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Chapter 1

Introduction

1.1 General introduction

Nanomaterials of di�erent kind are of great interest for materials science nowa-
days. Arti�cial creation of new structures as well as tailoring their properties
and also fundamental understanding of them are highly required. By de�nition,
nanocrystalline materials have grain sizes less than 100 nm. Materials of grain size
of a few hundreds of nanometers are often called submicrocrystalline. The nano-
materials include advanced arti�cial molecular structures as molecular motors,
atom patterns at the solid surface, semiconductor nanostructures used in micro-
electronics and photovoltaics, thin �lms, various nanotubes, single nanoparticles
or also bulk nanoporous structures and ultra-�ne grained (UFG) metal structures,
whose treatment in�uences their structure at submicro or even nanoscale.

Small size usually brings speci�c properties of the nanomaterials, which imply
their wide applicability. For example strength/hardness ductility, elastic moduli,
di�usivity, speci�c heat, electrical, optical properties etc. For example, even
such a simple system as standalone colloid nanoparticles of simple metals, as
gold, founds many applications in biochemical and medical sensing, detection,
diagnostics, as cellular and biological imaging agents etc. This is partially due to
their strongly surface enhanced absorption and scattering of visible light, which
can be in addition tuned by the particles size.

Small size of nanoparticles implies their large surface to volume ratio, which is
a fundamental parameter, both from the point of view of their physical properties
and their applications. Very large surface per unit mass predestines their use in
chemical catalysis and in degradation of environmentally unfriendly pollutants.
To achieve the large surface to volume ratio it is important to form a well de�ned
porous microstructure, but also the phase composition of the pore walls can play
an important role.

In the �eld of physics and engineering of metals and alloys ultra-�ne grained
(UFG) materials of size of few tens of nanometres can be prepared by e.g. ball
milling or inner gas condensation. Since compact materials are required for appli-
cations mainly in aerospace, automotive industry or e.g. also for dental implants,
subsequent consolidation is necessary. This is often related to the reduction of
tensile ductility. Contrary, materials showing both enhanced strength and good
ductility can be prepared by severe plastic deformation (SPD) techniques. Such
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materials have usually a grain size in a submicron range (200�300 nm) but their
mechanical properties are strongly in�uenced by microstructure of their grain
boundaries at nanoscale. High fraction and nonequilibrium character of grain
boundaries are speci�c for the SPD materials [1].

For physical, chemical and other properties of materials often not only chem-
ical composition is of interest but their structural and microstructural features
play an important and often even the most decisive role. The plasmon resonance
frequency in gold nanoparticles depends on their size [2, 3]. Photocatalytic prop-
erties of titania (TiO2) depend largely also on its crystalline state [4]. In SPD
materials the yield strength and strength behaviour does no depend only on the
mean grain size but it is strongly in�uenced also by the defect structure of grain
boundaries and high density of defects within them [1].

In this connection, X-ray scattering techniques are very appropriate for char-
acterisation as non-destructive and containing rich information on - phase com-
position, crystallite size, shape and distribution, microstrain, stresses, preferred
grain orientation, sometimes also the lattice defects contents like dislocation den-
sity and types. As indirect techniques, they should always be complemented by
other techniques, �rst of all by imaging methods. Nevertheless, further develop-
ment and use of X-ray techniques themselves is also of interest.

Since small size of crystalline particles causes signi�cant broadening of powder
di�raction lines, the di�raction is in particular suitable for the determination of
crystallite size in the range from a few nanometers to hundreds of nanometers.
Lattice defects can also in�uence the di�raction pattern signi�cantly. Contrary
to the microscopic techniques it is often less laborious to get quantitative results
from the di�raction analysis. However, a proper microstructure model is required,
which is often a critical point. Therefore, microscopic methods are always helpful
in particular for the qualitative analysis.

In the past, di�erent approaches [5, 6] usually based on phenomenological
models and procedures consisting in several steps were applied in the analysis of
powder di�raction data. This can be illustrated for the crystallite size determina-
tion. In the �rst approach, a width of di�raction lines is extracted from measured
data, corrected for the instrumental broadening and the crystallite size is then de-
termined by using e.g. the well-known Scherrer formula. In the second approach,
a similar quantity is evaluated from the Fourier coe�cients. The methods su�er
from the necessity of instrumental e�ects deconvolution, but the main problem is
actually in completely absent feedback between the evaluated size value and the
experimental data, which allows propagation of systematic errors. This has been
corrected in the classical Rietveld approach [7], where the crystallite size value is
considered as a model parameter and on its basis widths of di�raction lines is cal-
culated. Di�raction lines pro�les are then approximated using analytical pro�le
functions, which are �tted to the measured data. The problem of deconvolution
of the instrumental broadening is converted to a convolution problem that is bet-
ter de�ned, and there is a direct comparison between calculated and measured
pattern. Such calculations are computationally very fast and were accessible on
personal computers even before a decade.

The most famous are Rietveld type programs like FullProf (Rodríguez-Carvajal
[8]) or GSAS (Larson and Von Dreele [9]) or several commercial programs. They
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are mainly dedicated for crystal structure determination and they are also used
for quantitative phase analysis. Microstructural features are usually included by
phenomenological description of anisotropic line broadening and the programs
can be used for estimation of crystallite size and microstrain.

It is worth to note, that in this classical approach there is still an intermediate
step between the microstructural model and the di�raction pattern. Usually some
indirect parameters as e.g. volume weighted crystallite size or microstrain are the
basic quantities, because di�raction pro�les width can easily be evaluated from
them. Hence, this method also still su�ers from two drawbacks. The �rst is the
use of parameters without straightforward meaning and the second problem are
approximations connected with the use of analytical pro�le functions. This has
been a subject of a criticism [10].

At the approximately beginning of the last decade (2000) the both problems
were treated by the introduction of a method called by the authors of [11] the
whole powder pattern modelling (WPPM). In this approach, a particular mi-
crostructure model is assumed, e.g. it is assumed that crystallites have a speci�c
shape and that their size is distributed according to a particular size distribution.
Then, the powder di�raction pattern is calculated and compared with the mea-
sured data. Finally, the parameters of the crystallite size distribution or even the
whole size distribution histogram are re�ned from the experimental data by a nu-
merical optimisation procedure [11, 12]. No analytical pro�le functions are used
to describe the physical aspects of the di�raction line broadening. Basic models
describing di�raction e�ects from planar defects [11, 13, 14] or dislocations [15]
have been created. Their parameters have direct meaning as e.g. stacking fault
probability or dislocation density. The models describe complex broadening ani-
sotropy [16, 17] and shape and account for correlations in the defect arrangement
[18�20]. The method is suitable for di�raction analysis of nanocrystalline and
highly defected UFG materials. Despite the fact that the number of approxi-
mations introduced by this method is reduced to minimum, a di�erent method
based on the Debye formula [6, 21] is even more justi�ed for the modelling of the
di�raction pattern from very small nanostructures. In this method, the di�raction
pattern is directly calculated from the atomic positions in the considered nanos-
tructure. Unfortunately, the method is still quite computationally demanding
and suitable only for structures up to approximately 20 nm size. Anyway, some
successful attempts of modelling dislocations structures and grain boundaries at
an atomistic scale in submicrometer blocks have appeared [22].

Nowadays, about three computer programs implementing the WPPM method
on di�erent levels are available. The one focused on the lattice defect analysis in
UFG materials has been writen in Budapest by G. Ribárik � (eC)MWP-�t [23],
another quite general one including for example the e�ect of di�erent crystallite
size distributions, surface relaxation, dislocations and stacking faults was created
in Trento by Leoni and Scardi � PM2k [24]. The most �exible one including
the e�ects of texture and residual stresses, suitable also for thin �lm analysis is
MAUD [25] written by L. Lutterotti. However, this does not include models of
lattice defects.
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1.2 Aims of investigations

The main aim of this work is to critically review and improve the XRD methods
mainly the whole powder pattern modelling method based on physically realistic
models and apply them to several di�erent nanocrystalline or submicrocrystalline
materials of a high technological interest. The materials selected were in a form
of powders, thin �lms and bulk materials.

The materials selected in particular for this thesis were the following:

• colloid Au nanoparticles with size in the range 5�100 nm for biological
labelling and dynamic light scattering experiments,

• UFG pure Cu and Cu with a small addition of Zr prepared by equal channel
angular pressing (ECAP) deformation,

• highly porous TiO2 � anatase � nanopowders prepared by di�erent chem-
ical routes for applications in photocatalysis.

In all the systems the goal of di�raction analysis was quantitative determination
of crystallite size, defects type and density.

• For the colloid Au nanoparticles the main aim was to compare crystallite
size obtained by XRD with the particls size determined by transmission
electron microscopy (TEM).

• In SPD Cu samples the goal was mainly the determination of dislocations
character and density and the test of the applicability of the Krivoglaz-
Wilkens [18�20] model of dislocation correlation to the study of these ma-
terials.

• For TiO2 nanopowders, the basic task was the determination of phase com-
position and crystallite size distribution, which are the parameters crucial
from the technological point of view. Comparison with other technologically
important parameters as e.g. speci�c surface area should be desirable. Re-
liability and limits of XRD determination of the crystallite size distribution
should be tested.

The result of the XRD analysis and models considered should be discussed
also in connection with other techniques as for example TEM, EBSD or positron
annihilation spectroscopy.

Since none of the available programs is capable of the analysis of wide scale of
materials (powders, thin �lms, bulk materials) and none of them include simulta-
neously all the necessary models and corrections, a new modular software should
be created on the basis of the total powder pattern �tting or modelling. This
should be tested for the analysis of di�erent nanocrystalline materials mentioned
above.

Practical signi�cance of results archived should consist in

• Quantitative characterisation of microstructural properties of studied sam-
ples: particles size, defects type and density.
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• Assistance in the preparation and tailoring properties of materials e.g.

� for application in other research areas as biochemical or medical sens-
ing, markers in microscopy or imaging agents,

� for catalytic applications for ecological disposal of environmentally un-
friendly contaminants,

� for advanced engineering applications,

and understanding relation between their properties and microstructure.

• Development and testing of XRD methods and software for material anal-
ysis, especially also for analysis of thin �lms.

1.3 Structure of the work

The �rst part, chapter 2, widely describes defect induced di�raction line broad-
ening, mostly from the correlated dislocations � the problem that has not been
still completely solved. It is a purely theoretical chapter. The book of Krivoglaz
[20] and papers of Wilkens [18, 19] are the primary sources, which are completed
by recent �ndings of other authors. All this is complemented by comments and
remarks of the present author. The aim of the chapter was not only to introduce
experimental part but also to give a compact overview of these two theoretical
approaches, most often used in powder di�raction analysis of dislocation induced
broadening.

The author suppose that it can be used as a reference and starting point for
future simulations and model developments.

The next parts of the thesis contains mostly the own work of the present
author. In chapter 3, the di�raction pro�le analysis and the WPPM method are
applied to the submicrocrystalline metals, namely colloid Au nanoparticles and
SPD treated Cu samples. The chapter is mainly interested in the defect analysis.
Contrary, chapter 4 describes the size analysis of TiO2 nanopowders in quite a
comprehensive way. The practical results of this work are summarised and some
conclusions are given in chapter 5. The appendix A contains brief description of
the program MSTRUCT, developed by the present author and used for the most
of the XRD analyses in this work.
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Chapter 2

Some Advanced Theory of

Di�raction Pro�le Broadening

2.1 Introduction

In this section a brief overview of the theory of di�raction line broadening due
to various crystal defects is given. The aim is to calculate the whole shape of
the di�raction pro�le. However, if the problem is too complex, the theoretical
introduction here is limited to considerations about characteristic e�ects, such as
broadening anisotropy, or only to a qualitative description.

Defects considered are mainly various dislocations structures in cubic or hexag-
onal metals. In�uence of faults in the stacking sequences of close packed structures
(fcc and hcp) is mentioned as well. The theory here should serve as a basis for
the analysis of samples of submicrocrystalline metals studied in chapter 3. No
attention is given in this chapter to the size broadening e�ects. The crystallites
size in the specimens studied in chapter 3 is about 100 nm. In such a case the size
broadening e�ect is comparable with the instrumental resolution. The in�uence
of both these e�ects on di�raction pro�les is small as compared to the broadening
due to the lattice defects. This is especially true for the high angle di�ractions.
Both the size and instrumental broadening e�ects have been described in detail
in the author's diploma thesis (Mat¥j [26], in Czech), whereas the description
of the strain broadening was limited only to �nal results for dislocations models
used, without a proper discussion on the origin, approximations and limits of the
models. These items are discussed here.

Crystallite size broadening is discussed in the chapter 4 in connection with the
studies of nanocrystalline powders of TiO2 with the crystallite size of 5− 20 nm.
In this case the size broadening is the dominant e�ect.

Traditional LPA methods as the Warren-Averbach method (WA) [27] or the
well known Sherrer equation (SchE) [28] and the Willimason-Hall plot (WH-plot)
method [29] are not described here in detail. They can again be referred to e.g.
the classical books Klug and Alexander [5], Warren [6], Valvoda et al. [30] (in
Czech), or the thesis [26, 31]. In the second part of this chapter rather the method
of total patter �tting (TPF) or the whole pro�le modelling method (WPPM) is
brie�y described. This method developed originally by Scardi and Leoni [11]
and Ribárik, Ungár, and Gubicza [23] was also described in Mat¥j [26] but some
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improvements of the method and updated references are worth mentioning here.
Actually, the WPPM is the most often used method of XRD analysis in this work.

Recently, the Debye function method [32] has become more and more popular
especially for modelling of nanocrystalline materials (Cervellino et al. 33) but also
complex dislocation structures (Derlet et al. 22). The Debye equation approach
is described here brie�y and some results from the literature are mentioned at
the end of the chapter.

The most of the theory introduced here is based on the book of Krivoglaz [20]
and papers of Wilkens [18, 19]. This is completed by comments of the present
author. The theory does not represent the original �ndings of the author if it is
not speci�ed explicitly.

2.2 Basic approximations

2.2.1 Kinematical approximation

Theory of scattering of x-rays or neutrons by crystalline matter is a broad topic
since various types of materials can be studied in many di�erent experimental
arrangements. Generally the Maxwell's equations for x-rays or the Schrödinger
equation with the appropriate boundary conditions have to be solved. In this
work the nanocrystalline systems and highly imperfect crystals are studied by
XRD. In this case coherently scattering domains are small enough that multiple
scattering does not occur and the kinematical approximation can be used.

Unlike the thesis (Mat¥j [26]) where the formalism of the classical powder
di�raction textbooks (Klug and Alexander [5], Warren [6], Valvoda et al. [30])
was adopted the theoretical introduction in this work follows the formalism of
Krivoglaz [20] or Holý et al. [34].

In the scattering experiment intensity I of particles coming from the direction
Ki and scattered in the direction Kf is a function of the di�raction vector Q =
Kf − Ki and in the kinematical approximation can be expressed by the well
known equation [20, eq. 1.2.4]

I(Q) =
∣∣∣ N0∑
s=1

fse
iQ(Rs+us)

∣∣∣2, (2.1)

where it is summed over all atoms sites Rs of the ideal (or averaged) crystal, fs
is the scattering factor of the atom at the s− th site and us is the displacement
of the atom from its ideal position Rs due to the lattice imperfections.

The kinematical approximation is valid only if the path l of the particles
through the object giving raise to a coherent scattering is much larger than the
radiation wavelength λ and smaller than the extinction length Le [20, eq. 1.2.1]

λ� l� Le.

Explicit expressions for Le in the case of neutron and x-ray di�raction are derived
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in the literature [20, 35]. For x-rays we can write [20, eq. 1.2.31]1

Le ≈
v

λref
, (2.2)

where v is the volume of the unit cell, re
.
= 2.8 10−5 Å is the free electron radius

and f is the structure amplitude for the perfect crystal. With typical values
v = 10 Å3, λ = 1 Å and f = 30 this gives the extinction length for x-rays
Le ≈ 1 µm and approximately 10× more for neutrons.

2.2.2 Powder orientation averaging

In this thesis solely polycrystalline materials are studied. Generally it is assumed
that in an ideal polycrystalline sample (ideal powder) there is a statistically large
number of grains and all the grains are randomly oriented. Equation 2.1 describes
intensity scattered by a single crystallite. In the case of powder the scattered
intensity is averaged over all possible crystallite orientations. As proposed e.g.
in Krivoglaz [20] the averaging over all crystal orientation can be replaced by the
averaging over various directions of the di�raction vector Q (of a given length)
for a �xed orientation of the crystal [20, eq. 1.2.10]

ID(Q) = 1/(4πQ2)

∫
S

〈I(Q)〉dS, (2.3)

where integration is taken over the surface S of the sphere of the radius Q [20,
eq. 1.2.11]

Q =
4π

λ
sin θ. (2.4)

Di�racted intensity in the powder pattern is then a function ID(Q) of the length
of di�raction vector |Q| and hence also a function of the di�raction angle 2θ.

In the literature more related mainly with powder di�raction (Klug and
Alexander [5], Warren [6], Valvoda et al. [30]) a slightly di�erent formalism is
used. The 2π factor is not included in the di�raction vector and for the di�rac-
tion vector length the symbol s is often used

s = Q/(2π) =
2 sin θ

λ
.

The powder orientation averaging approximation expressed by eq. 2.3 is valid
well in the case of ideal powder materials showing no preferred orientation, but is
clearly wrong for strongly textured materials. Practically this approximation is
more or less a theoretical concept and by using of another approximation (Powder
Pattern Power Theorem, section: 2.2.3) the theory can be easily applied also for
textured materials.

1In [35] the equation 2.2 for the extinction length is derived from a simple idea that a change
of the wave phase of the radiation traveling a path l through the scattering object must be small:
|n−1|k0l� 1, where k0 = 2π/λ, the index of refraction n ≈ 1+χ0/2 and χ0 = −reλ2/πf(0)/v.
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2.2.3 Powder pattern power theorem

If the pro�le of a di�raction line in a powder di�ractogram have to be calculated,
in the �rst step the intensity dependence I(Q) is calculated for a single crystallite
according to eq. 2.1 and then it is averaged over all crystallite orientation, i.e.
the integral in the eq. 2.3 is evaluated. In many cases this is quite laborious even
if the �rst step can be done. However, there is a simpli�cation widely used in
the powder di�raction theory. In the literature (Klug and Alexander [5], Warren
[6], Valvoda et al. [30]) it is usually a tricky calculation of intensity pro�le ID(2θ)
directly from eq. 2.1 without the integration in eq. 2.3. In the Warren [6] it is
called the powder pattern power theorem. It will be not described in detail here.
It was done already in the thesis (Mat¥j [26]). Just an idea of the approximation
should be discussed.

Figure 2.1: Sketch of a simple coplanar
di�raction experiment. Radiation imping-
ing the sample surface in the direction Ki

at the incidence angle ω is scattered in the
direction Kf . Di�raction angle is denoted
2θ. Intensity I(Q) in the close vicinity
(Q) of the di�raction maximum (G) of the
given crystallite is studied. Decomposition
of a variation of Q from G into the compo-
nents parallel (q‖) and perpendicular (q⊥)
to G is depicted.

sample

diffraction
ring

In the �gure 2.1 a simple di�raction experiment is depicted. Di�racted in-
tensity from the given crystallite or an ensemble of crystallites with the given
orientation is studied. The idea of the powder patten power theorem approxima-
tion is that the curvature of di�raction circle in the vicinity (Q) of the di�raction
maximum (G) of the given crystallite can be neglected and the sphere (circle in
the picture) can be approximated by the tangent plane. If a variation q of the
di�raction vector Q from the reciprocal lattice point G of the crystallite

q = Q−G

is decomposed in the components parallel (q‖) and perpendicular (q⊥) to G

q = q‖ + q⊥,

the integration in the eq. 2.3 can be replaced by the integration over the tangent
plane, i.e. over q⊥,

ID(Q) =

∫
I(Q) d2q⊥. (2.5)

If we substitute for I(Q) from eq. 2.1 and add 〈〉 for averaging over the
ensemble of crystallites with the given orientation (with di�erent crystal shape,
defect con�guration, etc.)

ID(Q) =

∫
d2q⊥

〈∣∣∣ N0∑
s=1

fse
iQ(Rs+us)

∣∣∣2〉
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=

∫
d2q⊥

〈∑
s

fse
i(G+q)(Rs+us)

∑
s′

f ∗s′e
−i(G+q)(Rs′+us′ )

〉
,

using GRs = 0 and neglecting qus1

=

∫
d2q⊥

〈∑
s,s′

fsf
∗
s′e

iq(Rs−Rs′ )eiG(us−us′ )
〉
,

substituting ρs,s′ = (Rs−Rs′), reordering summation, averaging and integration
and decomposing ρ = ρ‖ + ρ⊥ we arrive to the expression2

=
∑
ρ‖,ρ⊥

eiq‖ρ‖
〈∑

s

fsf
∗
s−ρ e

iG(us−us−ρ)
〉∫

d2q⊥ e
iq⊥ρ⊥ .

In the above equation only the last term is a function of q⊥. The integration is
taken formally over the whole plane and hence it produces the 2D delta function
δ(2)(ρ⊥ = 0) and this delta function cancels out the summation over ρ⊥. In this
way, the �nal equation is obtained where the di�racted intensity is a function of
a single variable (q‖ = 4π(sin θ − sin θ0)/λ)

ID(q‖) =
∑
ρ‖

eiq‖ρ‖
〈∑

s

fsf
∗
s−ρ‖ e

iG(us−us−ρ‖ )
〉

(2.6)

and it has the form of the 1D Fourier transformation of the expression in the
brackets 〈〉, which can be identi�ed with the Fourier coe�cients. An important
consequence of the result is that in the powder di�raction we are interested only
in the di�erence (correlation) of atom displacements between the points (Rs and
Rs−ρ‖) along the direction of the di�raction vector. In the literature (Krivoglaz
[20]), usually the expression in the brackets 〈〉 is evaluated generally as a function
of ρ and equation 2.6 shows that in the powder di�raction we can focus only in
the dependence in the direction ρ = ρ‖ parallel to the di�raction vector G. This
simpli�cation is widely used, for example in Klimanek and Kuºel [17].

Another advantage of the the powder pattern power theorem is that the calcu-
lation of the intensity at the di�raction ring is treated more �locally�. The shape,
position and intensity of di�raction lines are computed separately and it is easier
to include also e�ects as texture, residual stress and absorption etc.

Limits of the approximation are worth to mention. It is clear that for the
correctness of the approximation it is necessary that the di�raction line should
be narrow in the reciprocal space as compared by the curvature of the di�raction
ring (�gure 2.1). Krivoglaz [20] in the chapter 1.3.2 (p. 29) sets the limit of validity
to approximately 100 lattice parameters. This means that the approximation can

1In literature e.g. [6, ch. 13.4, p. 265, Fig. 13.6] this is usually commented as it is su�cient
to use instead of Q an average value G in a scalar product Q(us − us′). In Krivoglaz [20] Q
is kept formally in the scalar product, but in cases considered here it is in fact always replaced
by G in the �nal expressions. All calculations are more complicated if Q is not replaced and
also a whole di�raction conception based on a Fourier transformation is broken if crystals with
defects are considered.

2Site indexes s and real space lattice vectors ρ are used together in subscripts in the equa-
tions. This is formally incorrect, but hopefully the meaning is clear.
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be inaccurate for crystals smaller than L ≈ 50 nm (assuming lattice parameter
5 Å). Contrary in the [36] they compared the whole di�raction modeling method
(WPPM, chapter 2.4) and the Debye formula method (chapter 2.5), The �rst
method utilize the theorem heavily, whereas the second one does not include the
powder pattern power theorem approximation at all. They calculated di�raction
patterns for crystallites of size 3− 10 nm and found that WPPM works �ne also
for crystallites of size around 5 nm. Hence it looks that the approximation is
valid up to such small crystallites and broad di�raction lines.

2.3 XRD line broadening due to the lattice defects

In this section, the theory of the di�raction line broadening due to various defects
(mainly dislocations and stacking faults etc.) is summarized.

2.3.1 Krivoglaz theory - classi�cation of defects

Equation 2.6 is a basic formula for calculating powder di�raction pro�les. How-
ever, it is still too much general equation for a theoretical analysis of in�uence of
a particular con�guration of defects. Krivoglaz [20] used a further derivation of
eq. 2.6 to simplify this task. The derivation done by Krivoglaz [20, chapter 1.5.2]
is introduced here with some additional simpli�cations.

Displacement us of an atom at the site Rs is a sum of displacements us,t
caused by the defects placed at sites Rt. If the defects cause a phase change ϕs,t
of a scattered wave this must be considered too, as follows

us =
∑
t

ct us,t ,

fs = f +
∑
t

ct ϕs,t ,
(2.7)

where ct is an occupation number equal to one if the defect is at the position
Rt or zero if not. The lattice defects connected with the phase change, such
as stacking or twinning faults, will be described later (chapter 2.3.8). Here, the
derivation will be restricted to the case (ϕs,t = 0).

It is assumed that defects are positioned randomly without correlations and
equation 2.6 then gives

ID(q‖) = |f |2
∑

ρ‖
eiq‖ρ‖

∑
s

〈
exp

[
i
∑

t ctG(us,t − us−ρ‖,t)
]〉

, (2.8)

ID(q‖) = |f |2
∑

ρ‖
eiq‖ρ‖

∑
s

∏
t

〈
exp

[
ictG(us,t − us−ρ‖,t)

]〉
. (2.9)

Averaging over all defect con�gurations can be done for each term of the
product 〈

e
ictG(us,t−us−ρ‖,t)

〉
= c e

iG(us,t−us−ρ‖,t) + (1− c) ,

where c is the probability of �nding a defect on the site Rt and (1 − c) is the
probability that there is no defect there.
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By rewriting the product of in the equation for ID(q‖) as∏
t

[. . .] = exp
∑
t

ln[. . .] ≡ exp(−T )

a quantity T (Rs,ρ‖) is de�ned

T (Rs,ρ‖) ≡ −
∑
t

ln[1 + c(e
iG(us,t−us−ρ‖,t) − 1)] .

Usually the defect concentration c is very small (c� 1) and the expression for T
can be expanded which gives the usually used equation for T (Krivoglaz [20, eq.
1.5.9], Dani² and Holý [37], Kaganer and Sabelfeld [38])

T (Rs,ρ‖) = c
∑
t

[
1− eiG(us,t−us−ρ‖,t)

]
. (2.10)

Intensity of a powder di�raction line is then expressed using T as [20, eq. 5.1.2]

ID(q‖) = |f |2
∑
ρ‖

eiq‖ρ‖
∑
s

e−T (Rs,ρ‖) . (2.11)

If a homogenous con�guration of defects in a large crystal is considered then
it can be assumed that T in equation 2.10 does not depend on the position Rs

in the crystal and the sum over Rs in eq. 2.11 can be replaced by Ne−T (ρ‖),
where N is a number of lattice cells in the crystal. Scattered intensity is then the
Fourier transformation of e−T . In order to distinguish between regular and di�use
scattering from defective samples Krivoglaz[20, ch. 1.5.2] studied asymptotic
behavior of T the in the limit of large values of the real space length ρ‖. If e−T

behaves as a bell shaped function of the real space variable ρ‖ then its Fourier
transformation gives a bell shape di�raction intensity distribution typical for a
di�use scattering. If e−T does not converge to zero for ρ‖ → ∞ the Fourier
transformation (in the limit of an in�nite crystal) raises a delta function (sharp)
intensity maximum. Krivoglaz denotes [20, eq. 1.5.15-16] limits of a real and an
imaginary part of T as

2M ≡ ReT∞ ≡ c lim
ρ‖→∞

∑
t

{
1− cos[G(us,t − us−ρ‖,t)]

}
, (2.12)

− ImT∞ ≡ c Gα̂ρ‖ ≡ −δGρ‖ ≡ lim
ρ‖→∞

sin[G(us,t − us−ρ‖,t)] . (2.13)

Since e−T converges to e−2M for large ρ‖ the delta maximum is weighted by this
value. The imaginary part of T∞ is on the other hand connected with a shift δG of
the maximum as it can be included in the Fourier term exp(iq‖ρ‖). It accounts for
an average deformation of the crystal lattice due to the defects. If the reciprocal
space length parameter q‖ is rede�ned to refer to this averaged deformed lattice
q‖ = Q‖− (G‖+ δG‖) the regular scattering part I0 of the scattered intensity can
be formally written as (Krivoglaz [20, eq. 1.5.20])

I0 = N |f |22πδ(q‖)e
−2M . (2.14)
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The remaining part of the overall intensity scattered ID (eq. 2.11) is then accord-
ing to Krivoglaz [20] a di�use scattering I1

I1 = ID − I0 . (2.15)

The above analysis forms a basis of the Krivoglaz [20, ch. 1.5.3] classi�cation
of defects. Krivoglaz basicaly distinguishes lattice defects of two classes.

In case of the 1st class defects the value 2M (eq. 2.12) converges in a limit of
an in�nite crystal to a �nite number. Scattering from crystals containing the �rst
class defects is characteristic with sharp spots of di�raction maxima weakened
by the factor e−2M and shifted according to eq. 2.13. Point defects with the
displacement �eld decreasing as ust ∼ 1/r2

st are typical examples of such defects.
For the the second class defects the value of 2M approaches in�nity and there

are no delta-function like terms in formulae for the scattered intensity. Smooth
bell shaped broadened peaks characterize the scattering from crystals containing
these defects. Dislocations are typical examples. The displacement �eld of a
straight-line dislocation decrease slowly with a distance from the dislocation line
(as ust ∼ 1/rst) and it can be shown then ([20]) that 2M (eq. 2.12) does not
converge to a �nite value.

If a crystal of �nite size L is considered a character of scattering from the
defects can change. For the second class defects 2M becomes �nite, but in many
cases it is quite huge. Krivoglaz [20] shows that it is approximately proportional
to the number of defects in the crystal Nd. In this work defects in SPD materials
with dislocations densities about 1 − 10 1015 1/m2 are studied. The crystalline
size in SPD materials is about 100 nm which gives up to 100 dislocations in a
single slip system of one crystallite.

The �rst-class defects in a �nite crystal can sometimes behave as the defects
of the second class. Krivoglaz [20] has showed that the factor 2M for a crystal
containing dislocation loops or dislocation dipoles is proportional to the logarithm
ln(L) of crystal size. If a defect density is high and the crystal size is large as
compared with a characteristic defect size 2M can be large enough and the the
di�use scattering can dominate the scattered intensity.

Finally it must be mentioned that the Krivoglaz classi�cation of defects is
quite formal. In a real case beside the �nite size of coherently scattering crystal
domains, also �uctuations and a distribution of density of defects in a studied
sample must be considered [20]. This results in smearing of sharp regular peaks.
Instrumental broadening e�ects act similarly in this point. Hence it can be dif-
�cult to distinguish correctly between regular maxima and the di�use scattering
in a particular case.1

An extensive analysis of many defect types can be found in the book of
Krivoglaz [20]. One reference in Czech is the thesis of Kuºel [31]. Here in
next sections the Krivoglaz theories of scattering from non-correlated disloca-
tions (chapter 2.3.2) and dislocation dipoles (chapter 2.3.3) are brie�y described

1It is especially true in case of powder di�raction and it can be a reason why in powder
di�raction it is not to much common to distinguish between what Krivoglaz calls in his book
[20] regular lines and di�use pseudolines. This work is focused on defects of the second class and
terms: di�raction line, re�ection, di�raction maximum are used as synonyms of the Krivoglaz's
pseudoline.



Theory of Di�raction Pro�le Broadening 15

to illustrate the issue. Next the case of correlation in the dislocation arrangement
is described (chapter 2.3.4) to get comparison with a model of Wilkens (1970)
[19] (chapter 2.3.5).

2.3.2 Non-correlated dislocations

In this section a method of calculation of di�raction pro�les from randomly dis-
tributed straight line dislocations in the crystal is brie�y described. The method
was originally introduced by Krivoglaz [20, ch. 5.1]. A brief well written intro-
duction to the Krivoglaz theory can also be found in the recent (2010) paper of
Kaganer Kaganer and Sabelfeld [38].

Calculation of the di�raction pro�le will be illustrated here on a set of straight
screw dislocations intersecting the plane to which the dislocations lines are per-
pendicular, in random points. It is assumed that in average there no bending
of the crystal, i.e. there is the same number of dislocations with opposite signs
and elastically isotropic crystal is considered. Generalization to other types of
dislocations (edge) and anisotropic crystals will be discussed later.

Except the dislocation core there is no phase shift φs,t related to dislocations
in the crystal. Eq. 2.10 for T is a basis of the calculation. T must be evaluated
as a function of the real space distance ρ‖. Aftewards, its limit 2M (eq. 2.12)
in the case ρ‖ →∞ should afterwards be analyzed to show that dislocations are
defects of the second class.

In the �rst step an expression for a displacement us,t of an atom at the site
Rs from a dislocation in the position Rs is needed. If we assume a screw dislo-
cation with the Burgers vector b parallel to the z -axis and to the dislocation line
intersecting the xy-plane in the origin (�gure 2.2) then only the displacement uz
is nonzero [20, 30, 39]

uz = b/(2π) ϑ = b/(2π) arctan(y/x) . (2.16)

The above equation is valid for a screw dislocation in elastically isotropic medium
of in�nite dimensions. If boundary conditions have to be ful�lled on a surface
of the crystal of �nite dimensions, an additional term appears in the expression
for us,t [20, 39]. This is connected to the image forces from virtual image de-
fects. Displacements uimgs,t from these image defects at points deep within the
crystal are smaller than uz in eq. 2.16 if the crystal is large and vary smoothly
if also the dislocation line is far from the crystal surface. Hence the di�erence of
displacements (uimgs,t − u

img
s−ρ‖,t) due to the image forces is neglected [20].

The di�erence in vector �elds (us,t − us−ρ‖,t) in eq. 2.10 for T is in the �rst
step expanded in a linear term in ρ‖1

(us,t − us−ρ‖,t) ≈ (∇⊗ us,t) · ρ‖ . (2.17)

In the scalar product G(us,t − us−ρ‖,t) in the expression for T the di�raction
vector length G and the real space length ρ‖ can be set apart if we consider that

1The dyadic product (∇ ⊗ us,t) is actually equivalent to the Jacobian matrix of the dis-
placement �eld with respect to space.
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G = γG and ρ‖ = γρ‖ where γ is an unit vector of directional cosines of the
di�raction vector G

G(us,t − us−ρ‖,t) ≈ G
[
γ · (∇⊗ us,t) · γ

]
ρ‖ .

From �gs. 2.2 and 2.3 it should be clear that derivatives of the displacement

x

y

z

t

s

b

dislocation line

Rs,t

rs,t
ϑ

Figure 2.2: Basic scheme used in calcu-
lation of di�raction pro�le from a screw
dislocation. The dislocation is situated at
site Rt � the center of a reference system.
The Burgers vector b is parallel to the z -
axis. Displacement at siteRs is examined.

x

y

(s-ρ)xy

sxy

t

ϑs-ρϑs

rs,t
rs-ρ,t

ρ
║xy

Δϑ

Figure 2.3: xy-plane from the schema in
�gure 2.2. Here a di�erence of displace-
ments at two sites Rs and Rs−ρ‖ from a
screw dislocation at site Rt is examined.
It is visible that for large rs,t the di�erence
of displacements ∆uz ∼ ∆ϑ ≈ ρ‖/rs,t Ψ̃,
where Ψ̃ includes some directional factors.
This is a basis for an approximate equa-
tion 2.18.

�eld (deformation) in the point Rs from a dislocation at the site Rt decrease
as 1/rs,t with the distance rs,t from the dislocation line. Hence �naly the whole
scalar product in eq. 2.10 for T can be formally written as a linear function of
(Gb), (ρ‖/rs,t) and Ψ

G(us,t − us−ρ‖,t) ≈ (Gb)/(2π)
ρ‖
rs,t

Ψ , (2.18)

Ψ = (2π)/b rs,t
[
γ · (∇⊗ us,t) · γ

]
≈ 1 , (2.19)

where rs,t is a length of the projection of the vector Rs,t into the plane perpen-
dicular to the dislocation line (�g. 2.2) and Ψ is an orientation factor of the order
of unity accounting for a relative orientation of the di�raction vector and the slip
system of the dislocation.

Summation over all possible defect positions Rt is required in eq. 2.10. This
summation is usually [20] replaced by an integration over the whole xy-plane (�g.
2.2) perpendicular to the dislocation line. It is assumed that there is an area S0

per defect position rt and dislocations are continuously distributed with the area
density n = c/S0. In addition, it was stated earlier that there is the same number
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of dislocations of opposite signs n+ = n− = n/2. If the scattering from a crystal
containing di�erent types of defects (e.g. dislocations of di�erent Burgers vector
signs, dislocations in di�erent slip systems etc.) must be calculated then T in
eq. 2.10 is a sum of Tα corresponding to all lattice defect types [20]

T (Rs,ρ‖) =
∑
α

Tα

=
∑
α

cα
∑
t

[
1− eiG(us,t,α−us−ρ‖,t,α)]

=
∑
α

nα

∫
d2rt

[
1− eiG(us,t,α−us−ρ‖,t,α)]

.

(2.20)

The e�ects from di�erent defects are considered to be independent and the sum
can be understood as a formal convolution of them.

If the argument in the exponent in eq. 2.20 is small the exponent can be
expanded into a power series. Considering the dislocations of opposite signs in a
single slip system α we can �nd that the odd terms in the expansion will cancel
out and T is real. Retaining only the second order term and substituting for the
argument in the exponent from eq. 2.18 we obtain for Tα the relation

Tα = (nα+ + nα−)

∫
d2rt

{
1− cos

[
G(us,t,α − us−ρ‖,t,α)

]}
≈ (nα+ + nα−)

∫
d2rt 1/2

[
G(us,t,α − us−ρ‖,t,α)

]2
≈ (Gb)2

8π2
nα ρ

2
‖

∫
d2rt 1/r2

s,tΨ
2
α .

(2.21)

In order to evaluate the last integral the positions of t and s sites in the
reference system in �g. 2.2 can be exchanged, i.e. deformation �eld at site rs in
the center from a dislocation placed at site rt is studied. In polar coordinates,
the integration over the polar and the angular coordinates can be separated

Tα ≈
(Gb)2

8π2
nα ρ

2
‖

∫
1/rt drt

∫ 2π

0

Ψ2
α dϑα (2.22)

The integration over the angular variable is done entirely separately. An
angular factor χα is de�ned (Krivoglaz [20], Klimanek and Kuºel [17])

χα =

∫ 2π

0

Ψ2
α dϑα , (2.23)

which accounts for a particular geometry of the di�raction vector and the dislo-
cation slip system.

In order to evaluate the integral over the polar coordinate rt it is useful to
remember geometrical considerations and limits of approximations used to derive
the above expression. It was required that rs,t as well as ρ‖ should be smaller
than a characteristic dimension L of the crystal.

rs,t � L . (2.24)
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For the linear approximation (eq. 2.17) of the strain �eld of a dislocation, the
idea depicted in �g. 2.3 resulting in eq. 2.18, it is required that

ρ‖/rs,t � 1 . (2.25)

Krivoglaz [20, eq. 5.1.2] emphasizes that the e�ects of image forces can be ne-
glected and the integration 2.22 can be simpli�ed only if ρ‖ is very small as
compared to the crystal size L

ln(
L

ρ‖
)� 1 . (2.26)

The last condition comes from the expansion of the cosine term in eq. 2.21. The
argument has to be small

(Gb)

2π
ρ‖/rs,t � 1. (2.27)

Looking back at �g. 2.18 we can see that the length of projection of the vector
ρ‖ into the xy-plane perpendicular to dislocation line plays a crucial role when
evaluating di�erences in displacements. This is of course included in the orienta-
tion factor Ψ (eq. 2.19).1 However, for integration over the radial coordinate rt
in eq. 2.22 it is more common [20] to accept an idea that the integral is rather a
function the length ρ‖xy of the projected vector than the length ρ‖ of vector itself.
For similar reasons also |Gb| is used instead of (Gb) in eq. 2.27. In this way the
geometrical conditions in �g. 2.18 are accounted in the integration.

Conditions 2.24 and 2.27 can be taken approximately as limits of the inte-
gration over the polar coordinate in eq. 2.22 and it is also accepted that the
projection ρ‖xy is an important factor in eq. 2.27.2 We take L as the upper
integration limit and |Gb|/(2π)ρ‖xy as the lower one and we obtain

Tα(ρ‖) =
(Gb)2

8π2
χα nα ρ

2
‖ ln

( 2πζ0,αL

|Gb|ρ‖xy,α
)
, (2.28)

where ζ0,α is a constant of order of unity ζ0,α ' 1, which accounts for inaccuracies
in the choice of boundary limits and particular boundary conditions. Kaganer
commented [38] this as a fact that the size parameter L is in some sense ill-de�ned.
In Krivoglaz [20, eq. 5.1.6] ζ0,α = 1/2.

Further justi�cation of approximations giving the logarithmic term in the
above equation can be found in Kaganer`s paper [38]. Kaganer justi�es also
neglecting of the contribution from area rt ≤ (Gb)/(2π)ρ‖xy as it is small in
comparison with the logarithmic term if the term is much larger than unity. This
is ful�lled if condition 2.26 is true. If we consider that the range of interest of
ρ‖ is of the order of an average distance between dislocations rd ∼ n−1/2 and if

1Here in eq. 2.17 the linear expansion in ρ‖ was used. An expansion ρ‖xy can be used as
well and then there is a modi�cation in the de�nition of the angular factor Ψ (eq. 2.19) and
ρ‖xy appears in the theory more likely than ρ‖. This is quite common e.g. in Krivoglaz [20,
ch. 5.1.3] for dislocation dipoles. Similar choice was used by Kaganer and Sabelfeld [38], where
they included the appropriate geometrical factor already in the de�nition of the reciprocal space
variable q‖ (see text below eq. (3) in [40]).

2These ideas are approximations (or rather computational magic) commonly used in the
book of Krivoglaz [20] or e.g. in the recent (2010) paper of Kaganer [38]
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we are interested in high dislocation densities rd ∼ 20 nm and relatively large
crystals L ∼ 200 nm the condition 2.26 should be satis�ed.

Evaluating the sum of contributions (to T ) from dislocations in di�erent slip
systems (eq. 2.20) it is usually assumed that the constants ζ0,α do not depend
much on the slip system type (ζ0,α = ζ0) and also that the angular factors in
|Gb|ρ‖xy,α �nally average themselves into Gbρ‖.1 The summation is then included
only in the contrast factor χ and we arrive at the famous expression (Krivoglaz
[20, eq. 5.1.6], Kaganer and Sabelfeld [38, eq. 20])

T (ρ‖) =
(Gb)2

8π2
χ n ρ2

‖ ln
(2πζ0L

Gbρ‖

)
, (2.29)

χ =
∑
α

nα
n
χα , (2.30)

Dislocation contrast factors χα can be calculated from eqs. 2.19 and 2.23. It
can be shown that the approximation 2.18 and the whole analysis above can also
be applied to edge dislocations. Details of boundary conditions are of little im-
portance in real cases. This is shown later in the case of correlated dislocations.
Hence, expression 2.29 holds for edge dislocations too and if we want to include
di�erent types of dislocations we can account for them simply by averaging con-
trast factors χα in eq. 2.30. This has been done for dislocations in cubic and
hexagonal metals e.g. in [17, 31, 42�44] or for crystals of any symmetry in [45].

T in eq. 2.29 is a growing function of ρ‖ when condition 2.26 is satis�ed.
Hence, in the limit ρ‖ →∞ and L→∞ value of 2M (eq. 2.12) diverges

2M ≡ ReT∞ →∞ ,

which con�rms that randomly distributed dislocations belong to the defects of
the second class.

Di�raction pro�le can be calculated according to eq. 2.11 by Fourier transform
of e−T (ρ‖). T in eq. 2.29 is a quadratic function of ρ‖ modi�ed by the logarithmic
term. Therefore, it is natural to test how e−T di�ers from the Gaussian curve.
To illustrate such approximation, T and the Gaussian curve are plotted in �g. 2.4
in scaled units

x =
Gb

2π

√
χ

2
n ρ‖.

In this units

T (x) = x2 ln (

√
Neff

|x|
) = ln

√
Neff x

2 + x2 ln (1/|x|) ,

Neff =
χ

2
nζ2

0L
2 =

χ

2
Nd , (2.31)

where Nd is approximately a number of dislocation in the crystal and Neff is an
e�ective number of dislocations.

l0 = ln
√
Neff (2.32)

1This averaging was widely discussed for the case of the Wilkens model in the paper of
Armstrong et al. [41]. It is commented more here in section 2.3.7, p. 44.



20 2.3 XRD line broadening due to the lattice defects

0.5 1.0 1.5 2.0 x ln Neff

0.2

0.4

0.6

0.8

1.0
e -T

1st order approx .

0 thorder approx .

Nd =10000

Nd =100

Figure 2.4: Gaussian approximation of e−T (eq. 2.29) for randomly distributed dis-
locations. Solid blue line - e−T for Nd = 100, dashed red - e−T for Nd = 10000,
dot-dashed black - the zero order Gaussian approximation e−l0x

2
, dotted green - the

�rst order Gaussian approximation e−l1x
2
.

is then naturally a zero order approximation of the coe�cient of the Gauss func-
tion. From �g. 2.4 it can be seen that such Gauss function roughly approximates
e−T .

If |x| in the logarithmic term is approximated by its value in the center of the
range of x plotted in �g. 2.4, x0 = 1/

√
l0, an approximation of the next order is

obtained

l1 = ln
(√

Neff

√
l0

)
= ln

(√
Neff

√
ln
√
Neff

)
(2.33)

and it is shown in �g. 2.4 that the Gaussian with l1 coe�cient approximates e−T

very well especially for large crystals with many dislocations Nd. For the case of
the crystal with Nd ∼ 100 discussed earlier the approximation is �satisfactory�,
at least for estimation of the peak width.12

Accepting the above Gaussian approximation we can write an explicit formula
for the intensity distribution in the central part of the peak [20]

ID(q‖) =
IDi
σD

exp

(
− π

q2
‖

σ2
D

)
, (2.34)

where IDi is the integrated line intensity and σD is the integral line width, which
we can approximate as3

σ2
D = 2πχn

(
Gb

2π

)2

lm . (2.35)

1In �g. 2.4 the curves are plotted for χ = π and ζ0 = 1/2. This explicit values can be found
in the Krivoglaz book [20, eq. 5.1.7].

2Approximate curves of the �rst order for Nd = 100 and Nd = 10000 in �g. 2.4 can not be
distinguished. Coe�cients in the exponential di�ers by less than 1%. Only one curve is plotted
here.

3 There appears a contrast factor χ in our expression for Neff = χ/2 ∗ Nd, which is
not common [20]. However, in�uence of χ factor in the logarithmic term on peak width can be
disregarded in this case because in all equations only ln(

√
Neff ) appears and ln

√
χ/2� ln

√
Nd

for Nd � 10.
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Finally, behavior of tails of powder di�raction pro�les is discussed. Krivoglaz
[20, eq. 5.1.14] argues that for large q‖ behavior of T for small ρ‖ is important.
T is given by eq. 2.29. For small ρ‖ also T is small and e−T can be expanded as
1− T . Its Fourier transformation (eq. 2.11) gives 1

ID(ρ‖) ≈
1

4π
IDi

σ2
D

|q‖|3
. (2.36)

Tails of di�raction peaks drop with the third power of distance q‖ from the peak
center. This is a typical character of scattering from dislocations [20]. Scattering
in this case is connected to the variation of deformation �eld at small distances
close to dislocation cores and not in�uenced substantially by dislocation arrange-
ment.2

In this section, the Krivoglaz [20] theory of scattering from crystals contain-
ing randomly distributed dislocations was summarized. Krivoglaz derivation of
equation 2.29 for T -factor (Fourier transform) was shown. Expressions for dislo-
cations contrast factors were given (by equations 2.19, 2.30, 2.23). It was shown
that the di�raction pro�les from crystals with randomly distributed dislocations
are Gaussian in their central part (eq. 2.34) and drops with 1/q3 for large q
(eq. 2.36). An approximate formula for the peak width (eq. 2.35) in the case of
non-correlated dislocations was also derived.

2.3.3 Dislocations dipoles

In real materials dislocations can often be arranged in special con�gurations
as dislocation walls, loops and dipoles etc. Such dislocation con�gurations are
formed during deformation process or result from processes tending to minimize
the deformation energy stored in the crystal.

In this section, the scattering from dislocation dipoles is described according
to theory of Krivoglaz [20], Pototskaya and Ryboshapka (1968) [46]. Contrary
to section 2.3.2, where derivation of basic formulas was demonstrated, here only
parts of results from Krivoglaz theory [20, ch. 5.1.3] are presented. An overview
of scattering from many other con�gurations of dislocations can be found in
Krivoglaz [20] or in Czech in Kuºel (1989) [31]. Here dislocation dipoles were
chosen as an extremal example of correlation in dislocation distribution treated
in sections 2.3.4 and 2.3.5.

Dislocation dipoles were already studied by Gilman [47], Chen [48], Kroupa
[49, 50] and Forwood [51]. X-ray scattering from crystal with dislocation dipoles
was theoretically described by Pototskaya and Ryboshapka [46].

Gilman [47] described formation of a dislocation dipole from jogs produced by
cross-glide of a moving screw dislocation. Such a dipole, consisting from a pair of
edge dislocations, is depicted in �g. 2.5. Gilman found that in elastically isotropic
fcc metals edge dislocations can form two stable con�gurations of dislocation

1For large q‖ only Fourier transformation of (−T ) is important and
∫

1/|q|3 exp(−iqx)dq =
x2 ln(|x|) (ref: Wolfram Mathematica 8.0).

2Krivoglaz [20, ch. 5.2.2] proved this also in the general case using the method of smoothly
varying distortions.
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Figure 2.5: Schematic representation of
a compressive dipole in fcc crystal. The
dipole consists from a pair of straight edge
dislocations, that are parallel to z -axis.
Glide planes of dislocations are separated
by distance h, which is called a dipole
height. The distance of individual dislo-
cations is Ld.
A dipole consisting of dislocations of oppo-
site Burgers vector signs would be an ex-
tensional dipole.

x
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α
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2

Ld

dipoles with α = π/4 or 3π/4 (see �g. 2.5).1 In�uence of crystal anisotropy was
described later by Forwood and Humble [51].

We assume here that distance Ld between dislocations in the pair is much
smaller than the average distance between dislocations rd ∼ n−1/2.2

Ld/rd ∼
√
nLd � 1

We can use the same notation as in the section 2.3.2 for randomly distributed
dislocation and for large distances rs,t from a dipole expand the scalar product
(Gus,t) in rs,t [20]

Gus,t ≈ (Gb)/(2π)
Ld
rs,t

Ψ (rs,t � Ld), (2.37)

where Ψ is again a geometrical factor analogous to that in eqs. 2.18 and 2.19.
Displacement �eld from the dislocation dipole decreases with the distance from
the dipole and is similar to the �eld from the point defect in the 2D crystal. In
such a case, the defect can behave both like the �rst and the second class defect
[20]. We can substitute for 2M from eq. 2.37 into eq. 2.12, expand cos in powers
and integrate in a similar way as in ch. 2.3.2. Then we obtain for the attenuation
2M factor of the regular Bragg re�ection [20, eq. 5.1.32]

2M =
(Gb)2

8π
Ψ2 nL2

d ln
(2πζdL

GbLd

)
, (2.38)

where Ψ2 is the square of angular factor integrated over the directions in the
plane perpendicular to the dislocation lines (it is in fact the same factor as χ for
single dislocations) and ζd ∼ 1 is a constant factor. We can see that 2M increases
with nL2

d and with the logarithm ln(L) of the crystal size but it is no more an
increasing function of ρ‖ and actually it is a �nite constant. This would mean
that the dislocation dipoles behave as the �rst class defects. The di�raction peak
then consists of the regular Bragg re�ection (eq. 2.14) attenuated by the e−2M

1 Kaganer [38] (ch. 2.3.6) calcualted recently also di�raction peak pro�les from extensional
dipoles. Unfortunately he described a di�erent meta-stable [47] case when α = π/2. Moreover
in his case Ld ≥ rd.

2Essmann and Mughrabi [52] found a critical annihilation distance for dipoles in copper
about 50 nm for screw dislocations and about 2 nm for edge dislocations.
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factor and remaining di�use scattering intensity in the tails (end of ch. 2.3.1).
However, if 2M is su�ciently large the regular re�ection is strongly attenuated
and the di�use scattering dominates. Mainly this case is treated here. 2M is
large if (Gb) is large enough

1

Gb
�
√
nLd ∼

Ld
rd
� 1. (2.39)

This is satis�ed for large densities of dipoles and high order re�ections.
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Figure 2.6: Area of the most essential contribution to T in the integration (eqs. 2.11,
2.20) over defect positions for a dislocation dipole in the case: a) ρ‖xy � (Gb)−1 Ld
and b) (Gb)−1 Ld � ρ‖xy � (Gb) Ld.

T (ρ‖) can be evaluated by integration (eqs. 2.11, 2.20) over defect positions.
If ρ‖ is small (ρ‖xy � (Gb)−1 Ld), the most essential contribution to the integral
comes from close vicinity of individual dislocations in the pair. This is shown in
�g. 2.6 a). We can expand (1 − ei...) in the second order term for the real part
of T . For the imaginary part we need the third order term [20, 38, 53] and from
Krivoglaz [20, eq. 5.1.35] we have1

ReTα =
(Gb)2

8π2
Ψ2
α nα ρ

2
‖ ln
(2πζ ′d(γ)Ld
Gbρ‖xy,α

)
,

ImTα =
(Gb)3

16π3
Ψ2
αΨ̃α nα

ρ3
‖

Ld
ln
(2πζ ′′d (γ)Ld
Gbρ‖xy,α

)
,

for ( ρ‖xy,α � (Gb)−1Ld ) ,

(2.40)

where Ψ̃α is a geometrical factor which reverses its sign with inversion of G or ρ‖.
There can be a peak shift and asymmetry caused by a nonzero imaginary part of
T but the dominating real part of T is quite similar to the case of the randomly
distributed dislocations (eq. 2.29).

For longer ρ‖ the interesting region of integration over defect positions is
schematically depicted in �g. 2.6 b). For ρ‖ � rs,t we can expand the deformation

1We integrate from (Gb)/(2π)ρ‖xy to Ld.
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�eld in a linear power of (ρ‖/rs,t) as it was done in eqs. 2.18 and 2.371

G(us,t − us−ρ‖,t) ≈ (Gb)/(2π)
Ldρ‖
r2
s,t

Ψ′ , (ρ‖ � rs,t) (2.41)

where Ψ′ is a geometric factor characteristic for a particular dipole type.
Now we can again substitute from eq. 2.41 into eq. 2.20 and we obtain [20,

eq. 5.1.36]2

ReTα =
π

8

(Gb)

2π
ϕ′α nαLd ρ‖ , ϕ′α = |Ψ′α| ,

ImTα =
1

2

(Gb)

2π
ϕ′′α nαLd ρ‖ ,

for ( (Gb)−1Ld � ρ‖xy,α � (Gb)Ld ) ,

(2.42)

where ϕ′α and ϕ′′α are geometrical factors of order of unity. They result from
integrating Ψ′ over angular direction in plane perpendicular to dislocation lines.
Derivation of the imaginary part of T is quite complicated [20, appendix E] and
hence it is not presented here.

For even longer real space length (ρ‖xy,α � (Gb)Ld) only deformation pro-
duced by one dislocation from the pair is essential and Krivoglaz derived for this
case [20, eq. 5.1.37]

ReTα =
(Gb)2

8π2
Ψ2
α nαL

2
d ln

(2πζd(γ) ρ‖xy,α
GbLd

)
,

ImTα ∼
1

2
nαL

2
d

Ld
ρ‖

ln
(2πζ ′′′d (γ)ρ‖xy,α

GbLd

)
,

for ( ρ‖xy,α � (Gb)Ld ) .

(2.43)

Usually the case of the satis�ed condition 2.39 is considered. Then T -factor
is described by eq. 2.42 in the range of interest. Eq. 2.42 predicts that di�rac-
tion peaks are Lorentzian in their central part. The imaginary part of T can
be included in the Fourier exponential factor eiqρ and hence peaks are shifted.
Krivoglaz gives for the peak width and shift [20, eq. 5.1.40]

ID(q‖) = IDi
σD

π2(q‖ − qD)2 + σ2
D

,

σD =
π2

8

(Gb)

2π
nLd

∑
α

nα
n
ϕ′α ,

qD =
1

2

(Gb)

2π
nLd

∑
α

nα
n
ϕ′′α(γ2

1,α + γ2
2,α)1/2 ,

(2.44)

Averaged geometrical factors ϕ′α and ϕ
′′
α, which determine the anisotropy of broad-

ening and shift of peaks, were evaluated for elastically isotropic fcc crystals by
Pototskaya and Ryboshapka [46].

1In Krivoglaz [20] Ψ′ is de�ned from the expansion in ρ‖xy in the case of dislocation dipoles.
Here it is done in the same way as for single dislocations.

2Argument in eq. 2.37 decrease with r−2s,t and hence integration can be done similarly to
the case of point defects [20]. We integrate over the whole plane and we can use

∫
y[1 −

cos(1/y2)]dy = π/4.
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A calculation of a di�raction peak from the above formulae in a simpli�ed
case is shown for illustration at the end of this section. It must be mentioned for
clarity, that not all the assumptions in this paragraph can be found in the book
of Krivoglaz [20] and they are rather introduced here by the present author. So
let us assume that the angular factors in ρ‖xy,α can be averaged for di�erent slip
systems as in the case of non-correlated dislocations and that three expressions
for T can be joined exactly at the boundaries of the approximations involved �
i.e. at two points: Ld/(Gb) and Ld(Gb). These assumptions reduce a number of
free parameters in the problem and we can write:

ReT =
1

8π2
χd nL

2
d


(Gb)2 x2 ln

(
2πζd

(Gb)|x|

)
|x| ≤ 1/(Gb)

(Gb) |x| ln
(
2πζd

)
1/(Gb) ≤ |x| ≤ (Gb)

(Gb)2 ln
(2πζd|x|

(Gb)

)
|x| ≥ (Gb)

,

(2.45a)

ImT =
1

8π2
χ′′d nL

2
d

(Gb)

2π


(Gb)2 x3 ln

( 2πζ′′d
(Gb)|x|

)
|x| ≤ 1/(Gb)

x ln
(
2πζ ′′d

)
1/(Gb) ≤ |x| ≤ (Gb)

(Gb)2 1
x

ln
(2πζ′′d |x|

(Gb)

)
|x| ≥ (Gb)

,

(2.45b)

where x = ρ‖/Ld. Then T and di�raction pro�le I(q‖) can be calculated. We
consider, for example, deformed fcc copper and dislocations with the Burgers
vector b ≈ 2.6 Å and re�ections (331) or (420). This gives (Gb) = 6π ≈ 20.
To ful�ll the second part of condition 2.39 let

√
nLd ≈ Ld/rd = 1/3.1 Real and

imaginary Fourier coe�cients e−T are in that case depicted in �g. 2.7. Di�raction
pro�le ID(q‖) calculated numerically is shown in �g. 2.8. Also the Lorentzian
pro�le 2.44 with width σD and shift qD is plotted there

σDLd =
1

8π2
χd nL

2
d (Gb) ln (2πζd) ,

qDLd =
1

8π2
χd nL

2
d

(Gb)

2π
ln (2πζ ′′d ) .

It can be seen (�g. 2.7) that the exponent is identical to the real part of T for
x ≤ (Gb), which is the range of interest. For larger x the curves are di�erent,
but if we assumed two times larger G the exponential approximation would be
valid for wider range of x. The di�erence of curves for longer x manifest itself in
the dependence of di�racted intensity I(q‖) in the very close vicinity of the peak
maximum (�g. 2.8). It can be seen from �g. 2.8 that the Lorentzian function
(eq. 2.44) approximates the calculated di�raction pro�le very well at peak tails.
It is also evident that the di�raction pro�le calculated from eqs. 2.45 is not shifted
but it is rather asymmetric. This is not surprising because the imaginary part of
T according to eqs. 2.43 and 2.45 (�g. 2.7) approaches zero when ρ‖ →∞.

Finally, we should comment shortly that the simpli�ed formulas eqs. 2.45,
were introduced for the �rst time in this work. When the original Krivoglaz
approximate formulas were sticked the anisotropic geometrical (contrast) factors

1In addition we set χd = χ′′d = π and ζd = ζ ′′d = 1/2 as earlier (ch. 2.3.2).
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Figure 2.7: Simpli�ed Fourier co-
e�cients e−T (eq. 2.45) for dislocation
dipoles. (Gb) = 6π ≈ 20, Ld/rd = 1/3.
Blue line - real part, dashed red - imagi-
nary part, dotted green - exponential ap-
proximation.

-0.4 -0.2 0.2 0.4
qx=Ldq°

5

10

15

20

25

IHq°L

2 Σ

Σ2 + Hqx - q0L2

IHqxL

Figure 2.8: Calculated di�raction pro-
�le from a crystal containing dislocation
dipoles. The same model as in �g. 2.7.
Blue line - Fourier transformation of e−T ,
dotted green - shifted Lorentzian approx-
imation (eq. 2.44).

had to be also linked together. Hence it was assumed that

Ψ2
α ln (2πζd)↔ 1/2 ϕ′α = 1/2|Ψα| , χd,α ≡ Ψ2

α ,

Ψ2
αΨ̃α ln (2πζ ′′d )↔ 1/2 ϕ′′α ,

(2.46)

where χd,α is formally de�ned. It must be emphasized that it should be taken
into account that this factor is probably di�erent from the contrast factors of
edge dislocations constituting the dipole because of angular dependence of the
deformation �eld of the dipole (eqs. 2.18, p. 16, 2.41). This is considerably
di�erent from that of a single edge dislocation. The quantities χd and χ′′d in
eqs. 2.46 for peak width and shift are not necessarily equivalent as it was assumed
in the simulation in �gs. 2.7 and 2.8. It was also indicated in Krivoglaz Lorentzian
approximation (eq. 2.44) that calculation of these contrast factors for dipoles
should be based on quantities ϕ′α and ϕ

′′
α rather than on Ψ2

α. Analysis of the peak
broadening and shift (asymmetry) anisotropy is of interest because the dipole
type could be identi�ed in principle from the anisotropy. The values ϕ′α and ϕ′′α
were calculated by Pototskaya and Ryboshapka [46] (in Russian).1

Kaganer and Sabelfeld in their recent paper [38] also proposed an approxima-
tion for the imaginary part of T . Instead of eqs. 2.45 they used a peak shift and
the third power expansion in ρ‖, i.e. they used a linear combination of eqs. 2.40
and 2.42 for a whole range of ρ‖. The (hkl) anisotropy of the peak shift and
asymmetry was not discussed there. They also treated a di�erent dipole type.

In this section, the scattering from crystal containing dislocation dipoles was
theoretically studied. It was shown that dislocation dipoles can behave as both
the defects of the �rst as well as the second class. In the former case, the di�rac-
tion peak consists of attenuated delta shaped regular maximum and di�use scat-
tering at peak tails. If the defect density is high enough and re�ections with the

1Unfortunately the present author has not been able to reproduce some results from [46],
which are also cited in [20], i.e. mainly the point reporting 3× stronger broadening of (hhh)
re�ection than of (h00) in the case of the elastically isotropic fcc crystals. Moreover it must
be again noted that in the case of dislocation monopoles signi�cant in�uence of crystal elastic
anisotropy was found [17, 42] and this e�ect has not been considered for the dipoles at all.
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large di�raction vector G are studied, i.e. condition 2.39 is satis�ed, the dipoles
behave as the second class defects. Calculation of di�raction pro�le is compli-
cated in the case of dipoles. Di�erent approaches (eqs. 2.40�2.43) must be used
for di�erent parts of the pro�le. Krivoglaz approximated the di�raction pro�les
from the crystal with dipoles by a shifted Lorentzian function (eq. 2.44). It was
proposed here on the basis of Krivoglaz theory that the shift is connected rather
with an asymmetry of the di�raction pro�le (�g. 2.8). Contrast factors for the
peak shift (asymmetry) and broadening in the case of dislocation dipoles were
discussed and it was concluded that this problem has not been solved completely
yet.

2.3.4 Correlated dislocations

Non-correlated dislocations were studied in section 2.3.2. The case of an extreme
correlation of a pair of dislocations forming dislocation dipole was treated in sec-
tion 2.3.3. Wilkens 1970 [18] and Krivoglaz [20] developed more general models
of correlations in the dislocation arrangement. These models account for screen-
ing of deformations �elds of dislocations in the crystal. This screening reduces
the elastic energy accommodated in the crystal. Wilkens [19] and Krivoglaz [20]
demonstrated that such screening has essential in�uence on the shape of di�rac-
tion pro�les and developed methods of calculation of di�raction pro�les from
crystals with correlated dislocations. In this section, Krivoglaz approach [20,
ch. 5.2.2] for the correlation of a pair of dislocations is shortly introduced. The
method of Wilkens is described later in section 2.3.5.

We restrict ourselves here only to the simplest case of a correlation in positions
of two defects at lattice sitesRt andRt′ and assume that the correlations of higher
order (between more than two dislocations) can be neglected. Their in�uence is
widely discussed by Krivoglaz [20] or e.g. by Groma [53] or Ungár [54].

We can again start from eq. 2.8 but cannot proceed to eq. 2.9 if the correlation
should be accounted. Instead, the generalized cumulant expansion method [20,
appendix A] is usually used. Taking into account that defect concentrations cα
are very small and by simplifying logarithmic terms (as we did to obtain eq. 2.10)
we can arrive at [20, eq. A.36]

T (Rs,ρ‖) =
∑
α

cα
∑
t

[
1− eiG(us,t,α−us−ρ‖,t,α)]

−
∑
αα′

∑
t<t′

εαα′(Rtt′)
[
1− eiG(us,t,α−us−ρ‖,t,α)][

1− eiG(us,t′,α′−us−ρ‖,t′,α′ )
] (2.47)

where we introduced a (binary) pair distribution function describing correlation
between defects of type α and α′ at sites Rt and Rt′

εαα′(Rtt′) ≡
〈
(ct,α − cα)(ct′,α′ − cα′)

〉
. (2.48)

We will discuss here the simplest case and assume only correlation between
positions of parallel straight dislocations of the same type. Hence we are inter-
ested only in the pair correlation functions for which α = α′, where α marks
the slip system and the edge or screw character of dislocations. However we will



28 2.3 XRD line broadening due to the lattice defects

be distinguishing between dislocations of opposite signs. A simple model can be
accepted introduced by Krivoglaz [20, ch. 5.2.2] that the dislocations with the op-
posite Burgers vector sign are attracted whereas there is some repuslion between
the dislocations of the same sign. We assume that the repulsive and attractive
tendencies are of the same strength and can be described by the same function

εαα(rtt′) ≡ ε+−
αα = ε−+

αα = −ε++
αα = −ε−−αα . (2.49)

Another assumption already included in the above eq. 2.49 is uniformity of the
dislocation ensemble expressed by the dependence of the pair correlation func-
tions εαα only on the distance rtt′ between points where dislocations intersect
the perpendicular plane. Some problems when certain conditions 2.49 are not
satis�ed, e.g. there is no correlation between dislocations of the opposite sign
(ε+−
αα = ε−+

αα = 0), or there is a polarization (δεαα ≡ ε+−
αα − ε−+

αα 6= 0) in the
dislocation distribution, are treated in detail in [20, ch. 5.2.2, appendix F] and
only shortly commented here later.

In a way similar to the derivation of integral form of eq. 2.20 we can obtain
integral expressions for T also for correlated dislocations [20, eqs. F.1-3]

T (ρ‖) =
∑
α

Tα(ρ‖) , Tα = T0,α + T1,α , (2.50)

T0,α = nα

∫
d2rt

(
1− cos[G(us,t,α − us−ρ‖,t,α)]

)
, (2.51)

T1,α =− 2

S2
0

∫∫
d2rtd

2rt′ εαα(rtt′)

sin[G(us,t,α − us−ρ‖,t,α)] sin[G(us,t′,α − us−ρ‖,t′,α)] , (2.52)

where us−ρ‖,t,α is a displacement at site Rs from a dislocation of the (+) Burgers
vector sign situated at site Rt in the slip system α. T0 term is equivalent to T
for uncorrelated dislocations and T1 accounts for dislocation correlation under
assumptions 2.49.

Wilkens [55],1 Krivoglaz [20, eq. 5.2.19] and later Kaganer [38, eq. 24] intro-
duced a screening condition for deformation �elds of defects. T0 is a function of
the crystal size (eq. 2.29). If T should not depend on the crystal size, T1 must
cancel size dependent parts in T0. Considering the displacements from two de-
fects separated by rtt′ at two points located at distance ρ‖, (assuming that both
distances ρ‖ and rtt′ are small in comparison to rt ∼ rt′), we can expand the cos
and sin terms in eqs. 2.51, 2.52, approximate 1/rt′ ≈ 1/rt and sum up T0 and T1.

1Theory of Wilkens is di�erent from the approach of Krivoglaz described here, but the basic
idea of screening of deformation �elds from correlated defects is very similar.
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Finally we obtain the screening condition1

1

2
nα −

2

S2
0

∫
εαα(rt) d

2rt = 0 . (2.53)

Krivoglaz evaluated T0 term for uncorrelated dislocation at �rst. In [20, ap-
pendix F] he con�rmed by a more accurate calculation (than it was used in
ch. 2.3.2 the validity of eq. 2.28 for the case of screw dislocations.2 Krivoglaz
con�rmed that there is the factor |Gb|ρ‖xy in the denominator of the logarithm
in eq. 2.28. This is important for further calculations and comparison with results
of Wilkens. He also pointed out that eq. 2.28 is better valid for re�ections with
(Gb)/(2π)� 1.

Another step in the analysis of correlated dislocations is the evaluation of the
T1 term (eq. 2.52). Krivoglaz proposed a few types of analytical continuous pair
distribution functions εαα [20, eq. 5.2.23]. The Gaussian function, with only one
parameter - correlation radius rc, was chosen here

εαα(rtt′) =
1

4π
nαS

2
0 1/r2

c e
−r2

tt′/r
2
c . (2.54)

Krivoglaz calculated the T1 term in the second order approximation in ρ‖ under
assumptions that the correlation radius rc is not too small [20, eq. F.14]

T1(ρ‖) ≈ −
(Gb)2

8π2
χα nα ρ

2
‖ ln

(2πζ2L

rc

)
,

where χα is again the dislocation orientation factor de�ned by eqs. 2.19, 2.23
and for ζ2 in the case the Gaussian correlation function (eq. 2.54) Krivoglaz [20,
eq. F.15] found that

ln ζ2 = 1/2 γ = 1/2 0.577 . . . ,

where γ is the Euler-Mascheroni constant.
When we sum (eq. 2.50) T0 (eq. 2.28) and T1, we see that the logarithmic

terms ln(L) mutually cancel each other and T is independent of the crystal size
L

Tα(ρ‖) ≈
(Gb)2

8π2
χα nα ρ

2
‖ ln

( 2πζc,αrc
|Gb|ρ‖xy,α

)
. (2.55)

1Wilkens in his approach operates rather in terms of mean square stresses 〈σ2〉 then in
di�erences of displacements (us − us−ρ‖), which are similar to strain ε when ρ‖ → 0. If we
studied an ensemble average of the variance of strain εs at the site Rs we would get〈

(εs − 〈εs〉)2
〉
≈ c

∑
t

ε2s,t +
∑
t,t′

(t 6=t′)

εt,t′εs,tεs,t′ = n
∑
t

S0ε
2
s,t −

4

S2
0

∑
t,t′

(t 6=t′)

S2
0εt,t′εs,tεs,t′

From the above equation we can obtain the screening condition 2.53 if we require that the
variance of strain from an arrangement of defects vanishes at large distances from defects.

2The only di�erence is that in [20, appendix F] ζ0,α ≈ 3.05 whereas in [20, ch. 5.1.1]
ζ0,α = 1/2 . This may indicate a mistake in 2π factor or a di�erent de�nition of the characteristic
crystal dimension L. However, if ζ0 had been 2π× larger in ch. 2.3.2, then the e�ective number
of dislocations Neff would have been also larger and approximations in ch. 2.3.2 would have
been more accurate. Some numerical calculation would be helpful in this point.
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In the lowest approximation for small ρ‖ the expression for T (eq. 2.55) has
the same form as for the non-correlated dislocations (eq. 2.28), only constants
ζ0,α ↔ ζc,α , the crystal size and the correlation length L↔ rc are replaced.

If we now recall the discussion about the line width at the end of the chapter
about non-correlated dislocations (ch. 2.3.2) we can de�ne an e�ective number
of dislocations in the correlated area Neff ∼ πnr2

c exactly in the same way.
We again only replace ζ0,α ↔ ζc,α and L ↔ rc in eq. 2.31.1 It is evident that
the di�raction line width is determined by the same expression (eq. 2.35) as for
uncorrelated dislocations but the lm factor (eqs. 2.32 and eqs. 2.33, l0 = ln

√
N eff )

is substantially smaller because we assume much lower number of dislocations in
the correlated area than in the whole crystal. We assume L� rc ≥ rd. If we now
recall the �g. 2.4 showing the Gaussian approximation of the x2 ln(

√
N eff/|x|)

function, we can remember that for smaller values of Neff (e.g. already for
Neff ∼ 100) e−T signi�cantly di�ers from the Gauss pro�le. The e�ect is even
stronger [20, �g. 5.3] for smaller Neff ∼ 2− 10.

In summary, the main e�ect of dislocation correlation on di�raction pro�les
is that the size of the crystal L is replaced by the correlation radius rc. Peak
broadening from dislocations does not depend on the crystal size L and does not
growth with ln(L). The e�ective crystal size, which appears in expressions for
the di�raction pro�le width and shape, is �nite, substantially smaller than the
crystal size and is of a same order as the correlation radius. It can be identi�ed
with a dimension of the area where dislocations are correlated.

In a very important case of the basic Wilkens model (ch. 2.3.5) no correlation
between dislocations of the same Burgers vector sign (ε++

αα = ε−−αα = 0) is assumed
. Krivoglaz [20, Appendix F, ch. 5.2.2] showed that in such a case contribution
T̃1,α must be added to the real part of T in eq. 2.50. An explicit expression
for T̃1,α can be found in [20, eq. F.4] and it has a similar structure as eq. 2.52
for T1,α, only the trigonometric functions are di�erent. Krivoglaz proved [20,
Appendix F] that the contribution of T̃1,α is comparable only with the higher
order approximation of T1,α, than that used to get eq. 2.55. It is of order ∼ ρ4

‖ and
it can be neglected for small ρ‖. The absence of correlation between dislocation
of the same sign in�uences di�raction line pro�les only slightly and characteristic
consequences of dislocation correlation discussed above are therefore not a�ected.
If a polarization (δεαα ≡ ε+−

αα − ε−+
αα 6= 0) in the dislocation ensemble appears,

e.g. as in the case of formation of dislocation dipoles, an additional term T ′′α has
to be added to T in eq. 2.50. An expression for T ′′α has again a similar structure
as T1,α (eq. 2.52) or T̃1,α, but T ′′α is purely imaginary. This imaginary term is
of the order of ∼ ρ3

‖ [20, eq. F.18], which results in an asymmetry of di�raction
pro�les, as it was shown for the case of dislocation dipoles (ch. 2.3.3, �gs. 2.7 and
2.8). The asymmetry of di�raction peaks is a typical attribute connected with
polarization in the dislocation ensemble. It was discussed in literature, e.g. by
Groma [53, 57, 58], Ungár [54] or Kaganer [38].

1 In Krivoglaz [20, ch. 5.2.2], Klimanek and Kuºel [17] and Kuºel [56] P =
√
Neff .
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2.3.5 Wilkens model of dislocation correlation

After publishing Krivoglaz-Rayboshapka theory of scattering from crystals con-
taining random dislocations Krivoglaz and Ryaboshapka [20, 59, 60] Wilkens
[19, 61] showed that completely random distribution of dislocations in crystal is
not realistic and developed his own approach, shortly described in this section.

Energy stored in the deformation �eld of dislocations in the crystal is equal to
the mean square strain (stress) and through this to the the logarithm of crystal
size. For the stored elastic energy density it holds [18, 30, 39, 62, 63]

Wd ∼ 〈ε2〉

=
Gb2

4πκ
n ln(L/4r0) , (2.56)

where G is the shear modulus, r0 the inner cut-o� radius parameter (r0 = b in
[64, 65]) and κ is a factor accounting for the dislocation type (κs = 1 for screw
dislocations, κe = (1 − ν) for edge). Increasing energy density with the crystal
size was found to be physically unrealistic in many cases and it was found from
experimental data [63�65] that the crystal size L in eq. 2.56 should be replaced
with a mean dislocation distance rd ∼ n−1/2.1 Wilkens thus introduced the model
of a restrictedly random distribution of dislocations [18, 55]. Within this model
Wilkens evaluated the stored energy [18, 55], the shape of di�raction pro�les [19]
and proposed a method of determination of dislocation density in deformed single
crystals from the di�raction pro�les [68]. The model has become a basis for many
applications.2

In the model of a random dislocation distribution the dislocations intersect a
whole cut of the crystal at random points. In the model of a restrictedly random
distribution of dislocations the whole cutting area is subdivided into smaller pieces
of area Sp (Wilkens used explicitly circular areas). Within each such an area Sp
there should be in average Np = nSp dislocations. Instead of placing the whole set
of Nd dislocations in the crystal randomly within the whole area of the crystal
cut, Np dislocations are randomly distributed within each of the subareas Sp.
Because we are distributing dislocations of two signs, we have Np+ = Np− = Np/2
dislocations of a single sign in each subarea. If dislocations were distributed
completely randomly the probability P++ of �nding two dislocation of the same
(+) sign within the same area Sp would be proportional to N2

p+. In the Wilkens
model it is however proportional to Np+(Np+ − 1), because when we place one
of Np+ dislocation with the subarea we have only (Np+− 1) dislocation available
to be placed within the same subarea. Probability of �nding another dislocation
of the same sign at some site inside the subarea is equal to c

2
(1 − 1/Np+). It is

reduced inside the subarea not-negligibly especially if the subarea Sp is small and
there are only few (Np � Nd) dislocations within. In the basic Wilkens model a
correlation between dislocations of the opposite signs is not required.

Interpretations of the Wilkens model can be found in many papers or theses
(van Berkum [70], Ribárik [75]), widely it is described in the thesis of Lynch [73].

1See also discussion [62, 66, 67].
2The Wilkens model was used e.g. in Scardi and Leoni [11], Ribárik et al. [23], Mat¥j

[26], Kuºel [31], Armstrong et al. [41], Ungár [54], Kuºel [56], Wilkens [69], van Berkum [70],
Kamminga and Delhez [71], Cheary et al. [72], Lynch [73], Gubicza et al. [74], Ribárik [75].
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Figure 2.9: An example of the Wilkens dislocation distribution. Dislocation con�gu-
rations were generated for dislocation density n = 1.25 10−3 nm−2 and various param-
eters of the Wilkens model: (a) Rp = 75 nm (Np ≈ 22), (b) Rp = 25 nm (Np ≈ 2.5)
and (c) Rp = 6.25 nm (Np ≈ 0.15).
The upper row of subplots shows the generated distributions. Dislocations with Burgers
vector of a positive sign are depicted by blue crosses, dislocations with a negative sign
by red circles. Circular areas with a radius Rp are depicted in grey to illustrate the
scale. In the case (c) the grey areas are comparable with the size of red circles.
The lower row of subplots shows dislocations pair distribution functions (PDF) calcu-
lated from 5000 of such dislocation distributions as depicted above. PDF for dislocations
of the same sign are plotted as blue and red lines, PDF for dislocations of the opposite
sign are plotted in green.

In order to illustrate the model here some particular random defect con�gurations
generated by a computer simulations are depicted in �g. 2.9. Usually three cases
are considered.

(i) If the subareas are large enough, as compared with the mean dislocation
distance (Rp � rd), there are many dislocations inside each subarea (Np > 10− 100),
correlation of dislocation positions is very weak and dislocation strain �elds are
only ine�ectively screened as in the case of completely randomly distributed dis-
locations. This situation is depicted in �gs. 2.9a.

(ii) If the subareas size is comparable with the mean dislocation distance Rp ∼
rd there are only few dislocation inside each subarea (Np ∼ 2 − 10), dislocation
correlation is not-negligible, dislocations of the same sign tends to distribute
pseudo-regularly within the crystal cut. It can be seen in �gs. 2.9b. Dislocation
strain �elds partially overlap and are e�ectively screened at long distances.

(iii) If the size of subareas is smaller than the mean dislocation distance
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Rp � rd there is a very low probability of �nding a dislocation in such an area
(Np ≈ 0−1). If we look at the tendency of a pair distribution function depicted in
�gs. 2.9(a�b) we can see that the anticorrelation of dislocations of the same sign
is limited. The limit is reached when less than two dislocations (one positive and
one negative) have to be placed in a single subarea. However, the Wilkens model
works again if correlation between dislocations of the opposite signs is allowed.
This situation is shown in �g. 2.9c. In the example distribution there dislocations
pairs forming small dislocations dipoles can be seen. Deformation �elds in such
dislocations con�gurations are very e�ectively screened.

The above consideration can be translated into the Krivoglaz notation.1 Two
cases must be distinguished. The case Np ≥ 2 when only anticorrelation of dislo-
cations of the same sign is considered and the case Np ≤ 2 when also correlation
of dislocations of the opposite signs is nonzero.

For the case Np ≥ 2 instead of eq. 2.49 we have

ε+−
αα = ε−+

αα = 0 ,

εαα(rtt′) ≡ −
1

2
ε++
αα = −1

2
ε−−αα (inside of Sp) , (2.57)

ε+−
αα = ε−+

αα = ε++
αα = ε−−αα = 0 (outside of Sp)

and instead of the screening condition 2.53 and the Gaussian correlation func-
tion 2.54 a step like function

εαα(rtt′) =
1

Np

(
nS0

2

)2

(inside of Sp) , (2.58)

εαα(rtt′) = 0 (outside of Sp) .

For the case Np ≤ 2 it follows

ε++
αα = ε−−αα = −

(
nS0

2

)2

(inside of Sp) ,

ε+−
αα = ε−+

αα = (
2

Np

− 1)

(
nS0

2

)2

(inside of Sp) , (2.59)

εαα(rtt′) ≡
1

2
(ε+−
αα − ε++

αα ) =
1

Np

(
nS0

2

)2

(inside of Sp) .

εαα is the same in both cases and there is always no correlation outside Sp.
The �rst important result of the Wilkens model is that the e�ective crystal

size L in the expression for the mean square stress and stored energy (eq. 2.56) is
replaced by a di�erent parameter connected with the subarea radius Rp [18, 55]

ln(L/4r0)↔ ln(
αpRp

r0

) ,where αp ' 1/2 . (2.60)

In a conventional theory of the line pro�le analysis an important quantity are
cosine Fourier coe�cients, which can be expanded as (see [26] or the classical

1Done here by the present author.
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book of Klug and Alexander [5, eq. 9.57])

〈cos[G(us − us−ρ‖)]〉 = 1− 1

2
G2ρ2

‖〈εG(ρ‖)
2〉+

∞∑
k=2

(−1)k(Gρ‖)
2k

(2k)!
〈εG(ρ‖)

2k〉 ,

where εG(ρ‖) ≡
m(us − us−ρ‖)

ρ‖
, (m‖G , |m| = 1) . (2.61)

If we take only the �rst term in the expansion we can set

T =
1

2
G2ρ2

‖〈εG(ρ‖)
2〉 . (2.62)

The second success of the Wilkens model is that Wilkens was able to evaluate
the mean square �smeared� strain in eq. 2.62 analytically. According to him it
holds [19]

〈εG,α(ρ‖)
2〉 = (

b

2π
)2 χα nα f(

ρ‖xy,α
Re

) , (2.63)

where f(. . . ) is the Wilkens function and Re is an outer cut-o� radius. According
to Wilkens [19] it is connected with the model parameter Rp

Re = e−1/4 Rp = 0.78 Rp , (2.64)

which holds for screw dislocations and approximately also for other dislocation
types. For small real space length ρ‖ Wilkens gives ([19, eq. 4.8])

f(
ρ‖xy,α
Re

) = − ln

(
ρ‖xy,α
Re

)
+ 2 . (2.65)

But Wilkens was able to evaluate f also for any ρ‖. If we de�ne [18, eq. A.7]

η =
ρ‖xy,α
2Rp

=
1

2
e−1/4 ρ‖xy,α

Re

and f = f ∗(η), it follows [19, eq. A.8]

f ∗(η) =



− ln η +
(

7
4
− ln 2

)
+ 512

90π
1
η

+ 2
π

[
1− 1

4η2

] ∫ η
0

arcsin t
t

dt

− 1
π

[
769
180

1
η

+ 41
90
η + 2

90
η3
] √

1− η2 for η ≤ 1

− 1
π

[
11
12

1
η2

+ 7
2

+ 1
3
η2
]

arcsin η + 1
6
η2

512
90π

1
η
−
[

11
24

+ 1
4

ln(2η)
]

1
η2

for η ≥ 1

(2.66)
The Wilkens functions (eqs. 2.65 and 2.66) are plotted in �g. 2.10.1

1The expression (eq. 2.66) for f∗(η) for η ≤ 1 can be substantially simpli�ed when expanded
into the powers of η. This was done by van Berkum [70] up to the third order in η. This
modi�cation of the Wilkens formula is called van Berkum formula and was used widely by
e.g. Scardi and Leoni [11] or Mat¥j [26]. The van Berkum approximation introduces a small
(≈ 0.001) discontinuity at η = 1, which was mentioned also by Kaganer [38]. If needed this
error can be decreased below the numerical precision by the expansion of the high order.
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Figure 2.10: Wilkens function
f∗(η) (eq. 2.66) and its zero order
approximation f∗0 (η) (eq. 2.65).
Kν coe�cients (eq. 2.67) are
depicted as horizontal lines for
|Gb| = 2π and |Gb| = 4π.

Clear advantage of the above Wilkens formula is that T ∼ ρ2
‖ f(η) (eq. 2.62) is

always positive and approaches in�nity when ρ‖ →∞. This means that e−T falls
to zero and we can calculate Fourier coe�cients for arbitrary parameters of the
Wilkens model and real space ρ‖. Unfortunately there is a hidden problem there.
Wilkens in his paper [18] analysed also the remaining term in the expansion of
cosine coe�cients in eq. 2.61 and found that in the �quadratic� approximation in
ρ‖ there is a nonvanishing contribution from the in�nite serie, which he evaluated
for a screw dislocation as [18]1

∞∑
k=2

(−1)k(Gρ‖)
2k

(2k)!
〈εG(ρ‖)

2k〉 ∼=
(Gb)2

8π2
χα nα ρ

2
‖ Kν,α , (2.67)

Kν,α ≈
7

3
− 2 ln 2 + ln(

|Gb|
2π

) .

This contribution should be included in T . Hence Wilkens introduced TQ joining
eqs. 2.62, 2.66 and 2.67 [18, eq. 5.12b]

TQ,α =
(Gb)2

8π2
χα nα ρ

2
‖ [f ∗(ηα)−Kν,α] . (2.68)

If we consider logarithmic terms in the eqautions for f (eq. 2.66 or 2.65) and
Kν (eq. refeq:Wilkens-Kn), which are joined together in eq. 2.68, we can see that
we arrived at an expression containing ln( 2πRe

|Gb|ρ‖
), which is similar to the results

of Krivoglaz and Ryaboshapka (eq. 2.55). This is a positive consequence of the
Wilkens equation for TQ (eq. 2.68).

Kν are positive numbers. They are plotted for illustration in �g. 2.10. It
was noted earlier that eqs. 2.62, 2.63 and 2.66 describe a well behaved Fourier
coe�cients. The negative implications of eq. 2.68, which contains [f −Kν ], is a
fact that this is broken in TQ (eq. 2.68) and Fourier coe�cients are diverging from
a critical real space length ρ‖,c. This was discussed already byWilkens in his paper
[19] or widely by Lynch in his thesis [73]. Under some favourable conditions (n,
Re and G) Fourier coe�cients can decrease to zero before the critical real space
length ρ‖,c is reached and they can be truncated. But this is not the general case.
Because we do not known T (ρ‖) for large ρ‖ we have only very limited knowledge
of the di�raction pro�les shape I(q‖) in the close vicinity of the peak maximum.

1For |Gb| = 0 Wilkens [68] set K0 = 0.
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Wilkens in order to ensure the convergence of Fourier coe�cients for any value
of ρ‖ proposed the following approximation1 [19, eq. 6.2]

f(
ρ‖xy
Re

)−Kν ' f(
ρ‖xy
Re

eKν ) , (2.69)

which can be understood as a formal rede�nition of the outer cut-o� radius Re

([19, 73]). Including this formal approximation Wilkens introduced the �nal
formula for the model of restrictedly random dislocation distribution [19, eq. 6.4]

TQ̃,α =
(Gb)2

8π2
χα nα ρ

2
‖ f
∗(

1

2
e−1/4ρ‖xy,α

Re

eKν,α) . (2.70)
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Figure 2.11: Simulated di�raction pro�les shape for the Wilkens model of restrictedly
random dislocation distribution for di�erent values of the parameter M =

√
nRe. A

Gaussian and a Lorentzian function are plotted for comparison.
Pro�les were simulated using eq. 2.70 for n = 1.6 10−3 nm−2, χ = π, |Gb| = 4π, (a) M = 0.2 (Np ≈ 0.2), (b)

M = 1 (Np ≈ 5) and M = 4 (Np ≈ 80).

In [68] Wilkens described implications of his model on the shape of di�raction
pro�les. For determination of parameters of his model from di�raction data he
proposed to de�ne a dimensionless parameter M

M =
√
nRe . (2.71)

It can be easily realised that it has a similar meaning as the square root of
the e�ective number of dislocations

√
Neff in the area of interest (crystal or

correlated subarea) or a parameter P used by Krivoglaz (see the footnote at page
30; P ≈ 3M in [73, ch. 1.6.2]). We can expect from previous discussion that
with decreasing M also the number of dislocations within the area of interest is
decreasing and shape di�raction pro�les becomes more distant from the Gaussian.
This is depicted in �g. 2.11 were simulated di�raction pro�les are plotted for

1Kaganer and Sabelfeld [38, Appendix A] also emphasised that inclusion of the |Gb| term
is necessary to �t results the Monte-Carlo simulations described there.
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di�erent values of M (or the number of dislocations Np = πR2
p). For M � 1

di�raction pro�les are almost Gaussian whereas for M � 1 it is di�cult to
distinguish them from the Lorentzian.

It is important to consider also the limits of applicability of the Wilkens model.
It was described how the model of restrictedly random dislocation distribution
can be interpreted for Np < 2, Wilkens in [19] derived the above equations for
T analytically taking into account terms of order ρ2

‖. The theory is thus valid
for small ρ‖ where quantities of the higher order do not exceed those taken into
account. It was also discussed that with introduction of Kν there is a critical
length ρ‖,c above which the expression (eq. 2.68) for T does not have physical
sense. Therefore, it is important if there is a su�ciently large number of dislo-
cations in the area of interest that the Fourier coe�cients fall steeply enough to
zero. On the basis of analysis of these circumstances Wilkens found that this
is satis�ed if M & 1 (Np & 5). Using approximation 2.69 eq. 2.70 can be used
for any parameters of the Wilkens model (M > 1), but Wilkens pointed out in
[18] that for M � 1 eq. 2.70 can be applied only for a qualitative description of
di�raction pro�le tails.

It is often useful to have an expression for di�raction line width. Wu [76,
77] adapted the theory of Krivoglaz and Wilkens for Rietveld re�nement of the
powder di�raction data. Wu et al. [76] used a Voigt function for simulating
measured di�raction line pro�les. For this purpose they introduced a simple
equation for the integral breadth

β =
(Gb)

2

√
χ/π

√
n
√
fβ(M) , (2.72)

where fβ(M) is an empirical function developed in [76] by numerical �tting pro-
�les calculated from the Wilkens theory

fβ(M) = a ln(M + 1) + b[ln(M + 1)]2 + c[ln(M + 1)]3 + d[ln(M + 1)]4 , (2.73)

where a = −0.173, b = 7.797, c = −4.818, d = 0.911 for 0.1 ≤ M ≤ 10.
The same formula was used also by Lynch [73] and a similar one introduced by
Kuºel [56, 78].

In this section, the model of restrictedly random dislocation distribution devel-
oped by Wilkens was speci�ed (�g. 2.9). The model describes correlation in the
dislocation distribution which results in an e�ective screening of strain �elds from
dislocations. It was shown that the stored elastic energy as well as di�raction
peaks width and shape are in�uenced by this correlation. Shape of di�raction
lines in their central part can be somewhere between the Gaussian and Lorentzian
(�g. 2.11) depending on the strength of the correlation e�ect described by the
parameter M (eq. 2.71). Analytical expressions derived by Wilkens for calcula-
tion of di�racted intensity pro�les as well as an expression for the di�raction lines
width (eq. 2.72) were presented (eq. 2.70).

2.3.6 Monte Carlo simulations

The approach developed by Krivoglaz, Ryaboshapka and Wilkens was based
mostly on analytical formulae, complemented sometimes by numerical compu-
tations of some particular values or integrals etc. In the last decade, a completely
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di�erent approach has appeared. It is based on simulation of scattering from
crystals by the Monte Carlo method.

For the Monte Carlo simulations of di�raction pro�les usually eqs. 2.6 or 2.8
are used. Fourier coe�cients rather than di�racted intensities are computed. In
each step of a Monte Carlo simulation a set of dislocations is generated, at two
points (Rs andRs−ρ‖) sums of displacements from all dislocations are computed
and substituted into eq. 2.6. By averaging results of many such steps a volume
and an ensemble average marked by 〈. . . 〉 brackets are evaluated.

Kamminga and Delhez (2000) [71] simulated powder di�raction pro�les from
correlated dislocations in an isotropic crystal by the Monte Carlo method and
compared results of their simulations with the analytical expressions derived by
Wilkens, described by Wilkens in [19, 68] and here in section 2.3.5. For screw
dislocations they found a good agreement between the Monte Carlo results and
the Wilkens theory. The simulation results for edge dislocations in a single slip
system also �tted the Wilkens theory. In this way Kamminga and Delhez [71]
veri�ed the assumption that the theory, derived originally [18] only for screw
dislocations, can be used also for the edge dislocations. Kamminga and Delhez
[71] simulated di�raction pro�les for a single slip system (α) and sets of disloca-
tions in multiple slip systems. For the edge dislocations in multiple slip systems
they found systematic deviations between simulations and the Wilkens results
and they pointed out that the analytical approach could underestimate a con-
tribution from edge dislocations with G · b = 0, which could originate from an
interaction between dislocations sets in di�erent slip systems (α 6= α′). Finally
their simulations qualitatively veri�es the Wilkens theory.

The Monte Carlo method was also used by Kaganer et al. [79], Kaganer and
Sabelfeld [80], Holý [81] (2009) and Barchuk et al. [82] (2010) for simulations
of distribution of di�racted intensity from correlated dislocations in bulk single
crystals and thin epitaxial �lms. For polycrystalline materials the method was
utilised by Holý [81] and recently mainly by Kaganer and Sabelfeld [38, 40]. It
must be noted that these works of Kaganer et al. [79], Kaganer and Sabelfeld [80]
are purely theoretical.

The Monte Carlo method is extremely time consuming and hence it is di�cult
to apply the method directly to �tting of multiple re�ections in a wide range
powder di�raction pattern. Kaganer and Sabelfeld [38, 40] �tted simulated data
by empirical functions and parametrised their Monte Carlo simulations results.
For these purpose they proposed a new simple empirical function f ∗(η) (eqs. 2.65
and 2.66) and compared their results with the results of the Wilkens model. They
found a very good agreement. They also highlighted that there must be a factor
Gb in the logarithmic term for T and simpli�ed the argument in the f ∗(η) function
in eq. 2.70 by extracting (Gb) out of the Kν and including all other constants
into the outer cut o� radius R′p, which is then �tted to simulated data. Hence
Kaganer [38] introduced

η =
(Gb)/(2π) ρ‖xy

2R′p
and (2.74)

f(η) = − ln

(
η/η0

1 + η/η0

)
. (2.75)
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Figure 2.12: Comparison of a function f(η) (eq. 2.66) calculated by Wilkens [19] with
a more simple function (eq. 2.75) proposed by Kaganer [38], η0 = 2.2.

Kaganer [38, Appendix A] argued that the simple function described by
eq. 2.75 has the same asymptotic behavior for ρ‖ as functions introduced by
Krivoglaz or Wilkens. It behaves as ln( 2π

(Gb)ρ‖
) for ρ‖ → 0. It is always posi-

tive and decreases to zero for ρ‖ → ∞, hence it can be used for arbitrary ρ‖.
According to [38, Appendix A] function eq. 2.75 �ts best the original Wilkens
function (eq. 2.66) for η0 = 2.2. For comparison, both functions are plotted in
�gs. 2.12(a-d). It can be seen that the di�erence is really subtle in �g. 2.12(a),
which is similar to �Figure 8 (a)� in [38]. On the other hand, a di�erence is
obvious in �g. 2.12(b), where smaller x-range is plotted. For computation, the
quantity η2f(η) is more important than the function f(η) itself. This is plotted
in �gs. 2.12(c-d). It is evident that η2f(η) for the case of the Wilkens and Ka-
ganer functions is similar at smaller x-range but large deviations can bee seen for
large η = ρ‖/Re. The in�uence on the shape of di�raction pro�les is depicted in
�gs. 2.13(a-c). A �gure similar to �Figure 8(d)� in [38] is plotted as �g. 2.13a. No
di�erence can be observed in the logarithmic scale. Deviations between pro�les
calculated from the Wilkens and Kaganer formulae are also subtle in the linear
scale in �g. 2.13b. The range of large η is important in the case when Re � rd.
Simulated intensity pro�les for such case are plotted in �g. 2.13c, where large
deviations between the two pro�les are visible. It should be kept in mind that
both Wilkens and Kaganer pointed out that the cases when M = Re/rd � 1 are
out of the validity limits of the theory or simulations.
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Figure 2.13: Comparison of simulated di�raction pro�les when using a function f(η)
(eq. 2.66) calculated by Wilkens [19] or a function (eq. 2.75) proposed by Kaganer [38],
η0 = 2.2. Figures (a-b) were calculated for the Wilkens parameter M = 2. For �gure
(c) a small value M = 0.1 was set.
Pro�les were simulated using eq. 2.70 for n = 1.6 10−3 nm−2, χ = π, (a-b) M = 2 (Np ≈ 20),

(c) M = 0.1 (Np ≈ 0.05).

Monte Carlo simulations of powder di�raction pro�les done by Kamminga
and Delhez [71] and Kaganer and Sabelfeld [38] in principle veri�es the analytical
results derived by Krivoglaz and Wilkens described in preceding sections. Ka-
ganer [38, 40] in addition proposed a new simple function f(η) (eq. 2.75) which
can be used instead of a complicated Wilkens formula (eq. 2.66) and it gives the
same results as the original one (�g. 2.13) for cases in the applicability range of
the Wilkens theory, where M & 1.

2.3.7 Dislocation broadening anisotropy

In this section short introduction in anisotropy - hkl dependence - of di�raction
lines broadening from crystals containing dislocations is presented. The �nal T
is a sum (eq. 2.20) of Tα from all types of defects. It was said that dislocations
in di�erent slip system will be considered here as such defects of di�erent types.
Hence, for the calculation of the shape of a single re�ection pro�le hkl the contri-
butions from dislocations in di�erent slip systems α must be added. There were
several α dependent terms in eq. 2.28 or eq. 2.68 for Tα for crystals containing
dislocations, namely

nα , χα , ρ‖xy,α , eKν,α ∼ |Gb|α .
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The �rst two parameters will be discussed. The other are pure geometrical factors
that appear explicitly only in the logarithmic term or in the function f(η) and
the anisotropy connected with them is often neglected. This has been mentioned
earlier (ch. 2.3.2, p. 19) and it will be commented properly below.

Dislocation density nα is usually assumed to be similar in all the symmetri-
cally equivalent dislocation slip systems. Edge and screw dislocations are usually
treated separately.. For a given dislocation type we can assume the same dislo-
cations density in all slip systems, which is equal to an average density nα = n̄.

The XRDline broadening anisotropy is mainly related to the dislocation con-
trast factors χα de�ned by eqs. 2.19 and 2.23. They describe the projection of
a dislocation strain �eld onto the di�raction vector at large distances from the
dislocation core. Klimanek and Kuºel [17] showed that their anisotropy can be
divided into two parts, a geometrical factor and a term connected directly to
the crystal elastic characteristics and individual dislocation type. There were
described many times in the literature, in the pioneered papers of Wilkens and
Krivoglaz et al. [19, 20, 69], in works of Kuºel and Klimanek [17, 31, 83, 84]
and also in recent papers mainly by Ungár, Borbély and Dragomir-Cernatescu
[16, 42, 43, 85, 86], Scardi, Leoni and Martinez-Garcia [44, 45, 87] or by Lynch
[73]. Detailed description of their calculation for the case of cubic or hexagonal
materials can be found especially in the theses of Kuºel [31] or Lynch [73].

The calculation of χα is usually composed from few steps.

1. De�ne a reference dislocation slip system (Burgers vector bα, line vector lα).
2. Transform the crystal elastic constants Cij into the reference system.
3. Find displacement �eld for the given dislocation type and elastic constants. In the

elastically isotropic case the displacement �elds from dislocation can be found in
many books e.g. Valvoda et al. [30] or Hirth and Lothe [39]. If elastic anisotropy
must be accounted for, it is more complicated, however the method can be found
also in basic books, e.g. in Hirth and Lothe [39, ch. 13].

4. Calculate displacement �eld derivatives eq. 2.19 in the direction of the di�raction
vector G.

5. Evaluate integral eq. 2.23.

In the case of elastically isotropic crystal we have (Wilkens [19, eqs. 4.2-3])

χs,α = π cos2 ψα sin2 ψα , for screw dislocations, (2.76a)

χe,α =
π

8(1− ν)2
[1− 4ν + 8ν2 + 4(1− 2ν) cos2 ϑα] sin4 ψα (2.76b)

for edge dislocations,

where ν is the Poisson's ratio, ψα is the angle between the dislocation line lα and
the the di�raction vector G and ϑα is the angle between the Burgers vector bα
and the projection Gxy,α of the di�raction vector into the plane perpendicular to
dislocation line lα.

However, real crystals are often strongly elastically anisotropic. In �gs. 2.14
and 2.15 a reciprocal of Young modulus of fcc Copper is plotted for elastic con-
stants [89, 90, table ivA]

C11 = 168.4 GPa , C12 = 121.4 GPa , C44 = 75.4 GPa . (for fcc Cu) (2.77)
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Figure 2.14: Surface
representation of the
Young modulus recipro-
cal 1/E(n) calculated
for Copper from elas-
tic constants eq. 2.77
similarly to [88].

Coe�cient of elastic anisotropy de�ned for cubic crystals (e.g. in [91]) as

A =
2C44

C11 − C12

.
= 3.2 (for Copper) .

is for Copper essentially higher than one . Hence strong elastic anisotropy of
Copper is evident and it is important to include this in the dislocation contrast
factors.
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Figure 2.15: Polar projection of the Young modulus reciprocal 1/E(n) calculated for
Copper from elastic constants eq. 2.77 similarly to [88].

The major operating slip system in fcc structures is the {111}〈100〉 [39, ch. 9.3]
with the shortest possible Burgers vectors b = 1

2
〈110〉 [30]. For illustration,

dislocation contrast factors for a perfect edge dislocation in the fcc Copper crystal,
re�ection (331) and all 12 slip system {111}〈100〉 are listed in Table 2.1. The
constants χisoα in the case of elastically isotropic crystal were calculated for ν =
0.31 [69]. Calculation for the case of elastically anisotropic crystal, χansα , were
done following the recipe roughly-drawn above using elastic constants eq. 2.77
and Wolfram Mathematica computing system. More straightforward way would
be to use an excellent program ANIZC, developed by Borbély et al. [86], which is
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α

nα 2bα χisoα /π χansα /π | sinψα| (G·b)α
Gb

(1̄11) [110] 0.494 0.403 0.982 0.973
(1̄11) [01̄1] 0.007 0.024 0.350 -0.324
(1̄11) [1̄01̄] 0.100 0.074 0.662 -0.649
(111) [011̄] 0.170 0.197 0.982 0.324
(1̄1̄1) [01̄1̄] 0.247 0.292 0.927 -0.649
(1̄1̄1) [1̄10] 0.027 0.009 0.662 0.000
(111) [11̄0] 0.103 0.020 0.927 0.000
(1̄1̄1) [101] 0.247 0.292 0.927 0.649
(111) [1̄01] 0.170 0.197 0.982 -0.324
(11̄1) [011] 0.100 0.074 0.662 0.649
(11̄1) [101̄] 0.007 0.024 0.350 0.324
(11̄1) [1̄1̄0] 0.494 0.403 0.982 -0.973

χ331,e = 0.181 0.167 ·π

Table 2.1: Dislocation con-
trast factors for edge dislo-
cations in fcc Copper, re-
�ection 331, all 12 slip sys-
tems α, calculated for both
the case of elastic isotropy
χisoα (ν = 0.31), and the
elastic anisotropy χansα (Cij
eq. 2.77). Also other ge-
ometrical factors (G·b)α

Gb and
| sinψα|, where ψα is the angle
between the di�raction vec-
tor and dislocation line, are
listed. Slip planes are marked
as nα, Burgers vector direc-
tions as bα.

available via its web-interface (at http://metal.elte.hu/anizc/). We can see
from Table 2.1 that contrast factors for di�erent slip system di�ers essentially in
both cases, either if the isotropic or anisotropic elastic constants are used.
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Figure 2.16: Average dislocation contrast factors χhkl for Copper calculated for edge
and screw dislocations for both the case of elastic isotropy (ν = 0.31), and the elastic
anisotropy (Cij eq. 2.77). Figure (a) depicts a simulated Williamson-Hall plot, (b) shows
the linearity of χhkl with Γhkl (eq. ref).

Usually, when the anisotropy induced by geometrical factors in the logarithmic
like term in T is neglected, all the anisotropy of the di�raction line broadening
is included in the dislocation contrast factors χα. They appear in eqs. 2.28 or
2.68 for Tα as linear factors. Hence the summation over Tα can be reduced to
averaging of dislocation contrast factors∑

α

Tα ∼
∑
α

nαχα = n
∑
α

nα
n
χα = n

∑
α χα
Ns

≡ nχhkl , (2.78)

where Ns is the number of symmetry equivalent slip systems and χhkl is the
averaged dislocation contrast factor for a given re�ection hkl [16, 42, 76].

http://metal.elte.hu/anizc/
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The average dislocation contrast factors χhkl can be supplied e.g. into the
equation (eq. 2.72) for the integral line breadth βhkl. Line width then shows a
characteristic anisotropy (hkl dependence), which is depicted in the simulated
Williamson-Hall plot in �g. 2.16a. It was proved [16, 42] that for the cubic
crystals (if all the symmetrically equivalent slip planes can be treated as equally
populated with dislocations) χhkl can be always described as a linear function of
Γhkl

χhkl = W + V Γhkl , Γhkl =
h2k2 + k2l2 + l2h2

(h2 + k2 + l2)2
. (2.79)

This is depicted in �g. 2.16b, where χhkl for all the cases can be �tted by straight
lines

χisohkl,e = π(0.1803 + 0.001 Γhkl) ,

χisohkl,s = π(0.167− 0.167 Γhkl) ,

χanshkl,e = π(0.305− 0.500 Γhkl) = 0.305π · (1− 1.64 Γhkl) , (2.80a)

χanshkl,s = π(0.299− 0.710 Γhkl) = 0.299π · (1− 2.38 Γhkl) , (2.80b)

χhkl = χh00 · (1 + q Γhkl) . (2.80c)

It can be seen from �gs. 2.16(a-b) and from the the equations above that
there is signi�cantly more hkl-anisotropy in contrast factors if the crystal elastic
anisotropy is included. The contrast factors for screw dislocations χanshkl,s show
the highest degree of anisotropy and are di�erent from that for edge dislocations.
According to linear �ts (eqs. 2.80) χh00 coe�cients for edge and screw dislocations
are quite similar and only q values are di�erent. The q coe�cient in eq. 2.80c is
hence usually used to determine an edge-screw character of dislocations.

The other two geometrical factors,

|G · b| , ρ‖xy,α = ρ‖| sinψα| ,

where ψα is the angle between the di�raction vector G and the dislocation line
lα, are also listed in Table 2.1 for an edge dislocation in the fcc Copper and 331
re�ection. Signi�cant di�erences are visible between di�erent slip systems. In
contrast to discussion concerning line width and shape for the case of uncorrelated
dislocations at 20, in the case of correlated dislocations, there are much less
dislocations within the area of interest (rt ≤ Rp) and these geometrical factors in

ln(
2πζ1R̃p

|Gb|| sinψα|ρ‖
)

cannot be neglected. The Wilkens equation 2.70 with all these anisotropic and
geometrical factors was used by Lynch [73]. Usually (e.g. by Scardi and Leoni
[11], Mat¥j [26], Ribárik, Ungár, and Gubicza [92]) the model is signi�cantly
simpli�ed using substitutions

|G · b| → (Gb)→ 2π , (2.81a)
ρ‖| sinψα| → ρ‖ . (2.81b)

Such formulation was called by Armstrong, Leoni, and Scardi [41] as the simpli-
�ed Wilkens model, while the original model including all the factors was called
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the full Wilkens model. They discussed in [41] deviations of Fourier coe�cients
resulting from the models and found that if the geometrical factors in eqs. 2.81
are �averaged� for a given hkl re�ection they are linear with (Gb), which justi�es
the �rst substitution in eq. 2.81a. Subsequent averaging over di�erent hkl re�ec-
tions allows the second approximation in eq. 2.81a. Albeit it is stated by Leoni
et al. [87] that using the simpli�ed model (eqs. 2.81) introduces only a little error,
signi�cant deviations between Fourier coe�cients for the simpli�ed and the full
Wilkens model are clearly visible in [41].

In this section, the dislocation broadening anisotropy has been discussed. It
was shown that most of the broadening anisotropy is included in the dislocation
contrast factors χα. In the line pro�le analysis usually the averaged disloca-
tion contrast factors χhkl (eq. 2.78) are used. For cubic materials they can be
evaluated from a simple linear formula (eq. 2.80c). Necessary constants can be
calculated using e.g. the program of Borbély et al. [86]. Elastic anisotropy of
crystals (�g. 2.14) plays an important role (�g. 2.16). For calculation of whole
di�raction pro�les either the full or the simpli�ed Wilkens model, adoppting ap-
proximations 2.81, can be used. Di�erences were discussed by Armstrong et al.
[41].

2.3.8 Stacking faults defects in fcc structures

In addition to dislocations, the stacking faults and twin boundaries are quite
common defects in many materials, namely in close packed metals. Cubic fcc
metals can be considered as structures created by stacking of 111 layers in a
sequence ABCABC. . . (�g. 2.17a). An intrinsic stacking fault in the fcc structure
is schematically depicted in �g. 2.17b. The ideal stacking sequence is converted
to ABC|BCA. . . by omitting one layer of type A. At a twin fault the stacking
sequence ABC is reversed into CBA (�g. 2.17c). The upper part is a twin of the
lower one.

(a) − fcc

A
B
C
A
B
C

(b) − intrinsic

A
B
C

B
C
A

(c) − twin

A
B
C

B
A

C
Figure 2.17: Schematic representation of
stacking faults in a fcc crystal (according
to Warren [6, ch. 13.5, p. 276, Fig. 13.13]).
Close packed 111 layers are stacked at A,
B, C positions. Figure depicts (a) a correct
fcc sequnce, (b) an intrinsic stacking or de-
formation fault, (c) a twin or grow fault.

Stacking faults and twin boundaries are plane defects of the second type ac-
cording to the Krivoglaz [20] classi�cation. If we consider a plane fault extending
over the whole crystal, di�raction from a crystal containing the planar faults can
be calculated using the theory of Krivoglaz and eq. 2.7. According to Krivoglaz
[20, ch. 5.1.4] stacking faults produce broadening and shift of (hkl) components
of a given hkl re�ection with

|L0| = |h+ k + l| 6= 3j , (2.82)
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where j is an integer number. The broadening is of the Lorentz form. Contrary a
particular (hkl) re�ection component is completely una�ected by stacking faults
if |L0| = 3j.

Planer faults are very common defects in the so-called layered structures and
there are many methods how di�raction pro�les from them are calculated. One of
the most general of Treacy et al. [93] is implemented in the computer programs
DIFFaX [94] and FAULTS [95]. Its applications on various materials can be
found e.g. in Leoni et al. [96], Leoni [97], Martin et al. [98] etc. The DIFFaX
program was used also by Balogh et al. [14] to simulate di�raction in fcc materials
containing stacking faults and twin boundaries. Balogh et al. [14] �tted the
patterns produced by DIFFaX by linear combinations of Lorentzians and they
parametrised the results. Their model gives same results for fcc structures as
the approach of Warren [6] and Velterop et al. [13], which is described below,
but it can be used also for twinning on pyramidal planes in hcp crystals (Balogh
et al. [99]), for which the method of Warren [6] can not adapted. Examples of
the application can be found in [14, 15, 99, 100]. A completely di�erent approach
using the Debye formula was introduced by Buljan et al. [101] and applied to
self-organized Ge nanocrystals in an SiO2 matrix. Here the method, which can
be found already (1969) in the book of Warren [6], is preferred. The method was
improved by expansion in higher order of faulting probabilities by Velterop et al.
[13] (2000) and in that form it was used by Scardi and Leoni [102], [11, 103] in
their WPPM software [104].

In the Warren [6] di�raction pro�les from fcc crystals containing intrinsic
stacking faults and twin faults are calculated based on the assumption that the
probability of occurrence of a stacking fault (α) or a twin fault (β) is the same in
each layer independently of positions of other faults. No correlation is accounted
for. It is also assumed that the probabilities of the faults are low (α, β . 0.1).

The results of Warren [6], Scardi and Leoni [11], Velterop et al. [13] are in
agreement with the theory of Krivoglaz [20]. For either stacking or twinning
faults only the (hkl) components satisfying condition 2.82 (|L0| = 3j ± 1) are
a�ected. The a�ected components can be shifted, broadened and asymmetric and
the e�ect can be di�erent for particular (hkl) components of the given re�ection.
It depends [11, 13] on the value of |L0| and σ|L0|, which is de�ned as [11, 13]

σ|L0| =


−1 . . . |L0| = 3j − 1

0 . . . |L0| = 3j

+1 . . . |L0| = 3j + 1 .

If we de�ne constants

lnZ =
1

2
ln(1− 2β − 3α + 3α2) ,

β0 =
√

3− 6β − β2 − 12α + 12α2 ,

γ = arctan
β0

1− β
,

∆ρ = 2π
h2 + k2 + l2

G|L0|
,
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the Fourier coe�cients can be written as [11, 13]

AF (ρ‖) =
1

m

∑
j

elnZ·|σ|L0||·|ρ‖|/∆ρ ·
[
1− iσ|L0|

β

β0

sign(ρ‖)

]
· e−i∆Gjρ‖ , (2.84)

where the summation is taken over all (hkl) components of the hkl re�ection, m
is its multiplicity and ∆Gj is the shift for each component [11, 13]

∆Gj = σ|L0|(γ −
π

3
)/∆ρ .
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Figure 2.18: Simulated di�raction pro�le
for a fcc copper polycrystalline specimen
with intrinsic stacking faults. 311 re�ec-
tion, stacking fault probability α = 0.05.
Thick black line depicts the whole di�rac-
tion pro�le. Colour lines show its sub-
components. The stacking fault e�ect was
convoluted with size broadening to avoid the
delta peak from una�ected components. Crys-
tallites size was set to D ≈ 200 nm. Similar
�gure can be seen in Balogh et al. [14].

The width, shape and shift of components of a given re�ection vary only due
to di�erent |L0| and σ|L0|, which can take only a few possible values. Hence the
(hkl) components are divided into groups with the same pro�le parameters [13].
This is illustrated for stacking faults at the 311 re�ection in �g. 2.18. All 24
components can be divided into three groups. There are 12 components in one
group. These all are una�ected because they satisfy σ|L0| = 0. Further, there are
6 components in each of remaining two groups. The components of the one group
are shifted to lower di�raction angles. The components of the second one move
in the opposite direction.
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Figure 2.19: Simulated di�raction pro�le of the 111 re�ection of a fcc copper polycrys-
talline specimen with (a) intrinsic stacking, (b) twin faults. The faulting probabilities
are α = β = 0.05. More examples can be found in Balogh et al. [14].
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In �g. 2.19 another example shown by Balogh et al. [14] is depicted. Di�raction
pro�les of the 111 re�ection for a crystal with stacking faults is shown in �g. 2.19a.
Contrary the same re�ection is plotted in �g. 2.19b for a crystal containing only
the twin faults. We can easily see from eq. 2.84 that imaginary part of the
Fourier coe�cients is nonzero if twin faults are present (β 6= 0). This implies
asymmetry of the di�raction pro�les of a�ected components. On the other hand
we see in �g. 2.19 only very slightly asymmetric pro�le in the case of twin faults,
whereas the pro�le looks strongly asymmetric for stacking faults. The e�ects of
asymmetry and shift are mutually combined and the results can be di�erent from
what is intuitively expected.

Furthermore, it can be realised from eq. 2.84 that the width and the absolute
value of shift of components is a function of ∆ρ, which does not depend on
the order of the re�ection. The e�ect of planar faults is hence anisotropic (hkl
dependent) but is not proportional to G length as dislocation induced broadening.
It behaves rather like size broadening.

In this section the di�raction line broadening from intrinsic stacking faults
and twin boundaries in fcc crystals was theoretically treated. For these simple
cases the Fourier coe�cients describing the e�ect can be derived [11] within the
model of Warren [6]. Examples, which can be found in the literature [14], show
that even though the description of the e�ect is relatively simple (eq. 2.84) the
shape of di�raction pro�les is in�uenced in a complex way (�gs. 2.18, 2.19). This
is used to distinguish faulting defects from other sources of line broadening.

2.4 Whole powder pattern modelling

In the classical Rietveld programs, as in the FullProf [8, 105], GSAS [9] or
MAUD [106], all microstructural e�ects are treated in a very general and more
phenomenological way, e.g. a microstrain and crystallite size by the approach of
Popa [107]. This has an advantage that the programs can be generally, systemat-
ically and often very successfully applied to materials of any symmetry. However,
the model parameters don't have straightforward physical meaning, i.e it is dif-
�cult to convert for example a �phenomenological microstrain� value (ch. A.8)
to the density of lattice defects or compare values for materials with di�erent
elastic properties. In material science, there is a demand of more physically rel-
evant interpretation of results. Concerning the dislocation e�ects corresponding
attempts can be found in 1998, where Wu et al. [76, 77] were modelling the
dislocation-induced anisotropic line broadening in the Rietveld method using the
Voigt function and the Krivoglaz-Wilkens model. In their analysis, the dislocation
density (n), the Wilkens dislocation correlation parameter (M , eq. 2.71, p. 36)
and the crystallite size were re�ned by the Rietveld method from the powder
di�raction data [77]. At that time (1999) a simple approach (Ungár et al. [42],
eq. 2.80c, p. 44) of evaluation of the average dislocation contrast factors in cubic
materials has already been established and also the Fourier coe�cients were used
for calculation of di�raction pro�les (Scardi and Leoni [102]) in the method of
total pattern �tting. At the beginning, the Fourier coe�cints were still combined
with the analytical pro�le functions (Voigt, pseudo-Voigt) [102, 103, 108] and the
method was called the whole di�raction pattern �tting (Scardi, Leoni, and Dong
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[103]). Stacking faults were already included in [103], too. A similar approach
with the emphasis on the analysis of dislocations was simultaneously developed
by Ribárik et al. [23]. Analytical pro�le functions, which still imposed approxi-
mations in the modelling of di�raction pro�les, were quickly excluded from the
description of the physical aspects of microstructure and in 2002 the method of
the whole di�raction powder modelling (WPPM) was developed by Scardi and
Leoni [11]. The �rst computer programs [104] implementing the e�ects of dis-
locations and planar faults were rather slow but they have grown up in a very
versatile, fast and user friendly programs as PM2k [24].

In summary, the WPPM method is very similar to the Rietveld approach [7].
The distinctions are the following: (i) instead of a widely general model rather
a physical microstructural model designed for a particular problem in the given
material is utilised. The model parameters have simple straightforward meaning,
which facilitates the interpretation of the results. (ii) Instead of analytical pro�le
functions (Gaussian, Lorentzian, Voigt) rather the Fourier coe�cients or directly
the intensity pro�les, calculated on the basis of the microstructure models, are
used. The convolutions involved are not based on an analytical formulae for
pro�les width and shape parameters but rather the whole pro�les or Fourier
coe�cients are convoluted numerically in the real or reciprocal space. This drops
many approximations and enables more physically correct description of complex
pro�le shapes, e.g. from dislocations or planar defects.

Instrumental e�ects are usually not considered as a physically relevant part
of the problem, contrary to Cheary and Coelho [109], and only elementary at-
tention is given to them. In the PM2k [24] or the MSTRUCT (ch. A) here the
instrumental broadening measured on some standard samples is usually simply
parametrised and treated by analytical pro�le functions, which are convoluted
with the microstructural e�ects [11]. However, some programs use di�erent ap-
proaches, e.g. in (eC)MWP-�t [110] the raw measured instrumental di�raction
pro�les are directly convoluted with the simulated physical pro�les.

2.5 Debye formula

The Debye scattering formula [6, 32] is commonly used for calculation of scatter-
ing by noncrystalline forms of matter for a long time. However, in the last decade
it has been applied many times also to nanocrystalline materials.

Neither the translation invariance of the object nor any type of periodicity in
the real space are required for derivation of the formula, but the crucial assump-
tions is a random orientation of the scattering matter. The scattering objects:
molecules, atom clusters etc. must be oriented completely randomly in the sample.
Then the scattered intensity can be calculated according to the Debye formula [6]

I(Q) =
∑
m,n

fmf
∗
n

sin(Qrmn)

Qrmn
, (2.85)

where rmn is the distance between them-th and n-th atom of the scattering object
and Q = 4π sin(θ)/λ is a continuous scattering length variable.
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In eq. 2.85 there is a double sum over all atoms of the scattering object,
which indicates highly computationally demanding problem for objects with many
atoms. In 3D crystals the typical shortest distances between atoms are fractions
of a nanometer and the number of atoms is increasing with the third power of the
object size. Roughly guessed, the objects up to sizeD . 10−15 nm can be treated
on recent personal computers. The method suitably complements the WPPM,
which is still based on some classical crystallographic approximations and only
with di�culties accounts for some e�ects in very small crystallites (D . 5 nm).
E.g. for relaxation of surface atoms or the core shell model [111, 112].

Some fast computational approaches to the Debye equation can be found in
literature (Ino and Minami [113], Cervellino et al. [21] or Derlet et al. [22]). If N
is the number of atoms in the scattering system and eq. 2.85 is used directly, for
each point of the di�raction pattern ∼ N2 operations must be done. In [22, 114]
it is proposed to rather calculate the pair distribution function in the �rst step.
Albeit it is still the N2 problem, however an evaluation of the sinus function and
the division is avoided. Moreover this step is done only once. In the second step
the �sinc� transform of the distribution function is evaluated.

The Debye equation method has been applied very successfully to various
problems concerning nanocrystalline materials by Cervellino et al. [33], [21, 115�
118]. Core shell structure of nanoparticles was studied e.g. in Mullen et al.
[111], Palosz et al. [112], Vale² et al. [114]. Twinning in nanocrystalline cubic ma-
terials was treated by Frøseth et al. [119] or Buljan et al. [101]. The method was
applied to the system of sever crystallites by Beyerlein et al. [120] and di�raction
patterns were calculated from atomistic simulations of very large systems under
deformation conditions by Derlet et al. [22], Frøseth et al. [119], Brandstetter
et al. [121]. A comparison of simulations done by the Debye formula and the
WPPM method can be found in Beyerlein et al. [36].



Chapter 3

Study of Submicrocrystalline

Metals

3.1 Introduction

In this part, the theory of di�raction line broadening (ch. 2) is used to characterise
microstructure of di�erent submicrocrystalline metals from XRD data. (i) In
section 3.2 isometric gold colloidal nanoparticles prepared by a chemical route
are investigated and (ii) in section 3.3 compact ultra�ne-grained copper samples
prepared by equal channel angular pressing (ECAP) are studied.

The main subject of this part is the analysis of XRD di�raction data by the
WPPM (Whole Powder Pattern Modeling) method (ch. 2.4). The goal of the
work is experimental determination of microstructural parameters � crystallite
size, defects type and density etc. Correlation of these parameters with samples
treatment conditions and other analytical methods then can be discussed.

3.2 Characterisation of isometric gold

nanoparticles

Gold nanoparticles prepared by a by chemical reduction of H[AuCl4] water so-
lution were studied mainly by XRD analysis. The studies were complemented
by other methods like UV/vis spectroscopy and TEM. All the samples studied
in this section were prepared by the group of Dr. M. �louf from the Institute
of Macromolecular Chemistry AV �R. He also kindly provided the UV/vis mea-
surements and TEM images. Results were published mainly in �louf, Kuºel, and
Mat¥j [122].1

1 List of coworkers on the work presented here: Z. Mat¥j (present author) and R. Kuºel,
Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles Uni-
versity in Prague (XRD analysis); M. �louf, Institute of Macromolecular Chemistry, Academy
of Sciences (samples preparation, UV/vis spectroscopy, TEM).
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3.2.1 Motivation

Nanoparticles of metals like gold, silver, platinum or palladium have been inten-
sively studied in last years. They found applications e.g. in catalysis, as carriers
of molecules or as markers in transmission electron microscopy (TEM) [123, 124].
Metal nanoparticles can compose colloid solutions. Size of the nanoparticles can
be controlled by their preparation process. The gold particles studied were synthe-
sised to be used mainly for the biological labelling ([123, 124]). In some practical
cases, quantitative results can be obtained from the XRD powder di�raction in a
simpler way than by the evaluation of many TEM images. An example of present
possibilities of XRD for the analysis of nanocrystalline powders can be found in
next chapter 4. The initial idea of the research was to probe possibilities of XRD
method in characterisation of such colloidal nanoparticles and utilisation of XRD
method as an assistant tool in biological or medial diagnostics. Unfortunately,
sometimes the extraction of a su�cient amount of sample for e.g. quantitative
phase analysis by laboratory XRD may be too laborious and other analytical
techniques e.g. energy-�ltered TEM or x-rays energy-dispersive analysis) proved
to be suitable in this task [125]. However, despite this failure of XRD as an
auxiliary method in biological diagnostics, availability of XRD data for a series
of samples with well de�ned particles size in the range 5�100 nm, which were in
addition characterised by other methods, was a supplementary motivation of the
further analysis of samples by XRD and especially by line pro�le analysis (LPA)
and the WPPM method (ch. 2.4).

3.2.2 Sample preparation, other methods

Four colloidal solutions containing gold nanoparticles of various sizes (around
5, 10, 30 and 80 nm) were prepared. A slightly modi�ed method [126] allowing
synthesis of particles with arbitrary size was used [122]. The technique is based on
several-step reduction of H[AuCl4] water solution by combination of Na[BH4] and
NH2OH solutions. Size of particles (DTEM), is determined by solution concentra-
tions, which can be precalculated for the given expected particles size (Dtheor). It
is usually found that the size of synthesised particles (DTEM) is less than what was
expected (Dtheor) [122], but the discrepancy is less than 20%. The samples are
labelled Au-1, . . . , Au-4 and the particles sizes (Dtheor) intended to be prepared
are listed in the Table 3.1.

Transmission electron microscopy (TEM) and UV/vis optical spec-
troscopy were used to characterise the samples in addition to the XRD mea-
surements. Two electron microphotographs (�g. 3.1) and �nal results of spectro-
scopic measurements (�g. 3.2) are presented here for illustration.1

It can be seen from the TEM images (�g. 3.1) that particles are more-or-less
isometric and approximately spherical in shape. The crystal facets are observ-
able as well, especially for larger particles (�g. 3.1b). For each sample the av-
erage experimental particle size (DTEM), determined by image analysis of TEM

1See the paper by �louf et al. [122] for more TEM pictures, detailed description of sample
preparation for TEM, instrumentation used, TEM image analyses done or UV/vis experiments.
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Figure 3.1: TEM microphotographs of colloid Au nanoparticles. (a) sample Au-2
(Dtheor = 11 nm, (b) sample Au-3 (Dtheor = 33 nm). (by M. �louf, IMC AV �R)

microphotographs, is listed in the Table 3.1 and it is in quite a good agreement
with the theoretical expected size (Dtheor).
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Figure 3.2: Maximum absorption (λmax)
of colloidal solution of Au nanoparticles
plotted against the particles size DTEM de-
termined from TEM. Data taken from �louf
et al. [122, Table 1]

UV/vis spectra of the Au colloidal solutions exhibit, due to surface plasmon
absorption, one local maximum, denoted as λmax in �g. 3.2. The values in �g. 3.2
are taken from the Table 1 in �louf et al. [122]. Approximately linear dependence,
as visible in �g. 3.2, was con�rmed also theoretically later [3].

3.2.3 Experimental

Prepared gold nanoparticles were dispersed in colloidal solution and for the lab-
oratory XRD experiments it had to be converted into a solid form. Hence the
colloid Au particles were collected onto the surface of a microscopic glass in a
form of a quite inhomogeneous thin �lm.

XRD signal from the Au �lms in the conventional Bragg-Brentano geometry
was quite weak1 hence the samples had to be measured in the parallel beam setup
to enhance the intensity from the Au layer and suppress background scattering
from the glass substrate.2 This had a negative consequence in decreasing the
angular resolution of the experiment. In �g. 3.3 a comparison of (i) the size
broadening e�ect; instrumental resolution of (ii) the focusing Bragg-Brentano

1No suitable PSD detector was at that time available in the MFF XRD laboratory.
2The Bragg-Brentano and the parallel beam experimental setups used are depicted e.g.

in [127], in thesis [128] or in diploma thesis [129] (in Czech).
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geometry and (iii) the parallel beam geometry is schematically depicted. Modern
laboratory x-ray di�ractometers are usually equipped with a multilayer Göebel
x-ray mirror producing parallel beam with an angular divergence ∆θ ≈ 0.04◦ or
less. On the other side a wide di�racted beam is collected by an analysing optics.
Long parallel Soller slits are usually used as analyser in the conventional powder
di�raction measurement. The angular acceptance of the analyser available in the
laboratory was nominally 0.27◦. We can roughly guess the �nal resolution as a
convolution of the mirror divergence and the acceptance of the analyser and it
is evident that the analyser is the critical element. The instrumental resolution
of the parallel beam setup used is hence approximately 2 − 3× worse than that
of the focusing Bragg-Brentano, which is limiting the range where broadening
e�ects related to sample microstructure are stronger than the instrumental e�ect
(�g. 3.3).

Figure 3.3: Very rough representation
of an instrumental resolution of a com-
mon laboratory di�ractometer in the focus-
ing Bragg-Brentano and the parallel beam
setup. Size broadening is plotted for com-
parison. (For the parallel beam setup an 0.3◦

collimator was assumed.)
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Hence, measured data are �nally a compromise between resolution and inten-
sity. The samples were measured with a Philips MRD X'Pert PRO di�ractometer.
Laboratory X-ray Cu tube and x-ray mirror producing a parallel beam of CuKα

radiation were used. Parallel slit collimator with a �at graphite monochromator
were placed in the di�racted beam. For each sample a 2θ scan was measured with
an angle of incidence γ = 2◦, a relatively large step ∆2θ = 0.1◦ and a counting
time 30�50 s (di�erent for various samples).

Measured di�raction pattern of the Au-1 sample is shown in �g. 3.4. Despite
the low incidence angle used the background scattering from amorphous glass
is visible. If the glass substrate pattern is appropriately scaled and subtracted
from the pattern of the samples, the remaining background can be easier approx-
imated by simple functions (polynomials,1/sin(θ), etc.). Hence all the measured
patterns were corrected by subtracting the substrate signal and adding a constant
background to not a�ect much the counting statistics.

In addition as a reference pattern, the NIST LaB6 standard powder on a pure
glass substrate, was measured in the same setup for correction of instrumental
e�ects. The pro�les of LaB6 re�ections were �tted by the asymmetric pseudo-
Voigt function and the angular dependencies of the width and shape parameters
were parametrised by appropriate polynomial functions. In this common way the
instrumental function was characterised.
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Figure 3.4: Measured di�raction pattern of the Au-1 sample (upper black line) and
the pattern of a microscopic glass substrate (bottom shadow line).

3.2.4 Line width analysis

Di�raction peaks in measured Au powder patterns were �tted by the symmetric
pseudo-Voigt function and integral breadths (β) of di�raction peaks were ex-
tracted (see the left column in �g. 3.5). The values plotted in the �gure are
already corrected for the instrumental broadening e�ect. Usually the method
of de Keijser et al. [130] using only width and shape parameters of the pro�le
functions is utilised, but here directly the whole analytical pro�le functions were
deconvoluted numerically in MATLAB and the integral breadth of the physical
pro�le was evalauted. Such numerical procedure is general and stable, because
analytical functions are convoluted instead of deconvolution of raw measured
pro�les as described e.g. in �er¬anský [131] or [26, 132].

A huge spread of lines widths can clearly be seen in �g. 3.5. In principle,
this could be a consequence of the crystallite shape anisotropy. It is easy to �nd
two re�ections in a plot for a single sample having widths more than 2 − 3×
di�erent. However, the anisotropy would be in a strong disagreement with TEM
observations. Crystal faces indicating an anisotropic shape are visible in TEM
images (�g. 3.1b) but the anisotropy is not so strong and still the particles can
be considered as approximately spherical. In �g. 3.5 a visible trend of increasing
peak broadening with the di�raction vector length can be observed as well. This
is an indication of strain. Dislocations and faulting defects can also be well known
sources of the line broadening anisotropy, how it has been shown in sections 2.3.7
and 2.3.8.

From the theory (ch. 2) the Fourier coe�cients are available for both types of
defects and then it is quite simple to calculate the integral breadth (β) for a given
model and model parameters. If the Fourier coe�cients A(ρ‖) are normalised to
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Figure 3.5: Williamson-Hall plots of Au samples (left column). The plotted integral
breadth values (β) were already corrected for the instrumental broadening (see text).
Modi�ed Williamson-Hall plots [133] are depicted on the right. The integral breadths
(βcorrected) plotted by dark bullets (•) are the values corrected for the twin faults e�ect
(see text). The uncorrected values are plotted by shadow stars (∗). In the plot for the
Au-2 sample in addition the corrections and a linear �t through βcorrected values are
depicted. (The 400 re�ections of all the samples were discarded from the analysis.)
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unity for ρ‖ = 0, the integral breadth β is simply the inverse of the integral

β =

[∫ ∞
−∞

A(ρ‖) dρ‖

]−1

. (3.1)

The dislocation broadening anisotropy can be described by average dislocation
contrast factors (χhkl, ch. 2.3.7). The gold has the same fcc crystal structure as
copper. The simples way is to use a computer program ANIZC by Borbély et al.
[86] to calculate χhkl also for Au. By using the elastic constants from [90, 134,
table ivA]

C11 = 186 GPa , C12 = 157 GPa , C44 = 42 GPa , (for fcc Au)

the following contrast factors can be obtained by ANIZC for the {111}〈100〉
dislocation slip system

χanshkl,e = 0.330π · (1− 1.57 Γhkl) ,

χanshkl,s = 0.284π · (1− 2.31 Γhkl) .

The average dislocation contrast factors for Cu and Au are �nally very similar.
Then the Fourier coe�cients can be calculated as for the dislocation broad-

ening e�ect from eqs. 2.62, 2.63 and 2.66 (or its simpli�ed form introduced by
van Berkum [70], [11]). The simpli�ed Wilkens model (as denoted by Armstrong
et al. [41]) and relations eq. 2.84 for the stacking faults and twin boundaries can
be used. Since we study small nanoparticles the size broadening can be expected.
The appropriate theory of size broadening can be found in [26] (in Czech) or in
[11, 23, 135]. Alternatively, the necessary equation for spherical particles can be
found here as well below, eq. 4.9 (p. 85). The Fourier coe�cients can be mutually
multiplied and inserted into eq. 3.1 and the integral breadth can be calculated by
a numerical integration. If only the size broadening and dislocations described
by the simpli�ed Wilkens model are considered then the integral breadth is a
function of s∗ =

√
χhkl/dhkl and β can be plotted versus s∗ and the Willimson-

Hall plot should be linearised by a suitable choice of a fraction of edge and screw
dislocations in the sample (e.g. [42, 78]). Such plot (β vs. s∗) is called a modi�ed
Willimson-Hall plot (mW-H) (e.g. [133]). If also stacking faults or twin bound-
aries are included the calculation can be done naturally only for distinct hkl
re�ections, but still the calculated and measured values can be directly compared
and �tted by a nonlinear procedure. Such �tting was done for the samples here.
Results are depicted in the right column of �g. 3.5, where the mW-H plot are
shown for all the samples.

(i) It was found that that introducing a nonzero probability of twin faults
(βtwin) improves �ts substantially. Contrary, the stacking fault probability (α)
could be left �xed at zero value during mW-H plots �tting. It is demonstrated
later by the WPPM method that the inclusion of twinning improves also the
whole patterns �ts.

Integral breadth values (βcorrected) corrected for the twin faults broadening are
shown in the mW-H plots in �g. 3.5. The correction was calculated according
to the following steps: 1.) The integral breadth βcalc was calculated for the
model parameters (from eq. 3.1); 2.) βcalc(0) was calculated for the same model
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parameters, but with βtwin = 0; 3.) The correction δβ and the corrected integral
breadth βcorrected were calculated as

δβ = βcalc − βcalc(0) ,

βcorrected = βmeasured − δβ .

The measured values are depicted in the �gure 3.5 as shadow stars, the corrected
values are shown by black bullets. The correction is illustrated in the mW-H plot
of the Au-2 sample by shadow arrows. We can see that the correction is large for
the 200 re�ection and small e.g. for the 420 re�ection. The scale of the correction
decreases with Au particles size.

Actually, the situation in the �gure correspond to the βtwin values in the
Table 3.1, which were obtained by the whole pattern modelling (WPPM) later.
The results of the integral breadth analysis are less precise and the �gure 3.5
depicts the �nal solution.

(ii) The integral breadths βcorrected, corrected for the twinning e�ect, can be
well �tted by the dislocation strain broadening. This is visible from �ts of βcorrected
by solid black lines in the mW-H plots in �gure 3.5. There are few systematic
deviations but these can be explained.

The 400 re�ections does not �t model almost in any plot. However the 400
re�ection is very weak (see �g. 3.4). Its pro�le parameters cannot be reliably
determined from the measured data and the re�ection had to be discarded from
the analysis. There is a huge discrepancy between the model and the 422 re�ection
for the Au-4 sample with the largest particles (Dtheor ≈ 100 nm). The (422)
re�ection of the Au-4 sample is 2× stronger than expected, it is also unexpectedly
narrow, it has a similar width as the 111 re�ection and it is even possible to
resolve well Kα1 line from the Kα2. This indicates that the (422) re�ection can be
in�uenced by strong scattering from a very large crystallite. Large Au particles
(D ≈ 100 nm) could somehow agglomerate when collected onto the substrate
glass and subsequently recrystallise. Recrystallisation of very pure metals at
room temperature is a well known phenomena, especially e.g. for Cu, which is
quite similar to Au in several aspects. Hence the (422) re�ection of the Au-4
sample should also be disregarded from the analysis.

The best agreement between the data and the dislocation anisotropy model is
achieved for the pure screw dislocations, but it should be kept in mind that the
�ts are not much sensitive to that.

(iii) y-Intercept points of the solid black lines in the right column of �g. 3.5
compose a series of decreasing values, what is in an agreement with expected
particles size.

It is worth mentioning another positive feature of the size-strain model used
here. This is depicted in the mW-H plot of the Au-2 sample (�g. 3.5). A linear
�t through the βcorrected is shown there by a shadow dot-dashed line. It �ts the
experimental points very well. Linearisation of the mW-H plot is quite common
method in the literature ([42, 136, 137] etc. or later here). The �gure shows that
it is justi�ed in the measured range, but it should not be extrapolated to zero
reciprocal length (s∗ ∼ 1/d). The model line shows a clear hook e�ect below
the lowest measured re�ection 111. If the simple linear model had been used it
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would result in an overestimated crystallite size or even an unrealistic negative
y-intercept point.

(iv) From increasing slope of the solid model lines in the mW-H plots it can
be expected that the dislocation density is increasing with the crystallite size.

To summarise, it follows from the integral breadth analysis, that the disloca-
tion model with the twinning faults correction describes the experimental data
very well. The crystallite size corresponds well to the particle size. The anal-
ysis gives decreasing twinning probability with the particle size. Contrary, the
microstrain (dislocation density) is increasing.

3.2.5 Whole pattern analysis

Di�raction patterns were also treated by the whole powder pattern modelling
method (WPPM, ch. 2.4) using the computer program PM2000 [104] 1 developed
by Scardi and Leoni [11]. The same model as for the integral breadth analysis
was assumed, but few points, which were omitted in the previous section, must
be discussed.

The size e�ect model assumes spherical crystallites with the diameter dis-
tributed according to the log-normal distribution. It is properly described and
widely used here later (ch. 4, p. 84), but basically the model has two parame-
ters: the median of the crystallites size distribution and an additional parameter
(σ) related to the variance of the distribution. Very good counting statistics
is needed to determine a shape of the size distribution unambiguously and this
is not satis�ed in the case of measured data here. Information from TEM can
help. It indicates that the dispersion of particles sizes is rather small. Finally
for the analysis the value of σ parameter was �xed to σ = ln(1.35). This does
not correspond to really narrow size distribution, but the size distribution with
σ = ln(1.35) is rather often observed in the systems of nanoparticles (ch. 4).
However, the exact choice of σ does not in�uence essentially the analysis here.
An arithmetic mean crystallite size 〈D〉 is presented here as result, hence further
details about the size broadening model are not important.

Slope of the mW-H plots (�g. 3.5) indicates that strains (dislocations) play
an important role. It was mentioned in the theoretical chapter 2 that in many
cases a possible correlation in dislocation arrangement must be considered. In
Bever et al. [63], Scha�er et al. [64] dislocation are not distributed completely
randomly but prefer a correlated arrangement state when an average distance
between dislocations is rd ∼ n−1/2. In the Wilkens model of the restrictedly
random dislocation distribution (ch. 2.3.5) it corresponds to the case where there
are only few (Np) dislocations in the area Sp = πR2

p. There are many various
de�nitions of the outer-cut of dislocation radius in the literature (see ch. 2.3.5 here,
[11, 92] or Kaganer and Sabelfeld [38] who even pointed out that the parameter
is in a physical sense rather �ill-de�ned�). For a reference, single de�nition should
be choosen here. This is practically given by the choice of the program. In Scardi

1 This is an exception in this work, because all the other WPPM analyses further were done
utilising the MSTRUCT program (ch. A) of the present author. Event so, the present author
is very grateful to authors of PM2000, Scardi and Leoni [104] for providing the program, which
always could be used at least as a standard.
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and Leoni [11] or [70] the Wilkens function (eq. 2.66) is used with a parameter
R∗e

R∗e ≡ 2Rp = 2e1/4Re .

If we de�ne the Wilkens factor M∗ similarly to eq. 2.71)

M∗ =
√
nR∗e , (3.3)

where n is the dislocation density, the nb. of dislocation in the sub-area Sp is

Np ≈ n · πR2
p = n · π

4
R∗2e =

π

4
M∗2 .

For M∗ .
= 1.6 we have Np ≈ 2.1 If the dislocation correlation have to be char-

acterised, extremely high quality data, with low noise and high peak to back-
ground ratio are required. This is also shown in next section (3.3) concerning
the analysis of deformed Cu samples. Here again the data quality does not allow
a simultaneous determination of the parameter of dislocations correlation (M∗)
and dislocation density (n). Hence the M∗ was �xed on the value M∗ = 1.6,
which should represent the state described above and often found experimentally
[63�65].

The above assumptions concerning σ andM∗ were used in the integral breadth
analysis.

The probability of intrinsic stacking (α) and twinning (β) faults can be re-
�ned with other parameters: crystallite size (〈D〉), dislocation density (n), lattice
constant (a) and zero shift (2θ0). The sample displacement correction is omitted
naturally in the parallel beam geometry. The parameters of the instrumental
broadening are described by polynomials functions and calibrated to the LaB6
standard sample.

In addition, a scale parameter and an isotropic temperature factor of Au atom
could be re�ned. In the PM2000 integrated intensities of all re�ections are �tted
independently with o relation to crystal structure. This lets �t the peaks as
well as possible and focus data optimisation to the re�nement of microstructure
parameters. This is equivalent to the so called arbitrary texture model in the
MAUD [106] or HKLIntensities corrections in the MSTRUCT here (ch. A).2

Figures 3.6 and 3.7 illustrate how the quality of �ts of the Au-2 sample di�ers
when the twinning faults are included. The change is clearly visible in the di�er-
ence curves of all re�ections, but the e�ect is strongest in a region between the
111 and 200 re�ections. The inclusion of the faulting e�ect improves the goodness
of �t as GoF (βtwin = 0) = 1.90→ GoF (βtwin = 0.08) = 1.47.

Whereas the �ts for the �rst three samples give clearly nonzero values of
the twinning probability (βtwin), the values of the stacking fault frequency (α)

1We have to consider such estimate of Np with caution. For example if the simpli�ed model

[41] model is used the geometrical factors | sin θα| are averaged in some way, which itself �blurs�
the physical interpretation of Rp.

2When the data were later re�ned in the MSTRUCT and re�ection intensities were calcu-
lated form the crystal structure, the model including only the isotropic temperature factory of
the Au atom �tted the data satisfactory but not perfectly. When the temperature factor was
kept constant and the HKLIntensities corrections were used, the re�ned intensities of all the
re�ections were not di�erent from the ideal calculated ones by more than 10�20% with a single
exception of the 422 re�ection of the Au-4 sample.
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Figure 3.6: Pattern �t of the Au-2 sample using model without planar defects.
(red circles � measured points; blue line � calculated pattern; green line � di�erence curve)
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Figure 3.7: Pattern �t of the Au-2 sample using model with twin faults.

were quite low (α . 1%). As a nonzero stacking fault probability (α) did not
improve �ts signi�cantly, it was also �xed to α = 0 for all the samples. After this
assumption the model is completely same as for the integral breadth analysis.

The values of re�ned microstructural parameters (〈D〉XRD, βtwin, nXRD) and of
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Dtheor DTEM 〈D〉XRD βtwin nXRD a Ntwin

ID (nm) (nm) (nm) (%) (1015/m2) (Å)

Au-1 4.5 4.3 10±6 8±2 3.3±1.0 4.0763(4) 3.4
Au-2 11.1 8.8 15±5 7±2 4.3±0.5 4.0770(6) 4.5
Au-3 33.4 28.3 31±5 5±1 5.7±1.0 4.0775(5) 6.6
Au-4 101.5 84.5 92±20 1.2±0.5 8.7±2.0 4.0787(9) 4.7

Table 3.1: Parameters of the colloid Au nanoparticles and results of the XRD analysis.
Dtheor �particles size expected from the solution concentrations; DTEM �particles size
from TEM; 〈D〉XRD � mean crystallite size from XRD; βtwin � twinning probability
determined from XRD; nXRD � dislocation density from XRD (M∗ = 1.6); a � Au
lattice parameter; Ntwin = βtwin · 〈D〉XRD/(a/

√
3) � rough estimate of a number of

twin faults within the particle. (Dtheor and DTEM data taken from �louf et al. [122].)

the lattice parameter (a) are listed in the Table 3.1. The errors of the microstruc-
tural parameters are rather rough estimates of experimental uncertainties of the
values in the table than the re�nement errors. The data are not of the highest
quality and hence they were �tted by di�erent model con�gurations including also
nonzero β and di�erent σ values and the parameters uncertainties were roughly
estimated.

The overall quality of the �ts of the other samples was similar, but a lower
(GoF ∼ 1.8− 2.0)) than for the Au-2 sample (�g. 3.7).

3.2.6 Summary and discussion

XRD analysis gives increasing crystallite size with the sample number (Table 3.1),
but the sizes obtained from TEM and XRD are di�erent, especially for the samples
with the smallest particles (Au-1, Au-2). The sizes from TEM (DTEM) are smaller,
almost 2×, than values from XRD (〈D〉XRD). This is rather unusual, because
as we will see in the next chapters (3.3, 4), in deformed metals the crystallite
domains are much smaller than grains observed by TEM (ch. 3.3, [138]) and
particles of ceramics are in electron microscopy images usually larger than XRD
crystallite size (ch. 4). Before explanation of this discrepancy, the data should
be examined in a greater detail. The XRD sizes determined for the same sample
from the integral breadth analysis and the WPPM are very similar for the samples
investigated. We can clearly see in the mW-H plot of the Au-1 sample (�g. 3.5,
p. 56) that the y-intercept point is lower than 0.1 nm−1. This indicates crystallite
size D & 10 nm in agreement with the WPPM result (Table 3.1). It is clear, when
corrected (βcorrected) and uncorrected integral breadth values (β) are compared,
that a huge part of di�raction broadening in these samples is related to the
twinning. However, even if we look at the β values uncorrected for the twinning
e�ect (the left side plots in �g. 3.5) we see only two re�ections of width β ≈
0.2 nm−1. The 422 is a high-angle re�ection and few other high-angle re�ections
approache its width, which rather indicates strain. The 200 re�ection of the
Au-1 sample is the only one footprint in the data of something present of 5nm
size. Hence, we have to accept either a very strong size anisotropy or the fact
that the crystallites size is much larger than 5 nm also in the Au-1 sample. The
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second choice �ts all the XRD data presented here very well. If we exclude a
systematical error in deconvolution of the instrumental broadening as well as the
crystallite coherence e�ect of Rafaja et al. [139] requiring a strong �local� texture
and accept the crystallite sizes (〈D〉XRD) determined by XRD as corrected, the
explanation of di�erent TEM and XRD value must be found elsewhere. In the
second part of chapter 4 it is shown that if a small number of large crystallites
with very large volume are present in the sample simultaneously with a very
large number of small crystallites, the total volume of which is small, though,
the XRD analysis is signi�cantly a�ected. It should be born in mind that the
samples for TEM and XRD analyses where prepared by a slightly di�erent ways
and at least macroscopically they di�er. Whereas for TEM observations the
colloid particles were transferred to a carbon coated microscopic grid in quite a
small amount and well separated particles were studied (�gs. 3.1), for the XRD
analysis a signi�cantly larger amount of particles had to collected onto the glass
in order to achieve large volume of particles to strengthen the XRD signal. It
can be realistic to expect that Au nanoparticles at the glass substrate are not
well mutually separated, can agglomerate and in the worst case can also grow
together. An indication of partial recrystallisation was mentioned earlier in the
case of the Au-4 sample. Since this reason can not be omitted, the XRD size
(〈D〉XRD) instead of DTEM is considered in further discussion as the �true� size of
crystallites studied.

The second �nding concerns the twin fault probability (βtwin). In the Table 3.1
it is visible that βtwin decreases strongly with the crystallite size. However this
alone still does not imply that the number of twin faults in the crystallites de-
creases with their size. In fcc crystalls the {111} close packed planes are stacked in
the 〈111〉 directions with the period a/

√
3. If crystallite size isD, a number of twin

faults in the crystal can be very roughly estimated as Ntwin ≈ βtwin ·D/(a/
√

3).
The calculated Ntwin values are also listed in the Table 3.1. There are about 3�7
twin faults in a single crystal and their number does not decrease with particles
size. In Balogh et al. [14] they reported twinning fault probability βtwin ≈ 2−7%
in fcc Cu prepared by inert gas condensation and hot compaction by Sanders,
Weertman et al. The crystallite size in these samples was less than 30 nm. In
larger Cu crystallites much smaller twin fault probability was found (see �g. 9
in [14]). In Gubicza et al. [140] the stacking fault energy γCu = 78 mJ/m2 can
be found, whereas for Au it is a lower value γAu = 45 mJ/m2. Hence an occur-
rence of stacking faults can be expected also in Au nanoparticles. The authors
of [140] reported βtwin

.
= 0.07% in a 5-passed ECAPed Cu and again a higher

value βtwin
.
= 0.28% in a 4-passed ECAPed Au [141]. Hence high twinning prob-

abilities in nanocrystalline fcc metals with low stacking fault energy (γ) are quite
common. If we consider a single planar fault extending thoroughout the whole
crystal, its area is proportional to the crystal size squared and its boundary is
related linearly to the crystal size. The energy connected with this defect is then
proportional to the sum of creation energy of the defect (at surface) enclosing the
planar fault and the energy of the planar fault itself ∆Etwin ∼ γD2. It is then
clear that it costs less energy to create such a planar fault in small nanocrys-
tal. If the twinning probability is plotted against the crystallite size (�g. 3.8) it
can be found that βtwin decreases exponentially with the crystallite size D rather
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than with its cross section D2. Even over a very good linearity in �g. 3.8, this
results should be taken with a caution and the error bars should be considered.
Nevertheless the author assumes that the Au crystal are continuously or in steps
growing from the solution and new twin faults can be created on the 111 growth
front. Energy necessary for the creation of a planar fault according to the dis-
cussion above is proportional to sum of contributions from the bounding defect
and the fault energy itself, which is proportional to the area of the facet. The Au
particles have approximately spherical shape and the fraction of {111} facets is
limited. If the fraction of these facets to the total surface is decreasing with the
particle size, the mechanism above would imply that the facet area will increase
slower than as D2. Unfortunately this is only one possible hypothesis and the
data here are not su�cient to con�rm it.

Figure 3.8: Twinning probability (βtwin)
in colloid Au nanoparticles as a function
of crystallite size 〈D〉XRD. (Note the loga-
rithmic scale of the y-axis (βtwin). Data, de-
termined by XRD analysis, taken from the Ta-
ble 3.1.)
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It should be mentioned that at the beginning it was assumed that there is
also a TEM evidence of twinning in the di�erent contrast inside a single par-
ticle in �g. 3.1b, but later a more detailed TEM investigation did not revealed
the presence of twins. Cervellino, Giannini, Guagliardi, and Zanchet [115] and
[33] modeled synchrotron XRD data from thiol-capped fcc Au nanoparticles by a
single or multi-domain non-crystallographic nanoclusters (cuboctahedron, icosa-
hedron, decahedron) using the Debye formula approach. Besides the quantitative
analysis of the structure types and domain size distributions they also detected
a strong in�uence of strain in nanoclusters. Their model is clearly distinct from
the more classical size-strain model including dislocations and planar faults here,
but they investigated Au nanoparticles in the size range 2�4 nm [115], which is
di�erent from a problem treated here.

Next �ndings in the Table 3.1 concerns the dislocation density (n) and lattice
parameter (a). Both parameters are increasing with the crystallite size. The
lattice parameter (a) approaches for the large particles a bulk value a = 4.0786 Å
found in the crystallographic (ICDD) database, but re�ned dislocation densities
are relatively very large. It is n ≈ 3 · 1015/m2 in the Au-1 sample and even
n ≈ 9 · 1015/m2 in Au-4. [141], [140] reported dislocation densities in ECAPed
pure Au not higher than n ≈ 2 · 1015/m2. The grain size in their deformed
Au samples was D ≈ 500 nm. A possible explanation of the unusually high
dislocation densities reported here can be seen in �g. 3.9, where the dislocation
density (n) is plotted versus the lattice parameter (a). Clear correlation between
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Figure 3.9: Dislocation density (n) in
colloid Au nanoparticles plotted versus
lattice parameter (a) of particles. (Both
quantities were determined by XRD and are
listed in the Table 3.1. The dislocation
correlation parameter was assumed constant
M∗ = 1.6.)

Figure 3.10: Stored energy (Edisl) in
the dislocation strain �eld calculated from
XRD data according to eq. 3.4. Note
the logarithmic scale of the x-axis (〈D〉XRD).
Data, determined by XRD analysis, taken
from the Table 3.1.)

these two quantities would indicate that the lattice defects (dislocations) can
compensate the changes of the lattice parameters. Well-known modles called
�core-shell� and �apparent lattice parameter� developed by Palosz et al. [112] are
based on the idea of the crystallite core and shell with slightly di�erent structure
and lattice parameter. If we imagine new layers growing on a core of smaller
particle with the lattice parameter smaller than the bulk value we can assume that
defects compensating lattice parameter of the core, bulk and relaxed shell will be
created. Strains in Au nanoclusters were also detected by Cervellino et al. [115],
[33]. In the material research of severely deformed metals it is quite common
in the last years (e.g. in [64, 65]) to convert the dislocation model parameters
to an estimate of the energy stored in the dislocation deformation �eld (Edisl).
Such a quantity can be compared for example with the results of calorimetry
measurements. The energy considerations were actually the basis of Wilkens's
model (ch. 2.3.5). A formula for the energy of Edisl, which does not account for
the correlation is usually used [64, 65]. From the theory (ch. 2.3.5) we can derive
a similar but slightly modi�ed formula, which includes also dislocation correlation
parameter M∗ using eqs. 2.56 (p. 31), 2.60 and eq. 3.3 (p. 60)

Edisl ≈
Gb2

4πκρm
· n · ln M∗

4
√
nb

, (3.4)

where Edisl is the stored energy per unit mass, G is the shear modulus (G =
26.6 GPa for Au [142]), ρm is the density (ρm = 19.30 g/cm3 [142]) and the other
quantities were de�ned earlier (κ = 1 for screw dislocations, p. 31, [65]). The
stored energy calculated for the values in the Table 3.1 is plotted in �g. 3.10
as a function of the logarithm of the crystallite size 〈D〉XRD. A linear de-
pendence can be seen in the �g. 3.10. If the Edisl vs. ln(D) dependence in
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�g. 3.10 is �tted by eq. 2.60 it gives a constant dislocation density for all the
samples, n = 5.1 ± 0.4 1015/m2. This would arise a question if the assumption
M∗ = 1.6 is satis�ed. The data in Table 3.1 should be revised. If we e.g. cal-
culate the outer-cut of dislocation parameter R∗e for the Au-1 sample we obtain
R∗e = M∗/

√
n
.
= 28 nm. It follows clearly that within the Wilkens model the

outer-cut of radius should be smaller than the crystal size, which is not satis�ed
at least for the Au-1 and Au-2 samples. In such a case the R∗e parameter should
be replaced by the crystallite size. Unfortunately in the common WPPM method,
the size and dislocation broadening e�ects are treated separately and the com-
puter programs are not prepared for such an option.1 The dislocation model is
usually applied to the materials with relatively large grain size and it assumed
that R∗e is much smaller than the crystallite domain size. Here, the parameter
R∗e was �xed instead of M∗ at the constant value equal to the crystallite size
〈D〉XRD and the dislocation density n was re�ned with other microstructural pa-
rameters taken from Table 3.1. The re�ned dislocation densities n∗XRD are listed
in Table 3.2. It was already mentioned from the data with such statistics it is
di�cult to identify dislocation correlation unambiguously. The quality of �ts
did not change signi�cantly, but dislocation densities (n∗XRD) changed. Now in
all samples with an exception of the Au-1 sample the dislocation densities are
close to n∗XRD

.
= 5 · 1015/m2. A higher dislocation density was estimated in the

Au-1 sample. It questionable, if the method and theory used can be applied
to such small crystallites. It is clear that for the crystallites of a very small
size the image forces from boundary conditions at crystallite surface can play
an important role and a di�erent approach should rather be used. In summary,
the assumption of constant M∗ = 1.6 is found to be false because of it is s
physically unrealistic for small particles. It was replaced by an assumption of
completely random dislocation distribution, which implies that the outer-cut of
radius R∗e is equal to crystallites size 〈D〉XRD. This gives a constant dislocation
density n∗XRD

.
= 5 ·1015/m2. The determined dislocation density is still quite high

and the values should be discussed. At this point, we should remind that the
assumption of uncorrelated dislocations gives the highest possible deformation
energy associated with a single dislocation. Then the dislocations would have
the highest �strength� and if a certain amount of deformation, revealed e.g. in
the slope of the Williamson-Hall plot, must be explained, the smallest number of
dislocation is necessary just in the case of random dislocation disribution. Sim-
ilarly, as the y-intercept determines the smallest crystallite size, the anisotropy
and the di�raction vector length dependent broadening (slope of mW-H plots)
prescribes the lowest limit for dislocation density observed here. Otherwise, a
di�erent source of strain broadening must be found. In the end, it is necessary to
note, that in the light of the revised model, an apparent correlation of the lattice
parameter (a) and the dislocation density (n) in �g. 3.9 is a misleading e�ect.

A series of colloid Au nanoparticles with the size in the range 5�100 nm was
characterised by XRD LPA. It was found from both the integral breadth analysis
as well as from the WPPM method that the crystallite size obtained from XRD
are slightly larger than the particle size determined by TEM � especially for the

1In the MSTRUCT this can be implemented, but it not was done at the time this work was
�nished.
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Au-1 Au-2 Au-3 Au-4

n∗XRD (×1015/m2) 7.4±1.1 5.1±0.5 4.7±0.3 4.9±0.2

Table 3.2: Dislocation densities (n∗XRD) in colloid Au nanoparticles re�ned from XRD
data if it is assumed that R∗e ≡ 〈D〉XRD.

samples with the smallest particles (5�10 nm). This is di�cult to explain in other
way than that the samples for the TEM and XRD analyses were distinct due to
di�erent preparation procedures. For larger Au particles the sizes from both
methods were similar. It was demonstrated that whereas the mW-H plots can be
linearised for the measured Au re�ections, an extrapolation of the linear depen-
dence to the zero di�raction vector length is unjusti�ed and it would result in a
highly overestimated crystallite size. A proper calculation of the integral breadth
based on the size-strain model has to be used. Strong anisotropy of di�raction line
broadening was observed. It was explained by a combination of an anisotropic
dislocation induced broadening and in�uence of twin faults. In the smallest parti-
cles of size 5�30 nm twinning fault probabilities of βtwins = 5−8% were observed.
The twinning probabilities were decreasing strongly with the particle size. Mi-
crostrain was detected in the particles and this was con�rmed clearly by both the
WPPM method and the integral breadth analysis. Under the assumption that
dislocations are distributed completely randomly in the particles a lower limit
of dislocation density in the particles was estimated to n = 5.0 ± 0.1 · 1015/m2.
These implies that the energy stored in the strain �eld of dislocations is increas-
ing with the logarithm of particles size. Deformation energy is accommodated
in large crystallites the agglomerates of which can recrystallise. The high stored
energy is con�rmed by the slopes of the modi�ed Willimson-Hall plots and have
to be explained by high density of dislocations or other defects. It grows linearly
with the logarithm of the crystallite size. In the WPPM method usually indi-
vidual e�ects of the size and dislocation broadening are treated independently.
The problem discussed here reveals that in some cases their connection is neces-
sary. The dislocation-induced broadening in very small crystallites (D . 30 nm)
cannot be treated separately from the size broadening. The dislocation models
used routinely for materials with crystallite domain size around 100 nm should
be applied to nanomaterials only after proper consideration.

The results concerning synthesis and characterisation of nanoparticles by other
techniques in the introduction together with the XRD analysis of twin probabili-
ties were published in �louf, Kuºel, and Mat¥j [122]. The above revised consider-
ations about the dislocation correlation and density have not been published yet.

3.3 Study of ultra�ne-grained Cu and Cu-Zr pre-

pared by ECAP

This section deals with the microstructure of compact samples of ultra�ne-grained
(UFG) copper prepared by equal channel angular pressing (ECAP). The two series
of samples, in detail described later, were prepared by doc. Milo² Jane£ek from
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the Department of Physics of Materials and were investigated by several tech-
niques as tensile testing, microindentation, TEM, electron backscattered di�rac-
tion (EBSD), positron annihilation spectroscopy (PAS) and by a couple of XRD
techniques including Laue XRD images, texture measurements and �nally the
convention powder di�raction, for which analysis the WPPMmethod was utilised.
The research is a collaboration of many coworkers,1 the present author was re-
sponsible mainly for dislocation density determination from powder di�raction
data. Results of the research were published mainly in Mat¥j, Kuºel, Dopita,
Jane£ek, �íºek, and Brunátová [136], Kuºel et al. [137] and Dopita et al. [143].
The �rst article is primarily focused on the XRD analysis of dislocation densities.
In the second paper XRD is utilised together with the above mentioned methods
to present a more general idea of evolution of microstructure, and properties of
the studied samples during the ECAP process. The last paper by Dopita et al.
concerns the EBSD analysis.

3.3.1 Motivation

Equal channel angular pressing is a severe plastic deformation (SPD) technique
capable of producing fully dense and bulk submicrocrystalline and nanocrystalline
materials [144]. Copper represents an ideal model material to study the pro-
cesses of deformation and microstructure evolution. It is low cost, has simple fcc
structure and medium stacking fault energy (γ = 78 mJ/m2, see e.g. [140] for
comparison with other metals). Properties and microstructure of Cu prepared
by severe plastic deformation (SPD) techniques can actually be compared with
results of very wide former research of this material prepared by conventional
techniques as rolling, extrusion, compression, etc. It is known (e.g.[145]) that a
�ne microstructure of pure Cu is unstable and recrystallisation occurs at rather
low (even room) temperatures. However the structure can be stabilised by a small
addition of impurities or precipitates (Kuºel et al. [78], [145]). The pure Cu and
Cu with an small addition of Zr samples are studied here.

Changes in dislocations networks, dislocations creation, motion, trapping, re-
combination and annihilation are the fundamental mechanisms of microstructure
evolution in�uencing the grain re�nement. Large fraction of deformation energy
stored in the material is connected with dislocations and vacancies ([64, 140]). In
the ECAPed materials so high dislocation densities (n ∼ 1015/m2) are commonly
observed ([140, 144]) that it is di�cult to characterise them by direct methods as
TEM or even with the aid of the positron annihilation spectroscopy [145]. XRD
di�raction LPA is hence a very suitable tool which can complement the analysis
especially for the higher dislocation densities (n & 1 · 1015/m2). Defects density
and information about their character and arrangement are important factors
characterising the material microstructure.

1List of coworkers on the work presented here: Z. Mat¥j (present author), T. Bruná-
tová and R. Kuºel, Department of Condensed Matter Physics (XRD analysis); M. Jane£ek
and O. Srba, Department of Physics of Materials (sample preparation, mechanical proper-
ties, TEM); J. �íºek, Department of Low Temperature Physics, Faculty of Mathematics and
Physics, Charles University in Prague (PAS analysis); M. Dopita, Institute of Materials Science,
TU Bergakademie Freiberg, Germany (EBSD analysis).
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Other aspects of samples microstructure (texture, recrystallisation state) can
be studied by XRD as well, but here the work is concerned mainly the LPA. The
aim is the determination of dislocation density and characterisation of dislocation
arrangements in the sample. Temperature stability of all the properties have
also been studied (as in Cherkaska [145]), but here the focus is given only to
the evolution of microstructure during the ECAP process itself and its thermal
stability is considered only marginally.

Cu has a similar electron con�guration as Au and also the same crystal struc-
ture. Similarities in behaviour of these two metals can be expected, but the main
connecting idea of sections 3.2 and 3.3 is the same microstructure model, use of
the WPPM method and an attempt to characterise the dislocation state in the
material.

3.3.2 Sample preparation, other methods

Technical purity (99.95%) Cu and Cu width an addition of 0.18 wt.% of Zr were
deformed by ECAP to a maximum equivalent strain of 8 (this means by N =
1, 2, 4 and 8 passes) at room temperature following route Bc (the samples is
rotated after each pass by 90◦ always in the same direction [146]). Prior to ECAP
processing the specimens were annealed for 2 hours at 450 ◦C in a protective inert
atmosphere. ECAP pressing was carried out using a split design die. The details
of the die design as well as the ECAP pressing are given elsewhere by Janecek
et al. [147].

The microstructure of the initial state of Cu is depicted in the scanning elec-
tron (SEM) micrograph in �g. 3.11. It consists of fully recrystallised grains of an
average size about 30 µm. The initial state of CuZr samples is characteristic with
coarse recrystallised grains with size of several hundreds of microns and numerous
�ne Cu9Zr2 precipitates (Kuºel et al. [137]).

Figure 3.11: SEM microphotograph of
the initial state of the pure Cu sam-
ple before ECAP. (by M. Jane£ek, KFM
MFF UK, [137])

TEM micrographs (�g. 3.12, taken from Kuºel et al. [137]) shows the evolu-
tion of the pure Cu samples during the ECAP deformation. After the �rst pass
(�g. 3.12a) the sample microstructure consists of strongly elongated dislocation
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cells and/or subgrains of average cross-sectional size of 300�400 nm. After the
second pass (�g. 3.12b) the microstructure did not change signi�cantly. Bands
of elongated subgrains were found in all areas of the specimen. Most of the
boundaries were still aligned along the trace of a {111} plane. After four passes
(�g. 3.12c) the fraction of equiaxed subgrains increased and the larger proportion
of high-angle grain boundaries was observed in the structure. The microstruc-
ture of the specimen after 8 passes (�g. 3.12d) shows an almost homogeneous
microstructure with equiaxed subgrains separated mostly by the high-angle grain
boundaries. The individual boundaries are straight with sharp contrast and very
few dislocations in the grain interior. The average grain size achieved is between
200�300 nm.

(a) N = 1 (b) N = 2 (c) N = 4 (d) N = 8

Figure 3.12: Bright-�eld TEMmicrographs of the pure Cu samples treated by di�erent
number (N) of ECAP passes. (by M. Jane£ek, KFM MFF UK, [137])

In the CuZr samples details of the microstructure evolution during the ECAP
processing is quite di�erent. In the �g. 3.13 a TEM microphotograph after
8 ECAP passes is shown. The microstructure of the CuZr sample after 8 ECAP
passes consists mostly of equiaxed grains with high misorientation separated by
grain boundaries with typical thickness fringe contrast corresponding to equilib-
rium boundaries. The average size of grains was 200�300 nm. Eight passes of
ECAP resulted in the strong grain re�nement of a factor of 100 approximately.
Much more details of TEM observations can be found in Kuºel et al. [137].

Figure 3.13: TEM microphoto-
graph of the CuZr sample after
8 ECAP passes. (by M. Jane£ek,
KFM MFF UK, [137])

Results of the EBSD analysis strongly con�rm the above TEM observa-
tions. For illustration inverse pole �gure maps of the CuZr samples after 2 and 8



Study of Submicrocrystalline Metals 71

ECAP passes are shown in �g. 3.14. Elongated grains still visible in the �g. 3.14a
after 2 passes are �nally converted to much smaller equiaxed grains (�g. 3.14b)
with a high fraction of high angle grain boundaries (HAGBs). This is shown
more quantitatively in �g. 3.15 where the frequency of high and low angle bound-
aries evaluated from EBSD is plotted as function of number of passes (N). Plot
�g. 3.15a shows that in the pure Cu sample after 8 passes the most of the grain
boundaries has the high angle character whereas according to �g. 3.15b in the
CuZr sample even after 8 passes a nonnegligible portion of boundaries seen by
EBSD has the low angle character. This was explained by the presence of Cu9Zr2
precipitates which may block the movement of the dislocation walls (boundaries)
[137]. More details of instrumentation and analysis methods used, as well as re-
sults concerning also twin-related and other types of special grain boundaries can
be found mainly in Dopita et al. [143] and Kuºel et al. [137].

Figure 3.14: Inverse pole �gure maps determined by EBSD for the CuZr samples after
(a) 2 ECAP passes and (b) 8 passes. High angle boundaries (missorientation > 15◦) are
plotted as black lines. For more details see [143]. (by M. Dopita, IMS TU-Freiberg, [143])
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Figure 3.15: Frequency of appearance of low (L) and high (H) angle grain boundaries
(AGBs) for the (a) Cu and (b) CuZr samples treated by di�erent number (N) of ECAP
passes. (�) � LAGBs, (◦) � HAGBs. For more details see [143]. (by M. Dopita, IMS
TU-Freiberg, [137, 143])

Positron annihilation spectroscopy (PAS) is sensitive mainly to disloca-
tions and microvoids in the samples. It was determined by PAS that dislocation
density n in the initial pure Cu sample is n ≤ 1012/m2 and in the CuZr sample
n = 8 ± 1 · 1012/m2 [137, Table IV]. The ECAP treated samples have typically
a very high defect density. Practically all positrons are trapped at defects and
annihilate from a localized state in some defect (so called saturated positron
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trapping). It was estimated that the mean dislocation density in the samples
exceeds n & 5 · 1014/m2. X-ray powder di�raction is just sensitive to such higher
dislocation densities. It is still possible to investigate by PAS a ratio of a sig-
nal contribution from positrons trapped at dislocations and microvoids. It was
clearly seen in Kuºel et al. [137] that the dislocation density in the specimens
deformed by ECAP increases with increasing number of passes faster than the
concentration of microvoids. It was also pointed out that microvoids size increases
from ≈ 2 monovacancies after a single ECAP pass to ≈ 4 monovacancies after 8
passes.

More information on the microstructural studies by di�erent methods can be
found in Kuºel et al. [137] and Dopita et al. [143]. However, it was illustrated
that well de�ned UFG Cu and CuZr samples are going to be studied by XRD
here.

3.3.3 Experimental

Below, the following notation is used. Pure Cu samples treated by di�erent
number (N) of ECAP passes are labelled as Cu-1, Cu-2, . . . , Cu-8 and similarly
the CuZr samples are labelled as CuZr-N .

The samples have a bulk form (slabs of size at least 5 mm× 5 mm× 2 mm)
and contrary to the Au samples in section 3.2 can be measured by a common
laboratory x-ray di�ractometer in the focusing Bragg-Brentano geometry using
CuKα characteristic radiation. The experiment is sensitive to the material in
a depth of few microns from the sample surface (absorption factor for density
ρm = 8.96 g/cm3 [142], µ = 420 1/cm [148]) and hence the samples surface was
chemically etched prior the x-ray measurement to remove the top layer, which can
be a�ected by sample cutting, polishing etc. Because the LPA analysis and es-
pecially the WPPM method are very sensitive to samples homogeneity and good
grain statistics a �powder� quality of the compact bulk polycrystalline samples
was check by Laue x-ray backscattering photos. For experimental setup see e.g.
Cherkaska [145, �g. 3.8a�b]. Especially highly pure Cu is known to recrystallise
even at room temperature hence Laue backscattering photos of the ECAPed Cu
samples are depicted in �g. 3.16. Unfortunately it can be clearly seen from the
�g. 3.16c, where a �granular� structure of di�raction rings is visible, that the
specimen of the Cu-4 sample dedicated for the XRD analysis was already recrys-
tallised. Hence, the pure Cu sample treated by 4 ECAP passes was discarded from
further XRD analysis. The laue photos (�g. 3.16) of other samples shows nice
continuous di�raction rings. Intensity maxima at the rings a footprint of texture
typically present in the ECAP treated samples. The Laue photos of CuZr samples
are very similar and con�rms good �powder� quality of all the CuZr samples.

As it has already been mentioned XRD data for LPA and WPPM were mea-
sured with the aid of Panalytical X'Pert Pro powder di�ractometer in the sym-
metrical Bragg�Brentano geometry using �ltered CuKα-radiation and variable
divergence and anti-scatter slits. A part of the measurements was performed with
the PIXCel position-sensitive detector. The correction for instrumental broaden-
ing was similar as in the section 3.2.3 performed with the aid of a NIST LaB6

standard. The utilisation of both the variable slits as well as the position sensi-
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(a) N = 1 (b) N = 2

(c) N = 4 (d) N = 8

Figure 3.16: Laue x-ray backscattering photos of the pure Cu samples treated by
di�erent number (N) of ECAP passes. (by R. Kuºel)

tive detector (PSD) have crucial importance, because it in�uences data quality
substantially. PSD detector enables increasing measurement time per point by a
factor of 100×. The variable slits enhances strongly the intensity and counting
statistics of the high angle re�ections, which play a crucial role in analysis of dis-
locations from di�raction data. Just remind that several approximations in the
theoretical chapter 2 were rather valid only for the high angle re�ections (large
length of di�raction vector G). Utilisation of variable slits is not recommended,
especially e.g. for temperature factors analysis, which is discussed more widely in
ch. 4. But it is assumed here that the shape of di�raction pro�le is not a�ected
with imperfections in variable slits operation within a narrow 2θ range of a single
re�ection. The intensity gain archived by them is really valuable.

3.3.4 Whole pattern analysis

The measured powder di�raction patterns were �tted using the programMSTRUCT
(ch. A). Exactly the same models were used as for the colloid Au nanoparticles
(ch. 3.2.5). The size e�ect is not the main broadening component in this case. It
is comparable with the instrumental broadening but �tting the both size param-
eters (MD and σ∗) gives crystallite sizes, which are di�cult to compare across the
samples. Hence the parameter σ∗ was again set to a �xed value σ∗ = 1.5 for all
the samples. This had no e�ect on the quality of the �ts. There is texture in the
samples, as can be seen in the Laue images (�gs. 3.16). The texture is relatively
complex, hence for simplicity again the �arbitrary texture� model (ch. A.9) with
peak intensities as free re�nable parameters was used. In addition, peak positions
were also re�ned independently, which is commented below (p. 75).

The most important broadening component was in this case the dislocation
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e�ect. For illustration a fragment of the MSTRUCT parameter �le is depicted.

// the 1st phase - Dislocation Strain broadening (Scardi & Leoni & van Berkum)

dislocSLvB+ strainProfCu broadening component type, effect name

1 simplWilk use MWilk instead of Re (0-No,1-Yes), formula

1.6 0.002 Mwilk, rou(1/nm^2)

0.30 -2.1 0. Cg0, q1, q2

The most important word here is a name for the dislocation e�ect: "dislocSLvB+".
The second one is the codeword: "simplWilk" saying that the simpli�ed Wilkens
model should be used. Other parts let us choose if either M∗ or R∗e should be
�tted together with the dislocation density ("rou" here). In the last line, the
parameters of the average dislocation contrast factors are set. The �rst value is
Ch00 ≡ χh00/π and the second is q in eq. 2.80c (p. 44). Here a value q = 2.1,
somewhere between qe = −1.64 and qs = −2.38 for edge and screw dislocations,
is initially set. The q value can can be simply converted to e.g. the edge character
(we) of dislocations (see below).

Planar faults are included similarly by this code:

// the 1st phase - Stacking Faults - Warren, Velterop (2000), Scardi, Leoni

faultsVfcc faultsProfCu broadening component type, effect name

0.01 0.03 alpha, beta(twins)

The codeword "faultsVfcc" speci�es that the classical model of Warren [6],
developed by Velterop et al. [13] and Scardi and Leoni [11], as described in the
theoretical section (ch. 2.3.8), is used. The fault probabilities are set here at the
last line to α = 1% and βtwin = 3%.

Finally, the following microstructural parameters were re�ned from the XRD
data: median of the crystallite size distribution (MD), fraction of edge dislocations
(we), dislocation density (n), dislocation correlation parameter (M∗) and stacking
(α) and twinning (βtwin) fault probabilities, respectively. The relevant determined
parameters are speci�ed in the Table 3.3.

MD we n M∗

ID (nm) (×1015/m2)

Cu-1 68.0(6) 0.73(3) 2.15(3) 0.48(1)
Cu-2 61.8(5) 0.57(1) 2.79(3) 0.51(1)
Cu-8 65.7(4) 0.66(1) 3.68(5) 0.39(1)

CuZr-1 57(1) 0.69(5) 1.6(1) 0.57(3)
CuZr-2 71(2) 0.61(5) 2.3(1) 0.89(6)
CuZr-4 73(2) 0.32(4) 2.3(1) 1.17(7)
CuZr-8 60(1) 0.20(4) 3.0(1) 0.82(5)

Table 3.3: Results of the WPPM analysis of XRD data of the pure Cu and CuZr sam-
ples treated by di�erent number (N) of ECAP passes. MD � median of the log-normal
crystallite size distribution (σ∗ = 1.5 assumed); we � fraction of edge dislocations; n�
dislocation density;M∗�Wilkens dislocation correlation parameter (eq. 3.3, ch. 2.3.5).

The stacking fault probabilities (α, βtwin) are not listed in the table, because
their re�ned values were . 0.5% and the e�ect on the shape of calculated di�rac-
tion pro�les is marginal. Hence, they were set to zero. Faulting probabilities
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≈ 0.5− 1% are reported in the literature [14] for similar ECAP treated Cu sam-
ples but in our work the values were not distinct from zero within the experimental
uncertainty limits.

An example of the �tted di�raction pattern is shown in �gs. 3.17 and 3.18.
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Figure 3.17: Pattern �t of the Cu-1 sample.
(red circles � measured points; blue line � calculated pattern; green line � di�erence curve)

3.3.5 Summary and discussion

Even though we could �t both parameters (n, M∗) of the dislocation broaden-
ing model simultaneously and they converged to reasonable values, the �ts were
not perfect. This can be seen mainly in the di�erence curve close to the 220
re�ection in �g. 3.17 or in the detailed plots of the 220 and 420 re�ections in
�g. 3.18. Fits of the other samples are not better. This indicates that the model
applied is not completely correct. The wrong �t of the central part of the 420
re�ection could be attributed to the inaccuracy of the Fourier coe�cients for sim-
pli�ed Wilkens model for the long real space lengths. However, the di�erences for
the 220 re�ection cannot be explained in this way. The model can well describe
the characteristic broadening anisotropy (�gs. 3.19 and 3.20), but discrepancies
in the whole pattern �t remains. If the patterns were �tted by analytical pro-
�le functions and only re�ections widths were extracted this problem would be
ignored.

Another problem concerns the peak positions that were �tted as indepen-
dent parameters rather than being treated usually as a function of the lattice
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Figure 3.19: Williamson-Hall plot for se-
lected Cu and CuZr samples treated by
ECAP.

Figure 3.20: Modi�ed Williamson-Hall
plot of the Cu-1 sample.

parameter, 2θ zero error and the specimen displacement error. The re�ned ∆2θ
corrections from calculated re�ection positions are depicted in �g. 3.21 for the
pure Cu samples. The characteristic anisotropy of the peak shifts in �g. 3.21
is the same also for the CuZr samples. Since in the focusing Bragg-Brentano
geometry only the lattice planes parallel to the sample surface are measured and
two instrumental aberrations mentioned above can also a�ect the peak positions,
the data from XRD measurement in other geometries were utilised to resolve
this problem. For estimation of the texture and possible residual stresses some
samples were measured also on the Eulerian cradle in the parallel beam geometry
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Figure 3.21: 2θ line shifts re-
�ned by WPPM from di�raction
patterns of the pure Cu samples
treated by ECAP. (blue stars �
Cu-1; red crosses � Cu-2; empty ma-
genta circles � Cu-8)

and by using polycapillary optics.1 In this arrangement the above instrumental
aberrations are sign�cicantly supressed. The peak positions were �tted and re-
sults are depicted in �gs. 3.22 and 3.23. Figure 3.22 shows similar anisotropy as
detected for the Cu-1 sample (�g. 3.21), but measured in the CuZr-1 sample in
parallel beam geometry and peak positions are converted to the lattice param-
eter. The lattice parameter measured for di�erent angles (ψ) of inclination of
the di�racting lattice plane normal from the sample surface normal are plotted
there. It can be seen that the anisotropy varies with this angle. In the second
plot (�g. 3.23), relative strains

ε∗hkl ≡
dhkl(ψ)− dhkl(ψ = 0)

dhkl(ψ = 0)
,

calculated for each measured re�ection, are plotted as a function of sin2 ψ. No
linear dependence is clearly visible and all relative changes in the lattice spacing
are. 10−3. Only the 〈h00〉 directions show a strong dependence on the inclination
angle (ψ). According to �gs. 2.14 and 2.15 (p. 42) the 〈100〉 directions are the
elastically softest directions in fcc Cu.

Now three possible hypothetical explanations of the peak shifts in the patterns
are speci�ed and subsequently they are discussed on the basis of the experiments
above.

(A) The shifts of di�raction lines are related to the planar defects, which
were neglected. (B) The shifts are caused by the residual stresses in the samples.
(C) The shifts originate from the lattice defects, but the anisotropy of the e�ect
is beside others related to the deformation process in the samples. Samples are
deformed by di�erent number of ECAP passes. During two subsequent passes
di�erent slip systems are activated, complex microstructure of defects in the grain
boundaries as well as preferred orientation of deformed grains are formed. These
all result in the di�raction peak shifts, which depends on both the re�ection type
(hkl), as well as on the orientation of the di�racting crystallites.

1 For details of the parallel beam setup with polycapillary optics used for texture, stress and
precise lattice parameter measurements see e.g. the theses by Dopita [128] or �imek [149] (in
Czech).
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Figure 3.22: Lattice parameter ahkl of
the CuZr-1 sample for di�erent inclina-
tion angles (ψ). (Data extracted from the
measurements in the parallel beam geometry.
Measurements for di�erent inclination angles
� 0◦, 20◦, 40◦, 60◦ � marked by di�erent
symbols and colours.)

Figure 3.23: Relative strains (ε∗hkl) from
the XRD �residual stress measurements�
of the CuZr-1 sample. (Values for the 200
re�ection are plotted by red circles (◦) and
dashed line, values for the 400 re�ection by
black crosses (+) and black dashed line.)

The simple case (A) cannot explain the dependence on the inclination angle
(ψ) clearly visible in the �gure 3.22. In addition, inclusion of planar defects did
not improve the WPPM �ts signi�cantly. Concerning (B). In �gure 3.23, no clear
linear dependence is visible, changes are rather small and hence any in�uence of
residual stress is di�cult to justify. The case (C) is the most complex one. But
it follows from TEM and EBSD analyses that the grain structures of samples
treated by a single ECAP pass and by 8 passes are very di�erent. If the shifts
originate from the processes and changes during the deformation, their strong
dependence on the number of ECAP passes is expected. This is not observed,
though. A more quantitative comparison and data from stress measurements
for di�erent samples would be suitable here, but from the basic data re�ned by
WPPM no such tendency is visible. Hence also the hypothesis (C) can not be
con�rmed from the available data.

The e�ect of unexpected peak shifts is present in all the samples, it is observed
also in more precise lattice parameter measurements in di�erent experimental
geometries and it is not related to the evaluation procedure or the computer
program used. It is reported here as a systematic experimental observation which
unfortunately has nto been explained yet. On the other side, the peak shifts can
be corrected in the MSTRUCT and do not in�uence strongly the results of LPA.

Since the pattern �ts cannot be improved more, the determined microstructure
parameters has to be accepted as speci�ed in the table 3.3 (p. 74).

The median of the crystallite size (MD) is basically the same in all the sam-
ples, MD ≈ 60− 70 nm. This value is much smaller than the values 200�300 nm
reported from TEM and EBSD. Correlation between the size of coherently scat-
tering crystallites and the size of subgrains or cells seen be TEM in the SPD
materials is discussed in the paper by Ungár, Tichy, Gubicza, and Hellmig [138]
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dedicated to the problem. The authors discuss the fact that the crystallite size
reported from XRD investigations is often markedly smaller than that seen by
TEM and pointed out that it cannot be explained solely by the low-angle grain
boundaries, but there should exist also defect structures, e.g. �dipole� dislocations
walls breaking the coherency between parts of the crystal without di�erences in
their orientation. The crystallite size reported in SPD Cu and CuZr here is hence
in very good agreement with the results reported elsewhere [150] and can be
justi�ed by the model of Ungár et al. [138].

Concerning the parameters of the dislocation model, in Table 3.3 (p. 74) a
trend of changes in the dislocation character from initially higher fraction of edge
dislocations to more screw dislocation character is apparent in the case of CuZr
samples. TEM and/or EBSD investigations show more pronounced microstruc-
tural changes during the ECAP deformation. The evolution of other dislocation
model parameters (n, M∗) determined by XRD is shown in �gs. 3.24 and 3.25.
The determined dislocation densities are between 1.5− 3.7 · 1015 m−2 and are in-
creasing with the number of passes (N). Breuer et al. [151] reported dislocation
densities up to 1.5 − 1.7 · 1015 m−2 in plastically deformed copper. In Balogh
et al. [150] they studied dislocations by XRD in pure Cu samples treated by
the ECAP following route C and reported increasing dislocation density up to
4 passes and then saturated at 2.5− 3.0 · 1015 m−2. Gubicza et al. [65] and [140]
reported, for the BC route pure Cu, dislocation densities of about 2 · 1015 m−2,
which were growing up to 3 passes and then were saturated up to 10 ECAP
passes. Maximum value of the dislocation density here (3.7 · 1015 m−2) is slightly
higher, but it is important to note, that here Cu of lower purity was studied.
The dislocation correlation parameter M∗ found here was in average higher for
the CuZr samples than in pure Cu samples. This indicates a slightly more ran-
dom dislocation arrangement in samples with an addition of Zr. In �g. 3.26 the
stored energy (Edisl) in the dislocation strain �eld calculated according to eq. 3.4
(p. 65) is plotted. The stored energy is very similar for both types of samples, it
increases strongly during the �rst two passes and saturates at Edisl ≈ 0.23 J/g.
The increase of stored dislocation energy could be related to the formation of
the non-equilibrium grain boundaries during the �rst few passes but this cannot
be derived strictly from the present XRD data because the dislocation model
used does not account well for the strain contribution coming from dislocations
in the boundaries. Gubicza et al. [65] reports a slightly higher saturated values
of Edisl

.
= 0.3 J/g, but they do not use the same formula as eq. 3.4 here. If their

formula for the stored dislocation energy was used, the energy here would also be
higher (Edisl ≈ 0.35− 0.4 J/g).

The dislocation model used here explains well the XRD line broadening ani-
sotropy. Unfortunately, there are still unexplained di�erences between calculated
and experimental XRD data of Cu samples treated by ECAP. Moreover, if the
model is applied to samples showing even more Lorentzian di�raction pro�les than
the UFG Cu samples studied here, LPA analysis tends to prefer unreliably small
values of the correlation parameter (M∗) and overestimate dislocation density (n).
Asymmetry and shifts of di�raction pro�les can be related to some speci�c dis-
location structures as e.g. dipoles (ch. 2.3.3), dislocation walls or dislocations in
grain boundaries. The model does not account for this and its extension would be
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Figure 3.24: Evolution of dislocation
density (n) in the pure Cu (•) and Cu
with a small addition of Zr (�) samples
treated by di�erent number (N) of ECAP
passes.

Figure 3.25: Evolution of dislocation
Wilkens dislocation correlation parameter
(M∗) in the pure Cu (•) and Cu with a
small addition of Zr (�) samples treated
by di�erent number (N) of ECAP passes.

Figure 3.26: Stored energy (Edisl) in
the dislocation strain �eld, calculated from
XRD data according to eq. 3.4. Plotted
for the pure Cu (•) and Cu with a small
addition of Zr (�) samples as a function
of the number (N) of ECAP passes. Data,
determined by XRD analysis, taken from the
Table 3.3.
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grateful. It has been shown that both the geometric and elastic anisotropy appear
in the problems concerning the defect-induced broadening. Hence, especially the
anisotropic behaviour of such speci�c defects should be more investigated from a
theoretical point of view and for several materials.

The XRD analysis of defects in the pure Cu and CuZr samples treated by
ECAP was published mainly in Mat¥j et al. [136] and Kuºel et al. [137].



Chapter 4

Study of Nanocrystalline TiO2
Powders

4.1 Introduction

In contrast to chapters 2 and 3 a di�erent type of problem is solved here. The
crystallite size decreases about 10× and the defect density is much smaller than
for metals studied in chapter 3. The size broadening becomes a dominant e�ect
and the analysis consists mainly in the determination of crystallites size. Material
selected for studies is titanium dioxide (TiO2). XRD line pro�le analysis (LPA)
and the whole powder modeling method (WPPM) [11] were used for the study
of the microstructural features.

Titania (TiO2) is a very common compound, which can be found in many
products used in daily life. Low cost, non-toxicity, good chemical stability, me-
chanical hardness and optical transmittance with high refractive index are its
traditional favourable properties. Its excellent photochemical activity and other
photo-induced phenomena are subjects of research of novel applications of this
apparently simple material. TiO2 belongs to a class of porous metal oxides such as
ZrO2, SnO2, CeO2, Al2O3 etc. It is a wide band gap semiconductor (3.0�3.2 eV)
[152, 153]. Nowadays, the most utilised properties of titania are - a photo-induced
catalytic activity [154, 155] and super hydrophilicity [156�158] after UV light ir-
radiation. They can found applications in various areas, e.g. in ecological dis-
posal of environmentally unfriendly contaminants [159�163], e�cient support of
metal species catalysts [164, 165], as an antibacterial and selfcleaning material
[166, 167], for antifogging coating [168], dye-sensitised solar cells [169, 170], in
electro chromic devices [171, 172], as sensors [173] or in hydrogen production
[174]. Large research e�ort was invested into the enhancement of the photoin-
duced properties by shifting the absorption edge to longer wavelengths into the
visible light range [175]. Nitrogen doping [153, 176, 177] appears as one of the
most promising ways. Description of the mechanism inducing the photoinduced
properties of titania can be found e.g. in the thesis of �ícha [178].

Anatase, rutile and brookite are the most common crystalline phases of titania
[129] (in Czech). Other crystalline phases of TiO2 were described e.g. by Arlt
et al. [179]. The application properties are often related to structure of the
material (phase composition, grain size, defect density) [4, 180, 181], textural
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properties (pore-size, speci�c surface area) or surface reconstruction etc. For
example Shibata et al. [182], [183] showed that the photo-induced properties of
TiO2 can be in�uence also by residual stress. Generally the most important
factors are phase composition and crystallite size. Both these factors are the
primary subjects of di�raction analysis. It appears that nanocrystalline anatase
has a superior photocatalytic activity than other forms of titania (amorphous,
rutile, bulk etc.) [184]. From many works about titania at least a few devoted
to its structural studies and relation between its microstructure and properties
should be mentioned.

Zhang and Ban�eld [185, 186] found (i) that anatase is thermodynamically
more stable than rutile, if crystal size D . 14 nm, and (ii) that for D . 11 nm
brookite is almost as stable as anatase [185]. (iii) Nanocrystalline anatase ap-
pears often together with brookite [187] and upon heating they transform to
rutile [188]. The authors of [152] studied amorphous TiO2 and its transforma-
tion to nanocrystalline anatase by using pair-distribution function, Monte Carlo
simulations and x-ray absorption spectroscopy. Residual stress in anatase was
measured by Raman spectroscopy by Alhomoudi and Newaz [189]. Elastic aniso-
tropy of anatase was studied by XRD residual stress measurements in thin �lms
by Mat¥j et al. [190], Borgese et al. [191] and Bontempi et al. [192]. Size depen-
dent elasticity in nanocrystalline titania was studied in high pressure synchrotron
experiment by Chen et al. [193]. Kinetics of crystallisation of anatase nanoparti-
cles, transformation from amorphous state to anatase nanocrystals, was studied
by Zhang and Ban�eld [194], Li et al. [195] and Jensen et al. [196]. Dislocations
in nanocrystalline anatase was characterised by the WPPM method using the
same models as in chapters 2 and 3 by Spadavecchia et al. [153]. The Debye
function method was used for analysis of size and shape of TiO2 nanocrystals by
Cernuto et al. [118]. Connection of anisotropic shape of anatase particles with its
reactivity was discussed by Yang et al. [197]. Transmission electron microscopy
(TEM), nitrogen adsorption, mercury porosimetry and XRD analysis using the
Williamson-Hall (WH) plot method were applied for particle size determination
by Weibel et al. [198]. Di�erent LPA methods were compared on a set of sol-gel
TiO2 powders by Vives and Meunier [199].

4.2 Motivation

There are numerous techniques for synthesis of TiO2 materials in form of pow-
ders or thin �lms. In this chapter the samples prepared by chemical methods
are of main interest. Preparation of nanoparticles of a given phase composition
and a given size is often one of the primary research objectives in this �eld. If
a dependence of some material property, e.g. photocatalytic activity or contact
angle characterising the material hydrophilicity [157], on crystallite size should
be studied, it is desirable to have good knowledge of the crystallite size in the
studied specimens. Not only the average size 〈D〉 is important, but it is useful
to have at least an idea of dispersion of crystallite sizes. Other size-related phe-
nomena can play a role as well. E.g. Yang et al. [197] has shown that because of
reactivity of anatase {001} facets is higher than reactivity of thermodynamically
most stable {101} facets, the reactivity of anatase particles can be in�uenced by



Study of Nanocrystalline TiO2 Powders 83

their anisotropic shape. In [196], [118] they observed such size anisotropy for
anatase nanocrystals.

This chapter is focused on the crystallite size determination in anatase nanopow-
ders prepared by chemical processes such as hydrolysis of titanium (iv) alkox-
ides in hydrogen peroxide solution [200], sol-gel routes [201], calcination and su-
per/subcritical �uid extractions techniques [202]. The general objective is prepa-
ration of anatase nanoparticles with a given size and a reasonable dispersion of
particles size. Hence special attention is given here to determination of crystallite
size distribution by the x-ray LPA.

The all samples studied in this chapter were prepared by Dr. L. Mat¥jová.
Preparation conditions for a particular samples are described in the text through-
out the chapter. Measurements of speci�c surface area (SBET) and TEM or SEM
(scanning electron microscopy) images presented here for illustration were done by
Dr. L. Mat¥jová, J. Franc and F. Novotný. All XRD measurements, MSTRUCT
program modi�cations and XRD analyses presented in this chapter were per-
formed by the present author. Results were published mainly in the following
papers: (i) Mat¥jová, Cajthaml, Mat¥j, Benada, Kluso¬, and �olcová [202], (ii)
Mat¥jová, Mat¥j, and �olcová [200] and the most important part of the work con-
cerning the XRD analysis in (iii) Mat¥j, Mat¥jová, Novotný, Drahokoupil, and
Kuºel [201].1

4.3 Description of basic models

Theoretical chapter 2 was devoted mainly to the defect-induced di�raction line
broadening. Here, the conventional theory of size-induced di�raction line broad-
ening is shortly introduced. Next, some other aspects of microstructural models
used in this chapter are very brie�y commented and in section 4.4 the XRD
analysis is applied to a set of nanocrystalline TiO2 samples. Section 4.5 then
describes the work concerning the histogram-like model of crystallite size distri-
bution (CSD).

4.3.1 Size induced di�raction line broadening

Description of the size broadening e�ect is simpler than the case of the strain
broadening. We can start with eq. 2.6 and supply zero displacement vectors us
and us − ρ‖. Eq. 2.6 is then reduced to

ID(q‖) =
∑
ρ‖

eiq‖ρ‖
〈∑

s

fsf
∗
s−ρ‖

〉
. (4.1)

1List of coworkers on the work presented here: Z. Mat¥j and R. Kuºel, Department of
Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University in Prague
(XRD analysis); L. Mat¥jová and O. �olcová, Department of Catalysis and Reaction Engineer-
ing, Institute of Chemical Process Fundamentals, Academy of Sciences (samples preparation,
BET measurements, FE-SEM images); J. Drahokoupil, Institute of Physics, Academy of Sci-
ences (XRD measurements with Co-radiation); J. Franc, Heyrovsky Institute of Physical Chem-
istry of the Academy of Sciences and F. Novotný, Department of Physical Electronics, Faculty
of Nuclear Sciences and Physical Engineering, Czech Technical University (FE-SEM images).
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Figure 4.1: Stokes and Wilson
(1942) [203] concept of a crystal
and its �ghost�. The �ghost� is
shifted relative to the crystal by a
distance ρ‖ in the direction of the
di�raction vector G. Size Fourier
coe�cients AS(ρ‖) are equal to
their common volume.

AS(ρ║)

ρ║

G

The �rst summation in eq. 4.1 is again the Fourier transform of the second part,
which represents the size Fourier coe�cients AS(ρ‖). Each term in the second
summation in eq. 4.1 always gives as a contribution |f |2 if both the sites s and
s − ρ‖ are inside the crystal and it is zero if one of the sites is outside the
crystal. This results in the Stokes and Wilson (1942) [203] concept of a crystal
and its �ghost� shifted by ρ‖ (�g. 4.1). Fourier coe�cients AS(ρ‖) are simply their
common volume. It is equivalent to a transformation of eq. 4.1 into an integral
form

ID(q‖) = |f |2
∫
dρ‖ e

iq‖ρ‖
〈∫

d3rs Ωc(rs)Ωc(rs − ρ‖)
〉
, (4.2)

AS(ρ‖) =
〈∫

d3rs Ωc(rs)Ωc(rs − ρ‖)
〉
, (4.3)

where Ωc(rs) is a crystallite shape function, which is equal to one inside the
crystallite and zero outside, and 〈. . . 〉 means the average over di�erent crystallites
shapes and sizes.

Spherical crystallites with diameter D represent the most simple model. The
model containing particles of the same size would result, for crystallite size D ∼
5 nm and instrumental conditions commonly used, in size-oscillations at �anks of
di�raction pro�les. Such oscillations are usually not observed. It is assumed that
smearing of these oscillations is caused by dispersion of crystallites size in the
di�racting volume. Hence a crystallite size distribution (CSD) is usually adopted
into the model. Moreover CSD in�uences strongly an overall shape of di�raction
pro�les (Langford et al. [204]). If small and large crystallites are present together
in the sample, large crystallites forms a strong narrow maxima, whereas small
crystallites contribute strongly to the pro�le tails [204]. E.g. in such a case it can
be expected that the ratio ϕ = FWHM/β of the full width in half of maximum
(FWHM) to the integral breadth (β) is reduced.

Di�erent analytical distributions can be assumed. Crystallite size D must be
positive, hence e.g. a log-normal distribution, gamma distribution or Poisson dis-
tribution are possible choices. The log-normal distribution is the most often used
in the XRD LPA. It was found to be a suitable size distribution for nanopowders
of ceramic particles in [12, 198, 199, 204]. For the log-normal distribution the
probability of �nding a crystallite with diameter D is [205]

p(D) =
1

D · σ
√

2π
exp

{
− 1

2σ2
[ln(D/M)]2

}
, (4.4)
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whereM is the median of the distribution and σ is an additional shape parameter.
The arithmetic mean crystallite diameter 〈D〉, the variance var2 of the crystallite
size distribution and the area weighted crystallite diameter 〈D〉A can be calculated
from these parameters according to simple formulas

〈D〉 = M · e1/2σ2

, (4.5)

var2 = 〈D〉2 · (eσ2 − 1) , (4.6)

〈D〉A = 〈D〉 · e2σ2

. (4.7)

Whereas the median M of the crystallite diameter, which is equal also to the
geometric mean value, has a simple physical interpretation, the parameter σ
has no direct meaning. In an overview article, Limpert et al. [205] pointed out
that the log-normal distribution is used across the sciences and emphasised its
multiplicative character as compared with an additive character of the well known
normal distribution. If a dimensionless multiplicative standard deviation σ∗ is
de�ned by a back transformation of σ according to [205]

σ∗ = exp(σ) , (4.8)

then size distribution can be interpreted [205] correspondingly with the normal
distribution as that 68.3% of crystallites have a diameter within the interval
[M/σ∗, M · σ∗], 95.5% in the interval [M/σ∗2, M · σ∗2] etc. For the log-normal
distribution Limpert et al. proposed to use instead of a classical notation (x̄± c)
a notation (M ×/ σ∗) [205].

For spherical crystallites and the log-normal distribution of their diameters
a bulky but analytical formula can be derived for the size Fourier coe�cients
(Ribárik et al. [23],[75], Scardi and Leoni [11], Vives and Meunier [199])1

AS(ρ‖) =

{
M3 exp[ 94 (

√
2σ)2]

3
erfc

[
ln(
|ρ‖|
M

)√
2σ
− 3

2

√
2σ

]
−M2 exp[(

√
2σ)2]

2
|ρ‖| erfc

[
ln(
|ρ‖|
M

)√
2σ
−
√

2σ

]
+
|ρ‖|3

6
erfc

[
ln(
|ρ‖|
M

)√
2σ

]}{
2M3 exp[ 9

4
(
√

2σ)2]

3

}−1

.

(4.9)

Ribárik [75] generalised this formula also for an anisotropic case of crystals of a
shape of rotational ellipsoid. A very general approach including di�erent CSD
functions and various polyhedral shapes of crystals was developed by Scardi and
Leoni [11, 135].

The size broadening e�ect is described in the MSTRUCT program by the
following lines in the input �le.

// the 1st phase - Size broadening - log-normal size distribution

SizeLn sizeProfAnatase broadening component type, effect name

5.0 0.3 M(nm), sigma

The codeword "SizeLn" sets here the model of spherical crystallites with diameter
distributed according to the log-normal distribution. Median of the distribution
is set to M = 5 nm and the multiplicative deviation is σ∗ = exp(0.3).

1erfc(x) = 2√
π

∫∞
x
e−t

2

dt is a complementary error function.
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4.3.2 Other broadening e�ects

XRD measurements of all samples presented in this chapter were done using
PANalytical-MPD di�ractometer in the conventional focusing Bragg-Brentano
geometry with variable slits. Ni-�ltered characteristic CuKα radiation produced
by a laboratory x-ray tube was used and di�racted intensity was registered by
PIXcel PSD detector. The patterns were acquired in the di�raction angle range
2θ = 8◦ − 140◦, with ∆2θ ≈ 0.013◦ − 0.1◦ step and measurement time 6 − 20 ×
300 s per step. Standard powder samples holders with a circular cavity were used.
The irradiated sample area was kept constant at 5 mm× 10 mm for the �rst set
of samples studied in section 4.4. In that case 0.04 rad Soller slits were inserted
into the incident and di�racted beam to control the axial divergence. For samples
analysed in section 4.5 a slightly di�erent con�guration - with 0.02 rad Soller slits
in the incident beam and irradiated area 10 mm× 5 mm - was used.

Instrumental broadening e�ects were described by �tting the pseudo-Voigt
function to the NIST LaB6 standard sample measured in the same instrumen-
tal con�gurations as the studied samples. A detailed description of the e�ect
treatment in the MSTRUCT program can be found in section A.7.

Micro-Strain e�ects were accounted phenomenologically using the pseudo-
Voigt function. Model is described in section A.8, it has two parameters: (i)
a parameter (η) characterising Gauss-Lorentz character of the shape of strain-
induced component of di�raction line broadening and (ii) the phenomenological
microstrain e(%), characterising the defects e�ect strength. There are more phys-
ically relevant models for micro-structural defects, especially that used by Scardi
& Leoni in [153] for description of dislocation induced broadening in nanocrys-
talline anatase. For simplicity only the phenomenological model was used here,
because the microstrain in the studied samples was quite weak and the phe-
nomenological approach was found to be satisfactory. To illustrate the strength
of the micro-strain e�ect as compared to the size e�ect Willamson-Hall plots for
two samples are depicted in �g. 4.2.

Figure 4.2: Williamson-Hall
plot for nBUT-300 (circles) and
nBUT-450 (triangles). Integral
breadths βf are plotted for dif-
ferent re�ections with instrumen-
tal broadening already deconvo-
luted. The breadth of instrumen-
tal broadening is depicted by a
dotted line just for comparison.
It has to be also considered that
there is a very strong peak over-
lap - especially for the nBUT-300
sample.
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4.3.3 Intensities - crystal structure

For the XRD analysis of all samples in this chapter the MSTRUCT program
was used. Samples are nanocrystalline and there is a huge peak overlap. The
di�raction line positions and intensities for all crystalline phases were calculated
from known structural models. The MSTRUCT is derived from FOX, which is
not basically a Rietveld program and anisotropic thermal factors are implemented
there only partially, hence the choice was restricted to the isotropic case. The
major crystalline phase in the samples - anatase - is the main subject of interest
here. As a reference model for anatase a structure similar to ICSD#154603 [206]
data was taken. Details can be found in the Table 4.1. Crystal structure data for
other phases - rutile and brookite - can be found e.g. in [129] (in Czech).

ICSD#154603, ref.: [206]

TiO2 � anatase (nanocrystalline), I 41/a m d (141)
a = 3.785 Å , c = 9.482 Å , ρcalc = 3.91 g/cm3 ,

Atom site x y z occp Biso

Ti4+ 4b 0 1/4 3/8 1. 1.3
O2- 8e 0 1/4 0.166 1. 1.1

Table 4.1: Crystal structure parameters of anatase.

During a typical data �tting procedure the lattice parameters of anatase, z-
position of the oxygen atom, isotropic temperature factors Biso of both scattering
atoms and the occupancy of the titanium position were re�ned. At the beginning
it was supposed that the oxygen position could not be fully occupied due to pres-
ence of oxygen vacancies. However, the re�nement of the oxygen occupancy did
not improved the data agreement and it slightly destabilised the whole procedure.
Hence the oxygen occupancy was set to be equal one.

It was possible to �t all the samples quite well with the above simple model
but still same deviations between measured and calculated data are visible. LPA
(4.5) was the main aim in this work. In order to �t the di�raction patterns as well
as possible the intensities of a few anatase re�ections were re�ned independently
of the crystal structure. In the MAUD program by Lutterotti [106], [25] this
method is called �arbitrary texture model�. In the MSTRUCT it is implemented
as well and it is called �HKLIntensities� correction (ch. A.9).

The �arbitrary texture model� gives the re�nement procedure more freedom
and let it focus on �tting of di�raction line pro�les. Re�ned integrated intensities
of 004, 215, 316, 411, 404 and 415 re�ections �nally di�er from those derived
from the crystal structure by 5 − 10% in maximum with an exception of 404
re�ection and the case of the reference sample REF-400, where the di�erence
was about 30%. These small deviations (of about all the 40 anatase lines) are
considered here as a marginal e�ect which does not a�ect the results achieved.
Data agreement factors (GoF s, Table 4.3) changed when the �HKLIntensities�
correction was included only marginally as GoF = 1.53→ 1.43 for the REF-400
and 1.45→ 1.41 for the REF-450 sample.
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4.4 XRD study of TiO2 nanopowders prepared by

di�erent methods

4.4.1 Samples preparation

In this section a series of samples prepared by di�erent chemical routes are studied
by XRD. List of samples is presented in the Table 4.2. The samples can be divided
according to the method of their preparation into three groups.

(i) A set of nBUT and ISOP-400 samples prepared by low-temperature hydrolysis
of di�erent titanium (iv) alkoxides in hydrogen peroxide solution followed
by calcination at temperature 300◦C and higher.

(ii) Two samples REF-400 and REF-550 prepared by calcination of rigid titania
organogels synthesised by a sol-gel process. These samples are used as
reference samples in section 4.5.

(iii) A single selected sample ISOP-SubWE/PFE prepared by super/subcritical
�uid extractions.

ID alkoxide method Temp./Time ref.

nBUT-300

n-butox.
hydrolysis/
calcination

300◦C/4h

[200]

nBUT-330 330◦C/4h
nBUT-380 380◦C/4h
nBUT-450 450◦C/4h
ISOP-400

isopropox.

400◦C/4h
ISOP-400/10 400◦C/10h

REF-400
sol/calcination

400◦C/4h
[201]

REF-550 550◦C/12h

ISOP-SubWE/PFE sol/extraction 200◦C/10MPa [202]

Table 4.2: List of studied TiO2 nanocrystalline powder samples.

Samples nBUT(300�450), ISOP400 and ISOP400/10 were prepared by
low-temperature hydrolysis of titanium (iv) alkoxides in hydrogen peroxide solu-
tion followed by calcination of the amorphous titania peroxo-product in a furnace
at temperature 300◦C and higher. The advantage of this method is avoidance of
using any surfactant and consequently a much higher synthesis yield.

Samples labelled as nBUT were prepared from n-butoxide. Samples named as
ISOP were prepared from titanium (iv) isopropoxide. All samples were calcined
for 4 hours with an exception of the sample ISOP-400/10, which was calcined for
10 hours. The synthesis was done at the Department of Catalysis and Reaction
Engineering, Institute of Chemical Process Fundamentals, Academy of Sciences
(UCHP AV) by Dr. L. Mat¥jová and Dr. O. �olcová. Details of the prepara-
tion procedure can be found in the thesis of Mat¥jová [207] (in Czech) or in a
forthcoming publication of Mat¥jová et al. [200].
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Samples REF-400 and REF-550 were prepared by calcination of rigid tita-
nia organogels synthesised by a sol-gel process.

Titanium (iv) isopropoxide was added drop by drop into the formed reverse
micellar environment of cyclohexane, nonionic surfactant Triton X-100 and wa-
ter. After 24 hours ageing on the air the prepared sol converted into the rigid
organogel. Organogel was calcined in a mu�e furnace at (i) 400◦C (4 hours,
1◦C/min) and (ii) 550◦C (12 hours, 2◦C/min). The synthesis was done by
Dr. L. Mat¥jová at UCHP AV. More details are described in [201].

Sample ISOP-SubWE/PFE was prepared from a surfactant-mediated tita-
nia organogel by a combination of subcritical water extraction and pressurised
solvent extraction.

Titanium (iv) isopropoxide was added drop by drop into the formed reverse
micellar environment of cyclohexane, nonionic surfactant Triton X-114 and wa-
ter. The sol was left in an open bowl for 24 hours. The obtained rigid gel was
extracted at temperature 200◦C and pressure 10 MPa by subcritical water extrac-
tion (SubWE) followed by pressurised solvent extraction (PFE) using subcritical
CH3OH. The synthesis was done again by Dr. L. Mat¥jová at UCHP AV. More
details are described in [202].

4.4.2 XRD analysis

All the samples (Table 4.2) were �tted by using the above described models
by the MSTRUCT program. Results of the re�nement of their structural and
microstructural parameters are summarised in Table 4.3. Samples are sorted in
the table by their crystallite size. Meaning of parameters is speci�ed in the table
caption. Final agreement of the measured and calculated data is illustrated in
addition by few �gures of �tted patterns (�gs. 4.3�4.9). The results are discussed
here and compared with similar experiments in literature.

Discussion starts here from the end of the Table 4.3. The last column shows
values of the goodness of �t factor (GoF ), which should indicate the �t quality.
If it is close to unity then the model describes data very well. If it is below one
it means the model contains too many parameters for data of such quality and
the �t is unexpectedly �too much good�. If it is higher than unity it indicates
that better model parameters or di�erent model should be found to describe data
correctly.

The values of GoF di�ers substantively across the samples. All samples have
a quite good statistics thanks to a linear detector used for data collection. For
example there are more than 25 kcps at the 101 re�ection of the nBUT-300 and
nBUT-330 samples even though they were measured only for 1 hour. Both these
samples have GoF ≈ 2. Samples nBUT-380 and nBUT-450 were measured during
a night for approx. 12 hours and there are over 200 kcps at the 101 re�ection.
They have GoF ≈ 5. This indicates that GoF factors are somehow related to the
measurements statistics. The samples were measured as multiple repeated scans.
If a majority of scans in the samples with a better statistics is removed and data
are �tted with the same model the GoF goes down to values typical for data
with lower statistics. This means that di�erences in GoF s in the Table 4.3 do
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not indicate that the model describes microstructure of a particular sample very
well and microstructure of a di�erent sample very poorly, but shows that with
better statistics �ner details in data are unhidden, which can not be described
within the model used. This details are visible in �gures of samples measured
with better statistics (�gs. 4.5, 4.6). The GoF values listed in the Table 4.3 are
hence useful when di�erent models are compared for the same sample and the
same data.

Figure 4.3: Pattern �t of the ISOP-SubWE/PFE sample. Brookite peaks are clearly
visible in the whole pattern plot as well as in the inset. Small magenta ticks at the
bottom mark the anatase re�ections, whereas the cyan ticks above indicate re�ections
from the minor phase (here brookite).

The next three columns from the end of the table describe a minor crys-
talline phase detected in the samples. Anatase is always the major crystalline
phase. In the ISOP-SubWE/PFE sample, which was prepared from the sol by
extraction (without calcination), �ngerprints of brookite are clearly visible (see
�g. 4.3). Unfortunately only a single intense brookite peak is not overlapped with
re�ections of anatase. This complicates re�nement of a crystallite size Mm and
a global temperature factor of brookite, which both can a�ect its scale factor
and hence also a value of brookite fraction in the sample. The determined value
of a weight fraction of brookite 23 ± 1 wt.% and especially its experimental un-
certainty have to be taken into consideration with caution. All uncertainties in
Table 4.3 are re�nement errors, which do not account for other sources of errors
and can often strongly underestimate the real uncertainty of experimental deter-
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mination of a particular parameter. When the brookite weight fraction in the
ISOP-SubWE/PFE sample is compared to anatase weight fractions (xanatase) in
other samples it can be pointed out, that in the ISOP-SubWE/PFE sample an
essential amount of nanocrystalline brookite was detected. Brookite crystallites
size was roughly estimated to Mm ≈ 4 nm. The size of anatase crystallites is in
this caseM ≈ 3 nm (Table 4.4), hence presence of brookite together with anatase
is not surprising as it was already predicted and observed by Zhang and Ban�eld
[185], [187]. Small brookite peaks close to 2θ ≈ 30◦ are also visible in patterns of
the nBUT samples (�gs. 4.4, 4.5). According to Table 4.3 the weight fraction of
brookite in the nBUT samples is decreasing with calcination temperature from
x ≈ 7 wt.% in nBUT300 to x ≈ 2 wt.% in nBUT450. The values again should
be considered only as very rough estimates. It was even not possible to re�ne the
brookite crystallites size and it had to be set to a �xed value Mm = 5 nm. In
the samples REF-400, ISOP-400, ISOP-400/10 none or only a very small amount
of any minor phase was detected. In contrast to the nBUT samples the minor
phase in the most of ISOP samples was assigned as rutile. Rutile crystallites size
could not be re�ned and it was set to a �xed value. The re�ned fraction of rutile
was roughly estimated to a marginally small value x ≈ 2 wt.%. Whereas in these
samples rutile contribution to di�racted intensity is negligibly small (see �gs. 4.7,
4.8), rutile can be clearly identi�ed in the REF-550 sample (see �g. 4.9), which
was calcined at the highest temperature (550◦C). The median of the crystallite
size of rutile particles in the REF-550 sample was estimated to Mm ≈ 32 nm.
Quantitative phase analysis of an anatase and rutile mixture is a classical prob-
lem, and even though the crystallites size of both phases is small and there is a
strong overlap of many peaks, it was possible to determine the weight fraction of
rutile in the REF-550 sample with a good accuracy to x ≈ 7 wt.%. Increasing
fraction of rutile with higher calcination temperature is again in agreement with
observations of Zhang and Ban�eld [188].

The next two columns in the Table 4.3 concern microstrain model parame-
ters, the microstrain e(%) and the shape character of the microstrain broadening
component η. The shape parameters η takes a random value across the samples.
The microstrain e�ect (e.g. �g. 4.2) is weak compared to the size one in most
of the samples hence �tting is poorly sensitive to exact value of η. Microstrain
in the most of samples takes the value e ≈ 0.2% − 0.3%, with exceptions of the
the ISOP-SubWE/PFE and REF-550 samples. The ISOP-SubWE/PFE sample
exhibits the largest microstrain e ≈ 0.8%. It must be mentioned that in this case
microstrain parameter e correlates with temperature factors and the quantities
are di�cult to evaluate unambiguously. The problem can be related to the fact
that this sample was not measured for higher di�raction angles 2θ & 100◦ (see
�g. 4.3). The lowest microstrain value e ≈ 0.07% was found in the REF-550
sample, which was calcined at the highest temperature. It can be explained by
a generally accepted presupposition that at higher temperatures crystal defects
can be removed more e�ectively. Nonzero microstrain and dislocation densities
were found also by Vives and Meunier [199], Weibel et al. [198] or in [153] and
presence of lattice defects in TiO2 nanocrystallites prepared from sol was em-
phasised by them. Fig. 4.10 depicts a Williamson-Hall plot for anatase in the
ISOP-400 sample. It is obvious that if the microstrain e�ect, slope of the linear
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Figure 4.4: Pattern �t of the nBUT-300 sample. Brookite 211 re�ection is only slightly
visible in the inset plot.

�t, is ignored the crystallites size is strongly underestimated. Event so the Scher-
rer formula [28, 208] is still widely used to determine the crystallites size from a
single re�ection.

The next two columns in the Table 4.3 concern parameters of anatase atomic
crystal structure, the fractional z-coordinate of the oxygen atom z(O) and the
occupancy of the titanium position Occ(Ti). The oxygen z-coordinate z(O) takes
the value z(O) ≈ 0.166 close to value found in literature [206] and structural
databases. The ISOP-SubWE/PFE sample exhibits again the most distinct value
z(O) ≈ 0.170 from all the samples. It was already mentioned that the re�nement
required the oxygen occupancy Occ(O) = 1 and only the titanium occupancy
Occ(Ti) could be re�ned. For samples with larger grain size Occ(Ti) = 1 and
Occ(Ti) was lower than one for small crystalline samples, especially for the ISOP-
SubWE/PFE sample, for which Occ(Ti) ≈ 0.7. If we disregard the REF-400
sample in the Occ(Ti) column of the Table 4.3 and follow the values for the
nBUT series, a trend of increasing occupancy can be observed. Occupancy for
the �rst nBUT-300 sample is Occ(Ti) ≈ 0.9 and increases monotonously to one for
the last nBUT-450 sample. See �g. 4.11. This work is specialised in the LPA and
the present author does not presume to discuss this point fully rigorously. The
problem deals with very small crystallites (D . 10 nm) and assumptions of the
classical di�raction theory may not ful�lled for such small crystals and rather the
Debye-formula method (ch. 2.5, [32]) should be used to simulate di�raction data
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Figure 4.5: Pattern �t of the nBUT-380 sample. The measured pattern of this sample
has a better statistics than e.g. the pattern of nBUT300 (�g. 4.4). Di�raction patterns
and di�erence curves are here usually plotted in the square-root scale. For comparison
the pattern of this sample is plotted in the linear scale in �g. 4.6.

correctly. In this point the present author only addresses the works of Cervellino
et al. [33], [21, 36, 116, 117].

The next two columns in the Table 4.3 concern isotropic temperature factors,
B(Ti) and B(O). At �rst it should be reminded that variable divergence slits were
used in all the measurements to enhance scattered intensity at high di�raction an-
gles. Inaccurate operation of slits, misalignment in slits con�guration, using PSD,
etc. can introduce essential systematical aberrations in the registered intensity
when such setup is used and variable slits con�guration is often not recommended
if temperature factors should be studied. Hence again the obtained values should
be considered with caution. On the other hand all the measurements were done
using the same di�ractometer and very similar setup. The values of isotropic
temperature factors are unusually high, especially the values for oxygen B(O)
in the case of samples with very small crystallites (D . 10 nm). The ISOP-
SubWE/PFE sample shows exerted values B(Ti) ≈ 2.8 Å2 and B(O) ≈ 9.7 Å2.
Values of B(O) are decreasing with growing crystallites dimension for the set of
nBUT samples. From the point of view of di�raction theory described in chapter
2, the 2M factor in eq. 2.14 plays a similar role as the temperature factors. It
describes attenuation of intensity of regular re�ections of an in�nite crystal due
to crystal structure defects. The concept can not be directly used for nanocrys-
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Figure 4.6: Pattern �t of the nBUT-380 sample. Di�raction patterns are here usually
plotted in the square-root scale. For comparison the pattern of this sample is plotted
in the linear scale here and in the square-root scale in �g. 4.5.

tals, but it can be expected that the temperature factors here include also a
contribution from static disorder and defects in nanocrystallites. High values of
temperature factors indicate high level of �disorder� in the atomic structure, free-
dom of surface atoms and possibly imitate some e�ects at the particles surface.
Again the Debye-formula method (ch. 2.5) should be more suitable for study of
this e�ect. Another trend visible is that temperature factors for titanium B(Ti)
are systematically lower than B(O) for oxygen. For the samples with the largest
crystallites even B(Ti) ≈ 0 Å2 within the re�nement error. Zero temperature
factors have no physical meaning and it may be connected with the instrumen-
tal aberrations introduced by variable slits. The values of isotropic temperature
factors B(Ti), B(O) are di�erent for the ISOP-400 and ISOP400/10 samples.
These two samples di�er in calcination time, and this di�erence in temperature
factors is the only distinction between the samples observed by XRD (Table 4.3).
The temperature factors for the ISOP400/10 sample, which was calcined for the
longer time, are slightly higher than values for the ISOP-400 sample.

The next two columns in the Table 4.3 concern re�ned lattice parameters of
anatase. The ISOP-SubWE/PFE sample shows again extremal values. The basal
lattice parameter a for the samples calcined at higher temperatures, with larger
crystallites size (D & 10 nm), takes the value a .

= 3.787 Å, which is very close
to values reported by Vives and Meunier [199], re�ned by the present author and
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Figure 4.7: Pattern �t of the ISOP-400 sample. No peaks of brookite neither rutile
are visible.

its coworkers on a di�erent set of samples (Mat¥j, Kuºel, and Nichtová [190]) or
bulk values [129]. The c parameter of anatase is systematically increasing with
the position in the Table 4.3 with an exception of the REF-400 sample. This
exception indicates that it depends rather on the calcination temperature than
on the crystallite size (�g. 4.12). The values c .= 9.503 Å at 400◦C and c .= 9.518 Å
at 550◦C corresponds again with Mat¥j et al. [190], Vives and Meunier [199] or
Nichtová [129].

Finally the �rst two columns in the Table 4.3 show the crystallite size distri-
bution (CSD) parameters, M and σ∗, which are the most important values here
from a technological point of view. We can see that samples with di�erent crys-
tallites sizes (3�20 nm) were synthesised. The order of samples in the Table 4.3,
constituted according to the median of the log-normal distribution M , is not
changed if M and σ∗ values are converted to the arithmetic mean crystallite size
〈D〉 or the area weighted crystallites diameter 〈D〉A using eqs. 4.5 (see Table 4.4,
p. 103). CSDs for all the samples are depicted in �g. 4.13. It can be seen that (i)
the ISOP-SubWE/PFE sample with the smallest crystallites has a bell shaped
CSD. (ii) The same is true for all the nBUT samples, which form a nice series of
samples of di�erent crystallite sizes. (iii) Also the ISOP samples REF-400 and
REF-550 calcined from sol at di�erent temperatures have clearly di�erent sizes.
The REF-400 sample has crystallites with the median M ≈ 6 nm, whereas the
REF-550 sample has larger crystallites with M ≈ 21 nm. CSD of REF-400 can
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Figure 4.8: Pattern �t of the REF-400 sample. Rutile contribution is clearly negligible.
This sample together with REF-550 (�g 4.9) is later used as a reference sample in section
4.5.

only hardly be distinguished from CSD of nBUT-330 (see �g 4.13). (iv) CSDs
of the ISOP samples ISOP-400 and ISOP-400/10 prepared by low-temperature
hydrolysis and calcined for di�erent time are indistinguishable as it can be seen
from �g. 4.13 or values in the Table 4.3, which are equal within the experimental
error. (v) In addition it can be seen that CSDs of the ISOP-400 and ISOP-400/10
samples exhibit larger relative dispersion of crystallite sizes. Their multiplicative
standard deviation σ∗, which determines the variance relative to crystallites size
M , takes the value σ∗ .= 1.8 and it is less, σ∗ ≈ 1.4− 1.5, for all other samples.

In Li et al. [195], Vives and Meunier [199] or Audebrand et al. [209] a method of
determination of activation energy Ea of grain grow from grain size dependence on
time and temperature was described. Unfortunately the activation energy appears
to be slightly di�erent for samples prepared by di�erent methods [199, 209] and
hence here it can be evaluated only for the series of the nBUT samples, for which
XRD measurement for di�erent calcination temperatures are available. According
to [195, 199, 209] if ln(Dn), where n is a kinetic particle grow exponent, is plotted
against 1/T the slope is equal to negative of Ea/R, where R is the universal gas
constant R = 8.31 Jmol−1K−1. The kinetic grow exponent can be determined
from the dependence of the grain size on the calcination time [209]. Li et al.
[195] found a value for nanocrystalline anatase n = 2. This was later used for
TiO2 also by Vives and Meunier [199]. In �g. 4.14 ln(〈D〉2V ), where 〈D〉V is a
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Figure 4.9: Pattern �t of the REF-550 sample. Rutile is evident in the pattern. In
comparison with REF-400 (�g 4.8) anatase peaks are clearly narrower.

Figure 4.10: Williamson-Hall
plot for of anatase re�ections and
the ISOP-400 sample. Integral
breadths βf are plotted for dif-
ferent re�ections with instrumen-
tal broadening already deconvo-
luted. The breadth of instrumen-
tal broadening is depicted by a
dotted line just for comparison.
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volume weighted size, is plotted against 1/T (K) for the nBUT samples and from
the slope a value of activation energy Ea = 40 ± 3 kJ/mol was determined. Li
et al. [195] reported Ea = 30 kJ/mol and Vives and Meunier [199] a range of
values Ea ≈ 20− 60 kJ/mol in dependence of synthesis conditions and methods
of XRD LPA used. The value determined here approximately agrees with these
results [195, 199].

In this section crystallites size and other parameters were determined from
the XRD data. Crystallite size depends on the synthesis method and tempera-
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ture of thermal treatment (�g. 4.13). At higher calcination temperatures anatase
crystallites are larger and tends to transform to rutile. In samples with very
small crystallites non-negligible fraction of brookite was found (�g. 4.3). Some
structural parameters, lattice parameters (c, �g. 4.12), temperature factors B,
occupation Occ(Ti) (�g. 4.11), systematically vary with grain size and tempera-
ture. Increasing calcination time to 10 hours for the ISOP samples prepared by
low-temperature hydrolysis has no e�ect on samples microstructure from XRD
point of view.

4.4.3 SEM images

XRD di�raction is an indirect technique for analysis of material microstructure.
Scanning electron microscopy (SEM) images of some of the studied samples are
presented in this section for comparison with XRD results.

The SEM microphotographs were not taken by the present author. The orig-
inal authors, who kindly provided them, are listed in �gure captions. Their full
a�liations were speci�ed earlier (see footnote at page 83). All the images were
taken using �eld emission scanning electron microscopes (FE-SEM). Details can
be found in [200, 201].
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Figure 4.13: Re�ned crystallite size distributions (CSDs) of the studied TiO2

nanocrystalline powder samples. Values of the log-normal distribution parameters, M
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Figure 4.14: Determination of
a grow activation energy Ea ac-
cording to [195, 199]. 〈D〉V is the
volume weighted crystallites size
calculated from the re�ned val-
ues in the Table 4.3. T (K) is the
temperature (in Kelvins) at which
samples were calcined.
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Figure 4.15 shows two FE-SEM microphotographs of the nBUT-450 sample.
According to the Table 4.4 the arithmetic mean crystallite size from XRD analysis
is 〈D〉 ≈ 11 nm and this is in qualitative good agreement with particles visible in
the images. The particles do not look as ideal spheres, they are rather con�ned
by blurred facets, but their shape is not clearly anisotropic and the spherical
crystallites model used for XRD analysis is quite satis�ed.

Figure 4.16 shows FE-SEM images of the ISOP-400/10 sample. The left side
images can be directly compared as they have the same magni�cation. According
to the Table 4.4 crystallite size of the ISOP-400/10 sample should be 〈D〉 ≈
15 nm, which is about 1.5× larger than nBUT-450. On the other hand from
�g. 4.13 of CSDs it appears that most of the crystallites have approximately the
same size (D ≈ 15 nm), but there are larger (D & 15 nm) crystallites in the
ISOP-400 samples. This is di�cult to realise from the SEM images.

From SEM microphotographs one can get an idea of particles morphology.
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Figure 4.15: FE-SEM images of the nBUT-450 sample [200] (by J. Franc, Heyrovsky
Inst. Phys. Chem., AV�R). XRD crystallite size 〈D〉 ≈ 11 nm (Table. 4.4).

Figure 4.16: FE-SEM images of the ISOP-400/10 sample [200] (by J. Franc).
XRD crystallite size 〈D〉 ≈ 15 nm (Table. 4.4).

The particles in �gs. 4.16 are blurred but it still can be seen that they are not
ideally spherical and rather form ovals or short oval rods. The e�ect is quite
weak and it was ignored in the XRD analysis, because (i.) XRD patterns �ts are
good when using the simple model of spherical crystallites, (ii.) it is systematic
to use the same model for XRD analysis of all the samples and (iii) the model of
anisotropic crystallite shape was not developed enough in the MSTRUCT at the
time the analysis was done. This problem is discussed more also later in section
4.4.6.

Next few �gures 4.17�4.19 show FE-SEM microphotographs of the samples
REF-400 and REF-550, which are used as reference samples in section 4.5. Ac-
cording to the Table 4.4 and �g. 4.13 the crystallite size of the samples di�er signif-
icantly. The mean crystallite size is 〈D〉 ≈ 7 nm for REF-400 and 〈D〉 ≈ 23 nm
for REF-550. XRD size is in quite good qualitative agreement with the SEM
images (�gs. 4.17, 4.18).

From all the images it can be seen that TiO2 particles likely form agglomerates.
Hence the REF-550 powder was dispersed in ethanol solution by sonication (by
F. Novotný, FJFI, �VUT) and �xed by dropcasting onto a carbon coated TEM
grid. The FE-SEM images of the dispersed REF-550 powder are shown as �g 4.19.
Both larger and smaller crystallites are visible, which justi�es the inclusion of CSD
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Figure 4.17: FE-SEM images of the REF-400 sample (by F. Novotný, Dep. Phys. Elec.,
FJFI, �VUT and L. Mat¥jová, Inst. Chem. Proc. Fund., AV�R). XRD crystallite size
〈D〉 ≈ 7 nm (Table. 4.4).

Figure 4.18: FE-SEM images of the REF-550 sample (by F. Novotný and L. Mat¥jová).
XRD crystallite size 〈D〉 ≈ 23 nm (Table. 4.4).

in the model. Unfortunately the photos of particles are not very sharp.

4.4.4 Comparison of XRD results with speci�c surface mea-

surements

The powder samples studied were originally prepared for applications in catalysis
and hence their speci�c surface area is a technologically important parameter.
The speci�c surface area of the powder or porous solid sample in contact with a gas
phase per unit mass of the sample can be characterised by a quantity called SBET
(m2/g) (BET - Brunauer, Emmett, and Teller [210]). It is usually measured [198,
209] by nitrogen physisorption and SBET values are available (Table 4.4) for all the
samples studied here. They were measured by Dr. L. Mat¥jová. Details can be
found in Mat¥jová et al. [200, 202]. From XRD crystallite size a theoretical total
surface area SXRD of crystallites per unit mass of the sample can be calculated. It
measures crystallites surface from the �inner� side, whereas SBET is proportional
to the surface accessible for a gas from the �outer� side of particles. It is quite
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Figure 4.19: FE-SEM images of the REF-550 sample after dispersing the powder in
ethanol solution by sonication [201] (by F. Novotný). XRD crystallite size 〈D〉 ≈ 23 nm
(Table. 4.4).

common to �nd in literature comparison of these two values (e.g. for CeO2 in
Audebrand, Au�rédic, and Louër [209] or for TiO2 in Weibel et al. [198]).

FWHM101
f 〈D〉 〈D〉A SXRD SBET DBET

ID (deg) (nm) (nm) (m2/g) (m2/g) (nm)

ISOP-SubWE/PFE 1.76 3.5 4.8(5) 323 283 5.4
nBUT-300 1.24 4.8 6.4(3) 239 170 9
REF-400 0.92 6.7 9.0(2) 171 72 21

nBUT-330 0.96 6.9 9.0(5) 170 135 11
nBUT-380 0.82 9.1 11.3(3) 136 96 16
nBUT-450 0.54 11.2 15.7(7) 98 12.3 125

ISOP-400/10 0.28 15.4 30(5) 51 57 27
ISOP-400 0.30 15.5 31(5) 50 72 21
REF-550 0.29 22.6 30.7(5) 50 11.7 132

Table 4.4: Arithmetic mean crystallite size 〈D〉 and area weighted crystallite size
〈D〉A calculated from CSD parameters from the Table 4.3. Crystallites surface SXRD
per unit mass calculated according to eq. 4.10 with ρanatase = 3.89 g/cm3. Measured
value of speci�c surface area SBET [200, 202] (by L. Mat¥jová, ÚCHP AV�R) and BET
particles size DBET according to eq. 4.11. FWHM values of anatase 101 re�ection with
deconvoluted instrumental broadening are also listed.

Surface per unit mass of the sample with structural density ρ and with spher-
ical crystallites with size distributed according to CSD p(D) is

SXRD =

∫
πD2 p(D)dD∫
ρ1

6
πD3 p(D)dD

= K
〈D2〉
ρ〈D3〉

=
K

ρ〈D〉A
, (4.10)

whereK = 6 for spheres and it is a constantK ≥ 6 for other shapes of crystallites,
which have a higher surface to volume ratio. Equation 4.10 shows that surface
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area of crystallites per unit volume SXRD is inversely proportional to the area
weighted crystallites size 〈D〉A. In literature [198, 209] the expression 4.10 is
rather used in an opposite way to estimate the particles size DBET from the
measured SBET [209]

DBET[nm] =
K 103

ρ[g/cm3]SBET[m2/g]
, K = 6 . (4.11)

Here the present author would like add a very simple extension of the expression
4.10 for SXRD. As we can see there are possibly multiple crystalline phases in the
samples. A large fraction (x ≈ 23 wt.%, Table 4.3) of a minor brookite phase was
detected in the ISOP-SubWE/PFE sample. If surface of all crystalline fraction
should be included in SXRD we have to consider that in the sample of weight M
there are

Ni =
xiM∫

ρi
1
6
πD3 pi(D)dD

spherical crystallites of a phase labelled i, which weight fraction in the sample is
xi. If we include all crystalline phases than we have for SXRD

SXRD =
∑
i

xiKi

ρi〈D〉i,A
, (

∑
i

xi = 1) . (4.12)

Values of SXRD and DBET calculated according to eqs. 4.10 and 4.11 are listed
in Table 4.4. The structural density of anatase calculated by MSTRUCT was
used ρanatase = 3.89 g/cm3. For the ISOP-SubWE/PFE sample the eq. 4.12 and
ρbrookite = 4.13 g/cm3 were used, but because the crystallite sizes of anatase and
brookite are very similar the correction resulted in only a small change SXRD

.
=

323→ 321 m2/g. The values SBET vs. SXRD are plotted also in �g. 4.20.
In �g. 4.20 and Table 4.4 we can see that the total surface of crystallites

per unit mass SXRD and the speci�c surface area SBET are comparable very well
at least in the order of magnitude for most of the samples with exceptions of
the nBUT-450 and REF-550 samples, which were calcined at the highest tem-
peratures. They have SBET ≈ 10 m2/g, what is by an order of size less than
SXRD ≈ 50 − 100 m2/g as expected from their XRD size. Also their DBET size
is much larger than XRD 〈D〉 (Table 4.4). This indicates [209] a high level of
agglomeration of crystallites into larger particles, which reduces their e�ective
speci�c surface. In �g. 4.20 we can see that SBET values of the other samples
from the nBUT series are nicely proportional to 1/〈D〉A. In addition, the slope
of the linear dependence is very close to the ideal value depicted by a dotted
line, which indicates that not much surface is missing. The ISOP-SubWE/PFE
sample with the smallest crystallites shows even better agreement between XRD
and speci�c surface. Lookin at all the samples calcined at 400◦C we can see in
�g. 4.20 that their SBET values are very close, whereas their crystallite sizes di�er.
It is emphasised by a horizontal dotted line in �g. 4.20. It may indicate that SBET
is strongly in�uenced by temperature of sample treatment rather than only by
crystallite size. It is also clearly apparent that much better ratio of SBET to SXRD
was achieved for the ISOP-400 samples prepared by low-temperature hydrolysis
than those from the sol (REF-400). This can be explained by to ways. (i.) The
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SXRD calculated from XRD CSD parameters from Table 4.3. Values are taken from
Table 4.4, SBET value for ISOP-SubWE/PFE corrected according to eq. 4.12.

crystallites of ISOP-400 samples are larger (> 2×) than crystallites of REF-400,
hence smaller surface area to volume ratio is expected. (ii.) In the REF-400 sam-
ples probably nonideally �ne network of pores is formed. Compare SEM images
�gs. 4.16 and 4.17 (p. 101�102). We can also see that SBET to SXRD ratios are
unexpectedly high for the ISOP-400 samples and the value for ISOP-400 is even
higher than one. This can have various reasons. (i.) There is some surface acces-
sible for gas in SBET, which is not accounted in SXRD. This can be e.g. surface of
an amorphous fraction in the sample. (ii.) There is better surface/volume ratio
for the particles, which is possible e.g. for crystallites of nonspherical shape, what
again corresponds with the morphology of particles in SEM images (�g. 4.16) of
the ISOP-400/10 sample.

The last comment concerns comparison of the e�ective particles size DBET

from the speci�c surface measurements with the SEM images. Especially for the
case of the nBUT-450 and REF-550 samples, for which DBET & 130 nm and XRD
〈D〉 ≈ 11 − 23 nm, the XRD size clearly better corresponds with dimensions of
particles in the SEM images (�gs. 4.15 and 4.17).

4.4.5 Summary

In this section, TiO2 nanocrystalline powder samples were studied by XRD line
pro�le analysis utilising the whole powder pattern modelling method. The XRD
results were compared with SEM microphotographs of studied samples and spe-
ci�c surface measurements.

From the analysis correlation between crystallite size, samples preparation
conditions, calcination temperature, phase composition and other structural pa-
rameters (lattice parameter c, occupancy Occ(Ti) and isotropic temperature fac-
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tors B) were studied.
The main distinction of the WPPM method from a classical Rietveld re�ne-

ment is an adoption of the model of spherical crystallites distributed according
the log-normal distribution. Parameters of crystallite size distribution (CSD),
M , σ∗, are re�ned from XRD data (Table 4.3) and the whole distribution is de-
termined (�g. 4.13). Dispersion of crystallite sizes can be simply described and
analysed. From the CSD parameters other quantities such as area weighted crys-
tallite size etc. can be simply evaluated and compared with other methods as
SEM or speci�c surface area (�g. 4.20). The spherical crystallites model with
the log-normal CSD has been included in common crystallographic software (e.g.
MAUD) and also in some commercial programs, in last years. The method has
two restrictions. Both can be bypassed Leoni and Scardi [12], Scardi and Leoni
[135]. One is shortly discussed in the next paragraph and the second is solved in
section 4.5.

The work concerning XRD analysis of the TiO2 nanocrystalline powders in
the section 4.4 was partially published together with samples synthesis conditions
and results found by other methods in Mat¥jová et al. [200, 202].

4.4.6 Further outlook

Real crystals often have highly anisotropic shape that can be related to anisotropy
of their surface energy density. It takes extremal values at speci�c directions and
this results in creation of crystal facets. The phenomenon is described by the
well known Wul� construction. Ceria (CeO2), a material similar to TiO2, is often
studied in many di�raction papers [12, 211] as a model material because it is cubic
and tends to form simple spherical crystallites. Titania is more complicated.
Anatase is tetragonal and it is believed that its crystals typically have shape
of bipyramids formed by {101} facets. Barnard and Zapol [212] theoretically
studied phase stability and morphology of titania nano-particles and they found
that anatase crystallites prefer shape of a truncated bipyramid (�g. 4.21), which
proportions can be in�uenced by e.g. surface hydrogenation. Anatase crystals
of a shape of truncated bipyramids were synthesised by Yang et al. [197]. The
crystallites were strongly shortened in the c-direction having large fraction of
{001} facets but they were about few microns large. In recent papers of Cernuto
et al. [118], Jensen et al. [196] anatase nanocrystals of anisotropic shape were
reported. In [118, 196] nanocrystallites were on the contrary elongated along the
c-direction.

In this point we can refresh discussion concerning particles of oval rods shape
in the SEM images (�g. 4.16, p. 101) of the ISOP-400/10 sample. At �rst let
us assume that the elongated direction of crystals is independent of orientation
of their crystal lattice. If the spherical crystallites model is used, this results
in apparent broadening of the re�ned CSD. This e�ect can partially explain the
higher crystallite size dispersion evaluated in the ISOP-400 samples. The CSDs
of the both ISOP-400 samples are quite wide (�g. 4.13 as compared with other
samples and it was already mentioned that the multiplicative standard deviation
is also higher σ∗ = 1.8. In the second case when the elongated particle direction
is connected to the crystal lattice orientation, an anisotropic (hkl dependent)
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Figure 4.21: Crystal with a
shape of a truncated bipyramid
[197, 212].
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Figure 4.22: Detail of the pattern �t of the ISOP-400 sample (�g. 4.7). Deviations be-
tween the measured and calculated patterns close to the anatase 004 and 200 re�ections
are depicted.

di�raction line broadening is expected. In the pattern �t of the ISOP-400 sample
(�g. 4.7, p. 96) besides the strongest feature in the di�erences curve at 2θ ≈ 25.3◦

(the 101 re�ection) a less pronounced mutually opposite e�ects are visible at 2θ ≈
37.9◦ and 2θ ≈ 48◦. The problem is better visible in the detail in �g. 4.22, where
anatase 004 and 200 re�ections of the ISOP-400 sample are depicted. In �g. 4.22
it is clearly visible that deviations between the measured and the calculated
curves are of opposite sign at anatase re�ections 004 and 200. If crystallites
shortened along the c-direction relative to the basal a-direction were assumed,
the 004 peak would be wider and lower in absolute intensity, whereas the 200
peak would be narrower and higher in absolute intensity and the overall �t may
be better. Described e�ects are very weak and were not treated in this work,
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but the anisotropic crystallite size model assuming e.g. the anatase crystallites
of the bipyramidal shape (�g. 4.21) propose a simple physically relevant model.
Theory including such simple polyhedral shapes in the WPPM, that replaces the
basic equation 4.9 for the size Fourier coe�cients AS(ρ‖), was already developed
by Scardi and Leoni [135] or Komrska [213], [214, 215].

4.5 Histogram like Crystallite Size Distribution

4.5.1 Introduction

In the previous section 4.4 a standard WPPM method was applied to a series
of TiO2 nanocrystalline powder samples. Size broadening was the most essential
e�ect determining width and shape of di�raction lines. The e�ect was described
by the model ([11, 23, 204]) of spherical crystallites with crystallite diameter
distributed according to the log-normal distribution (eq. 4.4). Di�erent analyt-
ical function can also be utilised as a model of CSD [135], but the choice of a
particular function for CSD is always an presumption of the model. However
Leoni and Scardi [12] introduced a generalised approach. Electron microscopy
(EM) histogram like representation of the CSD was assumed and the histogram
frequencies were re�ned from the XRD data. The method was applied to metal
oxide (CeO2,Cu2O) nanocrystalline powders in [10, 12, 36, 216�218]. It was im-
plemented in PM2k software by Leoni et al. [24] and in TOPAS by David et al.
[218].

In this section, the WPPM method with the size distribution histogram model
[12] is tested for analysis of nanocrystalline TiO2 samples. The slightly modi�ed
model used in the MSTRUCT is described in the next paragraph (4.5.2). It is
applied to the REF-400 and REF-550 samples and their mixtures (section 4.5.4).
Pros and cons of the method are discussed.

4.5.2 Histogram model - Fourier coe�cients

The spherical crystallites are assumed again. The quality of all experimental
patterns treated in this section is practically the same as these of the refer-
ence samples REF-400 and REF-550 (�gs. 4.8 and 4.9, p. 97�98). In di�erence
curves in these �gures the same features can be observed, which were discussed
in section 4.4.6 (�g. 4.22). This could be a �ngerprint of anisotropic crystallites
shape. But the di�erences are even less pronounced than for the ISOP-400 sample
(�g. 4.7) and the GoF ∼ 1.5 factors (Table 4.3) are good. Hence for simplicity
the spherical crystallites model was chosen.

An implementation of the model here di�ers a little from the original one of
the Leoni and Scardi [12]. It was considered that the peak width (FWHM) is
inversely proportional to the crystallite size (D) and if the peak width can be
determined with a �xed experimental uncertainty (∆FWHM) the error of de-
termination of the crystallite size decreases with the size ∆D ≈ D2 · ∆FWHM .
Distinguishing between a 5nm and a 10nm crystal is easier than between a 80nm
and a 85nm one. The aim of the work was also testing, how small and large
crystallites of the same phase can be distinguished in their mixture. For this
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reason a wide range of crystallite sizes in the histogram was required. The imple-
mentation in the MSTRUCT allowed that the bins in the histogram did not have
equal widths and were logarithmically spaced in the range (D . . .Dmin − Dmax)
1�100 nm (see e.g. �g. 4.23). This is more similar to what has been used by David
et al. [218] than originally in [12].

Each bin is described by the lower D1(i) and the upper limit D2(i) of the
crystallite sizes. The crystallite size D within the bin has an equal probability
density P(i) (�g. 4.23). Since the crystallites contribute to the integrated intensity
proportionally to their volume [11, 12] it is useful to introduce in addition an
auxiliary volume weighted distribution

Pw
(i) ≡ P(i) ·D3

(i) , where D(i) ≡ (D1(i) +D2(i))/2 (4.13)

is an arithmetic mean crystallite size in the i-th bin. Histogram-like CSD is
depicted in �g. 4.23. It should be mentioned that Pw

(i) de�ned by eq. 4.13 and
depicted in the right part of �g. 4.23 is not a �true� volume weighted distribution,
but rather only its approximation.1

Figure 4.23: Histogram representation of CSD. The left plot represents the arithmetic
CSD P(i), the right plot the auxiliary volume weighted distribution de�ned by eq. 4.13.
The �gure shows the starting histogram con�guration.

Size Fourier coe�cients are needed now. We can use a general formalism
derived by Scardi and Leoni [135] or equivalently evaluate eq. 4.3. In the �rst
step AS(ρ‖) can be calculated for a sphere of diameter D [11, 26, 135]

AsphS (ρ‖, D) =

∫
d3rs Ωsph(rs)Ωsph(rs − ρ‖)

=
π

6
D3

(
1− 3

2

ρ‖
D

+
1

2

ρ3
‖

D3

)
, 0 ≤ ρ‖ ≤ D

=
π

6
D3

(
1− 3

2

ρ‖
D

+
1

2

ρ3
‖

D3

)
H(D − ρ‖) ,

1 If CSD is de�ned by a histogram-like arithmetic distribution P(i) then shape of each
histogram bar representing the �true� volume weighted distribution is modi�ed by D3 function.
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where H(x) is the Heaviside step function. In the next step the sample averaging
〈. . . 〉 in eq. 4.3 must be evaluated, which means in this case the integration over
CSD

A(i)(ρ‖) =

∫ D2(i)

D1(i)

AsphS (ρ‖, D) dD

=
π

24



D4
2(i) −D

4
1(i) − 2ρ‖(D2(i) −D1(i))·

(D2
1(i) +D1(i)D2(i) +D2

2(i) − ρ
2
‖) . . . 0 ≤ ρ‖ ≤ D1(i)

(D2(i) − ρ‖)3(D2(i) + ρ‖) . . . D1(i) ≤ ρ‖ ≤ D2(i)

0 . . . D2(i) ≤ ρ‖ ,

AS(ρ‖) =
∑
i

A(i)(ρ‖)P(i) /
∑
i

A(i)(0)P(i) . (4.14)

Fourier coe�cients (eq. 4.14) are normalised to AS(ρ‖ = 0) = 1, which means
that they do not include a total volume of crystallites. The volume is accounted
in the MSTRUCT elsewhere, in the Scale factors.

Few constraints were imposed on the histogram CSD. It is assumed that there
are no crystallites smaller than Dmin and larger than Dmax

P(i)(Dmin) = Pw
(i)(Dmin) = 0 , (4.15a)

P(i)(Dmax) = Pw
(i)(Dmax) = 0 . (4.15b)

It is clear from the expression 4.14 for AS(ρ‖) that di�raction image does not
depend on a normalisation factor of the histogram frequencies and if we require an
unique solution, the distribution should be normalised. For the reasons clari�ed
later the area below the auxiliary volume weighted distribution is kept constant
during re�nement

N∑
i=1

Pw
(i)(D2(i) −D1(i)) = const . (4.16)

Starting distribution, a wide bell shaped peak settled in the middle of the
Pw

(i) histogram is depicted in �g. 4.23. At the beginning of the MSTRUCT run
it is loaded from a �le, where histogram bins, starting histogram frequencies and
frequencies re�nement �ags (�xed/re�ned status) are de�ned. The number of
bins was always N = 20.

# example: wD_AnataseITF.dat - input file for a histogram CSD model

# D1(nm) D2(nm) distrib fixed (0-No/1-Yes)

1.00 1.26 0.000 0

1.26 1.58 0.003 0

1.58 2.00 0.019 0

...

63.10 79.43 29200.549 0

79.43 100.00 7607.890 0
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It must be also noted that the re�ned parameters in the MSTRUCT are directly
distrib values in the above example �le. They are equal to area of each bin in
the volume weighted distribution

N(i) = Pw
(i)(D2(i) −D1(i))

= P(i)

(
D1(i) +D2(i)

2

)3

(D2(i) −D1(i)) (4.17)

≡ distrib .

It is now clear that normalisation condition 4.16 reduces to
∑

iN(i) = const.
To ensure validity of the distribution normalisation constraint 4.16 the LSQ-

algorithm in the ObjCryst had to be slightly modi�ed. In a standard nonlinear
LSQ-�tting method a vector of corrections δa of the current model parameters a
is searched by solving a set of linear equations [219, ch. 15]∑

l

αklδal = βk ,

where αkl is the curvature matrix (an approximation of a half of Hessian). The
condition 4.16 can be transformed to a simple linear constraint∑

l

Cklδal = 0 ,

where Ckl is generally a matrix of constraints. Couple of methods are available
[220, ch. 12], [221, 222] for including a linear constraints into the LSQ-algorithm.
In the MSTRUCT the one using the generalised singular value decomposition
[222, 223] was utilised.1

The basic histogram-like CSD model was established in this section. His-
togram frequencies can now be re�ned in the MSTRUCT as any other ordinary
parameters.

4.5.3 Reference samples - re�nement algorithm

The ISOP samples REF-400 and REF-550 prepared from sol were chosen for
testing the histogram CSD model. As it can be seen from �g. 4.13 (p. 100) the
samples form a couple with essentially di�erent crystallite size. The maxima of
their arithmetic distributions are clearly separated. The mean crystallite size
is 〈D〉 .

= 6.7 nm in the REF-400 sample and 〈D〉 .
= 22.6 nm in the REF-550

sample. The quality of �ts of the REF-400 and REF-550 patterns (�gs. 4.8 and
4.9, p. 97�98) with the log-normal CSD model is very good, hence the model can
be used here as a reference. The histogram CSD model is used only for the major
anatase phase, whereas the basic log-normal model is kept for the minor rutile
fraction in the REF-550 sample.

1Unfortunately because for simplicity Lapack GSVD routines [224] are utilised, which com-
plicates implementation of the CSD histogram model in Windows, the MSTRUCT does not
implement the model on Windows correctly on the date this work was �nished. The model is
available only in the Linux version [225].
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The histogram frequencies were re�ned from the REF-400 and REF-550 di�rac-
tion patterns. The quality of the �t was practically the same as for the log-normal
distribution model and also the GoF factors were very similar. Re�ned distribu-
tions are depicted in �g. 4.24 for the REF-400 sample and in �g. 4.25 for REF-550.
Whereas the re�ned histogram CSD for the REF-400 sample looks reasonably and
�ts the reference log-normal CSD very well, the results are not so good for the
REF-550 sample. The re�ned volume weighted CSD (Pw

(i) (the right-side sub-
plot in �g 4.25) corresponds to the reference CSD, but the arithmetic CSD (the
left-side subplot) has no physical validity. This is clearly connected with small
crystallites (low D) noisy bins in the volume weighted CSD. When the re�ned
values N(i) (eq. 4.17) are transformed to P(i), they are dived by very small num-
bers for the case of small crystallites and errors are enhanced. The noise in the
low bins of Pw

(i) originates from di�culties in separation of di�raction signal from
the background. Very small crystallites contribute to di�racted intensity with
their volume very weakly as compared to large crystallites. Intensity di�racted
by them is also spread in tails of the peaks and possibly hidden by peak overlap,
di�cult to be separated correctly from background.

Figure 4.24: Re�ned histogram CSD of the REF-400 sample. No regularisation was
used. (GoF = 1.43, χ2

deriv = 2 · 105, χ2
w−deriv = 0.7 · 104)

Solid line - the reference log-normal distribution (Table 4.3).

The background was modeled by two components for the studied samples. The
�rst component was an interpolated background with manually de�ned points.
This is visible as a shadow dashed line and shadow points in the patterns �ts
(�g. 4.37). The second component was a Chebyshev polynomial in sin θ of a quite
low order, usually of the �rst or the second order, which was superimposed to the
interpolated background. The coe�cients of the polynomial were re�ned. Hence,
the �tting algorithm in the MSTRUCT has a possibility to slightly transpose the
intensity between the background and peaks tails. But this is actually not wrong.

The problem is rather related to the choice of the log-spacing for the CSD
histogram. The re�nement would be more stable if the low (D(i)) bins were
wider and less numerous. But it would result in poorer resolution on the other
side. Such problem is usually solved in physics by a simple algorithm. Histogram
re�nement is started with a very roughly spaced grid and the histogram spacing
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Figure 4.25: Re�ned histogram CSD of the REF-550 sample. No regularisation was
used. (GoF = 1.42, χ2

deriv = 6 · 107, χ2
w−deriv = 1.3 · 104)

Solid line - the reference log-normal distribution.

is gradually decreased by dividing each bin in iterative steps. This was used by
[12]. In this work a di�erent strategy was utilised. An assumption of a smooth
CSD was declared in the method explicitly by applying regularisation conditions
to the searched CSD. An advantage of this approach is that the re�ned object,
CSD histogram here, is not changed during the re�nement, the number of bins is
not multiplied, only an additional optimisation function has to be added to the
pattern chi-square (χ2

pattern). This is easier to implement in the MSTRUCT and
also more general than the single-purpose method.

The regularisation methods are widely used in crystallography to reach smooth-
ness of solution, e.g. in the problem of deconvolution [26, 131, 132, 226]. A
measure of smoothness is taken as an integral of the square of the derivative

χ2
reg =

∫ [
dP (D)

dD

]2

dD (4.18)

≈
P 2

(1)

D(1)

+
N∑
i=2

(P(i) − P(i−1))
2

D(i) −D(i−1)

+
P 2

(N)

Dmax −D(1)

≡ P · Ĥ · P ,

where conditions 4.15a were used. The sum can be formally casted into the
matrix formalism, by de�ning a regularisation matrix Ĥ and a CSD vector P .
The regularisation operator χ2

reg (eq. 4.18) multiplied by a weighting factor λ can
be added to χ2

pattern and form the chi-problem

χ2
problem = χ2

pattern + λ · χ2
reg ,

which is minimised. In the same way the arithmetic CSD is regularised, the
volume weighted distribution Pw

(i) can be treated. The regularisation weighting
factor λ has to be somehow set. This is described later, but it is important to
note here that for all the results presented the total value of the regularisation
factor (λ · χ2

reg) was kept on a very small fraction of χ2
pattern.

The method was applied to the REF-550 sample. In the �rst case the arith-
metic CSD was regularised and in the second the regularisation was imposed
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Figure 4.26: Re�ned histogram CSDs of the REF-550 sample. Di�erent types of
regularisation were used. Subplots (a�b) depict the case no regularisation was used, in
(c�d) the arithmetic CSD (P(i)) was regularised and in (e�f) the volume weighted CSD
(Pw(i)) was regularised.
(a�b) GoF = 1.42, χ2

deriv = 6 · 107, χ2
w−deriv = 1.3 · 104,

(c�d) GoF = 1.45, χ2
deriv = 4.5 · 102, χ2

w−deriv = 2.2 · 102,

(e�f) GoF = 1.44, χ2
deriv = 2.5 · 105, χ2

w−deriv = 0.8 · 102.

Solid line shows the reference log-normal distribution.

to the volume weighted distribution Pw
(i). Re�ned distributions are depicted in

�g. 4.26. The volume weighted CSDs (b, d, f) mutually di�er only in details
of their shape. Their centers are located at the same positions and their vari-
ances are similar. If any type of regularisation is employed all the distributions
are smoother. Unfortunately the arithmetic CSDs strongly depend on the type
of regularisation. If the volume weighted size distribution Pw

(i) is regularised, it
results in an extremely asymmetric exponential-like arithmetic size distribution
P(i) (�g. 4.26e). There is a huge number of the smallest crystallites, which arise
from the requirement of the smoothness of Pw

(i). If regularisation is applied to
the arithmetic CSD the best result is achieved (see �g. 4.26 c�d). An erroneous
and noisy arithmetic distribution obtained without regularisation is converted to
a smoother peak-like distribution. Unfortunately, the re�ned CSD di�ers from
the expected log-normal (�g. 4.26c). The histogram distribution reveals larger
fraction of small crystallites (D . 10 nm). The worst message comes from the
fact that, whereas the arithmetic CSDs depend strongly on the regularisation
type, the di�erence in measured and calculated XRD data is the same indepen-
dent of the regularisation, as can be seen from GoF values listed in the caption
of the �gure 4.26. This clearly indicates that from the measured REF-550 XRD
pattern, with its statistical quality, it is not possible to determine the arithmetic
CSD unambiguously. On the other hand the similarity of volume weighted CSDs
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shows that the method can determine reasonably at least the volume weighted
CSD and the problem is in converting it to the arithmetic CSD if both small
and large crystallites can be present in the sample. Remember that for small
crystallites (REF-400) the method was working �ne even without regularisation
(�g. 4.24) and it would behave well for the large crystallites if the bin width and
the minimum crystallite size (Dmin) were larger.

It can be concluded that any type of regularisation to not a�ect essentially
the resulting volume weighted CSD but in�uences strongly the arithmetic CSD.
The best results were �nally archived when both type of regularisation were used.
An algorithm, described below, was adopted and tuned on reference samples and
applied in further analysis.

In the MSTRUCT the CSD histogram re�nement was described with the
following input. The �rst lines implies only a modi�cation in the re�nement
for the histogram CSD model. The central part describes the histogram CSD
model for the anatase phase. Control parameters of the re�nement procedure are
speci�ed at the last line.

// Job type

3 job type (0-data refinement,...,3-histogram ref.)

...

...

// the 1st phase - Size broadening - refinable Size Distribution model

SizeDistrib sProfA broadening component type, effect name

file distribution type (file/create)

wD_AnataseITF.dat name of file with prescribed weighted distribution

2 number of LSQ regularization methods used

deriv 1.e-1 LSQ regularization method type, LSQ weight factor

vol-deriv 1.e+1 LSQ regularization method type, LSQ weight factor

//create distribution type/source (file/create)

//log 1.0 100. 20 type(linear/log/sqrt),Dmin(nm),Dmax(nm),nb. bins

...

...

// number of refinement interactions

-5 20 5 0.02 nb reduced, nb full iter., nb cycles, tuning coef.

...

Some special words are highlighted in the code. "SizeDistrib" is the name
for the histogram CSD e�ect. "deriv" and "vol-deriv" are labels for the reg-
ularisation type. Numbers beside them are related to λ weighting factors. The
�rst number at the last line speci�es the number of re�nement iterations with the
reduced set of model parameters. It is negative, which means that exactly the
number of iterations are done independently the optimisation converged or not
during them. The second value speci�es the number of iterations with full param-
eters set. For some parameters, e.g. scale factors or histogram frequencies, the
calculation of derivatives needed for the Levenberg�Marquardt algorithm, can be
highly optimised, these parameters form the reduced parameters set. Contrary
for some parameters as e.g. microdeformation (e), or crystal structure data the
MSTRUCT is not optimised and they are not included in the reduced parameters
set. In summary, during the �rst stage with the �xed number of iterations only
the scale factors and histogram parameters are re�ned, whereas during the sec-
ond stage with more maximum iterations (but the converge can be achieved more
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quickly), all parameters are re�ned. This is not essential part of the algorithm. It
only can save some computation time. The third value is the number of repeating
cycles. The reduced and full re�nement procedures are repeated subsequently.
Hence the maximum possible number of iterations is the sum of absolute values of
the �rst two parameters multiplied by the third one. The reason of repeating the
re�nement procedure is related to the last parameter, which is a small �oating
point value specifying the starting fraction the regularisation operators contribute
to the total minimised chi-square. This value is set small (e.g. "0.02"), which
means that the regularisation part of the problem chi-square should be only 2%
of the pattern chi-square. Namely in this case it holds

χ2
problem = λ∗1 · χ2

deriv + λ∗2 · χ2
w−deriv ,

where χ2
deriv is the chi-square of the regularisation operator of the arithmetic CSD

and χ2
w−deriv is the same quantity for the volume weighted CSD. At the start of

the whole re�nement and generally at the beginning of each repeating cycle the
λ∗i factors are scaled to ful�l

0.02 · χ2
problem = λ∗1 · χ2

deriv + λ∗2 · χ2
w−deriv .

From the user speci�ed λi the relative values of λ∗i are set at the same time

λ∗i = λi · χ2
reg−i ,

which implies that in the next top cycle the weight of the regularisation operator
is proportional to its current value. If the given operator is small, the distribution
is smooth, its weight in the next turn will be small, whereas if the operator is
still high, strong force will be applied in next iterations to minimise it.

In �gure captions (�gs. 4.24 or 4.26) χ2
deriv and χ

2
w−deriv values are speci�ed for

di�erent CSDs. The values can be very di�erent for e.g. narrow distributions of
small crystallites or for large crystallites with a high size dispersion. It is di�cult
to pre-estimate them and hence they are treated by the algorithm described
above. Manually only the λi factors can be set. They were tuned on the data of
the reference samples (REF-400 and REF-550) and the same settings was used
for all other.

The �nal histogram CSDs for the REF samples when both the regularisa-
tion methods were applied are shown in �g. 4.27. The histogram CSDs and the
reference log-normal distributions �t very well. In the case of REF-400 sample
both the arithmetic and the volume distribution were practically only slightly
smoothed, whereas the shape of the arithmetic CSD of the REF-550 sample
changed substantially due to regularisation.

4.5.4 Mixed samples

A set of mixtures of the reference samples (REF-400 and REF-550) was prepared
to test the method. Measured XRD patterns of these mixed samples were �tted by
the WPPM method using the histogram model and the described algorithm. The
anatase crystallites originating from both the reference samples were considered
as a single phase and the histogram CSD was determined for each sample. The
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Figure 4.27: Re�ned histogram CSDs of the REF-400 and REF-550 samples. These
solutions were obtained from the noisy distributions by including both type of regu-
larisation (λderiv = 0.1, λw−deriv = 1.0). Subplots (a�b) show CSDs of the REF-400
sample, (c�d) results for the REF-550 sample.
(REF-400 a,b) GoF = 1.50, χ2

deriv = 1.4 · 104, χ2
w−deriv = 4.7 · 103,

(REF-550 c,d) GoF = 1.47, χ2
deriv = 3.5 · 102, χ2

w−deriv = 1.2 · 102.

Solid lines depict the reference log-normal CSDs.

re�ned histogram CSDs in the mixed samples then can be compared with the
CSDs calculated from the known fractions of reference samples.

It was shown in section 4.4, that some structural parameters, e.g lattice pa-
rameters (�g. 4.12, p. 99), depend on the crystallite size and also the values for
the REF-400 and REF-550 samples are di�erent (see Table 4.2, p. 4.2). Hence
the model assumption, that the crystallites originating from the couple of the
reference samples can be considered as the same crystalline phase, is clearly not
valid. Because the variability of structure parameters with crystallite size is a
general problem, the mistake introduced here by adopting the assumption mir-
rors the systematic error possibly always present in such a XRD analysis. In order
to avoid the approximation a more sophisticated model based on some empirical
data or on ab-initio simulations should be introduced. This is well above the
scope of this work and hence the above assumption is included and the results
and the quality of �ts can be slightly a�ected.

Six mixtures were prepared. The weights of components in the mixtures
are listed in the Table 4.5. We focus the attention to the analysis of anatase,
however small fraction of rutile was present in the REF-550 sample. For further
analysis it is suitable to know how big fraction (x) of anatase in the given mixed
sample comes from one of the reference samples, e.g. from the REF-400. This
can be calculated from weight values (m400, m550) (Table 4.5) and the minor
phase fractions in the REF samples determined by XRD (Table 4.2, p. 88). It
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must be emphasised here, that no knowledge about rutile is used in re�nement of
anatase CSDs and anatase and rutile scale factors in mixtures constitute a data
set, which can be used for an independent quantitative phase analysis (QPA).
The rutile weight fractions (xR−XRD) can be evaluated from the XRD data using
equation in Table 4.2. On the other hand, if we assume a rutile weight fraction
r400 in the REF-400 sample and r550 in REF-550, the rutile fraction in each sample
can be easily calculated as

xR−W =
r400 ·m400 + r550 ·m550

m400 +m550

.

The values obtained from both methods can be compared and rutile weight frac-
tions in the reference samples can be optimised to �t the whole data set (six
mixtures, two reference samples). The �t depicted in �g. 4.28 gives

r400 = 0.25± 0.15 wt.% , r550 = 6.2± 0.1 wt.% . (4.19)

The obtained values are in good agreement with results obtained earlier for the
pure reference samples (p. 88, Table 4.2: r400

.
= 0.4 wt.%, r550

.
= 6.8 wt.%).1

Good linearity and no large discrepancies in �g 4.28 between the rutile fractions
evaluated from the sample weights (xR−W ) and the values from QPA (xR−QPA)
con�rm also consistency of the samples set.2

Figure 4.28: Correlation be-
tween rutile fraction (xR−XRD) in
the samples determined by the
conventional QPA of the XRD
data and the fraction (xW ) eval-
uated from sample weights (Ta-
ble 4.5) and weight fractions
(eq. 4.19) of rutile in the reference
samples. Dashed line is a diagonal
guide for the eye.
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From values in eq. 4.19 the weight fraction of anatase crystallites originating
from the REF-400 sample can be simply evaluated

xW−QPA =
m400 · (1− r400)

m400 · (1− r400) +m550 · (1− r550)
. (4.20)

The values are listed in the Table 4.5 for comparison with values determined by
a di�erent method later. They are close to nominal values f0, which are listed
also there.

1The value for REF-400 (r400) is nonzero only formally. It is clear that there is most likely
no rutile in REF-400 (see �g. 4.8, p. 97).

2A signi�cant random error can be introduced e.g. during preparation of mixtures of ref-
erence samples as easily some part of the powder can be lost or the sample in the di�raction
holder does not represent an ideal mixture of weighted reference samples.
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Figure 4.29: Central part of the anatase
101 re�ection. The reference sample REF-
400 (blue line), the mixed sample no. 8
with f0 = 0.8 (red line) and the sample
no. 4 with f0 = 0.6 (green line).
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Figure 4.30: Central part of the anatase
101 re�ection. The reference sample REF-
550 (blue line), the mixed sample no. 6
with f0 = 0.05 (red line) and the sample
no. 5 with f0 = 0.15 (green line).

Six mixtures had approximately the following nominal fractions: f0 = 0.05,
0.30, 0.60, 0.80 and two samples have f0 = 0.15.. A detail of the anatase 101
re�ection for the samples is depicted in �gs. 4.29�4.30. Fig. 4.29 depicts the small
crystallites reference sample REF-400 and two mixed samples. Huge changes in
peak width and shape with increasing fraction of large crystallites are apparent.
Fig. 4.30 depicts the large crystallites reference sample REF-550 and two mixed
samples with small (0.05 and 0.15) nominal fractions of anatase from REF-400.
The di�erences are visible in the tails of the peaks only because the small crys-
tallites scatter mainly there.

Figure 4.31: Re�ned histogram CSD of the mixed sample no. 8 with f0 = 0.8. Solid
line depicts CSD expected from the parameters of the log-normal distribution of the reference
samples and their weights in the sample.

The CSD histograms of all the mixed samples were re�ned by the WPPM.
Some of the histograms look very reasonable. Mainly these containing large
fractions of the REF-400 sample. See �gs. 4.31 and 4.32, where small volume
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Figure 4.32: Re�ned histogram CSD of the mixed sample no. 4 with f0 = 0.6.

fractions of large crystallites originating from the REF-550 sample are clearly
distinguishable from the small peaks (at largeD & 20 nm) in the volume weighted
CSDs. Contrary, the results for samples with small f0 are not so good. In �g. 4.33
of sample no. 5 with f0 = 0.15 the reference log-normal distribution does not �t
well the re�ned histogram CSD. However, in this case it is still possible to reveal
bimodal crystallite size distribution from the two peaks in the volume-weighted
CSD. Unfortunately, this is di�cult to see in the re�ned CSD of the no. 6 sample
(�g. 4.34) with the lowest fraction of REF-400 (f0 = 0.05). A broad volume
weighted CSD is visible in �g. 4.34 and the arithmetic CSD does not correspond
to the reference one. There is signi�cantly a lower number of small crystallites
than expected. The problem is similar to the CSD determination in the REF-
550 sample. See �g. 4.30, where only small di�erences in peak tails are visible
between samples. It indicates that the task of CSD determination in the case of
large crystallites has not been solved completely. It is still di�cult to separate
intensity contribution of small crystallites from the background intensity if also
strong signal from large crystallites is present. It can be concluded that the
sensitivity of the CSD determination from XRD data was overestimated at the
beginning and in such case the histogram bins for small crystallites should be
made wider and reduced in number. On the other side it was shown that the
method can detect a small volume fraction (∼ 20 vol.%) of large crystallites
contaminating a �ne noncrystalline powder (�g. 4.31). This could be essential
information e.g. for optimising the technology to produce nanopowders with well
de�ned crystallites size.

More precise quantitative re�nement of histograms was performed in order to
make conclusions discussed above. The �ts can be compared not only with the
reference log-normal distributions, as it is depicted in �gs. 4.31�4.34, but also
with the histogram CSDs of the reference samples, which were determined in the
previous section (�g. 4.27). The histogram of reference samples can be linearly
combined and �tted to the histogram distributions of the mixed samples. This
was done for all the mixed samples. Such a �t of the sample no. 3 (f0 = 0.3) is
depicted in �g. 4.35. The scale factor and the volume ratio of anatase originating
from the REF-400 or the REF-550 sample were the only two �tted parameters.
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Figure 4.33: Re�ned histogram CSD of the mixed sample no. 5 with f0 = 0.15.
Solid depicts CSD expected from the parameters of the log-normal distribution of the reference
samples and their weights in the sample.

Figure 4.34: Re�ned histogram CSD of the mixed sample no. 6 with f0 = 0.05.

Figure 4.35: Volume weighted
CSD of the mixed sample no. 3
(f0 = 0.3) re�ned by WPPM
(marked as �data�). The data are
�tted by a linear sum of the ref-
erence samples histogram CSDs
(marked as ��t�). (Scale = 1.43 ±
0.12, xLPA = 0.39± 0.05 vol.%)
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no. f0 m400 (g) m550 (g) xW-QPA xLPA

1 1.00 � � � �
2 0.00 � � � �
3 0.30 0.193 0.392 0.344 0.39(5)
4 0.60 0.305 0.210 0.607 0.62(3)
5 0.15 0.093 0.513 0.162 0.17(5)
6 0.05 0.030 0.565 0.053 0.03(2)
7 0.15 0.080 0.459 0.156 0.18(4)
8 0.80 0.463 0.109 0.819 0.85(2)

Table 4.5: List of mixed samples. The nominal weight fractions of the anatase REF-
400 crystallites in the samples are denoted as f0. True measured weights of the reference
samples (REF-400 and REF-550) are denoted as m400 and m550. xW-QPA are the weight
fractions of the anatase crystallites originating from the REF-400 sample as determined
from weights and QPA according to eq. 4.20. Contrary the volume fractions xLPA were
evaluated from histograms determined by LPA (WPPM).

The scale factors appeared to be close to unity. The volume fractions are listed
in the Table 4.5. They are called xLPA because they are understood as volume
fractions of anatase from di�erent reference samples determined by WPPM.

Figure 4.36: Final regression of
the weight fractions (xW-QPA), de-
termined from the sample weights
and QPA, and the anatase volume
fractions (xLPA) determined from
�tting the histogram CSDs deter-
mined by LPA from XRD data.
Two reference samples (+), six mixed
samples (×). Dashed line is a diago-
nal guide for the eye.
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Anatase fractions evaluated from the sample weights and QPA (xW-QPA) can
be compared with the fractions determined from the histogram �tting (xLPA). It
can be seen from the Table 4.5 or �g. 4.36 that they are equal within the error
limits. The uncertainties of xLPA values are quite high, up to ∆xLPA ≈ 5 vol.%,
which is related to the qualitative agreement of the expected and re�ned CSDs.
The value of ∆xLPA could be considered according to the present author as the
precision limit of the LPA method for determination of anatase fractions in the
mixtures. Problems which appeared for samples with f0 . 15% were discussed
already in the previous paragraph.
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Finally, a powder pattern �t of the sample no. 3 (f0 = 0.3) is shown in
�g. 4.37. The very good quality of the �t is typical for all the samples studied in
this chapter.

Figure 4.37: Pattern �t of the the mixed sample no. 3 (f0 = 0.3). (GoF ≈ 1.43;
104 points in the pattern, 1.5 103 sec per point)

4.5.5 Summary and discussion

The WPPM method [11] for the determination of histogram like CSD from XRD
data was applied to TiO2 nanocrystalline powders here. The original model [12]
of histogram like representation of CSD was slightly modi�ed � mainly by intro-
ducing logarithmic sampling of the CSD histogram and regularisation conditions
for the distribution. The method appears to be able to distinguish qualitatively:
(i) small and (ii) large crystallites present simultaneously in a mixture of sam-
ples with di�erent mean crystallite sizes in the range 4�30 nm (�gs. 4.31�4.33).
The problem was encountered when small volume fractions of small crystallites
(D . 10 nm) had to be characterised quantitatively in a presence of majority of
large crystallites (D & 20 nm) (�gs. 4.25, 4.33�4.34). For such case the method
shows an uncertainty in the distribution shape (�g. 4.26, p. 114). Problem con-
cerns the arithmetic CSD. The volume weighted distribution can be determined
quite unambiguously.

Two TiO2 powder samples calcined at di�erent temperatures and their mix-
tures were analysed. The size of crystallites of the sample calcined at 400◦C was
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〈D〉 ≈ 6.7 nm. For the sample calcined at 550◦C it was 〈D〉 ≈ 22.6 nm. CSDs in
all samples were re�ned from XRD data. The histogram CSDs re�ned for both
reference not-mixed samples were in a very good agreement with the log-normal
distribution determined earlier in section 4.4. From crystallite sizes histograms
it was possible to evaluate volume ratios of the original reference samples in the
mixtures. A very good correlation with expected values was found (�g. 4.36).
The volume fractions determined by LPA were di�erent from the values expected
from QPA by ∆ ≈ 5 vol.%. This value can be considered as the precision limit
of the CSD analysis done here.

Analysis of small crystallites at the presence of large ones is a�ected by dif-
�culties in an unambiguous separation of a background signal from the intensity
scattered by small crystallites in peak tails. This problem appears if a major
intensity contribution comes from a volume of the large crystallites. This was
also mentioned in Beyerlein et al. [36] and David et al. [218]. Here it was more
highlighted in the extremely noise bins when the log-spaced histogram was used
(�g. 4.25). The choice of logarithmic sampling of CSD makes it possible to treat
small and large crystallites simultaneously. Unfortunately it magni�es the prob-
lem and shows that the determination of arithmetic CSD from XRD data pre-
sented here is partially an ill-posed problem. Applications of regularisation was
helpful in this case. A di�erent, more physically reliable solution would be reduc-
ing the number of bins and coarsening the histogram sampling.

If the results achieved in section 4.4 should be revised in the light of experi-
ences with the re�nement of the histogram CSDs, it can be concluded that (i)
the use of the log-normal distribution is quite justi�ed. The histogram CSD of
the REF-400 sample �ts well the reference log-normal distribution (�g. 4.27a).
Problems with the analysis of large-crystallite sample REF-550 and mixed sam-
ples showing wide CSDs (�gs. 4.33 or 4.34) indicate that (ii) the wide log-normal
distribution of the ISOP-400 samples (�g. 4.13, p. 100) should be taken with cau-
tion, though. It was shown here that the volume weighted CSD is the relevant
quantity measured in di�raction experiment. Arithmetic CSDs with high vari-
ance show a high volume fraction of large crystallites. In that case it is di�cult
to characterise small ones.

From the volume weighted CSDs re�ned from the XRD data it was possible
to determine the volume fractions of small and large crystallites of the same
crystalline phase (anatase) in one sample. This is certainly a big challenge for
any analytical method.

Determination of histogram like CSDs in TiO2 nanopowders from XRD data
was accepted for publication in Mat¥j et al. [201].
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Conclusions

The main focus of the work was given to the problem of application of X-ray pow-
der di�raction pro�le analysis for microstructural characterisation of nanocrys-
talline and submicrocrystalline materials. Primarily, the method of the whole
powder pattern modelling (WPPM) or �tting was discussed and tested. Since no
computer program including all necessary features for characterisation of nano-
materials in a wide scale (powders, bulk materials, thin �lms) has been available
a new program system called MSTRUCT has been developed. It has been con-
structed by using the objects in C++ in such a way that further extension is
relatively simple. In general, it includes many aspects required for the mentioned
characterisation of materials, i.e. corresponding instrumental corrections, possi-
bility of texture correction and determination of residual stresses. However, main
attention was given to the line pro�le analysis and appropriate physically realis-
tic models. This means correct description of the crystallite size broadening by
means of their distributions including general histogram-like one and dislocation
models including correlated dislocation arrangements.

The methods enabled also to reveal some unexpected aspects of microsutures
of the samples investigated. In order to verify and test the method several classes
of samples with di�erent weights of the above e�ects were selected. It should
be mentioned that all these materials are of high technological interest and were
studied in the framework of di�erent projects.

Studied Au colloid nanoparticles selected originally more for study of crys-
tallite size broadening were surprisingly found to be also a suitable model material
for studying lattice defects. One unexpected feature was the strong anisotropy
(hkl dependence) of di�raction line broadening that could not be explained by
the anisotropic shape of crystallites (not observed by TEM either) but it was
well interpreted by a combination of the e�ect of twin faults and the anisotropic
dislocation-induced broadening. Twinning fault probabilities were high (∼ 8%)
in small particles (size 5�30 nm) and were decreasing strongly with the crystallite
size. The anisotropy of di�raction broadening from the present microstrain can
be well described by dislocation contrast factors but the dislocations densities
have to be rather high to explain such an e�ect. Anyway, despite the low statisti-
cal quality of di�raction data it was possible to estimate the limits of dislocation
density in this case.
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In the studied ECAP deformed samples (Cu, Cu with small addition
of Zr) the microstructure was much more complex compared to the colloid Au
nanoparticles. Dislocation structures in grain boundaries play a crucial role in
the deformed materials. It was apparent from TEM and EBSD that dislocation
boundaries were evolving from non-equilibrium low angle grain boundaries formed
after 1�2 ECAP passes to high angle grain boundaries after 4�8 passes. XRD
line broadening was again very well described by dislocation contrast factors and
reasonable values of dislocation densities were evaluated. The values are slightly
higher than those reported in the literature and were increasing with the number
of passes. Some deviations from the literature data could be explained by di�erent
purity of samples which is quite important parameter. It was possible to estimate
the Wilkens dislocation correlation parameter indicating a slightly more random
dislocation arrangement in the CuZr samples. The �ts of the di�raction patterns
were not optimal, slight systematic deviations in line shape and positions could
be observed. This indicates that the currently used dislocation models with not
too strong correlation in their arrangements are not completely su�cient for the
description of the microstructure of these metals after severe plastic deformation.
The microstructure model should account also for di�raction broadening from
dislocations within the grain boundaries and/or dislocation dipoles rather than
only for dislocation correlation within the classical Krivoglaz-Wilkens models.
This is a challenging problem for future work.

Analysis of TiO2 nanopowders was much more straighforward compared to
the investigation of the metal samples. This is related not only to good recipro-
cal space resolution and good statistical quality of di�raction data, but mainly
to the relative simplicity of the size-broadening model as compared to models of
dislocation arrangement. The WPPM procedure was fully utilised, because in
this case: (i) the peak overlap is so huge, that only two di�raction lines can be
independently analysed and even then their separation from the background scat-
tering is a di�cult problem; (ii) the intensities of di�raction lines were calculated
completely from the structural model in this case. Simpli�ed microstrain model
was applied since this was a minor e�ect and the attention was given more to the
crystallite size, namely, the crystallite size distribution and anisotropic crystallite
shape, because this is related to the properties of the studied material and it is
a problem interesting in general. In the studied TiO2 nanopowders prepared by
di�erent chemical routes crystallite size distribution could be determined. The
surface area calculated from the XRD data could be compared with speci�c sur-
face measurements. It was found that for the prepared samples the data were in
a very good agreement up to approximately the calcination temperature 400◦C.
Then the �ne porous structure in the material degraded whereas the crystallite
size did not show any abrupt changes. This indicates that a disintegration of the
porous structure is not connected with some type of fast TiO2 recrystallisation
at the critical temperature.

In addition to the above analysis, histogram-like crystallite size distribution
model was tested and it was found that the crystallite size distribution can be
determined from the di�raction data also without assumptions on analytical type
of distribution. However, it should be taken into account that di�raction is sensi-
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tive mainly to the volume weighted distribution. In particular, this is important
in the case of a high number of very small crystallites whose total volume can
still be small compared to the volume of a few large crystallites. In this work,
the problem was related also to an unfavourable choice of the histogram sam-
pling, but the general problem is in a correct separation of the di�racted and
background scattering signal. If the background cannot be suppressed in the
experiment, only a physically correct treatment, such as e.g. simulation of the
scattering from amorphous fraction by the Debye formula, could help to partially
avoid this problem.

The computer program MSTRUCT developed for the XRD analyses done
here was successfully applied not only to the samples described in this work, but
was used extensively in the analysis of thin �lm samples in [127, 227�238]. where
also the residual stress and/or texture played and important role. However, this
is out of the scope of this thesis.



128 Structure of Submicrocrystalline Materials



Appendix A

MStruct program

A.1 Introduction

For the most of di�raction analyses done in this work a computer program
MSTRUCT ([225], http://xray.cz/mstruct/), developed by the present au-
thor, was used. Some details concerning the program were already speci�ed at
various places in the work in order to illustrate how the physical models are
implemented in the software and which particular parameters are involved.

• The dislocation model was described in section 3.3 (p. 74),

• the planar faults in fcc crystals were described at the same place (p. 74),

• the size brodendnig model of spherical crystallites with size distributed
according to the log-normal distribution was speci�ed in section 4.3.1 (p. 85),

• its extension using histogram-like distribution was described in sec-
tion 4.5.2 (p. 115).

In this part other features of the program, which were used, but were not of
physical importance to be included in the main text, are described. A brief
general introduction to the program is also given. In addition, because also an
adaptation of the methods for thin �lm analysis was one of the initial aims,
the related microstructural e�ects are presented here brie�y. Some examples
are shown and relevant references are given. This part is not a manual to the
program, but should rather present a brief overview of what is possible in the
program and for what applications it is designed.

http://xray.cz/mstruct/
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A.2 Computer program,

basic description and design

The MSTRUCT is a computer program/library forMicroStructure analysis from
powder (x-ray) di�raction data:

• It is basically a typical Rietveld [7] program like many others famous pro-
grams: FullProf (Rodriguez-Carvajal, [105]); GSAS (Larson & Von Dreele & Toby,
[239]); TOPAS (Kern, [240]), MAUD (Lutterotti, [106]); BRASS (Birken-
stock et al., [241]); Jana (Petrí£ek et al., [242]); etc.

• It includes physically relevant models for peak broadening and shifts like
PM2k (Leoni & Scardi, [24]) and CMWP-�t (Ribárik & Ungár, [110]).

• It accounts for simple residual stress models, thin �lm absorption cor-
rection, re�raction correction and asymmetrical di�raction geometries like
MAUD (Lutterotti, [106]).

The program was not build from a �zero point�. Nowadays, several crystallo-
graphic programs are freely available (FullProf, FOX, Maud), together with their
source codes and suggestions to extend the programs for particular purposes. One
of the most known � FullProf [105] o�ers its Fortran Modules Library CrysFML.
The same is true also for the FOX [243] developed by Favre-Nicolin & �erný [244�
246]. FOX is a free, open-source program for the ab initio structure determination
from powder di�raction. This is a relatively distant issue from LPA. However,
in principle the FOX program calculates the powder pattern from the structural
data, which is the basic requirement also here. Fot the use of the program for the
LPA, the only necessary steps are (i) extending the routines for pro�le calcula-
tion and (ii) switching-on the standard least-square optimisation algorithm. The
author was the �rst who made such modi�cations of the existing program FOX.
FOX [243] is distributed under the GPL license [247] and hence it allows such
modi�cation but requires reciprocally that the derived work has to be distributed
under the same conditions. The MSTRUCT binary as well as its source code can
be found at http://xray.cz/mstruct/. A side e�ect related to the utilisation of
an existing projects is that partially also the �design patterns� and the structure
of the original project are mirrored in the new project. This can be either an
advantage, if both the projects mutually �ts well and even cooperate, or contrary
a disadvantage, if the incorporation of the projects is rather laborious.

The design of the FOX program is depicted in �g. A.1. The FOX is based
on its own library of routines for di�raction data simulations and optimisa-
tion. The library is called OBJCRYST. The FOX and the OBJCRYST also
utilise another crystallographic library: the Computational Crystallography Tool-
box (CCTBX) [248, 249] developed by Grosse-Kunstleve. The design of the
MSTRUCT program is schematically shown in �g. A.2. The FOX program it-
self is not utilised, the program is based on OBJCRYST and CCTBX. Routines
for LPA, WPPM and thin �lms correction are encapsulated in the MSTRUCT
library and a small program utilising them is the MSTRUCT binary itself. The
MSTRUCT program is very simple but do not have any graphical user interface

http://xray.cz/mstruct/
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Figure A.1: Sketch of the FOX [243]
design. The FOX program is build on
the original OBJCRYST library, which
utilises the free Computational Crystal-
lography Toolbox (CCTBX) [248].

Figure A.2: Sketch of the
MSTRUCT [225] design. The MSTRUCT
heavily utilises the OBJCRYST, on which
it is basically build, but also calls the
CCTBX, which is a part of the FOX
project.

yet. When it is started, it asks the user by simple questions and this drives its
execution. Since the number of questions can be quite high, the answers, includ-
ing comments, can be stored in an input parameters �le. A part of the parameter
�le is shown here

// Job type

0 job type (0-data refinement, 1-grid refinement)

// Input Data Files and Formats

tio2-400.xys 1 data filename , data format type (0-xy,1-xysigma)

0.609 maximum sin(theta)/lambda

// Background

general 2 background, number of background components

interpolated background component type (chebyshev,invX,...)

...

The program waits here for a "job type", the answer is "0", which means normal
data re�nement, other parameters are the name of the data �le with measured
data and its format, . . . , background etc.

In the following code, the program requires a name (�di�DataAnatase� is the
answer) of new crystalline phase in the pattern. The phase can be later identi�ed
by this name in the program. Then the program needs a name of the �le with the
structural data (structural database) and at the same line a name of the crystal
(�AnataseITF�), which should be loaded from the database.

// the 1st phase

diffDataAnatase phase name (diffDataCrystal)

// the 1st phase - crystal data

structures.xml AnataseITF xml-filename, crystal-name
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Crystal structures are saved in a separated XML �le (�structures.xml�), which
contains a database of crystal structures (lattice parameters, atom positions etc.).
A new structure can be created/added very simply e.g. using the original FOX.

The program has no own interface to show the �tted data. Instead a few
scripts for MATLAB and GNUPLOT are included in the distribution. Hence the
data can be visualised very simply e.g. in these environments. More details, a
guide how to setup the program and run the data re�nement can be found on the
MSTRUCT web page [225].

A.3 List of e�ects

A list of e�ects implemented in the MSTRUCT by the present author is speci�ed
here. Some of the features were already speci�ed in the work, a few of them
have not been �nished yet completely. The list includes a short description of the
e�ects and an informative list of features present implemented in other programs
(PM2k, CMWP-�t, MAUD).

1. Convolutional kernel is a general procedure, which convolutes various
broadening e�ects described by Fourier coe�cients in real space or by in-
tensity pro�les in reciprocal space. The instrumental function is by
defaul treated by this kernel. More detailed description of the instrumental
broadening can be found in section A.7.
Some type of a convolutional procedure is implemented in all three programs: PM2k,
CMWP-�t, MAUD; the e�ect is of an auxiliary type.

2. Arbitrary texture model as known from MAUD is better described in
section A.9. It enables arbitrary corrections of re�ection intensities calcu-
lated from the crystal structure.
The e�ect can be found in all three programs: PM2k, CMWP-�t, MAUD; and as the
e�ect is �unphysical� it must be considered as an auxiliary feature.

3. Texture calculator & simple texture models enables intensity correc-
tions using measured or model crystallites orientation distribution function,
or some other type of simpler texture correction suitable also for thin �lms
and possible to apply in asymmetrical di�raction geometries.
This can be found basically only in MAUD, which is a very useful tool in this �eld; the
e�ect is �physical�, it is rather still under development, but results presented at Size-
Strain V (2007) and also in [231].

4. Pseudo-Voigt function, which width and shape dependence on the di�rac-
tion angle (2θ) is described by some polynomials, can be in addition convo-
luted with the instrumental function and with other e�ects. In section A.8
this is for example used to include a phenomenological microstrain e�ect.
Something very similar is possible also in PM2k or MAUD; the e�ect is rather auxiliary.

5. Spherical crystallites model with log-normal size distribution was
described widely in section 4.3.1 (p.85). PM2k, CMWP-�t, MAUD; physical
e�ect.
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6. Histogram size distribution model was used in section 4.5.2 (p. 115).
Only in PM2k; physical e�ect.

7. Dislocation broadening was described in section 3.3 (p. 74). PM2k,
CMWP-�t; physical e�ect.

8. Planar faults in fcc crystals were described also in section 3.3 (p. 74).
PM2k, CMWP-�t; physical e�ect; in MSTRUCT both the approaches in [11, 13] and
[99] are available.

9. Additional (hkl) peak dependent broadening enables to convolute
an additional pseudo-Voigt function to any peak. The width, shape and
position parameter of the function can be speci�c for a particular re�ection.
In section 3.3 this e�ect was used to introduce additional shifts, without
peak broadening, of individual re�ections.
Can be done also in PM2k; auxiliary e�ect.

10. Interface to sum di�erent broadening e�ects make it possible to e.g.
combine two log-normal size distribution e�ects with crystallites of di�erent
sizes to model a bimodal size distribution. The fraction of large and small
crystallites is then re�ned.
Possible also in PM2k; auxiliary e�ect.

11. Thin �lm absorption correction accounts correctly for absorption in
the coplanar grazing incidence geometry suitable for thin �lm analysis (see
ch. A.6).
Available in MAUD; physical e�ect.

12. Residual stress correction accounts for re�ections shifts due to a simple
residual stress state in the �lms (ch. A.5).
More models can be found in the MAUD; physical e�ect.

13. Refraction correction accounts for re�ections shift due to an x-ray re-
fraction e�ect at the �lm interface (ch. A.5).
Available probably only in the MSTRUCT; physical e�ect.

It must be noted that the list concerns only e�ects, which are implemented in the
MSTRUCT. The PM2k [24] is a very �exible program as it is partially almost
a programming environment to model various phenomena in powder di�raction
patterns. In the CMWP-�t [110] many microstructural e�ects concerning mainly
some defects very common in metals are implemented, which cannot be found
elsewhere and in the MAUD many unique features concerning mainly texture and
stress are implemented.

In the following sections, a few features from the list above will be described
in greater detail. In particular, those for thin �lms analysis and those explicitly
mentioned in the main text.
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A.4 Refraction correction

In addition to bulk nanocrystalline TiO2 nanopowders also titania �lms were
investigated by XRD.1 During testing the possibilities of the coplanar grazing
exit (GE) geometry (Mat¥j et al. [235]) in principle the same as the grazing
incidence (GI) case � for an investigation of such thin �lm samples it was found
that di�raction lines are systematically shifted from their regular positions. See
�g. A.3, where for higher angles ω, which correspond to lower exit angles α =
2θ−ω, di�racted intensity is clearly shifted to higher di�raction angles (2θ). The
shift is clearly visible especially close to the critical angle (αc) of the total external
re�ection at the �lm and it depends on the exit/incidence angle (α) � in the GI
geometry α = ω in �g. 2.1 (p. 10) or �g. A.4 here. The e�ect is related to the
refraction of x-rays at the interface between the air (vacuum) and the �lm. It was
studied beside others by Lim et al. [250], Hart et al. [251], Toney and Brennan
[252], Noma et al. [253] or later by Colombi et al. [254, 255].2 It can be easily
accounted for by using the Snell's law at the interface [252�254]

∆2θ = α− 1√
2

√
(α2 − 2δ) +

√
(α2 − 2δ)2 + 4β2 , (A.1)

where δ and β are the real and the imaginary parts of the refractive index of
the �lm (n = 1 − δ − iβ). It is assumed here that the second angle (exit or
incidence) is high. Then the correction is not a function of the di�raction angle
(2θ). It depends only on the material of the �lm and the angle α. For a typical
anatase �lm (χ0 = −2.30 · 10−5 − i 1.16 · 10−6, n ≈ 1 + χ0/2) the critical angle is
αc ≈

√
2δ

.
= 0.27◦ and the 2θ shifts are

∆2θ
.
= 0.25◦ , for α = 0.27◦ ,

∆2θ
.
= 0.09◦ , for α = 0.5◦ ,

∆2θ
.
= 0.04◦ , for α = 1.◦ .

Modern laboratory x-ray di�ractometers dedicated for thin �lms analysis are
usually equipped with x-rays mirrors producing quite parallel x-ray beam with
relatively small divergence. Hence the use of such low incidence angles (α) as
above is quite common. In the MFF laboratory the standard characterisation of
e.g. TiO2 �lms is done with the incidence angle α = 0.5◦. This gives the shift
almost ∆2θ ≈ 0.1◦ only due to refraction. It is usually less, because the �lm
is less dense, but even then this is a signi�cant e�ect. Usually a 2θ scan with
a constant incidence angle (ω = α) is measured and hence principally the shift
due to refraction is constant in such an experiment, it can be corrected in any
Rietveld program by a �zero shift error�. However, this is at least unpleasant from
two reasons: (i.) the �zero error� value will be unrealistically high and (ii.) it

1The present author would like kindly acknowledge here prof. J. Musil, Dr. J. �ícha and
D. He°man from the Faculty of Applied Sciences at the University of West Bohemia and M. Mo-
rozová and S. Krej£íková from the group of Dr. O. �olcová from the Institute of Chemical Process
Fundamentals, AS �R for providing the thin �lms samples.

2The present author would like to express his thanks to J. Drahokoupil from the Institute
of Physics, AS �R, for supplying many useful references here.
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Figure A.3: Part of the measured intensity distribution map around the anatase 101
re�ection of a magnetron sputtered TiO2 thin �lm, approximately 50 nm thick. The map
was measured in the grazing exit geometry [235]. Some lines of constant exit angle (α = 2θ−ω)
are plotted for orientation. 2θ0 denotes the regular re�ection position, αc is the critical angle
of total external re�ection.

will change strongly when a di�erent incidence angle is used or a material with
di�erent refraction index (n) is studied. In Mat¥j [256] there is an example of the
di�raction pattern of TiO2/ITO electrode (ITO . . . tin doped indium oxide). ITO
has relatively high electron density � critical angle αc ≈ 0.35◦. This means that
at α = 0.5◦ even higher 2θ correction is required for ITO re�ections. Moreover the
corrections for anatase (TiO2) and ITO peaks are di�erent. Such case is di�cult
to treat in an ordinary Rietveld software, because the �zero error� is considered
as an instrumental e�ect similar for all the crystalline phases in the di�raction
pattern.

The e�ect can be accounted for by using e.g. eq. A.1 and this is included in the
MSTRUCT. The necessary information is the refraction index (n) or the electric
susceptibility (χ0). It can be calculated for a given radiation and material from
its chemical composition and its density using e.g. web application of Stepanov
[148] or it can be estimated directly in the MSTRUCT from the crystal structure.
The e�ect is not included by default, but need to be activated for each crystalline
phase individually by the following code

// the 1st phase - Refraction reflection position correction

RefractionCorr refractionCorrAnatase effect type, effect name

crystal chi0 calculated from - crystal

1. relative density

The codeword "RefractionCorr" speci�es the e�ect. The codeword "crystal"

tells that the susceptibility (χ0) should be calculated from the crystal structure.
A single parameter of the model is �relative density� (nr) of the material, which
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is set at the last line.
The relative density (nr) can be re�ned from x-ray data, but it is not rec-

ommended if only a single scan is available. The parameter correlates absolutely
with the 2θ �zero error�. Instead a simple recipe can be advised. During the speci-
men alignment in the parallel beam geometry often the x-ray re�ectivity from the
sample can be measured. Such an experiment is usually not too time demanding
and at least the critical angle of the �lm (αexpc ) can be roughly determined from
the re�ectivity curve. The MSTRUCT gives in its output an information about
the critical angle (αtheorc ) calculated for a �lm with the full density (nr = 1).

MStruct::RefractionPositionCorr::GetChi0(...): ...

... Chi0 and absolute density computed for Crystal: AnataseITF

chi0: (-2.3988e-05,-1.2128e-06) (n=1-delata-ii*beta~=1+chi0/2)

critical angle: 0.28(deg)

density: 3.892 (g/cm3)

It can be shown that the correct relative density should then be set to

nr ≈
(
αexpc

αtheorc

)2

.

Despite its relative simplicity the refraction correction is not commonly in-
cluded in the software for powder di�raction analysis. However the correction
has proved itself to be useful for particular samples as well in connection with
the residual stress e�ect, which is described in the section A.5.

A.5 Residual stress correction

Residual stresses can be found in both bulk materials as well as thin �lms. They
were found also in a particular series of TiO2 thin �lm samples studied in the
department (Nichtová [129], Kuºel et al. [257, �g. 6]). Moreover di�raction line
shift due to these stresses showed a very strong anisotropy (hkl dependence). The
�lms were amorphous, as deposited by magnetron sputtering, and after annealing
at ≈ 250◦C (Nichtová [129]) they crystallised into the anatase form. Single crystal
elastic constants of anatase were not known at that time (2005)1 and hence it
was di�cult to treat the anisotropy. However, after some time, at least calculated
values from ab initio simulation were reported [258�261], which could explain the
anisotropy of XRD data very well (Mat¥j et al. [190]) on the basis of a classical
Reuss-Voigt stress model (e.g. [262] and references therein). In Nichtová [129] and
Mat¥j et al. [190] dedicated XRD stress measurements using an Eulerian cradle
and parallel beam polycapillary optics were done, but the e�ect is principally
present also in basic 2θ-scans with the constant small incidence angle (α = ω).

As it can be seen in a schematic �gure A.4 in such an experiment the lattice
planes di�racting at the angle 2θhkl are inclined from the sample surface by an
angle ψhkl = θhkl − ω. Re�ections in the pattern carry information about lattice
spacing (dhkl), from the crystallites di�erently oriented with respect to the sample.
This is a basis of the residual stress di�raction measurements.

1The theoretical work of Sato et al. [258] (2003) was missed.
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Figure A.4: Scheme of a parallel beam
geometry experiment. X-rays come from
the left side and impinge the sample sur-
face at the incidence angle ω. Intensity is
measured at the di�raction angle 2θ from a
direction of the incident x-ray beam. Nor-
mals of di�racting lattice planes take an
angle ψ = θ − ω from the sample surface
normal. In the �gure also the refraction of the
incident beam is indicated. Lengths of vectors
have not correct scale, see �g. 2.1 for the right
reciprocal space construction.

It was found [190] that it is su�cient to consider a very simple homogeneous
bi-axial stress state in the samples. Only components of the stress tensor in the
plane parallel to surface are assumed to be nonzero and the problem is in addition
rotationally symmetric. If the z-axis is parallel to the sample surface normal the
stress tensor has a form

σ =

σ σ
0

 , (A.2)

where all nondiagonal components are zero. Then, under a hypothesis of Voigt or
Reuss [262, 263] about the grain interaction in the sample, the relative change of
lattice spacing measured by di�raction due to the stress can be written as [262]

εhkl,ψ =
dhkl(ψ)− dσ−freehkl

dσ−freehkl

=
1

2
S2(hkl) σ sin2 ψ + 2S1(hkl) σ , (A.3)

where S1(hkl) and S2(hkl) are the so called x-ray elastic constants (XECs) and
dσ−freehkl is the �stress-free� lattice spacing, which can be calculated from the �stress-
free� lattice constants. The XECs are generally hkl dependent. Using eq. A.2
and the Bragg equation

1/dhkl = 2 sin θhkl/λ ,

the residual stress (σ) can be determined from di�raction data if the XECs (S1,
S2) are known. The peak shifts in the �2θ-scan� di�raction pattern can accounted
as well. This is done in the MSTRUCT by the "StressSimple" correction.
This correction requires a XECs calculator. Two models are available: (i) a
"isotropic", which calculates XECs from the Yong's modulus and the Poisson
ratio, but it is not able to account for elastic anisotropy, and (ii) a "Reuss-Voigt"
XECs calculator using single crystal elastic constants.

Expressions for any crystal symmetry can be found in Behnken and Hauk
[264], but in the MSTRUCT rather a general formalism of Popa [263] is used in
the "Reuss-Voigt" XECs calculator.

To calculate XECs (SV
1 and SV

2 ) in the Voigt model we can use directly [263,
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eqs. 12a-b] and calculate the isotropic Voigt sti�ness constants

CV
11 = (C11 + C22 + C33)/5 + 2(C12 + C13 + C23 + 2C44 + 2C55 + 2C66)/15 ,

CV
12 = (C11 + C22 + C33 − 2C44 − 2C55 − 2C66)/15 + 4(C12 + C13 + C23)/15 ,

which can be converted using [263, eqs. 30a-b] to the compliance constants

SV
11 =

CV
11 + CV

12

CV
11(CV

11 + CV
12)− 2(CV

12)2
,

SV
12 =

−CV
12

CV
11(CV

11 + CV
12)− 2(CV

12)2

and �nally assuming the simple stress state in eq. A.2, B = (sinψ, 0, cosψ)
in [263] and by simplifying [263, eqs. 29] we �nally get XECs for the Voigt model

2SV
1 = 2SV

12 ,

1/2 SV
2 = (SV

11 − SV
12) .

For the calculation of XECs within the Reuss model it is suitable to specify
more in detail, how the sti�ness (Cij) and compliance tensors (Sij) are de�ned
in the reduced notation (ε11 ↔ ε1, ε12 ↔ ε6, σ12 ↔ σ6) in Popa [263]. In [263] it
holds

εi =
6∑
j=1

Sijρjσj , σi =
6∑
j=1

Cijρjεj ,

where ρ = (1, 1, 1, 2, 2, 2) .

The last equation for Cij is the conventional Hook's law used e.g. in Nye [265]
and the equation above implies that in this notation (Popa [263]) the compliance
values Sij can be obtained from an inversion of the symmetric �block� Cij matrix

Sij = (ρi Cij ρj)
−1 =



C11 · · · C13 2 · C14 · · · 2 · C16

. . . ...
... . . . ...

C33 2 · C34 · · · 2 · C36

4 · C44 · · · 4 · C46

. . . ...
4 · C66



−1

.

In [263] few other auxiliary vectors are de�ned

δ = (1, 1, 1, 0, 0, 0) ,

E(hkl) = (q2
1, q

2
2, q

2
3, q2q3, q3q1, q1q2) ,

where qi are directional cosines of the {hkl} di�racting lattice plane normals
in the coordinate system of the crystal. With all the above de�nitions, in the
simpli�ed case here, using Popa [263, eqs. 8, 13, 2a, 3a, 7] we can write for XECs
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(SR
1 , S

R
2 ) within the Reuss model

2SR
1 (hkl) =

6∑
i,j=1

Eiρi Sij ρj(δj − Ej) ,

1/2 SR
2 (hkl) =

1

2

6∑
i,j=1

Eiρi Sij ρj(3Ej − δj) .

The theoretical paper of Popa [263] describes much more general case, but here
the simpli�cation is su�cient.

The Reuss and Voigt grain interaction models are limiting cases and the real
case is often somewhere between. Hence it is quite common to take the XECs
constants as an average of the Voigt and Reuss values

S1(hkl) = wσ · Sv
1 + (1− wσ) · SR

1 (hkl) ,

S2(hkl) = wσ · Sv
2 + (1− wσ) · SR

2 (hkl) .

The model has two parameters: the stress (σ) and the Voigt model weight (wσ).
Using the above recipe the residual stress peak position correction is accounted

for in the MSTRUCT for crystal phases of any symmetry. The e�ect is activated
with the following code.

// the 1st phase - Residual stress correction - simple stress model

StressSimple stressCorrAnatase effect type,effect name

Reuss-Voigt 0. XECs model, stress (GPa)

// material C11 C12 C13 C33 C44 C66 constants (in GPa) ...

// ... - in the format: C11 "value" C12 "value" etc.

C11 320 C12 151 C13 143 // anatase Cij (GPa)

C33 190 C44 54 C66 60 // ref:M.Iuga,Eur.Phys.J.B(2007)58,127-33

0.0 model weight (0..Reuss, 1..Voigt)

At �rst the e�ect is activated by a codeword "StressSimple" and a name for
the e�ect in the running instance is given. At the second line it is speci�ed that
the "Reuss-Voigt" model for XECs is used and the stress (σ) is set initially
set to zero. Due to the choice of the anisotropic model single crystal elastic
constants are required. Program generates a list of required sti�ness constants
(Cij) considering the crystal symmetry. The values from the literature (Iuga et al.
[259]) are set. At the last line, the Voigt model weight (wσ) is speci�ed.

The described model was successfully applied to the analysis of the already
mentioned particular series of TiO2 thin �lms in Mat¥j, Kuºel, and Nichtová
[190]. The XECs were calculated using the above schema for a particular case
of tetragonal symmetry of anatase (Laue group 4/mmm). The whole powder
pattern �tting/modelling including the residual stress correction was also applied
to the same series of samples (in Mat¥j et al. [236]). It was di�cult to determine
both model parameters unambiguously solely from a single 2θ scans, measured in
the range 2θ = 15◦−145◦, which implies the range of ψ ≈ 10◦−70◦. Since it was
clear that rather the Reuss model is appropriate to �t the data, the Voigt model
weight was �xed at a constant value σ = 0.3. Then it was quite straightforward to
re�ne the stress value (σ) for each sample. The inclusion of the stress correction
improved �ts signi�cantly. The stresses in the �lms were between 200�800 MPa.
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The values re�ned from the 2θ-scans showed relatively large uncertainties, but
were not distinct from the results of the dedicated stress measurements [190] by
more than 50�100 MPa. It must be emphasised that the refraction correction
(ch. A.4) played a crucial role in the analysis. It was because in the case of the
residual stress determination from such single 2θ scans, an uncertainty in the
�zero error� implies a large error in the analysis. The correction for refraction
reduced the �zero error� by an order of its size below ±0.01◦. More detils can be
found in [236].

A.6 Absorption correction

Absorption correction for a simple 2θ-scan in a parallel beam geometry with con-
stant incident angle (�g. A.4) is not directly available in many Rietveld programs
despite the fact that its basic variant is very simple.

In the conventional theory of powder di�raction it is assumed that x-rays
are absorbed at their path through the sample (�g. A.4). The linear absorption
coe�cient (µ) is a measure of this e�ect. It is related to the imaginary part of
the electric susceptibility as

µ =
2π

λ
|χ0,im|

and for the given material it can be calculated using the web application of
Stepanov [148] or from the χ0 value calculated by the MSTRUCT using the
refraction correction calculator (ch. A.4).

If the absorption at the path of both the incident as well as the di�racted
beam in the sample is considered, the intensity contribution from a �lm of the
thickness T with the absorption coe�cient µ is given by (e.g. �imek et al. [266])

I =
Tp

sin(ω)
[1− exp(−T/Tp)] , (A.4)

where ω is the incidence angle and Tp is the penetration depth, for which it holds

1

Tp
= µ

[
1

sin(ω)
+

1

sin(2θ − ω)

]
.

In the parallel beam geometry with a constant incidence angle (ω) the penetration
depth (Tp) is almost constant with the di�raction angle (2θ) (see e.g. Dopita [128]
or [127, �g. 4] for the TiO2 case) and decreases with ω. In the symmetrical Bragg-
Brentano geometry (ω = θ) the penetration depth increases with sin(θ), whereas
the �rst factor in eq. A.4, which accounts for an irradiated sample length, de-
creases. This gives for an in�nitely thick sample in the Bragg-Brentano geometry
a constant absorption correction

I∞,BB =
1

2µ
. (A.5)

The absorption e�ect in the MSTRUCT is a part of standard description of
each e�ect and it is set using the following line of code. Scattering geometry is
speci�ed elsewhere, in the instrumental part (ch. A.7).
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// the 1st phase - thin film absorption correction (TiO2, density=3.75g/cm3)

-1.e4 0. 470. absorp corr: thickness(nm), depth(nm), abs.factor(1/cm)

Here the �rst and third parameter are important. The third parameter is the
absorption coe�cient (µ) in the (1/cm) units and the �rst parameter is the �lm
thickness (T ) in nanometres. It is surprisingly a negative value here, which de-
notes that the �lm/substrate of the given material is in�nitely thick. This is
important to specify for bulk samples and especially for the Bragg-Brentano ge-
ometry. The correction A.4 is used also in this geometry and if only some very
large but a �nite value of the sample thickness is set, the value can either be
too small, which strongly a�ects e.g. re�nement of temperature factors, or it can
unnecessarily introduce a numerical instability.

In the above way the absorption correction is implemented in the MSTRUCT.
Unfortunately, there are another problems of physical basis. The correction A.4 is
valid only for incidence angles ω � αc. This is indicated in a detail of the �g. A.4.
Again the refraction of x-rays (ch. A.4) must be included for incidence/exit angles
(α) close to the critical angle (αc). This can be done by an appropriate modi-
�cation of the expression for the penetration depth (Tp) [235, 255]. The second
problem concerns a detail in the map in �g. A.3. There can be seen an intensity
maximum close to the critical exit angle (line α = αc). It was shown in litera-
ture [267, 268] and later by Colombi et al. [255] that this e�ect comes from the
maximum in the Fresnel coe�cients of the interface. Hence its origin is similar to
the well known �Yoneda wings� in the nonspecular x-ray re�ectivity. The e�ect
is well known in the theory of scattering from the epitaxial thin �lms and layers
(Holý et al. [34]). The appropriate correction can be found also in the paper of
the present author [235], where the theory was applied to a series of TiO2 thin
�lms and the �lms thicknesses were determined from XRD data as in �g. A.3.

A.7 Instrumental broadening

The instrumental function is described by an analytical function in the reciprocal
space rather than in the angular one. This should be similar rather to the original
PM2000 [104], description in the original article by Scardi and Leoni [102] or the
author's diploma thesis [26, ch. 2.5], than to conventional Rietveld programs. But
the real distinction is very small. In this convention the pro�le is described by
the pseudo-Voigt function de�ned as

I(s) = (1− η) · exp

(
− ln 2

s2

σ2

)
+ η ·

(
1 +

s2

σ2

)−1

, (A.6)

where s = q/2π ≈ ∆2θ(rad) · cos(θ)/λ is the reciprocal space variable in 1/d
units, η is a shape parameter and σ is a half-width parameter.

It is mentioned in the main text that the pro�le functions (as e.g. A.6) are
usually �tted to re�ections of a measured pro�le standard and the angular de-
pendence of width and shape parameters is described by suitable polynomials. In
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the MSTRUCT parameters of A.6 are described as

σ =
FWHM2θ(deg)

2
· π

180
· cos(θ)

λ
, (A.7a)

FWHM2
2θ(deg) = W + U · tan2(θ) + V · tan(θ) , (A.7b)

η = η0 + η1 · 2θ(rad) , (A.7c)

A =

{
A0 + A1/ sin(2θ) + A2/ sin2(2θ) when 2θ ≤ 2θAsymMax ,

1 when 2θ > 2θAsymMax ,
(A.7d)

where eq. A.7d introduces another parameter describing an asymmetry of di�rac-
tion pro�les for di�raction angles (2θ) lower than a �xed angle 2θAsymMax.

When disregarding a few negligible di�erences, the instrumental pro�le de-
scription is the same in the MSTRUCT as in the most of Rietveld programs.
But the typical feature of the WPPM programs is a �true� convolution of all the
e�ects.

The e�ect is included in the MSTRUCT by default and it is described by the
following code.

// Instrumental Parameters

// ... -1.0: 2Theta/Theta scan, -2.0: 2Theta/Theta scan with variable slits

-2.0 incidence angle (deg) - 2Theta scan

// Instrumental Parameters (MPD-pixcel: inc-0.02rad, det-0.04rad, 5mm x 5mm)

2.463e-3 2.654e-3 -1.201e-3 instrumental profile params (W,U,V)

0.47 0.18 instrumental profile params (Eta0,Eta1)

0.86 0.22 0. 60. instrumental profile params (Asym0,Asym1, ...

// ... Asym2,Asym2ThetaMax(deg))

Cu 0.0 wavelength type (Cu,CuA1), ...

// ... linear polarization rate (A=0.8,f=(1-A)/(1+A)=0.36 graphite mon., ...

// ... f=0. unmonochromatized)

At �rst line the incidence angle (ω) is speci�ed. It is a �xed positive number
for a 2θ-scan. If it is a negative number, it is an indication of asymmetric scan
in the Bragg-Brentano geometry. If it is equal or less than -2, it is in addition
assumed that variable slits are used. The coe�cients of polynomials A.7b�A.7d
are set at next few lines. The last line contains a mark ("Cu") saying that CuKα

doublet radiation is used. It is also speci�ed at the same line that radiation is
unpolarised f = 0. If a graphite monochromator for the Cu-radiation were used,
the rate would be f = 0.36.

A.8 Phenomenological strain broadening

A phenomenological strain broadening is actually not a feature of the MSTRUCT.
However, it can be simulated in the MSTRUCT using a possibility to convolute
various types of e�ects. We can take the same pseudo-Voigt as for the instrumen-
tal function in section A.7. We let all the polynomial coe�cients with exception
of U and η0 to be zero. In addition A0 = 1, because we require a symmetrical
pro�le. Such an e�ect can be loaded as any other e�ect. The codeword for the
pseudo-Voigt function, which we want to add, is "pVoigtA".
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// the 1st phase - Strain broadening - modeled by pseudoVoigt function

// - only U-Cagliotu param. (W=V=0.) and shape Eta0 (Eta1=0.) params. refined

pVoigtA strainProfAnatase broadening component type, effect name

0. 0. 0. profile params (W,U,V)

0. 0. profile params (Eta0,Eta1)

1. 0. 0. 60. profile params (Asym0,Asym1,Asym2,Asym2ThetaMax)

The U and η0 parameters are zero here. They are set later in the program input
(See [225] for more details).

Parameter η0 drives the pro�le shape. It is Gaussian for η0 = 0 and pure
Lorentzian for η0 = 1. The parameter U is related to the pro�le width (eq. A.7b)

FWHM2θ(deg) =
√
U · tan(θ) .

For the integral breadth (β) of the pro�le A.6 we can write

β =

∫
I(s)ds

I(0)
= 2σ

[
1− η
ϕG

+
η

ϕC

]
,

where ϕG = 2
√

ln(2)/π and ϕC = 2/π are the Gaussian and Lorentzian shape
parameters. If we substitute from eq. A.7a and compare the result with the
expression for the integral breadth from Wilson [269, p. 5] or Klug and Alexander
[5, eq. 9-80]

β2θ(rad) = 4e · tan(θ) ,

where e is the microstrain parameter, we obtain an equivalence

4e =

[
1− η
ϕG

+
η

ϕC

]
·
√
U · π

180
. (A.8)

The model [229, 236] now has two parameters: (i) the shape parameter of the
strain distribution (η0) and (ii) the microstrain (e) related to the Caglioti coe�-
cient (U) and the shape parameter (η0) by eq. A.8.

A.9 HKL Intensities corrections

When intensities of di�raction lines are not of a primary interest or in cases
of complicated texture in the sample, it is suitable to have an option to break
the relation between intensities and crystal structure. In the MAUD [106] it
is possible in the so called arbitrary texture model. In the MSTRUCT it can
be realised using HKL Intensities corrections. This e�ect is rather auxiliary and
unphysical. Intensities of re�ections in the di�raction pattern are still calculated
from the crystal structure and corrected for other e�ects, but with this correction
intensity of an arbitrary hkl re�ections can be multiplied by a factor, which can
be even �tted.

The e�ect is described in the input �le by a single line, where two switches can
be found. The second one only controls if the corrections should be also printed
at the end of the re�nement. This can be useful for later storage of results. The
�rst switch drives the e�ect.
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// HKLIntensities corr. - Arbitrary texture model

3 0 hkl file(0-not use,1-generate,2-free all,3-read), ...

// ... print HKLIntensities(0-no,1-yes)

If it is set to �zero�, nothing is done and no intensities are a�ected. If it is
set to �one� a �le with name "Ihkl_DiffDataName.dat" is generated, where
"DiffDataName" is the name in the program assigned to the given crystalline
phase (e.g. "diffData_Anatase"). The generated �le contains a list of peaks.

# h k l 2Theta(deg) |Fhkl|^2 Icor fixed

1 0 1 25.316 2.62e+04 1.00 1

1 0 3 36.996 3.39e+03 1.00 1

0 0 4 37.868 1.33e+04 0.92 0

1 1 2 38.592 3.93e+03 1.00 1

2 0 0 48.049 3.04e+04 1.00 1

Informations about re�ections indexes and 2θ positions are included, but the
last two columns are the most important. The second column from the end
("Icorr") contains the intensity correction factor each hkl re�ection. By this
factor its regular intensity is multiplied. The last column is a re�nement �ag for
the factor. If it is un�xed ("fixed=0") it is re�ned by the program.

The �le itself has no real e�ect on the results if the option in the input pa-
rameter �le above is not set to a higher value than �one�. If it is set to �three�,
the information in the �le is loaded by the program and the corrections are
used/re�ned. If it is set to �two�, the �le is generated similarly as in the case
�one�, but intensities correction are un�xed by default for all re�ections. In such
case it is highly recommended to �x all the other parameters a�ecting di�raction
line intensities, including crystal structure parameters and scale factors.
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