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Abstract

The main objective of this work was to implement an analytical gradient
of energy for a multireference coupled cluster method (MRCC).

Multireference quantum chemical methods play a fundamental role for
studying non-equilibrium molecular geometries, dissociation of molecules into
fragments or generally quasidegenerate systems. In all such cases the single-
reference methods fail and the multireference description thus becomes in-
evitable.

While the standard single-reference CC methods have been widely used
for almost 40 years as the most accurate, yet computationally feasible meth-
ods for calculating the correlation energy, the MRCC theories are still the
subject of an active development and are only slowly accepted for a routine
quantum chemical use.

Until recently, there was only one implementation of an analytical gra-
dient for a MRCC method which, however, specialized on a two-reference
low-spin singlet systems only. Because of the key importance of the an-
alytical gradient for the whole quantum chemistry, an analytical gradient
implementation for a general MRCC method is therefore highly desirable.

A gradient of the state-specific multireference Brillouin—-Wigner CCSD
method with the iterative correction of size-extensivity has been chosen since
the method had already been implemented in the ACES II [1| program pack-
age, which is provided with an efficient single-reference CCSD analytical
gradient implementation so that its code could conveniently be reused.

As an inevitable development tool, a more general Full-CI based program
has been used, which enabled a pilot implementation of the target MR BWCC
gradient with and without the iterative size-extensivity correction and also
a gradient of the state-universal MRCC method. The pilot implementation
of the three analytical gradient variants has been successfully tested on CH,
and SiH, systems and also published [2].

Finally, the analytical gradient of the iteratively corrected MR BWCC
method has also been implemented in the ACES II package, although the
orbital response contribution requires an explicit solution of the CPHF equa-
tions, which is performed by an external code.

In addition, as a testing application of a newly developed state-specific
multireference Mukherjee CCSD(T,,) method, an investigation of the singlet-
triplet energy separation of the tetramethyleneethane molecule has been per-
formed. The obtained potential energy curves were smooth without singular-
ities and the calculated results very well agreed with an experiment. Since the
method does not require an iterative solution of the approximate Ty ampli-
tudes and has proved to remain resistant to intruders, it is thus a perspective
alternative among highly accurate multireference approaches. This work is
also a part of a publication [3].



Abstrakt

Hlavnim cilem této prace bylo naimplementovat analyticky gradient ener-
gie pro multireferen¢ni metodu vazanych klastra (MRCC).

Multireferen¢ni kvantové chemické metody jsou kli¢ové pro studium mole-
kul v nerovnovaznych konfiguracich, rozpadu molekul na fragmenty nebo
obecné kvazidegenerovanych systémii. Ve vSech téchto pripadech bézné jedno-
referen¢ni metody selhavaji a multireferen¢ni popis je pro né tedy nezbytny.

Zatimco jednoreferenc¢ni metody vazanych klastra (CC) se jiz témér 40 let
pouzivaji pro presné vypocty korela¢ni energie, jejich multireferen¢ni verze
jsou stale predmétem aktivniho vyvoje a do bézné praxe se dostavaji jen
pomalu.

A7 donedavna existovala pouze jedind implementace analytického gra-
dientu multireferenéni metody vazanych klastri, ta se vSak tyka jen spe-
ciadlntho piipadu dvoureferenc¢nich singletovych stavi. Ponévadz analyticky
gradient hraje kli¢ovou roli ve vSech oblastech kvantové chemie, jeho imple-
mentace pro obecnou MRCC metodu je tedy zésadni.

Pro implementaci byl zvolen analyticky gradient stavové specifické multi-
referen¢ni Brillouinovy-Wignerovy metody CCSD s iterativni korekei size-
extenzivity. Tato metoda je totiz implementovana do programu ACES IT [1],
ktery jiz nabizi efektivni analyticky gradient jednoreferen¢ni CCSD metody
a jeho kod lze tedy s vyhodou vyuzit.

Béhem prace bylo nutné pouzit obecnéjsi program, zalozeny na rozvoji do
Full-CT baze, ktery vSak umoznil pilotni implementaci analytického gradientu
pro MR BWCC metodu s iterativni korekci a bez korekce size-extenzivity a
téz stavoveé univerzalni MRCC metody. Pilotni implementace v8ech t¥{ variant
byla tspésné otestovana na karbenu CHjy a silylenu SiH, a tato prace byla
opublikovana [2].

Analyticky gradient energie MR BWCCSD metody s iterativni korekci
size-extenzivity byl nakonec téz naimplementovan do programu ACES II,
ackoliv tato implementace vyzaduje explicitni feSeni CPHF rovnic pro vyja-
dieni derivaci LCAO koeficient1, coz je provadéno externim programem.

Jako posledni ¢ast prace byla testovina nové vyvinutd stavové speci-
fickd multireferenéni Mukherjeeho metoda s poruchovym zahrnutim T; am-
plitud v aproximaci nespfazenych amplitudovych rovnic, MR MkCCSD(T,).
Bylo studovano siglet-tripletové stépeni molekuly tetrametylenetanu. Ziskané
krivky potencidlni energie byly hladké a vysledky velmi piesné souhlasily s
experimentem. Tato metoda nevyzaduje iterativni feseni T5 rovnic a piesto je
imunni viadi intruder stavim, coz potvrdil i prubéh spoc¢tenych kiivek. Mezi
presnymi multireferen¢nimi metodami je tato metoda proto velmi perspek-
tivni. Tato prace je té7 soucasti publikace [3].
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Chapter 1

Motivation

1.1 Aims of the Thesis

The principal aim of this thesis is to implement an analytical gradient of
energy for a general multireference coupled cluster method. The computer
implementation should be tested by comparing the analytical gradient with
a gradient calculated numerically and finally applied to a geometry optimiza-
tion of a molecular system with a multireference character.

Specifically, the state-specific multireference Brillouin—-Wigner cou-
pled cluster method with the iterative correction of size-extensivity, the
MR BWCCSD, has been chosen since its amplitude equations at conver-
gence are uncoupled and thus enable a relatively easy analytical gradient
derivation. The method has been implemented in the ACES II program
package, therefore the gradient implementation could also make use of the
available single-reference analytical gradient code.

Another goal of the thesis is to test a newly developed perturbative
triples correction to the state-specific multireference Mukherjee coupled clus-
ter method in the uncoupled approximation, the MR MkCCSD(T,,) on an in-
vestigation of a singlet-triplet energy separation of the tetramethyleneethane
molecule.

1.2 Analytical Gradient of Energy in Quantum
Chemistry

Gradient of energy — a vector of the first partial derivatives of energy with
respect to a set of coordinates

prad B — <6E OF )
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or generally a partial derivative of energy with respect to a general pertur-
bation y: g—i plays a fundamental role in all branches of quantum chemistry.



For instance, many physical properties of molecules can be expressed as first
and higher derivatives of energy with respect to a set of specific coordinates.
The simplest example can be spectroscopic constants — the electric dipole
moment and polarizability, which is a vector of first derivatives and a matrix
of second derivatives of energy with respect to external electric field strength
coordinates. However, the most common quantum chemical tasks like predic-
tion of equilibrium molecular geometry, vibrational frequencies calculation,
transition state search or molecular dynamics, require evaluation of the en-
ergy derivatives with respect to position of nuclei.

First of all, chemists are interested in equilibrium molecular geometries.
That is such a configuration of atoms in a molecule having the lowest energy
of all possible atomic configurations. Finding a local minimum of energy
with respect to several atomic coordinates, referred to as geometry opti-
mization, can be numerically very well performed by a Newton-Raphson
function minimization technique. This is an analog to the famous Newton
method of finding roots of equations. It works by locally approximating the
potential energy surface (PES) by a paraboloid (expressed as a quadratic
form) and with the knowledge of a gradient and a Hessian (a matrix of all
second partial derivatives) it reaches the minimum of the paraboloid in just
one step. For a real PES, however, it requires several steps to reach the
minimum by the formula

Xpi1 = X, — H ' (x,) grad E(x,,) (1.2)

where H™!(x,,) is an inverse of the Hessian matrix calculated at the nth step.

Because of the expensive evaluation of the Hessian matrix, which scales
quadratically with the number of coordinates and what’s more, the second
analytical derivatives are often unavailable for many quantum chemical meth-
ods, the Newton-Raphson technique is usually replaced by quasi-Newton
methods (for instance the variant by Broyden, Fletcher, Goldfarb and Shanno
— BFGS [4]) which need just the first derivatives and an approximated in-
verse of the Hessian which is being improved at each step.

The other most common application of the gradient in quantum chemistry
is the calculation of harmonic vibrational frequencies. This is usually
performed as an additional step after the geometry has been optimized to
ensure the predicted geometry is really at a minimum and not in a saddle
point of the PES. But besides is needed as a first approach for assigning
infrared and Raman spectra, obtaining zero point vibrational energies and
subsequent thermodynamics property calculations.

The frequencies are eigenvalues of a vibrational Hamiltonian which ap-
proximates the vicinity of the energetical minimum by a multidimensional
parabolic potential

1 3#Nuclei
V = E¢ + 5 Z i fij 4 (1.3)

ij



where the £°Y is the energy in the equilibrium geometry,

¢ = /m; (x; — z37) (1.4)
is the mass weighted coordinate of the ith nucleus in terms of displacements
from the equilibrium geometry and

PE )
= 1.5
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are harmonic force constants. The potential is thus inherently described
by a Hessian, which is, as already noted, often unavailable in an analytical
form for many quantum chemical methods. Therefore it has to be evaluated
numerically either from energies or, preferably, from first derivatives.

A transition state search is another example of an inevitable gradient
use. It is a search for a state with the highest energy along a reaction path.
The state lies in a saddle point connecting the valleys of the PES where the
initial and final states of a reaction are located. The methods for finding the
transition state makes use of the fact that the gradient is zero in a saddle
point. One such a technique just minimizes a gradient norm about its most
expected position on the PES. Another technique — a hill climbing predicts
the reaction path by the least steep gradient corrected by minimizing the
energy along all other directions. Similar but more accurate technique is
based on a modified quasi-Newton method.

And lastly, the classical molecular dynamics, which studies the time
evolution of a molecular system, is strongly dependent on the gradient evalu-
ation. It solves the Newton equations of motion for atoms on the PES, where
the gradient drives the atomic movement. A common method for integrat-
ing the Newton equations in the classical molecular dynamics is the velocity
Verlet algorithm [5,6]:

ri(t+ At) = ri(t)—kvi(t)AtJr%ai(t)A% (1.6)

vi(t+At) = v(t) + (a;) At (1.7)

(as) = . (1.8)

where the forces are given by the potential energy gradient

1 0V (r
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Let’s now look at the formulas used for numerical evaluation of the gradi-
ent and the Hessian matrix and consider the advantage of the analytical
gradient formula over the numerical differentiation. The symmetrized nu-

merical gradient formula reads

(1.9)
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and the symmetrized formulas for the second partial derivatives using an

analytical gradient

(1.10)
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Finally the symmetrized second partial derivatives if an analytical gradient
is not available

82 5 . h, — , —h,
%:fﬁ%m+ d f(hl; Syl g
0? 1
%;/y) = lim 5 [fr+hy+h) = fle+hy—h)
—f(e = by h) 4 fl@ = hy = 1) (1.14)

The complexity of a full gradient and Hessian evaluation is presented in
Table 1.1. We can see that as long as the complexity of the analytical gradi-

anal. grad. | anal. grad.
available | not available

gradient 1G 2NE

Hessian 2NG (1+2N?)E

Table 1.1: A comparison of complexity of an N-dimensional gradient and
Hessian matrix computation if an analytical gradient formula is available
or absent. FE stands for the complexity of energy evaluation and G for the
complexity of an analytical gradient evaluation.

ent evaluation is comparable to the evaluation of the energy, the numerical
calculation of the gradient from energies scales linearly with the number of
degrees of freedom (e.g. number of atoms) whereas the analytical calculation
is just constant. Similarly the numerical Hessian calculation using energies
scales quadratically, while its evaluation from gradients scales only linearly.

This seems to be a solid argument for preferring the analytical gradient,
but it would completely fail if the analytical gradient evaluation strongly
depended on the number of perturbations (degrees of freedom). Fortunately,
the energy gradient formulas can be factored to a dominant perturbation-
independent part and a minor perturbation-dependent contributions so that



the total evaluation time of the analytical gradient is of the same order as
that of the energy.

Such formula factorization is usually referred to as the Z-vector technique
and for the coupled cluster methods it leads to solving the A-equations from
which the set of perturbation-independent coefficients, called A-amplitudes,
is obtained.

The analytical gradient evaluation is also more accurate than its numer-
ical calculation from finite differences and, moreover, avoids possible conver-
gence difficulties of energy computations that usually happen at displace-
ments which reduce the symmetry of the investigated molecular system.

1.3 Quantum Chemical Methods

Quantum chemistry, a quantum mechanical description of molecular systems,
has to inherently deal with the many-body (many-electron) problem. It does
so by expanding the electronic Hamiltonian H., " in a finite basis of antisym-
metric N-electron functions and finding some of its eigenvalues (energies)
and eigenvectors (usually only the ground state energy and wavefunction).

The antisymmetric N-electron basis functions are usually given by Slater
determinants ? (or their linear combination to satisfy properly a spin sym-
metry, for instance):

1 X2 1 oo X2 N
| Do) = oyl L S (1.15)
xv(1) oo xw(V)

These are constructed from a set of one-electron basis functions, known as
molecular spinorbitals x;(k) (i is a function index and k denotes a k-th elec-
tron), consisting of a three-dimensional spatial function multiplied formally
by a spin function |a) or |3).

The spatial component of the one-electron basis is mostly formed from
a basis of atomic orbitals (usually Gaussian functions placed at centers of
individual atoms) by solving the Schrodinger equation with an assumption
that the molecular wavefunction is given by just one N-electron Slater de-
terminant. Such a way of choosing the one-electron basis set is called the
Hartree—Fock method (HF, SCF) and results in a set of orthonormal molec-
ular orbitals, where the first NV with the lowest orbital energy, called occupied
orbitals, form the Hartree-Fock wavefunction (the single Slater determinant)
and the remaining eigenfunctions are called virtual orbitals.

li.e. a Hamiltonian in the Born—Oppenheimer approximation
2a determinantal form of an N-electron function ensures the antisymmetry of a
fermionic wavefunction



The number of N-electron Slater determinants which can be constructed
from a set of M orbitals is, however, extremely large. For example a full N-
electron basis set of a water molecule with 10 electrons in a closed-shell singlet
electronic state using a moderately large one-electron basis of 19 functions
(e.g. cc-pVTZ) consists of 135,210,384 Slater determinants. We can see that
the size of the N-electron basis thus represents a principal obstacle in solving
the many-body Schrodinger equation.

The advantage of the Hartree—Fock method for choosing the molecular
orbitals is that since the N occupied orbitals provide the best possible de-
scription of the molecular system for the Hartree—Fock wavefunction (i.e.
the only Slater determinant), the Slater determinants in the N-electron ba-
sis which are formed mostly by the occupied Hartree-Fock molecular orbitals
play the significant role in the expansion of the proper N-electron wavefunc-
tion. And truly, the proper ground state N-electron wavefunction is mostly
given by the reference Slater determinant (the Hartree—Fock one) and singly,
doubly (and triply) excited configurations (i.e. such Slater determinants
derived from the reference determinant where one, two or three occupied or-
bitals are replaced by a corresponding number of virtual orbitals). This fact
helps to significantly reduce the size of the N-electron basis and makes the
solution of the many-body problem feasible.

The Hartree—-Fock method assumes a model of almost independent elec-
trons 3. The post-Hartree-Fock methods described below thus try to involve
the correlation of electronic motion in the proper wavefunction. Hence the
difference between the proper energy & and the Hartree-Fock energy FEj is
called the correlation energy

E = & — Ey (1.16)

The straightforward way of finding the spectrum of the many-body Hamil-
tonian by employing the complete space of N-electron Slater determinants
formed from a finite set of molecular orbitals is the full configuration in-
teraction method (Full-CI, FCI). The method is simply formulated but is
extremely demanding on computational resources due to the enormous size
of the N-electron basis and is therefore practically limited to calculations of
systems of only a few atoms.

Nevertheless, using the property of the Hartree-Fock orbitals mentioned
above, it is possible to dramatically reduce the N-electron space by involving
only the reference determinant and all singly, doubly or more excited con-
figurations without a significant loss of the wavefunction quality while using

3In the Hartree-Fock model, the electrons are actually not fully independent as each
electron moves in an averaged field of the other electrons. The averaged field is calculated
iteratively until a self-consistency is reached so that it no longer improves (it is why
the Hartree—Fock method is also known as the SCF — a self-consistent field method).
Moreover, two electrons of the same spin cannot occupy the same location at the same
time, due to the fermionic character of electrons, which is assured by the determinantal
form of the wavefunction



the same simple CI algorithm. This approach is known as the truncated CI
(for instance CISD or CISDT) and can be applied to systems of up to several
tens of atoms.

As an example you can see a CISD expansion of a wavefunction

Wersp) = Do) + 3 @) + 37 | a) (1.17)
i i<j
a a<b
using a common notation for the reference (Hartree-Fock) determinant |®y),
singly |®¢) and doubly |®%) excited configurations where ¢ and j denote
indices of occupied orbitals which are replaced by virtual orbitals with indices
a and b. The expansion coefficient of the reference determinant is equal to
one due to the usual intermediate normalization of a wavefunction

(W[ D) = 1 (1.18)

The great advantage of CI methods is that they are formulated by a
variational principle, which is a simple consequence of linear algebra and is
given by a relation

(o]]e)
< - =~ ! ' 7
& < E[®)] @D (1.19)
where & is the true lowest eigenvalue of the Hamiltonian operator and |P)
is an arbitrary ket-vector of the operator space. The main benefit is that by
truncated CI methods (but also by any other variational method) an upper
bound limit to the true Full-CI energy is obtained.

However, the truncated CI is not a size-extensive method, which means
that the energy does not scale correctly with the number of particles in a
system. The reason why it fails for the truncated CI while the Full-CI is size-
extensive will be shown in the next chapter. To partially compensate this
deficiency, the Davidson correction of size-extensivity |7, 8] is always applied
to truncated CI calculations.

A rather different approach for expanding the wavefunction in excited
configurations represents the coupled cluster (CC) method which is based
on the exponential ansatz

|\I’CC> — €T|®O> — €T1+T2+'“+TN|¢O> (120)

where the T}, Tb, ...are operators (called cluster operators) formally gen-
erating a series of all possible single, double and up to N-tuple excitations
from a reference function upon which they act. For example

Ti|®o) = ) 7197) (1.21)



Ty|Po) = Y _ t0|@eh) (1.22)
i<j
a<b
where the coefficients ¢¢ and t?]’-’ are called the cluster amplitudes.

By expanding the exponential operator in the Taylor series

~ ~

T2

: T
T _
el =1+ 40+ (1.23)

we can see how a Cl-like expansion of a wavefunction in configurations is

formed. Let’s take an example of the CCSD method, in which the excitation
operator is truncated to involve just singles and doubles T=T +1T

I — 14 Ty 4+ Ty + T—12+2T1T2 +T—22

T 2! 2!

It is obvious that a CCSD expansion of a wavefunction includes not only
singly and doubly, but partially also triply and highly excited configurations
due to coupling of the excitation operators. And this is just one of the main
points which make the coupled cluster method superior to the configuration
interaction. The other is that the coupled cluster method is size-extensive
regardless the level of truncation of the T operator.

Nevertheless, it is not a variational method, which means that the calcu-
lated CC energy may be below the proper Full-CI value and that the cluster
amplitudes (which define the wavefunction expansion) have to be calculated
iteratively from a set of nonlinear equations. This not only makes the codes
more complicated but also can lead to convergence problems. In spite of these
disadvantages, the coupled cluster method is regarded as the most reliable
in the family of ab initio quantum chemical methods.

It is also necessary to briefly mention the perturbation theory. Its
principal idea is based on a partitioning of the Hamiltonian H into a main
(unperturbed) part H, that is relatively easy to solve, and a small perturba-
tion W

(1.24)

H=Hy+W (1.25)

If the perturbation term is small enough, the eigenstate of the full Hamil-
tonian can be obtained as a convergent series of correction terms to the
unperturbed solution.

Usually the Mgller—Plesset partitioning of the electronic Hamiltonian is
applied so that the unperturbed solution is the Hartree—Fock wavefunction.
The second-order correction, known as the MP2 method, is a very cheap and
popular way of involving about 80% of electronic correlation.

Schematically the perturbation series for the correlation energy can be
expressed as



m
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<I>0> (1.26)

where the fractional expression is a resolvent, which depends on an arbitrary
number z. The two most common variants used are the Rayleigh—Schrédinger
perturbation theory (RSPT), where the z is set to the lowest eigenvalue
of the unperturbed Hamiltonian H, and the Brillouin—Wigner perturbation
theory in which the z is equal to the true lowest eigenvalue & of the full
(perturbed) Hamiltonian. The RSPT variant is a fully size-extensive method.
The BWPT, by contrast, is not, but its formalism is much simpler.

The post-Hartree-Fock methods described above (apart from the Full-CI)
involve properly only a specific part of the Full-CI N-electron space by start-
ing from one reference configuration and incorporating in some specific way
the other configurations by excitations of the reference determinant. How-
ever, in many cases this approach becomes insufficient and can completely
fail to describe a chemical species even though a great portion of dynamical
electronic correlation is included by expanding the wavefunction in a very
large Full-CI subspace. This happens when a single determinant cannot cor-
rectly describe the spin symmetry (e.g. A state of Oy molecule needs a
two-determinantal description) or when a dissociation of a molecule is stud-
ied, in which the molecular wavefunction is continuously split in two parts,
or generally if quasi-degeneracies occur. In all these cases, involvement of
certain configurations is inevitable for a proper system description and its ef-
fect is usually referred to as inclusion of non-dynamical electronic correlation
in a wavefunction. Such systems have to be treated with multireference
methods.

The basic method which describes a system with more Slater determi-
nants is the multiconfigurational SCF method (MCSCF) or its special case
— the complete active space SCF (CASSCF), in which an appropriate com-
bination of configurations is set and both their coefficients and the orbitals
are optimized at the same time.

The multireference post-Hartree-Fock methods usually take the appropri-
ate combination of determinants (references) using either the HF or MCSCF
optimized orbitals and generate excitations for each reference analogously to
the single-reference variant of the method. So there is the multireference con-
figuration interaction method (MRCI), the multireference perturbation theory
(such as the common CASPT2 method) and also the multireference coupled
cluster method (MRCC).

In the context of this thesis, the Hilbert-space MRCC methods are used,
namely the state-specific multireference Brillouin-Wigner CC (MR BWCC),
the state-specific multireference Mukherjee CC (MR MkCC) and the state-
universal multireference CC (SU MRCC). The state-specific methods concen-
trate on calculation of a single particular state. The state-universal method,



by contrast, computes several states in one step, but is vulnerable to conver-
gence problems.

1.4 Analytical Gradient in the Multireference
Coupled Cluster Methods

Many quantum chemical methods have been provided with analytical gradi-
ents long time ago and since then the gradients are routinely used in everyday
productive calculations.

While the analytical gradient of the single-reference coupled cluster meth-
ods have already been introduced in the 1980s and 1990s, there are still few
analytical gradient implementations for the multireference coupled cluster
theory. When the work on this thesis started, only a gradient of a special
case of the two-determinantal open shell low spin singlet coupled cluster had
been implemented [9] and gradients of another two MRCC variants had been
developed but without an implementation [10]. There were analytical gra-
dients of the Fock space MRCC formulation [11-14], but no general Hilbert
space MRCC analytical gradient had actually been implemented. Because
of the superiority of the CC method and inevitable capabilities of the mul-
tireference approach, an efficient implementation of a general Hilbert space
MRCC method was therefore highly desirable.

In this thesis the state-specific MR BWCCSD method with the iterative
correction of size-extensivity was chosen for the analytical gradient imple-
mentation. Based on the Brillouin-Wigner perturbation theory, the method
is not size-extensive a priori, but is provided with a correction. This has,
however, a convenient consequence in the form of its final MRCC equations,
which lead to a relatively easy gradient derivation. Although the BW for-
malism avoids intruder state problems * while solving the CC equations,
the iterative size-extensivity correction slowly transforms the formulas into
a Rayleigh—Schrodinger form which may however give rise to intruder state
problems and can lead to convergence difficulties. The method itself and
also the gradient scale only linearly with the number of reference configu-
rations so it might be applied to investigation of larger molecular systems.
The gradient has been derived in such a way that much of the existing ef-
ficient single-reference CCSD analytical gradient code of the ACES II [1]
program package could be reused since it has also an efficient MR BWCC
implementation.

During the work, however, it turned out to be necessary to first code a
pilot implementation of the gradient as an inevitable tool that helps with the
efficient code reuse. And since this pilot implementation was performed in a
generic Full-CI based way, another two analytical gradient variants could be

“Intruder states are numerical inconveniences in the perturbation theory formalism
when the denominator of the resolvent becomes too close to zero
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implemented as well. In the end a pilot analytical gradient implementation of
the state-specific MR BWCCSD with the iterative size-extensivity correction
and without the correction and a state-universal MRCCSD in the formulation
by Kucharski and Bartlett [15] were completed and published [2].

It has to be noted that only after the pilot implementation had been
published, an efficient implementation of the state-specific multireference
Mukherjee coupled cluster (MR MkCC) energy gradient appeared, coded by
Prochnow et al. [16], which is however a more general case of the iteratively
corrected MR BWCC gradient.

Nevertheless, the analytical energy gradient of the iteratively corrected
MR BWCCSD variant has finally been efficiently implemented as well, al-
though the orbital response contribution requires an explicit solution of the
CPHF equations.

1.5 Perturbative Triples Contribution in the
MRCC Methods

While in many cases the coupled cluster calculations with contributions from
the singles T and doubles T} are sufficient enough for a correct description of
a molecular system, for precise quantitative results also contributions from
the triples T have to be incorporated.

However, while the relatively cheap CCSD calculation, which scales with
O(N?®), where N means the number of orbitals, the full CCSDT method
is two magnitudes more expensive, scaling with O(N®). Therefore an ap-
proximate triples contribution is usually employed which is known as the
CCSD(T) method and is commonly referred to as "the gold standard" for
quantitative quantum chemical calculations. In most cases it provides re-
sults comparable with experimental values while remaining computationally
feasible. In this method, the equations for solving the CCSD amplitudes are
iterated and after the convergence has been reached, a few other terms (which
are chosen by inspecting the formulas by the perturbation theory) are added
to approximate the triples contribution. The method thus requires only one
additional step that scales with O(NT).

In the multireference coupled cluster theory, it was first developed for
the SU MRCC method [17]. The MR BWCCSD(T) approximation was
implemented a few years ago [18]. Recently, the MR MkCC method was
provided with a non-iterative triples variant, denoted by MR MkCCSD(T,),
which however introduces intruder state problems [19]. Later a different ap-
proach, denoted here as MR MkCCSD(T;), has been suggested which elim-
inates the intruder state problem, but requires an iterative solution for the
triples amplitude equation [20]. Another formulation finally appeared, the
MR MkCCSD(T,), which is based on an uncoupled approximation of the
MR MkCC method and avoids both the intruder state problem and the it-
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erative solution for the triples equation [3]. The method has already been
successfully tested on the BeH, system, but for testing on a real chemical
application, a singlet-triplet gap investigation of the tetramethyleneethane
molecule (TME) has been suggested, which is actually the topic of the last
part of this thesis.
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Chapter 2

Theory

2.1 Generally Applied Approximations

Let us introduce the physical constraints upon which all the theory of the
thesis is built.

First of all, only a non-relativistic physics is applied since in most
quantum chemical calculations, which investigate elements of the first three
rows of the periodic table, the relativistic effects are still almost negligible in
comparison with the calculated properties of the main interest. Thus only
the Schrodinger equation is employed, which makes the situation much easier
than using the relativistic Dirac equation.

The molecular system is thus fully described by a non-relativistic Hamil-
tonian

.1 1 VA Z 1
H:—§§mAAA+ —§;Ai+ P ZﬁJr Zﬁ (2.1)

.
A<B ' AB iA i<j

~ A~ ~ v - A~

Th Te Van Ve Vee

where the usual notation for kinetic 7" and potential energy V is used as well
as symbols e and n for electrons and nuclei respectively. This and all the
other equations in the thesis also assume the use of atomic units.

Nevertheless, even with the Schréodinger equation, the relativistic effects
could be in some extent involved by using the effective core potentials, de-
scribing an effective field of the core atomic electrons.

Because of the relatively large ratio between the weight of nuclei and
electrons, also the Born—Oppenheimer approximation (BOA) is applied
in most cases. It simply removes the nuclear kinetic energy operator T,, from
the total Hamiltonian, forming the so-called electronic Hamiltonian ﬁez

Hel - Te + Vnn + Vne + ‘}Yee (22)

This actually describes an electronic system in the field of fixed nuclei, which
obeys the Schrédinger equation

Ha(R)|®(r;R)) = £(R)|®(r; R)) (2.3)
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in which the r denotes electronic coordinates and the R means that the
electronic Hamiltonian and its eigenvalues and eigenfunctions depend on the
nuclear coordinates parametrically. The eigenvalue £(R) thus represents a
potential energy (hyper)surface (PES) on which the nuclei move.

Solution of the Born—Oppenheimer Hamiltonian is usually sufficient
enough. It may, however, fail in situations where two potential energy sur-
faces of the same symmetry come close together or even cross, forming the
conical intersection.

In the rest of this work, because of the implicit use of the Born—
Oppenheimer approximation, the electronic Hamiltonian will be further de-
noted with just the symbol H.

And lastly, although the N-electron Hilbert space is infinite, for com-
putational reasons, only finite basis sets can be employed. For molecular
systems, however, they can be chosen in a way that is satisfactory enough for
comparison with experimental values. Moreover, special basis sets also exist,
that successfully give physical properties as if an infinite basis were used.
It is achieved by extrapolation of results obtained from calculations using
several finite basis sets of an increasing size.

2.2 The Hartree—Fock Method

As already noted earlier, the Hartree-Fock method [21,22] is used to obtain
an appropriate set of one-electron basis functions, the molecular spinorbitals
Xi(X).

The spinorbital consists of a spatial orbital ¢;(r) and a spin component

o) or 15)
o {aa)
w6 {mr)\m .

The spinorbital variable x thus involves both the spatial and the spin vari-
ables altogether.

The spin components are only formal, since they are used to construct a
proper spin of the N-electron wavefunction, which is given and fixed. Param-
eters of the spatial molecular orbital ¢;(r) is actually what is being optimized
in the Hartree—Fock procedure.

The spatial molecular orbitals (MO) are usually formed from a fixed set
of atomic orbitals (AO) as their linear combination (LCAO)

oi(r) = 3 |u(r))Cl (2.5)

where the LCAO coefficients C,; are just the Hartree-Fock optimization vari-
ables.
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Intuitively, the atomic orbitals are functions located at nuclei, which
should mimic the eigenfunctions of a Hydrogen-type atoms (i.e. systems of a

nucleus and only one electron). Such simplified functions are the Slater-type

orbitals (STO)

fjio(r) = xiyjzke_c‘r_ro‘ (2.6)
which are, however, rarely used because of their too expensive electron re-
pulsion integral evaluation. Instead, the Gaussian-type orbitals (GTO) are
used

GrO(r) = alyl e <o) (2.7)
which can be integrated much more easily, though they do not describe the
one-electron wavefunction so well. To compensate this deficiency, the con-
tracted GTOs are used, which is just a fixed linear combination of several
primitive GTOs (of the same polynomial part, but differing in the exponent)

ingTO(r) = gyl F Z Kmefcm(r’“’)2 (2.8)
m

which describe the spatial orbitals better and remain computationally fea-
sible. There are numerous atomic basis sets of various size, optimized for
calculation of a variety of physical properties (mainly the energy) with the
exponents and contraction coefficients tabelized.

The functions shown above (2.7), (2.8) are called cartesian Gaussian-type
orbitals and are characterized by a shell number [ = ¢ + 7 + k. All functions
in shells [ = 0, 1 are eigenfunctions of the orbital momentum operator L2 (i.e.
s and p functions respectively). The cartesian GTO functions of shells with
[ > 2 however mix also functions of lower orbital momentum. For example
there are 6 cartesian GTOs of [ =i+ 7+ k = 2. But they can actually be
reduced to 5 d and one s function. If a particular quantum chemical program
allows, a spherical GTO basis set can be constructed from a cartesian one,
decreasing the size of the one-electron basis a little.

The Hartree-Fock molecular orbitals are obtained by the variational prin-
ciple by taking the N-electron wavefunction |®) as a single Slater determinant
only and varying the LCAO coefficients while keeping the orbitals orthonor-
mal so that the minimum of the wavefunction energy functional is reached.

EHF = <HF )H) HF> = min E [®] = min <<I> )H) q>> (2.9)

This way, within a given AO basis set, no better single determinantal
N-electron wavefunction can be obtained.

The simplest case is the closed-shell restricted Hartree-Fock method
(RHF) in which each spatial molecular orbital is shared between a pair of an
|a) and |3) spinorbitals.

To calculate also the open-shell systems (i.e. with unpaired electrons),
this restriction can be removed to form the unrestricted Hartree-Fock method
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(UHF) which leads to two coupled sets of equations for o) and |/5) spinor-
bitals. Despite still remaining quite simple, the UHF method actually does
not give a wavefunction of a pure spin. In contrast to the RHF method, it
can however qualitatively well describe a dissociation of a molecule.

The restricted open-shell Hartree-Fock method (ROHF) uses a spin-
adapted linear combination of a few Slater determinants to provide a proper
eigenfunction of the spin (S2) operator, but its formalism is the most com-
plicated.

To reach the Hartree-Fock energy functional minimum (2.9), the func-
tional variation must be zero

SE[®] =6 <HF )H) HF> ~0 (2.10)

With an additional requirement for the molecular orbitals to be orthonor-
mal

(@ilos) = b (2.11)
the method of Lagrange multipliers directly leads to equations of the Fock
operator [ (specified below)

Flon) = Z Aijldi) (2.12)

Because this operator is invariant under a unitary transformation, such a
transformation can be found which diagonalizes the matrix of the multipliers
and gives the canonical Hartree—Fock equations

Flon) = eilos) (2.13)

from which the set of canonical molecular orbitals |¢;) is obtained where ¢;
is called the energy of the i-th orbital.

The Fock operator is an effective one-electron energy operator defined
(for the simplest closed-shell RHF method) as

N

FO) =h)+Y (2jj - f(j) (2.14)
j=1
where o
R 1 nucter ZA
)=—2A - S A 2.1
=58 Y A 2.15)

A

is the one-electron operator for the electronic kinetic energy and the interac-
tion between the electron and the nuclei,

161 = [ dra5(20s(2) 1) 210
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is the Coulomb operator and

Ry (1) = [ dra652)0,2); 6,0 .17

is the exchange operator. The last two operators just represent an averaged
field of the other electrons. From their definition it follows that the Fock
operator itself depends on the molecular orbitals. The Hartree—Fock equa-
tions (2.13) are thus pseudo-eigenvalue equations which have to be solved
iteratively. From an initial orbital guess the Fock operator calculates the
averaged field of the electrons and a new set of orbitals is generated. This
procedure is repeated until the self-consistency is reached, which means that
the averaged field as well as the orbitals no longer change.

As stated earlier, the molecular orbitals are expanded in the set of atomic
orbitals by LCAO coefficients (2.5). Substituting (2.5) in (2.13) one obtains
a set of Hartree—Fock—Roothaan equations that are actually used in practical
calculations

AO AO
Z F;WCW' =& Z S,uucui (218)

where [, and S, are the Fock and overlap matrix in the AO basis. The
equations are often written in a matrix form

FC = SCe (2.19)

where the € is a diagonal matrix of orbital energies.

After the solution converges to self-consistency, the N occupied and
M — N virtual orbitals are produced, where M is the size of the AO basis.
In post-HF methods, which calculate the electron correlation, an N-electron
function space is generated by excitations of electrons from the occupied or-
bitals to the virtual ones, as described in the previous part. Excitations from
the occupied orbitals that represent the core (non-valence) shell electrons
however contribute only minimally to the total electronic correlation and
are often frozen (i.e. excluded from excitations). Freezing the core orbitals
as well as their corresponding counterparts in the virtual orbital set further
significantly reduces the size of the N-electron configuration space.

At the end of this section and before going further in theoretical formal-
ism, a note about the common notation used in quantum-chemical formulas
should be briefly presented.

Orbital indices 1, 7, k,l denote the occupied, while a,b,c,d the virtual
molecular orbitals. Indices p,q,r, s are used for general (i.e. either occ. or
virt.) molecular orbitals. Greek letters u,v, A\, o, however, represent the
atomic orbital indices. For example a matrix element of the one-electron
part of the Hamiltonian in the AO basis is

P = (G0 iz) & ) (2.20)
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The two-electron integrals (i.e. the electron repulsion integrals) in the
molecular spinorbital basis are denoted by

1

@Wﬁaﬁmwmwnwﬁgmmmw> (2.21)

and a common shorthand for their antisymmetrized form

(pq|lrs) = (palrs) — (pq|sr) (2.22)

However, integrals over spatial orbitals (either atomic or molecular) use
braces instead of brackets and gather orbitals with the same electronic vari-
able

* ]' *
alrs) = [ drdvagylv)oyn) - dilor)  22)

Common Coulomb and exchange integrals are thus
Jij = (@l5j) (2.24)
K,y = (ilj) (2.25)

Using this notation, the closed shell RHF energy can be expressed as

N/2 N/2

ERHF_?Z (ilh|) +Z (éilj) — (ij]j)] (226)

or in the spinorbital basis

ERAF — Zh“+ Z (ij ||i7) (2.27)

And the widely used Fock matrix elements read

N
Joa = Tpg + Z (pi || qi) (2.28)

2.3 Second Quantization

Second quantization [21,23-25| is a notion coming from quantum electro-
dynamics, which however (along with the diagrammatic technique) became
very popular with the many-body perturbation theory and related topics. It
makes investigation of methods in the field much easier than the classical
approach since the second-quantized operators of physical observables (like
f]el) are independent of the number of electrons while the antisymmetry of
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the electronic wavefunction is assured in an elegant way without the need to
directly manipulate Slater determinants.

A brief introduction to the second quantization technique is presented
because for explanation of the key concepts of the coupled cluster theory,
the use of the second quantized formalism cannot be avoided. Otherwise
the description as well as the algebraic tractability of the formulas would be
extremely difficult.

2.3.1 Creation and Annihilation Operators

The key concept represents the normalized vacuum state |) which is just a
wavefunction of zero electrons. Electrons can be created in the vacuum state
by the creation operators af

ay |) =1p) (2.29)

and annihilated again by the annihilation operators a,

aplp) =1) (2.30)

which are mutually related as Hermitian conjugates

a, = (a)" (2.31)

p
The operators obey the following anticommutation rules

laf,az] =0 (2.32)
ay, ag], =0 (2.33)
[a;, aq]+ = 0pq (2.34)

which actually imply the N-electron wavefunction to be inherently antisym-
metric. The application of the operators can thus be summarized

arlq...s)=|pq...s) (2.35)
aplpg...s)=|q...s) (2.36)
afar ...afl)=1pq...s) (2.37)
pg..) = aiarl..)

~ el

= —lgp...) (2.38)



aglpgr...) = —aqlqpr...)

= —|pr...) (2.39)
lab...) = atafaja;lig...) (2.40)
arlp) =0 (2.41)
ay|) =0 (2.42)
wl) = ad )
= Opg — aiapH
= 6, —0 (2.43)

and one can see that an N-electron wavefunction |pq. .. s) can be represented
by a Slater determinant formed from orbitals pgq...s each occupied by an
electron.

Using the creation and annihilation operators, one can, for instance, con-
veniently express a wavefunction expansion in the configuration space. For
example the CI expansion is given by

Wor) = (14 Gyt Gy Cy) [) (2.44)

where
C, = Zc ala; (2.45)

Cy, = anbcﬁaba]aZ (2.46)

1<j
a<b

etc. are excitation operators ! generating all singly, doubly and up to N-

tuply excited configurations from the reference determinant |®q) together
with their CI expansion coefficients.
And the CC exponential ansatz can be easily written as

Wee) = e |Po)

— LDt 4Ty D)

~ ~ 1 4 A o~
- [1+<T1+---+TN>+§T12+T1T2+... o) (2.47)

'Note the order of annihilators in the C operator; compare with (2.40)
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where

Tl = Zt?a:ai (248)
T, = Zt%’aja;ajai (2.49)
i<j
a<b

etc. are similar excitation operators, but in the CC expansion (2.47), they are
commonly referred to as the cluster operators and the expansion coefficients
te,til, ... are called the cluster amplitudes.

Note an important feature of the cluster operators. Since a cluster oper-
ator contains annihilators of occupied and creators of virtual orbitals, from

(2.34)

[a:, a,i}_’_ = 5ai =0 (250)

we see that all second quantization operators in the cluster operators an-
ticommute. And because there is always an even number of creators or
annihilators in the cluster operators, all the cluster operators thus commute.

To do physics, however, a second-quantized operators of physical observ-
ables should be introduced. It can be shown that the second-quantized form
of a one-particle operator O, is given by

N
Or=> hi)=)_ <p h q> a;aq (2.51)
g pq
whereas a two-particle operator 02 becomes
s ) L
02 = ;“(%J) =3 ,; (pqlo|rs) a;ag asar (2.52)

A second-quantized electronic Hamiltonian thus reads

F 1
Ha =) hpgajag+5 ) (palrs) ajajasa, (2.53)
pq pqrs
1
= D hyajag+ 1 > pqllrs) afaasa, (2.54)
pq pqrs

A matrix element of any operator (which is actually a string of creation
and annihilation operators between the vacuum bra and ket) can be straight-
forwardly evaluated using the anticommutation rules by moving the annihi-
lators to the right. Because annihilating an electron from a vacuum state
gives zero, such procedure would finally result in Kronecker deltas only.
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This can be demonstrated on an overlap of two mutually singly-excited
two-electron Slater determinants

[®o) = ij) = alaj|) (2.55)

@) = laj) = agaf]); (®}] = (lajaa (2.56)

Their overlap reads

(®F[®o) = (|ajanafaf|)
= bai (|ajaf|) = (Jajaf aaaf )
Sai — 0aj { azal | ) + (|ajafafaq|)

= 5(” (257)

Matrix elements of more complicated operator strings like Hamiltonian
between various determinants would be however very tedious to evaluate in
this way. A more convenient method for evaluation of matrix elements is
described in the following subsection.

2.3.2 Normal-Ordered Operators and the Wick’s Theo-
rem

It has just been shown that in order to evaluate a matrix element of an
operator string, the annihilation operators had to be moved to the right of
the creation operators by the anticommutation rules so that they give zero by
acting on a vacuum state and also to reduce one operator pair of the string to
a Kronecker delta. An operator string in which all the annihilators are to the
right of all the creators is said to be normal ordered and its matrix element is
obviously zero. The Wick’s theorem gives a rule how to easily transform an
arbitrary operator string into Kronecker deltas and normal ordered strings
so that matrix element evaluation becomes simple even for very complicated
operator strings.

Let us first introduce a contraction of an operator pair (see Fig. 2.1)
by connecting two operators with a line. The braces around a string {...}
mean that the string inside is permuted to be normal ordered with a sign
corresponding to a parity of such permutation. So a contraction of an already
normal ordered string gives zero, otherwise a Kronecker delta is produced.

The Wick’s theorem (Fig. 2.2) says that an arbitrary string of operators
can be expanded in normal ordered strings with zero and all single, double
and up to N-tuple (full) contractions. The great consequence of the theorem
is that a matrix element of an operator string must be just the sum of only
the fully contracted normal ordered strings (see Fig. 2.3), because the non-
fully contracted normal ordered operators would annihilate the ket vacuum.
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AB = AB — {AB)}

]

a;a;' = 0
‘,17'% = 0
c?aq = 0
apa; = ai’a; - (—a;ap) = dpq
Figure 2.1: A contraction of an operator pair
ABC...XYZ = {ABC...XYZ}+
+ 3 {ABC...XYZ}+
singles
+ 3 {ABC...XYZ}+
doubles
_|_
Figure 2.2: The Wick’s theorem
[ L e B
(|IABC...XYZ|)= Y  {ABC...XYZ}

Full

contractions

Figure 2.3: A matrix element evaluation by the Wick’s theorem
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—= ! T
<’ajaaa?'aj' > = {ajaaaj'aj'} + {ajaaaj'aj'}
= —0ji0aj + 0jj0ai
5ai

Figure 2.4: An example of a matrix element evaluation by the Wick’s theorem

The example of the overlap of two determinants that was shown earlier
(2.57) can be evaluated by the Wick’s theorem very easily (see Fig. 2.4) since
there are only two fully contracted strings, one of which gives immediately
7ero.

2.3.3 The Particle—Hole Formalism

Although everything necessary for the second-quantized matrix element eval-
uation has already been introduced, the formalism can further be improved
so that formula manipulations is even more convenient.

In the post-Hartree-Fock methods the wavefunction expansion usually
starts from the reference configuration |®() rater than a true vacuum state.
It means that the operator strings in many matrix elements contain similar
substrings of creation and (annihilation) operators corresponding to the ket
(and bra) configurations, differing from the reference state by only a few
excitations.

By redefining the meaning of the creation and annihilation operators
slightly, those common substrings can be reduced to only a few operators
which describe the difference between the particular ket (or bra) configuration
and the reference state. Such operator elimination leads to much shorter
strings that have to be evaluated and further simplifies the formalism.

Let us first introduce the Fermi vacuum |®g), which represents the ref-
erence configuration (i.e. a vacuum state filled with N electrons in a set of
occupied orbitals)

o) = aja ... ]) (2.58)

So far the creation operators generated an electron by acting on a vac-
uum state. From now on, however, a creator means an operator that either
generates a particle (i.e. an electron in a virtual orbital) or creates a hole
(i.e. annihilates an electron from an occupied orbital). The annihilators are
redefined analogously. They produced zero by acting on the true vacuum
but now the annihilators give zero by acting on the Fermi vacuum. It means
that they either annihilate a particle (i.e. an electron from a virtual orbital)
or annihilate a hole (i.e. create an electron in an occupied orbital). The re-
definition is schematically summarized in Table 2.1 with the usual notation
for hole indices i, j,... (i.e. occupied orbitals), particle indices a,b, ... (i.e.
virtual orbitals) and general orbital indices p, ¢, . ...
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Creates Annihilates

at aq particle
a; a; hole

Table 2.1: Definition of creation and annihilation operators in the particle—
hole formalism

An example of a particle creation

allijk) = |aijk) (2.59)
a hole creation
a;lijk) = |jk) (2.60)
and a hole annihilation
af |jk) = lijk) (2.61)

Similarly, the redefined normal ordered string is such that puts the rede-
fined annihilation operators to the right of all creators. For example

a;aflijk) =0 (2.62)

demonstrates how a redefined normal ordered string gives zero by acting on
the Fermi vacuum.

The same applies to the contraction definition and finally to the Wick’s
theorem too.

The H,, is usually written in a normal ordered form using the particle—
hole formalism. By applying the Wick’s theorem to the Hamiltonian

. 1

H, = Z Pipg Gry g + 1 Z (pql|rs) afafasa, (2.63)
Pq pars

and considering all the cases where the general orbital indices run over par-

ticles and holes separately, one finally gets an interesting result

N 1 A
H, = Z fog{afag} + 1 Z (pql|rs) {a;afasa,} + <<I>0 ’Hel (I>0> (2.64)
pq pqrs
Fy N
fix
or
Hy = H, - <<I>0 )ﬁel q>0> (2.65)

so the normal ordered electronic Hamiltonian Hy can also be considered as
a correlation operator.
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2.4 The Coupled Cluster Method

The origin of the Coupled Cluster method dates back to 1958 where the
principles were first introduced in nuclear physics [26,27]. In 1966 [28] it also
appeared in quantum chemistry as the Coupled Pair Many FElectron Theory
(CPMET) 2 and only in the late 1970s [29,30] the computer implementations
allowed the CC method to be applied also to systems of real chemical interest.
The exponential ansatz (2.47) of the wavefunction has an analogy in the
cluster expansion of the configuration integral in statistical physics and hence
the method got its name.

The coupled cluster correlation energy expression can be obtained from
the Schrodinger equation by using the normal ordered electronic Hamilto-
nian. The Schrodinger equation thus becomes

Hy eT|@g) = (ECC — E"F) 7| (2.66)
—_——
AECC

and by multiplying it from left by the e T operator and projecting by the
Fermi vacuum, the energy yields

AECC = <<I>0 ’e*TPIN eT’ q>0> (2.67)

In a similar way, projecting by excited configurations leads to sets of
equations for the cluster amplitudes. Thus the T} equations read

&

ab
e

and analogically also the equations for higher cluster amplitudes.

e THyel

<1>0> ~0 (2.68)

T5 equations

e~ Ty eT) <1>0> —0 (2.69)

2.4.1 The Connected Cluster Expansion

The reason why the energy expression (2.67) and the equations for the cluster
amplitudes (2.68) and (2.69) are derived in the presented way is that not
only the amplitude equations are uncoupled from the energy, but also that
the similarity transformed Hamiltonian can conveniently be expanded by the
Baker-Campbell-Hausdorff formula (BCH) and naturally truncated.

The BCH expansion reads

2an equivalent of the CCD method in the modern terminology

26



e’TFIN eT = ﬁN + [I:IN,T}
o [ 7] 1]
o[ 7] 7.7
1
+E . (2.70)
By application of the Wick’s theorem and evaluating the commutators it can

be shown that this expansion is truncated after the fourth nested commutator
and results in the following form

o 1 1
e "Hyel = (HN + HNT + 2']’INTQ + = a0

- <IfIN eT)C (2.71)

where the symbol C' stands for connected terms only. The connected term
means that there must be at least one contraction line between the ﬁN and
each of the cluster operators to the right of it, otherwise the commutators
would produce zero. And because there are at most four operators in the
Hamiltonian (in its two-electron part), there can be at most four contraction
lines leading from it and thus the expansion naturally truncates after the
ﬁNT4 term.

The total cluster operator T is usually truncated to a certain level of
excitation. For instance the mostly used CCSD approximation involves only
the single and double excitation cluster operators (T = Ty + Ty), while the
CCSDT method includes also the triples (T3) in addition.

Nevertheless, after substituting (2.71) into (2.67) and evaluating, the final
coupled cluster energy expression becomes

1
—H\T? + —H, T4)
I 4! o

o, 1 y ab 1L y a
AEC =3 ftt + 1 > (ij || ab) 2h + 5 > " (ij||ab) tith (2.72)
i ij ij

which depends only on the T) and Ty amplitudes regardless the level of trun-
cation of the total cluster operator 7. The contribution of higher excitations
to the coupled cluster energy is thus only indirect via the equations in which
the Tl and Tg amplitudes are determined.

Analogically also the amplitude equations (2.68) and (2.69) for a given
level of truncation of the cluster operator 7' can be evaluated to final algebraic
formulas by using the connected cluster expansion (2.71) and the Wick’s
theorem. However, the additional string of the bra operators creates so many
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contraction possibilities to consider that even the Wick’s theorem application
becomes too complicated and the diagrammatic technique has to be employed
instead.

2.4.2 Size-Extensivity and Size-Consistency

At this point, the meaning of the two entities should be briefly explained since
size-extensivity underlines the importance of the coupled cluster method
while size-consistency gives rise to multireference theories.

These terms are usually best explained on an example of two noninter-
acting systems like a dimer of two infinitely distant water molecules A and
B and comparing energy additivity for CC and CI methods.

Molecule A has the following CC wavefunction

|ACCY = ¢Ta | ATF) (2.73)
and the CI wavefunction
IACT) — (1 + OA) | AHF) (2.74)

The wavefunctions of the B molecule are analogous. The CC wavefunction
of the noninteracting dimer would be

|ABCC> _ GTA-i-TB |AHF> |BHF>
— GTA |AHF> GTB |BHF>
= |A%) |BO) (2.75)

which directly shows the additivity of CC energy for noninteracting systems

ESS = ESC + E5° (2.76)

where the Hamiltonian is given as

Hap = Hy + Hg (2.77)

By contrast, the CI wavefunction

ABY) = (14 Cx + Ci ) [ATF) [B™) (2.78)

is not factorizable (except for the Full-CI expansion, which is proper from its
nature) and hence the truncated CI method cannot give proper energy of the
supersystem. The CC method is thus said to be size-consistent (regardless
the level of the T' operator truncation) while the truncated CI method is not.

It has been shown how energy of the CC and CI methods scale when a sys-
tem with noninteracting components is studied and such proper scaling was
called size-consistency. A method should, however, provide right scaling of
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the energy regardless the system being investigated. That means not only to
properly describe the noninteracting subsystems, but just any system should
scale appropriately with the number of electrons. This is a mathematical
feature of each particular method and is referred to as size-extensivity.

The truncated CI method is not size-extensive since the formulas from
which the truncated CI coefficients can be obtained are coupled with energy
(which is dependent on the number of electrons) but do not involve higher
excitations that are present in the corresponding (size-extensive) Full-CI for-
mulas and which cancel the incorrect scaling. Therefore an approximate
Davidson correction for the size-extensivity [7,8] has to be applied.

The terms which are not compensated for the scaling error in the trun-
cated CI method come from disconnected terms (diagrams). The CC method,
however, contains only connected terms (diagrams) in the energy expression
for any level of the cluster operator truncation and because the CC amplitude
equations are uncoupled from energy, it is thus guaranteed that the coupled
cluster method is size-extensive.

The term size-consistency has, however, a broader meaning. A size-
consistent method must be size-extensive and must also properly describe
separation (dissociation) into components. This depends on the particular
molecular system. Studying a dissociation of a dimer of Fluorine molecules
by the coupled cluster method would lead to size-consistent results while a
dissociation of a single Fluorine molecule into atoms would not. For these
cases a treatment of multireference methods is needed.

2.5 The Hilbert Space Multireference Coupled
Cluster Methods

In multireference post-Hartree—Fock methods the several reference configu-
rations enable investigation of systems in which the non-dynamic correlation
plays role in qualitatively correct description of the potential energy surface.
This involves cases like dissociation of molecules into fragments or nonequi-
librium geometries (twisted ethylene). But generally other quasi-degenerate
states like a singlet carbene molecule where single-reference methods com-
pletely fail to describe a realistic potential energy surface and often even fail
to converge require the use of multireference methods. Another example of
a necessary multireference treatment are systems with spin that cannot be
described by a single Slater determinant like the 'A state of O, molecule.
Moreover, the multireference description can in effect partially compensate
the size-extensivity error of the truncated single-reference CI method due to
the presence of higher excitations.

There is no unique multireference generalization of the exponential cou-
pled cluster ansatz and thus many various approaches exist, which include
the Hilbert space [31] and Fock space methods [32-35], reduced multirefer-
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ence CC scheme [36-38] or tailored CC [39,40] or even methods employing
only single Fermi vacuum [41-49].

In contrast to the Fock space formalism which defines only one wave
operator acting on several sectors of the Fock space, the Hilbert space mul-
tireference coupled cluster methods expand the wavefunction similarly like
the single-reference method but from several reference configurations so that
each reference determinant has its own cluster operator. Unlike the single-
reference CC, the MRCC energy is then obtained as an eigenvalue of an
effective Hamiltonian. In state-universal methods, all the eigenstates have
physical meaning of the ground and the excited states. In state-specific
methods, by contrast, only one specific state is physical and the other eigen-
solutions are artificial. The main advantage of the state-specific methods
over the state-universal or even the Fock space formalism is their resistance
to intruder states.

In the following, the theory of the Hilbert space multireference coupled
cluster methods that concern this thesis is presented.

2.5.1 The State-Specific Multireference Brillouin—
Wigner Coupled Cluster method (MR BWCC)

The several reference configurations |®,) form a model space P with a pro-
jection operator

P= Z |(I>u><q)u| (2.79)

and its orthogonal complement Q@ =1 — P.
Within the model space a model wavefunction

U7) = 1P, (2.80)

is constructed where the coefficients ¢} are not known a priori. The exact
wavefunction |¥,) is obtained from the model wavefunction by the state-
specific wave operator €,

|T,) = Q|07 (2.81)

and is required to fulfill the intermediate normalization

(U, |07 =1 (2.82)

The wave operator is taken in the form of Jeziorski-Monkhorst ansatz [31]

M
Qo= " 1[D,)(2,] (2.83)
pn=1
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The index p in the cluster operators T'(u1) denotes that the excitations are
done with respect to p-th reference configuration as a Fermi vacuum and
that each reference configuration has its own set of independent amplitudes.
The amplitudes that correspond to mutual excitations between the reference
configurations are by definition set to zero.

The exact energy of the ath state F, is obtained as the ath eigenvalue
of the effective Hamiltonian H°T on the model space

a5 uP) = B, |07 (2.84)

which is a non-Hermitian operator defined as

H = PHQ, P (2.85)

As a state-specific method, only the ath state has physical meaning.
The coupled cluster amplitude equations are obtained by inserting the
wave operator into the generalized Bloch equation [50]

HQoP —nE Q0P — (1 —n)QuHE =0 (2.86)

In this equation, 7 is an arbitrary parameter between zero and one, with n =0
corresponding to the Rayleigh-Schrodinger perturbation theory and n =1 to
the Brillouin—-Wigner theory. The n-scaled term in (2.86), which is charac-
teristic for the Brillouin-Wigner theory, corresponds to unlinked diagrams,
leading to the size-inextensivity of the MR BWCC method. Therefore, a
correction for size-extensivity is necessary. Two corrections were suggested
which can be obtained from the above continuous transition from which,
however, the (1 — n)-scaled coupling terms are omitted. This leads to the
following CC amplitude equations

<q)ﬁ ‘ e

(I>“>C + n <(I>79 ‘f{ef(,u)

_nEoz <(I>19

(I)”>DC

) <1>M> ~ 0 (2.87)

in which the C and DC labels denote the connected and disconnected dia-
grams, respectively. In the a posteriori correction [51], after converging the
equations (2.87) with n = 1, one additional iteration of cluster equations is
performed while setting » = 0. In the iterative correction, however, these
terms are gradually scaled to zero by successive iterations of the cluster equa-
tions and the converged result corresponds to n = 0.

Despite the unpleasant consequence of the Brillouin—Wigner formalism
that the method is not size-extensive a priori, two advantages also arise.
Since the Brillouin—-Wigner resolvent has the true energy in its denominator,
intruder state problems, in which the denominator goes to zero and makes
numerical difficulties, are avoided. This is however not true when the itera-
tive correction is being applied, which often faces to convergence problems.
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The other advantage is that the CC amplitude equations (2.87) of different
reference configurations are coupled only via the energy so the method scales
linearly with the size of the reference space.

The method has been used to study many chemically interesting systems
at CCSD level [52-60]. Later it was also provided with connected triples
contribution to involve more dynamical correlation at an approximate itera-
tive [61], non-iterative [18] and finally full iterative MR BWCCSDT level [62].

2.5.2 The State-Universal Multireference Coupled
Cluster method (SU MRCC)

The Hilbert space MRCC theory is similar to the method above, except that
the wave operator is state-universal and the transition of the Bloch equation
[50] to the Kucharski-Bartlet formulation of the state-universal MRCC [15]
leads to the amplitude equations

<<1>19 ’HeT(“) ®“>c + <<1>19 ’HeT(“) ®“>Dc
—nE, <q>19 ‘GT(M)) (I)u>
~(1-n ¥ {<q>ﬁ‘ef<”> q>y>151§ff}c ~ 0 (2.88)

veEPv#u

which are coupled between different reference configurations.

2.5.3 The State-Specific Multireference Mukherjee
Coupled Cluster method (MR MkCCQC)

In contrast to the Brillouin-Wigner MRCC theory, the derivation of
MR MkCC method starts by the following resolution of identity

1 = T o~Tw
eTW) (P 4 Q) e T

P
- Z W 1) (] e TW 4 T g =T (2.89)

which is inserted from the left to the Schrédinger equation

HQO0|VE) = €8] O7) (2.90)

Subsequent interchange of the summation indices p and v in the first term
yields to
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P -~
Z{Z 'V |@,) Hill e

o v

_|_€T(ﬂ) Q T(u )HeT(;L |(I) > o
8,710 13,) cu} =0 (2.91)
The sufficiency conditions are then applied to resolve the redundancy of the
Jeziorski-Monkhorst ansatz in the state-specific context, requiring that each
puth contribution of the above summation is equal to zero. The equations

for the cluster amplitudes are finally obtained by multiplying the resulting
equation from the left by e 7 and projecting to excited configurations,

which gives
(2 %)

ZH§§3< ’ 1) <>c1>ﬂ> ~ 0 (2.92)

VFE

()He

Uncoupled Approximation to MR MkCC
Mukherjee et al. [63,64] suggested to approximate the cluster operator T(V) in
the coupling term <(I>19 )e*T(“)eT(”)) ‘bu> of (2.92) by T, (1) which is actually

a subset of T(,u) containing only such excitation operators that give nonzero
when acting on |®,). Thus the amplitudes are given by

o o if g -'E occ(v); a--- € virt(v) (2.93)
B 0  otherwise

By further defining a complement cluster operator

T, (n) = T(p) = T, () (2.94)
the coupling term becomes <(I>g }e_T”(“)’ (I)u>-
In the context of the triples, the theory has been recently further inves-
tigated by Demel et al. [65].

2.6 Analytical Gradient of the Hartree—Fock
Energy

Although not directly necessary for derivation of the coupled cluster gradient
formulas, the example of the Hartree-Fock energy derivative helps to intro-

duce the basic principles and terms like skeletons and U matrices which are
commonly used in the analytical gradient theory.

33



Before differentiating the Hartree-Fock electronic energy formula

N/2 N/2

ERHE — 9 Z hi; + Z (3)77) — (i479)] (2.95)

let us first show how derivatives of the LCAO coefficients are usually ex-
pressed. Starting from an expansion of a molecular orbital |i) in the basis of
atomic orbitals by the LCAO coefficients

AO
= |1 Ci (2.96)

and differentiating with respect to a general perturbation y

AO

Z m 80‘“ (2.97)

the RHS of (2.97) is expanded to the MO basis in terms of U matrices

8 |i) &
oy > Im) UX
MO AO

= > 1w Cun U, (2.98)

By comparing the RHS of (2.97) and the right-hand side of (2.98), the ex-
pression for the LCAO coefficient derivatives in terms of the U matrices is
finally obtained and reads

MO
0 C’“ = Cun U, (2.99)

The U matrices can be calculated from the coupled perturbed Hartree—
Fock equations (CPHF), which will be described at the end of this section.
But now that the U matrices have been introduced, the differentiation of the
Hartree—Fock energy expression in MO basis (2.95) can be performed and
formally gives

ERHF occ occ

_ 22 ah“ 0y { ”|JJ %JKJ)} (2.100)

]

where

8 [

= R +22U,’§Lihmi (2.101)
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(mm) — (iiljj)" +QZ X, (miljg) + U, (iilmj)]  (2.102)

where the terms with AO integral derivatives

AO oh
Y = Z TR (2.104)
and
o 0 (1voo)
(igkl)X = %; Tcmcyjcgkcgl (2.105)
oo

are commonly referred to as the skeletons.
After some algebra, the (2.100) however turns out to be independent of
the U matrices and reads

ERHF occ occ occ

_2Zh Z (iilj5)* — (iflig)~ —225% (2.106)

where

AO
Z 0, Lo S;” Cyj (2.107)

is a skeleton term of the overlap matrix.
The gradient formula (2.106) is then expressed in the AO basis by sub-
stituting the skeletons and finally yields

§ ERHF AO AO
0x - QZDW hfiwLZ{?Dngo—Dung}(W\QU)X
bo
AO
—2) W, Sy, (2.108)
},Ll/
where
Dy =Y CuiCl (2.109)
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is the Hartree—Fock one-electron density matrix and

occ

W = CuiCuici (2.110)

is the energy weighted density matrix while using the common notation for
the AO integral derivatives

S
X — Lt
= oy (2.111)
dh
P e
=y (2.112)
(MV|QU)X — 8(/571100) (2_113)

The final U-matrix-free gradient formula (2.108) is in accordance to the
Wigner’s 2n 4+ 1 rule which says that from a wavefunction exact to the nth
order of a perturbation expansion, an energy of the (2n + 1)th order can be
obtained. And thus from the Hartree—Fock wavefunction (zeroth order) the

first energy derivative can be calculated without the need to differentiate the
LCAO coefficients.

2.6.1 Coupled Perturbed Hartree—Fock Equations
(CPHF)

It has been shown that U matrices are not necessary for evaluation of the
Hartree-Fock energy gradient. Nevertheless, it is not the case of higher
derivatives and the U matrices also play an important role in the analytical
gradient theory of the post-HF methods. To obtain them, a set of CPHF
equations [66] has to be solved for each gradient coordinate x.

But before introducing the equations, an important relation for the U ma-
trices should be derived from the orthonormality condition for the molecular
orbitals

(li) = 65
AO
Z<H|Cujcuz‘|’/> = 0y
uv
AO
ZCMjS/J,VCVi = 5ji (2114)
uv

Differentiating (2.114) with respect to x gives
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AO
0 Cm‘ 0 S,W 0 Cuj
2 Iy SiwCui 4 C Iy Cyi+ CuiSuw I
——
Sk

=0 (2.115)

By substituting the U matrices, the derivative of the condition finally be-
comes

UX+S5+U%=0 (2.116)
where
AO
SN =" CiSyCu = S (2.117)
224
From (2.116), for the diagonal elements of the U matrices it then follows
1
Ux = —55% (2.118)

Without showing the derivation (by differentiating the Fock matrix), the
CPHF equations read

virt occ

(g —e) UX =D UX Ajju = B (2.119)
k l
where
Aijw = 4 (ijIkl) — (ik|jl) — (il|jk) (2.120)
BY = F) — ;85— SN {2 (ij|kl) — (ik|j1)} (2.121)
kl
FX=h5+ Y {2(ij|kk)X — (ik|jk)*} (2.122)
k

The (2.119) is actually a set of linear equations for #occ x #virt vari-
ables from which the occ-virt blocks of the U matrices are obtained. The
transposed U matrix elements are then calculated from (2.116) and the di-
agonals from (2.118). The remaining occ-occ and virt-virt blocks are finally
calculated explicitly from (2.119) by using the occ-virt blocks

virt occ
1
U = PO {Bixj—i_ZZU]z(lAij,kl} (2.123)
;oo kool
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2.7 Analytical Gradient of the Coupled Cluster
Energy

The analytical energy derivatives of the single-reference coupled cluster meth-
ods were developed in several groups [67-83|. It was shown that despite being
a non-variational method, the CC amplitude derivatives need not be deter-
mined and only a single, perturbation independent equation must be solved.
Instead of a direct differentiation of the coupled cluster energy formula, which
would inevitably lead to the derivatives of the cluster amplitudes for each
gradient component, it is advantageous to construct and differentiate a La-
grangian which directly results in solving only a set of linear A equations,
which are independent of the perturbation parameter and the resulting A
amplitudes are thus common for all gradient coordinates [10, 84, 85].

The Lagrangian consists of the CC energy expression and the CC ampli-
tude equations as the constraints with the unspecified coefficients A\ called
the A amplitudes

L{ta, M) = (@0 ’ [HNeT}C) D) + ZA@ (o ) [ﬁNeT}C) D) (2.124)

Here the t3 means a CC amplitude in the sense of

T =) tos (2.125)
[
7p|®p) = +|D) (2.126)

where the 7¢ is its corresponding excitation operator (the sign corresponds
to the parity of permutation necessary to bring the string of the excited
determinant to a canonical order).

Minimizing the Lagrangian with respect to A and CC amplitudes leads
to solving the CC amplitude equations

oL
=0 2.127
a )\q;./ ( )
and the A\ equations
oL
— =0 2.128
5t (2.128)

The CC energy gradient formula can then be expressed as a partial derivative
of the Lagrangian and has thus a simple form
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d AECC dcr

dx dx
oL oL Ot 0L 0Alg
Tt Zz—ﬂ v ox
oL
~0x
- (o] o)
+;)\¢/ <<1>’ [ﬁgeﬂc)®0> (2.129)
where
HY = 8;11“ (2.130)

which actually corresponds to the generalized Hellman—Feynman theorem,
since the perturbation parameter y appears explicitly in the Hamiltonian
only.

For algebraic manipulations it is profitable to define the A\g coefficients
in terms of a deexcitation operator A

Ao = <<1>0 ’A’ <1>> (2.131)

where
A= Z)\ ai a, + Z)\zjbaza ap Qg + ... (2.132)
The final gradient formula thus reads

d AECC
dx

_ <q>0‘[ﬁ[§ef]c‘q>o>+ <q>0)[\ [ﬁgef]c‘q)0> (2.133)

2.7.1 The )\ Equation
Starting from its definition equation (2.128) the differentiation gives
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0

A\

<(I>0 ’—%¢6_TﬁN6T (IDQ

S e <<I>’ )—%cpe*TﬂNeT ®,
@/

= 0 (2.134)

)
(@ )e_TFINeT%q> D) +

)

)

Z Ao/ <(I)/ )eijﬂf:[Nejﬂf'q) d
@/

After some manipulations and using the A operator definition (2.131) the
final A equation becomes

(] ) +
5~ ([, |o) (v -
<q>0)[ﬁNeT:c <1>> ~ 0 (2.135)

2.8 Analytical Gradient of the Hilbert Space
MRCC Methods

The analytical gradient of energy of the Hilbert space MRCC methods [2]
is derived analogically to the single-reference CC gradient by using the La-
grangian technique.

For simplicity, let us define a general MRCC amplitude equation as

Qo) =0 (2.136)

where 1 denotes the particular Fermi vacuum from the model space and
¥ represents the bra- configuration corresponding to the Q(u) subspace 3.
The energy can conveniently be expressed as the eigenvalue of the effective
Hamiltonian

v “p

P
E, =) & Hch (2.137)
uv

where the ¢ and ¢ are components of the left and right eigenvectors of the
Her,
The Lagrangian is then given by

3That is the subspace of Q which corresponds to excitations from the pth Fermi vacuum
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P Qu)
L= Z S HI +> > N()Qa(p) (2.138)

The Ag(p) multipliers are are expressed in terms of the A(u) deexcitation
operator specific for each reference configuration

No(p) = (@ |A)| @9) (2.139)

for ¥ € Q(u), while for v € P the internal A amplitudes are defined to be

<% [\(M)’ <1>V> —0 (2.140)

similarly like the internal MRCC amplitudes.
The total derivative of the Lagrangian becomes

dL OL ~OLOE = OLIC

dx T Ox " 2<dmox | Zde oy
i%“) oL aAﬂ()
) Ao ( dx
P Qu)
L Oty()
+ ;gﬁtﬁu (2.141)

The fourth term in the above equation (2.141) vanishes for the converged
MRCC amplitudes since

oL
=9 =0 2.142
Tt~ Q) 2142
and the fifth term vanishes as well, provided the A equations are solved
oL
—— =0 2.143
Dto() (2.143)

If the eigenvectors of the H°T are biorthonormal

P
> e = dag (2.144)

m
the second and third terms of (2.141) give zero and the derivative of the
MRCC energy becomes
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dE, _ dL_oL

dx dy Ox
P QW
= G DR

Heﬂ" )

P
- SaglE e 3
oV

2.8.1 Analytical Gradient of the MR BWCC with the
Iterative Correction of Size-Extensivity

(2.145)

Since the MRCC amplitude equation has the simple uncoupled form after
the iterative correction converges to zero

Qy(1) = (@ [ T )| @, ) =0 (2.146)

the gradient derivation of this MRCC variant is relatively easy.
It is convenient to augment the lambda operator also for internal lambda
amplitudes

()| @) =scz e,
(1) @o(1)) = Xo(p) [0 € Q) (2:147)

By taking into account that for a complete model space,

i = (o, [0,
- <(I>,, =T freT ) (I>M> (2.148)
the A equation thus reads
0 i <<1> ‘A(M)e—ﬂmﬁfeﬂwj o > ~0 (2.149)
dtc(o) p : g '

Expressing the cluster operator T'(1) in analogy to (2.125), the A equation
becomes

Moyre(o)e @ el

) (o

Q> —0 (2.150)
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The second term can be simplified by inserting the resolution of identity
1 = P+ Q(p) after the 7.(p) operator and taking into account that the
O-space projection vanishes for converged ¢t amplitudes, which yields

o

The v = p term can be moved from the sum to the first term, which yields
the final form of the lambda equation

<(I>g Ao) [e‘T(Q)]:IeT(g) - Hgg] ’ CDC>

_Z<q)g

v EP v#£p

P
Ao)e @ FreT@ CDC> - Z <<I>Q

14

f\(e)Tg(@)’ <I>y> HF =0 (2.151)

A(Q)Tc(g))<1>V>HS§ = 0 (2.152)

Since @, is an internal excitation from ®, and 7¢(p) is an excitation opera-
tor with respect to ®,, 7¢(0)|®,) is a semi-internal excitation from ®, and
the second term can be nonzero only if its excitation rank does not exceed
the deexcitation level included in A. Note that the lambda equations for
amplitudes of different reference configurations are uncoupled.

Because of the convenient definition of the A operator in (2.147), the final
gradient formula (2.145) can be written in a compact form

iBa _ 273: e (@, |eTW freeT®| @
dx VTRATY a
1,V

A(M)G*T(u)ﬁxeTA(u)

<I>ﬂ> ~0 (2.153)

The gradient thus consists of independent contributions from each reference
configuration.

2.8.2 Analytical Gradient of the MR BWCC without
Correction of Size-Extensivity

For the uncorrected MR BWCC the situation is a bit more complicated, since
the amplitude equations are now coupled via the total energy E,

®M> _E, <<1>,9

oL (1)

Qy(1) = <<1>19 ’ﬂeT(“)

(I>M> —0 (2.154)
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However, it turns out that this coupling leads to separable expressions
and terms mixing t or A amplitudes of different reference configurations never
arise.

Similarly like in the iteratively corrected variant, the term with the Hﬁg
derivative can be moved to the modified A operator term which leads to the
following A equation

(@,[A(o)freT®

P Qu)
¢<> - ZZM(N)X

0E, 0 ;
[ 4l e (o

By differentiating the energy from (2.137) using the biorthonormal eigenvec-
tors (2.144) and considering that in a complete model space,

-

<q)ﬁ ’em)

cbﬂﬂ — 0(2.155)

L)

q>“> = b, (2.156)

the A\ equation yields

(2
P
—w Y e (@,

A()eT® <1>¢> S (2.157)

XA 0

HeTO| ¢ <>

~E. (2,

where

= i <<1>M ’f\(u)e:ﬁ(“) (I>M> (2.158)

By further redefining the A operator

(@u[A)| @) = (1 - w)Esey [V e P,
(P [A()| o)) = Aog(p) [0 € Q)] (2.159)

the A equation finally becomes

<<I>Q <I><> — B, <c1>g

which couples different reference configurations only via the energy.
The energy gradient reads

A(Q)ﬁef(g) A(g)eT(g)

<I><> ~0 (2.160)
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dx v
P Qw) o
£ A (@ |0 )
m 9
P Qw)

—%EX“ ; Q; Ao(i) <<1>,9 )eT(“)‘ (I>M> (2.161)

The sum in the last term is actually equal to the definition of the factor w
and since the partial energy derivative gives

OEa _ N\~ o i (w)
5= S (e, ’H T\ @,) (2.162)
1%
the final gradient formula yields
dE, _« K () Frxe )
= 3 <% )A(u)H e )®M> (2.163)
o

Again, the gradient sums contributions of different reference configura-
tions with coupling given only by the H% eigenvector coefficients and the
factor w.

2.8.3 Analytical Gradient of the SU MRCC

In contrast to the MR BWCC method, the amplitude equations of the
Kucharski-Bartlett. formulation of the state-universal MRCC are coupled
between different reference configurations

P
D) = (@ |7

v

Qy(1) = <<1>19 ’f]eT(“)

<1>V> HE =0 (2.164)

The A equation thus reads
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o o OHSE
2. g
P Qu) 9 —_
“w
+§£ ﬁ W){atg(g) (@, |17 @, )
u B
. eff T(v)
2 1t (o) <¢ )6 ¢”>
P A O Heff
_Z:@m6ﬂ>¢gaQéﬂ — 0 (2169)

By using the A operator from (2.147) and treating the derivatives of the last
two terms like in the MR BWCC, the A\ equation yields

s )-

A(o)He™@

P Qu)
5030 ncl| (2" ) s
2
+<q>ﬂ’ef<"> ,,>5W<<I>,, 7eT0) >} -0 (2.166)

After introducing an "effective lambda" matrix elements as

Lot — <c1>g A(g)eT® q>“> (2.167)
the final A equation becomes
<(1> A (g)gef(@)

)GT(Q)

zj:[Hﬂc<

eff o T
+L <q>“ (o)

)
|

<I><> ~ 0 (2.168)

The gradient of energy by (2.145) reads
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which can be rewritten using the above definitions of A and LZ% to the final
compact form

D, )
q>“>
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A(p)e®)

®M> (2.169)
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m v
Both the A equation and the gradient formula thus mix CC and A amplitudes
of different reference configurations.

2.9 Perturbative Triples Contribution in the
MR MkCC Method

The perturbative triples correction in MRCC methods was first introduced in
the SUMRCCSD(T) approach [17] and recently also in the MR BWCCSD(T)
method with the a posteriori size-extensivity correction [18]. The first sug-
gested perturbative triples contribution in the multireference Mukherjee cou-
pled cluster theory, denoted here as MR MkCCSD(T,), has been derived in
an analogous way [19]. A brief introduction to these approaches is presented
in the following.

After the MR CCSD amplitude equations are solved, the approximate Ty
amplitudes are calculated from

g2t () <(q)u>%b;§ Vn(p) T2(/~L)‘q)u> o >oin [<(<I>H)g]b]§ jvz(y))q%> Hﬁﬂc
v ILL - aoc
' Dzybk (lu)
(2.171)
for the SU MRCC method or from an uncoupled equation
e () <(¢>u)$f,§ V() T}(M)’q)ﬂ>0 .
gk A = abc .
' D)

for the MR BWCC method, in which the T, amplitudes were already provided
with the a posteriori size-extensivity correction. The effect of non-diagonal
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Fock matrix elements is neglected so that the Ty equation does not require
an iterative solution.

The perturbative triples correction enters the effective Hamiltonian where
its diagonal elements are analogous to the single-reference CCSD(T) energy
correction

Hif(T) = Hi (COSD) + EX (1) + EGH () + ESh (1) (2.173)
where the fourth and fifth order terms are given by
B () = 3 (@5 [V o) | @), 15 (0) (2174)
e
EENp) = () t2 (1) (2.175)
1 a aoc
Egp(w) = 7 frelw) 15 ()55 (1) (2.176)
i
where
1 N aoc
si(u) =7 D (bell k) tiiu) (2.177)
jk

be

Due to the lack of the coupling terms in (2.172), the E%} term in the
MR BWCCSD(T) method becomes symmetric and resembles the single-
reference CCSD(T)

4 1 aoc aoc aoc

B () = 55 Dt () D () ¢35 0) (2.178)
e

The off-diagonal elements of the effective Hamiltonian are computed at

the COSDT-1 level with linear 7: 3 contribution to both Tl and TQ equations

. CCSDT-1
HI(T) = (@, |Hy(n) 0| @,)

= (@, |Hx() (T2 + Ty @) (2179)

The MR CCSD(T) energy is finally obtained by diagonalization of the
(T)-corrected effective Hamiltonian.

In the MR MkCCSD(T,) approximation, the coupling terms of the Ty
equation, which mix the ¢{% (1) and t{/; () amplitudes, are neglected so that
the equation actually becomes identical to (2.172) and thus does not re-

quire an iterative solution. The E%q () term is also symmetric like in the
MR BWCCSD(T). However an intruder state problem can come up if the
denominator of the (2.172) equation approaches zero.
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2.9.1 MR MkCCSD(T;) Method

Later, a quite different derivation appeared [20], denoted here as
MR MkCCSD(T;), which does not suffer from intruder states. It is based
on a perturbative analysis of the MR MkCC Lagrangian [20,86,87| and rep-
resents a multireference generalization of the A-CCSD(T) method [88-91].
In contrast to the MR CCSD(T) approaches described above in which the
(T)-correction entered the effective Hamiltonian before diagonalization, the
perturbative triples correction to the energy is here calculated explicitly.
Thus instead of the “perturb then diagonalize", the “diagonalize then per-
turb" scheme is used.
The triples equation contains the linear coupling terms

(s

T W)

(I)“>1inear - t%blg(y//‘) - t%big(ﬂ) (2.180)

where

abe tabe(v) if 4,4,k € occ(u) (Noce(v); a, b, ¢ € virt(u) () virt(v)
tipw/p) =<4 .
J 0 otherwise
(2.181)
The t% (1) terms in the T3 amplitude equation (2.92) are moved to the left-
hand side and after an application of the Hef eigenvalue equation, the final
T35 equation will contain the Brillouin-Wigner type denominator, yielding

(@)%

’ a P abc eff ¢
V() Tol)| @)+ X0, 606 v/ ) HES

= - (2.182)
Dijbk(u) + (Eo — Hﬁﬁ)

ik (n) =

The energy corrections are then calculated explicitly to the energy ob-
tained from the MR MkCCSD effective Hamiltonian. The E%} (1) term is
nonsymmetric because of the couplings. Although this method is resistant
to intruders because of the BW-type denominator in (2.182), the Ts equa-
tions have to be solved iteratively with the complexity O(N°®) due to the
presence of the coupling terms.

2.9.2 MR MkCCSD(T,) Approximation

In order to avoid the need to iteratively solve the Ty equation like in the
MR MkCCSD(T;) method, an approach based on the uncoupled approxima-
tion to MR MkCC has been suggested [3]|, denoted by MR MkCCSD(T,,).

The triples equation thus becomes

~ ~

Vn () T2</J)) (I)u>c - ZZAH <((Du)%b/§ }eTU(M)‘ (I)u> H}‘f%

Dif(n)

(@)%

125 () =

(2.183)
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which does not mix amplitudes of different references and can thus be solved
explicitly. If all the linear T3 terms are moved to the left-hand side, the
equation yields

1
e = = { (@
’ DZ]bk?( ) + Zy;éu Hﬁg o ’

Vi(n) Tz(u)) (I)u>

C

—Z[ (i/ k) P(a/be) 8,5 () 8, 5 (1)

vER

~PUR 0 L 0] i ] (2.184)

m

where the { sign at the sum means that only such terms are included in which
at least one of the orbitals ¢, j, k, a, b or ¢ has different occupation in the uth
and vth reference.

By comparing with equation (2.182) of MR MkCCSD(T;) variant, it is ob-
vious that the appropriate T3 amplitudes can be obtained from (2.184) in just
one step. Moreover, because of the denominator shift, the equation can be
resistant to intruders and has thus an advantage over the MR MkCCSD(T,,)
method. Although the denominator shift is in general different from the one
in equation (2.182), which is a complete BW-type shift, its analysis for the
most common CAS(2,2) reference space [3] showed that the shift in (2.184)
should be sufficient to avoid the intruder state problems.

The method performs the “perturb then diagonalize" scheme with the
asymmetric form of the E%} () term. The “diagonalize then perturb" variant
is also possible, but test calculations showed that the corrected energy values
differ only in the order of 10~ %a.u.
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Chapter 3

Implementation of the Analytical
Gradient

3.1 Pilot Implementation

The pilot implementation of all three described MRCC analytical gradient
variants at the CCSD level has been coded in a program package called TINY,
which is mainly written and maintained by Dr. Jifi Pittner as a reference,
benchmarking and debugging tool used during development of various mul-
tireference coupled cluster models. It features its own modules for integral
and integral derivatives evaluation, SCF, CPHF, integral transformation,
full-CT and MRCC. It is a C++ code widely based on a free ! open-source
C-++ library interface to the BLAS [93] and LAPACK [94] linear algebra
library routines, called LA [95]. That enables convenient coding of various
vector and matrix operations while keeping the high efficiency of the pro-
gram.

The core of the implementation is based on the Knowles-Handy algorithm
[96,97| for action of a Full-CI expanded Hamiltonian on a trial vector without
the need to construct the expanded Hamiltonian explicitly. This is also
used for the Hamiltonian derivative HX and generalized for T'(x) and A(u)
operators which take into account the particular Fermi vacua with respect to
which the amplitudes are defined. This algorithm is used for straightforward
evaluation of various terms in the amplitude or A equations as well as in the
gradient formulae.

The amplitude equation is solved iteratively using a residual vector that
vanishes when the respective coupled cluster equations are converged, simi-
larly as in Ref. [98]. The amplitude update is performed by the formula

<<I>u ‘ﬁ;(#)‘ ‘1)19> Qy (1)

(3.1)
E, — Hﬁg + Dﬂ(ﬂ)

0 () = 19%w) +

the library is distributed under the Gnu General Public License (v3) [92]
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where the first term in the numerator is just a sign factor of a given excita-
tion and Dy(u) is the standard CC denominator used in the single-reference
amplitude equation updates, which consists of the diagonal elements of the
Fock matrix with respect to the Fermi vacuum |®,,).

Since Qy(u) vanishes at convergence, the choice of the denominator is
in principle arbitrary and influences only the convergence rate. A dynamic
denominator shift is thus implemented, ensuring that the denominator never
approaches zero.

The A equation is first conjugated so that it has similar structure like
the MRCC amplitude equation and then is solved analogously. Only the
denominator is set to Dy(u) + C' where the constant C' is set so that all
denominators are in absolute value greater than one.

The effect of molecular orbital relaxation in response to the perturbation
is involved in terms of the U matrices in the integral transformation formulas

Ohiy Ohw
ox A ox
AO MO
+ Z Z Py [CﬂmU,ﬁiCyj + CmCumU;ij} (3.2)
uryo m

0 (ij|kl & 0 (uv
9 (ilkl) Zcmcyjcgkcal%
v

oo
AO MO

+3 ) (uvfoo)
N
X {CmeéiCVngkCUl + CpiCumUzingkCal
+Cm‘CVj CQmUékCOI + Cm CVj Cgkcam Ui‘u (3-3)

which thus requires to solve the CPHF equations for each gradient compo-
nent.

3.2 Testing of the Analytical Gradient Imple-
mentation
Testing of the implemented analytical gradients was performed on methylene

CH, and silylene SiH,; molecules in the 'A; state. These systems have al-
most single-reference character in their equilibrium geometry, which has the
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bond angle about 100° in the Cy, symmetry, but by opening the bond angle
the multireference description increases up to two equally weighted reference
configurations

[@0) = (core) (a1)” (b1)” (a1)* (b2)" (3-4)
[@1) = (core) (a1)” (b1)* (a1)" (b2)? (3:5)

when the molecules become linear. The possible monoexcited configurations
within the two active orbitals do not contribute due to the Cy, symmetry.
First, the energy and its analytical gradient of the CHy; molecule were
calculated for different values of the bond angle, ranging from 100° to 179°
describing thus the transition from an almost single-reference to the exactly
two-reference system, while keeping a fixed bond length. The molecule was
positioned in such a way (see Figure 3.1) that the gradient consisted only
of three non-zero non-equivalent components C,, H, and H,. Two basis

A
PG,

Figure 3.1: Position of the CHy molecule in the coordinate system and its
three non-zero non-equivalent gradient components

sets were employed, the 6-31G and the frozen core 6-31G*. Figure 3.2
shows the energy and analytical gradient dependence on the bond angle for
a fixed bond length 1.11 A in the 6-31G basis for the iteratively corrected
BWCCSD method. The other two methods do not differ neither in energy
nor its gradient from the iteratively corrected BWCC results by more than
1073 hartree (hartree/bohr) and provide pictures indistinguishable from one
another in the same scale.

At each point, a numerical gradient was also calculated by finite energy
differences with the numerical step set to 10~* bohr. At every displaced ge-
ometry the Hartree-Fock orbitals were first reoptimized before the MRCC
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Figure 3.2: Tteratively corrected 2R BWCCSD energy and gradient compo-
nents of CH, as a function of bond angle with fixed C-H bond length 1.11 A
in the 6-31G basis

energy was computed so that the full orbital relaxation was taken into ac-
count. All numerical BWCC gradient calculations were done by the ACES II
program since it has an efficient MR BWCCSD implementation.

The analytical gradient was compared to the numerical differentiation by
an average error A, given by the formula

<8E) _<8E) i 5)
8 Z; analytical 8 i numerical .

where M ranges the non-zero nonequivalent gradient components.

The dependence of the average error A on the bond angle together with
a square of the expansion coefficient of the first reference configuration de-
scribing the varying multireference character are shown in Figure 3.3. The
most accurate gradient was provided by the uncorrected BWCC method that
gave error values below 10~% in the whole range of bond angles. Results from
both basis sets also nicely resembled each other. In contrast, the average
errors of the other two methods varied more significantly, especially the it-
eratively corrected BWCC that reached almost 107% in two points. Values
obtained from the two basis sets also considerably differed in many cases.
Nevertheless, for any method the errors never exceeded 107 and such result
is completely satisfactory.

i=1
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Figure 3.3: Gradient error A of the CH, molecule in a logarithmic scale and
the expansion coefficient of the first reference configuration as a function of
the bond angle with fixed bond lengths 1.11 A, compared for 6-31G and
frozen core 6-31G* basis sets. The expansion coefficient curves in both basis
sets are almost indistinguishable in the scale of this figure and only one is

shown.
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A geometry optimization of the two molecules in two basis sets was then
employed, starting from a shape that was far from the equilibrium geome-
try so as to apply the whole range of the multireference character. All three
methods performed very well and the A amplitudes converged quickly at each
point of the optimization path. Since the pilot implementation didn’t allow
to use larger basis set than 6-31G* with frozen core orbitals on the available
computer resources so that the results were comparable with experiments, a
Full-CI geometry optimization has thus been performed as a reference. The
results for each system together with the Full-CI calculation and a compari-

son with experimental values are summarized in Table 3.1 and Table 3.2.

‘ Method Basis Energy R d ‘

BW Uncorrected 6-31G -38.942637 1.129 103.7
6-31G* fzc -38.996567 1.116 102.0

BW Iter. corr. 6-31G -38.943014 1.128 103.8
6-31G* fzc -38.997243 1.116 102.1

SUMRCC 6-31G -38.942991 1.129 103.7
6-31G* fzc -38.997052 1.116 102.0

Full-CI 6-31G -38.944209 1.130 103.6
6-31G* fzc -38.999103 1.118 101.8

Experiment [99] 1.107 £ 0.002 102.4 £ 0.4

Table 3.1: 'A; CH, optimal energy and geometry obtained from all three
MRCC methods in 6-31G and 6-31G* frozen core basis sets compared to
the Full-CI and an experiment. Energy is in atomic units, bond length in A
and bond angle in degrees.

All the methods proved to give results very close to the Full-CI values,
differing by the order of 1073 A and 0.1°. The largest difference from the
Full-CT geometries represents the SiH, bond angle, which was overestimated
by 0.4° by the SU MRCCSD method using the smaller basis set. In the larger
basis, the iteratively corrected MR BWCCSD underestimated the Si—-H bond
length by 0.003 A and overestimated the bond angle of both molecules by
0.3°.

3.3 Efficient Implementation of the Analytical
Gradient of the MR BWCCSD with the It-
erative Correction of Size—-Extensivity

For the efficient analytical gradient implementation of the MR BWCCSD
method with the iterative correction of size-extensivity, it was intended to
make use of the efficient analytical gradient code of the single-reference CCSD
method, which is available in the ACES II program package. The single-
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‘ Method Basis Energy R d
BW Uncorrected 6-31G fzc  -290.034835 1.575 92.8
6-31G* fzc  -290.092095 1.530 92.5
BW Tter. corr. 6-31G fzc  -290.034932 1.575 92.8
6-31G* fzc  -290.092553 1.529 92.6
SUMRCC 6-31G fzc  -290.035033 1.576 93.1
6-31G* fzc  -290.092417 1.530 92.5
Full-CI 6-31G fzc  -290.035669 1.576 92.7
6-31G* fzc  -290.094287 1.532 92.3
Experiment [100] 1.51402 91.9830
Experiment [101] 1.5141  92.0
Experiment [102] 1.516 92.08

Table 3.2: 'A; SiH, optimal energy and geometry obtained from all three
MRCC methods in 6-31G frozen core and 6-31G* frozen core basis sets
compared to the Full-CI and an experiment. Energy is in atomic units, bond

length in A and bond angle in degrees.

reference formalism was developed by Salter et al. [71] using the normal
ordered operators which leads to the formulas (2.135) for the A equation and
(2.133) for the gradient.

The multireference A\ equation and gradient were thus derived in a similar
way, resulting in formulas that look a little different from those used in the

pilot implementation. The MR A equation thus yields

and the MR gradient becomes

+
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in which the redefined A operator (2.147) was used involving also the in-
ternal A amplitudes. The formulas are very close to their single-reference
analogs. In the A\ equation, the third term is just scaled by the expan-
sion coefficients of the particular reference in the model wavefunction and
the additional fourth term actually vanishes for references mutually at most
biexcited, which is always valid in the MR, BWCCSD implementation avail-
able in the ACES II program. Note also that the A equations of different
references remain uncoupled. The multireference gradient formula is a sum
of independent contributions from each reference configuration, which differ
from the single-reference gradient formula only by the scaling factor at the
first term.

The efficient single-reference gradient implementation has been described
by Gauss et al. [72]. They gather all terms with derivatives of the Fock
matrix elements and remaining terms with derivatives of the two-electron
integrals, which results in the formula

8f pq rs
Z qu - + Z pqrs || > (39)
pq

pgars

where the D,, and I',,s are the one and two-particle relaxed density matri-
ces. The derivatives can be divided in skeletons and terms containing the U
matrices

Zqu D+ 3" Tpars (pa || 75)* —2prqU;<q (3.10)

pgrs

where the skeleton part of the Fock matrix is defined as
(X) =hy, + Z pm || gm)* (3.11)

The U matrices are then eliminated by the Z-vector technique using the
fact that the single-reference CC energy is invariant with respect to rota-
tions among occupied (or virtual) orbitals. The efficient single-reference CC
gradient formula thus finally becomes

=Y " Dpf) + > Tpars (pal| rs)* + Z LS, (3.12)
Ppq

pgrs

which consists only of the relaxed density matrices, the skeleton terms and
the I intermediate and does not require the solution of the CPHF equations
for each gradient component.

In the multireference case, such U matrix elimination cannot be per-
formed in a general way, but the MR variants of the (3.9) and (3.10) formulas
are always valid and can thus be used. Since the MR gradient formula (3.8)
just sums contributions from each reference configuration, the MR relaxed
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density matrices can be computed as a sum of relaxed density matrices of a
particular reference that is calculated by a modified single-reference code.

The suggested multireference implementation that is based on the single-
reference CCSD analytical gradient code in the ACES II program package
but which needs to solve the CPHF equations to account for the orbital
response thus requires the following principal steps:

e provide the appropriate storage for the A\ amplitudes, density matrices
and other variables which correspond to a particular reference configu-
ration and introduce loops over all references in the reference-dependent
parts of the code (solving the A equation, formation of the density ma-
trices, ...)

e setting the internal A\ amplitudes and identifying the terms in the A
equation which have to be scaled

e identify and scale the terms corresponding to the first term in (3.8)

e calculate also the D;, blocks of the one-particle density matrix since
the single-reference code presumes the use of the Hartree—Fock orbitals
for which the f;, elements are zero, which is however not the case in
the multireference generalization

e gather the total D and I" relaxed density matrices
e form the I’ intermediate and solve the U matrices

e evaluate the gradient (3.10) by the modified single-reference code for
(3.12)

While it was relatively easy to generalize the single-reference code for
the multireference calculation and to identify all the terms that had to be
modified in the )\ equations and the relaxed density matrices, an enormous
effort was put in an attempt to finish the gradient evaluation in the ACES 1T
package. For efficiency reasons, all the intermediates calculated by the pro-
gram scale elements corresponding to a particular occupied or virtual orbital
index combination by various factors or add another terms. Such efficiency
improvements have been very poorly documented and often had to be de-
coded element by element. A special program had to be designed, based on
the code of the pilot gradient implementation, which calculated the unmod-
ified form of such terms so that the values could be compared. Because of
such difficulties, it was finally suggested to export the full form of the cal-
culated total D and I'" matrices to an external code, which solves the CPHF
equations and evaluates the MO integral derivatives and finally to calculate
the gradient by
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pq || rs)
Z qu pq + Z pqrs (313)

pqrs

which is a variant of (3.9), but instead of the Fock matrix derivatives uses
derivatives of the one-electron operator h matrix elements. This required a
minor modification of the total I' matrix, but was easier to implement.

The analytical gradient implemented in this way was first tested on the
CH, molecule by comparing with values obtained from the pilot implemen-
tation. The largest difference was below 10~®hartree/bohr which is a com-
pletely satisfactory result.

A geometry optimization of the two benchmark molecules CH, and SiH,
was also performed with results summarized in Table 3.3. The CHj results in
the 6-31G basis which was used also in the testing of the pilot implementation
agree with the result obtained earlier (Table 3.1). The other calculations
however employed larger basis sets.

‘ System Basis Energy R P
CH, 6-31G -38.943015  1.128 103.8
cc-pVDZ -39.025637 1.124 101.1
Experiment [99] 1.107 £+ 0.002 102.4 + 0.4
SiH, 6-31G -290.038273 1.575 92.8
6-311G -290.180587 1.563 93.4
Experiment [100] 1.51402 91.9830

Table 3.3: A geometry optimization of the 'A; state of the CH, and
SiHy molecules by the efficient analytical gradient implementation of the
MR BWCCSD method with the iterative correction of size-extensivity. En-
ergy is in atomic units, bond length in A and bond angle in degrees.

To roughly illustrate the gradient evaluation time improvement gained
by the ACES II implementation over the pilot implementation, the Table 3.4
presents average real times of calculation of the CH, gradient on an AMD
Opteron CPU at 2.8GHz with 16 GB RAM for the various basis set sizes
used. Only the 6-31G basis was used in both implementations, since the
ACES II code cannot calculate the gradient using frozen orbitals and larger
basis sets lead to insufficient memory for the pilot implementation. At the
6-31G basis, the real time of calculation reduced almost by the factor 103.
The analytical gradient computed by the ACES II implementation was also
always faster than the numerical gradient evaluation, although the gain did
not exceed the factor 2 for this molecule. The ACES II implementation can
thus be considered as efficient.

Although the calculations of the benchmark molecules performed very
well, application of the implemented gradient to optimization of larger molec-
ular systems like NyOy or a Cyclobutadiene (C4Hy4) turned out to be prob-
lematic since in many points the multireference \ equations failed to converge
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| Basis # MOs TINY ACESII |

6-31G 13 5930 8
6-31G* fzc 18 10800

cc-pVDZ 25 44
6-311G** 31 105

Table 3.4: Average real computer time of a CHy analytical gradient evalu-
ation calculated by either the program TINY (pilot implementation) or by
the ACES II implementation in various basis sets. The calculations were
performed on an AMD Opteron CPU at 2.8 GHz / 16 GB RAM. The time
is in seconds.

and thus the optimization procedure did not finish. This could be explained
by the fact that the iterative size-extensivity correction of the method rein-
troduces the intruder state problem.

Since an analytical gradient of the MR MkCCSD method has recently
been implemented by Prochnow et al., which is a superior method to the
iteratively corrected MR BWCC variant and because of the convergence dif-
ficulties of the A equations experienced in calculations of larger molecules,
it was suggested that the more efficient orbital response contribution to the
gradient is not going to be further developed.
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Chapter 4

Application of the

MR MkCCSD(T,) on a
Singlet-Triplet Gap Investigation
of Tetramethyleneethane (TME)

The newly developed MR MkCCSD(T,) method has already been success-
fully tested on the BeH; molecule and proved to provide smooth potential
energy curve that is free of singularities while closely resembling the results
from the more expensive MR MkCCSD(T;) approximation [3]. To test the
method also in a real chemical application, an investigation of the singlet-
triplet separation of the tetramethyleneethane molecule (TME) has been
suggested, because of a multireference character of its singlet state.

Since 1970 that the first EPR spectrum of the system was published [103],
a number of experimental and theoretical studies followed, trying to as-
sign the ground state with either singlet or triplet multiplicity [104-113]. A
gas phase negative ion photoelectron spectroscopy experiment by Clifford et
al. [110] found that the ground state is singlet, being about 2 kcal mol~ more
stable than the triplet state. This was however in contradiction with previ-
ously reported matrix isolation EPR studies. An explanation has been sug-
gested that the matrix could actually fix the molecule at a triplet equilibrium
geometry, at which the singlet energy was above the triplet. Calculations by
spin-restricted open-shell Kohn—Sham (ROKS) and spin-restricted ensemble-
referenced Kohn-Sham (REKS) methods [111] predicted the singlet ground
state at Dyq geometry while the triplet being about 3 kcal mol~! above. Also
the difference dedicated configuration interaction calculations [112] confirmed
the singlet as the ground state for all conformations, although the energy dif-
ference was only 0.29 kcal mol™! at the equilibrium triplet geometry

The structure of the TME molecule (CgHg) is pictured in Figure 4.1.
Each end of the ethylene skeleton forms a plane together with its bonded
methylene groups and the two planes are mutually twisted.
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Figure 4.1: Geometry of the TME molecule is formed by two planes rotated
mutually by a twist angle

4.1 Computational

The potential energy surface has been scanned in the following way. For each
value of the twist angle (from 0° to 90°), a restricted geometry optimization
was performed (keeping the molecular symmetry) using the CASPT2(6,6)
method and the cc-pVDZ basis set for both the singlet and the triplet state
so that also a dynamical electronic correlation was partially involved in the
prediction of the geometries. In these optimized geometries, CASSCF(2,2)
molecular orbitals were employed for further correlation treatment. Calcu-
lations using CASSCF(6,6) orbitals were also performed in some points, but
the results were almost identical. Two basis sets were employed, the spheri-
cal cc-pVDZ and a modified spherical cc-pVTZ basis (denoted as cc-pVTZ’),
from which the d-functions at Hydrogen and f-functions at Carbon atoms
were removed so that the system remained computationally feasible. The six
core orbitals at Carbon atoms and the six highest virtual orbitals were kept
frozen during the following coupled cluster calculations.

The potential energy curves were calculated at the CCSD, CCSD(T) and
in the smaller basis set also at the approximate iterative CCSDT-1 level.
The singlet state employed the two-reference BWCC and MkCC methods.
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All MR BWCC calculations were provided with the a posteriori correction
of size-extensivity. The perturbative triples in the MkCC method used both
the standard “perturb then diagonalize" scheme, MR MkCCSD(T,) and also
the other variant with an explicit energy correction evaluation, denoted as
MR MkCCSD(T,)e. The two variants gave values which differed less than
2x107% a.u. so only the MR MkCCSD(T,,) results are presented. The triplets
were calculated by the standard single-reference CC methods. All the cou-
pled cluster calculations were performed by the ACES II program [1], while
the CASSCF orbitals and CASPT2 geometries were obtained using the MOL-
PRO package [114].

4.2 Results and Discussion

The calculated potential energy curves are illustrated in Figure 4.2, which
compares both the effect of increasing level of CC approximation (in rows)
and the two basis sets used (in columns). The MR BWCC method predicted
the singlet as the ground state in all cases and every point of the calculated
curves. The MR MkCCSD calculations put the singlet curve above the triplet
in both basis sets and only the inclusion of approximate triples in the MkCC
method moved the singlet curve below the triplet. The low energy of the
MR BWCC singlet curves even at the CCSD level can be put down to the
fact that the a posteriori size-extensivity correction tends to overestimate the
correlation energy.

The difference between the singlet and the triplet curves for various lev-
els of approximation and the two basis sets used is shown in Figure 4.3. All
the curves are very similar, with a minimum at about 45°, but differ in the
position on the vertical axis. At the CCSD level, the MR BWCC result lies
between 1 and 4 kcal mol~! being in a good agreement with both the gas
phase experiment and other theoretical predictions. On the other hand, the
MR MkCCSD method gave even a different order of the curves. However, by
inclusion of the perturbative triples, the MR MkCCSD(T,) method provided
very good results between 2 and 6 kcal mol~! in both basis sets, which also
closely resembled each other. The triples inclusion in MR BWCC method
resulted in rather large energy gap between 11 and 14 kcal mol™!, which can
be explained by the overestimated correlation energy due to the a posteriori
size-extensivity correction. It can be concluded that the relatively good result
of the MR BWCCSD calculation could be obtained due to the compensa-
tion of this energy overestimation by the insufficient correlation description
at the CCSD level. The approximate iterative triples in MR MkCCSDT-
1 method gave results very close to the MR MkCCSD(T,) values. At the
curve minimum, the MR MkCCSDT-1 method gave 2.4 kcal mol~! and the
MR MkCCSD(T,) 2.6 kcal mol™! in the cc-pVDZ basis. These results are
thus in a close agreement with the gas phase negative ion photoelectron
spectroscopy experiment [110].
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Figure 4.2: Potential energy curves of TME as a function of the twist angle.
Comparison of the singlet state (2R-BWCC and 2R-MkCC) and the triplet
state (SR-CC) calculations at different levels of CC approximation. Graphs
in the left column were obtained from the cc-pVDZ basis, the right column

corresponds to the cc-pVTZ’ basis.
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4.3 Conclusion

The singlet-triplet energy separation of the tetramethyleneethane molecule
has been studied by the newly developed state-specific multireference
MkCCSD(T,) method, which is based on the uncoupled MR MkCC ap-
proximation. The calculated potential energy curves were smooth and the
results well agreed with an experiment.

By comparison with the MR MkCCSD and MR MkCCSDT-1 approxi-
mations, it was shown that even for obtaining proper qualitative results, the
inclusion of the triples was inevitable. The results calculated from the pertur-
bative triples corrections closely resembled those from the MR MkCCSDT-
1 level of approximation and thus for obtaining quantitative results, the
MR MkCCSD(T,) approximation is sufficient enough.

For comparison, the MR BWCC method with the a posteriori correction
of size-extensivity was also employed, but gave rather poor results at the
CCSD(T) level, which could be explained by its tendency to overestimate
the correlation energy.

The perturbative triples correction in the uncoupled approximation to
the MR MkCC method was able to provide quantitative results. Unlike the
MR MkCCSD(T;) method, the MR MkCCSD(T,) approximation does not
need to solve the Ty equation iteratively and is thus less expensive while
remaining resistant to intruder states.
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Chapter 5

Conclusion

Three Hilbert space multireference coupled cluster methods, the state-specific
MR BWCCSD with the iterative correction of size-extensivity and without
a correction and the state-universal MR, CC method in the formulation by
Kucharski and Bartlett, have been provided with a pilot implementation of
an analytical gradient of energy, which is based on a Full-CI expansion.

The implementation was tested by comparing the analytical gradients
with gradients calculated numerically at various geometries of different mul-
tireference character. At all points, all three gradient variants performed
very well, providing results of sufficient accuracy.

The pilot implementation was then applied to a geometry optimization
of the singlet CHy and SiHy molecules, which have a two-reference character.
The results were compared both to experimental values and Full-CI calcu-
lations. All the methods differed from the Full-CI values by the order of
103 A and 0.1° using double-zeta basis sets and such results are satisfactory
enough. The pilot implementation of the three MRCC analytical gradient
variants has been published [2].

The analytical gradient of the MR BWCCSD method with the iterative
correction of size-extensivity has also been implemented in the ACES IT quan-
tum chemical program package. It makes use of the efficient single-reference
CCSD analytical gradient code since the formulas of this MRCC gradient
variant are very similar. The orbital response contribution to the gradient
however requires solving the CPHF equations for each gradient component.
A more efficient orbital response evaluation like in the single-reference case
cannot be applied to the multireference formalism and further development
is needed. The ACES II program thus calculates the multireference relaxed
density matrices, which are then contracted with MO integral derivatives by
an external code.

This implementation has been successfully tested by comparing with the
pilot implementation and it has also been applied to the CH, and SiH, ge-
ometry optimization. The time of the gradient evaluation reduced almost by
a factor 10° in the 6-31G basis comparing to the pilot implementation. In
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spite of the inefficient orbital response calculation, the implemented gradient
is still faster than the numerical evaluation and the implementation is thus
efficient.

However, applications to larger systems than the benchmark molecules
like N5 Os or cyclobutadiene failed since at most geometries the multireference
A equations did not converge. This could be explained by the fact that the
iterative correction of the MR BWCC method reintroduces the intruder state
problems.

After the pilot implementation has been published, an analytical gradient
of the state-specific multireference Mukherjee coupled cluster method has
been implemented by Prochnow et al. [16], which is however superior to the
iteratively corrected BWCC method. Because of this fact and for the severe
convergence problems of the BWCC ) equations, it has been decided that the
efficient orbital response contribution for the BWCC gradient is not going to
be further developed.

Finally, the newly developed MR MkCCSD(T,) method has been suc-
cessfully tested on the investigation of the singlet-triplet energy separation
of the tetramethyleneethane molecule. The calculated results nicely agreed
with an experiment, suggesting the ground state to be singlet for all values
of the twist angle with 2.6 kcal mol™! as the minimum in the cc-pVDZ basis.

It has been shown that even for the qualitatively correct description, the
inclusion of the triples was inevitable. However, since the MR MkCCSD(T,,)
results closely resembled those from the MR MkCCSDT-1 level of approxi-
mation, the perturbative triples inclusion is sufficient enough.

The tested MR MkCCSD(T,) method, which is based on the uncoupled
approximation to the MR MkCC method, has thus proved to be a less ex-
pensive alternative to the MR MkCCSD(T;) approximation that has to solve
the Ty equations iteratively, yet remains resistant to intruder states. This
part of the thesis has also been published [3].
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