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Why am I writing on this topic? Partly because picturing of data is
important. Partly because, if present trends continue, an increas-
ing fraction of all mathematicians will touch — or come close to
touching — data during the next few decades.

John Tukey in his paper “Mathematics and the Picturing of Data”,
which started the development of data depth methodology (1975).
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Introduction

The concept of data depth provides an important nonparametric approach to mul-
tivariate data analysis. The concept has been developed in the last twenty years.
An impulse to the development of nonparametric methods was untenability of
classical assumptions of parametric approach (similarly as in the univariate case).
A very strong assumption of multivariate normal distribution is not satisfied in
many cases. Nonparametric inference in the univariate case is based on data or-
dering. This ordering is very natural, because of natural (linear) ordering of real
numbers. It enables us to define rank statistics. Also the notion of quantile (as
one of the characteristics of univariate distribution) is based on this ordering.

Any extension to the higher dimension must deal with the problem of no natural
ordering of real vectors. This makes problems when we are looking for gener-
alization of quantile or rank statistics for multivariate distributions. Data depth
concept provides one possible way how to order the multivariate data. We call this
ordering as central-outward ordering. It should be noted that data depth provides
quasi-ordering rather than ordering, because depth of some points in multidimen-
sional space can be equal.

Basically, any function which provides “reasonable” central-outward ordering of
points in multidimensional space can be considered as a depth function. This
vague understanding of the notion of depth function led to the variety of depth
functions, which have been introduced ad hoc since mid seventieth of the 20th
century. The most important depth functions - halfspace depth, simplicial depth,
zonoid depth and L1 depth - are shortly introduced in Section 1.2. Other depth
functions are mentioned as well.

The first depth function was introduced by Tukey in 1975. It is known as the half-
space depth and is still one of the most popular and the most widely used notions
of data depth. Tukey’s work started development of data depth concept. Histor-
ical overview should not missed many outstanding works, but the real milestone
was the work by Zuo and Serfling “General notions of statistical depth function”
published in 2000 ([56]). This work unified the theory of data depth by formulating
a general definition of depth function. This definition states four main desirable
properties of depth function. Section 1.1 is devoted to this general definition.

Data depth is very useful tool for nonparametric multivariate data inference. Basic
tools such as descriptive characteristics of location, scale, skewness and kurtosis of
multivariate distribution can be based on data depth. These characteristics were
proposed in an outstanding article by Liu, Parelius and Singh in 1999 ([38]). The
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paper deals also with visualizing these features via one-dimensional curves. More
sophisticated methods based on data depth are reviewed in the article [50] by
Serfling. Depth-based statistical procedures include tests of multivariate symme-
try, diagnosis of non-normality, comparison of several distributions (for example
tests of equal scales), outlier identification, statistical process control procedures,
multivariate density estimation and some others. Section 1.3 presents several par-
ticularly interesting applications of data depth concept.

Chapter 1, which provides a detailed review of the data depth methodology, ends
by some results and comments included in Section 1.4, that should clarify advan-
tages and disadvantages of the data depth concept.

The research presented in Chapter 2 was motivated by some weak points of the
halfspace depth. Central areas (areas including points with the highest depth) of
the halfspace depth are always convex. We found this property undesirable, when
we consider a distribution, whose density has nonconvex levelsets. Use of weights
in the halfspace leads to a generalization of the halfspace depth, so called weighted
halfspace depth. This newly proposed depth function allows the central regions
not to be convex.

The concept of weighted data depth provides a broad class of possible weight
functions, as can be seen in Section 2.2. Their basic properties are studied in
Section 2.3. Choice of the weight function which determines weighted data depth
is discussed in Sections 2.4 and 2.5. Computational aspects of the weighted data
depth are discussed in Section 2.6. The last section of the second chapter illus-
trates differences between the halfspace depth and the weighted halfspace depth.

In the last ten years, much effort has been devoted to the application of data depth
methodology in the area of discrimination. Chapter 3 deals with these applica-
tions. Methods, that have been proposed since 2000, are studied and their weak
points are detected. Many classifiers based on data depth (mainly those introduced
in Section 3.3) have problems when considered distributions differ in dispersion.
This phenomenon can be explained by discrepancy between the (affine invariant)
depth function and (non affine invariant) density function. Several solutions of this
problem was proposed. Classifiers which do not suffer from the problem of distri-
butions with different dispersions are introduced in Section 3.4, including a newly
proposed classifier based on a modified k-nearest-neighbour method. A distinct
way of discrimination is described in Section 3.5. Depth based classifiers are com-
pared to the classical classifiers in a simulation study presented in Section 3.7. An
advantage from the use of the weighted data depth introduced in Chapter 2 is
shown there.
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Chapter 1

Data depth

1.1 General definition of depth function and some

basic concepts

Existence of broad variety of different “data depth” notions, that have been pro-
posed ad hoc since mid seventieth of the 20th century, called for unified theory of
data depth. Different notions of data depth have different more or less desirable
properties. Probably the first work mapping systematically properties of some
data depth notion was that by Liu ([36]). On the basis of these desirable proper-
ties Zuo and Serfling formulated the general definition of statistical depth function
([56]). Besides rather technical assumptions of nonnegativity and boundedness of
a depth function, there are four main properties of a depth function. We list them
here with a short discussion:

• Affine invariance. Informally said, the depth of a certain point x should
not change when doing some affine transformation like shifting or rotating
all points or changing the scale of measurements. Shortly said it should
not depend on the underlying coordinate system. Affine invariance of depth
function preserves affine equivariance of location estimators based on this
depth.

• Vanishing at infinity. The depth of a point x should be very small when the
point is far away from the others (when its norm approaches infinity). This is
very natural requirement, which is similar to the requirement on probability
density.

• Maximality at centre. If the probability distribution P is symmetric some-
how, with the unique point that can be called the centre of symmetry, then
this point should be the deepest point, that is the point, where the depth
function attains its maximum value.

Zuo and Serfling use the term “centre” to denote a point of symmetry. Sev-
eral notions of symmetry can be considered. The authors considered three
particularly important notions of multivariate symmetry: central, angular
and halfspace symmetry. We add the notion of elliptical symmetry, which
is considered in many applications. Broader discussion can be found in [13].
Serfling wrote an engaging overview of multivariate symmetry and asym-
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metry [51], more theoretical results are presented in [57]. Distribution of
a d-dimensional random vector X is said to be:

– elliptically symmetric about θ ∈ Rd if the characteristic function of its
distribution can be expressed as: exp(itT θ)φ(tTΣt), where Σd×d ≥ 0
and φ are parameters. This definition can be found in an overview
article [43]. More intuitive (but less general) definition of elliptical
symmetry can be expressed under the assumption that the density of
X exists. In this situation the density must be of the following form:

|Σ|−1/2 g
(
(X − θ)T Σ−1 (X − θ)

)
for some nonnegative function g(·) and some Σd×d ≥ 0,

– centrally symmetric about θ ∈ Rd if L(X − θ) = L(θ −X) where L(·)
denotes distribution of appropriate random vector; sometimes the term
centrosymmetric is used instead of centrally symmetric,

– angularly symmetric about θ ∈ Rd if L((X − θ)/ ‖X − θ‖) =L((θ −
X)/ ‖X − θ‖), that is if the vector (X−θ)/ ‖X − θ‖ is centrally sym-
metric. For absolutely continuous distributions the angularly symmetry
coincides with the following notion of halfspace symmetry. It is easy to
see that in such a case the point of symmetry is unique,

– halfspace symmetric about θ ∈ Rd if P(X ∈ H) ≥ 1/2 for every closed
halfspace H containing θ.

In all previous cases θ ∈ Rd is called the centre of symmetry. It is easy
to show that each of these notions of symmetry generalizes preceding one.
Their relationship can be visualized by a simple scheme:

elliptical sym. ⇒ central sym. ⇒ angular sym. ⇒ halfspace sym.

The requirement of maximality at centre is very natural for distributions
like multivariate normal distribution or uniform distribution on a convex
support. However, there are also situations, in which the requirement is
a bit problematic, for example uniform distribution on the support, which
is the union of two triangles symmetric around their only common point.
This point is the centre of symmetry, but apparently lies at the border of
the support.

• Monotonicity relative to the deepest point. The depth of points x ∈ Rd lying
on some fixed ray going through the deepest point (point with the highest
depth) should be a monotone (nonincreasing) function of the Euclidean dis-
tance of x from the deepest point. The property of monotonicity relative
to the deepest point is at least ambiguous. Here we discuss two examples
of datasets for which the property is not relevant. The first example can be
described as random vector with uniform distribution on a “flower-shaped”
support. Points randomly generated from this distribution are shown in
Figure 1.1 on the left. Another example is the case of uniform distribution
on a support, which consists of a unit circle and an annulus with the same
center, see Figure 1.1 on the right.
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Figure 1.1: Randomly generated data from uniform distribution on a “flower-
shaped” support (left) and on a “circle-annulus-shaped” support (right).

In both cases if the property of monotonicity relative to the deepest point
was satisfied, there would be points out of the support of random vector
(points with density equal to zero) that have higher depth then some points
in the support of random vector. This fact is in contrast to the general
idea of data depth, which was expressed by Zuo and Serfling as follows:
“depth function is any function which provides central-outward ordering of
vectors with respect to some probabilistic distribution P”. In our case,
we will probably get central-outward ordering, but the relationship to the
probabilistic distribution is very problematic.

Although some of the previously stated properties are ambiguous, they are
used to define the term “statistical depth function”. Following formal definition
was firstly published by Zuo and Serfling ([56]):

Definition 1.1 General definition of statistical depth function.
Denote by P the class of distributions on the Borel sets on Rd and by PX the
distribution of a given random vector X. Let the mapping D(·; ·) : Rd × P → R
be bounded, nonnegative, and satisfy following conditions:

1. D(Ax + b; PAX+b) = D(x; PX) holds for any random vector X in Rd, any
d× d nonsingular matrix A and any d–dimensional vector b;

2. D(x; P ) → 0 as ‖x‖ → ∞ for each P ∈ P;

3. D(θ; P ) = supx∈Rd D(x; P ) holds for any P ∈ P having centre in θ;

4. D(x; P ) ≤ D(θ + α(x − θ), P ) holds for α ∈ [0, 1], for any P ∈ P having
the deepest point in θ.

Then D(·; P ) is called a statistical depth function.

In further text we use following notations and definitions of terms, which exhibit
structure of multivariate distributions and reveal the shape of datasets:

Definition 1.2 • The set
{
x ∈ Rd : D(x; P ) ≥ t

}
is called the level set of

depth t. Its border is known as the contour of depth t.
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• The set
{
x ∈ Rd : f(x) ≥ t

}
is called the level set of density t (f denotes

density function).

• The p-th central region Cp is defined as the smallest region enclosed by depth
contours to amass probability p, that is Cp =

⋂
t {R(t) : P(R(t)) ≥ p}, where

R(t) =
{
x ∈ Rd : D(x; P ) > t

}
.

Sometimes the term central area is used instead of the term central region.

1.2 Depth functions - an overview

In this section we would like to provide an overview of the most important and
most widely used depth functions. We state their definitions and show their basic
properties. Computational aspects are also discussed, because the fast compu-
tation of the empirical depth is crucial for relevant practical applications. Parts
1.2.1 and 1.2.2 are devoted to the halfspace depth and simplicial depth, that are
probably the most often considered depth functions. The later two parts (1.2.3
and 1.2.4) are devoted to the L1-depth and zonoid depth. These two notions of
data depth do not satisfy the conditions of general depth function definition and
hence they are not statistical depth functions in the sense of Definition 1.1. Nev-
ertheless, they are used in applications because of their computational simplicity.
The last part of this section summarizes other possible notions of data depth.

1.2.1 Halfspace depth

Definition 1.3 The halfspace depth of a point x in Rd with respect to a probabil-
ity measure P is defined as the minimum probability mass carried by any closed
halfspace containing x, that is

D(x; P ) = inf
H

{
P(H) : H a closed halfspace in Rd : x ∈ H

}
.

Sometimes it is useful to write the previous formula in the following form:

D(x; P ) = inf
u:‖u‖=1

P
({

y : uT (y − x) ≥ 0
})

.

The halfspace depth is sometimes also called location depth or Tukey depth as it
was firstly defined by J. Tukey in 1975 ([52]). The halfspace depth is well defined
for all x ∈ Rd. Its sample version (empirical halfspace depth), defined on a random
sample X1, . . . ,Xn from the distribution P , is defined as a halfspace depth for
the empirical probability measure Pn.

This definition is very intuitive and easily interpretable. Moreover, there are
many nice properties of the halfspace depth, which made this depth function very
popular and widely used. In particular, the halfspace depth function satisfies all
desirable properties of Definition 1.1. This was proved by Zuo and Serfling in [56].
They classed the halfspace depth as a Type D depth function. This class of depth
functions is defined as follows:

Definition 1.4 Let C be a class of closed subsets of Rd and P a probability measure
on Rd. A corresponding Type D function is defined by

D(x; P, C) = inf
C∈C

{P(C) : x ∈ C} .
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Some important properties (like upper semicontinuity or convex, compact and
nested properties of central regions) are proved for the whole Type D class of
depth functions under reasonable mild assumptions on C:

Theorem 1.1 Let C be a class of closed Borel sets satisfying both of following
conditions:

• if C ∈ C, then Cc ∈ C,

• for C ∈ C and x ∈ Co, there exist C1 ∈ C with x ∈ ∂C1, C1 ⊂ Co,

where ∂C, Cc, Co, C denote, respectively, the boundary, complement, interior and
closure of C,
Further, for a given probability measure P on Rd, assume that if x ∈ C ∈ C
and P (C) < p, then there is a C1 ∈ C such that x ∈ Co

1 and P (C1) < p. Denote
R(p) =

{
x ∈ Rd : D(x; P, C) ≥ p

}
, where p ∈ (0, 1], regions with the highest depth.

Then:

1. D(x; P, C) is upper semicontinuous;

2. R(p), p ∈ (0, 1] are compact and nested, i.e. R(p1) ⊂ R(p2) if p1 > p2;

3. R(p) is convex if every C ∈ C is convex.

Proof: Can be found in [56] as the proof of Theorem 2.11.

Asymptotical properties of empirical halfspace depth were examined by Massé
([40]). He proved that under some mild conditions on P and fixed x such that
D(x, P ) = α > 0, it holds that

√
n (D(x, Pn)−D(x, P )) is asymptotically dis-

tributed as N (0, α(1− α)).

Computational aspects of halfspace depth have been studied not only by statis-
ticians, but also by the means of discrete geometry and optimization. A short
summary of used approaches and the most important results can be found in
[16]. Exact algorithms for computing halfspace depth in higher dimensions are of
very limited use because of their high complexity. More precisely, the problem
is known to be NP–complete (in meaning of complexity theory, see for example
[17]) when number of points n and dimension d are both arbitrary. This was
proved by Johnson and Preparata by showing the computation of halfspace depth
to be equivalent to the densest hemisphere problem ([27]). This problem can be
formulated as follows:

Let Rd be the d-dimensional Euclidean space and let Sd be the sphere of unit
radius with centre at the origin of Rd. Let K be a set of n points on Sd. Find
a hemisphere of Sd which contains a largest subset of K.

Johnson and Preparata also showed that the problem is equivalent to the prob-
lem of finding the maximum feasible subsystem of a system of strict homogeneous
linear inequalities. This provides a different way for computing empirical halfspace
depth. This approach led to so-called output-sensitive algorithms ([5]).

If the number d, which determines the dimension of Euclidean space, is fixed,
then there exist an algorithm, which solves the problem in time O(nd). Johnson
and Preparata proposed an enhanced algorithm, whose solving-time is O(nd−1 log n).
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However, its use is very limited in higher dimensions (authors do not recommend
use in dimension higher than d = 4). The idea of the naive recursive algorithm
can be sketched as follows:

Lets consider the set M = {x1, . . . ,xn} of n nonzero points in Rd. The algo-
rithm works in n basic steps indexed by the letter i. Initialize m := 0. In the i-th
step:

if d = 1 let ML = {j : xj < xi}, MG = {j : xj > xi}
and mnew = min(card(ML), card(MG)).
If mnew > m then redefine m := mnew

and M∗ := ML (if card(MG) < card(ML) then M∗ := MG).

if d > 1 define H(xi) =
{
y ∈ Rd : yT xi = 0

}
, the hyperplane of all vectors or-

thogonal to xi. Find the projection of x1, . . . ,xn into H(xi):

x′
j = xj −

xT
j xj

|xi|2
xi for j = 1, . . . , n

Solve the problem for nonzero points x′
1, . . . ,x

′
n in Rd−1.

The halfspace containing the largest number of points is determined as M \M∗.

Most widely used algorithms for computing empirical halfspace depth are those
by Rousseeuw et al. For instance, the package depth, which includes depth func-
tions tools for multivariate data analysis in software R, uses exact algorithms pub-
lished in [45] and [47] for dimensions two and three and approximate algorithms
published in [47] for higher dimensions.

The latest development is focused on so called primal-dual algorithms - al-
gorithms that update both upper and lower bounds of the depth. They rely on
sufficiency of partial information and thus might terminate much earlier than ex-
act algorithms. The algorithm has been developed mainly by Fukuda and Rosta
and can be found in [4].

1.2.2 Simplicial depth

Definition 1.5 The simplicial depth of a point x in Rd with respect to a probability
measure P is defined as

D(x; P ) = P(x ∈ S[X1, . . . ,Xd+1]),

where S[X1, . . . ,Xd+1] is a simplex with vertices X1, . . . ,Xd+1, that are indepen-
dent identically distributed observations from P .

Simplicial depth was defined by R.Y. Liu in 1988 ([35]). The classical reference
is her later paper [36] (dated 1990), where more detailed discussion of simplicial
depth properties was presented. The simplicial depth function has all properties
demanded by the Definition 1.1 providing that P is continuous angularly symmet-
ric distribution (see [56]). However, Zuo and Serfling found some counterexamples
showing that simplicial depth does not satisfy all conditions in general. They
classed the simplicial depth as a Type A depth function. This class of depth
functions is defined as follows:
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Definition 1.6 Let h(x; x1, . . . ,xr) be any bounded nonnegative function which in
some sense measures the closeness of x to the points x1, . . . ,xr. A corresponding
Type A depth function is then defined by the mean closeness of x to the random
sample of size r:

D(x; P ) = EP h(x; X1, . . . ,Xr),

where X1, . . . ,Xr is a random sample from P .

In particular, we have r = d+1 and h(x; X1, . . . ,Xd+1) = I(x ∈ S[X i1 , . . . ,X id+1
])

for the simplicial depth.

Sample version of any Type A depth defined on a random sample X1, . . . ,Xn of
the distribution P is defined as the depth with respect to the empirical probability
measure Pn:

D(x; Pn) =
1(
n
r

)∑
∗

h(x; X i1 , . . . ,X ir),

where ∗ denotes summing over all r-tuples i1, . . . , ir from the index set 1, . . . , n.
Thus the sample version of any Type A depth has a form of U–statistic, as it
was defined by Hoeffding in 1948 (see [23]). This knowledge enables use of gen-
eral theory of U–statistics for examination of empirical Type A depth functions
asymptotic properties.

Since EP I(x ∈ S[X i1 , . . . ,X ir ]) = P(x ∈ S[X i1 , . . . ,X ir ]), we have the prop-
erty of unbiasedness of empirical Type A depth function as it holds E D(x; Pn) =
D(x; P ) for any x ∈ Rd. It might be noted here that the letter “U” in the term
“U–statistic” is right due to the property of unbiasedness. Nevertheless, more
important property of U–statistics is its symmetry with respect to X1, . . . ,Xn.
Among others, Hoeffding derived formula for asymptotic variance of U–statistics:
Var(Un) ∼ o(n−1). Hence we see that the convergence is as fast as for example the
convergence of sample mean.

In currently existing R-package depth, the simplicial depth is computed in
dimension 2 only ([41]). Calculation is exact and based on Fortran code by
Rousseeuw and Ruts ([45]). This program reduces the number of operations to
O(n log n) by combining some geometric properties with certain sorting and up-
dating mechanism. In principle, in any finite dimension the simplicial depth could
be calculated by determining whether or not a point is inside a random simplex.
This can be done by checking if the point can be expressed as a convex combination
of the vertices of the simplex. Such a naive algorithm needs to solve a system of
linear equations. This naive routine is of course time–consuming, it takes O(nd+1)
time. Unfortunately, there does not exist any more effective algorithm for dimen-
sion higher than four so far. Cheng and Quyang gave an O(n2) algorithm for R3

and an O(n4) algorithm for R4 ([7]).

1.2.3 L1–depth

Definition 1.7 Let P be a probability distribution of a random vector X on Rd

such that EP ‖X‖ < ∞, where ‖·‖ denotes the Euclidean norm in Rd. The L1–
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median of the distribution P is defined as

M(P ) := arg min
y∈Rd

EP ‖X − y‖ .

The L1-depth of a point x ∈ Rd with respect to the distribution P is defined as

D(x; P ) = 1− inf

{
w ≥ 0 : M

(
w

1 + w
δx +

1

1 + w
P

)
= x

}
,

where δx is a point mass at x. That is, 1−D(x; P ) is the minimum incremental
mass w needed at x for x to become the L1–median of the mixture w

1+w
δx + 1

1+w
P .

The L1–depth is also sometimes called the spatial depth. The definition of L1–
depth was proposed by Vardi and Zhang in 2000 ([54]). They provided an inter-
esting historical overview of problems which motivated definition of L1–median,
namely Fermat–Weber location problem (a logistic problem of optimal selection of
a location). They also provided a modification of Weiszfeld’s iterative algorithm
for computing empirical L1–median and emphasized high breakdown point (equal
to 1/2) of L1–median. Probably the most important contribution of the cited
work is the derivation of a formula for empirical L1–depth, which enables its fast
computation:

Theorem 1.2 Let X1, . . . ,Xn be a random sample from absolutely continuous
distribution P on Rd such that EP ‖X‖ < ∞.

• For x /∈ {X1, . . . ,Xn} denote ē(x) = 1
n

∑n
i=1

x−Xi

‖x−Xi‖ the spatial rank func-

tion. Then D(x; Pn) = 1− ‖ē(x)‖.

• For x = Xk, for some k ∈ {1, . . . , n} denote ē(x) = 1
n−1

∑
i6=k

x−Xi

‖x−Xi‖ the

spatial rank function. Then D(x; Pn) = 1− (‖ē(x)‖ − 1/n)+.

Proof: Derivation can be found in Section 4 of [54].

Note that when computing the depth of some sample point Xk, k ∈ 1, . . . , n
the presence of the point in sample “increases” its depth. The theorem above is
stated in a simple version under the assumption that there are no ties in the data.
This assumption is quite natural when considering random sample from absolutely
continuous distribution, but it is not sometimes satisfied in practice. More general
version can be found in [54]. Other works devoted to L1–depth sometimes use more
straight definition than Definition 1.7; for example Serfling ([49]) defines L1–depth
of the point x ∈ Rd with respect to the distribution P by the formula:

D(x; P ) = 1−
∥∥∥∥EP

(
x−X

‖x−X‖

)∥∥∥∥ .

He also recalls some older results to show consistency of the empirical L1–depth.

Although Vardi and Zhang showed some good properties of L1–depth (for ex-
ample vanishing at infinity), the L1–depth does not satisfy the property of affine
invariance and hence it is not a statistical depth function in a sense of Defini-
tion 1.1.
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Computational simplicity can be considered as one of the biggest advantages
of L1–depth. It makes it attractive for applications in high dimensional spaces.
Counting the depth is easy and hence there is no need of preprogrammed routines.
Estimating L1–median, which is a more complicated problem, is implemented in
(at least) two R–packages: ICSNP (which deals with tools for multivariate non-
parametrics) uses directly algorithm by Vardi and Zhang, and pcaPP (which deals
with robust principal component analysis by projection pursuit).

1.2.4 Zonoid depth

The zonoid depth was proposed by Koshevoy and Mosler at mid ninetieth of the
20th century. The definition of zonoid region itself demands our attention:

Definition 1.8 Zonoid regions: The α–zonoid region of some distribution P
on Rd with the finite first moment is defined as

Zα(P ) =

{∫
Rd

xg(x)dP (x) : g : Rd → [0, 1/α] ,

∫
Rd

g(x)dP (x) = 1

}
for α ∈ (0, 1] and Z0(P ) = Rp.

Obviously
∫

Rd xg(x)dP (x) is a point in Rd, hence Zα(P ) is a set of points in Rd

which rises by successive choosing of all possible “weight” functions g(·). This func-
tions are requested to have two above mentioned properties: g(x) ∈ [0, 1/α] ∀x ∈
Rd and

∫
Rd g(x)dP (x) = 1 (note the similarity to the property of a density func-

tion).
When considering empirical distribution function with equal probability mass 1/n
at each point X1, . . . ,Xn and denoting g(X i) = λ∗i for i = 1, . . . , n, the previous
formula can be written as:

Zα(Pn) =

{
1

n

n∑
i=1

λ∗i X i :
1

n

n∑
i=1

λ∗i = 1, 0 ≤ λ∗i ≤ 1/α for all i

}
.

It is easy to see that:

• zonoid regions are nested, that is if α1 ≥ α2 then Dα1 ⊂ Dα2 ,

• Z1(P ) = EP X,

• zonoid regions for α > 0 are affine equivariant, bounded and convex.

Definition 1.9 Zonoid depth: The zonoid depth of a point x ∈ Rd with respect
to distribution P on Rd is defined as

D(x; P ) = max {α : x ∈ Zα(P )} .

Theoretical properties and possibilities of generalization are studied for ex-
ample in [31] and [32]. It is proved that the zonoid depth is affine invariant
and vanishes at infinity. Further it is proved that the zonoid depth is upper
semi-continuous (the set

{
x ∈ Rd : D(x; P ) ≥ α

}
is closed for every α) and quasi-

concave (for any λ ∈ [0, 1] and x1, x2 ∈ Rd it holds D(λx1 + (1 − λ)x2; P ) ≤
max {D(x1; P ), D(x2; P )}). However, it can fail to satisfy property of maximality
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at centre when the distribution is not centrally symmetric, because it attains its
maximal value always at EP X. This also brings a usual problem of nonrobustness
of sample zonoid depth.

Computational aspects of zonoid depth are discussed in detail in [12]. It was
shown that the computation of zonoid depth of a point x ∈ Rd with respect to
empirical distribution Pn based on random sample X1, . . . ,Xn can be done by
solving the following linear program:

Minimize γ

subject to: Xλ = x

λ1 = 1

γ1− λ ≥ 0, λ ≥ 0

where X = (X1, . . . ,Xn) is the data matrix whose columns are vectors X1, . . . ,Xn,
0 and 1 denote n-dimensional (column) vectors of zeros, ones respectively. λ =
1/n(λ∗1, . . . , λ

∗
n)T is a vector of unknown real parameters. If γ∗ is the optimal value

of the objective, then it holds:

D(x; Pn) =
1

nγ∗
.

Koshevoy et el. do not recommend standard simplex methods for solving this
linear program when n is too large. They provided an algorithm which takes
advantage of the special structure of the set of constraints by a Dantzig–Wolfe
decomposition. This very fast algorithm for computing the zonoid depth makes
this depth very attractive for use in applications (see for example [42], where it
is used for classification problem). The algorithm can be found in [12]. Current
computer can count zonoid depth of 1000 points in 8-dimensional space in few
minutes. The same computation of the (exact) halfspace depth would exceed few
years.

1.2.5 Other depth functions

Except the previously mentioned depth functions, many other notions of data
depth have been introduced so far. We do not describe them in detail here. Nev-
ertheless, they should be mentioned at least. We do not give reference to particular
depth functions. They can be found in [38], [50] or [56].

• The Mahalanobis depth was introduced by Mahalanobis in 1936. It is
defined as

D(x; P ) =
1

1 + (x− µ)TΣ−1(x− µ)
,

where µ is the mean vector and Σ is the dispersion matrix of P . The
definition is quite easy to understand and the computation of empirical Ma-
halanobis depth is quite fast. The problem is that the depth is very closely
related to elliptically symmetric distributions - the levelsets of the depth are
ellipsoids for any P , even if P is not elliptically symmetric. Moreover, there
is no unique way how to estimate parameters µ and Σ, classical estimators
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are not robust. The depth is nonzero on the whole space, what can be use-
ful in some applications. Zuo and Serfling placed this depth to the class of
Type C depth functions ([56]).

• The projection depth was firstly defined by Liu in 1992 and inspected
later mainly by Zuo. It was inspired by the projection idea behind the
Stahel–Donoho estimator. The projection depth of the point x ∈ Rd with
respect to distribution P is defined as:

D(x; P ) =
1

1 + O(x; P )
, where O(x; P ) = sup

u:‖u‖=1

∣∣uT x−med(uT X)
∣∣

MAD(uT X)
,

where random vector X has distribution P , med(Y ) denotes median and
MAD(Y ) = med (|Y −med(Y )|) denotes the univariate median absolute de-
viation. More generally, some other measures of location and dispersion
could be considered instead of the median and MAD. Notice that the formu-
la for projection depth has similar structure as the formula for Mahalanobis
depth. The projection depth belongs to the same group of Type C depth
functions according to [56]. It is a statistical depth function in the sense
of Definition 1.1 (it has all four desirable properties). This makes it very
attractive. However, quite a small attention has been paid to this notion of
data depth so far.

• The convex hull peeling depth was introduced by Barnett in 1976. It is
defined for some sample point Xk, k = 1, . . . , n with respect to the data set
{X1, . . . ,Xn} as the level of the convex layer Xk belongs to. The compu-
tation is quite fast, but there is no theoretical version (population analogue)
of this sample depth. Donoho and Gasko discussed breakdown properties of
the “peeled mean” - mean of the points with the highest convex hull peeling
depth - in [10]. They showed (in section 4.1) that the breakdown point can
not be higher than 1/(d+1). Consequently, they placed this method among
those which do not attain high breakdown point.

• The likelihood depth was introduced by Fraiman and Meloche in 1996. It
is defined as density, that is

D(x; P ) = f(x),

where f is density function of underlying distribution. This definition brings
the problem of density estimation with all its difficulties. This notion of
depth does not generally satisfy any of the four basic properties of Defini-
tion 1.1. This notion of depth is particularly useful when describing multi-
modality of a distribution.

• The Oja depth and the simplicial volume depth are both based on the
volume of random simplex. The later (and more complicated) one takes into
consideration a dispersion of the distribution.
The Oja depth of a point x ∈ Rd with respect to distribution P is defined
as:

D(x; P ) = [1 + EP ∆(S[x; X1, . . . ,Xd])]
−1 .
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The simplicial volume depth of a point x ∈ Rd with respect to distribution
P is defined as:

D(x; P ) =

[
1 + EP

(
∆(S[x; X1, . . . ,Xd])√

det(Σ)

)α]−1

,

where ∆(S[x; X1, . . . ,Xd]) denotes the volume of d–dimensional closed sim-
plex S[x; X1, . . . ,Xd] with vertices x and d random observations X1, . . . ,Xd

from P , Σ is the covariance matrix of P and α > 0 is a parameter. The
sample versions are analogous to the sample version of the simplicial depth.
Oja depth is not affine invariant in general. Zuo and Serfling proved ([56])
that the simplicial volume depth is a depth function in the sense of Defini-
tion 1.1 under the assumption that α ≥ 1 and P being centrally symmetric.
They classified the depth as Type B depth function.

• The Lp–depth (p > 0) functions use the Lp norm ‖·‖p in definition. The

Lp–depth of a point x ∈ Rd with respect to distribution P is defined as

D(x; P ) =
(
1 + EP ‖x−X‖p

)−1

.

Notice that the formula in definition is similar to the formula for simplicial
volume depth. The Lp–depth functions are also classified as Type B depth
functions by Zuo and Serfling. The affine invariant version of L2–depth is
particularly interesting. It satisfies all desirable properties of Definition 1.1
under the assumption of P being angularly symmetric about a unique point.

• The majority depth was proposed by Singh in 1991. The majority depth
of a point x ∈ Rd with respect to P is defined as

D(x; P ) = P (x ∈ MP (X1, . . . ,Xd)) ,

where MP (X1, . . . ,Xd) denotes so called major side determined by X1, . . . ,
Xd, that is the halfspace bounded by hyperplane containing X1, . . . ,Xd

which has probability ≥ 1/2. One can see from Definition 1.6 that the ma-
jority depth is a Type A depth function with r = d and h(x; X1, . . . ,Xd) =
I (x ∈ MP (X1, . . . ,Xd)). The majority depth satisfies properties of max-
imality at centre and monotonicity relative to deepest point under the as-
sumption of P being halfspace symmetric.

• Serfling ([50]) got together several extended notions of depth function. Prob-
ably the most well known is the regression depth, which was introduced
by Rousseeuw and Hubert in 1999. It provides an extension of halfspace and
simplicial depth and defines depth notion in the regression settings. In this
approach, the depth is a property of a fit (represented by coefficients β).
The depth of a fit β with respect to empirical distribution Pn determined
by random sample X1, . . . ,Xn is defined as the smallest number of obser-
vations that would need to be removed in order to make β a nonfit. Nonfits
are exactly those fits with zero depth. A particular definition of a nonfit
determines a particular depth function. For more details see [44]. Another
generalizations of depth function: data depth on circles and spheres
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by Liu and Singh (1992), tangent depth by Mizera (2002), generalized
forms of Tukey depth by Zhang (2002) and location–scale depth by
Mizera and Müller (2004).

• New approaches to data depth have come from discrete geometry, for example
the class of proximity graph data measures such as Delaunay depth,
Gabriel graph depth or β–skeleton depth introduced by Rafalin, Seyboth and
Souvaine or the colourful simplicial depth by Deza et al. For detailed
reference see [26].

1.3 Possible applications of the data depth

This section provides author’s selection of some interesting applications of da-
ta depth methodology published in literature. From obvious reasons, the list of
applications is not exhaustive.

The notion of rank is crucial in many applications. Consider a d-dimensional
probability distribution P and a random sample X1, . . . ,Xn from this distribu-
tion. (The empirical probability measure based on the sample is denoted by Pn).
For any point x ∈ Rd we define

rP (x) = P(D(X; P ) ≤ D(x; P ) |X ∼ P ) (1.1)

and
rPn(x) = # {X i : D(X i; Pn) ≤ D(x; Pn), i = 1, . . . , n} /n. (1.2)

• Outlier detection - a bagplot. Rousseeuw et al. [46] proposed a bivariate
generalization of the univariate boxplot, so called bagplot. They used the
halfspace depth to order the data, but other depth functions might be used
as well. The bagplot consists of

– the deepest point (the point with maximal depth),

– the bag, that is the central area, which contains 50% of all points; the
bag is usually dark colored,

– the fence, which is found by magnifying the bag by a factor 3; the
fence is usually not plotted; observations outside the fence are flagged
as outliers,

– the loop, which is an area between the bag and the fence; usually light
coloured.

The bagplot procedure is available in R library aplpack. As an example, we
used car data of Chambers and Hastie that are available in library rpart.
Figure 1.2 displays car weight and engine displacement of 60 cars. Five
outliers were detected.

• Affine equivariant and robust estimates of location. Donoho and
Gasko ([10]) have shown that two basic location estimators based on the
halfspace depth, the deepest point and the trimmed mean (with trimming
based on the halfspace depth), are both affine equivariant and robust (in the
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Figure 1.2: An example of bagplot.

sense of the high breakdown point). The combination of these two proper-
ties is quite rare in multivariate statistics. The most important results are
summarized in the next theorem:

Theorem 1.3 Let X1, . . . ,Xn be a sample determining empirical version
Pn of an absolutely continuous distribution P on Rd, with d > 2. Assume
data be in a general position (no ties, no more than two points on any line,
three in any plane, and so forth).
Consider the deepest point T∗(Pn) = arg maxx D(x, Pn) and α-trimmed mean
Tα(Pn) = Ave(X i : D(X i; Pn) ≥ nα), the average of all points whose depth
is at least nα.
Denote β := arg maxx D(x; P ) (β = 1/2 if P is centrally symmetric). Then

1. The breakdown point of T∗(Pn) is greater or equal to 1/(d + 1). It
converges almost surely to 1/3 as n →∞ if P is centrally symmetric.

2. For each α ≤ β/(1 + β), Tα(Pn) is well defined for sufficiently large n
and its breakdown point converges almost surely to α.

Proof: Can be found in [10] as the proof of Propositions 3.2 - 3.4.

• Rank tests for multivariate scale difference. Liu and Singh [39] com-
bined ranks based on data depth with well-known one-dimensional nonpara-
metric procedures to test scale difference between two or more distributions.

Consider two d-dimensional distributions P1 and P2, which possibly differ
in dispersion only. Denote X1, . . . ,Xn1 a random sample from P1 and
Y 1, . . . ,Y n2 a random sample from P2. Denote the combined sample as
{W 1, . . . ,W n1+n2} ≡ {X1, . . . ,Xn1 , Y 1, . . . ,Y n2} and denote Pn1+n2 the
empirical distribution function based on the combined sample.

We want to test the hypothesis H0 of equal scales against the alternative that
P2 has larger scale in the sense that the scale of P2 is an expansion of the
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scale of P1. If the scale of P2 is greater, then obviously observations from the
second distribution tend to be more outlying than the observations from P1.
Consider the sum of the non-normalized ranks for the sample from P2:

R (Y 1, . . . ,Y n2) = (n1 + n2)

n2∑
i=1

rPn1+n2
(Y i).

Now we proceed as in the case of testing for a (negative) location shift in
the univariate setting. This leads us to the Wilcoxon rank-sum procedure.
When n1 and n2 are sufficiently large, we can rely on asymptotic behaviour
of the test statistic (assuming null hypothesis):

R∗ =
R(Y 1, . . . ,Y n2)− [n2(n1 + n2 + 1)/2]

[n1n2(n1 + n2 + 1)/12]1/2

D→ N(0, 1)

and hence we reject H0 if R∗ ≤ Φ−1(α), where Φ−1(α) is the α-quantile of
the standard normal distribution.

We can proceed similarly when considering more than two (say K > 2)
distributions. We test the hypothesis that the underlying distributions are
identical against the alternative that the scales of these distributions are
not all the same, in the sense of scale contraction. Construction of the test
follows the idea of the well-known Kruskal-Wallis test. Let R̄i denote the
average rank (based on data depth) of the observations from the i-th sample
in the combined sample. The total number of all observations in combined
sample (from all K samples) is N . Under the null hypothesis, it holds:

T =
12

N(N + 1)

K∑
i=1

(
niR̄

2
i

)
− 3(N + 1)

D→ χ2
K−1

We reject the null hypothesis at an approximate level α if T ≥ χ2
K−1(1−α),

where χ2
K−1(1− α) is the (1− α) quantile of a chi-squared distribution with

(K − 1) degrees of freedom.

There is a simple graphical tool developed by Liu, Parelius and Singh (see
[38]) to visualize difference in scales of multivariate distributions. They de-
fined a scale curve as a plot of p ∈ (0, 1) versus volume of Cp - the p-th
central region (see Definition 1.2). The sample scale curve, based on random
sample X1, . . . ,Xn, plots volumes of the convex hulls containing dnpe most
central points (versus p). By plotting scale curves for compared distributions
in one plot, the difference in scales can be easily visualized.

The following example should illustrate the methodology. We simulated 250
points from bivariate N(0, I) distribution and the same number of points
from N(0, 2I) (I denoting 2×2 identity matrix). The test statistic was R∗ =
−2, 14, which is less than Φ−1(0, 05) = −1, 64. We thus (correctly) reject the
null hypothesis of identical distributions. The difference in dispersions can
be seen in Figure 1.3.

• Control charts for multivariate processes. Liu [37] used the concept of
data depth to introduce control charts for monitoring processes of multivari-
ate quality measurements. The idea is to work with ranks of the multivariate
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Figure 1.3: Empirical scale curves based on samples of 250 points from N(0, I)
(solid line) and from N(0, 2I) (dashed line).

measurements (based on data depth) rather than with multivariate measure-
ments themselves.

Let G denote the prescribed d-dimensional distribution (if the measurements
follow the distribution G, the process is considered to be in control). G
is either known or it can be estimated: Gn denotes its empirical version,
based on n observations. Let X1, X2, . . . be the new observations from the
considered process. They follow some distribution F . Our task is to test the
null hypothesis H0 : F ≡ G against the alternative HA: there is a location
shift or a scale increase from G to F .

The test is based on ranks rG(X1), rG(X2) . . . (or rGn(X1), rGn(X2), . . . if
G needs to be estimated). Under the null hypothesis, it holds:

1. rG(X) ∼ U [0, 1],

2. rGn(X)
D→ U [0, 1], provided that D(·; Gn) → D(·; G) uniformly as n →

∞.

The uniform convergence of D(·; Gn) holds for example for simplicial depth if
G is absolutely continuous. The expected value of rG(X) is thus 0.5. Small
values correspond to a change in the process. A so-called lower control limit
is thus equal to α (typically 0.05). Values rG(X i) < α signalize a possible
quality deterioration.

Similarly as Liu [37], we can demonstrate the procedure on simulated data.
Let the prescribed distribution G be a bivariate standard normal distribution.
Firstly, we generate 500 observations from this distribution to get a sample
version Gn (we consider G to be unknown to mimic some real applications).
Subsequently, we generate new observations - 40 observations from bivariate
standard normal distribution (process in control) and next 40 observations
from bivariate normal distribution with shifted mean (2, 2)T and both scales
doubled. The control chart is shown in Figure 1.4.

There is one so called false alarm in the first half of observations. The out-
of-control status in the second half of observations is correctly detected 30
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Figure 1.4: Control chart for multivariate process.

times (from 40 observations). The change is apparent from the chart.

Liu called this type of control chart the r chart. She also proposed multi-
variate versions of Shewhart chart (Q chart) and CUSUM chart (S chart).

• Multivariate density estimation. Fraiman, Liu and Meloche used the
data depth for smart estimating of multivariate density function [15]. They
considered the case in which a density function f of some multivariate prob-
ability distribution can be expressed as some real function of the data depth:

f(x) = g (D(x; P )) .

The basic idea is to estimate data depth and subsequently to estimate the
density function f as a function of D by a one-dimensional kernel density
estimation. The advantage is that most of depth functions can be estimated
at the usual parametric rate 1/

√
n and it does not affect the overall rate

of convergence of the estimator. For the considered class of densities we
get a one-dimensional nonparametric rate of convergence in a d-dimensional
density estimation problem - the estimator based on data depth has much
better asymptotic performance than the usual kernel density estimator. The
assumption of the relationship between the depth and the density is crucial
- the proposed estimates are not universally consistent.

• Robust estimation of hydrological model parameters was proposed by
Bárdossy and Singh [2]. Hydrological models are used for different purposes
such as water management or flood forecasting. The models have usually
about ten parameters, that need to be estimated. Estimation routines are
based on maximizing some objective function measuring model performance,
for example so called Nash-Sutcliffe coefficient. Unfortunately, many of the
hydrological observations that are used as inputs to estimation procedure
contain partly systematic and partly random errors. This can strongly in-
fluence the model performance - the parameters obtained by sophisticated
optimization procedures might be suboptimal in reality. Bárdossy and Singh
investigated the set of parameters, which gives similar performance as the
numerical optimum (so called good parameters). They proposed an iterative
algorithm to find a convex set containing good model parameters:
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1. Limits for the d selected parameters are identified.

2. N random parameter vectors forming the set S0 are generated in the d
dimensional rectangle bounded by the limits defined in 1.

3. Hydrological model is run for each parameter vector in S0 and the cor-
responding model performances are calculated.

4. The subset S∗
0 of the best performing parameters is identified. This

might be for example the best 10% of S0.

5. M random parameter sets forming the set S1 are generated, such that
for each parameter vector β ∈ S1, D(β) ≥ L, where the halfspace depth
is calculated with respect to the set S∗

N .

6. The set S1 is relabeled as S0 and steps 3–6 are repeated until the per-
formance corresponding to S0 and S1 does not differ more than what
one would expect from the observation errors.

Authors argued that parameters with low data depth are near the boundary
and are sensitive to small changes and do transfer to other time periods less
well as high depth ones.

• Clustering and classification - an analysis of microarray gene ex-
pression data. Jörnsten applied the methodology of data depth in the
analysis of several datasets that includes so called gene expression data [28].
A particularly important task is clustering of genes based on their expression
levels under various experimental conditions.

Jörnsten proposed a clustering algorithm (DDclust) which proceeds from
some initial partition and improves it in some sense. The PAM (Partition
Around Medoids) algorithm is used for initial partition. The DDclust al-
gorithm computes so called relative data depth, which can be considered
as a measure of cluster affiliation uncertainty, for all observations. Subse-
quently a random subset of points with low relative data depth (under a
certain threshold) is relabeled. The relative data depth of an observation xi

is defined as:
ReDi = D(xi; Pk)−max

l 6=k
D(xi; Pl),

where Pk is an empirical distribution of the points currently assigned to
the same cluster as xi. The L1-depth is used because of its computational
simplicity and property of non-zero values outside of the convex hull of the
data.

Jörnsten concludes, that “A cross validation study on real gene expression
data showed that DDclust was robust, and generated clusters could be used
to predict sample labels better than PAM. Gene clustering with DDclust
performed better than PAM in terms of the gene clusters’ sample predictive
properties.”
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1.4 Data depth - a useful/useless methodology

The concept of data depth has brought many questions and challenges. Originally,
the data depth was proposed as a measure of outlyingness. The view of depth
functions was opened up as a general nonparametric approach in late 80s mainly
by Regina Liu. This broader view of data depth has brought questions like: Can the
depth function uniquely determine a probability distribution? Which well-known
univariate concepts can be extended to the multivariate setting via depth functions?
What are the strengths and weaknesses of the data depth concept? We deal with
these questions in this section.

First, the relation between the depth function and the probability measure
should be clarified. The Cramér-Wold theorem (firstly published in 1936 [9]) states
that a Borel probability measure on Rd is uniquely determined by all quantiles
of all its one-dimensional projections. There is a natural question if the depth
function could also uniquely determined a probability distribution. Koshevoy [30]
has shown such a property for the halfspace depth and atomic measures with finite
support:

Theorem 1.4 Consider an atomic measure µ, which assigns masses µi > 0 to
points xi of some dataset X. Denote µ = (M, X), where M = {µ1, . . . , µn} and
X = {x1, . . . ,xn}. If µ = (M, X) and ν = (M ′, X ′) are atomic measures such
that, for any x ∈ Rd, D(x; (M, X)) = D(x; (M ′, X ′)), then µ = ν.

Hassairi and Regaieg [21] considered the case of absolutely continuous distributions
with connected support:

Theorem 1.5 Let µ be an absolutely continuous probability measure on Rd with
connected support. Suppose that the probability density f of µ has second partial
derivatives. Then the halfspace depth function of µ characterizes µ.

The theorem was proved in slightly more general form. The condition of the sec-
ond derivatives existence is not necessary.

Inspection of the data depth in one-dimensional case can clarify the role of data
depth in multivariate case. Consider an absolutely continuous random variable X.
Denote its distribution as P . Then (from Definition 1.3) the halfspace depth of
any x ∈ R is defined as

D(x; P ) = min {P (X ≤ x), P (X ≥ x)} .

Obviously, the deepest point is median of P , for which the halfspace depth is equal
to 1/2. The deepest point thus has all advantages and disadvantages of median in
univariate case. Recall that for

• symmetric, unimodal distributions: med(X) = EX = mod(X),

• symmetric distributions: med(X) = EX.

Recall that median do not have to be unique. This could be illustrated by the
well-known example of a mixture of two “equally probable” distributions with
separated supports. The Figure 1.5 shows the density function of such a mixture.
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Figure 1.5: The median need not to be unique.

All points x in interval [−0.5, 0.5] satisfy P (X ≤ x) ≥ 0.5 and P (X ≥ x) ≥ 0.5,
which is the property that determines the median.

This example also emphasizes the importance of unimodality assumption. With-
out this assumption the most central points could lie in the area of small density,
what could be undesirable under certain circumstances.

As the deepest point is the median in one dimensional case, it can be considered
to be a generalization of median in multidimensional case. There are two different
ways, in which the notion of median is usually extended to the multivariate setting:

• coordinate-wise median: med(X) = (med(X1),. . ., med(Xd))
T .

• geometric median: med(X) = arg miny∈Rd E ‖X − y‖, which is also known
as spatial median or L1–median.

The coordinate-wise median is quite simple to compute, however it is not affine
equivariant. It is even not rotation equivariant as can be seen from the Figure 1.6.
In this example we consider uniform distribution on the “L”-shaped area, which is
a union of rectangles [0, 4]× [0, 1] and [0, 1]× [0, 4]. The component-wise median
is the point [7/8, 7/8] (Figure 1.6, left). After the π/4 rotation about the origin,
we get the component-wise median [0, 11

√
2/8], which is clearly not the image of

the original component-wise median.

0

●

0

●

Figure 1.6: Component-wise median is not affine equivariant.

The geometric median is the deepest point when considering L1-depth. This
depth function is unfortunately not affine invariant and hence the median is not
affine equivariant. We can obtain affine equivariant multivariate median when we
define it as the deepest point of a distribution when using any affine invariant
depth function, for example halfspace depth.
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The example above shows that the concept of data depth could be used in
a favourable way for extension of some univariate concepts to multidimensional
setting. The data depth is useful mainly for generalizing methods based on ranks,
quantiles and outlyingness measure. However, the depth function generally does
not characterize the probability function - it is a simplification connected with
reduction of information. The possibility of its use is limited, as was shown in the
example of multimodal distribution.

Use of the data depth is meaningful when the dimension of the space is not
too high. In our opinion, it should not be used when the dimension is higher
than 10. This advice is given not only because of computational costs, but mainly
for theoretical reasons. For example, consider the halfspace or simplicial depth
and a random sample of n points from some continuous probability distribution
on Rd. Any point lying on the border of convex hull of the n points has empirical
halfspace depth equal to 1/n. Proportion of such points increases with increasing
dimension d. Consequently proportion of points with equal empirical depth (1/n)
is increasing. Empirical depth of points does not provide much information in such
a situation.

To illustrate the problem we performed a simple simulation. 1000 times n
points from standardized d-dimensional normal distribution Nd(0, I) were ran-
domly sampled. Number of points lying on the border of the convex hull was
counted for each random sample. Subsequently the median of the number of
points lying on the border of the convex hull was estimated. Table 1.1 shows es-
timated medians for d = 2, 3, 4, 5, 10 and n = 20, 50, 100 and 500. We used the
quickhull algorithm implemented in R-library geometry. The algorithm did not
converged for d = 10 and n = 500.

dimension (d) number of sampled points (n)
20 50 100 500

2 7 8 9 11
3 12 17 22 32
4 16 28 39 70
5 19 37 57 124

10 20 50 98

Table 1.1: Median of the number of points lying on the border of the convex hull
of the random sample from Nd(0, I).
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Chapter 2

Weighted data depth

In Section 1.2.1 of the previous chapter we summarized properties of the halfspace
depth, which is one of the most important depth functions. In this chapter an
alternative definition of the data depth, which generalises the concept of the half-
space depth, is discussed. This generalization was motivated by some weak points
of the halfspace depth, mainly by the convexity of its central regions. This proper-
ty may be considered as a disadvantage of the halfspace depth (and of other depth
functions) when it is applied to considerably non-convex datasets. We propose
depth function derived from the halfspace depth function which, in contrary to
the halfspace depth, allows the central regions to be more general than convex.
The main idea is to use weights (weighted probability) in the halfspace rather than
the probability of halfspace. Results presented in this chapter were published in
[22].

2.1 Definition of the weighted halfspace depth

Let us denote by x the point for which the depth is computed and by H ⊂ Rd

the halfspace of interest. Each point y ∈ H is assigned a weight w(y) which
depends on a position of y with respect to x and then the weighted probability
pH =

∫
H w(Y ) dP of the halfspace H is computed. The same weights are used

to the opposite halfspace Rd \ H and pRd\H is calculated. The ratio of these two
values is used for definition of the weighted depth (in contrary to the halfspace
depth where the opposite halfspace need not to be considered). The idea of this
technique is to compare opposite halfspaces. When the considered distribution is
symmetric and the point x is near the centre of the symmetry, then the (weighted)
probability of any two opposite halfspaces, separated by a hyperplane containing
x, is similar. In contrary, when the point x lies far from the centre of symmetry,
there is a big difference between the (weighted) probabilities of some opposite
halfspaces.

The notion of weight function is crucial in our approach. At this point we
want to have the broadest possible class of weight functions that can be used in
our approach. Later, we are going to make some restrictions on weight functions to
obtain some desirable properties like strong consistency (Section 2.4.1) and depth
equal to zero out of the convex hull of the support (Section 2.5).

Another important remark is that any closed halfspace H determined by a hy-
perplane containing x is isomorphic to the halfspace H0 = {y : yd ≥ 0}. A closed
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halfspace determined by a hyperplane containing x and a normal vector u ∈ Rd :
‖u‖ = 1 is described as H =

{
y ∈ Rd : uT (y − x) ≥ 0

}
. A linear transformation

T : y 7→ A(y − x) maps H to H0 for a proper orthogonal d× d matrix A. Hence
we can consider a weight function w+ : Rd → [0,∞), which can be nonzero only
on H0 and compute the weight in y ∈ H as a w+(A(y − x)). On the opposite
halfspace, a “counterweight” function is defined.

Formally, we denote w+ : Rd → [0,∞) any measurable weight function which
is bounded and such that

w+(x) = w+(x1, . . . , xd−1, xd) = 0 if xd < 0,

and denote its “counterweight function” as

w−(x) = w−(x1, . . . , xd−1, xd) = w+(x1, . . . , xd−1,−xd).

The definition of weighted halfspace depth proceeds directly from the ideas
described above.

Definition 2.1 Let X be a random vector and P its probability distribution. The
weighted depth of a point x with respect to P is defined as

D(x; P ) := inf
A∈Od

EP w+

(
A(X − x)

)
EP w−

(
A(X − x)

) , (2.1)

where w+ is the weight function, Od denotes the space of all orthogonal d × d
matrices, and the term 0/0 is defined to be 1.

Notation remark: In this chapter we will use shorter notation D(x) instead
of D(x; P ) whenever P is not too important or can be easily identified from the
context. The halfspace depth of a point x is denoted by HD(x) in this chapter to
distinguish between the halfspace and weighted halfspace depth.

In Definition 2.1 the orthogonal transformations are used to allow full generality
of the weight function. For smaller class of symmetric weight functions, in the case
when

w+(x1, . . . , xk, . . . , xd) = w+(x1, . . . ,−xk, . . . , xd), k = 1, . . . , d− 1

holds, it is possible to consider only rotations instead of all orthogonal transforma-
tions. In particular, the role of the orthogonal transformation is the same as the
role of rotations (directions u) of the halfspace in Definition 1.3. In other words,
instead of rotating the weight function w+ the random vector X is orthogonally
transformed (“rotated to a direction”).

Let us examine the possible range of a weighted depth function. Recall that
the halfspace depth of any point with respect to a continuous distributions can not
be greater than one half and HD(x) = 1/2 iff x is the centre of symmetry. To be
exact, we should add that the halfspace depth can be greater that 1/2 when con-
sidering discrete distributions. In an extreme case of a distribution concentrated
in one point, the halfspace depth of this point is equal to one.
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Theorem 2.1 For any d-dimensional random vector X and any x ∈ Rd it holds
D(x) ≤ 1.

Proof: Denote I− = diagd(1, 1, . . . ,−1) a d × d diagonal orthogonal matrix. It
is not difficult to see that w−(X) = w+(I−X) and w+(X) = w−(I−X). Since
{I−A : A ∈ Od} = Od it follows

D(x) = inf
A∈Od

Ew+(A(X − x))

Ew−(A(X − x))
= inf

A∈Od

Ew−(A(X − x))

Ew+(A(X − x))
(2.2)

and since clearly

min

{
E w+(Y )

E w−(Y )
,
E w−(Y )

E w+(Y )

}
≤ 1

the proof is completed.

�

The connection between the depth function of Definition 2.1 and the halfspace
depth function need not be clear at this moment. In the following discussion it
is shown that the depth function D is essentially a generalisation of the halfspace
depth.

Definition 2.2 Define a depth function

D̃(x) := inf
A∈Od

Ew+(A(X − x))

Ew+(A(X − x)) + Ew−(A(X − x))
, (2.3)

for a weight function w+; the ratio 0/(0 + 0) is now defined as 1/2.

The depth functions D and D̃ are equivalent in the sense of the multivariate
ordering:

Theorem 2.2 For any weight function w+ and for all x, x1, x2 ∈ Rd the equiv-
alence

D(x1) ≤ D(x2) ⇐⇒ D̃(x1) ≤ D̃(x2) (2.4)

holds. Moreover,

D̃(x) ≤ 1

2
, (2.5)

and

D(x) =
D̃(x)

1− D̃(x)
. (2.6)

Proof: Following similar argument as in proof of Theorem 2.1 it holds

D̃(x) = inf
A∈Od

EP w+

(
A(X − x)

)
EP w+

(
A(X − x)

)
+ EP w−

(
A(X − x)

)
= inf

A∈Od

EP w−
(
A(X − x)

)
EP w+

(
A(X − x)

)
+ EP w−

(
A(X − x)

) .
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The inequality (2.5) follows from the obvious fact that

min

{
E w+(Y )

E w+(Y ) + E w−(Y )
,

E w−(Y )

E w+(Y ) + E w−(Y )

}
≤ 1/2.

Denote for fixed orthogonal matrix A

v+ = Ew+

(
A(X − x)

)
and v− = Ew−

(
A(X − x)

)
.

If v− > 0 then

v+

v−
=

v+

v− + v+

(
v−

v− + v+

)−1

=
v+

v− + v+

(
1− v+

v− + v+

)−1

. (2.7)

If v− = 0 and v+ > 0 then v− and v+ in (2.7) may be interchanged (see arguments
for (2.5) and (2.2)).

If both v− = v+ = 0 then the 0/0 ratios are defined as

v+

v−
= 1,

v+

v− + v+

=
1

2
⇒ v+

v−
=

v+

v− + v+

(
1− v+

v− + v+

)−1

.

Equation(2.6) now follows.
Since the function x 7→ x/(1− x) is increasing in x for x ∈ [0, 1/2], the equiv-

alence (2.4) follows.

�

The previous theorem shows that our definition is in some sense a direct generalisa-
tion of the halfspace depth if the underlying distribution is absolutely continuous.
Indeed, the halfspace depth HD(x) is equal to D̃(x) for w+(y) ≡ 1 (the denomi-
nator is 1 for any absolutely continuous distribution).

In the case of non-continuous distribution, it holds HD(x) ≥ D̃(x) for all x
and the inequality may be strict at some points. Indeed, consider p ∈ (0, 1) and
a bivariate distribution given by (1 − p)Unif [0,1]2 + pδ(1,1) - the mixture of the
uniform distribution on [0, 1]2 and a point mass at (1, 1) (see Figure 2.1). Then,

obviously, HD(1, 1) = p > p/(1 + p) = D̃(1, 1).

H

1

0 1

Figure 2.1: HD(x) might be greater than D̃(x) for non-continuous distributions.

Obviously, the empirical measure Pn is used for the definition of the sample
weighted depth. In this chapter we shall call D(x) simply the depth of x unless
we need to distinguish more depth functions.
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We find as a natural choice of weight function a function which is spherically
symmetric about xd-axis. It means that there exists function h : [0, +∞)×R → R
such that

w+(x1, . . . , xd) = h(x2
1 + . . . + x2

d−1, xd).

Namely, it holds w+(x) = w+(x1, . . . , xd−1, xd) = w+(−x1, . . . ,−xd−1, xd) = w−(−x)
in this case.

2.2 Examples of weight function

In this section we want to introduce several possibilities how to choose the weight
function w+.

1. The band weight function is for a chosen h > 0 defined as

w+(x1, . . . , xd) =

{
1 if

∑d−1
i=1 x2

i < h2, xd > 0,

0 elsewhere.
(2.8)

In particular, for R2 the definition has the following meaning. Given fixed
point x and a direction s (unit vector in R2), we consider a line l = x+ts, t ∈
R for which a band with width 2h

B(x, s) = {y ∈ R2 : d(y, l) < h}

is defined (d denotes the Euclidean distance). The band B(x, s) is divided
by a segment orthogonal to s and containing x into two half-bands B+(x, s)
and B−(x, s). Denoting p+(x, s) and p−(x, s) the probabilities of B+(x, s)
and B−(x, s) respectively, the (band) weighted depth becomes

D(x) = inf
‖s‖=1

p+(x, s)

p−(x, s)
.

The example is illustrated in Figure 2.2 (left). It is clear, that broadening
the band by letting h go to infinity leads to the depth which is equivalent
to the halfspace depth for continuous distributions. The sample version is
calculated from the number of observations in B+(x, s) and B−(x, s).

2. The cone weight function is defined for an angle α ∈ (0, π/2] as

w+(x1, . . . , xd) =

{
1 if ∠

(
(x1, . . . , xd), (0, . . . , 0, xd)

)
≤ α

0 elsewhere,

where ∠(x, y) denotes the angle between two vectors. The example in two
dimensional case is illustrated in Figure 2.2 (right). Clearly, for a continuous
distribution and α = π/2 the depth is equivalent to the halfspace depth.

In some sense the cone weight function is a modification of cylinder weight
function. To see that, it is sufficient to use an appropriate function h(xd)
instead of a constant h in definition (2.8).
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3. The local weight function is for a chosen r > 0 defined as

w+(x1, . . . , xd) =

{
1 if

∑d
i=1 x2

i < r

0 elsewhere.

This choice seems to be reasonable, emphasizing properties of the distribu-
tion near the point of interest x. However, this weight function is inadvisable
at all. Consider a point x far enough from the support of distribution. Then
there is no probability mass in the sphere around the point x and the local
weighted depth of the point is 0/0 = 1.

x

l

}
}

h
h

x

Figure 2.2: Scheme of possible weight functions - band weight function (left), cone
weight function (right).

In the first tree examples, we considered weight functions, that are constant on
some segments of the halfspace. Nevertheless, the class of possible weight functions
is much broader. We introduce some other possibilities.

4. The ridge weight function is for a chosen h > 0 defined as

w+(x1, . . . , xd) =

{
1−

√∑d−1
i=1 x2

i /h if
√∑d−1

i=1 x2
i < h, xd > 0,

0 elsewhere.

5. The normal weight function is defined as

w+(x1, . . . , xd) =

{
φΣ(x1, . . . , xd−1) if xd > 0

0 elsewhere,

where φΣ is the density of d − 1 dimensional normal distribution with zero
mean and covariance matrix Σ. It is, however, also possible to generalise the
weight function in the way that the matrix Σ may be a function of xd.

The Figure 2.3 compares the band weight function (example 1) with the ridge
weight function (example 4) and the normal weight function (example 5). The
value of these weight functions does not depend on the xd. Figure 2.3 displays the
considered weight functions as the functions of the first coordinate x1.
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−h 0 h −h 0 h 0

Figure 2.3: Band weight (left), ridge weight (middle) and normal weight (right)
as functions of x1.

2.3 Basic properties of weighted depth

Let us summarize some facts about the depth function D. We focus on the prop-
erties of depth function (stated in Definition 1.1). In general the function D does
not fulfill all these properties. For example, D is not generally affine invariant.
Only translation and rotation invariance can be proved.

Theorem 2.3 The depth function defined by (2.1) is translation invariant.

Proof: It follows directly from the definition that

D(x + a; PX+a) = D(x; PX).

�

Theorem 2.4 The depth function defined by (2.1) is rotation invariant.

Proof: Every rotation of a vector x ∈ Rd may be written as Bx, where B ∈ Od

is some orthogonal d× d matrix. Hence,

D(Bx; PBX) = inf
A∈Od

EP w+

(
A(BX −Bx)

)
EP w−

(
A(BX −Bx)

) = inf
A∈Od

EP w+

(
AB(X − x)

)
EP w−

(
AB(X − x)

)
= inf

A∈Od

EP w+

(
A(X − x)

)
EP w−

(
A(X − x)

) = D(x; PX)

since {AB : A ∈ Od} = Od as follows from the orthogonality of B.

�

The depth need not decrease along a ray from the deepest point (even if the deepest
point is unique). And the sets

{x : D(x) ≥ d}, d ∈ [0, 1] (2.9)

need not be convex and may be sometimes disconnected. This fact depends on the
underlying distribution; however, in some situations these properties are desirable.
There is a particular interest in the so called deepest point, i.e., the point x̃ for
which

D(x̃) = max
x

D(x).
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Definition (2.1) in general does not give a unique deepest point even in a situation
of an absolutely continuous distribution with connected support.

Let us consider the uniform distribution on a set

S = {(x1, x2)
T : 0 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 1}∪{(x1, x2) : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 10}.

Let us consider the band weight function (2.8) with a small h, say h = 1/20, and
the corresponding weighted depth function. From the shape of the support S it
follows that the only unique deepest point may lie on a line x1 = x2 only. It can
be seen that for any point x on the line x1 = x2 it holds D(x) ≤ 1/9.

Consider the point z = (5, 1/2). After some calculations we get D(z) > 1/9 ≥
D(x) for any x = (x1, x1)

T . Indeed, the lower estimate for D(z) may be obtained
considering a line l connecting z and the point (0, 10) together with a band b of
the width 2h around l and, on the other hand considering a line l′ connecting z
and the point (5, 0) with the same band around. See Figure 2.4 for a visualisation
of this example.

Figure 2.4: The deepest point need not to be unique.

In this example there is no natural central point although the distribution is
symmetric about the line x2 = x1. There are two deepest points (symmetric about
the line of symmetry). The central regions are symmetric about the x1 = x2 axis
as well.

In the previous example there is not any “natural” deepest point. On the other
hand, if there is an intuitive deepest point, like the point of central symmetry, we
would like to prove that it is the deepest point for the weighted depth function.
Indeed it is the case for a suitable weight function. In what follows we use notions
of symmetry as they were recalled in Section 1.1.

Theorem 2.5 Let w+ be such that w+(x1, . . . , xd−1, xd) = w+(−x1, . . . ,−xd−1, xd)
(is symmetric about xd-axis) and suppose that the distribution of X is centrally
symmetric about point θ. Then

D(x) ≤ D(θ) = 1, ∀x ∈ Rd.

Proof: It can be assumed that θ = 0 without loss of generality (translation
invariance of D). Since w+ is symmetric about xd-axis and w−(x) = w+(I−x) it
holds

w+(x) = w−(−x), ∀x ∈ Rd.
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It follows that
E w−(AX) = E w+(−AX) = E w+(AX)

for X centrally symmetric about 0 and arbitrary matrix A ∈ Od. Thus D(0) = 1.
The fact that D(x) ≤ 1, ∀x completes the proof.

�

This result may be extended to angular symmetric distributions.

Theorem 2.6 Let w+ be symmetric about xd-axis and suppose that the distribu-
tion of X is angular symmetric about point θ. If w+ is such that

w+(kx) = w+(x), ∀x ∈ Rd, k ≥ 0 (2.10)

then
D(x) ≤ D(θ) = 1, ∀x ∈ Rd.

Proof: It is an analogue to the proof of Theorem 2.5. Let θ = 0 without loss of
generality. Under the assumption (2.10) it holds

E w−(AX) = E w+(−AX) = E w+(−AX/‖AX‖)
= E w+(AX/‖AX‖) = E w+(AX)

∀A ∈ Od, hence

D(0) = inf
A∈Od

E w+(AX)

E w−(AX)
= 1.

�

In Theorem 2.6 it is sufficient to define the weight function w+ on the unit half-
sphere

Sd,+ = {x : ‖x‖ = 1, xd ≥ 0}
and use w+(x) = w+(x/‖x‖) to ensure (2.10). Obviously the cylinder (band)
depth does not satisfy the assumption of Theorem 2.6. On the other hand the
assumption of the theorem is satisfied by the cone weight function defined in ex-
ample 2 of Section 2.2.

2.4 Consistency of the depth function

We shall prove in this section a strong pointwise consistency of the depth function
under relatively mild conditions on the weight function. Note that the consistency
of the halfspace depth is a direct corollary to our result.

In what follows we consider an absolutely continuous Borel probability measure
P on Rd. Let us denote

∠(u, v) the angle of vectors u and v,

and

Aϕ ⊂ Od set of all rotation matrices A such that ∠(u,Au) ≤ ϕ for all u ∈ Rd.

Note that A0 = {Id}. Finally, let us denote by Ns any matrix representing an
orthogonal rotation such that Nss = (0T , 1)T , N(0T ,1)T := Id. Such a matrix need
not to be defined uniquely, however, for any two different N1

s, N2
s it holds

∠(N1
su,N1

sv) = ∠(N2
su,N2

sv) = ∠(u, v) for all u, v ∈ Rd.
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2.4.1 Regularity of weight function

The class of weight functions w+ used in the definition 2.1 is too broad. To be able
to prove a strong pointwise consistency of the depth function, at least some “reg-
ularity” properties of the weight function are needed. We tried to find properties
that enable to prove a strong consistency, but that are not too restrictive.

Definition 2.3 We say that weight function w+ satisfies regularity conditions if

(A) w+(x1, . . . , xd−1, xd) is spherically symmetric about xd-axis, i.e. w+ is a func-
tion of (x2

1 + · · ·+x2
d−1, xd). In other words, w+ is a function of the distance

from xd axis and values on xd axis.

(B) w+ is measurable and bounded.

(C) For arbitrary point x it holds that

lim
ϕ→0+

sup
A∈Aϕ

{
w+

(
ANs(X − x)

)}
= w+

(
Ns(X − x)

)
P-a.s.

lim
ϕ→0+

inf
A∈Aϕ

{
w+

(
ANs(X − x)

)}
= w+

(
Ns(X − x)

)
P-a.s.

for every direction s, ‖s‖ = 1. In other words, the sup, resp. inf function
over all orthogonal rotations is P-a.s. continuous from right in 0 with respect
to a rotation angle.

Let us first denote two important subsets of points. Define

H1 ={x : inf
A∈Od

E w+(A(X − x)) > 0},

H2 ={x : ∃δ > 0 ∀ε > 0 ∃Aε ∈ Od : E w+(Aε(X − x)) < ε and

E w−(Aε(X − x)) > δ}.

Recall now the notion of probability support and closed convex support. The
support sp(P) of probability measure P is the smallest closed set with probability
1, i.e.

sp(P) =
⋂
{F ∈ F : P(F ) = 1},

where F denotes class of all closed subsets. The closed convex support csp(P) of
probability measure P is defined as closed convex hull of the support sp(P).

It is easy to see that the set H1 contains the interior of support sp(P), i.e.
points whose open neighbourhood is contained in the support of P. In the case
of absolutely continuous distribution P(H1) = 1. On the other hand the set H2

represents points with zero depth and, in particular, for the complement of closed
convex support {csp(P) it holds {csp(P) ⊂ H2 under very weak conditions on the
weight function w+. It is easy to see that if x ∈ H1 then D(x; P) > 0 and if
x ∈ H2 then D(x; P) = 0.
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2.4.2 Empirical process theory - recall

Before we state the main claim of this section, we want to recall some notions from
empirical process theory. The lemma is stated without proof, which can be found
in [53].

First, define a metric on some class of functions G.

Definition 2.4 Lp(Q)-metric
Let Q be a measure on (X ,A) and p a real constant such that 1 ≤ p < ∞.
Denote by Lp(Q) the set of all real functions whose p-th power is absolutely inte-
grable with respect to the measure Q:

Lp(Q) =

{
g : X → R :

∫
|g|p dQ < ∞

}
.

For g ∈ Lp(Q) define

‖g‖p
p,Q =

∫
|g|p dQ.

We refer to ‖·‖p,Q as the Lp(Q)-metric.

In our case we will consider the probability measure P and the L1(P )-metric.

Definition 2.5 Entropy with bracketing for the Lp(Q)-metric
Let Np,B(δ,G, Q) be the smallest value of N for which there exist pairs of functions{(

gL
j , gU

j

)}N

j=1
such that

∥∥gU
j − gL

j

∥∥
p,Q

≤ δ for all j = 1, . . . , N , and such that for

each g ∈ G, there exist j ∈ {1, . . . , N} such that

gL
j ≤ g ≤ gU

j .

Then Hp,B(δ,G, Q) = log Np,B(δ,G, Q) is called the δ-entropy with bracketing of G.

Definition 2.6 Uniform Law of Large Numbers
We say that the class of functions G satisfies the Uniform Law of Large Numbers
if

sup
g∈G

∣∣∣∣∫ g d(Pn − P)

∣∣∣∣→ 0 -a.s.

Lemma 2.7 Suppose that

Hp,B(δ,G, Q) < ∞ for allδ > 0.

Then G satisfies the Uniform Law of Large Numbers.

2.4.3 Strong pointwise consistency of the depth function

Theorem 2.8 Let Pn be an empirical measure defined by a random sample
X1, . . . ,Xn from distribution P. Let the weight function w+ satisfies the regu-
larity conditions of Definition 2.3. Then for any x ∈ H = H1 ∪H2 it holds

D(x; Pn) → D(x; P) P-almost surely. (2.11)
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Proof: For our purposes we will use standard conventions from measure theory
for the extended real line [−∞, +∞], e.g. 0.(±∞) = 0, +∞+∞ = +∞, etc. and
we define logarithm in zero: log 0 := limx→0+ log x = −∞.

The first step is to show that the class of functions W := {y 7→ w+(A(y−x)) :
A ∈ Od} satisfies the Uniform law of large numbers. It means to prove that

sup
A∈Od

∣∣∣ 1
n

n∑
i=1

w+(A(X i − x))− EP w+(A(X − x))
∣∣∣ −→ 0 P-a.s. (2.12)

To this end it is sufficient to prove that

H1,B(ε,W , P) < +∞, for all ε > 0,

where H1,B(ε,W , P) denotes entropy with ε-bracketing for L1(P)-metric (see Lem-
ma 2.7).

For a fixed vector s and a given angle ϕ we define functions

WU
s,ϕ(z) = sup{w+(ANs(z − x)) : A ∈ Aϕ},

WL
s,ϕ(z) = inf{w+(ANs(z − x)) : A ∈ Aϕ}.

Since A0 = {Ip} it holds WL
s,0(z) = WU

s,0(z) = w+(Ns(z − x)). Further the
inequality

WL
s,ϕ(z) ≤ w+(Na(z − x)) ≤ WU

s,ϕ(z) (2.13)

holds for arbitrary z and direction a such that ∠(a, s) ≤ ϕ.
For arbitrary direction s we define function

Gs(ϕ) = EPWU
s,ϕ(X).

This definition is correct, because for a measurable function w+, the function
WU

s,ϕ(z) is (universally) measurable; see Lemma 2.9 and its proof.
We will show that Gs is continuous from right in 0. Since w+ is bounded, one

has that Gs(ϕ) < +∞ for all ϕ ∈ [0, π]. Measurability and integrability together
with condition (C) directly imply continuity from right of Gs in 0 using Lebesgue’s
dominated convergence theorem.

It follows that for all ε > 0 there exists ϕ0 such that for all ϕ ∈ [0, ϕ0) holds

ε > |Gs(ϕ)−Gs(0)| =
∣∣EP

[
WU

s,ϕ(X)− w+(Ns(X − x))
]∣∣

= EP

∣∣WU
s,ϕ(X)− w+(Ns(X − x))

∣∣.
Since inequality (2.13) holds, the last equation is correct. An analogous inequality
holds for WL

s,ϕ.
Hence, for arbitrary s, ‖s‖ = 1, and for every ε > 0 there exists ϕs > 0 such

that
EP

∣∣WU
s,ϕs

(X)−WL
s,ϕs

(X)
∣∣ < ε. (2.14)

Now, for arbitrary ε > 0, we construct ε-bracketing for W . Let’s consider the
metric space (Sp, ρ), where Sp = {s : ‖s‖ = 1} and ρ is the Euclidean distance
metric. Space (Sp, ρ) is closed and bounded, hence it is compact. For arbitrary
s ∈ S an angle ϕs which satisfies (2.14) may be found. Denote by C(s, ϕs) a set
of all u ∈ Sp such that ∠(u, s) < ϕs. C(s, ϕs) are open sets in the metric space
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(Sp, ρ) and form an open cover of Sp. Since Sp is compact it follows that for any
open cover there exists a finite subcover. In other words there exists a finite subset
U of Sp such that

Sp =
⋃
u∈U

C(u, ϕu).

Every function from W is determined by a direction s ∈ Sp in the sense that for
an arbitrary function v ∈ W there exists s ∈ Sp such that v(y) = w+(Ns(y − x))
and obviously there exists u ∈ U such that s ∈ C(u, ϕu). Hence WU

u,ϕu
and WL

u,ϕu

are the corresponding bracketing functions which satisfy (2.13) and (2.14).
Finally, we obtain

H1,B(ε,W , P) ≤ card(U) < +∞.

and thus (2.12) holds.

Now we can come up to the proof of consistency of depth D(x; Pn). It is
a consequence of (2.12). Let us use the notation

D̂A(x, P) =
EP w+(A(X − x))

EP w−(A(X − x))
,

where the term 0/0 is defined again as 1.
First the case x ∈ H1 is treated. It holds

0 < D(x; P) ≤ D̂A(x, P) ≤ 1/D(x; P) < +∞, ∀A ∈ Od.

It follows from Lemma 2.10 below that

| logD(x; Pn)− log D(x; P)| = | inf
A∈Od

log D̂A(x, Pn)− inf
A∈Od

log D̂A(x, P)|

≤ sup
A∈Od

| log D̂Pn(x,A)− log D̂P(x,A)|

≤ sup
A∈Od

(∣∣∣ log
1

n

n∑
i=1

w+(A(X i − x))− log EP w+(A(X − x))
∣∣∣

+
∣∣∣log

1

n

n∑
i=1

w−(A(X i − x))− log EP w−(A(X − x))
∣∣∣)

≤ 2 sup
A∈Od

∣∣∣log
1

n

n∑
i=1

w+(A(X i − x))− log EP w+(A(X − x))
∣∣∣

(2.15)

almost surely.
Since (2.12) holds it follows that also

sup
A∈Od

∣∣∣log
1

n

n∑
i=1

w+(A(X i − x))− log EP w+(A(X − x))
∣∣∣ −→ 0 P-a.s.

From (2.15) one has that

| log D(x; Pn)− log D(x; P)| −→ 0 P-a.s.
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So eventually,
|D(x; Pn)−D(x; P)| −→ 0 P-a.s.

We shall now consider the case H2. For x ∈ H2 there exists δ > 0 such that for
any ε > 0 there exists Aε and for any η > 0 there exists nη such that for n ≥ nη

1

n

n∑
i=1

w+(Aε(X i − x)) < EP w+(Aε(X i − x)) + η < ε + η,

1

n

n∑
i=1

w−(Aε(X i − x)) > EP w−(Aε(X i − x))− η > δ − η,

(2.16)

holds P=a.s. (see the definition of H2 and (2.12)). It follows that for n ≥ nη

|D(x, Pn)−D(x; P)| =
∣∣∣∣ inf
A∈Od

1
n

∑n
i=1 w+(A(X i − x))

1
n

∑n
i=1 w−(A(X i − x))

− 0

∣∣∣∣
≤

1
n

∑n
i=1 w+(Aε(X i − x))

1
n

∑n
i=1 w−(Aε(X i − x))

<
ε + η

δ − η
,

and since ε and η may be chosen arbitrary small the proof is completed.

�

The following two technical lemmas are necessary for the proof of consistency.

Lemma 2.9 Let the weight function w+ satisfy regularity conditions and consider
fixed s, ‖s‖ = 1 and ϕ ∈ [0, π]. Then the function

z 7→ sup{w+(ANs(z − x)) : A ∈ Aϕ}

is universally measurable.

Proof: The function w+ may be considered as a function of a distance (d = ‖x‖)
and the “direction” s = x/‖x‖ where s ∈ Sd is the unit sphere. We use the metric
ρ(s, z) = ∠(s, z) for s, z ∈ Sd.

The problem is therefore equivalent to a problem of measurability of a function

g(q, s) = sup{f(q, z) : τ(z, s) ≤ e}

if f : [0, +∞)×M → [0, +∞) is a measurable function, where (M, τ) is a separable
metric space. Denote Ba = {(q, z) : f(q, z) > a} and note that Ba is a Borel set
for any a due to the measurability of f . Denote Ca := {(q, s) : g(q, s) > a}. It is
clear that for any q

Ca
q = Ue(B

a
q ),

where Mq = {s : (q, s) ∈ M} denotes the q-section of a set M and Ue(N) denotes
the e-neighbourhood of a set N ⊂ M. The set Ca is therefore a projection of
a Borel set

Da,e = {(q, s, z) ∈ [0, +∞)×M×M : (q, z) ∈ Ba, τ(s, z) ≤ e}

into the first two coordinates.
Since the projection of a Borel set is an analytic and hence a universally mea-

surable set it follows that g(y, x) is universally measurable function.
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�

If a function g is universally measurable then for any finite Borel measure µ on
[0, +∞)×R (in particular for any probability measure) there exist a pair of Borel
functions g1, g2 such that g1(y, x) ≤ g(y, x) ≤ g2(y, x) and g2 = g1 µ-almost surely.
Hence the Lebesgue integral of universally measurable function is well defined.

Lemma 2.10 Consider two bounded functions f, g : M → R. Then

sup{|f(x)− g(x)| : x ∈ M} ≥ | inf{f(x) : x ∈ M} − inf{g(x) : x ∈ M}|.

Proof: If inf f = inf g then it follows immediately because sup |f − g| ≥ 0.
If inf f > inf g then there exists ε0 > 0 such that for all ε, 0 < ε < ε0, exists

xg ∈ M which satisfies

inf g ≤ g(xg) < inf g + ε < inf f ≤ f(xg).

Therefor

sup |f − g| ≥ |f(xg)− g(xg)| ≥ | inf f − g(xg)| > | inf f − inf g| − ε

for all ε, 0 < ε < ε0 and the proof of Lemma is completed.

�

2.4.4 Discussion of regularity conditions

This section provides discussion of the regularity conditions introduced in the
Section 2.4.1. It is quite clear that the most restrictive regularity condition is
(C). In the next theorem a simple sufficient condition for (C) is stated. Further
we discuss some counterexamples showing that the sample depth need not to be
consistent and we propose conditions on the support of the probability measure P
and on the weight function w+ guaranteeing the consistency on Rd.

Theorem 2.11 Let us have X1, . . . ,Xn a d-dimensional sample from absolute-
ly continuous probability distribution P and suppose spherically symmetric weight
function w+ about xd axis. Further assume that w+ is continuous on some con-
nected set M⊆ Rd−1× [0, +∞) of positive Lebesgue measure and that w+ is equal
to zero on Rd \M. Then for any x ∈ H = H1 ∪H2 it holds

D(x; Pn) −→ D(x; P) P-a.s.

Proof: We need to check the validity of regularity conditions.
Condition (C) for supremum can be equivalently expressed in the form:

lim
ϕ→0+

sup
A∈Aϕ

{
w+

(
ANs(y − x)

)
f(y)

}
= w+

(
Ns(y − x)

)
f(y)

for almost all y and for every direction s, ‖s‖ = 1. f denotes density of probability
distribution P. In the following we will use this form of condition (C) and for fixed
s we will work with shifted and rotated random vector Ns(X − x) instead of
random vector X. Its density we denote by fs.
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If y /∈ clo(M) then Rd \ clo(M) is open set and thus there exists ϕ0 > 0 such
that for all 0 ≤ ϕ < ϕ0 it holds that w+(By)fs(y) = 0, where B ∈ Od is arbitrary
orthogonal rotation about angle ϕ.

If y ∈ int(M) then, since int(M) is open and w+ is there continuous, one has
that for every ε > 0 there exists δ > 0 such that B(y, δ) = {u : ‖u− y‖ < δ} ⊆
int(M) and inequality |w+(u)−w+(y)| < ε holds for every u ∈ B(y, δ). For every
such δ there exists angle ϕ0 > 0 such that for arbitrary rotation B ∈ Od about
angle smaller than ϕ0 one has By ∈ B(y, δ) and thus |w+(By)−w+(y)| < ε. For
any angle ξ, 0 ≤ ξ < ϕ0, we define set

Uξ(y) = {u : ‖u‖ = ‖y‖, ∠(y, u) ≤ ξ} ⊂ B(y, δ).

Uξ(y) is compact and w+ is continuous on this set. Thus

sup
A∈Aξ

{
w+(Ay)fs(y)

}
= fs(y) max

{
w+(u) : u ∈ Uξ(y)

}
.

Therefor for all ε > 0 there exists angle ϕ0 > 0 such that for all ξ, 0 ≤ ξ < ϕ0,
inequality∣∣ sup

A∈Aξ

{w+(Ay)fs(y)} − w+(y)fs(y)
∣∣ = fs(y)

∣∣ max
u∈Uξ(y)

w+(u)− w+(y)
∣∣ < ε

holds for all y ∈ Rd\(∂M∪K), where K = {y : fs(y) = +∞}. Whence condition
(C) holds, because Lebesgue measure of (∂M∪K) is equal to zero.

The regularity of infimum function is proved analogically.

�

There is a natural question what can be said about the points outside H and about
the set H itself. First of all, let us show two counterexamples to the consistency
of sample depth (see Figure 2.5).

We consider a uniform distribution on a “hourglass” set, and a uniform dis-
tribution on “four tiles”. In both cases the distributions are symmetric around
a naturally defined central point x and it is exactly the point x where the problem
arises. For any sample size n there exists a.s. an orthogonal transformation A
such that Enw+

(
A(X − x)

)
= 0 while Enw−

(
A(X − x)

)
> 0. In both cases

the central point x is the only point for which the sample depth is not consistent.
Both points are also points of discontinuity of the depth function. Indeed, the
theoretical depth D(x) = 1 as follows from the symmetry of distribution. On the
other hand there exists sequence xn → x such that D(xn) = 0 for all n.

The nature of the problem lies in the limit of 0/0 type. Assume without
loosing the generality that the central point x = 0. In both cases there exists an
orthogonal transformation A0 and a sequence of orthogonal transformations An

such that

Ew+

(
A0X

)
= 0, Ew−

(
A0X

)
= 0

Ew+

(
AnX

)
> 0, Ew−

(
AnX

)
> 0 ∀n

Ew+

(
AnX

)
→ 0, Ew−

(
AnX

)
→ 0 as n →∞

(2.17)

There exist technical assumptions on the support of probability measure P and on
the weight function (beside the regularity conditions of Definition 2.3) such that
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Figure 2.5: The sample depth need not to be consistent.

(2.17) does not hold for any point x ∈ Rd. Obviously, the critical points are in
the interior of convex support and simultaneously in the complement of interior of
support itself.

Therefore, if sp(P) = csp(P) then H = Rd and the strong consistency holds
for any point. An example may be normal distribution, bivariate exponential
distribution, and many others.

As we have mentioned above, there are technical conditions on the support of
probability measure P and on the weight function w+ such that the consistency
hold for y ∈ Rd. An example of such sufficient conditions may be

• There exist r > 0 and w > 0 such that w+(y) ≥ w if y2
1 + · · ·+ y2

d−1 ≤ r.

• There exists a compact set C such that csp(P) \ sp(P) ⊂ C.

• The interior of support sp(P) is a connected set.

These conditions are neither necessary conditions, nor the only possible sufficient
conditions. In general, the set of points for which the consistency does not hold is,
however, small in the sense of probability. Indeed, for any absolutely continuous
distribution P it holds

P{y : D(y; Pn) → D(y; P), a.s.} = 1.

The non-consistent points are, as may be clear from the counterexamples, special
cases and may be considered as rather “pathological”. In particular, consider the
“hourglass” distribution together with the band weight function (rather than with
the cone weight function) then the consistency of depth holds for the central point
x as well as for any other points y ∈ R2. Hence, it is a combination of a specific
weight function and a specific distribution which causes the trouble at x.

2.5 Choice of weight function

In Section 2.4 we discussed the choice of weight function in the Definition 2.1
from the view of consistency of the depth function. Some regularity conditions on
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weight function were defined (Definition 2.3 in Section 2.4.1). Further discussion
of these conditions was provided in Section 2.4.4. Simple sufficient conditions on
the weight function, that lead to the strong consistency of the depth function, were
stated in Theorem 2.11. However, another aspects of weight function choice (as
discussed in [55]) should be also considered.

An appropriate choice should guarantee that the depth of points lying out of
the probability support is equal to zero. Considering any probability measure with
a nonconvex support, the requirement might be weaken. Nevertheless, the depth
of points lying out of the closed convex support csp(P) of probability measure P
should be equal to zero. Following theorem gives a simple condition, which ensures
this property.

Theorem 2.12 Consider the weight function w+ such that w+(x) > 0 if x2
1 +

· · · + x2
p−1 < k and w+(x) = 0 elsewhere (k may be infinite). Then D(x; P) = 0

for any x 6∈ csp(P).

Proof: Note that under the assumptions on w+ there for all x ∈ Rd exists an
orthogonal matrix Ax such that Ew+

(
Ax(X−x)

)
> 0. It is clear that D(x; P) > 0

implies that for all orthogonal matrices A it holds

Ew+

(
A(X − x)

)
> 0 ⇒ Ew−

(
A(X − x)

)
= Ew+

(
I−A(X − x)

)
> 0. (2.18)

Consider x 6∈ csp(P) such that D(x; P) > 0. It follows from (2.18) that x is
“surrounded” by points of sp(P) and therefore x is in the closed convex support
of P.

�

On the other hand, a point x ∈ int
(
csp(P)

)
(here int(M) denotes the interior

of a set) need not to be of positive depth. This is a difference from the halfspace
depth, since

x ∈ int
(
csp(P)

)
⇒ HD(x) > 0.

Indeed, consider uniform distribution on a set

S = {(x, y) : x > 0, 1 < x2 + y2 < 2},

and a point a = (x0, y0) = (1/2, 0). Consider the depth function based on the band
weight function of example 1 in section 2.2, where r2 < 3/4. Indeed, for the direc-
tion s = (−1, 0) it is clear that p+(a, s)/p−(a, s) = 0 and hence D

(
(1/2, 0)

)
= 0.

The example is shown in Figure 2.6.

The condition on w+ given in Theorem 2.12 is of a practical use, but could be
weaken. In what follows we tried to find some less restrictive condition on w+,
which ensures depth of points lying out of the closed convex support of distribution
equal to zero.

First, consider a probability distribution with a convex support, for example
the multivariate exponential distribution or the uniform distribution on a convex
support. Let us consider only two-dimensional space (d = 2) for simplicity.
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Figure 2.6: Points in closed convex support need not have positive depth.

Theorem 2.13 Let P be a probability measure with a convex support. We denote
W = {y : w+(y) > 0}. Suppose that

∀x : x1 = 0, x2 > 0 ∃ U a neighbourhood of the point x : U ⊂ W, (2.19)

holds for the weight function. Then D(x; P) = 0 holds for all x /∈ sp(P).

Proof: Suppose x0 /∈ sp(P). We want to prove that its weighted depth will be
equal to zero when condition (2.19) holds.
We denote xm = arg min {|x− x0| : x ∈ sp(P)}, i.e. xm is the point of the support
of P with the smallest distance from x0. Existence and uniqueness of this point
arise from the convexity of sp(P). We can suppose (without loss of generality) x0 =
(0, 0) because of the translation invariance of the weighted depth (see Theorem 2.3
and Theorem 2.4) and we can suppose (without loss of generality) xm = (0, v),
where v = |x− x0| because of the rotation invariance of the weighted depth.
For such a rotation sp(P) ⊂ Hv ⊂ H0 holds, where Hv = {x : x2 ≥ v} and H0 =
{x : x2 ≥ 0}. We can prove it by contradiction. Suppose that there exist y ∈ sp(P)
such that y2 < v. Then (from the convexity of sp(P)) all points on the abscissa
xm, y are in sp(P), i.e.

xm + α(y − xm) ∈ sp(P) ∀α ∈ [0, 1].

The distance of these points from the origin (x0) can be expressed as

[(αy1)
2 + (v + α(y2 − v))2]

1/2
, what is, for alpha small enough, smaller than v.

But this is in conflict with the assumption that xm = (0, v) is the point of sp(P)
with the smallest distance from x0 = (0, 0).
From (2.19) we have that there exist Uxm a neighbourhood of the point xm such
that Uxm ⊂ W . So we have Uxm∩W ∩sp(P) 6= ∅, hence EP w+ (A (X − x0)) > 0.
It follows from sp(P) ⊂ Hv ⊂ H0 that EP w− (A (X − x0)) = 0, so we have
D(x0; P) = 0.

�

The class of functions that satisfy the condition (2.19) of Theorem 2.13 is still
quite broad. For example, all weight functions considered in Section 2.2 satisfy
the condition, with the only exception: local weight function (example 3). The
impropriety of the local weight function has been already discussed in Section 2.2.
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The condition in Theorem 2.13 is not too restrictive. However, this condition
is not necessary. For example, consider the uniform distribution on the convex
(bounded) support and weight function

w+(x) > 0 if and only if xd ∈ [0, h],

where h is a positive constant. The condition (2.19) is not satisfied, but x /∈
csp(P) ⇒ D(x; P) = 0. holds.

The form of the condition (2.19) for general d-dimensional case can be written
as follows: For all x : x1 = 0, . . . , xd−1 = 0, xd > 0 there exist U , a neighbourhood
of the point x, such that U ⊂ W .

Now we will consider a probability measure P with nonconvex support. Because
of nonconvexity we do not request depth equal to zero for all points out of the
support itself, but only for all points out of the closed convex hull of the support
(csp(P)). For example, if we consider the uniform distribution on an annulus, the
center of this annulus is the center of symmetry of the distribution, but it is still
out of the support. So we do not demand its depth equal to zero.

For a nonconvex support of P the condition (2.19) is no more tenable. We can
either consider sp(P) connected or strengthen the condition on weight function.
One possible way how to do it for such a case is introduced in Theorem 2.14.

Theorem 2.14 Suppose there exists n ∈ N such that sp(P) =
⋃n

i=1 Ki, where Ki

(i=1,. . . ,n) is connected subset of R2, and sp(P) has no singular point.
Denote mij = min {|x− y| : x ∈ Ki, y ∈ Kj} , i, j = 1, . . . , n.
Consider m = max1≤i,j≤n mij.
Let a weight function w+ have the following property:

∀x : |x1| ≤ m/2 ∃ Ux a neighbourhood of x such that Ux ⊂ W. (2.20)

Then x /∈ csp(P) ⇒ D(x; P) = 0.

Proof: The proof is very similar to the previous one. We denote the point of csp(P)
with the smallest distance from x0 = (0, 0) by xm = (0, v).
We will prove that there exist a point x = (x1, x2) such that |x1| ≤ m/2 which
is in W (x ∈ W ) by contradiction. Suppose that there is no such a point x.
Then there must be points y = (y1, y2) ∈ sp(P ) and z = (z1, z2) ∈ sp(P ) such
that y1 < −m/2 and z1 > m/2. Hence |y − z| > m. These points are from the
different components of connectedness. We take two points from these components
with the smallest distance between each other: ym and zm. For all points y of
the one component y1 < −m/2 holds and for all points z of the other component
z1 > m/2 holds, we get |ym − zm| > m, but this is in conflict with the definition
of m.
From the assumption (2.20) follows that there exists Ux a neighbourhood of the
point x such that Ux ∩ W ∩ sp(P) 6= ∅. Hence (similarly as in proof of the
Theorem 2.13) D(x; P) = 0.

�
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Note that in a special case n = 1 (for nonconvex connected support) we have
depth equal to zero for all points out of the closed convex hull of the support when
(2.19) holds.

We have been discussing the depth of the points out of the closed convex hull
of the support so far. Now we will discuss properties of the depth of points that
are in the convex hull of the support, but out of the support itself. It is easy to
show that all points from the closed convex hull of the support have a positive
halfspace depth. An advantage of the weighted halfspace depth is that points in
the closed convex hull of the support but out of the support itself might have the
depth equal to zero.

We explain the advantage on the following example. Consider the uniform
distribution on some sector which originates from the circle with the radius r (see
Figure2.7, part a). All points from the closed convex hull of the support have
the halfspace depth greater then zero (Figure 2.7, part b). Now we consider the
weighted halfspace depth with the following weight function

w+(x) = 1 if |x1| < h, x2 ≥ 0

= 0 otherwise, (2.21)

where h is some positive constant smaller than r (the band depth from example 1
at the end of the Section2.1). The area of points that have the weighted halfspace
depth greater then zero is the union of the support and the circle with the same
center as the big one, but with radius equal to h (Figure 2.7, part c). Comparing
shapes of the areas with nonzero halfspace depth and nonzero weighted halfspace
depth we see that the second one is more similar to the shape of the support of
probability measure.

a − support of the distribution b − convex hull of the support

h

c  − points with nonzero depth

Figure 2.7: Sector-shaped support of the uniform distribution (a); the convex hull
of the support i.e. points with nonzero halfspace depth (b); points with nonzero
weighted halfspace depth with the weight function (2.21), where h = r/2 (c).

We illustrate the example with the results of simulation study. We generated
1000 points from the uniform distribution of the considered sector-shaped support.
Figure 2.8 show big differences between the areas of deepest points when using
halfspace and weighted halfspace depth.

47



Weighted halfspace depth Halfspace depth

Figure 2.8: Uniform distribution on the sector-shaped support: areas of 25%, 50%
and 75% of deepest points.

2.6 Computational aspects

In this section, we shortly discuss the computational aspects of sample depth
computation.

Since the weighted halfspace depth is defined for a broad class of weight func-
tions, a general fast algorithm for depth computing does not exist. Also, the
theoretical depth D(x; P) of point x under a general absolutely continuous distri-
bution P cannot be usually calculated exactly and some numerical approximation
is needed. It is caused by the fact that w+(Ax) can attain different values for
every transformation A ∈ Od, which means that possibly uncountable number
of values must be considered. The symmetric weight functions allow to use only
rotation rather than all orthogonal transformations Od.

On the other hand, in some special cases the empirical depth may be computed
exactly. It is the case when the weight function is piecewise constant. The cone
weighted depth, the band weighted depth, the halfspace depth are, in particular,
examples of such depths. The set {

∑n
i=1 w+A(X i − x),A ∈ Od} is finite for each

x in such a case.
Straightforward algorithm is used to compute the sample depth of a given

point x. It uses a predefined number of vectors in Rd−1× [0, +∞) which represent
halfspaces in which we compute sample weighted probability. These vectors are
normal vectors of hyperplanes which determine appropriate halfspaces. For every
such vector we rotate our dataset so that normal vector goes to xd axis. Then we
make, for rotated dataset, two computations of sample weighted probability - for
halfspace where xd ≥ 0 and for halfspace where xd ≤ 0. Finally the depth is set
to the smallest value of portions of sample weighted probabilities in xd ≥ 0 and
xd ≤ 0 halfspaces. For sample size n the computation of weighted probability in
given halfspace takes O(n) steps. There are 2k halfspaces, hence computation of
depth of given point takes O(2kn) steps. If one wants to compute the depth of all
points in dataset it takes O(2kn2) steps. Note that for two dimensional dataset
setting the choice 2k = 1000 halfspaces brings very precise answer.
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2.7 Examples

We illustrate some differences between the weighted depth and the halfspace depth.
In the following examples we use the band weight function of example 1 in Sec-
tion 2.2. We call this depth as the band weighted depth or simply about the
band depth. Several bivariate distributions of random vector X = (X1, X2)

T are
considered.

We simulate 2500 points for each particular distribution and we compute sam-
ple depth of these points. In next figures the areas of 25%, 50% and 75% of the
deepest points (points with the highest depth) are plotted. The rest of points
(25% points with the lowest depth) are marked by light grey. A triangle marks
the sample deepest point.

2.7.1 Symmetrical distributions with convex levelsets of
density

First let us consider two cases with natural centre - normal distribution N2(0, I2)
and uniform distribution on the unit square [−0.5, 0.5]× [−0.5, 0.5]. We can com-
pute the depth of any point exactly in the first case.

Let X be a two dimensional random vector with normal distribution N2(0, I2).
Suppose we have a band weight function

w+(x1, x2) =

{
1, if − h < x1 < h, x2 > 0

0, otherwise

for given h > 0. We use the same notation as in example 1 of section 2.2, hence

D(x) = inf
‖s‖=1

p+(x, s)

p−(x, s)
. (2.22)

First we show that for an arbitrary point x it holds

D(x) = min

{
p+(x, s0)

p−(x, s0)
,
p−(x, s0)

p+(x, s0)

}
for s0 such that 0 ∈ {x + ts0, t ∈ R}.

Without loss of generality we can assume that x = (0, x2)
T (the distribution is

symmetric about 0 and also about any line containing 0). For such a point x let
s = (0, 1)T . One has

p+(x, (0, 1)T ) = P(X2 > x2, −h < X1 < h) = (1− Φ(x2))P(−h < X1 < h),

p−(x, (0, 1)T ) = P(X2 < x2, −h < X1 < h) = Φ(x2)P(−h < X1 < h),

where Φ is the distribution function of N(0, 1). For any other direction u 6= s
and bands B(x, u) there exists uniquely determined rotation A ∈ O2 such that
Au = (0, 1)T and AX = X ′ ∼ N2(0, I2). For x = (0, x2)

T it holds Ax = x′

where x2 > x′2. It is easy to show that

p+(x, u) = p+(x′, (0, 1)T ) = P(X ′
2 ≥ x′2)P(x′1 − h < X ′

1 < x′1 + h)

= (1− Φ(x′2))P(x′1 − h < X ′
1 < x′1 + h),

p−(x, u) = Φ(x′2)P(x′1 − h < X ′
1 < x′1 + h).

49



x

x
+

ts
0

0

Figure 2.9: The direction, in which the ratio of weighted halfspaces is minimal, is
determined by x and 0.

Since Φ(x2) > Φ(x′2) it follows

p+(x, u)

p−(x, u)
=

1− Φ(x′2)

Φ(x′2)
>

1− Φ(x2)

Φ(x2)
=

p+(x, (0, 1)T )

p−(x, (0, 1)T )
.

Hence

D(x) =
1− Φ(x2)

Φ(x2)
.

Since both the depth function and the distribution are invariant with respect to
rotation, it follows that for any y ∈ R2

D(y) = D
(
(0, ‖y‖)T

)
=

1− Φ(‖y‖)
Φ(‖y‖)

.

The depth does not depend on the value of h and it is equal to the halfspace depth.
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Figure 2.10: Normal distribution N2(0, I2): areas of 25%, 50% and 75% of deepest
points.

In Figure 2.10 we can see the sample areas of the deepest points based on
simulation. There is no big difference between the band weighted depth and
the halfspace depth for bivariate normal distribution N2(0, I2). Both methods
find point (−0.008, 0.019) as the sample deepest point, which is the “observation”
(sample point) with the smallest distance (in the standard Euclidean metric) from
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the theoretical centre (0, 0). Areas of the deepest points are similarly large. The
only remarkable difference is in the value of sample depth in sample deepest point
(recall that this is the same point for both methods) which is 0.88 for the band
depth and 0.94 corresponding to the halfspace depth (theoretical depth of the
deepest point is equal to one in both cases). Differences between the sample band
weighted depth and the sample halfspace depth for fixed sample size become small-
er as h increases. These results are in accordance with the theoretical result above.

Consider now the case of uniform distribution on the square support, for ex-
ample on [−0.5, 0.5] × [−0.5, 0.5]. We want to calculate the halfspace depth of
a point x = (x1, x2)

T . Without loss of generality we can assume x1 ≥ 0, x2 ≥ 0
and x2 ≥ x1 (otherwise symmetry can be used). Each line going through the point
x divides the square into two parts. The halfspace depth of x is equal to the
minimal volume of the smaller part, when all possible lines going through x are
considered. It is easy to show that such a line have to intersect right and upper
side of the square. The situation is shown in left part of Figure 2.11.

●

A

[x1,x2]
D

B

C

V

Figure 2.11: Computing the halfspace depth of a point x = (x1, x2)
T (left) and

contours of the central areas of uniform distribution on square support according
to the halfspace depth (right).

The volume of gray area can be expressed as:

S = (|AB|+ |BV |) · (|CV |+ |CD|) /2,

where

|BV | = 0.5− x1,

|CV | = 0.5− x2,

|AB| =
|BV | · |CV |

|CD|
.

The last equality is from the similarity of triangles ABX and AV D. Using
equalities above and minimizing S as a function of |CD| leads to the equality
|AB| = |BV | (and thus |CV | = |CD|). In this case the volume S is minimal and
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it is equal to 2(0.5− x1)(0.5− x2). Thus we have for all x = (x1, x2)
T , such that

x1 ≥ 0, x2 ≥ 0 and x2 ≥ x1:

D(x) = 2 · (0.5− x1) · (0.5− x2).

Using symmetry we get a formula for the halfspace depth on any x ∈ [−0.5, 0.5]×
[−0.5, 0.5]:

D(x) = 2 ·min(|0.5− x1| , |0.5 + x1|) ·min(|0.5− x2| , |0.5 + x2|).

The deepest point is the centre of symmetry with halfspace depth equal to 1/2; all
points at the border of the support have the halfspace depth equal to zero. The
contours of central areas are compound from hyperbolic parts as can be seen at
the right side of the Figure2.11. The shape of central areas is rather disappointing
- it does not reflect the square shape of the support.

Consider now the band depth function. The shape of central areas is deter-
mined by the band width parameter h. Therefore we will denote the band depth
function as Dh(·). If h → ∞, the depth is equivalent to the halfspace depth and
the central areas are as was shown above. On the other hand, consider the situ-
ation h → 0. In this case the depth of any point x ∈ int(sp(P )) can be compute
quite easily. The following theorem deals with the limit case.

Theorem 2.15 Let P be a uniform distribution on a convex (bounded) centrally
symmetric support in Rd. For any x ∈ int(sp(P )) denote L(x) the set of all lines
containing the point x and define

D0(x) = inf
l∈L(x)

‖x−H1(l)‖
‖x−H2(l)‖

,

where H1(l) and H2(l) are the intersects of the line l and the boundary of sp(P ).
Then for any x ∈ int(sp(P )) it holds:

Dh(x) → D0(x), as h → 0.

Denote the boundary of sp(P ) by B and the centre of symmetry by S. Following
lemma lighten the proof:

Lemma 2.16 Consider the situation described in Theorem 2.15. Then for any
x ∈ int(sp(P )) it holds

D0(x) =
‖x−H1(l0)‖
‖x−H2(l0)‖

,

where l0 is the line going through the points x and S, H1(l0) denotes the intersect
of boundary B with the half-line from S to x, and H2(l0) denotes the intersect of
boundary B and half-line from x to S.

Proof: Suppose for the sake of contradiction that there is another l1 ∈ L (l1 6= l0),
such that

‖x−H1(l1)‖
‖x−H2(l1)‖

<
‖x−H1(l0)‖
‖x−H2(l0)‖

(2.23)

Consider now the plane determined by l0 and l1. The triangle H2(l0)H1(l0)H2(l1) ⊂
sp(P ) because of convexity of the sp(P ). Let H∗

2 (l1) denote the point, which
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is symmetrical to H2(l1) around the centre of symmetry S. Then the triangle
H2(l0)H1(l0)H

∗
2 (l1) is also a subset of sp(P ) (from convexity assumption). Denote

the intersect of l1 and H∗
2 (l1)H1(l0) by H. Then H1(l1) lies on the half-line opposite

to HH2(l1). Hence

‖x−H1(l1)‖
‖x−H2(l1)‖

≥ ‖x−H‖
‖x−H2(l1)‖

=
‖x−H1(l0)‖
‖x−H2(l0)‖

.

The last equality follows from the similarity of triangles H2(l0)xH2(l1) and
H1(l0)xH. This contradicts to inequality (2.23).

�

Proof of the Theorem 2.15: We show the proof for two-dimensional case. Without
loss of generality we can assume sp(P ) having volume equal to one. For a particular
x ∈ int(sp(P )) denote:

r = min
y∈B

‖x− y‖ > 0,

R = max
y∈B

‖x− y‖ > 0.

It is sufficient to prove that

∀ε > 0 ∃h0 > 0 ∀l ∈ L(x) : h < h0 ⇒
∣∣∣∣p+(x, l)

p−(x, l)
− ‖x−H1(l)‖
‖x−H2(l)‖

∣∣∣∣ < ε.

x

r { {h { H1(l)
l

R∗ ≤ R

Figure 2.12: Scheme of maximal possible difference between p+(x, l) and a product
2h · ‖x−H1(l)‖.

Let h < r. Then it holds:

|p+(x, l)− 2h · ‖x−H1(l)‖| < 2h2R/r,

|p−(x, l)− 2h · ‖x−H2(l)‖| < 2h2R/r.

We can thus write:

p+(x, l) = 2h · ‖x−H1(l)‖+ ε1(l), where |ε1(l)| < 2h2R/r,

p−(x, l) = 2h · ‖x−H2(l)‖+ ε2(l), where |ε2(l)| < 2h2R/r,

and the considered difference can be expressed as

p+(x, l)

p−(x, l)
− ‖x−H1(l)‖
‖x−H2(l)‖

=
ε1(l) ‖x−H2(l)‖+ ε2(l) ‖x−H1(l)‖

2h · ‖x−H2(l)‖+ ε2(l)
. (2.24)
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For h < r2/R the denominator is always positive, as 2h · ‖x−H2(l)‖ + ε2(l) ≥
≥ 2hr − 2h2R/r = 2h(r − 2hR/r).

From (2.24) we have∣∣∣∣p+(x, l)

p−(x, l)
− ‖x−H1(l)‖
‖x−H2(l)‖

∣∣∣∣ ≤ 4R2h2/r

2hr − 2Rh2/r
=

2R2h

r2 −Rh
< ε if h < r2ε/[R(2R+ε)].
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Figure 2.13: Uniform distribution on [−0.5, 0.5] × [−0.5, 0.5]: areas of 25%, 50%
and 75% of deepest points.

In Figure 2.13 areas of deepest points for uniform distribution on square
[−0.5, 0.5]× [−0.5, 0.5] are displayed. The difference between band weighted depth
(with h = 0.25, hence the band width is 0.5) and halfspace depth is obvious. The
main difference is in the shape of areas of deepest points. Band depth keeps more
faithfully the shape of the support i.e. square whereas halfspace depth areas are
rather going to be a circle. It is not a surprise that for uniform distribution the
areas are similarly large for both methods and there is a common sample deepest
point (−0.001, 0.002), which is pretty close to theoretical centre (0, 0). Again the
sample depth of the sample deepest point is remarkably smaller for band depth
(0.91 for band depth, 0.96 for twice the halfspace depth).

We should note that differences are going to be smaller and smaller as h increas-
es for both normal and uniform distribution. In the case of uniform distribution
there is even no difference between theoretical band depth and halfspace depth if
h is greater than the diagonal of the square (h >

√
2).

2.7.2 Symmetrical distributions - a nonconvex case

Centrally symmetric distributions need not have convex levelsets of density. For
simplicity, we show here two cases of uniform distribution on nonconvex support.
It is easy to imagine distributions with levelsets of density, which have these shapes.

Let us consider the uniform distribution, whose support has a shape of a cross.
The difference between central areas of the halfspace depth and the band depth
(with h=0.5) estimated by the simulation is shown in Figure 2.14. The central
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areas of the halfspace depth are convex. Their estimated version is smoother than
the estimated version of the band depth central regions. However, they include
also points that are out of the support of the distribution. In contrary, central
areas of the band depth reflects better the shape of the support.
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Figure 2.14: Uniform distribution on the cross-shaped support: areas of 25%, 50%
and 75% of deepest points.

Another example is a uniform distribution on the support, whose shape consists
of all points (x1, x2) ∈ R2 such that x2

1 + x2
2 ≤ 32 and |x2/x1| ≤ 1. The difference

between central areas of the halfspace and band depth are shown in Figure 2.15.
The main difference is in the convexity of the central areas. Central areas of the
band depth again reflects better the shape of the support. The deepest point is
located near the centre of symmetry in both cases (however, different points were
marked as the deepest points) The halfspace depth of the deepest point is 0.92,
while the band depth of the deepest point is only 0.75.
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Figure 2.15: Uniform distribution on the noncovex support: areas of 25%, 50%
and 75% of deepest points.
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2.7.3 Non-symmetrical distributions with convex levelsets
of density

In two previous examples we have considered centrally symmetric distributions.
For such a distribution there is a naturally defined unique centre. Now we will
consider some distributions that are not symmetric and the notion of centre may
be questionable.
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Figure 2.16: Exponential distribution (X1 ∼ Exp(1), X2 ∼ Exp(1), X1 and X2 are
independent) : areas of 25%, 50% and 75% of deepest points.

In Figure 2.16 big differences between the band weighted depth and the half-
space depth for exponential distribution can be easily seen. Band depth areas are
rather triangular whereas the halfspace depth areas are rather oval. Note that
band depth areas correspond better to level sets of the density (level sets of this
distribution are rectangular isosceles triangles with vertex in (0, 0)). Also there is
a remarkable difference in position of sample deepest point which is (0.606, 0.610)
for band depth (depth = 0.68) and (0.763, 0.739) for halfspace depth (twice depth
= 0.77). Both are close to line y = x, but sample deepest point for band depth
is closer to 0. Another difference is that areas for the halfspace depth are about
30%-40% larger than for band depth. This can be seen from the Table 2.1.

Proportion of Volume of the area
deepest points Halfspace Depth Band Depth (h=0.5)

75% 7.8 5.7
50% 3.4 2.6
25% 1.4 1.0

Table 2.1: Volume of central areas for distribution X1 ∼ Exp(1), X2 ∼ Exp(1), X1

and X2 are independent.

Another example is a random vector (X1, X2) where X1 ∼ Exp(1) and X2|X1 =
x ∼ N(x, x). Both normal and exponential distributions have maximal density for
x near zero (we mean right neighbourhood of zero in the case of exponential distri-
bution). In Figure 2.17 we can see that while band depth tends to approach zero,
there is a notable lack between zero and area of the deepest points for halfspace
depth. We can also observe that areas for band depth have smaller volume than
corresponding central areas for halfspace depth, see Table 2.2.
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Figure 2.17: X1 ∼ Exp(1) and X2|X1 = x ∼ N(x, x) : areas of 25%, 50% and 75%
of deepest points.

Proportion of Volume of the area
deepest points Halfspace Depth Band Depth (h=0.5)

75% 8.7 6.5
50% 3.6 2.6
25% 1.2 0.9

Table 2.2: Volume of central areas for distribution X1 ∼ Exp(1), X2|X1 = x ∼
N(x, x).

2.7.4 Non-symmetrical distributions - a nonconvex case

Sometimes the levelsets of the density function of a distribution are not convex.
Even the support of the distribution can be nonconvex. Here we show two ex-
amples - a mixture of two normal distributions and a uniform distribution on the
nonconvex support.

In Figure 2.18 a mixture of two bivariate normal distributions is plotted, namely
we considered

N2

((
1
0

)
,

(
3 −0.9

√
3

−0.9
√

3 1

))
and N2

((
−2
2

)
,

(
2 0.8

√
2

0.8
√

2 1

))
.

A remarkable difference between the halfspace depth and the band weighted
depth can be seen. Band weighted depth areas again correspond more faithfully
to level sets of density. The shape of the areas for band depth give evidence that
the distribution is mixture of two other distributions. Areas for halfspace depth
are about 25% larger than for band depth. The difference in position of sample
deepest point is not surprising. In such a situation (we have two distinct natural
centres) estimator of the deepest point for band depth may be quite unstable,
because in such cases there need not exist unique deepest point. For band depth
the sample deepest point is (0.099, 0.538) (depth = 0.60), for halfspace depth it
is (−0.534, 0.958) (twice depth = 0.70). Both these points are quite close to an
abscissa that connects theoretical centres of normal distributions (these centres
are marked by light circle).
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Figure 2.18: Mixture of two bivariate normal distributions: areas of 25%, 50% and
75% of deepest points.

Next example deals with a uniform distribution on a nonconvex support. Fig-
ure 2.19 shows that the band depth keeps more faithfully the shape of the support.
Central areas of the halfspace depth are always convex sets - we drew only deepest
points from the sample. Central areas of the band depth are not convex in this case.
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Figure 2.19: Uniform distribution on a nonconvex support: areas of 25%, 50% and
75% of deepest points.

2.7.5 Concluding remarks

Concluding this section we should note that

• Main differences between the band and the halfspace depth are in the shape
of areas of deepest points.

• For considered nonsymmetric distributions the areas for the halfspace depth
were remarkably larger than for the band depth.

• For symmetric distribution both depths localise the centre of symmetry quite
well, for nonsymmetric distributions there are differences in localisation of
the deepest point (which may not be unique for the band depth).
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Chapter 3

Discrimination based on data
depth

3.1 Discrimination problem

Discrimination problem consists in creating a rule for distinguishing objects of
several groups. Several objects of our interest form two or more groups according
to some criterion (e.g. people divided by their illness status: suffering and not suf-
fering from a certain disease, series of products divided according to their quality:
first class, second class and third class quality). Division of objects into particular
groups was done in the way, which is unknown to us. We know only the final
division. Besides the group assignment we know several numerical characteristics
of each object of our interest (e.g. body temperature, blood pressure and number
of days with a certain symptom). Available objects, represented both by their
numerical characteristics and group assignment, form so called training set.

For any new object of interest (e.g. a new patient or a new series of products)
it is possible to measure or observe its numerical characteristics, but not the group,
to which it belongs. Our goal is to find a rule, which allocate the new observa-
tion to the group, to which it belongs, based only on known characteristics of the
new object; more precisely, on their similarity to the characteristics of the objects
in particular groups (e.g. the body temperature of people suffering from influenza
is generally higher than the body temperature of healthy people. Thus the person,
whose body temperature is 39◦C, is more likely to suffer from influenza than a per-
son with usual body temperature of 36.5◦C ). Such a rule is called classifier. The
goal of the discriminant analysis is to find some classifier based on available records
of previously classified objects.

It should be noticed that sometimes the term classification is used instead
of discrimination. We keep the terminology in accordance with Hand [19], who
distinguish the discrimination as the process of deriving classification rules from
samples of classified objects and the classification as applying these rules to new
objects of unknown class.

Mathematical description of the previous problem can be formulated in prob-
abilistic terms. Consider finite number K ≥ 2 of groups of objects. Each object
can be represented by d ∈ N numerical characteristics. Each group of objects is
characterized by the distribution of the numerical characteristics of its members.
We denote these distributions P1, . . . , PK . It is natural to assume Pi 6= Pj when
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i 6= j. The distributions are unknown. Consider further K independent random
samples X i,1, . . . ,X i,ni

, i = 1, . . . , K, from distributions P1, . . . , PK . These ran-
dom samples (known as the training set) provide only available information on the
considered distributions. Any vector x ∈ Rd, representing an object not included
in the training set, is considered to be a realization of random vector from one
of the distributions P1, . . . , PK , but it is unknown from which of them. There is
a need to estimate to which group the object belongs. The goal of the discrimi-
nant analysis is to find some general rule which allocates arbitrary d-dimensional
real vector lying in a support of at least one distribution to one of the considered
distributions (groups respectively). The rule (known as classifier) has a form of
some measurable function d : Rd → {1, . . . , K}. The classifier can not be faultless
in many cases. A convenient classifier estimates correctly most objects or fits some
other desirable claims. Closer explanation is provided in the next paragraph which
is devoted to assessment of classifiers.

3.2 Classifier assessment

A natural desirable property of any classifier is small number of misclassified ob-
jects. The probability, that some randomly chosen object will be misclassified
by a certain classifier d(·), is said to be the average misclassification rate of the
classifier. The probability is usually expressed in terms of prior and conditional
probabilities as

K∑
i=1

πiP (d(X) 6= i|X ∼ Pi) ,

where the first term πi = P(X ∼ Pi) is prior probability that X comes from the
i-th group, and the second term P (d(X) 6= i|X ∼ Pi) is conditional probability of
wrong classification given that X comes from the i-th group. The word “average”
is used to indicate that objects of all classes are considered.

The classifier, which minimizes average misclassification rate is known as Bayes
minimal error rule (or sometimes it is called optimal Bayes rule). The rule can be
expressed as:

d(x) = arg max
i=1...,K

πifi(x), (3.1)

where πi is prior probability and fi(·) is a density function of the i-th distribu-
tion. The average misclassification rate of this classifier is known as the optimal
Bayes risk. It is essential to realize, that any classifier can not have lower average
misclassification rate than the optimal Bayes risk. The optimal Bayes risk is an
attribute of considered distributions and distances between them. While Bayes
risk is equal to zero for two distributions with disjoint supports, it is nearly one
half for two normal distributions with the same mean and only a small difference
in variances or in the case of two normal distributions with the same variances and
only small shift in location.

Densities fi(·) in expression (3.1) are usually unknown and need to be esti-
mated. Sometimes prior probabilities are also unknown. In such a case they are
usually estimated by proportions of observations in the training set. The problem
of the classifier construction might seem to be reduced to the problem of density es-
timation. Majority of traditional methods are based indeed on density estimation.
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Some of these methods are parametric (considering certain family of distributions,
based on parameter estimation), some are nonparametric (these methods weaken
the assumptions on considered distributions), some are semiparametric.

Although minimizing average misclassification rate might seem well-founded,
it can be spurious in some situations. For example if we consider two distributions
with markedly different prior probabilities (lets say π1 = 0.99 and π2 = 0.01).
Then trivial classifier, which classifies all objects into the first group has average
misclassification rate equal to 0.01. Although the misclassification rate is low, the
classifier is useless. We need another criterion in this situation.

Previously mentioned weakness of minimal average misclassification rate lead
to construction of other criteria. Probably the most widely used is a concept
of cost function, assigning “costs” of wrong classification of objects. Another
strategy (known as the minimax) is based on minimizing maximum possible risk.
We restrict our attention on the assessment of classifiers according to their average
misclassification rate in this work.

3.3 Simple depth-based methods of discrimina-

tion

During the last ten years quite a lot of effort has been put into development of
an alternative nonparametric approach, which uses methodology of data depth for
solving the discrimination problem. The idea of using data depth for discrimina-
tion was firstly introduced in paper by Christmann and Rousseeuw in 2001 ([8]).
Number of researchers followed and broaden the idea of the pioneering paper.
This section aims to provide an overview of simple discrimination methods based
on data depth.

3.3.1 Maximal depth classifier

Maximal depth classifier is probably the most widely used classifier based on data
depth. It was used for example in works of Jörnsten [28], Hartikainen and Oja [20]
or Mosler and Hoberg [29]. A detailed inspection of the method is provided in a
paper by Ghosh and Chaudhuri [18].

The classifier is based on a simple idea of assigning a new observation (rep-
resented by vector x) to the distribution, with respect to which it has maximal
depth. An arbitrary depth function can be used. Of course, different classifiers
are gained by using different depth functions.

d(x) = arg max
j=1...,K

D(x; Pj). (3.2)

Since the theoretical depth is usually unknown, empirical version based on the
data from training set is used:

d(x) = arg max
j=1...,K

D(x; P̂j), (3.3)

where D(x; P̂j) is a depth of x with respect to empirical distribution of the
j-th distribution, which is based on the appropriate points from training set
(Xj,1, . . . ,Xj,nj

).
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The maximal depth classifier is known to be asymptotically optimal (it has
the lowest possible average misclassification rate) in some situations. Gosh and
Chaudhuri showed asymptotical optimality of the classifier if the considered dis-
tributions are elliptically symmetric with the density function strictly decreasing
in every direction from its centre of symmetry, differ only in location (that is they
have equal dispersion and are of the same type), and have equal prior probabilities.
In addition, the used depth function must satisfy some properties in this settings.

Formally, it is assumed that:

(P1) fi(x) = 1

|Σ|1/2 g
(
(x− µi)

TΣ−1(x− µi)
)
, where fi(·) is a density function of

the distribution Pi (for all i = 1, . . . , K), µi is the mean of Pi and Σ > 0 is
its variance matrix,

(P2) g(cx) < g(x) for arbitrary x ∈ R+, for c > 1,

(P3) π1 = π2 = . . . = πK(= 1/K).

Following lemma shows that the maximal depth classifier is equivalent to the
classifier which minimizes Mahalanobis distance in the considered case.

Lemma 3.1 Assume (P1) - (P2). Consider any depth function which have all
properties stated in Definition 1.1 in the considered situation. Then for any x ∈ Rd

arg max
j=1...,K

D(x; Pj) = arg min
j=1...,K

Mj(x),

where Mj(x) denotes Mahalanobis distance of x from the Pj.

Proof : Affine invariance of the depth function ensures the following equality:

arg max
j=1...,K

D(x; Pj) = arg max
j=1...,K

D
(
Σ−1/2(x− µj); P0

)
,

where P0 is standardized elliptically symmetric distribution of the considered type,
that is distribution with the density function f(x) = g(xT x). Using the affine
invariance property once more, we get

arg max
j=1...,K

D(x; Pj) = arg max
j=1...,K

D

((∥∥∥Σ−1/2(x− µj)
∥∥∥ , 0, . . . , 0

)T

; P0

)
.

Now we compare depths of K points lying on the common line with respect to
the same distribution P0. Properties of maximality at centre and monotonicity
relative to the deepest point ensures

arg max
j=1...,K

D(x; Pj) = arg min
j=1...,K

∥∥∥Σ−1/2(x− µj)
∥∥∥ = arg min

j=1...,K
Mj(x).

�

Notice that the claim holds even if equal variance matrices are not assumed.

Theorem 3.2 Assume (P1) - (P3). Consider any depth function which has all
properties stated in Definition 1.1 in the considered situation. Then the average
misclassification rate of an empirical depth-based classifier (3.3) converges to the
optimal Bayes risk as min(n1, . . . , nK) →∞.

62



Proof : The optimal Bayes rule in the considered settings can be simplified:

arg max
j=1...,K

πjfj(x) = arg max
j=1...,K

1

K
Σ−1/2g

(
M2

j (x)
)

= arg min
j=1...,K

Mj(x).

Theoretical maximal depth classifier is thus equivalent to the optimal Bayes classi-
fier (see Lemma 3.1). The claim follows from the uniform convergence of empirical
depth functions.

�

Assumptions that are needed for optimality of the maximal depth classifier are
very restrictive. Following example shows, that the maximal depth classifier is not
optimal when nonequal dispersions are considered:

Example Let us consider two bivariate normal distributions with equal prior
probabilities P1 = N

(
(0, 0)T , 4I

)
, and P2 = N

(
(1, 0)T , I

)
, where I denotes 2 × 2

identity matrix. Denote the new observation x = (x1, x2)
T .

In this case the optimal Bayes rule has the following form: d(x) = 2 iff (x1 −
4/3)2 + x2

2 < 4/9 + 16/3 ln 2. Expected misclassification rate for the group 1 is
about 0.3409, for group 2 it is about 0.1406, hence the optimal Bayes risk is about
0.2408.

The theoretical maximal depth classifier, which is equivalent to the classifier
minimizing Mahalanobis distance, has the form: d(x) = 2 iff (x1−4/3)2+x2

2 < 4/9.
Expected misclassification rate is 0.0435 for group 1 and 0.8104 for group 2, yield-
ing the average misclassification rate of about 0.4270, which is much higher than
the optimal Bayes risk. (The expected misclassification rates were enumerated by
the numeric integration of densities).

Similar problems occur when prior probabilities are not equal.

3.3.2 Classifiers for skewed data

Hubert and van der Veeken [25] have been giving special attention to the classifica-
tion rules for skewed distributions. Their classifier can be considered as a special
case of the maximal depth classifier, which uses the modified projection depth
function.

The projection depth (described in detail in Section 1.2.5) links up the notions
of depth and outlyingness. It was used for classification purposes by Kosiorowski
[33] or Dutta and Ghosh [11]. Its construction can be divided into three steps:

1. Consider any measure of outlyingness in one-dimensional case. The outly-
ingness of a point x ∈ R1 with respect to a probability distribution PX of
a random variable X can be defined for example as

O(x; PX) =
x−med(X)

MAD(X)
,

where med denotes the median and MAD denotes median absolute deviation:
MAD(X) = med(|X −med(X)|).
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2. In multidimensional case, the projection pursuit technique can be applied.
The outlyingness of a point x ∈ Rd with respect to a probability distribution
PX of a random vector X is defined as

O(x; PX) = sup
u:‖u‖=1

O(uT x; PuT X).

3. The projection depth is defined as

D(x; PX) =
1

1 + O(x; PX)
.

This construction can be used for an arbitrary notion of one-dimensional outlying-
ness. The outlyingness of a point describes how far the point lies from the centre
of the data. Usually it does not matter whether the data point is smaller or larger
than the centre point. This property might be considered undesirable when the
distribution is skewed. Hubert and van der Veeken [24] proposed the outlyingness
measure (called adjusted outlyingness), which takes into account the skewness of
a distribution. They used the notion of medcouple, a robust alternative to the
classical skewness coefficient, proposed by Brys et al. [6]:

Definition 3.1 Let X be a univariate random variable, which has continuous dis-
tribution PX with the unique median med(X). The medcouple of the distribution
PX is defined as

MC(PX) := med

(
(XU −med(X))− (med(X)−XL)

XU −XL

)
,

where XU and XL are independent variables which come from truncated P distri-
butions: XU has conditional distribution of X given X > med(X) and XL has
conditional distribution of X given X < med(X).

Obviously MC(PX) = 0 for symmetric distributions, MC(PX) > 0 for right
skewed distributions and MC(PX) < 0 for left skewed distributions. Brys et al.
have shown some basic properties like location and scale invariance of the med-
couple: MC(PaX+b) = MC(PX) for any a > 0 and b ∈ R. Inverting distribution
causes inverting of medcouple: MC(P−X) = −MC(PX). A procedure mc estimat-
ing the medcouple exists in R-package robustbase.

The adjusted outlyingness is defined as follows:

Definition 3.2 Let X be a one-dimensional random variable, which has con-
tinuous distribution PX with the median med(X), lower quartile Q1(X), upper
quartile Q3(X), interquartile range IQR(X) = Q3(X) − Q1(X) and medcouple
MC(PX) ≥ 0. The adjusted outlyingness of a point x ∈ R1 with respect to the
distribution of random variable X is defined as

AO(x; PX) =


x−med(X)
cU−med(X)

if x > med(X)

med(X)−x
med(X)−cL

if x < med(X),

(3.4)

where
cL = Q1(X)− 1.5e−4MC(PX)IQR(X) and cU = Q3(X) + 1.5e3MC(PX)IQR(X).
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Note, that the adjusted outlyingness is defined for right skewed distributions
(for which MC(PX) > 0). If the distribution is left skewed, we compute the ad-
justed outlyingness of −x with respect to the distribution of −X. As far as we
know, constants −4 and 3 in the definition of cL and cU were proposed ad hoc.

Example We illustrate the definition by an example. Consider a random variable
X with lognormal distribution with parameters µ = 0, σ = 2/3. Then med(X) = 1,
quartiles are tabulated (Q1 = 0.64, Q3 = 1.57), the medcouple is about 0.28. The
positive value of the medcouple indicates right skewed distribution. When we
consider two points equally distant from the median, the adjusted outlyingness
of the point smaller than median is higher than the adjusted outlyingness of the
point on the right side of the median. For example, AO(0.25; PX) = 0.92, while
AO(1.75; PX) = 0.20. The example is illustrated in Figure 3.1.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

● ●

Figure 3.1: Boxplot of X ∼ logN(0, 2/3) with two points equally distant from
median: 0.25 and 1.75.

The proposed classifier consists in minimization of the adjusted outlyingness
(or maximization of the corresponding projection depth). It can be considered to
be a special case of maximal depth classifier (3.2). It works very well in situations
presented by Hubert and Van der Veeken ([25]). They consider two distributions
which come from the family of skewed normal distributions. The family of skewed
normal distributions, introduced by Azzalini (see [1]), includes normal distribu-
tions and some others, that are derived from normal distribution by its “skewing”.
The formal definition follows:

Definition 3.3 A d-dimensional random vector X has a central-skewed-normal
distribution with variance matrix Σ0 and skewness-regulating parameter α ∈ Rd,
if its density function is of form

f(x) = 2φd(x,Σ0)Φ(αT x),

where φp(·,Σ0) is a density function of d-dimensional normal distribution with
zero mean and variance matrix Σ0; Φ(·) is the cumulative distribution function of
standard normal distribution. We write X ∼ SNd(0,Σ0, α).

A d-dimensional random vector Y has a skewed-normal distribution with mean
µ, variance matrix Σ and skewness-regulating parameter α ∈ Rd if

Y = µ + ωT X,

where X ∼ SNd(0,Σ0, α), and Σ = ωTΣ0ω. We write Y ∼ SNd(µ,Σ, α).
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Example Consider now discrimination problem with two bivariate distributions
from the family of skewed-normal distributions:

• Distribution P1 = N2(0, I) has the density function f1(x) = φ(x1)φ(x2).

• Distribution P2 = SN2(−2 · 1, I, 5 · 1) has the density function
f2(x) = 2φ(x1 + 2)φ(x2 + 2)Φ (5[(x1 + 2) + (x2 + 2)]).

We suppose equal prior probabilities.
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Figure 3.2: Levelsets of density of normal N2(0, I) and skewed-normal SN2(−2 ·
1, I, 5 · 1) distribution; Bayes discriminant rule is depicted by diagonal lines.

The Bayes rule allocates x = (x1, x2)
T to:

group 1 if x2 > −x1 − 1.65 or x2 < −x1 − 4.55,

group 2 if x2 < −x1 − 1.65 and x2 > −x1 − 4.55.

Where the constants -1.65 and -4.55 are approximative values.
Misclassification rate for the group 1 can be expressed as Φ(q2/

√
2)−Φ(q1/

√
2).

It is about 0.1205. Misclassification rate for the group 2 can be find out by sim-
ulation. It is about 0.097. Considering equal priors the average misclassification
rate is approximately 0.109.

The average misclassification rate for the maximal depth classifier which uses
adjusted outlyingness is near the optimal Bayes risk. We estimated the rate to be
0.111. The example is described in detail in Section 3.7.3.

The low average misclassification rate in previous example, similarly as other
results presented by Hubert and Van der Veeken, are very impressive. Nevertheless,
problems will arise when considering two distributions with more evident difference
in dispersion.
Example Recall the example presented in Section 3.3.1. We consider two bivariate
normal distributions with equal prior probabilities P1 = N

(
(0, 0)T , 4I

)
, and P2 =

N
(
(1, 0)T , I

)
. In this case both distributions are symmetric and hence MC = 0.
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Adjusted outlyingness of any one-dimensional projection is thus reduced to the
form

AO(uT x; PuT X) =
uT x−med(uT x)

2IQR(uT x)
.

The maximal depth classifier based on adjusted outlyingness has the form: d(x) =
2 iff (x1 − 4/3)2 + x2

2 < 4/9, which was shown to be far away from optimality in
previous section.

The result is not surprising, because the projection depth (or more precisely
the depth base on adjusted outlyingness), is affine invariant notion of depth and
hence general results described in Section 3.3.1 hold.

3.3.3 Maximal central area classifier

A new idea how to use the notion of data depth for solving discrimination problem
was proposed by Billor et al. in 2008 (see [3]). They realized that the range of
possible depth values can vary among competing populations. For example, the
deepest point of a symmetric distribution has halfspace depth equal to 0.5, but
the deepest point of an asymmetric distribution has smaller depth. This simple
consideration lead to the idea of classifying a new object x into the group, which
has the highest expected proportion of points with smaller depth than the depth
of x:

d(x) = arg max
i=1,...,K

P (D(X i; Pi) ≤ D(x; Pi)) , (3.5)

where D(x; Pi) is the depth of point x with respect to the i-th distribution, and
D(X i; Pi) is random variable, which can be described as the depth of point X i

randomly sampled from Pi with respect to the distribution Pi.
In other words, the classifier chooses such a distribution Pi, for which the value

D(x; Pi) is the highest quantile of D(X i; Pi). It can be also expressed in terms
of central areas: denoting Cq(i) the smallest central area of the i-th distribution
which includes x (as in Definition 1.2), the classifier allocates x to the distribution
Pi for which q(i) is maximal. The classifiers could be also expressed in terms of
ranks, as they were defined in Section 1.3. Following formula is equivalent to (3.5):

d(x) = arg max
i=1,...,K

rPi
(x).

The theoretical probability in expression (3.5) is practically always unknown
and must be estimated. The estimation based on training set leads to the simple
rule:

d(x) = arg max
i=1,...,K

1

ni

ni∑
j=1

I
(
D(X i,j, P̂i) ≤ D(x; P̂i)

)
, (3.6)

where X i,j is the j-th point from the i-th group of training set, ni denotes number

of points from the i-th group in training set, P̂i denotes empirical version of Pi

based on the data from training set and I(·) is an indicator function equal to one
if the condition in argument is satisfied and is zero otherwise.

The classifier was originally derived by Billor et al. from the idea of transvaria-
tions and it was called the depth transvariation classifier. However, the derivation
was somewhat confusing. It was based on the following definition of the transvari-
ation probability:
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Definition 3.4 The transvariation probability between distribution P of a uni-
variate random variable Y and a constant c ∈ R is defined as

τ(c) = P {(Y − c) (µ− c) ≤ 0} , (3.7)

where µ is some location parameter of the distribution P .

It is not clear which location parameter should be used.
We consider random variables Yi = D(X i; Pi) and a constants ci = D(x; Pi) ∈

R; µi are some location parameters of the distributions of Yi. The idea used
by Billor et al. is to allocate a new observation x to the group, for which the
transvariation probability between the constant D(x; Pi) and the distribution of
D(X i, Pi), X i ∼ Pi is maximal. Billor et al. considered µi to be the depth of
the deepest point with respect to Pi. In this case µi − ci ≥ 0 and the formula
(3.7) simplifies to τ(ci) = P (Yi − ci ≤ 0), which leads to the classifier (3.5). Using
other location parameter like mean or median of the D(X i, Pi) would lead to
poor classifier, because points with the high depth would have low transvariation
probability.

We propose more straightforward justification of the classifier (3.5). Natural
location parameter of a symmetric one-dimensional distribution P is its point of
symmetry. The transvariation probability between distribution P and a point
c ∈ R is increasing with the decreasing distance of c from the centre of symmetry
µ. The same idea can be applied in multidimensional space Rd, d > 1. Such an
extension, which uses depth of the point as a measure of distance from the centre
of symmetry, leads directly to the classifier (3.5).

Theoretical properties of the classifier (3.5) are not studied in [3]. However, we
can derive some results quite easily under similar assumptions as in Section 3.3.1
(elliptical symmetry, difference in location and equal priors):

Theorem 3.3 Assume (P1) - (P3) from Section 3.3.1. Consider any depth func-
tion which has all properties stated in Definition 1.1 in the considered situation.
Then the classifier (3.5) is equivalent to the Bayes rule (3.1).

Proof : It was already shown in the proof of Theorem 3.2 that the optimal Bayes
rule in the considered settings has form:

d(x) = arg min
i=1...,K

Mi(x),

where Mi(x) denotes Mahalanobis distance of x from Pi. By repeating the steps in
proof of Lemma 3.1 we can show that the depth D(x; Pi) is a decreasing function
of the Mahalanobis distance Mi(x) in the considered case. Hence

P (D(X i; Pi) ≤ D(x; Pi)) = P (Mi(X i) ≥ Mi(x)) , (3.8)

where Mi(X i) is a random variable, which is the Mahalanobis distance of random
variable X i from the distribution Pi. Now it suffices to realize that the distribution
of Mi(X i) is the same for all i (it does not depend on i). This is clear from the
following equation:

Mi(X i)
2 = (X i − µi)

TΣ−1
i (X i − µi) = Y T

i Y i,
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where Y i = Σ
−1/2
i (X i − µi) has the same distribution for all i = 1, . . . , K: el-

liptically symmetric with zero mean and identity variance matrix. Now it is clear
from (3.8) that

arg max
i=1,...,K

P (D(X i; Pi) ≤ D(x; Pi)) = arg min
i=1,...,K

Mi(x).

�

The maximal central classifier (3.5) is not optimal in the case of unequal disper-
sions, because it remains equivalent to the classifier d(x) = arg mini=1,...,K Mi(x),
maximal depth classifier (3.2) respectively, but these classifiers are not equivalent
to the Bayes optimal rule any more, as was shown in Section 3.3.1.

The improvement of maximal central classifier showed by Billor et al. is due
to the use of L1–depth, which is not affine invariant. The difference between
classifiers (3.3) and (3.6) can be visible when the considered distributions are of
different type. Then the later classifier comprehends possibly different ranges of
depth functions.

3.3.4 Problem of different dispersions

Both maximal depth classifier and maximal central classifier are not optimal when
the considered distributions differ in dispersion. In previous sections distributions
P1, . . . , PK are assumed to be of the same type and differ only in location param-
eter. The class of problems, that can be satisfactorily solved by use of classifier
(3.3) or (3.6), is thus quite narrow.

The problems of classifiers based on data depth arise from the discrepancy
between the depth and the density function. The classifiers considered in this
section are based on data depth; the optimal Bayes classifier is based on density
function. While the depth function is affine invariant, the density function does
not have this property. Recall how the density function and the (affine invariant)
depth function change after an affine transformation: Consider a d-dimensional
random vector X with a density function f . Consider a regular d × d matrix A
and a vector b ∈ Rd. The density function of a random vector Y := AX + b is
denoted by g. Then it holds:

g(y) = f(A−1(y − b)) |A|−1

D(y; Y ) = D(A−1(y − b); X).

When |A| 6= 1, the transformation “changes” the density, but “does not change”
the depth. This discrepancy may lead to serious problems of depth-based classifiers.
Following simple example illustrates problems arising from affine transformation
such as a change of scale:

Example Consider a normal distribution P1 = N(0, σ2
1). When the scale is

changed, distribution P1 is transformed to P2 = N(0, σ2
2). Assume 0 < σ1 < σ2.

Equal prior probabilities of P1 and P2 can be considered. For any x 6= 0 it holds
D(x; P1) < D(x; P2). Both (3.2) and (3.5) classify all new objects to P2 with
probability one. The average misclassification rate is thus equal to 1/2. The rule
is as bad as a random assigning to the distributions (coin tossing). The Bayes rule
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assigns a new observation x to P1 iff |x| < x0 = σ1σ2

[
ln σ2

2−ln σ2
1

σ2
2−σ2

1

]1/2

. The average

misclassification rate is 1/2 − [Φ(−x0/σ2)− Φ(−x0/σ1)] < 1/2. For example, if
σ1 = 1 and σ2 = 4, the Bayes optimal risk is about 0.21.

3.4 Advanced depth-based methods of discrimi-

nation

In this section we describe two classifiers based on depth, which overcome the
problems with different dispersions. They both are based on the assumption that
there exists a relationship between the depth and the density function. The first
one uses one-dimensional kernel density estimation. This approach was proposed
by Gosh and Chaudhuri [18]. The later approach modifies the k-nearest-neighbour
method. This modification has not been published so far.

3.4.1 Dealing with different dispersions

The clue to construction of an effective classifier based on data depth lies in the
existence of a relationship between the depth and the density function. Formally,
it is assumed that the density function fi(·) corresponding to the distribution Pi

can be expressed as a function of a depth D(·; Pi) for all i = 1, . . . , K:

fi(x) = hi(D(x; Pi)), i = 1, . . . , K. (3.9)

In such a case the depth function can be used to estimate the density function.
In this way an empirical version of the Bayes rule can be constructed. The Bayes
classifier (3.1) in this case has a form:

d(x) = arg max
i=1...,K

πihi(D(x; Pi)). (3.10)

Note that the functions hi(·) need not to be the same for all distributions. Re-
call the example from Section 3.3.4. We consider P1 = N(0, σ2

1) and P2 = N(0, σ2
2).

When considering the halfspace depth, the density function f1(·) corresponding to
the P1 and the density function f2(·) corresponding to P2 can be expressed as

f1(x) = φ(x/σ1)/σ1 = φ(−x/σ1)/σ1 = φ
(
Φ−1 (D(x; P1))

)
/σ1,

f2(x) = . . . = φ
(
Φ−1 (D(x; P2))

)
/σ2,

where φ(·) denotes the density function of the standardized normal distribution
and Φ(·) denotes the cumulative distribution function of the standardized normal
distribution. Hence we have h1(·) = φ (Φ−1 (·)) /σ1, while h2(·) = φ (Φ−1 (·)) /σ2.

On the other hand, hi(·) might be independent on i under a certain circum-
stances, for example if we consider elliptically symmetric distributions of the same
type, which differ only in location (have equal dispersions).

Two general concepts are widely used in density estimation for the purpos-
es of discrimination. The kernel density estimation and the k-nearest-neighbour
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method. They both can take advantage of the idea of the data depth. The methods
are based on the following approximation:

P(X ∈ L(x)) =

∫
L(x)

f(y)dy ∼= f(x) · λd (L(x)) , (3.11)

where L(x) is some neighbourhood of x ∈ Rd, f(·) is the density function of
a random vector X and λd (L(x)) is a d-dimensional Lebesgue measure of L(x) -
the volume of L(x). The density can be estimated by estimation of the following
ratio:

f(x) ∼= P(X ∈ L(x))/λd (L(x)) . (3.12)

The approximation is appropriate as far as the density function is nearly con-
stant (equal approximately to f(x)) at the neighbourhood L(x). Classical methods
work with a neighbourhood defined as

L(x) =
{
y ∈ Rd : ‖x− y‖ < η

}
, (3.13)

for some small positive constant η ∈ R. The definition is simple, but it leads to
the problems connected with sparsity of data in high dimensional space (known as
the curse of dimensionality). To prevent these problems, the relationship (3.9) can
be used. Since levelsets of depth correspond to levelsets of density, f(·) is constant
whenever D(·) is constant. We can define the “neighbourhood” of x, as the set of
all points with the depth close to the depth of x. Since the depth is always related
to the distribution, we talk about “distributional neighbourhood”. Formally, we
define

L(x; P ) =
{
y ∈ Rd : |D(x; P )−D(y; P )| < η

}
, (3.14)

for some small positive constant η ∈ R. In other words y ∈ L(x; P ) iff D(y; P ) ∈
Uη(D(x; P )), where Uη(D(x; P )) is classical one-dimensional neighbourhood of
D(x; P ).

Notice that the definitions (3.13) and (3.14) are not equivalent. The later defi-
nition constitutes an alternative approach to the notion of a neighbourhood. The
difference between the classical neighbourhood and the distributional neighbour-
hood of a point is illustrated in Figure 3.3. In the considered example, levelsets of

the bivariate normal distribution N

((
0
0

)
,

(
4 1
1 1

))
are plotted. The classi-

cal and the distributional neighbourhood of a point x = [2.5, 0.5] are plotted.
An advantage of the later approach is that more points, in which the density

is similar to the considered point, can be included in the neighbourhood.

3.4.2 A method based on kernel density estimation

Construction of empirical Bayes classifier is based on the estimation of the densities
fi(x), i = 1, . . . , K. The estimates are usually based on the approximation (3.12).
Denote Li(x) =

{
y ∈ Rd : ‖x− y‖ < ηi

}
, i = 1, . . . , K, the classical neighbour-

hoods of x used for the estimation of fi(x).
The first usual way how to proceed from (3.12), is to put η1 = . . . = ηK =: η.

Consequently L1(x) = . . . = LK(x) =: L(x; η) and maximization of π̂if̂i(x) is
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Figure 3.3: A classical neighbourhood of a point x = [2.5, 0.5] (left) and a distribu-
tional neighbourhood of the same point (right), when the considered distribution
is centralized bivariate normal.

thus equivalent to the maximization of number of points from particular groups of
the training set included in L(x; η):

d(x) = arg max
i=1...,K

# {j : X i,j ∈ L(x; η)} .

Considering the function Ker : Rd → R1

Ker(z) =

{
0 if ‖z‖ > 1
1 if ‖z‖ ≤ 1,

one can estimate the density functions in x by

f̂i(x) =
c

ηd
· 1

ni

ni∑
j=1

Ker

(
x−X i,j

η

)
, i = 1, . . . , K,

where c is a constant independent on i. The method is usually generalized by
allowing Ker(·) to be any appropriate kernel function.

This approach is quite common in one-dimensional case. However, in higher
dimensions it has serious problems with sparsity of data. Large η must be chosen
to ensure enough points lying inside the neighbourhood L(x; η). Large values of
η violate the assumption of nearly constant density-level on the neighbourhood
L(x; η).

An improvement can be gained by using distributional neighbourhood instead
of the classical neighbourhood: L(x, Pi) =

{
y ∈ Rd : ‖D(x; Pi)−D(y; Pi)‖ < ηi

}
.

The first step is same as in the traditional approach: we put η1 = . . . = ηK =: η.
A very important difference from the traditional approach is that this equality
does not imply equality L(x, P1) = . . . = L(x, PK). By contrast with the tradi-
tional approach, K generally different neighbourhoods with different volumes are
considered in this case. This fact is illustrated in Figure 3.4, where two different
distributional neighbourhoods of the point x = [2.5, 0.5] are plotted. These neigh-
bourhoods are based on the halfspace depth of x with respect to the distribution

P1 = N

((
0
0

)
,

(
4 1
1 1

))
, P2 = N

((
4
−1

)
,

(
1 0
0 1

))
respectively.
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Figure 3.4: Two different distributional neighbourhoods of the point x = [2.5, 0.5].

Different neighbourhoods bring a problem of unequal volumes of neighbour-
hoods. Two possible solutions have been presented in literature. The first ap-
proach (presented by Gosh and Chaudhuri [18]) is based on the assumption that
P1, . . . , PK are elliptically symmetric distributions. In that case, one can use
a known relationship between volumes of neighbourhoods and the halfspace depth.
The other approach (presented by Fraiman et al. [15]) is more general. It is based
on the estimate of relationship between the depth and the volumes of the central
areas. We discuss both approaches in next paragraphs.

1. Ghosh and Chaudhuri assumed P1, . . . , PK be elliptically symmetric with
parameters µi and Σi, i = 1, . . . , K. For elliptically symmetric distributions,
it is convenient to work with Mahalanobis distance of the point x from the

distribution Pi: Mi(x) =
[
(x− µi)

TΣ−1
i (x− µi)

]1/2
, which determines the

density fi(x). Let us denote the Radon Nikodym derivative of λd ◦ M−1
i

with respect to λ1 by L(M)
i . Denote the density function of Mi(X), where

X ∼ Pi, by ρ
(M)
i (·). Since the density of elliptically symmetric distribution

is a function of the Mahalanobis distance, we have

fi(x) = h∗i (Mi(x)) =
ρ

(M)
i (Mi(x))

L(M)
i (Mi(x))

. (3.15)

The form of L(M)
i (·) is known under the assumption of elliptical symmetry:

L(M)
i (m) = |Σi|1/2 πd/2

Γ(d/2)/2
md−1.

The formula follows directly from the expression of the volume of d-dimensi-
onal ball and the density transformation theorem. The Bayes classifier (3.1)
could be expressed in the following form:

d(x) = arg max
i=1,...,K

ciρ
(M)
i (Mi(x))/Mi(x)d−1, (3.16)

where ci are constants, in which πi and |Σi| terms are hidden. The ap-
proach of Gosh and Chaudhuri described in [18] can be shortly summarized
as follows:
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• For each group of the training set, we estimate the Mahalanobis dis-
tances of all its points from its centre of symmetry.

• The density functions ρ
(M)
i (·) can be estimated by one-dimensional ker-

nel density estimation, where the observations are Mahalanobis dis-
tances of the points included in the i-th group of the training set esti-
mated in the first step.

• Constant c1 is defined to be equal to one and constants c2, . . . , cK are
estimated by cross-validation, where the average misclassification rate
of the rule is minimized when classifying the points from the training
set.

• The new observation x is classified according to the empirical version
of the rule (3.16), where estimated constants ĉi, estimated Mahalanobis

depth M̂i(x) and estimated density ρ̂
(M)
i (M̂i(x)) are used.

Technical details are omitted here. However, we should note that the half-
space depth is used for the robust estimation of the Mahalanobis distance.
The estimate is based on the simple relationship between the halfspace depth
and the Mahalanobis distance in the case of elliptically symmetric distribu-
tions:

Lemma 3.4 If X = µ + Σ1/2U , where U has a spherically symmetric
distribution, then D(x; X) = 1 − F

(
[(x− µ)TΣ−1(x− µ)]1/2

)
, where F is

the cumulative distribution function of lT U for every l with ‖l‖ = 1.

Proof of the lemma can be found in [18].

2. More general approach proposed by Fraiman et al. [15] does not rely on the
assumption of ellipticity. Let D(·; ·) be the halfspace depth function; for short
denote Di := D(·, Pi). Assume existence of the Radon Nikodym derivatives

of λd◦D−1
i with respect to λ1 and denote them by L(D)

i , i = 1, . . . , K. Denote

the density function of Di(X), where X ∼ Pi, by ρ
(D)
i (·). Now we have

fi(x) = hi(D(x; Pi)) =
ρ

(D)
i (D(x; Pi))

L(D)
i (D(x; Pi))

.

The form of L(D)
i (·) is generally not known and need to be estimated. Fraiman

et al. proposed to estimate the density function in the following way:

f̂i(x) =
1

n

ni∑
j=1

Kerη(D(x; P̂i)−D(X i,j; P̂i))∫
Kerηf

(D(x; P̂i)−D(t; P̂i))dt
,

where Kerη(x) = Ker(x/η)/η for some kernel Ker and some bandwidths η
and ηf . Technical details are omitted here.
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3.4.3 Modified k-nearest-neighbour method

In this section we introduce a modification of the well-known k-nearest-neighbour
(k-NN) method. Recall that the classical k-NN method is based on the local
approximation (3.12), similarly as the classifiers presented in the previous section:

πifi(x) ∼= πi
P (X i ∈ Li(x))

λd (Li(x))
, where X i ∼ Pi.

The probability P (X i ∈ Li(x)) can be easily estimated by the proportion of points
from the i-th group of the training set lying in Li(x). The prior probabilities πi can
be estimated by relative frequencies of points in particular groups of the training
set. Hence the empirical Bayes classifier can be constructed in the following way:

π̂if̂i(x) =
ni

n

ki

ni

1

λ̂d(Li(x))
=

ki

nλ̂d(Li(x))
, (3.17)

where ni is the number of points in the i-th group of the training set, n is the total
number of points in the training set (n = n1 + . . . , nK) and ki is the number of
points from the i-th group of the training set lying in Li(x).

Fix and Hodges [14] proposed to find such a neighbourhood L(x) = L1(x) =
. . . = LK(x) so that it contains some fixed number of points from the training
set. The number of points in the neighbourhood is traditionally denoted by k and
therefore the method is called k-nearest-neighbour.

Notice that classical neighbourhoods L1(x), . . . , LK(x) can be replaced by dis-
tributional neighbourhoods L(x, P1), . . . , L(x, PK). Inspired by the idea of k-NN,
we propose to find such distributional neighbourhoods L(x, P1), . . . , L(x, PK) so
that each neighbourhood L(x, Pi) contains exactly k points from the i-th group of
the training set. Then the classifier coming from (3.17) has a simple form:

d(x) = arg min
i=1,...,K

λ̂d(L(x, Pi)), (3.18)

where L(x, Pi) is the distributional neighbourhood of x which contains exactly
k points from the i-th group of the training set. As far as the levelsets of density
are convex, the volume of distributional neighborhood can be estimated quite
easily.

It is clear that the classifier depends on the choice of constant k. This choice
should follow general rules used in classical k-nearest-neighbour method. Thus
k should increase to infinity as n increases to infinity. On the other hand the
proportion of k/n might be smaller for large values of n, formally k/n approaches
zero as n goes to infinity.

We show that the classifier (3.18) is meaningful and applicable when considering
elliptically symmetric distributions.

Let us consider two elliptically symmetric distributions P1 and P2 on Rd with
densities f1(·) and f2(·). Assume:

(Q1) fj(x) = c

|Σj |1/2 g (Mj(x)), where Mj(x) =
[
(x− µj)

TΣ−1
j (x− µj)

]1/2
de-

note Mahalanobis distances of x from the Pj, j = 1, 2, and c is normalizing
constant,
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(Q2) g be continuous function, for which g(cx) < g(x) for arbitrary x ∈ R+ and
c > 1,

(Q3) distribution P be a mixture of P1 and P2: P = π1P1 + π2P2.

Consider two sequences of integers {ni}i∈N and {ki}i∈N such that:
limi→∞ ni = ∞, limi→∞ ki = ∞ and limi→∞ ki/ni = 0.

We consider a sequence of independent d-dimensional random vectors X1, X2, . . .
with the same distribution P . For any fixed i ∈ N and any fixed x ∈ Rd we can
divide the random sample X1, . . . ,Xni

into two parts:

• points that come from P1 can be sorted according to their Mahalanobis
distance to P1 in an increasing order: X1:1 ≺ X2:1 ≺ . . . ≺ Xm1(i):1 ≺ x ≺
Xm1(i)+1:1 ≺ . . . ≺ Xm1(i)+ki:1 ≺ . . . ≺ Xui:1,

• points that come from P2 can be sorted according to their Mahalanobis
distance to P2 in an increasing order: X1:2 ≺ X2:2 ≺ . . . ≺ Xm2(i):2 ≺ x ≺
Xm2(i)+1:2 ≺ . . . ≺ Xm2(i)+ki:2 ≺ . . . ≺ Xvi:2,

Notice that the same ordering can be based on the halfspace depth (or any other
depth function in the sense of the Definition 1.1). This important fact can be seen
for example from Lemma 3.4.

In what follows we use neighbourhood of a fixed point x ∈ Rd (whose Maha-
lanobis depth is denoted by Mj := Mj(x), j = 1, 2, for simplicity) defined as

Oj(h) :=
{
y ∈ Rd : Mj(y) ∈ [Mj, Mj + h]

}
, j = 1, 2.

Recall that λd(Oj(h)) = πd/2

Γ(d/2+1)
|Σj|1/2 [(Mj + h)d −Md

j

]
.

Theorem 3.5 Consider the mixture of two distributions P (see Q1 - Q3 above),
sequences of integers {ni}i∈N and {ki}i∈N and ordered random samples as described
above. Let x be any fixed point in Rd. For any i ∈ N define a random variables
C1(i) := M1(Xm1(i)+ki:1)−M1 and C2(i) := M2(Xm2(i)+ki:2)−M2. In the consid-
ered situation it holds:

λd (O1 (C1 (i)))

λd (O2 (C2 (i)))
→ π2f2(x)

π1f1(x)
in probability.

The theorem implies asymptotical equivalence of the classifier (3.18) and the

Bayes classifier (3.1) under the assumption that the estimates λ̂d(L(x, Pi)) are
consistent.

Proof: We want to show that

∀ε > 0 ∃i0 ∈ N : i ≥ i0 ⇒ P

(∣∣∣∣λd (O1 (C1 (i)))

λd (O2 (C2 (i)))
/
π2f2(x)

π1f1(x)
− 1

∣∣∣∣ > ε

)
< ε. (3.19)

For any given ε > 0 we can find constant c0(ε) > 0 such that
g(Mj+c0(ε))

g(Mj)
< 1+ ε for

both j = 1, 2. Notice that this inequality implies
g(Mj+c)

g(Mj)
< 1 + ε for both j = 1, 2

for all c ∈ [0, c0(ε)]. Denote p(ε) := min {π1P1 (O1(c0(ε))) , π2P2 (O2(c0(ε)))}.
Assume i ∈ N to be large enough to ensure
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(A1) ki/ni < p(ε)/2 and

(A2) k
−1/4
i < ε.

In the three following steps we show that for any i ∈ N satisfying these two
assumptions the inequality in (3.19) holds. Since now assume i to be fixed (sat-
isfying conditions above) and we write k, n and Cj, j = 1, 2 instead of ki, ni and
Cj(i), j = 1, 2 for simplicity.

Step 1:
We can find positive (uniquely determined) constants c1 and c2 such that

π1P1 (O1(c1)) = k/n = π2P2 (O2(c2)) . (3.20)

Obviously 0 < cj < c0 for both j = 1, 2.
Now

λd(O1(c1))
λd(O2(c2))

π2f2(x)
π1f1(x)

=

|Σ1|1/2[(M1+c1)d−Md
1 ]

|Σ2|1/2[(M2+c2)d−Md
2 ]

π2|Σ2|−1/2g(M2)

π1|Σ1|−1/2g(M1)

=
π1g(M1)

[
(M1 + c1)

d −Md
1

]
π2g(M2)

[
(M2 + c2)d −Md

2

] . (3.21)

Using the equation (3.20) the ratio (3.21) can be written as

π2P2(O2(c2))

π2g(M2)
[
(M2 + c2)d −Md

2

] · π1g(M1)
[
(M1 + c1)

d −Md
1

]
π1P1(O1(c1))

=

=

∫M2+c2
M2

g(r)rd−1dr

g(M2)
[
(M2 + c2)d −Md

2

] · g(M1)
[
(M1 + c1)

d −Md
1

]∫M1+c1
M1

g(r)rd−1dr
. (3.22)

Now we can find upper bound for this ratio (and analogous lower bound). Since
g(·) is decreasing function, it holds g(r) < g(M2 + c2) for all r ∈ [M2, M2 + c2) and
g(r) > g(M1) for all r ∈ (M1, M1 + c1). Hence (3.22) is bounded above by∫M2+c2

M2
g(M2 + c2)r

d−1dr

g(M2)
[
(M2 + c2)d −Md

2

] ·g(M1)
[
(M1 + c1)

d −Md
1

]∫M1+c1
M1

g(M1)rd−1dr
=

g(M2 + c2)

g(M2)
·g(M1)

g(M1)
< 1+ε.

Similarly, the lower bound for the ratio can be computed.

Step 2:
We find positive constants cL

1 , cU
1 and cL

2 , cU
2 such that

π1P1

(
O1(c

L
1 )
)

= k−k3/4

n
= π2P2

(
O2(c

L
2 )
)
,

π1P1

(
O1(c

U
1 )
)

= k+k3/4

n
= π2P2

(
O2(c

U
2 )
)
.

These constants are again unique and less than c0.
Now consider any constant cS

1 ∈ [cL
1 , cU

1 ] and cS
2 ∈ [cL

2 , cU
2 ]. We do not as-

sume π1P1

(
O1(c

S
1 )
)

= π2P2

(
O2(c

S
2 )
)
. Nevertheless, it can proved that the ratio

λd(O1(cS
1 ))

λd(O2(cS
2 ))

/π2f2(x)
π1f1(x)

is close to one.
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We can proceed similarly as in the first step:

λd

(
O1

(
cS
1

))
λd (O2 (cS

2 ))
/
π2f2(x)

π1f1(x)
=

π1g(M1)
[
(M1 + cS

1 )d −Md
1

]
π2g(M2)

[
(M2 + cS

2 )d −Md
2

] . (3.23)

The fraction can be extended by

π1P1(O1(c
S
1 ))

π1P1(O1(cS
1 ))

π2P2(O2(c
S
2 ))

π2P2(O2(cS
2 ))

π2P2(O2(c2))

π1P1(O1(c1))
,

where the last term is equal to one from (3.20). After a convenient arrangement
we get (3.23) equals to

g(M1)
[
(M1 + cS

1 )d −Md
1

]
P1(O1(cS

1 ))
· P1(O1(c

S
1 ))

P1(O1(c1))
· P2(O2(c

S
2 ))

g(M2)
[
(M2 + cS

2 )d −Md
2

] · P2(O2(c2))

P2(O2(cS
2 ))

.

Ratios
P(Oj(c

S
j ))

P(Oj(cj))
are not greater than (k+k3/4)/n

k/n
= 1+k−1/4 and not smaller than

(k−k3/4)/n
k/n

= 1 − k−1/4. Recall that k is so big that k−1/4 < ε. The first and the
third term are both bounded similarly as the ratio in the step 1.

The considered ratio is thus not greater than (1+ε)2

1−ε
and not less than 1−ε

(1+ε)2
.

Step 3:
We show that Cj ∈ [cL

j , cU
j ] with probability greater than 1− 2ε both for j = 1, 2.

Consider a random sample of n points from the mixture P (some of the randomly
sampled points are from P1 and some are from P2).

Let ZL
j , j = 1, 2, denote numbers of points from Pj lying in Oj(c

L
j ). ZL

j , j = 1, 2,

are binomial random variables: ZL
j ∼ Bi

(
k−k3/4

n
, n
)
. Let ZU

j , j = 1, 2, denote

numbers of points from Pj lying in Oj(c
U
j ). ZU

j , j = 1, 2, are binomial random

variables: ZU
j ∼ Bi

(
k+k3/4

n
, n
)
.

Obviously Cj /∈ [cL
j , cU

j ] iff either ZL
j > k (in that case Cj < cL

j ) or ZU
j < k (in

that case Cj > cU
j ). Now

P
(
ZL

j > k
)

= P

ZL
j − EZL

j

SD(ZL
j )

>
k − (k − k3/4)√

(k − k3/4)(1− k−k3/4

n
)

 .

The standard deviation of the considered binomial distribution is smaller than
k1/2, hence

P
(
ZL

j > k
)

< P

(
ZL

j − EZL
j

SD(ZL
j )

> k1/4

)
≤ k−1/2 < ε,

where the second inequality follows from the Chebyshev’s inequality and the last
inequality follows from the assumption (A2).

Similarly it can be shown that P
(
ZU

j < k
)

< ε. Hence P
(
Cj ∈ [cL

j , cU
j ]
)

>
1− 2ε.

�
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Newly proposed modified k-nearest-neighbour method is an alternative to the
methods based on density estimation presented in the Section 3.4.2. In contrast
to these methods, modified k-NN does not need kernel density estimation. Its
implementation is quite easy. While classical k-NN method suffers from curse of
dimensionality, modified k-NN prevent the problem by using alternatively under-
stood notion of neighbourhood. In contrast to the maximal depth classifier and
related classifiers, modified k-NN method does not have problems with classifica-
tion when the considered distributions differ in dispersion.

3.5 Alternative depth-based method of discrim-

ination

An alternative approach to the two-class discrimination problem based on data
depth was recently proposed by Li, Cuesta-Albertos and Liu [34]. Their classifier
is based on so called DD–plot, a visual tool where depth of point with respect
to one distribution (say P1) is plotted against its depth with respect to other
distribution (P2). Formally:

Definition 3.5 Denote X(1) := X1,1, . . . ,X1,n1 a random sample from P1 and
X(2) := X2,1, . . . ,X2,n2 the random sample from P2. The DD-plot is defined by

DD(P1, P2) =
{
[D(x; P1), D(x; P2)], x ∈ X(1) ∪X(2)

}
.

When P1 and P2 are unknown, the DD-plot is defined as

DD(P̂1, P̂2) =
{

[D(x; P̂1), D(x; P̂2)], x ∈ X(1) ∪X(2)
}

.

The classifier is constructed by finding a curve best separating the two samples
in the DD–plot. Li, Cuesta-Albertos and Liu consider a polynomial function sep-
arating the two samples. For example, consider the straight line which separates
the two samples. This line should go through the point [0,0]. The classifier thus
has the following form:

D(x; P̂2) > k̂D(x; P̂1) =⇒ d(x) = 2

D(x; P̂2) < k̂D(x; P̂1) =⇒ d(x) = 1, (3.24)

where k̂ is estimated slope of the separating line. k̂ is chosen such that empirical
misclassification rate is made minimal: k̂ = arg mink ∆̂(k), where

∆̂(k) = π̂1
1

n1

n1∑
i=1

I[D(X1,i;P̂2)>kD(X1,i;P̂1)] + π̂2
1

n2

n2∑
j=1

I[D(X2,j ;P̂2)<kD(X2,j ;P̂2)].

The minimization is made over the set of n1 + n2 possible slopes determined by
points of the training set in practice. The classifier is proved to be asymptotically
equivalent to the Bayes rule under the same conditions as the maximal depth
classifier (3.3). Moreover, it performs quite well (though not optimal) in the case
of unequal dispersions:

Consider the case of two bivariate normal distributions described in Section 3.3.1.
We consider a training set of 1000 observations from each of the two distributions.
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Halfspace depth of the points from the training set is estimated and the DD-plot
and classifier based on the DD-plot are constructed. The DD-plot in Figure 3.5
contains only 100 points from each group for simplicity. It can be easily seen that
there is only a small number of points, whose depth with respect to P̂2 is greater
than their depth with respect to P̂1. Hence the maximal depth classifier classifies
majority of new observations to the group 1 (with higher dispersion). The average
misclassification rate is thus high. In contrary, classifier (3.24) uses other dividing
line - the line whose slope is about 0.135. The average misclassification rate is
then close to the optimal Bayes risk.
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Figure 3.5: DD-plot of two normal distributions: points from P1 are marked by
circles, points from P2 by squares.

The classifier based on DD-plot uses more general idea of dimension reduction.
The idea consists in the reduction of the data dimensionality and solving the
problem in the lower dimensions. Scott in [48] wrote: “Multivariate data in Rd

are almost never d-dimensional. That is, the underlying structure of data in Rd

is almost always of dimension lower than d.” Hence a suitable transformation of
the data f : Rd → Rd′ , where d′ < d is needed. A possible method for dimension
reduction in computing the data depth. Any depth function transforms Rd → R+.
The applicability of this approach is limited by high computation costs needed for
depth computation (as discussed in Chapter 1). Thus we can use this approach if
d = 2, d = 3, d = 4, but not more than d = 5 for majority of known affine invariant
depth functions. When the dimension of original data is higher, the methodology
of data depth could be combined for example with principal component analysis -
a well known method for reduction of dimensionality.
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3.6 Observations of zero depth

Most of the depth functions assign zero depth to points outside the convex hull
of the support of distribution. It means that points outside the convex hull of
a training set have empirical depth equal to zero.

Let us consider a situation that for a new observation x it holds D(x; P̂i) = 0,
for all i = 1, . . . , K - the observation has zero depth with respect to all groups of
points from training set. There are several possibilities how to solve this problem:

1. Some depth function, which is positive for any point, may be used. Ma-
halanobis depth or L1–depth are convenient in this case. This method was
used for example by Mosler and Hoberg [29] who combined zonoid and Ma-
halanobis depth.

2. New observation can be classified to the group, from whose deepest point it
has minimal Euclidean distance.

3. New observation can be classified to the group, from whose specific central
region it has minimal Euclidean distance.

3.7 Simulation study

We illustrate advantages and weak points of several classifiers in simulation study.
We compare two traditional classifiers to some classifiers based on data depth. Lin-
ear discriminant analysis (LDA) represents traditional parametric approach. Non-
parametric approach is represented by k-nearest-neighbour method (k-NN). Depth
based classifiers are represented by the maximal depth classifier based on adjusted
outlyingness introduced in Section 3.3.2, classifier based on DD-plot (where half-
space depth is considered) introduced in Section 3.5, and newly proposed modified
k-nearest-neighbour method introduced in Section 3.4.3. In all simulations we used
k = 51 (we considered 51 nearest neighbours).

We deal with four bivariate situations considered in this chapter: two normal
distributions differ in location only (the location-shift model), two normal distribu-
tions differ in location and dispersion, and normal and skewed normal distribution
(example used in [25]). The fourth simulation illustrates an advantage gain by use
of the weighted data depth instead of the halfspace depth. Two uniform distribu-
tions, whose disjoint nonconvex supports together form a unit circle, are considered
here.

A training set of 2000 points was generated. Subsequently, classifiers were con-
structed. Finally, the classifiers were “tested” on a test set of another 2000 points,
that is the average misclassification rates were estimated on the independent sam-
ple of points.

We considered three situations corresponding to the three different prior prob-
abilities. First, equal prior probabilities were considered. In this situation 1000
points of a training set was generated from each group. The test set was also
divided between the two groups in 1:1 ratio. Later, we considered 3:1 ratio of
points, generating 1500 points from group 1 and 500 points from group 2 (both
for training set and test set). Finally, reverse ratio of points was considered (that
is 500 points from group 1 and 1500 points from group 2).
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For each situation the simulation was repeated 100 times.

3.7.1 Two normal distributions differ in location only

Let us consider two bivariate normal distributions which differ only in location:

P1 = N (0, I) , P2 = N
(
(2, 0)T , I

)
.

The Bayes rule in this case has the following form:

d(x = (x1, x2)
T ) = 1 iff x1 < 1− 1

2
ln

(
π2

π1

)
.

Corresponding minimal error rates (optimal Bayes risks) are evaluated in the first
row of the Table 3.1. The remaining rows include estimated average misclassifica-
tion rates (AMR) for particular classifiers.

π1 = π2 = 0.5 π1 = 0.75; π2 = 0.25 π1 = 0.25; π2 = 0.75
Bayes 0.1587 0.1270 0.1270
LDA 0.1588 (0.0069) 0.1270 (0.0065) 0.1265 (0.0064)
k-NN 0.1612 (0.0078) 0.1293 (0.0067) 0.1287 (0.0070)
max. depth 0.1611 (0.0073) 0.1532 (0.0117) 0.1537 (0.0116)
DD-plot 0.1600 (0.0078) 0.1289 (0.0075) 0.1284 (0.0073)
modified k-NN 0.1582 (0.0073) 0.1266 (0.0065) 0.1263 (0.0069)

Table 3.1: Estimated average misclassification rates of different classifiers (esti-
mated standard deviations of AMR estimates are given parenthesis).

It can be seen from Table 3.1 that all considered classifiers works quite well
when equal prior probabilities are considered. Their AMRs are near the optimal
Bayes risk. When unequal priors are considered, the maximal depth classifier has
significantly higher AMR. The other classifiers are again near the optimal classifier.

More detailed information about error rates is displayed in Table 3.2. Error
rates for group 1 (written in left part of each cell) are compared to the error rates
for group 2 (written in the right part of each cell).

π1 = π2 = 0.5 π1 = 0.75; π2 = 0.25 π1 = 0.25; π2 = 0.75
Bayes 0.1587 ; 0.1587 0.0607 ; 0.3261 0.3261 ; 0.0607
LDA 0.1580 ; 0.1596 0.0609 ; 0.3255 0.3225 ; 0.0612
k-NN 0.1583 ; 0.1640 0.0594 ; 0.3390 0.3376 ; 0.0590
max. depth 0.1605 ; 0.1617 0.1438 ; 0.1811 0.1815 ; 0.1444
DD-plot 0.1571 ; 0.1629 0.0618 ; 0.3304 0.3258 ; 0.0625
modified k-NN 0.1574 ; 0.1590 0.0622 ; 0.3196 0.3197 ; 0.0619

Table 3.2: Misclassification rates for group 1 (left) and group 2 (right).

Different behaviour of the maximal depth classifier can be seen from Table 3.2.
Its error rates do not differ as much as the error rates of the other classifiers when
considered unequal prior probabilities.
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3.7.2 Two normal distributions differ in location and dis-
persion

Let us consider the case of two bivariate normal distributions which differ location
and dispersion, introduced in Section 3.3.1:

P1 = N (0, 4I) , P2 = N
(
(1, 0)T , I

)
.

The Bayes rule in this case has the following form:

d(x = (x1, x2)
T ) = 1 iff

(
x1 −

4

3

)2

+ (x2)
2 − 8

3
ln

(
π2

π1

)
− 4

9
> 0.

Similar tables as in the previous case are provided: Table 3.3 summarizes (estimat-
ed) average misclassification rates for particular classifiers, and Table 3.4 provides
information about error rates in individual groups.

π1 = π2 = 0.5 π1 = 0.75; π2 = 0.25 π1 = 0.25; π2 = 0.75
Bayes 0.2408 0.2267 0.1539
LDA 0.3561 (0.0110) 0.2664 (0.0057) 0.1959 (0.0058)
k-NN 0.2472 (0.0094) 0.2342 (0.0083) 0.1661 (0.0066)
max. depth 0.4242 (0.0169) 0.2357 (0.0062) 0.5812 (0.0484)
DD-plot 0.2477 (0.0087) 0.2286 (0.0085) 0.1589 (0.0073)
modified k-NN 0.2448 (0.0094) 0.2293 (0.0078) 0.1567 (0.0075)

Table 3.3: Estimated average misclassification rates of different classifiers (esti-
mated standard deviations of AMR estimates are given parenthesis).

π1 = π2 = 0.5 π1 = 0.75; π2 = 0.25 π1 = 0.25; π2 = 0.75
Bayes 0.3409 ; 0.1406 0.1144 ; 0.5637 0.5105 ; 0.0350
LDA 0.4027 ; 0.3096 0.0225 ; 0.9982 0.7574 ; 0.0088
k-NN 0.3611 ; 0.1333 0.1137 ; 0.5958 0.6057 ; 0.0196
max. depth 0.0463 ; 0.8021 0.0404 ; 0.8216 0.0627 ; 0.7540
DD-plot 0.3454 ; 0.1499 0.1100 ; 0.5843 0.5234 ; 0.0374
modified k-NN 0.3478 ; 0.1419 0.1178 ; 0.5638 0.5091 ; 0.0392

Table 3.4: Misclassification rates for group 1 (left) and group 2 (right).

It can be seen from Table 3.3, that LDA and maximal depth classifiers are
not appropriate in this case even if the priors are equal. All three remaining
classifiers perform quite well. Classifiers based on data depth (DD-plot classifier
and modified k-NN classifier) seem to outperform classical k-NN slightly when
priors are not equal.

Table 3.4 documents poor behaviour of the maximal depth classifier in this case.
This classifier clearly “prefers” group 1 and hence it has high error rate for group 2
regardless of the prior probabilities. This leads to high average misclassification
rate if π2 >> π1. For example AMR is equal to 0.5812 if π2 = 0.75, as can be seen
in Table 3.3.
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3.7.3 Normal and skewed normal distribution

Let us recall the example from Section 3.3.2. A normal and a skewed normal
distribution is considered:

P1 = N(0, I), P2 = SN((−2,−2)T , I, (5, 5)T ).

The Bayes rule can be obtained by solving the equation π1f1(x) = π2f2(x) in
x = (x1, x2)

T . Using a symbol φ(·) for the density function of the standard normal
distribution and a symbol Φ(·) for its cumulative distribution function, we have

π1f1(x) = π2f2(x),

π1 · φ(x1)φ(x2) = π2 · 2φ(x1 + 2)φ(x2 + 2)Φ(5(x1 + 2 + x2 + 2)),

π1φ(x1)φ(x2)

2π2φ(x1 + 2)φ(x2 + 2)
= Φ(5(x1 + 2 + x2 + 2)).

We can seek solutions on straight lines of the form x2 = −x1 + q, where q is some
unknown constant.

π1φ(x1)φ(−x1 + q)

2π2φ(x1 + 2)φ(−x1 + q + 2)
= Φ(5(x1 + 2− x1 + q + 2)).

Now we utilize the known form of the density function φ: φ(x) = 1√
2π

e−x2/2. We
get the following equation:

π1

2π2

e2(q+2) = Φ (5(q + 4)) . (3.25)

This formula does not include x1 term, hence the dividing surfaces has the form of
lines x2 = −x1 + q for some values of unknown constant q. Equation (3.25) can be
solved numerically. There is one possible solution in the interval (-5,-4) and one
in the interval (-3,-1) for all three considered prior distributions.

It should be verified that there are no more solutions. This could be done by dif-
ferentiating (3.25): equation 2e2(q+2)π1/π2 = 2 1√

2π
e−(5q+20)2/2 leads to a quadratic

equation with two real roots. Hence it is proved that there can not be more than
two real solutions of (3.25).

The Bayes rule has the following form:

d(x = (x1, x2)
T ) = 1 iff (x2 > −x1 + q2 or x2 < −x1 + q1),

where

q1 = −4.55 and q2 = −1.65 if π1 = 0.50,

q1 = −4.46 and q2 = −2.20 if π1 = 0.75,

q1 = −4.63 and q2 = −1.10 if π1 = 0.25.

Remind that the values of q1 and q2 are only approximate. For π1 = π2, a mis-
classification rate for the group 1 can be expressed as Φ(q2/

√
2) − Φ(q1/

√
2) and

a misclassification rate for the group 2 can be find out by simulation.
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Results of the simulations are summarized in Tables 3.3 and 3.4. It can be seen
that all considered classifiers perform quite well when equal priors are assumed.
Maximal depth classifier has higher average misclassification rates when considered
unequal priors. This is rather disappointing fact, because the classifier is based
on adjusted outlyingness and hence it is constructed right for the case of skewed
distributions. Unfortunately, unequal priors corrupt its behaviour.

π1 = π2 = 0.5 π1 = 0.75; π2 = 0.25 π1 = 0.25; π2 = 0.75
Bayes 0.1089 0.0952 0.0847
LDA 0.1098 (0.0065) 0.0950 (0.0068) 0.0851 (0.0063)
k-NN 0.1100 (0.0062) 0.0962 (0.0068) 0.0865 (0.0062)
max. depth 0.1108 (0.0065) 0.1112 (0.0089) 0.1032 (0.0106)
DD-plot 0.1096 (0.0068) 0.0958 (0.0068) 0.0859 (0.0067)
modified k-NN 0.1087 (0.0067) 0.0941 (0.0066) 0.0849 (0.0063)

Table 3.5: Estimated average misclassification rates of different classifiers (esti-
mated standard deviations of AMR estimates are given parenthesis).

π1 = π2 = 0.5 π1 = 0.75; π2 = 0.25 π1 = 0.25; π2 = 0.75
Bayes 0.1205 ; 0.0972 0.0589 ; 0.2043 0.2169 ; 0.0407
LDA 0.1394 ; 0.0803 0.0616 ; 0.1949 0.2292 ; 0.0370
k-NN 0.1237 ; 0.0962 0.0566 ; 0.2149 0.2316 ; 0.0381
max. depth 0.1180 ; 0.1036 0.1066 ; 0.1248 0.1312 ; 0.0939
DD-plot 0.1191 ; 0.1002 0.0589 ; 0.2064 0.2149 ; 0.0429
modified k-NN 0.1311 ; 0.0862 0.0613 ; 0.1922 0.2343 ; 0.0351

Table 3.6: Misclassification rates for group 1 (left) and group 2 (right).

3.7.4 Two uniform distributions on disjoint nonconvex sup-
ports

We have already seen that DD-plot classifier and modified k-NN classifier work
quite well in the situation of two unimodal distributions with convex levelsets of
density. Now we consider the case of two uniform distributions with nonconvex
supports. The supports are disjoint, hence the Bayes risk is equal to zero (perfect
separation exists). Supports of the considered distributions, whose union forms
the unit circle, can be seen in Figure 3.6. Formally, we consider P1 and P2 uniform
distributions with the following supports:

• sp(P1) = {(x1, x2) ∈ R2 : x2
1 + x2

2 < 1} ∩ {(x1, x2) ∈ R2 : x1/x2 ∈ (−1, 0) ∪
(1,∞)},

• sp(P2) = {(x1, x2) ∈ R2 : x2
1 + x2

2 < 1} \ sp(P1).

The example should illustrate how much it is important to choose a convenient
depth function when using a depth based classifier. We used the halfspace depth
and the band depth proposed in Section 2.2 (with parameter h = 0.2).
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Figure 3.6: Supports of P1 (left) and P2 (right) dark coloured.

Recall the example of a uniform distribution on square-shaped support intro-
duced in Section 2.7.1. We observed that the central regions of the band depth
correspond to the shape of the support “better” than the central regions of the
halfspace depth. Figure 3.7 compares central regions of the band depth and the
halfspace depth of P1.
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Figure 3.7: Areas of 25%, 50% and 75% of deepest points with respect to P1

considering the halfspace depth (left) and the band depth with h = 0.2 (right).

The correspondence between shapes of central regions and the shape of the
distribution is very important for discrimination. This fact is apparent when
comparing misclassification rates shown in Table 3.7. For example, in the case
π1 = π2 = 1/2 the DD-plot classifier has average misclassification rate about 0.26
when using the halfspace depth, but only about 0.07 when using the band depth
(with h = 0.2). In the same case, the modified k-NN classifier has the average
misclassification rate about 0.39 when using the halfspace depth, but only about
0.09 when using the band depth (with h = 0.2).
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We can conclude that both advanced depth based classifiers perform much
better when using band depth than the halfspace depth in this example.

π1 = π2 = 0.5 π1 = 0.75; π2 = 0.25 π1 = 0.25; π2 = 0.75
LDA 0.5001 (0.0132) 0.2500 ( 0) 0.2500 ( 0)
k-NN 0.0490 (0.0067) 0.0947 (0.0063) 0.0951 (0.0062)
max. depth 0.7086 (0.0749) 0.6022 (0.1199) 0.6090 (0.1092)
DD-plot (*) 0.2593 (0.0139) 0.1478 (0.0109) 0.1470 (0.0094)
DD-plot (**) 0.0730 (0.0075) 0.0496 (0.0058) 0.0483 (0.0049)
modified k-NN (*) 0.3895 (0.0185) 0.2314 (0.0046) 0.2307 (0.0047)
modified k-NN (**) 0.0899 (0.0087) 0.0920 (0.0068) 0.0915 (0.0055)

Table 3.7: Estimated average misclassification rates of different classifiers (esti-
mated standard deviations of AMR estimates are given parenthesis). Depth based
classifiers use (*) the halfspace depth and (**) the band depth with h = 0.2.
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Conclusion

In this work we introduced a new idea of the weighted data depth. This generaliza-
tion of the well-known halfspace depth has several interesting properties. Mainly
the possibility of nonconvex central regions is desirable in some applications. How-
ever, the weighted data depth is not affine invariant in general; only translation
and rotation invariance can be proved.

Concept of weighted data depth provides a broad class of possible weight func-
tions determined by chosen weight function. We specified several reasonable mild
restrictions on the weight function to ensure a strong pointwise consistency of the
weighted depth function. We also discussed restrictions which guarantee that the
depth of points lying out of the probability support is equal to zero.

The advantage of possibly nonconvex central regions can be utilized for example
in the discriminant analysis, as was shown at the end of the work.

In the part devoted to the use of data depth for discrimination purposes, we
presented comprehensive critical review of depth-based methods proposed in the
last ten years. We uncovered problems of standard depth-based classifiers when
the considered distributions differ in dispersion. We introduced a new idea of
modified k-nearest-neighbour classifier. Newly proposed classifier performs well in
various situations. The method can be implemented more easily than compara-
ble classifiers based on kernel density estimation. Together with DD-plot based
classifier, it is probably the most promising depth-based classifier.

Besides the new ideas, this work provides a detailed review of existing depth
functions. Weak and strong points of the data depth concept are discussed as well.
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