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AbstratThe main objetive of this work was to implement an analytial gradientof energy for a multireferene oupled luster method (MRCC).Multireferene quantum hemial methods play a fundamental role forstudying non-equilibriummoleular geometries, dissoiation of moleules intofragments or generally quasidegenerate systems. In all suh ases the single-referene methods fail and the multireferene desription thus beomes in-evitable.While the standard single-referene CC methods have been widely usedfor almost 40 years as the most aurate, yet omputationally feasible meth-ods for alulating the orrelation energy, the MRCC theories are still thesubjet of an ative development and are only slowly aepted for a routinequantum hemial use.Until reently, there was only one implementation of an analytial gra-dient for a MRCC method whih, however, speialized on a two-referenelow-spin singlet systems only. Beause of the key importane of the an-alytial gradient for the whole quantum hemistry, an analytial gradientimplementation for a general MRCC method is therefore highly desirable.A gradient of the state-spei� multireferene Brillouin�Wigner CCSDmethod with the iterative orretion of size-extensivity has been hosen sinethe method had already been implemented in the ACES II [1℄ program pak-age, whih is provided with an e�ient single-referene CCSD analytialgradient implementation so that its ode ould onveniently be reused.As an inevitable development tool, a more general Full-CI based programhas been used, whih enabled a pilot implementation of the target MR BWCCgradient with and without the iterative size-extensivity orretion and alsoa gradient of the state-universal MRCC method. The pilot implementationof the three analytial gradient variants has been suessfully tested on CH2and SiH2 systems and also published [2℄.Finally, the analytial gradient of the iteratively orreted MR BWCCmethod has also been implemented in the ACES II pakage, although theorbital response ontribution requires an expliit solution of the CPHF equa-tions, whih is performed by an external ode.In addition, as a testing appliation of a newly developed state-spei�multireferene Mukherjee CCSD(Tu) method, an investigation of the singlet-triplet energy separation of the tetramethyleneethane moleule has been per-formed. The obtained potential energy urves were smooth without singular-ities and the alulated results very well agreed with an experiment. Sine themethod does not require an iterative solution of the approximate T̂3 ampli-tudes and has proved to remain resistant to intruders, it is thus a perspetivealternative among highly aurate multireferene approahes. This work isalso a part of a publiation [3℄.



AbstraktHlavním ílem této práe bylo naimplementovat analytiký gradient ener-gie pro multireferen£ní metodu vázanýh klastr· (MRCC).Multireferen£ní kvantov¥ hemiké metody jsou klí£ové pro studium mole-kul v nerovnováºnýh kon�guraíh, rozpadu molekul na fragmenty nebooben¥ kvazidegenerovanýh systém·. Ve v²eh t¥hto p°ípadeh b¥ºné jedno-referen£ní metody selhávají a multireferen£ní popis je pro n¥ tedy nezbytný.Zatímo jednoreferen£ní metody vázanýh klastr· (CC) se jiº tém¥° 40 letpouºívají pro p°esné výpo£ty korela£ní energie, jejih multireferen£ní verzejsou stále p°edm¥tem aktivního vývoje a do b¥ºné praxe se dostávají jenpomalu.Aº donedávna existovala pouze jediná implementae analytikého gra-dientu multireferen£ní metody vázanýh klastr·, ta se v²ak týká jen spe-iálního p°ípadu dvoureferen£níh singletovýh stav·. Pon¥vadº analytikýgradient hraje klí£ovou roli ve v²eh oblasteh kvantové hemie, jeho imple-mentae pro obenou MRCC metodu je tedy zásadní.Pro implementai byl zvolen analytiký gradient stavov¥ spei�ké multi-referen£ní Brillouinovy�Wignerovy metody CCSD s iterativní korekí size-extenzivity. Tato metoda je totiº implementována do programu ACES II [1℄,který jiº nabízí efektivní analytiký gradient jednoreferen£ní CCSD metodya jeho kód lze tedy s výhodou vyuºít.B¥hem práe bylo nutné pouºít oben¥j²í program, zaloºený na rozvoji doFull-CI báze, který v²ak umoºnil pilotní implementai analytikého gradientupro MR BWCC metodu s iterativní korekí a bez koreke size-extenzivity atéº stavov¥ univerzální MRCC metody. Pilotní implementae v²eh t°í variantbyla úsp¥²n¥ otestována na karbenu CH2 a silylenu SiH2 a tato práe bylaopublikována [2℄.Analytiký gradient energie MR BWCCSD metody s iterativní korekísize-extenzivity byl nakone téº naimplementován do programu ACES II,a£koliv tato implementae vyºaduje expliitní °e²ení CPHF rovni pro vyjá-d°ení derivaí LCAO koe�ient·, oº je provád¥no externím programem.Jako poslední £ást práe byla testována nov¥ vyvinutá stavov¥ spei-�ká multireferen£ní Mukherjeeho metoda s poruhovým zahrnutím T̂3 am-plitud v aproximai nesp°aºenýh amplitudovýh rovni, MR MkCCSD(Tu).Bylo studováno siglet-tripletové ²t¥pení molekuly tetrametylenetanu. Získanék°ivky poteniální energie byly hladké a výsledky velmi p°esn¥ souhlasily sexperimentem. Tato metoda nevyºaduje iterativní °e²ení T̂3 rovni a p°esto jeimunní v·£i intruder stav·m, oº potvrdil i pr·b¥h spo£tenýh k°ivek. Mezip°esnými multireferen£ními metodami je tato metoda proto velmi perspek-tivní. Tato práe je téº sou£ástí publikae [3℄.
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Chapter 1Motivation
1.1 Aims of the ThesisThe prinipal aim of this thesis is to implement an analytial gradient ofenergy for a general multireferene oupled luster method. The omputerimplementation should be tested by omparing the analytial gradient witha gradient alulated numerially and �nally applied to a geometry optimiza-tion of a moleular system with a multireferene harater.Spei�ally, the state-spei� multireferene Brillouin�Wigner ou-pled luster method with the iterative orretion of size-extensivity, theMR BWCCSD, has been hosen sine its amplitude equations at onver-gene are unoupled and thus enable a relatively easy analytial gradientderivation. The method has been implemented in the ACES II programpakage, therefore the gradient implementation ould also make use of theavailable single-referene analytial gradient ode.Another goal of the thesis is to test a newly developed perturbativetriples orretion to the state-spei� multireferene Mukherjee oupled lus-ter method in the unoupled approximation, the MR MkCCSD(Tu) on an in-vestigation of a singlet-triplet energy separation of the tetramethyleneethanemoleule.1.2 Analytial Gradient of Energy in QuantumChemistryGradient of energy � a vetor of the �rst partial derivatives of energy withrespet to a set of oordinates

gradE =

(
∂ E

∂ x1
,
∂ E

∂ x2
, . . .

) (1.1)or generally a partial derivative of energy with respet to a general pertur-bation χ: ∂ E
∂ χ

plays a fundamental role in all branhes of quantum hemistry.1



For instane, many physial properties of moleules an be expressed as �rstand higher derivatives of energy with respet to a set of spei� oordinates.The simplest example an be spetrosopi onstants � the eletri dipolemoment and polarizability, whih is a vetor of �rst derivatives and a matrixof seond derivatives of energy with respet to external eletri �eld strengthoordinates. However, the most ommon quantum hemial tasks like predi-tion of equilibrium moleular geometry, vibrational frequenies alulation,transition state searh or moleular dynamis, require evaluation of the en-ergy derivatives with respet to position of nulei.First of all, hemists are interested in equilibrium moleular geometries.That is suh a on�guration of atoms in a moleule having the lowest energyof all possible atomi on�gurations. Finding a loal minimum of energywith respet to several atomi oordinates, referred to as geometry opti-mization, an be numerially very well performed by a Newton�Raphsonfuntion minimization tehnique. This is an analog to the famous Newtonmethod of �nding roots of equations. It works by loally approximating thepotential energy surfae (PES) by a paraboloid (expressed as a quadratiform) and with the knowledge of a gradient and a Hessian (a matrix of allseond partial derivatives) it reahes the minimum of the paraboloid in justone step. For a real PES, however, it requires several steps to reah theminimum by the formula
xn+1 = xn −H

−1(xn) gradE(xn) (1.2)where H−1(xn) is an inverse of the Hessian matrix alulated at the nth step.Beause of the expensive evaluation of the Hessian matrix, whih salesquadratially with the number of oordinates and what's more, the seondanalytial derivatives are often unavailable for many quantum hemial meth-ods, the Newton�Raphson tehnique is usually replaed by quasi-Newtonmethods (for instane the variant by Broyden, Flether, Goldfarb and Shanno� BFGS [4℄) whih need just the �rst derivatives and an approximated in-verse of the Hessian whih is being improved at eah step.The other most ommon appliation of the gradient in quantum hemistryis the alulation of harmoni vibrational frequenies. This is usuallyperformed as an additional step after the geometry has been optimized toensure the predited geometry is really at a minimum and not in a saddlepoint of the PES. But besides is needed as a �rst approah for assigninginfrared and Raman spetra, obtaining zero point vibrational energies andsubsequent thermodynamis property alulations.The frequenies are eigenvalues of a vibrational Hamiltonian whih ap-proximates the viinity of the energetial minimum by a multidimensionalparaboli potential
V̂ = Eeq +

1

2

3#Nuclei
∑

ij

qi fij qj (1.3)2



where the Eeq is the energy in the equilibrium geometry,
qi =

√
mi (xi − xeq

i ) (1.4)is the mass weighted oordinate of the ith nuleus in terms of displaementsfrom the equilibrium geometry and
fij =

(
∂2 E

∂qi ∂qj

)

q=0

(1.5)are harmoni fore onstants. The potential is thus inherently desribedby a Hessian, whih is, as already noted, often unavailable in an analytialform for many quantum hemial methods. Therefore it has to be evaluatednumerially either from energies or, preferably, from �rst derivatives.A transition state searh is another example of an inevitable gradientuse. It is a searh for a state with the highest energy along a reation path.The state lies in a saddle point onneting the valleys of the PES where theinitial and �nal states of a reation are loated. The methods for �nding thetransition state makes use of the fat that the gradient is zero in a saddlepoint. One suh a tehnique just minimizes a gradient norm about its mostexpeted position on the PES. Another tehnique � a hill limbing preditsthe reation path by the least steep gradient orreted by minimizing theenergy along all other diretions. Similar but more aurate tehnique isbased on a modi�ed quasi-Newton method.And lastly, the lassial moleular dynamis, whih studies the timeevolution of a moleular system, is strongly dependent on the gradient evalu-ation. It solves the Newton equations of motion for atoms on the PES, wherethe gradient drives the atomi movement. A ommon method for integrat-ing the Newton equations in the lassial moleular dynamis is the veloityVerlet algorithm [5, 6℄:
ri(t +∆t) = ri(t) + vi(t)∆t +

1

2
ai(t)∆

2t (1.6)
vi(t +∆t) = vi(t) + 〈ai〉∆t (1.7)

〈ai〉 =
ai(t) + ai(t+∆t)

2
(1.8)where the fores are given by the potential energy gradient

ai(t) = − 1

mi

∂ V (r)

∂ ri
(1.9)Let's now look at the formulas used for numerial evaluation of the gradi-ent and the Hessian matrix and onsider the advantage of the analytialgradient formula over the numerial di�erentiation. The symmetrized nu-merial gradient formula reads 3



∂ f(x, y)

∂ x
= lim

h→0

f(x+ h, y)− f(x− h, y)

2h
(1.10)and the symmetrized formulas for the seond partial derivatives using ananalytial gradient

∂2f(x, y)

∂x2
= lim

h→0

∂ f(x+h,y)
∂ x

− ∂ f(x−h,y)
∂ x

2h
(1.11)

∂2f(x, y)

∂x∂y
= lim

h→0

∂ f(x,y+h)
∂ x

− ∂ f(x,y−h)
∂ x

2h
(1.12)Finally the symmetrized seond partial derivatives if an analytial gradientis not available

∂2f(x, y)

∂x2
= lim

h→0

f(x+ h, y)− 2f(x, y) + f(x− h, y)

h2
(1.13)

∂2f(x, y)

∂x∂y
= lim

h→0

1

4h2

[
f(x+ h, y + h)− f(x+ h, y − h)

−f(x− h, y + h) + f(x− h, y − h)
] (1.14)The omplexity of a full gradient and Hessian evaluation is presented inTable 1.1. We an see that as long as the omplexity of the analytial gradi-anal. grad. anal. grad.available not availablegradient 1G 2NEHessian 2NG (1 + 2N2)ETable 1.1: A omparison of omplexity of an N�dimensional gradient andHessian matrix omputation if an analytial gradient formula is availableor absent. E stands for the omplexity of energy evaluation and G for theomplexity of an analytial gradient evaluation.ent evaluation is omparable to the evaluation of the energy, the numerialalulation of the gradient from energies sales linearly with the number ofdegrees of freedom (e.g. number of atoms) whereas the analytial alulationis just onstant. Similarly the numerial Hessian alulation using energiessales quadratially, while its evaluation from gradients sales only linearly.This seems to be a solid argument for preferring the analytial gradient,but it would ompletely fail if the analytial gradient evaluation stronglydepended on the number of perturbations (degrees of freedom). Fortunately,the energy gradient formulas an be fatored to a dominant perturbation-independent part and a minor perturbation-dependent ontributions so that4



the total evaluation time of the analytial gradient is of the same order asthat of the energy.Suh formula fatorization is usually referred to as the Z-vetor tehniqueand for the oupled luster methods it leads to solving the λ-equations fromwhih the set of perturbation-independent oe�ients, alled λ-amplitudes,is obtained.The analytial gradient evaluation is also more aurate than its numer-ial alulation from �nite di�erenes and, moreover, avoids possible onver-gene di�ulties of energy omputations that usually happen at displae-ments whih redue the symmetry of the investigated moleular system.1.3 Quantum Chemial MethodsQuantum hemistry, a quantum mehanial desription of moleular systems,has to inherently deal with the many-body (many-eletron) problem. It doesso by expanding the eletroni Hamiltonian Ĥel
1 in a �nite basis of antisym-metri N-eletron funtions and �nding some of its eigenvalues (energies)and eigenvetors (usually only the ground state energy and wavefuntion).The antisymmetri N-eletron basis funtions are usually given by Slaterdeterminants 2 (or their linear ombination to satisfy properly a spin sym-metry, for instane):

|Φ0〉 =
1√
N !

∣
∣
∣
∣
∣
∣
∣
∣
∣

χ1(1) . . . χ1(N)
χ2(1) . . . χ2(N)... . . . ...
χN(1) . . . χN(N)

∣
∣
∣
∣
∣
∣
∣
∣
∣

(1.15)These are onstruted from a set of one-eletron basis funtions, known asmoleular spinorbitals χi(k) (i is a funtion index and k denotes a k-th ele-tron), onsisting of a three-dimensional spatial funtion multiplied formallyby a spin funtion |α〉 or |β〉.The spatial omponent of the one-eletron basis is mostly formed froma basis of atomi orbitals (usually Gaussian funtions plaed at enters ofindividual atoms) by solving the Shrödinger equation with an assumptionthat the moleular wavefuntion is given by just one N-eletron Slater de-terminant. Suh a way of hoosing the one-eletron basis set is alled theHartree�Fokmethod (HF, SCF) and results in a set of orthonormal mole-ular orbitals, where the �rst N with the lowest orbital energy, alled oupiedorbitals, form the Hartree�Fok wavefuntion (the single Slater determinant)and the remaining eigenfuntions are alled virtual orbitals.1i.e. a Hamiltonian in the Born�Oppenheimer approximation2a determinantal form of an N -eletron funtion ensures the antisymmetry of afermioni wavefuntion 5



The number of N-eletron Slater determinants whih an be onstrutedfrom a set of M orbitals is, however, extremely large. For example a full N -eletron basis set of a water moleule with 10 eletrons in a losed-shell singleteletroni state using a moderately large one-eletron basis of 19 funtions(e.g. -pVTZ) onsists of 135,210,384 Slater determinants. We an see thatthe size of the N-eletron basis thus represents a prinipal obstale in solvingthe many-body Shrödinger equation.The advantage of the Hartree�Fok method for hoosing the moleularorbitals is that sine the N oupied orbitals provide the best possible de-sription of the moleular system for the Hartree�Fok wavefuntion (i.e.the only Slater determinant), the Slater determinants in the N-eletron ba-sis whih are formed mostly by the oupied Hartree-Fok moleular orbitalsplay the signi�ant role in the expansion of the proper N-eletron wavefun-tion. And truly, the proper ground state N-eletron wavefuntion is mostlygiven by the referene Slater determinant (the Hartree�Fok one) and singly,doubly (and triply) exited on�gurations (i.e. suh Slater determinantsderived from the referene determinant where one, two or three oupied or-bitals are replaed by a orresponding number of virtual orbitals). This fathelps to signi�antly redue the size of the N-eletron basis and makes thesolution of the many-body problem feasible.The Hartree�Fok method assumes a model of almost independent ele-trons 3. The post-Hartree�Fok methods desribed below thus try to involvethe orrelation of eletroni motion in the proper wavefuntion. Hene thedi�erene between the proper energy E0 and the Hartree�Fok energy E0 isalled the orrelation energy
Ecorr = E0 −E0 (1.16)The straightforward way of �nding the spetrum of the many-body Hamil-tonian by employing the omplete spae of N-eletron Slater determinantsformed from a �nite set of moleular orbitals is the full on�guration in-teration method (Full-CI, FCI). The method is simply formulated but isextremely demanding on omputational resoures due to the enormous sizeof the N-eletron basis and is therefore pratially limited to alulations ofsystems of only a few atoms.Nevertheless, using the property of the Hartree�Fok orbitals mentionedabove, it is possible to dramatially redue the N-eletron spae by involvingonly the referene determinant and all singly, doubly or more exited on-�gurations without a signi�ant loss of the wavefuntion quality while using3In the Hartree�Fok model, the eletrons are atually not fully independent as eaheletron moves in an averaged �eld of the other eletrons. The averaged �eld is alulatediteratively until a self-onsisteny is reahed so that it no longer improves (it is whythe Hartree�Fok method is also known as the SCF � a self-onsistent �eld method).Moreover, two eletrons of the same spin annot oupy the same loation at the sametime, due to the fermioni harater of eletrons, whih is assured by the determinantalform of the wavefuntion 6



the same simple CI algorithm. This approah is known as the trunated CI(for instane CISD or CISDT) and an be applied to systems of up to severaltens of atoms.As an example you an see a CISD expansion of a wavefuntion
|ΨCISD〉 = |Φ0〉+

∑

i
a

cai |Φa
i 〉+

∑

i<j
a<b

cabij |Φab
ij 〉 (1.17)using a ommon notation for the referene (Hartree�Fok) determinant |Φ0〉,singly |Φa

i 〉 and doubly |Φab
ij 〉 exited on�gurations where i and j denoteindies of oupied orbitals whih are replaed by virtual orbitals with indies

a and b. The expansion oe�ient of the referene determinant is equal toone due to the usual intermediate normalization of a wavefuntion
〈Ψ|Φ0〉 = 1 (1.18)The great advantage of CI methods is that they are formulated by avariational priniple, whih is a simple onsequene of linear algebra and isgiven by a relation

E0 ≤ E [|Φ〉] =

〈

Φ
∣
∣
∣Ĥ

∣
∣
∣Φ

〉

〈Φ|Φ〉 (1.19)where E0 is the true lowest eigenvalue of the Hamiltonian operator and |Φ〉is an arbitrary ket-vetor of the operator spae. The main bene�t is that bytrunated CI methods (but also by any other variational method) an upperbound limit to the true Full-CI energy is obtained.However, the trunated CI is not a size-extensive method, whih meansthat the energy does not sale orretly with the number of partiles in asystem. The reason why it fails for the trunated CI while the Full-CI is size-extensive will be shown in the next hapter. To partially ompensate thisde�ieny, the Davidson orretion of size-extensivity [7,8℄ is always appliedto trunated CI alulations.A rather di�erent approah for expanding the wavefuntion in exitedon�gurations represents the oupled luster (CC) method whih is basedon the exponential ansatz
|ΨCC〉 = eT̂ |Φ0〉 = eT̂1+T̂2+···+T̂N |Φ0〉 (1.20)where the T̂1, T̂2, . . . are operators (alled luster operators) formally gen-erating a series of all possible single, double and up to N-tuple exitationsfrom a referene funtion upon whih they at. For example

T̂1|Φ0〉 =
∑

i
a

tai |Φa
i 〉 (1.21)
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T̂2|Φ0〉 =
∑

i<j
a<b

tabij |Φab
ij 〉 (1.22)where the oe�ients tai and tabij are alled the luster amplitudes.By expanding the exponential operator in the Taylor series

eT̂ = 1 +
T̂

1!
+

T̂ 2

2!
+ . . . (1.23)we an see how a CI-like expansion of a wavefuntion in on�gurations isformed. Let's take an example of the CCSD method, in whih the exitationoperator is trunated to involve just singles and doubles T̂ = T̂1 + T̂2

eT̂1+T̂2 = 1 + T̂1 + T̂2 +
T̂ 2
1

2!
+

2T̂1T̂2

2!
+

T̂ 2
2

2!
+ . . . (1.24)It is obvious that a CCSD expansion of a wavefuntion inludes not onlysingly and doubly, but partially also triply and highly exited on�gurationsdue to oupling of the exitation operators. And this is just one of the mainpoints whih make the oupled luster method superior to the on�gurationinteration. The other is that the oupled luster method is size-extensiveregardless the level of trunation of the T̂ operator.Nevertheless, it is not a variational method, whih means that the alu-lated CC energy may be below the proper Full-CI value and that the lusteramplitudes (whih de�ne the wavefuntion expansion) have to be alulatediteratively from a set of nonlinear equations. This not only makes the odesmore ompliated but also an lead to onvergene problems. In spite of thesedisadvantages, the oupled luster method is regarded as the most reliablein the family of ab initio quantum hemial methods.It is also neessary to brie�y mention the perturbation theory. Itsprinipal idea is based on a partitioning of the Hamiltonian Ĥ into a main(unperturbed) part Ĥ0 that is relatively easy to solve, and a small perturba-tion Ŵ

Ĥ = Ĥ0 + Ŵ (1.25)If the perturbation term is small enough, the eigenstate of the full Hamil-tonian an be obtained as a onvergent series of orretion terms to theunperturbed solution.Usually the Møller�Plesset partitioning of the eletroni Hamiltonian isapplied so that the unperturbed solution is the Hartree�Fok wavefuntion.The seond-order orretion, known as the MP2 method, is a very heap andpopular way of involving about 80% of eletroni orrelation.Shematially the perturbation series for the orrelation energy an beexpressed as 8
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∣
∣
∣
∣
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1̂− |Φ0〉〈Φ0|
z − Ĥ0

(z − E0 + Ŵ )

]m∣∣
∣
∣
∣
Φ0

〉 (1.26)where the frational expression is a resolvent, whih depends on an arbitrarynumber z. The two most ommon variants used are the Rayleigh�Shrödingerperturbation theory (RSPT), where the z is set to the lowest eigenvalueof the unperturbed Hamiltonian Ĥ0 and the Brillouin�Wigner perturbationtheory in whih the z is equal to the true lowest eigenvalue E0 of the full(perturbed) Hamiltonian. The RSPT variant is a fully size-extensive method.The BWPT, by ontrast, is not, but its formalism is muh simpler.The post-Hartree�Fok methods desribed above (apart from the Full-CI)involve properly only a spei� part of the Full-CI N-eletron spae by start-ing from one referene on�guration and inorporating in some spei� waythe other on�gurations by exitations of the referene determinant. How-ever, in many ases this approah beomes insu�ient and an ompletelyfail to desribe a hemial speies even though a great portion of dynamialeletroni orrelation is inluded by expanding the wavefuntion in a verylarge Full-CI subspae. This happens when a single determinant annot or-retly desribe the spin symmetry (e.g. 1∆ state of O2 moleule needs atwo-determinantal desription) or when a dissoiation of a moleule is stud-ied, in whih the moleular wavefuntion is ontinuously split in two parts,or generally if quasi-degeneraies our. In all these ases, involvement ofertain on�gurations is inevitable for a proper system desription and its ef-fet is usually referred to as inlusion of non-dynamial eletroni orrelationin a wavefuntion. Suh systems have to be treated with multireferenemethods.The basi method whih desribes a system with more Slater determi-nants is the multion�gurational SCF method (MCSCF) or its speial ase� the omplete ative spae SCF (CASSCF), in whih an appropriate om-bination of on�gurations is set and both their oe�ients and the orbitalsare optimized at the same time.The multireferene post-Hartree�Fok methods usually take the appropri-ate ombination of determinants (referenes) using either the HF or MCSCFoptimized orbitals and generate exitations for eah referene analogously tothe single-referene variant of the method. So there is the multireferene on-�guration interationmethod (MRCI), the multireferene perturbation theory(suh as the ommon CASPT2 method) and also the multireferene oupledluster method (MRCC).In the ontext of this thesis, the Hilbert-spae MRCC methods are used,namely the state-spei� multireferene Brillouin�Wigner CC (MR BWCC),the state-spei� multireferene Mukherjee CC (MR MkCC) and the state-universal multireferene CC (SU MRCC). The state-spei� methods onen-trate on alulation of a single partiular state. The state-universal method,9



by ontrast, omputes several states in one step, but is vulnerable to onver-gene problems.1.4 Analytial Gradient in the MultirefereneCoupled Cluster MethodsMany quantum hemial methods have been provided with analytial gradi-ents long time ago and sine then the gradients are routinely used in everydayprodutive alulations.While the analytial gradient of the single-referene oupled luster meth-ods have already been introdued in the 1980s and 1990s, there are still fewanalytial gradient implementations for the multireferene oupled lustertheory. When the work on this thesis started, only a gradient of a speialase of the two-determinantal open shell low spin singlet oupled luster hadbeen implemented [9℄ and gradients of another two MRCC variants had beendeveloped but without an implementation [10℄. There were analytial gra-dients of the Fok spae MRCC formulation [11�14℄, but no general Hilbertspae MRCC analytial gradient had atually been implemented. Beauseof the superiority of the CC method and inevitable apabilities of the mul-tireferene approah, an e�ient implementation of a general Hilbert spaeMRCC method was therefore highly desirable.In this thesis the state-spei� MR BWCCSD method with the iterativeorretion of size-extensivity was hosen for the analytial gradient imple-mentation. Based on the Brillouin�Wigner perturbation theory, the methodis not size-extensive a priori, but is provided with a orretion. This has,however, a onvenient onsequene in the form of its �nal MRCC equations,whih lead to a relatively easy gradient derivation. Although the BW for-malism avoids intruder state problems 4 while solving the CC equations,the iterative size-extensivity orretion slowly transforms the formulas intoa Rayleigh�Shrödinger form whih may however give rise to intruder stateproblems and an lead to onvergene di�ulties. The method itself andalso the gradient sale only linearly with the number of referene on�gu-rations so it might be applied to investigation of larger moleular systems.The gradient has been derived in suh a way that muh of the existing ef-�ient single-referene CCSD analytial gradient ode of the ACES II [1℄program pakage ould be reused sine it has also an e�ient MR BWCCimplementation.During the work, however, it turned out to be neessary to �rst ode apilot implementation of the gradient as an inevitable tool that helps with thee�ient ode reuse. And sine this pilot implementation was performed in ageneri Full-CI based way, another two analytial gradient variants ould be4Intruder states are numerial inonvenienes in the perturbation theory formalismwhen the denominator of the resolvent beomes too lose to zero10



implemented as well. In the end a pilot analytial gradient implementation ofthe state-spei� MR BWCCSD with the iterative size-extensivity orretionand without the orretion and a state-universal MRCCSD in the formulationby Kuharski and Bartlett [15℄ were ompleted and published [2℄.It has to be noted that only after the pilot implementation had beenpublished, an e�ient implementation of the state-spei� multirefereneMukherjee oupled luster (MR MkCC) energy gradient appeared, oded byProhnow et al. [16℄, whih is however a more general ase of the iterativelyorreted MR BWCC gradient.Nevertheless, the analytial energy gradient of the iteratively orretedMR BWCCSD variant has �nally been e�iently implemented as well, al-though the orbital response ontribution requires an expliit solution of theCPHF equations.1.5 Perturbative Triples Contribution in theMRCC MethodsWhile in many ases the oupled luster alulations with ontributions fromthe singles T̂1 and doubles T̂2 are su�ient enough for a orret desription ofa moleular system, for preise quantitative results also ontributions fromthe triples T̂3 have to be inorporated.However, while the relatively heap CCSD alulation, whih sales with
O(N 6), where N means the number of orbitals, the full CCSDT methodis two magnitudes more expensive, saling with O(N 8). Therefore an ap-proximate triples ontribution is usually employed whih is known as theCCSD(T) method and is ommonly referred to as "the gold standard" forquantitative quantum hemial alulations. In most ases it provides re-sults omparable with experimental values while remaining omputationallyfeasible. In this method, the equations for solving the CCSD amplitudes areiterated and after the onvergene has been reahed, a few other terms (whihare hosen by inspeting the formulas by the perturbation theory) are addedto approximate the triples ontribution. The method thus requires only oneadditional step that sales with O(N 7).In the multireferene oupled luster theory, it was �rst developed forthe SU MRCC method [17℄. The MR BWCCSD(T) approximation wasimplemented a few years ago [18℄. Reently, the MR MkCC method wasprovided with a non-iterative triples variant, denoted by MR MkCCSD(Tn),whih however introdues intruder state problems [19℄. Later a di�erent ap-proah, denoted here as MR MkCCSD(Ti), has been suggested whih elim-inates the intruder state problem, but requires an iterative solution for thetriples amplitude equation [20℄. Another formulation �nally appeared, theMR MkCCSD(Tu), whih is based on an unoupled approximation of theMR MkCC method and avoids both the intruder state problem and the it-11



erative solution for the triples equation [3℄. The method has already beensuessfully tested on the BeH2 system, but for testing on a real hemialappliation, a singlet-triplet gap investigation of the tetramethyleneethanemoleule (TME) has been suggested, whih is atually the topi of the lastpart of this thesis.
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Chapter 2Theory
2.1 Generally Applied ApproximationsLet us introdue the physial onstraints upon whih all the theory of thethesis is built.First of all, only a non-relativisti physis is applied sine in mostquantum hemial alulations, whih investigate elements of the �rst threerows of the periodi table, the relativisti e�ets are still almost negligible inomparison with the alulated properties of the main interest. Thus onlythe Shrödinger equation is employed, whih makes the situation muh easierthan using the relativisti Dira equation.The moleular system is thus fully desribed by a non-relativisti Hamil-tonian
Ĥ = −1
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(2.1)where the usual notation for kineti T̂ and potential energy V̂ is used as wellas symbols e and n for eletrons and nulei respetively. This and all theother equations in the thesis also assume the use of atomi units.Nevertheless, even with the Shrödinger equation, the relativisti e�etsould be in some extent involved by using the e�etive ore potentials, de-sribing an e�etive �eld of the ore atomi eletrons.Beause of the relatively large ratio between the weight of nulei andeletrons, also the Born�Oppenheimer approximation (BOA) is appliedin most ases. It simply removes the nulear kineti energy operator T̂n fromthe total Hamiltonian, forming the so-alled eletroni Hamiltonian Ĥel

Ĥel = T̂e + V̂nn + V̂ne + V̂ee (2.2)This atually desribes an eletroni system in the �eld of �xed nulei, whihobeys the Shrödinger equation
Ĥel(R)|Φ(r;R)〉 = E(R)|Φ(r;R)〉 (2.3)13



in whih the r denotes eletroni oordinates and the R means that theeletroni Hamiltonian and its eigenvalues and eigenfuntions depend on thenulear oordinates parametrially. The eigenvalue E(R) thus represents apotential energy (hyper)surfae (PES) on whih the nulei move.Solution of the Born�Oppenheimer Hamiltonian is usually su�ientenough. It may, however, fail in situations where two potential energy sur-faes of the same symmetry ome lose together or even ross, forming theonial intersetion.In the rest of this work, beause of the impliit use of the Born�Oppenheimer approximation, the eletroni Hamiltonian will be further de-noted with just the symbol Ĥ.And lastly, although the N -eletron Hilbert spae is in�nite, for om-putational reasons, only �nite basis sets an be employed. For moleularsystems, however, they an be hosen in a way that is satisfatory enough foromparison with experimental values. Moreover, speial basis sets also existthat suessfully give physial properties as if an in�nite basis were used.It is ahieved by extrapolation of results obtained from alulations usingseveral �nite basis sets of an inreasing size.2.2 The Hartree�Fok MethodAs already noted earlier, the Hartree�Fok method [21,22℄ is used to obtainan appropriate set of one-eletron basis funtions, the moleular spinorbitals
χi(x).The spinorbital onsists of a spatial orbital φi(r) and a spin omponent
|α〉 or |β〉

χi(x) =

{

φi(r)|α〉
φi(r)|β〉

(2.4)The spinorbital variable x thus involves both the spatial and the spin vari-ables altogether.The spin omponents are only formal, sine they are used to onstrut aproper spin of the N-eletron wavefuntion, whih is given and �xed. Param-eters of the spatial moleular orbital φi(r) is atually what is being optimizedin the Hartree�Fok proedure.The spatial moleular orbitals (MO) are usually formed from a �xed setof atomi orbitals (AO) as their linear ombination (LCAO)
φi(r) =

AO∑

µ

|µ(r)〉Cµi (2.5)where the LCAO oe�ients Cµi are just the Hartree�Fok optimization vari-ables. 14



Intuitively, the atomi orbitals are funtions loated at nulei, whihshould mimi the eigenfuntions of a Hydrogen-type atoms (i.e. systems of anuleus and only one eletron). Suh simpli�ed funtions are the Slater-typeorbitals (STO)
φSTO
ijk (r) = xiyjzke−ζ|r−r0| (2.6)whih are, however, rarely used beause of their too expensive eletron re-pulsion integral evaluation. Instead, the Gaussian-type orbitals (GTO) areused

φGTO
ijk (r) = xiyjzke−ζ(r−r0)2 (2.7)whih an be integrated muh more easily, though they do not desribe theone-eletron wavefuntion so well. To ompensate this de�ieny, the on-trated GTOs are used, whih is just a �xed linear ombination of severalprimitive GTOs (of the same polynomial part, but di�ering in the exponent)

φCGTO
ijk (r) = xiyjzk

∑

m

Kme
−ζm(r−r0)2 (2.8)whih desribe the spatial orbitals better and remain omputationally fea-sible. There are numerous atomi basis sets of various size, optimized foralulation of a variety of physial properties (mainly the energy) with theexponents and ontration oe�ients tabelized.The funtions shown above (2.7), (2.8) are alled artesian Gaussian-typeorbitals and are haraterized by a shell number l = i+ j + k. All funtionsin shells l = 0, 1 are eigenfuntions of the orbital momentum operator L̂2 (i.e.s and p funtions respetively). The artesian GTO funtions of shells with

l ≥ 2 however mix also funtions of lower orbital momentum. For examplethere are 6 artesian GTOs of l = i + j + k = 2. But they an atually beredued to 5 d and one s funtion. If a partiular quantum hemial programallows, a spherial GTO basis set an be onstruted from a artesian one,dereasing the size of the one-eletron basis a little.The Hartree�Fok moleular orbitals are obtained by the variational prin-iple by taking theN-eletron wavefuntion |Φ〉 as a single Slater determinantonly and varying the LCAO oe�ients while keeping the orbitals orthonor-mal so that the minimum of the wavefuntion energy funtional is reahed.
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〉 (2.9)This way, within a given AO basis set, no better single determinantal
N-eletron wavefuntion an be obtained.The simplest ase is the losed-shell restrited Hartree�Fok method(RHF) in whih eah spatial moleular orbital is shared between a pair of an
|α〉 and |β〉 spinorbitals.To alulate also the open-shell systems (i.e. with unpaired eletrons),this restrition an be removed to form the unrestrited Hartree�Fok method15



(UHF) whih leads to two oupled sets of equations for |α〉 and |β〉 spinor-bitals. Despite still remaining quite simple, the UHF method atually doesnot give a wavefuntion of a pure spin. In ontrast to the RHF method, itan however qualitatively well desribe a dissoiation of a moleule.The restrited open-shell Hartree-Fok method (ROHF) uses a spin-adapted linear ombination of a few Slater determinants to provide a propereigenfuntion of the spin (Ŝ2) operator, but its formalism is the most om-pliated.To reah the Hartree�Fok energy funtional minimum (2.9), the fun-tional variation must be zero
δE [Φ] = δ

〈

HF
∣
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∣Ĥ

∣
∣
∣HF

〉

= 0 (2.10)With an additional requirement for the moleular orbitals to be orthonor-mal
〈φi|φj〉 = δij (2.11)the method of Lagrange multipliers diretly leads to equations of the Fokoperator f̂ (spei�ed below)

f̂ |φi〉 =
N∑

j=1

λij|φj〉 (2.12)Beause this operator is invariant under a unitary transformation, suh atransformation an be found whih diagonalizes the matrix of the multipliersand gives the anonial Hartree�Fok equations
f̂ |φi〉 = εi|φi〉 (2.13)from whih the set of anonial moleular orbitals |φi〉 is obtained where εiis alled the energy of the i-th orbital.The Fok operator is an e�etive one-eletron energy operator de�ned(for the simplest losed-shell RHF method) as

f̂(1) = ĥ(1) +
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) (2.14)where
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(2.15)is the one-eletron operator for the eletroni kineti energy and the intera-tion between the eletron and the nulei,

Ĵj(1) |φi(1)〉 =
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dr2 φ
∗
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r12
φi(1) (2.16)16



is the Coulomb operator and
K̂j(1) |φi(1)〉 =

∫

dr2 φ
∗
j(2)φi(2)

1

r12
φj(1) (2.17)is the exhange operator. The last two operators just represent an averaged�eld of the other eletrons. From their de�nition it follows that the Fokoperator itself depends on the moleular orbitals. The Hartree�Fok equa-tions (2.13) are thus pseudo-eigenvalue equations whih have to be solvediteratively. From an initial orbital guess the Fok operator alulates theaveraged �eld of the eletrons and a new set of orbitals is generated. Thisproedure is repeated until the self-onsisteny is reahed, whih means thatthe averaged �eld as well as the orbitals no longer hange.As stated earlier, the moleular orbitals are expanded in the set of atomiorbitals by LCAO oe�ients (2.5). Substituting (2.5) in (2.13) one obtainsa set of Hartree�Fok�Roothaan equations that are atually used in pratialalulations
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FµνCνi = εi

AO∑

ν

SµνCνi (2.18)where Fµν and Sµν are the Fok and overlap matrix in the AO basis. Theequations are often written in a matrix form
FC = SCε (2.19)where the ε is a diagonal matrix of orbital energies.After the solution onverges to self-onsisteny, the N oupied and

M − N virtual orbitals are produed, where M is the size of the AO basis.In post-HF methods, whih alulate the eletron orrelation, an N-eletronfuntion spae is generated by exitations of eletrons from the oupied or-bitals to the virtual ones, as desribed in the previous part. Exitations fromthe oupied orbitals that represent the ore (non-valene) shell eletronshowever ontribute only minimally to the total eletroni orrelation andare often frozen (i.e. exluded from exitations). Freezing the ore orbitalsas well as their orresponding ounterparts in the virtual orbital set furthersigni�antly redues the size of the N-eletron on�guration spae.At the end of this setion and before going further in theoretial formal-ism, a note about the ommon notation used in quantum-hemial formulasshould be brie�y presented.Orbital indies i, j, k, l denote the oupied, while a, b, c, d the virtualmoleular orbitals. Indies p, q, r, s are used for general (i.e. either o. orvirt.) moleular orbitals. Greek letters µ, ν, λ, σ, however, represent theatomi orbital indies. For example a matrix element of the one-eletronpart of the Hamiltonian in the AO basis is
hµν =
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The two-eletron integrals (i.e. the eletron repulsion integrals) in themoleular spinorbital basis are denoted by
〈pq|rs〉 =

∫

dx1dx2χ
∗
p(x1)χ

∗
q(x2)

1

r12
χr(x1)χs(x2) (2.21)and a ommon shorthand for their antisymmetrized form

〈pq || rs〉 = 〈pq|rs〉 − 〈pq|sr〉 (2.22)However, integrals over spatial orbitals (either atomi or moleular) usebraes instead of brakets and gather orbitals with the same eletroni vari-able
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r12
φ∗
r(r2)φs(r2) (2.23)Common Coulomb and exhange integrals are thus

Jij = (ii|jj) (2.24)
Kij = (ij|ji) (2.25)Using this notation, the losed shell RHF energy an be expressed as
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[2 (ii|jj)− (ij|ji)] (2.26)or in the spinorbital basis
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〈ij || ij〉 (2.27)And the widely used Fok matrix elements read
fpq = hpq +

N∑

i

〈pi || qi〉 (2.28)2.3 Seond QuantizationSeond quantization [21, 23�25℄ is a notion oming from quantum eletro-dynamis, whih however (along with the diagrammati tehnique) beamevery popular with the many-body perturbation theory and related topis. Itmakes investigation of methods in the �eld muh easier than the lassialapproah sine the seond-quantized operators of physial observables (like
Ĥel) are independent of the number of eletrons while the antisymmetry of18



the eletroni wavefuntion is assured in an elegant way without the need todiretly manipulate Slater determinants.A brief introdution to the seond quantization tehnique is presentedbeause for explanation of the key onepts of the oupled luster theory,the use of the seond quantized formalism annot be avoided. Otherwisethe desription as well as the algebrai tratability of the formulas would beextremely di�ult.2.3.1 Creation and Annihilation OperatorsThe key onept represents the normalized vauum state | 〉 whih is just awavefuntion of zero eletrons. Eletrons an be reated in the vauum stateby the reation operators a+p
a+p | 〉 = |p〉 (2.29)and annihilated again by the annihilation operators ap
ap |p〉 = | 〉 (2.30)whih are mutually related as Hermitian onjugates
ap =

(
a+p

)† (2.31)The operators obey the following antiommutation rules
[
a+p , a

+
q

]

+
= 0 (2.32)

[ap, aq]+ = 0 (2.33)
[
a+p , aq

]

+
= δpq (2.34)whih atually imply the N -eletron wavefuntion to be inherently antisym-metri. The appliation of the operators an thus be summarized

a+p |q . . . s〉 = |pq . . . s〉 (2.35)
ap |pq . . . s〉 = |q . . . s〉 (2.36)

a+p a
+
q . . . a+s | 〉 = |pq . . . s〉 (2.37)
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= − |qp . . .〉 (2.38)19



aq |pqr . . .〉 = − aq |qpr . . .〉
= − |pr . . .〉 (2.39)

|ab . . .〉 = a+a a
+
b ajai |ij . . .〉 (2.40)

a+p |p〉 = 0 (2.41)
ap| 〉 = 0 (2.42)

ap |q〉 = apa
+
q | 〉

= δpq − a+q ap| 〉
= δpq − 0 (2.43)and one an see that an N-eletron wavefuntion |pq . . . s〉 an be representedby a Slater determinant formed from orbitals pq . . . s eah oupied by aneletron.Using the reation and annihilation operators, one an, for instane, on-veniently express a wavefuntion expansion in the on�guration spae. Forexample the CI expansion is given by
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b ajai (2.46)et. are exitation operators 1 generating all singly, doubly and up to N-tuply exited on�gurations from the referene determinant |Φ0〉 togetherwith their CI expansion oe�ients.And the CC exponential ansatz an be easily written as
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|Φ0〉 (2.47)1Note the order of annihilators in the Ĉ2 operator; ompare with (2.40)20



where
T̂1 =

∑

i
a

tai a
+
a ai (2.48)

T̂2 =
∑
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tabij a
+
a a

+
b ajai (2.49)et. are similar exitation operators, but in the CC expansion (2.47), they areommonly referred to as the luster operators and the expansion oe�ients

tai , t
ab
ij , . . . are alled the luster amplitudes.Note an important feature of the luster operators. Sine a luster oper-ator ontains annihilators of oupied and reators of virtual orbitals, from(2.34)

[
a+a , ai

]

+
= δai = 0 (2.50)we see that all seond quantization operators in the luster operators an-tiommute. And beause there is always an even number of reators orannihilators in the luster operators, all the luster operators thus ommute.To do physis, however, a seond-quantized operators of physial observ-ables should be introdued. It an be shown that the seond-quantized formof a one-partile operator Ô1 is given by

Ô1 =

N∑

i

ĥ(i) =
∑

pq

〈

p
∣
∣
∣ĥ
∣
∣
∣ q
〉

a+p aq (2.51)whereas a two-partile operator Ô2 beomes
Ô2 =

N∑

i<j

v̂(i, j) =
1

2

∑

pqrs

〈pq |v̂| rs〉 a+p a+q asar (2.52)A seond-quantized eletroni Hamiltonian thus reads
Ĥel =

∑

pq

hpq a
+
p aq +

1

2

∑

pqrs

〈pq|rs〉 a+p a+q asar (2.53)
=

∑

pq

hpq a
+
p aq +

1

4

∑

pqrs

〈pq || rs〉 a+p a+q asar (2.54)A matrix element of any operator (whih is atually a string of reationand annihilation operators between the vauum bra and ket) an be straight-forwardly evaluated using the antiommutation rules by moving the annihi-lators to the right. Beause annihilating an eletron from a vauum stategives zero, suh proedure would �nally result in Kroneker deltas only.21



This an be demonstrated on an overlap of two mutually singly-exitedtwo-eletron Slater determinants
|Φ0〉 = |ij〉 = a+i a

+
j | 〉 (2.55)

|Φa
i 〉 = |aj〉 = a+a a

+
j | 〉; 〈Φa

i | = 〈 |ajaa (2.56)Their overlap reads
〈Φa

i |Φ0〉 =
〈 ∣
∣ajaaa

+
i a

+
j

∣
∣
〉

= δai
〈 ∣
∣aja

+
j

∣
∣
〉
−

〈 ∣
∣aja

+
i aaa

+
j

∣
∣
〉

= δai − δaj
〈 ∣
∣aja

+
i

∣
∣
〉
+
〈 ∣
∣aja

+
i a

+
j aa

∣
∣
〉

= δai (2.57)Matrix elements of more ompliated operator strings like Hamiltonianbetween various determinants would be however very tedious to evaluate inthis way. A more onvenient method for evaluation of matrix elements isdesribed in the following subsetion.2.3.2 Normal-Ordered Operators and the Wik's Theo-remIt has just been shown that in order to evaluate a matrix element of anoperator string, the annihilation operators had to be moved to the right ofthe reation operators by the antiommutation rules so that they give zero byating on a vauum state and also to redue one operator pair of the string toa Kroneker delta. An operator string in whih all the annihilators are to theright of all the reators is said to be normal ordered and its matrix element isobviously zero. The Wik's theorem gives a rule how to easily transform anarbitrary operator string into Kroneker deltas and normal ordered stringsso that matrix element evaluation beomes simple even for very ompliatedoperator strings.Let us �rst introdue a ontration of an operator pair (see Fig. 2.1)by onneting two operators with a line. The braes around a string {. . . }mean that the string inside is permuted to be normal ordered with a signorresponding to a parity of suh permutation. So a ontration of an alreadynormal ordered string gives zero, otherwise a Kroneker delta is produed.The Wik's theorem (Fig. 2.2) says that an arbitrary string of operatorsan be expanded in normal ordered strings with zero and all single, doubleand up to N-tuple (full) ontrations. The great onsequene of the theoremis that a matrix element of an operator string must be just the sum of onlythe fully ontrated normal ordered strings (see Fig. 2.3), beause the non-fully ontrated normal ordered operators would annihilate the ket vauum.22



Figure 2.1: A ontration of an operator pair

Figure 2.2: The Wik's theorem

Figure 2.3: A matrix element evaluation by the Wik's theorem
23



Figure 2.4: An example of a matrix element evaluation by the Wik's theoremThe example of the overlap of two determinants that was shown earlier(2.57) an be evaluated by the Wik's theorem very easily (see Fig. 2.4) sinethere are only two fully ontrated strings, one of whih gives immediatelyzero.2.3.3 The Partile�Hole FormalismAlthough everything neessary for the seond-quantized matrix element eval-uation has already been introdued, the formalism an further be improvedso that formula manipulations is even more onvenient.In the post-Hartree�Fok methods the wavefuntion expansion usuallystarts from the referene on�guration |Φ0〉 rater than a true vauum state.It means that the operator strings in many matrix elements ontain similarsubstrings of reation and (annihilation) operators orresponding to the ket(and bra) on�gurations, di�ering from the referene state by only a fewexitations.By rede�ning the meaning of the reation and annihilation operatorsslightly, those ommon substrings an be redued to only a few operatorswhih desribe the di�erene between the partiular ket (or bra) on�gurationand the referene state. Suh operator elimination leads to muh shorterstrings that have to be evaluated and further simpli�es the formalism.Let us �rst introdue the Fermi vauum |Φ0〉, whih represents the ref-erene on�guration (i.e. a vauum state �lled with N eletrons in a set ofoupied orbitals)
|Φ0〉 = a+i a

+
j . . . | 〉 (2.58)So far the reation operators generated an eletron by ating on a va-uum state. From now on, however, a reator means an operator that eithergenerates a partile (i.e. an eletron in a virtual orbital) or reates a hole(i.e. annihilates an eletron from an oupied orbital). The annihilators arerede�ned analogously. They produed zero by ating on the true vauumbut now the annihilators give zero by ating on the Fermi vauum. It meansthat they either annihilate a partile (i.e. an eletron from a virtual orbital)or annihilate a hole (i.e. reate an eletron in an oupied orbital). The re-de�nition is shematially summarized in Table 2.1 with the usual notationfor hole indies i, j, . . . (i.e. oupied orbitals), partile indies a, b, . . . (i.e.virtual orbitals) and general orbital indies p, q, . . . .24



Creates Annihilates
a+a aa partile
ai a+i holeTable 2.1: De�nition of reation and annihilation operators in the partile�hole formalismAn example of a partile reation

a+a |ijk〉 = |aijk〉 (2.59)a hole reation
ai|ijk〉 = |jk〉 (2.60)and a hole annihilation
a+i |jk〉 = |ijk〉 (2.61)Similarly, the rede�ned normal ordered string is suh that puts the rede-�ned annihilation operators to the right of all reators. For example
a+a a

+
i |ijk〉 = 0 (2.62)demonstrates how a rede�ned normal ordered string gives zero by ating onthe Fermi vauum.The same applies to the ontration de�nition and �nally to the Wik'stheorem too.The Ĥel is usually written in a normal ordered form using the partile�hole formalism. By applying the Wik's theorem to the Hamiltonian

Ĥel =
∑

pq

hpq a
+
p aq +

1

4

∑

pqrs

〈pq || rs〉 a+p a+q asar (2.63)and onsidering all the ases where the general orbital indies run over par-tiles and holes separately, one �nally gets an interesting result
Ĥel =

∑

pq

fpq {a+p aq}
︸ ︷︷ ︸

F̂N

+
1

4

∑

pqrs

〈pq || rs〉 {a+p a+q asar}
︸ ︷︷ ︸

V̂N

︸ ︷︷ ︸

ĤN

+
〈

Φ0

∣
∣
∣Ĥel

∣
∣
∣Φ0

〉

︸ ︷︷ ︸

EHF

(2.64)
or

ĤN = Ĥel −
〈

Φ0

∣
∣
∣Ĥel

∣
∣
∣Φ0

〉 (2.65)so the normal ordered eletroni Hamiltonian ĤN an also be onsidered asa orrelation operator. 25



2.4 The Coupled Cluster MethodThe origin of the Coupled Cluster method dates bak to 1958 where thepriniples were �rst introdued in nulear physis [26,27℄. In 1966 [28℄ it alsoappeared in quantum hemistry as the Coupled Pair Many Eletron Theory(CPMET) 2 and only in the late 1970s [29,30℄ the omputer implementationsallowed the CC method to be applied also to systems of real hemial interest.The exponential ansatz (2.47) of the wavefuntion has an analogy in theluster expansion of the on�guration integral in statistial physis and henethe method got its name.The oupled luster orrelation energy expression an be obtained fromthe Shrödinger equation by using the normal ordered eletroni Hamilto-nian. The Shrödinger equation thus beomes
ĤN eT̂ |Φ0〉 =

(
ECC −EHF

)

︸ ︷︷ ︸

∆ECC

eT̂ |Φ0〉 (2.66)and by multiplying it from left by the e−T̂ operator and projeting by theFermi vauum, the energy yields
∆ECC =

〈

Φ0

∣
∣
∣e−T̂ ĤN eT̂

∣
∣
∣Φ0

〉 (2.67)In a similar way, projeting by exited on�gurations leads to sets ofequations for the luster amplitudes. Thus the T̂1 equations read
〈

Φa
i

∣
∣
∣e−T̂ ĤN eT̂

∣
∣
∣Φ0

〉

= 0 (2.68)
T̂2 equations

〈

Φab
ij

∣
∣
∣e−T̂ ĤN eT̂

∣
∣
∣Φ0

〉

= 0 (2.69)and analogially also the equations for higher luster amplitudes.2.4.1 The Conneted Cluster ExpansionThe reason why the energy expression (2.67) and the equations for the lusteramplitudes (2.68) and (2.69) are derived in the presented way is that notonly the amplitude equations are unoupled from the energy, but also thatthe similarity transformed Hamiltonian an onveniently be expanded by theBaker�Campbell�Hausdor� formula (BCH) and naturally trunated.The BCH expansion reads2an equivalent of the CCD method in the modern terminology
26



e−T̂ ĤN eT̂ = ĤN +
[

ĤN, T̂
]

+
1

2!

[[

ĤN, T̂
]

, T̂
]

+
1

3!

[[[

ĤN, T̂
]

, T̂
]

, T̂
]

+
1

4!
. . . (2.70)By appliation of the Wik's theorem and evaluating the ommutators it anbe shown that this expansion is trunated after the fourth nested ommutatorand results in the following form

e−T̂ ĤN eT̂ =

(

ĤN + ĤNT̂ +
1

2!
ĤNT̂

2 +
1

3!
ĤNT̂

3 +
1

4!
ĤNT̂

4

)

C

=
(

ĤN eT̂
)

C
(2.71)where the symbol C stands for onneted terms only. The onneted termmeans that there must be at least one ontration line between the ĤN andeah of the luster operators to the right of it, otherwise the ommutatorswould produe zero. And beause there are at most four operators in theHamiltonian (in its two-eletron part), there an be at most four ontrationlines leading from it and thus the expansion naturally trunates after the

ĤNT̂
4 term.The total luster operator T̂ is usually trunated to a ertain level ofexitation. For instane the mostly used CCSD approximation involves onlythe single and double exitation luster operators (T̂ = T̂1 + T̂2), while theCCSDT method inludes also the triples (T̂3) in addition.Nevertheless, after substituting (2.71) into (2.67) and evaluating, the �naloupled luster energy expression beomes
∆ECC =

∑

i
a

fiat
a
i +

1

4

∑

ij
ab

〈ij || ab〉 tabij +
1

2

∑

ij
ab

〈ij || ab〉 tai tbj (2.72)whih depends only on the T̂1 and T̂2 amplitudes regardless the level of trun-ation of the total luster operator T̂ . The ontribution of higher exitationsto the oupled luster energy is thus only indiret via the equations in whihthe T̂1 and T̂2 amplitudes are determined.Analogially also the amplitude equations (2.68) and (2.69) for a givenlevel of trunation of the luster operator T̂ an be evaluated to �nal algebraiformulas by using the onneted luster expansion (2.71) and the Wik'stheorem. However, the additional string of the bra operators reates so many27



ontration possibilities to onsider that even the Wik's theorem appliationbeomes too ompliated and the diagrammati tehnique has to be employedinstead.2.4.2 Size-Extensivity and Size-ConsistenyAt this point, the meaning of the two entities should be brie�y explained sinesize-extensivity underlines the importane of the oupled luster methodwhile size-onsisteny gives rise to multireferene theories.These terms are usually best explained on an example of two noninter-ating systems like a dimer of two in�nitely distant water moleules A andB and omparing energy additivity for CC and CI methods.Moleule A has the following CC wavefuntion
|ACC〉 = eT̂A |AHF〉 (2.73)and the CI wavefuntion

|ACI〉 =
(

1 + ĈA

)

|AHF〉 (2.74)The wavefuntions of the B moleule are analogous. The CC wavefuntionof the noninterating dimer would be
|ABCC〉 = eT̂A+T̂B |AHF〉 |BHF〉

= eT̂A |AHF〉 eT̂B |BHF〉
= |ACC〉 |BCC〉 (2.75)whih diretly shows the additivity of CC energy for noninterating systems

ECC
AB = ECC

A + ECC
B (2.76)where the Hamiltonian is given as

ĤAB = ĤA + ĤB (2.77)By ontrast, the CI wavefuntion
|ABCI〉 =

(

1 + ĈA + ĈB

)

|AHF〉 |BHF〉 (2.78)is not fatorizable (exept for the Full-CI expansion, whih is proper from itsnature) and hene the trunated CI method annot give proper energy of thesupersystem. The CC method is thus said to be size-onsistent (regardlessthe level of the T̂ operator trunation) while the trunated CI method is not.It has been shown how energy of the CC and CI methods sale when a sys-tem with noninterating omponents is studied and suh proper saling wasalled size-onsisteny. A method should, however, provide right saling of28



the energy regardless the system being investigated. That means not only toproperly desribe the noninterating subsystems, but just any system shouldsale appropriately with the number of eletrons. This is a mathematialfeature of eah partiular method and is referred to as size-extensivity.The trunated CI method is not size-extensive sine the formulas fromwhih the trunated CI oe�ients an be obtained are oupled with energy(whih is dependent on the number of eletrons) but do not involve higherexitations that are present in the orresponding (size-extensive) Full-CI for-mulas and whih anel the inorret saling. Therefore an approximateDavidson orretion for the size-extensivity [7, 8℄ has to be applied.The terms whih are not ompensated for the saling error in the trun-ated CI method ome from disonneted terms (diagrams). The CC method,however, ontains only onneted terms (diagrams) in the energy expressionfor any level of the luster operator trunation and beause the CC amplitudeequations are unoupled from energy, it is thus guaranteed that the oupledluster method is size-extensive.The term size-onsisteny has, however, a broader meaning. A size-onsistent method must be size-extensive and must also properly desribeseparation (dissoiation) into omponents. This depends on the partiularmoleular system. Studying a dissoiation of a dimer of Fluorine moleulesby the oupled luster method would lead to size-onsistent results while adissoiation of a single Fluorine moleule into atoms would not. For theseases a treatment of multireferene methods is needed.2.5 The Hilbert Spae Multireferene CoupledCluster MethodsIn multireferene post-Hartree�Fok methods the several referene on�gu-rations enable investigation of systems in whih the non-dynami orrelationplays role in qualitatively orret desription of the potential energy surfae.This involves ases like dissoiation of moleules into fragments or nonequi-librium geometries (twisted ethylene). But generally other quasi-degeneratestates like a singlet arbene moleule where single-referene methods om-pletely fail to desribe a realisti potential energy surfae and often even failto onverge require the use of multireferene methods. Another example ofa neessary multireferene treatment are systems with spin that annot bedesribed by a single Slater determinant like the 1∆ state of O2 moleule.Moreover, the multireferene desription an in e�et partially ompensatethe size-extensivity error of the trunated single-referene CI method due tothe presene of higher exitations.There is no unique multireferene generalization of the exponential ou-pled luster ansatz and thus many various approahes exist, whih inludethe Hilbert spae [31℄ and Fok spae methods [32�35℄, redued multirefer-29



ene CC sheme [36�38℄ or tailored CC [39, 40℄ or even methods employingonly single Fermi vauum [41�49℄.In ontrast to the Fok spae formalism whih de�nes only one waveoperator ating on several setors of the Fok spae, the Hilbert spae mul-tireferene oupled luster methods expand the wavefuntion similarly likethe single-referene method but from several referene on�gurations so thateah referene determinant has its own luster operator. Unlike the single-referene CC, the MRCC energy is then obtained as an eigenvalue of ane�etive Hamiltonian. In state-universal methods, all the eigenstates havephysial meaning of the ground and the exited states. In state-spei�methods, by ontrast, only one spei� state is physial and the other eigen-solutions are arti�ial. The main advantage of the state-spei� methodsover the state-universal or even the Fok spae formalism is their resistaneto intruder states.In the following, the theory of the Hilbert spae multireferene oupledluster methods that onern this thesis is presented.2.5.1 The State-Spei� Multireferene Brillouin�Wigner Coupled Cluster method (MR BWCC)The several referene on�gurations |Φµ〉 form a model spae P with a pro-jetion operator
P̂ =

M∑

µ=1

|Φµ〉〈Φµ| (2.79)and its orthogonal omplement Q = 1− P.Within the model spae a model wavefuntion
|ΨP

α 〉 =
M∑

µ=1

cαµ|Φµ〉 (2.80)is onstruted where the oe�ients cαµ are not known a priori. The exatwavefuntion |Ψα〉 is obtained from the model wavefuntion by the state-spei� wave operator Ω̂α

|Ψα〉 = Ω̂α|ΨP
α 〉 (2.81)and is required to ful�ll the intermediate normalization

〈
Ψα|ΨP

α

〉
= 1 (2.82)The wave operator is taken in the form of Jeziorski�Monkhorst ansatz [31℄

Ω̂α =

M∑

µ=1

eT̂ (µ) |Φµ〉〈Φµ| (2.83)30



The index µ in the luster operators T (µ) denotes that the exitations aredone with respet to µ-th referene on�guration as a Fermi vauum andthat eah referene on�guration has its own set of independent amplitudes.The amplitudes that orrespond to mutual exitations between the refereneon�gurations are by de�nition set to zero.The exat energy of the αth state Eα is obtained as the αth eigenvalueof the e�etive Hamiltonian Ĥeff on the model spae
Ĥeff |ΨP

α 〉 = Eα|ΨP
α 〉 (2.84)whih is a non-Hermitian operator de�ned as

Ĥeff = P̂ ĤΩ̂αP̂ (2.85)As a state-spei� method, only the αth state has physial meaning.The oupled luster amplitude equations are obtained by inserting thewave operator into the generalized Bloh equation [50℄
ĤΩ̂αP̂ − ηEαΩ̂αP̂ − (1− η)Ω̂αĤ

eff
α = 0 (2.86)In this equation, η is an arbitrary parameter between zero and one, with η = 0orresponding to the Rayleigh-Shrödinger perturbation theory and η = 1 tothe Brillouin�Wigner theory. The η�saled term in (2.86), whih is hara-teristi for the Brillouin-Wigner theory, orresponds to unlinked diagrams,leading to the size-inextensivity of the MR BWCC method. Therefore, aorretion for size-extensivity is neessary. Two orretions were suggestedwhih an be obtained from the above ontinuous transition from whih,however, the (1 − η)-saled oupling terms are omitted. This leads to thefollowing CC amplitude equations

〈

Φϑ

∣
∣
∣ĤeT̂ (µ)

∣
∣
∣Φµ

〉

C
+ η

〈

Φϑ

∣
∣
∣ĤeT̂ (µ)

∣
∣
∣Φµ

〉

DC

−ηEα

〈

Φϑ

∣
∣
∣eT̂ (µ)

∣
∣
∣Φµ

〉

= 0 (2.87)in whih the C and DC labels denote the onneted and disonneted dia-grams, respetively. In the a posteriori orretion [51℄, after onverging theequations (2.87) with η = 1, one additional iteration of luster equations isperformed while setting η = 0. In the iterative orretion, however, theseterms are gradually saled to zero by suessive iterations of the luster equa-tions and the onverged result orresponds to η = 0.Despite the unpleasant onsequene of the Brillouin�Wigner formalismthat the method is not size-extensive a priori, two advantages also arise.Sine the Brillouin�Wigner resolvent has the true energy in its denominator,intruder state problems, in whih the denominator goes to zero and makesnumerial di�ulties, are avoided. This is however not true when the itera-tive orretion is being applied, whih often faes to onvergene problems.31



The other advantage is that the CC amplitude equations (2.87) of di�erentreferene on�gurations are oupled only via the energy so the method saleslinearly with the size of the referene spae.The method has been used to study many hemially interesting systemsat CCSD level [52�60℄. Later it was also provided with onneted triplesontribution to involve more dynamial orrelation at an approximate itera-tive [61℄, non-iterative [18℄ and �nally full iterative MR BWCCSDT level [62℄.2.5.2 The State-Universal Multireferene CoupledCluster method (SU MRCC)The Hilbert spae MRCC theory is similar to the method above, exept thatthe wave operator is state-universal and the transition of the Bloh equation[50℄ to the Kuharski�Bartlet formulation of the state-universal MRCC [15℄leads to the amplitude equations
〈

Φϑ

∣
∣
∣ĤeT̂ (µ)

∣
∣
∣Φµ

〉

C
+ η

〈

Φϑ

∣
∣
∣ĤeT̂ (µ)

∣
∣
∣Φµ

〉

DC

−ηEα

〈

Φϑ

∣
∣
∣eT̂ (µ)

∣
∣
∣Φµ

〉

−(1− η)
∑

ν∈P,ν 6=µ

{〈

Φϑ

∣
∣
∣eT̂ (ν)

∣
∣
∣Φν

〉

Ĥeff
νµ

}

C
= 0 (2.88)whih are oupled between di�erent referene on�gurations.2.5.3 The State-Spei� Multireferene MukherjeeCoupled Cluster method (MR MkCC)In ontrast to the Brillouin�Wigner MRCC theory, the derivation ofMR MkCC method starts by the following resolution of identity

1 = eT̂ (µ) e−T̂ (µ)

= eT̂ (µ) (P +Q) e−T̂ (µ)

=

P∑

ν

eT̂ (µ) |ν〉〈ν| e−T̂ (µ) + eT̂ (µ) Q e−T̂ (µ) (2.89)whih is inserted from the left to the Shrödinger equation
ĤΩ̂α|ΨP

α 〉 = EαΩ̂α|ΨP
α 〉 (2.90)Subsequent interhange of the summation indies µ and ν in the �rst termyields to 32



P∑

µ

{ P∑

ν

eT̂ (ν) |Φµ〉Heff
µν c

α
ν

+eT̂ (µ) Q e−T̂ (µ) Ĥ eT̂ (µ) |Φµ〉 cαµ
−Eα eT̂ (µ) |Φµ〉 cαµ

}

= 0 (2.91)The su�ieny onditions are then applied to resolve the redundany of theJeziorski�Monkhorst ansatz in the state-spei� ontext, requiring that eah
µth ontribution of the above summation is equal to zero. The equationsfor the luster amplitudes are �nally obtained by multiplying the resultingequation from the left by e−T̂ (µ) and projeting to exited on�gurations,whih gives

〈

Φϑ

∣
∣
∣e−T̂ (µ)ĤeT̂ (µ)

∣
∣
∣Φµ

〉

cαµ

+
P∑

ν 6=µ

Heff
µν c

α
ν

〈

Φϑ

∣
∣
∣e−T̂ (µ)eT̂ (ν)

∣
∣
∣Φµ

〉

= 0 (2.92)Unoupled Approximation to MR MkCCMukherjee et al. [63,64℄ suggested to approximate the luster operator T̂ (ν) inthe oupling term 〈

Φϑ

∣
∣
∣e−T̂ (µ)eT̂ (ν)

∣
∣
∣Φµ

〉 of (2.92) by T̂
′

ν(µ) whih is atuallya subset of T̂ (µ) ontaining only suh exitation operators that give nonzerowhen ating on |Φν〉. Thus the amplitudes are given by
t
′ a...
ν i... =

{

ta...i... if i · · · ∈ occ(ν); a · · · ∈ virt(ν)

0 otherwise
(2.93)By further de�ning a omplement luster operator

T̄ν(µ) = T̂ (µ)− T̂
′

ν(µ) (2.94)the oupling term beomes 〈Φϑ

∣
∣e−T̄ν(µ)

∣
∣Φµ

〉.In the ontext of the triples, the theory has been reently further inves-tigated by Demel et al. [65℄.2.6 Analytial Gradient of the Hartree�FokEnergyAlthough not diretly neessary for derivation of the oupled luster gradientformulas, the example of the Hartree�Fok energy derivative helps to intro-due the basi priniples and terms like skeletons and U matries whih areommonly used in the analytial gradient theory.33



Before di�erentiating the Hartree�Fok eletroni energy formula
ERHF = 2

N/2
∑

i

hii +

N/2
∑

ij

[2 (ii|jj)− (ij|ji)] (2.95)let us �rst show how derivatives of the LCAO oe�ients are usually ex-pressed. Starting from an expansion of a moleular orbital |i〉 in the basis ofatomi orbitals by the LCAO oe�ients
|i〉 =

AO∑

µ

|µ〉Cµi (2.96)and di�erentiating with respet to a general perturbation χ

∂ |i〉
∂ χ

=
AO∑

µ

|µ〉 ∂ Cµi

∂ χ
(2.97)the RHS of (2.97) is expanded to the MO basis in terms of U matries

∂ |i〉
∂ χ

=
MO∑

m

|m〉Uχ
mi

=

MO∑

m

AO∑

µ

|µ〉CµmUχ
mi (2.98)By omparing the RHS of (2.97) and the right-hand side of (2.98), the ex-pression for the LCAO oe�ient derivatives in terms of the U matries is�nally obtained and reads

∂ Cµi

∂ χ
=

MO∑

m

Cµm Uχ
mi (2.99)The U matries an be alulated from the oupled perturbed Hartree�Fok equations (CPHF), whih will be desribed at the end of this setion.But now that the U matries have been introdued, the di�erentiation of theHartree�Fok energy expression in MO basis (2.95) an be performed andformally gives

∂ ERHF

∂ χ
= 2

occ∑

i

∂ hii

∂ χ
+

occ∑

ij

[

2
∂ (ii|jj)

∂ χ
− ∂ (ij|ij)

∂ χ

] (2.100)where
∂ hii

∂ χ
= hχ

ii + 2

MO∑

m

Uχ
mihmi (2.101)34



∂ (ii|jj)
∂ χ

= (ii|jj)χ + 2
MO∑

m

[
Uχ
mi (mi|jj) + Uχ

mj (ii|mj)
] (2.102)

∂ (ij|ij)
∂ χ

= (ij|ij)χ + 2

MO∑

m

[
Uχ
mi (mj|ij) + Uχ

mj (im|ij)
] (2.103)where the terms with AO integral derivatives

hχ
ij =

AO∑

µν

Cµi
∂ hµν

∂ χ
Cνj (2.104)and

(ij|kl)χ =

AO∑

µν
̺σ

∂ (µν|̺σ)
∂ χ

CµiCνjC̺kCσl (2.105)are ommonly referred to as the skeletons.After some algebra, the (2.100) however turns out to be independent ofthe U matries and reads
∂ ERHF

∂ χ
= 2

occ∑

i

hχ
ii +

occ∑

ij

[2 (ii|jj)χ − (ij|ij)χ]− 2
occ∑

i

Sχ
ii εi (2.106)where

Sχ
ij =

AO∑

µν

Cµi
∂ Sµν

∂ χ
Cνj (2.107)is a skeleton term of the overlap matrix.The gradient formula (2.106) is then expressed in the AO basis by sub-stituting the skeletons and �nally yields

∂ ERHF

∂ χ
= 2

AO∑

µν

Dµν h
χ
µν +

AO∑

µν
̺σ

{2DµνD̺σ −Dµ̺Dνσ} (µν|̺σ)χ

−2

AO∑

µν

Wµν S
χ
µν (2.108)where

Dµν =
occ∑

i

Cµi Cνi (2.109)35



is the Hartree�Fok one-eletron density matrix and
Wµν =

occ∑

i

Cµi Cνi εi (2.110)is the energy weighted density matrix while using the ommon notation forthe AO integral derivatives
Sχ
µν =

∂ Sµν

∂ χ
(2.111)

hχ
µν =

∂ hµν

∂ χ
(2.112)

(µν|̺σ)χ =
∂ (µν|̺σ)

∂ χ
(2.113)The �nal U-matrix-free gradient formula (2.108) is in aordane to theWigner's 2n + 1 rule whih says that from a wavefuntion exat to the nthorder of a perturbation expansion, an energy of the (2n+ 1)th order an beobtained. And thus from the Hartree�Fok wavefuntion (zeroth order) the�rst energy derivative an be alulated without the need to di�erentiate theLCAO oe�ients.2.6.1 Coupled Perturbed Hartree�Fok Equations(CPHF)It has been shown that U matries are not neessary for evaluation of theHartree�Fok energy gradient. Nevertheless, it is not the ase of higherderivatives and the U matries also play an important role in the analytialgradient theory of the post-HF methods. To obtain them, a set of CPHFequations [66℄ has to be solved for eah gradient oordinate χ.But before introduing the equations, an important relation for the U ma-tries should be derived from the orthonormality ondition for the moleularorbitals

〈j|i〉 = δji
AO∑

µν

〈µ|Cµj Cνi |ν〉 = δji

AO∑

µν

Cµj Sµν Cνi = δji (2.114)Di�erentiating (2.114) with respet to χ gives36



AO∑

µν

∂ Cµi

∂ χ
SµνCνj + Cµi

∂ Sµν

∂ χ
︸ ︷︷ ︸

Sχ
µν

Cνj + CµiSµν
∂ Cνj

∂ χ
= 0 (2.115)By substituting the U matries, the derivative of the ondition �nally be-omes

Uχ
ji + Sχ

ij + Uχ
ij = 0 (2.116)where

Sχ
ij =

AO∑

µν

CµiS
χ
µνCνj = Sχ

ji (2.117)From (2.116), for the diagonal elements of the U matries it then follows
Uχ
ii = −1

2
Sχ
ii (2.118)Without showing the derivation (by di�erentiating the Fok matrix), theCPHF equations read

(εj − εi)U
χ
ij −

virt∑

k

occ∑

l

Uχ
kl Aij,kl = Bχ

ij (2.119)where
Aij,kl = 4 (ij|kl)− (ik|jl)− (il|jk) (2.120)

Bχ
ij = F χ

ij − εjS
χ
ij −

occ∑

kl

Sχ
kl {2 (ij|kl)− (ik|jl)} (2.121)

F χ
ij = hχ

ij +

occ∑

k

{2 (ij|kk)χ − (ik|jk)χ} (2.122)The (2.119) is atually a set of linear equations for #occ × #virt vari-ables from whih the occ-virt bloks of the U matries are obtained. Thetransposed U matrix elements are then alulated from (2.116) and the di-agonals from (2.118). The remaining occ-occ and virt-virt bloks are �nallyalulated expliitly from (2.119) by using the occ-virt bloks
Uχ
ij =

1

εj − εi

{

Bχ
ij +

virt∑

k

occ∑

l

Uχ
kl Aij,kl

} (2.123)
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2.7 Analytial Gradient of the Coupled ClusterEnergyThe analytial energy derivatives of the single-referene oupled luster meth-ods were developed in several groups [67�83℄. It was shown that despite beinga non-variational method, the CC amplitude derivatives need not be deter-mined and only a single, perturbation independent equation must be solved.Instead of a diret di�erentiation of the oupled luster energy formula, whihwould inevitably lead to the derivatives of the luster amplitudes for eahgradient omponent, it is advantageous to onstrut and di�erentiate a La-grangian whih diretly results in solving only a set of linear λ equations,whih are independent of the perturbation parameter and the resulting λamplitudes are thus ommon for all gradient oordinates [10, 84, 85℄.The Lagrangian onsists of the CC energy expression and the CC ampli-tude equations as the onstraints with the unspei�ed oe�ients λΦ alledthe λ amplitudes
L(tΦ, λΦ′) =

〈

Φ0

∣
∣
∣

[

ĤNe
T̂
]

C

∣
∣
∣Φ0

〉

+
∑

Φ′

λΦ′

〈

Φ′
∣
∣
∣

[

ĤNe
T̂
]

C

∣
∣
∣Φ0

〉 (2.124)Here the tΦ means a CC amplitude in the sense of
T̂ =

∑

Φ

tΦτ̂Φ (2.125)
τ̂Φ|Φ0〉 = ±|Φ〉 (2.126)where the τ̂Φ is its orresponding exitation operator (the sign orrespondsto the parity of permutation neessary to bring the string of the exiteddeterminant to a anonial order).Minimizing the Lagrangian with respet to λ and CC amplitudes leadsto solving the CC amplitude equations

∂ L
∂ λΦ′

= 0 (2.127)and the λ equations
∂ L
∂ tΦ

= 0 (2.128)The CC energy gradient formula an then be expressed as a partial derivativeof the Lagrangian and has thus a simple form
38



d∆ECC

d χ
=

dL
d χ

=
∂ L
∂ χ

+
∑

Φ

∂ L
∂ tΦ
︸︷︷︸

0

∂ tΦ
∂ χ

+
∑

Φ′

∂ L
∂ λΦ′

︸ ︷︷ ︸

0

∂ λΦ′

∂ χ

=
∂ L
∂ χ

=
〈

Φ0

∣
∣
∣

[

Ĥχ
Ne

T̂
]

C

∣
∣
∣Φ0

〉

+
∑

Φ′

λΦ′

〈

Φ′
∣
∣
∣

[

Ĥχ
Ne

T̂
]

C

∣
∣
∣Φ0

〉 (2.129)where
Ĥχ

N =
∂ ĤN

∂ χ
(2.130)whih atually orresponds to the generalized Hellman�Feynman theorem,sine the perturbation parameter χ appears expliitly in the Hamiltonianonly.For algebrai manipulations it is pro�table to de�ne the λΦ oe�ientsin terms of a deexitation operator Λ̂

λΦ =
〈

Φ0

∣
∣
∣Λ̂

∣
∣
∣Φ

〉 (2.131)where
Λ̂ =

∑

a
i

λi
a a

+
i aa +

1

4

∑

ab
ij

λij
ab a

+
i a

+
j ab aa + . . . (2.132)The �nal gradient formula thus reads

d∆ECC

d χ
=

〈

Φ0

∣
∣
∣

[

Ĥχ
Ne

T̂
]

C

∣
∣
∣Φ0

〉

+
〈

Φ0

∣
∣
∣Λ̂

[

Ĥχ
Ne

T̂
]

C

∣
∣
∣Φ0

〉 (2.133)2.7.1 The λ EquationStarting from its de�nition equation (2.128) the di�erentiation gives
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0
︷ ︸︸ ︷〈

Φ0

∣
∣
∣−τ̂Φe

−T̂ ĤNe
T̂
∣
∣
∣Φ0

〉

+
〈

Φ0

∣
∣
∣e−T̂ ĤNe

T̂ τ̂Φ

∣
∣
∣Φ0

〉

+
∑

Φ′

λΦ′

〈

Φ′
∣
∣
∣−τ̂Φe

−T̂ ĤNe
T̂
∣
∣
∣Φ0

〉

+

∑

Φ′

λΦ′

〈

Φ′
∣
∣
∣e−T̂ ĤNe

T̂ τ̂Φ

∣
∣
∣Φ0

〉

= 0 (2.134)After some manipulations and using the Λ̂ operator de�nition (2.131) the�nal λ equation beomes
〈

Φ0

∣
∣
∣

[

Λ̂
[

ĤNe
T̂
]

C

]

C

∣
∣
∣Φ

〉

+

∑

Φ′

〈

Φ0

∣
∣
∣

[

ĤNe
T̂
]

C

∣
∣
∣Φ′

〉〈

Φ′
∣
∣
∣Λ̂

∣
∣
∣Φ

〉

+

〈

Φ0

∣
∣
∣

[

ĤNe
T̂
]

C

∣
∣
∣Φ

〉

= 0 (2.135)2.8 Analytial Gradient of the Hilbert SpaeMRCC MethodsThe analytial gradient of energy of the Hilbert spae MRCC methods [2℄is derived analogially to the single-referene CC gradient by using the La-grangian tehnique.For simpliity, let us de�ne a general MRCC amplitude equation as
Qϑ(µ) = 0 (2.136)where µ denotes the partiular Fermi vauum from the model spae and

ϑ represents the bra- on�guration orresponding to the Q(µ) subspae 3.The energy an onveniently be expressed as the eigenvalue of the e�etiveHamiltonian
Eα =

P∑

µν

c̃αν H
eff
νµ c

α
µ (2.137)where the c̃αν and cαµ are omponents of the left and right eigenvetors of the

Ĥeff .The Lagrangian is then given by3That is the subspae ofQ whih orresponds to exitations from the µth Fermi vauum40



L =
P∑

µ,ν

c̃αν c
α
µH

eff
νµ +

P∑

µ

Q(µ)
∑

ϑ

λϑ(µ)Qϑ(µ) (2.138)The λϑ(µ) multipliers are are expressed in terms of the Λ̂(µ) deexitationoperator spei� for eah referene on�guration
λϑ(µ) ≡

〈

Φµ

∣
∣
∣Λ̂(µ)

∣
∣
∣Φϑ

〉 (2.139)for ϑ ∈ Q(µ), while for ν ∈ P the internal λ amplitudes are de�ned to bezero
〈

Φµ

∣
∣
∣Λ̂(µ)

∣
∣
∣Φν

〉

= 0 (2.140)similarly like the internal MRCC amplitudes.The total derivative of the Lagrangian beomes
dL
d χ

=
∂ L
∂ χ

+

P∑

ν

∂ L
∂ c̃αν

∂ c̃αν
∂ χ

+

P∑

µ

∂ L
∂ cαµ

∂ cαµ
∂ χ

+
P∑

µ

Q(µ)
∑

ϑ

∂ L
∂ λϑ(µ)

∂ λϑ(µ)

∂ χ

+
P∑

µ

Q(µ)
∑

ϑ

∂ L
∂ tϑ(µ)

∂ tϑ(µ)

∂ χ
(2.141)The fourth term in the above equation (2.141) vanishes for the onvergedMRCC amplitudes sine

∂ L
∂ λϑ(µ)

= Qϑ(µ) = 0 (2.142)and the �fth term vanishes as well, provided the λ equations are solved
∂ L

∂ tϑ(µ)
= 0 (2.143)If the eigenvetors of the Ĥeff are biorthonormal

P∑

µ

c̃αµc
β
µ = δαβ (2.144)the seond and third terms of (2.141) give zero and the derivative of theMRCC energy beomes 41



dEα

d χ
=

dL
d χ

=
∂ L
∂ χ

=
∂ Eα

∂ χ
+

P∑

µ

Q(µ)
∑

ϑ

λϑ(µ)
∂Qϑ(µ)

∂ χ

=
P∑

µ,ν

c̃αν c
α
µ

∂ Heff
νµ

∂ χ
+

P∑

µ

Q(µ)
∑

ϑ

λϑ(µ)
∂Qϑ(µ)

∂ χ
(2.145)2.8.1 Analytial Gradient of the MR BWCC with theIterative Corretion of Size-ExtensivitySine the MRCC amplitude equation has the simple unoupled form afterthe iterative orretion onverges to zero

Qϑ(µ) ≡
〈

Φϑ

∣
∣
∣e−T̂ (µ)ĤeT̂ (µ)

∣
∣
∣Φµ

〉

= 0 (2.146)the gradient derivation of this MRCC variant is relatively easy.It is onvenient to augment the lambda operator also for internal lambdaamplitudes
〈

Φµ

∣
∣
∣Λ̃(µ)

∣
∣
∣Φν

〉

= c̃αν c
α
µ [ν ∈ P] ,

〈

Φµ

∣
∣
∣Λ̃(µ)

∣
∣
∣Φϑ(µ)

〉

= λϑ(µ) [ϑ ∈ Q(µ)] (2.147)By taking into aount that for a omplete model spae,
Heff

νµ =
〈

Φν

∣
∣
∣ĤeT̂ (µ)

∣
∣
∣Φµ

〉

=
〈

Φν

∣
∣
∣e−T̂ (µ)ĤeT̂ (µ)

∣
∣
∣Φµ

〉 (2.148)the λ equation thus reads
∂

∂ tζ(̺)

P∑

µ

〈

Φµ

∣
∣
∣Λ̃(µ)e−T̂ (µ)ĤeT̂ (µ)

∣
∣
∣Φµ

〉

= 0 (2.149)Expressing the luster operator T̂ (µ) in analogy to (2.125), the λ equationbeomes
〈

Φ̺

∣
∣
∣Λ̃(̺)e−T̂ (̺)ĤeT̂ (̺)

∣
∣
∣Φζ

〉

−
〈

Φ̺

∣
∣
∣Λ̃(̺)τζ(̺)e

−T̂ (̺)ĤeT̂ (̺)
∣
∣
∣Φ̺

〉

= 0 (2.150)42



The seond term an be simpli�ed by inserting the resolution of identity
1 = P + Q(ρ) after the τζ(ρ) operator and taking into aount that the
Q-spae projetion vanishes for onverged t amplitudes, whih yields

〈

Φ̺

∣
∣
∣Λ̃(̺)e−T̂ (̺)ĤeT̂ (̺)

∣
∣
∣Φζ

〉

−
P∑

ν

〈

Φ̺

∣
∣
∣Λ̃(̺)τζ(̺)

∣
∣
∣Φν

〉

Heff
ν̺ = 0 (2.151)The ν = ρ term an be moved from the sum to the �rst term, whih yieldsthe �nal form of the lambda equation

〈

Φ̺

∣
∣
∣Λ̃(̺)

[

e−T̂ (̺)ĤeT̂ (̺) −Heff
̺̺

]∣
∣
∣Φζ

〉

−
∑

ν ∈P,ν 6=̺

〈

Φ̺

∣
∣
∣Λ̃(̺)τζ(̺)

∣
∣
∣Φν

〉

Heff
ν̺ = 0 (2.152)Sine Φν is an internal exitation from Φ̺ and τ̂ζ(̺) is an exitation opera-tor with respet to Φ̺, τ̂ζ(̺)|Φν〉 is a semi-internal exitation from Φρ andthe seond term an be nonzero only if its exitation rank does not exeedthe deexitation level inluded in Λ̃. Note that the lambda equations foramplitudes of di�erent referene on�gurations are unoupled.Beause of the onvenient de�nition of the Λ̃ operator in (2.147), the �nalgradient formula (2.145) an be written in a ompat form

dEα

d χ
=

P∑

µ,ν

c̃αν c
α
µ

〈

Φν

∣
∣
∣e−T̂ (µ)ĤχeT̂ (µ)

∣
∣
∣Φµ

〉

+

P∑

µ

Q(µ)
∑

ϑ

λϑ(µ)
〈

Φϑ

∣
∣
∣e−T̂ (µ)ĤχeT̂ (µ)

∣
∣
∣Φµ

〉

=
P∑

µ

〈

Φµ

∣
∣
∣Λ̃(µ)e−T̂ (µ)ĤχeT̂ (µ)

∣
∣
∣Φµ

〉

= 0 (2.153)The gradient thus onsists of independent ontributions from eah refereneon�guration.2.8.2 Analytial Gradient of the MR BWCC withoutCorretion of Size-ExtensivityFor the unorreted MR BWCC the situation is a bit more ompliated, sinethe amplitude equations are now oupled via the total energy Eα

Qϑ(µ) ≡
〈

Φϑ

∣
∣
∣ĤeT̂ (µ)

∣
∣
∣Φµ

〉

− Eα

〈

Φϑ

∣
∣
∣eT̂ (µ)

∣
∣
∣Φµ

〉

= 0 (2.154)43



However, it turns out that this oupling leads to separable expressionsand terms mixing t or λ amplitudes of di�erent referene on�gurations neverarise.Similarly like in the iteratively orreted variant, the term with the Heff
νµderivative an be moved to the modi�ed Λ̃ operator term whih leads to thefollowing λ equation

〈

Φ̺

∣
∣
∣Λ̃(̺)ĤeT̂ (̺)

∣
∣
∣Φζ

〉

−
P∑

µ

Q(µ)
∑

ϑ

λϑ(µ)×
[

∂ Eα

∂ tζ(̺)

〈

Φϑ

∣
∣
∣eT̂ (µ)

∣
∣
∣Φµ

〉

+ Eα
∂

∂ tζ(̺)

〈

Φϑ

∣
∣
∣eT̂ (µ)

∣
∣
∣Φµ

〉]

= 0 (2.155)By di�erentiating the energy from (2.137) using the biorthonormal eigenve-tors (2.144) and onsidering that in a omplete model spae,
〈

Φν

∣
∣
∣eT̂ (µ)

∣
∣
∣Φµ

〉

= δνµ (2.156)the λ equation yields
〈

Φ̺

∣
∣
∣Λ̃(̺)ĤeT̂ (̺)

∣
∣
∣Φζ

〉

−ω

P∑

σ

c̃ασc
α
̺

〈

Φσ

∣
∣
∣ĤeT̂ (̺)

∣
∣
∣Φζ

〉

−Eα

〈

Φ̺

∣
∣
∣Λ̃(̺)eT̂ (̺)

∣
∣
∣Φζ

〉

= 0 (2.157)where
ω =

P∑

µ

〈

Φµ

∣
∣
∣Λ̃(µ)eT̂ (µ)

∣
∣
∣Φµ

〉 (2.158)By further rede�ning the Λ̃ operator
〈
Φµ

∣
∣Λ̄(µ)

∣
∣Φν

〉
= (1− ω)c̃αν c

α
µ [ν ∈ P] ,

〈
Φµ

∣
∣Λ̄(µ)

∣
∣Φϑ(µ)

〉
= λϑ(µ) [ϑ ∈ Q(µ)] (2.159)the λ equation �nally beomes

〈

Φ̺

∣
∣
∣Λ̄(̺)ĤeT̂ (̺)

∣
∣
∣Φζ

〉

− Eα

〈

Φ̺

∣
∣
∣Λ̄(̺)eT̂ (̺)

∣
∣
∣Φζ

〉

= 0 (2.160)whih ouples di�erent referene on�gurations only via the energy.The energy gradient reads 44



dEα

d χ
=

P∑

µν

c̃αν c
α
µ

〈

Φν

∣
∣
∣ĤχeT̂ (µ)

∣
∣
∣Φµ

〉

+

P∑

µ

Q(µ)
∑

ϑ

λϑ(µ)
〈

Φϑ

∣
∣
∣ĤχeT̂ (µ)

∣
∣
∣Φµ

〉

−∂ Eα

∂ χ

P∑

µ

Q(µ)
∑

ϑ

λϑ(µ)
〈

Φϑ

∣
∣
∣eT̂ (µ)

∣
∣
∣Φµ

〉 (2.161)The sum in the last term is atually equal to the de�nition of the fator ωand sine the partial energy derivative gives
∂ Eα

∂ χ
=

P∑

µν

c̃αν c
α
µ

〈

Φν

∣
∣
∣ĤχeT̂ (µ)

∣
∣
∣Φµ

〉 (2.162)the �nal gradient formula yields
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∣
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∣Λ̄(µ)ĤχeT̂ (µ)

∣
∣
∣Φµ

〉 (2.163)Again, the gradient sums ontributions of di�erent referene on�gura-tions with oupling given only by the Ĥeff eigenvetor oe�ients and thefator ω.2.8.3 Analytial Gradient of the SU MRCCIn ontrast to the MR BWCC method, the amplitude equations of theKuharski�Bartlett formulation of the state-universal MRCC are oupledbetween di�erent referene on�gurations
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νµ = 0 (2.164)The λ equation thus reads

45



P∑

µν

c̃αν c
α
µ

∂ Heff
νµ

∂ tζ(̺)
+

+

P∑

µ

Q(µ)
∑

ϑ

λϑ(µ)

[
∂

∂ tζ(̺)

〈

Φϑ

∣
∣
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= 0 (2.165)By using the Λ̃ operator from (2.147) and treating the derivatives of the lasttwo terms like in the MR BWCC, the λ equation yields
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= 0 (2.166)After introduing an "e�etive lambda" matrix elements as
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〉 (2.167)the �nal λ equation beomes
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= 0 (2.168)The gradient of energy by (2.145) reads
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〉 (2.169)whih an be rewritten using the above de�nitions of Λ̃ and Leff
̺µ to the �nalompat form
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〈Φµ|Λ̃(µ)−
P∑

ν

Leff
µν〈Φν |

]

ĤχeT̂ (µ)|Φµ〉 (2.170)Both the λ equation and the gradient formula thus mix CC and λ amplitudesof di�erent referene on�gurations.2.9 Perturbative Triples Contribution in theMR MkCC MethodThe perturbative triples orretion in MRCC methods was �rst introdued inthe SUMRCCSD(T) approah [17℄ and reently also in the MR BWCCSD(T)method with the a posteriori size-extensivity orretion [18℄. The �rst sug-gested perturbative triples ontribution in the multireferene Mukherjee ou-pled luster theory, denoted here as MR MkCCSD(Tu), has been derived inan analogous way [19℄. A brief introdution to these approahes is presentedin the following.After the MR CCSD amplitude equations are solved, the approximate T̂3amplitudes are alulated from
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Dabc
ijk(µ) (2.171)for the SU MRCC method or from an unoupled equation
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Dabc
ijk(µ)

(2.172)for the MR BWCCmethod, in whih the T̂2 amplitudes were already providedwith the a posteriori size-extensivity orretion. The e�et of non-diagonal47



Fok matrix elements is negleted so that the T̂3 equation does not requirean iterative solution.The perturbative triples orretion enters the e�etive Hamiltonian whereits diagonal elements are analogous to the single-referene CCSD(T) energyorretion
Heff

µµ(T) = Heff
µµ(CCSD) + E

[4]
T (µ) + E

[5]
ST(µ) + E

[4]
ST(µ) (2.173)where the fourth and �fth order terms are given by
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∣
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a
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abc
ijk(µ) (2.176)where

sai (µ) =
1

4

∑

jk
bc

〈bc || jk〉 tabcijk(µ) (2.177)Due to the lak of the oupling terms in (2.172), the E
[4]
T term in theMR BWCCSD(T) method beomes symmetri and resembles the single-referene CCSD(T)

E
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T (µ) =

1

36
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abc
ijk(µ) (2.178)The o�-diagonal elements of the e�etive Hamiltonian are omputed atthe CCSDT-1 level with linear T̂3 ontribution to both T̂1 and T̂2 equations
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∣Φµ
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C
(2.179)The MR CCSD(T) energy is �nally obtained by diagonalization of the(T)-orreted e�etive Hamiltonian.In the MR MkCCSD(Tn) approximation, the oupling terms of the T̂3equation, whih mix the tabcijk(µ) and tabcijk(ν) amplitudes, are negleted so thatthe equation atually beomes idential to (2.172) and thus does not re-quire an iterative solution. The E

[4]
T (µ) term is also symmetri like in theMR BWCCSD(T). However an intruder state problem an ome up if thedenominator of the (2.172) equation approahes zero.48



2.9.1 MR MkCCSD(Ti) MethodLater, a quite di�erent derivation appeared [20℄, denoted here asMR MkCCSD(Ti), whih does not su�er from intruder states. It is basedon a perturbative analysis of the MR MkCC Lagrangian [20,86,87℄ and rep-resents a multireferene generalization of the Λ-CCSD(T) method [88�91℄.In ontrast to the MR CCSD(T) approahes desribed above in whih the(T)-orretion entered the e�etive Hamiltonian before diagonalization, theperturbative triples orretion to the energy is here alulated expliitly.Thus instead of the �perturb then diagonalize", the �diagonalize then per-turb" sheme is used.The triples equation ontains the linear oupling terms
〈

Φϑ

∣
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〉

linear
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⋂
occ(ν); a, b, c ∈ virt(µ)

⋂
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0 otherwise (2.181)The tabcijk(µ) terms in the T̂3 amplitude equation (2.92) are moved to the left-hand side and after an appliation of the Ĥeff eigenvalue equation, the �nal
T̂3 equation will ontain the Brillouin�Wigner type denominator, yielding
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ijk(µ) + (Eα −Heff

µµ)
(2.182)The energy orretions are then alulated expliitly to the energy ob-tained from the MR MkCCSD e�etive Hamiltonian. The E

[4]
T (µ) term isnonsymmetri beause of the ouplings. Although this method is resistantto intruders beause of the BW-type denominator in (2.182), the T̂3 equa-tions have to be solved iteratively with the omplexity O(N 6) due to thepresene of the oupling terms.2.9.2 MR MkCCSD(Tu) ApproximationIn order to avoid the need to iteratively solve the T̂3 equation like in theMR MkCCSD(Ti) method, an approah based on the unoupled approxima-tion to MR MkCC has been suggested [3℄, denoted by MR MkCCSD(Tu).The triples equation thus beomes
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whih does not mix amplitudes of di�erent referenes and an thus be solvedexpliitly. If all the linear T̂3 terms are moved to the left-hand side, theequation yields
tabcijk(µ) =
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c
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]

Heff
µν
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cαµ

} (2.184)where the † sign at the sum means that only suh terms are inluded in whihat least one of the orbitals i, j, k, a, b or c has di�erent oupation in the µthand νth referene.By omparing with equation (2.182) of MR MkCCSD(Ti) variant, it is ob-vious that the appropriate T̂3 amplitudes an be obtained from (2.184) in justone step. Moreover, beause of the denominator shift, the equation an beresistant to intruders and has thus an advantage over the MR MkCCSD(Tn)method. Although the denominator shift is in general di�erent from the onein equation (2.182), whih is a omplete BW-type shift, its analysis for themost ommon CAS(2,2) referene spae [3℄ showed that the shift in (2.184)should be su�ient to avoid the intruder state problems.The method performs the �perturb then diagonalize" sheme with theasymmetri form of the E[4]
T (µ) term. The �diagonalize then perturb" variantis also possible, but test alulations showed that the orreted energy valuesdi�er only in the order of 10−6a.u.
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Chapter 3Implementation of the AnalytialGradient
3.1 Pilot ImplementationThe pilot implementation of all three desribed MRCC analytial gradientvariants at the CCSD level has been oded in a program pakage alled TINY,whih is mainly written and maintained by Dr. Ji°í Pittner as a referene,benhmarking and debugging tool used during development of various mul-tireferene oupled luster models. It features its own modules for integraland integral derivatives evaluation, SCF, CPHF, integral transformation,full-CI and MRCC. It is a C++ ode widely based on a free 1 open-soureC++ library interfae to the BLAS [93℄ and LAPACK [94℄ linear algebralibrary routines, alled LA [95℄. That enables onvenient oding of variousvetor and matrix operations while keeping the high e�ieny of the pro-gram.The ore of the implementation is based on the Knowles�Handy algorithm[96,97℄ for ation of a Full-CI expanded Hamiltonian on a trial vetor withoutthe need to onstrut the expanded Hamiltonian expliitly. This is alsoused for the Hamiltonian derivative Ĥχ and generalized for T̂ (µ) and Λ̂(µ)operators whih take into aount the partiular Fermi vaua with respet towhih the amplitudes are de�ned. This algorithm is used for straightforwardevaluation of various terms in the amplitude or λ equations as well as in thegradient formulae.The amplitude equation is solved iteratively using a residual vetor thatvanishes when the respetive oupled luster equations are onverged, simi-larly as in Ref. [98℄. The amplitude update is performed by the formula

tnewϑ (µ) = toldϑ (µ) +

〈
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∣
∣
∣τ̂

†
ϑ(µ)

∣
∣
∣Φϑ

〉

Qϑ(µ)

Eα −Heff
µµ +Dϑ(µ)

(3.1)1the library is distributed under the Gnu General Publi Liense (v3) [92℄51



where the �rst term in the numerator is just a sign fator of a given exita-tion and Dϑ(µ) is the standard CC denominator used in the single-refereneamplitude equation updates, whih onsists of the diagonal elements of theFok matrix with respet to the Fermi vauum |Φµ〉.Sine Qϑ(µ) vanishes at onvergene, the hoie of the denominator isin priniple arbitrary and in�uenes only the onvergene rate. A dynamidenominator shift is thus implemented, ensuring that the denominator neverapproahes zero.The λ equation is �rst onjugated so that it has similar struture likethe MRCC amplitude equation and then is solved analogously. Only thedenominator is set to Dϑ(µ) + C where the onstant C is set so that alldenominators are in absolute value greater than one.The e�et of moleular orbital relaxation in response to the perturbationis involved in terms of the U matries in the integral transformation formulas
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∂ (ij|kl)

∂ χ
=

AO∑

µν
̺σ

CµiCνjC̺kCσl
∂ (µν|̺σ)

∂ χ

+
AO∑

µν
̺σ

MO∑

m

(µν|̺σ)

×
[

CµmU
χ
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χ
mkCσl + CµiCνjC̺kCσmU
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] (3.3)whih thus requires to solve the CPHF equations for eah gradient ompo-nent.3.2 Testing of the Analytial Gradient Imple-mentationTesting of the implemented analytial gradients was performed on methylene
CH2 and silylene SiH2 moleules in the 1A1 state. These systems have al-most single-referene harater in their equilibrium geometry, whih has the52



bond angle about 100◦ in the C2v symmetry, but by opening the bond anglethe multireferene desription inreases up to two equally weighted refereneon�gurations
|Φ0〉 = (core) (a1)

2 (b1)
2 (a1)

2 (b2)
0 (3.4)

|Φ1〉 = (core) (a1)
2 (b1)

2 (a1)
0 (b2)

2 (3.5)when the moleules beome linear. The possible monoexited on�gurationswithin the two ative orbitals do not ontribute due to the C2v symmetry.First, the energy and its analytial gradient of the CH2 moleule werealulated for di�erent values of the bond angle, ranging from 100◦ to 179◦desribing thus the transition from an almost single-referene to the exatlytwo-referene system, while keeping a �xed bond length. The moleule waspositioned in suh a way (see Figure 3.1) that the gradient onsisted onlyof three non-zero non-equivalent omponents Cz, Hz and Hy. Two basis

Figure 3.1: Position of the CH2 moleule in the oordinate system and itsthree non-zero non-equivalent gradient omponentssets were employed, the 6�31G and the frozen ore 6�31G*. Figure 3.2shows the energy and analytial gradient dependene on the bond angle fora �xed bond length 1.11 Å in the 6�31G basis for the iteratively orretedBWCCSD method. The other two methods do not di�er neither in energynor its gradient from the iteratively orreted BWCC results by more than
10−3 hartree (hartree/bohr) and provide pitures indistinguishable from oneanother in the same sale.At eah point, a numerial gradient was also alulated by �nite energydi�erenes with the numerial step set to 10−4 bohr. At every displaed ge-ometry the Hartree�Fok orbitals were �rst reoptimized before the MRCC53
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Figure 3.2: Iteratively orreted 2R BWCCSD energy and gradient ompo-nents of CH2 as a funtion of bond angle with �xed C�H bond length 1.11 Åin the 6�31G basisenergy was omputed so that the full orbital relaxation was taken into a-ount. All numerial BWCC gradient alulations were done by the ACES IIprogram sine it has an e�ient MR BWCCSD implementation.The analytial gradient was ompared to the numerial di�erentiation byan average error ∆, given by the formula
∆ =

√
√
√
√ 1

M

M∑

i=1

[(
∂ E

∂ xi

)

analytical

−
(
∂ E

∂ xi

)

numerical

]2 (3.6)where M ranges the non-zero nonequivalent gradient omponents.The dependene of the average error ∆ on the bond angle together witha square of the expansion oe�ient of the �rst referene on�guration de-sribing the varying multireferene harater are shown in Figure 3.3. Themost aurate gradient was provided by the unorreted BWCC method thatgave error values below 10−8 in the whole range of bond angles. Results fromboth basis sets also niely resembled eah other. In ontrast, the averageerrors of the other two methods varied more signi�antly, espeially the it-eratively orreted BWCC that reahed almost 10−6 in two points. Valuesobtained from the two basis sets also onsiderably di�ered in many ases.Nevertheless, for any method the errors never exeeded 10−6 and suh resultis ompletely satisfatory. 54
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A geometry optimization of the two moleules in two basis sets was thenemployed, starting from a shape that was far from the equilibrium geome-try so as to apply the whole range of the multireferene harater. All threemethods performed very well and the λ amplitudes onverged quikly at eahpoint of the optimization path. Sine the pilot implementation didn't allowto use larger basis set than 6�31G* with frozen ore orbitals on the availableomputer resoures so that the results were omparable with experiments, aFull-CI geometry optimization has thus been performed as a referene. Theresults for eah system together with the Full-CI alulation and a ompari-son with experimental values are summarized in Table 3.1 and Table 3.2.Method Basis Energy R ΦBW Unorreted 6-31G -38.942637 1.129 103.76-31G* fz -38.996567 1.116 102.0BW Iter. orr. 6-31G -38.943014 1.128 103.86-31G* fz -38.997243 1.116 102.1SUMRCC 6-31G -38.942991 1.129 103.76-31G* fz -38.997052 1.116 102.0Full-CI 6-31G -38.944209 1.130 103.66-31G* fz -38.999103 1.118 101.8Experiment [99℄ 1.107 ± 0.002 102.4 ± 0.4Table 3.1: 1A1 CH2 optimal energy and geometry obtained from all threeMRCC methods in 6�31G and 6�31G* frozen ore basis sets ompared tothe Full-CI and an experiment. Energy is in atomi units, bond length in Åand bond angle in degrees.All the methods proved to give results very lose to the Full-CI values,di�ering by the order of 10−3 Å and 0.1◦. The largest di�erene from theFull-CI geometries represents the SiH2 bond angle, whih was overestimatedby 0.4◦ by the SU MRCCSD method using the smaller basis set. In the largerbasis, the iteratively orreted MR BWCCSD underestimated the Si�H bondlength by 0.003 Å and overestimated the bond angle of both moleules by
0.3◦.3.3 E�ient Implementation of the AnalytialGradient of the MR BWCCSD with the It-erative Corretion of Size�ExtensivityFor the e�ient analytial gradient implementation of the MR BWCCSDmethod with the iterative orretion of size-extensivity, it was intended tomake use of the e�ient analytial gradient ode of the single-referene CCSDmethod, whih is available in the ACES II program pakage. The single-56



Method Basis Energy R ΦBW Unorreted 6-31G fz -290.034835 1.575 92.86-31G* fz -290.092095 1.530 92.5BW Iter. orr. 6-31G fz -290.034932 1.575 92.86-31G* fz -290.092553 1.529 92.6SUMRCC 6-31G fz -290.035033 1.576 93.16-31G* fz -290.092417 1.530 92.5Full-CI 6-31G fz -290.035669 1.576 92.76-31G* fz -290.094287 1.532 92.3Experiment [100℄ 1.51402 91.9830Experiment [101℄ 1.5141 92.0Experiment [102℄ 1.516 92.08Table 3.2: 1A1 SiH2 optimal energy and geometry obtained from all threeMRCC methods in 6�31G frozen ore and 6�31G* frozen ore basis setsompared to the Full-CI and an experiment. Energy is in atomi units, bondlength in Å and bond angle in degrees.referene formalism was developed by Salter et al. [71℄ using the normalordered operators whih leads to the formulas (2.135) for the λ equation and(2.133) for the gradient.The multireferene λ equation and gradient were thus derived in a similarway, resulting in formulas that look a little di�erent from those used in thepilot implementation. The MR λ equation thus yields
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in whih the rede�ned Λ̃ operator (2.147) was used involving also the in-ternal λ amplitudes. The formulas are very lose to their single-refereneanalogs. In the λ equation, the third term is just saled by the expan-sion oe�ients of the partiular referene in the model wavefuntion andthe additional fourth term atually vanishes for referenes mutually at mostbiexited, whih is always valid in the MR BWCCSD implementation avail-able in the ACES II program. Note also that the λ equations of di�erentreferenes remain unoupled. The multireferene gradient formula is a sumof independent ontributions from eah referene on�guration, whih di�erfrom the single-referene gradient formula only by the saling fator at the�rst term.The e�ient single-referene gradient implementation has been desribedby Gauss et al. [72℄. They gather all terms with derivatives of the Fokmatrix elements and remaining terms with derivatives of the two-eletronintegrals, whih results in the formula
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pq (3.12)whih onsists only of the relaxed density matries, the skeleton terms andthe I intermediate and does not require the solution of the CPHF equationsfor eah gradient omponent.In the multireferene ase, suh U matrix elimination annot be per-formed in a general way, but the MR variants of the (3.9) and (3.10) formulasare always valid and an thus be used. Sine the MR gradient formula (3.8)just sums ontributions from eah referene on�guration, the MR relaxed58



density matries an be omputed as a sum of relaxed density matries of apartiular referene that is alulated by a modi�ed single-referene ode.The suggested multireferene implementation that is based on the single-referene CCSD analytial gradient ode in the ACES II program pakagebut whih needs to solve the CPHF equations to aount for the orbitalresponse thus requires the following prinipal steps:
• provide the appropriate storage for the λ amplitudes, density matriesand other variables whih orrespond to a partiular referene on�gu-ration and introdue loops over all referenes in the referene-dependentparts of the ode (solving the λ equation, formation of the density ma-tries, . . . )
• setting the internal λ amplitudes and identifying the terms in the λequation whih have to be saled
• identify and sale the terms orresponding to the �rst term in (3.8)
• alulate also the Dia bloks of the one-partile density matrix sinethe single-referene ode presumes the use of the Hartree�Fok orbitalsfor whih the fia elements are zero, whih is however not the ase inthe multireferene generalization
• gather the total D and Γ relaxed density matries
• form the I

′ intermediate and solve the U matries
• evaluate the gradient (3.10) by the modi�ed single-referene ode for(3.12)While it was relatively easy to generalize the single-referene ode forthe multireferene alulation and to identify all the terms that had to bemodi�ed in the λ equations and the relaxed density matries, an enormouse�ort was put in an attempt to �nish the gradient evaluation in the ACES IIpakage. For e�ieny reasons, all the intermediates alulated by the pro-gram sale elements orresponding to a partiular oupied or virtual orbitalindex ombination by various fators or add another terms. Suh e�ienyimprovements have been very poorly doumented and often had to be de-oded element by element. A speial program had to be designed, based onthe ode of the pilot gradient implementation, whih alulated the unmod-i�ed form of suh terms so that the values ould be ompared. Beause ofsuh di�ulties, it was �nally suggested to export the full form of the al-ulated total D and Γ matries to an external ode, whih solves the CPHFequations and evaluates the MO integral derivatives and �nally to alulatethe gradient by 59
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(3.13)whih is a variant of (3.9), but instead of the Fok matrix derivatives usesderivatives of the one-eletron operator ĥ matrix elements. This required aminor modi�ation of the total Γ matrix, but was easier to implement.The analytial gradient implemented in this way was �rst tested on the

CH2 moleule by omparing with values obtained from the pilot implemen-tation. The largest di�erene was below 10−8hartree/bohr whih is a om-pletely satisfatory result.A geometry optimization of the two benhmark moleules CH2 and SiH2was also performed with results summarized in Table 3.3. The CH2 results inthe 6-31G basis whih was used also in the testing of the pilot implementationagree with the result obtained earlier (Table 3.1). The other alulationshowever employed larger basis sets.System Basis Energy R Φ

CH2 6-31G -38.943015 1.128 103.8-pVDZ -39.025637 1.124 101.1Experiment [99℄ 1.107 ± 0.002 102.4 ± 0.4
SiH2 6-31G -290.038273 1.575 92.86-311G -290.180587 1.563 93.4Experiment [100℄ 1.51402 91.9830Table 3.3: A geometry optimization of the 1A1 state of the CH2 andSiH2 moleules by the e�ient analytial gradient implementation of theMR BWCCSD method with the iterative orretion of size-extensivity. En-ergy is in atomi units, bond length in Å and bond angle in degrees.To roughly illustrate the gradient evaluation time improvement gainedby the ACES II implementation over the pilot implementation, the Table 3.4presents average real times of alulation of the CH2 gradient on an AMDOpteron CPU at 2.8GHz with 16 GB RAM for the various basis set sizesused. Only the 6-31G basis was used in both implementations, sine theACES II ode annot alulate the gradient using frozen orbitals and largerbasis sets lead to insu�ient memory for the pilot implementation. At the6-31G basis, the real time of alulation redued almost by the fator 103.The analytial gradient omputed by the ACES II implementation was alsoalways faster than the numerial gradient evaluation, although the gain didnot exeed the fator 2 for this moleule. The ACES II implementation anthus be onsidered as e�ient.Although the alulations of the benhmark moleules performed verywell, appliation of the implemented gradient to optimization of larger mole-ular systems like N2O2 or a Cylobutadiene (C4H4) turned out to be prob-lemati sine in many points the multireferene λ equations failed to onverge60



Basis # MOs TINY ACES II6-31G 13 5930 86-31G* fz 18 10800-pVDZ 25 446-311G** 31 105Table 3.4: Average real omputer time of a CH2 analytial gradient evalu-ation alulated by either the program TINY (pilot implementation) or bythe ACES II implementation in various basis sets. The alulations wereperformed on an AMD Opteron CPU at 2.8 GHz / 16 GB RAM. The timeis in seonds.and thus the optimization proedure did not �nish. This ould be explainedby the fat that the iterative size-extensivity orretion of the method rein-trodues the intruder state problem.Sine an analytial gradient of the MR MkCCSD method has reentlybeen implemented by Prohnow et al., whih is a superior method to theiteratively orreted MR BWCC variant and beause of the onvergene dif-�ulties of the λ equations experiened in alulations of larger moleules,it was suggested that the more e�ient orbital response ontribution to thegradient is not going to be further developed.
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Chapter 4Appliation of theMR MkCCSD(Tu) on aSinglet-Triplet Gap Investigationof Tetramethyleneethane (TME)The newly developed MR MkCCSD(Tu) method has already been suess-fully tested on the BeH2 moleule and proved to provide smooth potentialenergy urve that is free of singularities while losely resembling the resultsfrom the more expensive MR MkCCSD(Ti) approximation [3℄. To test themethod also in a real hemial appliation, an investigation of the singlet-triplet separation of the tetramethyleneethane moleule (TME) has beensuggested, beause of a multireferene harater of its singlet state.Sine 1970 that the �rst EPR spetrum of the system was published [103℄,a number of experimental and theoretial studies followed, trying to as-sign the ground state with either singlet or triplet multipliity [104�113℄. Agas phase negative ion photoeletron spetrosopy experiment by Cli�ord etal. [110℄ found that the ground state is singlet, being about 2 kal mol−1 morestable than the triplet state. This was however in ontradition with previ-ously reported matrix isolation EPR studies. An explanation has been sug-gested that the matrix ould atually �x the moleule at a triplet equilibriumgeometry, at whih the singlet energy was above the triplet. Calulations byspin-restrited open-shell Kohn�Sham (ROKS) and spin-restrited ensemble-referened Kohn�Sham (REKS) methods [111℄ predited the singlet groundstate at D2d geometry while the triplet being about 3 kal mol−1 above. Alsothe di�erene dediated on�guration interation alulations [112℄ on�rmedthe singlet as the ground state for all onformations, although the energy dif-ferene was only 0.29 kal mol−1 at the equilibrium triplet geometryThe struture of the TME moleule (C6H8) is pitured in Figure 4.1.Eah end of the ethylene skeleton forms a plane together with its bondedmethylene groups and the two planes are mutually twisted.62



Figure 4.1: Geometry of the TME moleule is formed by two planes rotatedmutually by a twist angle4.1 ComputationalThe potential energy surfae has been sanned in the following way. For eahvalue of the twist angle (from 0◦ to 90◦), a restrited geometry optimizationwas performed (keeping the moleular symmetry) using the CASPT2(6,6)method and the -pVDZ basis set for both the singlet and the triplet stateso that also a dynamial eletroni orrelation was partially involved in thepredition of the geometries. In these optimized geometries, CASSCF(2,2)moleular orbitals were employed for further orrelation treatment. Calu-lations using CASSCF(6,6) orbitals were also performed in some points, butthe results were almost idential. Two basis sets were employed, the spheri-al -pVDZ and a modi�ed spherial -pVTZ basis (denoted as -pVTZ'),from whih the d-funtions at Hydrogen and f-funtions at Carbon atomswere removed so that the system remained omputationally feasible. The sixore orbitals at Carbon atoms and the six highest virtual orbitals were keptfrozen during the following oupled luster alulations.The potential energy urves were alulated at the CCSD, CCSD(T) andin the smaller basis set also at the approximate iterative CCSDT-1 level.The singlet state employed the two-referene BWCC and MkCC methods.63



All MR BWCC alulations were provided with the a posteriori orretionof size-extensivity. The perturbative triples in the MkCC method used boththe standard �perturb then diagonalize" sheme, MR MkCCSD(Tu) and alsothe other variant with an expliit energy orretion evaluation, denoted asMR MkCCSD(Tu)e. The two variants gave values whih di�ered less than
2×10−6 a.u. so only the MR MkCCSD(Tu) results are presented. The tripletswere alulated by the standard single-referene CC methods. All the ou-pled luster alulations were performed by the ACES II program [1℄, whilethe CASSCF orbitals and CASPT2 geometries were obtained using the MOL-PRO pakage [114℄.4.2 Results and DisussionThe alulated potential energy urves are illustrated in Figure 4.2, whihompares both the e�et of inreasing level of CC approximation (in rows)and the two basis sets used (in olumns). The MR BWCC method preditedthe singlet as the ground state in all ases and every point of the alulatedurves. The MRMkCCSD alulations put the singlet urve above the tripletin both basis sets and only the inlusion of approximate triples in the MkCCmethod moved the singlet urve below the triplet. The low energy of theMR BWCC singlet urves even at the CCSD level an be put down to thefat that the a posteriori size-extensivity orretion tends to overestimate theorrelation energy.The di�erene between the singlet and the triplet urves for various lev-els of approximation and the two basis sets used is shown in Figure 4.3. Allthe urves are very similar, with a minimum at about 45◦, but di�er in theposition on the vertial axis. At the CCSD level, the MR BWCC result liesbetween 1 and 4 kal mol−1 being in a good agreement with both the gasphase experiment and other theoretial preditions. On the other hand, theMR MkCCSD method gave even a di�erent order of the urves. However, byinlusion of the perturbative triples, the MR MkCCSD(Tu) method providedvery good results between 2 and 6 kal mol−1 in both basis sets, whih alsolosely resembled eah other. The triples inlusion in MR BWCC methodresulted in rather large energy gap between 11 and 14 kal mol−1, whih anbe explained by the overestimated orrelation energy due to the a posteriorisize-extensivity orretion. It an be onluded that the relatively good resultof the MR BWCCSD alulation ould be obtained due to the ompensa-tion of this energy overestimation by the insu�ient orrelation desriptionat the CCSD level. The approximate iterative triples in MR MkCCSDT-1 method gave results very lose to the MR MkCCSD(Tu) values. At theurve minimum, the MR MkCCSDT-1 method gave 2.4 kal mol−1 and theMR MkCCSD(Tu) 2.6 kal mol−1 in the -pVDZ basis. These results arethus in a lose agreement with the gas phase negative ion photoeletronspetrosopy experiment [110℄. 64
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Figure 4.2: Potential energy urves of TME as a funtion of the twist angle.Comparison of the singlet state (2R-BWCC and 2R-MkCC) and the tripletstate (SR-CC) alulations at di�erent levels of CC approximation. Graphsin the left olumn were obtained from the -pVDZ basis, the right olumnorresponds to the -pVTZ' basis. 65
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Chapter 5ConlusionThree Hilbert spae multireferene oupled luster methods, the state-spei�MR BWCCSD with the iterative orretion of size-extensivity and withouta orretion and the state-universal MR CC method in the formulation byKuharski and Bartlett, have been provided with a pilot implementation ofan analytial gradient of energy, whih is based on a Full-CI expansion.The implementation was tested by omparing the analytial gradientswith gradients alulated numerially at various geometries of di�erent mul-tireferene harater. At all points, all three gradient variants performedvery well, providing results of su�ient auray.The pilot implementation was then applied to a geometry optimizationof the singlet CH2 and SiH2 moleules, whih have a two-referene harater.The results were ompared both to experimental values and Full-CI alu-lations. All the methods di�ered from the Full-CI values by the order of
10−3 Å and 0.1◦ using double-zeta basis sets and suh results are satisfatoryenough. The pilot implementation of the three MRCC analytial gradientvariants has been published [2℄.The analytial gradient of the MR BWCCSD method with the iterativeorretion of size-extensivity has also been implemented in the ACES II quan-tum hemial program pakage. It makes use of the e�ient single-refereneCCSD analytial gradient ode sine the formulas of this MRCC gradientvariant are very similar. The orbital response ontribution to the gradienthowever requires solving the CPHF equations for eah gradient omponent.A more e�ient orbital response evaluation like in the single-referene aseannot be applied to the multireferene formalism and further developmentis needed. The ACES II program thus alulates the multireferene relaxeddensity matries, whih are then ontrated with MO integral derivatives byan external ode.This implementation has been suessfully tested by omparing with thepilot implementation and it has also been applied to the CH2 and SiH2 ge-ometry optimization. The time of the gradient evaluation redued almost bya fator 103 in the 6-31G basis omparing to the pilot implementation. In67



spite of the ine�ient orbital response alulation, the implemented gradientis still faster than the numerial evaluation and the implementation is thuse�ient.However, appliations to larger systems than the benhmark moleuleslike N2O2 or ylobutadiene failed sine at most geometries the multireferene
λ equations did not onverge. This ould be explained by the fat that theiterative orretion of the MR BWCC method reintrodues the intruder stateproblems.After the pilot implementation has been published, an analytial gradientof the state-spei� multireferene Mukherjee oupled luster method hasbeen implemented by Prohnow et al. [16℄, whih is however superior to theiteratively orreted BWCC method. Beause of this fat and for the severeonvergene problems of the BWCC λ equations, it has been deided that thee�ient orbital response ontribution for the BWCC gradient is not going tobe further developed.Finally, the newly developed MR MkCCSD(Tu) method has been su-essfully tested on the investigation of the singlet-triplet energy separationof the tetramethyleneethane moleule. The alulated results niely agreedwith an experiment, suggesting the ground state to be singlet for all valuesof the twist angle with 2.6 kal mol−1 as the minimum in the -pVDZ basis.It has been shown that even for the qualitatively orret desription, theinlusion of the triples was inevitable. However, sine the MR MkCCSD(Tu)results losely resembled those from the MR MkCCSDT-1 level of approxi-mation, the perturbative triples inlusion is su�ient enough.The tested MR MkCCSD(Tu) method, whih is based on the unoupledapproximation to the MR MkCC method, has thus proved to be a less ex-pensive alternative to the MR MkCCSD(Ti) approximation that has to solvethe T̂3 equations iteratively, yet remains resistant to intruder states. Thispart of the thesis has also been published [3℄.
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