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Preface

This Thesis aims to bring together the results of multiple cryogenic experiments
performed with oscillating objects in normal liquid and super�uid phases of both
isotopes of helium. All these experiments are joined by two common purposes.
The �rst and principal one is to investigate the peculiar behaviour of super�uids
at low temperatures, especially the dynamics of quantized vortices, the interplay
between the normal and super�uid components during the transition to turbu-
lence in the super�uid phases of helium, and various mechanisms of energy trans-
port and dissipation. The second and less obvious purpose is to provide a full
characterisation of an extremely popular experimental instrument often used in
these types of investigations � the quartz tuning fork, and moreover, to provide
hints on the behaviour of other oscillating bodies commonly used in cryogenic
�uid dynamics research.

The experiments, forming the basis of this work, have been performed in two
locations. Investigations of the 4He isotope have been carried out in the Prague
Laboratory of Super�uidity, within the Joint Low Temperature Laboratory estab-
lished between the Faculty of Mathematics and Physics of the Charles University
in Prague and the Institute of Physics of the Czech Academy of Sciences. An
independent study requiring very low temperatures in super�uid 3He�B was re-
alised in cooperation with the Low Temperature Laboratory of Aalto Univeristy,
School of Science based in Espoo, Finland (formerly the Helsinki University of
Technology), during the course of two consecutive visits by the Author.

The Thesis is structured as follows. Chapter 1 gives an elementary intro-
duction into the topics of super�uidity, including the di�erences between 3He
and 4He and emphasizing the phenomenon of Andreev re�ection in 3He�B. The
same Chapter also provides a description of the main detection technique used
throughout the work, i.e., measurement of the resonant properties of a quartz
tuning fork oscillator. Chapters 2 and 3 deal in detail with the transition to
turbulence detected by the quartz tuning fork in classical �uids and super�uid
4He, while Chapter 4 is focused on acoustic emission by the tuning fork as a
potentially important dissipation mechanism. In Chapter 5, we will describe the
investigations of Andreev re�ection on a well-de�ned arrangement of quantized
vortices in 3He�B, and the main body of the Thesis is then completed with the
Conclusions presented in Chapter 6. Appendix A, containing a collection of the
Author's published papers on the topics under discussion, is included for the
reader's convenience.



Author's contribution

The Author began working with tuning fork oscillators in 4He in the Prague
Laboratory of Super�uidity under the guidance of Ladislav Skrbek at the end
of 2005, and the early measurements have already been used as a part of his
Master's Thesis. The work presented here is a result of the joint e�ort of many
people cooperating in cryogenic �uid dynamics research, and here, we shall clarify
the role of the Author in this endeavour and acknowledge the contribution of his
colleagues.

The investigations of the transition to classical turbulence in He I and He gas
presented in Chapter 2 have been carried out together with Michaela Krá©ová
(née Blaºková), and it is fair to say that it was her who acquired most of the
data. The Author took part in the installation of the tuning forks and in the
measurements themselves as well, his role being that of a younger student being
trained in the process. The Author later contributed in a larger extent to the data
processing and the general preparation of the resulting publication [1], included
here in Appendix A as attachment A1.

In the experiments on room temperature visualisation by Baker and Kalliro-
scope techniques presented in the same Chapter, in a sense, the Author's role
had been reversed, as he was doing his best to help and guide a younger student,
Veronika Pilcová, to collect and process the data for her Bachelor's Thesis. Here,
the Author contributed mainly to the construction of the apparatus, to the da-
ta analysis by providing some input in terms of the theories of hydrodynamics,
although in a lesser extent then his and Veronika's supervisor, Ladislav Skrbek.
While it was Veronika, who, after adequate training, took almost all of the data,
the Author assisted in the process and contributed signi�cantly by developing
multiple software tools, including an image processor, that have been used in
analysing the input from the camera recording the position of the oscillating
body. The �nal processing of the visualisation data as well as reprocessing of the
data from classical turbulence in He I, for the resulting publication [2] (included
as attachment A2) was also the Author's responsibility to a large extent, but he
bene�ted greatly from the help from Michaela Krá©ová regarding the cryogenic
data.

The experiments with quartz tuning forks on the transition to turbulence in
He II as presented in Chapter 3 was a task jointly given to the Author and to
Michaela Krá©ová. Here, the Author was already more heavily involved in the
measurements and in the analysis as well, especially after Michaela had taken her
maternity leave in 2008. In devising the model presented in Ref. [3] (included
here as A3), the roles of Professors W. F. Vinen and L. Skrbek were irreplaceable,
the Author and Michaela were mainly involved in raw data processing and testing
various working versions of the mentioned model.

Regarding the studies of acoustic emission presented in Chapter 4, the �rst
idea of the importance of this phenomenon came to the Author from the data
measured in the Kharkov dilution refrigerator with Prague high frequency tuning
forks (resonating at 77 kHz and 100 kHz). The measurements in Kharkov were
performed by Grigoriy Sheshin and his colleagues I. Gritsenko and A. Zadorozhko,
and they kindly shared their results looking for a reasonable interpretation. The
Author realized that the observed frequency dependence of the linear drag force



can be explained neither by viscosity nor by ballistic drag at low temperature,
and that another phenomenon must be responsible, guessing at acoustic emission,
as was suggested by the steep frequency dependence. The subsequent Prague
experiments were performed and analysed mainly by the Author, although he
was helped signi�cantly by Marco La Mantia, at that time a new postdoc in
Prague. The three models of acoustic emission by tuning forks presented in
Ref. [4] (attachment A4) were fully developed by the Author based on the work of
Sillitto [5], Clubb et al. [6] and on the Landau-Lifschitz course of hydrodynamics
[7], and the text of the mentioned publication is also of his making, although, of
course, with appropriate corrections from the other authors, and according to the
suggestions of the referees, who have contributed to the �nal form of the paper
signi�cantly.

The Andreev re�ection measurements performed in Helsinki and presented
in Chapter 5 were the �rst chance for the Author to acquaint himself with the
physics of 3He, and consequently, he was concerned mainly with minor technical
tasks, such as the selection, preparation and characterisation of the tuning forks
used, and some rather straightforward data analysis. Most of the important work
around the experiment was done by members of the ROTA group, namely by
Jaakko Hosio, Petri Heikkinen, Rob de Graaf, Volodya Eltsov and Matti Krusius.
The computer simulation of the motion of thermal excitations was performed
by Jere Mäkinen. Nevertheless, the Author took part in the measurements as
well, obtaining one series of results at several di�erent rotation velocities of the
cryostat, and was responsible for the analysis of the thermal relaxation processes.
The results can be found in Ref. [8], included as attachment A5.

Finally, a brief note about other experiments not included in this Thesis that
the Author took part in. The most prominent one was the �Prague washing
machine�, which was intended to study turbulent �ows of normal and super�uid
4He between two counter-rotating discs (von Kármán geometry). The detection
methods were to be tuning forks, second sound attenuation, and a Pitot tube
�tted with a pressure probe to measure velocity �uctuations. Unfortunately, due
to an excessive number of technical di�culties, ranging from problems with the
drive of the discs, to insu�cient sensitivity of the pressure probe and the readout
electronics, this experiment never yielded the expected results despite almost two
years of e�ort and the help of other colleagues who had experience with similar
measurements, especially Philippe Roche. Whether this particular experiment
will be revisited someday remains to be seen. Other performed studies include
cavitation in normal and super�uid 4He [9, 10], and the behaviour of tuning fork
oscillators in externally driven �ows, such as a fountain pump jet [11] or thermal
counter�ow.
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1. Introduction

When helium was �rst lique�ed on July 10th, 1908 by the Dutch physicist Heike
Kamerlingh Onnes [12, 13, 14] as the last remaining gas after the liquefaction
the other so called permanent gases [15, 16, 17, 18, 19, 20], only few would have
guessed that this would mean the emergence of a whole new �eld of study �
low temperature physics. And it proved to be an interesting �eld of study in-
deed! Only three years later, superconductivity of mercury was discovered [21] by
Kamerlingh Onnes, who was awarded the Nobel prize in 1913 for his low temper-
ature research, and very little was missing to another groundbreaking discovery
� super�uidity of 4He below the �lambda-point�, Tλ=2.17 K. However, as histo-
ry shows, the actual discovery of super�uidity had to wait more than another
twenty years, and it is nowadays attributed to the Nobel prize laureate of 1978,
Pyotr Leonidovich Kapitza [22, 23], as well as to John Frank �Jack� Allan and
Don Misener [24, 25, 26]. Apart from the discovery itself, the contributions of
Satyendra Nath Bose [27], Albert Einstein [28, 29, 30], Fritz London [31, 32, 33],
Laszlo Tisza [34, 35, 36], Lev Davidovich Landau [37, 38, 39, 40, 41, 42], Elefter
Luarsabovich Andronikashvili [43, 44, 45], Lars Onsager [46, 47], and Richard
Feynmann [48, 49, 50, 51] to the early theories of the super�uid state represent
important pieces in the puzzle posed by super�uidity as well, and are certainly
deserving of equal merit. Super�uidity in 3He took another four decades to dis-
cover due to the fermionic nature of 3He and the much lower critical temperature
TC ≈ 2 mK, but in 1972 the e�ort was rewarded with success [52, 53]. Yet an-
other Nobel prize was awarded in the �eld of low temperature physics 24 years
later, this time to David Lee, Douglas Oshero� and Robert Richardson.

This day, over a century after the original liquefaction of helium, super�uidity,
and cryogenic �uid dynamics in general, still continue to spark the interest of the
scienti�c community and o�er many puzzling and intriguing questions. How
do pure super�uids, which �ow without friction, dissipate energy? How is this
process related to the dynamics of quantized vortices? How can we describe
super�uid turbulence, and what exactly happens at its onset? Can studying
super�uid turbulence help us to understand classical turbulence as well? These
and numerous other open questions are the driving force behind the development
of this �eld of research and behind the continuing attention it receives today from
scientists worldwide.

In this Thesis, we have chosen to concentrate on a narrow subset of problems
related to cryogenic �uid dynamics, speci�cally, on periodic oscillatory �ows due
to submerged bodies. Since the famous Andronikashvili experiment [43], various
oscillators in the form of disks, spheres, wires, grids and tuning forks have become
the traditional experimental tools for probing cryogenic �ows, complementing the
works on �ows driven on large scales, be it mechanically or thermally, and other
available probing techniques, such as ion trapping, second sound attenuation, or
in the last few years even direct �ow visualization methods.

The advantages of using various oscillators are numerous: (i) it is often pos-
sible to make use of the oscillator's resonant properties, greatly enhancing its
sensitivity in a low-friction environment, (ii) they are usually small objects that
�t easily even into spatially restricted experiments at very low temperatures,
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and (iii) there is no need for an external �ow source, the oscillator can be used
as a �ow generator or detector itself, and often it can even ful�ll both roles at
the same time. On the other hand, one might ask, why should we use helium
and low temperatures, when dynamically similar experiments from classical �uid
mechanics can be performed at room temperature? The reasons are obvious if
we wish to study purely quantum phenomena without classical analogues, but
even in classical �uid dynamics, cold helium gas and normal liquid 4He can be
used advantageously, as both are �uids with unique and easily tunable proper-
ties. Cold 4He can be used very e�ciently, for example, in classical turbulent
convection studies [54, 55, 56, 57, 58], due to its very low kinematic viscosity,
giving us experimental access in standard laboratory experiments to very high
Reynolds and Rayleigh numbers, which would require signi�cantly larger facilities
if another �uid, such as air, water was to be used. Other working �uids with the
best parameters are perhaps the toxic SF6 gas near its critical point, or various
gas mixtures [59, 60, 61, 62]. For turbulence studies, the low kinematic viscosity
of liquid helium I and the range in which it can be varied in cold helium gas, are
unmatched [1].

In the rest of this Chapter, we will introduce the basic facts about the be-
haviour of both isotopes of helium in cryogenic conditions, followed by the con-
cepts of super�uidity, the two-�uid model, and quantization of vorticity. Special
attention will be devoted to the Andreev re�ection process in 3He�B and to the
description of a very sensitive detector device � the quartz tuning fork. Finally,
we will revisit some of the recent experiments with oscillating bodies in cryogenic
helium and summarize their important results.

1.1 Cryogenic Helium � The Two Isotopes

At room temperature and standard pressure, both isotopes of helium, i.e., the
naturally abundant 4He and the rare, but stable 3He, behave in almost the same
way. Both are monatomic gases that can be described to a good degree of accu-
racy by the ideal gas model, or more accurately by the van der Waals equation,
the only noticeable di�erences being that 3He is lighter, usually has faster di�u-
sion rates and of course has a large e�ective cross section for capturing thermal
neutrons. However, when we cool them down to temperatures of order several
kelvin, quantum phenomena become apparent and much more signi�cant di�er-
ences between the bosonic 4He and the fermionic 3He arise, as can be seen from
their respective phase diagrams in Figs. 1.1 and 1.2.

At 4.2 K (and standard pressure), 4He condenses into a classical liquid, with an
extremely low kinematic viscosity, referred to as He I for historical reasons. When
cooling further, upon crossing the so-called λ-point at Tλ = 2.17 K at saturated
vapour pressure (SVP), it enters the super�uid state, perhaps best characterised
as a quantum liquid, and traditionally called He II. Even at absolute zero, it does
not freeze and become solid, unless an external pressure of 25 bar is applied, as
otherwise, the energy of the zero point motion of helium atoms is su�cient to
preclude the formation of a crystal lattice.

The rare 3He condenses at 3.19 K also to form a classical liquid, which is well
described by the Fermi liquid theory [63, 64, 65]. As its viscosity is proportional
to T−2, at very low temperatures it becomes much higher than that of He I. A
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Figure 1.1: Phase diagram of 4He.

Figure 1.2: Phase diagram of 3He in zero magnetic �eld.

transition to super�uidity also exists in 3He, but occurs at a much lower temper-
ature, TC ≈ 2 mK at SVP and zero magnetic �eld. In fact, depending on the
temperature and the external magnetic �eld, several di�erent super�uid phases
can be obtained: 3He�A, 3He�A1, and 3He�B, see Section 1.2.2 for details. At
absolute zero, solid 3He exists again only at elevated pressures above ≈ 34 bar. A
distinct feature can be seen on the melting curve of 3He � a prominent minimum
exists at about 0.32 K, associated with a crossover in the ratio of the entropies
of the liquid and solid phases. As a consequence, below this temperature, the
solidi�cation heat is negative and the (adiabatic) crystallization of 3He induced
by increasing the external pressure can be used as a method of cooling down to
temperatures of order 1 mK. This process has been realized experimentally in
1965 [66], that is roughly 15 years after being �rst suggested [67], and today is
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Figure 1.3: Phase diagram of the 3He-4He mixture.

known by the name of its original inventor as Pomeranchuk cooling.
Another cooling method able to reach mK temperatures, which is nowadays

preferred, relies on mixing the two isotopes. As the mixture phase diagram in
Fig. 1.3 shows, phase separation occurs below 0.8 K, and in a container (mixing
chamber) a layer of 3He-rich phase forms above the 3He-dilute phase. Note also
the �nite solubility of 3He in 4He, even at absolute zero, about 6% of 3He will be
present in the dilute phase. Practically, if an underpressure were to be applied on
the top 3He-rich layer, a gas consisting mainly of 3He will be pumped away (3He
has higher SVP) and the 3He from the dilute phase will cross the phase separation
interface to compensate for the 3He pumped away. This process requires ener-
gy and draws it from the thermal excitations of the liquid and its surroundings,
thus producing a cooling power. Finally, to provide continuous cooling, the 3He
gas pumped away from the rich phase is lead in a closed cycle again to the dilute
phase, taking care to precool it su�ciently before it re-enters the mixing chamber.
This process is called dilution refrigeration and ideally allows reaching tempera-
tures of about 2-10 mK, depending on the speci�cs of its practical realisation and
on the heat load. To reduce the temperature even further, as was the case in the
3He experiments described in Chapter 5, one has to combine dilution refrigeration
with more advanced cooling techniques, such as nuclear demagnetization.

1.2 Super�uidity and Quantization of Vorticity

Let us begin with an elementary description of super�uids based on their ex-
perimentally observable macroscopic properties. Then, we will proceed with the
phenomenological two-�uid model of the super�uids and the basics of their quan-
tum mechanical treatment.

The �rst thing an observer would notice, when cooling down through the su-
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per�uid transition of 4He at 2.17 K at SVP, is that once the transition temperature
is reached, the liquid stops boiling and its level forms a smooth surface, disturbed
only by the vibrations of the apparatus. Should these vibrations be suppressed
su�ciently, then away from the walls of the container, one would in fact see the
smoothest and �attest surface Nature can produce, with variations only of order
10−10 m (one atomic layer). Upon further investigation, one would �nd that this
is due to an extremely enhanced heat conductivity, at least 3 · 106 times higher
compared to the one above the transition. In other words, the whole volume of
super�uid 4He cools itself only by evaporation at the interface, there are no local
variations of temperature high enough to cause the nucleation of bubbles inside
the bulk of the super�uid, unless we insert energy locally on purpose or restrict
the �ow of the super�uid in a way that limits heat exchange.

When the research of super�uidity was in its beginnings, careful experiments
revealed many other unusual and interesting properties of super�uids, such as
their ability to �ow without measurable friction along pipes under certain con-
ditions [24], to �ow easily through the tiniest ori�ces (Kapitza's experiment
[22, 23]), the fountain e�ect [68] and its counterpart, the mechanocaloric e�ect
[69], which show that temperature gradients inside the super�uid produce pres-
sure gradients and vice versa, or the thin super�uid �lm that forms on almost
any adjoining surface with the known exception of Cesium [70, 71]. The mea-
surements of viscosity available at that time were controversial. A very low value
of viscosity (at least 1500 times smaller than in He I) was obtained in capillary
�ows and in Kapitza's experiment with a volume connected to the outer bath
via the extremely thin space between optically smooths discs, but a much higher
value resulted from experiments with a torsionally oscillating cylinder [72, 73].
Another key experiment that led to our present understanding of the proper-
ties of super�uids was performed by the Georgian (at that time Soviet) physicist
Elefter Luarsabovich Andronikashvili [43, 44, 45]. A thinly spaced array of discs
immersed in 4He was oscillated torsionally both above and below the transition
temperature and the period of oscillation was used to deduce the moment of
inertia of the submerged disc stack. From this, the fraction of �uid that was
oscillating together with the discs clamped between them by viscosity was deter-
mined, and it was found that this fraction is more or less constant in He I, but
in the super�uid He II it is a smooth rapidly decreasing function of temperature
likely tending towards zero in the limit of zero temperature.

Among other, it was the knowledge of these experimental facts that led Laszlo
Tisza [34, 35, 36] and Lev Landau [40, 41, 42] to formulate their own versions
of what we now call the two-�uid model. This phenomenological model claims
that the super�uid at �nite temperature should be described not as a single �uid,
but rather as two interpenetrating �uids with independent velocity �elds. These
two �uids are traditionally called the normal and super�uid components of the
super�uid, and are attributed the following properties. The normal component
behaves as any classical �uid would, it has a �nite viscosity and can transport
heat. On the other hand, the super�uid component is thought of as an Eulerian
liquid �owing without friction that has no entropy, i.e., cannot transport heat,
only absorb it, thus becoming the normal component. It is also postulated that
the respective densities of the two components must always add up to the total
density of the super�uid and that if their respective velocities di�er only little,
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Figure 1.4: Fractional densities of the normal and super�uid component in 4He.

their interaction, known as the mutual friction force, can be neglected. This
model resolved the controversy in the viscosity measurements, as in the capillary
�ow and Kapitza's experiment, only the super�uid component took part in the
mass transport, while both components (also likely in non-laminar �ow) damped
the motion of the oscillating cylinder. In Andronikashvili's experiment, it was
believed that the normal component was clamped to the disc stack, increasing
its moment of inertia while the super�uid component was una�ected by the os-
cillations. The reduction of the extra inertia of the disc stack with decreasing
temperature was then explained by considering the decreasing fraction of the
normal component.

The main di�erences between Tisza's and Landau's models were the following.
Based on the suggestion of Fritz London that super�uidity is related to Bose-
Einstein condensation [31, 32, 33], Tisza associated the super�uid component of
4He with the quantum mechanical ground state resulting from the Bose-Einstein
condensation theory [27, 28, 29, 30], which will be mentioned in Section 1.2.1.
Landau did not make such a claim, in fact, he opposed it strongly, but based
on his correct guess at the dispersion relation of the excitations in 4He, with
parameters adjusted to �t the known experiments (later con�rmed by neutron
scattering [74, 75, 76]), he was able to calculate the fractional densities of the nor-
mal and super�uid components as functions of temperature, matching the results
of Andronikashvili. These fractional densities are plotted versus temperature in
Fig. 1.4.

Based on the model assumptions, it is also possible to formulate the equations
of motion of the two �uids. The normal component obeys a Navier-Stokes type
equation for viscous �uids, while the super�uid component is described by an
Euler-type equation for ideal �uids. These are linked only by the mutual friction
term and of course, the equation of continuity which governs the mass �ow in-
side the super�uid. If zero dissipation is assumed, we can also write down the
conservation of entropy carried by the normal component, neglecting thermody-
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namically irreversible processes. Finally, we arrive at a closed set of equations
governing the �ows inside the super�uid:

ρn
D~vn
Dt

= −ρn
ρ
∇p− ρsS∇T + η∆ ~vn + Fns, (1.1)

ρs
D~vs
Dt

= −ρs
ρ
∇p+ ρsS∇T − Fns, (1.2)

∂ρ

∂t
+∇ (ρn ~vn + ρs~vs) = 0, (1.3)

∂ (ρS)

∂t
+∇ (Sρ~vn) = 0, (1.4)

where the operator D~x/Dt = ∂~x/∂t + (~x · ∇) ~x is the convective derivative, η
denotes the viscosity of the normal component, S the speci�c entropy, and the
total density is given by ρ = ρn + ρs. The term in Eqs. 1.1 and 1.2, contain-
ing ∇T is the thermomechanical coupling term, responsible for the fountain and
mechanocaloric e�ects. The �rst two equations (1.1 and 1.2) can be added to-
gether to get the combined equation of motion:

ρn
D~vn
Dt

+ ρs
D~vs
Dt

= −∇p+ η∆ ~vn, (1.5)

which presents us with a useful description of isothermal �ows, where the normal
and super�uid components are more likely to �ow together with matching velocity
�elds ~vn ' ~vs, i.e., where they exhibit co-�ow. If the velocity �elds were matched
exactly, ~vn = ~vs ≡ ~v this equation would reduce to the classical Navier-Stokes
equation, suggesting that some level of similarity with classical �uids can be
expected under the given conditions.

The equations 1.1 � 1.4 represent a good description of the motion of the
super�uid and are still used today with various corrections or speci�c forms of
the mutual friction term. Even in their original form, they can be used, e.g.,
to derive the wave phenomena in super�uids such as the existence of �rst and
second sound [39], as well as to explain the fountain [68] and mechanocaloric [69]
e�ects and the low friction �ow through tiny ori�ces [22, 23].

Today we know that Landau was not right in rejecting the importance of Bose-
Einstein condensation altogether, because the quantum mechanical ground state
description is essential in order to understand another peculiar property of the
super�uids � the quantization of vorticity. Fritz London predicted that if liquid
4He is described as an ideal Bose gas, it should start condensing to the ground
state at 3.15 K, close enough to the experimentally observed super�uid transition
of 2.17 K, especially when we consider that the molecules in any liquid tend to
interact rather strongly, unlike the used ideal Bose gas model, which assumes no
interactions at all. In 3He, the situation is slightly more complex. Since its atoms
are fermions, Bose-Einstein condensation cannot occur directly. Instead, the 3He
atoms pair up, similarly to electrons in superconductors forming Cooper pairs
[77], which being quasi-bosonic in their nature, then condense into the ground
state in macroscopic amounts.
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If we now associate the super�uid component with a quantum mechanical
ground state1 as London and Tisza did for 4He, we can describe it with a single
macroscopic wave function in the following form (forgetting about the nonzero
total spin of 3He for the moment):

ψ(~r, t) =
√
ρs(~r, t) exp(iϕ(~r, t)), (1.6)

where the amplitude of the wavefunction is determined by the super�uid density
ρs(~r, t), which depends together with the phase ϕ(~r, t) on spatial coordinates and
time. If we wish to calculate the super�uid velocity, ~vs, dividing the super�uid
mass �ux, ~J(~r, t), by the super�uid density, we arrive at:

~vs(~r, t)=
~J(~r, t)

ρs(~r, t)
=

−ih̄
2mρs(~r, t)

[
ψ∗(~r, t)∇ψ(~r, t)− ψ(~r, t)∇ψ∗(~r, t)

]
=
h̄

m
∇ϕ(~r, t),

(1.7)
where m is the super�uid particle mass. Note that the super�uid velocity is
proportional to the gradient of the quantum mechanical phase. Using a well
known identity of vector calculus, it immediately follows that:

∇× ~vs(~r, t) =
h̄

m
∇×∇ϕ(~r, t) = 0, (1.8)

suggesting that the super�uid component should exhibit purely potential �ow
as its vorticity given by ∇ × ~vs(~r, t) is zero. Indeed, if we attempt to calculate
the velocity circulation, Γ, around a closed loop C delimiting a singly connected
region S, by applying the Stokes theorem, the result is an identical zero:

Γ =
∮

C
~vs(~r, t) · ~dl =

∫

S
∇× ~vs(~r, t) dS = 0. (1.9)

This would mean that no vortices could exist in the super�uid component,
implying that it cannot participate in rotary motion. This is, however, contrary
to observation, as super�uid He II in a rotating cylindrical container mimics the
parabolic pro�le of classical �uids when undergoing �solid body� rotation [81].
Therefore, vortices have to exist in some form, but their cores have to di�er from
the super�uid bulk, to circumvent the singly connected region requirement of the
above calculation. If we now assume a multiply connected region, the Stokes
theorem does not apply, and the circulation will be given by:

Γ =
∮

C
~vs(~r, t) · ~dl =

h̄

m

∮

C
∇ϕ(~r, t) · ~dl =

h̄

m
(ϕf − ϕi) , (1.10)

where ϕi denotes the initial phase at a given point on the closed loop and ϕf the
phase at the same point after traveling around the loop once, when taking the

1This assumption is not fully valid, as Bogoliubov proved [78, 79] that for a weakly interacting
Bose gas, the fraction of the atoms in the ground state would not be 100%, the condensate
would be depleted. It was later veri�ed by neutron di�raction that the condensate fraction
indeed di�ers from the super�uid fractional density, and only between 10% and 20% of the
total number of particles condense even in the limit of zero temperature (see Ref. [80] and
references therein), while the fractional density of the super�uid component tends towards
unity. Nevertheless, making this assumption allows us to easily deduce interesting properties
of the super�uids that have already been veri�ed experimentally.
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path integral. As the wavefunction ψ(~r, t) must be uniquely de�ned in space and
time, it follows that the di�erence ϕf − ϕi must be a multiple of 2π, and hence:

Γ =
h̄

m
2πn =

h

m
n = nκ, (1.11)

where n is an integer and κ = h/m is the quantum of circulation. This somewhat
simpli�ed reasoning yields an important result � it shows that circulation in
super�uids can exist in the form of quantized vortices, which have cores that do
not correspond to the quantum mechanical ground state of the bulk super�uid,
each possessing a given number of circulation quanta (in practice one or two
quanta only, see the following Sections 1.2.1 and 1.2.2 for details) and allows us
to calculate the quantum of circulation for any given super�uid. Also, because
vorticity in super�uids is required to obey the Kelvin theorem [7], which can be
interpreted as conservation of vorticity along vortex cores, it is necessary that
all vortices either end on container walls or the free surface of the �uid, or form
closed rings, in contrast to classical viscous �uids, where vortices may simply end
inside the bulk. Keeping these restrictions in mind, we already have the basic
understanding of what are the elementary building blocks of any rotary motion
in super�uids, and what will eventually also be responsible for the creation of
super�uid turbulence.

The dynamics of quantized vortices can be studied by solving the Gross-
Pitaevskii equation [82, 83] numerically (see, e.g., Ref. [84]), or within the frame-
work of the so-called vortex �lament model, wherein the cores of quantized vor-
tices are represented as one-dimensional lines through space (see, e.g., Ref. [85]).
Their motion is governed by the dynamical Equation 1.12 and an analogue of the
Biot-Savart law of electrodynamics, because the vortices interact with the �ow
�eld composed of all external �ows and of the rotational super�ow they create
themselves. A vortex line segment given by its position ~r(t) and tangential unit
vector ~s(t) = d~r(t)/dl , where l refers to the path length along the curved vortex
line, and ~s(t) points in the direction of vorticity inside the core, moves with the
following velocity ~vL:

~vL =
d~r

dt
= ~vs + α~s× (~vn − ~vs)− α′~s× [~s× (~vn − ~vs)] , (1.12)

where, for purposes of brevity, all the quantities are written down without the
explicit (t) parameter. Here, α and α′ are the dissipative and reactive mutual
friction parameters, respectively, which generally depend on temperature and
pressure. If the super�ow velocity is considered to be caused only by the presence
of quantized vortices, then at a given position ~r, it can be expressed in analogy
with the Biot-Savart law as:

~vs(~r, t) =
κ

4π

N∑

k=1

∫ ~sk(l, t)×
(
~r′k(l, t)− ~r

)

|~r′k(l, t)− ~r|3
dl, (1.13)

where the summation is taken over all of the N quantized vortices present, and
the integration is taken along the length, l, of their cores whose positions are
determined by ~r′k(l, t).

The above mentioned mutual friction parameters represent the ratio of the
energy transferred from the vortices to the normal component (and thus eventu-

11



ally dissipated) to the energy maintained in the super�ow corresponding to the
moving quantized vortices. In analogy with classical �uid dynamics, one might
thus construct an �e�ective super�uid Reynolds number�2 determining how likely
quantized vortices are to evolve complicated motion patterns that can result in
vortex (self-)reconnections and eventually might lead to the formation of quantum
turbulence (chaotic motion resulting from a tangle of many quantized vortices)
in the super�uid component:

Res =
1− α′
α

. (1.14)

Note that Res depends only on the mutual friction parameters, i.e., varies only
with temperature and pressure, and is independent of both normal and super�uid
velocities. Therefore, it cannot represent a universal criterion that could be used
to determine with what probability laminar and turbulent states are possible,
based solely on temperature and pressure. Nevertheless, it does provide useful
insight into how di�cult it might be to create quantum turbulence under the
given conditions by, say, supplying energy to a moving immersed object. As the
numerator in Eq. 1.14 varies less rapidly with temperature then the denominator,
the behaviour of the quantized vortices is primarily determined by the dissipative
parameter α. The temperature dependence of Res will be examined separately for
the two He isotopes, as it di�ers in the absolute values signi�cantly. Here, it su�ce
to say that in He II, Res is larger than unity practically at all temperatures, save
within tens of mK below the λ � point, meaning that the super�uid component of
He II always becomes (quantum-)turbulent readily. In 3He�B, Res crosses unity
further below the critical temperature, and hence the behaviour of quantized
vortices di�ers greatly at various temperatures as does the likelihood of creating
a turbulent burst, when a seed loop is injected [86].

In practice, various complicated arrangements of quantized vortices are usu-
ally characterised using the vortex line density L in inverse square meters, which
corresponds to the total length of vortex lines per unit volume. It is related to
another important parameter, the �mean intervortex distance�, `0, by:

`0 = L−
1
2 . (1.15)

While the meaning of `0 is clear from the above de�nition, it has the signif-
icance of the actual mean intervortex distance only in some special cases, such
as an array of straight vortices aligned in a grid, as otherwise, it is in principle
even impossible to talk about the distance of two curved lines in 3D space. Nev-
ertheless, it is a useful quantity that gives us a speci�c length scale, below which
we can no longer �average out� the quantized vortices when calculating the �ow
�elds.

After describing the behaviour of the super�uid component and quantized vor-
tices, let us return to the normal component and to what it represents. Within
the two �uid model, the heat transport and dissipative capabilities of the super-
�uid are associated with the normal component alone, and within our simpli�ed

2We use the term �e�ective super�uid Reynolds number� in order to distinguish it from the
quantity �super�uid Reynolds number� used in the literature, de�ned as Resfl = UL/κ , i.e.,
exactly as the classical Reynolds number with the kinematic viscosity replaced by the circulation
quantum.
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treatment, one might picture it as helium atoms in excited states, in contrast to
the ground state �lled with the Bose-condensed atoms associated with the super-
�uid component. However, sometimes, it is favourable to think of helium atoms
and thermal excitations separately, taking advantage of the formalism of second
quantization, and to describe the excitations as thermal quasiparticles � carriers
of heat and entropy � each with its own momentum and energy. At su�ciently
high temperatures, not too far below the super�uid transition, the concentration
of these quasiparticles will be high and it will be possible do describe them as
a continuum (bringing us back to the hydrodynamics of the normal component
as given by Eq. 1.1), but at lower temperatures, the quasiparticles will become
a rather dilute �gas�, necessitating a description in terms of ballistic propagation
and related scattering processes. This will strongly a�ect for example the drag
force acting on moving bodies, as in the ballistic regime, momentum and energy
would be exchanged more readily with the container walls or free surfaces than
with the surrounding layers of �uid.

As will be shown in the following part, the exact form of the super�uid wave-
function (or �order parameter�) and the nature of thermal quasiparticles are dif-
ferent in the two helium isotopes and in the di�erent super�uid phases of 3He,
but most of the general properties outlined above remain valid although perhaps
with modi�cations, especially regarding the existence of many di�erent types of
quantized vortices in the super�uid phases of 3He.

1.2.1 4He and Bose-Einstein Condensation

Because the nuclei of 4He atoms each consist of two protons and two neutrons,
the resulting nuclear spin is zero and 4He behaves as a boson. This means,
among other, that 4He obeys Bose-Einstein statistics and that there exists a �nite
temperature below which macroscopic numbers of 4He atoms will start occupying
the ground state and Bose-Einstein condensation will occur [27, 28, 30]. While
it is relatively simple to determine this critical temperature for gases of non-
interacting atoms, such as realized experimentally in the condensation of nuclei of
alkali metals, making a similar prediction for liquid helium is much more di�cult,
due to the relatively strong interactions between the atoms in the liquid, which
complicate the application of the ideal Bose gas model.

Nevertheless, this approach was taken by Fritz London [31, 32, 33], who was
able to predict that the critical temperature should be:

Tc =
2πh̄2

m4kB

(
N

g ζ (3/2)

)
≈ 3.15 K, (1.16)

where m4 is the mass of the 4He atom, kb stands for the Boltzmann constant, N
is the number of atoms per unit volume (the number density), g is the quantum
degeneracy and ζ denotes the Riemann zeta function. The resulting critical tem-
perature T = 3.15 K is remarkably close to the experimentally observed super�uid
transition of Tλ = 2.17 K already hinting at a possible link between super�uidity
and Bose-Einstein condensation. From calculating the relative number of atoms
in the ground state as a function of temperature, one might determine the expect-
ed ratio of the normal and super�uid component. Moreover, it is also possible
to derive that in the condensate in equilibrium, all physical properties would be
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Figure 1.5: A sketch of a quantized vortex in 4He, with the dependences of the
super�uid density and velocity on the distance from the core shown in the inset.

determined by specifying a single thermodynamic quantity (e.g., temperature or
pressure), which could explain the fountain and mechanocaloric e�ects, where
temperature gradients result in pressure gradients and vice versa. Using the ideal
Bose gas model, it is also possible to examine the speci�c heat of 4He close to
the super�uid transition, and doing so con�rms that at the transition the speci�c
heat is increased, but the characteristic singularity in the shape of the Greek
letter lambda, hinted at by experiments, is not reproduced.

Starting from the condensate macroscopic wavefunction and proceeding as
outlined above in Section 1.2, it is also possible to arrive at the quantization
of circulation with the circulation quantum κ ≈ 10−7 m2s−1. The existence of
quantized vortices in He II was �rst suggested by Lars Onsager and Richard
Feynmann [46, 51], and it was veri�ed experimentally by W. F. Vinen using a
vibrating string [87, 88]. The �rst direct image was produced by Yarmchuk and
Packard [89] using photographic imaging of �uorescence induced by ions trapped
on the vortices in a rotating container.

The properties of quantized vortices can be further studied by analyzing the
Gross-Pitaevskii equation. It is possible to �nd solutions expected for quantized
vortices such that upon approaching the vortex core, only about 1 Å in thickness,
the super�uid fractional density drops rather sharply (but in a continuous fashion)
to zero. Further from the core, the super�uid velocity scales as 1/r, where r is
the distance from the core, as shown in Fig. 1.5. The energy per unit length of
the quantized vortex with n quanta of circulation is mostly given by the kinetic
energy of the circulating super�uid (while a smaller contribution comes from the
vortex core itself) and thus turns out to be proportional to n2. For this reason,
if a given total circulation ΓT needs to be distributed among quantized vortices
in 4He, it always happens so that each quantized vortex contains only a single
circulation quantum, as it is energetically favourable compared to having less
vortices with multiple quanta each.
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Figure 1.6: The e�ective super�uid Reynolds number, Res, as a function of tem-
perature in 4He [90]. It is evident that everywhere except in the closest vicinity of
the super�uid transition, Res is greater than unity. This means that, in principle,
nothing prevents existing vortices from (self-)reconnecting and forming a turbu-
lent tangle. In practice, a su�cient energy source is needed as well to create the
extra vortex line length and to sustain it. This power can be provided, e.g., by
moving bodies, or thermally, by driving counter�ow. The requirement of having
a su�ciently strong external power source means that moving bodies do not gen-
erate quantum turbulence in He II automatically at arbitrarily small velocities,
but that a certain critical velocity must still be reached, as in classical �uids.
As Res increases with dropping temperature, it may be expected qualitatively
that the observed critical velocities will decrease correspondingly, but we must
keep in mind that Res only refers to the mechanism of generation of quantum
turbulence from quantized vortices in the super�uid component, while in He II
under usual experimental conditions, the normal component might be perfectly
able to become turbulent on its own, due to its extremely low kinematic viscosity
of order 10−8 m2s−1. For this reason, it is believed that another dimensionless
parameter, such as the �super�uid Reynolds number� de�ned by Resfl = UL/κ
may be necessary to characterise even steady �ows in the two-�uid regime.

In 4He, the singly quantized vortices with the properties outlined above rep-
resent the building blocks which comprise all rotational motion (including tur-
bulence) in the super�uid component and which are identical in their circulation
and di�er only by the geometry of their thin cores.

As was mentioned in the �rst part of Section 1.2, the dynamics of quantized
vortices are in�uenced by the temperature- and pressure-dependent mutual fric-
tion parameters α and α′, and these can be used to estimate, how likely the
quantized vortices are to create quantum turbulence. In Fig 1.6 below, the ef-
fective super�uid Reynolds number is plotted versus temperature at saturated
vapour pressure.

At this point, it ought to be emphasized once more that an external supply
of energy is still needed to create turbulence in He II even though the high
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values of Res suggest that turbulence should almost be present implicitly, as any
quantized vortex could reconnect with itself and generate a complex array of
quantized vorticity. However, vortex line length translates more or less directly
into energy, and in order to create a large turbulent tangle of quantized vortices,
i.e., to increase the vortex line density, L, in a given volume, this energy must be
supplied, either mechanically or thermally. Additional energy is later required to
maintain the tangle, as will be argued below. Without any energy supply, even
a self-reconnecting vortex loop will eventually decay at �nite temperature, albeit
after producing a few short-lived vortex rings. Even in the zero temperature
limit, vortex tangles existing without su�cient energy input will decay as well,
only the dissipation due to mutual friction believed to be primarily responsible
for the decay of vorticity at higher temperatures, would be replaced by another
dissipation mechanism, according to the current understanding possibly phonon
emission.

In the now classic case of thermal counter�ow (opposite �ow of normal and
super�uid component along a channel due to a temperature gradient created by
a heater at its closed end), the power balance (or vortex line production/decay
balance) is described by the Vinen equation [91, 92, 93, 94], which can be writ-
ten down in the following form, omitting the empirical term accounting for the
observed �nite critical heat �ux:

dL

dt
= k1vc

ρn
ρ
L3/2 − k2κL

2, (1.17)

where k1 and k2 are temperature-dependent parameters of order unity describing
the geometry of the �ow channel, and of the tangle of quantized vortices (in
the case of k1 also including the e�ective cross-section of vortex-quasiparticle
interaction), vc = | ~vn− ~vs| stands for the counter�ow velocity. The two terms on
the right hand side are commonly referred to as the production and decay terms,
respectively. The signi�cance of the Vinen equation is that in order to sustain a
vortex tangle of a given vortex line density L, energy must be supplied externally
at a su�cient rate (by driving the counter�ow at a given vc) to compensate
the decay term proportional to L2. Hypothetically, one could easily picture a
similar scenario for the case of mechanical generation of turbulence � the decay
term would have a similar form, only the generation term would be di�erent, but
analogically, it would be a function of the characteristic velocity of the moving
body, instead of vc.

What happens when the driving power is switched o� seems to be a more
complex question and a subject of current debate, as two di�erent decay laws have
been observed experimentally, one in accordance with the Vinen equation 1.17
(L ∝ t−1) and the other more similar to classical turbulence decay (L ∝ t−3/2).

To sum up, we know that singly quantized vortices exist in 4He, how they
a�ect the �ow �eld in the super�uid component, how they interact with the
normal component via mutual friction, and how their dynamics can be studied.
Additionally, we have seen that the conditions in 4He are typically such that the
vortices are ready to form a turbulent tangle, if we provide a su�cient power to
compensate for its dissipation.

Bearing in mind the results of Bose-Einstein condensation in liquid 4He, let
us now start from another vantage point and try to describe the macroscopic
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Figure 1.7: The dispersion relation of thermal excitations in 4He. Two types of
excitations � phonons and rotons � are distinguished for historical and practical
reasons, depending on their position on the curve representing the function E(p)
It is currently believed that the roton branch, which is shifted downwards with
applied pressure, corresponds to a maximum in the density distribution function
of neighbouring atoms and is a hint of the parabolic dispersion relation found in
crystalline solids.

hydrodynamics of the super�uid phenomenologically, based on our knowledge of
the dispersion relation of thermal excitations, plotted in Fig. 1.7. By Landau's
famous argument [40, 41, 42], super�uidity can only exist up to a certain velocity,
determined by the minimum of the ratio E/p along the dispersion curve. This
ratio is minimal in the roton part of the dispersion relation and corresponds to
a velocity of about 60 m/s. In practice, it is hard to verify, because quantized
vortices start nucleating from remanent ones already at much lower velocities
in 4He and due to their presence, the super�uid component starts acting dissi-
patively even before reaching Landau's critical velocity. A single measurement
by McClintock's group exists [95], where this criterion was tested reliably using
electrically driven ions.

Knowing the dispersion relation, it is again possible to calculate the equilibri-
um concentrations of phonons and rotons as functions of temperature and thus to
determine the fractional densities of the normal and super�uid components. Pro-
viding also all the assumptions as to what properties the two components should
have (inviscid vs. viscous, zero entropy vs. positive entropy), it is possible to ar-
rive at the above mentioned Eqs. 1.1 � 1.4 and all their consequences, such as the
fountain and mechanocaloric e�ects [68, 69] and the existence of multiple wave
processes in the super�uid bulk, called �rst and second sound [39, 40, 41, 42]. On
a side note, other sound modes exist and have been observed in thin super�uid
�lms and inside porous media, where the normal component is clamped due to
viscous forces. These are called third and fourth sound, respectively, but will not
be discussed here any more, as they have little bearing on the topic of this Thesis.

First sound in 4He corresponds to the joint motion of the normal and super�u-
id component, i.e., to waves of pressure (or density), analogically to the common
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Figure 1.8: Temperature dependence of the velocities of �rst (left) and second
(right) sound in 4He.

sound waves in classical �uids. On the other hand, in second sound waves, the
two components oscillate in antiphase, creating an undamped wave of tempera-
ture (or entropy) that does not have any direct classical analogy. The velocities
of �rst and second sound, c1 and c2, respectively, are given by [39, 40, 41, 42]:

c2
1 =

[
∂p

∂ρ

]

S

; c2
2 = S2ρn

ρs

[
∂T

∂S

]

ρ

. (1.18)

The velocities are also plotted in Fig. 1.8 as functions of temperature. Gen-
erally, the temperature range, where it is reasonable to describe second sound as
a wave process is given by the temperature dependence of the relative concen-
trations of the two components. If either of them is too dilute (especially the
normal component at low temperatures), second sound as such ceases to be well-
de�ned (the mean free path of thermal excitations becomes comparable to the
sound wavelength). For practical purposes, propagation of second sound in 4He
is typically considered in the temperature range between the λ�point and 1 K.

Accordingly, it should be emphasized that at temperatures lower than about
0.7 K, the concentration of thermal excitations comprising the normal component
drops so low (and their mean free path increases correspondingly) that it may
no longer be possible to describe them as a continuous �uid. Of course, 0.7 K
is a very rough estimate only, a more precise one would take into account the
dimensions of the studied system and compare them to the mean free path of the
excitations. Nevertheless, when working at lower temperatures, it is necessary to
consider ballistic propagation of thermal quasiparticles instead, as is evidenced,
e.g., by the measurement of the laminar drag force acting on an oscillating sphere
performed by Niemetz and Schöpe [96, 97], shown in Fig. 1.9.

Finally, it is useful to note that experiments performed in 4He below 0.3 K
are commonly referred to as taking place in �pure super�uid�, because the density
of the normal component is negligibly low compared to that of the super�uid
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Figure 1.9: Coe�cient relating the laminar drag force acting on an oscillating
sphere to its velocity in He II above and below 1 K. The minimum at 0.9 K
marks a crossover in the ratio of the viscous penetration depth to the diameter
of the sphere, while the maximum at 0.7 K represents the transition from the
hydrodynamic regime of quasiparticle motion to their ballistic propagation. Of
course, the exact temperature at which this happens in a given experiment will
depend on the dimensions of the immersed bodies, and of the container.

component. However, it ought to be emphasized that �nite and temperature
dependent drag forces due to scattering of thermal excitations are still experienced
by moving bodies even in this �purely super�uid� environment, just as is shown
in Fig. 1.9.

1.2.2 3He and Cooper Pairing

Unlike the common isotope 4He, the nucleus of the rare 3He consists of an odd
number of nucleons � two protons and one neutron. At room temperature, both
isotopes behave almost like ideal gases, although they do di�er in some aspects.
However, it is at low temperatures, corresponding to their liquid phases, that the
two isotopes start behaving truly di�erently. 3He has a nuclear spin of 1/2 , which
has two immediate consequences. First of all, 3He is a fermion, therefore follows
Fermi-Dirac statistics, cannot form a Bose-Einstein condensate like 4He does, and
to describe its properties, one has to use the Fermi liquid theory, as suggested by
Landau [63, 98] and later improved by others [64, 65, 99, 100, 101]. It should be
stressed that as a consequence, the viscosity of 3He in the normal state is very
high at low temperatures (scaling as T−2). The same remains valid for the normal
component of its super�uid phases, where, basically, the viscosity is so high that
it precludes any kind of turbulent motion in the normal component. Second, the
nonzero spin also means a corresponding nuclear magnetic moment, and therefore
3He is a magnetic liquid, in the sense that it is a�ected by magnetic �eld and can
be probed using techniques such as nuclear magnetic resonance (NMR).
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Figure 1.10: The super�uid phases of 3He.

One might ask what is then the mechanism by which 3He becomes super�uid
if it cannot happen simply due to Bose-Einstein condensation? It turns out that
analogically to superconductors, pairing between atoms is made possible in 3He
due to the p-wave interaction, and 3He can become what is known as a BCS-
like super�uid [100, 101] at the critical temperature TC ≈ 2 mK, three orders of
magnitude lower than the λ�point of 4He, through the condensation of the pairs
with integer spin, which behave in a quasi-bosonic manner. A notable di�erence
between traditional BCS superconductors and 3He lies in the fact that both the
total spin and total orbital momentum of 3He pairs are equal to one, unlike the
electron Cooper pairs in s-wave superconductors, which have both their spin and
orbital momentum equal to zero.

In fact, several di�erent 3He super�uid phases can be obtained depending on
temperature, pressure and external magnetic �eld, as can be seen in Fig. 1.10.
At low temperature, and magnetic �eld, the 3He�B phase is the preferred state,
but near a part of the solidi�cation curve at temperatures close to TC , the phase
3He�A is stable as well even in zero magnetic �eld. If an external �eld is applied,
the region of stability of the A�phase can be extended signi�cantly, possibly sup-
pressing the B�phase altogether. In nonzero �elds, a third stable phase 3He�A1

was observed, in a small region between the normal state and 3He�A.
The three phases di�er fundamentally in their order parameters and in the

shape of their corresponding Fermi surfaces and energy gaps. In 3He�B the pairs
can have all available projected spins of Sz = 0,±1, and it has an isotropic energy
gap in zero magnetic �eld, while in the phases 3He�A and 3He�A1, the projected
spins are restricted to Sz = ±1 and Sz = 1, respectively, where the z-axis is
chosen to be aligned with the magnetic �eld. The energy gap of the A phases
is highly anisotropic, with a maximum in the plane perpendicular to the orbital
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momentum vector and with zero gap energy in the parallel direction. The order
parameters in matrix form with indices corresponding to the spin states of the
3He atoms constituting the pairs, illustrating the possible spin pairings in the
individual phases, are listed symbolically below in Eq. 1.19:

ΨB =

(
Ψ↑↑ Ψ↑↓
Ψ↓↑ Ψ↓↓

)
, ΨA =

(
Ψ↑↑ 0
0 Ψ↓↓

)
, ΨA1 =

(
Ψ↑↑ 0
0 0

)
. (1.19)

For practical purposes, however, it is more useful to write down the order
parameter as a matrix Aµj, where the indices µ and j correspond to the three
degrees of freedom (main axes) in the spin and orbital spaces, respectively. For the
sake of completeness, speci�c forms of the order parameters in the A and B phases
are listed below in Eqs. 1.20 and 1.21, while detailed reasoning and explanations
are available in the literature [102]. The order parameters are usually written in
the following form:

3He�A: Aµj = ∆max dµ (mj + inj) , (1.20)
3He�B: Aµj = ∆ eiϕRµj (~n, θ) , (1.21)

where in Eq. 1.20, ∆max refers to the maximum of the energy gap, ~d denotes a
unit vector in the spin space such that the projection S~d = 0, and ~m, ~n are unit
vectors in the orbital momentum space, which de�ne another vector ~l = ~m × ~n
that points in the direction of the orbital angular momentum of the pair, i.e.,
L~l = 1. In Eq. 1.21, ∆ is the isotropic gap energy (in zero magnetic �eld), ϕ
is the phase, and Rµj (~n, θ) is a rotation matrix that links the orbital and spin
coordinates via a rotation around axis ~n, by an angle θ. The energy gaps of the
3He�A and 3He�B phases together with the all the functions and �elds appearing
in the order parameters are schematically plotted in Fig. 1.11.

Figure 1.11: Energy gaps of the super�uid phases of 3He compared to that of
a superconductor. The easiest case to study is 3He�B with its isotropic energy
gap, which can only be weakly perturbed due to magnetic �elds or gradients of
super�uid velocity. 3He�A is more di�cult to describe due to the anisotropy of
the energy gap, and many possibilities for complicated textures of the ~d and ~l
parameters. The Figure is taken from Ref. [103].
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A real sample of 3He�A ought to be described by the textures of the ~d and ~l
vectors, which are a�ected by the magnetic �eld, by container walls, by counter-
�ow, or by the dipole-dipole interaction of the nuclear spins of the 3He atoms. In
3He�B, textures of the vector ~n are important, as this parameter is also a�ected
by magnetic �eld (albeit weakly), quantized vortices, and counter�ow, while the
angle θ has a �xed value of θ ≈ 104◦ due to the dipole-dipole interaction.

Owing to the complex nature of the order parameters of the 3He super�u-
ids, many di�erent topological defects can exist in them. In 3He�A, three kinds
of quantized vortices have been observed using NMR techniques [104, 105], their
stability depending on temperature, pressure and magnetic �eld. The three types
of vortices are usually referred to as a continuous unlocked vortex, a locked vor-
tex, and a singular vortex, where the former two have circulation Γ = 2κ, i.e.,
each contain two circulation quanta, while the last vortex type has only Γ = κ.
Moreover, 2D topological defects can be present, such as two types of solitons
(domain walls separating regions of parallel and antiparallel ~d and ~l), and even
vortex sheets can exist, which are a combination of quantized vortices and a
soliton. This planar defect then represents a distribution of vorticity along two
dimensions. As the topological defects in 3He�A are not the main focus of this
work, we will direct the interested readers to Refs. [104, 106, 107, 108, 109] for
further information and continue with 3He�B, which was used in the Andreev
re�ection measurements presented in Chapter 5.

In 3He�B, again more types of quantized vortices exist with their stability
depending on temperature and pressure [105, 108, 110]. Leaving aside the special
case of the mass-spin vortex, which has a spin current around it as well as �ow
circulation, two other types of quantized vortices are known, with either axisym-
metric or nonaxisymmetric cores. Fortunately, both these types of vortices have
a similar form as their counterparts in He II, in the sense that each carries only
a single circulation quantum, which is now given as:

κ =
h

m
=

h

2m3

≈ 6.6 · 10−8 m2s−1, (1.22)

where the mass of the super�uid particle, m, is equal to the mass of the
pair of 3He atoms, 2m3. There is, however, an important di�erence between the
quantized vortices in 3He�B and He II � in 3He�B, the vortex core has a much
larger diameter than in He II, of the order of 100 nm. As a consequence, it is
possible to design experiments for 3He�B with su�ciently smooth walls that do
not pin vortices easily on surface irregularities, while in He II this is impossible,
because even atomic scale roughness could cause vortex pinning.

Fig. 1.12 contains the temperature dependence of the e�ective super�uid
Reynolds number. Unlike He II, Res crosses unity at about 0.6 TC , which means
that whether or not quantum turbulence is generated with given experimental
methods will strongly depend on temperature. For example, if we attempt to in-
ject energy into the super�uid by means of a spin-up of a sample initially at rest,
at high temperatures close to TC , the energy will be transferred to the normal
component (which will be in solid body rotation with the container) and the ex-
cess will be dissipated by its high viscosity. No new quantized vortices are created
in the super�uid, and if remanent vortices were present, their number is conserved
and they will merely slide along the (smooth) walls and extend along the axis of
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Figure 1.12: The e�ective super�uid Reynolds number as a function of tempera-
ture in 3He�B. A crossover is observed at about 0.6 TC , where Res = 1.

rotation to create a lattice of straight vortex lines. If the same amount of energy
is supplied at a temperature below approximately 0.6 TC , where Res > 1, a tur-
bulent burst will occur, suddenly increasing the number of quantized vortices in
the sample and leading to a turbulent spin-up. Of course, at longer timescales,
the number of quantized vortices (or the vortex line density) will then relax to its
equilibrium value determined by the �nal angular velocity of rotation. A diagram
illustrating at what temperatures the generation of additional quantized vorticity
in the form of a turbulent burst is likely and where it most likely cannot happen,
is shown in Fig. 1.13, and the scenario of a turbulent spin-up of the super�uid
component is provided by Fig. 1.14.

Figure 1.13: A temperature diagram, illustrating the conditions under which
quantum turbulence is likely to be formed in 3He�B, taken from Ref. [103].
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Figure 1.14: A series of panels illustrating how quantum turbulence can be gen-
erated from a single seed vortex loop under favourable conditions, taken from
Ref. [103].

In 3He�B, a modi�ed BCS theory can be used to calculate the dispersion
relation of excitations. It is sketched in Fig. 1.15, together with its most im-
portant characteristics � the temperature- and pressure- dependent gap energy,
Eg, and the Fermi momentum, pF . The thermal excitations are de�ned by their
momentum, p, and can be characterised also by their group velocity, vg = dE

dp
.

Figure 1.15: BCS-like dispersion relation of thermal excitations in 3He�B. By
analogy with solid state physics, excitations with |p| > pF and with group ve-
locity in the same direction as their momentum are usually referred to as quasi-
particles, while excitations with |p| < pF and group velocity opposite to their
momentum are called quasiholes. It should be noted that the above sketch is
merely illustrative. In correct scaling, the minima near pF would appear signif-
icantly sharper and therefore a vast majority of thermal excitations present in
real 3He�B is concentrated very close to pF in the momentum space, see, e.g.,
Ref. [111].
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Figure 1.16: Two sketches of quantized vortices at the A�B interface. Left panel:
When the rotation angular velocity is sub-critical, the interface of the rotating
3He�A super�uid and the stationary 3He�B super�uid is stable with �nite slip
velocity, and all the vortices end on container walls. Right panel: When the
angular velocity is increased, so is the di�erence between the velocities of the
super�uid component in the two phases, and upon exceeding a critical value, a
number of vortices penetrates the interface and extends into the B phase. The
pro�le of the velocities is plotted in the graph below the sketch of the container,
and an example of the dependence of the NMR absorption signal in the B phase
is shown in the graph to the right. More information on the vortices near the
A-B phase boundary can be found in Refs. [109, 112].

Again as in He II, at temperatures su�ciently below TC (typically 0.3 TC and
lower), the thermal excitations will form a very dilute gas, and to describe it
properly, one would have to consider their ballistic propagation and all related
scattering processes, which involve normal scattering on solid bodies and walls,
as well as the so called Andreev scattering that can also occur on walls, but
generally is considered to take place on any gradients of of the energy gap, which
may be caused for example by the variations of the order parameter near walls,
but especially by the sharp gradient of super�uid velocity near quantized vortices.
Section 1.3 introduces this process in more detail and explains how it can be used
as an experimental method for detecting vorticity in 3He�B.

Other experimental tools and techniques useful in 3He research often make
use of the �uids' magnetic properties. The most important example is perhaps
the powerful NMR technique [103, 105], which when applied in continuous wave
mode, is sensitive to the texture of the order parameter and thus can be used
to detect the presence of quantized vortices or counter�ow. The same technique
has also been used to identify all the observed topological defects, as each of
them leaves a unique signature in the NMR spectrum. Lately, a development has
also been made in using NMR to probe domains of homogeneously precessing
spins under special conditions, such as inside magnetic traps, which can also be
interpreted as the Bose-Einstein condensation of magnons to the lowest state
given by the trap potential. Yet other applications of NMR include the search
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for special surface states, or states existing inside vortex cores.
Another rather speci�c but very useful experimental trick attainable using

(gradient) magnetic �elds is to create and stabilize the interface between the
3He�A and 3He�B phases in one sample. Because quantized vortices nucleate
much easier in the A phase, it is then possible to inject them into the B phase in
a controlled fashion via the Kelvin-Helmholtz instability [109, 113, 114]. Apart
from this direct application of the A�B boundary stabilization, the phenomena
occurring at the collapse of two such interfaces are interesting in their own right
and can be studied experimentally. To sum up, one could say that while each
of the 3He super�uids is by its nature a more complicated system than He II,
they o�er a wide range of interesting scienti�c problems and at the same time
many available techniques for tackling them, and it seems that 3He research is
still likely to bring new and valuable results.

1.3 Andreev Re�ection in 3He�B

Andreev re�ection was �rst described in superconductors [115], where electrons
or holes can be scattered non-classically with almost no momentum transfer,
typically near the surface of the superconducting material or its interfaces with
non-superconductors, but more generally on any gradients of the energy gap.
Analogically, in 3He�B, Andreev re�ection is a non-classical process during which
thermal excitations are scattered o� gradients of the energy gap, in this case
typically caused by the rapid super�uid circulation around quantized vortices, or
by the presence of walls. It can be explained if we consider the transformation of
the dispersion relation of thermal excitations in case of �nite super�uid velocity,
as it is plotted in Fig. 1.17.

Because of the transformation of the dispersion relation in regions of �nite
~vs, it might happen that upon encountering a gradient of super�uid velocity, a
propagating excitation with momentum close to pF and energy close to ∆ would
be about to enter a region, where no possible states exist for it, because its
branch of the dispersion relation starts to shift towards higher energies, while
the energy of the freely propagating excitation remains the same. In 3He�B, this
may typically happen when the excitation approaches some topological defect in
the super�uid, especially a quantized vortex, around which ~vs(~r) is given by the
Biot-Savart law (Eq. 1.13) and its magnitude decreases with the distance from
the core as 1/r .

In this case, the excitation cannot propagate forward, because it would have
no corresponding energy states to occupy. If the gradient of ~vs(~r) is smooth (as is
the case around a quantized vortex), the classical scattering process is prohibited,
because it requires a large stepwise exchange of momentum. Therefore, what
happens is that the excitation crosses the minimum at its branch and becomes
the opposite type of excitation � if it originally were a quasihole, it becomes a
quasiparticle, and vice versa. Because, it now has a group velocity opposite to its
original one, it can propagate freely away from the gradient of ~vs(~r) that it has
encountered. In fact, since the exchange of momentum is very small, δp/pF � 1,
the excitation retraces its original path almost exactly. This is true even in the
3D case, because the excitation still has virtually the same momentum (all its
components), but has changed its �gender� and therefore also swapped the relation
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Figure 1.17: Upper panel: One dimensional version of the standard dispersion
relation E(~p) of thermal excitations in 3He�B in the frame of reference of the nor-
mal component and with ~vs = 0. Lower panel: The same dispersion relation with
a �nite super�uid velocity in the (positive) direction of the momentum axis. If a
�nite super�uid velocity exists, the dispersion relation (still in the reference frame
of the normal component), becomes tilted according to the Galilean transforma-
tion and is given by E ′(~p) = E(~p) + ~p · ~vs. As a consequence, the two branches
are no longer symmetric. Close to the original gap energy, possible states exist
only for one sign of the given momentum component, speci�cally with direction
opposite to ~vs

.

between its momentum and group velocity, which point in the same direction of
quasiparticles, but in opposite directions for quasiholes. This process is called
Andreev re�ection (or Andreev scattering) and is illustrated in Fig. 1.18.

In the full 3D case, the description is a little more complicated, nevertheless,
at least for a regular array of vortices, whether or not an incoming excitation
will be Andreev re�ected can be determined based on its trajectory characterised
by an impact parameter, b, and an angle between the path of the excitation and
the direction of the core of the quantized vortex, θ, according to Fig. 1.19. We
can estimate that Andreev re�ection will take place if the following condition is
satis�ed [116]:
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Figure 1.18: A series of panels depicting Andreev re�ection on a quantized vortex
in 3He�B, taken from Ref. [103]. To understand this �gure, it is useful to picture
a quantized vortex located at the right side of this page at the level of the lower
boundary of the panels, with its core perpendicular to the screen/paper, causing
clockwise circulation of the super�uid component. Then starting from the top
left panel, a quasiparticle is heading in the direction of this vortex, and gradually
enters regions of higher and higher super�uid velocity as indicated above the top
series of panels. The dispersion relations become tilted accordingly, as described
in Fig. 1.17, and the quasiparticle gradually decelerates, as its group velocity is
given by ~vg = ∇~pE(~p). Eventually, the quasiparticle reaches its turning point,
where the dispersion relation becomes shifted so much that the energy of the
quasiparticle is now equal to the energy of the minimum on its branch, i.e., Eqp =
∆ + pFvs, and its group velocity becomes equal to zero. Since the quasiparticle
cannot propagate forward, because no corresponding states would exist in a region
of even higher super�uid velocity closer to the quantized vortex, it becomes a
quasihole instead, as is indicated in the bottom-right panel. Now following the
bottom row of panels from right to left the newly formed quasihole moves in
the opposite direction and leaves the proximity of the quantized vortex, having
exchanged only very little momentum.

b <
pF

2m3

h̄

kBT
sin θ ≈ 1 µm for θ =

π

4
and T = 0.2TC . (1.23)

Finally, it is useful to mention how, due to the process of Andreev scattering
of thermal excitations, the quantized vortices may a�ect heat transport in 3He�B
in a suitably chosen experimental con�guration. At very low temperatures, where
there is only a dilute gas of thermal excitations, the only means of heat exchange
in the super�uid is via the ballistic propagation of these excitations and their
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Figure 1.19: Left panel: A sketch illustrating the 3D process of Andreev scattering
of excitations o� a quantized vortex. The red lines indicate quasiparticles, grey
lines quasiholes. Please note that depending on the type of excitation and on
the exact way in which it approaches, it may either pass the vortex unimpeded
(quasiparticles pass if they enter an area where ~vs · ~vg < 0, quasiholes if ~vs ·vg > 0),
or be Andreev re�ected, provided that the condition 1.23 is satis�ed. Right panel:
A 2D view of the quantized vortex, de�ning the impact parameter b.

interaction with solid objects, by which energy can be exchanged, leading to the
thermalization of the objects. Additionally, the temperature of the super�uid
itself is given by nothing else but the concentration of the excitations present in
its volume.

If we now imagine two regions of super�uid with di�erent temperatures T1 >
T2 separated by a small ori�ce, then there is an excess concentration of exci-
tations in the �rst region compared to the second one. Naturally, to achieve
thermodynamic equilibrium, the concentrations will eventually equalize, because
more excitations will be traveling through the ori�ce from the hotter region to
the colder one than the other way round. On the other hand, if the tempera-
tures are kept di�erent by a steady heat in�ux into the hotter region and heat
extraction from the colder one, then, if the di�erence in temperature, T1 − T2,
is at all signi�cant, the excitation �ow from the colder region to the hotter one
can practically be neglected, because the concentration of quasiparticles depends
on temperature exponentially. In this case, the resulting heat �ux will be equal
only to the power of the excitation beam leaving the hotter region, which can be
expressed as [117]:

Pout =
〈Nexvg〉 〈Eex〉

4
Aeff , (1.24)

where Nex, Eex, vg are the number density, energy, and group velocity of the
thermal excitations, respectively, and Aeff is the e�ective area of the ori�ce. By
substituting for the quantities related to excitations from the theory of their
ballistic propagation [117], we obtain:

Pout =
4πp2

F

h3
k2
BT

2e−δ (1 + δ)Aeff , (1.25)

where δ = ∆/kBT is a convenient shorthand for the reduced temperature.
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The time constant of this thermal relaxation process, τ , will depend among
other on the area of the ori�ce. It can be expressed as τ = RC, where R is the
thermal resistance associated with the ballistic propagation of excitations through
the ori�ce, and C represents the total heat capacity of the hotter region. These
quantities are given by [117, 118]:

R−1 ≡ dPout

dT
=

8πp2
F

h3
k2
BTe

−δ
(

1 + δ +
1

2
δ2
)
Aeff , (1.26)

C =
√

2πkBN(EF )∆ δ
3
2 e−δ

(
1 +

21

16
δ−1

)
V, (1.27)

where N(EF ) is the number of states at the Fermi energy and V is the volume
of the hotter region, assuming that it has a uniform temperature.

However, if quantized vortices are present on the colder side of the ori�ce, An-
dreev scattering will take place and as the Andreev-scattered excitations retrace
their original trajectories with good accuracy, a part of the incoming excitation
beam will be re�ected back into the hotter part, without exchanging momentum
or energy. Therefore, in this case, the vortices impede heat transport between
the two regions leading to an increase of the thermal resistance and hence of the
relaxation time constant. This phenomenon may be then described simply by
introducing a re�ectivity coe�cient depending on the density and con�guration
of vortex lines, or equivalently by considering a reduced e�ective area of the ori-
�ce. This approach has been taken to analyze the experimental data presented
in Chapter 5. One of the open questions that remain is, if the combined e�ect
of all the vortices is simply an addition of the contributions of each individual
vortex (in other words, whether the �vortex shadow� is just a superposition of
the �shadows� of individual vortices) or whether some form of screening occurs,
or perhaps more precisely, from what density of vortex lines this e�ect might
become signi�cant.

1.4 Detector Elements � Quartz Tuning Forks

The quartz tuning fork is a mechanical resonator operating usually in the kHz
range. Commercially produced tuning forks of the most common type resonate
at 215 Hz, i.e., about 32 kHz at room temperature in their evacuated capsules.
The tuning forks are often used as frequency standards for semi-precision timing
applications, for example, in the circuits of digital watches. Their design (see
Fig. 1.20) is such that they have minimal losses due to intrinsic damping (during
the motion of the two prongs, which oscillate in anti-phase, the net force on the
base is zero), so that only a small amount of energy is lost through dissipation in
the quartz crystal or via connections to the base, which damp its low-amplitude
�exural motion. As a result, the intrinsic quality factor of the resonator, Q =
f0/∆f , where f0 is the fundamental resonance frequency and ∆f is the resonant
linewidth, i.e., full width at half of the maximum amplitude, is very high. At room
temperature it is usually slightly below 105, but under cryogenic conditions, it
can exceed even 106.

Therefore, it is no surprise that the quartz tuning fork found its applications
in scienti�c research. It has been used successfully in atomic force microscopy
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Figure 1.20: From left to right: (i) A sketch of the vibrating tuning fork including
speci�cations of its dimensions. (ii) An electron micrograph of the 32 kHz quartz
tuning fork. (iii) A micrograph showing the typical surface roughness of the same
commercially available tuning fork.

[119, 120], viscosimetry [121], and in low temperature physics, it became a valu-
able secondary thermometer in 3He liquids [121]. Speci�cally in cryogenic �uid
dynamics, it is used as a generator and detector of classical and quantum turbu-
lence [1, 2], it can detect cavitation [9, 10], or be used to study acoustic phenomena
in pure 4He [4] and in 3He � 4He mixtures [122, 123].

In good approximation, the mechanics of the tuning fork can be described
using the Euler-Bernoulli theory of beam motion [124]. A single prong of the
tuning fork is characterised as a beam of length L, thickness T , and width W ,
as de�ned in Fig. 1.20, while the distance between the two prongs is labeled D.
The Euler-Bernoulli equation is in itself an approximation, which neglects shear
deformation (although it allows to estimate shear stresses), works only for small
amplitudes of oscillation (small de�ection angles), and for thin beams, T ,W � L.
For an ideal (dissipationless) 1D oscillating beam, it is usually written down in
the following form:

µ
∂2w(x, t)

∂t2
+

∂2

∂x2

(
EI

∂2w(x, t)

∂x2

)
= q(x, t), (1.28)

where w(x, t) describes the position of a given section of the oscillating beam
determined by x, pointing along the length of the beam, µ and E are the linear
density and Young modulus of the beam, respectively, I is the second moment
of area of the cross-section of the beam with respect to the neutral axis, and
q(x, t) is the distributed load expressed in terms of force per unit length. For a
homogeneous beam of rectangular cross-section, such as the prong of the tuning
fork, I = WT 3/12 and of course µ = ρWT . The equation must be supplemented
by appropriate boundary conditions which depend on the actual situation. For a
cantilevered beam, �xed and free ends are considered, and the relevant boundary
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conditions are listed below:

Fixed end: w(x, t) |x=x0
= 0,

∂w(x,t)
∂x

|x=x0
= 0,

Free end: ∂2w(x,t)
∂x2

|x=x1
= 0,

∂3w(x,t)
∂x3

|x=x1
= 0.

Assuming harmonic oscillations, the Euler-Bernoulli equation leads to an
eigenvalue problem which can be solved for the natural resonances of the beam:

cos(α) cosh(α) + 1 = 0, (1.29)

where α is the product of the wavenumber, a, and the beam length L. The
above condition can be solved numerically, obtaining the values αn belonging to
each �exural resonant mode denoted by the integer n. These in turn de�ne the
resonant angular frequencies as:

ωn =

√
EI

µ

α2
n

L2
=

√
EI

µ
a2
n. (1.30)

It is also useful to de�ne the e�ective mass m(n)
eff and the spring constant kn

of each resonant mode n of the beam. These can be de�ned based on energetic
considerations (Rayleigh method) [124] as:

1

2
m

(n)
eff u

2
n =

1

2
ρWT

∫ L

0

(
∂wn(x)

∂t

)2

dx, (1.31)

1

2
knw

2
n =

1

2
EI

∫ L

0

(
∂2wn(x)

∂x2

)2

dx, (1.32)

where wn and un are the displacement and velocity amplitudes of the free end
of the cantilever, respectively, and wn(x) are the displacement amplitudes along
the length of the beam for the di�erent modes. Using this de�nition, it can be
derived analytically without any further approximations (albeit the calculation
is rather tedious) that at resonance, m(n)

eff ≡ meff = 1/4 ρTWL, independently
of the resonant mode, while the spring constants kn increase with n, as expected
from the relation ω2

n = kn/meff . Hence, using the above expression for meff and
Eq. 1.30, we can express the spring constants as kn = α4

n EI/4L3 . Away from
resonance, the e�ective mass and spring constants should be de�ned with respect
to another quantity then the tip displacement and velocity amplitudes, as when
they are de�ned this way, they will diverge for those non-resonant frequencies at
which the tip amplitude is zero.

In the literature (see, e.g., Refs. [1, 3, 2, 4, 119, 121]), another approach is
often taken, when the spring constant de�ned with respect to the displacement
of the free end under static de�ection, kstat = EWT 3/4L3 , is used, and the
e�ective mass is calculated from Eq. 1.30. For the fundamental �exural mode,
this yieldsmstat

eff = 0.2427ρWTL, which is only 3% o� compared to the value given
by the dynamic theory, and therefore in reasonably good agreement. However,
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it is impossible to use the same approach for higher harmonics, as in that case
the spring constants de�ned with respect to the displacement amplitude of the
free end di�er dramatically from the static one. Of course, for extreme cases of
higher harmonics, the Euler-Bernoulli theory itself ceases to be valid, as shear
deformation will become more and more important and eventually, one might
need to use Timoshenko theory [124, 125, 126] or other modi�cations of the basic
Euler-Bernoulli model.

Having described the basic mechanics of the tuning fork, it is natural to turn
to the interaction of the tuning fork with its surroundings. A detailed hydro-
dynamical model is presented in [121], together with the links between the me-
chanical and electrical properties of the tuning fork and a procedure enabling
its self-calibration utilising its I-V characteristics measured in vacuum. The pre-
sented model describes the e�ects of the medium on the resonant frequency, f0,
and the linewidth, ∆f , of the tuning fork in terms of the inertia and viscosity of
the surrounding �uid, in the limit where the both the oscillation amplitude and
the viscous penetration depth is much lower than the size of the oscillator. The
principal results for the resonant frequency and linewidth are listed below:

(
f0vac

f0

)2

= 1 +
ρ

ρq

(
β +B

S

V

√
η

πρf0

)
, (1.33)

∆f = ∆fvac +
1

2

√
ρηf0

π
C S (f0/f0vac)

2

meff

, (1.34)

where the index �vac� signi�es values of the quantities as measured in vacuum, ρ
and ρq are the densities of the surrounding �uid and of quartz, respectively, η is
the dynamic viscosity of the �uid, S and V are the surface and volume of a single
prong of the tuning fork, and �nally β, B, and C are geometry dependent param-
eters, usually determined by �tting the experimental data with these functions.
From these equations it follows that the tuning forks, if calibrated, can be used to
measure the density and viscosity of a surrounding non-conducting medium, and
by extension, to measure temperature or pressure, if the relevant dependencies
are known.

Recently, models describing the losses due to sound emission in compressible
�uids have also been developed, these can be found in Ref. [4], which is also
included in Appendix A as attachment A4. The main result of this analysis was
that the power lost due to acoustic emission has a steep frequency dependence,
between ω5 and ω6, and given the typical dimensions of the commercial tuning
forks, it turns out to be important only if they oscillate at frequencies higher than
about 50-60 kHz, or if they are placed in a extreme low-friction environment, such
as �pure super�uid� below 0.5 K. As the viscous drag in super�uid He II drops
rapidly with temperature, while the losses due to acoustic emission tend towards
a constant value, it may happen that even the standard tuning forks resonating at
32 kHz will experience a non-negligible �acoustic drag� at very low temperatures,
as is discussed in detail in the mentioned Ref. [4] (A4).
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1.5 Previous Works with Oscillators in Cryogenic

Helium

Here, we will summarize the published knowledge on the behaviour of oscillating
bodies immersed in helium liquids starting from the early experiments. More
attention will be devoted to 4He than 3He, as it represents the majority of the
work related to this Thesis.

It is hardly possible to discuss experiments with oscillators in cryogenic 4He
without mentioning at least brie�y the investigations of Andronikashvili [44, 45].
He used a stack of thinly spaced discs as a torsional oscillator in order to deter-
mine the fraction of the liquid density that would enter rotation together with
the discs, as any viscous �uid caught in the spaces between the discs would. By
measuring the natural frequency of oscillations both above and below the tran-
sition to super�uidity, it was possible to determine experimentally the fractional
densities of the two components similarly as they are plotted in Fig. 1.4, assuming
that the super�uid component did not enter into motion and contribute to the
total inertia. This experiment was key in establishing the two-�uid model, as we
use it today.

In the 1950's, Andronikashvili's work was continued by Benson and Hollis
Hallett [127, 128] who performed experiments with discs and spheres undergo-
ing decaying torsional oscillations. The amplitude dependence of the logarithmic
decrement showed two plateaus, and hence two critical amplitudes were deter-
mined. Below the lower one, the �ow of the normal component was assumed to
be fully laminar, with the super�uid component at rest, and above the higher
one, both components were assumed to participate in turbulent �ow. For the
intermediate regions, explanations were proposed in terms of entrainment of the
super�uid component, but its precise meaning remained unclear. Donnelly and
Penrose used oscillations of He in a U-tube [129] to determine its viscosity as well
as the logarithmic decrements, arriving at similar conclusions. All these exper-
iments were further analysed by Hallett and Donnelly in Ref. [130], where they
suggest a dimensionless parameter to characterise the �ows of He II.

A pioneering work on quantized vorticity was performed with an oscillating
string by W.F. Vinen [87, 88], giving the �rst proof of the existence of quantized
vortices in He II. When the string captured a quantized vortex, its natural reso-
nant mode changed into a circularly polarized one due to the Magnus force, and
a shift in the resonance frequency was observed. This measurement provided ev-
idence of single vortex trapping events and led to the experimental con�rmation
of the value of the circulation quantum κ = h/m4 .

Another set of experiments investigated the laminar drag due to the helium
liquids and its eventual crossover to ballistic drag at low temperatures. Originally,
this crossover was investigated by speci�c heat measurements [131, 132], using
electron bubbles and positive ions [133, 134, 135]. Later, macroscopic oscillating
bodies were used as well, and the results were con�rmed with vibrating wires
in 4He [136] and 3He [137]. Recently, a similar measurement was performed by
Niemetz and Schöpe using a microsphere [96, 97] in He II. For their results, see
also Fig. 1.9, which con�rms the expected temperature dependence of the ballistic
drag force acting on hard macroscopic bodies, FB ∝ T 4.

Classical and quantum cavitation is also often investigated using various os-
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Figure 1.21: From left to right: (i) Sketch of a vibrating wire resonator, (ii) sketch
of a vibrating grid, (iii) oscillating spheres � micrograph of the levitated sphere
from the work of Niemetz and Schöpe [96, 97] after digital noise suppression, and
a sketch of the cantilevered sphere used by Luzuriaga [153].

cillators, be it plane capacitors [138, 139, 140], tubular transducers [141, 142] or
hemispherical sound generators [143] that are useful to study homogeneous cavi-
tation in the liquid bulk. For a review, see Ref. [144]. Quartz tuning forks have
been used in these studies as well and it was shown [9, 10] that they can create
and detect heterogeneous cavitation occurring near their surface.

The most important class of experiments to be mentioned here is, however,
related to investigations of classical and quantum turbulence, and perhaps even
more speci�cally, its onset. A large scale of di�erent oscillators have been used:
(i) vibrating wire resonators (usually around 1 kHz) [145, 146], (ii) vibrating grids
(typically 1 kHz) [147, 148, 149, 150, 151], (iii) oscillating spheres (100 Hz - 1 kHz)
[96, 97, 152, 153, 154], and (iv) tuning forks (4 - 100 kHz) [1, 2, 3, 155, 156]. These
resonators are sketched in Fig. 1.21. It can be argued that all of them have their
own advantages and shortcomings with respect to generation and detection of
turbulence in helium liquids.

The vibrating wires are small sensitive detectors, which can provide �ne res-
olution at the transition to turbulence, but they are di�cult to prepare and are
strongly a�ected by surface roughness and back�ow. Out of the family of os-
cillators, grids can produce the most homogeneous turbulence, but they usually
have a comparatively large intrinsic damping and thus a lower quality factor.
With oscillating spheres, the most important advantage is clear, they are (al-
most) perfectly symmetrical bodies and the �ow past a sphere can be described
theoretically within classical hydrodynamics with good accuracy. Depending on
the size of the sphere, the drawbacks may be related again to surface roughness
(microspheres), or to an attached cantilever that provides a restoring force to
increase the resonant frequency, but also a�ects the �ow. The tuning forks are,
on the one hand, very sensitive, but on the other, it is di�cult to give an accurate
description of the �ow they induce. Their high resonant frequency makes them
more practical as it is not necessary to wait so long for each data point (especially
in vacuum), but it can also lead to signi�cant sound emission, which acts as a
nuisance damping making the use of some tuning forks for the studies of other
dissipation mechanisms di�cult at very low temperatures. So far, transition to
turbulence has been studied successfully using all these types of oscillators, but
the one thing that remains to be done is the formulation of a generally valid
model or theory that would explain the transition to both classical and quantum
turbulence in all these oscillatory �ows including the velocity dependence of the
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measured drag forces, in the whole range of available temperatures, i.e., from
4.2 K down to tens of millikelvin attainable in a dilution refrigerator.

Lately, new developments in the �elds of micro- and nano-fabrication have
led to the increasing popularity of tiny oscillators with their typical dimensions
in the micrometer range and below. These may include tiny cantilevers [157], or
wires in the form of goal-post oscillators [158, 159, 160, 161] and other miniature
sensors ranging in resonant frequencies from 10 kHz to and beyond 1 MHz. These
may provide unprecedented spatial as well as temporal resolution and an excellent
sensitivity to external perturbations, but require extremely sensitive electronics
to operate, and the very smallest structures often exhibit intrinsic non-linearities
(present even in vacuum), which somewhat complicate the interpretation of the
measurements.

A di�erent type of oscillators can be used to generate and detect second sound.
If second sound is not driven and detected by a heater/thermometer pair, one
might use gold-plated Nuclepore membranes. Their micron-size pores allow the
super�uid component to pass almost freely, but normal component cannot do the
same due to its viscosity. If such a membrane is made into an electrode of a
capacitor, it can either be driven by ac voltage or its motion can be detected by
measuring the voltage induced. These are useful for measurements of vortex line
density above 1 K in 4He and can be used e�ciently to study the transition to
turbulence in counter�ow or super�ow channels [162, 163, 164, 165, 166].

In 3He, oscillators such as wires and tuning forks have been used successfully
as secondary thermometers [121, 167], as the drag force acting on them is pro-
portional to the density of thermal excitations, which is an exponential function
of temperature. This guarantees a good sensitivity with sub�µK resolution even
below 0.2 TC . In the ballistic regime of propagation of the thermal excitations,
these oscillators are then used as probes detecting the intensity of the beam of
excitations going out from a region of elevated temperature. This type of mea-
surement can also be used to determine the amount of quantized vortices (usually
generated by another oscillator, or simply present due to uniform rotation of the
sample) in the path of the beam, as a part of excitations undergoes Andreev
scattering upon entering near the vortices, see Chapter 5. It is even planned to
create a �screen� composed of multiple tuning forks that would allow performing
a low-resolution visualization of a vortex tangle.

With this broad spectrum of available experimental tools and their applica-
tions in mind, in the next two Chapters we will concentrate only on a narrow
subset of experiments with quartz tuning forks in cold helium gas, normal and
super�uid 4He, above 1.3 K, performed in the Laboratory of Super�uidity in
Prague with the aim to investigate the transition to turbulence in these cryogenic
�uids.
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2. Transition to Turbulence in

Classical Fluids

Within classical nonrelativistic �uid dynamics, the motion of Newtonian viscous
�uids is described by a closed set of equations consisting of the mass conservation
law (equation of continuity), entropy evolution law (typically expressed as entropy
conservation, neglecting thermodynamically irreversible dissipative phenomena),
and the dynamic equation � the general Navier-Stokes equation for compressible
�uids. These equations are usually written down as follows [7]:

∂ρ

∂t
+∇ · (ρ~u) = 0, (2.1)

∂(ρs)

∂t
+∇ · (ρs~u) = 0, (2.2)

ρ

[
∂~u

∂t
+ (~u · ∇) ~u

]
= −∇p+ η∆~u+ (ζ + η/3)∇∇ · ~u+ ~G, (2.3)

where ρ is the �uid density, ~u denotes the �uid velocity, s stands for the speci�c
entropy, p corresponds to the pressure, η, and ζ mark the dynamic viscosity and
the second viscosity coe�cient, respectively, and �nally ~G comprises all volume
forces acting on the �uid. Fortunately, the mathematical description is simpli�ed
signi�cantly, if the �ow in question can be considered isentropic and incompress-
ible. This is typically the case for many viscous �ows past a blu� body, including
the experiments described further in this Chapter. If we also neglect the e�ect
of other volume forces (including gravity), the above equations reduce to the
following form:

ρ = const., (2.4)
s = const., (2.5)

∇ · ~u = 0, (2.6)
∂~u

∂t
+ (~u · ∇) ~u+

∇p
ρ

= ν∆~u, (2.7)

where the velocity �eld is fully determined by the last two equations only, i.e., the
equation of continuity and the Navier-Stokes equation for incompressible �uids,
in which ν = η/ρ stands for the kinematic viscosity.

It is often convenient to express the Navier-Stokes equation in its dimension-
less form. To do so, we de�ne ~u′ = ~u/U , ∇′ = L∇, i.e., we rescale all velocities by
the magnitude of the main stream velocity U , and all lengths by the characteristic
length at which the velocity �eld may change (typically the size of the body), L.
Then, the dimensionless pressure will be given as p′ = p/(ρU2) . This would al-
ready be su�cient to formulate a dimensionless equation governing steady �ows.
However, if oscillatory �ows are to be described as well, it is also necessary to
rescale the time derivative in the �rst term independently by a characteristic time
in which the �ow �eld changes signi�cantly, e.g., the period of the oscillations, τ .
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This gives us ∂/∂t′ = τ ∂/∂t , and the resulting dimensionless dynamic equation
can be written as:

L

τU

∂~u′

∂t′
+
(
~u′ · ∇′

)
~u′ +∇′p′ =

ν

UL
∆′~u′; or (2.8)

1

St

∂~u′

∂t′
+
(
~u′ · ∇′

)
~u′ +∇′p′ =

1

Re
∆′~u′, (2.9)

de�ning the dimensionless Reynolds and Strouhal numbers, Re = UL/ν , and
St = Uτ/L , respectively. Please note that in oscillatory �ows, the meaning of
U , changes from the main stream velocity to the mean �ow velocity amplitude.

The dimensionless parameters Re and St determine the ratios of the (red) vis-
cous dissipation term and the (green) non-stationary term to the (blue) inertial
terms. Given this mathematical description of the �ow, a principle of dynamical

similarity can be formulated, stating that two oscillatory �ows past bodies of
identical shape (but di�ering in size), are dynamically similar, i.e., governed by
the same dynamic equation, if the two corresponding sets of dimensionless param-
eters (Reynolds and Strouhal numbers) are the same, see also Ref. [7]. Whether a
given �ow will be laminar or turbulent then depends on the combination of these
two numbers. Leaving aside possible �ow hysteresis or history dependence, the
stability criteria of laminar �ows past various bodies can be expressed as curves
in the Re�St plane.

In the available literature on classical oscillatory �ows past cylinders [168, 169,
170, 171, 172], it is customary to employ a di�erent, but equivalent, description,
and to characterise the �ows using another set of two dimensionless numbers � the
Keulegan-Carpenter number, KC , and the Stokes number, β. Their de�nitions
are given below:

KC =
2πx0

D
, (2.10)

β =
ωD2

2πν
=

1

π

D2

δ2
, (2.11)

where x0 is the amplitude of oscillations, D is the characteristic dimension of
the body, ω stands for the angular frequency of oscillations, and δ =

√
2ν/ω

is the penetration depth of viscous oscillatory �ow (or thickness of the viscous
boundary layer near the oscillating body). For a given value of the Stokes number,
the transition to turbulence then occurs at some critical value of the Keulegan-
Carpenter (K-C) number, and the curve separating the stable laminar and the
turbulent �ows (not necessarily stable immediately above the critical amplitude
of oscillation) can be then expressed as a function Kcrit

C (β).
In the cryogenic experiments with tuning forks, the measured quantity which

we used to characterise the �ow is the drag force acting on the prongs of the
tuning fork. In laminar oscillatory viscous �ow, the amplitude of the drag force,
F0, acting on the prongs is given by a modi�cation of the Stokes solution for
a sphere (see, e.g., Ref. [7]), where the limit δ � D is taken, i.e., the viscous
penetration depth is considered to be much smaller than the dimensions of the
oscillating body (corresponding to St � 1, which is well satis�ed for quartz
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Figure 2.1: Drag coe�cient of a sphere, cylinder and �at disc in steady �ow
plotted versus the Reynolds number and compared to the Stokes law for viscous
�ow around a sphere. The laminar part is clearly identi�ed by the dependence
CD ∝ Re−1, while in turbulence CD ≈ const., until the drag crisis at Re ≈ 4 · 105

occurs. The cause of the drag crisis is not yet fully understood, but it is usually
attributed to the boundary layer becoming turbulent, which results in a shift of
the separation point and consequently a narrower turbulent wake behind the blu�
body.

tuning forks). Under these assumptions, the laminar drag force can be written
down as:

F lam
0 = αS

√
ρ η ω u0, (2.12)

where u0, is the velocity amplitude, S stands for the surface of the body, and α
is a constant of order unity depending on the exact geometry of the oscillator. In
analogy to steady �ows, The drag force amplitude in turbulent oscillatory �ows
is typically expressed as:

F turb
0 =

1

2
CDAρ u

2
0, (2.13)

where A is the cross section of the body normal to the �ow (to the direction of
oscillation), and CD is the drag coe�cient determined by the geometry of the
body, again of order unity in turbulent �ows (unless the drag crisis is reached at
very high �ow velocities). For purposes of comparison, the drag coe�cient CD is
sometimes evaluated in laminar �ows as well, by substituting F lam

0 for F turb
0 in

the above Eq. 2.13. In that case, it is found to be inversely proportional to the
laminar �ow velocity amplitude:

CD = 2α
S

A

√
ν ω u−1

0 . (2.14)

Typical dependences of the drag coe�cient on the Reynolds number in steady
�ows are shown in Fig. 2.1. Using a similar plot, the transition to turbulence
may be determined in several di�erent ways. For example, one might simply try
to �nd an intersection of straight lines corresponding to laminar and turbulent
�ow, which would be equivalent to claiming that at the transition, the two drag
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forces must be equal. While this approach is rather straightforward, it need
not always yield the most relevant results, as in this way, the critical velocity (or
Reynolds number, or K-C number) is found to lie near the middle of the transition
region. Therefore, it corresponds to a �ow, where strong deviations from the
laminar case are already present. In a more careful approach, one might consider
a given threshold for the deviation from the laminar drag (e.g., 5% deviation),
which would result in the determined critical velocities (or other �ow parameters)
corresponding more closely to the actual onset of turbulence, speci�cally to the
�rst instabilities appearing. In analysing the experimental data presented below,
both of these methods were used, and their results were compared.

Finally, it is useful to provide at least rough estimates of the critical �ow
parameters for the transition to turbulence in oscillatory �ows. Using the rough
approach of equating the drag forces, as outlined above, one may �nd the two
(equivalent) analytical expressions for the critical velocity and the critical K-C
number:

ucrit
0 = 2fg

√
ν ω, (2.15)

Kcrit
C =

√
8πfg β

−1/2 , (2.16)

where fg = αS/(CDA) is generally a geometry-dependent factor, in which CD
refers to the constant value of the drag coe�cient corresponding to developed
turbulent �ow, not the one extended to laminar �ows by Eq. 2.14.

It should, however, be kept in mind that while these estimates may be useful,
e.g., to determine the parameters of an experiment aiming to study the tran-
sition to turbulence, they are by no means a precise determination of the �ow
(in-)stability. They merely mark the approximate region of �ow velocities, at
which the crossover from laminar to turbulent �ow can be expected to occur, and
certainly, a more detailed and precise treatment would be necessary to derive any
conclusions about the stability of the laminar �ow. On the other hand, it is, of
course, possible to take these as a starting point and try to verify experimentally,
whether the estimated critical parameters are at least roughly correct, or to see
whether the expected scaling of the critical velocity with frequency and kinematic
viscosity indeed holds.

As an alternative hypothesis for comparison, we suggest considering the Honji
instability of the boundary layer around oscillating circular cylinders [168, 169,
170]. In this case, it is predicted in Ref. [169] that in the limit of high Stokes
numbers, the critical K-C number will scale as Kcrit

C ∝ β−1/4 , which was veri�ed
experimentally in Ref. [170].

2.1 Drag Force Measurements with Tuning Forks

To verify the expected scaling of the critical velocities in the largest possible
range of the parameter

√
ν ω, we used not only liquid He I as a working �uid,

but also pressurized cold helium gas at LN2 temperature (77 K). Additionally,
tuning forks resonating at three di�erent frequencies were used, in this case 4 kHz,
8 kHz and 32 kHz. The tuning forks were placed inside a pressure cell, which
was indium-sealed and then �lled with the desired working �uid. One of the
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Figure 2.2: Photo of the glass cryostat used (left), micrograph of the 32 kHz
tuning fork (top) and photo of the 4 kHz tuning fork (bottom).

advantages of using cryogenic helium (apart from its extremely low kinematic
viscosity) is that the experimental conditions can be easily changed in situ. For
example, it is easy to begin with measurements in pressurized He gas at 77 K
(the cell was designed for safe operation up to 35 bar), gradually reduce the
pressure, then cool down to LHe temperature and continue the measurements in
He I liquid, or in cold He vapour, and �nally, to pump the cell to measure the
vacuum response of the tuning forks, which is required for calibration. These
experiments and their results are also summarized in Refs. [1, 2], included in
Appendix A as attachments A1 and A2.

In practice, the measurements in He gas at 77 K and the measurements at
and below 4.2 K were usually split between di�erent runs, and special care was
taken to ensure that during any given run, the amount of He inside the cell was
reduced when changing the pressure/temperature, and never increased, as that
might result in impurities being introduced from the room temperature part of
the pressurizing system. The experimental protocol was to measure the full res-
onance curves of the tuning forks, and using the calibration procedure described
in Ref. [121], to convert the driving voltage and the resonant current amplitude
into the driving force and tip velocity amplitudes, respectively. An impedance-
adapted step-up transformer and an attenuator were employed to increase the
dynamic range of the drive provided by the Agilent Waveform Generator, result-
ing in 7 orders of magnitude of the driving force available. For detection, an
SR-830 lock-in ampli�er was used in voltage mode � the signal from the tuning
forks was fed through a current divider and the voltage was measured across a
1 kΩ resistor. Temperature was determined either taking advantage of the boiling
points of cryogenic liquids (He, N2), or from saturated vapour pressure of LHe
inside the used glass cryostat, which was determined by high-precision analogue
or digital pressure-meters and converted to temperature using either Ref. [90] or
the HEPAK software [173, 174]. The cryostat and two of the tuning forks are
shown in Fig. 2.2.

The measured force-velocity dependence of several tuning forks is plotted in
Fig. 2.3. Linear and approximately quadratic regions of the drag force can be
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Figure 2.3: Response current vs. driving voltage dependence (left and bottom
axes), obtained with a tuning fork at di�erent temperatures and pressures in He,
calibrated to velocity vs. force amplitudes (top and right axes). In the main panel,
spanning 6 orders of magnitude of the driving force and 5 orders of magnitude of
the tip velocity, the transition between linear (laminar) and quadratic (turbulent)
drag force is evident. The insets show the observed behaviour of the resonant
frequency (bottom-right) and linewidth (top-left) at the transition to turbulence.
The method of extracting the critical velocity by equating the drag forces is
equivalent to �nding the intersection of the two straight lines as indicated.

identi�ed reliably, suggesting that transition to turbulence is indeed observed (as
was later con�rmed by room temperature visualization of dynamically similar
�ows, see Section 2.2. The middle region, however, shows that the transition
happens to be rather smooth and that the extraction of a de�nite value of the
critical velocity might not be straightforward. The same conclusion can be made
from the drag coe�cient plots presented in Fig. 2.4.

Therefore, two independent methods of determining the critical velocities have
been used. First, the critical velocity was determined from equating the laminar
and turbulent drag forces, which corresponds to �nding an intersection of the
two straight lines in Fig. 2.3 or analogically in Fig. 2.4. The results are plot-
ted in Fig. 2.5 in both linear and logarithmic axes. When the critical velocity
is determined in this manner, it is perhaps of little surprise that the expected
scaling ucrit

0 ∝ √ν ω is con�rmed in the entire experimental range, spanning three
orders of magnitude of

√
ν ω, with the kinematic viscosity alone varying by a

factor in excess of 100. While this result perhaps bears little signi�cance for
general theories of turbulence, as the said scaling law can be found from trivial
manipulations of the basic equations for the drag forces, the true meaning of the
presented evidence lies in the fact that the mentioned scaling was indeed veri�ed
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Figure 2.4: Velocity dependence of the drag coe�cient obtained in a series of
measurements with a single 32 kHz tuning fork in He at the listed temperatures
and pressures. The laminar and turbulent regions corresponding to CD ∝ u−1

0 ,
and CD ≈ const., respectively, can be identi�ed clearly (although the data do not
extend far into the turbulent regime). In this case, the rather smooth transition
occurs at about 1 m/s in He I at 4.2 K, while in He gas (or supercritical He, if the
reader prefers) at 77.3 K, the critical velocity is about 6 m/s and is found to be
weakly pressure dependent, due to the change of kinematic viscosity with density
(and thus with pressure). On a side note, at 4.2 K, only results from considerably
pressurized liquid are shown for a good reason, other than mere suppression of
boiling in helium. Unless a considerable overpressure was applied, the tuning
forks vibrating with tip velocities of several metres per second caused cavitation
[9, 10] inside the liquid contained in the pressure cell.

experimentally and found to be correct in a very wide range of �ow parameters
(hardly attainable using air, water or other common �uids), at the same time
demonstrating the vast potential of cryogenic systems in classical �uid dynamics
research.

Nevertheless, in terms of physics, it is perhaps more interesting to look at
the critical parameters corresponding more closely to the �rst instabilities in the
�ow. To estimate the critical values of the �ow parameters, we established a
criterion of 5% deviation from the laminar drag. This criterion is illustrated and
compared to the original simpler method of determining the critical parameters
in Fig. 2.6, plotting the drag coe�cient CD versus the K-C number (proportional
to the amplitude of oscillation, and therefore, to the velocity). The critical value
determined by equating the drag forces is labeled Kcrit

C , while Kcrit
C (0.05) denotes

the one obtained using the 5% deviation criterion.
It is evident that the critical K-C number determined this way is highly sen-

sitive to the scatter of the data in the laminar range and at the transition, which
are rarely obtained as smooth as in the case shown in Fig. 2.6 for illustration.
In practice, the critical K-C numbers could be determined in this way with a
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Figure 2.5: Critical velocity determined by equating the drag forces, as measured
under varied conditions using multiple tuning forks, including the 32 kHz variety
(A, B forks) as well as two 4 kHz forks labeled U1 and U2. A single point from
room temperature visualization (see below in Section 2.2) is added for comparison.
The upper-left part of the graph illustrates the con�rmed scaling law in linear
axes, the ordinate being

√
ν ω. Slightly di�ering slopes are obtained for di�erent

tuning forks, indicating that the exact geometry of the oscillator may have some,
albeit limited, signi�cance. In the lower-right part, the same set of data is plotted
in logarithmic axes (the ordinate is now ν ω only) to con�rm the power law
exponent. By �tting a straight line through the experimental data, one obtains
0.48 ± 0.04, which is in very good agreement with the expected slope of 1/2 .

reasonable degree of accuracy in the whole range of velocities only for two of the
tuning forks used. These data are shown in Fig. 2.7 and compared to the critical
K-C number obtained using the �rst discussed method. For other tuning forks,
Kcrit
C (0.05) could be determined as well, but the resulting uncertainty was too

large for the exact values to represent any signi�cant improvement on the results
obtained with the �rst method.

It is found that this critical K-C number, Kcrit
C (0.05) is about three times

lower than the one obtained by equating the forces, but it is still in accord with
the derived scaling. This can be interpreted in the following manner. Based
on the results in Figs. 2.5 and 2.7, we may say with a reasonable degree of
reliability that the likelihood of instabilities occurring in the (originally laminar)
�ow is determined to a large extent by the same control parameter

√
ν ω, which is

important for determining the region where the laminar and turbulent drag forces
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Figure 2.6: An illustration of the two criteria of determining the critical �ow
parameters (the K-C number, in this case). The upper panels show the plot of
the drag coe�cient, CD, versus the K-C number, KC . In the lower panels, the
drag coe�cient was multiplied by the tip velocity of the prong and normalized
by the value of this quantity in laminar �ow. In the left panels, a larger dynamic
range is plotted, while the right panels depict the details near the critical K-
C number de�ned using the 5% deviation criterion, Kcrit

C (0.05). As one would
expect, Kcrit

C (0.05) is found to be signi�cantly lower than Kcrit
C , here they di�er

by a factor exceeding 5.

are equal. This suggests that in the case of tuning forks, a di�erent instability
triggers the turbulent �ow than for the mentioned circular cylinders. It might be
suspected that the instability is associated with �ow past sharp corners/edges of
the tuning fork.

However, the exact in�uence of the geometry and dimensions of the oscillating
body on the occurrence of the �rst instabilities remains unknown. The data
plotted in Fig. 2.7 for two di�erent tuning forks seem to be displaced vertically
by a factor of 2, but no solid grounds for the explanation of this displacement
can be found. However, it turns out that when the critical velocity is determined
by equating the drag forces, as in Fig. 2.5, all the data collapse more or less
to a single line, suggesting that the geometrical factor fg in Eqs. 2.15 and 2.16
varies only very little between the tuning forks used, which is indeed the case.
It is tempting to say that for these critical velocities, the exact geometry of the
oscillator need not be as important as expected, but such a claim cannot be fully
justi�ed by the provided data, as it would require a more detailed study where
the factor fg would be known with su�cient precision and the ratio S/A varied,
if possible, at least within the better part of an order of magnitude.
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Figure 2.7: Left: Critical K-C number determined by equating the drag forces for
a series of di�erent tuning forks. The expected scalingKcrit

C ∝ β−1/2 is reproduced
with very good accuracy. Compare with the expected boundary layer instability
in Ref. [169] derived a circular cylinder, given as Kcrit

C = 10β−1 + 5.778β−1/4 and
observed in Ref. [170]. Right: Comparison of the frequency dependences of the
critical values of the K-C number determined by the two di�erent methods for two
selected tuning forks. While Kcrit

C (0.05) can be even almost a decade below Kcrit
C

depending probably on the exact geometry of the tuning fork used, the predicted
scaling as β−1/2 is still found to hold, at least for each tuning fork separately.

2.2 Room Temperature Visualization

To gain a better understanding how the measured drag force crossover relates to
the instabilities in the �ow, and what it may mean for the determined critical
velocities, room temperature experiments with oscillating metallic cylinders of
square cross-section (shown in Fig. 2.8) were performed under approximately dy-
namically similar conditions to the cryogenic quartz tuning fork measurements.
By �approximate dynamical similarity�, we understand that there may be a dif-
ference between two prongs in close vicinity undergoing �exural vibrations, and a
single solid cylinder oscillating around a �xed point at its base without undergoing
any signi�cant deformation.

On the other hand, it could be argued that the presence of two prongs need
not be too important for the formation of �ow instabilities, because these are
most likely restricted to the viscous boundary layer of thickness δ ≈ 1 µm around
the tuning fork, which is much thinner than the separation of the prongs of
about 200 µm. Similarly, one could say that the most important region of the
prongs for the generation of the instabilities would be their tips, oscillating at
the highest velocity and exhibiting characteristics of 3D �ow. In other words,
the full information given in the velocity pro�le along the prong length need
not be too important either. If these two claims were correct, the model of the
single oscillating cylinder would indeed be a good hydrodynamic equivalent of the
tuning fork for the purposes of investigating the �rst instabilities of the �ow, but
the �nal judgment of the degree of veracity of these claims is left to the reader.

Two di�erent visualization methods were employed � �rst, the oscillating
cylinders were studied using the Baker technique [175], and subsequently, the
Kalliroscope solution [176] was used for comparison. In both cases, the viscosity
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Figure 2.8: The set of cylinders of square cross-section used in room temperature
visualization experiments. The sizes of the side of the base used are (from bottom
to top) 1 cm, 2 cm, 2 cm (rounded edges), 3 cm, 5 cm. The 3 cm cylinder
originally had sharp edges, but later they were trimmed as can be seen here.
After the picture had been taken, the sharp-edged 2 cm cylinder had copper
�lings soldered to it, simulating surface roughness, see Fig. 2.9 for details.

of the (rather dilute) solution was assumed to be equal to that of water. A sketch
of the experimental setup is provided in Fig. 2.10. The oscillations of the cylinder
were driven by a rod connected to a large bass loudspeaker, to which an ampli�ed
signal from a waveform generator was fed, allowing us to change the frequency
and amplitude of oscillation easily. Each cylinder had a central rod attached to
it, which was used to transmit the drive as well as to record its immediate po-
sition using a standard commercial video recorder and a ruler positioned behind
the rod. The principal results of the visualization experiments and a comparison
with the drag force data obtained using the tuning forks can be found in Ref. [2],
included here in Appendix A as attachment A2.

There were several practical limits to these experiments. First, the transition
was only observable in a given range of frequencies due to the fact that the critical
velocity was found to increase with the square root of frequency as expected.
Above a certain frequency (still of order Hz or 10 Hz) the drive was no longer
powerful enough to provide the necessary amplitude/velocity of oscillation, which
resulted in a limitation of the exploitable frequency range. Higher frequencies
were also limited due to the connection of the cylinder via the thin metal rod.
Above 10 Hz, the rod no longer acted as a solid body, but started displaying its
own resonant �exural modes. Yet another factor limiting higher frequencies is the
25 Hz framerate of the camera, although it can be, and was, improved to double
its value by deinterlacing the recorded video frames � splitting them into even
and odd lines and evaluating separately. This is possible, because for technical
reasons, the two sets of lines in the frame are recorded with a relative time shift
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Figure 2.9: Bottom left: Photograph of the trimmed edge of the 3 cm cylinder
after the second trimming, referred to as r=2.2 mm in Fig. 2.12. The edge is not
replaced by an exact circular arc, instead it is �attened at an angle of 45◦ and
ground smooth. The given value of the radius was determined only approximately.
Bottom right: Detail of the rough surface simulated by soldering copper �lings
to the original 2 cm cylinder. Top: Comparison of the rough and smooth 2 cm
cylinders.

corresponding to half the time between two consecutive frames.
The experimental protocol was as follows. The cylinder was oscillated at a

given frequency starting from very low amplitudes. At each �xed amplitude,
the cylinder was �rst set into motion, then after some time for stabilization, DC
voltage was applied on the surface of the cylinder respective to the electrodes
placed at the sides of the tank. This started the reaction crucial for the Baker
technique, resulting in a dark blue �ink� being generated in the vicinity of the
cylinder. It was then determined subjectively by the observer, whether the ink
follows a laminar �ow pattern or whether instabilities are present. When using
Kalliroscope, of course, no voltage was necessary, and the observations were made
based on the motion and orientation of the tiny �at particles suspended in the
solution. Finally, the drive of the cylinder was switched o� (as well as the DC
voltage bias for the Baker technique) and a waiting time of order 1 minute was
imposed to let the �uid motion relax, before continuing with a higher amplitude
of oscillation. In the measurements of the data presented below, the observer
was always the same person, namely our student, Veronika Pilcová, to reduce
the ambiguity resulting from subjective observation as much as possible. The
instabilities were observed occurring �rst near the tip of the cylinder, within 0.5�
1 cm from its top almost all the time, and later extending downwards. They
usually had the form of thin irregular vortices stretching away from the cylinder,
see Fig. 2.11.

Once the critical value of the driving voltage for the formation of instabili-
ties was found at a given frequency, the cylinder was oscillated at this amplitude
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Figure 2.10: The setup used for room temperature visualization experiments
employing the Baker technique [175]. The oscillating cylinder was �xed at its
bottom end by a spherical knob �tting into a te�on holder, while its upper base
was connected via thin metallic rods to the large bass loudspeaker providing
the mechanical drive. The signal from a standard Agilent Waveform Generator
at frequencies between 1 and 12 Hz was ampli�ed and fed to the speaker, which
converted it to mechanical oscillations with a maximum amplitude of about 1 cm.
The upper end of the central rod of the cylinder was also used for recording the
position with a digital video camera (not shown). A DC bias voltage of 10-
15 V was applied on the cylinder respective to the electrodes located at the sides
of the tank �lled with the Baker solution (consisting of demineralized water,
HCl, NaOH, and thymol blue pH indicator) to start the desired electrochemical
reaction. When the voltage was switched on, the surroundings of the cylinders
became locally slightly more alkaline due to the attracted negative ions, resulting
in the pH indicator changing its color locally from orange-red to deep blue. This
blue �ink� then followed the local �ow patterns and based on observations with the
naked eye, it was determined subjectively in each case, whether the �ow seems to
be predominantly laminar, or whether instabilities are present. For Kalliroscope
measurements, the same setup was used, except for the electrodes at the side of
the tank and the DC voltage source, which were not needed.

while its position was being recorded by the video camera. The recording was
then split into individual frames, deinterlaced, and processed by self-made soft-
ware, determining the position of the rod in each instant with a sampling rate
of 50 Hz. These positions were calibrated against the ruler placed behind the
rod, taking into account the angle of observation and the �nite distance between
the ruler and the rod. The resulting time dependence of the position was �tted
with a sine function. Its amplitude then used for the calculation of the critical
Keulegan-Carpenter number as de�ned by Eq. 2.10. It was found during the
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Figure 2.11: Vortex structure observed in turbulent �ow around the 3 cm oscil-
lating cylinder. This picture does not correspond to the critical K-C number for
that particular situation, it was taken in a turbulent �ow that notably exceeds
the critical parameters. The vortices marked by the dark colour extend away
from the cylinder, forming an irregular structure near its side.

data processing that it is necessary to introduce corrections for the bending of
the central rods attached to the cylinders, to determine the amplitude of the top
of the cylinder correctly from the amplitude of the top of the rod. This was
important especially at higher frequencies (above 10 Hz), as the rods approached
their �exural resonance. To arrive at a usable correction procedure, the cylinders
were recorded several times in an empty tank (without the solution clouding the
image), and a comparison was made between the amplitudes of the rod and the
cylinder. This led to an empirically derived power law (in frequency) describing
the �exural amplitude of the rod, which was then used to correct the measured
amplitudes of the cylinders.

The obtained corrected results are plotted separately in Fig. 2.12 and com-
pared to the results obtained with the quartz tuning forks in cryogenic helium in
Fig. 2.13. It is clearly demonstrated that the expected frequency scaling still holds
for the oscillating cylinders, moreover, that the values of the critical Keulegan-
Carpenter number determined in visualization and for the tuning forks are in good
agreement, as the visualization values fall between the critical values determined
with the two di�erent criteria from the tuning fork measurements. This allows
us to conclude (within the validity of the premises outlined above) that what we
measured with the tuning forks as a crossover in the drag force is indeed related to
the emergence of turbulent �ow patterns, and that the original instabilities occur
at critical velocities which scale as ucrit

0 ∝ √ν ω within the large available range
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Figure 2.12: Critical Keulegan-Carpenter numbers obtained for the cylinders of
square cross-section of the indicated dimensions using the Baker technique [175]
and Kalliroscope [176]. In the main panel, the results from the Baker technique
are shown, while the inset plots Kalliroscope data for the 2 cm cylinder. The e�ect
of trimming the edges is evident from the data measured with the 3 cm cylinder,
more rounded edges (roughly of the indicated radius) result in higher critical K-C
number, i.e., higher critical velocity, perhaps gradually approaching the expected
dependence for the instability of oscillatory �ow past a circular cylinder marked
with the red solid line. This corresponds well to our previous guess that the initial
instability occurs near the sharp edges, where the �ow velocity is signi�cantly
enhanced. The in�uence of surface roughness was tested in Kalliroscope, as the
corrosive Baker solution did not permit using even gold plated metallic surfaces
(remember, the surface has to be conducting). This was caused by the fact that
a mixture of a small amount of nitric acid and hydrochloric acid was used for
preparing the solution, after the limited laboratory reserves of concentrated HCl
were depleted. Unfortunately, this mixture used consists of the same components
as the notorious aqua regia, hence even gold-plated surfaces would not last (the
metallic cylinders were, of course, damaged by the small amounts of acid as well,
but compared to the rough 2 cm cylinder, this process was much slower). The
measurements in Kalliroscope were somewhat more di�cult to interpret due to
the signi�cantly lower contrast of the regions of �ow with respect to the rest of
the solution. Nevertheless, the obtained results agree with those from the Baker
technique within a factor of 2, but no signi�cant in�uence of surface roughness
could be determined due to the large scatter.

of �ow parameters. Additionally, in the visualization experiments, the in�uence
of sharp edges and surface roughness on the critical parameters for the transition
to turbulence was examined qualitatively as well. The cylinders used are shown
in Fig. 2.9 and the results are described in the caption to Fig. 2.12.
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Figure 2.13: Comparison of the critical K-C numbers obtained with Baker tech-
nique to those from the measurements of the drag force acting on the tuning forks,
determined both by equating the drag forces and using the 5% criterion. The up-
per panel shows visualization results uncorrected for the �exure of the rod, while
the corrected data are plotted in the lower panel. Note that even after the correc-
tion, the 5 cm still deviates from the dependence closely followed by the thinner
cylinders. Considering the height the cylinders (≈ 14 cm), we attribute this to the
�ow starting to exhibit 3D behaviour. All visualization observations lie between
the critical values of KC determined for the forks by the two methods, suggesting
that a slight discrepancy may exist due to di�erent experimental conditions, or
perhaps that the observer cannot register the very smallest initial instabily in the
visualization experiments, and notices only an already partly developed structure
of vortices. Nevertheless, considering the di�erent scales involved, and the sub-
jective nature of observation in visualization, the resulting agreement is still very
good and can be taken as a con�rmation that the drag force transition detected
with the tuning forks indeed relates to the onset of turbulent �ow.
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3. Transition to Turbulence in

Super�uid 4He

Compared to the case of classical �uids, where the onset of turbulence is caused
by an initial instability of laminar viscous �ow, the situation in He II may be gen-
erally a little more complicated. It is necessary to distinguish two limiting cases
depending on temperature � the two-�uid hydrodynamics range between Tλ and
roughly 1 K, and the �pure super�uid� range below approximately 0.5 K, where
the action of the normal component is reduced to momentum and energy ex-
change with balistically propagating quasiparticles. In the former case, based on
the discussion in the Introduction, in Section 1.2, similarities with classical turbu-
lence may be expected provided that three conditions are satis�ed: (i) no notable
temperature gradients are present (eliminating counter�ow), (ii) the two compo-
nents can be thought of as having coupled velocity �elds, which usually happens
only due to the mutual friction force acting on them via quantized vortices, and
(iii) only length scales larger than the mean intervortex distance are considered.
In the latter case of �purely super�uid� turbulence, any observed similarities to
its classical counterpart must simply result from general statistical properties of
turbulent �ows, the means of energy transfer between di�erent length scales and
its eventual dissipation. In this case, the transition to turbulence is no longer
caused by an instability of laminar viscous �ow, instead, if hydrodynamical lan-
guage is to be used at all, we might say that it is linked to an instability in the
potential �ow of an inviscid liquid �owing past the body. However, perhaps the
most precise description employs the quantum mechanical treatment of He II,
pointing at the instability related to the nucleation of quantized vortices.

In He II, turbulence has traditionally been generated and probed using many
di�erent techniques. Apart from the numerous oscillators already described in
Section 1.5, other methods include most notably towed grids [177, 178], ion jets
producing charged vortex rings or tangles [179, 180, 181, 182], spin-ups/spin-
downs [183, 184], and thermal counter�ow or super�ow [162, 163, 164, 165, 185,
186, 187]. In the following, we will focus mainly on experiments performed using
quartz tuning forks, but other oscillating structures are represented as well. As
the Prague experiments were restricted to the temperature range from Tλ down
to 1.3 K, i.e., to the two-�uid hydrodynamics regime, the results will be com-
plemented by and compared to the data of other groups, extending the available
temperature range down to 350 mK, deep in the ballistic regime.

Similarities with classical turbulence can then be expected in the Prague data,
more speci�cally in situations where the number of quantized vortices is su�cient-
ly high to provide strong coupling between the normal and super�uid components.
However, this need not be true at the very onset of turbulence, because in the
case of laminar/potential �ow of the normal/super�uid components, the velocity
�elds of the two components are expected to be di�erent in the close vicinity of
the vibrating tuning fork, as di�erent boundary conditions (full slip/no slip) are
imposed on them. The tuning forks used, as well as other important aspects of
the performed experiments together with the main results are fully described in
Ref. [3], included in Appendix A as attachment A3.
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3.1 Quartz Tuning Fork Measurements and the

Coupling Model

For the studies of super�uid turbulence, the same setup, and the same procedures
were used, as described in the previous Chapter 2, including a similar set of tuning
forks. Full resonant curves of the tuning forks were measured, and the drag force
was evaluated from the detected linewidth, while the tip velocity was determined
from the amplitude of the passing electric current, detected as voltage across
a resistor in a current divider. Again, a crossover between linear and quadratic
drag regimes was found, but this time with an unexpected temperature-dependent
feature in the drag coe�cient, as is shown in Fig. 3.1.

Before proceeding to the tentative explanation of the observed drag-velocity
dependence, it is prudent to compare our results to the measurements of oth-
er groups using other oscillating bodies. Such a comparison can be made be-
tween Figs. 3.1 and 3.2, where the latter contains data obtained with an oscil-
lating grid [148, 149, 188], and an oscillating sphere [97], at temperatures both
above and below 1 K. It can be seen that the plotted velocity dependences of
the drag coe�cient show some features speci�c to the given oscillators. For
example, the small sphere could detect intermittent switching between laminar
and turbulent states, while the grid and the tuning forks displayed no such phe-
nomenon. Nevertheless, the form of the drag coe�cient is very similar in all
cases, showing a temperature-dependent minimum. The eventual relaxation to-
wards a temperature-independent constant value is observed with the forks and
the grid, while the data for the oscillating sphere do not extend to su�ciently
high velocities.

Naturally, we sought a model describing our mid-temperature observations,
while retaining some degree of validity/applicability even for the measurements
obtained at very low temperatures below 1 K. After numerous consultations with
W. F. Vinen, the following scenario, re�ected in the phenomenological model
presented in Ref. [3] (A3), was proposed.

At low velocities, the normal component (assumed to be present in a signi�-
cant fraction) forms a laminar �ow around the oscillator, contributing to the drag
force accordingly, while the zero-viscosity super�uid component exhibits poten-
tial �ow with no associated drag. Upon reaching a certain critical velocity, ucS

0 ,
quantized vortices start to be generated by the oscillator in signi�cant amounts
(depending on the applied drive) and start to couple the two components via the
mutual friction force. The coupled components are described as a single qua-

siclassical �uid with a �nite e�ective viscosity, determined by the experimental
conditions and the empirical degree of coupling. With increasing drive, the den-
sity of the vortices produced will grow, and the two components will become
gradually more and more coupled. Eventually, the coupling will lock the motion
of the components together, with almost identical velocity �elds (of course, only
on length scales exceeding the mean intervortex distance). At the same time, this
quasiclassical �uid (the coupled components) will become more and more turbu-
lent, until the region is reached, where the drag coe�cient assumes its constant
value characteristic of stable developed turbulence.

At very low temperatures, there is, of course, only a small fraction of the
normal component present, possibly only in the form of ballistic quasiparticles.
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Figure 3.1: Drag coe�cient measured with a 32 kHz tuning fork in He II plot-
ted versus tip velocity amplitude for di�erent temperatures along the saturated
vapour line. A single measurement in pressurized He I at 4.2 K is added for
comparison with classical liquids. It is evident that with decreasing temperature,
the laminar drag falls as well, owing to the dropping ratio of the normal compo-
nent. In the laminar case, the super�uid component exhibits potential inviscid
�ow around the tuning fork (maybe except for a few pinned vortices), and does
not contribute to the drag at all (d'Alembert's paradox). In developed turbu-
lence, in the limit of high velocities, temperature seems to have little e�ect on
the exerted drag force, suggesting that both components are contributing, and
that they are likely to be coupled due to the mutual friction force acting via the
turbulent vortex tangle. In the transition region, an interesting feature is ob-
served, unknown from the investigations in classical �uids (see the data at 4.2 K
or Fig. 2.4 in Chapter 2 for comparison). As the velocity is increased, the drag
coe�cient appears to reach a minimum, before returning to its constant value
of order unity in turbulent �ow. This feature is systematically more prominent
at lower temperatures, leading us to conjecture that it is related to the mutual
coupling of the two components, or in other words, to the super�uid component
gradually starting to contribute to the measured drag force. The solid lines are
�ts obtained using the coupling model discussed further in the text.

Therefore, the coupling model as outlined above need not necessarily provide a
physically correct description in terms of the action of the normal component and
the coupling process. However, it can still be assumed that the �pure super�uid�
can mimic a classical �uid of a given e�ective viscosity, if an e�cient dissipation
mechanism is provided. It is one of the current quests of super�uid hydrodynamics
research to determine the exact nature of the dissipation mechanism that causes
the decay of turbulent vortex tangles in the T → 0 limit, but it is already well-
established that such a mechanism exists. Presently, it is generally accepted that
the the energy is dissipated in the following manner. The energy stored in the
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Figure 3.2: Drag coe�cient evaluated for an oscillating grid [148, 149, 188] (left,
detail in inset) and an oscillating sphere [97] (right) immersed in He II. While
the exact form of the drag coe�cient may di�er slightly between the oscillators
(for example, the sphere clearly shows hysteresis, as do vibrating wires [145,
146], while the forks and the grid do not), the general form remains the same
as presented in Fig. 3.1. The laminar drag is strongly temperature dependent,
and the minimum is more prominent and shaper at lower temperatures (note the
di�erence between scales of the x-axes in the two panels). On the other hand, if we
look at more developed turbulence (higher velocities), the available data for the
oscillating grid indicate that in this limit, the resulting drag force becomes more or
less temperature independent, in agreement with our observations. This remains
true even for measurements in the ballistic regime of quasiparticle propagation
below 700 mK.

very existence of quantized vortices, their interactions and their motion is believed
to be channeled by a cascade of Kelvin waves excited on the quantized vortices to
higher and higher wavenumbers (which is possible due to nonlinear Kelvin wave
interactions, and likely aided by vortex reconnections), ultimately resulting in
uncorrelated phonon emission, i.e., production of heat.

Now, that we have a dissipation mechanism that is e�cient only at high
wavenumbers and dependent on vortex line density, the analogy with classical
�uid dynamics and viscosity becomes more apparent. Therefore, we believe that
while the proposed model may provide incorrect physical reasoning when applied
to very low temperature measurements, the same mathematical expressions valid
in the mid-temperature range can be used to describe the observed low tempera-
ture data as well, as is demonstrated in Fig. 3.3. That notwithstanding, to avoid
ambiguities, we will limit our further discussion only to the application of this
model to the data obtained in the hydrodynamic regime above 1 K, as in Fig. 3.1,
where the underlying physical reasoning is fully valid.

Mathematically, the proposed model is described by the following set of equa-
tions linking the degree of coupling, the e�ective kinematic viscosity and the
resulting drag coe�cient:

CD = 2α
S

A
(ωxeνe)

1/2 1

u0

+ xeγ, (3.1)

where xe and νe are de�ned as the e�ective fractional density of the single quasi-
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classical �uid (representing the coupled components), and its e�ective kinematic
viscosity, respectively, and γ stands for the constant value of the drag coe�cient
in developed turbulent �ow.

The e�ective viscosity and fractional density are in turn given by:

xe = x+ (1− x) θ(u0 − ucS
0 )

(u0 − ucS
0 )2

ε+ (u0 − ucS
0 )2

, (3.2)

νe = ν + (νc − ν) θ(u0 − ucS
0 )

(u0 − ucS
0 )2

ε+ (u0 − ucS
0 )2

, (3.3)

where x and ν denote the fractional density of the normal component and its
kinematic viscosity, respectively, and νc is the e�ective kinematic viscosity of the
fully coupled components. The symbol θ refers to the Heaviside step function,
and the fraction (u0 − ucS

0 )2
/(
ε+ (u0 − ucS

0 )2
)
represents the degree of coupling,

which is expressed as a sigmoidal function of the velocity amplitude u0 with a
�nite step width ε. It should be noted that there is no particular reason for
choosing this exact functional form for the degree of coupling, in fact, several
di�erent forms of sigmoidal functions have been tested, this one is relatively
simple and seems to yield the best agreement with the data. In the analysis,
α, γ, νc, ucS

0 , and ε were determined by �tting the drag coe�cient as given by
Eqs. 3.1�3.3 to the experimental data. The physical ideas encompassed in the
mathematical formulation of the model are also described in more detail in Ref. [3]
(A3).

The success of this model is perhaps best judged from the above Fig. 3.1.
The overall agreement is rather good, and the model does explain, both qualita-
tively and quantitatively, what happens at the transition to turbulence. Studying
Fig. 3.1 in more detail, a careful viewer will notice that some data series are �tted
considerably better than other. This is probably caused by the �tting procedure
itself, which is not very straightforward. Given the mathematical expressions
above, including the Heaviside step functions, it is not possible to use standard
�tting algorithms, and a more �manual� approach is needed, which is described
in the following paragraph.

There is little di�culty in determining the parameters α and γ, as this can be
done separately with su�ciently good accuracy from the laminar and turbulent
parts, respectively. The true complications arise when attempting to determine
the exact values of the critical velocity ucS

0 and the step width ε, the two quantities
which a�ect the coupling. Here, one is simply forced to resort to a trial and
error method, aided only by educated guesses, estimates, and the computing
power of tabletop PCs. For example, one useful criterion considered was that
the resulting critical velocity must always be lower than or at most equal to the
value corresponding to the minimum of the drag coe�cient (if present), where
the equality was reserved only for sharp minima, such as when attempting to
re-analyse the results of other groups from very low temperatures (Fig. 3.3). The
�nal value of the e�ective kinematic viscosity of the coupled �uids, νc, was most
notably in�uenced by the shape of the dependence following the maximum of the
drag coe�cient (if present) just before it relaxes to its �nal constant value. Once
the critical velocity was established reasonably well, corresponding as closely as
possible to the �rst signi�cant deviations from the laminar drag of the normal
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Figure 3.3: Plots of the observed drag coe�cient at several low temperatures and
at the saturated vapor pressure for the Kharkov tuning fork K1. Results for our
fork A1 are included for comparison. Note that at low temperatures, a maximum
also appears following the �rst minimum in the drag coe�cient. The lines are �ts
using the coupling model described in the text. The data for K1 do not extend
to high enough velocities to allow an accurate determination of the parameter
γ, therefore it is taken to have the same value as that for A1. The uncorrected
data for K1 are shown as open circles; data corrected for the internal (vacuum)
damping of the fork are shown as �lled circles. The broken green line is derived
from Eq. 3.1 assuming full coupling in the whole region of �ow velocities, i.e., the
e�ective kinematic viscosity is taken as νc and e�ective fractional density is set
to 1, thus depicting a classical transition to turbulence in a �uid with kinematic
viscosity equal to νc.

component, and the e�ective kinematic viscosity was determined, the ε parameter
was adjusted to provide a good optical �t to the data (it in�uences mainly the
region between the minimum and the maximum (if present), and the close vicinity
of these two extremes), without much regard to its possible physical signi�cance.
As a result of this method, the �nal values of ε tend to di�er signi�cantly between
the di�erent oscillators used (see again Ref. [3] or attachment A3 for details), but
this is perhaps of little importance to the other aspects of the analysis. In other
words, both in the formulation of the model and in the data analysis, our approach
is purely phenomenological, but we believe that the obtained results presented in
Figs. 3.1 and 3.3 speak for themselves.

The obtained values of the critical velocity, ucS
0 , and its dimensionless coun-

terpart (scaled by
√
κω) are plotted in Fig. 3.4 and compared to the results

of other He II experiments. It turns out to be rather di�cult to explain the
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Figure 3.4: Left: Critical velocities for the transition to super�uid turbulence
obtained using various oscillators. Signi�cant di�erences are found between dif-
ferent oscillating bodies, but the general trend is that lower critical velocities are
observed at lower temperatures, and a plateau is observed in the T → 0 limit.
Right: The same critical velocities plotted in dimensionless form, after scaling
by
√
κω, where ω has di�erent values for di�erent resonators, and κ is the quan-

tum of circulation in 4He. The dimensionless critical velocities are not found to
collapse to a single curve, in fact, the scatter is signi�cantly larger in the dimen-
sionless case than in absolute velocities. This suggests the possibility of some
other e�ects, such as geometry or surface roughness, in�uencing the transition.
The data in both panels were taken from these sources: Lancaster wire [146],
Osaka wire [189, 190], sphere [97], grid [148, 149, 188], Lancaster tuning fork
[155].

observed variance of the critical velocities between the experiments without as-
suming some e�ects due to the di�erent geometries of the oscillators or their
surface roughness, which is also related to the con�guration of pinned remanent
vortices at sub-critical velocities. However, the obtained data are insu�cient to
quantify such an in�uence and in this respect further studies, both experimental
and theoretical, would be useful.

The e�ective kinematic viscosities of the coupled �uids, νc determined from
the �tting procedure are not understood perfectly at this point and leave some
room for doubt. For this reason, they are not discussed here in detail and the
reader is kindly asked to consult Fig. 6 of Ref. [3] (A3) for their temperature
dependence. On a brief note, the �tted e�ective viscosities do seem to follow
a systematic temperature dependence, but di�er signi�cantly between the indi-
vidual experiments, even using the same type of oscillator. This is likely caused
by fact that this parameter is rather poorly conditioned in the outlined �tting
procedure and the resulting values may be little more than estimates. Physical
reasons for the large variations are not excluded either � as νc relates to the two
�uids coupled via quantized vortices, it might be dependent on the spatial extent,
density and polarization of the resulting stable turbulent vortex tangle, which is
likely to be di�erent for di�erent oscillators used.

Summarily, the proposed model does describe the observations in the mid-
temperature range with good accuracy, and does seem to allow extension to lower
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temperatures as well, albeit necessitating di�erent underlying physics. It would
be very interesting to compare these results and the predictions of the coupling
model with data obtained on other oscillating structures or even in steady �ow,
provided that the experimental parameters cover a su�ciently large range of
velocities. In further experiments, it would also be of great value to control and
analyse the surface roughness of the oscillators used, as well as to vary the size
of the oscillators and extend the available range of frequencies, optimally all the
way from DC �ows to units of MHz.
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4. Acoustic Emission by Quartz

Tuning Forks

Remembering the musical counterparts of our quartz tuning forks, it is perhaps
of little surprise that these high frequency oscillators should emit (ultra)sound.
For a long time, it was, however, considered that sound emission can be neglected
as a mechanism of dissipation of the kinetic energy of the oscillator. Not entirely
without reason � under the usual circumstances and using the standard forks,
even in low-viscosity �uids, such as He I and He II, viscous drag indeed is the
dominating dissipation mechanism (above ≈ 1 K). Additionally, for purposes of
simpli�cation, we often resort to incompressible hydrodynamics when describing
the studied �ows, whereby all acoustic phenomena are a priori ruled out.

Nevertheless, the drag due to acoustic emission is measurable with the tuning
forks, if the circumstances are favourable. This can happen in two main cases:
(i) high frequency tuning forks are used, which exhibit much stronger acoustic
emission, or (ii) the temperature is reduced su�ciently below 1 K, leading to a
signi�cant fall of the drag force due to viscosity/ballistic excitations so that the
acoustic drag, independent of temperature in the T → 0 limit, takes over and
becomes the most important dissipation mechanism. The latter case is especially
important, since acoustics can become a hindrance in the studies of purely super-
�uid turbulence at the very lowest temperatures, completely screening the laminar
drag due to thermal excitations (after correction for the vacuum response) or in-
troducing unexpected variations of resonant linewidth due to small variations in
pressure (and hence in the speed of sound, causing already more signi�cant �uc-
tiations of the emission power). Additionally, acoustic emission may also prove
to be essential in analysing the interactions of multiple oscillating objects placed
in the same volume of �uid.

It is therefore important to understand this dissipation mechanism and to be
able to predict its magnitude in di�erent situations, at least within the correct
order of magnitude. In this Chapter, the results obtained on acoustic emission
due to quartz tuning forks in normal and super�uid 4He are reviewed together
with three models describing approximatively the acoustic �elds created by tuning
fork oscillators. The full account can be found in Ref. [4], included in Appendix A
as attachment A4 .

Two important aspects ought to be pointed out before we begin: (i) only dissi-
pative phenomena related to acoustic emission are considered here, i.e, dispersive
action of sound waves on the oscillator is not described in any way, and (ii) when
speaking about energy dissipation due to acoustic emission, we do not under-
stand dissipation in its strictly de�ned meaning, which is �a thermodynamically
irreversible loss�, but rather an energy transfer from the oscillating body to the
sound waves in the �uid.

Considering the energy balance for the oscillator, there is little conceptual
di�erence between this energy dissipation and energy transfer if an in�nite volume

of �uid is considered, as the energy of the outward propagating sound waves is
ultimately carried o� to in�nity and lost anyway. However, if walls of �nite
re�ectivity are present, then in the stationary case, our �energy dissipation�, or
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more precisely, the rate at which the oscillator supplies energy to the sound
waves, will only correspond to the energy of the sound waves that happen to
be transmitted by the walls outside the volume of the oscillator. The energy of
the re�ected waves is in �rst approximation conserved within the experimental
volume and can be even partly transferred back to the elastic oscillator via sound
absorption.

True dissipation of the energy of the adiabatically propagating sound waves
due to �nite viscosity and heat conductivity of the �uid and other phenomena
associated with the presence of walls are not considered here. In small enclosed
volumes comparable to the wavelength (which is the case of the Prague experi-
ments) they can be neglected in He I and He II without any signi�cant e�ect on
accuracy.

4.1 Acoustic Emission in Classical Fluids and Su-

per�uids

It is well-known that any object undergoing accelerated motion in a �uid of
�nite compressibility emits sound waves [7, 191]. If we constrain ourselves to low
velocities of the object (or better said to low Mach numbers) so that no frequency
shifts or shock phenomena have to be considered, we can then decompose the �ow
�eld around the moving object into the incompressible �ow past the body, and
into the periodic oscillations of velocity and pressure corresponding to the emitted
sound waves.

For practical purposes, within the standard theory of acoustics, various mov-
ing and/or oscillating bodies are often represented as acoustic multipoles, i.e., as
a spatial arrangement of point sources (perhaps with the exception of a narrow
class of bodies for which exact calculations can be carried out analytically). For
example a uniformly isotropically pulsating sphere could be represented as a sin-
gle point source � an acoustic monopole. A body of arbitrary shape undergoing
simple translational oscillations without changing its volume is often represented
as a dipole, while bodies exhibiting more complex forms of motion are usually
described as a combination of several monopoles and dipoles, or, if symmetry
permits, as higher order multipoles. Such is the case of the tuning fork, with
its two prongs oscillating with (approximately) equal velocities in anti-phase, for
which the ideal representation seems to be the longitudinal acoustic quadrupole.

Having thus established the multipole representation of the given body, cal-
culating the acoustic emission power in classical �uid is a rather straightforward
(albeit potentially very tedious) procedure of solving the velocity and pressure
�elds around the given set of point sources. In a super�uid, the situation can
be potentially much more complicated, as more than just one bulk sound mode
exists. In principle, any accelerating body will thus emit both �rst and second
sound, where the emission of second sound is caused by the di�erent boundary
conditions imposed on the normal and super�uid components. Additionally, if
�nite viscosity is present, an oscillating body will also heat up periodically by the
viscous drag force, thus emitting extra second sound at double the frequency of
oscillations superimposed on a DC counter�ow providing a time-averaged cool-
ing. However, it can be shown at least estimatively [7, 4] that a moving body will
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produce �rst sound much more e�ciently then second sound, and therefore unless
a resonance of second sound within the constrained geometry of the experiment
is encountered, for the purposes of estimating the emission power, second sound
can be neglected. A more quantitative argument for this statement regarding the
experiments performed in Prague is given in Ref. [4] (A4).

4.2 Models of Acoustic Emission by Tuning Forks

Three models allowing us to calculate the emission power of the tuning fork oscil-
lator have been suggested and tested in Ref. [4] (A4), and here we will summarize
their features. First, a full 3D model based on the work of Sillitto [5] was formu-
lated, in which the tuning fork was represented as a longitudinal quadrupole. In
the next model, the tuning fork was described as two in�nite parallel cylinders
performing transverse oscillations in anti-phase, as suggested already by Clubb
[6]. This model describes sound emission in 2D only, as all quantities are inde-
pendent of the dimension along the axes of the cylinders. Finally, to distinguish
the e�ect of describing the prongs of the fork as cylinders from the change in
dimensionality, a 2D quadrupole model was formulated as well.

All three models eventually led to their respective emission powers, which were
expressed for each model in two forms. First, as an analytical solution involving
an in�nite series of Bessel functions, and second, in the �long wavelength limit�,
referring to the comparison of the sound wavelength to the thickness of tuning
fork prongs, T , their spacing D, or the radius of the two cylinders, R, and half the
distance between their centers, F . All the details can be found in Ref. [4] (A4),
here it is su�cient to say that in the simpli�ed limiting form, the formula for
the emission power, P , reduces to a simple expression involving di�erent powers
of the frequency of oscillations, ω, and the speed of sound, c, varying depending
on the dimensionality of the problem. For the 3D case, one obtains P ∝ ω6/c5 ,
while for the 2D models the result is P ∝ ω5/c4 . From here, it is already easily
understood why sound emission is much more important for high frequency tuning
forks. Compared to the dependence of the viscous drag on frequency (∝ ω 1/2 ),
the acoustic drag rises with increasing frequency much more steeply.

Finally, as many of the experiments were performed with the tuning forks
inside their original capsules, a method of taking the solid walls into account at
least approximatively had to be developed as well. Based on standard acoustics,
two important parameters were evaluated, �rst, the energy transmittance for
plane waves under near-normal incidence, and second, the critical incidence angle
for total external re�ection of the longitudinal sound waves. It turned out that
both parameters depend on the temperature and pressure of helium signi�cantly,
as any changes in the speed of sound and density are re�ected in the acoustic
impedance of helium ZHe = c1ρHe, while the acoustic impedance of the walls is
considered constant in the experimental range of temperatures and pressures (T
= 1.3 � 2.4 K, p = 0 � 25 bar). It was then postulated that the total ratio
of energy transmitted will be proportional to the integral of the transmittance
from zero angle of incidence to the rather small critical angle (≈ 3◦), and the
resulting function of temperature and pressure was used to scale the emission
powers given by the individual models when attempting to �t the experimental
data, see Ref. [4] (A4) for details.
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4.3 Experimental Evidence of Acoustic Emission

The �rst evidence of acoustic emission by tuning forks was observed in the B.
Verkin Institute in Kharkov, Ukraine. The resonant linewidth of forks oscillat-
ing at frequencies ranging from 32 kHz to 100 kHz was measured at 1.5 K and
350 mK. Originally, this data was intended to be used for turbulence studies, but
it was soon found that the observed frequency dependence of the linear drag force
does not correspond to ω 1/2 expected for viscous drag, even when the slightly
di�ering sizes of the tuning forks used are taken into account. The resonant
linewidths, after subtraction of the linewidths due to intrinsic damping of the
forks, as measured at low temperature in vacuum, are plotted in Fig. 4.1.

A more systematic study was later performed in Lancaster (yet unpublished),
where a custom-made array of tuning forks resonating at varied frequencies was
submerged into He II at 4.2 K and 1.5 K. Taking advantage not only of the
fundamental �exural mode of the tuning forks, but also of the �rst harmonic
at ω1 ≈ 6.2ω0, the available frequency range was extended signi�cantly, which
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Figure 4.1: Vacuum-corrected resonant linewidths of tuning forks oscillating at
various frequencies from 32 kHz to 100 kHz at 350 mK. The power law �tted
through data corresponds to an exponent of 5.63, which is clearly di�erent from
the expectations for the ballistic drag force, and indicates the likely importance
of acoustic emission as a mechanism by which the high frequency oscillators lose
most of their energy. From this graph alone, the same cannot be said about
the lower frequency tuning forks (32 kHz, 37 kHz) with absolute certainty, as
there is no de�nite guarantee that the �tted power law still extends below these
frequencies. Generally speaking, one would expect to �nd a frequency of order
10 kHz, where the magnitudes of the ballistic and acoustic drag forces would be
comparable. Nevertheless, as is discussed in Ref. [4] (A4), the indication seems
to be that at this low temperature, acoustic emission is a signi�cant dissipation
mechanism for all the used tuning forks.
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Figure 4.2: Resonant linewidths of various tuning forks in their fundamental and
�rst harmonic �exural modes measured at 4.2 K and 1.5 K. The relative im-
portance of viscosity and acoustic emission is clearly indicated by the gradual
departure from the ω 1/2 dependence towards a much steeper one, close to ω5,
which is expected from the 2D models of acoustic emission. Arguably, ω6, corre-
sponding to the 3D acoustic emission model could be used as well, but the reasons
for the choice between ω5 and ω6 would already depend on �ne exact details of
the geometries of the tuning forks used. A clear indication of the importance of
acoustic emission for high frequency resonators is given in the graph. The region
of this crossover in the frequency domain depends of course on the dimensions of
the oscillators and on the experimental conditions. For these rather small tuning
forks (bank L: W = 75 µm, T = 90 µm, L = 700 � 1900 µm; bank H: W , T are
the same, L ≈ 1480 � 1880 µm) it occurs above 100 kHz both at 4.2 K and 1.5 K,
but as was shown in the Kharkov data (Fig. 4.1), for larger forks and at low-
er temperatures, the same crossover can be expected at much lower frequencies.
This is not surprising, as the viscous/ballistic drag falls rapidly below 1 K, and
the emission power also strongly depends on the dimensions of the moving body,
speci�cally on the square of the �e�ective emitting area�, hence on the fourth
power of a linear dimension [4] (A4).

allowed demonstrating clearly the crossover between the dominance of laminar
drag and acoustic emission, as is shown in Fig. 4.2. Another piece of evidence
of acoustic phenomena can be seen in the observed level crossings, when upon
variation of a control parameter (typically pressure), the resonance of the tun-
ing fork matches brie�y an acoustic resonance determined by the geometry of
the experimental cell. These phenomena are again described in more detail in
Ref. [4] (A4).

Now, it remains to examine the quantitative predictions given by the three
models of acoustic emission by tuning forks and compare them to the experiment.
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As the models themselves are valid only in a boundless volume of �uid, the cor-
rection for the presence of re�ecting walls mentioned above has to be taken into
account, when attempting to describe the series of Prague experiments, the re-
sults of which are presented in Fig. 4.3. In these experiments, the 77 kHz tuning
fork was kept inside its original capsule, into which a tiny hole was drilled, to allow
liquid He inside. According to the speci�cations of the manufacturer, the capsules
were made of aluminium, and hence act strongly re�ectively indeed, as the acous-
tic impedance mismatch between the liquid helium (ZHe ≈ 3 · 104 kg m−2 s−1)
and the solid metal (ZAl ≈ 2 · 107 kg m−2 s−1) is enormous. To compare the
experimental data to the predictions of the models, the resulting emission powers
were used to calculate the corresponding drag force and using the e�ective mass
of a prong as de�ned in Section 1.4 also the linewidth contribution. For the rela-
tion between the linewidth and the magnitude of the drag force, see Ref. [121]. A
single degree of freedom was allowed for the �tting, as expressed by a multiplica-
tive parameter assigned to each model of acoustic emission by tuning forks. The
same values of these parameters were used to �t all of the three data sets shown.

The mentioned �tting parameters and the method of �tting are described in
Ref. [4] (A4). The two cylinders model seems to o�er the best description of
the experimental data, as its �tting parameter was found to be equal to 1.06,
i.e., very little adjustment of the resulting emission power was needed. This
might be, however, purely a numerical coincidence, as many assumptions have
been made, for example, in estimating the e�ects of the walls. Nevertheless,
from the good agreement with the experimental data taken under dramatically
di�ering conditions (in normal �uid He I and super�uid He II down to 1.3 K,
under pressures between 1 and 24 bar, corresponding to sound velocities in the
range 180 � 360 m/s), it can be said that the models compare to the observations
very successfully, and in this case, the 2D models seem to be more accurate.

Finally, other oscillating structures often used in cryogenic �uid dynamics were
examined for the possibility of acoustic emission playing and important part in
their damping. These include vibrating wires [189, 190, 192, 145, 146], spheres
[153, 154, 97], grids [148, 188, 149], micromachined resonators [160, 161], and
the standard tuning forks assumed to operated under di�erent conditions. apart
from the tuning forks, these oscillators behave as acoustic dipoles and therefore
an independent prediction of the emission power had to be made [4] (A4).

As most of these sensors resonate at signi�cantly lower frequencies then our
77 kHz tuning fork, it was found that for most of them the dissipation due to
acoustic emission can be neglected. While the micromachined devices resonate
at even higher frequencies, their emission power is suppressed due to small di-
mensions (it depends roughly on the fourth power of a linear dimension, where-
as viscous/ballistic drag force depends on the area, i.e., the linear dimension
squared). The exceptions to the rule of neglecting acoustic emission are the stan-
dard 32 kHz tuning fork, if operated at su�ciently low temperature, and perhaps
also the discussed vibrating grid, as in this case the comparison was made with
its intrinsic damping rather than with the actual viscous/ballistic drag force due
to its surroundings [4] (A4).
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Figure 4.3: Two temperature dependences (top) and one pressure dependence
(bottom) of the resonant linewidth of the 77 kHz tuning fork inside its original
capsule �lled with liquid helium. The linewidth was obtained by measuring the
full resonance curves and �tting the result with a Lorentzian absorption func-
tion. Therefore, the peaks in the experimental data in all the graphs correspond
to various sound resonances inside the capsule of diameter 3 mm, possibly also
a�ected by the enclosing cylindrical pressure cell made of brass, 20 mm in di-
ameter, 20 mm in height. At an acoustic resonance, the rate of energy transfer
from the fork to the sound modes is highest. This corresponds to the fact that
the amplitude of the sound waves inside the capsule is highest, and therefore
the amount of sound wave energy transmitted through the walls per unit time is
highest as well. As is indicated in the graphs, the plotted functions correspond to
the contribution of the viscous drag force (solid orange line), and to the acoustic
contribution as determined by the three models, corrected for the presence of
walls, and scaled by a single �tting parameter (green short dashed, blue short
dotted, and red short dash-dotted lines). The resulting sum of the contributions
is also plotted for each of the three models (green dashed, blue dotted, and red
dash-dotted lines). To evaluate the accuracy of the models, these three curves
should be compared to the �oor of the experimental data, i.e., disregarding the
resonances of the experimental volumes. In two of these three experiments, the
crossover between the dominance of the viscous drag and of acoustic emission is
clearly seen.
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5. Andreev Re�ection on a

Rectilinear Array of Quantized

Vortices in 3He�B

In this Chapter, we will describe a series of experiments performed with quartz
tuning forks in 3He�B, during the Author's two consecutive visits of a total du-
ration of �ve months, in the Low Temperature Laboratory of Aalto Univerisity,
School of Science and Technology based in Espoo, Finland (called still Helsinki
Univeristy of Technology during the �rst visit in 2009). As the title suggests, the
aim of these investigations was to study Andreev re�ection of thermal excitations
on quantized vortices, which has been a known and widely used phenomenon in
3He and superconductor research for some time. Nevertheless, to the best of the
Author's knowledge, this is the �rst experiment in 3He�B, where Andreev re�ec-
tion has been studied systematically on a well-known con�guration of quantized
vortices, both in terms of their density and arrangement. The series of performed
experiments and a computer simulation of the propagation of thermal excitations
is described in Ref. [8], included in Appendix A as attachment A5.

To attain a well-de�ned con�guration of quantized vortices in 3He�B, one can
take advantage of the fact that under uniform rotation, vortices tend to relax to
a lattice of straight vortex lines, and their equilibrium number is determined by
the angular velocity of rotation, Ω, as:

N =
2Ω

κ
, (5.1)

where κ = h/2m3 is the circulation quantum in 3He, which also corresponds to
the total circulation of the hard-core vortex in 3He�B. If quantized vortices are
prepared in this way at su�ciently low temperatures (below 0.3 TC), one might
then use two volumes, separated by a thermal resistance (such as a tiny ori�ce)
and by the vortex lattice, to study heat transport between the two volumes due
to balistically propagating excitations and determine how it is a�ected by the
presence and density of vortex lines. The exact experimental realisation of this
situation as discussed in the next Section 5.1 di�ers in details of the arrangement,
but the same principle applies � the measured quantity is the e�ect of quantized
vortices on heat transport due to ballistic excitations in 3He�B.

5.1 Experimental Setup

The very nature of this measurement requires sophisticated low temperature ex-
perimentation equipment unavailable in the Prague Laboratory of Super�uidity,
in this case a rotating dilution refrigerator with a nuclear demagnetization stage.
The one constructed and operated by the ROTA group in the Low Temperature
Laboratory in Helsinki (Fig. 5.1) can reach temperatures of about 0.2 TC while
rotating at a maximum angular velocity of 3 rad/s. All the technical parameters
of the cryostat are discussed in detail in [109, 193], and here, we will only describe
its basic features.
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Figure 5.1: The rotating dilution refrigerator ROTA with a nuclear demagnetiza-
tion stage in the Low Temperature Laboratory at Aalto University, Finland. For
a brief description of its features, see the text, full speci�cations can be found in
[109, 193].

The cryostat and its lower rotating platform are suspended on pressurized
gas bearings that connect to four concrete pillars. These are also held in posi-
tion by a set of cross-beams to provide vibration damping. The lower rotating
platform contains instrumentation such as room temperature pre-ampli�ers and
RLC bridges, for which the distance from the site of measurement is critical if
low-level signals are to be measured with su�cient sensitivity. Additional weights
are added to compensate for the moment of inertia of the instruments and to pro-
vide as smooth rotation as possible, without extra forces due to an unbalanced
mass with respect to the rotation axis. The upper platform, which contains ad-
ditional instruments and detectors, is suspended separately, but it is driven by a
motor to rotate at the same angular velocity as the cryostat. The signals from the
instruments are fed to the computers via optical �bres with connections allowing
for mutual rotation. Finally, outside the cryostat, a large coil is placed, which
can optionally be used to suppress the Earth's magnetic �eld.

The dilution refrigerator inside the cryostat is constructed according to a
slight modi�cation of the standard design. It is precooled by a volume of 4He,
and contains the so-called �1 K pot� to provide precooling for its lower parts at
lower temperatures. The mentioned modi�cations include a cryopump which can
be used to operate the dilution refrigerator in single cycle mode while the entire
setup is in rotation. Inside the mixing chamber, the temperature can be reduced
to below 10 mK. Once the base temperature is attained, the copper nuclear
demagnetization part (already under high magnetic �eld due to a superconducting
magnet) is disconnected thermally from the mixing chamber and further cooling
by reducing the magnetic �eld can begin. Temperature of the mixing chamber
is usually measured using melting curve thermometry [194, 195], which is also
available on the heat exchanger on the nuclear stage, but the lowest temperatures
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Figure 5.2: A sketch of the experimental cell used in the measurement of An-
dreev re�ection. Two dividers with submillimeter ori�ces split the cell into three
separate volumes. The lowest volume, in direct contact with the surroundings of
the cell, and via helium also with the heat exchanger of the nuclear stage, will
be further referred to as �sinter volume�, the short middle portion containing the
tuning forks as �fork volume�, and the long upper part as �NMR volume�. The
diameter of the ori�ce in the lower divider is d1 ≈ 0.3 mm, the upper divider
has a larger ori�ce of diameter d2 ≈ 0.7 mm. In the middle section between
the dividers, two tuning fork oscillators are installed, one resonating at 32 kHz,
acting as a thermometer, and the other, resonating at 40 kHz, acting as a local
heater when driven at higher amplitudes. The resonant linewidths of the tuning
forks in vacuum at low temperatures are of the order of 0.01 Hz, as is indicated
in the �gure.

in the sample volume are resolved sensitively by NMR techniques [196, 197] and
by a tuning fork thermometer [121].

In our experiment, the cell placed in the sample volume is shown in Fig. 5.2.
The walls are made of quartz glass (fused quartz) and have been processed by
hydro�uoric (HF) acid on the inside to make them su�ciently smooth for quan-
tized vortices in 3He�B in order to prevent vortex pinning. Remanent vortices
are, however, present in the sinter volume, where they stay attached due to the
surface roughness of the sintered heat exchanger and the surrounding walls.

When the cryostat is set into uniform rotation at a velocity above 0.1 rad/s,
extrinsic nucleation of quantized vortices occurs in the sinter volume, but the
cell stays in the vortex-free Landau state. In the actual experiment, the angular
velocity was usually set to a higher value than the �nal intended one, to make sure
that vortices can indeed nucleate and relax into their equilibrium lattice. After
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stabilization at the given angular velocity, heat transport was studied between the
fork volume at about 0.2 TC and the sinter volume at approximately 0.15 TC . The
temperature of the cell is higher due to a �nite heat leak through its suspension
(an indium seal between the cell and its holder). During the evaluation of the
data, this heat leak could be quanti�ed and turned out to be approximately
10-15 pW, depending on the angular velocity of rotation.

Once the sample was stable at a given rotation velocity, the power input
into the heater fork was switched on and changed several times, including both
increases and decreases, and �nally switched o� again, while the amplitude of
the thermometer fork was being recorded. When the heater power is switched
on, extra thermal excitations are generated in the fork volume, resulting in a
local increase of temperature. A net �ux of excitations into the NMR and sinter
volumes is observed, as is determined by the thermal resistances of the two ori�ces.
For calculations of the energy �uxes and thermal resistances, see the theoretical
introduction in Section 1.3. Additionally, the thermal resistance of the lower
ori�ce is a�ected by the presence of quantized vortices in the sinter volume,
which Andreev-re�ect a fraction of the incident excitations back through the
ori�ce into the fork volume, as the Andreev-re�ected excitations tend to retrace
their original trajectories with good accuracy. This e�ect is expected to be linear
with the number of vortices (unless vortex screening is signi�cant), and therefore
also linear in Ω.

5.2 Measurements of Andreev Re�ection

In the measurement, the AC current signal from the detector tuning fork was fed
to a purpose-made I/V converter [198], pre-ampli�ed and then detected by a lock-
in ampli�er to provide maximum sensitivity and accuracy, while the signal of the
heater fork was detected directly in current mode to facilitate the calculation of
the exact power dissipated inside the fork volume. The thermometer tuning fork
was calibrated against the melting curve thermometers on the heat exchanger on
the nuclear stage at 0.3 TC .

A sample response of the two forks after switching on the power of the heater
fork is shown in Fig. 5.3. After the transient period, steady state values can be
obtained and used to calculate the dissipated power and the temperature. It is
worth to note that the resolution of the thermometer fork at the temperature of
0.2 TC , i.e., below 500 µK is of the order of 0.1 µK. Therefore, the thermometer
fork can easily detect the change in the steady-state temperature of order 10 µK
that is typically induced by manipulating the power of the heater fork.

Three series of such steady state data with each point corresponding to a dif-
ferent heater power are plotted in Fig. 5.4 for three di�erent values of Ω. Recalling
Equation 1.25, we see that when the measured linewidth of the thermometer tun-
ing fork is used to calculate the quantity corresponding to the abscissa of the
graph in Fig. 5.4, it is then rather straightforward to determine the e�ective area
of the ori�ce (a�ected by the presence of vortices) as the inverse slope of the �tted
straight line, while the parasitic heat leak into the cell is evidently given by the
negative intercept with the power (x-)axis.

The most important result is shown in Fig. 5.5. The re�ectivity coe�cient de-
�ned as R = 1−Aeff(Ω)/Aeff(0) is plotted versus the angular velocity of rotation,
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Figure 5.3: Typical responses of the heater and thermometer tuning forks after
switching the heater fork on. Please note that the response of the heater fork is
plotted in terms of dissipated power. A transient period of about 100 s is observed
with both forks, where the temperature in their volume is not stabilized. Heat
exchange with the sinter volume is the dominant relaxation process in this time,
apart from the �rst few seconds, which are characterised by faster heat exchange
with the NMR volume, see also Fig. 5.6. The overshoot in the heater power
happens because until the overall temperature is increased, the heater fork does
not experience the full ballistic drag due to the newly created excitations.

Figure 5.4: A graph illustrating the procedure used to obtain the e�ective area,
Aeff , and the parasitic heat leak from the steady state measurements of tempera-
ture inside the fork volume. The quantity plotted on the y-axis (chosen based on
Eq. 1.25) can be calculated from the linewidth of the thermometer fork [8] (A5),
and the dissipated power on the x-axis is given by the amplitude of the heater
fork. The e�ective area can then be determined as the inverse slope of the �tted
lines, while the parasitic heat leak to the cell is given by the negative intercept
with the x-axis.
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Figure 5.5: Angular velocity dependence of the re�ectivity coe�cient as de�ned
in the text. While the experimental data show signi�cant scatter at high angular
velocities, they seem to be linear with Ω to a good degree of accuracy. The obvious
linear �t through zero is not shown here to avoid a priori bias, cf. Fig. 5.7 showing
these experimental results and the results of a numerical simulation.

and within the experimental error, the expected linear scaling is reproduced. This
�gure then represents an assertion that the current understanding of the process
of Andreev re�ection on quantized vortices is more or less correct and provides
justi�cation for the use of Andreev re�ection in other studies of quantized vor-
ticity and quantum turbulence in 3He�B.

Now, let us go back to the typical response of the thermometer fork to a
change in the heater power as shown in Fig. 5.3 and focus on the transient period
before the steady state is reached. It is very instructive to analyze these dynamic
relaxations and to try to determine the relaxation time constant, assuming an ex-
ponential relaxation process. If our interpretation of the measurements is correct,
this time constant should correspond to the heat capacity of the helium inside
the cell and the thermal resistance determined from the steady state data.

A typical relaxation of the thermometer response is shown in Fig. 5.6. First,
the individual regions of the relaxation process are identi�ed, where the initial fast
process corresponds to the mutual thermalization of the NMR and fork volumes
via the larger ori�ce in the upper divider, and the later slower decay corresponds
to the relaxation of these two volumes to their equilibrium temperatures deter-
mined by the parasitic heat leak. Please note that in the experiment, most of
the parasitic heat leak to the cell is absorbed in the NMR volume, and therefore
the resulting temperatures of the NMR and fork volumes will di�er slightly due
to the �nite thermal resistance associated with the upper divider/ori�ce. As a
consequence, the word �equilibrium� is used somewhat loosely here to refer to
a situation which is not, and in principle cannot be, perfect thermodynamical
equilibrium, but represents a steady and stable temperature distribution inside
the cell, nonetheless. Physically, this approach is justi�ed by the fact that the
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Figure 5.6: Relaxation of the thermometer linewidth after the heater is switched
on at zero angular velocity. During the �rst few seconds (about 5 s), rapid heat
exchange between the fork and NMR volumes occurs, through the larger upper
ori�ce of about 0.7 mm diameter. This is followed by the joint thermalization
of these two volumes to the sinter volume through the small lower ori�ce of
diameter about 0.3 mm, which corresponds to the long region of approximately
exponential decay with a time constant of about 25 s. Due to the �nite heat
leak to the cell, the �nal temperature of the cell is not equal to that of the sinter
volume, see the text for details. Nevertheless, the heat transport properties can
be analysed from these data, as to a good degree of approximation, they depend
only on the known absolute temperature of the fork volume and the e�ective area
of the ori�ce, and not on the temperature di�erence between the fork and sinter
volumes. Upon closer inspection, it is found that the long decay region is not
strictly exponential. If the time constant is determined for each point separately
from the (smoothed) derivative of this decay, it is found that there is an overall
increasing tendency, and that the time constant may vary by tenths of percent
of its value in the region, where it can still be derived from the measured data
reliably.

thermal resistance of the upper ori�ce is at least an order of magnitude lower
than the thermal resistance of the lower ori�ce, which we are interested in, and
therefore the associated steady state temperature gradients will also scale accord-
ingly. This means that the temperature drop between the NMR and fork volumes
will be at least an order of magnitude lower than the temperature di�erence be-
tween the fork and sinter volumes. Therefore, the exact temperature of the NMR
volume is of little consequence to the interpretation of the data, except for the
initial part of the relaxation.

The relaxation time constant is then determined using a linear �t of the rel-
evant part of the decay plotted in a log-linear graph, with the �nal value of the
linewidth subtracted. As it is di�cult to determine this �nal value, or baseline,
from the data with su�cient precision, the points too close to the baseline are ex-
cluded from the �tting as well as the initial region, in order to minimize the error
in the determined time constant. It turns out that the resulting time constant
does not match the one obtained from the steady state thermal resistance and
the heat capacity (given by Eqs. 1.26 and 1.27) exactly, but typically is about 20
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percent lower. Nevertheless, bearing in mind the simpli�cations we have made
and also the observed fact that the relaxation process is not strictly exponential
(although the deviations are rather small), this value can be considered to be
in good agreement with the steady state data and taken as a con�rmation that,
with this degree of accuracy, the heat transport through the ori�ce by means
of ballistic thermal excitations can be described by the equations presented in
Section 1.3.

5.3 Computer Simulations of Quasiparticle Mo-

tion

To verify the experimental results, a computer simulation was performed by Jere
Mäkinen with the idea to track excitation paths and determine whether a given
excitation will be re�ected or not, depending on its initial position, momentum,
and the con�guration of vortices. The re�ectivity coe�cient, i.e., the probability
that a random excitation will be Andreev-re�ected, is calculated by an integral
over the equilibrium ensemble of excitations that may possibly travel through
the ori�ce. A detailed description of the utilised Monte-Carlo integration is again
given in Ref. [8] (A5).

Figure 5.7: Numerical simulation of the re�ectivity coe�cient at angular velocities
from 0 to 2 rad/s. The results are in good agreement with the experimental data
and show an approximately linear dependence on Ω with only small deviations
towards lower re�ectivity at high Ω. However, it is probably not possible to
determine any signi�cant in�uence of vortex screening from these data, as the
deviations from linearity are minimal and comparable to the scatter. Moreover,
the lack of signi�cant vortex screening is actually in accord with the parameters of
the experiment (and the simulation), as the typical intervortex distance of order
0.1 mm is signi�cantly larger than the scattering radius, which can be found from
Eq. 1.23 as approximately 1 µm.
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One open question before performing this calculation was whether to assume
specular scattering on the container walls (used in the exact experimental ge-
ometry), or whether to add some degree of di�usion. It was found that purely
specular scattering gave unrealistic results, namely that all excitations found their
way back through the ori�ce into the fork volume. This might be caused by the
fact that the aspect ratio of the cell is expressed only with �nite precision in the
simulation, or by a similar property of the performed calculations.

Better results were obtained with fully di�usive scattering, as is shown in
Fig. 5.7. The re�ectivity from the numerical simulation is found to be in good
agreement with the experimental data, and also con�rms that it is approximate-
ly linear with Ω, although some small deviations can be seen. This simulation
strongly supports the claim that the experimental data indeed represent the An-
dreev re�ection of thermal excitations on a rectilinear array of quantized vortices,
and that the presented description of this phenomenon is correct to a good degree
of accuracy.
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6. Conclusions

The aim of this Thesis was to summarize selected areas of the work in which
the Author took part during the four years of his PhD. studies, concentrating on
experiments with oscillating structures in cryogenic helium �uids. Within this
work, the most prominent representative of the various oscillators is the quartz
tuning fork, which became the traditional tool for cryogenic �uid dynamics both
in the Prague Laboratory of Super�uidity and abroad.

In Chapter 2, the transition to turbulence in classical helium �uids was exam-
ined by measuring the drag force acting on various tuning fork resonators, and the
expected scaling law of the critical velocity with the square root of the product
of frequency and viscosity was con�rmed quantitatively over a wide range of ex-
perimental parameters. Moreover, the cryogenic measurements of the drag force
were compared to the results of room temperature visualization experiments in
water using cylinders of square cross-section as models of the prong of a tuning
fork under dynamically similar conditions. Two methods of visualization were
employed, the Baker technique and the Kalliroscope solution, providing direct
visual evidence that the observed crossover in the drag force is indeed related to
the emergence of turbulent �ow.

The following Chapter 3, extends the drag force measurements to super�uid
He II, where the transition to turbulence was found to be characterised by a non-
classical feature in the measured drag coe�cients. A phenomenological model
was formulated, based on gradual coupling of the normal and super�uid compo-
nents due to the mutual friction force acting through the presence of quantized
vortices, and its results were compared to the observations, yielding a good agree-
ment. While the scope of the validity of the model is generally restricted to the
hydrodynamic regime of the normal component of He II (above 1 K), extensions
of its mathematical formulation to lower temperatures seem possible, although
based on di�erent physics.

When analysing the damping forces acting on the tuning fork resonators, it
was found that another dissipation mechanism apart from the laminar viscous
force or turbulent drag is important � acoustic emission. Using high frequency
tuning forks, the dissipation due to acoustic emission was studied systematically
and three models of acoustic emission by tuning forks were formulated, incorpo-
rating the in�uence of re�ecting boundaries as well. The experimental observa-
tions were reproduced to a good degree of accuracy and the models were also used
to provide estimates of the relative importance of acoustic emission and viscosity
for other types of oscillators resonating at di�erent frequencies. The experimental
observations and the proposed models are summarized in Chapter 4.

In Chapter 5 we described a separate investigation performed in the Low
Temperature Laboratory of the Aalto University in Espoo, Finland. The aim was
to study Andreev re�ection of thermal excitations on a well-known con�guration
of quantized vortices in rotating 3He�B, a measurement which is essential, if
Andreev re�ection is to be used reliably as a means of detection of quantized
vorticity in 3He super�uids. Steady heat �ux from a black body radiator was
analysed and the thermal resistance due to the tiny ori�ce in the radiator was
found to be a�ected by the presence of quantized vortices, as expected from
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the theory describing Andreev re�ection of balistically propagating excitations.
The results were double-checked by analysing the thermal relaxation of the same
volume and by a numerical simulation of the excitation trajectories, and in both
cases, su�ciently good agreement was found.

Altogether, this Thesis mostly represents a summary of the recent experiments
performed in Prague on oscillatory �ows in classical and super�uid cryogenic 4He
liquids, centered around the studies of the transition to turbulence and energy
dissipation due to acoustic emission by quartz tuning forks. These experiments
are complementary to the work of other groups active in cryogenic �uid dynamics
and were often consulted with them, and compared to their results in hope to
provide grounds for conclusions of more general validity and to contribute a small
piece to the development of our understanding of super�uidity and quantum
turbulence.

As is proven by the very fact that the Author could take part in the Andreev
re�ection measurements in an extent warranting a devoted Chapter in this Thesis,
we can say with con�dence that in today's cryogenic �uid dynamics community,
the relations between the individual groups and their mutual cooperation indeed
often extend beyond mere discussions of scienti�c results and principles. There-
fore, if, at the end, one personal wish may be expressed, it is for this friendly
and cooperative spirit to last, so that future students and young scientists can
bene�t from the same opportunities that were, during his studies, presented to
the Author of this Thesis.
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Transition from laminar to turbulent drag in flow due to a vibrating quartz fork

M. Blažková, D. Schmoranzer, and L. Skrbek
Joint Low Temperature Laboratory, Institute of Physics ASCR and Faculty of Mathematics and Physics, Charles University,

V Holešovičkách 2, 180 00 Prague, Czech Republic
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Flow due to a commercially available vibrating quartz fork is studied in gaseous helium, He I and He II,
over a wide range of temperatures and pressures. On increasing the driving force applied to the fork, the drag
changes in character from laminar �characterized by a linear drive vs velocity dependence� to turbulent �char-
acterized by a quadratic drive vs velocity dependence�. We characterize this transition by a critical Reynolds
number Recr

� =Ucr� /�, where Ucr is the critical velocity, � stands for the kinematic viscosity, �=�2� /� is the
viscous penetration depth, and � is the angular frequency of oscillations. We have experimentally verified that
the corresponding scaling Ucr���� holds in a classical viscous fluid over two decades of �.

DOI: 10.1103/PhysRevE.75.025302 PACS number�s�: 47.27.Cn, 47.27.nb, 67.40.Bz, 67.55.Fa

The vibrating quartz tuning fork �Fig. 1� represents an
easy to use, robust, cheap, and widely available tool to gen-
erate and probe an important class of flows—oscillating
boundary layer flows, especially under cryogenic conditions
�1�. Commercially produced piezoelectric forks—frequency
standards �215=32 768 Hz� for watches—are supplied by
various producers �2� in a cylindrical vacuum-tight metal can
that for fluid dynamical applications has to be entirely or
partly removed. In this work, we use them to study one par-
ticular feature of an oscillating boundary layer flow—its
transition from the laminar to the turbulent drag regime.

The bare fork, its typical surface roughness, and the elec-
trical scheme used for measurements are shown in Fig. 1.
The fork is excited with an ac voltage UD=U0 cos��t�,
where � is the angular frequency of oscillations. The observ-
able quantity is a current owing to the piezoelectric effect
I=aU measured by the SR 830 lock-in amplifier, which is
proportional to the derivative of the fork deflection, i.e., its
velocity U. For calibration, one needs to find the proportion-
ality constant a. We use the vacuum measurements of the
linewidth �� obtained by slowly sweeping the drive fre-
quency across the resonance at liquid-nitrogen ��78 K� or
liquid-helium ��4.2 K� temperature, at which the flow is
then probed. As explained in detail in Ref. �1�,
a2=2m�� /Re, where m is the mass of one fork’s leg and Re
denotes its equivalent electrical resistance. The driving force
per one leg of the fork is F=aU0 /2.

We have shown �1� that subject to a low drive, within a
laminar regime, the resonance frequency f0 of the fork of
density �f and full width of the Lorentzian absorption curve
�f at half height �see an example of typical absorption and
dispersion curves in the inset of Fig. 2� depend on the fluid
density � and dynamic viscosity � as

� f0vac

f0
�2

= 1 +
�

�f
�� + B

S

V
� �

	�f0
� , �1�

�f =
1

2
���f0

	
CS

�f0/f0vac�2

�fV
. �2�

Here V=L3L2L1 is the volume of one fork’s leg of length L1
and rectangular cross section L3L2, S=2�L3+L2�L1. Equa-

tions �1� and �2� ignore the vacuum linewidth �at low tem-
perature typically �fvac�0.05 Hz��f �1–10 Hz� and ac-
count fairly well for the behavior of the vibrating fork in
fluids with known � and � if �, B, and C are determined as
fitting parameters �3�.

The main result which we present here is our experimen-
tal observation of the transition from the laminar drag regime
�characterized by the driving force F�U, where U is the
peak velocity of the fork; f0	const; �f 	const; in accord
with Eqs. �1� and �2�� to the turbulent drag regime �charac-
terized by F�U2� in an oscillatory boundary layer flow �4�.

The vibrating fork is an ideal tool for our investigations in
that the same fork can be used in a rich variety of classical
and quantum working fluids. Here we use 4He, offering three
remarkable fluids of interest, primarily due to their extremely
low values of kinematic viscosity, �=� /�, lowest of all
known substances. Cryogenic helium gas in addition to its
very low viscosity also allows an unprecedented flexibility,
as its fluid properties can be easily tuned over many orders of
magnitude by varying the temperature and/or pressure. Nor-
mal liquid helium �He I� is a Navier-Stokes fluid having nor-
mal boiling point at 4.2 K and existing �along the saturated
vapor line, SVP� down to T
�2.17 K, below which it be-
comes superfluid and is usually referred to as He II. Proper-
ties of 4He are well known �5,6� and are easily tuneable by
adjusting temperature and pressure in situ in the same pres-
sure cell.

With cryogenic working fluids, such as He I or He II, care
must be taken in order to prevent the extremely sensitive
fork �typically Q�105–106 in vacuum at low temperature�
from gathering solid particles of air or other contaminants.
We therefore start measurement cycles with liquid helium
under high pressure in the cell, so that for any subsequent
measurement the amount of fluid in the pressure cell is either
kept constant or decreases.

Our experimental protocol is based on recording families
of resonant curves in various working fluids �i.e., in helium
at various temperature and pressure� over six orders of mag-
nitude of the drive—for such a wide dynamical range we
need an additional attenuator and a step-up transformer. As
shown in Fig. 2, on increasing the drive the Lorentzian shape
of the absorption becomes distorted and the point of maxi-
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mum response fmax shifts towards lower frequency �7�.
In a steady classical flow past a submerged object, transi-

tion from laminar to turbulent drag occurs at some critical
value of Reynolds number Recr=Ucr� /�, where Ucr denotes
the critical flow velocity and � is a characteristic size of the
object �8�. In a viscous flow due to an oscillating submerged
body of the angular frequency of oscillation �=2	f a new
important length scale �=�2� /�=�2� /�� of the viscous
penetration depth emerges. If ��� and, additionally, the
Reynolds number U� /� is small, then the flow at any given
instant can be regarded as steady—as if the body were mov-
ing uniformly with its instantaneous velocity. If, on the other
hand, ��� and the amplitude of motion U /���, then the
Reynolds number need not be small in order to neglect the
nonlinear term in the Navier-Stokes equation. In a thin layer
near the surface of the body the flow is rotational but in the
rest of the fluid it is potential �9�.

We suggest that in this case the transition from laminar to
turbulent drag ought to be characterized by a critical Rey-

nolds number based on the penetration depth:

Recr
� = Ucr�/� . �3�

It immediately follows that the critical velocity ought to
scale as Ucr����.

For full description of oscillatory flows, besides the Rey-
nolds number one needs to define an additional dimension-
less number such as the Strouhal number St=U� /� �9�,
where �=2	 /� is a characteristic time. Note that if one as-
sumes that the characteristic length scale is the penetration
depth, Reynolds and Strouhal numbers become equal �except
for a numerical constant of 	�. Consequently, the crossover
from the laminar to turbulent drag can be described by the
Reynolds number Recr

� alone.
Note that with our quartz tuning fork oscillating at about

32 kHz �despite covering six orders of magnitude of F re-
sulting in five orders of magnitude of U� we always operate
in the limit U /��20 
m� � 	400 
m���4.3 
m. The
velocity when the amplitude of oscillation would reach the
thickness of the fork’s leg would be U
80 m/s and cannot
be reached in practice—the fork mechanically breaks at ve-
locities of order of a few m/s �10�.

In most cases, however, the attainable velocity of the fork
is high enough to comfortably observe the transition from
laminar to turbulent drag regime �see Fig. 3�. It is clearly
marked as a change in the velocity vs drive slope as well as
by the onset of increase in observed �f or an onset of de-
crease of fmax. Experimentally, we define the critical velocity
Ucr as a crosspoint of fitted linear and square-root velocity vs

FIG. 1. The micrograph of the quartz tuning fork with the detail
of its surface showing the typical surface roughness and the princi-
pal electrical circuitry used for measurements.

FIG. 2. �Color online� Left: The in-phase resonant response of
the driven quartz fork vs applied frequency measured for various
drive voltage levels �in mVrms� as indicated. The solid curves are
Lorentzian fits to the data. The inset shows both absorption and
dispersion curves for the drive level of 290 mVrms.

FIG. 3. �Color online� Transition from laminar to turbulent drag
regime as detected by the vibrating quartz fork A2 in He I at 4.2 K
and 18.6 bars ���, in He II at SVP at 1.37 K���, 1.61 K ���,
2.06 K ���, and in gaseous helium at 78 K and 10.05 bars���. For
conversion of measured electrical quantities UD and I to F and U,
see �1�. The insets show the width �f of the in-phase resonance
response �top� and the frequency of maximum response fmax �bot-
tom� vs measured current, both being constant in a linear regime.
Increase of �f and decrease of fmax indicate an onset of the turbu-
lent drag regime.
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driving force dependence, neglecting the data points where
rounding in the vicinity of Ucr takes place.

The universal crossover behavior is even better displayed
in a nondimensional way in Fig. 4, where we plot the veloc-
ity dependence of the classical drag factor defined as CD
=2F /�AU2, where A=L1L2 is the projected area of the fork’s
leg. As a numerical example, for the fork A1 �see Fig. 4�
CD=1±0.2 over two decades of � and more than a decade of
�, as measured in classical fluids He I and He gas at various
applied pressures.

Our data obtained in classical viscous fluids �covering two
orders of magnitude of � and thus demonstrating the useful-
ness of cryogenic helium for laboratory fluid dynamical re-
search� displayed in Fig. 5 verify the scaling Ucr���� in the
limit ��� �11�. In order to stress that our results do not
depend on the particular fork, we show our results obtained
with two nominally identical forks A1 and A2 and with a
bigger fork B1 �2�. The critical value of Recr

� is about 5 �12�
and varies slightly from fork to fork �within about 20%�, but
the scaling for each individual fork holds. Thus for oscilla-
tory flow due to a vibrating object, in the limit U /�� � ��,
the characteristic length scale is not the size of the object, but
the viscous penetration depth.

To better appreciate our experimental results, it is instruc-
tive to consider an analytically tractable example of a vis-
cous flow due to an oscillating hydrodynamically smooth
sphere. In a laminar regime, the drag force acting upon a
sphere of radius R is given �9�, Flam=
U=6	�R�1+R /��U.
For the turbulent drag regime we adopt Fturb=�U2

=CD�	R2U2 /2. Assuming that the transition occurs when
these forces become equal in a limit of high frequency
�R��� we arrive at

Ucr =



�
	

6�2

CD

��� 
 21��� . �4�

Here we assumed that for a smooth sphere CD
0.4. In He I
at the saturated vapor curve just above the superfluid transi-

tion this would give a critical velocity of about 1.3 m/s,
about four times higher than we observe for the oscillating
fork. It seems therefore that for submerged oscillating bodies
of arbitrary shape �such as, e.g., quartz fork� Eq. �4� gener-
ally holds, with appropriate numerical values of 
 and �.
Here we assume that ���. The expression for Flam suggests
that there ought to be a crossover from a regime where ���
to ���. It is an interesting question if such a crossover is
always present in boundary layer flows due to bodies of vari-
ous forms.

The example of a sphere is certainly too simple to account
for any details within the crossover region, such as instability
against Taylor-Görtler vortices �13�. We have chosen this
simplest example of a sphere having in mind that the flow
over the tip of the fork is inherently three dimensional. Tak-
ing into account the surface roughness �see Fig. 1� and the
fact that the tip of the fork’s leg is partly ground off by the
manufacturer to adjust the desired room-temperature fre-
quency, it is hardly possible to accurately describe the flow
analytically or even numerically. It seems, nevertheless, that
the underlying physics of a crossover from laminar to turbu-
lent drag regime is captured and such a comparison is useful.

We have extended our measurements and analysis to a
quantum fluid—He II. One might expect a very different be-
havior here, as it is well known that He II displays the two-
fluid phenomena and circulation in its superfluid component
is quantized. It is remarkable therefore that in He II we ob-
serve similar drive dependencies as in He I and He gas. In
particular, no appreciable change in the measured quantities
is observed when crossing T
 �see Figs. 3 and 4�. On de-
creasing the temperature of He II along the saturated vapor

FIG. 4. �Color online� The drag factor CD plotted vs the peak
velocity U of the fork. Measurements in helium gas, in normal
liquid He I as well as in superfluid He II close to the transition
temperature, are shown at conditions as indicated. The dotted line is
included to appreciate an expected CD�1/U behavior in laminar
regime.

FIG. 5. �Color online� The critical velocity at which transition
from laminar to turbulent drag occurs for three different forks A1,
A2, and B1 �2� in classical fluids �data points obtained using He I in
the temperature range 2.2�T�4.2 K and He gas at 78 K at ambi-
ent and elevated pressure up to 30 bars� plotted vs ���. The solid
lines represent the best linear fit that includes the �0,0� point �top�.
This scaling is confirmed by comparison with the thick solid line in
the logarithmic plot �bottom�; the fitted power laws for the three
forks yield 0.48±0.04.
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curve further, however, the crossover becomes gradually
sharper and across the transition region the drag coefficient
displays additional pronounced features. We observe neither
irregularities nor any hysteretic phenomena down to about
1.3 K, although we have especially searched for them. Such
features have been commonly observed with oscillating
wires �14�, spheres �15�, or grids �16�, but in most cases at
lower temperatures. Due to space restriction, we postpone a
detailed account and analysis of He II measurements to a
later publication; here we restrict ourselves to merely stating
their main features.

To conclude, we have experimentally confirmed that a
critical velocity for the crossover from laminar to turbulent
drag regime in a viscous flow due to an oscillating quartz
fork in the limit U /�� � �� scales as Ucr���� over at

least two decades of kinematic viscosity. Taking into account
the geometrical shape of the tip of the fork’s leg and its
surface roughness, this result strongly suggests that for such
an oscillatory flow the characteristic length scale is not the
size of the object, but the viscous penetration depth
�=�2� /�.
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Experiments relating to the flow induced by a vibrating quartz tuning fork and similar
structures in a classical fluid
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We report on an experimental study of the behavior of a number of commercially available quartz tuning
forks oscillating in a classical cryogenic fluid, in the form of either liquid helium I or gaseous helium,
extending our previous studies �M. Blazkova et al. Phys. Rev. E 75, 025302 �2007��. Measurements of the
damping of the oscillations allowed us to deduce the drag on the prong of a fork, as a function of the velocity
with which the prong moves, for various sizes of fork and various oscillation frequencies. Transitions to
turbulent flow have been identified, and the dependence of the critical velocity, expressed as a dimensionless
critical Keulegan-Carpenter number, on the dimensionless Stokes number has been established. These mea-
surements have not allowed us to visualize the flow, so we have carried out visualization experiments with
oscillating rods in water, the rod dimensions, and the frequencies of oscillation, being chosen so that the
relevant dimensionless parameters are similar to those for the prongs of the forks. Some information about the
nature of the instability that leads to turbulence has been obtained in this way, and the results for the critical
Keulegan-Carpenter number for the rods in water have been compared with values for the tuning forks in a
cryogenic fluid.

DOI: 10.1103/PhysRevE.81.066316 PACS number�s�: 47.27.Cn, 47.80.�v, 67.25.B�, 85.50.�n

I. INTRODUCTION

During the past few years a number of papers have re-
ported applications of vibrating piezoelectric quartz tuning
forks in the study of cryogenic fluids �1–7�. Such forks are
available commercially at little cost since they are made in
large numbers as frequency standards for watches. The usual
frequency is 215=32 768 Hz, although forks with other fre-
quencies are also available. The forks are normally supplied
in cylindrical vacuum-tight metal cans, but removal of this
can allows the fork to interact with a surrounding fluid. The
piezoelectric properties of the quartz allow both controlled
application of a periodic driving force and the measurement
of the corresponding response, by purely electrical means.
Vibration of a fork at low velocities induces laminar flow in
the surrounding fluid, and this allows the fork to be used to
monitor the state of the fluid, such as its temperature or pres-
sure, a feature that is particularly valuable in cryogenic ap-
plications �2,4�. At higher velocities vibration of the fork can
induce turbulent flow, and studies have been reported of the
way in which the drag on the prongs of the fork varies with
velocity in the transition to fully turbulent flow �3,4,6,7�.
This transition has been studied in both gaseous and liquid
helium, and in the latter case studies have included both the
normal and the superfluid phases. In the case of the super-
fluid phase we are dealing with quantum turbulence, and the
studies have contributed to our understanding of the way in
which such turbulence can be generated by a vibrating struc-
ture.

Laminar flow induced by vibration of a fork at low ve-
locities seems to be well understood in terms of well-
established theory �2,8�. The frequency with which the forks
vibrate is such that in either gaseous or liquid helium the
viscous penetration depth is small compared with the dimen-

sions of a prong, and there is potential flow outside this
penetration depth. The amplitude of the oscillations in drag
force, F, per unit length of prong is then related to the ve-
locity amplitude of oscillation, U, through a relation of the
form

F = �S�����1/2U , �1�

where S is the surface area of a prong per unit length; � and
� are, respectively, the density and kinematic viscosity of the
fluid; � is the angular frequency of oscillation; and � is a
numerical factor, of order unity, which depends on the shape
of a prong. The drag force can also be expressed in terms of
a drag coefficient CD,

CD = 2�
S

A
����1/2 1

U
, �2�

where A is the projected area of unit length of a prong on a
plane normal to its motion and CD is defined by the equation

F = 1
2�ACDU2. �3�

This paper is concerned with the behavior of a tuning fork
in a classical fluid when the velocity is increased through the
transition to turbulence. As we shall see, this behavior is
interesting in itself, but it is interesting also in connection
with the generation of quantum turbulence. A question that
arises in the study of quantum turbulence is the extent to
which quantum turbulence can mimic classical turbulence.
This question has arisen repeatedly in the study of the gen-
eration of quantum turbulence by various forms of oscillat-
ing structure �9�, and it has arisen most recently, and perhaps
most vividly, in recent experimental studies of the generation
of quantum turbulence by an oscillating tuning fork �6,7�.
The pursuit of this question has been hampered, as we shall
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see, by the fact that very little seems to be known about the
generation of turbulence by a tuning fork, or by similar struc-
tures, in a classical fluid.

If we ignore the fact that a tuning fork has two prongs,
and that the velocity with which a prong moves varies along
its length, we see that the oscillation of such a fork in a fluid
must be closely related to the transverse oscillation of a bar
of rectangular cross section. Many experimental and theoret-
ical studies have been published relating to the transverse
oscillation of a rod of circular cross section in a fluid �for
example, �10–15��, with the experiments having included
both measurements of the drag coefficient through the tran-
sition to turbulence and visual observations of the flow at
different stages in this transition. However, to our knowledge
no corresponding studies have been made for a bar of rect-
angular cross section. This paper, which is an extension of
our previous studies �3�, is a contribution to the filling of this
gap in our knowledge. Our measurements include studies of
the drag-force–velocity relationship for a range of tuning
forks in helium, supplementing the results presented in �3�,
together with visual observations of the flow induced in wa-
ter by transverse oscillations of a rectangular bar, for which
the dimensionless parameters are chosen to match those rel-
evant to the tuning forks. Our results suggest that there may
be significant differences between the behaviors of a rod of
circular cross section and that of our rectangular bars, al-
though we cannot be sure of the reason and further experi-
ments are clearly required.

In presenting our experimental results we shall use the
dimensionless parameters that are commonly used in the
classical literature. The drag will be described by the dimen-
sionless drag coefficient, defined by Eq. �3�. At a finite fre-
quency this drag coefficient must be a function of two inde-
pendent dimensionless parameters, which we take to be the
Keulegan-Carpenter number, defined by the equation

KC =
2�a

d
, �4�

and the Stokes number, defined by the equation

� =
�d2

2��
, �5�

where a is the amplitude of oscillation of the structure and d
is a characteristic dimension. In terms of these dimensionless
parameters Eq. �2� becomes

CD = �8��1/2�
S

A
�−1/2KC

−1. �6�

At velocities exceeding those at which there is laminar flow
the form of Eq. �6� becomes generally more complicated,
although it is often the case that in the limit of very large KC
the drag coefficient tends to a constant value of order unity,
which we denote by �.

II. EXPERIMENTAL RESULTS: DRAG ON THE
VIBRATING TUNING FORKS

Details of the quartz forks that we have studied are sum-
marized in Table I, with the dimensions being defined in Fig.

1. The surfaces of the forks are rough on a scale of a few
microns, as shown in Fig. 1. The way in which our experi-
mental results have been obtained was described in earlier
papers.

A typical plot of observed drag coefficient against
Keulegan-Carpenter number, for a fixed value of Stokes
number, is shown in Fig. 2. We see that there is a smooth
�monotonic� transition between the laminar behavior, de-
scribed by Eq. �6�, and a limiting constant value CD=� at
high velocity, where the constant � is close to unity. We find
that this smooth transition can be represented to a good ap-
proximation by the equation

CD = �8��1/2�
S

A
�−1/2KC

−1 + � , �7�

which describes all solid lines in Fig. 2.
We note that this smooth variation is different from that

observed with a circular cylinder, where CD often varies with
KC in an oscillatory way in the region of the transition to
turbulent flow �10�. Furthermore, there is evidence that the
limiting value of the drag coefficient for a circular cylinder,
although of order unity, does in fact decrease systematically
and significantly with increasing �. This suggests that the
physical processes occurring in the transition region may be
different in character in the two cases, although—as we dis-
cuss later—part, at least, of the difference might be due to
the fact that the transverse velocity with which a fork vi-
brates must vary along its length.

TABLE I. Description of quartz forks.

Fork
Frequency

�kHz�
L

�mm�
T

�mm�
W

�mm�
D

�mm�

A1 32 3.71 0.42 0.35 0.21

B1 32 3.65 0.68 0.46 0.18

C3 32 2.51 0.25 0.10 0.13

U1 4 19.70 2.20 0.80

U2 8 9.50 0.45 0.90 0.50

L2 32 2.17 0.21 0.10 0.12

L1 32 2.17 0.21 0.10 0.12

K1 32 3.9 0.39 0.28

FIG. 1. Schematic sketch of a quartz tuning fork and a micro-
graph of the surface of tuning fork A1 �the marker is 25 	m long�.
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We shall be interested in defining a critical Keulegan-
Carpenter number KC

crit associated with this transition. It is
tempting to define this number as that at which the two terms
on the right-hand side of Eq. �7� are equal, so that

KC
�crit� = �8��1/2�

�

S

A
�−1/2. �8�

We note that this form implies that the corresponding critical
velocity scales as ����1/2 for a given oscillating structure, a
form of scaling that was noted in Ref. �3�. However, this
scaling is an automatic consequence of the limiting forms of
CD in the laminar and fully turbulent regimes; it has no spe-
cial physical significance in the sense that the critical veloc-
ity does not correspond to any special change in the character
of the flow �6�. Of more significance is the value of KC at
which the first instability appears in the laminar flow. Unfor-
tunately, since the observed variation of CD is quite smooth,
it is not possible to identify this critical condition. The best
we can achieve is to identify the value of KC, KC

crit�x�, at
which CD differs from its laminar value by an arbitrary factor
�1+x�, where x
1.

In Figs. 3 and 4 we show plots of the observed values of
KC

crit and KC
crit�0.05� against Stokes number. We see from Fig.

3 that KC
crit varies with Stokes number as �−1/2, in accord with

Eq. �8�. We see from Fig. 4 that KC
crit�0.05� also varies with

Stokes number as �−1/2, within the �considerable� experimen-
tal error. This strongly suggests �but perhaps does not yet
conclusively prove� that the critical Keulegan-Carpenter
number at which the laminar flow first becomes unstable also
varies with Stokes number as �−1/2. In this respect an oscil-
lating fork seems to behave differently from an oscillating
rod of circular cross section, for which the critical Keulegan-
Carpenter number at the first onset of instability �the Honji
instability �12�, discussed below� varies less rapidly with

Stokes number �as �−1/4 for large � �10��. This less rapid
variation with � may be related to the fact, noted above, that
the value of � seems to decrease systematically with increas-
ing �.

III. VISUALIZATION

These experimental results leave unanswered a number of
important questions. To what extent is the behavior of a fork
influenced by the sharp corners on the prongs and by rough-
ness of the surface of a prong? To what extent is it influenced
by the close proximity of two prongs and the nonuniform
transverse velocity of a prong? And what is the nature of the
first instability as the Keulegan-Carpenter number is in-
creased?

FIG. 2. �Color online� Upper left panel: the observed drag co-
efficient plotted against Keulegan-Carpenter number for a 32 kHz
fork of type B1. Lower left panel: the same drag coefficient multi-
plied by velocity �normalized to unity�—this quantity indicates a
departure from linearity more clearly. The �blue� dashed-dotted line
indicates the fully turbulent drag. The right panels show detailed
view of the departures from linear regime indicated by the �black�
dashed-dotted line. In all panels the 5% departure criterion is
marked by the �red� dashed line and the critical Keulegan-Carpenter
numbers are marked with vertical black dotted lines.

FIG. 3. �Color online� The critical Keulegan-Carpenter number
KC

crit plotted against Stokes number � for different forks as indi-
cated, vibrating in normal liquid 4He and in cold pressurized helium
gas at liquid-nitrogen temperature. The solid �red� line represents
the expected instability for circular cylinders and the �blue� dashed
line represents the observed square-root behavior as indicated.

FIG. 4. �Color online� The critical Keulegan-Carpenter num-
bers, KC

crit and KC
crit�0.05�, plotted against Stokes number for differ-

ent forks as indicated, vibrating in normal liquid 4He and in cold
pressurized helium gas at liquid-nitrogen temperature. The �red�
solid line represents the expected instability for circular cylinders;
the other lines are the individual observed square-root dependences.
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It is difficult to answer these questions with the forks
themselves. They cannot easily be modified to answer the
first two questions. Establishing experimentally the nature of
the first instability requires a visualization of the flow, for
which the required technique does not exist for such a small
structure immersed in a cryogenic fluid. We have therefore
started to investigate the behavior of large metal rods of rect-
angular cross sections oscillating in water, aiming by suitable
scaling at ranges of values of KC and � similar to those
relevant to the forks. Ideally, we should have measured the
drag coefficients for such systems, but as yet we do not have
the equipment necessary for such measurements. But we
have attempted to visualize the flow, using both the Baker
solution technique �16� and a Kalliroscope solution �17�.

A. Experimental technique

The apparatus based on the Baker pH technique is shown
schematically in Fig. 5. Approximately 25 l of Baker solution
composed of water, small concentrations of NaOH and HCl,
and thymol blue pH indicator �labeled 1� were contained in a
tank of dimensions 20�30�25 cm3. The oscillating rod �2�
was pivoted at the base of the tank with a spherical knob
fitting into a Teflon holder. Oscillation of the rod about the
pivot in a vertical plane was driven via two thin rods by a
large bass loudspeaker �7�, driven by the oscillator �5�, over
a range of frequencies from 1 to 12 Hz. The loudspeaker was
used in its linear mode, so that the amplitude of oscillation
was proportional to the applied ac signal. In the experiment,
the oscillating rod could move along its sides only and was
pivoted at its lower end in order for its motion to be similar
to that of a prong of a tuning fork. The surface of the rod was
biased by a dc voltage of 10–15 V relative to the brass elec-
trodes �3�, in accordance with the recipe given in Ref. �16�.
When the dc bias voltage is applied, an electrochemical re-
action starts on the surface of the rod, affecting the concen-
trations of the dissociated ions locally thus increasing the
local pH, and forcing the pH indicator in the vicinity of the
rod to change its color from orange-red to dark blue. This
“ink” then freely drifts in the liquid, marking its flow pattern
accurately at low velocities up to about 5 cm/s. The same
tank, without the electrodes, was used for experiments with
the Kalliroscope solution, which outlines the flow pattern via

small reflective platelets contained in it. Calibration of the
displacement and velocity of the rod was carried out with a
video camera that recorded the position of the top of the
system of thin rods as a function of time relative to the scale
�8�.

B. Existing observations

Before we present our own observations of the flow of
water round our oscillating rods, we shall describe existing
observations of flow round an oscillating rod of circular
cross section �10,12�, together with one previous unpub-
lished observation of the flow round an oscillating rod of
square cross section �18�. Comparison between the different
observations will prove instructive.

An important and detailed study of the flow of water
round a rod of circular cross section oscillating in a direction
at right angles to its length was reported by Honji �12�. Simi-
lar observations, together with corresponding measurements
of the drag coefficient versus Keulegan-Carpenter number,
were reported by Sarpkaya �10�. The observed flows can be
summarized in a slightly oversimplified way as follows. At a
small velocity �or KC�, within the laminar regime, oscillation
leads to not only an oscillating boundary layer, but also to a
steady streaming flow �19,20�. The streaming flow is two
dimensional in the sense that the streaming velocity points in
a direction normal to the length of the rod. It arises from a
nonlinear effect when flow in the oscillating boundary layer
varies with position in the direction in which the flow takes
place; for the case of an incompressible fluid the equation of
continuity demands that there must then be some flow nor-
mal to the plane of oscillation. The relevant theory was given
by Schlichting and was discussed by Batchelor �21�. At a
higher Keulegan-Carpenter number the flow starts to exhibit
a three-dimensional structure involving mushroom-shaped
vortices moving away from the surface �see, for example,
Ref. �12�, Fig. 10�. It is now accepted that this flow arises
from an instability of the flow in the boundary layer when
the rigid boundary has convex curvature, with the instability
leading to the generation of Taylor-Görtler vortices �15�. As
long as these vortices remain in the thin boundary layer they
are hard to see, but the steady streaming flow causes them to
be swept away from the cylinder, so that they appear very
clearly in the form of the mushroom-shaped vortices to
which we have referred. Theory �15� leads to the prediction
that the critical Keulegan-Carpenter number at which the
Taylor-Görtler vortices are formed �the initial instability� is
given in the limit of large � by

KC
�crit� = 5.778�−1/4. �9�

This dependence on �, to which we have already referred,
has been verified experimentally �10�.

The only study of flow induced by the transverse oscilla-
tion of a rod of rectangular cross section of which we are
aware has been carried out by Hershberger and Donnelly
�18�. They used Kalliroscope to visualize the flow, and their
bar oscillated with a velocity amplitude that was uniform
along its length. They did not report any observation of
steady streaming at low velocities, but they did observe

FIG. 5. �Color online� Schematic diagram of the apparatus used
to visualize the flow produced by an oscillating bar in water. For a
detailed description, see the text.
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mushroomlike vortices formed along the whole length of the
bar at higher velocities, with the vortices being arranged in a
regular pattern along the length of the bar. They did not carry
out a complete study, and the precise location of the mush-
room vortices remains unclear.

C. Present observations

Photographs of the rods that we have studied are shown in
Figs. 6–8. The 2�2 cm2 rod with rounded edges showed no
transition within the range of velocities available to us. All
the others showed a transition in which vortex motion leaves
the surface, as shown in the typical photograph reproduced
in Fig. 9. These vortices are not arranged in the regular pat-
tern along the rod as observed by Hershberger and Donnelly,
and they first appear at the top of the rod �we neglect struc-
tures shed by the upper edge�. On increasing the amplitude
of oscillation further above the critical value, vortices start
appearing further away from the top of the rod. These fea-
tures are consistent with the fact that the transverse velocities
with which our rods move are not uniform along their
lengths, but increase from zero at the bottom to a maximum
value at the top of each rod. We identify a critical velocity as
that velocity at the top of a rod at which the first vortices are
observed to be produced 0.5–1 cm below the upper edge.
The corresponding critical Keulegan-Carpenter numbers are
plotted against the Stokes number in Fig. 10.

We see from Fig. 10 that most of the data are consistent
with a critical Keulegan-Carpenter number KC

crit that is pro-
portional �−1/2, as was the case with the tuning forks. The

FIG. 8. �Color online� A photograph of two brass cylinders of
square cross section 2�2 cm2. The surface of the lower one was
roughened by soldering small brass shavings to it; this surface was
then electrochemically cleaned and gold plated.

FIG. 9. A photograph showing a typical pattern of vortices pro-
duced by an oscillating rod of cross section 3�3 cm2 at a velocity
amplitude well above the transition.

FIG. 6. �Color online� A photograph of the �brass or stainless
steel� rods of square cross section that we have studied. They have
cross sections of 5�5, 3�3, 2�2 �with rounded corners�, 2�2,
and 1�1 cm2.

FIG. 7. �Color online� Left: the detail of the trimmed edge �after
the second trimming� of the 3�3 cm2 brass rod. Right: the detail
of the roughened gold-plated surface of the 2�2 cm2 brass rod.
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only exception is the rod with cross section 5�5 cm2, the
anomalous behavior of which may be associated with the
fact that its length is not sufficiently large compared with its
width to ensure that end effects are not important. We note
that the absolute values of KC

crit for our rods, for a given value
of �, are closely similar to those of KC

crit�0.05� for the tuning
forks, suggesting that our “5% criterion” in the latter case
does indeed indicate reasonably accurately the first instabil-
ity, as observed with the bars in water.

To check the influence of sharpness of the edges on KC
crit

experimentally, we have successively trimmed the edges of
the 3�3 cm2 rod. This trimming has been done very accu-
rately using a milling cutter �see Fig. 7�, so that the size of
the trim was 1 and 2 mm, respectively, after the first and the
second trimming. The fact that KC

crit for the rod of cross sec-
tion 3�3 cm2 is increased when the sharp corners are
trimmed suggests that the onset of the first instability in the
laminar flow is associated with these sharp corners. In con-
trast with a rod of circular cross section, the overall width of
the rod may therefore be irrelevant to this instability, and this
difference may account for the different dependence of KC

crit

on � in the two cases; instead of the overall width, what may
be important is either the radius of curvature at the sharp
edge or the radius of curvature of the outer surface of the

viscous penetration depth, whichever is the larger. The fact
that roughening the surface of the rod of cross section 2
�2 cm2 has such a small effect is surprising, in view of the
fact that the scale of the roughness is larger than the viscous
penetration depth. It does, however, suggest that surface
roughness may not be an important factor in the behavior of
the tuning forks. Our experiments do not tell us whether the
proximity of the two prongs of a tuning fork is important.

IV. CONCLUSIONS

Commercially available quartz tuning forks are being
used increasingly in various applications at cryogenic tem-
peratures. We have measured the damping of the oscillations
of a range of such forks in classical cryogenic fluids �helium
I and helium vapor�, and we have observed the transition
from laminar to turbulent flow. The critical Keulegan-
Carpenter number KC

crit corresponding to the initial departure
from laminar behavior, and so to the initial instability of
laminar flow, is found probably to be proportional to �−1/2,
where � is the Stokes number. In order to throw more light
on the behavior of these forks, we have carried out experi-
ments on rods of square cross section �to mimic a prong of a
fork� oscillating in water, with the dimensions and frequency
of oscillation being chosen to correspond to values of the
relevant dimensionless parameters that are close to those for
the forks. Visualization of the flow of the water suggests that,
as is known to be the case with rods of circular cross section,
the transition to turbulence involves an initial instability
within the viscous penetration depth, with the resulting vor-
tex motion being dragged away from the surface by the
steady streaming that is known to be associated with oscilla-
tory motion of a curved structure in a classical fluid. Values
of KC

crit obtained from the visual observations display the
same dependence on � as was observed with the tuning
forks. When the sharp corners of a rod were trimmed the
value of KC

crit was found to increase significantly. This sug-
gests that the initial instability is associated with the small
radius of curvature at these corners. The dependence of KC

crit

on � that we observe ��−1/2� is different from that reported
for rods of circular cross section ��−1/4 at high velocities�.
We suggest that this difference arises because the relevant
radius of curvature is the overall radius in the case of a rod of
circular cross section, while it is the radius of curvature as-
sociated with the corners of a rod of square cross section,
with this latter radius being the actual radius or the radius of
curvature of the outer part of the viscous penetration depth,
whichever is the larger. In the case of a rod of circular cross
section the drag coefficient tends to oscillate in value with
increasing �, in the neighborhood of the transition, while the
drag coefficient that we observe with our forks varies
smoothly. While this difference may reflect a different type
of flow, it may also be associated, at least in part, with the
fact that the velocity with which a prong of one of our forks
moves varies along its length. Roughening the surface of one
of our rods was observed, surprisingly, to have little effect on
the value of KC

crit.

FIG. 10. �Color online� The critical Keulegan-Carpenter number
plotted against Stokes number for various rods of square cross sec-
tion oscillating in water. All the data were obtained by visualization,
and relate to the first appearance of vortices being shed by the rod
about 0.5 cm below the upper edge. The data in the main graph
were obtained with the Baker pH technique; those in the inset were
obtained by the Kalliroscope technique. In the main graph, filled
�blue� circles, filled �orange� squares, filled �red� triangles, and
�green� crosses represent the data observed with rods of 1�1, 2
�2, 3�3, and 5�5 cm2 square cross sections, respectively; �ma-
genta� stars and �black� triangles show how the critical Keulegan-
Carpenter number changes when the sharp edges of the 3�3 cm2

rod are trimmed successively. The inset shows the critical
Keulegan-Carpenter number for the 2�2 cm2 rod, obtained with
the Kalliroscope technique before �upper �dark green� symbols� and
after �lower �cyan� symbols� roughening of the surface. The dotted
straight line corresponds to KC

crit=17�−1/2 �c.f. Fig. 3� and the solid
line is KC

crit=7.5�−1/2.
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Generation of turbulence by vibrating forks and other structures in superfluid 4He
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A study of the drag on the prongs of a number of quartz forks vibrating in the superfluid phase of 4He is
reported, and particular attention is paid to the transitions from laminar to turbulent flow over a wide range of
temperature. Behavior in the normal phase is consistent with that for a classical fluid, as has already been
reported �Phys. Rev. E 75, 025302 �2007��. Behavior in the superfluid phase is compared to that of other
structures vibrating in superfluid 4He, and similarities and differences are noted. We focus on the observed
behavior of the drag coefficient as a function of velocity, and the problems posed by this behavior are explored.
There is evidence for a sharp critical velocity at which significant turbulence starts to be generated in the
superfluid component. At high velocities the drag coefficient tends to that observed in a classical fluid, sug-
gesting that the two fluids, strongly coupled by mutual friction, are then behaving like a single classical viscous
fluid. Behavior in the intermediate region seems to vary from one case to another. Evidence is presented that
in the case of some structures the transition to single-fluid behavior takes place rather abruptly at a velocity that
is only slightly greater than the sharp superfluid critical velocity, but that in other structures the transition is
more gradual. Observed values of both the superfluid critical velocity and the effective viscosity of the fully
coupled fluids are presented and discussed. It is suggested that the critical superfluid velocity is always closely
similar to that at which the coupled fluids would be expected to undergo a classical transition between a flow
that is strictly laminar and one that displays the first instability, and a possible reason is discussed.

DOI: 10.1103/PhysRevB.79.054522 PACS number�s�: 67.25.dk, 67.25.dm, 47.27.Cn, 47.37.�q

I. INTRODUCTION

Recently many studies of the behavior of vibrating
wires,1,2 spheres,3 and grids4–6 in the superfluid phases of
both 4He and 3He were reported. Attention has been focused
especially on the change in damping associated with the tran-
sition to turbulent flow. Critical velocities have been re-
ported, together with the dependence of the damping on ve-
locity in the supercritical regime; sometimes this transition is
accompanied by hysteresis or switching. Important questions
in classical turbulence relate to the forms of turbulence gen-
erated by flow past various types of obstacle and to the pro-
cesses by which these forms are produced. The experiments
on vibrating structures in superfluids allow us to address
analogous questions relating to quantum turbulence. Turbu-
lence in a superfluid, or quantum turbulence,7 differs from
that in a classical fluid for three reasons: except at the lowest
temperatures, the superfluid exhibits two-fluid behavior, a
normal-fluid component coexisting with a superfluid
component—the two fluids being able to support indepen-
dent velocity fields; the superfluid component can flow with-
out dissipation; and flow of the superfluid is subject to severe
quantum restrictions. These restrictions mean that the only
form of rotational motion allowed in the superfluid compo-
nent is a quantized vortex line, in which there is an irrota-
tional circulation equal to 2�� /m round a thin vortex core,
where m is the mass of a 4He atom or two 3He atoms. Tur-
bulent flow of the superfluid component must therefore take
the form of some irregular tangle of vortex line. On length
scales greater than the spacing between the vortex lines, flow
of the superfluid component can mimic that of a classical
fluid. However, on smaller length scales, including typically

those at which dissipation occurs, the flow must be very
different. At a finite temperature any vortex line moving rela-
tive to the normal fluid suffers a drag �mutual friction�,
which can cause motion in the two fluids to become strongly
coupled. The study of quantum turbulence combines the
challenges we meet in the study of classical turbulence with
those associated with quantum phenomena.

The first aim of this paper is to describe observations
made with a number of vibrating forks8 in superfluid 4He at
temperatures above 1 K, where there is a significant fraction
of normal fluid. The observations are compared to those re-
ported very recently for vibrating forks in 4He at lower tem-
peratures and with those relating to other forms of oscillating
structure in 4He. Experimental results are presented in the
form of plots of the drag coefficient against velocity. We
demonstrate that all these experimental results exhibit certain
common features: a sharp critical velocity, with or without
hysteresis or switching, associated with the onset of turbu-
lence in the superfluid component; a tendency for the drag
coefficient to approach a constant value, of order unity, at
high velocities, similar to the behavior observed with classi-
cal fluids; and an intermediate region in which the drag co-
efficient varies with velocity in a way that differs to some
extent from one type of oscillating structure to another. We
go on to set out the nature of the problems raised by these
observations, emphasizing both the similarities to, and the
differences from, those relevant to classical fluids. We argue
that the observed behavior at high velocities indicates “qua-
siclassical behavior,” in which, even at high temperatures,
there is a single turbulent velocity field �arising from coupled
motion of the two fluids� that mimics that occurring in a
classical fluid. We consider the intermediate region, arguing
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that for some structures there is a rather sudden transition to
quasiclassical behavior, with a more gradual transition for
others. We observe that the superfluid critical velocity seems
to coincide with the velocity at which flow of the quasiclas-
sical coupled fluids would make a transition between a
strictly laminar form and one in which the first instability of
that flow is evident, and we suggest a tentative reason. We
shall wish to emphasize that the way in which the drag co-
efficient is observed to vary with velocity, over the whole
range of velocities, contains much information about the pro-
cesses accompanying the vibration of the structure over and
above that contained simply in the observed superfluid criti-
cal velocity. Our discussion relates only to superfluid 4He;
superfluid 3He, even in the B phase, appears to behave
differently.9,10

There are two different theoretical �or computational� ap-
proaches to the generation of quantum turbulence by vibrat-
ing structures. In the case of very small structures, when only
small numbers of vortex lines may be involved, the evolution
of the turbulence might well be examined by computer
simulation.11 However, for larger structures, when large
numbers of vortex lines are likely to be involved, especially
in fully developed turbulence, computer simulations of the
type so far available are inadequate since they cannot cope
with large vortex densities.10 In this latter case, we must rely
on general physical arguments, essentially statistical in na-
ture, such as those associated with the concept of an eddy
viscosity. Discussion of our experimental results in this paper
will be based on such general arguments, so that they may
not be relevant to the behavior of the smallest structures. We
note that the characteristic dimensions of the forks with
which this paper is primarily concerned are significantly
larger than those of most other vibrating structures that have
been studied in superfluid helium.

II. EXPERIMENTAL RESULTS WITH VIBRATING FORKS
IN SUPERFLUID 4He

The forks are made of quartz and are available commer-
cially as frequency standards,12 typically for 215 Hz
��33 kHz� at room temperature; those we have used in most
of our work have the shapes shown in Fig. 1 and their di-

mensions are given in Table I. The forks are excited at their
resonant frequencies, and we measure the amplitude of the
resonant response as a function of the drive force F.13 The
way in which the amplitude of the response and the drive
force are derived from the electrical measurements is de-
scribed in Ref. 8. It is illuminating to plot the results in terms
of a drag coefficient, CD, which is defined by the equation

F =
1

2
CD�AU2, �1�

where � is the appropriate fluid density, A=LW is the area of
a prong projected on a plane normal to the motion, and U is
the amplitude of the velocity response at the ends of the
prongs of the fork. �Strictly speaking we should take into
account the fact that the velocity with which any particular
part of a prong moves varies along the length of the prong.
However, in the overall damping there is a heavy weighting
in favor of the region of a prong near its tip.� Figures 2–4
show typical results for three forks �A1, L2, and U1� in the
form of plots of CD against U for different temperatures.

III. DISCUSSION OF EXPERIMENTAL RESULTS

A. Normal phase

Consider first the drag exerted on the prongs of the fork
A1 at a temperature of 2.16 K. The fraction of superfluid is
then very small, and we can assume that the observed form
of dependence of CD on U is that for a classical fluid with
kinematic viscosity, �, equal to the viscosity of the normal
fluid divided by the total fluid density. �We attempted to take
data above the lambda transition, but we found that at the
highest velocities they were affected by cavitation.14� At the
angular frequency, �, appropriate to the fork, the classical
viscous penetration depth, �= �2� /��1/2, is small compared
to all dimensions of a prong. We can then expect the drag
coefficient at low velocities �laminar flow� to have the form15

CD = 2�
S

A
����1/2 1

U
, �2�

where S�2L�T+W� is the total surface area of a prong and
� is a constant of order unity that depends on the shape of
the fork. We ignore streaming effects.15 In the limit of high

FIG. 1. �Color online� A commercially available quartz tuning
fork �Ref. 12�. �a� A schematic drawing of the fork; �b� micrograph
of the entire fork; �c� micrograph of the ends of its prongs; �d� detail
of its surface roughness; �e� fork in its original can and with the can
removed.

TABLE I. Dimensions of forks.

Freq. L T W D

Fork �kHz� �mm� �mm� �mm� �mm�

A1 32 3.71 0.42 0.35 0.21

B1 32 3.65 0.68 0.46 0.18

C3 32 2.51 0.25 0.10 0.13

U1 4 19.70 2.20 0.80

U2 8 9.50 0.45 0.90 0.50

L2 32 2.17 0.21 0.10 0.12

L1 32 2.17 0.21 0.10 0.12

K1 32 3.9 0.39 0.28
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velocities we expect to have fully developed turbulent flow,
for which the drag coefficient is expected to be a constant, 	,
of order unity. These expectations are consistent with our
experimental results at 2.16 K, and they are consistent also
with results already published.16 A drag coefficient given by
the simple interpolation formula,

CD = 2�
S

A
����1/2 1

U
+ 	 , �3�

describes the experimental results rather well over the whole
range of velocities. In earlier publications we have defined
the critical velocity for the classical transition from laminar
to turbulent flow as the velocity at which the two terms on
the right-hand side of Eq. �3� are equal, so that

Uc = 2
�

	

S

A
����1/2. �4�

In fact this definition is misleading because, almost certainly,
it does not correspond to any significant change in flow pat-
tern. It is probable that in reality the gradual change in the
form of the drag coefficient, from that corresponding to
strictly laminar flow to that corresponding to a fully turbulent
regime with eddy motion on scales up to width of a prong,
reflects a sequence of different flow patterns; the first one
displaying the primary instability of the laminar flow. For the
case of a vibrating fork the details of this sequence are not
known. The details are known for the case of a cylinder with
circular cross section, undergoing transverse oscillations in
water, with visualization of the flow,17–20 and in this case the
initial instability is a Taylor �Taylor-Görtler� instability in the
viscous penetration depth arising from the curvature of the
surface of the cylinder.18,21,22 Attempts to carry out similar
experiments with a rod of rectangular cross section in water
�i.e., with a suitably scaled version of the prong of a fork� are
in progress in our own laboratory in Prague and by Donnelly
and Hershberger23 at the University of Oregon, but they are
proving hard to interpret �in setting up these classical experi-
ments we have assumed that the two prongs of a fork do not
lead to flows that interfere with each other�; it might be ex-
pected that the first instability would arise at the corners of

FIG. 2. �Color online� Plots of the observed drag coefficient at
various temperatures and at the saturated vapor pressure for vibrat-
ing tuning fork A1 �Ref. 12�. The lines are fits to a theoretical
expression that is described in the text. In the inset we show the
experimental curves for temperatures of 1.31 and 2.16 K, together
with the broken �green� line, which shows how the drag coefficient
would behave for a classical fluid with the kinematic viscosity �c

evaluated for fork A1 at a temperature of 1.31 K ��c is defined in
the text�.

FIG. 3. �Color online� Plots of the observed drag coefficient at
various temperatures and at the saturated vapor pressure for vibrat-
ing tuning fork L2. Behavior of the fork L1 is very similar. The
lines are fits to a theoretical expression that is described in the text.

FIG. 4. �Color online� Plots of the observed drag coefficient at
two temperatures and at the saturated vapor pressure for vibrating
tuning fork U1. The lines are fits to a theoretical expression that is
described in the text.
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the rod, but, if this is indeed the case, the instability seems to
spread rapidly over the whole surface of the rod. In the
present context we shall find later that the physically signifi-
cant classical critical velocity seems to be that at which the
first instability occurs, which we identify with the first de-
parture of the drag coefficient from that corresponding to
strictly laminar flow and which we denote by Uc1. For the
purposes of rough quantitative analysis we take Uc1 as the
velocity at which the first term on the right-hand side of Eq.
�3� is four times 	; i.e., we take

Uc1 =
�

2	

S

A
����1/2. �5�

B. Superfluid phase: Forks A1, B1, and C3

Looking at Figs. 2–4, we see that the curves for tempera-
tures well below the lambda transition are quite different in
shape from those for the normal phase. Especially at the
lowest temperatures, there is a minimum in the drag coeffi-
cient; in the case of fork A1 this minimum is rather sharp,
although it is less sharp in the case of forks L1/L2 and U1. A
sharp minimum suggests the existence of a sharp critical ve-
locity. Since this feature becomes well marked at only the
lowest temperatures we make the reasonable assumption that
it is associated with the superfluid component; i.e., that it
marks the onset of significant vorticity, in the form of a sig-
nificant density of vortex lines, in the superfluid component.
We denote this critical velocity by Ucs. We emphasize that no
hysteretic behavior is seen; the form of the drag versus ve-
locity is the same for increasing velocities as it is for de-
creasing velocities.

Let us now focus our attention on the results obtained
with fork A1; those obtained with forks B1 and C3 are simi-
lar. We see that, at velocities greater than that which we
identify as the superfluid critical velocity, the drag coefficient
passes through a broad maximum and then follows a curve
that is very similar to that for a classical fluid, tending to a
constant value of order unity at the highest velocity. Thus
there appears to be a critical velocity analogous to that given
by Eq. �4� in addition to the critical velocity Ucs. At first sight
we were tempted to associate this second transition with the
normal fluid,24 but in fact this is not reasonable because of
the strong coupling between the two fluids that must result
from the vortex lines produced by the transition in the super-
fluid component. Instead we start by suggesting the follow-
ing tentative scenario. The transition in the superfluid com-
ponent leads to the formation of a random tangle of vortex
line in the neighborhood of the fork. The resulting mutual
friction couples the two fluids together, so that they behave
as a single quasiclassical fluid. We assume that this single
coupled fluid can be characterized by an effective kinematic
viscosity, �e, which describes the combined effect of the vis-
cosity of the normal fluid and an eddy viscosity characteriz-
ing small-scale momentum transfer in the superfluid due to
small-scale vortex motion in the random tangle. The length
scale associated with this small-scale motion is the vortex
spacing, �, and the velocity scale is of order 
 /�, where 
 is
the quantum of circulation. The eddy kinematic viscosity

must therefore be of order 
, which has the same order of
magnitude as the kinematic viscosity, �n /�, of the normal
fluid �� is the total density of the helium�. Thus the effective
kinematic viscosity of the coupled fluids is likely to be of
order �n /�; the precise value may be either larger or smaller
by a factor of order unity. It is natural now to assume that,
provided that the vortex tangle extends far enough from the
surface of the fork, this coupled fluid system can undergo a
gradual transition to large-scale turbulence �turbulent eddies
on a scale of order the width of the prongs of the fork�, in a
way similar to that occurring in a classical fluid. Thus we
might assume tentatively that there are two transitions: the
first establishes a more or less random tangle in the super-
fluid component, allowing that component to undergo rota-
tional motion and to couple its motion to the normal compo-
nent; the second being a quasiclassical transition to large-
scale turbulence in the coupled components. At velocities
greater than the superfluid critical velocity but less than that
associated with the coupled fluids, the “random” vortex
tangle in the superfluid component might allow that compo-
nent to flow in a quasiclassical laminar mode, matching the
laminar flow in the normal fluid; the vortex tangle is then not
strictly random to the extent that it allows the superfluid to
flow with the large-scale vorticity field characteristic of lami-
nar viscous flow. We remark that in this laminar viscous flow
the parallel component of the velocity field, relative to the
velocity of the oscillating fork, would need to vanish at the
boundaries of the fork; this would be achieved by partial
pinning of the vortices on the rough surface of the fork. We
emphasize that these are tentative ideas. We shall find later,
following a more detailed consideration of the experimental
results, that they need some modifications; in particular
coupled laminar viscous flow does not seem to be observed,
the transition in the superfluid at the velocity Ucs leading
immediately to turbulent flow of the coupled fluids.

Our ideas can be expressed in terms of a model, according
to which the total drag coefficient can be represented math-
ematically by the following equations:

CD = 2�
S

A
��xe�e�1/2 1

U
+ xe	 , �6�

where

xe = x + �1 − x���U − Ucs�
�U − Ucs�2


 + �U − Ucs�2 , �7�

�e = � + ��c − ����U − Ucs�
�U − Ucs�2


 + �U − Ucs�2 , �8�

where U is the velocity amplitude of a fork, x is the normal-
fluid fraction, �n /�, �=�n /� is the kinematic viscosity of the
normal fluid referred to the total fluid density, ��y� is the
Heaviside step function, Ucs is the critical velocity of the
superfluid component, �c is the effective kinematic viscosity
of the fully coupled fluids, and �, 	, and 
 are constants.
Equation �6� has the form that applies to a classical fluid with
an effective density xe� and effective kinematic viscosity �e
��cf. Eq. �3��. We see that, according to these equations, the
effective normal-fluid fraction starts to rise from x to unity
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when the superfluid velocity exceeds the critical velocity Ucs,
the change taking place over range of velocity determined by
the parameter 
, and that the effective kinematic viscosity
changes �increases or decreases� from � to �c in a similar
way. The precise description of the transition region of width
� implied by these equations should not be taken too seri-
ously. The equations are intended to provide simply an inter-
polation between the regime in which the two fluids are un-
coupled, for U�Ucs, and that in which the fluids are fully
coupled, for U�Ucs. �It can be added, however, that other
simple forms of interpolation seem less successful when at-
tempting to fit all available experimental data. Better agree-
ment between the fits and the experimental data might be
achieved with additional free fitting parameters, but it is
hardly justified in view of the limited experimental accu-
racy.�

The solid lines in Fig. 2 are obtained with these fitting
functions, �, Ucs, 	, �e, and 
 being adjustable parameters
�normal-fluid parameters are taken from Donnelly and
Barenghi25�. We see that the fits are rather good, providing
evidence in favor of our model. We note in particular that the
model reproduces the maximum in CD at a velocity of order
200 mm s−1. As expected, the fitting parameters �, 	, and 

are independent of temperature, and they are displayed in
Table II. Values of the superfluid critical velocity, Ucs, and
the effective kinematic viscosity, �c, will be discussed later.
As expected, the parameters � and 	 are of order unity,
while �c is not very different from �. The parameter 
 is
small, showing that the initial transition that generates a vor-
tex tangle in the superfluid leads to a sharp rise in the cou-
pling between the two fluids.

C. Superfluid phase: Forks L1/L2 and U1

Looking at Figs. 3 and 4 we see what appears to be a
rather different behavior: the minimum that we associate
with the superfluid critical velocity is less sharp and at ve-
locities greater than the superfluid critical velocity there is no
maximum before the drag coefficient levels off at a constant
value. Nevertheless, as we see from Figs. 3 and 4, our trial
functions 6, 7, and 8 can still be fitted, but only with a value
of � that is significantly increased. This difference implies
that vortex line starts to be produced at velocities above the
superfluid critical value at a rate that is significantly smaller,
so that full coupling between the two fluids sets in more

gradually. The reason for this difference is not known. The
difference does not seem to be associated with a different
size or frequency of fork. A possible reason is that forks
L1/L2 and U1 have prongs with surfaces that are smoother
than is the case with forks A1, B1, and C3.

We remark at this point that not only does � vary from one
fork to another, but also � and 	, although the variation of
these latter parameters is much smaller. The variation of �
reflects an expected dependence of the laminar drag on the
exact shape of the fork. The variation of 	 reflects some
not-unexpected dependence of the limiting value of the drag
coefficient at large velocity on the detailed geometry. We can
add, however, that the values of 	 set out in Table II agree
within experimental error ��20%� in cases where we have
measured them with those obtained when the fork oscillates
in a classical fluid �either gaseous helium at 77 K or the
normal phase of liquid helium at an elevated pressure, the
elevated pressure ensuring that the cavitation observed at the
vapor pressure in the normal phase is suppressed14�; this ob-
servation is consistent with our assertion that at high veloci-
ties the superfluid in the neighborhood of the fork is behav-
ing like a classical fluid.

D. Comparison to vibrating forks at very low temperatures

The experimental results that we have been presenting
relate to vibrating forks in superfluid 4He at temperatures
above 1 K, where there is a significant fraction of normal
fluid. Very recently measurements at lower temperatures
were performed in Kharkov26 and we now compare them to
our own.

Details of the fork �K1� used in Kharkov are included in
Table I. For reasons connected with the way the experiments
were carried out, the response of the fork and the driving
force could not be calibrated in absolute units. Absolute val-
ues have therefore been obtained by direct comparison to the
measurements on our fork A1, which displays almost identi-
cal behavior in an overlapping range of temperature. Typical
results so obtained for the fork K1 are shown in Fig. 5, along
with those for our fork A1 for comparison. We see a very
similar behavior, except that the drag on fork K1 at subcriti-
cal velocities is much smaller. There is no hysteresis.

Various forks suffer some damping due to internal friction
even in vacuo �the Q factor in vacuo is typically 5�105�. At
temperatures above 1 K this damping can be neglected at all
velocities in comparison to that due to the helium. In the case
of the Kharkov results, however, relating to temperatures be-
low 1 K, the damping cannot be neglected. It leads to an
apparently temperature-independent contribution to the drag
at low velocities, a contribution that is dominant at the low-
est temperatures. Subtraction of this contribution leads to a
linear drag that is proportional to T4 at the lowest tempera-
tures, which is to be expected from the scattering of ballistic
phonons. In Fig. 5 we show both the uncorrected and the
corrected values of the drag.

If our ideas were correct, we can expect that our Eqs.
�6�–�8� will still describe the corrected results, provided that
we modify our model to take account of this ballistic scat-
tering, which replaces laminar drag from the normal fluid.

TABLE II. Values of the adjustable parameters �, 	, and �.

Fork � 	 �

A1 0.72 0.85 0.015

B1 0.65 0.43 0.045

C3 0.36 0.42 0.075

U1 0.26 0.52 0.14

U2 0.27 0.5

L2 0.4 0.63 0.85

L1 0.38 0.63 0.95

K1 0.55 0.85 0.003
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The phonons form what is in effect a fluid with high viscos-
ity, which cannot become turbulent. We shall suppose that
the drag due to the phonons is unaffected by the transition to
turbulence in the superfluid component. This may not be
strictly correct because the ballistic scattering may be af-
fected by interaction between the phonons and the vortex
lines, but the drag due to the phonons is small in comparison
to that due to the superfluid turbulence, so that corrections to
it are unlikely to be important. We can therefore modify Eqs.
�6�–�8� by putting x=0 and adding to Eq. �6� a term ��T� /U
to represent the effect of the ballistic scattering. The fits seen
in Fig. 5 are obtained by taking ��0.78 K�=0.013 ms−1 and
��0.43 K�=0.001 ms−1. The good quality of these fits pro-
vides evidence in favor of our model. Values of the other
adjustable parameters are given in Table II. Judging from the
value of 
 we see that the transition to turbulence in the
superfluid is such that the vortex line is produced at a rate
that increases rather sharply with increasing velocity, as was
seen with forks A1, B1, and C3, but not with the other forks.

E. Values of the effective kinematic viscosity

Values of the effective kinematic viscosity �c deduced by
fitting Eqs. �6�–�8� �modified in the case of K1� to the ex-
perimental data for the various forks are shown in Fig. 6.
Although the values have the expected orders of magnitude,
they fall into two distinct groups: those with �c
�10−8 m2 s−1 and those with �c�2�10−9 m2 s−1. There is
no obvious explanation of this fact; the forks belonging to

one group do not seem to have any obvious characteristic
that is different from those in the other group.

IV. COMPARISON TO OTHER VIBRATING STRUCTURES

In Figs. 7 and 8 we show plots of the drag coefficient
versus velocity for an oscillating grid4,5 and an oscillating
sphere.3 The results for the grid, which show little or no
hysteresis, have a form very similar to that for the forks.
However, the data do not extend to sufficiently large veloci-
ties for us to determine the limiting value of the drag coef-
ficient �i.e., the value of 	�. The sphere exhibits hysteretic

FIG. 5. �Color online� Plots of the observed drag coefficient at
several low temperatures and at the saturated vapor pressure for the
vibrating tuning fork K1. Results for our fork A1 are included for
comparison. The lines are fits to a theoretical expression that is
described in the text. The data for K1 do not extend to high enough
velocities to allow an accurate determination of the parameter 	 and
therefore 	 is taken to have the same value as that for A1. The
uncorrected data for K1 are shown as open circles; data corrected
for the internal damping of the fork �see text� are shown as filled
circles. The broken �green� line is derived from Eq. �3� for a clas-
sical fluid of kinematic viscosity �c.

ν

FIG. 6. �Color online� Plots of the effective kinematic �c against
temperature for the various forks as indicated. The solid �green� line
is a plot of kinematic viscosity of the normal fluid �referred to the
total fluid density; i.e., �n /��, based on values tabulated by Don-
nelly and Barenghi �Ref. 25�.

FIG. 7. �Color online� Plots of the observed drag coefficient at
various temperatures and at the saturated vapor pressure for a vi-
brating grid.
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and switching effects,3 which we shall discuss later, but
again the data seem not to extend to high enough velocities
�the apparent rise in drag coefficient at high velocities sug-
gests that the data might then be affected by heating�. We do
not show data for vibrating wires:1,2 again they do not extend
to large enough velocities and, more seriously, it seems dif-
ficult from the available data to correct for significant non-
linear internal damping. Furthermore, the wires have very
small diameters, so that our type of analysis may not be
applicable. We conclude that the available data for oscillating
grids, spheres, and wires are not sufficiently extensive to
permit the type of detailed analysis that underlies our Eqs.
�6�–�8� and that they can be used only to extract values of the
superfluid critical velocity. Further experiments are clearly
required.

Values of the observed critical velocities for the various
oscillating structures are displayed in Fig. 9 �the data labeled
“Fork Lanc” were provided by Haley27�. In cases where there
is hysteresis we have taken the critical velocity that is ob-
served on reducing the velocity. We see that there is a clear
indication that the critical velocities increase with increasing
temperature. Structures of different size seem to have critical
velocities that are very similar in magnitude, but not exactly
the same. The suggestion has been made �see Sec. V� that the
critical velocities increase with increasing angular frequency,
�, as �1/2. To test this suggestion we have plotted in Fig. 10
the dimensionless ratio Ucs / ��
�1/2 against temperature.
There is little evidence that the data then collapse onto a
single line, as would be required by this suggestion. We re-
turn to this question in Sec. V.

V. ORIGIN OF THE CRITICAL SUPERFLUID VELOCITY

It is generally accepted that when the superfluid critical
velocity is exceeded a tangle of vortex lines forms in the
superfluid component in the neighborhood of the oscillating
structure. We argued in earlier sections that at high tempera-
tures this leads to a strong coupling between the two fluids,
and that the coupled fluids, behaving like a single fluid with

a kinematic viscosity determined by a combination of the
viscosity of the normal fluid and the eddy viscosity of the
superfluid, undergoes a gradual transition to a fully turbulent
state in a way closely similar to that observed when the
structure oscillates in a classical fluid. At very low tempera-
tures, when the normal fluid is effectively absent, there is a
similar gradual transition, but one in which the superfluid
component acts alone as a single quasiclassical fluid with a
kinematic viscosity equal to the eddy viscosity associated
with a tangle of vortex lines. These pictures leave us with an
important open question: can we understand the value of the
velocity at which the superfluid makes the initial transition to
a tangled vortex state?

The first point that must be made is that the nucleation of
vortex line at the critical velocity must be “extrinsic”; i.e., it
must arise from the multiplication or stretching of existing
remanent vortex line. Intrinsic nucleation of vortex line is

FIG. 8. �Color online� Plots of the observed drag coefficient at
various temperatures and at the saturated vapor pressure for vibrat-
ing sphere.

FIG. 9. �Color online� Values of the critical superfluid velocity,
Ucs, observed for various oscillating structures, plotted against tem-
perature. The different structures oscillate at different frequencies as
shown.

FIG. 10. �Color online� Values of the dimensionless ratio
Ucs / ��
�1/2 plotted against temperature.
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possible in superfluid 4He only at velocities that are much
larger than those encountered here. Very strong experimental
evidence comes from the recent work of the Osaka group
with vibrating wires.1

As we have already mentioned, the superfluid critical ve-
locity seems not to depend very strongly on the size of the
oscillating structure. If it were accurately independent of size
and shape and if it were then to depend on only the angular
frequency, �, and the quantum of circulation, 
, a dimen-
sional argument leads to

Ucs = const��
�1/2. �9�

This is the predicted dependence on frequency that we
mentioned earlier. However, as we also mentioned earlier,
there is as yet little convincing experimental evidence for
this dependence. The wide scatter on the experimental points
in Figs. 9 and 10 leads us to believe that the critical velocity
depends to a significant extent on the detailed geometry of
the structure and perhaps also on the state of roughness of
the surface. Moreover, it may depend also on the form of the
remanent vortex or vortices.

We shall now focus largely on the behavior of the forks
because, as we have explained, it is for this case that we have
the most complete sets of experimental data. We recall from
Sec. III A that the transition to turbulence in a classical fluid
is rather gradual and described by Eq. �3�. Let us look espe-
cially at the superfluid data in Fig. 2 and consider the way in
which the drag coefficient varies as the velocity is reduced
from a large value. The drag coefficient is observed to rise
with decreasing velocity, just as it does in a classical fluid.
As it approaches proportionality to 1 /U, the drag coefficient
drops rather suddenly to the value appropriate to the normal
fluid acting alone. In other words, the superfluid critical ve-
locity appears at a velocity closely equal to that at which
flow of a classical fluid with density equal to the total helium
density and kinematic viscosity equal to the parameter �c
makes a transition to laminar flow; i.e., at a velocity analo-
gous to the classical critical velocity Uc1 introduced in Sec.
III A �see especially the broken green lines in Figs. 2 and 5�.
Although data for other forks are less clear cut, owing to a
larger value of the smoothing parameter, �, they nevertheless
show very similar behavior. Furthermore, this behavior
seems to be common to all oscillating structures, although
more detailed experimental data will be needed to provide
really convincing evidence. Evidence that the superfluid
critical velocity is generally very similar to the classical criti-
cal velocity Uc1 was discussed in more detail in a recent
review by Skrbek and Vinen.9

Of course this similarity may result from a numerical ac-
cident. The classical critical velocity �Eq. �4�� is of the order
����1/2. The effective kinematic viscosity of the fully
coupled fluids is of the order 0.1
 and therefore the critical
velocity given by Eq. �9� is similar in order of magnitude to
that given by Eq. �5�. But the observations suggest that the
two critical velocities are not merely similar in order of mag-
nitude but are actually closely equal.

At first sight this equality seems very strange. The two
transitions are apparently quite different in character: the
classical transition is from a state of laminar viscous flow

with zero slip at a solid boundary; the quantum transition is
from a state of laminar potential flow with complete slip at a
solid boundary. However, this picture of the quantum transi-
tion is not quite correct because of the need for one or more
nucleating vortices. Superfluid transitions arise from the
multiplication and stretching of these nucleating vortices.
The way in which this multiplication and stretching occurs is
not generally known. Appropriate simulations would be
helpful, but only those of Hänninen et al.10 are available and
they relate to an oscillating structure �a sphere� the surface of
which is smooth, so that the nucleating vortices are not
pinned to particular points on the sphere. However, the re-
sults of these simulations ought to be considered. The tem-
perature is assumed to be zero. The nucleating vortex is in
the form of a vortex stretching across the helium, to which
the sphere is attached. Oscillation of the sphere at angular
frequency � leads to the generation of Kelvin waves on the
nucleating vortex with wave number equal to approximately
k= �� /
�1/2, and as the amplitude of these waves increases to
values of order k−1 self-reconnections result in the produc-
tion of vortex rings with radius of order k−1. These rings are
produced even at quite low velocities. However, above a
certain critical velocity, which we denote by UcH, the density
of these rings in the neighborhood of the sphere suddenly
increases and leads to the formation of what appears to be a
random vortex tangle, which is usually localized in the form
of a wake that oscillates from one side of the sphere to the
other as the sphere itself oscillates. It should be noted that
the critical velocity obtained in the simulations is signifi-
cantly larger than the observed value of Ucs for a sphere.

The formation of this tangle would undoubtedly be modi-
fied if the oscillating structure were rough, but let us suppose
that something similar still occurs, only at a lower velocity.
We suppose then that when the critical velocity Ucs is ex-
ceeded a dense tangle of vortex line envelopes the oscillating
structure. At very low temperatures this tangle causes the
superfluid in the region of the tangle to behave like a classi-
cal viscous fluid, with viscosity equal to the eddy viscosity
associated with a random tangle of vortex line; at a higher
temperature, mutual friction gives rise to a strong coupling
between the two fluids, so that they behave as a single fluid
with an effective viscosity, �c, that depends on both the
normal-fluid viscosity and the superfluid eddy viscosity. This
is of course the idea that we used in developing the model on
which Eqs. �6�–�8� are based. We assumed also that the en-
veloping tangle of vortex line extends away from the oscil-
lating structure to a distance of order that at which flow is
induced by the oscillation of the structure concerned.

However, this quasiclassical behavior requires presum-
ably that the density of vortex line be sufficiently large. In
other words the line spacing, �, must be small compared with
some characteristic lengths in the quasiclassical flow. One
obvious characteristic length in the quasiclassical flow is the
classical viscous penetration depth, given by

� = �2�c

�
�1/2

. �10�

This penetration depth is clearly relevant to quasiclassical
laminar flow; such laminar flow is possible only if ���. The

BLAŽKOVÁ et al. PHYSICAL REVIEW B 79, 054522 �2009�

054522-8



characteristic length that is relevant to flow at velocities
greater than those for which laminar flow is stable is less
obvious. We can, however, assert with fair certainty that the
initial instability occurs on a scale that is equal to the viscous
penetration depth �this is known to be true for an oscillating
cylinder of circular cross section21,22�. As long as there is no
hysteresis, which is the case with our tuning forks, the scale
of the turbulent motion at velocities close to critical must
also be confined to a region of size comparable with the
viscous penetration depth, even when the velocity has been
reduced from a large value. Thus we conclude that turbulent
motion also requires that ���, at least at velocities close to
critical.

We return to the way in which the drag coefficient
changes as the velocity is reduced from a large value. Ex-
periment tells us that, as the velocity is reduced toward a
value at which quasiclassical turbulence might be expected
to give way to quasiclassical purely laminar flow �the analog
of Uc1�, the vortex density must decrease rather suddenly to
a value that is too small to maintain quasiclassical behavior;
i.e., to a density such that ���. A sensible conclusion is that
the high density of vortex lines at velocities where there is
quasiclassical turbulence is being maintained by the quasi-
classical turbulence itself.

This view is not unreasonable. The large-scale quasiclas-
sical turbulence is maintained by the large-scale flow round
the structure �combined with the no-slip boundary condi-
tion�. There is an injection of energy into the large-scale
turbulent motion in much the same way as occurs in flow
through a grid �the large superfluid eddies being associated
with a partial polarization of the underlying vortex tangle�.
The energy in the large eddies tends to flow through nonlin-
ear coupling into smaller-scale turbulence until it reaches a
scale of order the vortex spacing, where it serves to generate
extra length of vortex line. The rate of decay of the large
eddies is governed by their lifetimes, which are equal to their
turnover times. Thus an important contribution to the genera-
tion of vortex line could come from the large-scale turbu-
lence, so that failure to maintain this turbulence, for quasi-
classical reasons, could result in a rather sudden reduction in
the vortex line density. The observed link between the criti-
cal velocity Ucs and the velocity at which quasiclassical tur-
bulence is extinguished then becomes natural. Similarly, dur-
ing an increase in velocity, the vortex line density cannot
increase to a value large enough to produce an observable
drag until there is a development of large-scale turbulence.
This situation implies an instability, so that the development
of large-scale turbulence linked to the generation of a large
vortex density may take place in practice only at a velocity
larger than that at which the large-scale turbulence disap-
pears on reducing the velocity. As we have noted, such hys-
teresis is indeed observed with some, but not all, structures,
especially at lower temperatures.

We have noted that a critical velocity, UcH, is observed in
the simulations of Hänninen et al.,10 although its magnitude
is larger than the observed Ucs. This critical velocity seems to
be unrelated to any quasiclassical critical velocity. There are
various possibilities: the existence of UcH may be peculiar to
a structure with a smooth surface; UcH may always be larger
than Ucs and therefore unobservable; or the line density pro-

duced in a steady state above UcH may remain quite small
and too small to allow a quasiclassical transition to turbulent
flow.

It is instructive to estimate the rate of production of vortex
line resulting from the decay of large-scale turbulence. In the
case of homogeneous isotropic turbulence the largest eddies,
characterized by a velocity U and size D, decay on a time-
scale D /U, so that they lead to a flux of energy to smaller
scales equal to roughly U3 /D per unit mass of helium. If we
suppose that this decay rate applies also to eddies of size of
order W in a volume of order WTL /2 around each prong of a
tuning fork �W, L, and T are the fork dimensions shown in
Fig. 1�, then the rate of production of vortex line must be
given in order of magnitude by

�s

2
dL
dt

=
Us

3

W
�

WTL

2
, �11�

where L is the total length of vortex line, Us is the superfluid
velocity relative to a prong of the fork, and where we have
taken the energy per unit length of vortex line, in a random
tangle, to be �s


2. For typical values of the various param-
eters, we find that dL /dt�7�106 ms−1. This is much larger
than the values found in the simulations of Ref. 10, tending
therefore to confirm that vortex production by decay of
large-scale eddy motion is more effective than by direct
stretching of remanent vortices �although the proviso must
be added that the simulations of Ref. 10 were not extended to
very large times�.

Our model of the physics underlying the critical velocity
Ucs implies that there is a small density of vortex lines in the
neighborhood of the oscillating structure at velocities less
than Ucs. The model does not tell us the magnitude of this
small density. Experiments reported so far indicate a density
that is too small to have an observable effect on the drag,
although we note that the drag is likely to be determined not
only by the density but also by the configuration of vortex
line. Experiments at lower temperatures than have so far
been studied, where the drag due to the normal fluid has
become very small, ought to throw light on this question.

We return to the actual value of the critical superfluid
velocity Ucs. We have suggested that it is equal to Uc1, evalu-
ated for a classical fluid with kinematic viscosity equal to the
effective kinematic viscosity �c; i.e.,

Ucs =
�

2	

S

A
���c�1/2. �12�

Thus we predict that Ucs is proportional to the square root of
the frequency only if the parameters �, 	, S /A, and �c are
constant. This prediction is consistent with our earlier sug-
gestion that the critical velocity seems to depend to a signifi-
cant extent on the detailed geometry of the structure.

The views that we have been expressing are of course
speculative. Significant features of the experimental results,
especially the variation of both the parameter � and the ef-
fective kinematic viscosity �c from one structure to another,
remain puzzling. But we hope that our views will serve to
stimulate further work, both in the acquisition of more ex-
tensive experimental data and in the development of the
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theory. If confirmed, a link between a superfluid critical ve-
locity and an instability of quasiclassical flow would be an
interesting feature of quantum turbulence.

We have noted that we have as yet little detailed knowl-
edge or understanding of the transition to turbulence in the
flow round our oscillating forks in a classical fluid. We em-
phasize, however, that this fact does not seriously affect our
argument. In essence we have based this argument on the
idea that quasiclassical flow of the superfluid around our
forks mimics the purely classical flow, whatever that classi-
cal flow might be. This is not to say that a detailed knowl-
edge of this classical flow would not lead ultimately to a
better understanding of the quantum case.

VI. SUMMARY AND CONCLUSIONS

We have reported the results of experiments in which we
have measured the drag on the prongs of a number of small
tuning forks oscillating in superfluid 4He, over a range of
temperatures above 1 K, and we have compared our results
to those obtained with forks at lower temperatures and with
other forms of oscillating structure. We have presented our
results in the form of plots of the drag coefficient against

velocity; we have argued that the detailed form of these plots
contains valuable information that extends beyond a knowl-
edge of a critical superfuid velocity above which there is an
increased drag; and we have noted similarities with the be-
havior of oscillating structures in classical fluids. In the light
of this information we have discussed the nature of the criti-
cal superfluid velocity. We have observed that the velocity
seems often to be associated with a transition to turbulence
that is essentially classical in its characteristics, and we have
tentatively suggested that this quasiclassical behavior has its
origin in an instability in which the generation of vortex line
at the rate required to produce large-scale turbulence is a
by-product of the large-scale turbulence itself.
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Abstract We report on experimental investigations of acoustic emission by quartz
tuning forks resonating at frequencies 32 kHz, 38 kHz, 77 kHz and 100 kHz im-
mersed in cold gaseous 4He and its normal and superfluid liquid phases. Frequency
dependence of the observed low-drive-linewidth at 350 mK together with the temper-
ature and pressure dependences (1.3 K < T < 4.2 K, 0 < p < 25 bar) of the observed
damping of the high frequency (77 and 100 kHz) resonators measured in normal liq-
uid 4He and its superfluid phase provide strong and direct evidence of the importance
of sound emission by these tuning forks. Three analytical models of acoustic emis-
sion by vibrating tuning forks are developed and compared with the experimental
results. We also discuss the importance of sound emission for experiments with the
commonly used 32 kHz tuning forks as well as other oscillating structures—spheres,
wires, grids and various micromachined sensors. We compare the relative importance
of dissipative losses due to laminar viscous/ballistic drag and acoustic emission in
liquid and superfluid 4He.

Keywords Quartz tuning fork · Cryogenic helium · Acoustic emission

1 Introduction

Quartz tuning forks, mass produced as frequency standards for digital watches with
a large number of other applications [1, 2], have recently become popular research
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tools in cryogenic fluid dynamics [3]. They are relatively easy to use, allow self-
calibration of the proportionality coefficient relating their electrical and mechanical
properties [4], and if their resonant response is measured correctly [5], their high
sensitivity enables their use as thermo-, pressure- and viscometers in all the helium
fluids [4]. They have been used to study the temperature dependences of density of
normal 3He liquid and of liquid and gaseous 4He [6]; cavitation in cryogenic 4He
liquids [7, 8] or solubility of 3He in 4He at millikelvin temperature [9]. Moreover,
they are also being employed (mostly in cryogenic environments) as generators and
detectors of both classical [10–12] and quantum turbulence [12–18].

One of the most important characteristics of these resonators is the amount of
damping they experience due to interactions with the surrounding fluid, as this can
be used, e.g., to determine the transition from laminar to turbulent drag regime or to
infer the fluid properties. Therefore, understanding all the damping forces is essen-
tial in order to interpret correctly the results from the numerous experiments already
performed in cryogenic helium.

Dissipation due to laminar viscous drag [10, 12] or due to ballistic drag at low
temperatures in 4He [13, 15], as well as the dissipation due to the scattering of thermal
excitations in 3He [16, 17] are already largely understood and their dependences on
most of the important physical quantities are known. In this report we try to illuminate
the dissipation due to acoustic emission in 4He fluids, extending the works of Clubb
et al. [19] and Pentti et al. [6]. In most other studies, acoustic emission by tuning
forks was considered to be negligible in comparison with other losses.

We believe, however, that this assumption is valid only under certain conditions,
and that acoustic emission or the interaction through sound waves might be at least
partly responsible for some of the phenomena observed by us as well as by others that
still remain unexplained (such as anomalously broad and time-dependent low-drive-
linewidth of “standard” 32 kHz forks and their mutual interactions in pure 4He at
very low temperature [20]). We do not intend to put forward a full comprehensive and
detailed description of all the acoustics related to tuning forks. Our hope is to provide
sufficiently good insight into the dissipative phenomena related to sound emission
and to offer approximative estimates of the magnitude of acoustic emission in various
situations. Dispersive effects of acoustic emission are beyond the scope of this paper
and are not discussed here with the exception of an observed level crossing.

The paper is organized as follows—after this brief Introduction, in Sect. 2 we
describe various aspects of the phenomenon of acoustic emission due to a tuning fork
oscillating in a compressible fluid (mentioning special physical properties of quantum
fluids) and in Sect. 3 three workable theoretical models are developed. We present our
experimental data in Sect. 4 and compare them with the model predictions, while the
predictions for other common oscillating structures are given in Sect. 5. Conclusions
are drawn in Sect. 6.

2 Acoustic Emission by a Tuning Fork

Let us begin by a brief qualitative description of this rather complex phenomenon. It
is known that any body oscillating in a classical viscous fluid with finite compress-
ibility emits sound waves [21]. If we assume for simplicity that the oscillations are
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harmonic, then the acoustic velocity field (superimposed on the velocity field due to
laminar1 flow past the body) will depend on several factors. The most important ones
are the geometry of the oscillating body, the spatial extent and properties of the sur-
rounding fluid as well as the geometry and material properties of its boundaries. More
specifically, relevant physical properties include fluid density, speed of sound and
frequency of oscillations, or alternatively, wavelength of the emitted sound waves.
A more detailed consideration also ought to take into account the dissipation of the
emitted sound waves, affected by fluid viscosity and thermal diffusivity (responsible
for damping of adiabatically propagating sound waves), and also the reflectivity and
absorptivity of the boundaries, in turn depending on their acoustic impedances, heat
conductivity and the Kapitza thermal resistance between the fluid and the walls.

It is readily seen that a full description of all the above mentioned processes is
next to impossible, perhaps with the exception of highly advanced and sophisticated
numerical simulations of special cases. For a review of computational acoustics,
see Ref. [22]. Several examples of acoustic emission models can be found in Refs.
[23, 24]. Therefore, we seek simplified analytically tractable working models that
would give us a meaningful approximative description of the dissipation rate due to
acoustic emission rather than a full account of all the relevant physical processes.

2.1 Acoustic Field in an Unbounded Classical Fluid

The simplest case of acoustic emission is perhaps to consider an infinitely large un-
bounded volume of a classical fluid with negligible damping of the propagating sound
waves. In this case, all the energy content of the emitted waves is carried away from
the source and it is more or less straightforward to find an analytical expression for
the emission power of an oscillator, assuming certain simplifications regarding the
geometry of the oscillator and neglecting the dissipation of sound waves traveling
in the fluid. The general procedure is to write down the velocity potential for out-
ward propagating spherical or cylindrical waves from a suitably chosen set of point
sources representing a simplified description of such an oscillator and use it to derive
the velocity and pressure fields, and from these to calculate the energy flux. As we
are limited neither by geometrical considerations nor by dissipation of energy in the
sound waves, we can then use approximations for the values of these fields at large
distances from the oscillating body. Then, by integrating over an enclosing surface,
we shall find the total emitted power.

It should be noted that, even in this textbook case, several important simplifications
are already assumed. The strongest one is the representation of the oscillating body
(a tuning fork) as a set of several point sources with given acoustic strengths (usually
four sources [25], in a form of either lateral or longitudinal/linear quadrupole [26], see
later). In reality, the oscillating prongs of the tuning fork do not act only as sources of
sound waves, they also reflect and absorb them. This can be especially important if the
wavelength is comparable to the dimensions of the tuning fork. Moreover, the prongs
have a velocity profile along their length, which can be approximated by solving the
oscillations of an ideal cantilever. Therefore, in the direction of its axis each prong

1We do not consider acoustic emission generated by turbulent flows or acoustic streaming.
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should ideally be represented by an infinite number of acoustic sources with varying
strengths from the base to the tip, rather than just as an acoustic dipole (thus making
the entire tuning fork a longitudinal quadrupole). This simplification will become
even more important if we choose to consider only the close vicinity of the tuning
fork with distances from the tines comparable to the tine length, which we should
keep in mind later, when describing a tuning fork placed inside its original can.

2.2 Effect of Solid Boundaries

If solid boundaries are present, the situation starts to look even more complicated.
Strictly speaking, for calculating the acoustic fields, one should use proper solutions
of the wave equation, which would be standing waves in the case of perfectly solid
(and fully reflecting) walls. Note that this also means the appearance of acoustic reso-
nances determined purely by the geometry of the container and the sound wavelength.

However, standing waves do not transport energy. A real experimental situa-
tion corresponds better to a superposition—linear combination—of propagating and
standing waves, as the waves reflected off the walls will be of a lower amplitude
than the incident ones, due to several factors. First, no wall is infinitely rigid and
even metallic walls posses non-unity reflectivity and non-zero transmission. In other
words, acoustic energy will be partly channeled into refracted waves and lost within
or outside the walls. Second, additional damping of sound waves occurs at solid
boundaries due to viscosity of the fluid and finite heat conductivity of the wall. The
importance of these two effects depends, among other factors, on the angle of in-
cidence of the waves. Moreover, in a real fluid, a traveling sound wave (which is
adiabatic and thus includes both pressure and temperature variations) is damped due
to viscous forces and thermal diffusivity and its amplitude decreases as it propagates
though the fluid.

To sum up, we need to describe a situation where the velocity and pressure fields
are described by a superposition of standing and outward propagating waves and
depend on a number of the above mentioned parameters, but mainly on the intrinsic
acoustic resonances of the closed volume under consideration, which can couple to
the oscillations of the tuning fork.

2.3 Acoustic Emission in Superfluid 4He

Several potentially important differences arise when sound emission in a superfluid
is considered, the main one being the existence of a new type of wave motion of the
fluid—second sound—that can be thought of as waves of temperature, in which the
normal and superfluid components move in anti-phase. As other nonclassical sound
modes are not considered here, we therefore have mutually independent approxi-
mately isothermal first sound (pressure waves) and approximately isobaric second
sound (temperature waves). The acoustic fields produced in He II by any moving
body will always be a combination of these two sound modes. The emission of first
sound is more or less analogical to the adiabatic sound waves in classical fluids, in-
cluding similar magnitudes of sound velocity in He I and He II.

Second sound will be emitted by the tuning fork for two reasons. First, as the body
moves, boundary conditions change differently for the normal (viscous liquid) and
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superfluid (Euler-like inviscid liquid) components, resulting in their relative motion at
the frequency of oscillations, i.e., second sound. Second, if finite viscous (or ballistic
at very low temperature of He II) drag forces are still present, the surface of the
moving body and the surrounding layer of fluid will be heated periodically, due to
these dissipative forces. Therefore, an additional second sound field will be present,
due to the temperature gradient in the liquid (superimposed on a steady counterflow
cooling the oscillator), but this time at double the frequency of oscillations.

It is known that an oscillating body radiates first sound much more efficiently than
second sound. For a plane oscillating in a direction perpendicular to itself, the ratio of
the amplitudes of the two sound waves is given by: β2T u3

2/cu1, where β is the heat
expansion coefficient, T denotes the temperature, u1 and u2 are the speeds of first
and second sound, respectively, and c is the specific heat, which is very similar for
both adiabatic and isothermal processes in He II except close to the λ-point [21, 27].
As β � 1, u2 < u1, and in our case T ≈ 1.5 K and c > 500 J kg−1 K−1 for all
temperatures above 1.3 K, we see that the ratio of amplitudes will be indeed much
lower than unity. We can therefore say that the second sound emission power due to
the oscillations of the tuning fork will be negligible compared to that of first sound
unless enhanced by another effect, such a resonance inside the experimental cell.

Of course, both first and second sound waves travel with their own group velocities
and will again have their own standing wave resonances determined by the geometry
of the experimental cell. Such second sound resonances have been observed in both
3He–4He mixtures and in pure 4He and are reported in Refs. [6, 9]. Based on the
above considerations, we believe that unless a second sound resonance within the cell
is encountered, the power lost due to emission of second sound will be much lower
than the power lost because of the emission of first sound. Therefore in the following
models, second sound emission is not considered quantitatively as the sharp increases
in linewidth due to resonances inside the experimental cell (i.e., the only occasions
at which second sound may be important) are filtered out during data processing
anyway. In other words, for the purposes of calculating the emission power when
away from sound resonances (and for these purposes only), we describe superfluid
4He as a classical compressible fluid.

3 Models of Acoustic Emission by Tuning Forks in a Classical Fluid

In this section, we discuss three different analytical models of acoustic emission by
a tuning fork, together with their advantages and shortcomings. All these models
deal with sound emission in an infinite volume of a classical fluid, but a few simple
modifications will be introduced to account, at least qualitatively, for the presence
of walls. The models described below are (i) 3D longitudinal quadrupole emission,
(ii) emission by two infinite translationally oscillating cylinders, and (iii) 2D longi-
tudinal quadrupole emission. The first two models are based on the works of Clubb
et al. [19] and Sillitto [25], and the third one will be developed here. All these mod-
els assume potential compressible flow, so the viscous damping of sound waves is
neglected. The application of these models on the quartz tuning fork is not meant to
provide a rigorously accurate description of its behavior, our aim is more to illustrate
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Fig. 1 A schematic sketch of a
quartz tuning fork marking its
dimensions

Table 1 Dimensions of the 38 kHz, 77 kHz and 100 kHz tuning forks used in this work (labeled F38, F77
and F100, respectively) as well as of typical 32 kHz tuning fork oscillators (F32, F38 and F100 type forks
are supplied in a 3 mm diameter case 8 mm long, F32s and F77 type forks are smaller, supplied in a 2 mm
diameter case 6 mm long). The dimensions have been measured using either optical (0.01 mm precision)
or electron (0.001 mm precision) microscopy. For each tuning fork, the proportionality factor between the
electric current and tip velocity, a, is listed, together with its quality factor, Qvac, measured in vacuum at
4.2 K

Fork type f0 L T W D a Qvac

kHz mm mm mm mm C m−1

F32 32 3.79 0.589 0.300 0.308 2.3 × 10−5 6.3 × 105

F32s 32 2.53 0.249 0.100 0.127 3.4 × 10−6 1.0 × 106

F38 38 3.41 0.599 0.330 0.306 1.6 × 10−5 6.5 × 105

F77 77.5 1.93 0.402 0.340 0.206 1.3 × 10−5 7.0 × 105

F100 100 1.98 0.585 0.335 0.302 2.1 × 10−5 6.2 × 105

the basic features of acoustic emission by tuning forks, providing estimates of the
emitted acoustic power that are correct at least in their orders of magnitude. In due
course we shall also test these models against our experimental data.

Throughout the rest of this paper, the fork dimensions T , L, W , D will be used
as introduced in Fig. 1; see Table 1 for their numerical values. Also the following
set of symbols will be used: i as the imaginary unit, ρ as the fluid density, c as the
sound velocity, ω as the angular frequency of oscillation, k as the wavenumber related
to the sound waves, U as the velocity amplitude of the tip of the prongs and Le =
0.3915L as an effective emitting length of a prong, taking into account at least roughly
the varying velocity profile along the length of the prong. The numerical coefficient
corresponds to the ratio of the average velocity along the prong to the tip velocity,
as follows from the Euler beam equation [28]. This value remains the same for all
dimensions of the tuning forks if the fundamental bending mode is considered and
as long as the assumptions of Euler beam theory for a thin dissipationless cantilever
remain at least approximately valid.2

3.1 Description of Acoustic Emission Within Existing Models and Their Extension

A brief description of the two known models is presented below and we restate the
resulting acoustic emission powers in two forms—first, using a more general expres-
sion (in practice an infinite sum of Bessel functions) and second, after taking the long

2The effective emitting length approximation can also be justified only if the entire problem of acoustic
emission is understood as linear.
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Fig. 2 The tuning fork (view of the tips of the prongs) represented as a longitudinal quadrupole. The
variables r , θ belong to the universal coordinate system of the entire quadrupole with origin at O, while
the primed variables belong to individual acoustic monopoles

wavelength limit, i.e., “wavelength � relevant oscillator dimensions”, which means
mathematically that the arguments of all relevant Bessel functions must be much
smaller than unity.

We begin with looking at the most commonly used model of acoustic emission by
tuning forks , which describes the tuning fork as a longitudinal quadrupole oscillat-
ing in a 3D fluid. A full and detailed derivation of the pressure and velocity fields as
well as the predicted emission power can be found in Ref. [25], here we only outline
its main ideas. We begin by writing the velocity potential for an outward propagat-
ing wave due to an acoustic monopole in 3D (a pulsating sphere reduced to a point
source):

�3D,1(r
′, t) = Bei(kr ′−ωt)

4πr ′ , (1)

where r ′ is the distance from the monopole and B is the acoustic source strength,
defined as the product of emitting area times the (normal) velocity amplitude, in our
case B = WLeU . The longitudinal quadrupole used to model the tuning fork then
consists of two point sources with strength B and two with strength −B arranged
according to Fig. 2. Using identities for displaced spherical harmonics [29], we arrive
at the velocity potential of the entire quadrupole in the coordinate system with its
origin in the center of mass of the quadrupole (r , θ ):

�3D(r, θ, t) = iBke−iωt

2π

∞∑

m=0
even

(2m + 1)Pm(cos θ)hm(kr)[jm(kd2) − jm(kd1)], (2)

where Pm(cos θ) are Legendre polynomials, hm(kr) are spherical Hankel functions,
jm(kdi) are spherical Bessel functions, and d1 = D/2, d2 = D/2+T . The potential is
independent of the azimuthal angle, ϕ, due to axial symmetry around the quadrupole
axis (which is, of course, not valid for the actual tuning fork). The emission power
using the notation of tuning fork dimensions results as follows:

P3D = ρωW 2L2
eU

2

2
√

2πd1d2

∞∑

m=0
even

(2m + 1)
[
jm(kd2) − jm(kd1)

]2 ; (3a)
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P ′
3D = ρωk5W 2T 2 (T + D)2 L2

e

40π
U2 = ρω6W 2T 2 (T + D)2 L2

e

40πc5
U2, (3b)

where (3b) is the simplification of (3a) in the long wavelength limit.
The main advantage of this model, i.e., the fact that it gives a full 3D description of

the acoustic field, is unfortunately also related to its most severe drawback. By con-
sidering the tuning fork as a set of collinear point sources in 3D space, an assumption
is already implied that its length and width are much shorter than the wavelength,
L,W � λ. Note that this is true even before taking the “long wavelength” limit,
which applies to other dimensions, namely T and D. By estimating the wavelength
for a typical 32 kHz tuning fork at 4.2 K we get λ ≈ 5.6 mm, which increases to
about 7.5 mm at lower temperatures. This is still larger than the length of a prong
of a typical 32 kHz tuning fork, but of the same order of magnitude and definitely
comparable. The ratio of the wavelength to prong length is even worse for the 77 kHz
and 100 kHz tuning forks discussed in Sect. 4, the consequence being that this model
tends to underpredict the emission power.

This was pointed out already by Clubb et al. [19] for a simplified version of the
same model, with the dependence on tuning fork geometry limited only to consid-
ering W and using slightly different approximations than Ref. [25]. Clubb et al. sug-
gested to use a different model instead—two infinite cylinders performing transverse
translational oscillations in antiphase.

Again, we begin by the velocity potential around a single infinite transversely
oscillating cylinder, which can be derived based on the calculations in Ref. [21]:

�C,1(r
′, ϕ, t) = πR2

2i
kUH1(kr ′) cosϕ e−iωt , (4)

where R is the radius of the cylinder and H1(kr) is the first order cylindrical Han-
kel function. The potential around the second cylinder has to be taken with a minus
sign, as they oscillate in antiphase. This time we express cosϕ as a sum of complex
exponentials and use the identities for displaced cylindrical harmonics, arriving at:

�C(r, ϕ, t) = πR2kUe−iωt

2i

∞∑

m=−∞
odd

Jm(kF )
[
Hm+1(kr)ei(m+1)ϕ −Hm−1(kr)ei(m−1)ϕ

]

(5)
for both cylinders, where Jm(kF ), Hm(kr) are cylindrical Bessel and Hankel func-
tions, respectively, and F = (T + D)/2 is the distance of the center of mass of one
cylinder from the origin placed exactly between the cylinders. This potential yields
the following emission power:

PC = ρωπ2R4k2LeU
2

∞∑

m=−∞
odd

Jm (kF )
[
Jm (kF ) − Jm−2 (kF )

] ; (6a)

P ′
C = 3

16
ρωk4W 2T 2 (T + D)2 LeU

2 = 3

16

ρω5W 2T 2 (T + D)2 Le

c4
U2, (6b)
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where in (6b) we took the long wavelength limit and replaced the cross-section of the
cylinder, πR2, by the cross-section of a prong, WT . Dimensionally, this result is in
agreement with Ref. [19], however, different prefactors were obtained. The difference
in the prefactors arises from our usage of velocity amplitude, U , instead of mean
square velocity, 〈u2〉, used in Ref. [19] and from a different method of replacing the
cylinder diameter with tuning fork dimensions.3

This 2D model in its full form (6a) takes the relationship between the tuning fork
dimensions and the wavelength to the opposite extreme—the length of the cylinders is
assumed to be infinite, while other dimensions are represented more or less correctly,
although cylindrical symmetry of each prong is forced artificially. This means that we
are now operating in the L � λ limit and the emission power might be overpredicted,
although this effect would probably be smaller than the underprediction of the first
model, especially for our 77 kHz and 100 kHz tuning forks.

Comparing these two models, we might say that they can be treated as opposing
limiting cases and that the actual emission power of the tuning fork should lie some-
where between the respective predicted values. Please note that in the experimental
part of this paper, all the emission powers are scaled by fitting parameters and there-
fore appear comparable in the presented figures. See Sect. 4 for the values of these
parameters and comparison of the individual predicted emission powers.

3.2 2D Longitudinal Quadrupole Emission

In this section, we present the derivation of the last model of acoustic emission by tun-
ing forks—2D longitudinal quadrupole emission. The aim in developing this model is
to overcome the difficulties with the previous models, that is, to avoid the wavelength
vs. prong length issue of the 3D quadrupole model, but at the same time to avoid
introducing cylindrical symmetry of both prongs artificially, and also to provide a
reasonable basis for comparison, lying between the “extreme” cases represented by
the two above mentioned models.

Although we do not expect the result of this new 2D model to be largely different
from the infinite cylinders model (also 2D), we hope that it might provide a more
accurate description of acoustic emission, especially for the 77 kHz and 100 kHz
tuning forks used in our experiment. The derivation of this model is given in greater
detail, since we are not aware of any literature that contains the same in its entirety
and also to illustrate the methodology, which was also used in a very similar manner
to derive the emission powers from the first two models.

Again, we begin by considering the velocity potential of an outward propagating
wave due to a 2D acoustic monopole (a pulsating cylinder reduced to a point source),
which can be derived based on the textbook examples in Ref. [21]:

�2D,1(r
′, t) = B

4i
H0(kr ′)e−iωt , (7)

where B is again the acoustic source strength, equal to the (normal) velocity ampli-
tude multiplied by the emitting line length, which is the 2D equivalent of the emitting

3We also believe there was an accidental misprint in the denominator of (5) in Ref. [19].
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area in 3D; in this case B = WU . Similarly to the 3D quadrupole model, we now
assume four acoustic sources arranged as in Fig. 2, two with strength B and two
with −B . Combining their potentials using identities for displaced cylindrical har-
monics [29], we arrive at:

�2D(r, ϕ, t) = B

2i
e−iωt

∞∑

m=−∞
even

Hm(kr)eimϕ [Jm(kd1) − Jm (kd2)] . (8)

The next step is to calculate the velocity and pressure fields according to:

v(r, ϕ, t) = ∇�(r,ϕ, t); p(r,ϕ, t) = −ρ
∂�(r,ϕ, t)

∂t
. (9)

Eventually, we will also need to calculate the mean sound intensity, I, and the emis-
sion power, P , according to:

I(r, ϕ) = 1

2
Re{p(r,ϕ, t) v∗(r, ϕ, t)}; (10)

P = Le

∮
I(r, ϕ) · dl = r Le

2π∫

0

Ir (r, ϕ) dϕ, (11)

where the path integral is taken over a closed circular loop and dl is an outward
pointing vector normal to the path segment and its magnitude is equal to the length of
the same segment. It follows that we will only be interested in the radial component
of the mean sound intensity (and of the velocity field) and, more specifically, only in
those terms that do not vanish upon integration over the full range of the polar angle.

The potential in (8) yields the following radial velocity and pressure fields:

vr(r, ϕ, t) = Be−iωt

2ir

∞∑

m=−∞
even

[mHm(kr) − kr Hm+1(kr)][Jm(kd1) − Jm(kd2)]eimϕ;

(12)

p(r,ϕ, t) = −1

2
ρωBe−iωt

∞∑

m=−∞
even

Hm(kr)eimϕ[Jm(kd1) − Jm(kd2)]. (13)

The radial component of the mean sound intensity is then:

Ir(r, ϕ) = −ρωB2

8r
Im

{ ∞∑

m=−∞
even

∞∑

n=−∞
even

Hn(kr)[mH ∗
m(kr) − kr H ∗

m+1(kr)]

× [Jn(kd1) − Jn(kd2)][Jm(kd1) − Jm(kd2)]ei(n−m)ϕ

}
. (14)
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To eliminate the double sum, we remember that the angular parts of cylindrical har-
monics, which is the only ϕ-dependent term in (14), are orthogonal on the interval
[0,2π ]:

2π∫

0

einϕe−imϕ dϕ = 2πδm,n. (15)

It therefore follows (as the Bessel functions have real values here, and the product of
Hm and H ∗

m is also real) that the emission power can be expressed from (11) as:

P = πρωkrB2Le

4

∞∑

m=−∞
even

[Jm(kd1) − Jm(kd2)]2Im{Hm(kr)H ∗
m+1(kr)}. (16)

From the law of conservation of energy it follows that the radiation power (if dissi-
pation is neglected) cannot depend on r . For the purposes of this calculation, we can
therefore replace the Hankel functions by their asymptotics for r → ∞:

Hm (kr)H ∗
m+1 (kr) ≈

√
2

πkr
e i(kr− mπ

2 − π
4 )

√
2

πkr
e −i(kr− (m+1)π

2 − π
4 ) = i

2

πkr
. (17)

Using (17) and substituting B = WU , we finally arrive at the emission power:

P2D = ρωW 2LeU
2

2

∞∑

m=−∞
even

[Jm (kd1) − Jm (kd2)]
2 . (18a)

In the long wavelength limit (we take the lowest order term of the Taylor expansion
of the Bessel functions), and substituting d1 = D/2 and d2 = D/2 + T , this reduces
to:

P ′
2D = 3

64
ρωk4W 2T 2(T + D)2LeU

2 = 3 ρω5W 2T 2(T + D)2Le

64c4
U2. (18b)

It is apparent that in the long wavelength limit, the emission power given by the 2D
quadrupole model is always exactly four times smaller than the one predicted by
the cylinders model. However, without taking this limit, the relation between these
two models is not so straightforward as they scale slightly differently with the wave
vector, and therefore also with the sound velocity and frequency of oscillations.

3.3 Application of Acoustic Emission Models

There are several important issues that should be kept in mind when applying the
above mentioned models to interpret various cryogenic experiments with quartz tun-
ing forks. First of all, the models are derived for an infinite volume of dissipationless
fluid, and we have to modify them to take into account the fact that tuning forks
vibrate in a closed volume of helium.
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When the resonant frequency of the tuning fork matches some acoustic resonance
of the cell (acting as a 3D sound resonator), the signal is suppressed, as the same
amount of supplied power is now divided among several damped modes of coupled
oscillatory motion, which can be seen in the tuning fork’s spectra as multiple reso-
nance peaks, provided they are strong enough, see Figs. 3 and 4 in Sect. 4 for a prac-
tical example. Such data would generally show “increased linewidths” (also Figs. 7,
8, 9 in Sect. 4), especially due to the fact that commonly used processing software
usually attempts to fit these complicated spectra with a single Lorentzian function.
As the best Lorentzian fit does not have any physical meaning in these situations, we
merely use this kind of data as an indication of an acoustic resonance present inside
the cell (be it first or second sound resonance), but we do not take the numerical
values of the linewidth into account in any quantitative way.

Having thus identified and separated the acoustic resonances of the cell, we focus
only on the rest of the data (the “floor” in Figs. 7, 8, 9 in Sect. 4). Then we find
that we also need to introduce a parameter that describes the energy balance at the
boundaries. We have therefore considered the power transmission coefficient, T (θ),
for plane waves propagating in liquid helium incident on a planar surface of a wall
(the tuning fork capsule used is made of aluminium) at an angle θ . The power trans-
mission coefficient is determined [30] as:

T (θ) =
4ρHeρAlcAl cos θ

√
c2

He − c2
Al sin2 θ

(
ρAlcAl cos θ + ρHe

√
c2

He − c2
Al sin2 θ

)2
. (19)

In the simplest case of normal incidence, it can be expressed in terms of the spe-
cific acoustic impedances of helium and the wall material (aluminium), ZHe and ZAl,
respectively:

T (0) = 4ZAlZHe

(ZAl + ZHe)2
, (20)

where the individual specific acoustic impedances are defined as the products of the
speed of sound and the density of the given media. The values we use for aluminium
are ρAl = 2700 kg m−3, cAl = 6420 m s−1.4 These depend mainly on the exact com-
position of the aluminium alloy used and on the method of preparation of the mater-
ial, and can be considered pressure and temperature independent in our experimental
range between 0 and 25 bar, and 1.3 and 4.2 K, respectively. On the other hand,
the relevant helium properties vary considerably with temperature and pressure and
are therefore calculated accurately for each individual data point using the HEPAK
software package [31, 32].

Even though the exact geometry of the experiment is rather complicated, we still
believe that the actual ratio of the transmitted energy will be roughly proportional to
the integral of the power transmission coefficient from zero angle of incidence to the

4 The exact values of aluminium density and speed of sound depend significantly on the method of prepa-
ration. We use the values provided at www.signal-processing.com for rolled aluminium.

http://www.signal-processing.com
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rather small (≈3 degrees) critical angle for total internal reflection, θC, which is given
by:

θC = arcsin

(
cHe

cAl

)
, (21)

as it is easy to imagine that acoustic waves will arrive at the walls at angles differing
by much more than just θC ≈ 3 degrees. The mentioned integral is found to depend on
temperature and pressure in a nontrivial manner due to the changing acoustic proper-
ties of liquid helium. In this approach, we have to assume that the angular distribution
of the incident waves (when decomposed to plane wave components) is roughly con-
stant between 0 and θC, or at least, even if it does exhibit some angular dependence
in this small range of available angles, that the character of the dependence does not
change dramatically with temperature or pressure in the explored experimental range.

Due to the enormous acoustic impedance mismatch between liquid helium and
aluminium, ZAl � ZHe, and the small value of the critical angle (sin θ ≈ θ , cos θ ≈ 1
for θ < θC) or, in other words, due to the large Kapitza resistance [33] of the bound-
ary, T (θ) can be approximated by an elliptical function:

T (θ) = 4
ρHe

ρAl

√(
cHe

cAl

)2

− θ2. (22)

The above mentioned integral can then be expressed as the area under the quarter-
ellipse, (π/4) T (0)θC. The emission power given by the respective models is then
multiplied by this value, taking into account at least approximately the effects of the
boundaries. Note that the obtained emission power is still fully determined only by
the experimental conditions.

When this approach is subjected to a careful analysis, one would find that it only
considers a singular transmission/reflection on the solid boundary and therefore ne-
glects the influence of multiple reflections. In reality, what happens will be similar
to the following scenario. First, a wave of some undetermined 3D profile is emit-
ted by the tuning fork. It propagates toward the solid boundary (experiencing low
damping in He), where it is partly transmitted, partly reflected, and partly dissipated.
The reflected wave then returns to the tuning fork, where it is partly absorbed, partly
scattered, and partly dissipated again. The scattered wave will eventually reach the
outer boundary again and the whole process will be repeated until all the energy in the
wave is re-absorbed by the tuning fork, transmitted through the solid boundary or dis-
sipated into heat. A full treatment of these phenomena (even neglecting dissipation)
seems unfeasible to us at the moment even in terms of a cylindrically symmetrical
2D model, because of the complicated geometry of the actual experiment as the di-
mensions of the tuning fork are comparable both with the diameter of its capsule and
with the wavelength of the acoustic radiation.

It is, however, instructive to estimate the importance of multiple reflections by
considering a simplified 1D model with an acoustic source located at one end of a
resonator and a partly transmitting boundary at the other. Complementing it with the
proper boundary conditions (velocity matches that of the source at its surface, and the
ratio of the amplitudes of the incident and reflected waves on the boundary is given by
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the finite amplitude reflectivity coefficient) one can arrive (i) at the actual resonance
frequencies of such a system, and (ii) at the energy flow through the solid bound-
ary. It follows that the transmitted energy depends on tuning/detuning of the source
to/from the resonance of the system, as can be expected. For example, one finds that
in resonance, the transmitted energy is enhanced by a large factor inversely propor-
tional to the (rather small) power transmission coefficient of the boundary, compared
to the case exactly between resonances. This is qualitatively in agreement with the
experiment—the dissipation was observed to increase significantly when a resonance
of the experimental volume was encountered. Another important result follows from
this simplified 1D model—by considering the case exactly between resonances, one
may find that the transmitted power differs from the one determined by the above
mentioned single-reflection approach only by a constant factor of two. While the
magnitude of this constant factor may generally change with the dimensionality of
the model problem, it will still remain a constant value for any selected number of
dimensions in which the model is formulated, independent of any experimental con-
ditions, such as the speed of sound (and by extension temperature and pressure), as
long as we stay far away from all resonances (analogically to being exactly between
them in the simplified 1D case).

Therefore, as the complex geometry of the experiment complicates its exact de-
scription, we take the resulting emission power according to the suggested single-
reflection approach for each of the three models and multiply it by an arbitrary con-
stant, which we consider as the only fitting parameter for each model. The values of
this multiplicative constant then differ among the three models, but are not changed
for different experiments interpreted using the same model. The final value of the
emission power is then used to calculate the corresponding drag force and using the
effective mass of the tuning fork prong as defined in [4] also to arrive at the corre-
sponding increase in linewidth of the tuning fork due to acoustic emission, which
is then added to the linewidth due to viscous drag (also containing a multiplicative
constant as a fitting parameter) and compared to the experimental data.

Another issue relates to the ratio of tuning fork dimensions and the wavelength,
especially to the choice of the final formula used to calculate the emission power
within each model. While for the common 32 kHz forks, the simplified (long wave-
length limit) version is quite sufficient, giving roughly 5% relative errors when com-
pared to the full formula, it fails badly for our higher frequency (77 kHz and espe-
cially 100 kHz) forks, where it may result in errors as large as 50%. In this work,
we therefore use the full form of all the models for calculating the emission powers.
A numerical calculation shows that it is usually sufficient to take into account only a
few terms around m = 0 in the infinite series to reduce the error below 1% (two or
three terms in both directions of m = 0 are usually sufficient).

4 Experimental Results and Discussion

All the results presented here were obtained using tuning forks placed inside a pres-
sure cell of 20 mm diameter located inside a glass cryostat. The cell was connected
via a capillary to a pressurizing system utilizing a carbon cold trap. Both the cell
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Fig. 3 (Color online) Sample spectra obtained with open tuning forks in our cylindrical pressure cell of
20 mm diameter. Under stable temperature and pressure, the spectra were also stable and very reproducible;
within the resolution of this figure they appear identical. Here, they reproduce very closely even though
the two temperatures listed in the graphs differ, as the speed of sound and therefore wavelength does
not change much between them, due to an according change in pressure, which was achieved simply by
keeping the pressure cell volume closed during cooldown. The fact that the spectra seem to reproduce
under different experimental conditions linked only by very close sound velocities serves as evidence that
the extra peaks indeed result from acoustic phenomena. In contrast, resonances measured in vacuum at
4.2 K (not shown here) display only a single peak that can be fitted by a Lorentzian function with very
good accuracy. For comparison, at 4.2 K, the 77 kHz tuning fork used here has a vacuum linewidth as low
as 58 mHz (Q > 106; measured using an excitation voltage of 20 mV rms attenuated by 40 dB)

and the cold trap could be shut off using manually operated high pressure valves. The
pressure inside the cell was measured using an MKS Baratron with a 5000 Torr range,
while bath temperature was calculated based on saturated vapor pressure which was
measured by a more sensitive Baratron model with a range of 1000 Torr. The elec-
trical part of the setup consisted of an Agilent waveform generator that provided the
driving voltage, a SR-830 lock-in amplifier operated in voltage mode that was used to
detect the electrical signal, and an I/V converter made in Lancaster and described in
Ref. [5] with a gain setting of 1000 V/A. The exact magnitude of the driving voltage
was also monitored using a Keithley digital multimeter.

The first hint of acoustic emission and coupling to resonant sound modes can al-
ready be seen when recording a single spectrum of a high frequency tuning fork
oscillating in liquid helium, such as the illustrative examples in Fig. 3, which were
obtained with “open” tuning forks, i.e., with their original capsules removed, or in
Fig. 4, with the forks inside their capsules. We stress that if the experimental condi-
tions, i.e., temperature and pressure in the cell, are controlled and kept constant, the
spectra are perfectly reproducible within experimental accuracy when the frequency
of the drive is swept many times in either direction. Also, the complicated pattern in
these spectra seems to depend only on the sound velocity that can be calculated for
the relevant experimental conditions (temperature and pressure).

Although it is hard to make practical use of the shape of such a complicated spec-
trum, it can provide us with general information on the qualitative level, in that sound
waves within the surrounding medium indeed do affect the behavior of the tuning
forks. The number of the peaks observed can also be used as an estimate of the num-
ber of resonant sound modes coupling to the resonance of the tuning fork, although
it should be kept in mind that even in spectra showing only a single Lorentzian peak
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Fig. 4 (Color online) Spectra obtained with tuning forks inside their original capsules. These already
exhibit a much simpler structure, as less acoustic modes fit inside the small 2 mm capsule than into the
20 mm pressure cell. The right panel shows two spectra obtained under similar conditions differing only
by a small change in pressure (21 mbar). However, this small difference is sufficient to shift the frequencies
of acoustic resonances as is shown in the graph. The (red) dashed line represents the situation where the
acoustic resonances are still far from the tuning fork resonance, while the (black) solid line shows the
acoustic modes already very close to the resonance of the tuning fork itself (refer to Fig. 6 for more details
on interaction of the tuning fork resonance with acoustic ones). In the latter case, the response of the tuning
fork itself appears suppressed compared to the previous case, as the supplied power is now distributed more
evenly among the different types of damped motion. It is also worthwhile to notice that an attempt to fit
the latter spectrum with a single Lorentzian function would also result in a higher fitted value of linewidth,
which would, however, under the given circumstances, have no direct physical meaning

at the first sight, small hidden features due to acoustic resonances may be present
as well. We believe that the complicated form of these spectra relates to the compli-
cated geometry of the tuning forks and their surroundings. For example, in the case of
Fig. 3, the tuning forks were placed inside a cylindrical pressure cell with a diameter
of 20 mm, and the sound wavelengths were about 3.5 mm and 2.5 mm for the 77 kHz
and 100 kHz tuning forks, respectively, while in Fig. 4, the 77 kHz tuning fork in-
side its original capsule of about 2 mm diameter exhibits much simpler spectra. The
figures also suggest that the acoustic fields inside the cell form a complicated pattern
due to the nonsymmetric positions of the tuning forks and multiple reflections of the
emitted sound waves. Let us add for completeness that these forks driven at room
(RT) or low temperature in vacuum display the usual narrow (linewidth of order 1
Hz at RT, and about 100 mHz at 4.2 K, typical for most of commercially produced
forks) Lorentzian response, so the complicated spectra obtained in cryogenic helium
indeed seem to be a consequence of the interaction with the surrounding media by
the emission of sound.

It should be stressed that the spectra become simpler if the tuning forks are kept
inside their much smaller original cans (diameter of about 3 mm or smaller), or if
the speed of sound (and therefore the sound wavelength) is increased, by changing
the temperature and/or pressure. This was the case of the spectra measured in a cell
attached to the mixing chamber of a dilution refrigerator in Kharkov, Ukraine [13],
which already had the form of single peaks only (or at least approached it with rea-
sonable accuracy) and therefore could be fitted by a single Lorentzian function. The
resulting damping (expressed in terms of the resonant linewidth) is plotted in Fig. 5
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Fig. 5 (Color online) Linewidth (with its low temperature vacuum value subtracted) plotted versus the
resonant frequency of different tuning fork oscillators at very low temperature. The high exponent in the
power law fit is a clear indication of acoustic emission. The (black) solid line is a full power law fit, the
(red) dashed line is a fit with the exponent fixed at 5 and the (blue) dotted line is the same with the exponent
fixed at 6. Note that at 350 mK, ballistic drag due to phonon scattering is negligible with respect to the
acoustic drag force for the high frequency forks. For the 32 kHz and 38 kHz forks, we estimate these to be
comparable in orders of magnitude, see Sect. 6

for tuning forks oscillating at their respective resonant frequencies of 32, 38, 77 and
100 kHz. This very steep frequency dependence serves as direct proof of acoustic
emission playing an important part at low temperatures in 4He. The power law fit
yields an exponent of about 5.6, which is between 5 and 6 as predicted from the
above discussed 2D and 3D models, respectively, and largely differs from the value
of 1/2 expected due to the viscous drag force [12]. As the ordinate variable in Fig. 5
is the vacuum-corrected linewidth, it follows that the frequency dependence of the
amount of damping is not normalized for the slightly different geometries and the
exact sizes of the individual tuning forks, although generally, dependences on tun-
ing fork dimensions are to be expected from the models described in Sect. 3. This is
because it would be very difficult to take into account at the same time also the differ-
ing geometry of the surroundings of the tuning forks in two successive experiments,
which comprise the data shown in Fig. 5. We therefore use the data corrected only
for the vacuum linewidth as presented in Fig. 5 as they are perhaps more reliable than
the data normalized for tuning fork geometries would be.5

Next, we examine in greater detail what happens when the resonance of the tuning
fork is crossed by an acoustic resonance determined by its surroundings (primarily by
the geometry of the experimental cell). Both these resonances move in the frequency
domain due to changing experimental conditions. For this purpose, a measurement
taken in cryogenic He gas at 4.2 K (enabling an easy control of pressure) serves very

5An attempt to take into account the slightly differing dimensions of the tuning forks as per the models
actually resulted in an exponent even higher than 6, allowing us to conclude once again that the importance
of acoustic emission is indeed firmly established.
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Fig. 6 (Color online) The gradual appearance and disappearance of a level crossing event is shown for
an experiment in He gas at 4.2 K. Similar events were observed in both normal liquid and superfluid
helium, but in He gas it is much easier to control the experimental conditions, and therefore the studied
level crossing is seen more clearly. During this event, the resonance of the tuning fork becomes gradually
coupled to and decoupled from an acoustic resonance of the pressure cell. Strictly speaking, one cannot
say which peak belongs to the resonance of the tuning fork and which to the acoustic mode during this
process, as both resonances are the result of coupling between these two types of oscillatory motion.
However, for the sake of clarity, we can tentatively describe the scenario as follows. At the beginning,
while the acoustic peak (blue arrow) moves in from the right, the resonance of the tuning fork (red arrow)
stays almost constant. As they approach each other, the level splitting due to coupling will become more
apparent, manifesting as a “repulsion” between the peaks. Eventually, the peaks will become equal in
amplitude, at which point, each peak represents both types of motion (tuning fork oscillation and acoustic
waves) equally. A literal crossing is avoided, as at this point the peaks exchange their roles. Afterwards, the
left one belongs predominantly to the acoustic mode and continues to drift to the left, while the right one
can be associated more readily with the resonance of the tuning fork and stays more or less at a constant
frequency, only slowly returning to its original position

well, although a similar effect was also observed in He liquids while slowly vary-
ing pressure and/or temperature. However, since the spectrum of the high frequency
tuning forks is usually much more complicated in He liquids unless special care is
taken, such data are less illustrative. The results from He gas at 4.2 K are plotted in
Fig. 6, showing an acoustic peak moving past the tuning fork resonance, as the pres-
sure is increased from 187 to 205 Torr. The amplitude of such peaks at each instant
is affected by the resonance of the tuning fork itself—when they are far away from
the resonance they are small, as they approach the tuning fork’s maximum amplitude,
they grow significantly and again gradually disappear as they move away.

During these measurements, the relative change of the resonant frequency of the
tuning fork can be expected to be about 6 × 10−5 (about 4.7 Hz), see Ref. [4] for
its dependence on the fluid density, while the relative change in the frequency of the
acoustic resonances should be 3.4 × 10−3 (about 260 Hz), as this corresponds to the
relative change of the speed of sound between the initial and final pressures. This fact
supports the interpretation that a coupled acoustic resonance peak is indeed observed
passing by the (suppressed) tuning fork resonance. Therefore, during experiments
with imperfect thermodynamical stability (variations of temperature, pressure, or any
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other quantity affecting the sound wavelength or the acoustic boundary conditions),
similar level crossings may be observed. Their occurrence will depend on the total
magnitude of the change of the acoustic fields inside the experimental volume regard-
less of the rate of these variations, even if all the properties of the tuning fork itself
are assumed perfectly constant.

For example, if small hidden peaks present in the signal are moving across the res-
onance of the tuning fork, the linewidth as obtained from a Lorentzian fit would be
seen to increase when the two resonances start to overlap and decrease again when
they move apart. At the same time the fitted resonant frequency would first move
in one direction from its real value, then cross this value again, moving to its other
side (as the extra acoustic peak moves across the resonance of the tuning fork), be-
fore relaxing again to its original value as the acoustic peak moves further away and
decouples gradually. It is an open question if temporal changes in observed low-
drive-linewidth of the tuning fork at very low temperature under apparently very sta-
ble experimental conditions such as observed by the Lancaster group [20] could be
explained due to the slow drift of remnant quantized vortices in the cell, as the asso-
ciated superflow may slightly alter the acoustic resonant conditions, leading in turn
to time-dependent losses due to acoustic emission.

It should be noted though that reproducibility of level crossings was not ascer-
tained in this particular experiment as even very small changes in the bath temperature
may lead to significant drifting of acoustic resonance peaks. The drifting would be
observable very clearly on the scale of Fig. 6, unless compensated by proper adjust-
ments of pressure to achieve the same sound velocity. We hope the reader understands
that, in this case, achieving a level of reproducibility of the frequency spectra as pre-
sented above in Fig. 3, would be a highly nontrivial task requiring a series of delicate
adjustments of both temperature and gas pressure inside the cell. Attempting this in
a glass cryostat with a rather simple manually controlled pressurizing system could
prove quite unpractical, as any sudden pressure change inside the cell also upsets the
temperature therein and thermal relaxation usually takes about 10–20 minutes. Never-
theless, a hint on reproducibility could perhaps be gleaned from the above mentioned
Fig. 3.

Although it is important to describe all the observed acoustic phenomena such as
the resonances inside the experimental cell qualitatively, for the purposes of quanti-
tative description and comparison with the models, we shall concentrate on the mea-
surements that are most likely unaffected by these extra resonances. In Figs. 7, 8, 9
which show the linewidth of the 77 kHz tuning fork in its can versus temperature and
pressure, these data correspond to the (quasi-continuous) floor of the graph, as it is
plausible that the peaks in the linewidth correspond to level crossing events. These
figures show the comparison of the experimental data with the predictions of the in-
dividual models. The small variations of pressure in the temperature dependences
(Figs. 7, 8) have been fully taken into account, as well as the small variation of tem-
perature in the pressure dependence data (Fig. 9).

As all the models of acoustic emission contain one constant (denoted C3D, C2D,
or CC) as a fitting parameter and one more constant, α, (depending on the geometry
of the tuning fork in an unknown way) is also included in the viscous drag force,
the following procedure was introduced to determine the values of these four con-
stants that would describe all the experiments performed with the same 77 kHz fork
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Fig. 7 (Color online) Temperature dependence of the 77 kHz tuning fork linewidth measured at a fixed
pressure of 1 bar—(black) open circles—is compared to the results of the three models of acoustic emis-
sion. For this purpose, the linewidth due to the viscous drag force calculated according to [12] is also added
to the dissipation due to acoustic emission as well as displayed separately. The (red) dash-dotted lines rep-
resent the results of the 3D longitudinal quadrupole model, the (green) dashed lines the 2D quadrupole
model, the (blue) dotted lines the 2D cylinders model each with (long dots and dashes) and without (short
dots and dashes) the viscous drag added to them. Finally the (orange) solid line represents the magnitude
of the viscous drag alone. It is clearly seen here that at about 1.5 K, the viscous drag is comparable to the
losses due to acoustic emission and at lower temperatures, sound emission becomes the dominant dissipa-
tive process. Note also the sound resonances/level-crossing events seen as sharp peaks in the experimental
data

(i.e., temperature dependence at 1 bar—Fig. 7, temperature dependence at high pres-
sure (24.78–21.36 bar)—Fig. 8, and pressure dependence at about 1.35 K—Fig. 9)
as accurately as possible. First, the viscous drag constant, α, was estimated from
the temperature dependence at high pressure as there the speed of sound reaches its
maximum [31, 32] and therefore the acoustic emission power its minimum. Hav-
ing thus estimated the viscous dissipation, the temperature dependence at 1 bar, and
the pressure dependence were then both used to estimate the constants pertaining to
the individual models of acoustic emission, C3D, C2D, CC for the 3D longitudinal
quadrupole, 2D longitudinal quadrupole and 2D cylinders models, respectively. The
obtained values of acoustic emission power were then used to refine the viscous dis-
sipation constant by comparison to the high pressure data, and two more iterations
like this were performed until the fine details have been settled within the limits of
accuracy. The values of the fitting parameters obtained this way follow: α = 0.59,
C3D = 15, C2D = 4.55 and CC = 1.06. We see that the 3D model, which was ex-
pected to underpredict the emission power requires the highest correction factor to
match the experimental data. On the other hand, the cylinders model, which was ex-
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Fig. 8 (Color online) Temperature dependence of the 77 kHz tuning fork linewidth measured at slightly
varying high pressures is compared to the results of the three models of acoustic emission. The symbols,
line styles and colors are the same as in Fig. 7. In this case, the drag force is completely dominated by
viscosity except for the lowest temperatures. The data are described very well in the whole range except for
the vicinity of the cell resonances. Please note the minimum in the expected viscous drag force in the same
region—it is present here, because, as was mentioned in the text, we take into account the pressure falling
slowly during the experiment, due to additional condensation of helium inside the capillary connected to
the cell during cooldown as well as potential small leaks of helium gas from the room temperature part of
the pressurizing system. The pressure has been recorded for every experimental point, and in the models,
we use an interpolation of these pressures (differing from the actual pressures by less then 1 percent) to
calculate the correct dissipation rates corresponding to the actual experimental situation

pected to overpredict the emission power slightly, matches the experiment very well
even without this correction factor. However this may be simply due to a numerical
coincidence as none of these models accounts for the influence of multiple reflections
explicitly, which would in effect lead to another constant correction factor.

Considering the large amount of simplifications present in the models themselves
and in the complicated description of the reflection of sound waves at the boundary
with the aluminium can, the achieved agreement with the data, using only a single
fitting parameter, is rather astonishing. Figures 7–9 also show the relative magnitudes
of the viscous and acoustic drag forces and a crossover of their mutual importance is
seen clearly, except in the high pressure data set.

5 Acoustic Emission by Other Common Oscillatory Structures

Let us give a brief overview of dissipative acoustic properties of other oscillating
bodies that have been frequently used as flow generators and detectors in the studies
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Fig. 9 (Color online) Pressure dependence of the 77 kHz tuning fork linewidth measured at the lowest
temperature of our glass cryostat is compared to the results of the three models of acoustic emission. The
symbols, line styles and colors are the same as in Fig. 7. The observed linewidth hardly changes due to
the balance of two competing effects. The acoustic drag increases with reduced pressure (and lower speed
of sound), however, at the same time, the fraction of the normal component decreases significantly and
the viscous drag force is thus reduced. Temperature also kept dropping slightly during the experiment due
to helium being released from the pressure cell as well as the overall dropping amount of helium in the
cryostat bath, but these changes were taken into account during data processing. This figure also illustrates
the small differences between the 3D and 2D models of acoustic emission. The experimental data seem to
be described better by the 2D models

of normal or superfluid helium (for a review, see Ref. [34]). These include wires [35–
40], spheres [41–44] and grids [45–47]. Our aim is to provide quantitative estimates
of the respective emission powers and of the influence of acoustic emission on the
overall damping the oscillators experience. However, we restrict ourselves by con-
sidering application of vibrating structures in cryogenic 4He. Acoustic properties of
3He such as zero sound and various sound modes in superfluid 3He phases as well as
Andreev reflection stay outside the scope of this paper.

None of the objects described below can compare with the high frequency tuning
forks described in Sect. 4 in terms of the emission power and we believe that none
of them will feel a significant measurable acoustic drag force above 1 K in 4He,
because it would be at least two orders of magnitude lower than the viscous drag
force and therefore negligible. However, for some of these oscillators, the situation
might be different at lower temperatures where the viscous drag is highly suppressed
due to the low fraction of the normal component. Moreover, if the temperature is
reduced even further, the hydrodynamic continuum approach is no longer valid and
the “laminar” drag force has to be expressed based on the considerations of ballistic
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propagation of thermal quasiparticles, in which case the drag force is expected to
drop with decreasing temperature as T 4 [4].

There is a principal difference between tuning forks and other vibrating structures
as spheres, wires, grids or micromachined sensors in that these are dipolar acoustic
sources and our previous models of acoustic emission are thus not applicable for
them. On the other hand, it is possible to calculate dipolar acoustic emission in a sim-
ilar way as shown in Sect. 3. The following (23) represents both the full calculation
and the long-wavelength limit for an acoustic dipole. Additionally, analytical solution
for a sphere (24), including the effects of the finite viscous boundary layer, is given
in Ref. [21]. Both are listed below, giving the respective emission powers as:

P = B2ρω

4d

∞∑

m=1
odd

(2m + 1)J 2
m+1/2(kd) ≈ B2ρω4d2

6πc3
; (23)

P = πρr6ω4U2

6c3

(
1 + 3

κ
+ 9

2κ2
+ 9

2κ3
+ 9

4κ4

)
, (24)

where 2d is the distance between the two point sources comprising the acoustic
dipole, κ is the ratio of the radius of the sphere to the viscous penetration depth
δ = √

2ν/ω, and all other symbols have the same meaning as in Sect. 3.

5.1 Oscillating Spheres

We consider oscillating spheres such as described by Schoepe et al. [41, 43],
Luzuriaga [42] and Hemmati et al. [44]. The emission power was calculated using
(24) and the laminar drag was either taken from the experimental data, which might
also include the intrinsic damping of the oscillator that would have been observed in
vacuum, or estimated using the well-known Stokes formula (taking into account the
drag of the normal fluid only) modified for oscillatory flows:

F = 6πη nr U
(

1 + r

δ

)
, (25)

where η n is the dynamic viscosity of 4He at 1.2 K [48], r denotes the radius of the
sphere, and U stands for the velocity amplitude of the sphere, meaning that F also
represents the amplitude of the viscous drag force.

For the spheres used in Refs. [41, 43], the acoustic drag was found to be at least
9 orders of magnitude below the laminar drag at 1.2 K; for spheres used by Schoepe
et al., this ratio is valid even when compared to the linear drag as measured at 300 mK.
For the sphere used by Luzuriaga [42], the ratio was not so huge—acoustic emission
was found about four to five orders of magnitude lower than the viscous drag at 1.2 K.
It is therefore safe to conclude that for all practical purposes, acoustic emission can
indeed be neglected. This holds as well for the niobium sphere used in Ref. [44].

5.2 Vibrating Wire Resonators

For the vibrating wire resonators, we estimate acoustic emission in two different
ways. First, we consider the wire as an acoustic dipole consisting of two point sources
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in 3D fluid and second, we replace it by a model sphere of the same surface area. The
acoustic dipole approach can be justified by the fact that at typical resonance frequen-
cies (≈1 kHz), the size of the wire (usually about 3 mm) is much smaller than the
wavelength of sound waves in 4He, which is of order 20 cm. This approach, however,
neglects the effects of the viscous boundary layer completely, we therefore addition-
ally use the model of a replacement sphere to estimate its magnitude. We define the
acoustic source strength B = AUeff, where A is the projected area of the wire on
the plane perpendicular to its motion, and Ueff is an estimate of the effective velocity
along the wire, which we define arbitrarily as Ueff ≈ 0.3 U for the purposes of these
order of magnitude estimates. The separation of the two point sources is assumed to
be equal to the diameter of the wire.

In some cases the vibrating wire would perhaps be better represented as a long os-
cillating cylinder with a finite viscous penetration depth. However, we do not discuss
such calculations here, as the magnitude of acoustic damping appears to be extremely
low for typical vibrating wire resonators (such as described in Refs. [35–40]) and the
extra precision in the estimate of emission power would therefore be of little im-
portance. Again, for all the cases considered, the acoustic emission was found very
low, about 9 orders of magnitude below the laminar drag force at 1.2 K and therefore
negligible for all practical purposes.

5.3 Oscillating Grids

We consider here the case of the Lancaster circular grid of 8 cm diameter driven
electrostatically at its resonance frequency about 1 kHz as described in Refs. [45–47].
The emission power was estimated using the acoustic dipole model, where the source
strength B was taken as B = AUeff, where A is the total projected area of the wires
(determined as the area of the grid multiplied by (1 − τ), where τ is transparency
of the grid) and Ueff is an effective velocity, Ueff = 0.432 U , that takes into account
the profile of the fundamental flexural resonance mode of the grid [47] in a form of
a zero order Bessel function. We assume the separation of the sources to be equal to
the thickness of the grid (6 µm).

When the linewidth due to acoustic emission is compared to the experimental
linewidth measured at the base temperature of a dilution refrigerator (about 10 mK),
which is very similar to its vacuum value, we find that the acoustic emission con-
tribution is roughly three orders of magnitude lower than this experimentally ob-
served damping. However, in the measured damping, the dominant contribution is
the nuisance damping due to the grid material, therefore a direct comparison with
viscous/ballistic drag forces is not possible. When separated from the nuisance damp-
ing, these losses might in principle turn out to be comparable with the acoustic drag at
this very low temperature and, moreover, dispersive effects of sound emission might
be observable as well. Still, we believe that it would be an experimental challenge to
detect acoustic emission using the vibrating grid of the described geometry.

5.4 Micromachined Devices

Lately, significant effort has been invested in developing very small and highly sensi-
tive vibrating sensors for cryogenic fluid dynamics using technologies such as elec-
tron beam lithography and selective etching. With these, it is possible to fabricate
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oscillators of micron (MEMS) and recently even submicron (NEMS) sizes. As a rep-
resentative of these sensors, we consider a 7 × 3 µm2 goal-post shaped oscillator of
beam cross-section 220×100 nm2 resonating at 7.1 MHz developed in Grenoble and
described by Collin et al. [49].

Even at this high frequency, the oscillator is still smaller than the wavelength of
about 30 µm, which justifies the application of the 3D dipole source model to esti-
mate its acoustic emission power. From similar considerations as above, where the
7 µm “paddle” is considered perfectly solid and the two 3 µm “legs” as ideal Euler
cantilevers, it follows that the acoustic drag in liquid 4He at 1.2 K is almost three
orders of magnitude lower than the viscous drag and therefore does not represent any
serious influence on the behavior of the oscillator, unless the temperature is reduced
well below 1 K—here a possible influence might be observable depending on the
exact geometry and other experimental conditions, especially the nuisance damping.
Again, dispersive effects may in principle be seen as well.

5.5 Standard 32 kHz Tuning Forks

In this work we deliberately used high frequency forks in order to make this ex-
perimental study feasible. We have already shown that a crossover of the viscous
and acoustic drag forces may occur for these forks at temperatures as high as 1.5–
2 K. This effectively disqualifies the high frequency tuning forks from use as sensors
at very low temperatures below 1 K, as other relevant damping mechanisms (vis-
cous/ballistic/intrinsic drag) will most likely be screened by acoustic emission. It is
then natural to raise the question whether a similar phenomenon will take place with
the standard 32 kHz tuning forks and at which temperature it might be expected to
occur in 4He.

To tackle this problem, we will apply the infinite cylinders model that describes
our experimental data obtained with the 77 kHz fork perhaps most accurately. When
applied to the 32 kHz forks, it seems that at about 1 K the acoustic drag might be com-
parable in order of magnitude with the viscous/ballistic dissipation, therefore the final
balance of these dissipative mechanisms depends on finer details relevant for acoustic
emission, such as the geometry of both the tuning fork and the experiment and the
reflectivity of the boundaries. We therefore provide estimates for several types of tun-
ing forks. The forks from Table 1 are complemented by two other types of 32 kHz
forks—F32a (large fork) and F32c (small fork)—referred to in [12] as A1 and C3,
respectively. For each fork, we list two values of the ratio of acoustic to viscous drag:
(i) assuming no reflections at all, and (ii) assuming an overall 99% reflectivity of the
container walls. These ought to serve as illustrative examples giving approximate up-
per and lower bounds for the expected acoustic emission power in comparison to the
losses due to viscous drag. We neglect acoustic resonances due to the cell geometry as
well as all dispersive effects as well as dissipative processes that are responsible for
damping the propagating sound waves inside the liquid helium. The explicit ratios
of acoustic to viscous drag force are summarized in Table 2, including the corre-
sponding values for 77 kHz and 100 kHz tuning forks for comparison. To understand
Table 2 correctly, we should realize that in practical experiments (maybe except for
very large volumes of helium) some finite amount of reflection on the walls will al-
ways occur, reducing the resulting emission power and shifting the ratio toward the
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Table 2 Estimated ratios of
acoustic to viscous drag acting
on 32 kHz tuning forks in liquid
4He at 1.2 K and saturated vapor
pressure. For experimental
conditions where strong
reflection on solid boundaries
can be expected, such as
presented in Sect. 4, one should
refer to the values listed in the
second column. See the
accompanying text for details

Fork type Acoustic to viscous drag ratio

no reflection 99% reflectivity

F32 22 0.22

F32s 0.20 0.0020

F32a 8.9 0.089

F32c 0.21 0.0021

F38 58 0.58

F77 310 3.1

F100 2700 27

value calculated for 99% reflectivity (which more or less corresponds to the situation
when the tuning fork is enclosed inside its original can). It therefore follows that in
this situation even the large 32 kHz forks will not show strong effects due to acoustic
emission at 1.2 K, however, at the same time it is obvious that the ratios of acoustic
to viscous drag will change dramatically with the temperature falling below 1 K.

This calculation together with the general formulae given in Sect. 3 shows that it
is advisable to use smaller types of tuning forks for sensitive low temperature exper-
iments as they generally display lower losses due to acoustic emission. In order to
suppress their acoustic emission even further, we could recommend enclosing them
in a sufficiently small experimental volume with highly reflecting walls to minimize
the radiation losses as well as the possibility of coupling to acoustic resonances of
the cell.

6 Conclusions

We have used a set of quartz tuning forks oscillating at 32, 38, 77 and 100 kHz
in experiments aiming to clarify the role of acoustic emission in the overall dissi-
pation experienced by these structures oscillating in cryogenic gaseous and liquid
4He. Thanks to the very steep frequency dependence of the emission power, the
high frequency (77 and 100 kHz) forks allowed reliable measurement of acoustic
emission even above 1.2 K in a pressure cell placed inside an ordinary helium bath
glass cryostat and gave conclusive quantitative evidence of this phenomenon. Level
crossing events have been observed both in gaseous and liquid 4He and associated
with acoustic resonances due to the geometry of the experimental cell. Additionally,
complementary experiments with all the forks have been performed at 350 mK in
a dilution refrigerator and provided direct evidence of the acoustic emission and its
frequency scaling in the temperature range corresponding to the ballistic drag regime
in superfluid 4He.

We have considered three models of acoustic emission by tuning forks—3D
quadrupole emission, 2D quadrupole emission and the emission by two infinite trans-
versely oscillating cylinders (also 2D). We have calculated the expected emission
powers and compared them with the experimental data taking into account also the
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acoustic properties of the boundaries delimiting the fluid volume. While all the mod-
els gave reasonable agreement with the pressure and temperature dependences ob-
tained experimentally using the 77 kHz fork, the data are best described by the 2D
models, which behave almost identically in the studied range except for the values of
their multiplicative parameters. The infinite cylinders model supplemented with the
considerations of reflection on the boundaries fits the data obtained in a wide para-
meter space (1.3 K < T < 4.2 K, 0 < p < 25 bar) with the precision of about 6%
even without any fitting parameter, although this might be due to a numerical coin-
cidence. Nevertheless, these results give us confidence that the same models can be
used to predict the significance of acoustic emission for the commonly used 32 kHz
forks. Moreover, a similar approach modified for dipole emission has been used to
estimate the emission powers of other oscillating structures, such as spheres, wires,
grids, MEMS and NEMS, used by others and described in literature.

We hope that these measurements, the proposed models, and the discussion in
Sect. 5 will serve other investigators working with tuning forks and other oscillators
in liquid helium and provide them with an estimate of the relative importance of
acoustic emission in their experiments.
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Propagation of Thermal Excitations in a Cluster of Vortices in Superfluid 3He-B

J.J. Hosio,1 V.B. Eltsov,1, 2 R. de Graaf,1 M. Krusius,1 J. Mäkinen,1 and D. Schmoranzer3
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We describe the first measurement on Andreev scattering of thermal excitations from a vortex
configuration with known density, spatial extent, and orientations in 3He-B superfluid. This con-
figuration is created by rotating the 3He-B sample at constant angular velocity. We use two quartz
tuning fork resonators embedded inside a blackbody radiator. One resonator creates a controllable
density of excitations at 0.2 Tc base temperature and the other records the thermal response. The
results are compared to numerical simulations of ballistic propagation of thermal quasiparticles
through a cluster of rectilinear vortices. Our studies suggest that the current understanding of
Andreev reflection is correct and it can be used as a quantitative tool to visualize vortices in the
low temperature limit.

PACS numbers: 67.57.Hi, 67.57.De, 67.30.he

Studies of turbulence in superfluid 3He and 4He have
shown that at large length scales quantum turbulence
tends to mimic its classical counterpart. Therefore study-
ing complex fluid motion in superfluids could help us to
understand turbulence in classical fluids, which still lacks
a comprehensive theory. At very low temperatures, in
the absence of normal fluid, turbulence in a superfluid
condensate consists of a tangle of singly quantized topo-
logically stable vortices with the same core size and circu-
lation. Thus it is, at least on microscopic scales, simpler
than turbulence in a normal fluid with eddies at different
length scales. Nevertheless, recent studies, both exper-
imental and theoretical, have opened many challenging
questions regarding quantum turbulence [1].

Vortex configurations have long been studied in he-
lium superfluids. In 4He the vorticity can be inferred,
e.g., from the mobility of charged vortex rings [2], with
micron-sized tracer particles [3] or by analyzing the drag
force exerted on vibrating structures [4]. In 3He the tra-
ditional method to study vortex arrays is nuclear mag-
netic resonance [5]. The superfluid flow due to quantized
vortices modifies the order parameter field and thus, the
NMR signal. In uniform rotation a resolution of a single
vortex can be obtained in a measurement of the coun-
terflow velocity at temperatures T > 0.5 Tc [6, 7]. At
very low temperatures, in the limit T/Tc ≪ 1, the most
powerful tool is the Andreev scattering of thermal excita-
tions. This technique has been developed and exploited
at the University of Lancaster [8].

Hitherto the Andreev scattering technique has only
been used to detect disordered vortex tangles, which for
interpretation have been assumed to be homogeneous and
isotropic, but which in practice are of unknown density
and poorly known spatial extent. Thus, it has not been
possible to compare theoretical predictions of heat trans-
port in vortex systems directly to experimental results.
Our work fixes this deficiency and justifies the use of the

Andreev reflection technique as a visualization method
of vortices in superfluid 3He-B in the limit of vanishing
normal fluid density.

In the ballistic regime of quasiparticle transport the
mean free path of thermal excitations is longer than the
dimensions of the container. Therefore, thermal equi-
librium is obtained via interaction of quasiparticles and
container walls and the collisions between excitations can
be neglected. In the presence of vortices, the superfluid
flow field around the vortex lines can constrain the quasi-
particle trajectories.

In the rest frame of the superfluid condensate the BCS
dispersion curve E(p) is symmetrical and the minimum
energy is the pressure dependent superfluid energy gap
∆. The standard picture of Andreev reflection considers
an excitation moving towards an increasing energy gap
[9]. In3He-B the superfluid flow field modulates the min-
imum in the excitation spectrum for an excitation travel-
ing in the condensate. Using the notation by Barenghi et
al. [10], the energy E of the excitation with momentum
p in the flow field around a vortex is given by

E(p) =
√

ǫ2p +∆2 + p · vs, (1)

where ǫp = p2/2m∗ − ǫF is the effective kinetic energy
of the excitation measured with respect to the Fermi en-
ergy ǫF and p = |p|. Excitations for which ǫp > 0 are
called quasiparticles and excitations for which ǫp < 0 are
called quasiholes. For quasiparticles the group velocity
vg(E) = dE/dp is parallel to the momentum whereas
for quasiholes it is antiparallel. At the 29 bar pressure,
at which we work, the effective mass m∗ ≈ 5.42 m3,
where m3 is the mass of a 3He atom. The superfluid
velocity vs is proportional to the gradient of the phase
ϕ of the order parameter, i.e., vs = ~/(2m3)∇ϕ. If we
consider a vortex oriented along the z axis in cylindrical
coordinates (r,φ,z) this becomes vs = κ/(2πr)φ̂, where
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κ = h/2m3 ≈ 0.662×10−3 cm2/s is the circulation quan-

tum and φ̂ the azimuthal unit vector.
The consequence of the interaction term p · vs is that

an excitation traveling at constant energy may not find a
forward-propagating state due to the superflow gradient
∇vs along the flight path. When the excitation reaches
the minimum of the spectrum the group velocity changes
sign and it retraces its trajectory as an excitation on the
other side of the minimum. In other words, a quasipar-
ticle Andreev reflects as a quasihole and vice versa with
a very small momentum transfer [11].
Let us consider a beam of excitations incident on a

single straight vortex. On one side of the vortex the
flow parallel to the group velocity of the excitation re-
flects quasiparticles and on the other side the antipar-
allel flow reflects quasiholes. An excitation is Andreev
reflected if its energy satisfies E ≤ ∆+p κ

2πb sin θ. Here θ
is the inclination angle of the excitation trajectory mea-
sured with respect to the vortex line and b the impact
parameter. At temperature T the mean excitation en-
ergy is Ẽ = ∆+ kBT . In our experiments kBT ∼ 0.1 ∆
and the momentum p is close to the Fermi momentum
pF ≈ 9.26 · 10−25 kgm/s, so a typical excitation is re-
flected if b < 5pFκ sin θ/(π∆). For an excitation with
θ ≈ π/4 this translates to ∼ 1µm, which is about two
orders of magnitude larger than the coherence length
ξ ≈ 15 nm and the vortex core radius. Thus, in a typical
experimental situation, where the inter-vortex distance
∼ 0.1 mm, the probability of scattering off a vortex core
is negligible.
In our experiment we study the heat transported by

excitations through a cluster of vortices. Bradley and
coworkers did a similar measurement with a vortex tan-
gle created by a vibrating wire resonator as the structure
reflecting excitations [12]. Our experiment is made in a
quartz glass cylinder filled with 3He. The cylinder is di-
vided in two parts with a 0.7 mm thick quartz division
plate. The lower part consists of a 30 mm long, 3.5 mm
inner diameter tube, which opens up to a heat exchanger
made out of sintered silver. The sinter provides a good
thermal contact with the nuclear cooling stage so that
the superfluid 3He in the volume can be cooled down to
∼ 0.1 Tc. The upper part can be modeled as a black-
body radiator (BBR), an enclosure with a weak thermal
link to the outside superfluid 3He via a small orifice in the
division plate [13]. Our BBR consists of a 12 cm long sec-
tion of the quartz tube with 6 mm inner diameter. This
volume is furnished with two mechanical resonators, one
acting as a thermometer and the other as a heater. The
heater is used for generating a beam of ballistic quasi-
particles through the orifice.
Our resonators are commercial quartz tuning forks,

which have recently been characterized for probing quan-
tum fluids [14, 15]. The forks are made of piezoelectric
quartz crystals with electrodes deposited on the surface.
When driven with alternating voltage, the two prongs
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FIG. 1. The experimental setup. The upper experimental
volume modeled as a black body radiator is separated from
the heat exchanger volume at the bottom by a division plate
with a conical orifice with 0.2 mm diameter. The BBR houses
two quartz tuning fork oscillators one acting as heater, the
other as thermometer.

of the fork start to oscillate in anti-phase producing a
current I, which is proportional to the prong velocity
vp. The heater fork signal is amplified with a room-
temperature I/V converter [16] before being fed to a two
phase lock-in amplifier. This was found to be important
in order to reduce the effect of capacitive losses in the
signal line, and thus to measure accurately the signal
amplitude proportional to the power generated by the
fork. The thermometer fork has 32 kHz resonance fre-
quency, a prong cross section of 0.10 mm × 0.24 mm and
a length 2.4 mm. The heater fork has a higher resonance
frequency, 40 kHz, to prevent any interference between
the forks. The prongs of the heater are 2.9 mm long and
the cross section is 0.36 mm×0.44 mm.
In our temperature range the resonance width of the

tuning fork depends only on the damping from ballistic
quasiparticles. The dependence of the linewidth ∆f on
temperature and prong velocity is given by

∆f = ∆fint + αe−∆/kBT (1− λ
pF
kBT

vp), (2)

where λ is a geometrical factor close to unity [17]. The
velocity-dependent term is due to Andreev reflection of
thermal quasiparticles from the potential flow field cre-
ated by the fork prongs moving the liquid around them.
In our experiments vp is very small and therefore calibrat-
ing the fork to act as a thermometer requires determin-
ing the geometry-dependent factor α. The thermome-
ter is calibrated at 0.33 Tc against a 3He-melting curve
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thermometer, which is thermally coupled to the heat ex-
changer. Our calibration gives α ≈17500 Hz for the de-
tector. The intrinsic damping of the fork was measured
to be ∆fint ≈ 14 mHz at T ∼ 10 mK, which translates
into the quality factor Q ∼ 2 · 106 in vacuum.

The rough surface of the sinter with the grain size close
to the vortex core diameter provides excellent spots for
vortices to nucleate. Thus, the critical rotation velocity
Ωc for vortex formation is lower than 0.1 rad/s in the
bottom section of the long quartz tube. To create the
cluster of vortices, which Andreev reflects a part of the
heat back to the BBR, we rotate our system at constant
velocity around the axis of the container tube. In the
equilibrium vortex state in uniform rotation the sample
becomes filled with rectilinear vortices oriented along the
rotation axis. The vortex density in the cluster is deter-
mined by minimization of the free energy in the rotating
frame and is given by nv = 2Ω/κ. The cluster is isolated
from the container wall by a narrow annular vortex-free
layer. The width of the vortex-free region is only slightly

larger than one intervortex distance
√

κ/(
√
3Ω) [18].

Ω>0Ω=0

FIG. 2. Sketch of the experiment. In a system at rest (Ω=0)
all the excitations which do not migrate back to the black
body radiator due to diffuse scattering from the walls are
thermalized in the heat exchanger at the bottom. In rotation
(Ω > 0), part of the beam is Andreev reflected from the cluster
of vortices.

To make sure that we have the equilibrium number
of vortices in the container we first rapidly accelerate to
some velocity which is much higher than the target veloc-
ity for the measurement. Then we decelerate to the final
velocity and wait for the system to settle to the equilib-
rium vortex state via annihilation of the extra vortices.

All the power entering our experimental volume mod-
eled as a black body radiator must leave through the
hole at the bottom as a flux of energy-carrying excita-
tions. Assuming thermal equilibrium inside the BBR the

power is given by

Q̇(Ω) =

∫

N(E)vg(E)Ef(E)T dEdxdydφdθ, (3)

where N(E) and f(E) are the quasiparticle density of
states and the Fermi distribution function, respectively.
In the limit kBT ≪ ∆ the latter reduces to the Boltz-
mann distribution f(E) = e−E/kBT . The transmission
function T = T (E, x, y, φ, θ,Ω) is equal to one if an ex-
citation leaving the BBR at position (x, y) on top of the
orifice to direction (φ, θ) reaches the sinter and zero if it is
reflected back. The integration goes over the cross section
of the orifice, φ ∈ (0, 2π), θ ∈ (0, π/2) and E ∈ (∆,∞).
The power generated inside the radiator can now be ex-
pressed as the sum of the Ω-dependent heat leak Q̇hl to
the BBR and the direct power Pgen from the excitations
produced by the heater fork as

Q̇hl(Ω)+Pgen =
4πkBp

2
F

h3
Te

−
∆

kBT (∆+kBT )Ah(Ω). (4)

Here Ah(Ω) is the effective area of the orifice, which gets
smaller when part of the excitations is scattered back to
the BBR. We omit the flow of excitations from the ther-
mal excitation bath in the heat exchanger volume since
the quasiparticle density there is at least three orders of
magnitude lower than inside the BBR, which is at 0.20 Tc.
The fraction ν of heat reflected back into the radiator,
which we call the reflection coefficient, can be obtained
from Eq. 4 as

ν(Ω) = 1− Ah(Ω)

Ah(0)
. (5)

In the measurement the heater fork is driven to create
the desired excitation beam corresponding to power Pgen

leaving the radiator. By controlling the rotation velocity,
and thus the vortex density, we can control the fraction
of Andreev reflected excitations. As shown in Fig. 2, the
flow field created by the vortices reflects part of the beam
back to the radiator by Andreev scattering. As a conse-
quence, the temperature measured by the thermometer
fork increases more than with the same applied heat in
the absence of vortices. There is also a vortex cluster
inside the BBR, which may cause a small temperature
gradient along the cylinder. Nevertheless, the main ther-
mal resistance is still across the orifice and Eq. (5) is
valid as long as there is thermal equilibrium inside the
radiator.
At each rotation velocity, we apply different power in-

puts to the radiator and measure the corresponding equi-
librium temperature with the thermometer fork. By plot-
ting all the temperature-dependent parts in Eq. (4) as
a function of power Pgen we get both the effective area

Ah and the heat leak Q̇hl from the inverse slope of the
obtained line and the intercept with the power axis, re-
spectively (see Fig. 3 for details).
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FIG. 3. Temperature dependent part of the power leaving
the black body radiator as a function of heating power at
three different rotation velocities. The temperature is ob-
tained from the linewidth of the detector fork. The measured
points are averaged from a few hundred datapoints measured
at the same power. The intercept of the linear fit with the
power axis gives the residual heat leak to the sample and the
effective area is given by the inverse of the slope. The slope,
the heat leak and the scatter in the data all increase with
increasing angular velocity. The inset shows an example of a
detector response to a heating pulse starting at time t = 0.

The measurement with no vortices gives Ah(0) ≈
0.020 mm2. This is about half of the geometrical area
of the orifice mostly due to diffusive backscattering of
excitations from the walls of the 0.7 mm thick division
plate and the quartz tube below it. In any case, the ab-
solute value of the the effective area is not an important
issue since we are only interested in the relative change
of it. The heat leak Q̇hl varies from 12 pW at Ω = 0
to 18 pW at Ω =1.8 rad/s. At high rotation velocities
the rotation-induced heat leak fluctuates with variations
of about 1 pW. The rotation velocities used in the mea-
surements had to be carefully selected, since due to some
mechanical resonances certain velocities show especially
high and temporally varying heat leaks.

To test whether our black body radiator works as ex-
pected, we can analyze how the system reaches thermal
equilibrium when the heater is suddenly switched on.
The expected time constant for the thermal relaxation
is τ = RC, where the thermal resistance across the ori-
fice R = (dQ̇/dT )−1 ∝ A−1

h and the heat capacity C is
given approximately by [19]

C = kB
√
2πNF

(

∆

kBT

)
3

2

e
−

∆

kBT

(

1 +
21

16

kBT

∆

)

V. (6)

Here V ≈ 3.4 cm3 is the volume of the BBR and NF the
density of states at the Fermi level. The measured time
constant after a heat input is about 25 s (see inset in Fig.
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FIG. 4. The fraction of the heat ν Andreev reflected back into
the black body radiator. The temperature inside the radiator
is 0.20 Tc. The simulation points are obtained by integrating
Eq. (3) numerically and solving equations (4) and (5) for ν.

3), which is in a good agreement (about 80 %) with the
expected time constant obtained using the effective area
from the calibration described above. This analysis also
proves that practically all the heat capacity of the system
is in the bulk superfluid 3He. The possible error sources
for the effective area are the small statistical error in the
determination of the slope (see Fig. 3) and uncertainties
in the power calibration, temperature calibration and the
value of the gap [20]. The reflection coefficient ν does
not depend explicitly on ∆ and has a weak logarithmic
dependence on the parameter α. The power calibration,
if time-independent, has no effect on ν.

Figure 4 shows the reflection coefficient as a function
of the rotation velocity together with our numerical sim-
ulations. In the measured rotation velocity range the
dependence of ν on the vortex density is approximately
linear. The measured reflection coefficients are in a good
agreement with the simulations. The scatter in the data
is mostly due to variation in the power calibration be-
tween measurements on different days.

In our numerical calculations we simulate the trans-
mission function T for our geometry at different rotation
velocities and solve the integral in Eq. (3) numerically
using Monte Carlo integration with importance sampling.
In the simulations diffuse scattering from the container
walls is assumed based on the results in Ref. [21] and
the fact that the specular scattering model gives com-
pletely unrealistic results. We use the exact geometry
of our experimental setup including the thickness and
the shape of the radiator orifice. Instead of solving for
the full equations of motions, which would require too
much computing power, only the vortices for which the
impact parameter of the excitation is small enough to
allow Andreev reflection are considered. We do not as-
sume a perfect retro-reflection but take into account the
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small Andreev reflection angle, which for practically all
the excitations is . 0.1◦ [10].
Recent numerical studies [22, 23] indicate that espe-

cially for dense vortex structures, the total reflecting
”Andreev shadow” is not necessarily the sum of shadows
of single vortices. Our clusters are relatively sparse and
moreover, after the first diffuse scattering from the walls
the probability for the excitation to migrate back to the
radiator is not sensitive to small changes in its trajectory.
Thus, we believe that our somewhat simplified model for
simulations reproduces the real experimental situation
with good accuracy. The simulations were tested at dif-
ferent hole radii and positions. We found that the largest
effect on the final result comes from the uncertainty of the
radius, of which increasing or decreasing by 50% changes
the reflection coefficient by approximately ±10%.
Since there is some variation in the rotation velocity on

the level of ∆Ω ≤ 0.01 rad/s it is possible that we create
helical perturbations on vortex lines, which can end up
increasing the total vortex length in our vortex cluster.
By modulating the rotation velocity at different frequen-
cies and amplitudes we are able to study whether the
presence of these perturbations, which are called Kelvin
waves, affects the reflection coefficient. We find that even
an order of magnitude larger modulation amplitude com-
pared to the highest noise in the rotation velocity in our
measurement barely affects the fraction of transmitted
heat flux. Thus, we believe it is safe to omit the effect of
Kelvin waves in our analysis.
In conclusion, we describe the first measurement of the

interaction between thermal excitations and quantized
vortices in a well-defined configuration. Numerical sim-
ulations reproduce the experimental results within the
margin of uncertainty of our measurements. As quasipar-
ticle beam techniques are at the moment the only practi-
cal visualization method of vortices in 3He-B at ultralow
temperatures, our studies should make it more reliable
than before for probing different vortex structures.
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tion of the Finnish Academy of Science and Letters and
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