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Abstra
tThe main obje
tive of this work was to implement an analyti
al gradientof energy for a multireferen
e 
oupled 
luster method (MRCC).Multireferen
e quantum 
hemi
al methods play a fundamental role forstudying non-equilibriummole
ular geometries, disso
iation of mole
ules intofragments or generally quasidegenerate systems. In all su
h 
ases the single-referen
e methods fail and the multireferen
e des
ription thus be
omes in-evitable.While the standard single-referen
e CC methods have been widely usedfor almost 40 years as the most a

urate, yet 
omputationally feasible meth-ods for 
al
ulating the 
orrelation energy, the MRCC theories are still thesubje
t of an a
tive development and are only slowly a

epted for a routinequantum 
hemi
al use.Until re
ently, there was only one implementation of an analyti
al gra-dient for a MRCC method whi
h, however, spe
ialized on a two-referen
elow-spin singlet systems only. Be
ause of the key importan
e of the an-alyti
al gradient for the whole quantum 
hemistry, an analyti
al gradientimplementation for a general MRCC method is therefore highly desirable.A gradient of the state-spe
i�
 multireferen
e Brillouin�Wigner CCSDmethod with the iterative 
orre
tion of size-extensivity has been 
hosen sin
ethe method had already been implemented in the ACES II [1℄ program pa
k-age, whi
h is provided with an e�
ient single-referen
e CCSD analyti
algradient implementation so that its 
ode 
ould 
onveniently be reused.As an inevitable development tool, a more general Full-CI based programhas been used, whi
h enabled a pilot implementation of the target MR BWCCgradient with and without the iterative size-extensivity 
orre
tion and alsoa gradient of the state-universal MRCC method. The pilot implementationof the three analyti
al gradient variants has been su

essfully tested on CH2and SiH2 systems and also published [2℄.Finally, the analyti
al gradient of the iteratively 
orre
ted MR BWCCmethod has also been implemented in the ACES II pa
kage, although theorbital response 
ontribution requires an expli
it solution of the CPHF equa-tions, whi
h is performed by an external 
ode.In addition, as a testing appli
ation of a newly developed state-spe
i�
multireferen
e Mukherjee CCSD(Tu) method, an investigation of the singlet-triplet energy separation of the tetramethyleneethane mole
ule has been per-formed. The obtained potential energy 
urves were smooth without singular-ities and the 
al
ulated results very well agreed with an experiment. Sin
e themethod does not require an iterative solution of the approximate T̂3 ampli-tudes and has proved to remain resistant to intruders, it is thus a perspe
tivealternative among highly a

urate multireferen
e approa
hes. This work isalso a part of a publi
ation [3℄.



AbstraktHlavním 
ílem této prá
e bylo naimplementovat analyti
ký gradient ener-gie pro multireferen£ní metodu vázaný
h klastr· (MRCC).Multireferen£ní kvantov¥ 
hemi
ké metody jsou klí£ové pro studium mole-kul v nerovnováºný
h kon�gura
í
h, rozpadu molekul na fragmenty neboobe
n¥ kvazidegenerovaný
h systém·. Ve v²e
h t¥
hto p°ípade
h b¥ºné jedno-referen£ní metody selhávají a multireferen£ní popis je pro n¥ tedy nezbytný.Zatím
o jednoreferen£ní metody vázaný
h klastr· (CC) se jiº tém¥° 40 letpouºívají pro p°esné výpo£ty korela£ní energie, jeji
h multireferen£ní verzejsou stále p°edm¥tem aktivního vývoje a do b¥ºné praxe se dostávají jenpomalu.Aº donedávna existovala pouze jediná implementa
e analyti
kého gra-dientu multireferen£ní metody vázaný
h klastr·, ta se v²ak týká jen spe-
iálního p°ípadu dvoureferen£ní
h singletový
h stav·. Pon¥vadº analyti
kýgradient hraje klí£ovou roli ve v²e
h oblaste
h kvantové 
hemie, jeho imple-menta
e pro obe
nou MRCC metodu je tedy zásadní.Pro implementa
i byl zvolen analyti
ký gradient stavov¥ spe
i�
ké multi-referen£ní Brillouinovy�Wignerovy metody CCSD s iterativní korek
í size-extenzivity. Tato metoda je totiº implementována do programu ACES II [1℄,který jiº nabízí efektivní analyti
ký gradient jednoreferen£ní CCSD metodya jeho kód lze tedy s výhodou vyuºít.B¥hem prá
e bylo nutné pouºít obe
n¥j²í program, zaloºený na rozvoji doFull-CI báze, který v²ak umoºnil pilotní implementa
i analyti
kého gradientupro MR BWCC metodu s iterativní korek
í a bez korek
e size-extenzivity atéº stavov¥ univerzální MRCC metody. Pilotní implementa
e v²e
h t°í variantbyla úsp¥²n¥ otestována na karbenu CH2 a silylenu SiH2 a tato prá
e bylaopublikována [2℄.Analyti
ký gradient energie MR BWCCSD metody s iterativní korek
ísize-extenzivity byl nakone
 téº naimplementován do programu ACES II,a£koliv tato implementa
e vyºaduje expli
itní °e²ení CPHF rovni
 pro vyjá-d°ení deriva
í LCAO koe�
ient·, 
oº je provád¥no externím programem.Jako poslední £ást prá
e byla testována nov¥ vyvinutá stavov¥ spe
i-�
ká multireferen£ní Mukherjeeho metoda s poru
hovým zahrnutím T̂3 am-plitud v aproxima
i nesp°aºený
h amplitudový
h rovni
, MR MkCCSD(Tu).Bylo studováno siglet-tripletové ²t¥pení molekuly tetrametylenetanu. Získanék°ivky poten
iální energie byly hladké a výsledky velmi p°esn¥ souhlasily sexperimentem. Tato metoda nevyºaduje iterativní °e²ení T̂3 rovni
 a p°esto jeimunní v·£i intruder stav·m, 
oº potvrdil i pr·b¥h spo£tený
h k°ivek. Mezip°esnými multireferen£ními metodami je tato metoda proto velmi perspek-tivní. Tato prá
e je téº sou£ástí publika
e [3℄.
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Chapter 1Motivation
1.1 Aims of the ThesisThe prin
ipal aim of this thesis is to implement an analyti
al gradient ofenergy for a general multireferen
e 
oupled 
luster method. The 
omputerimplementation should be tested by 
omparing the analyti
al gradient witha gradient 
al
ulated numeri
ally and �nally applied to a geometry optimiza-tion of a mole
ular system with a multireferen
e 
hara
ter.Spe
i�
ally, the state-spe
i�
 multireferen
e Brillouin�Wigner 
ou-pled 
luster method with the iterative 
orre
tion of size-extensivity, theMR BWCCSD, has been 
hosen sin
e its amplitude equations at 
onver-gen
e are un
oupled and thus enable a relatively easy analyti
al gradientderivation. The method has been implemented in the ACES II programpa
kage, therefore the gradient implementation 
ould also make use of theavailable single-referen
e analyti
al gradient 
ode.Another goal of the thesis is to test a newly developed perturbativetriples 
orre
tion to the state-spe
i�
 multireferen
e Mukherjee 
oupled 
lus-ter method in the un
oupled approximation, the MR MkCCSD(Tu) on an in-vestigation of a singlet-triplet energy separation of the tetramethyleneethanemole
ule.1.2 Analyti
al Gradient of Energy in QuantumChemistryGradient of energy � a ve
tor of the �rst partial derivatives of energy withrespe
t to a set of 
oordinates

gradE =

(
∂ E

∂ x1
,
∂ E

∂ x2
, . . .

) (1.1)or generally a partial derivative of energy with respe
t to a general pertur-bation χ: ∂ E
∂ χ

plays a fundamental role in all bran
hes of quantum 
hemistry.1



For instan
e, many physi
al properties of mole
ules 
an be expressed as �rstand higher derivatives of energy with respe
t to a set of spe
i�
 
oordinates.The simplest example 
an be spe
tros
opi
 
onstants � the ele
tri
 dipolemoment and polarizability, whi
h is a ve
tor of �rst derivatives and a matrixof se
ond derivatives of energy with respe
t to external ele
tri
 �eld strength
oordinates. However, the most 
ommon quantum 
hemi
al tasks like predi
-tion of equilibrium mole
ular geometry, vibrational frequen
ies 
al
ulation,transition state sear
h or mole
ular dynami
s, require evaluation of the en-ergy derivatives with respe
t to position of nu
lei.First of all, 
hemists are interested in equilibrium mole
ular geometries.That is su
h a 
on�guration of atoms in a mole
ule having the lowest energyof all possible atomi
 
on�gurations. Finding a lo
al minimum of energywith respe
t to several atomi
 
oordinates, referred to as geometry opti-mization, 
an be numeri
ally very well performed by a Newton�Raphsonfun
tion minimization te
hnique. This is an analog to the famous Newtonmethod of �nding roots of equations. It works by lo
ally approximating thepotential energy surfa
e (PES) by a paraboloid (expressed as a quadrati
form) and with the knowledge of a gradient and a Hessian (a matrix of allse
ond partial derivatives) it rea
hes the minimum of the paraboloid in justone step. For a real PES, however, it requires several steps to rea
h theminimum by the formula
xn+1 = xn −H

−1(xn) gradE(xn) (1.2)where H−1(xn) is an inverse of the Hessian matrix 
al
ulated at the nth step.Be
ause of the expensive evaluation of the Hessian matrix, whi
h s
alesquadrati
ally with the number of 
oordinates and what's more, the se
ondanalyti
al derivatives are often unavailable for many quantum 
hemi
al meth-ods, the Newton�Raphson te
hnique is usually repla
ed by quasi-Newtonmethods (for instan
e the variant by Broyden, Flet
her, Goldfarb and Shanno� BFGS [4℄) whi
h need just the �rst derivatives and an approximated in-verse of the Hessian whi
h is being improved at ea
h step.The other most 
ommon appli
ation of the gradient in quantum 
hemistryis the 
al
ulation of harmoni
 vibrational frequen
ies. This is usuallyperformed as an additional step after the geometry has been optimized toensure the predi
ted geometry is really at a minimum and not in a saddlepoint of the PES. But besides is needed as a �rst approa
h for assigninginfrared and Raman spe
tra, obtaining zero point vibrational energies andsubsequent thermodynami
s property 
al
ulations.The frequen
ies are eigenvalues of a vibrational Hamiltonian whi
h ap-proximates the vi
inity of the energeti
al minimum by a multidimensionalparaboli
 potential
V̂ = Eeq +

1

2

3#Nuclei
∑

ij

qi fij qj (1.3)2



where the Eeq is the energy in the equilibrium geometry,
qi =

√
mi (xi − xeq

i ) (1.4)is the mass weighted 
oordinate of the ith nu
leus in terms of displa
ementsfrom the equilibrium geometry and
fij =

(
∂2 E

∂qi ∂qj

)

q=0

(1.5)are harmoni
 for
e 
onstants. The potential is thus inherently des
ribedby a Hessian, whi
h is, as already noted, often unavailable in an analyti
alform for many quantum 
hemi
al methods. Therefore it has to be evaluatednumeri
ally either from energies or, preferably, from �rst derivatives.A transition state sear
h is another example of an inevitable gradientuse. It is a sear
h for a state with the highest energy along a rea
tion path.The state lies in a saddle point 
onne
ting the valleys of the PES where theinitial and �nal states of a rea
tion are lo
ated. The methods for �nding thetransition state makes use of the fa
t that the gradient is zero in a saddlepoint. One su
h a te
hnique just minimizes a gradient norm about its mostexpe
ted position on the PES. Another te
hnique � a hill 
limbing predi
tsthe rea
tion path by the least steep gradient 
orre
ted by minimizing theenergy along all other dire
tions. Similar but more a

urate te
hnique isbased on a modi�ed quasi-Newton method.And lastly, the 
lassi
al mole
ular dynami
s, whi
h studies the timeevolution of a mole
ular system, is strongly dependent on the gradient evalu-ation. It solves the Newton equations of motion for atoms on the PES, wherethe gradient drives the atomi
 movement. A 
ommon method for integrat-ing the Newton equations in the 
lassi
al mole
ular dynami
s is the velo
ityVerlet algorithm [5, 6℄:
ri(t +∆t) = ri(t) + vi(t)∆t +

1

2
ai(t)∆

2t (1.6)
vi(t +∆t) = vi(t) + 〈ai〉∆t (1.7)

〈ai〉 =
ai(t) + ai(t+∆t)

2
(1.8)where the for
es are given by the potential energy gradient

ai(t) = − 1

mi

∂ V (r)

∂ ri
(1.9)Let's now look at the formulas used for numeri
al evaluation of the gradi-ent and the Hessian matrix and 
onsider the advantage of the analyti
algradient formula over the numeri
al di�erentiation. The symmetrized nu-meri
al gradient formula reads 3



∂ f(x, y)

∂ x
= lim

h→0

f(x+ h, y)− f(x− h, y)

2h
(1.10)and the symmetrized formulas for the se
ond partial derivatives using ananalyti
al gradient

∂2f(x, y)

∂x2
= lim

h→0

∂ f(x+h,y)
∂ x

− ∂ f(x−h,y)
∂ x

2h
(1.11)

∂2f(x, y)

∂x∂y
= lim

h→0

∂ f(x,y+h)
∂ x

− ∂ f(x,y−h)
∂ x

2h
(1.12)Finally the symmetrized se
ond partial derivatives if an analyti
al gradientis not available

∂2f(x, y)

∂x2
= lim

h→0

f(x+ h, y)− 2f(x, y) + f(x− h, y)

h2
(1.13)

∂2f(x, y)

∂x∂y
= lim

h→0

1

4h2

[
f(x+ h, y + h)− f(x+ h, y − h)

−f(x− h, y + h) + f(x− h, y − h)
] (1.14)The 
omplexity of a full gradient and Hessian evaluation is presented inTable 1.1. We 
an see that as long as the 
omplexity of the analyti
al gradi-anal. grad. anal. grad.available not availablegradient 1G 2NEHessian 2NG (1 + 2N2)ETable 1.1: A 
omparison of 
omplexity of an N�dimensional gradient andHessian matrix 
omputation if an analyti
al gradient formula is availableor absent. E stands for the 
omplexity of energy evaluation and G for the
omplexity of an analyti
al gradient evaluation.ent evaluation is 
omparable to the evaluation of the energy, the numeri
al
al
ulation of the gradient from energies s
ales linearly with the number ofdegrees of freedom (e.g. number of atoms) whereas the analyti
al 
al
ulationis just 
onstant. Similarly the numeri
al Hessian 
al
ulation using energiess
ales quadrati
ally, while its evaluation from gradients s
ales only linearly.This seems to be a solid argument for preferring the analyti
al gradient,but it would 
ompletely fail if the analyti
al gradient evaluation stronglydepended on the number of perturbations (degrees of freedom). Fortunately,the energy gradient formulas 
an be fa
tored to a dominant perturbation-independent part and a minor perturbation-dependent 
ontributions so that4



the total evaluation time of the analyti
al gradient is of the same order asthat of the energy.Su
h formula fa
torization is usually referred to as the Z-ve
tor te
hniqueand for the 
oupled 
luster methods it leads to solving the λ-equations fromwhi
h the set of perturbation-independent 
oe�
ients, 
alled λ-amplitudes,is obtained.The analyti
al gradient evaluation is also more a

urate than its numer-i
al 
al
ulation from �nite di�eren
es and, moreover, avoids possible 
onver-gen
e di�
ulties of energy 
omputations that usually happen at displa
e-ments whi
h redu
e the symmetry of the investigated mole
ular system.1.3 Quantum Chemi
al MethodsQuantum 
hemistry, a quantum me
hani
al des
ription of mole
ular systems,has to inherently deal with the many-body (many-ele
tron) problem. It doesso by expanding the ele
troni
 Hamiltonian Ĥel
1 in a �nite basis of antisym-metri
 N-ele
tron fun
tions and �nding some of its eigenvalues (energies)and eigenve
tors (usually only the ground state energy and wavefun
tion).The antisymmetri
 N-ele
tron basis fun
tions are usually given by Slaterdeterminants 2 (or their linear 
ombination to satisfy properly a spin sym-metry, for instan
e):

|Φ0〉 =
1√
N !

∣
∣
∣
∣
∣
∣
∣
∣
∣

χ1(1) . . . χ1(N)
χ2(1) . . . χ2(N)... . . . ...
χN(1) . . . χN(N)

∣
∣
∣
∣
∣
∣
∣
∣
∣

(1.15)These are 
onstru
ted from a set of one-ele
tron basis fun
tions, known asmole
ular spinorbitals χi(k) (i is a fun
tion index and k denotes a k-th ele
-tron), 
onsisting of a three-dimensional spatial fun
tion multiplied formallyby a spin fun
tion |α〉 or |β〉.The spatial 
omponent of the one-ele
tron basis is mostly formed froma basis of atomi
 orbitals (usually Gaussian fun
tions pla
ed at 
enters ofindividual atoms) by solving the S
hrödinger equation with an assumptionthat the mole
ular wavefun
tion is given by just one N-ele
tron Slater de-terminant. Su
h a way of 
hoosing the one-ele
tron basis set is 
alled theHartree�Fo
kmethod (HF, SCF) and results in a set of orthonormal mole
-ular orbitals, where the �rst N with the lowest orbital energy, 
alled o

upiedorbitals, form the Hartree�Fo
k wavefun
tion (the single Slater determinant)and the remaining eigenfun
tions are 
alled virtual orbitals.1i.e. a Hamiltonian in the Born�Oppenheimer approximation2a determinantal form of an N -ele
tron fun
tion ensures the antisymmetry of afermioni
 wavefun
tion 5



The number of N-ele
tron Slater determinants whi
h 
an be 
onstru
tedfrom a set of M orbitals is, however, extremely large. For example a full N -ele
tron basis set of a water mole
ule with 10 ele
trons in a 
losed-shell singletele
troni
 state using a moderately large one-ele
tron basis of 19 fun
tions(e.g. 

-pVTZ) 
onsists of 135,210,384 Slater determinants. We 
an see thatthe size of the N-ele
tron basis thus represents a prin
ipal obsta
le in solvingthe many-body S
hrödinger equation.The advantage of the Hartree�Fo
k method for 
hoosing the mole
ularorbitals is that sin
e the N o

upied orbitals provide the best possible de-s
ription of the mole
ular system for the Hartree�Fo
k wavefun
tion (i.e.the only Slater determinant), the Slater determinants in the N-ele
tron ba-sis whi
h are formed mostly by the o

upied Hartree-Fo
k mole
ular orbitalsplay the signi�
ant role in the expansion of the proper N-ele
tron wavefun
-tion. And truly, the proper ground state N-ele
tron wavefun
tion is mostlygiven by the referen
e Slater determinant (the Hartree�Fo
k one) and singly,doubly (and triply) ex
ited 
on�gurations (i.e. su
h Slater determinantsderived from the referen
e determinant where one, two or three o

upied or-bitals are repla
ed by a 
orresponding number of virtual orbitals). This fa
thelps to signi�
antly redu
e the size of the N-ele
tron basis and makes thesolution of the many-body problem feasible.The Hartree�Fo
k method assumes a model of almost independent ele
-trons 3. The post-Hartree�Fo
k methods des
ribed below thus try to involvethe 
orrelation of ele
troni
 motion in the proper wavefun
tion. Hen
e thedi�eren
e between the proper energy E0 and the Hartree�Fo
k energy E0 is
alled the 
orrelation energy
Ecorr = E0 −E0 (1.16)The straightforward way of �nding the spe
trum of the many-body Hamil-tonian by employing the 
omplete spa
e of N-ele
tron Slater determinantsformed from a �nite set of mole
ular orbitals is the full 
on�guration in-tera
tion method (Full-CI, FCI). The method is simply formulated but isextremely demanding on 
omputational resour
es due to the enormous sizeof the N-ele
tron basis and is therefore pra
ti
ally limited to 
al
ulations ofsystems of only a few atoms.Nevertheless, using the property of the Hartree�Fo
k orbitals mentionedabove, it is possible to dramati
ally redu
e the N-ele
tron spa
e by involvingonly the referen
e determinant and all singly, doubly or more ex
ited 
on-�gurations without a signi�
ant loss of the wavefun
tion quality while using3In the Hartree�Fo
k model, the ele
trons are a
tually not fully independent as ea
hele
tron moves in an averaged �eld of the other ele
trons. The averaged �eld is 
al
ulatediteratively until a self-
onsisten
y is rea
hed so that it no longer improves (it is whythe Hartree�Fo
k method is also known as the SCF � a self-
onsistent �eld method).Moreover, two ele
trons of the same spin 
annot o

upy the same lo
ation at the sametime, due to the fermioni
 
hara
ter of ele
trons, whi
h is assured by the determinantalform of the wavefun
tion 6



the same simple CI algorithm. This approa
h is known as the trun
ated CI(for instan
e CISD or CISDT) and 
an be applied to systems of up to severaltens of atoms.As an example you 
an see a CISD expansion of a wavefun
tion
|ΨCISD〉 = |Φ0〉+

∑

i
a

cai |Φa
i 〉+

∑

i<j
a<b

cabij |Φab
ij 〉 (1.17)using a 
ommon notation for the referen
e (Hartree�Fo
k) determinant |Φ0〉,singly |Φa

i 〉 and doubly |Φab
ij 〉 ex
ited 
on�gurations where i and j denoteindi
es of o

upied orbitals whi
h are repla
ed by virtual orbitals with indi
es

a and b. The expansion 
oe�
ient of the referen
e determinant is equal toone due to the usual intermediate normalization of a wavefun
tion
〈Ψ|Φ0〉 = 1 (1.18)The great advantage of CI methods is that they are formulated by avariational prin
iple, whi
h is a simple 
onsequen
e of linear algebra and isgiven by a relation

E0 ≤ E [|Φ〉] =

〈

Φ
∣
∣
∣Ĥ

∣
∣
∣Φ

〉

〈Φ|Φ〉 (1.19)where E0 is the true lowest eigenvalue of the Hamiltonian operator and |Φ〉is an arbitrary ket-ve
tor of the operator spa
e. The main bene�t is that bytrun
ated CI methods (but also by any other variational method) an upperbound limit to the true Full-CI energy is obtained.However, the trun
ated CI is not a size-extensive method, whi
h meansthat the energy does not s
ale 
orre
tly with the number of parti
les in asystem. The reason why it fails for the trun
ated CI while the Full-CI is size-extensive will be shown in the next 
hapter. To partially 
ompensate thisde�
ien
y, the Davidson 
orre
tion of size-extensivity [7,8℄ is always appliedto trun
ated CI 
al
ulations.A rather di�erent approa
h for expanding the wavefun
tion in ex
ited
on�gurations represents the 
oupled 
luster (CC) method whi
h is basedon the exponential ansatz
|ΨCC〉 = eT̂ |Φ0〉 = eT̂1+T̂2+···+T̂N |Φ0〉 (1.20)where the T̂1, T̂2, . . . are operators (
alled 
luster operators) formally gen-erating a series of all possible single, double and up to N-tuple ex
itationsfrom a referen
e fun
tion upon whi
h they a
t. For example

T̂1|Φ0〉 =
∑

i
a

tai |Φa
i 〉 (1.21)
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T̂2|Φ0〉 =
∑

i<j
a<b

tabij |Φab
ij 〉 (1.22)where the 
oe�
ients tai and tabij are 
alled the 
luster amplitudes.By expanding the exponential operator in the Taylor series

eT̂ = 1 +
T̂

1!
+

T̂ 2

2!
+ . . . (1.23)we 
an see how a CI-like expansion of a wavefun
tion in 
on�gurations isformed. Let's take an example of the CCSD method, in whi
h the ex
itationoperator is trun
ated to involve just singles and doubles T̂ = T̂1 + T̂2

eT̂1+T̂2 = 1 + T̂1 + T̂2 +
T̂ 2
1

2!
+

2T̂1T̂2

2!
+

T̂ 2
2

2!
+ . . . (1.24)It is obvious that a CCSD expansion of a wavefun
tion in
ludes not onlysingly and doubly, but partially also triply and highly ex
ited 
on�gurationsdue to 
oupling of the ex
itation operators. And this is just one of the mainpoints whi
h make the 
oupled 
luster method superior to the 
on�gurationintera
tion. The other is that the 
oupled 
luster method is size-extensiveregardless the level of trun
ation of the T̂ operator.Nevertheless, it is not a variational method, whi
h means that the 
al
u-lated CC energy may be below the proper Full-CI value and that the 
lusteramplitudes (whi
h de�ne the wavefun
tion expansion) have to be 
al
ulatediteratively from a set of nonlinear equations. This not only makes the 
odesmore 
ompli
ated but also 
an lead to 
onvergen
e problems. In spite of thesedisadvantages, the 
oupled 
luster method is regarded as the most reliablein the family of ab initio quantum 
hemi
al methods.It is also ne
essary to brie�y mention the perturbation theory. Itsprin
ipal idea is based on a partitioning of the Hamiltonian Ĥ into a main(unperturbed) part Ĥ0 that is relatively easy to solve, and a small perturba-tion Ŵ

Ĥ = Ĥ0 + Ŵ (1.25)If the perturbation term is small enough, the eigenstate of the full Hamil-tonian 
an be obtained as a 
onvergent series of 
orre
tion terms to theunperturbed solution.Usually the Møller�Plesset partitioning of the ele
troni
 Hamiltonian isapplied so that the unperturbed solution is the Hartree�Fo
k wavefun
tion.The se
ond-order 
orre
tion, known as the MP2 method, is a very 
heap andpopular way of involving about 80% of ele
troni
 
orrelation.S
hemati
ally the perturbation series for the 
orrelation energy 
an beexpressed as 8



Ecorr =

∞∑

m=0

〈

Φ0

∣
∣
∣
∣
∣
Ŵ

[

1̂− |Φ0〉〈Φ0|
z − Ĥ0

(z − E0 + Ŵ )

]m∣∣
∣
∣
∣
Φ0

〉 (1.26)where the fra
tional expression is a resolvent, whi
h depends on an arbitrarynumber z. The two most 
ommon variants used are the Rayleigh�S
hrödingerperturbation theory (RSPT), where the z is set to the lowest eigenvalueof the unperturbed Hamiltonian Ĥ0 and the Brillouin�Wigner perturbationtheory in whi
h the z is equal to the true lowest eigenvalue E0 of the full(perturbed) Hamiltonian. The RSPT variant is a fully size-extensive method.The BWPT, by 
ontrast, is not, but its formalism is mu
h simpler.The post-Hartree�Fo
k methods des
ribed above (apart from the Full-CI)involve properly only a spe
i�
 part of the Full-CI N-ele
tron spa
e by start-ing from one referen
e 
on�guration and in
orporating in some spe
i�
 waythe other 
on�gurations by ex
itations of the referen
e determinant. How-ever, in many 
ases this approa
h be
omes insu�
ient and 
an 
ompletelyfail to des
ribe a 
hemi
al spe
ies even though a great portion of dynami
alele
troni
 
orrelation is in
luded by expanding the wavefun
tion in a verylarge Full-CI subspa
e. This happens when a single determinant 
annot 
or-re
tly des
ribe the spin symmetry (e.g. 1∆ state of O2 mole
ule needs atwo-determinantal des
ription) or when a disso
iation of a mole
ule is stud-ied, in whi
h the mole
ular wavefun
tion is 
ontinuously split in two parts,or generally if quasi-degenera
ies o

ur. In all these 
ases, involvement of
ertain 
on�gurations is inevitable for a proper system des
ription and its ef-fe
t is usually referred to as in
lusion of non-dynami
al ele
troni
 
orrelationin a wavefun
tion. Su
h systems have to be treated with multireferen
emethods.The basi
 method whi
h des
ribes a system with more Slater determi-nants is the multi
on�gurational SCF method (MCSCF) or its spe
ial 
ase� the 
omplete a
tive spa
e SCF (CASSCF), in whi
h an appropriate 
om-bination of 
on�gurations is set and both their 
oe�
ients and the orbitalsare optimized at the same time.The multireferen
e post-Hartree�Fo
k methods usually take the appropri-ate 
ombination of determinants (referen
es) using either the HF or MCSCFoptimized orbitals and generate ex
itations for ea
h referen
e analogously tothe single-referen
e variant of the method. So there is the multireferen
e 
on-�guration intera
tionmethod (MRCI), the multireferen
e perturbation theory(su
h as the 
ommon CASPT2 method) and also the multireferen
e 
oupled
luster method (MRCC).In the 
ontext of this thesis, the Hilbert-spa
e MRCC methods are used,namely the state-spe
i�
 multireferen
e Brillouin�Wigner CC (MR BWCC),the state-spe
i�
 multireferen
e Mukherjee CC (MR MkCC) and the state-universal multireferen
e CC (SU MRCC). The state-spe
i�
 methods 
on
en-trate on 
al
ulation of a single parti
ular state. The state-universal method,9



by 
ontrast, 
omputes several states in one step, but is vulnerable to 
onver-gen
e problems.1.4 Analyti
al Gradient in the Multireferen
eCoupled Cluster MethodsMany quantum 
hemi
al methods have been provided with analyti
al gradi-ents long time ago and sin
e then the gradients are routinely used in everydayprodu
tive 
al
ulations.While the analyti
al gradient of the single-referen
e 
oupled 
luster meth-ods have already been introdu
ed in the 1980s and 1990s, there are still fewanalyti
al gradient implementations for the multireferen
e 
oupled 
lustertheory. When the work on this thesis started, only a gradient of a spe
ial
ase of the two-determinantal open shell low spin singlet 
oupled 
luster hadbeen implemented [9℄ and gradients of another two MRCC variants had beendeveloped but without an implementation [10℄. There were analyti
al gra-dients of the Fo
k spa
e MRCC formulation [11�14℄, but no general Hilbertspa
e MRCC analyti
al gradient had a
tually been implemented. Be
auseof the superiority of the CC method and inevitable 
apabilities of the mul-tireferen
e approa
h, an e�
ient implementation of a general Hilbert spa
eMRCC method was therefore highly desirable.In this thesis the state-spe
i�
 MR BWCCSD method with the iterative
orre
tion of size-extensivity was 
hosen for the analyti
al gradient imple-mentation. Based on the Brillouin�Wigner perturbation theory, the methodis not size-extensive a priori, but is provided with a 
orre
tion. This has,however, a 
onvenient 
onsequen
e in the form of its �nal MRCC equations,whi
h lead to a relatively easy gradient derivation. Although the BW for-malism avoids intruder state problems 4 while solving the CC equations,the iterative size-extensivity 
orre
tion slowly transforms the formulas intoa Rayleigh�S
hrödinger form whi
h may however give rise to intruder stateproblems and 
an lead to 
onvergen
e di�
ulties. The method itself andalso the gradient s
ale only linearly with the number of referen
e 
on�gu-rations so it might be applied to investigation of larger mole
ular systems.The gradient has been derived in su
h a way that mu
h of the existing ef-�
ient single-referen
e CCSD analyti
al gradient 
ode of the ACES II [1℄program pa
kage 
ould be reused sin
e it has also an e�
ient MR BWCCimplementation.During the work, however, it turned out to be ne
essary to �rst 
ode apilot implementation of the gradient as an inevitable tool that helps with thee�
ient 
ode reuse. And sin
e this pilot implementation was performed in ageneri
 Full-CI based way, another two analyti
al gradient variants 
ould be4Intruder states are numeri
al in
onvenien
es in the perturbation theory formalismwhen the denominator of the resolvent be
omes too 
lose to zero10



implemented as well. In the end a pilot analyti
al gradient implementation ofthe state-spe
i�
 MR BWCCSD with the iterative size-extensivity 
orre
tionand without the 
orre
tion and a state-universal MRCCSD in the formulationby Ku
harski and Bartlett [15℄ were 
ompleted and published [2℄.It has to be noted that only after the pilot implementation had beenpublished, an e�
ient implementation of the state-spe
i�
 multireferen
eMukherjee 
oupled 
luster (MR MkCC) energy gradient appeared, 
oded byPro
hnow et al. [16℄, whi
h is however a more general 
ase of the iteratively
orre
ted MR BWCC gradient.Nevertheless, the analyti
al energy gradient of the iteratively 
orre
tedMR BWCCSD variant has �nally been e�
iently implemented as well, al-though the orbital response 
ontribution requires an expli
it solution of theCPHF equations.1.5 Perturbative Triples Contribution in theMRCC MethodsWhile in many 
ases the 
oupled 
luster 
al
ulations with 
ontributions fromthe singles T̂1 and doubles T̂2 are su�
ient enough for a 
orre
t des
ription ofa mole
ular system, for pre
ise quantitative results also 
ontributions fromthe triples T̂3 have to be in
orporated.However, while the relatively 
heap CCSD 
al
ulation, whi
h s
ales with
O(N 6), where N means the number of orbitals, the full CCSDT methodis two magnitudes more expensive, s
aling with O(N 8). Therefore an ap-proximate triples 
ontribution is usually employed whi
h is known as theCCSD(T) method and is 
ommonly referred to as "the gold standard" forquantitative quantum 
hemi
al 
al
ulations. In most 
ases it provides re-sults 
omparable with experimental values while remaining 
omputationallyfeasible. In this method, the equations for solving the CCSD amplitudes areiterated and after the 
onvergen
e has been rea
hed, a few other terms (whi
hare 
hosen by inspe
ting the formulas by the perturbation theory) are addedto approximate the triples 
ontribution. The method thus requires only oneadditional step that s
ales with O(N 7).In the multireferen
e 
oupled 
luster theory, it was �rst developed forthe SU MRCC method [17℄. The MR BWCCSD(T) approximation wasimplemented a few years ago [18℄. Re
ently, the MR MkCC method wasprovided with a non-iterative triples variant, denoted by MR MkCCSD(Tn),whi
h however introdu
es intruder state problems [19℄. Later a di�erent ap-proa
h, denoted here as MR MkCCSD(Ti), has been suggested whi
h elim-inates the intruder state problem, but requires an iterative solution for thetriples amplitude equation [20℄. Another formulation �nally appeared, theMR MkCCSD(Tu), whi
h is based on an un
oupled approximation of theMR MkCC method and avoids both the intruder state problem and the it-11



erative solution for the triples equation [3℄. The method has already beensu

essfully tested on the BeH2 system, but for testing on a real 
hemi
alappli
ation, a singlet-triplet gap investigation of the tetramethyleneethanemole
ule (TME) has been suggested, whi
h is a
tually the topi
 of the lastpart of this thesis.
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Chapter 2Theory
2.1 Generally Applied ApproximationsLet us introdu
e the physi
al 
onstraints upon whi
h all the theory of thethesis is built.First of all, only a non-relativisti
 physi
s is applied sin
e in mostquantum 
hemi
al 
al
ulations, whi
h investigate elements of the �rst threerows of the periodi
 table, the relativisti
 e�e
ts are still almost negligible in
omparison with the 
al
ulated properties of the main interest. Thus onlythe S
hrödinger equation is employed, whi
h makes the situation mu
h easierthan using the relativisti
 Dira
 equation.The mole
ular system is thus fully des
ribed by a non-relativisti
 Hamil-tonian
Ĥ = −1

2

∑

A

mA∆A

︸ ︷︷ ︸

T̂n

+ −1

2

∑

i

∆i

︸ ︷︷ ︸

T̂e

+
∑

A<B

ZAZB

rAB

︸ ︷︷ ︸

V̂nn

+
∑

iA

ZA

riA
︸ ︷︷ ︸

V̂ne

+
∑

i<j

1

rij
︸ ︷︷ ︸

V̂ee

(2.1)where the usual notation for kineti
 T̂ and potential energy V̂ is used as wellas symbols e and n for ele
trons and nu
lei respe
tively. This and all theother equations in the thesis also assume the use of atomi
 units.Nevertheless, even with the S
hrödinger equation, the relativisti
 e�e
ts
ould be in some extent involved by using the e�e
tive 
ore potentials, de-s
ribing an e�e
tive �eld of the 
ore atomi
 ele
trons.Be
ause of the relatively large ratio between the weight of nu
lei andele
trons, also the Born�Oppenheimer approximation (BOA) is appliedin most 
ases. It simply removes the nu
lear kineti
 energy operator T̂n fromthe total Hamiltonian, forming the so-
alled ele
troni
 Hamiltonian Ĥel

Ĥel = T̂e + V̂nn + V̂ne + V̂ee (2.2)This a
tually des
ribes an ele
troni
 system in the �eld of �xed nu
lei, whi
hobeys the S
hrödinger equation
Ĥel(R)|Φ(r;R)〉 = E(R)|Φ(r;R)〉 (2.3)13



in whi
h the r denotes ele
troni
 
oordinates and the R means that theele
troni
 Hamiltonian and its eigenvalues and eigenfun
tions depend on thenu
lear 
oordinates parametri
ally. The eigenvalue E(R) thus represents apotential energy (hyper)surfa
e (PES) on whi
h the nu
lei move.Solution of the Born�Oppenheimer Hamiltonian is usually su�
ientenough. It may, however, fail in situations where two potential energy sur-fa
es of the same symmetry 
ome 
lose together or even 
ross, forming the
oni
al interse
tion.In the rest of this work, be
ause of the impli
it use of the Born�Oppenheimer approximation, the ele
troni
 Hamiltonian will be further de-noted with just the symbol Ĥ.And lastly, although the N -ele
tron Hilbert spa
e is in�nite, for 
om-putational reasons, only �nite basis sets 
an be employed. For mole
ularsystems, however, they 
an be 
hosen in a way that is satisfa
tory enough for
omparison with experimental values. Moreover, spe
ial basis sets also existthat su

essfully give physi
al properties as if an in�nite basis were used.It is a
hieved by extrapolation of results obtained from 
al
ulations usingseveral �nite basis sets of an in
reasing size.2.2 The Hartree�Fo
k MethodAs already noted earlier, the Hartree�Fo
k method [21,22℄ is used to obtainan appropriate set of one-ele
tron basis fun
tions, the mole
ular spinorbitals
χi(x).The spinorbital 
onsists of a spatial orbital φi(r) and a spin 
omponent
|α〉 or |β〉

χi(x) =

{

φi(r)|α〉
φi(r)|β〉

(2.4)The spinorbital variable x thus involves both the spatial and the spin vari-ables altogether.The spin 
omponents are only formal, sin
e they are used to 
onstru
t aproper spin of the N-ele
tron wavefun
tion, whi
h is given and �xed. Param-eters of the spatial mole
ular orbital φi(r) is a
tually what is being optimizedin the Hartree�Fo
k pro
edure.The spatial mole
ular orbitals (MO) are usually formed from a �xed setof atomi
 orbitals (AO) as their linear 
ombination (LCAO)
φi(r) =

AO∑

µ

|µ(r)〉Cµi (2.5)where the LCAO 
oe�
ients Cµi are just the Hartree�Fo
k optimization vari-ables. 14



Intuitively, the atomi
 orbitals are fun
tions lo
ated at nu
lei, whi
hshould mimi
 the eigenfun
tions of a Hydrogen-type atoms (i.e. systems of anu
leus and only one ele
tron). Su
h simpli�ed fun
tions are the Slater-typeorbitals (STO)
φSTO
ijk (r) = xiyjzke−ζ|r−r0| (2.6)whi
h are, however, rarely used be
ause of their too expensive ele
tron re-pulsion integral evaluation. Instead, the Gaussian-type orbitals (GTO) areused

φGTO
ijk (r) = xiyjzke−ζ(r−r0)2 (2.7)whi
h 
an be integrated mu
h more easily, though they do not des
ribe theone-ele
tron wavefun
tion so well. To 
ompensate this de�
ien
y, the 
on-tra
ted GTOs are used, whi
h is just a �xed linear 
ombination of severalprimitive GTOs (of the same polynomial part, but di�ering in the exponent)

φCGTO
ijk (r) = xiyjzk

∑

m

Kme
−ζm(r−r0)2 (2.8)whi
h des
ribe the spatial orbitals better and remain 
omputationally fea-sible. There are numerous atomi
 basis sets of various size, optimized for
al
ulation of a variety of physi
al properties (mainly the energy) with theexponents and 
ontra
tion 
oe�
ients tabelized.The fun
tions shown above (2.7), (2.8) are 
alled 
artesian Gaussian-typeorbitals and are 
hara
terized by a shell number l = i+ j + k. All fun
tionsin shells l = 0, 1 are eigenfun
tions of the orbital momentum operator L̂2 (i.e.s and p fun
tions respe
tively). The 
artesian GTO fun
tions of shells with

l ≥ 2 however mix also fun
tions of lower orbital momentum. For examplethere are 6 
artesian GTOs of l = i + j + k = 2. But they 
an a
tually beredu
ed to 5 d and one s fun
tion. If a parti
ular quantum 
hemi
al programallows, a spheri
al GTO basis set 
an be 
onstru
ted from a 
artesian one,de
reasing the size of the one-ele
tron basis a little.The Hartree�Fo
k mole
ular orbitals are obtained by the variational prin-
iple by taking theN-ele
tron wavefun
tion |Φ〉 as a single Slater determinantonly and varying the LCAO 
oe�
ients while keeping the orbitals orthonor-mal so that the minimum of the wavefun
tion energy fun
tional is rea
hed.
EHF =

〈

HF
∣
∣
∣Ĥ

∣
∣
∣HF

〉

= minE [Φ] = min
〈

Φ
∣
∣
∣Ĥ

∣
∣
∣Φ

〉 (2.9)This way, within a given AO basis set, no better single determinantal
N-ele
tron wavefun
tion 
an be obtained.The simplest 
ase is the 
losed-shell restri
ted Hartree�Fo
k method(RHF) in whi
h ea
h spatial mole
ular orbital is shared between a pair of an
|α〉 and |β〉 spinorbitals.To 
al
ulate also the open-shell systems (i.e. with unpaired ele
trons),this restri
tion 
an be removed to form the unrestri
ted Hartree�Fo
k method15



(UHF) whi
h leads to two 
oupled sets of equations for |α〉 and |β〉 spinor-bitals. Despite still remaining quite simple, the UHF method a
tually doesnot give a wavefun
tion of a pure spin. In 
ontrast to the RHF method, it
an however qualitatively well des
ribe a disso
iation of a mole
ule.The restri
ted open-shell Hartree-Fo
k method (ROHF) uses a spin-adapted linear 
ombination of a few Slater determinants to provide a propereigenfun
tion of the spin (Ŝ2) operator, but its formalism is the most 
om-pli
ated.To rea
h the Hartree�Fo
k energy fun
tional minimum (2.9), the fun
-tional variation must be zero
δE [Φ] = δ

〈

HF
∣
∣
∣Ĥ

∣
∣
∣HF

〉

= 0 (2.10)With an additional requirement for the mole
ular orbitals to be orthonor-mal
〈φi|φj〉 = δij (2.11)the method of Lagrange multipliers dire
tly leads to equations of the Fo
koperator f̂ (spe
i�ed below)

f̂ |φi〉 =
N∑

j=1

λij|φj〉 (2.12)Be
ause this operator is invariant under a unitary transformation, su
h atransformation 
an be found whi
h diagonalizes the matrix of the multipliersand gives the 
anoni
al Hartree�Fo
k equations
f̂ |φi〉 = εi|φi〉 (2.13)from whi
h the set of 
anoni
al mole
ular orbitals |φi〉 is obtained where εiis 
alled the energy of the i-th orbital.The Fo
k operator is an e�e
tive one-ele
tron energy operator de�ned(for the simplest 
losed-shell RHF method) as

f̂(1) = ĥ(1) +
N∑

j=1

(

2Ĵj − K̂j

) (2.14)where
ĥ(1) = −1

2
∆1 −

nuclei∑

A

ZA

r1A
(2.15)is the one-ele
tron operator for the ele
troni
 kineti
 energy and the intera
-tion between the ele
tron and the nu
lei,

Ĵj(1) |φi(1)〉 =
∫

dr2 φ
∗
j(2)φj(2)

1

r12
φi(1) (2.16)16



is the Coulomb operator and
K̂j(1) |φi(1)〉 =

∫

dr2 φ
∗
j(2)φi(2)

1

r12
φj(1) (2.17)is the ex
hange operator. The last two operators just represent an averaged�eld of the other ele
trons. From their de�nition it follows that the Fo
koperator itself depends on the mole
ular orbitals. The Hartree�Fo
k equa-tions (2.13) are thus pseudo-eigenvalue equations whi
h have to be solvediteratively. From an initial orbital guess the Fo
k operator 
al
ulates theaveraged �eld of the ele
trons and a new set of orbitals is generated. Thispro
edure is repeated until the self-
onsisten
y is rea
hed, whi
h means thatthe averaged �eld as well as the orbitals no longer 
hange.As stated earlier, the mole
ular orbitals are expanded in the set of atomi
orbitals by LCAO 
oe�
ients (2.5). Substituting (2.5) in (2.13) one obtainsa set of Hartree�Fo
k�Roothaan equations that are a
tually used in pra
ti
al
al
ulations

AO∑

ν

FµνCνi = εi

AO∑

ν

SµνCνi (2.18)where Fµν and Sµν are the Fo
k and overlap matrix in the AO basis. Theequations are often written in a matrix form
FC = SCε (2.19)where the ε is a diagonal matrix of orbital energies.After the solution 
onverges to self-
onsisten
y, the N o

upied and

M − N virtual orbitals are produ
ed, where M is the size of the AO basis.In post-HF methods, whi
h 
al
ulate the ele
tron 
orrelation, an N-ele
tronfun
tion spa
e is generated by ex
itations of ele
trons from the o

upied or-bitals to the virtual ones, as des
ribed in the previous part. Ex
itations fromthe o

upied orbitals that represent the 
ore (non-valen
e) shell ele
tronshowever 
ontribute only minimally to the total ele
troni
 
orrelation andare often frozen (i.e. ex
luded from ex
itations). Freezing the 
ore orbitalsas well as their 
orresponding 
ounterparts in the virtual orbital set furthersigni�
antly redu
es the size of the N-ele
tron 
on�guration spa
e.At the end of this se
tion and before going further in theoreti
al formal-ism, a note about the 
ommon notation used in quantum-
hemi
al formulasshould be brie�y presented.Orbital indi
es i, j, k, l denote the o

upied, while a, b, c, d the virtualmole
ular orbitals. Indi
es p, q, r, s are used for general (i.e. either o

. orvirt.) mole
ular orbitals. Greek letters µ, ν, λ, σ, however, represent theatomi
 orbital indi
es. For example a matrix element of the one-ele
tronpart of the Hamiltonian in the AO basis is
hµν =

〈

φµ

∣
∣
∣ĥ
∣
∣
∣φν

〉 (2.20)17



The two-ele
tron integrals (i.e. the ele
tron repulsion integrals) in themole
ular spinorbital basis are denoted by
〈pq|rs〉 =

∫

dx1dx2χ
∗
p(x1)χ

∗
q(x2)

1

r12
χr(x1)χs(x2) (2.21)and a 
ommon shorthand for their antisymmetrized form

〈pq || rs〉 = 〈pq|rs〉 − 〈pq|sr〉 (2.22)However, integrals over spatial orbitals (either atomi
 or mole
ular) usebra
es instead of bra
kets and gather orbitals with the same ele
troni
 vari-able
(pq|rs) =

∫

dr1dr2φ
∗
p(r1)φq(r1)

1

r12
φ∗
r(r2)φs(r2) (2.23)Common Coulomb and ex
hange integrals are thus

Jij = (ii|jj) (2.24)
Kij = (ij|ji) (2.25)Using this notation, the 
losed shell RHF energy 
an be expressed as

ERHF = 2

N/2
∑

i

(i|ĥ|i) +
N/2
∑

ij

[2 (ii|jj)− (ij|ji)] (2.26)or in the spinorbital basis
ERHF =

N∑

i

hii +
1

2

N∑

ij

〈ij || ij〉 (2.27)And the widely used Fo
k matrix elements read
fpq = hpq +

N∑

i

〈pi || qi〉 (2.28)2.3 Se
ond QuantizationSe
ond quantization [21, 23�25℄ is a notion 
oming from quantum ele
tro-dynami
s, whi
h however (along with the diagrammati
 te
hnique) be
amevery popular with the many-body perturbation theory and related topi
s. Itmakes investigation of methods in the �eld mu
h easier than the 
lassi
alapproa
h sin
e the se
ond-quantized operators of physi
al observables (like
Ĥel) are independent of the number of ele
trons while the antisymmetry of18



the ele
troni
 wavefun
tion is assured in an elegant way without the need todire
tly manipulate Slater determinants.A brief introdu
tion to the se
ond quantization te
hnique is presentedbe
ause for explanation of the key 
on
epts of the 
oupled 
luster theory,the use of the se
ond quantized formalism 
annot be avoided. Otherwisethe des
ription as well as the algebrai
 tra
tability of the formulas would beextremely di�
ult.2.3.1 Creation and Annihilation OperatorsThe key 
on
ept represents the normalized va
uum state | 〉 whi
h is just awavefun
tion of zero ele
trons. Ele
trons 
an be 
reated in the va
uum stateby the 
reation operators a+p
a+p | 〉 = |p〉 (2.29)and annihilated again by the annihilation operators ap
ap |p〉 = | 〉 (2.30)whi
h are mutually related as Hermitian 
onjugates
ap =

(
a+p

)† (2.31)The operators obey the following anti
ommutation rules
[
a+p , a

+
q

]

+
= 0 (2.32)

[ap, aq]+ = 0 (2.33)
[
a+p , aq

]

+
= δpq (2.34)whi
h a
tually imply the N -ele
tron wavefun
tion to be inherently antisym-metri
. The appli
ation of the operators 
an thus be summarized

a+p |q . . . s〉 = |pq . . . s〉 (2.35)
ap |pq . . . s〉 = |q . . . s〉 (2.36)

a+p a
+
q . . . a+s | 〉 = |pq . . . s〉 (2.37)

|pq . . .〉 = a+p a
+
q | . . .〉

= − a+q a
+
p | . . .〉

= − |qp . . .〉 (2.38)19



aq |pqr . . .〉 = − aq |qpr . . .〉
= − |pr . . .〉 (2.39)

|ab . . .〉 = a+a a
+
b ajai |ij . . .〉 (2.40)

a+p |p〉 = 0 (2.41)
ap| 〉 = 0 (2.42)

ap |q〉 = apa
+
q | 〉

= δpq − a+q ap| 〉
= δpq − 0 (2.43)and one 
an see that an N-ele
tron wavefun
tion |pq . . . s〉 
an be representedby a Slater determinant formed from orbitals pq . . . s ea
h o

upied by anele
tron.Using the 
reation and annihilation operators, one 
an, for instan
e, 
on-veniently express a wavefun
tion expansion in the 
on�guration spa
e. Forexample the CI expansion is given by

|ΨCI〉 =
(

1 + Ĉ1 + Ĉ2 + · · ·+ ĈN

)

|Φ0〉 (2.44)where
Ĉ1 =

∑

i
a

cai a
+
a ai (2.45)

Ĉ2 =
∑

i<j
a<b

cabij a
+
a a

+
b ajai (2.46)et
. are ex
itation operators 1 generating all singly, doubly and up to N-tuply ex
ited 
on�gurations from the referen
e determinant |Φ0〉 togetherwith their CI expansion 
oe�
ients.And the CC exponential ansatz 
an be easily written as

|ΨCC〉 = eT̂ |Φ0〉
= eT̂1+T̂2+ ...+T̂N |Φ0〉

=

[

1 +
(

T̂1 + · · ·+ T̂N

)

+
1

2
T̂ 2
1 + T̂1T̂2 + . . .

]

|Φ0〉 (2.47)1Note the order of annihilators in the Ĉ2 operator; 
ompare with (2.40)20



where
T̂1 =

∑

i
a

tai a
+
a ai (2.48)

T̂2 =
∑

i<j
a<b

tabij a
+
a a

+
b ajai (2.49)et
. are similar ex
itation operators, but in the CC expansion (2.47), they are
ommonly referred to as the 
luster operators and the expansion 
oe�
ients

tai , t
ab
ij , . . . are 
alled the 
luster amplitudes.Note an important feature of the 
luster operators. Sin
e a 
luster oper-ator 
ontains annihilators of o

upied and 
reators of virtual orbitals, from(2.34)

[
a+a , ai

]

+
= δai = 0 (2.50)we see that all se
ond quantization operators in the 
luster operators an-ti
ommute. And be
ause there is always an even number of 
reators orannihilators in the 
luster operators, all the 
luster operators thus 
ommute.To do physi
s, however, a se
ond-quantized operators of physi
al observ-ables should be introdu
ed. It 
an be shown that the se
ond-quantized formof a one-parti
le operator Ô1 is given by

Ô1 =

N∑

i

ĥ(i) =
∑

pq

〈

p
∣
∣
∣ĥ
∣
∣
∣ q
〉

a+p aq (2.51)whereas a two-parti
le operator Ô2 be
omes
Ô2 =

N∑

i<j

v̂(i, j) =
1

2

∑

pqrs

〈pq |v̂| rs〉 a+p a+q asar (2.52)A se
ond-quantized ele
troni
 Hamiltonian thus reads
Ĥel =

∑

pq

hpq a
+
p aq +

1

2

∑

pqrs

〈pq|rs〉 a+p a+q asar (2.53)
=

∑

pq

hpq a
+
p aq +

1

4

∑

pqrs

〈pq || rs〉 a+p a+q asar (2.54)A matrix element of any operator (whi
h is a
tually a string of 
reationand annihilation operators between the va
uum bra and ket) 
an be straight-forwardly evaluated using the anti
ommutation rules by moving the annihi-lators to the right. Be
ause annihilating an ele
tron from a va
uum stategives zero, su
h pro
edure would �nally result in Krone
ker deltas only.21



This 
an be demonstrated on an overlap of two mutually singly-ex
itedtwo-ele
tron Slater determinants
|Φ0〉 = |ij〉 = a+i a

+
j | 〉 (2.55)

|Φa
i 〉 = |aj〉 = a+a a

+
j | 〉; 〈Φa

i | = 〈 |ajaa (2.56)Their overlap reads
〈Φa

i |Φ0〉 =
〈 ∣
∣ajaaa

+
i a

+
j

∣
∣
〉

= δai
〈 ∣
∣aja

+
j

∣
∣
〉
−

〈 ∣
∣aja

+
i aaa

+
j

∣
∣
〉

= δai − δaj
〈 ∣
∣aja

+
i

∣
∣
〉
+
〈 ∣
∣aja

+
i a

+
j aa

∣
∣
〉

= δai (2.57)Matrix elements of more 
ompli
ated operator strings like Hamiltonianbetween various determinants would be however very tedious to evaluate inthis way. A more 
onvenient method for evaluation of matrix elements isdes
ribed in the following subse
tion.2.3.2 Normal-Ordered Operators and the Wi
k's Theo-remIt has just been shown that in order to evaluate a matrix element of anoperator string, the annihilation operators had to be moved to the right ofthe 
reation operators by the anti
ommutation rules so that they give zero bya
ting on a va
uum state and also to redu
e one operator pair of the string toa Krone
ker delta. An operator string in whi
h all the annihilators are to theright of all the 
reators is said to be normal ordered and its matrix element isobviously zero. The Wi
k's theorem gives a rule how to easily transform anarbitrary operator string into Krone
ker deltas and normal ordered stringsso that matrix element evaluation be
omes simple even for very 
ompli
atedoperator strings.Let us �rst introdu
e a 
ontra
tion of an operator pair (see Fig. 2.1)by 
onne
ting two operators with a line. The bra
es around a string {. . . }mean that the string inside is permuted to be normal ordered with a sign
orresponding to a parity of su
h permutation. So a 
ontra
tion of an alreadynormal ordered string gives zero, otherwise a Krone
ker delta is produ
ed.The Wi
k's theorem (Fig. 2.2) says that an arbitrary string of operators
an be expanded in normal ordered strings with zero and all single, doubleand up to N-tuple (full) 
ontra
tions. The great 
onsequen
e of the theoremis that a matrix element of an operator string must be just the sum of onlythe fully 
ontra
ted normal ordered strings (see Fig. 2.3), be
ause the non-fully 
ontra
ted normal ordered operators would annihilate the ket va
uum.22



Figure 2.1: A 
ontra
tion of an operator pair

Figure 2.2: The Wi
k's theorem

Figure 2.3: A matrix element evaluation by the Wi
k's theorem
23



Figure 2.4: An example of a matrix element evaluation by the Wi
k's theoremThe example of the overlap of two determinants that was shown earlier(2.57) 
an be evaluated by the Wi
k's theorem very easily (see Fig. 2.4) sin
ethere are only two fully 
ontra
ted strings, one of whi
h gives immediatelyzero.2.3.3 The Parti
le�Hole FormalismAlthough everything ne
essary for the se
ond-quantized matrix element eval-uation has already been introdu
ed, the formalism 
an further be improvedso that formula manipulations is even more 
onvenient.In the post-Hartree�Fo
k methods the wavefun
tion expansion usuallystarts from the referen
e 
on�guration |Φ0〉 rater than a true va
uum state.It means that the operator strings in many matrix elements 
ontain similarsubstrings of 
reation and (annihilation) operators 
orresponding to the ket(and bra) 
on�gurations, di�ering from the referen
e state by only a fewex
itations.By rede�ning the meaning of the 
reation and annihilation operatorsslightly, those 
ommon substrings 
an be redu
ed to only a few operatorswhi
h des
ribe the di�eren
e between the parti
ular ket (or bra) 
on�gurationand the referen
e state. Su
h operator elimination leads to mu
h shorterstrings that have to be evaluated and further simpli�es the formalism.Let us �rst introdu
e the Fermi va
uum |Φ0〉, whi
h represents the ref-eren
e 
on�guration (i.e. a va
uum state �lled with N ele
trons in a set ofo

upied orbitals)
|Φ0〉 = a+i a

+
j . . . | 〉 (2.58)So far the 
reation operators generated an ele
tron by a
ting on a va
-uum state. From now on, however, a 
reator means an operator that eithergenerates a parti
le (i.e. an ele
tron in a virtual orbital) or 
reates a hole(i.e. annihilates an ele
tron from an o

upied orbital). The annihilators arerede�ned analogously. They produ
ed zero by a
ting on the true va
uumbut now the annihilators give zero by a
ting on the Fermi va
uum. It meansthat they either annihilate a parti
le (i.e. an ele
tron from a virtual orbital)or annihilate a hole (i.e. 
reate an ele
tron in an o

upied orbital). The re-de�nition is s
hemati
ally summarized in Table 2.1 with the usual notationfor hole indi
es i, j, . . . (i.e. o

upied orbitals), parti
le indi
es a, b, . . . (i.e.virtual orbitals) and general orbital indi
es p, q, . . . .24



Creates Annihilates
a+a aa parti
le
ai a+i holeTable 2.1: De�nition of 
reation and annihilation operators in the parti
le�hole formalismAn example of a parti
le 
reation

a+a |ijk〉 = |aijk〉 (2.59)a hole 
reation
ai|ijk〉 = |jk〉 (2.60)and a hole annihilation
a+i |jk〉 = |ijk〉 (2.61)Similarly, the rede�ned normal ordered string is su
h that puts the rede-�ned annihilation operators to the right of all 
reators. For example
a+a a

+
i |ijk〉 = 0 (2.62)demonstrates how a rede�ned normal ordered string gives zero by a
ting onthe Fermi va
uum.The same applies to the 
ontra
tion de�nition and �nally to the Wi
k'stheorem too.The Ĥel is usually written in a normal ordered form using the parti
le�hole formalism. By applying the Wi
k's theorem to the Hamiltonian

Ĥel =
∑

pq

hpq a
+
p aq +

1

4

∑

pqrs

〈pq || rs〉 a+p a+q asar (2.63)and 
onsidering all the 
ases where the general orbital indi
es run over par-ti
les and holes separately, one �nally gets an interesting result
Ĥel =

∑

pq

fpq {a+p aq}
︸ ︷︷ ︸

F̂N

+
1

4

∑

pqrs

〈pq || rs〉 {a+p a+q asar}
︸ ︷︷ ︸

V̂N

︸ ︷︷ ︸

ĤN

+
〈

Φ0

∣
∣
∣Ĥel

∣
∣
∣Φ0

〉

︸ ︷︷ ︸

EHF

(2.64)
or

ĤN = Ĥel −
〈

Φ0

∣
∣
∣Ĥel

∣
∣
∣Φ0

〉 (2.65)so the normal ordered ele
troni
 Hamiltonian ĤN 
an also be 
onsidered asa 
orrelation operator. 25



2.4 The Coupled Cluster MethodThe origin of the Coupled Cluster method dates ba
k to 1958 where theprin
iples were �rst introdu
ed in nu
lear physi
s [26,27℄. In 1966 [28℄ it alsoappeared in quantum 
hemistry as the Coupled Pair Many Ele
tron Theory(CPMET) 2 and only in the late 1970s [29,30℄ the 
omputer implementationsallowed the CC method to be applied also to systems of real 
hemi
al interest.The exponential ansatz (2.47) of the wavefun
tion has an analogy in the
luster expansion of the 
on�guration integral in statisti
al physi
s and hen
ethe method got its name.The 
oupled 
luster 
orrelation energy expression 
an be obtained fromthe S
hrödinger equation by using the normal ordered ele
troni
 Hamilto-nian. The S
hrödinger equation thus be
omes
ĤN eT̂ |Φ0〉 =

(
ECC −EHF

)

︸ ︷︷ ︸

∆ECC

eT̂ |Φ0〉 (2.66)and by multiplying it from left by the e−T̂ operator and proje
ting by theFermi va
uum, the energy yields
∆ECC =

〈

Φ0

∣
∣
∣e−T̂ ĤN eT̂

∣
∣
∣Φ0

〉 (2.67)In a similar way, proje
ting by ex
ited 
on�gurations leads to sets ofequations for the 
luster amplitudes. Thus the T̂1 equations read
〈

Φa
i

∣
∣
∣e−T̂ ĤN eT̂

∣
∣
∣Φ0

〉

= 0 (2.68)
T̂2 equations

〈

Φab
ij

∣
∣
∣e−T̂ ĤN eT̂

∣
∣
∣Φ0

〉

= 0 (2.69)and analogi
ally also the equations for higher 
luster amplitudes.2.4.1 The Conne
ted Cluster ExpansionThe reason why the energy expression (2.67) and the equations for the 
lusteramplitudes (2.68) and (2.69) are derived in the presented way is that notonly the amplitude equations are un
oupled from the energy, but also thatthe similarity transformed Hamiltonian 
an 
onveniently be expanded by theBaker�Campbell�Hausdor� formula (BCH) and naturally trun
ated.The BCH expansion reads2an equivalent of the CCD method in the modern terminology
26



e−T̂ ĤN eT̂ = ĤN +
[

ĤN, T̂
]

+
1

2!

[[

ĤN, T̂
]

, T̂
]

+
1

3!

[[[

ĤN, T̂
]

, T̂
]

, T̂
]

+
1

4!
. . . (2.70)By appli
ation of the Wi
k's theorem and evaluating the 
ommutators it 
anbe shown that this expansion is trun
ated after the fourth nested 
ommutatorand results in the following form

e−T̂ ĤN eT̂ =

(

ĤN + ĤNT̂ +
1

2!
ĤNT̂

2 +
1

3!
ĤNT̂

3 +
1

4!
ĤNT̂

4

)

C

=
(

ĤN eT̂
)

C
(2.71)where the symbol C stands for 
onne
ted terms only. The 
onne
ted termmeans that there must be at least one 
ontra
tion line between the ĤN andea
h of the 
luster operators to the right of it, otherwise the 
ommutatorswould produ
e zero. And be
ause there are at most four operators in theHamiltonian (in its two-ele
tron part), there 
an be at most four 
ontra
tionlines leading from it and thus the expansion naturally trun
ates after the

ĤNT̂
4 term.The total 
luster operator T̂ is usually trun
ated to a 
ertain level ofex
itation. For instan
e the mostly used CCSD approximation involves onlythe single and double ex
itation 
luster operators (T̂ = T̂1 + T̂2), while theCCSDT method in
ludes also the triples (T̂3) in addition.Nevertheless, after substituting (2.71) into (2.67) and evaluating, the �nal
oupled 
luster energy expression be
omes
∆ECC =

∑

i
a

fiat
a
i +

1

4

∑

ij
ab

〈ij || ab〉 tabij +
1

2

∑

ij
ab

〈ij || ab〉 tai tbj (2.72)whi
h depends only on the T̂1 and T̂2 amplitudes regardless the level of trun-
ation of the total 
luster operator T̂ . The 
ontribution of higher ex
itationsto the 
oupled 
luster energy is thus only indire
t via the equations in whi
hthe T̂1 and T̂2 amplitudes are determined.Analogi
ally also the amplitude equations (2.68) and (2.69) for a givenlevel of trun
ation of the 
luster operator T̂ 
an be evaluated to �nal algebrai
formulas by using the 
onne
ted 
luster expansion (2.71) and the Wi
k'stheorem. However, the additional string of the bra operators 
reates so many27




ontra
tion possibilities to 
onsider that even the Wi
k's theorem appli
ationbe
omes too 
ompli
ated and the diagrammati
 te
hnique has to be employedinstead.2.4.2 Size-Extensivity and Size-Consisten
yAt this point, the meaning of the two entities should be brie�y explained sin
esize-extensivity underlines the importan
e of the 
oupled 
luster methodwhile size-
onsisten
y gives rise to multireferen
e theories.These terms are usually best explained on an example of two noninter-a
ting systems like a dimer of two in�nitely distant water mole
ules A andB and 
omparing energy additivity for CC and CI methods.Mole
ule A has the following CC wavefun
tion
|ACC〉 = eT̂A |AHF〉 (2.73)and the CI wavefun
tion

|ACI〉 =
(

1 + ĈA

)

|AHF〉 (2.74)The wavefun
tions of the B mole
ule are analogous. The CC wavefun
tionof the nonintera
ting dimer would be
|ABCC〉 = eT̂A+T̂B |AHF〉 |BHF〉

= eT̂A |AHF〉 eT̂B |BHF〉
= |ACC〉 |BCC〉 (2.75)whi
h dire
tly shows the additivity of CC energy for nonintera
ting systems

ECC
AB = ECC

A + ECC
B (2.76)where the Hamiltonian is given as

ĤAB = ĤA + ĤB (2.77)By 
ontrast, the CI wavefun
tion
|ABCI〉 =

(

1 + ĈA + ĈB

)

|AHF〉 |BHF〉 (2.78)is not fa
torizable (ex
ept for the Full-CI expansion, whi
h is proper from itsnature) and hen
e the trun
ated CI method 
annot give proper energy of thesupersystem. The CC method is thus said to be size-
onsistent (regardlessthe level of the T̂ operator trun
ation) while the trun
ated CI method is not.It has been shown how energy of the CC and CI methods s
ale when a sys-tem with nonintera
ting 
omponents is studied and su
h proper s
aling was
alled size-
onsisten
y. A method should, however, provide right s
aling of28



the energy regardless the system being investigated. That means not only toproperly des
ribe the nonintera
ting subsystems, but just any system shoulds
ale appropriately with the number of ele
trons. This is a mathemati
alfeature of ea
h parti
ular method and is referred to as size-extensivity.The trun
ated CI method is not size-extensive sin
e the formulas fromwhi
h the trun
ated CI 
oe�
ients 
an be obtained are 
oupled with energy(whi
h is dependent on the number of ele
trons) but do not involve higherex
itations that are present in the 
orresponding (size-extensive) Full-CI for-mulas and whi
h 
an
el the in
orre
t s
aling. Therefore an approximateDavidson 
orre
tion for the size-extensivity [7, 8℄ has to be applied.The terms whi
h are not 
ompensated for the s
aling error in the trun-
ated CI method 
ome from dis
onne
ted terms (diagrams). The CC method,however, 
ontains only 
onne
ted terms (diagrams) in the energy expressionfor any level of the 
luster operator trun
ation and be
ause the CC amplitudeequations are un
oupled from energy, it is thus guaranteed that the 
oupled
luster method is size-extensive.The term size-
onsisten
y has, however, a broader meaning. A size-
onsistent method must be size-extensive and must also properly des
ribeseparation (disso
iation) into 
omponents. This depends on the parti
ularmole
ular system. Studying a disso
iation of a dimer of Fluorine mole
ulesby the 
oupled 
luster method would lead to size-
onsistent results while adisso
iation of a single Fluorine mole
ule into atoms would not. For these
ases a treatment of multireferen
e methods is needed.2.5 The Hilbert Spa
e Multireferen
e CoupledCluster MethodsIn multireferen
e post-Hartree�Fo
k methods the several referen
e 
on�gu-rations enable investigation of systems in whi
h the non-dynami
 
orrelationplays role in qualitatively 
orre
t des
ription of the potential energy surfa
e.This involves 
ases like disso
iation of mole
ules into fragments or nonequi-librium geometries (twisted ethylene). But generally other quasi-degeneratestates like a singlet 
arbene mole
ule where single-referen
e methods 
om-pletely fail to des
ribe a realisti
 potential energy surfa
e and often even failto 
onverge require the use of multireferen
e methods. Another example ofa ne
essary multireferen
e treatment are systems with spin that 
annot bedes
ribed by a single Slater determinant like the 1∆ state of O2 mole
ule.Moreover, the multireferen
e des
ription 
an in e�e
t partially 
ompensatethe size-extensivity error of the trun
ated single-referen
e CI method due tothe presen
e of higher ex
itations.There is no unique multireferen
e generalization of the exponential 
ou-pled 
luster ansatz and thus many various approa
hes exist, whi
h in
ludethe Hilbert spa
e [31℄ and Fo
k spa
e methods [32�35℄, redu
ed multirefer-29



en
e CC s
heme [36�38℄ or tailored CC [39, 40℄ or even methods employingonly single Fermi va
uum [41�49℄.In 
ontrast to the Fo
k spa
e formalism whi
h de�nes only one waveoperator a
ting on several se
tors of the Fo
k spa
e, the Hilbert spa
e mul-tireferen
e 
oupled 
luster methods expand the wavefun
tion similarly likethe single-referen
e method but from several referen
e 
on�gurations so thatea
h referen
e determinant has its own 
luster operator. Unlike the single-referen
e CC, the MRCC energy is then obtained as an eigenvalue of ane�e
tive Hamiltonian. In state-universal methods, all the eigenstates havephysi
al meaning of the ground and the ex
ited states. In state-spe
i�
methods, by 
ontrast, only one spe
i�
 state is physi
al and the other eigen-solutions are arti�
ial. The main advantage of the state-spe
i�
 methodsover the state-universal or even the Fo
k spa
e formalism is their resistan
eto intruder states.In the following, the theory of the Hilbert spa
e multireferen
e 
oupled
luster methods that 
on
ern this thesis is presented.2.5.1 The State-Spe
i�
 Multireferen
e Brillouin�Wigner Coupled Cluster method (MR BWCC)The several referen
e 
on�gurations |Φµ〉 form a model spa
e P with a pro-je
tion operator
P̂ =

M∑

µ=1

|Φµ〉〈Φµ| (2.79)and its orthogonal 
omplement Q = 1− P.Within the model spa
e a model wavefun
tion
|ΨP

α 〉 =
M∑

µ=1

cαµ|Φµ〉 (2.80)is 
onstru
ted where the 
oe�
ients cαµ are not known a priori. The exa
twavefun
tion |Ψα〉 is obtained from the model wavefun
tion by the state-spe
i�
 wave operator Ω̂α

|Ψα〉 = Ω̂α|ΨP
α 〉 (2.81)and is required to ful�ll the intermediate normalization

〈
Ψα|ΨP

α

〉
= 1 (2.82)The wave operator is taken in the form of Jeziorski�Monkhorst ansatz [31℄

Ω̂α =

M∑

µ=1

eT̂ (µ) |Φµ〉〈Φµ| (2.83)30



The index µ in the 
luster operators T (µ) denotes that the ex
itations aredone with respe
t to µ-th referen
e 
on�guration as a Fermi va
uum andthat ea
h referen
e 
on�guration has its own set of independent amplitudes.The amplitudes that 
orrespond to mutual ex
itations between the referen
e
on�gurations are by de�nition set to zero.The exa
t energy of the αth state Eα is obtained as the αth eigenvalueof the e�e
tive Hamiltonian Ĥeff on the model spa
e
Ĥeff |ΨP

α 〉 = Eα|ΨP
α 〉 (2.84)whi
h is a non-Hermitian operator de�ned as

Ĥeff = P̂ ĤΩ̂αP̂ (2.85)As a state-spe
i�
 method, only the αth state has physi
al meaning.The 
oupled 
luster amplitude equations are obtained by inserting thewave operator into the generalized Blo
h equation [50℄
ĤΩ̂αP̂ − ηEαΩ̂αP̂ − (1− η)Ω̂αĤ

eff
α = 0 (2.86)In this equation, η is an arbitrary parameter between zero and one, with η = 0
orresponding to the Rayleigh-S
hrödinger perturbation theory and η = 1 tothe Brillouin�Wigner theory. The η�s
aled term in (2.86), whi
h is 
hara
-teristi
 for the Brillouin-Wigner theory, 
orresponds to unlinked diagrams,leading to the size-inextensivity of the MR BWCC method. Therefore, a
orre
tion for size-extensivity is ne
essary. Two 
orre
tions were suggestedwhi
h 
an be obtained from the above 
ontinuous transition from whi
h,however, the (1 − η)-s
aled 
oupling terms are omitted. This leads to thefollowing CC amplitude equations

〈

Φϑ

∣
∣
∣ĤeT̂ (µ)

∣
∣
∣Φµ

〉

C
+ η

〈

Φϑ

∣
∣
∣ĤeT̂ (µ)

∣
∣
∣Φµ

〉

DC

−ηEα

〈

Φϑ

∣
∣
∣eT̂ (µ)

∣
∣
∣Φµ

〉

= 0 (2.87)in whi
h the C and DC labels denote the 
onne
ted and dis
onne
ted dia-grams, respe
tively. In the a posteriori 
orre
tion [51℄, after 
onverging theequations (2.87) with η = 1, one additional iteration of 
luster equations isperformed while setting η = 0. In the iterative 
orre
tion, however, theseterms are gradually s
aled to zero by su

essive iterations of the 
luster equa-tions and the 
onverged result 
orresponds to η = 0.Despite the unpleasant 
onsequen
e of the Brillouin�Wigner formalismthat the method is not size-extensive a priori, two advantages also arise.Sin
e the Brillouin�Wigner resolvent has the true energy in its denominator,intruder state problems, in whi
h the denominator goes to zero and makesnumeri
al di�
ulties, are avoided. This is however not true when the itera-tive 
orre
tion is being applied, whi
h often fa
es to 
onvergen
e problems.31



The other advantage is that the CC amplitude equations (2.87) of di�erentreferen
e 
on�gurations are 
oupled only via the energy so the method s
aleslinearly with the size of the referen
e spa
e.The method has been used to study many 
hemi
ally interesting systemsat CCSD level [52�60℄. Later it was also provided with 
onne
ted triples
ontribution to involve more dynami
al 
orrelation at an approximate itera-tive [61℄, non-iterative [18℄ and �nally full iterative MR BWCCSDT level [62℄.2.5.2 The State-Universal Multireferen
e CoupledCluster method (SU MRCC)The Hilbert spa
e MRCC theory is similar to the method above, ex
ept thatthe wave operator is state-universal and the transition of the Blo
h equation[50℄ to the Ku
harski�Bartlet formulation of the state-universal MRCC [15℄leads to the amplitude equations
〈

Φϑ

∣
∣
∣ĤeT̂ (µ)

∣
∣
∣Φµ

〉

C
+ η

〈

Φϑ

∣
∣
∣ĤeT̂ (µ)

∣
∣
∣Φµ

〉

DC

−ηEα

〈

Φϑ

∣
∣
∣eT̂ (µ)

∣
∣
∣Φµ

〉

−(1− η)
∑

ν∈P,ν 6=µ

{〈

Φϑ

∣
∣
∣eT̂ (ν)

∣
∣
∣Φν

〉

Ĥeff
νµ

}

C
= 0 (2.88)whi
h are 
oupled between di�erent referen
e 
on�gurations.2.5.3 The State-Spe
i�
 Multireferen
e MukherjeeCoupled Cluster method (MR MkCC)In 
ontrast to the Brillouin�Wigner MRCC theory, the derivation ofMR MkCC method starts by the following resolution of identity

1 = eT̂ (µ) e−T̂ (µ)

= eT̂ (µ) (P +Q) e−T̂ (µ)

=

P∑

ν

eT̂ (µ) |ν〉〈ν| e−T̂ (µ) + eT̂ (µ) Q e−T̂ (µ) (2.89)whi
h is inserted from the left to the S
hrödinger equation
ĤΩ̂α|ΨP

α 〉 = EαΩ̂α|ΨP
α 〉 (2.90)Subsequent inter
hange of the summation indi
es µ and ν in the �rst termyields to 32



P∑

µ

{ P∑

ν

eT̂ (ν) |Φµ〉Heff
µν c

α
ν

+eT̂ (µ) Q e−T̂ (µ) Ĥ eT̂ (µ) |Φµ〉 cαµ
−Eα eT̂ (µ) |Φµ〉 cαµ

}

= 0 (2.91)The su�
ien
y 
onditions are then applied to resolve the redundan
y of theJeziorski�Monkhorst ansatz in the state-spe
i�
 
ontext, requiring that ea
h
µth 
ontribution of the above summation is equal to zero. The equationsfor the 
luster amplitudes are �nally obtained by multiplying the resultingequation from the left by e−T̂ (µ) and proje
ting to ex
ited 
on�gurations,whi
h gives

〈

Φϑ

∣
∣
∣e−T̂ (µ)ĤeT̂ (µ)

∣
∣
∣Φµ

〉

cαµ

+
P∑

ν 6=µ

Heff
µν c

α
ν

〈

Φϑ

∣
∣
∣e−T̂ (µ)eT̂ (ν)

∣
∣
∣Φµ

〉

= 0 (2.92)Un
oupled Approximation to MR MkCCMukherjee et al. [63,64℄ suggested to approximate the 
luster operator T̂ (ν) inthe 
oupling term 〈

Φϑ

∣
∣
∣e−T̂ (µ)eT̂ (ν)

∣
∣
∣Φµ

〉 of (2.92) by T̂
′

ν(µ) whi
h is a
tuallya subset of T̂ (µ) 
ontaining only su
h ex
itation operators that give nonzerowhen a
ting on |Φν〉. Thus the amplitudes are given by
t
′ a...
ν i... =

{

ta...i... if i · · · ∈ occ(ν); a · · · ∈ virt(ν)

0 otherwise
(2.93)By further de�ning a 
omplement 
luster operator

T̄ν(µ) = T̂ (µ)− T̂
′

ν(µ) (2.94)the 
oupling term be
omes 〈Φϑ

∣
∣e−T̄ν(µ)

∣
∣Φµ

〉.In the 
ontext of the triples, the theory has been re
ently further inves-tigated by Demel et al. [65℄.2.6 Analyti
al Gradient of the Hartree�Fo
kEnergyAlthough not dire
tly ne
essary for derivation of the 
oupled 
luster gradientformulas, the example of the Hartree�Fo
k energy derivative helps to intro-du
e the basi
 prin
iples and terms like skeletons and U matri
es whi
h are
ommonly used in the analyti
al gradient theory.33



Before di�erentiating the Hartree�Fo
k ele
troni
 energy formula
ERHF = 2

N/2
∑

i

hii +

N/2
∑

ij

[2 (ii|jj)− (ij|ji)] (2.95)let us �rst show how derivatives of the LCAO 
oe�
ients are usually ex-pressed. Starting from an expansion of a mole
ular orbital |i〉 in the basis ofatomi
 orbitals by the LCAO 
oe�
ients
|i〉 =

AO∑

µ

|µ〉Cµi (2.96)and di�erentiating with respe
t to a general perturbation χ

∂ |i〉
∂ χ

=
AO∑

µ

|µ〉 ∂ Cµi

∂ χ
(2.97)the RHS of (2.97) is expanded to the MO basis in terms of U matri
es

∂ |i〉
∂ χ

=
MO∑

m

|m〉Uχ
mi

=

MO∑

m

AO∑

µ

|µ〉CµmUχ
mi (2.98)By 
omparing the RHS of (2.97) and the right-hand side of (2.98), the ex-pression for the LCAO 
oe�
ient derivatives in terms of the U matri
es is�nally obtained and reads

∂ Cµi

∂ χ
=

MO∑

m

Cµm Uχ
mi (2.99)The U matri
es 
an be 
al
ulated from the 
oupled perturbed Hartree�Fo
k equations (CPHF), whi
h will be des
ribed at the end of this se
tion.But now that the U matri
es have been introdu
ed, the di�erentiation of theHartree�Fo
k energy expression in MO basis (2.95) 
an be performed andformally gives

∂ ERHF

∂ χ
= 2

occ∑

i

∂ hii

∂ χ
+

occ∑

ij

[

2
∂ (ii|jj)

∂ χ
− ∂ (ij|ij)

∂ χ

] (2.100)where
∂ hii

∂ χ
= hχ

ii + 2

MO∑

m

Uχ
mihmi (2.101)34



∂ (ii|jj)
∂ χ

= (ii|jj)χ + 2
MO∑

m

[
Uχ
mi (mi|jj) + Uχ

mj (ii|mj)
] (2.102)

∂ (ij|ij)
∂ χ

= (ij|ij)χ + 2

MO∑

m

[
Uχ
mi (mj|ij) + Uχ

mj (im|ij)
] (2.103)where the terms with AO integral derivatives

hχ
ij =

AO∑

µν

Cµi
∂ hµν

∂ χ
Cνj (2.104)and

(ij|kl)χ =

AO∑

µν
̺σ

∂ (µν|̺σ)
∂ χ

CµiCνjC̺kCσl (2.105)are 
ommonly referred to as the skeletons.After some algebra, the (2.100) however turns out to be independent ofthe U matri
es and reads
∂ ERHF

∂ χ
= 2

occ∑

i

hχ
ii +

occ∑

ij

[2 (ii|jj)χ − (ij|ij)χ]− 2
occ∑

i

Sχ
ii εi (2.106)where

Sχ
ij =

AO∑

µν

Cµi
∂ Sµν

∂ χ
Cνj (2.107)is a skeleton term of the overlap matrix.The gradient formula (2.106) is then expressed in the AO basis by sub-stituting the skeletons and �nally yields

∂ ERHF

∂ χ
= 2

AO∑

µν

Dµν h
χ
µν +

AO∑

µν
̺σ

{2DµνD̺σ −Dµ̺Dνσ} (µν|̺σ)χ

−2

AO∑

µν

Wµν S
χ
µν (2.108)where

Dµν =
occ∑

i

Cµi Cνi (2.109)35



is the Hartree�Fo
k one-ele
tron density matrix and
Wµν =

occ∑

i

Cµi Cνi εi (2.110)is the energy weighted density matrix while using the 
ommon notation forthe AO integral derivatives
Sχ
µν =

∂ Sµν

∂ χ
(2.111)

hχ
µν =

∂ hµν

∂ χ
(2.112)

(µν|̺σ)χ =
∂ (µν|̺σ)

∂ χ
(2.113)The �nal U-matrix-free gradient formula (2.108) is in a

ordan
e to theWigner's 2n + 1 rule whi
h says that from a wavefun
tion exa
t to the nthorder of a perturbation expansion, an energy of the (2n+ 1)th order 
an beobtained. And thus from the Hartree�Fo
k wavefun
tion (zeroth order) the�rst energy derivative 
an be 
al
ulated without the need to di�erentiate theLCAO 
oe�
ients.2.6.1 Coupled Perturbed Hartree�Fo
k Equations(CPHF)It has been shown that U matri
es are not ne
essary for evaluation of theHartree�Fo
k energy gradient. Nevertheless, it is not the 
ase of higherderivatives and the U matri
es also play an important role in the analyti
algradient theory of the post-HF methods. To obtain them, a set of CPHFequations [66℄ has to be solved for ea
h gradient 
oordinate χ.But before introdu
ing the equations, an important relation for the U ma-tri
es should be derived from the orthonormality 
ondition for the mole
ularorbitals

〈j|i〉 = δji
AO∑

µν

〈µ|Cµj Cνi |ν〉 = δji

AO∑

µν

Cµj Sµν Cνi = δji (2.114)Di�erentiating (2.114) with respe
t to χ gives36



AO∑

µν

∂ Cµi

∂ χ
SµνCνj + Cµi

∂ Sµν

∂ χ
︸ ︷︷ ︸

Sχ
µν

Cνj + CµiSµν
∂ Cνj

∂ χ
= 0 (2.115)By substituting the U matri
es, the derivative of the 
ondition �nally be-
omes

Uχ
ji + Sχ

ij + Uχ
ij = 0 (2.116)where

Sχ
ij =

AO∑

µν

CµiS
χ
µνCνj = Sχ

ji (2.117)From (2.116), for the diagonal elements of the U matri
es it then follows
Uχ
ii = −1

2
Sχ
ii (2.118)Without showing the derivation (by di�erentiating the Fo
k matrix), theCPHF equations read

(εj − εi)U
χ
ij −

virt∑

k

occ∑

l

Uχ
kl Aij,kl = Bχ

ij (2.119)where
Aij,kl = 4 (ij|kl)− (ik|jl)− (il|jk) (2.120)

Bχ
ij = F χ

ij − εjS
χ
ij −

occ∑

kl

Sχ
kl {2 (ij|kl)− (ik|jl)} (2.121)

F χ
ij = hχ

ij +

occ∑

k

{2 (ij|kk)χ − (ik|jk)χ} (2.122)The (2.119) is a
tually a set of linear equations for #occ × #virt vari-ables from whi
h the occ-virt blo
ks of the U matri
es are obtained. Thetransposed U matrix elements are then 
al
ulated from (2.116) and the di-agonals from (2.118). The remaining occ-occ and virt-virt blo
ks are �nally
al
ulated expli
itly from (2.119) by using the occ-virt blo
ks
Uχ
ij =

1

εj − εi

{

Bχ
ij +

virt∑

k

occ∑

l

Uχ
kl Aij,kl

} (2.123)
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2.7 Analyti
al Gradient of the Coupled ClusterEnergyThe analyti
al energy derivatives of the single-referen
e 
oupled 
luster meth-ods were developed in several groups [67�83℄. It was shown that despite beinga non-variational method, the CC amplitude derivatives need not be deter-mined and only a single, perturbation independent equation must be solved.Instead of a dire
t di�erentiation of the 
oupled 
luster energy formula, whi
hwould inevitably lead to the derivatives of the 
luster amplitudes for ea
hgradient 
omponent, it is advantageous to 
onstru
t and di�erentiate a La-grangian whi
h dire
tly results in solving only a set of linear λ equations,whi
h are independent of the perturbation parameter and the resulting λamplitudes are thus 
ommon for all gradient 
oordinates [10, 84, 85℄.The Lagrangian 
onsists of the CC energy expression and the CC ampli-tude equations as the 
onstraints with the unspe
i�ed 
oe�
ients λΦ 
alledthe λ amplitudes
L(tΦ, λΦ′) =

〈

Φ0

∣
∣
∣

[

ĤNe
T̂
]

C

∣
∣
∣Φ0

〉

+
∑

Φ′

λΦ′

〈

Φ′
∣
∣
∣

[

ĤNe
T̂
]

C

∣
∣
∣Φ0

〉 (2.124)Here the tΦ means a CC amplitude in the sense of
T̂ =

∑

Φ

tΦτ̂Φ (2.125)
τ̂Φ|Φ0〉 = ±|Φ〉 (2.126)where the τ̂Φ is its 
orresponding ex
itation operator (the sign 
orrespondsto the parity of permutation ne
essary to bring the string of the ex
iteddeterminant to a 
anoni
al order).Minimizing the Lagrangian with respe
t to λ and CC amplitudes leadsto solving the CC amplitude equations

∂ L
∂ λΦ′

= 0 (2.127)and the λ equations
∂ L
∂ tΦ

= 0 (2.128)The CC energy gradient formula 
an then be expressed as a partial derivativeof the Lagrangian and has thus a simple form
38



d∆ECC

d χ
=

dL
d χ

=
∂ L
∂ χ

+
∑

Φ

∂ L
∂ tΦ
︸︷︷︸

0

∂ tΦ
∂ χ

+
∑

Φ′

∂ L
∂ λΦ′

︸ ︷︷ ︸

0

∂ λΦ′

∂ χ

=
∂ L
∂ χ

=
〈

Φ0

∣
∣
∣

[

Ĥχ
Ne

T̂
]

C

∣
∣
∣Φ0

〉

+
∑

Φ′

λΦ′

〈

Φ′
∣
∣
∣

[

Ĥχ
Ne

T̂
]

C

∣
∣
∣Φ0

〉 (2.129)where
Ĥχ

N =
∂ ĤN

∂ χ
(2.130)whi
h a
tually 
orresponds to the generalized Hellman�Feynman theorem,sin
e the perturbation parameter χ appears expli
itly in the Hamiltonianonly.For algebrai
 manipulations it is pro�table to de�ne the λΦ 
oe�
ientsin terms of a deex
itation operator Λ̂

λΦ =
〈

Φ0

∣
∣
∣Λ̂

∣
∣
∣Φ

〉 (2.131)where
Λ̂ =

∑

a
i

λi
a a

+
i aa +

1

4

∑

ab
ij

λij
ab a

+
i a

+
j ab aa + . . . (2.132)The �nal gradient formula thus reads

d∆ECC

d χ
=

〈

Φ0

∣
∣
∣

[

Ĥχ
Ne

T̂
]

C

∣
∣
∣Φ0

〉

+
〈

Φ0

∣
∣
∣Λ̂

[

Ĥχ
Ne

T̂
]

C

∣
∣
∣Φ0

〉 (2.133)2.7.1 The λ EquationStarting from its de�nition equation (2.128) the di�erentiation gives
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0
︷ ︸︸ ︷〈

Φ0

∣
∣
∣−τ̂Φe

−T̂ ĤNe
T̂
∣
∣
∣Φ0

〉

+
〈

Φ0

∣
∣
∣e−T̂ ĤNe

T̂ τ̂Φ

∣
∣
∣Φ0

〉

+
∑

Φ′

λΦ′

〈

Φ′
∣
∣
∣−τ̂Φe

−T̂ ĤNe
T̂
∣
∣
∣Φ0

〉

+

∑

Φ′

λΦ′

〈

Φ′
∣
∣
∣e−T̂ ĤNe

T̂ τ̂Φ

∣
∣
∣Φ0

〉

= 0 (2.134)After some manipulations and using the Λ̂ operator de�nition (2.131) the�nal λ equation be
omes
〈

Φ0

∣
∣
∣

[

Λ̂
[

ĤNe
T̂
]

C

]

C

∣
∣
∣Φ

〉

+

∑

Φ′

〈

Φ0

∣
∣
∣

[

ĤNe
T̂
]

C

∣
∣
∣Φ′

〉〈

Φ′
∣
∣
∣Λ̂

∣
∣
∣Φ

〉

+

〈

Φ0

∣
∣
∣

[

ĤNe
T̂
]

C

∣
∣
∣Φ

〉

= 0 (2.135)2.8 Analyti
al Gradient of the Hilbert Spa
eMRCC MethodsThe analyti
al gradient of energy of the Hilbert spa
e MRCC methods [2℄is derived analogi
ally to the single-referen
e CC gradient by using the La-grangian te
hnique.For simpli
ity, let us de�ne a general MRCC amplitude equation as
Qϑ(µ) = 0 (2.136)where µ denotes the parti
ular Fermi va
uum from the model spa
e and

ϑ represents the bra- 
on�guration 
orresponding to the Q(µ) subspa
e 3.The energy 
an 
onveniently be expressed as the eigenvalue of the e�e
tiveHamiltonian
Eα =

P∑

µν

c̃αν H
eff
νµ c

α
µ (2.137)where the c̃αν and cαµ are 
omponents of the left and right eigenve
tors of the

Ĥeff .The Lagrangian is then given by3That is the subspa
e ofQ whi
h 
orresponds to ex
itations from the µth Fermi va
uum40



L =
P∑

µ,ν

c̃αν c
α
µH

eff
νµ +

P∑

µ

Q(µ)
∑

ϑ

λϑ(µ)Qϑ(µ) (2.138)The λϑ(µ) multipliers are are expressed in terms of the Λ̂(µ) deex
itationoperator spe
i�
 for ea
h referen
e 
on�guration
λϑ(µ) ≡

〈

Φµ

∣
∣
∣Λ̂(µ)

∣
∣
∣Φϑ

〉 (2.139)for ϑ ∈ Q(µ), while for ν ∈ P the internal λ amplitudes are de�ned to bezero
〈

Φµ

∣
∣
∣Λ̂(µ)

∣
∣
∣Φν

〉

= 0 (2.140)similarly like the internal MRCC amplitudes.The total derivative of the Lagrangian be
omes
dL
d χ

=
∂ L
∂ χ

+

P∑

ν

∂ L
∂ c̃αν

∂ c̃αν
∂ χ

+

P∑

µ

∂ L
∂ cαµ

∂ cαµ
∂ χ

+
P∑

µ

Q(µ)
∑

ϑ

∂ L
∂ λϑ(µ)

∂ λϑ(µ)

∂ χ

+
P∑

µ

Q(µ)
∑

ϑ

∂ L
∂ tϑ(µ)

∂ tϑ(µ)

∂ χ
(2.141)The fourth term in the above equation (2.141) vanishes for the 
onvergedMRCC amplitudes sin
e

∂ L
∂ λϑ(µ)

= Qϑ(µ) = 0 (2.142)and the �fth term vanishes as well, provided the λ equations are solved
∂ L

∂ tϑ(µ)
= 0 (2.143)If the eigenve
tors of the Ĥeff are biorthonormal

P∑

µ

c̃αµc
β
µ = δαβ (2.144)the se
ond and third terms of (2.141) give zero and the derivative of theMRCC energy be
omes 41



dEα

d χ
=

dL
d χ

=
∂ L
∂ χ

=
∂ Eα

∂ χ
+

P∑

µ

Q(µ)
∑

ϑ

λϑ(µ)
∂Qϑ(µ)

∂ χ

=
P∑

µ,ν

c̃αν c
α
µ

∂ Heff
νµ

∂ χ
+

P∑

µ

Q(µ)
∑

ϑ

λϑ(µ)
∂Qϑ(µ)

∂ χ
(2.145)2.8.1 Analyti
al Gradient of the MR BWCC with theIterative Corre
tion of Size-ExtensivitySin
e the MRCC amplitude equation has the simple un
oupled form afterthe iterative 
orre
tion 
onverges to zero

Qϑ(µ) ≡
〈

Φϑ

∣
∣
∣e−T̂ (µ)ĤeT̂ (µ)

∣
∣
∣Φµ

〉

= 0 (2.146)the gradient derivation of this MRCC variant is relatively easy.It is 
onvenient to augment the lambda operator also for internal lambdaamplitudes
〈

Φµ

∣
∣
∣Λ̃(µ)

∣
∣
∣Φν

〉

= c̃αν c
α
µ [ν ∈ P] ,

〈

Φµ

∣
∣
∣Λ̃(µ)

∣
∣
∣Φϑ(µ)

〉

= λϑ(µ) [ϑ ∈ Q(µ)] (2.147)By taking into a

ount that for a 
omplete model spa
e,
Heff

νµ =
〈

Φν

∣
∣
∣ĤeT̂ (µ)

∣
∣
∣Φµ

〉

=
〈

Φν

∣
∣
∣e−T̂ (µ)ĤeT̂ (µ)

∣
∣
∣Φµ

〉 (2.148)the λ equation thus reads
∂

∂ tζ(̺)

P∑

µ

〈

Φµ

∣
∣
∣Λ̃(µ)e−T̂ (µ)ĤeT̂ (µ)

∣
∣
∣Φµ

〉

= 0 (2.149)Expressing the 
luster operator T̂ (µ) in analogy to (2.125), the λ equationbe
omes
〈

Φ̺

∣
∣
∣Λ̃(̺)e−T̂ (̺)ĤeT̂ (̺)

∣
∣
∣Φζ

〉

−
〈

Φ̺

∣
∣
∣Λ̃(̺)τζ(̺)e

−T̂ (̺)ĤeT̂ (̺)
∣
∣
∣Φ̺

〉

= 0 (2.150)42



The se
ond term 
an be simpli�ed by inserting the resolution of identity
1 = P + Q(ρ) after the τζ(ρ) operator and taking into a

ount that the
Q-spa
e proje
tion vanishes for 
onverged t amplitudes, whi
h yields

〈

Φ̺

∣
∣
∣Λ̃(̺)e−T̂ (̺)ĤeT̂ (̺)

∣
∣
∣Φζ

〉

−
P∑

ν

〈

Φ̺

∣
∣
∣Λ̃(̺)τζ(̺)

∣
∣
∣Φν

〉

Heff
ν̺ = 0 (2.151)The ν = ρ term 
an be moved from the sum to the �rst term, whi
h yieldsthe �nal form of the lambda equation

〈

Φ̺

∣
∣
∣Λ̃(̺)

[

e−T̂ (̺)ĤeT̂ (̺) −Heff
̺̺

]∣
∣
∣Φζ

〉

−
∑

ν ∈P,ν 6=̺

〈

Φ̺

∣
∣
∣Λ̃(̺)τζ(̺)

∣
∣
∣Φν

〉

Heff
ν̺ = 0 (2.152)Sin
e Φν is an internal ex
itation from Φ̺ and τ̂ζ(̺) is an ex
itation opera-tor with respe
t to Φ̺, τ̂ζ(̺)|Φν〉 is a semi-internal ex
itation from Φρ andthe se
ond term 
an be nonzero only if its ex
itation rank does not ex
eedthe deex
itation level in
luded in Λ̃. Note that the lambda equations foramplitudes of di�erent referen
e 
on�gurations are un
oupled.Be
ause of the 
onvenient de�nition of the Λ̃ operator in (2.147), the �nalgradient formula (2.145) 
an be written in a 
ompa
t form

dEα

d χ
=

P∑

µ,ν

c̃αν c
α
µ

〈

Φν

∣
∣
∣e−T̂ (µ)ĤχeT̂ (µ)

∣
∣
∣Φµ

〉

+

P∑

µ

Q(µ)
∑

ϑ

λϑ(µ)
〈

Φϑ

∣
∣
∣e−T̂ (µ)ĤχeT̂ (µ)

∣
∣
∣Φµ

〉

=
P∑

µ

〈

Φµ

∣
∣
∣Λ̃(µ)e−T̂ (µ)ĤχeT̂ (µ)

∣
∣
∣Φµ

〉

= 0 (2.153)The gradient thus 
onsists of independent 
ontributions from ea
h referen
e
on�guration.2.8.2 Analyti
al Gradient of the MR BWCC withoutCorre
tion of Size-ExtensivityFor the un
orre
ted MR BWCC the situation is a bit more 
ompli
ated, sin
ethe amplitude equations are now 
oupled via the total energy Eα

Qϑ(µ) ≡
〈

Φϑ

∣
∣
∣ĤeT̂ (µ)

∣
∣
∣Φµ

〉

− Eα

〈

Φϑ

∣
∣
∣eT̂ (µ)

∣
∣
∣Φµ

〉

= 0 (2.154)43



However, it turns out that this 
oupling leads to separable expressionsand terms mixing t or λ amplitudes of di�erent referen
e 
on�gurations neverarise.Similarly like in the iteratively 
orre
ted variant, the term with the Heff
νµderivative 
an be moved to the modi�ed Λ̃ operator term whi
h leads to thefollowing λ equation

〈

Φ̺

∣
∣
∣Λ̃(̺)ĤeT̂ (̺)

∣
∣
∣Φζ

〉

−
P∑

µ

Q(µ)
∑

ϑ

λϑ(µ)×
[

∂ Eα

∂ tζ(̺)

〈

Φϑ

∣
∣
∣eT̂ (µ)

∣
∣
∣Φµ

〉

+ Eα
∂

∂ tζ(̺)

〈

Φϑ

∣
∣
∣eT̂ (µ)

∣
∣
∣Φµ

〉]

= 0 (2.155)By di�erentiating the energy from (2.137) using the biorthonormal eigenve
-tors (2.144) and 
onsidering that in a 
omplete model spa
e,
〈

Φν

∣
∣
∣eT̂ (µ)

∣
∣
∣Φµ

〉

= δνµ (2.156)the λ equation yields
〈

Φ̺

∣
∣
∣Λ̃(̺)ĤeT̂ (̺)

∣
∣
∣Φζ

〉

−ω

P∑

σ

c̃ασc
α
̺

〈

Φσ

∣
∣
∣ĤeT̂ (̺)

∣
∣
∣Φζ

〉

−Eα

〈

Φ̺

∣
∣
∣Λ̃(̺)eT̂ (̺)

∣
∣
∣Φζ

〉

= 0 (2.157)where
ω =

P∑

µ

〈

Φµ

∣
∣
∣Λ̃(µ)eT̂ (µ)

∣
∣
∣Φµ

〉 (2.158)By further rede�ning the Λ̃ operator
〈
Φµ

∣
∣Λ̄(µ)

∣
∣Φν

〉
= (1− ω)c̃αν c

α
µ [ν ∈ P] ,

〈
Φµ

∣
∣Λ̄(µ)

∣
∣Φϑ(µ)

〉
= λϑ(µ) [ϑ ∈ Q(µ)] (2.159)the λ equation �nally be
omes

〈

Φ̺

∣
∣
∣Λ̄(̺)ĤeT̂ (̺)

∣
∣
∣Φζ

〉

− Eα

〈

Φ̺

∣
∣
∣Λ̄(̺)eT̂ (̺)

∣
∣
∣Φζ

〉

= 0 (2.160)whi
h 
ouples di�erent referen
e 
on�gurations only via the energy.The energy gradient reads 44



dEα

d χ
=

P∑

µν

c̃αν c
α
µ

〈

Φν

∣
∣
∣ĤχeT̂ (µ)

∣
∣
∣Φµ

〉

+

P∑

µ

Q(µ)
∑

ϑ

λϑ(µ)
〈

Φϑ

∣
∣
∣ĤχeT̂ (µ)

∣
∣
∣Φµ

〉

−∂ Eα

∂ χ

P∑

µ

Q(µ)
∑

ϑ

λϑ(µ)
〈

Φϑ

∣
∣
∣eT̂ (µ)

∣
∣
∣Φµ

〉 (2.161)The sum in the last term is a
tually equal to the de�nition of the fa
tor ωand sin
e the partial energy derivative gives
∂ Eα

∂ χ
=

P∑

µν

c̃αν c
α
µ

〈

Φν

∣
∣
∣ĤχeT̂ (µ)

∣
∣
∣Φµ

〉 (2.162)the �nal gradient formula yields
dEα

d χ
=

P∑

µ

〈

Φµ

∣
∣
∣Λ̄(µ)ĤχeT̂ (µ)

∣
∣
∣Φµ

〉 (2.163)Again, the gradient sums 
ontributions of di�erent referen
e 
on�gura-tions with 
oupling given only by the Ĥeff eigenve
tor 
oe�
ients and thefa
tor ω.2.8.3 Analyti
al Gradient of the SU MRCCIn 
ontrast to the MR BWCC method, the amplitude equations of theKu
harski�Bartlett formulation of the state-universal MRCC are 
oupledbetween di�erent referen
e 
on�gurations
Qϑ(µ) ≡

〈

Φϑ

∣
∣
∣ĤeT̂ (µ)

∣
∣
∣Φµ

〉

−
P∑

ν

〈

Φϑ

∣
∣
∣eT̂ (ν)

∣
∣
∣Φν

〉

Heff
νµ = 0 (2.164)The λ equation thus reads

45



P∑

µν

c̃αν c
α
µ

∂ Heff
νµ

∂ tζ(̺)
+

+

P∑

µ

Q(µ)
∑

ϑ

λϑ(µ)

[
∂

∂ tζ(̺)

〈

Φϑ

∣
∣
∣ĤeT̂ (µ)

∣
∣
∣Φµ

〉

−
P∑

ν

Heff
νµ

∂

∂ tζ(̺)

〈

Φϑ

∣
∣
∣eT̂ (ν)

∣
∣
∣Φν

〉

−
P∑

ν

〈

Φϑ

∣
∣
∣eT̂ (ν)

∣
∣
∣Φν

〉 ∂ Heff
νµ

∂ tζ(̺)

]

= 0 (2.165)By using the Λ̃ operator from (2.147) and treating the derivatives of the lasttwo terms like in the MR BWCC, the λ equation yields
〈

Φ̺

∣
∣
∣Λ̃(̺)ĤeT̂ (̺)

∣
∣
∣Φζ

〉

−
P∑

µν

Q(µ)
∑

ϑ

λζ(µ)

[〈

Φϑ

∣
∣
∣eT̂ (ν)

∣
∣
∣Φζ

〉

δ̺νH
eff
νµ

+
〈

Φϑ

∣
∣
∣eT̂ (ν)

∣
∣
∣Φν

〉

δ̺µ

〈

Φν

∣
∣
∣ĤeT̂ (ν)

∣
∣
∣Φζ

〉 ]

= 0 (2.166)After introdu
ing an "e�e
tive lambda" matrix elements as
Leff
̺µ =

〈

Φ̺

∣
∣
∣Λ̂(̺)eT̂ (µ)

∣
∣
∣Φµ

〉 (2.167)the �nal λ equation be
omes
〈

Φ̺

∣
∣
∣Λ̃(̺)ĤeT̂ (̺)

∣
∣
∣Φζ

〉

−
P∑

µ

[

Heff
̺µ

〈

Φµ

∣
∣
∣Λ̂(µ)eT̂ (̺)

∣
∣
∣Φζ

〉

+Leff
̺µ

〈

Φµ

∣
∣
∣ĤeT̂ (̺)

∣
∣
∣Φζ

〉]

= 0 (2.168)The gradient of energy by (2.145) reads
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dE

dχ
=

P∑

µν

c̃αν c
α
µ

〈

Φν

∣
∣
∣ĤχeT̂ (µ)

∣
∣
∣Φµ

〉

+
P∑

µ

〈

Φµ

∣
∣
∣Λ̂(µ)ĤχeT̂ (µ)

∣
∣
∣Φµ

〉

−
P∑

µν

〈

Φµ

∣
∣
∣Λ̂(µ)eT̂ (ν)

∣
∣
∣Φν

〉〈

Φν

∣
∣
∣ĤχeT̂ (µ)

∣
∣
∣Φµ

〉 (2.169)whi
h 
an be rewritten using the above de�nitions of Λ̃ and Leff
̺µ to the �nal
ompa
t form

dE

dχ
=

P∑

µ

[

〈Φµ|Λ̃(µ)−
P∑

ν

Leff
µν〈Φν |

]

ĤχeT̂ (µ)|Φµ〉 (2.170)Both the λ equation and the gradient formula thus mix CC and λ amplitudesof di�erent referen
e 
on�gurations.2.9 Perturbative Triples Contribution in theMR MkCC MethodThe perturbative triples 
orre
tion in MRCC methods was �rst introdu
ed inthe SUMRCCSD(T) approa
h [17℄ and re
ently also in the MR BWCCSD(T)method with the a posteriori size-extensivity 
orre
tion [18℄. The �rst sug-gested perturbative triples 
ontribution in the multireferen
e Mukherjee 
ou-pled 
luster theory, denoted here as MR MkCCSD(Tu), has been derived inan analogous way [19℄. A brief introdu
tion to these approa
hes is presentedin the following.After the MR CCSD amplitude equations are solved, the approximate T̂3amplitudes are 
al
ulated from
tabcijk(µ) =

〈

(Φµ)
abc
ijk

∣
∣
∣V̂N(µ) T̂2(µ)

∣
∣
∣Φµ

〉

C
−∑P

ν 6=µ

[〈

(Φµ)
abc
ijk

∣
∣
∣T̂2(ν)

∣
∣
∣Φν

〉

Heff
µν

]

C

Dabc
ijk(µ) (2.171)for the SU MRCC method or from an un
oupled equation

tabcijk(µ) =

〈

(Φµ)
abc
ijk

∣
∣
∣V̂N(µ) T̂2(µ)

∣
∣
∣Φµ

〉

C

Dabc
ijk(µ)

(2.172)for the MR BWCCmethod, in whi
h the T̂2 amplitudes were already providedwith the a posteriori size-extensivity 
orre
tion. The e�e
t of non-diagonal47



Fo
k matrix elements is negle
ted so that the T̂3 equation does not requirean iterative solution.The perturbative triples 
orre
tion enters the e�e
tive Hamiltonian whereits diagonal elements are analogous to the single-referen
e CCSD(T) energy
orre
tion
Heff

µµ(T) = Heff
µµ(CCSD) + E

[4]
T (µ) + E

[5]
ST(µ) + E

[4]
ST(µ) (2.173)where the fourth and �fth order terms are given by

E
[4]
T (µ) =

∑

ijk
abc

〈

(Φµ)
abc
ijk

∣
∣
∣V̂N(µ) T̂2(µ)

∣
∣
∣Φµ

〉

C
tabcijk(µ) (2.174)

E
[5]
ST(µ) =

∑

i
a

sai (µ) t
a
i (µ) (2.175)

E
[4]
ST(µ) =

1

4

∑

ijk
abc

fkc(µ) t
ab
ij (µ)t

abc
ijk(µ) (2.176)where

sai (µ) =
1

4

∑

jk
bc

〈bc || jk〉 tabcijk(µ) (2.177)Due to the la
k of the 
oupling terms in (2.172), the E
[4]
T term in theMR BWCCSD(T) method be
omes symmetri
 and resembles the single-referen
e CCSD(T)

E
[4]
T (µ) =

1

36

∑

ijk
abc

tabcijk(µ)D
abc
ijk(µ) t

abc
ijk(µ) (2.178)The o�-diagonal elements of the e�e
tive Hamiltonian are 
omputed atthe CCSDT-1 level with linear T̂3 
ontribution to both T̂1 and T̂2 equations

Heff
νµ(T) =

〈

Φν

∣
∣
∣HN(µ) e

T̂123(µ)
∣
∣
∣Φµ

〉CCSDT−1

C

=
〈

Φν

∣
∣
∣HN(µ) (e

T̂12(µ) + T̂3(µ))
∣
∣
∣Φµ

〉

C
(2.179)The MR CCSD(T) energy is �nally obtained by diagonalization of the(T)-
orre
ted e�e
tive Hamiltonian.In the MR MkCCSD(Tn) approximation, the 
oupling terms of the T̂3equation, whi
h mix the tabcijk(µ) and tabcijk(ν) amplitudes, are negle
ted so thatthe equation a
tually be
omes identi
al to (2.172) and thus does not re-quire an iterative solution. The E

[4]
T (µ) term is also symmetri
 like in theMR BWCCSD(T). However an intruder state problem 
an 
ome up if thedenominator of the (2.172) equation approa
hes zero.48



2.9.1 MR MkCCSD(Ti) MethodLater, a quite di�erent derivation appeared [20℄, denoted here asMR MkCCSD(Ti), whi
h does not su�er from intruder states. It is basedon a perturbative analysis of the MR MkCC Lagrangian [20,86,87℄ and rep-resents a multireferen
e generalization of the Λ-CCSD(T) method [88�91℄.In 
ontrast to the MR CCSD(T) approa
hes des
ribed above in whi
h the(T)-
orre
tion entered the e�e
tive Hamiltonian before diagonalization, theperturbative triples 
orre
tion to the energy is here 
al
ulated expli
itly.Thus instead of the �perturb then diagonalize", the �diagonalize then per-turb" s
heme is used.The triples equation 
ontains the linear 
oupling terms
〈

Φϑ

∣
∣
∣e−T̂ (µ) eT̂ (ν)

∣
∣
∣Φµ

〉

linear
= tabcijk(ν/µ)− tabcijk(µ) (2.180)where

tabcijk(ν/µ) =

{

tabcijk(ν) if i, j, k ∈ occ(µ)
⋂
occ(ν); a, b, c ∈ virt(µ)

⋂
virt(ν)

0 otherwise (2.181)The tabcijk(µ) terms in the T̂3 amplitude equation (2.92) are moved to the left-hand side and after an appli
ation of the Ĥeff eigenvalue equation, the �nal
T̂3 equation will 
ontain the Brillouin�Wigner type denominator, yielding

tabcijk(µ) =

〈

(Φµ)
abc
ijk

∣
∣
∣V̂N(µ) T̂2(µ)

∣
∣
∣Φµ

〉

+
∑P

ν 6=µ t
abc
ijk(ν/µ)H

eff
µν

cαν
cαµ

Dabc
ijk(µ) + (Eα −Heff

µµ)
(2.182)The energy 
orre
tions are then 
al
ulated expli
itly to the energy ob-tained from the MR MkCCSD e�e
tive Hamiltonian. The E

[4]
T (µ) term isnonsymmetri
 be
ause of the 
ouplings. Although this method is resistantto intruders be
ause of the BW-type denominator in (2.182), the T̂3 equa-tions have to be solved iteratively with the 
omplexity O(N 6) due to thepresen
e of the 
oupling terms.2.9.2 MR MkCCSD(Tu) ApproximationIn order to avoid the need to iteratively solve the T̂3 equation like in theMR MkCCSD(Ti) method, an approa
h based on the un
oupled approxima-tion to MR MkCC has been suggested [3℄, denoted by MR MkCCSD(Tu).The triples equation thus be
omes

tabcijk(µ) =

〈

(Φµ)
abc
ijk

∣
∣
∣V̂N(µ) T̂2(µ)

∣
∣
∣Φµ

〉

C
−∑P

ν 6=µ

〈
(Φµ)

abc
ijk

∣
∣eT̄ν(µ)

∣
∣Φµ

〉
Heff

µν
cαν
cαµ

Dabc
ijk(µ) (2.183)49



whi
h does not mix amplitudes of di�erent referen
es and 
an thus be solvedexpli
itly. If all the linear T̂3 terms are moved to the left-hand side, theequation yields
tabcijk(µ) =

1

Dabc
ijk(µ) +

∑†
ν 6=µH

eff
µν

cαν
cαµ

{〈

(Φµ)
abc
ijk

∣
∣
∣V̂N(µ) T̂2(µ)

∣
∣
∣Φµ

〉

C

−
P∑

ν 6=µ

[

P (i/jk)P (a/bc) t̄ a
ν i (µ) t̄

bc
ν jk(µ)

−P (ijk) t̄ a
ν i (µ) t̄

b
ν j(µ) t̄

c
ν k(µ)

]

Heff
µν

cαν
cαµ

} (2.184)where the † sign at the sum means that only su
h terms are in
luded in whi
hat least one of the orbitals i, j, k, a, b or c has di�erent o

upation in the µthand νth referen
e.By 
omparing with equation (2.182) of MR MkCCSD(Ti) variant, it is ob-vious that the appropriate T̂3 amplitudes 
an be obtained from (2.184) in justone step. Moreover, be
ause of the denominator shift, the equation 
an beresistant to intruders and has thus an advantage over the MR MkCCSD(Tn)method. Although the denominator shift is in general di�erent from the onein equation (2.182), whi
h is a 
omplete BW-type shift, its analysis for themost 
ommon CAS(2,2) referen
e spa
e [3℄ showed that the shift in (2.184)should be su�
ient to avoid the intruder state problems.The method performs the �perturb then diagonalize" s
heme with theasymmetri
 form of the E[4]
T (µ) term. The �diagonalize then perturb" variantis also possible, but test 
al
ulations showed that the 
orre
ted energy valuesdi�er only in the order of 10−6a.u.
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Chapter 3Implementation of the Analyti
alGradient
3.1 Pilot ImplementationThe pilot implementation of all three des
ribed MRCC analyti
al gradientvariants at the CCSD level has been 
oded in a program pa
kage 
alled TINY,whi
h is mainly written and maintained by Dr. Ji°í Pittner as a referen
e,ben
hmarking and debugging tool used during development of various mul-tireferen
e 
oupled 
luster models. It features its own modules for integraland integral derivatives evaluation, SCF, CPHF, integral transformation,full-CI and MRCC. It is a C++ 
ode widely based on a free 1 open-sour
eC++ library interfa
e to the BLAS [93℄ and LAPACK [94℄ linear algebralibrary routines, 
alled LA [95℄. That enables 
onvenient 
oding of variousve
tor and matrix operations while keeping the high e�
ien
y of the pro-gram.The 
ore of the implementation is based on the Knowles�Handy algorithm[96,97℄ for a
tion of a Full-CI expanded Hamiltonian on a trial ve
tor withoutthe need to 
onstru
t the expanded Hamiltonian expli
itly. This is alsoused for the Hamiltonian derivative Ĥχ and generalized for T̂ (µ) and Λ̂(µ)operators whi
h take into a

ount the parti
ular Fermi va
ua with respe
t towhi
h the amplitudes are de�ned. This algorithm is used for straightforwardevaluation of various terms in the amplitude or λ equations as well as in thegradient formulae.The amplitude equation is solved iteratively using a residual ve
tor thatvanishes when the respe
tive 
oupled 
luster equations are 
onverged, simi-larly as in Ref. [98℄. The amplitude update is performed by the formula

tnewϑ (µ) = toldϑ (µ) +

〈

Φµ

∣
∣
∣τ̂

†
ϑ(µ)

∣
∣
∣Φϑ

〉

Qϑ(µ)

Eα −Heff
µµ +Dϑ(µ)

(3.1)1the library is distributed under the Gnu General Publi
 Li
ense (v3) [92℄51



where the �rst term in the numerator is just a sign fa
tor of a given ex
ita-tion and Dϑ(µ) is the standard CC denominator used in the single-referen
eamplitude equation updates, whi
h 
onsists of the diagonal elements of theFo
k matrix with respe
t to the Fermi va
uum |Φµ〉.Sin
e Qϑ(µ) vanishes at 
onvergen
e, the 
hoi
e of the denominator isin prin
iple arbitrary and in�uen
es only the 
onvergen
e rate. A dynami
denominator shift is thus implemented, ensuring that the denominator neverapproa
hes zero.The λ equation is �rst 
onjugated so that it has similar stru
ture likethe MRCC amplitude equation and then is solved analogously. Only thedenominator is set to Dϑ(µ) + C where the 
onstant C is set so that alldenominators are in absolute value greater than one.The e�e
t of mole
ular orbital relaxation in response to the perturbationis involved in terms of the U matri
es in the integral transformation formulas
∂ hij

∂ χ
=

AO∑

µν

∂ hµν

∂ χ
CµiCνj

+

AO∑

µν

MO∑

m

hµν

[
CµmU

χ
miCνj + CµiCνmU

χ
mj

] (3.2)
∂ (ij|kl)

∂ χ
=

AO∑

µν
̺σ

CµiCνjC̺kCσl
∂ (µν|̺σ)

∂ χ

+
AO∑

µν
̺σ

MO∑

m

(µν|̺σ)

×
[

CµmU
χ
miCνjC̺kCσl + CµiCνmU

χ
mjC̺kCσl

+CµiCνjC̺mU
χ
mkCσl + CµiCνjC̺kCσmU

χ
ml

] (3.3)whi
h thus requires to solve the CPHF equations for ea
h gradient 
ompo-nent.3.2 Testing of the Analyti
al Gradient Imple-mentationTesting of the implemented analyti
al gradients was performed on methylene
CH2 and silylene SiH2 mole
ules in the 1A1 state. These systems have al-most single-referen
e 
hara
ter in their equilibrium geometry, whi
h has the52



bond angle about 100◦ in the C2v symmetry, but by opening the bond anglethe multireferen
e des
ription in
reases up to two equally weighted referen
e
on�gurations
|Φ0〉 = (core) (a1)

2 (b1)
2 (a1)

2 (b2)
0 (3.4)

|Φ1〉 = (core) (a1)
2 (b1)

2 (a1)
0 (b2)

2 (3.5)when the mole
ules be
ome linear. The possible monoex
ited 
on�gurationswithin the two a
tive orbitals do not 
ontribute due to the C2v symmetry.First, the energy and its analyti
al gradient of the CH2 mole
ule were
al
ulated for di�erent values of the bond angle, ranging from 100◦ to 179◦des
ribing thus the transition from an almost single-referen
e to the exa
tlytwo-referen
e system, while keeping a �xed bond length. The mole
ule waspositioned in su
h a way (see Figure 3.1) that the gradient 
onsisted onlyof three non-zero non-equivalent 
omponents Cz, Hz and Hy. Two basis

Figure 3.1: Position of the CH2 mole
ule in the 
oordinate system and itsthree non-zero non-equivalent gradient 
omponentssets were employed, the 6�31G and the frozen 
ore 6�31G*. Figure 3.2shows the energy and analyti
al gradient dependen
e on the bond angle fora �xed bond length 1.11 Å in the 6�31G basis for the iteratively 
orre
tedBWCCSD method. The other two methods do not di�er neither in energynor its gradient from the iteratively 
orre
ted BWCC results by more than
10−3 hartree (hartree/bohr) and provide pi
tures indistinguishable from oneanother in the same s
ale.At ea
h point, a numeri
al gradient was also 
al
ulated by �nite energydi�eren
es with the numeri
al step set to 10−4 bohr. At every displa
ed ge-ometry the Hartree�Fo
k orbitals were �rst reoptimized before the MRCC53
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Figure 3.2: Iteratively 
orre
ted 2R BWCCSD energy and gradient 
ompo-nents of CH2 as a fun
tion of bond angle with �xed C�H bond length 1.11 Åin the 6�31G basisenergy was 
omputed so that the full orbital relaxation was taken into a
-
ount. All numeri
al BWCC gradient 
al
ulations were done by the ACES IIprogram sin
e it has an e�
ient MR BWCCSD implementation.The analyti
al gradient was 
ompared to the numeri
al di�erentiation byan average error ∆, given by the formula
∆ =

√
√
√
√ 1

M

M∑

i=1

[(
∂ E

∂ xi

)

analytical

−
(
∂ E

∂ xi

)

numerical

]2 (3.6)where M ranges the non-zero nonequivalent gradient 
omponents.The dependen
e of the average error ∆ on the bond angle together witha square of the expansion 
oe�
ient of the �rst referen
e 
on�guration de-s
ribing the varying multireferen
e 
hara
ter are shown in Figure 3.3. Themost a

urate gradient was provided by the un
orre
ted BWCC method thatgave error values below 10−8 in the whole range of bond angles. Results fromboth basis sets also ni
ely resembled ea
h other. In 
ontrast, the averageerrors of the other two methods varied more signi�
antly, espe
ially the it-eratively 
orre
ted BWCC that rea
hed almost 10−6 in two points. Valuesobtained from the two basis sets also 
onsiderably di�ered in many 
ases.Nevertheless, for any method the errors never ex
eeded 10−6 and su
h resultis 
ompletely satisfa
tory. 54
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A geometry optimization of the two mole
ules in two basis sets was thenemployed, starting from a shape that was far from the equilibrium geome-try so as to apply the whole range of the multireferen
e 
hara
ter. All threemethods performed very well and the λ amplitudes 
onverged qui
kly at ea
hpoint of the optimization path. Sin
e the pilot implementation didn't allowto use larger basis set than 6�31G* with frozen 
ore orbitals on the available
omputer resour
es so that the results were 
omparable with experiments, aFull-CI geometry optimization has thus been performed as a referen
e. Theresults for ea
h system together with the Full-CI 
al
ulation and a 
ompari-son with experimental values are summarized in Table 3.1 and Table 3.2.Method Basis Energy R ΦBW Un
orre
ted 6-31G -38.942637 1.129 103.76-31G* fz
 -38.996567 1.116 102.0BW Iter. 
orr. 6-31G -38.943014 1.128 103.86-31G* fz
 -38.997243 1.116 102.1SUMRCC 6-31G -38.942991 1.129 103.76-31G* fz
 -38.997052 1.116 102.0Full-CI 6-31G -38.944209 1.130 103.66-31G* fz
 -38.999103 1.118 101.8Experiment [99℄ 1.107 ± 0.002 102.4 ± 0.4Table 3.1: 1A1 CH2 optimal energy and geometry obtained from all threeMRCC methods in 6�31G and 6�31G* frozen 
ore basis sets 
ompared tothe Full-CI and an experiment. Energy is in atomi
 units, bond length in Åand bond angle in degrees.All the methods proved to give results very 
lose to the Full-CI values,di�ering by the order of 10−3 Å and 0.1◦. The largest di�eren
e from theFull-CI geometries represents the SiH2 bond angle, whi
h was overestimatedby 0.4◦ by the SU MRCCSD method using the smaller basis set. In the largerbasis, the iteratively 
orre
ted MR BWCCSD underestimated the Si�H bondlength by 0.003 Å and overestimated the bond angle of both mole
ules by
0.3◦.3.3 E�
ient Implementation of the Analyti
alGradient of the MR BWCCSD with the It-erative Corre
tion of Size�ExtensivityFor the e�
ient analyti
al gradient implementation of the MR BWCCSDmethod with the iterative 
orre
tion of size-extensivity, it was intended tomake use of the e�
ient analyti
al gradient 
ode of the single-referen
e CCSDmethod, whi
h is available in the ACES II program pa
kage. The single-56



Method Basis Energy R ΦBW Un
orre
ted 6-31G fz
 -290.034835 1.575 92.86-31G* fz
 -290.092095 1.530 92.5BW Iter. 
orr. 6-31G fz
 -290.034932 1.575 92.86-31G* fz
 -290.092553 1.529 92.6SUMRCC 6-31G fz
 -290.035033 1.576 93.16-31G* fz
 -290.092417 1.530 92.5Full-CI 6-31G fz
 -290.035669 1.576 92.76-31G* fz
 -290.094287 1.532 92.3Experiment [100℄ 1.51402 91.9830Experiment [101℄ 1.5141 92.0Experiment [102℄ 1.516 92.08Table 3.2: 1A1 SiH2 optimal energy and geometry obtained from all threeMRCC methods in 6�31G frozen 
ore and 6�31G* frozen 
ore basis sets
ompared to the Full-CI and an experiment. Energy is in atomi
 units, bondlength in Å and bond angle in degrees.referen
e formalism was developed by Salter et al. [71℄ using the normalordered operators whi
h leads to the formulas (2.135) for the λ equation and(2.133) for the gradient.The multireferen
e λ equation and gradient were thus derived in a similarway, resulting in formulas that look a little di�erent from those used in thepilot implementation. The MR λ equation thus yields
〈

Φµ

∣
∣
∣Λ̃(µ)

[

ĤN(µ)e
T̂ (µ)

]

C

∣
∣
∣Φζ

〉

C
+

int.
ext.∑

ϑ(µ)

〈

Φµ

∣
∣
∣

[

ĤN(µ)e
T̂ (µ)

]

C

∣
∣
∣Φϑ

〉〈

Φϑ

∣
∣
∣Λ̃(µ)

∣
∣
∣Φζ

〉

+

c̃αµc
α
µ

〈

Φµ

∣
∣
∣

[

ĤN(µ)e
T̂ (µ)

]

C

∣
∣
∣Φζ

〉

−
P∑

ν 6=µ

ext.∑

ϑ(µ)

λϑ(µ) 〈Φϑ |τ̂ζ(µ)|Φν〉 Heff
νµ = 0 (3.7)and the MR gradient be
omes

dEα

d χ
=

P∑

µ

c̃αµc
α
µ

〈

Φµ

∣
∣
∣Ĥ

χ
N eT̂ (µ)

∣
∣
∣Φµ

〉

C

+
P∑

µ

〈

Φµ

∣
∣
∣Λ̃(µ)

[

Ĥχ
N(µ) e

T̂ (µ)
]

C

∣
∣
∣Φµ

〉 (3.8)57



in whi
h the rede�ned Λ̃ operator (2.147) was used involving also the in-ternal λ amplitudes. The formulas are very 
lose to their single-referen
eanalogs. In the λ equation, the third term is just s
aled by the expan-sion 
oe�
ients of the parti
ular referen
e in the model wavefun
tion andthe additional fourth term a
tually vanishes for referen
es mutually at mostbiex
ited, whi
h is always valid in the MR BWCCSD implementation avail-able in the ACES II program. Note also that the λ equations of di�erentreferen
es remain un
oupled. The multireferen
e gradient formula is a sumof independent 
ontributions from ea
h referen
e 
on�guration, whi
h di�erfrom the single-referen
e gradient formula only by the s
aling fa
tor at the�rst term.The e�
ient single-referen
e gradient implementation has been des
ribedby Gauss et al. [72℄. They gather all terms with derivatives of the Fo
kmatrix elements and remaining terms with derivatives of the two-ele
tronintegrals, whi
h results in the formula
dE

dχ
=

∑

pq

Dpq
∂ fpq
∂ χ

+
∑

pqrs

Γpqrs
∂ 〈pq || rs〉

∂ χ
(3.9)where the Dpq and Γpqrs are the one and two-parti
le relaxed density matri-
es. The derivatives 
an be divided in skeletons and terms 
ontaining the Umatri
es

dE

dχ
=

∑

pq

Dpqf
(χ)
pq +

∑

pqrs

Γpqrs 〈pq || rs〉χ − 2
∑

pq

I
′

pqU
χ
pq (3.10)where the skeleton part of the Fo
k matrix is de�ned as

f (χ)
pq = hχ

pq +
∑

m

〈pm || qm〉χ (3.11)The U matri
es are then eliminated by the Z-ve
tor te
hnique using thefa
t that the single-referen
e CC energy is invariant with respe
t to rota-tions among o

upied (or virtual) orbitals. The e�
ient single-referen
e CCgradient formula thus �nally be
omes
dE

dχ
=

∑

pq

Dpqf
(χ)
pq +

∑

pqrs

Γpqrs 〈pq || rs〉χ +
∑

pq

IpqS
χ
pq (3.12)whi
h 
onsists only of the relaxed density matri
es, the skeleton terms andthe I intermediate and does not require the solution of the CPHF equationsfor ea
h gradient 
omponent.In the multireferen
e 
ase, su
h U matrix elimination 
annot be per-formed in a general way, but the MR variants of the (3.9) and (3.10) formulasare always valid and 
an thus be used. Sin
e the MR gradient formula (3.8)just sums 
ontributions from ea
h referen
e 
on�guration, the MR relaxed58



density matri
es 
an be 
omputed as a sum of relaxed density matri
es of aparti
ular referen
e that is 
al
ulated by a modi�ed single-referen
e 
ode.The suggested multireferen
e implementation that is based on the single-referen
e CCSD analyti
al gradient 
ode in the ACES II program pa
kagebut whi
h needs to solve the CPHF equations to a

ount for the orbitalresponse thus requires the following prin
ipal steps:
• provide the appropriate storage for the λ amplitudes, density matri
esand other variables whi
h 
orrespond to a parti
ular referen
e 
on�gu-ration and introdu
e loops over all referen
es in the referen
e-dependentparts of the 
ode (solving the λ equation, formation of the density ma-tri
es, . . . )
• setting the internal λ amplitudes and identifying the terms in the λequation whi
h have to be s
aled
• identify and s
ale the terms 
orresponding to the �rst term in (3.8)
• 
al
ulate also the Dia blo
ks of the one-parti
le density matrix sin
ethe single-referen
e 
ode presumes the use of the Hartree�Fo
k orbitalsfor whi
h the fia elements are zero, whi
h is however not the 
ase inthe multireferen
e generalization
• gather the total D and Γ relaxed density matri
es
• form the I

′ intermediate and solve the U matri
es
• evaluate the gradient (3.10) by the modi�ed single-referen
e 
ode for(3.12)While it was relatively easy to generalize the single-referen
e 
ode forthe multireferen
e 
al
ulation and to identify all the terms that had to bemodi�ed in the λ equations and the relaxed density matri
es, an enormouse�ort was put in an attempt to �nish the gradient evaluation in the ACES IIpa
kage. For e�
ien
y reasons, all the intermediates 
al
ulated by the pro-gram s
ale elements 
orresponding to a parti
ular o

upied or virtual orbitalindex 
ombination by various fa
tors or add another terms. Su
h e�
ien
yimprovements have been very poorly do
umented and often had to be de-
oded element by element. A spe
ial program had to be designed, based onthe 
ode of the pilot gradient implementation, whi
h 
al
ulated the unmod-i�ed form of su
h terms so that the values 
ould be 
ompared. Be
ause ofsu
h di�
ulties, it was �nally suggested to export the full form of the 
al-
ulated total D and Γ matri
es to an external 
ode, whi
h solves the CPHFequations and evaluates the MO integral derivatives and �nally to 
al
ulatethe gradient by 59



dEα

d χ
=

∑

pq

Dpq
∂ hpq

∂ χ
+
∑

pqrs

Γpqrs
∂ 〈pq || rs〉

∂ χ
(3.13)whi
h is a variant of (3.9), but instead of the Fo
k matrix derivatives usesderivatives of the one-ele
tron operator ĥ matrix elements. This required aminor modi�
ation of the total Γ matrix, but was easier to implement.The analyti
al gradient implemented in this way was �rst tested on the

CH2 mole
ule by 
omparing with values obtained from the pilot implemen-tation. The largest di�eren
e was below 10−8hartree/bohr whi
h is a 
om-pletely satisfa
tory result.A geometry optimization of the two ben
hmark mole
ules CH2 and SiH2was also performed with results summarized in Table 3.3. The CH2 results inthe 6-31G basis whi
h was used also in the testing of the pilot implementationagree with the result obtained earlier (Table 3.1). The other 
al
ulationshowever employed larger basis sets.System Basis Energy R Φ

CH2 6-31G -38.943015 1.128 103.8

-pVDZ -39.025637 1.124 101.1Experiment [99℄ 1.107 ± 0.002 102.4 ± 0.4
SiH2 6-31G -290.038273 1.575 92.86-311G -290.180587 1.563 93.4Experiment [100℄ 1.51402 91.9830Table 3.3: A geometry optimization of the 1A1 state of the CH2 andSiH2 mole
ules by the e�
ient analyti
al gradient implementation of theMR BWCCSD method with the iterative 
orre
tion of size-extensivity. En-ergy is in atomi
 units, bond length in Å and bond angle in degrees.To roughly illustrate the gradient evaluation time improvement gainedby the ACES II implementation over the pilot implementation, the Table 3.4presents average real times of 
al
ulation of the CH2 gradient on an AMDOpteron CPU at 2.8GHz with 16 GB RAM for the various basis set sizesused. Only the 6-31G basis was used in both implementations, sin
e theACES II 
ode 
annot 
al
ulate the gradient using frozen orbitals and largerbasis sets lead to insu�
ient memory for the pilot implementation. At the6-31G basis, the real time of 
al
ulation redu
ed almost by the fa
tor 103.The analyti
al gradient 
omputed by the ACES II implementation was alsoalways faster than the numeri
al gradient evaluation, although the gain didnot ex
eed the fa
tor 2 for this mole
ule. The ACES II implementation 
anthus be 
onsidered as e�
ient.Although the 
al
ulations of the ben
hmark mole
ules performed verywell, appli
ation of the implemented gradient to optimization of larger mole
-ular systems like N2O2 or a Cy
lobutadiene (C4H4) turned out to be prob-lemati
 sin
e in many points the multireferen
e λ equations failed to 
onverge60



Basis # MOs TINY ACES II6-31G 13 5930 86-31G* fz
 18 10800

-pVDZ 25 446-311G** 31 105Table 3.4: Average real 
omputer time of a CH2 analyti
al gradient evalu-ation 
al
ulated by either the program TINY (pilot implementation) or bythe ACES II implementation in various basis sets. The 
al
ulations wereperformed on an AMD Opteron CPU at 2.8 GHz / 16 GB RAM. The timeis in se
onds.and thus the optimization pro
edure did not �nish. This 
ould be explainedby the fa
t that the iterative size-extensivity 
orre
tion of the method rein-trodu
es the intruder state problem.Sin
e an analyti
al gradient of the MR MkCCSD method has re
entlybeen implemented by Pro
hnow et al., whi
h is a superior method to theiteratively 
orre
ted MR BWCC variant and be
ause of the 
onvergen
e dif-�
ulties of the λ equations experien
ed in 
al
ulations of larger mole
ules,it was suggested that the more e�
ient orbital response 
ontribution to thegradient is not going to be further developed.
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Chapter 4Appli
ation of theMR MkCCSD(Tu) on aSinglet-Triplet Gap Investigationof Tetramethyleneethane (TME)The newly developed MR MkCCSD(Tu) method has already been su

ess-fully tested on the BeH2 mole
ule and proved to provide smooth potentialenergy 
urve that is free of singularities while 
losely resembling the resultsfrom the more expensive MR MkCCSD(Ti) approximation [3℄. To test themethod also in a real 
hemi
al appli
ation, an investigation of the singlet-triplet separation of the tetramethyleneethane mole
ule (TME) has beensuggested, be
ause of a multireferen
e 
hara
ter of its singlet state.Sin
e 1970 that the �rst EPR spe
trum of the system was published [103℄,a number of experimental and theoreti
al studies followed, trying to as-sign the ground state with either singlet or triplet multipli
ity [104�113℄. Agas phase negative ion photoele
tron spe
tros
opy experiment by Cli�ord etal. [110℄ found that the ground state is singlet, being about 2 k
al mol−1 morestable than the triplet state. This was however in 
ontradi
tion with previ-ously reported matrix isolation EPR studies. An explanation has been sug-gested that the matrix 
ould a
tually �x the mole
ule at a triplet equilibriumgeometry, at whi
h the singlet energy was above the triplet. Cal
ulations byspin-restri
ted open-shell Kohn�Sham (ROKS) and spin-restri
ted ensemble-referen
ed Kohn�Sham (REKS) methods [111℄ predi
ted the singlet groundstate at D2d geometry while the triplet being about 3 k
al mol−1 above. Alsothe di�eren
e dedi
ated 
on�guration intera
tion 
al
ulations [112℄ 
on�rmedthe singlet as the ground state for all 
onformations, although the energy dif-feren
e was only 0.29 k
al mol−1 at the equilibrium triplet geometryThe stru
ture of the TME mole
ule (C6H8) is pi
tured in Figure 4.1.Ea
h end of the ethylene skeleton forms a plane together with its bondedmethylene groups and the two planes are mutually twisted.62



Figure 4.1: Geometry of the TME mole
ule is formed by two planes rotatedmutually by a twist angle4.1 ComputationalThe potential energy surfa
e has been s
anned in the following way. For ea
hvalue of the twist angle (from 0◦ to 90◦), a restri
ted geometry optimizationwas performed (keeping the mole
ular symmetry) using the CASPT2(6,6)method and the 

-pVDZ basis set for both the singlet and the triplet stateso that also a dynami
al ele
troni
 
orrelation was partially involved in thepredi
tion of the geometries. In these optimized geometries, CASSCF(2,2)mole
ular orbitals were employed for further 
orrelation treatment. Cal
u-lations using CASSCF(6,6) orbitals were also performed in some points, butthe results were almost identi
al. Two basis sets were employed, the spheri-
al 

-pVDZ and a modi�ed spheri
al 

-pVTZ basis (denoted as 

-pVTZ'),from whi
h the d-fun
tions at Hydrogen and f-fun
tions at Carbon atomswere removed so that the system remained 
omputationally feasible. The six
ore orbitals at Carbon atoms and the six highest virtual orbitals were keptfrozen during the following 
oupled 
luster 
al
ulations.The potential energy 
urves were 
al
ulated at the CCSD, CCSD(T) andin the smaller basis set also at the approximate iterative CCSDT-1 level.The singlet state employed the two-referen
e BWCC and MkCC methods.63



All MR BWCC 
al
ulations were provided with the a posteriori 
orre
tionof size-extensivity. The perturbative triples in the MkCC method used boththe standard �perturb then diagonalize" s
heme, MR MkCCSD(Tu) and alsothe other variant with an expli
it energy 
orre
tion evaluation, denoted asMR MkCCSD(Tu)e. The two variants gave values whi
h di�ered less than
2×10−6 a.u. so only the MR MkCCSD(Tu) results are presented. The tripletswere 
al
ulated by the standard single-referen
e CC methods. All the 
ou-pled 
luster 
al
ulations were performed by the ACES II program [1℄, whilethe CASSCF orbitals and CASPT2 geometries were obtained using the MOL-PRO pa
kage [114℄.4.2 Results and Dis
ussionThe 
al
ulated potential energy 
urves are illustrated in Figure 4.2, whi
h
ompares both the e�e
t of in
reasing level of CC approximation (in rows)and the two basis sets used (in 
olumns). The MR BWCC method predi
tedthe singlet as the ground state in all 
ases and every point of the 
al
ulated
urves. The MRMkCCSD 
al
ulations put the singlet 
urve above the tripletin both basis sets and only the in
lusion of approximate triples in the MkCCmethod moved the singlet 
urve below the triplet. The low energy of theMR BWCC singlet 
urves even at the CCSD level 
an be put down to thefa
t that the a posteriori size-extensivity 
orre
tion tends to overestimate the
orrelation energy.The di�eren
e between the singlet and the triplet 
urves for various lev-els of approximation and the two basis sets used is shown in Figure 4.3. Allthe 
urves are very similar, with a minimum at about 45◦, but di�er in theposition on the verti
al axis. At the CCSD level, the MR BWCC result liesbetween 1 and 4 k
al mol−1 being in a good agreement with both the gasphase experiment and other theoreti
al predi
tions. On the other hand, theMR MkCCSD method gave even a di�erent order of the 
urves. However, byin
lusion of the perturbative triples, the MR MkCCSD(Tu) method providedvery good results between 2 and 6 k
al mol−1 in both basis sets, whi
h also
losely resembled ea
h other. The triples in
lusion in MR BWCC methodresulted in rather large energy gap between 11 and 14 k
al mol−1, whi
h 
anbe explained by the overestimated 
orrelation energy due to the a posteriorisize-extensivity 
orre
tion. It 
an be 
on
luded that the relatively good resultof the MR BWCCSD 
al
ulation 
ould be obtained due to the 
ompensa-tion of this energy overestimation by the insu�
ient 
orrelation des
riptionat the CCSD level. The approximate iterative triples in MR MkCCSDT-1 method gave results very 
lose to the MR MkCCSD(Tu) values. At the
urve minimum, the MR MkCCSDT-1 method gave 2.4 k
al mol−1 and theMR MkCCSD(Tu) 2.6 k
al mol−1 in the 

-pVDZ basis. These results arethus in a 
lose agreement with the gas phase negative ion photoele
tronspe
tros
opy experiment [110℄. 64
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Figure 4.2: Potential energy 
urves of TME as a fun
tion of the twist angle.Comparison of the singlet state (2R-BWCC and 2R-MkCC) and the tripletstate (SR-CC) 
al
ulations at di�erent levels of CC approximation. Graphsin the left 
olumn were obtained from the 

-pVDZ basis, the right 
olumn
orresponds to the 

-pVTZ' basis. 65
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-pVTZ' basis set.4.3 Con
lusionThe singlet-triplet energy separation of the tetramethyleneethane mole
ulehas been studied by the newly developed state-spe
i�
 multireferen
eMkCCSD(Tu) method, whi
h is based on the un
oupled MR MkCC ap-proximation. The 
al
ulated potential energy 
urves were smooth and theresults well agreed with an experiment.By 
omparison with the MR MkCCSD and MR MkCCSDT-1 approxi-mations, it was shown that even for obtaining proper qualitative results, thein
lusion of the triples was inevitable. The results 
al
ulated from the pertur-bative triples 
orre
tions 
losely resembled those from the MR MkCCSDT-1 level of approximation and thus for obtaining quantitative results, theMR MkCCSD(Tu) approximation is su�
ient enough.For 
omparison, the MR BWCC method with the a posteriori 
orre
tionof size-extensivity was also employed, but gave rather poor results at theCCSD(T) level, whi
h 
ould be explained by its tenden
y to overestimatethe 
orrelation energy.The perturbative triples 
orre
tion in the un
oupled approximation tothe MR MkCC method was able to provide quantitative results. Unlike theMR MkCCSD(Ti) method, the MR MkCCSD(Tu) approximation does notneed to solve the T̂3 equation iteratively and is thus less expensive whileremaining resistant to intruder states.66



Chapter 5Con
lusionThree Hilbert spa
e multireferen
e 
oupled 
luster methods, the state-spe
i�
MR BWCCSD with the iterative 
orre
tion of size-extensivity and withouta 
orre
tion and the state-universal MR CC method in the formulation byKu
harski and Bartlett, have been provided with a pilot implementation ofan analyti
al gradient of energy, whi
h is based on a Full-CI expansion.The implementation was tested by 
omparing the analyti
al gradientswith gradients 
al
ulated numeri
ally at various geometries of di�erent mul-tireferen
e 
hara
ter. At all points, all three gradient variants performedvery well, providing results of su�
ient a

ura
y.The pilot implementation was then applied to a geometry optimizationof the singlet CH2 and SiH2 mole
ules, whi
h have a two-referen
e 
hara
ter.The results were 
ompared both to experimental values and Full-CI 
al
u-lations. All the methods di�ered from the Full-CI values by the order of
10−3 Å and 0.1◦ using double-zeta basis sets and su
h results are satisfa
toryenough. The pilot implementation of the three MRCC analyti
al gradientvariants has been published [2℄.The analyti
al gradient of the MR BWCCSD method with the iterative
orre
tion of size-extensivity has also been implemented in the ACES II quan-tum 
hemi
al program pa
kage. It makes use of the e�
ient single-referen
eCCSD analyti
al gradient 
ode sin
e the formulas of this MRCC gradientvariant are very similar. The orbital response 
ontribution to the gradienthowever requires solving the CPHF equations for ea
h gradient 
omponent.A more e�
ient orbital response evaluation like in the single-referen
e 
ase
annot be applied to the multireferen
e formalism and further developmentis needed. The ACES II program thus 
al
ulates the multireferen
e relaxeddensity matri
es, whi
h are then 
ontra
ted with MO integral derivatives byan external 
ode.This implementation has been su

essfully tested by 
omparing with thepilot implementation and it has also been applied to the CH2 and SiH2 ge-ometry optimization. The time of the gradient evaluation redu
ed almost bya fa
tor 103 in the 6-31G basis 
omparing to the pilot implementation. In67



spite of the ine�
ient orbital response 
al
ulation, the implemented gradientis still faster than the numeri
al evaluation and the implementation is thuse�
ient.However, appli
ations to larger systems than the ben
hmark mole
uleslike N2O2 or 
y
lobutadiene failed sin
e at most geometries the multireferen
e
λ equations did not 
onverge. This 
ould be explained by the fa
t that theiterative 
orre
tion of the MR BWCC method reintrodu
es the intruder stateproblems.After the pilot implementation has been published, an analyti
al gradientof the state-spe
i�
 multireferen
e Mukherjee 
oupled 
luster method hasbeen implemented by Pro
hnow et al. [16℄, whi
h is however superior to theiteratively 
orre
ted BWCC method. Be
ause of this fa
t and for the severe
onvergen
e problems of the BWCC λ equations, it has been de
ided that thee�
ient orbital response 
ontribution for the BWCC gradient is not going tobe further developed.Finally, the newly developed MR MkCCSD(Tu) method has been su
-
essfully tested on the investigation of the singlet-triplet energy separationof the tetramethyleneethane mole
ule. The 
al
ulated results ni
ely agreedwith an experiment, suggesting the ground state to be singlet for all valuesof the twist angle with 2.6 k
al mol−1 as the minimum in the 

-pVDZ basis.It has been shown that even for the qualitatively 
orre
t des
ription, thein
lusion of the triples was inevitable. However, sin
e the MR MkCCSD(Tu)results 
losely resembled those from the MR MkCCSDT-1 level of approxi-mation, the perturbative triples in
lusion is su�
ient enough.The tested MR MkCCSD(Tu) method, whi
h is based on the un
oupledapproximation to the MR MkCC method, has thus proved to be a less ex-pensive alternative to the MR MkCCSD(Ti) approximation that has to solvethe T̂3 equations iteratively, yet remains resistant to intruder states. Thispart of the thesis has also been published [3℄.
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