in terms of the Recurrence
Quantification Analysis (RQA).2

The RP construction is straightforward regardless of the dimension of the phase
space. We only need to evaluate the binary values of the recurrence matrix Ri j,
which can be formally expressed as follows:

Ri j(ε) = Θ(ε−||⃗x(i)− x⃗( j)||), i, j = 1, ...,N, (2.77)

where ε is a pre-defined threshold parameter, Θ the Heaviside step function, and
N specifies the sampling frequency. The sampling frequency is applied to the time
segment of the trajectory x⃗(t) under examination. There is, however, no unique pre-
scription for the appropriate definition of the phase space norm || . || in eq. (2.77).
We can consider a purely abstract vector space and apply one of the elementary
norms L1, L2 (Euclidean norm) or L∞ (maximum norm). Some aspects of the ap-
propriate choice of the norm are deferred to sec. 2.8.1.

2We use the CRP ToolBox (Marwan et al., 2007, p. 321) in Matlab (R2009b) to construct RPs
and to evaluate RQA measures.
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Figure 2.28: Motion of the charged test particle (L = 6M, q̃Q̃ = 1, q̃B0 = M−1,
r(0) = 3.68M, ur(0) = 0 and θ(0) = θsection = 1.18) on the Kerr background (a =
0.9 M) with the Wald’s test field is discussed. For Ẽ = 1.578 we observe regular
off-equatorial motion (upper panels). Increasing the energy level to Ẽ = 1.65 we
obtain cross-equatorial regular trajectory (middle panels). Rising the energy to
Ẽ = 1.75 we get a chaotic cross-equatorial orbit. In the Poincaré surface of section
we distinguish uθ ≥ 0 (black point) from uθ < 0 (grey point). Analyzed trajectories
are of the type Id (fig. 2.22) and correspond to those of fig. 2.27.
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Figure 2.29: Color map of the mutual phase space distance seperating the given pair
of points on the trajectory. This example concerns a charged particle trajectory near
the Kerr black hole in the asymptotically uniform magnetic field. Left: the case of
regular motion with the energy of Ẽ = 1.77. Right: the case of chaotic motion with
Ẽ = 1.7975. In the latter case more complex structure appear in the recurrence
plot. The common parameters of both panels are L̃ = 5M, a = 0.5 M, q̃B0 = 2M−1

and q̃Q̃ = 2 with the initial condition r(0) = 2.9 M, θ(0) = 0.856 and ur(0) = 0.

Finally, we need to specify the value of the threshold parameter ε. To this end
we follow the suggestion of Marwan et al. (2007, sec. 3.2.2) and relate ε to the
standard mean deviation, σ, of the given data set. Setting ε = kσ is advantageous
because the proportionality constant k, once adjusted to obtain a properly filled Re-
currence Plot, remains valid (with only minor adjustments) for all data sets of other
trajectories. We therefore normalize the time series of each coordinate separately
to zero mean and σ = 1.

The binary valued matrix Ri j represents the RP which we get by assigning a
black dot where Ri j = 1 and leaving a white dot where Ri j = 0. Both axes represent
a time segments over which the data set (the phase space vector) is being examined.
RP is thus symmetric; the main diagonal is always occupied by the line of identity
(LOI).

Recurrence Plots contain wealth of information about the dynamics of the sys-
tem (Thiel et al., 2004a). Different pieces of knowledge are encoded in large-scale
and short-scale patterns (Marwan et al., 2007, sec. 3.2.3). To decide if a particular
trajectory is a regular or a chaotic one, the determining factor is the presence of
diagonal structures in the RP. Diagonal lines in the RP reflect the time segments
of phase space trajectory during which the system evolution proceeds in a regu-
lar way. It captures the epoch when the trajectory proceeds almost parallel to its
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Ẽ

D
IV

Figure 2.30: Graphs of different RQA measures based on the diagonal lines in the
RP as a function of specific energy Ẽ. In each panel, 400 trajectories were ana-
lyzed in a given energetic range. All measures exhibit the evident change of their
behavior at Ẽ ≈ 1.7954 which we interpret as an onset of chaos. Other parameters
remain fixed at following values: L̃ = 5M, q̃B0 = 2, r(0) = 2.9 M, θ(0) = 0.856,
ur(0) = 0, a = 0.5 M and q̃Q̃ = 2.

previous segment, i.e. within the ε-tube around that segment. Hence, integrable
systems exhibit themselves by diagonally oriented structures in their RP. On the
other hand, if the motion is chaotic the diagonal lines disappear and the diagonal
features become shorter, as the trajectories tend to diverge quickly. As a result,
more complicated structures appear in the RP.

We stress that the interpretation of the RP is primarily intuitive. We refer to
the review paper Marwan et al. (2007, sec. 3.2.3) where the patterns appearing in
the RP and their relation to the current dynamic regime are analyzed in detail.
Although basic conclusions may be inferred in general (e.g. distinction between
regular versus chaotic regime) the fine structure of the RP depends heavily on the
properties of a given dynamic system. In order to gain more insight into the way in
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Ẽ

LA
M

1.7948 1.795 1.7952 1.7954 1.7956 1.7958 1.796
2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

Ẽ
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Figure 2.31: Shannon entropy of probability distribution of diagonal lines lengths
ENTR and three RQA measures based on the vertical lines of RPs as a function of
specific energy Ẽ (details in the text). To some surprise, the vertical measures also
react dramatically to the onset of chaos at Ẽ = 1.7954.

which various dynamical regimes manifest themselves in our system we typically
present RPs accompanied by corresponding Poincaré surface of section throughout
this text.

Visual behavior of RP and its complexity is quantitatively reflected in RQA.
The RQA evaluates statistical characteristics of the recurrence matrix Ri j. First of
all, we define the recurrence rate (RR) as a density of points in RP,

RR(ε) ≡ 1
N2

N

∑
i, j=1

Ri, j(ε). (2.78)

Now we can turn our attention to diagonal segments in RP. Their length draws
distinction between regularity and chaos. The histogram P(ε, l) records the number
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Figure 2.32: Diagonal RQA measures RR, DET , L and DIV as a function of spe-
cific energy Ẽ. Dramatic change of the behaviour at Ẽ ≈ 1.685 is apparent for all
the quantities. This is where the chaos sets on.

of diagonal lines of length l. It is formally given as follows:

P(ε, l) =
N

∑
i, j=1

(1−Ri−1, j−1(ε))(1−Ri+l, j+l(ε))
l−1

∏
k=0

Ri+k, j+k(ε). (2.79)

This histogram defines the determinism factor (DET), defined as a fraction of recur-
rence points, which form the diagonal lines of length at least lmin to all recurrence
points,

DET ≡
∑Lmax

l=lmin
lP(ε, l)

∑Lmax
l=1 lP(ε, l)

. (2.80)

The average length of diagonal lines L (where only lines of length at least lmin
count) is

L ≡
∑Lmax

l=lmin
lP(ε, l)

∑Lmax
l=lmin

P(ε, l)
, (2.81)

and the corresponding divergence (DIV) is defined as inverse of the length of the
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Figure 2.33: Shannon entropy of probability distribution of diagonal lines lengths
ENTR and three RQA measures based on the vertical lines of RPs as a function of
specific energy. Sudden change of the behaviour at Ẽ ≈ 1.685 is apparent for all
the quantities.

longest diagonal line Lmax,

DIV ≡ 1
Lmax

. (2.82)

DIV is in its very nature closely related to the divergent features of the phase space
trajectory, and so it was originally (Eckmann et al., 1987) claimed to be directly
related to the largest positive Lyapunov characteristic exponent λmax. On the other
hand, theoretical considerations justify the use of DIV as an estimator only for the
lower limit of the sum of the positive Lyapunov exponents (Marwan et al., 2007,
sec. 3.6). Nevertheless, a strong correlation between DIV and λmax arises in nu-
merical experiments (Trulla et al., 1996).

The quantification measure ENTR is defined as the Shannon entropy of the
probability p(ε, l) = P(ε, l)/Nl of finding a diagonal line of length l in the Recur-
rence Plot,

ENTR ≡−
Lmax

∑
l=lmin

p(ε, l) ln p(ε, l), (2.83)

where Nl is a total number of diagonal lines: Nl(ε) = ∑l≥lmin
P(ε, l).

Analogous statistics may be performed for vertical as well as the horizontal
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Figure 2.34: Comparison of purely off-equatorial trajectories in spacetimes differ-
ing by the spin parameter a (left panels: a = 0.3M; middle: a = 0.6M; right: a = M)
which is linearly linked to the energy Ẽ (left panels: Ẽ = 1.56; middle: Ẽ = 1.9,
and Ẽ = 2.35 in the right panels). Other parameters remain fixed: L̃ = 5M, M−1,
θ(0) = θsection = 0.856, q̃B0 = 2M−1 and q̃Q̃ = 2. RPs are taken for trajectories
with r(0) = 2.9 M and ur(0) = 0. Although the structures in the Recurrence Plots
clearly differ from each other, all of them represent diagonally oriented patterns
that are characteristic of regular motion. The regularity of the motion is confirmed
by surfaces of section in the bottom panels, where several trajectories (for each
value of spin and energy) are presented. Different colours are used to distinguish
the orbits originating from different initial conditions.

segments (RP is symmetric with respect to the main diagonal). These segments are
generally connected with periods in which the system evolves during its laminar
state. To this end, the histogram P(ε,v) records the number of vertical lines of
length v and it can be constructed as follows:

P(ε,v) =
N

∑
i, j=1

(1−Ri, j(ε))(1−Ri, j+v(ε))
v−1

∏
k=0

Ri, j+k(ε). (2.84)

In analogy with the diagonal statistics histogram, P(ε,v) is used to define the
vertical RQA measures. Laminarity (LAM) is defined as a fraction of recurrence
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points that form vertical lines of length at least vmin to all recurrence points,

LAM ≡ ∑Vmax
v=vmin

vP(ε,v)

∑Vmax
v=1 vP(ε,v)

. (2.85)

The trapping time (TT) is an average length of vertical lines,

TT ≡ ∑Vmax
v=vmin

vP(ε,v)
∑Vmax

v=vmin
P(ε,v)

. (2.86)

Finally, the length of the longest vertical line (Vmax) can also be of some interest.
RQA measures the crucial dependence of RP on the value of the threshold

parameter, ε, which must be adjusted appropriately to a given data set. This lack
of invariance is a drawback of both RPs and RQA. Nevertheless, it was shown
(Thiel et al., 2004b) that stable estimates of various dynamical invariants, such as
the second order Rényi entropy and the correlation dimension, can be inferred if ε
is kept within a reasonable range. Since we shall use the standard RQA measures
to compare the dynamics between test particles with different initial conditions,
we have to eliminate the numerical effect of variances in the range of coordinate
values spanned by these trajectories. We achieve this by fixing the value of ε.

After the brief set of preliminaries we are now prepared to proceed to the in-
tended application of the recurrence analysis in the next section.

2.8.1 Phase space recurrence in the curved spacetimes

When analyzing the dynamics in the general relativistic context the fundamental
question arises whether the distinction between chaotic and regular motion is co-
ordinate dependent or not. To this end Motter (2003) infers the transformation
law for Lyapunov exponents. He concludes that although the Lyapunov exponents
themselves are not invariant they transform in such a way that positive Lyapunov
exponents remain positive and vice versa. In other words the distinction between
regular and chaotic dynamics may be drawn invariantly.

In order to give the notion of recurrence a rigorous and, at the same time, an
intuitive sense, we can employ the 3 +1 formalism (Thorne & MacDonald, 1982)
that is based on an appropriate selection of a family of spacetime-filling three-
dimensional spacelike hypersurfaces (foliation) of constant time t. The timelike
curves orthogonal (in a spacetime sense) to the hypersurfaces may be regarded as
the world-lines of a family of fiducial observers (FIDO) who naturally parameterize
their world line by proper time τ (whose rate of change generally differs from that
of t). FIDO identify each spatial hypersurface along his world line as a slice of
simultaneity. The geometry of this spacetime slice is given by 3-metric γi j:

γi j = gi j +uiu j, (2.87)

where ui stands for the spatial part of FIDO’s four-velocity and gi j for the spatial
part of the spacetime metric. Considering also the time coordinate, γµν can be
regarded as a projector onto the three-dimensional spatial hypersurface.
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Figure 2.35: Comparison of trajectories of particles launched from the equatorial
plane with different spin values. Also in this case we have to link linearly the value
of spin a with Ẽ in order to maintain the existence of the potential lobe. In left
panels we set a = 0.5M, Ẽ = 1.795, in middle panels a = 0.6M, Ẽ = 1.92 and
in right panels a = M, Ẽ = 2.42. For all three cases we show surfaces of section
of several trajectories differing in initial values r(0) and ur(0). Recurrence Plots
are taken for trajectories with r(0) = 2.15M, ur(0) = 0. Other parameters remain
fixed: L̃ = 5M, q̃B0 = 2M−1, θ(0) = θsection = π

2 , q̃Q̃ = 2.

Our selection of FIDOs will be restricted here to those moving along the Killing
direction (thus seeing an unchanging spacetime geometry in their neigbourhood).
We shall also demand that all the hypersurfaces of simultaneity which they con-
stitute have an identical spatial geometry. Finally, we require that FIDO’s proper
time τ becomes asymptotically identical to the coordinate time t. In the case of
Kerr spacetime (as an example of stationary and axisymmetric spacetime) these
restrictions lead to the identification of the FIDOs with the zero angular momen-
tum observers (ZAMOs), see Thorne & MacDonald (1982). Orthonormal tetrad of
ZAMO is given by eqs. (2.44)–(2.47).

Projecting an arbitrary four-vector Cµ onto ZAMO’s hypersurface of simul-
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Figure 2.36: Profiles of the effective potential Veff for L̃ = 5M, a = 0.5 M, q̃Q̃ =
1.03, q̃B0 = 0.1M−1, taken in the equatorial plane and in the asymptotic region
z = r cosθ → ∞ (as indicated with the corresponding curves). The valley crosses
the equatorial plane, almost unaffected in its bottom parts, although the behavior of
the potential near the symmetry axis is quite different in the equatorial plane where
it approaches the horizon of the black hole (vertical dotted line at r = r+(a)). The
horizontal dotted line at unity measures the rest energy of the particle m.

taneity directly results in the following 3-dimensional quantities,

3DCi = γi jC j =
(

Cr,Cθ,γφφCφ

)
, (2.88)

3DCi = γ3D
i j C j =

(
Cr,Cθ,gφφCφ)

; (2.89)

here, γφφ = gφφ (uφ = 0 for ZAMO) and, consequently, γφφgφφ = 1.
ZAMO tetrad components 3DC(i) are given as

3DC(i) =3D C(i) = e3D
(i) jC j ≡ =

(√
grrCr,

√
gθθCθ,

1√gφφ
Cφ

)
(2.90)(√

grrCr,
√

gθθCθ,
√

gφφCφ
)

. (2.91)

The hypersurface components of the phase space constituents xi and πi, as mea-
sured by ZAMO, are then:

3Dx(i) = (
√

grrr,
√

gθθθ,
√

gφφφ), (2.92)

3Dπ(i) =
(√

grrπr,
√

gθθπθ,
1

√gφφ
L
)

. (2.93)

The spatial 3-metric is

ds2 = δ(i)( j)dx(i)dx( j) +O(|x(k)|2)dx(i)dx( j), (2.94)
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where x(k) represents the spatial distance from the origin of the tetrad, i.e. ZAMO’s
current location. ZAMO is not an inertial observer, which generally causes the
first order corrections O(|x(k)|) to the Minkowskian metric g(i)( j) = η(i)( j). But
these do not enter the spatial part of the metric. Thus the 3-metric within the
spatial hypersurface is a Euclidean one, with the deviations of second order in the
distance from the spatial origin on ZAMO’s world-line.
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Figure 2.37: An exemplary trajectory (Ẽ = 1.058, L̃ = 5M) is launched from
the equatorial plane θ(0) = π

2 with ur(0) = 0. Parameters of the background are
a = 0.5M, q̃B0 = 0.1M−1, q̃Q̃ = 1.03. In the upper left panel we observe that set-
ting r(0) = 8.4M results in oscillations around the equatorial plane while launch-
ing it at r(0) = 8.7M makes it escape. In the upper middle panel we examine
the trajectory of the escaping particle in terms of the rescaled radial coordinate
r∗ ≡ r−r+

r . In the case of oscillating trajectories two distinct modes of motion are
observed (upper right panel). The first particle (r(0) = 11.5M) shows a complex
“ribbon-like” trajectory; the other one (r(0) = 8.4M) fills uniformly the given por-
tion of the potential valley. The Recurrence Plots are also shown (bottom panels).
We observe a highly ordered regular pattern for the particle with r(0) = 8.4M (left
panel), a more complicated diagonal pattern of the ribbon–like trajectory (launched
at r(0) = 11.5M, middle panel), and a disrupted diagonal pattern of the transitional
trajectory (r(0) = 11.4M, right panel).

We will use ZAMO’s metric at distances up to the value of the threshold pa-
rameter ε. The Euclidean metric according to eq. (2.94) will be therefore justified
if ε2

P2 ≪ 1, where P stands for a constant (for a given ZAMO). P has the dimen-
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sion of length and characterizes the curvature of the hypersurface. We suggest
setting P ≡ K−1/4, where K = RµνξπRµνξπ represents the Kretschmann scalar eval-
uated from the Riemann curvature tensor. In the case of the Kerr black hole the
Kretschmann scalar may be expressed in a surprisingly simple form (Henry, 2000).
While constructing the Recurrence Plots, we check whether the condition ε2

P2 ≪ 1
remains satisfied.

The above-mentioned adoption of preferred observers is needed in order to
maintain an operational criterion of chaos and be able to formulate an explicit
form of the equations for RQA measures in a curved spacetime. Here the notion of
the phase space distance plays a role. In Kerr metric (or another axially symmetric
stationary spacetime), Fiducial Observers (a.k.a. FIDOs) represent a natural selec-
tion of preferred observers. Obviously, this option is not unique, and so a detailed
appearance of the recurrence plots is also ambiguous to certain extent. But not so
the main conclusions that we infer regarding the chaoticness versus regularity of
the system behavior, because this distinction can be eventually traced down to the
exponential versus polynomial growth of the separation with the particle proper
time along neighboring trajectories.

We can deduce the kind of transformation between different families of ob-
servers that could affect our conclusions: these are transformations involving ex-
ponential dependencies on observer’s phase-space position. For example transfor-
mation to accelerated frames and spacetime points in the vicinity of singularities
may need a special consideration, as well as the investigation of highly dynami-
cal spacetimes that are lacking symmetries. On the other hand, selecting LNRF to
define ZAMOs in (weakly perturbed) Kerr metric outside the black hole horizon
appears to be a well-substantiated choice.

Similar arguments for the adoption of preferred observers on the basis of space-
time symmetries have been elaborated in greater detail by Karas & Vokrouhlický
(1992) in the context of Ernst’s magnetized black hole, which is another partic-
ularly simple (static) exact solution of Einstein-Maxwell equations exhibiting the
onset of chaos as the magnetic field strength is increased.

2.9 Kerr black hole in uniform magnetic field

Large-scale magnetic fields are known to be present in cosmic conditions. They
can exist around black holes, which do not support their own magnetic field but
may be embedded in fields of distant sources. In the case of neutron stars, dipole-
type magnetic fields of very high strength often arise. We concentrate on black
holes in this section and defer the case of a magnetic star to sec. 2.10.

By employing the uniform test field solution (Wald, 1974) we incorporate a
weak large-scale magnetic field near a rotating black hole. The vector potential
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Figure 2.38: The Poincaré surface of section of several trajectories (Ẽ = 1.058,
L̃ = 5M, q̃B0 = 0.1M−1, q̃Q̃ = 1.03, a = 0.5M, θ = π

2 ) launched from the equatorial
plane with various values of r(0) and ur(0) = 0. Grey colour indicates the escape
corridor which lets the particles escape from the equatorial plane (see details in the
text).

can be expressed in terms of Kerr metric coefficients (2.1) as follows,

At = 1
2 B0

(
gtφ +2agtt

)
− 1

2 Q̃gtt − 1
2 Q̃, (2.95)

Aφ = 1
2 B0

(
gφφ +2agtφ

)
− 1

2 Q̃gtφ, (2.96)

where B0 is magnetic intensity and Q̃ stands for the test charge on the background
of Kerr metric. The terms containing Q̃ can be identified with the components
of the vector potential of Kerr-Newman solution (although the test charge does
not enter the metric itself). An example of an integrated trajectory is shown in
fig. 2.21. Wald (1974) has shown that the black hole selectively accretes charges
from its vicinity, until it becomes itself charged to the equilibrium value

Q̃W = 2B0a. (2.97)

We remark that the particle charge q̃ appears always as a product with Q̃ or B0
in the formula (2.73) for the effective potential, as well as in equations of motion
(2.70). Therefore, the simultaneous alteration of q̃, Q̃ and B0 values, preserving
the products q̃Q̃ and q̃B0, does not affect the particle dynamics. If we further
assume that Q̃ = Q̃W = 2B0a is maintained, we only need to specify the value of
q̃B0 to uniquely determine a particular trajectory. However, since we do not restrict
ourselves to the case Q̃ = Q̃W we decide to always explicitly specify the values of
q̃Q̃ and q̃B0.
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Figure 2.39: Selected types of the effective potential behavior in the vicinity of
off-equatorial halo orbits above the surface of magnetic star with rotating dipole
magnetic field. The inner bold line signifies the surface of the star at r = 4M. The
outer line is the light surface.

2.9.1 Motion within the potential lobes

Our previous analysis (Kovář et al., 2010) concludes that the off-equatorial bound
orbits are allowed only for test particles obeying simultaneously the two conditions,
sgn(aL) = 1 and sgn(q̃) = sgn(aB0). Four distinct types were found (see fig. 2.22)
and we examined the dynamics of test particles in all of these types. The results
for different types are comparable, and so we present here only the analysis of two
of them, namely the types Ia and Id. While raising the energy level from the local
minima of the symmetric halo orbits, we observe that the off-equatorial lobes grow
and eventually merge with each other once the energy of the saddle point in the
equatorial plane is reached. If we further increase the energy the behaviour between
the two classes differs profoundly. For Ia we observe that the lobe eventually opens
toward the horizon allowing the particle to fall onto the black hole. On the other
hand in the Id setup the merged lobe breaks “toward infinity” allowing the particle
to escape in the axial direction when the energy is raised sufficiently.

The size of the lobes is controlled by the specific energy Ẽ. Employing the
Poincaré surfaces of section and the Recurrence Plots we investigate how the regime
of the particle motion changes with Ẽ. This parameter appears as a suitable control
parameter producing a sequence of bound trajectories while all other parameters
(and the initial position) remain fixed. For the sake of comparison we first present
the case of a fully integrable system of a charged test particle on the pure Kerr-
Newman spacetime (fig. 2.23). The motion occurs in the potential lobe around the
local minimum in the equatorial plane; there are no halo orbits above the horizon
in this case (Kovář et al., 2010; de Felice, 1979).

On the Kerr background with Wald test field we first analyze the sequence
of trajectories of Ia type. Figure 2.24 shows regular motion occurring in the off-
equatorial lobe. Increasing the energy level (while keeping all other parameters
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fixed) above the value in the equatorial saddle point results in a transitional regime
depicted in fig. 2.25. The onset of chaotic features does not occur as a direct con-
sequence of the lobe merging. We rather observe that the orbit bound in merged
(cross-equatorial) lobe remains regular until the particle notices the possibility of
crossing the equatorial plane which happens when its energy is increased suffi-
ciently. Once the motion becomes cross-equatorial, chaotic features appear. By in-
creasing the energy even more we approach the critical value when the lobe opens
and allows the particles to fall onto the horizon. For energies slightly below this
limit we detect a fully chaotic regime of motion (fig. 2.26).

Similar sequence of trajectories is analyzed in the case of Id class of the topol-
ogy of the potential wells. Three typical trajectories found in this case are shown:
regular off-equatorial, regular cross-equatorial and chaotic cross-equatorial orbit.
First we present their overview in fig. 2.27 which shows the main difference from
the Ia series clearly: the presence of fully regular cross-equtorial orbits. In fig. 2.28
we compare Poincaré surfaces of section and Recurrence Plots of these trajectories.
Unlike previous series we distinguish uθ ≥ 0 from uθ < 0 in the Poincaré surface
of section.

Figure 2.29 shows an alternative representation of the recurrence plots, where
the phase space distance separating the given pair of points of the trajectory is
encoded by different colors. Again, by comparing the two panels one can clearly
recognize how the diagonal structures disintegrate into scattered points as the chaos
sets in.

From the survey of the first series of Poincaré surfaces of section and the Re-
currence Plots (figs. 2.24–2.26) we may only conclude that the transition from the
regular to chaotic regime occurs somewhere close to the value Ẽ = 1.796. In order
to localize this transition more precisely we evaluate RQA measures for 400 trajec-
tories with the energy spread equidistantly over the interval Ẽ ∈ (1.7948,1.7968).
In figs. (2.30) and (2.31), we observe a sudden change of the behavior of the statis-
tical measures at Ẽ ≈ 1.7954, reflecting a dramatic change of the particle dynamics.

Moreover, we know that the divergence DIV is related to the Lyapunov expo-
nents, and in fig. 2.30 we observe that it suddenly rises at Ẽ ≈ 1.7954, meaning
that the trajectories become more divergent when this energy is reached. All of
these indications combined lead to the conclusion that this energy level represents
a critical value at which a transition from regular to chaotic regime occurs.

Similarly we perform the RQA for the sequence of orbits of Id type which
we analyzed qualitatively in fig. 2.28. Visual survey suggests that the suspicious
interval in which the transition from regular to chaotic dynamics shall occur is
Ẽ ∈ (1.65,1.75). We calculate 200 trajectories with energies equidistantly spread
over the given range while other parameters of the system are fixed at values used
in fig. 2.28. In figs. 2.32 and 2.33 we observe that all queried RQA measures
exhibit sudden change in its behaviour at Ẽ ≈ 1.685. This is where the dynamic
transition between the regimes occurs. Transition from the regular motion to the
chaos is detected not only by diagonal RQA measures but also by the vertical ones.

We conclude that the energy of the particle Ẽ acts as a governing factor deter-
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mining the dynamic regime of motion. Our survey across various initial conditions
has shown that motion in potential wells of the type Ia in a Wald test field is gen-
erally regular. Chaos appears well after the merging point of the lobes and close to
the critical breaking energy. We have verified that all queried RQA measures, i.e.
not only those based on diagonal lines in RP, react to the transition from the regular
to chaotic regime of motion, allowing us to localize precisely the transition. This
was fully confirmed also in the other two types (classes Ib and Ic of our typology
in fig. 2.22).

2.9.2 The effect of spin on the chaoticness of motion

Much attention has been recently focused towards the problem of determining the
black hole spin from the properties of motion of surrounding matter (Narayan,
2005; Reynolds & Nowak, 2003). The astrophysical motivation to address these
issues arises from the fact that cosmic black holes are fully described by three
parameters – mass, electric charge and spin. While the methods of mass de-
termination have been widely discussed (e.g. Casares, 2007; Vestergaard, 2010;
Czerny & Nikolajuk, 2010), the electric charge is considered to be negligible be-
cause of rapid neutralization of black holes via selective accretion. However, de-
termining the spin is a much more challenging task: the spin is important, but its
influence is apparent only very near the black hole horizon (Murphy et al., 2009).
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Figure 2.40: Regular motion in the off-equatorial potential lobe at the energy level
Ẽ = 0.8482. Parameters of the system are q̃M = −5.71576 M2, L̃ = 0.87643 M,
Ω = 0.011485 M−1. The left panel shows sections of several trajectories launched
from θ(0) = θsection = 1.0492. One of them (r(0) = 5.02 M and ur(0) = 0) is
visualized in the Recurrence Plot in the right panel. The motion is regular (RP
remains diagonal), however, the density of recurrence points clearly grows during
the analyzed period.

One can raise a question of whether the value of spin parameter a of the Kerr
black hole affects the dynamical regime of motion in the immediate neighborhood
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of the black hole. In other words, we ask if the spin parameter a triggers or dimin-
ishes the chaoticness of the system. Answering this question is not straightforward
because by altering the spin across an interval of values (a2 ≤ M2) we inevitably
have to change some other variables of the system; otherwise the different cases
could not be directly compared. Moreover, the location and the very existence
of the potential lobes is not automatically ensured over the whole range of spin
because of strong Veff(a) dependence.

We found that in order to keep the off-equatorial lobe at the initial position and
the original size we need to increase the energy Ẽ, roughly proportionally to the
increment of a. The effect of increasing a exhibits itself by lifting the hyperplane of
effective potential. To compensate for this effect we have to elevate the Ẽ-plane at
which we cut the potential, so that we obtain (roughly) the original closed contour
(the potential lobe) inside of which the motion is confined. It turns out that this can
be achieved by linking both quantities linearly.

First we compare the dynamics in the off-equatorial lobe in the range a
M ∈

⟨0.3,1⟩ (for a . 0.3M the topology of the effective potential changes) to which
we linearly relate the energy range Ẽ ∈ ⟨1.56,2.35⟩ (whilst other parameters are
kept fixed as follows: L̃ = 5M, q̃B0 = 2M−1, r(0) = 2.9 M, θ(0) = 0.856, ur(0) =
0, q̃Q̃ = 2). By inspecting the Poincaré surfaces of section and performing the
recurrence analysis for a large number of trajectories across the given range of a
and Ẽ (exemplary cases presented in fig. 2.34) we come to the conclusion that there
is no overall trend that could suggest that a is the unique driving agent affecting the
regime of motion. All trajectories in our survey exhibit a regular behavior, which
is also in agreement with the previous conclusion that the motion in off-equatorial
potential lobes associated with the Wald test field is generally regular.

We also examined the dynamics of test particles launched from the equatorial
plane whose trajectories occupy the potential lobe extending symmetrically above
and below the equatorial plane. A given lobe maintains its size for spin values a

M ∈
⟨0.5,1⟩ and the related interval of energy Ẽ ∈ ⟨1.795,2.42⟩. A survey across the
given range of spin (energy) values reveals for this class of trajectories both chaotic
and regular regimes. In fig. 2.35 we observe that for the lowest inspected spin,
a = 0.5M (Ẽ = 1.795), the regular motion dominates, although islands of chaotic
behavior are also present. Increasing the spin (energy) we observe that regular
trajectories gradually diminish. For a = 0.6M (Ẽ = 1.92) some regular orbits still
appear, but they are already dominated by chaotic trajectories. For higher spins
the traces of regular motion further diminish. We present the extreme case a = M
(Ẽ = 2.42) in fig. 2.35 to illustrate this apparent chaotic takeover.

We conclude that for the class of orbits originating in the equatorial plane, spin
a could possibly act as a destabilization factor which triggers the chaotic motion if
enhanced sufficiently. However since the energy Ẽ is increased simultaneously it
is not possible to attribute the observed dependence to the spin itself. On the other
hand we have already seen in the above-given discussion (sec. 2.9.1) that energy Ẽ
may itself act as a key factor determining the dynamic regime of motion. Thus we
suggest to attribute the observed triggering of the chaos to the increase of energy
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Figure 2.41: For an energy value of Ẽ = 0.8485, both off-equatorial lobes merge
via the equatorial plane. The upper-left panel shows Poincaré sections of two tra-
jectories (θ(0) = θsection = 1.0492, ur(0) = 0). A particle launched at r(0) = 4.8 M
never crosses the equatorial plane and moves regularly. Setting r(0) = 5 M we
observe a chaotic motion crossing the equatorial plane repeatedly. All particles
launched with r(0), ur(0), corresponding to the inner parts of the potential curve,
move in the same chaotic manner. The outskirts are occupied by regular trajec-
tories. The upper-middle panel shows the transient trajectory (r(0) = 4.85 M),
regular during the integration period of λ = 105. In the upper-right panel, the in-
tegration time is prolonged to λ = 3× 105. Here, the onset of chaos is connected
with the first passage through the equatorial plane. The RP of the regular trajectory
with r(0) = 4.8 M is presented in the bottom-left panel; the RP on the right belongs
to the chaotic trajectory with r(0) = 5 M.

Ẽ rather then spin a.
We remark that a similar problem concerning the spin dependence of the mo-

tion chaoticness was addressed recently by Takahashi & Koyama (2009). Authors
of the quoted paper employ a dipole magnetic test field upon a Kerr background
and perform a study of test particle trajectories, concluding that increasing the
value of the spin parameter stabilizes the motion in a given setup. Unlike our case,
the topology of the effective potential in their scenario allows the chosen potential
lobe to be maintained at a given location and roughly the same size (but not the
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same depth) even if a varies while Ẽ is kept constant. However increasing the spin
allows the authors to set gradually lower and lower energies, for which more regu-
lar trajectories are found. This is not at all surprising in perspective of our results,
where the energy Ẽ proved to play a key role in determining the stability of motion.
Although a direct comparison of presented surfaces of section differing only in a
value may suggest the spin dependence, there is no clear and unambiguous corre-
lation. We thus suggest attributing the observed dependence primarily to the level
of energy, which acted as a motion destabilizer also in our setup. In fact, even if a
real trend with the spin is present, it is hard to disentangle it from a simultaneous
change of Ẽ.

The question of the dependence of the dynamics upon the other parameters of
the system (L̃, q̃B0, q̃Q̃) was also addressed during the analysis. It appeared that
above mentioned difficulties accompanying the analysis of the spin dependence
became even more serious in this case. Namely, neither it was possible to maintain
the given potential lobe for a reasonable range of values of selected parameter nor
we were able to fix this problem by binding this parameter in some simple manner
to some other parameter (e.g. energy Ẽ). In other words, none of these parameters
itself may be regarded as a trigger for chaos.

2.9.3 Motion in potential valleys

Besides off-equatorial lobes, the potential may form another remarkable structure
– an endless potential valley of almost constant depth which runs parallely to the
symmetry axis (fig. 2.36). The poloidal orientation and asymptotical form of the
valley are due to the fact that the Wald test field does not vanish at spatial infinity
and it approaches the uniform magnetic field parallel to the symmetry axis.

The existence of such a potential corridor suggests that test particles with a
particular range of parameter values could escape from the equatorial plane to large
distance. We observe that a test particle in the potential valley can keep oscillating
around the equatorial plane or it may escape from this plane completely, depending
on its initial position in the phase space (see the upper left panel of fig. 2.37). We
can examine the motion in the asymptotic region by rescaling the radial coordinate
(upper middle panel of fig. 2.37). To achieve this, we use r∗ ≡ r−r+

r , where r+ =
M +

√
M2 −a2 is the position of the outer horizon of the black hole.

The normalization condition allows one to express uθ as a function of other
phase space variables and parameters of the system. Intuition suggests that, con-
sidering particles launched from the equatorial plane (θ(0) = π

2 ), the initial value
uθ(0) is a governing parameter which decides whether the particle remains oscil-
lating around θ = π

2 or leaves it once forever. We can draw the isolines of selected
uθ values in the (r, ur)-plane which we use as a surface of section (θsection = π

2 )
for the inspection of the test particle dynamics. Comparing acquired isolines for
various values of uθ with the empirically stated escape corridor of fig. 2.38 leads to
the conclusion that they never coincide perfectly, although the correlation is quite
high. In other words there is no definite threshold value of uθ(0) which would
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determine whether a selected combination of r(0), ur(0) (while other parameters
are fixed) lets the particle launched at equatorial plane leave or oscillate around the
plane.

In fig. 2.38 we observe several qualitatively different types of possible particle
dynamics. Next to the effective potential contour we find closed and well-defined
curves which represent the regular motion. Going further inside we notice that
fragmented curves are present. Below them we find progressively more and more
blurred patterns, which again signifies the onset of chaos. The inner parts of the
potential lobe are occupied by the “escape corridor” where the particles can stream
freely from the equatorial plane, as seen in fig. 2.37.

The trajectories represented by the closed curves in the surface of section differ
profoundly from the disconnected curve orbits. The difference can be seen also in
the direct projection onto the poloidal plane (upper right panel of fig. 2.37). While
the trajectories of the first type gradually fill each particular compact region of
given section, the latter forms bundles which curl through the projection plane
resembling ribbons that bound regions which are never reached by the particle.

Figure 2.42: Fixed point u0 is localised. Two succeeding section points ui and
ui+1 of a given trajectory are marked. The angle θi between the radius vectors ri

and ri+1 is evaluated. Rotation number ν is defined as ν = limN→∞
1

2πN ∑N
i=1 θi. In

practise we compute a mean value of the finite number of angle values θi instead
of the limit.
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By employing the Recurrence Plots (bottom panels of fig. 2.37) we confirm
that the dynamics differs significantly in these distinct modes of motion. Not sur-
prisingly we obtain a typical regular pattern in the case of trajectory which forms
a closed sharp curve in the surface of section (bottom left panel of fig. 2.37).
A “ribbon–like” trajectory (fragmented curve in fig. 2.38) results in an ordered
checkerboard pattern (bottom middle panel), which is known to be typical for peri-
odic and quasi–periodic systems (Marwan et al., 2007). Finally, in the bottom right
panel of fig. 2.37 we observe that a blurred curve trajectory exhibits slight chaotic
behavior in its RP. The diagonal structures are partially disrupted and we notice
that diagonal lines become bent as they approach the line of identity.

The class of escaping trajectories in the Kerr background was recently dis-
cussed by Preti (2010). The author suggests that a Wald electromagnetic field
employed in this setup could serve as a charge separation mechanism for astro-
physical black holes since the sign of the particle charge may determine whether
a given particle escapes from the equatorial plane or becomes trapped in cross-
equatorial confinement (or falls into the horizon).

2.9.4 Rotation number and fragmented tori

In the integrable system the trajectories in the phase space reside on the surface
of the tori characterized by the values of integrals of motion which determine the
characteristic frequencies of the orbit. Fundamental frequencies in our axisym-
metric system are those of radial and latitudinal motion (φ is cyclic coordinate).
Once the system is slightly perturbed (by the magnetic field in our model) the
tori characterized by the irrational ratio of frequencies ωr/ωθ survive which is
assured by the Kolmogorov-Arnold-Moser (KAM) theorem. On the other hand
the Poincaré–Birkhoff theorem tells us that the resonant tori with the rational fre-
quency ratio will disintegrate into the chain of islands when we perturb the system
(Lichtenberg & Lieberman, 1992). Trajectories belonging to the given chain are
characterized by a single frequency ratio. Since the chains have nonzero radial
width (whose actual value depends on the ’degree of prominence’ of the resonance
as well as the values of other parameters of the system) we should be able to detect
them in a plot of the ratio ωr/ωθ as a function of the initial radial coordinate of the
orbit r(0). They should appear as the periods of constancy in such a plot.

Rotation number is yet another index which can be used to characterize and
detect resonances in this context (Contopoulos, 2002; Lukes-Gerakopoulos et al.,
2010). In order to compute it we first need to localise the central fixed point u0
in the Poincaré surface of section, see fig. 2.42. Equipped with the set of section
points of a given trajectory we calculate the angle θi ≡ angle(ri, ri+1) between
the radius vectors of each pair of succeeding section points ui and ui+1. Rotation
number ν is defined as

ν = lim
N→∞

1
2πN

N

∑
i=1

θi. (2.98)

We actually compute the mean of the finite number of values instead of the limit.
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Since the succeeding section points of a given resonant trajectory always skip be-
tween two islands of stability with a constant orientation, we can infer that the
overall number of the islands in the chain will be given by the denominator of
the rotation number when written in a simplest fractional form. Chaotic orbits are
characterized by stochastic behaviour of both indices, ν as well as ωr

ωθ
.

In fig. 2.43 we compute ωr/ωθ and ν for a single set of trajectories bound in
the equatorial potential lobe presented in fig. 2.42. Particles are being launched
from the equatorial plane differing only in the initial value of radial coordinate
r(0) separated equidistantly by ∆r = 0.0002M, yielding 945 trajectories in to-
tal. Prominent resonances at ν = 1/3 (ωr/ωθ = 2), ν = 2/3 (ωr/ωθ = 2) and
ν = 1/2 (ωr/ωθ = 5/2) are apparent and easily identified with the chains of islands
in fig. 2.42. In the regular regions inhabited by KAM tori the rotation number be-
haves as non-constant continuous function of r(0) except the intervals of constancy
corresponding with the resonant chains and two major discontinuities arising from
our convention of taking θi as a positive oriented angle between the radius vectors.
In the chaotic border regions both indices fluctuate but resonant chains represented
by constant intervals also appear in this zone.

Detailed view in fig. 2.44 which zooms the portion of fig. 2.43 reveals that a
number of faint resonances producing thin Birkhoff chains is present in the chaotic
zone. Direct detection of these in the surface of section would be rather difficult
since the readability of the surfaces of section decreases rapidly with increasing
density of depicted trajectories. In this sense the rotation number appears suitable
indicator of resonance.

Resonant chains are in principle detectable in terms of spectral analysis of the
observed electromagnetic signal. Presence of the Birkhoff chains allows us to dis-
criminate between perturbed and regular system. Moreover the position and the
width of the chains reflects other properties of the system, strength of the perturb-
ing magnetic field for instance. See Lukes-Gerakopoulos et al. (2010) for a detailed
discussion of this approach applied to the different type of system of extreme mass
ratio inspiraling sources emitting gravitational radiation.

However, the critical assumption of the Poincaré–Birkhoff theorem that the
perturbation of the original integrable system is weak is generally not fulfilled in
our case. Nevertheless for the trajectories analyzed in figs. 2.42–2.44 the theo-
rem proved applicable as we managed to identify fragmented tori observed in the
surface of section with the intervals of constancy of the rotation number at values
given by simple integer ratios 1

2 , 2
3 etc. Therefore we can identify fragmented tori

in the surfaces of section in fig. 2.42 and in analogous closed equatorial lobes with
the Birkhoff chains of stability islands anticipated by the theorem. However, we
did not manage to do so in the case of potential valley in fig. 2.38 neither for the
off-equatorial lobes, e.g. fig. 2.34. In both cases we observed fragmented tori in
the section but we could not localise the central fixed point u0 which is essential
for the evaluation of the rotation number. In the potential valleys the central part
of the section is occupied by the escape corridor and in the off-equatorial lobes the
structure of the curves in the section is quite different compared to the equatorial
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Figure 2.43: Rotation number is compared to the ratio of fundamental frequencies
ωr
ωθ

. Both are computed for the same set of trajectories originating in the equatorial
plane at different r(0) (equidistantly placed with ∆r = 0.0002M). Other parame-
ters remain fixed: a = 0.5M, Ẽ = 1.795, L̃ = 5M, q̃B0 = 2M−1, θ(0) = θsection = π

2 ,
q̃Q̃ = 2. Most prominent resonances correspond with ν = 1/3 (ωr/ωθ = 2),
ν = 2/3 (ωr/ωθ = 2) and ν = 1/2 (ωr/ωθ = 5/2). We note that the resonance
at r(0) ≈ 2.245M having frequency ratio ωr

ωθ
= 3 is not detected clearly by the ro-

tation number ν which actually oscillates around ν = 1/2 instead of being strictly
constant. Number of the islands comprising the resonant chain is given by the de-
nominator of the rotation number. Chaotic regions are characterized by a stochastic
behaviour of the both indicators, ν as well as ωr

ωθ
.
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Figure 2.44: Portion of the fig. 2.43 is provided in the high resolution revealing
the faint resonances producing thin chains of islands whose direct detection in the
surface of section is almost impossible (see fig. 2.42).

lobes. Frequency ratios ωr/ωθ corresponding with fragmented tori did not attain
any simple integer ratio value here.

We conclude that the Poincaré–Birkhoff theorem is only partially applicable
in our study. Especially the off-equatorial lobes which are actually supported by
the perturbation (there are no such lobes in the pure Kerr without EM field) fail to
fulfill the assumption of the perturbation being weak. In the surfaces of section we
observe the fragmented curves of a different nature than those of resonant chains
detected in the equatorial lobes. We stress that the issue definitely deserves fur-
ther attention since the analysis of the fundamental frequencies has observational
consequences.

2.10 A magnetic star

Various types of stars exhibit very strong magnetism. Peculiar main sequence stars
of Ap and Bp classes may bear large-scale magnetic field of strength ≈ 104 G
(Bagnulo et al., 2006; Borra et al., 1982). Considerably stronger fields are found
in the case of degenerate stars. White dwarfs may reach ≈ 108 G (Valyavin et al.,
2003) and magnetars as a magnetically extremal subclass of neutron stars even
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Figure 2.45: For the energy level Ẽ = 0.857 we obtain a broad lobe which almost
touches the surface of the star at r = 4 M. In the upper-left panel, we launch two
particles with θ(0) = 1.0492, r(0) = 4.75 M. The particle to the left of the star
starts with ur(0) = 0 and moves chaotically, while the other one with ur(0) = 0.03
follows a perfectly regular trajectory. The upper right-panel shows these two types
of trajectory appear in the surface of section plot. The bottom panels demonstrate
the difference between the two types in terms of Recurrence Plots.

≈ 1015 G (Duncan & Thompson, 1992). In our context a broad term magnetic
star encompasses all the above objects. In the following, however, we concentrate
ourselves mainly on the case of compact stars.

We describe the gravitational field outside a magnetic star by the Schwarzschild
metric,

ds2 = −
(

1− 2M
r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2). (2.99)

The associated magnetic field is modeled as a dipole rotating at angular velocity Ω
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(Sengupta, 1995):

At = −ΩAφ =
3M ΩR sin2 θ

8M3 , (2.100)

Aφ = −3M R sin2 θ
8M3 , (2.101)

where

R = 2M2 +2Mr + r2 log
(

1− 2M
r

)
. (2.102)

The related dipole moment M is given by (Bakala et al., 2010)

M =
4M3r3/2

⋆ (r⋆−2M)1/2 B0

6M(r⋆−M)+3r⋆ (r⋆−2M) ln
(
1−2Mr−1

⋆

) , (2.103)

where B0 is the magnetic field at the neutron star equator, r⋆ is the radius of the star
surface.3

We assume eqs. (2.99)–(2.100) to hold outside the star surface (r > r∗) and
inside the light cylinder (uµuµ < 0). We set r∗ = 4M as the inner radial boundary
of the particle motion. As for the light cylinder, the mentioned condition results
in a relation r2 sinθ2Ω2 = 1− 2M

r , which implicitly specifies the outer boundary.
The vector potential (2.100) is valid inside the rigidly corotating magnetospheric
plasma, which we consider to be an excellent conductor, so that the force-free
condition Fµ

ν uν = 0 holds for the plasma for which uµ = (ut ,0,0,uφ) and uφ

ut = Ω.
A general formula for the effective potential eq. (2.73) simplifies to the form

Veff = −3q̃M R Ωsin2 θ
8M3 (2.104)

+
(

1− 2M
r

) 1
2
[

1+
(

L̃
r sinθ

+
3q̃M R sinθ

8M3r

)2
] 1

2

.

2.10.1 Motion inside the potential lobes

Our previous analysis (Kovář et al., 2010) revealed a number of distinct types of
possible topological structures of the effective potential. However it appears that
the system is not as rich in its dynamical properties. The test particle trajecto-
ries share some similar features across different classes of the effective potential.
Therefore, we only present surveys of particle dynamics in three exemplary types:
Ia, IIa and IIIc (fig. 2.39; see Kovář et al. (2010) for the complete review).

3The existence of extremely compact stars with r⋆ ≈ 3M is unlikely, but not excluded
(Bahcall et al., 1989; Stuchlı́k et al., 2009). Most of the realistic equations of state imply a lower
limit r⋆ ≈ 3.5M (Glendenning, 1997). On the other hand, the models of Q-stars do allow a lower
limit of r⋆ ≈ 2.8M (Miller et al., 1998).
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Class Ia lobes grow with energy increasing. Once the level of the equatorial
saddle point is reached, the lobes merge with each other across the equatorial plane.
The single merged lobe eventually intersects the surface of the star if the energy
level is increased sufficiently, letting the particle fall onto the surface. Lobes of IIa
type also merge via the equatorial plane but in contrast to the first type the merged
lobe opens toward the light cylinder (beyond which the model becomes invalid).
Lobes of the class IIIc first open via the off-equatorial saddle points, allowing the
particles fall onto the star, before the lobes merge through the equatorial plane.

Now we study the three selected types of the effective potential topology in
more detail. We are primarily interested whether and how the dynamic regime
changes across the given range of specific energy Ẽ. Especially, we shall address
what happens with the dynamics when the particle acquires enough energy to cross
the saddle point.

The first survey (type Ia) begins at energy level Ẽ = 0.8482, corresponding to
the closed lobe. In fig. 2.40 we observe that the motion inside the lobe is stable.
No chaotic properties are detected – neither in Poincaré surfaces of section nor in
the Recurrence Plots.
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Figure 2.46: Regular motion in an off-equatorial lobe of the third type. Parameters
used: Ẽ = 0.99579, L̃ = 6.25382 M, q̃M = 45.87368 M2, L̃ = 6.25382 M, Ω =
0.011485 M−1. Particles are launched from latitude θ(0) = θsection = 1.0492.

As the energy increases to Ẽ = 0.8485, the symmetrical lobes merge via the
equatorial plane. By inspecting a number of trajectories in this case we find that
chaos starts appearing at this point – those particles which notice the gate through
the equatorial plane always fill the entire allowed region and they move chaotically.
Nevertheless, there are still such particles which move regularly in one of the two
parts of merged lobe and never cross the equatorial plane. We can also find transient
trajectories corresponding to regular motion lasting for some period of time in one
part of the lobe, followed by chaotic motion over the entire lobe once the particle
finds and encounters the passage across the equatorial plane. All of the mentioned
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Figure 2.47: For the energy level Ẽ = 0.9962 (other parameters as in fig. 2.46) we
obtain a large lobe that almost touches the light cylinder and allows the particle to
fall onto the surface of the star via a narrow passage above and below the equatorial
plane. The upper left panel shows two trajectories launched from θ(0) = 1.0497,
ur(0) = 0. One of the particles (starting from r(0) = 61.5 M) follows an unstable
path and eventually falls on the star surface. On the contrary, the other particle
(starting from r(0) = 72.5 M) moves regularly and never escapes any given part of
the lobe. The upper-right panel shows these two kinds of trajectory depicted in the
Poincaré surface of section. Chaotically dispersed points belong to the escaping
trajectory. The bottom-left panel shows the Recurrence Plot of the escaping par-
ticle; this plot does not exhibit typical chaotic behavior, although the large-scale
structures are present. The bottom-right panel presents the Recurrence Plot of sta-
ble motion.
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cases are illustrated in fig. 2.41.
Increasing the energy further to Ẽ = 0.857, we obtain a broad potential lobe

which almost touches the star surface. The situation changes from the previous
case where the gate connecting the off-equatorial lobes was narrow. Now we do
not find trajectories which occupy only one part of the lobe, above (or below) the
equatorial plane. Chaotic trajectories densely filling the entire lobe are typical
for this setup. We also encounter perfectly regular trajectories forming ribbon–
like structures spanned between northern and southern borders of the lobe. In
Poincaré sections these appear as regular islands surrounded by a chaotic ocean
(upper panels of fig. 2.45). We notice that the RP of this regular trajectory is
extraordinarily simple and consists of almost perfect diagonal lines (bottom panels
of fig. 2.45). Thus its dynamic properties are close to those of a periodic system,
which is in contrast with the neighboring fully chaotic orbits.

The second type (class IIa) of the effective potential topology of off-equatorial
lobes differs from the first one significantly as the lobes do not open towards the
star when the energy is raised sufficiently. On the contrary, in this case we observe
that the lobe’s boundary touches the light cylinder first.

The motion in the off-equatorial lobes proves to be regular while the merging
lobes bring chaos into play. Chaos becomes dominant for broader lobes, however,
stable regular orbits also persist. The results are similar to those of the first type of
potential topology discussed above.

The last analyzed topology of the lobes (class IIIc) differs profoundly from
the preceding two cases, as can be seen in fig. 2.39. We find that stable motion
dominates in this setup. This can be verified by comparison with fig. 2.46.

As we further increase the energy level, we obtain more complicated shapes
of the equipotentials that allow the particle to fall on the star surface. On the
other hand, opening the outflow gate energetically precedes the merging point of
both off-equatorial lobes. In fig. 2.47, we discuss the motion governed by the
largest possible lobe which almost touches the light cylinder. We observe that
stable regular orbits are still possible for those particles that do not hit the passage.

From the above-given discussion we conclude that the motion of charged test
particles in the off-equatorial lobes allowed by the test field of the rotating magnetic
dipole on the Schwarzschild background is largely regular. Once the off-equatorial
lobes merge with each other, chaos may appear. Increasing the energy, the chaotic
motion becomes typical but, quite surprisingly, very stable orbits also exist under
these circumstances.





Chapter 3

Conclusions

3.1 Structure of the electro-magnetic field

In this work we went through various issues concerning the structure of the electro-
magnetic field which arises from the interplay between the frame-dragging effect
and the uniform magnetic field with general orientation with respect to the rotation
axis of the Kerr source. We further generalized the model by allowing the black
hole to move translationally in a general direction with respect to the magnetic
background. Components of the electromagnetic tensor Fµν describing resulting
field were given explicitly (in a symbolic way regarding their length) in the terms
of the former nondrifting solution. Special attention was paid to the comparison of
various definitions of the electric/magnetic field. We also reviewed the construction
of three distinct frames attached to the physical observers.

Before exploring the rich structures arising from the drift and oblique back-
ground field we first revisited the issue of the expulsion of the aligned magnetic
field out of the horizon of the extremal Kerr black hole (Meissner effect). Since
the effect itself has already been discussed thoroughly in the literature we did con-
centrate on the observer aspect of the problem instead. By comparing alternative
definitions of the magnetic vector field given in sec. 2.2 combined with the choice
of the four-velocity profiles presented in sec. 2.4 we came to the conclusion that
(i) the Meissner effect is observer dependent and (ii) some definitions of the field
lines do not fit well into the Boyer-Lindquist coordinate system since they artifi-
cially amplify the effect of the coordinate singularity at the horizon.

Namely we observed that in the ZAMO tetrad the field does not exhibit the
Meissner effect while in the frame of freely falling observer (FFOFI) the field is
expelled. On the other hand in the renormalized field components the expulsion is
observed for both ZAMO as well as for FFOFI test charges. In coordinate compo-
nents the Meissner effect also appears but we decide not to use them because the
coordinate basis is not normalized which causes artificial deformation of the field
lines. On the other hand the properly normalized physical components appear prob-
lematic since they amplify the effect of the coordinate singularity at the horizon as
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mentioned above. We found them not convenient for the use in Boyer-Lindquist
coordinate system (at least in the region close to the horizon). Asymptotically-
motivated (AMO) components which are observer independent as they reflect the
Fµν components directly were also employed and the resulting magnetic lines of
force were identified with the section of the surfaces of the constant magnetic flux
which represent yet another way to display the field. We note that in the FFOFI
frame both magnetic and electric fields are expelled out of the horizon in the case
of the extremal spin.

Upon introducing the perpendicular component we observe that generally (i)
the magnetic field is not expelled anymore and (ii) both the electric and magnetic
fields acquire a tightly layered structure in the narrow zone just above to the hori-
zon. Structure of the field is surprisingly complex in this region, self-similar pat-
terns are observed regardless the choice of the observer proving that the layering is
an intrinsic feature of the field rather than a mere observer effect.

In the case of BH’s translational motion through the aligned field we also ob-
serve the complex layering of the field which we attribute to the transversal com-
ponent arising from the Lorentz boost. However, for a sufficiently rapid drift we
observe a new effect emerging: as the layers transform they give rise to the for-
mation of the neutral points of both electric and magnetic fields (though not at
the same location!). The field structure surrounding such point is characterised by
four distinct domains (bundles of the field lines) divided by two separatrices inter-
secting at the neutral point. Such a topology is known to result from the separator
reconnection, a process which has been studied in the framework of resistive mane-
tohydrodynamics (MHD), see e.g. Priest & Forbes (2000). In our electro-vacuum
model, however, it arises entirely from the interaction of the strong gravitational
field of the rotating BH with the background magnetic field, i.e. it is a mere gravit-
omagnetic effect. Charged matter injected into the magnetic separator site is prone
to the acceleration by the electric field since its motion is not affected by the van-
ishing magnetic field and thus the acceleration is very effective.

From the astrophysical viewpoint we regard the topological changes which
the drift causes upon the field structure, especially the formation of the neutral
points, as our main result demonstrating clearly that the strong gravitation of the
rotating Kerr source may itself entangle the uniform magnetic field in a surprisingly
complex way. We suggest that the gravity of the rotating black hole could work as
a trigger for magnetic reconnection.

3.2 Motion of charged matter

We studied the regular and chaotic motion of electrically charged particles near
a magnetized rotating black hole or a compact star. We employed the method
of recurrence analysis in the phase space, which allowed us to characterize the
chaoticness of the system in a quantitative manner. Unlike the method of Poincaré
surfaces, the Recurrence Plots have not yet been widely used to study the chaotic
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systems in the regime of strong gravity.
The main motivation for these investigations is the question of whether the mat-

ter around magnetized compact objects can exhibit chaotic motion, or if instead the
system is typically regular. One of the main applications of our considerations con-
cerns the putative envelopes of charged particles enshrouding the central body in a
form of a fall-back corona, or plasma coronae extending above the accretion disk.
While we concentrated on the specifications of the RP method in circumstances
of a relativistic system, the assumed model cannot be considered as any kind of a
realistic scheme for a genuine corona. We simply imposed a large-scale ordered
magnetic field acting on particles in a combination with strong gravity.

Various aspects of charged particle motion were addressed throughout the chap-
ter. First of all, we investigated the motion in off-equatorial lobes above the horizon
of a rotating black hole (modeled by Kerr metric equipped with the Wald test field),
as well as above the surface of a magnetic star (modeled by the Schwarzschild
metric with the rotating dipolar magnetic field). In both cases we conclude that
the motion of test particles is regular, which was confirmed for a representative
number of orbits across the wide range of parameters over all topological types of
off-equatorial potential wells. This result is somewhat unexpected because the off-
equatorial orbits require a perturbation to be strong enough (in terms of strength
of the electromagnetic field), so that it can balance the vertical component of the
gravitational force.

Further, we investigated the response of the particle dynamics when the en-
ergy level Ẽ was raised gradually from the potential minimum to values allowing
cross-equatorial motion. We examined various topological classes of the effective
potential and came to the conclusion that the cross-equatorial orbits are typically
chaotic, although very stable regular orbits may also persist for a certain intermedi-
ate energy range. The classical work of Hénon & Heiles (1964) should be recalled
in this context since it also identifies the energy as a trigger for chaotic motion in
the analysed simple system. More recently the Hénon–Heiles system was revisited
in the relativistic context by Vieira & Letelier (1996).

We also addressed the question of spin dependence of the stability of motion
for Kerr black hole in the Wald field. We noticed that this is a rather subtle prob-
lem. The effective potential is by itself sensitive to the spin value a – hence, we
had to link the potential value roughly linearly with the energy Ẽ to maintain the
potential lobe at a given position. In other words, we did not find any clear and
unique indication of the spin dependence of the motion chaoticness. Most tra-
jectories exhibited regular behavior, which is also in agreement with the previous
results indicating that motion in off-equatorial lobes is generally regular. On the
other hand, in the case of the cross-equatorial motion we observed that, for higher
spins, more chaotic features come into play when compared with the case of slow
rotation. This trend might be also attributed to simultaneous adjustments of Ẽ.
In other words, it appears impossible to give an unambiguous conclusion about the
spin dependence of the particles dynamics. Instead, one has to deal with a complex,
interrelated dependence.
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In the case of a Kerr black hole immersed in a large-scale magnetic field, we ob-
served the effect of confinement of particles regularly oscillating around the equa-
torial plane. Escape of particles from the plane is allowed for a given range of
initial conditions since the equipotentials do not close; they form an endless axial
“valley” instead. The escaping trajectories create a narrow, collimated structure
parallel to the axis.



Chapter 4

Future prospects

In the following we present our to-do list comprising of the issues which naturally
arose during the previous study of the electromagnetic fields and charged particle
dynamics. Most importantly we want to combine ideas of sec. 2.3 and sec. 2.6. In
other words we plan to investigate ionized particle motion governed by the gen-
eralized oblique and drifting EM field. Besides that we shall go through several
rather technical issues related closely to the topic.

• More general model of gaseous corona.
We shall enhance our former axisymmetric model by considering oblique
(misaligned with the rotation axis) magnetic fields in which the central body
may be uniformly drifting in a general direction. Structure of the electro-
magnetic field is profoundly enriched and we suppose that similarly the dy-
namics of the particles will become considerably more complex. We plan
to discuss the impact of new parameters upon the off-equatorial stable orbits
and investigate how do they affect the dynamic regime of motion. We will
try to identify a possible trigger of chaotic dynamics among new parameters.
Besides standard methods the recurrence analysis will be employed since it
proved useful in our previous work.

• Observational consequences.
We plan to elaborate ideas introduced in sec. 2.9.4 concerning the frequency
analysis of the off-equatorial orbits. We have seen that fragmented curves we
observed in the Poincaré surfaces of section corresponding with the trajecto-
ries bound in the closed equatorial lobes may be identified with the Birkhoff
chains of islands of stability. Such resonant chain is characterized by a sin-
gle value of a rotation number which is in principle detectable in terms of
spectral analysis of the observed signal. Presence of the Birkhoff chains al-
lows us to discriminate between perturbed and regular system. Moreover the
position and the width of the chains reflects other properties of the system.
Detailed discussion of this approach applied to the different type of system
may be found in Lukes-Gerakopoulos et al. (2010). However, in our analysis
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of the off-equatorial trajectories we observed more complicated structures in
the surfaces of section which do not allow for the straightforward evaluation
of the rotation number, nor the ratio of fundamental frequencies. Therefore
we intend to adjust the method for the application to our scenario and infer
the possible observational consequences for the system of gaseous corona
we studied theoretically in chap. 2.

• Magnetic shift of the ISCO.
Position of the inner edge of the accretion disk is usually identified with the
marginally stable geodesic orbit rms (also referred to as innermost stable cir-
cular orbit, ISCO) whose position is uniquely determined by the value of
the black hole spin a (Bardeen et al., 1972). Common black hole spin mea-
surement methods are based on this relation as they actually determine rms
to evaluate a (McClintock et al., 2011). In this context we raise the ques-
tion whether the presence of the magnetic field may change the position of
ISCO noticeably. Recently a similar problem was addressed by Bakala et al.
(2010) for the case of Schwarzschild source endowed with the dipole mag-
netic field. An introductory account of the influence of the uniform mag-
netic field aligned with the symmetry axis of Kerr black hole was brought by
Prasanna (1978). We shall discuss the effect of the oblique uniform magnetic
field around Kerr source upon the marginally stable orbit in detail.

• Application of a new method for the computation of Lyapunov spectra.
Lyapunov characteristic exponents (LCEs) are the basic indicators of chaos
which capture the divergent features of the chaotic orbits straightforwardly.
The classical non-covariant definition of LCEs, however, meets serious dif-
ficulties in curved spacetimes. Recently Stachowiak & Szydlowski (2010)
proposed novel geometrical approach to the computation of the Lyapunov
spectra which completely avoids the conventional method of solving the
variational equations to obtain the Lyapunov vectors which are periodically
Gram-Schmidt orthonormalized along the flow. New algorithm is covari-
antly formulated and thus seems to be highly convenient for the application
in general relativistic systems. We plan to implement this method when in-
specting the dynamics of charged particles. This might be beneficial for both
the results itselves and also to prove the new method fruitful.



Appendix A

Geometrized units

We use geometrized units instead of SI throughout this work. We set the speed of
light c, the gravitational constant G, the Boltzmann constant k and the Coulomb
constant kc = 1

4πε0
equal one.

constant SI value SI dimension geometrized units
c 2.998×108 ms−1 1
G 6.67×10−11 m3 s−2 kg−1 1
k 1.38×10−23 JK−1 1
kC 8.988×109 kgm3s−2C−2 1

Table A.1: Redefined constants in SI and in geometrized units.

We aim to express arbitrary quantity in the terms of meters (thus it becomes
“geometrized”). To manage that we construct conversion factor f consisting of
constants c, G, k and kC whose dimension multiplied by the dimension of the quan-
tity being converted gives just meters (typically to the power of 1, 2 or −1). To
make it more clear we convert mass as an example:

[M]SI = kg while [M]geom = m
factor needed: [ fM] = mkg−1

unambiguously: fM = G
c2 = 7.43×10−28 mkg−1

Mgeom = fMMSI = 7.43×10−28 MSI mkg−1

e.g. solar mass: (M⊙)geom = 7.43×10−28 mkg−1 · 1.989×1030 kg = 1472 m
When converting from the geometrized units back to SI we just need to divide

by the same factor. Factors for basic quantities are given in table A.2.
Finally we show how to convert specific charge Q̃ which we use in the main

text often:

(
Q̃

)
geom =

(Q)geom

(M)geom
=

fC (Q)SI
fM (M)SI

=

√
kC

G

(
Q̃

)
SI = 1.16×1010 kgC−1 ·

(
Q̃

)
SI

leaving
(
Q̃

)
geom dimension-less.
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quantity factor numerical value
time ft = c 3.00×108 ms−1

mass fM = G
c2 7.43×10−28 mkg−1

charge fC =
√

GkC
c2 8.62×10−18 mC−1

momentum fm = G
c3 2.48×10−36 mkg−1m−1 s

angular momentum fm = G
c3 2.48×10−36 m2 kg−1m−2 s

energy fE = G
c4 8.26×10−45 mJ−1

temperature fT = Gk
c4 1.14×10−67 mK−1

magnetic induction fB = 1
c

√
G
kC

2.87×10−19 m−1 T−1

Table A.2: Conversion factors for basic quantities.

For example specific charge of the proton q̃p is in the geometrized units ex-
pressed as follows:(

q̃p
)

geom = 1.16×1010 ·
(
q̃p

)
SI = 1.16×1010 ·9.58×107 = 1.11×1018.

When dealing with compact objects we often scale all the geometrized quanti-
ties by the mass of the central body in order to simplify our equations. The mass of
the object only needs to be specified at the very end of calculations when we need
to recover actual value of a quantity from it’s dimension-less scaled version.

Scaling of an arbitrary quantity X by the mass of the gravitational source M
can be formally expressed as follows:

[X ]geom = mp ⇒ (X)geom,scaled =
(X)geom

(M)p
geom

.

For instance one reads the particle’s orbital proper period from the output of the
dimension-less equations of motion to be T = 200. Setting the mass of the central
object as M = 3 M⊙ we obtain following SI value of the proper period

(T )SI =
(T )geom,scaled(M)geom

ft
=

200 ·3 ·1472
3×108 = 2.94×10−3 s.

Angular momentum of the rotating object S = a M is also commonly scaled
by the mass of the object. In the case of the Kerr black hole the spin parameter a
is restricted to |(a)geom,scaled| ≤ 1. For example if we consider (highly idealized)
Sun as a homogeneous sphere of radius R⊙ = 6.96× 108 m rotating with period
of 25 days

(
T⊙ = 2.16×106 s

)
we arrive at the following value of the scaled spin

parameter a

(a⊙)geom,scaled =
(S)geom

(M⊙)2
geom

=
fm(S)SI

(M⊙)2
geom

=
fm

(M⊙)2
geom

(
4π
5

M⊙R2
⊙

T⊙

)
SI

= 1.28.
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Kerr solution for the source with given mass and angular momentum would thus
describe a naked singularity rather than black hole.

Another example is the product q̃B of specific charge of test particle (dimension-
less in geometrized units) and the asymptotic strength of the magnetic field (of
geometrized dimension m−1) which acts as one of the parameters determining par-
ticle’s trajectory in chap. 2.6. For example setting (q̃B)geom,scaled = 10 in the
dimension-less equations would correspond with the following strength of mag-
netic field B for a given supermassive black hole of mass M = 1× 106 M⊙ if we
further specify the test particle to be an electron

(B)SI =
(B)geom,scaled

fB (M)geom
=

(q̃B)geom,scaled

fB (M)geom(q̃e)geom,scaled
=

(q̃B)geom,scaled

(M)geom(q̃e)SI

fM

fB fC

=
10 ·3×108

1×106 ·1472 ·1.76×1011 = 1.16×10−11 T = 1.16×10−7 G.





Appendix B

Choice of the integrator

In this section we shall give some details about a rather technical issue concerning
the proper choice of the integration scheme which would fit best to our problem.
In particular we will compare the performance of the symplectic integrator with
several non-symplectic routines and discuss under which circumstances we should
choose the symplectic one and when we should switch to some other scheme. We
will be basically concerned with two crucial aspects – accuracy of the integration
and CPU time consumption. The latter is generally less critical in our application
since we are not facing that computationally intensive problem.

We are dealing with autonomous Hamiltonian system1 whose equations of mo-
tion form a specific subclass of first order ordinary differential equations (ODEs).
Two fundamental characteristics of the Hamiltonian flow should be highlighted

• conservation of the net energy (Hamiltonian) of the system

• conservation of the symplectic structure ωωω = dπµ ∧dxµ.

In the classical mechanics the natural choice of the generalized coordinates leads
to the Hamiltonian which may be interpreted as a net energy of the system. This
is true even for the system of a charged particle in the external EM field where
the generalized momenta-dependent potential is introduced (Goldstein et al., 2000,
chap. 8). Time-independance of the Hamiltonian is thus equivalent to the conser-
vation of the net energy of the system. In the general relativistic version of this sys-
tem, however, we employ super-hamiltonian formalism (Misner et al., 1973, chap.
21) in which the energy of the particle E, as a negatively taken time component
of the canonical momentum E ≡ −πt , is conserved by virtue of the Hamilton’s
equations itselves providing that the super-hamiltonian doesn’t depend on the co-
ordinate time t. On the other hand the value of the super-hamiltonian H = 1

2 pµ pµ

1Equations of motion may be equivalently expressed in terms of Lorentz force (Misner et al.,
1973, p. 898) which leads to the set of four second order ODEs. Numerical experiments, however,
led us to the conclusion that this formulation is computationally less effective compared to the Hamil-
tonian formalism. Generally for a given numerical scheme with the same parameters (resulting in
similar accuracy of integration) the integration of Hamilton’s equations was roughly two times faster.
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is by construction equal to −1
2 m2 where m is the rest mass of the particle. Conser-

vation of the super-hamiltonian in the system is thus equivalent to the conservation
of the rest mass of the particle.

By conservation of the symplectic 2-form ωωω we mean that its components ωαβ
in the basis

(
dt(λ),dr(λ),dθ(λ),dφ(λ)),dπt(λ),dπr(λ),dπθ(λ),dπφ(λ)

)
do not

change during the evolution of the system and for arbitrary value of the affine
parameter λ (i.e. at each point of the phase space trajectory) we obtain

ωαβ =
(

0 −I
I 0

)
, (B.1)

where I stands for the four-dimensional identity submatrix and 0 is null subma-
trix of the same dimension. Conservation of the symplectic structure expresses in
the abstract geometrical language the fact that the evolution of the system is gov-
erned by the Hamilton’s canonical equations. See Arnold (1989) for details on the
geometric formulation of the Hamiltonian dynamics.

It would be highly desirable to use such integration scheme which would con-
serve both quantities which are conserved by the original system. It appears, how-
ever, that this is not possible for non-integrable systems and one has to decide
whether he employs the scheme which conserves energy or rather the integrator
which keeps symplectic structure. The latter are referred to as symplectic inte-
grators and by many accounts provide most reliable results in numerical studies
involving Hamiltonian systems. See Yoshida (1993) for a comprehensive review
on symplectic methods.

We list all the schemes we employ in this survey specifying their basic prop-
erties. We shall actually compare one symplectic method with several standard
integrators. Code names we use for the schemes are those which denote the rou-
tines in the MATLAB system.

• GLS – Gauss-Legendre symplectic solver, s-stage implicit Runge-Kutta (RK)
method, crucial control parameter: stepsize h

• ODE87 – Dormand-Prince 8th - 7th order explicit RK scheme, the most
precise RK method (local error of order O(h8)), adaptive stepsize – RelTol
is set to control local truncation error

• ODE113 – multistep Adams-Bashforth-Moulton solver, based on the predic-
tor-corrector method (PECE), RelTol is set

• ODE45 – Dormand-Prince seven stage 5th-4th order method of explicit RK
family, adaptive stepsize, default integration method in MATLAB and GNU
OCTAVE, error is controlled by RelTol

Apart from ODE113 all other routines are single-step (Runge-Kutta like) methods
which means that they express the value of the solution in the next step in terms
of a single preceding step. They may be related explicitely or implicitly. Multistep
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methods in contrast employ more preceding steps to calculate the solution at the
succeeding point. RelTol is a parameter which specifies the highest allowed relative
error in each step of integration (local truncation error) when the adaptive stepsize
methods are used. In the case of exceeding the RelTol the stepsize is reduced
automatically to decrease the error.
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Figure B.1: Regular trajectory of charged test particle (q̃Q̃ = 1, L̃ = 6 M and Ẽ =
1.6) on the Kerr background (a = 0.9 M) with Wald magnetic field (q̃B0 = 1M−1).
Particle is launched at r(0) = 3.68, θ(0) = 1.18 M with ur(0) = 0.

We comment that for general non-separable Hamiltonians only implicit sym-
plectic schemes may be found. Explicit methods exist for separable Hamiltonians
and for some special forms of non-separable ones (Chin, 2009). Besides other im-
plications of the usage of the implicit methods we note that they necessarily involve
some type of iterative scheme which is typically of a Newton’s type and thus re-
quires to supply Jacobian of the right hand sides of the equations of motion which
is the Hessian matrix of the second derivatives of the super-hamiltonian H in our
case.

Another inconvenience connected with the symplectic methods is their fail-
ure to conserve the symplectic structure once the adaptive stepsize method would
be used (Skeel & Gear, 1992). Therefore the stepsize has to be set rigidly for a
given integration segment when using symplectic method. Several workarounds
have been suggested to combine benefits of symplectic solvers and variable step-
size algorithms – e.g. Hairer’s symplectic meta-algorithm (Hairer, 1997) which is,
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Figure B.2: Comparison of the integrators in the case of regular trajectory. Sym-
plectic GLS provides the most reliable results for λ & 105. Bottom panel shows
that besides secular drift in energy (artificial excitation or dumping of the system;
plot shows absolute values, however) it also oscillates on the short time scale.
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however, only applicable to the separable Hamiltonians. In our context one would
considerably suffer from the fixed timestep only in the case of highly eccentric
orbits.

integrator ∆|E|/|E| tcomp[h] RelTol stepsize h
GLS ≈ 10−10 14 N/A 0.25
ODE87 ≈ 10−9 14 10−14 adaptive
ODE113 ≈ 10−3 1/3 10−14 adaptive
ODE113 ≈ 10−3 1/4 10−6 adaptive
ODE45 ≈ 10−3 1/4 10−14 adaptive

Table B.1: Comparison of the performance of several integration schemes for the
regular trajectory integrated up to λ = 4×105 (see fig. B.2).
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Figure B.3: Chaotic trajectory of charged test particle (q̃Q̃ = 1, L̃ = 6 M and Ẽ =
1.8) on the Kerr background (a = 0.9 M) with Wald magnetic field (q̃B0 = 1M−1).
Particle is launched at r(0) = 3.68 M, θ(0) = 1.18 with ur(0) = 0.

First we integrate the cross-equatorial regular trajectory fig. B.1. Comparison
of the performance of the integrators is plotted in fig. B.2. We plot relative devia-
tion of the particle’s specific energy Ẽ from its initial value rather than the error in
super-hamiltonian because the discussion of motion in chap. 2.6 was mostly held
in terms of Ẽ whose impact upon the trajectory is thus more familiar to us. We
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Figure B.4: Comparison of the integrators in the case of chaotic trajectory. For
λ & 5×103 the GLS dominates in accuracy over other schemes with the difference
rising steadily. In the upper panel we compare ODE113’s outcome for two distinct
values of RelTol parameter. ODE45 is not shown to avoid overlapping of its plot
with ODE133 curves.
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calculate the current value of Ẽ from the super-hamiltonian H , while the value of
πt remains truly constant regardless the integrator since the Hamilton’s equation
for its evolution is simply dπt/dλ = 0.

Stepsize of GLS is set in such a way that the integration consumes roughly
the same amount of the CPU time as it does for ODE87 with RelTol = 10−14

to make the results comparable. The global accuracy of the GLS solver could
be further increased by reducing the stepsize while decreasing the RelTol hardly
improves the secular accuracy of non-symplectic methods here (we have compared
RelTol = 10−6 and RelTol = 10−14 results for ODE113 obtaining global errors of
the same orders in both cases).

We observe that the error of GLS rises steeply at the beginning and ODE87
is considerably better for some amount of time. However then the error of GLS
almost saturates while ODE87’s error keeps growing significantly. For λ & 105

which corresponds to ≈ 1000 revolutions around the center2 the GLS scheme
becomes more accurate than ODE87 with the difference further rising steadily. We
conclude that in the case of regular trajectory ODE87 is appropriate for short-term
accurate integration and GLS for any longer accurate integrations. On the other
hand for fast, though inaccurate computations one employs ODE113 on all time
scales.

integrator |∆E|/|E| tcomp [h] RelTol stepsize h
GLS ≈ 10−9 14 N/A 0.25
ODE87 ≈ 10−6 14 10−14 adaptive
ODE113 ≈ 10−3 1/6 10−14 adaptive
ODE113 ≈ 10−3 1/6 10−6 adaptive
ODE45 ≈ 10−3 1/2 10−14 adaptive

Table B.2: Comparison of the performance of several integration schemes for the
chaotic trajectory integrated up to λ = 4×105 (see fig. B.4).

In the case of the chaotic trajectory fig. B.4 the dynamics changes in favor
of symplectic solver GLS. In fig. B.3 we observe that in this case the symplectic
scheme is superior to the others in even more convincing manner than it was in
the regular case. Although the initial phase when the error induced by GLS rises
more steeply than that of ODE87 is also present, it turns over very quickly and for
λ & 5× 103 (≈ 50 azimuthal revolutions) the GLS turns out to be more accurate.
The difference then rises much faster compared to the regular case.

Experiments with ODE113 show that here we observe distinct (thought not
sharply) errors by changing the RelTol. Difference of eight orders of magnitude
in RelTol resulted in roughly one order difference in global error. We also note
that chaotic regime induces disorder in short-time oscillations of the global error

2For instance for M = 106M⊙ the azimuthal proper period of a given particle reads Tφ ≈ 103s in
SI.
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(see bottom panel of fig. B.4). We summerize that the chaotic regime accents the
supremacy of the symplectic scheme which is to be applied on all time scale here
(except very short integrations where ODE87 dominates) to obtain the most accu-
rate results. For fast though inaccurate calculation one would switch to ODE113
as before.

ur

r [M]

GLS, λ
fin

=3 x 105

2.5008 2.501 2.5012 2.5014 2.5016 2.5018 2.502 2.5022

−5

−4

−3

−2

−1

0

1

2

3

4

5

x 10
−4

ur

r [M]

ODE87, λ
fin

=3 x 105

2.5008 2.501 2.5012 2.5014 2.5016 2.5018 2.502 2.5022

−5

−4

−3

−2

−1

0

1

2

3

4

5

x 10
−4

ur

r [M]

ODE113, λ
fin

=3 x 105

2.5008 2.501 2.5012 2.5014 2.5016 2.5018 2.502 2.5022

−5

−4

−3

−2

−1

0

1

2

3

4

5

x 10
−4

ur

r [M]

ODE45, λ
fin

=3 x 105

2.5008 2.501 2.5012 2.5014 2.5016 2.5018 2.502 2.5022

−5

−4

−3

−2

−1

0

1

2

3

4

5

x 10
−4

Figure B.5: We show how the accuracy of the integration crucially affects the
appearance of the Poincaré surfaces of section of a single regular trajectory with
q̃Q̃ = 1.76, L̃ = 4.02 M and Ẽ = 1.619855 on the Kerr background a = 0.55 M
with Wald magnetic field q̃B0 = 1.92 M−1. Particle is launched at r(0) = 2.5012,
θ(0) = 1.0447 M with ur(0) = 0. We distinguish uθ ≥ 0 (black point) from uθ < 0
(red point) in the surfaces of section.

From a practical point of view we demand high accuracy of the long-term inte-
gration when constructing Poincaré surfaces of section. By theory the intersection
points with regular trajectory form one-dimensional curve in the section plane. In
fig. B.5 we observe, however, that the points may be dispersed over the consid-
erable area if the global error in energy rises causing artificial excitation/dumping
of the system. Symplectic GLS provides the most reliable outcome, with ODE87
the curve is blurred significantly but the interpretation remains unambiguous. With
ODE113 the curve is further blurred and using ODE45 solver we obtain completely
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unreliable outcome which could easily lead to incorrect interpretation of a trajec-
tory as a chaotic one. We note that we intentionally chose such trajectory which
is highly sensitive to the relative errors in dynamic quantities since it itself spans
small range of coordinate and momenta values.

We confirm that the symplectic integrators are the method of choice in the
case of long-term integration of the Hamiltonian system which in our case con-
sists of a charged test particle orbiting around the Kerr black hole with stationary
and axisymmetric electromagnetic test field. Its supremacy over non-symplectic
methods is even more apparent in the case of chaotic orbits, where the global accu-
racy of non-symplectic methods decreases rapidly. The accuracy of the symplectic
integrator could be further increased by reducing the stepsize (at the cost of the
computational time). On the other hand the performance of the non-symplectic
solvers is not considerably affected by changing the RelTol parameter across the
wide range of the values. Once the integrator doesn’t fit the problem (= is not sym-
plectic) there is no effective way to control the global error and even the extremely
small local truncation errors do not ensure reliable outcome on a long time scale.





Appendix C

Vfexplorer2

Here we briefly introduce the software tool vfexplorer2 we programmed in Matlab
system in order to survey electric and magnetic fields studied in chap. 2. We set up
simple graphic user interface (GUI) for the sake of effective exploration of complex
field structures.

Basic features of vfexplorer2 involve interactive zooming, step-wise navigation
and track logging allowing the user to return to any previous step of the exploration.
Moreover, he can export the plot to the graphic file directly at any moment. Alter-
natively he may redirect the matrix output describing given portion of the vector
field to the LIC toolbox (Shambo, 2005) which encodes the field structure into the
texture resembling iron fillings (see e.g. fig. 2.17)

In fig. C.1 we present two screenshots illustrating the survey of magnetic field
around a drifting Kerr BH (see sec. 2.3 for details). Interactive zooming feature
proves very useful when searching for a particular topological pattern (e.g. separa-
tor null points which we studied in sec. 2.5.2) in the complex field structure.

Currently the vfexplorer2 GUI also handles the problem specific parameters
such as spin of the BH, velocity of the drift etc. Nevertheless, it can be adopted to
explore any other vector field quite easily. Besides that we plan to include another
features, especially we intend to encode the field strength into the color scale of the
background of the field lines.
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Figure C.1: Survey of the complex magnetic field above the drifting extremal Kerr
BH using the vfexplorer2 GUI. Tightly layered structure near the horizon observed
in the upper panel is zoomed in the bottom one.
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Aliev, A. N., & Özdemir, N.: Motion of charged particles around a rotating black
hole in a magnetic field, Monthly Notices of the Royal Astronomical Society,
336, 241, 2002

Arnold, V. I.: Mathematical Methods Of Classical Mechanics, 2nd edition,
Springer, New York, 1989

Bagnulo, S., Landstreet, J. D., Mason, E., Andretta, V., Silaj, J. & Wade, G. A.:
Searching for links between magnetic fields and stellar evolution. I. A survey of
magnetic fields in open cluster A- and B-type stars with FORS1, Astronomy
and Astrophysics, 450, 777-791, 2006

Bahcall, S., Lynn, B. W., & Selipsky, S. B.: Fermion Q-stars, Nuclear Physics B,
325, 606, 1989
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Dovčiak, M., Karas, V., & Lanza, A.: Magnetic fields around black holes, Euro-
pean Journal of Physics, 21, 303-315, 2000

Duncan, R. C., & Thompson, C.: Formation of very strongly magnetized neutron
stars - Implications for gamma-ray bursts, The Astrophysical Journal Letters,
392, L9-L13, 1992

Eckmann, J. P., Oliffson, K. S., & Ruelle, D.: Recurrence plots of dynamical sys-
tems, Europhysics Letters, 5, 973, 1987

Falcke, H., & Biermann, P. L.: The jet-disk symbiosis I. radio to X-ray emission
models for quasars, Astronomy and Astrophysics, 293, 665-682, 1995

Farrell, S. A., Webb, N. A., Barret, D., Godet, O., & Rodrigues, J. M.: An
intermediate-mass black hole of over 500 solar masses in the galaxy ESO243-49,
Nature, 460, 73-75, 2009

Ferrière, K.: The interstellar magnetic field near the Galactic center, Astronomische
Nachrichten, 331, 27-33, 2010

Genzel, R., Eisenhauer, F., & Gillessen, S.: The Galactic Center massive black
hole and nuclear star cluster, Reviews of Modern Physics, 82, 3121-3195, 2010

Glendenning, N. K.: Compact Stars. Nuclear Physics, Particle Physics and General
Relativity, Springer, Berlin, 1997

Goldstein, H., Poole, C., & Safko, J.: Classical Mechanics, 3rd edition, Addison
Wesley, 2000
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Karas, V., & Vokrouhlický, D.: Chaotic motion of test particles in the Ernst space-
time, General Relativity and Gravitation, 24, 729, 1992
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Kopáček, O., Kovář, J., Karas, V., & Stuchlı́k, Z.: Recurrence plots and chaotic
motion around Kerr black hole,in Proc. of Conference Mathematics and Astron-
omy: A Joint Long Journey, eds. M. de León, D. M. de Diego & R. M. Ros,
Springer, pp. 278-287, 2010b
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