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1 Summary 
 

A delicate balance in the number, specific type and function of leukocytes is required for proper 

functionality of the mammalian immune system. Innate immunity, which quickly recognizes 

pathogens, represents the first line of defense. Later, a more specific response is generated via adaptive 

immunity. Deregulation of the immune system is manifested by the inability to control infection (see 

3.2.2), development of allergic, autoimmune disorders or even cancer (see 3.3), and ultimately can 

lead to death. To fulfill their functions, cells develop an intricate network of intra- as well as 

extra-cellular molecules organized into signaling cascades, which allows them to communicate 

between each other. Better understanding of the molecular mechanisms of signaling pathways in 

leukocytes is critical for design of efficient therapies.     

In this thesis, leukocyte signaling was studied in several aspects. First, the role of adhesion 

molecules in pathogenesis of cervical cancer and the regulation of their expression was investigated.1 

The second publication describes a new transmembrane adaptor protein (TRAP), called prolin rich 7 

(PRR7), as a potentially interesting regulator of signaling and apoptosis in activated T cells.2 The final 

publication characterized the role of the Btk kinase downstream of  the triggering receptor expressed 

on myeloid cells 1 (TREM-1), which was shown to be involved in inflammatory processes; 

suppression of its activity had beneficial effects in the treatment of septic shock.3  

 

This thesis is based on three publications: 

 

1. Textor S., Accardi R., Havlová T., Hussain I., Sylla B.S., Gissmann L., Cerwenka A. 2010. 

NF-κ B-dependent upregulation of ICAM-1 by HPV16-E6/E7 facilitates NK cell/target cell 

interaction

 

, Int J Cancer 128: 1104-1113 

2. Hrdinka M., Dráber P., Štepánek O., Ormsby T., Otáhal P., Angelisová P., Brdička T., Pačes 

J., Hořejší V., Drbal K. 2011. PRR7 is a transmembrane adaptor protein expressed in activated 

T cells involved in regulation of T cell receptor (TCR) signaling and apoptosis J Biol Chem,  

286: 19617-29 

 
3. Ormsby T., Schlecker E., Ferdin J., Tessarz A.S., Angelisová P., Köprülü A.D., Borte M., 

Warnatz K., Schulze I, Ellmeier W., Hořejší V., Cerwenka A. 2011. Btk is a positive regulator 

in the TREM-1/DAP12 signaling pathway, Blood [ahead of print, doi:10.1182/blood-2010-11-

317016]   

http://d360prx.biomed.cas.cz:2259/pubmed/21460222�
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2 Shrnutí  
 
 

Správná funkce imunitního systému savců je zajišťována křehkou rovnováhou mezi množstvím a 

nejrůznějšími typy leukocytů, které vykonávají velmi specifické funkce. Přirozená imunita, která 

rychle reaguje na přítomnost patogenů představuje první obrannou linii organismu. Teprve později se 

zahajuje specifičtější odpověď tím, jak se aktivuje adaptivní imunita reprezentovaná T a B lymfocyty a 

produkcí protilátek. Deregulace imunitního systému se projevuje neschopností potlačit infekci, 

rozvojem alergických a autoimunitních onemocnění nebo dokonce rakovinného bujení, takže 

v konečném důsledku může vést až k smrti. K tomu, aby leukocyty mohly vykonávat své funkce, 

vyvinuly spletitou síť intra- i extracelulárních molekul uspořádaných do signálních kaskád, které jim 

umožňují vzájemnou komunikaci. Pochopení molekulárních mechanismů signálních drah leukocytů je 

zásadním předpokladem pro vyvinutí účinných terapií. 

V této disertační práci byla leukocytární signalizace studována v několika aspektech. Nejprve 

bylo zjišťováno, jakou roli hraje zvýšená exprese adhezivních molekul v patogenezi rakoviny 

děložního čípku a jak je tato exprese regulována na molekulární úrovni.1 Druhá publikace představuje 

nový transmembránový adaptorový protein, nazvaný PRR7 (prolin rich 7), jako potenciálně zajímavý 

regulátor signalizace a apoptózy aktivovaných T buněk.2 Finální práce se zabývá funkcí kinázy Btk 

v signalizaci receptoru TREM-1 (triggering receptor expressed on myeloid cells 1), který se ukazuje 

být velmi důležitý v zánětlivých procesech a potlačení jeho funkce má příznivý vliv při léčbě 

septického šoku.3 

Tato disertační práce je založena na třech publikacích: 

 

1. Textor S., Accardi R., Havlová T., Hussain I., Sylla B.S., Gissmann L., Cerwenka A. 2010. 

NF-κ B-dependent upregulation of ICAM-1 by HPV16-E6/E7 facilitates NK cell/target cell 

interaction

 

, Int J Cancer 128: 1104-1113 

2. Hrdinka M., Dráber P., Štepánek O., Ormsby T., Otáhal P., Angelisová P., Brdička T., Pačes 

J., Hořejší V., Drbal K. 2011. PRR7 is a transmembrane adaptor protein expressed in activated 

T cells involved in regulation of T cell receptor (TCR) signaling and apoptosis J Biol Chem,  

286: 19617-29 

 
3. Ormsby T., Schlecker E., Ferdin J., Tessarz A.S., Angelisová P., Köprülü A.D., Borte M., 

Warnatz K., Schulze I, Ellmeier W., Hořejší V., Cerwenka A. 2011. Btk is a positive regulator 

in the TREM-1/DAP12 signaling pathway, Blood [ahead of print, doi:10.1182/blood-2010-11-

317016] 

http://d360prx.biomed.cas.cz:2259/pubmed/21460222�


4 
 

3 Introduction 
 

3.1 Cells of the immune system4 
 

Different functions of the immune system are mediated by a wide variety of cells of  

hematopoietic origin and plasma proteins. Leukocytes make up the cellular component of immunity. 

They originate from hematopoietic stem cells in the bone marrow and give rise to either myeloid or 

lymphoid common progenitors. The myeloid progenitors further differentiate into monocytes, 

granulocytes, mast cells, dendritic cells (DCs) and megakaryocytes, whereas T cells, B cells and 

natural killer (NK) cells evolve from the lymphoid progenitor.  

 The first line of defense is mediated by cells of the innate immunity. Innate immune cells exert 

rapid effector functions through a variety of pattern recognition receptors (PRRs; see 3.4.1.4) with 

broad specificity against common molecular features of different pathogens. Innate immunity is 

mediated by two main categories – myeloid cells and NK cells.  

Granulocytes represent the most abundant group of white blood cells (70%) and are 

characterized by the presence of cytoplasmic granules and a uniquely shaped nucleus. Three types of 

granulocytes –neutrophils, basophils and eosinophils– can be distinguished according to different 

staining properties of their cytoplasmic granules. Neutrophils, the most numerous group of 

granulocytes, play an important role in antibacterial and antifungal defense mechanisms. They migrate 

from the blood into inflamed tissues early in an acute inflammatory response. They efficiently kill 

pathogens either intracellularly following phagocytosis or extracelularly by releasing toxic mediators 

stored in their cytoplasmic granules. Basophils and eosinophils play a role in immune responses 

against parasites. They are also involved in the development of allergic reactions. 

Monocytes are blood-circulating cells, which, upon migrating into tissues, differentiate into 

macrophages. They engulf pathogens or dead cells by phagocytosis, contributing to the clearance of 

infection. They also function as antigen-presenting cells (APCs) and produce a wide variety of 

cytokines. 

Mast cells protect the internal surfaces of the body against pathogens and are involved in the 

response to parasitic worms. They are important in wound healing and play a prominent role in the 

development of allergic responses and anaphylactic shock. Their cytoplasm contains granules rich in 

inflammatory mediators such as histamine and heparin, which are released upon activation.  

Although they are of lymphoid origin, NK cells belong to the innate part of the immune system. 

They have the ability to recognize cells with a low expression of major histocompatibility complex 

(MHC) class I glycoproteins, i.e. exhibiting so called “missing self”. NK cells play an important role 

in destroying virus-infected or transformed cells. Upon activation, they release cytoplasmic granules 
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onto the surface of the bound target cell, and the effector proteins contained in the granules penetrate 

the cell membrane and induce cell death. NK cell killing depends on the balance between activating 

and inhibitory receptors. The activating receptors recognize several common cell surface ligands and 

signal the NK cell to kill the bound cell. On the other hand, the inhibitory receptors associate with 

MHC class I molecules and inhibit the signaling of activating receptors. If the inhibitory signal is lost, 

the cell is killed. 

The link between innate and adaptive immunity is demonstrated by DCs in their roles as 

professional APCs. They both phagocytose particulate materials and continually ingest large amounts 

of the extracellular fluid and its contents by macropinocytosis. Ingested pathogens are degraded and 

presented to T cells in the form of a peptide bound to MHC class II molecules. In addition, DCs are 

also potent producers of different cytokines, and therefore, they can modulate functions of other cell 

populations. 

Adaptive immunity is mediated by a wide diversity of clonally specific antigen receptors 

produced by somatic recombination in lymphocytes. Each lymphocyte matures bearing a unique 

version of the prototypic antigen receptor. Upon activation, a lymphocyte proliferates and gives rise to 

huge number of cells highly specific to a given antigen. There are two types of antigen-specific 

lymphocytes: B cells and T cells. The antigen receptor of B cells (BCR) is a membrane-bound 

immunoglobulin (Ig). Upon activation, B cells proliferate and differentiate into plasma cells, which 

produce secreted antibodies of the same specificity as the original receptor. T cells recognize 

antigen-derived peptides bound to MHC molecules. Cytotoxic T cells kill cells infected with 

intracellular pathogens, using similar mechanisms as NK cells. They recognize antigens as 

peptide-MHC class I glycoprotein complexes. On the other hand, helper T cells provide essential, 

additional signals that cause antigen-stimulated B cells to differentiate and produce antibodies and 

cause macrophages to become more efficient in killing engulfed pathogens. Helper T cells recognize 

peptide-MHC class II glycoprotein complexes. Special type of T cells are regulatory T cells which 

play an important role in suppressing the activity of other cells, thereby providing a control 

mechanism in the immune system. 

 

3.2 Inflammation and sepsis4  
 

Inflammation is a physiological reaction of the immune system, intended to protect the host 

from various hazards, including invading pathogens. The purpose is to restore and maintain normal 

tissue homeostasis after an injury or an infection, and ultimately, to repair damaged tissue and 

efficiently get rid of pathogens. Inflammation is essentially beneficial; however, prolonged or 

excessive inflammation can cause serious harm, such as septic shock (see 3.2.2), or lead to the 
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development of immunopathological diseases. Inflamed tissue is characterized by pain (dolor), redness 

(rubor), heat (calor) and swelling (tumor).  

Depending on the duration of the immune response, inflammation can be divided into acute 

and chronic. Acute inflammation is the immediate response of the body to harmful stimuli, which lasts 

for minutes to days, and results in clearing of the infection and repair of the injured tissue. The 

impairment of negative regulatory mechanisms or the ineffective elimination of pathogenic microbes 

can lead to chronic inflammation. Chronic inflammation lasts for longer periods of time, and it is 

accompanied by a change in the type of cells present at the site of inflammation and by parallel 

damage and healing of the tissue from the inflammatory responses.  

 

3.2.1 Mechanisms of inflammation 
 

Inflammation begins when tissue-resident cells, mainly resident macrophages, DCs and mast 

cells, recognize highly conserved structures of pathogens called pathogen-associated molecular 

patterns (PAMPs), which are bound by PRRs. PRRs represent a large group of extra- and intracellular 

receptors with different structural features and specificities (see 3.4.1.4). Activation of the PRRs leads 

to the release of various pro-inflammatory mediators and the onset of inflammation.  

Mast cells produce a number of biologically active substances including histamine and 

leukotriens, which cause contraction of endothelial cells of blood vessels. The resultant increased 

space between the endothelial cells affords higher capillary permeability, which enables recruitment of 

leukocytes to the site of inflammation. Macrophages secrete pro-inflammatory cytokines (such as 

tumor necrosis factor α (TNF-α) and interleukin-1 (IL-1)) and chemokines (such as IL-8) and engulf 

the pathogens and dead tissue cells by phagocytosis. Cytokines activate various adhesion molecules, 

e.g. E-selectin, vascular cell adhesion molecule 1 (VCAM-1) and intracellular adhesion molecule 1 

(ICAM-1; see 3.4.1.3.2), on the surface of the endothelial cells of blood vessels. Corresponding 

molecules on the surface of leukocytes, called integrins (VLA-1, LFA-1; see 3.4.1.3.1), attach to these 

adhesion molecules, allowing the leukocytes to slow down, roll, flatten and squeeze through the space 

between the endothelial cells in the process of diapedesis or extravasation.  

Secreted chemokines diffuse into the blood vessels, forming a concentration gradient and 

attracting other immune cells into the inflamed tissues. Among the first cells migrating into the site of 

inflammation are neutrophils, followed by monocytes, which differentiate into macrophages. 

Neutrophils phagocytose and kill microorganisms by releasing the contents of their cytoplasmic 

granules. They also secrete pro-inflammatory cytokines and chemokines, attracting other immune cells 

and intensifying the ongoing inflammation.  

Furthermore, DCs are activated by PRRs and differentiate into mature APCs. They express 

antigens of phagocytosed microorganisms as a complex of an MHC molecule and a peptide. Mature 

http://en.wikipedia.org/wiki/Healing�
http://en.wikipedia.org/wiki/Macrophages�
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dendritic cells migrate into the draining lymph node where they present antigens to T cells and thus 

activate the adaptive arm of the immune system. In addition, blood coagulation mechanisms are 

activated, which helps to repair the physical barriers of the host body. 

According to the specific nature of the infection or injury and the current state of the immune 

system, acute inflammation can result in: (1) complete clearance of infection with no or little tissue 

destruction; (2) fibrosis or scaring due to incomplete tissue regeneration; (3) progression into chronic 

inflammation if the acute inflammatory response could not be attenuated; (4) septic shock (see 3.2.2) 

when pathogens massively enter the blood stream.  

 

3.2.2 Sepsis 
 

Sepsis is a complicated clinical syndrome, which develops when the adequate immune 

response to an infection becomes deregulated, leading to the overactivation of the immune system. 

The average mortality rate is estimated between 25% and 50%, ca 40% in the elderly population and 

up to 50% in immunocompromised individuals.5 

Sepsis commences with the large-scale release of damage-associated molecular patterns 

(DAMPs) from compromised tissue or invading pathogens, resulting in the overstimulation of PRRs. 

Signaling of PRRs (see 3.4.1.4) leads to massive secretion of various pro-inflammatory mediators 

including cytokines, such as TNF-α and IL-1, free radicals and enzymes. These mediators are 

advantageous in moderate amounts, but at excessively high concentrations, they can be quite harmful.  

 An imbalance in homeostasis at various levels, affecting not only the immune system, is the 

main hallmark of septic shock. The autonomic nervous system acts through catecholamines, which 

bind to adrenergic receptors on the surface of macrophages, neutrophils and DCs and activate the 

transcription factor NFκB. Catecholamines display pleiotropic effects - altered lymphocyte trafficking, 

vascular perfusion, cell proliferation and apoptosis. A high concentration of catecholamines in the 

early phases of sepsis has been shown to increase the inflammatory response. Later, apoptosis of 

adrenal medullary cells causes a decrease of catecholamines` concentration, leading to the 

dysfunctional modulation of heart and blood vessels and contributing to cardio-vascular failure.6  

The presence of microorganisms in blood results in excessive activation of complement 

system. Anaphylatoxin C5a, which is produced by the C5 convertase of the complement cascade, 

plays a crucial role in the immunopathogenesis of sepsis.  In the early stages of septic shock, C5a 

deregulates the coagulation cascade and promotes secretion of pro-inflammatory cytokines, including 

migrating-inhibitory factor (MIF), and high mobility group box 1 (HMGB1). In the later stages, a high 

concentration of C5a leads to increased apoptosis of lymphocytes and adrenal medullary cells and to 

neutrophil dysfunction, called immune paralysis and characterized by the termination of intracellular 

signaling. This accounts for the high vulnerability to secondary infection as well as septic 
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cardiomyopathy (heart failure) and multi-organ failure. The complement cascade is tightly connected 

to coagulation and the fibrinolysis system. 

 Sepsis disrupts normal equilibrium between procoagulant and anticoagulant factors. Increased 

expression of the tissue factor leads to enhanced generation of thrombin, which cleaves fibrinogen into 

fibrin. On the other hand, expression of anticoagulant proteins, such as antithrombin, protein C and the 

tissue factor pathway inhibitor, is down-regulated. Mobilization of the coagulation system and 

suppression of fibrinolysis at the same time represent a starting point for the development of 

disseminated intravascular coagulation (DIC). This pathological process is characterized by an acute 

risk of fatal thrombosis together with global haemorrhage. Finally, prolonged tissue hypoxia and 

hypoperfusion cause multiple organ failure and death.  

 

 

3.3 Cancer and the immune system4,7,8 
 
 Cancer is a multifactorial disease caused by uncontrolled proliferation of a single transformed 

cell which invades the organism and causes destruction of adjacent tissue. Treatment of cancer is 

usually based on surgical removal of the majority of tumor mass followed by the destruction of the 

remaining malignant cells by chemotherapy and/or radiation therapy, which is accompanied by severe 

side effects. A more elegant way of curing cancer would be to directly stimulate the immune responses 

precisely against the tumor cells.  

 Evasion of malignant cells from detection of the immune system is described by the 

immunoediting model, which divides this complex process into three “E” phases – elimination, 

equilibrium and escape. At the beginning, malignant cells are readily recognized and immediately 

destroyed by immune effector cells. The crucial role in this phase is played by activated CD8 T cells 

and NK cells. However, immune cells contribute to the selection of cells resistant to the action of the 

immune system, which first leads to the establishment of a balance between continuous tumor growth 

and tumor destruction. In addition, tumor cells promote tissue remodeling and angiogenesis, leading to 

the evolution of tumor cell variants with low immunonogenicity. Finally, as the tumor progresses, it 

starts to actively suppress attack by the immune system and completely escapes its control. The 

destiny of a tumor is already decided during the equilibrium phase, in which the tumor is infiltrated by 

different subsets of effector, helper and regulatory T cells, NK cells and myeloid cells, such as 

myeloid derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs). These cells 

help to create a state of immunological tolerance; they shape the tumor microenvironment, support 

angiogenesis and generally suppress various components of immunity. 

 The rate of tumor growth is determined by the magnitude of immunological tolerance, which 

is established within the tumor, between the tumor cells and the surrounding microenvironment 
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including immune cells. In general, tumors have low immunogenicity because they do not express 

abnormal peptides, or they decrease the expression of MHC class I or co-stimulatory molecules. 

Moreover, the tumor or surrounding parenchyma expresses increased amounts of T cell inhibitory 

molecules including PD-L1, B7-H3, B7x, HLA-G and HLA-E. For some tumors, like epithelial 

tumors, these expression levels correlate with the outcome of tumor growth. The tumor secretes 

various factors (IL-10, transforming growth factor β (TGFβ), including vascular endothelial growth 

factor (VEGF)), which dampen the development of inflammatory responses, support angiogenesis, and 

recruit suppressive populations of cells including regulatory T cells, immature DCs, MDSCs and M2 

macrophages. Finally, tumor cells can secrete molecules such as collagen that form a physical barrier 

around the tumor, preventing access by lymphocytes.  

 

3.3.1 Cancers caused by human papillomaviruses (HPVs) 
 

In 2008, Harald zur Hausen received the Nobel Prize for Medicine for his research regarding 

human papillomaviruses (HPVs). He discovered that cervical cancer is not caused by the herpes 

simplex virus, as previously believed, but rather by HPVs. He found out that HPVs are a 

heterogeneous group of small dsDNA viruses and infection of the cervix by subtypes 16 and 18 may 

lead to cancer development.9 Thanks to improvement in diagnosis, the incidence of cervical cancer 

dramatically decreased in industrialized nations; however, in less developed countries, cervical cancer 

is still the second most common type of cancer in women, and over 99% is caused by HPVs.10  

HPVs are small, non-enveloped dsDNA viruses that infect keratinocytes in the basal layer of 

stratified squamous epithelia. These cells maintain their replicating potential and may get exposed due 

to micro-abrasions. There are two main HPV types that infect the genital mucosa. Alpha 

papillomaviruses, referred to as high-risk (HR), are represented by HPV16 and 18 and are found in 

about 70% of malignant cervical cancers.11 By contrast, beta papillomaviruses, also called low-risk 

(LR) HPVs, include HPV5, 8 and 38 and cause only cutaneous infection without major clinical 

syndroms in healthy individuals.12 

 Importantly, infection by HR HPV types is necessary but not sufficient for progression to 

malignant tumor, since only a small percentage of women infected by HR HPVs in the end develop 

cervical cancer. Therefore, additional environmental or endogenous factors are involved in triggering 

of the malignant progression.13  
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Figure 1: The HPV genome. HPV, human papillomavirus; ORI, origin; pRb, retinoblastoma protein; URR, upstream 
regulatory region. The picture is adapted from Stanley.9 

 

 The genome of HPVs is circular dsDNA, which can be divided into three parts: (1) a 

noncoding upstream regulatory region (URR); (2) a region encoding early genes, E6, E7, E1, E2, E4 

and E5; and (3) a sequence coding two late proteins of the capsid, L1 and L2 (Figure 1). The genome 

is found in the nucleus as low copy extrachromosomal DNA units called episomes, which replicate 

autonomously from host chromosomal DNA. The genome does not encode polymerases or other 

proteins necessary for viral replication, thus it completely relies on the cellular DNA synthesis 

machinery. First, the virus invades the basal layer of cervical epithelia. Shortly afterwards, the virus 

initiates its own replication independently of the cell cycle and generates around 50-100 copies of 

itself per cell. The infected cell starts proliferating. At this stage, the viral transcriptional rate is 

minimal and expression of E6/E7 transcripts is hardly detectable, which promotes evasion of immune 

control. Later, the infected keratinocytes leave the basal layer and move into the differentiating 

section, which begins enormous up-regulation of expression of viral proteins. At this point, the viral 

copy number is at least 1000 copies per cell. Capsid proteins, L1 and L2, are expressed, and virions 

are assembled, exiting the cell without lysis or necrosis, which further eases the spread of infection 

because it prevents an onset of the inflammatory response (Figure 2).9  

Interestingly, in precancerous lesions, most HPV genomes are maintained as episomes, 

whereas in many high-grade lesions, viral DNA is found integrated into the host DNA. Places with 

genomic instability are susceptible to integration of foreign DNA. It is speculated that integration 

plays a role in malignant progression of cervical cancer and involves impairment in expression of the 

E2 protein, which inhibits the expression of early viral genes including E6 and E7.14  

 HPVs exert an interesting strategy to escape the recognition by the host immune system. 

Postponing expression of high amounts of viral antigens in areas that are not easily accessed by 

immune cells allows the HPVs to stay hidden, but it also brings one obstruction. The HPVs do not 
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bear their own DNA replication enzymes and, in this respect, fully depend on the host. As 

keratinocytes differentiate, they stop proliferation and down-regulate the expression of factors driving 

the cell cycle. To overcome this problem, the virus has to maintain the differentiated cell in the active 

cell cycle. The primary viral proteins with immortalization activity are E6 and E7. Both E6 and E7 are 

small proteins localized in the nucleus which lack intrinsic enzymatic or DNA-binding capacity; 

instead they bind different factors important for regulation of the cell cycle. E7 binds the 

retinoblastoma (Rb) family of proteins and targets them for degradation. In normal cells, the Rb family 

blocks the activity of the E2F transcription factors, which interact with promoter regions of many 

genes implicated in cell cycle progression, and the cells enters S phase. Consequently, abrogated 

levels of Rb lead to increased stabilization of the tumor suppressor, p53. However, the E6 protein 

directs p53 toward degradation and promotes the state of chromosomal instability by preventing DNA 

repair. In addition, HR E6 enhances telomerase expression, a reverse transcriptase needed for 

elongation of the 3’ end of chromosomal DNA.10,14 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Infectious cycle of high-risk HPVs. First, HPVs infect the proliferating layer of basal epithelial cells and replicate 
to a level of 50-100 copies/cell. When the cell starts to differentiate, the HPVs rapidly proliferate into ca 1000 copies/cell, 
which are subsequently released by budding. Viral proteins E6 and E7 are critical for oncogenesis, since they induce mitosis 
in terminally differentiated cells. The picture is adapted from zur Hausen.15  
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3.4 Signaling mechanisms in cells of the immune system 
 

Signal transduction is the process of transfer of information from the cellular environment to the 

inside of the cell. Signaling begins when a receptor binds its specific ligand. Receptors are expressed 

either on the cell surface or intracelullarly. A specific series of events, called a signaling cascade, is 

activated downstream of the receptor and includes activation or inhibition of protein kinases and 

release of intracellular second messengers. Signaling ultimately changes the transcriptional activity of 

a cell and, dependent on the precise context of events, results in proliferation, apoptosis, growth, 

migration, adhesion, secretion of various cytokines, hormones or other mediators or the change in the 

expression of proteins on the cellular surface. Signaling represents the foundation of the molecular 

mechanisms of immune processes, an understanding of which is necessary for the development of new 

therapies.16 

 

3.4.1 Receptors of immune cells 

 

3.4.1.1 Classical immunoreceptors4,17,18 

 

Classical immunoreceptors are comprised of a T-cell receptor (TCR), a B-cell receptor (BCR), 

Fc-receptors (FcRs), and activating receptors of NK cells. Although these receptors bind different 

ligands, their intracellular signaling pathways are more or less similar. These immunoreceptors consist 

of a recognition module, which binds its respective ligand, and a signaling module, which is 

responsible for transfer of the signal into the cell through a complex network of signaling cascades. 

The signaling module is represented by a non-covalently associated transmembrane adaptor protein, 

which bears one or more immunoreceptor tyrosine-based activation motifs (ITAMs). For example, 

TCR uses the CD3ζ chain, BCR signals via the immunoglobulin α (Igα) and Igβ chains (CD79a,b), Fc 

receptors couple to the common γ-chain (FcRγ) and the activating receptors of NK cells couple to 

DAP12. The ITAM consists of two tyrosine residues in the sequence, YxxL/I, which are six to twelve 

amino acids apart, so the consensus sequence is YxxL/I-x6-12-YxxI/L. Receptor engagement leads to 

activation of different members of the Src kinase family (SFK) (see 3.4.2.1), which includes Src, Lck, 

Fyn, Lyn, Yes, Fgr, Hck, and Blk, depending on the cell type (Figure 3). SFKs then phosphorylate 

ITAMs, and phosphorylated ITAMs serve as docking sites for the tandem SH2 domains of Syk 

kinases (see 3.4.2.2), ζ-associated protein of 70 kDa (ZAP-70) or spleen tyrosine kinase (Syk), which 

trigger kinase activation and downstream signaling. 

Upon activation of Syk kinases, receptor-proximal signaling complexes are formed. They 

consist of the transmembrane adaptor proteins, linker of activation of T cells (LAT) and/or non-T cell  
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Figure 3: Signaling pathway downstream of immunoreceptors. (A) Upon ligand binding, SFKs phosphorylate ITAMs, 
which in turn leads to relocalization and activation of Syk kinases. Syk kinases phosphorylate a number of downstream 
signaling proteins such as SLP76, LAT and/or NTAL, and members of the Vav family. In addition, Src kinases also 
phopshorylate ITIM motifs in a variety of cell surface receptors. Phoshorylated ITIMs recruit phosphatases, which 
downmodulate the activation pathway. (B) The table lists immunoreceptors and the coupled ITAM-containing adaptors, as 
well as SFKs and Syk kinases involved in the initiation of downstream signaling. ITIM-containing inhibitory receptors are 
also listed. The figure was adapted from Abram et al.17 

 

 

activation linker (NTAL), as well as the cytoplasmic adaptor proteins, SH2 domain-containing 

leukocyte protein of 76 kDa (SLP76) and SH2 domain-containing leukocyte protein of 65 kDa 

(SLP65, also known as BLNK). Then members of the Tec kinase family (see 3.4.2.3) phosphorylate 

phospholipase Cγ (PLCγ). Activated PLCγ generates second messengers such as inositol 

1,4,5-trisphisphate (IP3), which triggers Ca2+ mobilization, and diacylglycerol (DAG), which in turn 

activates protein kinase C (PKC). In addition, various Vav isoforms mediate cytoskeleton 

rearrangements. Growth factor receptor-bound protein 2 (Gbr2) binds to phosphorylated tyrosine 

motifs of LAT/NTAL, and thus, the Ras/MAPK pathway is activated. Finally, transcription factors 

nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB), the activator protein 1 (AP-1) 

and nuclear factor of activated T cells (NFAT) are activated, and new transcripts are synthesized.  



14 
 

There are also receptors whose main function is to down-regulate activating pathways. They 

often contain the immunoreceptor tyrosine-based inhibition motif (ITIM), which upon 

phosphorylation, associates with a phosphatase such as the SH2 domain-containing phosphatases 1 

and 2 (SHP1 and SHP2). These phosphatases then dephosphorylate different tyrosine residues in the 

proteins mentioned above, leading to downmodulation of signaling. 

 

 

3.4.1.2 Triggering receptor expressed on myeloid cells 1 (TREM-1) 

 

TREM-1 belongs to the Ig-like superfamily of receptors and plays an important role in 

inflammatory responses.19,20 TREM-1 cDNA was first identified by a bioinformatic search for 

sequences with regions homologous to the activating receptor of NK cells, NKp44.19 The gene 

encoding TREM-1 is mapped to human chromosome 6p21.1 and mouse chromosome 17C.21 Besides 

TREM-1, this region contains genes for several related receptors, including TREM-2 and the TREM-

like transcripts (TLT) 1-5. Some of these genes are considered to be pseudogenes.22 Orthologs of 

TREM proteins were found in chickens, cattle, and dogs as well as in skates and teleost fish, indicating 

that these receptors are highly evolutionarily conserved molecules.23-27  

TREM-1 is a 30 kDa glycoprotein which possesses a single extracellular V-type Ig-like 

domain, a transmembrane segment with a positively charged residue, and a short intracellular part that 

lacks intrinsic signaling motifs.28,29 Independent studies were performed to solve the structure of 

TREM-1. While the first report proposed existence of head-to-tail dimers of the TREM-1 molecule,30 

other reports used X-ray crystallography as well as analytical centrifugation and nuclear magnetic 

resonance spectroscopy to show that TREM-1 exists in solution as a monomer.28,29 

The existence of an alternatively spliced mRNA of TREM-1, svTREM-1, which would encode 

a protein of molecular weight 17.5 kDa, lacking the N-glycosylation and the transmembrane region, 

was suggested.31 Furthermore, a soluble TREM-1, sTREM-1, was detected in serum of septic patients 

by western blotting, as a band with an apparent molecular mass of 27 kDa.32 The appearance of 

sTREM-1 coincided with a decrease of TREM-1 expression at the cell surface. Metalloproteinase 

inhibitors increased the stability of TREM-1 at the cell surface while reducing the levels of sTREM-1 

in LPS-treated monocytic cultures.33 These data and the fact that svTREM-1 has not been detected so 

far, support the idea of proteolytic shedding of TREM-1 from the cell surface. sTREM-1 might 

negatively regulate the functions of TREM-1 through neutralization of the putative ligand(s) and 

might be useful as a therapeutic or diagnostic tool for septic shock.32 

 TREM-1 expression is associated with a mature stage of myeloid development.31 In humans, 

TREM-1 is expressed on blood neutrophils and CD14high monocytes.19 Monocytes and macrophages 

isolated from secondary lymphoid organs also express functional TREM-1 on the cell surface. In 
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healthy individuals, a vast majority of resident intestinal macrophages completely lack TREM-1.34 

However, inflamed lesions of patients with inflammatory bowel diseases contained increased amounts 

of TREM-1+ macrophages, which positively correlated with enhanced disease activity.35 In mice, 

TREM-1 is expressed by subsets of blood monocytes, blood granulocytes and by BMDCs.36 

Engagement of Nod-like receptors (NLRs)37 or Toll-like receptors (TLRs)38 up-regulates TREM-1 

expression. Depending on the specific signal and receptor engaged, TREM-1 expression is regulated 

in a MyD88-dependent (for LPS and TLR4) or in a TRIF-dependent (lipoteichoic acid and TLR2) 

manner.39 At a transcriptional level, NFκB acts as a positive regulator of TREM-1 gene expression, 

whereas PU.1 is a negative regulator.40  

Binding of TREM-1 to endogenous ligand(s) expressed on granulocytes and platelets and 

present in the sera of septic patients, as well as to exogenous ligands on Marburg and Ebola viruses, 

has been described.41-44 The exact nature of the TREM-1 ligand(s), however, remains elusive. 

Therefore, agonistic monoclonal antibodies (mAbs) are currently used to trigger TREM-1 signaling 

pathways.  

By this approach it was discovered that TREM-1 engagement results in respiratory burst, 

degranulation, phagocytosis, the secretion of pro-inflammatory cytokines (such as TNF-α), the 

secretion of the chemokines, such as IL-8 and monocyte chemotactic protein-1 (MCP-1), and in the 

up-regulation of cell surface expressed differentiation/activation markers.19 In animal models of 

LPS-induced septic shock and microbial sepsis caused by live Escherichia coli, application of a 

soluble TREM-1-Ig fusion protein greatly increased survival of experimental animals, indicating the 

importance of TREM-1 in the amplification of inflammation.20 Gibot et al45 showed that a moderate 

dose of TREM-1 siRNA improved survival in the mouse model of bacterial peritonitis, whereas a high 

dose of siRNA compromised the neutrophil respiratory burst and increased mortalility. Moreover, 

TREM-1 is up-regulated on myeloid cells in patients or animals with acute pancreatis,46 inflammatory 

bowel disease35,47 or rheumatoid arthritis.48-50 High TREM-1 expression often correlates with disease 

severity. On the other hand, patients with cystic fibrosis show low levels of TREM-1 expression on 

lung-resident macrophages and circulating monocytes. Those monocytes express high amounts of 

PU.1, which was revealed to negatively regulate TREM-1 expression. It is speculated that low 

TREM-1 expression on those cells contributes to a failure to mount appropriate inflammatory 

responses.51 Furthermore, increased TREM-1 expression was observed on TAMs in malignant 

effusion and tumor tissue of non-small cell lung cancer, which correlated with poor prognosis.52 Thus, 

TREM-1 seems to function as a mediator of acute as well as chronic inflammatory processes. It helps 

to clear infection; however, excessive stimulation of TREM-1 can have detrimental effects for the 

host, resulting in the development of septic shock or long-lasting chronic inflammatory complications.   

TREM-1 possesses a short intracellular part that lacks intrinsic signaling motifs. Instead, it is 

coupled to the ITAM-containing adaptor protein, DAP12. DAP12 contains an aspartic acid residue 

within its transmembrane region to non-covalently pair with receptors harboring complementary, 
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positively charged amino acid residues in their transmembrane domain.53 TREM-1 engagement in 

primary human monocytes leads to Ca2+ mobilization and phosphorylation of several proteins 

including DAP12, extracellular-signal regulated kinase (Erk1/2) and PLCγ (Figure 4).19  Moreover, 

phosphorylation of the adaptor protein NTAL was shown.54 NTAL then binds Grb2, son of sevenless 

(Sos) and the ubiquitin ligase casitas B-lineage lymphoma (c-Cbl). Using siRNA mediated 

knock-down in a myelomonocytic cell line, it was demonstrated that NTAL negatively regulates 

TREM-1-induced Erk1/2 phosphorylation and TNF-α and IL-8 production. In addition, the absence of 

NTAL led to delayed and decreased Ca2+ flux.54,55 At a transcriptional level, enhanced amounts of 

NFκB subunits p50 and p65/RelA were observed upon TREM-1 stimulation in primary human 

monocytes.32 Recently, it was reported that the adaptor protein caspase recruitment domain 9 

(CARD9) binds B cell lymphoma/leukemia 10 (Bcl-10) after TREM-1 stimulation. This complex is 

essential for TREM-1-induced secretion of TNF-α, IL-2 and IL-12p40 by mouse bone marrow-derived 

dendritic cells (BMDCs) probably due to its involvement in the activation of NFκB.56  

 

 

 
 

 
Figure 4: TREM-1/DAP12 signaling in myeloid cells. Signaling proteins experimentally demonstrated to be involved in 
TREM-1 signaling in monocytes (white), in neutrophils (black), or both (grey). The picture was adapted from Tessarz et al.55 
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The TREM-1/DAP12 signaling pathway was also studied in neutrophils (Figure 4). According 

to Fortin et al, TREM-1 is relocalized to the lipid rafts after engagement in neutrophils.57 Several 

proteins are phosphorylated following TREM-1 ligation, including Src kinase Lyn, Janus kinase 2 

(Jak2), PLCγ, protein kinase B (PKB/Akt), Erk1/2, p38MAPK, NTAL and, interestingly, 

IL-1R-associated kinase 1 (IRAK-1), which was previously only implicated downstream of 

TLRs.54,57,58 In addition, TREM-1 stimulation in neutrophils leads to activation of transcription factors 

such as signal transducers and activators of transcription (STAT)5, STAT3 and p65/RelA.57 The final 

result of TREM-1 signaling in neutrophils is secretion of IL-8, myeloperoxidase (MPO), and 

lactoferrin,57 production of reactive oxygen species (ROS), 57-59 degranulation of cytosolic granules 

and phagocytosis.59 

 

3.4.1.3 Cell adhesion molecules (CAMs) 

 
Cell adhesion is mediated by specialized proteins, called CAMs, which bind to extracellular 

matrix or other cells. CAMs are transmembrane proteins whose intracellular parts associate with the 

cytoskeleton through a set of adaptor proteins while the extracellular part mediates ligand binding. 

CAMs function not only as a simple “glue” between cells; they also transmit important information 

from the cellular environment, and mediate migration, cell growth and proliferation. They play an 

important role in tumor invasion and metastasis formation. CAMs can be divided into four main 

families: the Ig superfamily (Ig-CAMs), integrins, selectins and cadherins.60 

 

3.4.1.3.1 Integrins 
 

Integrins are a large family of heterodimer molecules, composed of two chains, α and β. There 

are 19 types of α subunit and 8 types of β subunit, and 25 distinct αβ-receptors with a wide range of 

specificities are known.17 Integrin molecules are formed when a single β chain associates with any one 

of the α chains.60 Leukocytes express β2 integrins including leukocyte-function-associated antigen 1 

(LFA1) (CD11a/CD18; αLβ2), macrophage-adhesion-ligand 1 (Mac1) (CD11b/CD18; αMβ2), and β1 

integrins, such as very late antigen 4 (VLA4) (α4β1). Among the typical ligands of integrins are 

members of Ig-CAMs, like intercellular adhesion molecule 1-5 (ICAM-1-5), extracellular matrix 

proteins (fibrinogen) and complement proteins (iC3b).17 

Integrin signaling consists of two stages, called inside-out and outside-in. In resting cells, 

integrins exist in a bent or folded conformation with low affinity to ligand binding. Cell activation 

triggers a sequence of events inside the cell, which results in a segregation of the cytoplasmic part of 

the integrin heterodimers. Subsequent unfolding of the extracellular domains dramatically increases 
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the affinity for ligand binding and facilitates clustering of the high-affinity receptors on the cell 

surface. This process is called inside-out signaling.17  

Once the high-affinity receptor binds its ligand, intracellular signaling cascades are triggered 

in a process termed outside-in signaling. Outside-in signaling leads to firm adhesion, spreading, ROS 

production and secretion of cytokines. The outside-in signal resembles signaling through classical 

immunoreceptors. Activation of SFKs and Syk and increase in total level of tyrosine phosphorylation 

was observed.17 In addition, SLP76,61 Vav,62 PLCγ,63 Pyk2, Akt,17 and PKC isoforms64 are important 

for integrin function. Recently it was shown that ITAM-containing adaptor proteins DAP12 and FcRγ 

are indispensable for integrin outside-in signaling. DAP12-/- or FcRγ-/- mice exhibit partial impairment 

in integrin-mediated ROS production, degranulation, and firm adhesion. Double knock-out mice have 

a complete block of integrin function.65  

 

3.4.1.3.2 Ig superfamily (Ig-CAMs) with focus on ICAM-1 
 

Ig-CAMs are cell-surface glycoproteins which contain several extracellular Ig-like loops. In 

contrast to the other families of CAMs, ligand binding is Ca2+-independent. Most Ig-CAMs are 

integral transmembrane proteins, but some are linked to a glycophopshatidyl inositol (GPI) anchor.66 

ICAM-1 (CD54) is a type I transmembrane glycoprotein with a molecular weight between 

80-110 kDa. It is expressed on the endothelial cells of blood vessels and on hematopoietic cells as 

well. Binding of LFA1 and Mac1 on leukocytes by ICAM-1 causes firm adhesion of leukocytes on the 

blood vessel and allows their trans-migration into the tissues. In addition, ICAM-1 is important for 

interactions between APCs and T cells during the formation of the immunological synapse.67 Its 

expression is greatly induced by pro-inflammatory cytokines (TNF-α, IL-1β). The ICAM-1 promotor 

contains binding sites for transcription factors NFκB, AP-1, AP-2, and AP-3. It was shown that 

TNFαR signaling leads to increased ICAM-1 expression via PI3K- and atypical PKCζ-mediated 

activation of NFκB.68   

Existence of a soluble form of ICAM-1 (sICAM-1) has been observed in plasma. Elevated 

amounts of sICAM-1 were detected in the serum of patients with cardiovascular disease and 

autoimmune disorders, as well as cancer. Moreover, serum levels of sICAM-1 correlated with the 

severity of these diseases.67 

ICAM-1 is able to initiate outside-in signaling.69 Its cytoplasmic domain lacks any typical 

signaling motifs but it contains a tyrosine residue (Y512) and many positively charged amino acids, 

which may be important for signaling.70 ICAM-1 ligation leads to phosphorylation of various 

molecules, including SFKs, PLCγ, PKC and MAPKs and also those involved in cytoskeleton 

rearrangement, such as the GTPases of the Rho family.67 
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3.4.1.4 Pattern recognition receptors (PRRs) 

 

PRRs are very important for host defense against bacterial and virus infection because they 

sense the presence of microorganisms by binding to evolutionarily conserved structures, called 

PAMPs, on the surface of pathogens. In addition, some of them are able to recognize endogenous 

molecules, known as DAMPs, which are released from damaged tissue. Four different classes of PRRs 

have been described so far: transmembrane TLRs and C-type lectin receptors (CLRs), and cytoplasmic 

retinoic acid-inducible gene (RIG)-I-like receptors (RLRs) and NLRs. Their respective ligands and 

cellular localization are summarized in Table 1. Generally, signaling of PRRs up-regulates 

transcription of genes involved in inflammatory responses such as pro-inflammatory cytokines, 

chemokines, type I interferons (IFNs), antimicrobial proteins and proteins implicated in modulation of 

PRRs signaling.71 

 
Table 1: Pattern recognition receptors, their localization and ligands. The table was adapted from Takeuchi et al.71 

 
 

3.4.1.4.1 Toll-like receptors (TLRs) 
 

TLRs are type I integral membrane proteins characterized by the presence of extracellular 

leucine-rich repeats, responsible for ligand recognition and a cytoplasmic Toll/IL-1R homology (TIR) 

domain for induction of the intracellular signaling cascade.72 Ligand binding leads to dimerization 

followed by a conformational change and allows association with downstream signaling molecules.73 

Particular TLRs slightly differ in their cytoplasmic signaling cascades according to which 
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TIR-domain-containing adaptor proteins are preferentially used. There are five of those adaptor 

proteins including myeloid differentiation primary response gene 88 (MyD88), TIR 

domain-containing adaptor inducing IFN-β (TRIF), TIR domain-containing adaptor protein 

(TIRAP/Mal), TRIF-related adaptor molecule (TRAM) and Sterile-α and Armadillo motif-containing 

protein (SARM). The downstream signaling can be roughly divided into two distinct pathways, 

MyD88-dependent and TRIF-dependent.71 

The MyD88-dependent pathway is initiated by the relocalisation of MyD88 by TIRAP to the 

cytoplasmic TIR domain of TLRs. MyD88 then recruits IRAK1 and IRAK4. Next, IRAK4 

phosphorylates IRAK1, allowing association with TNF receptor-associated factor 6 (TRAF6). 

Phosphorylated IRAK1 and TRAF6 dissociate from the receptor and form a complex with 

TGF-β-activated kinase 1 (TAK1), TAK1-binding protein 1 (TAB1) and TAB2. IRAK1 is degraded, 

and the complex translocates to the cytoplasm where it interacts with ubiquitin ligases. 

Ubiquitinylation of TRAF6 induces activation of TAK1. TAK1 in turn activates the IκB kinase (IKK) 

complex and MAP kinase kinase 6. The IKK complex phosphorylates the inhibitor of NFκB (IκBa), 

marking it for ubiquitinylation and subsequent degradation by proteasome. Free NFκB can translocate 

to the nucleus and activate transcription of pro-inflammatory cytokine genes. Activation of the MAPK 

pathway accounts for the formation of the transcription factor, AP-1, which drives expression of 

additional pro-inflammatory genes.71-73  

The TRIF-dependent pathway starts with the recruitment of TRIF to the TIR domain through 

adaptor protein TRAM. TRIF mediates formation of a complex consisting of TRAF3, TRAF6 and 

receptor-interacting protein 1 (RIP1). RIP1 is implicated in the activation of NFκB, while TRAF3 is 

important for interferon (IFN)-regulatory factor 3 (IRF3) activation. TRAF3 activates TBK1/IKK-i, 

which phosphorylates IRF3 and IRF7. The dimer of IRF3 and IRF7 then translocates to the nucleus, 

resulting in induction of type I IFNs. In addition, IKK-i phosphorylates STAT1, further contributing to 

the transcription of IFN-inducible genes.71-73 

TLR1, TLR2, TLR5, TLR6, TLR7 and TLR9 use the MyD88-dependent pathway. TLR3 is 

the only one that signals exclusively via the TRIF-dependent pathway; TLR4 can utilize both 

pathways.  

 

3.4.2 Kinases and phosphatases 

 

In general, kinases are a group of enzymes called phosphotransferases. They catalyze the 

transfer of phosphate groups from high-energy donor molecules, such as ATP, to specific substrates. 

Obversely, phosphatases are enzymes that remove phosphate groups. 

Protein kinases specifically add a phosphate group to the tyrosine, serine or threonine residues 

of proteins. Over 500 protein kinases exist in the human/mouse genomes. According to their structural 

http://en.wikipedia.org/wiki/Phosphate�
http://en.wikipedia.org/wiki/Adenosine_triphosphate�
http://en.wikipedia.org/wiki/Substrate_%28biochemistry%29�
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features and specific functional characteristics, protein kinases can be grouped into various 

subfamilies.74 Stimulation of kinases is the hallmark of signal transduction. Similarly, 

dephosphorylation of proteins is catalyzed by protein phosphatases, which are therefore important 

regulators of physiological responses. Kinases and phosphatases modulate all aspects of cellular 

biology, including development and cell cycle regulation. Deregulation of their function can lead to 

various diseases, even cancer.16 

 

3.4.2.1 Src kinases (SFKs) 
 

The Src family of non-receptor tyrosine kinases consists of eight members: Src, Fyn, Yes, Fgr, 

Lck, Hck, and Blk, which all display similar domain organisation and modes of regulation. In addition, 

these kinases can be subdivided into two subfamilies: Lyn, Hck, Lck and Blk may all be referred to as 

Lyn-related SFKs and Src, Yes, Fyn and Fgr are Src-related. Furthermore, there are three distantly 

related SFK-like kinases: Brk, Frk and Srm.74  

 

 

 
Figure 5: Schematic of SFK in its active and inactive 
conformation. In the resting state, the kinase exhibits a closed 
conformation held together by the intra-molecular association 
between the SH2 domain and the phosphosphorylated 
C-terminal tyrosine, and stabilized by interactions between the 
SH3 domain and a proline sequence at the beginning of the 
kinase domain. Upon activation, the C-terminal tyrosine is 
dephosphorylated by phosphatases, like CD45, which disrupts 
the interaction with the SH2 domain, and the kinase assumes 
open conformation. The picture is adapted from Ingley.74 

 

 

 

All members share common structural motifs that are important for their function and 

regulation (Figure 5). The N-terminal sequence (60 aa) contains a myristoylation and/or a 

palmitoylation motif, allowing membrane localization of the kinase. Acylation permits not only 

localization proximal to receptors, but also targeting to specific parts of the plasma membrane called 

lipid rafts.75  Furthermore, the N-terminal sequence of Lck is responsible for interaction with 

coreceptors, CD4 and CD8;76 in Fyn it may mediate association with TCR.77 The N-terminal sequence 

is followed by a Src homology 3 (SH3) domain (40-70 aa; see 3.4.3), which mediates intra-molecular 

association with a conserved proline motif in the catalytic domain, and thus negatively regulates 

kinase activity. The SH2 domain (approx. 100 aa; see 3.4.3) binds to specific phosphotyrosine motifs, 

for instance, pYEEI in the case of SFKs. The SH2 domain associates with a pY motif at the 

C-terminus of the molecule, locking the kinase domain in a close conformation Therefore, it is critical 
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for negative regulation of kinase activity. In the active state of the kinase, both the SH2 and SH3 

domains contribute to protein-protein interactions with substrates.78 The catalytic domain consists of 

ca 250 C-terminal aa and possesses the classical kinase activation loop (A-loop) with a tyrosine 

residue, which is phosphorylated in the fully active kinase.79 At the very end of the kinase polypeptide 

chain, there is the C-terminal tyrosine-based regulatory sequence that mediates intra-molecular 

interaction with the SH2 domain. C-terminal Src kinase (Csk) and the related Csk homologous kinase 

(Chk) are responsible for phosphorylation of this tyrosine; dephosphorylation is accomplished by 

transmembrane phosphatase CD45. 

The best-studied function of SFKs is their role in initiation of the signaling downstream of 

immunoreceptors. Following receptor ligation, SFKs are activated via mechanisms, which are thus far 

imprecisely understood. Activated SFK phosphorylates tyrosine residues in the ITAM sequences of 

TCR, BCR or FcRs. This allows recruitment of Syk kinases to the receptor and their subsequent 

activation by SFKs. 

Because of the functional redundancy between SFKs, knock-out mice deficient in a single 

SFKs usually exhibit rather mild phenotypes. Double or triple knock-out mice are often embryonically 

lethal or have seriously compromised immune systems.77,80  

 

3.4.2.2 Syk kinases 

 

The Syk family of non-receptor tyrosine kinases consists of two members in mammals: Syk 

(72 kDa), expressed by B cells, myeloid cells and NK cells, and ZAP-70 (70 kDa), expressed only by 

T cells and NK cells. Syk-related kinases are also found in invertebrates, suggesting an ancient 

evolutionary origin.18 Syk-/- mice are perinatally lethal. The major phenotype of a Syk-/- embryo is 

embryonic hemorrhage caused by a defect in the separation of lymphatic vessels from the blood 

circulation network and a lack of mature B cells.81 

 

 
Figure 6: Structural basis of Syk activation. 
There are three different modes of Syk activation. 
In the resting state, Syk is autoinhibited by the 
binding of interdomains A and B to the kinase 
domain. Binding of the two tandem SH2 domains 
to ITAMs or phosphorylation of tyrosine residues 
in the linker regions allows employment of the 
active conformation. The picture is adapted from 
Mocsai et al.18 
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Syk kinases play an important role downstream of classical immunoreceptors (TCR, BCR and 

various FcRs) as well as in integrin65 and C-type lectin signaling,82-84 bone resorption,85 and vascular 

development.81,86,87 Inhibitors of Syk, fostamatinib and R112, are used in the treatment of some 

allergic and autoimmune disorders such as allergic rhinitis, autoimmune thrombocytopenia and 

rheumatoid arthritis.88-91 Syk is also involved in the development of B cell lineage leukemias and 

lymphomas.92,93  

 Syk kinases consist of two tandem Src homology 2 (SH2) domains and a C-terminal kinase 

domain. These domains are connected by two linker regions: the region between the SH2 domains is 

called interdomain A, and the sequence which lies between the C-terminal SH2 domain and the kinase 

domain is termed interdomain B. Syk and ZAP-70 share a 56% overall sequence conservation with 

60% similarity in the kinase domain.94 The kinase domain of Syk is inactive in the resting state. To 

become activated, either the SH2 domains both have to bind to dually phosphorylated ITAM 

sequences, or tyrosine residues in the linker regions need to be phosphorylated to open the catalytic 

center into the active conformation (Figure 6).95 Many of these features are also conserved in its 

homolog, ZAP-70.96 

 

 

3.4.2.3 Tec kinases 

 

Tec kinases are a group of non-receptor tyrosine kinases which consist of five members:  

tyrosine kinase expressed in hepatocellular carcinoma (Tec),97 bone marrow kinase on the X 

chromosome (Bmx/Etk),98,99 Bruton`s tyrosine kinase (Btk),100-102 IL-2-inducible tyrosine kinase 

(Itk/Emt/Tsk),103,104 and resting lymphocyte kinase (Rlk/Txk).105,106 The importance of Tec kinases is 

exhibited in people with a mutation in the BTK gene, who suffer from a rare hereditary disease called 

X-linked agamaglobulinemia (XLA).101,102 (Figure 7) is primarily restricted to the hematopoietic 

system, although Bmx has been detected in endothelial cells and the liver. Low levels of Rlk have 

been reported in testis.107 

All members share common structural features (Figure 8). With the exception of Rlk, Tec 

kinases have a pleckstrin homology domain (PH; see 3.4.3) at the N-terminus, responsible for 

recruitment to the plasma membrane. The PH domain has an autoregulatory function and is followed 

by a Tec homology (TH) domain, which is formed by a Btk homology (BH) motif and by one or two 

proline-rich regions.108 Interestingly, the BH motif is a highly conserved zinc finger motif, which 

binds Zn2+. Mutations affecting Zn2+ binding lead to an extremely unstable protein.109 The SH3 

domain (see 3.4.3) binding proline-rich sequences has been implicated in autoregulation as well as in 

protein-protein interactions. The SH2 domain (see 3.4.3) associates with pY motifs and mediates 
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protein-protein interactions. Finally, at the C-terminus, there is a kinase domain.110 Rlk is atypical 

because it contains a palmitoylated cysteine-rich sequence (as opposed to a PH domain and a BH 

motif), which is responsible for membrane targeting.111 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
Figure 7: Expression pattern of Tec family kinases in the hematopoietic system. The picture is adapted from Schmidt et 
al.107 

 

Activation of Tec kinases proceeds in several steps. First, upon receptor engagement, 

phosphotidylinositol (3,4,5)-trisphosphate (PIP3) is generated by PI3-kinase (PI3K) and interacts with 

the PH domain of a Tec kinase. In the second step, a tyrosine residue in the activation loop of the 

kinase domain is phosphorylated by SFKs. Subsequently, autophosphorylation of a tyrosine residue  

 

 
Figure 8: Structural comparison of Tec family 
and Src family kinases. The picture is adapted 
from Schmidt et al.107 

 

 

 

 

 

 

within the SH3 domain results in full activation of the Tec kinase. Binding to adaptor proteins such as 

SLP76 and SLP65 allows incorporation into BCR and TCR signaling cascades and represents another 
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level of regulation.112 Tec kinases are regulated by intramolecular interactions between the TH and 

SH3 domains, preventing binding to potential ligands.108 In addition, Rlk is directed to the membrane 

by a PI3K-independent mechanism due to palmitoylation, suggesting a different method of 

regulation.111  

 

3.4.2.3.1 Bruton`s tyrosine kinase (Btk) 

 

Btk is involved in signaling via a variety of receptors including the BCR, FcRs,113 TLRs,114,115 

G protein-linked receptors,116,117 the death receptor118 and cytokine receptors.119-121 Btk is critical for B 

cell development, differentiation and signaling. Loss of Btk function causes XLA, a rare primary 

immunodeficiency disease, which is manifested by an almost complete absence of peripheral B cells 

and serum Igs of all classes due to a blockage of transition between the pro- and pre-B cell 

stages.101,102 T lymphocyte numbers are normal or slightly enhanced. Secondary lymphoid organs such 

as lymph nodes or tonsils are often smaller.122 Affected individuals suffer from recurrent bacterial and 

enteroviral infections which often begin within the first year of life when the maternal Igs have been 

catabolized. Patients receive prophylactic antibiotics regularly and intravenous Igs every three to four 

weeks.122,123 The mouse model of the disease is called Xid. Xid is characterized by the spontaneous 

mutation of a CpG site in the Btk gene, changing residue 28 in the PH domain from arginine to 

cysteine.100,124 Xid mice maintain about half the number of splenic B cells because Tec is able to 

partially replace Btk in mice.125 The phenotype of Btk-/- knock-out mice is similar to Xid.126 

The best-studied role of Btk in signaling is its role in triggering Ca2+ flux. It was shown that 

Btk phosphorylates PLCγ at several tyrosine residues, including Y783, which is necessary for its 

maximal lipid hydrolase activity.127 Nevertheless, Btk is a multidomain protein bringing together a 

broad spectrum of signaling proteins into a single platform and playing a role in many cellular 

processes.123,128 Plasma membrane signaling of Btk is predominantly located in lipid rafts and/or 

caveolae.129-131 A low concentration of Btk can be detected in the nucleus, suggesting that it is a 

nucleo-cytoplasmic shuttling protein. The role of Btk in the nucleus is not clear.132 Btk interacts with 

F-actin through the PH domain, indicating a role in cytoskeletal rearrangement.133 Btk has pro- as well 

as anti-apoptotic functions depending on the specific context.134  Btk-/- DT40 cells do not undergo 

radiation-induced apoptosis due to the increased activity of STAT3.135 On the other hand, Btk 

associates with the Fas receptor and abolishes its interaction with Fas-associated protein with death 

domain (FADD); thereby, Btk inhibits apoptosis.118 Btk is implicated in tumor development. 

Mutations inactivating Btk were found in lymphoid tumors and in colorectal cancer. In addition, Xid 

mice are resistant to certain experimentally induced tumors, while activating mutations cause a 

transformed phenotype.128 
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Btk is directly involved in modulating the transcriptional status of cells. It interacts with 

several transcription factors and phosphorylates some of them, thereby inducing their activity. For 

example, NFκB activity is profoundly impaired in Btk-/- cells.136,137 In addition, Btk plays a role in 

activation of NFAT138 as well as BAP-135/TFII-I.139 

Btk is encoded by a single gene on the X chromosome. No alternatively spliced variants of 

Btk have been detected so far. Homologs of human Btk have been identified in chimpanzees, fruit 

flies, zebra fish, clearnose skates, chickens, and the marine sponge, Suberites domuncula. Although 

the Btk sequence is highly conserved among species, its functional role may differ dramatically 

throughout evolutionary history. In the fruit fly, Btk is necessary for the development of male 

reproductive organs, while in higher organisms, Btk plays a role in the normal development of the 

immune system.123 

Mutations causing XLA have been described in coding as well as in non-coding sequences of 

the BTK gene. To date, more than 1100 different mutations in 970 unrelated families, of which over 

600 of them are unique, have been discovered. Thus, most of the mutations are reported in a single 

family.140 All types of mutations, including missense, nonsense, mutation at the site of splicing, 

deletion or insertion, have been detected, all of them either generating functionally compromised Btk 

or missing it all together.123 Approximately one third of the mutations are missense.140 Usually, 

functionally significant, conserved residues and CpG nucleotides are affected. Interestingly, no patient 

with the replacement of the Y551 has been reported so far.141 Typically mutations affect the PH, the 

TH or the kinase domain. Most of the Btk PH domain mutations are concentrated in the binding site 

region where they disturb interactions with membrane lipids. About half of all the mutations are 

located in the kinase domain. They are mainly on one face of the kinase domain which is responsible 

for ATP, Mg2+ and substrate binding.122  

Various mutants of Btk were used to study Btk function. The E41K mutation of Btk was 

shown to be hyperphosphorylated142 and to exhibit a stronger association with membrane 

phospholipids,143 resulting in higher amounts of Btk at the plasma membrane.142 Increased Ca2+ 

mobilization was observed after BCR engagement in Btk-/- DT40 cells reconstituted with Btk E41K.144 

However, transgenic mice expressing Btk E41K suffer from similar but more severe B cell defects 

relative to Xid mice. A possible explanation is that the E41K mutation not only blocks the 

development of follicular recirculating B cells but also causes an enhanced blast formation of splenic 

B cells in vitro.145 The R28C mutation alters the positive charge on the surface of the PH domain and 

abolishes the interaction with membrane-resident lipid ligands.146,147 Thus, Btk R28C cannot relocate 

from the cytosol to close proximity of the plasma membrane, where activation of PLCγ takes place.148 

Interestingly, according to the analysis of the structure of the PH domain, the E41K mutant is able to 

bind two molecules of PIP3 as compared to one molecule in WT.147 The Btk K430E mutation targets 

the kinase domain of Btk, rendering it inactive. In contrast, in Btk-/- DT40 cells reconstituted with Btk 

K430E, Ca2+ mobilization is fully restored.149 In this study, it was proposed that in addition to its 
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kinase activity, Btk might also function as an adaptor protein that facilitates Ca2+ flux. Similarly, Btk’s 

tumor suppressor activity is fully restored by the kinase inactive form of Btk.150 Of note, Btk R525Q, 

another kinase inactive mutant, did not reconstitute BCR-induced Ca2+ flux.151 

In the promoter of the BTK gene, two active NFκB-binding sites, which bind both of the NFκB 

subunits p50 and p65, have been identified. Moreover, transcription of Btk was suppressed following 

inhibition of the NFκB signaling pathway.152 Xid and Btk-/- mice display decreased functionality of 

NFκB pathway.153 Thus, Btk can positively regulate its own transcription via NFκB signaling and Btk 

and NFκB create an autoregulatory feedback loop. 

A low resolution model of Btk’s structure revealed that Btk displays an extended 

conformation with no, or few, inter-domain interactions.154 Prolonged activation of Btk is prevented by 

other proteins, negatively regulating its activity. In this respect it was shown that PKCβ 

phosphorylates a key serine in the TH domain (S180), which interferes with membrane targeting and 

subsequent activation of Btk.144 In contrast, other isoforms of PKC such as PKCθ have a rather 

positive regulatory role on the kinase activity of Btk.155 Recently, an inhibitor of Btk (IBtk) was 

identified by a yeast-two-hybrid screen using Btk as the bait. IBtk physically associates with Btk and 

down-regulates its kinase activity.156 The mechanism is not completely clear; however, it is dependent 

on interaction with the PH-TH region of Btk.157 In addition, Yamadori et al158 showed that the protein 

Sab, which binds the SH3 domain, negatively regulates the auto- and transphosphorylation activity of 

Btk. Ubiquitin ligase c-Cbl also associates with the SH3 domain and may possibly target Btk for 

degradation. Upon BCR activation, Btk is transported into lipid rafts and caveolae where it is either 

reactivated, transported to the cytosol and reused or simply degraded. Interaction of caveolin-1 with 

Btk results in dramatic down-regulation of the kinase activity of Btk.131,159 Peptidyl-prolyl cis-trans 

isomerase, Pin1, catalyzes conformational changes of protein substrates and influences their function 

and stability. Pin1 does not influence the kinase activity of Btk but rather it modulates its expression 

levels in a cell cycle-dependent manner.160 

Btk is a promising target for immunotherapy, therefore the design of efficient inhibitors of its 

function is under constant investigation.  First, using an in vitro assay to block interaction between Btk 

and PKC, Kawakami et al161 developed a quinine epoxide, called terreic acid, which seemed to 

efficiently inhibit Btk kinase activity. However, its high toxicity and low specificity makes it 

unsuitable for clinical applications. Mahajan et al162 used a modeling approach to design leflunomide 

metabolite analogs with a high likelihood of binding favorably to the catalytic site within the kinase 

domain. However, LFM-A13 was also shown to inhibit other members of the Tec PTKs as well as 

other kinases.163,164 Recently, PCI-32765 was shown to bind irreversibly into the active site of Btk and 

block Btk activity at IC50 = 11 nM. This inhibitor has thus far been used successfully in a clinical 

study using spontaneous B-cell non-Hodgkin lymphoma in dogs.165 
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Btk`s function in innate immunity 

In innate immune cells, the role of Btk is less clear. Myeloid cells usually express more than 

one member of the Tec kinase family, and they often display redundant functions in signaling. Btk has 

been implicated in several pathways in myeloid cells,112 and some of them are described in the 

following pages.  

 

Monocytes/macrophages   
 

Recently, it was shown that Tec family kinases are involved in macrophage survival via 

M-CSF signaling. Stimulation of M-CSF resulted in phosphorylation of Btk. Using a suboptimal 

amount of M-CSF, Btk-/-Tec-/- bone marrow-derived macrophages (BMDMs) displayed increased cell 

death, correlating with a severe drop in macrophage numbers as compared to WT. In addition, Tec and 

Btk are required for expression of GM-CSFRα in BMDMs but not in BMDCs, suggesting that Tec 

kinases contribute to the lineage-specific regulation of GM-CSFRα expression.166 FcγR-mediated, 

CR1- and CR3 (CD11b/CD18)-dependent phagocytosis and LPS-induced chemotaxis of monocytes 

isolated from XLA patients were reduced.167 Moreover, in mouse peritoneal macrophages, Btk is 

involved in Fcγ receptor-mediated phagocytosis.168 

Using a yeast two-hybrid system and subsequent overexpression studies in HEK293T cells, 

Jefferies et al114 showed that Btk can associate with the TIR domain of TLR4, 6, 8 and 9, with adaptor 

proteins MyD88 and MyD88 adaptor-like (Mal), and with IRAK-1. In human monocytes and 

macrophages, Btk is activated downstream of TLR2 after Pam3Cys treatment and TLR4 after LPS 

stimulation.169,170 Treatment of the mouse macrophage cell line RAW 264.7 with the Btk inhibitor 

LFM-A13 abolished LTA-induced activation (acts through TLR2) of Btk and subsequent expression 

of TNF-α and MIP-2.115 Xid macrophages exhibit impaired phosphorylation and transactivation of the 

p65 subunit of NFκB upon LPS,171 CpG (ligand of TLR9) or R848 (ligand of TLR7 or 8)172 treatment. 

Macrophages from Xid mice produce significantly lower amounts of the pro-inflammatory cytokines, 

TNF-α and IL-1β, in response to LPS challenge, although the induction of MHC and costimulatory 

molecules was not affected.173 Furthermore, IL-10 production in response to LPS was reduced in Xid 

macrophages, while IL-6 production was enhanced.174 In addition, Xid macrophages show impaired 

burst of reactive oxygen species.175 

Contradictory results were obtained from studies of TLR stimulation of monocytes of XLA 

patients. In one report, relative to healthy controls, monocytes of XLA patients secreted reduced 

amounts of TNF-α upon LPS stimulation.169 On the other hand, Perez et al176 reported that monocytes 

of XLA patients showed similar TNF-α expression upon TLR4 triggering, compared to healthy 

individuals. Interestingly, incubation of XLA monocytes with M-CSF leads to an increase in the 
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expression of Tec and restores the ability to produce TNF-α upon LPS stimulation, suggesting a 

compensatory role for Tec, which has been previously reported for murine B cells.169  

Xid mice seem to be less susceptible to the development of various inflammatory and 

autoimmune diseases in experimental models.175,177,178 The induction of experimental autoimmune 

encephalomyelitis is slower and less severe in Xid mice relative to WT. Moreover, Mangla et al175 

observed less severe disease progression in models of a dextran sodium sulphate-induced colitis and of 

a Carrageenan-induced acute edema.  

Btk is also crucial for suppressing inflammatory responses. Btk can phosphorylate Mal.179 

Phosphorylated Mal then interacts with suppressor of cytokine signaling 1 (SOCS1) which results in 

ubiquitinylation of Mal and its proteasomal degradation.180  

 

Neutrophils 
 

Human neutrophils express Bmx, Btk and Tec (Figure 7). The Btk inhibitor, LFM-A13, 

suppresses tyrosine phosphorylation, production of superoxide anions, adhesion, chemotaxis and 

phospholipase D activity after treatment with the bacterially derived chemotactic factor fMLP. 

LMF-A13-pretreated cells display decreased accumulation of PIP3 in the plasma membrane 

accompanied with reduced amounts of translocated Rac-2, RhoA, ADP ribosylation factor-1, Tec, 

Bmx and Btk after fMLP stimulation.181 LFM-A13 has also been reported to inhibit degranulation and 

Ca2+ mobilization of neutrophils upon CD16b cross-linking.163 Recently, Btk was implicated as an 

important regulator of neutrophilic granulocyte maturation and function. Fiedler et al182 reported that 

GM-CSF- and TLRs-induced differention is impaired in Btk-/- neutrophils. They found that Btk is 

critical for expression of lineage-determining transcription factors C/EBPα, C/EBPβ and PU.1. 

Moreover, expression of MPO, gelatinase, elastase and other granule proteins was dependent upon Btk 

activity.  

XLA patients show an increased neutropenia, typically coinciding with severe infection.183,184 

However, neutropenia is not a characteristic of XLA patients on sufficient Igs therapy. Moreover, no 

defect in respiratory burst, MAP kinase signaling or shedding of surface CD62L was observed in XLA 

neutrophils upon TLR4 or TLR7/8 triggering.185 

 

Dendritic cells 
 

In dendritic cells, the impact of Btk in signaling is not completely clear. Gagliardi et al,186 

found that monocyte-derived DCs from XLA patients and healthy individuals exhibit no difference in 

DC differentiation, antigen presentation, or LPS-induced maturation. On the other hand, the work of 

Taneichi et al187 revealed that responses to ligation of TLR2, 3, 4, 7/8 are compromised in 

monocyte-derived DCs of XLA patients, leading to impaired phenotypic maturation based on CD83 
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expression accompanied with lower production of TNF-α. In addition, Sochorova et al188 reported that 

XLA patients have normal numbers of circulating DCs which display no apparent defects in response 

to stimulation of TLR1/2, 2/6, 3, 4 and 5, but they do exhibit a profound impairment of IL-6 and 

TNF-α in response to stimulation by TLR8 agonist. This observation is further strengthened by the 

fact that XLA patients suffer from recurrent enteroviral infections.  

In the mouse system, Btk-/- BMDCs appear to be more mature and exihibit an increased in 

vitro and in vivo T cell stimulatory function compared to WT BMDCs. The role of Btk in DCs seems 

to be mediated by IL-10, which activates STAT3. In vivo, Btk-/- mice show enhanced inflammatory 

responses in Th2-driven asthma and Th1-mediated contact sensitivity.189 

 

Osteoclasts 
 

The role of Tec kinases in the development of osteoclasts, cells necessary for bone resorbtion, 

has been proposed.190,191 Tec-/-Btk-/- mice show an osteopetrotic phenotype due to a defect in bone 

resorption. In vitro osteoclast differentiation of BMMs in the presence of the receptor activator of 

NFκB ligand (RANKL) and M-CSF was severely impaired in the absence of Btk and almost 

completely abrogated in the absence of Tec and Btk.191 Shinohara et al191 suggested a mechanism of 

this defect. Upon RANKL activation, a complex between phosphorylated Btk and adaptor molecules 

such as SLP65 is formed. The complex formation requires ITAM-mediated signaling since it is 

abolished in DAP12-/-FcγR-/- cells. Btk signaling leads to the phosphorylation of PLCγ1 and PLCγ2 

and subsequent activation of the critical transcription factor, NFATc1, for osteoclast differentiation. 

Indeed, NFATc1 activation, as well as Ca2+ flux and phosphorylation of PLCγ1 and PLCγ2, was 

seriously impaired upon RANKL stimulation in Tec-/-Btk-/- mice. In addition, transduction of Btk 

rescued NFATc1 activation.190,191 Together these data suggest that Tec kinase provides a link between 

the RANKL and ITAM-mediated signaling pathways.  

Osteoclasts from XLA patients showed defective resorption activity in vitro but bone density 

and bone turnover markers were not altered in XLA patients. In serum of XLA patients, increased 

levels of inflammatory cytokines were detected. Addition of this serum restored the activity of XLA 

osteoclasts and led to the normalization of bone density in vitro.192  

 

3.4.3 Adaptor proteins 

 

Adaptor proteins lack intrinsic enzymatic activity and instead they mediate protein-protein and/or 

protein-lipid interactions. Shaw et al193 specify the functions of adaptor proteins in four ways: (1) they 

operate as a scaffold onto which signaling molecules assemble; (2) they distribute signaling 

components to specific places in a cell; (3) they organize positive and negative feedback signals 

necessary to alter the signaling pathways; and (4) they protect activated signaling molecules from 
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inactivation (e.g. by phosphatases). Therefore, adaptor proteins enhance specificity and efficiency of 

signal propagation by concentrating signaling molecules at a specific site at the right time.193 In their 

sequence, they contain various structural domains, which enable specific binding. 

The SH2 domain was first identified in the Src kinase. The SH2 domain is an evolutionarily highly 

conserved structural module containing ~100 aa organized into two α helices and seven β strands. The 

SH2 domain plays an important role in signal transduction because it associates with a phosphorylated 

tyrosine (pY) residue. Selectivity for a particular, phosphorylated site is defined by residues located 

three to five amino acids C-terminally to pY.194 

Similarly to the SH2 domain, the phosphotyrosine-binding (PTB) domain binds to a pY residue. 

However, the prototypical recognition sequence was determined to be NPx(pY/Y/F) (x represents any 

aa), where residues located N-terminally of the tyrosine are important. Moreover, the tyrosine residue 

does not have to be phosphorylated at all. Interestingly, PTB domains are structurally very similar to 

PH domains and can also interact with phospholipids. Thus, PTB domains exhibit much broader 

binding specificity than SH2 domains.195 

The SH3 domain predominantly prefers peptides that contain a central motif, PxxP (x represents 

any aa). Residues surrounding this core motif determine the exact binding preferences of a particular 

SH3 domain. There are 13 different subtypes of SH3 domains; some of them do not even recognize 

the typical PxxP motif. It seems that most of them specifically interact with the structural module 

called PPII (polyproline type II), a left-handed helix with three residues per turn. In addition, 

positively charged residues such as arginine and lysine have been known to play an important part in 

binding an SH3 domain.196 

The WW domains are relatively small structural units containing around 40 amino acids. The name 

is derived from two conserved tryptophan residues. Their structure is formed by a triple stranded 

β-sheet. WW domain-containing proteins are localized inracellularly or in the cell nucleus. Several 

types of WW domains with different consensus binding sequences are defined. The biggest group 

recognizes the motif, PPxY; the second group interacts with the PPLP-containing peptides. Group III 

of the WW domains binds poly-P motifs flanked by R or K, while Group IV of the WW domains 

associates with short sequences with phospho-S or phospho-T followed by P, in a phosphorylation-

dependent manner.197 

PDZ domains consist of 80-90 aa comprising six β strands and two α helices arranged in a 

globular structure. Proteins often consist of multiple copies of PDZ domains, and they are almost 

always cytoplasmic. They bind the carboxyl-terminal sequences of proteins, usually transmembrane 

receptors and channels. Various C-terminal hydrophobic residues are important for binding of the PDZ 

domain.198,199 

The Plecstrin homology (PH) domain was first identified in the protein, pleckstrin, from which it 

received its name. The PH domain generally favors phosphoinositides and is usually responsible for 

anchoring proteins to the plasma membrane. Similarly to the other structural domains, the PH domains 

http://en.wikipedia.org/wiki/Alpha_helix�
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also display heterogenous binding specifities and are involved not solely in protein-lipid interactions 

but also in protein-protein interactions. PH domains fold into a 7-stranded β-sandwich structure. The 

β1–β2 loop between the first two β-strands marks a deep binding pocket with a basic motif, 

Kxn(K/R)xR, which is primarily needed for interaction with the phosphate group.195,200 

The name of the C1 domains is derived from ‘conserved region-1’ of PKC. They contain a 

zinc-finger motif with a standard sequence Hx12Cx2Cx13–14Cx2Cx4Hx2Cx7C (in which C is cysteine, H 

is histidine and x is any residue). Typical C1 domains bind diacylglycerol, and the functions of 

atypical C1 domains remain unknown.200  

C2 domains are named after another homology region in PKC. They associate with a wider range 

of lipids including phosphatidylserine. Conventional C2 domains bind both Ca2+ and membrane 

phospholipids (phosphatidylserine). However, not all of the C2 domains fulfill these criteria. They are 

characterized by an 8-stranded, antiparallel β-sandwich of ~130 aa, with three critical inter-strand 

loops that are required for binding both Ca2+ (when relevant) and membranes. Compared to PH 

domains, they lack the basic binding pocket responsible for association with membrane lipids. The 

interaction with negatively charged lipids is mediated by Ca2+.200 

According to the cellular distribution, adaptor proteins (SLP76, SLP65, and MyD88) can be 

localized intracellularly, while others (LAT, NTAL, PAG, SIT and TRIM) are transmembrane 

(TRAPs). All TRAPs display similar structural features which somewhat resemble ITAM-containing 

adaptor proteins associated with the classical immunoreceptors DAP12 and FcRγ. They all possess 

only a very short N-terminal extracellular sequence, followed by a transmembrane region. A 

C-terminal cytosolic part of the molecule contains a number of structural features which allows 

binding and recruitment of cytoplasmic proteins. Tyrosine-based motifs, which do not resemble ITAM 

motifs, are especially common. These tyrosines are phosphorylated/dephopshorylated after a receptor 

triggering. In addition, some of the TRAPs contain a cysteine-based palmitoylation motif in a 

juxtamembrane position. These TRAPs then reside in a special compartment of plasma membrane 

called lipid rafts.201 
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4 Results and discussion 
 
 
Publications summarized below are to be found as an attachment at the end of this Thesis.  
 

4.1 NF-κ B-dependent upregulation of ICAM-1 by HPV16-E6/E7 facilitates 
NK cell/target cell interaction1  
 

Cervical cancer is one of the most common female cancers in the world. The causative agents of 

cervical cancer are high-risk HPVs (HPV16 and HPV18), small dsDNA viruses which infect the 

epithelial layer of the cervix.9 

This publication is based on the observation that simultaneous transduction of primary human 

keratinocytes with viral proteins E6 and E7 of HPV16 directly induces strong ICAM-1 expression at 

mRNA as well as at protein levels. In the next step, we investigated the molecular mechanisms 

underlying this observation. It was shown that HPV-E6E7 induce expression of NFκB- and 

AP-1-responsive genes. Moreover, NFκB, AP-1, GAS and C/EBP are implicated in the transcriptional 

regulation of ICAM-1.202 Indeed, we found that HPV-E6E7 cells contain decreased amounts of IκBα, 

increased phosphorylation of p65 at Ser536 and enhanced levels of p65/p50 in the cell nuclei. 

Transduction of HPV-E6E7-expressing keratinocytes with an NFκB superrepressor (ΔN-IκBα), a 

deletion mutant of IκBα lacking the phosphorylation sites Ser32 and Ser36, led to reduction of 

ICAM-1 expression, indicating that ICAM-1 up-regulation is at least partially mediated via the NFκB 

pathway.  

Finally, contribution of various types of HPVs to the up-regulation of ICAM-1 was 

investigated. Low-risk mucosal Alpha PV type, HPV6, and cutaneous Beta PV type, HPV38, did not 

enhance ICAM-1 levels. The other cutaneous Beta PV types, HPV5 and HPV8, induced an increased 

expression of ICAM-1 but in an NFκB-independent manner, suggesting the involvement of other 

signaling pathways. HPV38, although belonging to the same group as HPV5 and HPV8, is not 

considered a high-risk type. In addition, high-risk mucosal Alpha PV type, HPV18, induced an 

intermediate up-regulation of ICAM-1 and the highest expression was induced by HPV16, indicating 

that the amounts of ICAM-1 expression correlate with oncogenicity of the respective HPV type.   

The enhanced ICAM-1 expression led to increased conjugate formation with the NK cell line, 

NKL. Furthermore, NKL cell-mediated killing of the HPV+ cervical carcinoma cell line, CaSki, was 

greatly reduced by blocking of LFA-1, the ligand of ICAM-1. The role of ICAM-1 in tumor 

progression is not clear. Up-regulation of ICAM-1 may lead to better retention of leukocytes inside the 

tumor; attraction of NK cells and CD8 T cells causes increased killing of tumor cells. On the other 

hand, increased ICAM-1 levels result in a higher risk of metastasis development. For example, 
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increased amounts of ICAM-1 on breast cancer cells correlated with a better prognosis and survival 

rate of patients,203 but in melanoma and liver cancer patients, it correlated with increased risk of 

metastasis.204-206 Thus, ICAM-1 up-regulation may account for different prognoses, depending upon 

the type of tumor. So far, there are no reports describing the impact of ICAM-1 expression in patients 

with cervical cancer. Therefore, we cannot draw a conclusion as to whether up-regulation of ICAM-1 

supports tumor growth or enhances recognition of tumor cells by leukocytes. Nevertheless, our study 

suggests that cervical carcinoma should be well recognized by NK cells. In addition, activating NK 

cell receptor ligands such as CD155 and MICA are often up-regulated, and inhibitory NK cell receptor 

ligands like MHC class I are frequently down-regulated in cervical cancer in situ.207 However, NK cell 

activity is often suppressed by the tumor microenvironment and by other immune cells such as 

regulatory T cells.208 Efficient activation of NK cells might be a promising strategy for successful 

treatment of cervical cancer. 

I contributed to this work by performing retroviral transductions of primary keratinocytes for 
revision of the manuscript. 

 
 

4.2 PRR7 is a transmembrane adaptor protein expressed in activated T 
cells involved in regulation of T cell receptor (TCR) signaling and 
apoptosis2 

 
Signaling is mediated by the activity of many different proteins. Among them, several 

transmembrane adaptor proteins play regulatory roles when they, for instrance, bring 

kinases/phosphatases and their substrates into close proximity. Transmembrane adaptor protein 

(TRAP), PRR7, was first described as a component potentially involved in modulation of neural 

activities.209 This work investigated its role in immune cells. PRR7 is a 274-aa highly evolutionarily 

conserved (94% among placental mammals) protein with structural features typical for TRAPs. It has 

a short N-terminal, extracellular sequence, a single transmembrane segment and a cytoplasmic region 

containing several conserved binding motifs. These motifs include multiple SH2 domain binding 

and/or endocytic tyrosine-based motifs (YxxI/L/V/A), multiple prolin-rich SH3 binding motifs (PxxP), 

group I of WW domain binding motifs (PPxY), and a C-terminal PDZ domain binding motif (TTAV). 

In addition, the potential palmitoylation motif (CCxC) is localized in the submembrane region.  

Expression of PRR7 at the mRNA level was detected in various tissues including the brain, 

esophagus, lungs, ovaries, thymus and lymph nodes. Rapid up-regulation of PRR7 was observed in 

PHA-stimulated PBLs. At protein level, PRR7 was expressed in PBLs activated with anti-CD3 and 

anti-CD28 mAbs, PHA, or PMA and ionomycin as detected by immunoprecipitation. Furthermore, 

lymphoid cell lines Jurkat, Ramos and MOLT-4 expressed PRR7. PRR7 was palmitoylated and 

localized into large but non-buoyant detergent-resistant complexes. 
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 Because overexpression of PRR7 led to rapid apoptosis, a PRR7 inducible expression system 

was used for generating stable PRR7-expressing clones in the Jurkat cell line, called J-iPRR7. Using 

this system, we found that a region (aa151 - aa171) surrounding Tyr166 is critical for induction of 

apoptosis. Full-length PRR7 was localized at the plasma membrane as well as intracellularly, in large 

vesicular, perinuclear structures. The same sequence (aa151 - aa171) responsible for induction of 

apoptosis was required for localization into the perinuclear structures. Interestingly, tyrosines were 

rather dispensable for this effect. PRR7 was phosphorylated after TCR engagement most probably by 

the kinase Src which also associated with PRR7. J-iPRR7 cells treated with the SFKs inhibitor, PP2, 

displayed reduced phosphorylation of PRR7. However, PP2 treatment had no effect on apoptosis 

induction. 

 Besides induction of apoptosis, the typical phenotypic feature of J-iPRR7 cells was a partially 

activated state characterized by spontaneous up-regulation of the surface activation marker CD69 and 

enhanced secretion of IL-2 after PMA and ionomycin treatment. In contrast, attenuated Ca2+ flux and 

reduced phosphorylation of signaling molecules, including ZAP70, LAT, PLCγ1, Erk1/2 and Jnk, 

were observed simultaneously after TCR stimulation, suggesting a negative regulatory role of PRR7 in 

the proximal steps of TCR signaling. Moreover, phosphorylation of TCRζ both in basal state and after 

stimulation was decreased. These effects might be explained by the observation that PRR7 induction 

also leads to decreased expression and phosphorylation of the Src kinase, Lck. So PRR7 might, by an 

unknown mechanism, down-regulate the activity of Lck, which is, in turn, manifested by impaired 

proximal signaling. Interestingly, expression as well as phosphorylation of transcription factor c-Jun 

was greatly increased. It is speculated that enhanced activity of c-Jun accounts for the partially primed 

state of J-iPRR7 cells. In this context, it seems that c-Jun acts independently of Lck, because treatment 

with the SFKs kinase inhibitor, PP2, only minimally affected c-Jun expression. In this respect, it was 

shown that c-Jun is regulated by ubiquitin-mediated degradation.210 Furthermore, potential binding 

sites for E3 ubiquitin ligases were found in the sequence of PRR7. However, no interaction was 

detected by immunoprecipitation.  

Although PRR7 induction has dramatic effects on TCR signaling, it remains to be determined 

whether it is also important under normal physiological conditions. Expression of PRR7 seems to be 

very tightly regulated in resting T cells, while in COS-7 or HEK293FT cells, it is well tolerated. Using 

a conditional PRR7 gene knock-out may provide more answers. 

I helped with this project at the very beginning by carrying out the initial cloning of PRR7 and 

preparing the recombinant protein for immunization and subsequent testing of the monoclonal 

antibodies. 
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4.3 Btk is a positive regulator in the TREM-1/DAP12 signaling pathway3 
 

Innate immune responses are orchestrated via multiple cell surface receptors, including G-protein 

linked receptors, complement receptors, cytokine receptors, TLRs, FcRs and other receptors of the 

Ig-like superfamily. TREM-1, which belongs to the Ig-like superfamily, was recently implicated in the 

production of pro-inflammatory cytokines and chemokines during bacterial infection and sepsis. 

TREM-1 is coupled to an ITAM-containing transmembrane adaptor protein DAP12.19 Our aim was to 

identify novel regulators in the TREM-1/DAP12 pathway.  

First, we focused on proteins known to be involved in Ca2+ flux in other ITAM-based signaling 

pathways, such as BCR-mediated signaling in B cells. In this publication, we demonstrate that Btk, a 

member of the Tec family of kinases, becomes phosphorylated on Y551 (which lies in the activation 

loop of the kinase) upon TREM-1/DAP12 triggering in the human myelomonocytic cell line U937 and 

primary human PBMCs containing 14% CD14+ cells. This phosphorylation was dependent on the 

activity of Src and Syk kinases.  

To investigate the role of Btk in TREM-1/DAP12 signaling, we generated U937 cells in which 

expression of Btk was diminished by shRNA-mediated knockdown. In these cells, Erk1/2 and PLCγ 

phosphorylation, Ca2+ mobilization, up-regulation of activation/differentiation markers and production 

of pro-inflammatory cytokines, TNF-α and IL-8, were all reduced after TREM-1 triggering. These 

data were further confirmed by introducing a Btk construct insensitive to the shRNA.  

Next, the molecular mechanisms underlying Btk activity in the TREM-1 pathway were 

investigated. Cell lines bearing various Btk mutants were used. The E41K mutation in the PH domain 

of Btk was shown to be hyperphosphorylated142 and to exhibit stronger association with membrane 

phospholipids.143 On the other hand, the R28C mutation prevents Btk from binding to PIP3 in the 

plasma membrane.148 Thus, Btk R28C cannot relocalize from the cytosol to the close proximity of the 

plasma membrane, where activation of PLCγ takes place. Finally, the Btk K430E mutation targets the 

kinase domain of Btk, rendering it inactive. Our data revealed that the E41K mutant acted as a 

gain-of-function mutant, leading to increased Erk1/2 phosphorylation, Ca2+ flux, up-regulation of 

CD11c and CD86, and cytokine secretion upon TREM-1 triggering. On the contrary, R28C and 

K430E mutants showed the opposite effects. These data suggest that intact membrane localization and 

kinase activity of Btk were required for function of Btk in TREM-1 signaling. 

To investigate the role of Btk in primary cells, BMDCs from Btk-/-, Tec-/-, and Btk-/-Tec-/- 

knock-out mice were used. TNFα production was significantly reduced in Btk-/- and almost completely 

abolished in Btk-/-Tec-/- cells. It might be that Tec partially compensates for the lack of Btk in Btk-/- 

BMDCs. 

Finally, blood from patients suffering with XLA, a rare immunodeficiency caused by 

nonfunctional or missing Btk, was collected. PBMCs from the majority of tested XLA patients 

displayed reduced TNF-α production upon TREM-1 triggering. Since the exact nature of the TREM-1 
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ligand(s) remains elusive, the consequences of nonfunctional TREM-1 signaling in the clinical 

manifestation of XLA are not clear. Elevated levels of inflammatory cytokines, including TNF-α, 

were detected in the serum of XLA patients.192 Our data suggest that these high levels of TNF-α arise 

from pathways unrelated to TREM-1. The stimulation of monocytes of XLA patients with LPS 

resulted in controversial findings. One study reported defects in TNF-α production by monocytes of 

XLA patients upon LPS stimulation,169 whereas another study observed similar levels of TNF-α 

expression.176 Thus, the contribution of TLR4 signaling to the high TNF-α serum levels in XLA 

patients requires further investigation.  

Collectively, these results indicate that Btk is a positive regulator in the TREM-1/DAP12 

pathway. Therefore, it is tempting to speculate that inhibition of Btk with specific small molecules 

might be a promising strategy in the treatment of inflammation and sepsis.  

In this project, I designed and performed the vast majority of experiments needed, analyzed the 

data and wrote the manuscript. 
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5 Concluding remarks 
 

The aim of this thesis was to contribute to the understanding of selected physiologically relevant 

signaling pathways in leukocytes. The main results can be summarized as follows.  

 

1. We found that the adhesion molecule, ICAM-1, is up-regulated upon transduction of E6 and 

E7 of HPV16. Increased expression of ICAM-1 was mediated by the NFκB signaling 

pathway. The level of ICAM-1 expression correlated with the oncogenicity of the respective 

HPV type. ICAM-1 up-regulation led to enhanced conjugate formation with NK cells. 

Moreover, NK cell-mediated killing of the cervical carcinoma cell line, CaSki, was reduced by 

blocking of the ligand of ICAM-1, LFA-1. Therefore, strategies to improve recognition of 

cervical carcinoma cells by NK cells might prove useful for treatment.   

 

 

2. We identified a new transmembrane adaptor protein, PRR7. Expression of PRR7 seems to be 

very tightly regulated in resting T cells. Induction of PRR7 leads to apoptosis and reduced 

proximal signaling events after TCR stimulation. On the other hand, expression of the 

transcription factor, c-Jun, was up-regulated. A remarkable effect of PRR7 overexpression in 

TCR signaling is decreased expression and phosphorylation of Lck. In conclusion, these data 

provide evidence that PRR7 is a potential regulator of signaling and apoptosis in activated T 

cells. 

 
 

3. We discovered that Btk, a member of Tec protein tyrosine kinases, is phosphorylated after 

TREM-1 stimulation in myeloid cells. Btk positively regulates TREM-1-induced Erk1/2 

phosphorylation, Ca2+ flux, up-regulation of activation/differentiation and production of 

pro-inflammatory cytokines in the TREM-1 signaling pathway. Intact membrane localization 

and a functional kinase domain are required for Btk activity in TREM-1-mediated signaling. 

Interestingly, PBMCs derived from patients lacking a functional BTK gene displayed reduced 

TNF-α secretion after TREM-1 stimulation. These data suggest that Btk plays an important 

role in inflammatory processes, and that manipulating its activity may be beneficial during 

inflammation. 
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6 Abbreviations 
 
aa     amino acid 
AP-1     activator protein 1 
APC     antigen-presenting cell 
Bcl-10     B cell lymphoma/leukemia 
BCR     B cell receptor 
BH     Btk homology 
BMDCs     bone marrow-derived dendritic cells 
BMDMs    bone marrow-derived macrophages 
Bmx     bone marrow kinase on the X chromosome 
Btk     Bruton’s tyrosine kinase 
CAMs     cell adhesion molecules 
CARD9     caspase-recruiting domain, member 9 
c-Cbl     Casitas B-lineage lymphoma 
CD     cluster of differentiation 
CLRs     C-type lectin receptors 
Csk     C-terminal Src kinase 
DAG     diacylglycerol 
DAMPs     damage-associated molecular patterns 
DC     dendritic cells 
DIC     disseminated intravascular coagulation 
Erk1/2     extracellular-signal regulated kinase 
FADD     Fas-associated protein with death domain 
fMLP     N-formyl-methionine-leucine-phenylalanine 
GM-CSF    granulocyte macrophage colony-stimulating factor 
Grb2     growth factor receptor-bound protein 
ICAM-1     intracellular adhesion molecule, CD54 
IFNs     type I interferons 
IP3     inositol 1,4,5-trisphosphate  
IRF     IFN-regulatory factor 
Ig     immunoglobulin 
IκB     inhibitor of NF-κB 
IKK     IκB kinase 
IL     interleukin 
IRAK     IL-1R-associated kinase 
ITAM     immunoreceptor tyrosine-based activation motif 
ITIM     immunoreceptor tyrosine-based inhibition motif 
Itk     IL-2-inducible tyrosine kinase 
HPV     human papillomavirus 
HMGB1     high mobility group box 1 
LFA1     leukocyte-function-associated antigen 1 
LPS     lipopolysacharide 
(m)Ab     (monoclonal) antibody 
Mac1     macrophage-adhesion-ligand 1 
Mal     MyD88 adaptor-like 
MAPK     mitogen-activated protein kinase 
M-CSF     macrophage colony-stimulating factor 
MCP-1     monocyte chemotactic protein-1 
MDSCs     myeloid derived suppressor cells 
MHC     major histocompatibility complex  
MIF  migration inhibitory factor 
MPO  myeloperoxidase 
MyD88  myeloid differentiation primary response gene 88 
NFAT  nuclear factor of activated T cells 
NFκB  nuclear factor kappa-light-chain-enhancer of activated B cells 
NK     natural killer 
NLRs     Nod-like receptors 
NTAL     non-T cell activation linker 
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PAMPs     pathogen-associated molecular patterns 
PBLs     peripheral blood lymphocytes 
PBMCs     peripheral blood mononuclear cells 
PH     pleckstrin homology 
PHA     phytohemagglutinin 
PLCγ     phospholipase Cγ 
PMA     phorbol 12-myristate 13-acetate 
PRR7     proline rich 7 
PRRs     pattern recognition receptors 
pY     phosphorylated tyrosine 
RANKL     receptor activator of NFκB ligand 
Rb     retinoblastoma 
RIP     receptor-interacting protein 
Rlk     resting lymphocyte kinase 
RLRs     Retinoic acid-inducible gene (RIG)-I-like receptors 
SFK     Src family kinase 
SH     Src homology 
SHP     SH2 domain-conatining phosphatase 
SLP76/65    SH2 domain-containing leukocyte protein of 76/65 kDa 
SOCS     suppressor of cytokine signaling 
Sos     Son of sevenless 
STAT     signal transducers and activators of transcription 
Syk     Spleen tyrosine kinase 
ROS     reactive oxygen species 
TAB     TAK1 binding protein 
TAK1     TGF-β-activated kinase 
TAMs     tumor-associated macrophages 
TCR     T cell receptor 
Tec     tyrosine kinase expressed in hepatocellular carcinoma 
TGFβ     transforming growth factor β 
TH     Tec homology 
TIR     Toll/IL-1R homology 
TIRAP/Mal    TIR domain-containing adaptor protein 
TLRs     toll-like receptors 
TLT     TREM-like transcript  
TNFα     tumor necrosis factor α 
TRAF     TNF receptor-associated factor 
TRAM     TRIF-related adaptor molecule 
TRAPs     transmembrane adaptor proteins 
TREM-1    triggering receptor expressed on myeloid cells 1 
TRIF     TIR domain-containing adaptor inducing IFN-β 
VCAM     vascular cell adhesion molecule 
VEGF     vascular endothelial growth factor 
VLA     very late antigen  
WT     wild type 
XLA     X-linked agammaglobulinemia 
ZAP70     ζ-associated protein of 70 kDa 
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