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Abstrakt: V préaci studujeme asymptotické chovani feSeni kvazilinearni
evolu¢ni rovnice uy(t,x) = F(u.(t,z)), — h(u(t,z)), ¢,z > 0 se zadanou
nezapornou pocatecni podminkou a homogenni Dirichletovou okrajovou pod-
minkou. Dokazeme existenci feSeni, které pro velké ¢asy konverguje k pros-
torové lokalizované viné stacionarniho feSeni cestujici do nekonecna.
Nejprve je za predpokladu striktni monotonie F' dokdzana existence, jed-
noznacnost a regularita feSeni. Dale je zpracovana existence ‘ground state
solution’, tj. netrivialniho integrovatelného feSeni prislusného stacionarniho
problému na R; nasleduje rozpracovani teorie koncentrované kompaktnosti.
V zavéru pak dostaneme hlavni vysledek aplikaci teorie nulovych bodu.
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Abstract: We study the large-time behaviour of solutions to a quasilinear
evolutionary equation w,(t,z) = F(u,(t,z)), — h(u(t,z)), t,x > 0 endowed
with the non-negative initial datum and homogeneous Dirichlet boundary
conditions. The existence of a solution converging for large times to a spa-
tially localized wave of the stationary solution travelling to infinity is shown.
Under the assumption of strict monotonicity of F', the existence, unique-
ness and regularity of the solution is proved. In the sequel, the existence
of a ‘ground state solution’, i.e. nontrivial integrable solution to the steady
state problem on R, is studied, being followed by the work on the concen-
trated compactness for quasilinear equations and the applications of the zero
number theory.
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1.1

Introduction

Notation

Throughout this work we use the following notation:

(1)

(2)

Cc(92) denotes the space of continuous functions having compact support
in €.

C*(2) denotes the space of functions which derivatives are continuous up
to the order k. If £ = oo, then we understand by this space the intersec-
tion of all C*(€2) for [ being positive integer. In the case of Q) be a closed
set, we say that h € C*(Q) if there exists a function h and an open set
Q) O ) such that h = h[g and h € Ck(Q)

D(2) denotes the space of functions lying in C*°(€2) and having compact
support in €.

C*e(€)) denotes the space of functions on €2 having continous derivatives
up to the order k with the kth derivative being Hélder continuous with
the exponent o € (0,1).

LP(2) denotes the space of Lebesgue measurable functions in €, inte-
grable with the p-th power of the absolute value in €2 for p € [1,00), and
being essentialy bounded in Q for p = oo

WHEP(€Q) denotes the Sobolev space of functions having their (distribu-
tional) derivatives regular up to order k and lying in LP(Q2).

WP(Q) denotes the closure of D(Q) in the topology of W#?((Q).

LP(1;V) denotes the space of Bochner integrable functions defined on
interval [ with values in the Banach space V.

Whpa(1: v, V,) denotes the space of Bochner integrable functions lying
in LP(I:V}) which (distributional) derivatives are from L4(7;V,), and V,
1s imbedded into V5 .

LP(S2, p) denotes the Lebesgue space with the weight p. The norm is
given by [[ullf,0.,) = Jo luPodr for 1 < p < oo, and by |Jullp=(o) =
ess sup{|u(: )|Q( r) :x € Q} for p=oc

WHEP(Q, 0) denotes the Sobolev space of functions having their (distribu-
tional) derivatives regular up to order k£ and lying in LP(2, p).



(12) [Q| denotes the Lebesgue measure of the (measurable) set (2.

(13) (f, ¢) denotes the distributional duality pairing between the distribution
f and the test function ¢.

0 elsewhere).

1.2 Heat Equation and Applications

Consider an infinitely long rod with given distribution of the temperature at
the initial time ¢, = 0; let us investigate the time evolution of the temperature
of t > 0. It turns out, by reasons concerning both experimental observations
and physical models, that we can describe the temperature u of the rod as
a function of one real variable satisfying the equation

Uy — Ugy + h(u) =0 (I-1)

where h corresponds to some additional heat sources in the rod (for details,
see, e.g.. Horak et al. [10]). The equation (I-1) does not appear only in
the study of the heat propagation along a rod; studying, for example, dif-
fusion processes or reaction-diffusion processes, we can obtain the similar
equation (for the case of diffusion process of neutrons with the body, one
can see, e.g.. Drgka et al. [4]). Not only physics is influenced by the heat
equation, it turns out in the theory of stochastic differential equations that
the option’s price at the market is driven by the so called Black Scholes
equation (awarded by the Nobel Prize in Economic Sciences, 1997) which is,
in fact. a heat equation (for details, see, e.g., Dupacova et al. [3]).

So this huge applicability and importance of the heat equation in physics,
economics and, consequently, everday life is a sufficient reason for studying
the qualitative properties of solutions of the heat equations and its general-

1zations.



1.3 Known Results and Generalizations

The question of the large-time behaviour of solutions to the semilinear prob-
lem

ur — Au + h(u) =0 (I-2)

was studied by many authors. Among them, one of the first results were ob-
tained by Zelenyak [17] and Matano [13] who studied the problem on a com-
pact interval in one dimension. They have shown that in case of the interval
0, 1] every bounded solution of (I-2) with the homogenous Dirichlet boundary
conditions converges to a stationary state as { — oc.

In case of a higher space dimension and the spatial domain being a ball
the similar result was obtained by Haraux- Polacik [9]. On the other hand,
also the question of non-convergent bounded solutions’ existence appeared,
and the positive answer was given by Polacik Rybakowski [14].

In case of unbounded domains, the asymptotic behaviour of solutions, more
precisely convergence to stationary states and travelling waves, was studied
for example by Aronson Weinberger [3], Feireisl Petzeltova [7], Fasangova
Feireisl [6] and many others. In the paper by Feireisl Petzeltova 7], the prob-
lem (I-2) is considered on RV, N > 3 and for special types of the nonlinearity
h it is shown that the convergence to the stationary state is a threshold phe-
nomenon. More precisely, for any non-negative, compactly supported initial
datum o € WH3(R,), @ # 0, there exists a number e > 0 such that if
u is a solution of (I-2) with «(0) = «u, then for 0 < o < a¢ the solu-
tion converges to zero in W2(RY) N C#(RY), for & > a¢ it converges to
infinity in WH2(RY), and for ¢ = «¢ the convergence to the solution of
the corresponding stationary problem for large times occurs. The result is
obtained by combination of the method of concentrated compactness by Li-
ons [12], results concerning uniqueness of solutions to the stationary problem
in RV, and discretetness of the w-limit set of solutions. On the other hand,
in the paper by FaSangova Feireisl [6] it is shown that in case of the prob-
lem (I-2) considered on the real half-line R, , for any non-negative initial
datum @ € W,*(R,), @ # 0 one can obtain similar conclusions to that by
Feireisl Petzeltova |7] for case of the Neumann boundary conditions, whereas
in case of homogeneous Dirichlet boundary conditions it turns out that there
exists a set of ‘critical” solutions converging to the travelling wave of solu-
tion to the stationary problem, moving to infinity for large times. The main
tools are the concentrated compactness theory for semilinear equations by
Lions [12] and the zero number theory by Angenent [2].

In this work, we deal with further generalizations of the result obtained
by Fagangova Feireisl [6]. More precisely, we are concerned with the study
of the large-time behaviour of solutions to a quasilinear parabolic equation



considered on a half-line R, .

u(t,z) — (F(ug(t,x))), + hlu(t,z)) =0, (t,z) € R, xR, (1.1)

supplemented by a non-negative initial datum

u(0,z) = up(x),z € Ry (1.2)
and homogeneous Dirichlet boundary conditions
u(t,0) =0, limu(t,z) =0, ¢>0, (1.3)

We claim the following result

Theorem 1.1 (Main result). Let F' € C*(R) and h € C' (R ). Moreover,
assume that there exists > 0 such that

0<pu<F'(w) for any w € R;
h'(0) > 0 and, under notation H(t) = jot h(s)ds,
G =inf{s>0: H(s) <0} >0, h(G)<0.

Then there exists an initial datum uy and a function y : R, — R, with
lim, 5 y(t) = oc such that if u is the corresponding solution of (1.1), (1.2)
and (1.3), then

lim |u(t, ) — wy(- + y(t)) w22,y = 0,

t—oc

where w, is a (unique) solution of the stationary problem

—F(wg), + h{w) = 0,
w(0) = max{w(z):z € R} >0,
lim w(z) = 0.
|z|—oc

The work is structured as follows: First, we show that the problem (1.1),
(1.2) and (1.3) is well-posed, i.e., the solutions are uniquely determined in
a sufficiently large class of functions, for initial datum uy € L*(R, )N L*(R, )
the solution exists, and the solution semigroup is a continuous mapping for
any fixed time ¢ > 0 (these topics correspond to Section 2, Section 3, and
some parts of Section 5). Although the results concerning well-posedness are
generally known to hold, it is not so easy to find them, since their parts are



scattered in the literature. Thus, both for the sake of entirety and complete-
ness of the work and reader’s comfort, we present them here. In Section 4
the existence and uniqueness of a nontrivial integrable solution to the station-
ary problem on R, the so called ground state solution, is studied. In Section 5
we give a proof that the set of initial data which solutions converge to zero
in W22(R,) is open in L*(R), N L>*(R,). Moreover, we present there some
results of Angenent’s Zero point theory in order to obtain existence of solu-
tions which level-sets are intervals for any fixed time ¢ > 0. Further, we deal
with verification that several conclusions of the concentrated compactness
theory by Lions hold also for quasilinear parabolic problems. At last, having
proved all the stuff above, show that the set of initial data which solutions’
W2(R, ) norm converges to infinity is open. Finally, in Section 6 the proof
of Theorem 1.1 is given. The last part of the work, Appendix, contains a brief
list of several theorems and lemmas that we have used throughout this work.

1.4 Admissible Types of Solution

Within investigating the large-time behaviour of a solution to (1.1), (1.2),
and (1.3), we shall require two different kinds of solution’s properties
integrability and regularity. While integrability follows from the notion of
a generalized solution, the regularity will come from the results of classical
theory. Since the problem is posed on an unbounded interval, one cannot
say in general that good classical properties of a solution imply some kind of
integrability properties, and vice versa. However, as we shall see in the sequel,
our solutions will be both regular and integrable.

We shall describe the integrability in terms of a weak solution which defi-
nition we adopt from the presentation of the bounded generalized solution by
Ladyzenskaja et al [11]. We shall say that u is a weak solution to (1.1), (1.2)
and (1.3) on (0,7) x R, if

we LX(0.T):; W (R) nC([0,T); L2 (R, ) 1 L2((0,T) x Ry)

and satisfies the integral identity
. ot d
/ (u(t)n(t)—u(0)n(0)) d:L'+/ / (—un+F(ug)ng+h(u)n) dedt =0 (1.4)
Jr, 0 Jr,

for any 1 € W'22((0,T); W, *(R,), L*(R,)) and 0 < ¢ < T. As we shall see
below, we can omit the condition u € C([0,T]; L*(R.)), since we shall verify
it as a consequence of the remaining ones.

On the other hand, we appreciate also the notion of a solution which
satisfies the equation (1.1) pointwise. This leads us to the following definition.
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We shall say that the function u € C([0,T) x Ry) is a classical solution of
the problem (1.1), (1.2), and (1.3) if its first time and second spatial derivative
are continuous in (0,T) x R, , the equation (1.1) is satisfied pointwise and
so do the initial and boundary conditions (1.2) and (1.3).

Although we have stated here the concept of weak and classical solutions,
it is not completely satisfactory. The reason lies in the regularization efect
of a solution to an equation of a parabolic type. Through the regulatiza-
tion it may occur that even in the case the initial datum is a distribution,
the solution is regular on (0,7) x R, (i.e. with continous first time and
second spatial derivative). That is why, we introduce, moreover, the notion
of a classical solution with generalized initial condition in the following way:
We shall say that the function u € C((0,T) x R, ) is a classical solution with
generalized initial condition uq if the first time and second spatial derivatives
of u are continuous on (0,T) x Ry, (1.1) is satisfied pointwise, the boundary
condition (1.3) is satisfied for any ¢ > 0, and the integral identity

lim/ u(f)nd:l::/ won dx
t—0+ R{+ K_;._

holds for any n € D(R, ).



2 Uniqueness

We shall show that under certain hypotheses imposed on functions £ and
h the weak solutions are determined uniquely by their initial data in quite
a large class of solutions. To do this, we shall assume F' to be continuously
differentiable and such that there exist constants u, 7 > 0 so that

O<p<F(w)<p, weR (2.1)

Note that, without loss of generality, we can assume F'(0) = 0, and, conse-
quently, if v, w € W'2(R, ), then F(v,), F(w,) € L*(R,), and

jlvg — wy? < (Flvy) — F(wy))(vy — wy) < vy — wel?. (2.2)

Moreover, we shall suppose the function A to be continuously differentiable

on R., and
h(0) =0, HK(0)> 0. (2.3)

Theorem 2.1. Let F,h be continuously differentiable functions such that
(2.1) and (2.3) are satisfied.

Then for any ug € L>®(R, )N L*(R,) there exists at most one weak solution
u: (0, T) xR, =R of (1.1), (1.2), (1.8) lying in the class

L*((0,T); Wy *(R.)) N L2((0,T) x Ry).
Moreover, u € C([0,T]; L*(R,)), and, if
wov € L0, T Wi (R ) N L=((0,T) x Ry)

are two solutions of (1.4) with initial data ug, vy € L*(R,) N L¥(R,), then
there exists a constant M depending only on ||ug||reor,y, ||Vollrer,) and
the structural properties of h such that

Ju(t) = vt e,y < €M uls) — v(s)l 2 (2.4)
forall) <s <t <T.

Proof. As the first step, we shall show some preliminary estimates. Suppose
that « belongs to L*((0,T); W, *(R,)) N L=((0,T) x R, ) and is a solution
of (1.4). From essential boundedness of u and continuous differentiability of
h it follows that h is Lipschitz continuous with some constant H on the es-
sential range of u and, consequently, the composed mapping A o u lies in

11



L?((0,T); L*(R,)). The estimate on the norm of u; in the sense of distribu-
tions gives us

[(ue, )| < [1F (ua)l[pzomy<ro 1l n2qom w2y ) +
+H““H1/2((0,T)><R+) H<P||L'2((0,T)><R+)
< Cllelomywiem,y), ¢ €D(0,T) xRy)

with C' = (1 + H)HuH,Jguoj);wol,z(:&). Thus we can conclude that u; belongs

to L*((0,T); W, >*(R,))* which can be identified with L*((0,7); W "%(R.)).
Hence, in view of Proposition A .4,

ue C(0,7); L(R,)).
Suppose now u and v to be two solutions of (1.4), both belonging to
L2((0,7); W2(R, )) 0 L¥((0,T) X R, ).

From essential boundedness of v and v and continuous differentiability of
h we obtain h is Lipschitz continuous with a constant H on the union of
essential ranges of u and v.

Substracting the equations for u and v, taking u — v € L*((0,T); W, *(R.))
for the test function and applying (2.2) yields for 0 < s <t < T

)“12 ryy T HlJu— 1“";,2((5,@;112(:@)) +

/ / (ur) — F(vg))(ug — vg) do dr
Ry

< 5!|U(7) )z, + Hllw = vl rom, )

5! ut) = o) 72k, <

Finally, with the aid of the Gronwall lemma we obtain
Ju(t) = v 2w,y < lluls) = v(s) 2@ e

which completes both parts of the proof. O

12



3 Existence

3.1 Regularity of Weak Solutions

We report the following result (Theorem 1.1 of Chapter 5 by LadyZenskaja
et al. [11])

Proposition 3.1. Let F h be continuously differentiable functions satisfying
hypotheses (2.1) and (2.3). Let

we LX(0,T); Wy (R)) N L=((0,T) x Ry)

be a solution of (1.4) on (0,T) x Ry. Then u is locally Holder continuous in
(0,7) x R, with Holder exponent o > 0 depending only on Ky 1 and

M = ess sup{|u(t,z)|: (t,z) € (0,T) x R, }

Furthermore, the Hdlderian norm of u on any compact Q C (0,T) x R,
depends only on yu, i, M and inf{t : (t,x) € Q}. If, moreover, uy is Hélder
continuous on Ry, then w is globally Hélder continuous on [0,T] x R with
the Hdolderian norm depending only on pi, i, M and the Hélderian norm of
Ug.

3.2 A priori Gradient Estimates

We present a prior estimates on the gradient u, of any regular solution of
(1.1), (1.2), (1.3). This result can be found as Theorem 3.1 in Chapter 5 by
Ladyzenskaja et al. [11].

Proposition 3.2. Assume F', h are continuously differentiable functions
such that (2.1) and (2.3) are satisfied. Furthermore, let u be a classical
solution of (1.1), (1.2) and (1.3), and

M =ess sup{ u(t,z) : (t,z) € (0,T) x R, } < oc.

Then wu, is locally Holder continuous in (0,T) x Ry with Hélder exponent
« > 0 depending only on jui, i and M. Furthermore, the Holderian norm of
u, on any compact Q C (0,T) x R, depends only on i, M and

inf{t: (t,z) € Q}.

If, moreover, (uy), is Hdolder continous on R, then u, is globally Hélder
continous on [0, T x R, with the Hdilderian norm depending only on . ji, M
and the Hdoldertan norm of uy.

13



Remark 3.1. The difference between Propositions 3.1 and 3.2 lies in the fact
that the former holds for any weak solution from L*((0,7); W"?(R,)) N
L>((0,T) x R, ) while the latter requires a priori the solution to be clas-
sical. However, as we shall see below, any weak solution is classical, so
the Proposition 3.2 applies as well.

As a combination of Propositions 3.1 and 3.2 together with Theorem 5.4
of Chapter 5 by Ladyzenskaja et al. [11] we obtain the following result:

Theorem 3.1. Assume F' and h to be continuously differentiable such that
(2.1) and (2.3) are satisfied. Let, moreover, F' be locally Hilder continuous
on R. Let u be a classical solution of (1.1), (1.2) and (1.3) such that

M =ess sup{|u(t,z)|: (t,z) € (0,T) x R, } < oc.

Then ug, uy and ug, are locally Hilder continous in (0, T) xR with the Holder
exponent o > O depending only on p, iz and M.

Furthermore, the Hdilderian norm of u, us, u, and uy, on any compact
Q C (0,T) x R, depends only on p, ji, M and inf{t : (t,z) € Q}.

If, moreover, (ug)z. ts Holder continous on R, then us, uy and ug, are glob-
ally Holder continous on [0, T] % R, with the Hilderian norm depending only
on i, ji, M and the Hélderian norm of (ug )z

3.3 Comparison Principle

Lemma 3.1 (Comparison principle). Let F,h € C'(R) be such that
(2.1) and (2.3) are satisfied. Denote Q = (a,b) for some —oc < a < b < oc.
Let u,v be two (continuous) solutions of (1.1) on (0,T) x Q, belonging to
the space L*((0,T); Wh2(Q)) N L>((0,T) x R,).
If u(t,x) < v(t,z) for (t,z) from the parabolic boundary {0} x QUI0, T] x 65,
then

u(t,x) < v(t,x)

for all (t,xz) € (0,T) x S

Proof. Since u,v € L*((0,7): W'2(Q)), the positive part of the difference
(u—1v), belongs to L*((0,T); W,"*(€2)) and, moreover, ((u—1uv)4), is (u—1),
for u — v > 0, zero otherwise (cf. Ziemer [18|, Corollary 2.1.8). Multiplying
the difference of equations for v and v by (u—v) ., integrating over (0,t) x €,

14



employing the local Lipschitz continuity of A we obtain

100 =0y < = [ [ (Flu) = P (v} deds +

_ /t /(h(u) — h(v))(u — v), dr ds

< H/ 1(uls) = 0(5))- |2 g s

and the Gronwall lemma yields u(t,z) < v(t,z) for all t € (0,T) x Q. O

Remark 3.2. Note that the statement above holds even in the case when
u is a subsolution and v is a supersolution, i.e., uy — F'(uy), + h(u) < 0 and
vy — F(vg), +h(v) > 0.

Remark 3.3. As a consequence of Lemma 3.1 we obtain locally in time
the L>-controllability of bounded-interval solutions arising from bounded
initial data independently of the interval boundedness.

Indeed, suppose u € L*((0,T); W, *(Q)) N L>((0,T) x Q) be a weak solution
of (1.1) on (0,7T) x © with homogeneous Dirichlet boundary condition and
initial datum uy € L>(Q2), where Q C R, is a bounded interval. Specifically,
let there exist constants w, 1y such that

uy < ug(zr) < ug, foraa xel
Denote by u, u the solutions of the ordinary differential equation
wy = —h(w(t)), w(0)=
defined out of the existence intervals by —oc, resp. +oc. Then
u(t) <ul(t,x) <ult), foraa. (t,z)€ (0,7) x Q. (3.1)

As we will see later, the unbounded-interval solution can be obtained as
a limit of bounded-interval solutions, therefore, as the estimate (3.1) is sta-
ble under the limit passage, the L>-controllability of an unbounded-interval
solution also holds.

If we do an additional assumption

h(s) > 0 for any s > s, (3.2)

then for any non-negative L>-bounded inital datum u, we obtain the uniform
L>-boundedness of the corresponding solution (we will get even more, for
details, see Theorem 3.2).



3.4 Integrability of Solutions

In the next part we are going to show the existence of an unbounded-
interval solution of (1.1), (1.2) and (1.3). This solution will be the classical
with generalized initial condition and also the weak one lying in the space
L?((0,T); W, *(R,)). Although we will get even Hélder continuity of deriva-
tives of u, the natural question whether these nice classical properties im-
ply also some kind of better integrability properties, cannot be answered in
the positive way for a general function because the unboundedness of the do-
main plays a significant role, as the example

i 1 1
f(t,z) = o] mex {0 T \ﬂ} , (t,z) € [—1,1] x [0, 00),
shows Thought f(t, z) is even Lipschitz continuous on [—1, 1] x [0, 00), since
= J3 f(t,z)dz = —1Int '((=1,1) x (0,00)), but ¢ is
not bounded at zero and thus f ¢ C([—1,1]; L' (R+))
However, the aim of this part is to prove some kind of integral-norm esti-
mates of bounded-interval solutions independently of the lenght of the inter-
val. Later, this will enable us to do a limit passage with a certain subsequence
of bounded-interval solutions, and, by virtue of the weak lower semicontinu-
ity of the norm, to prove the same boundedness for the unbounded-interval
solution.

Lemma 3.2. Suppose that ' € C*(R) and h € C'(R,) satisfy hypotheses
(2.1), (2.3) and (3.2). Let u™ be a classical solution of (1.1) on (0,T) x Qn
with Qn = (0,N) and 0 < T < oo, endowed with a non-negative initial
datum uy € D(Qy) and homogeneous Dirichlet boundary conditions

u™(t,0) = uN(t, N) =0 for all t € (0,T).

Then, under extension of u™, ul, ul¥ and uY, by zero outside Qy,

u™ € CH((0,T); L* (R ) 0 C((0,T); Wy (R..))
with the norm over any compact tirme-interval [s,t] C (0,T) bounded in terms
of l ol 2z woll ez, 12, p and h.
mevm, the foll0wzng estimates hold
g N ()| H(t-
[N (O 2y < ()2 ™, 0<s<t<T,  (3.3)

where H is a constant depending on h and ||u™(s)|| 10z )-

(“) HT

HU»II-VHW( 0TYEWIE(Ry)) S - uollr2(ry ),
$ / ( y H 0 A +) 2/1

(3.4)
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where H is a constant depending only on ||ug||r~r,y and h.
(iii)
Jul ()| r2ge,y < Cullul (8)||r2e, e, 0<s<t<T, (3.5)

where C| =
and h.

(iv)

and Cy = H% with H depending only on ||u™(s)||rez,)

= =

Ce’?s
HUiV(S)“Lz(RJF) S 17‘|U0’,]‘2(R+), 0 < 8 S T, (36)

where Cy = ﬁ and Cy = H(Z-i-l) and H depends only on ||ul ||, )
and h.

(v) 1
““yxH’lz((&t);’/?(iku)) < CIEGC’”Huonm (3.7)

where C| = ,/f% and Cy = H(

and H/UOHLTX)(R+> .

(vi)

+ 1) with H depending solely on h

==l

gl (D2 e,y < g (8) 2 e™ ), 0<s <t <T, (3.8)
where H depends solely on ||u™ (s)|| =z, ) and h.

Proof. (i) Assume u” to be a classical solution of the problem, as described

above. Then u™, u), u) and ul, are continuous, therefore integrable in

L
the bounded interval Qy. Suppose that u™, u, u and u are extended
to be zero outside Q2y. Multiplying (1.1) on u", integrating by parts in
the space variable, and employing (2.1) and the Lipschitz continuity of A on

the range of u™(t) yields

ey < [ PO b= [ B O
) Sl'\,

On

< H N (1) da
Ry

and, by virtue of the Gronwall lemma, we obtain

[ () |2,y < u () 2@, 0<s<t<T
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(77) Similarly, we estimate the derivative.

K N 2 1 2 H K N 2
| I )y ds < 5 lolran + o [ 16 (6) By
0 Tad K Jo

whence extending u™ by zero on the complement of Qy and employing (3.3)
we can write
N
g [‘1,2((0,T);W<)"2(2R+)) < Clluol|r2r,),s

where C' = i;;? with H depending only on |Jug||;~x,) and the strnctural

properties of h.
(171) Multiplying (1.1) on F(u,(t)), and integrating in the space and time
variable over Qn x (s,t), 0 < s <t < T yields

// u) F(ul), dzdr // (u)? dx dr —
N er
// (u™ )deT
N

Under notation [(x jo y) dy, we can apply the by parts 1ntegrat10n on
the first term. Moreover, b_y v1rtue of the inequality H:r < 2I(x) < uz?, and
Lipschitz continuity of A on the range of u”, we obtain

/ [(uM (1)) dx S/ I(u? dl+H// Ml dr dr
Qx o 2y S—~—

I‘

_<_/ dl+// 2H ] dL(lT
On In M

and, with the aid of the Gronwall inequality, we can write
lug (Ollr2e.y < Crllul(s) | r2, e

where () = :f and (') = HE.
(1v) At thisTStage, we can employ the Chebyshev inequality

{r€(0,5): HUQY(T)H'}Z% > K} < }\“/0 Juy )H%z(:}m do
to obtain the existence of £ € (0, s) such that

Sieqosyrze, )y, 0<s<T.

<
&~
—
Iy
~—
~
~
A
+
IN
w N
<

18



Thus we can use (3.5) to conclude that

o1
Huiy(t)“lﬁ(:m) < (| pCat _~_

\/ZHU’OHL?(RJ}_)J

where O} = #_ and C, = H(® + 1) with a constant H depending only on
/i " :

g 1oz, ) and h.

(v)  On the other hand, estimating the term j fR (F'(uM)*(ul )2 dx dr,
0 <s <t <T, together with the results obtained in the previous parts of
this proof ylelds

"t .
;f// (ul )V dedr < / I((u™(s) dl+H// Yul dr dr
s Jay Ox Qy
§/ T(uY(s))dx +2H" // MY dz dr
Qn QN
ZU-‘its/ I(u

;1 2HE(t-s)
e / ()

< Clffcztg\luo1|'f,2(k+)>

0<t<T,

IN

IN

where C, = \/; and C = (E-H) with H depending solely on ||ugl| 700 (r,)
and the structural properties of h. This estimate means the boundedness of
Uy, in L*((s,T) x Qy) for 0 < s < T in terms of &, p, ||ugl/r=(r,) and
the structural properties of h. B

Recalling back the equation (1.1), we conclude

IN

& H’UmH1,2((3,T);1,2(n;\~>) + HHUHL?((s,T);r,?(nN))

..
< O T, gl poomy) 1ud w2y

Hut”1,2((s,T);I,2(QN))

whence extending u™ and u)" by zero on R, \ Qu, we can conclude

1
||U ln L2((s,THL2(Ry)) S C( VINTNTA ||U0Hi°° (Ry) )!|U0||L2(R+)-

(vi) Now consider two classical solutions u™ and ¢V of the bounded-interval
problem (1.1) on (0,7) x Qy with initial data uy and vy and homogeneous

Dirichlet boundary conditions. Subtraction of the equations for «" and v",
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multiplication the difference on u™ — vV, and integration both in the space
and time variable yields

o 1 . )
/ / (Fl) = Pl o) dedr < [li(s) = 0" (9)aqa,, +
] 9N

+H/ / dexdT
On

< CHU ( )HIZ(Q,\)

where C' = C(1, T, Iz, 1, ||uo| (%)) (we shall agree on having on mind this
identity whenever we write constant C' in this proof). Consequently,

t p
/ / Y — o2 dedr < Ol|u”(s) — v™(s)
§ QN

Setting v’ = u™(n) for n > 0 sufficiently small, dividing the equation by 7
and lettlng 7 to zero one obtains that boundedness of 1w (s)]|72(0y ) implies

boundedness of u in L?((s,t): Wy *(Qy)) for 0 < s < t < T, more precisely

t .
/ ./Q ul ?drdr < CHUZN(S)W?(QN)
$ N

Because of u, € L*((s,T);L*(R,)) for any 0 < s < T, we can apply
the Chebyshev inequality

o 0< s <t<T. (3.9)

s /[ .
7€ (Gos): I () ey 2 KV < [ 100 B
5
to obtain existence of £ € (3, s) such that

g (&) 12z, < \/|ut s mynaea < Clluollreey)-

Thus we have

ot ot
/ Va2 dt < / a2
s £

and the boundedness of u™ in W2((s,t); W, *(R,)) for 0 < s < t < T fol-
lows.
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Now consider the problem (1.1) differentiated with respect to the time vari-
able. Writing v in place of u) we obtain
— F"(uMul v, — F'(u Yo, + B (uN)o =0
v(t,0) =v(t, N)=0,0<t<T (3.10)
v(0,2) = u)(0,2) = F'((ug):) (o) ee — h(uo)
Multiplying (3.10) on ¢ € D((s,T) x Qx) and integrating both in the space

and time variable we obtain, by virtue of the estimates obtained above, the es-
timate on v, in the sense of distributions

(g, 0)| = ) (F"(ug)tugzvsp + F'(ug)veep + h' (w)vp) da dr
N
< / / F'(u, ]vrgol'dxdT—FH/ / |-l dxdr
Ly Oy
< /‘LHU“W"v?((s,t) Wy 2 (Qn) ||90||12 (s.W12(Qy)) T
+H v 25002000 ) |l L2 (05,0012 (00 )
< CHUOHMSMWH1,2<(5,t);w3'2m‘\v))-

This means that v, is a bounded linear form on the space L*((s,t): Wy (Qy))
for any 0 < ¢ < t < T, therefore, it can be identified with an element
belonging to the class L*((s,t); W™ 12(Qy)).

Multiplying the equation in (3.10) on u¥ = v and integrating over (s,t) x Qy
yields

"t

1) B — 108) 2oy = 2 / / F'(uY)o? d d7 —
S N
ot

-2 / B (u™)o? dx dr,
S QN

and thus

lv [%2(R+) dr.

ot
1|’lv’(f)1|i2(:w+.) < H )Hrl ay) T QH/
S
Consequently, by virtue of the Gronwall lemma, it follows
JuM () 22,y < Jul(8)| 2w, 0<s<t<T.

By virtue of boundedness of ujy in L?((s,t); W~"%(Qy)), and boundedness of
uN in W2((s.1); W, % (R,)). we conclude, with the aid of Proposition A .4,
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that uV € C'([s,t]; L*(R,)) N C([s,t]; Wy *(R,)) forany 0 < s < t < T}
therefore,

u € CH((0,T); L*(Ry)) N C((0,T); Wy (Ry)).
U

Remark 3.4. Note that we have proved the lemma above under rather re-
strictive assumption (3.2) that makes the solutions starting from L*-bounded
initial data uniformly bounded with respect to the time variable. However,
if we do not assume (3.2), then the only thing that changes is more signif-
icant dependence of the Lipschitz constant H on the structural properties
of h. More precisely, the solution with a blow-up at finite time may occur.
Thus we have to take into account also the possible explosion of H to infinity.
However, denoting the maximum existence interval of the solution u by T},az,
we can see that the conclusions of the lemma above hold for « when they are
considered over any (fixed) interval (0,7 C (0, Tyaz)-

3.5 Existence of Solutions

In this part, we are going to establish the existence of a solution to (1.1),
(1.2) and (1.3). The idea is to start with a solution u”™ of

ulM(t, ) — (F(ul(t,2)), + h(u™(t, )
u™(0, )

uN(t, )

0, t e (0,7) x QO
ug(z), © € Qy (3.11)
0, (t,2) € (0,T) x Oy

Il

where the initial datum uy € D(Qy) for certain N and Qu is a bounded
interval, say Qnx = (0, N). While letting N to infinity we show the conver-
gence of a certain subsequence of {u™}y to some function u and verify that
it solves (1.1), (1.2) and (1.3). Consequently, we show existence of a solu-
tion for a general initial datum by passing to the limit while approximating
the given initial datum by smooth functions. In the end we show that this
solution is classical with generalized initial condition.

The whole proof can be done in several steps:

Step 1

Suppose suppug € D(Qy) for certain N. By virtue of Remark 3.3 and
Theorem 6.1 of Chapter 5 by Ladyzenskaja et al. [11], the problem (3.11)
posseses a unique classical solution u” defined on some maximal time interval
0, TN ), the length of which can be estimated from below by a (positive)

max

constant depending only on ||ug|[7~,) and the structural properties of h.
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Moreover, employing the notation of Remark 3.3, we recall that
u(t) <u™(t,x) <u(t) forallte[0,T], T <TN .

which means that under the assumption (3.2) we have T = oo and u" is
uniformly bounded on [0, 00) by a constant depending only on the structural
properties of A and ||ug|[=(ny) Whenever u, is non-negative.

Step 2

Extend the function u™, «, « and u) to be zero outside 2y. Since
the initial datum wuy € D(S2y) is sufficiently regular, we obtain, by virtue of
Proposition 3.2 and Theorem 3.1, uniform boundedness of {u™}, {ulN'}, {u?,
and {u} in the space of Holder continuous functions with some exponent
« > 0. By virtue of the Arzeld Ascoli theorem, this yields a subsequence (not
relabeled) converging uniformly over any compact [0,7] x @ C [0,T] x R,.
Denote the limit of u" by wu; since the convergence of all the sequences
mentioned above is locally uniform, the derivatives of u match with the limits
of the derivatives and we can write

o

—ut(t,x) —>F’(uw(t:;))uw(t,1') %h(;?t,a:))

ul(t,z) — F'(ul (1, 2))ul (t, 2) + h(u™(t,2)) = 0.
—_——— RN

So, u satisfies (1.1) pointwise and is the classical solution of (1.1), (1.2) and
(1.3).

At this stage, we have to verify that u is also integrable. Indeed, since
{uN} y is uniformly bounded in L2((0,T): W, *(R,)) by virtue of Lemma 3.2,
and so does {u)Y }y in L?((0,T); W="2(R, )), existence of a subsequence con-
verging weakly in L*((0,T); W,*(R, )) to some function @ follows. Moreover,
Proposition A.4 yields a subsequence of {u™}y (not relabeled) converging in
L*((0,T) x Q) to @ for any compact (Q C R,. Since the convergence in
LP spaces implies convergence almost everywhere, we obtain that u and u
coincide and thus u is both regular and integrable.

Step 3

In the previous step we have shown existence of an unbounded-interval so-
lution to the initial datum u, lying in D(R,). Now, we are interested in
in the existence of solutions to the initial data from a wider class, namely
L(R,) N L¥(R.).

Consider a function ug € L*(R;) N L>*(R,). By the density argument,
there exists a sequence of functions u}’ lying in D(R. ) such that u) converge
to uy in L*(R, ) and ||u) ||~y is bounded. Denote the solutions corre-
sponding to u) by «V. Uniform boundedness of u™ in L2((0,T); W, *(R,))
implies boundedness of u) is L?((0,T);W~"?(R,)) and thus there exists
a subsequence of {u)}n (not relabeled) converging weakly to u,. Observe
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that the estimate (3.9) can be obtained by the same techniques also for
the case of R,. Taking into account also (2.4) we obtain that {u™} is
a Cauchy sequence in L((0,T); Wy *(R,)) and also in C([0, T]; L*(R, )). De-
note the limit by u, then the limit passage writes for ¢ € D([0,7] x R, ) as

follows
T ,
— / / u™ oy do dt +
Jo Jry )

~

—»‘['g' j;R+ upe de dt

T T
+ / uM(T)p(T) dz — / uyp(0) dz +
0 0

A o N o
" ~~

_’/R+ u(T)p(T) dz —>['+uog0(0)dw

/ / Y)r da dt+/ (™) du dt

g

—>]0 .IR+F(UI)1,¢L dx dt _’./o ./R+h(u)<pdwdt

Thus u is a weak solution corresponding to uy € L*(R, )NL>*(R, ). Moreover,
we claim that u is classical with generalized initial condition. Indeed, consider
any £ > 0; by virtue of Remark 3.3 and Theorem 3.1 we obtain that {u"(£)}
is uniformly bounded in the Holderian norm with some exponent ¢, and
so do the first time and second spatial derivative. Employing the Arzela

Ascoli theorem, similarly as it was done in Step 2, yields a subsequence
converging to function u. DBy similar arguments as those used in Step 2,
u and @ coincide, u solves (1.1) pointwise and is locally Hoélder continuous
along with its derivatives u;, u, and u,,.

Step 4

In the previous steps we have infered existence of an unbounded-interval solu-
tion and shown the regularity concerning classical properties such as Hoélder
continuity of the solution and its derivatives. The question is, whether also
some integral-type estimates for bounded-interval solutions in Lemma 3.2
preserve the limit passage. Sure, the estimates concerning norms in reflex-
ive spaces are preserved simply by virtue of the weak lower semicontinuity.
However, we have also infered some estimates concerning norms in spaces
of Bochner integrable functions, where the ‘outer’ space is not reflexive,
e.g., the estimate (3.6) for controllability of |lu(t)“WOl'2(R+) in terms of t,
1/t and ||ug||r2(x,) for 0 < ¢t < oo, which means, in fact, the boundedness
in L((s,1); W, (R,)) for any 0 < s < t < co. A simple argument shows
that the estimates of this type preserve the limit passage too. We shall show
the technique on one example, e.g. the one recalled above, since the others
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can be maintained by the similar procedure.
Consider the sequence of solutions u”¥ converging to u weakly in the space
L?((0,T); Wy *(R,)). By virtue of the Aubin lemma (Proposition A.1), we
obtain that u™ converges to v in L*((0,7) x @) for any compact @ C R,. In
view of the fact that convergence in L? implies pointwise convergence almost
everywhere, and the Fubini theorem, we obtain for almost every ¢t € (0,7)
that the sequence u™(t) converges to u(t) in L*(Q). Take such a t € (0,7T),
then from boundedness in the sense of (3.6) and reflexivity of W, *(R,),
we obtain existence of a subsequence u* converging weakly in WO1 2(R+) to
some function u € VVO1 ’2(R+). The weak lower semicontinuity of the norm
yields the estimate (3.6) is valid for @ too. As u" already converges to u,
functions @ and w must coincide, thus the estimate (3.6) preserves the limit
passage.
Step 5
As we have claimed before, the assumption (3.2) makes the solution with L°-
bounded initial datum to stay L°°-bounded uniformly on the whole existence
interval. We claim even more, if u is a solution starting from uy € L*(R, )N
L>®(R, ), then
lim sup [|u(t) || e r,) < so. (3.12)
t—o0

Note that, without loss of generality, we can assume that h(sg) = 0.

Consider the situation at time ¢ = 1. By virtue of the previous parts,
the function u(t) € Cy(R, ), and thus there exist 0 < a < b < oo such that
u(l,z) < s for z ¢ (a,b). From boundedness of u(1) in L>(R, ) there exists
a smooth function v, such that v; — sy has a compact support in R, and
u(l,z) < vy(z) for any x € R, . Denote by @ the solution of (1.1) satisfying
Dirichlet boundary conditions ©(¢,0) = sy and lim, , 0(t,2) = s, and
initial condition at time ¢ = 1 9(1) = v,. Clearly, the function v is a lifting
by sy of a solution to ©*(t)—F(vk),+h*(v*) = 0 where h*(y) = h(y+sy), thus,
by virtue of previous parts, the function @ — sy lies in C'((1, 00); W, *(R,)).
Moreover, one can observe that the conclusion of Comparison principle in
Lemma 3.1 holds for comparation of ¢ and u, and thus o > won (1,00) x R, .
Non-negativity of h on [sy, oc), together with boundedness of © from below
by sq yields v, — F'(v,), <0, i.e. 0 is a subsolution. Denote by v the solution
of vy — F'(v,), = 0 with the same initial and boundary conditions as those
imposed on ©; then the same procedure as that done on v follows that v —
so € C((1,00); Wy (R, )). Observing the conclusion of Lemma 3.1 holds for
comparing ¢ and v, we obtain that it suffices to show

limsup ||v(t) || o x,) < So-

t— 00
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Multiplying the equation for v on v — sy, integrating by parts in the space
variable, employing (2.1) and using the estimate on the norm of L*(R,) in
terms of the norm of W,*(R, ) we obtain

1d . .
5&‘“”(25) — soll72m,) < —pllve(®) 72,y < —Cllv(t) = soll72k,y, C > 0.

Thus

limsup||v(t) — so||r2r,) = 0.
t—00

By virtue of

1 ) t
5 (1000) = solga,y = 1060 = sllfaey) 2 st [ Ner(Blage, s

we infer that there exists a sequence 7" converging to infinity such that
i7" — 7"t < 2 and

: , M —
Tim (Jog (7") 208,y = 0.

Multiplying the equation for v by F(v,),, integrating it both in the space
and time variable, and using (2.1) we derive

Hvz(t)l|m(:f«+) < C|l“z(5)“w(k+)7

where C' depends solely on p and p. Consequently, we obtain the conver-
gence of ||vg(t)||12(x,) to zero for £ — oo, and thus, due to the imbedding of
WH4(R, ) into L>(R, ), we have that

Tim [[o(8) = so 1=z, = 0.

Collecting together all the steps done above we obtain the following the-
orem.

Theorem 3.2. Let F' € C*(R), h € C'(R) and suppose that (2.1), (2.3)
and (3.2) hold. Furthermore, suppose that

uy € L*(Ry) N L¥(R,), up > 0.
Then the following holds

(i) The problem (1.1), (1.2) and (1.8) possesses a unique weak solution in
the class

u € LQ((O, T); WH’Q(R&-)) N LOC((()>T) X R+>>

for any 0 < T < oo, defined on time interval (0, 00).
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(ii) Moreover, the solution belongs to
C([0,00); LAR:)) N C((0,00): LARL)) VW (s, £): W *(Ry))
for any 0 < s <t < o0.
(iii) The solution is regular on any compact Q C (0,00) x R, more specif-

ically, ug, ugy and ug, are Hdolder continous on @) with the Holderian
norm bounded in terms of

uol|roor,y, and inf{t: (t,z) € Q}.

(iv) If, moreover, ug, o, and gy, are Hilder continuous on R, then uy,
uy and ug, are Holder continuous on [0,T] X R, for any 0 < T < oo
with the corresponding Holder norm depending solely on that of ug and
the structural properties of h.

(v) Furthermore, the following estimates hold

lu@®llremyy < €I uls)llz,), (3.13)
H'“(ﬂ”tV&v%:m) < lefcg(t*s)%HU(S)HWJ»Q(:MV (3.14)
lue®) 2y < Cre®C I u(s)l|2ey)s (3.15)
el < Cre ol (3.16)

where 0 < s <t < oo and Cy and Cy are constants depending only on
f, s uollpee ey, and h.

(vi) limsup,_, o |u(t)||remx,) < so

Remark 3.5. If we do not assume (3.2), then the theorem above applies
as well under a slight modification that the solutions have guaranteed their
existence only on some time interval (0, 7},,,) which (positive) length can be
estimated from below by virtue of Remark 3.3. In this case, all the statements
of the theorem above (except for (vi)) stay valid in the sense that they are
considered only for time intervals (0,7) C [0,7] C [0, T5,4,). If the situation
Trnex < oC occurs, then we have, moreover,

lim  |Ju(t)||peer,) = 0c.

Indeed, suppose the contrary, i.e., there exists a sequence {t,}, t,, < T4, and
limt, = Tia, such that ||u(ty)||rew,) < ¢ < oo. Let A > 0 be an estimate
from below on the length of the existence interval for a solution with inital
datum wg, ||ugl|zee(r,) < ¢. Since t, — Tynee, there exists ¢, such that
Tonar — tn < O8/2, u(t,) € L*(R. )N L>(R, ), so the solution u exists at least
till time ¢,, + A > T,,,, which contradicts the definition of T,,,..
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3.6 Energy

In the study of the asymptotic behaviour of dynamical systems it comes useful
to have a function that characterizes (in some sense) the behaviour of some of
system’s variables and has certain known (or, rather, prescribed) properties.
It turns out that in the case of a dynamical system describing some phys-
ical model with dissipation of energy, the right choice is just the function
corresponding to the energy. This function is non-increasing along any tra-
jectory and expresses the relation between the basic variables characterizing
the system’s state. This observation of relation between the behaviour of
a dynamical system describing a physical model, and the energy leads to
a notion of a Lyapunov function (sometimes called energy) of the system,
i.e. a continuous function which is non-increasing along any trajectory of
the dynamical system.

The right question at this stage is, whether the dynamical system corre-
sponding to (1.1), (1.2) and (1.3) admits such a Lyapunov function, and, if
it has some additional interesting properties. The following lemma answers
to both these questions.

Lemma 3.3. Let F' be twice continuously differentiable and let h be contin-
uously differentiable on R such that (2.1), (2.3) and (3.2) hold.

Then the problem (1.1), (1.2), (1.8) admits a Lyapunov function (energy
functional)

E(v) = /R (I(vy) + H(v))dz, ve W,*(R,), (3.17)

where 1(t) = jUt F(s)dz and H(t) = jot h(s) ds.
Moreover, for any non-negative initial datum uy € L*(R, ) N L>(R,) with u
being the corresponding solution it holds

d .
CEu(0) = = ut) ez, >0 (3.18)

Proof. Since, by virtue of Theorem 3.2, u,(t) € L*((s,t); Wy *(R.)) for any
0 < s <t < oo, wecan consider it as a test function. Multiplying u; on (1.1),
integrating over (s,t) x R, and employing the Fubini theorem together with
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the by parts integration formula yields

t
// wg|? drde = // (g ultdx(l"r*// h(u)us dx dr
S JR+ R+ R+

_ / (Iua(t)) — I(ug(s))) do —

_A (H (u(t)) - H(u(s))) d
= —(E(u(t)) — E(u(s))),

where I(t) = fo = fo s)ds. Accordingly, by |[u|[r2x,) €
L*((s, )) for any () < s < 1‘ < 00, the functlon t — E(u(t)) is absolutely
continuous, hence it is diﬁ'erentiable almost everywhere, and

d

lz‘E( u(t)) = —Hut(t)lﬁ/z(R” fora.a. 0 <t < oc.

However, the continuity of the right-hand side yields continuous differentia-

bility of the mapping
t— E(u(t))

at any point ¢ > 0. O
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4 Ground State Solutions

In this section we study classical solutions of the stationary problem

—F(wg), +h(w) = 0, z€R
w(0) = maxgegw(z) >0 (4.1)
limyg e w(z) = 0.
The (unique) solution to this problem will be called the ground state solution.

As we shall see bellow, the necessary and sufficient condition for the ground
state solution’s existence is the following assumption on h:

Co:=1inf{s >0: H(s) <0} >0, h(¢) <0 (4.2)
where H(s) = [ h(t) dt.

Theorem 4.1. Let F € C*(R) and h € C'(R,) be such that hypotheses
(2.1), (2.3) and (4.2) are satisfied. Then the problem (4.1) admits a unique
classical solution wy. Moreover,

wy(0) = (o (4.3)
wy(z) > 0, zekR (4.4)
wy(z) > 0, <0 (4.5)
wy(z) < 0, >0 (4.6)
w, € W*(R) (4.7)
Furthermore, iof F'is odd, then
we(z) = wy(—x), zelR (4.8)

Proof. Without loss of generality, we can consider that the function A is
extended to be continuously differentiable on R. Multiplying the equation
in (4.1) by w,, integrating from 0 to x and denoting S(t) := jot F'(s)sds we
obtain

S(w,(x)) — S(w(0)) = H(w(z)) — Hw(0)), z€R
S

Because of H(w(0)) = H(() = 0 and S(w,(0)) =
takes the form

(0) = 0, the equation

S(wy(z)) = Hw(z)), z€R (4.9)
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Since S'(z) = F'(x)x is positive for positive arguments and negative for
the negative ones, we obtain the restrictions Sy := Sljg0) and S_ 1= S| _ g
are injective, therefore invertible. Moreover, the estimates

%tz < S(t) < g-tQ, teR (4.10)

imply

ViEs < SYs) < /3s
" 8 s € [0, 00) (4.11)

s <STHs) < — 257

fi

«

(]

Ve
First, let us treat the solution for z > 0. From (4.9) we obtain

we(z) = ST (H (w(z))

and so w
2 =1, Hw)#0;, w,=0, Hw)=0. 4.12
Sy = b A A0 e =0, Hw) (4.12)
As w, = (, and w, = 0 are stationary solutions of (4.12), the proof of

the third statement of (4.1) will be finished if we are able to prove the exis-
tence of a trajectory connecting w; and wsy such that the connection to w,
is realized ‘at infinity’. For this purpose, it suffices to show that ;ﬁm 1S

integrable on the left neighbourhood of ¢y and is not integrable on the right

neighbourhood of 0.
Let x < (, be sufficiently close to ¢, such that h(z) < —s < 0 still holds for
some . Consequently, (4.11) yields

o <\/ Z
SH@) S\ 20H() - H(G)

[ 1
2ev/Cp— T
which is integrable at (.

On the other hand, since A is continuously differentiable and A'(0) > 0, we
can take x > 0 close to 0 such that 0 < h'(x) < ¢ still holds for some £ > 0.

Thus we obtain
9

0< H(z) < -af,

[N RO

and in combination with (4.11) we get similarly to the previous part

1 i
STH@) © V2H@)

1
> _
-

o =
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which is not integrable at zero.

The construction of a solution for z < 0 can be done analogously. What
remains is to prove that the constructed solution is classical, i.e. w € C*(R),
and that it belongs to W#?(R). However, continuity of the second derivative
of w follows from continuity of w, w, and (2.1). To show that w € W??(R),
it suffices to prove w,w, € L*(R); then the integrability of |w|* on R and
continuous differentiability of A yield w,, € L?(R) which ends the proof of
the existence and qualitative part of the statement. Since A'(0) > 0, there
exist £,,6_ and 0 positive such that e_ > h'(z) > e, for 0 < » < 4.
Consequently,

o> H(s) :/ h(t) dt > fter s <6,
2 0 2

By lim;,00 w(z) = 0, we obtain existence of R > 0 such that w(z) < ¢ for
any |z| > R, which yields, with the aid of (4.11),

p <wg(r) < —y/Fuw(), 2>R
- (4.13)

Consequently,

~
&

—
]

and this implies boundedness of w in L?(R), and, due to (4.13), we have also
w, € L*(R).
If we consider, moreover, F' to be odd function, i.e. F(—z) = —F(z), then
the statement (4.8) follows from S_(—z) = S, (z),z > 0.

Assume now that functions u, v satisfy (4.1). First, let us show that

Indeed, if this is not the case, i.e. the function u solving (4.1) has u(0) # (o,
we can distinguish the following cases:

o h(u(0)) > 0: continuity of h implies u,,(z) = F%Zi?;?)) > () for z small
enough, thus the function u is strictly convex on the neighbourhood of
zero which is a contradiction with u(0) = max,ex u(z).
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e h(u(0)) = 0: from continuous differentiability of 4 we obtain, likewise in
the case of the zero stationary solution, that u(t) = u(0) is a stationary
solution which is unattainable by any trajectory of a different solution.
This contradicts u(z) =400 0.

e i (u(0)) < 0: Denote
w=inf{s: H(t) > H(u(0)),t € [s,u(0)]}.

In view of h(u(0)) < 0, it follows that © < u(0). If & = —>0, we
have that the function u is decreasing and converges to —oo, which is
a contradiction. On the other hand, if @w € R, continuity of A implies
h(w) > 0; whence we can distinguish two more situations:

— h(w) = 0: continuous differentiability of A implies, by similar ar-
guments as in the part dealing with the unattainability of the zero
stationary solution, that the function u converges for large = to w

. . o 1 . . .
and, since the function z — OO not integrable on

the right neighbourhood of w, u cannot attain w. If H(u(0)) # 0,
then w # 0 and this is a contradiction. On the other hand, from
H{(u(0)) = 0 we infer, by virtue of u(0) > ¢, and h(w) = 0, that
w > (o > 0 which is a contradiction too.

— h(w) > 0: similarly to the part dealing with the attainability of
the stationary solution (3 we have that the function

1
S™'(H(z) — H(u(0))

T =

is integrable on the right neighbourhood of @ and so u attains w
for some 7. From u,,(z) = r}fgzifz))—) we obtain strict convexity of
u on the neighbourhood of z, and, consequently, u is increasing on
the right neigbourhood of z. Finally, we obtain that u is oscillating

between u(0) and @ and so it cannot satisfy (4.1).

As we have just proved u(0) = ¢, = v(0) for any u, v solutions to (4.1),
the only remaing part is to show that the solutions to the initial value problem

h(u)

(o) (4.14)

Ugpy =

are determined uniquely by u(0) and u,(0). To do this, it suffices to ver-

ify that the function L : (r,s) — ,}7",(8) is locally Lipschitz continuous, and
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to recall on the basic ODE’s theorems on existence and uniqueness of solu-
tions. However, the local Lipschitz continuity of L follows from continuous
differentiability and (2.1). Indeed

oL _ h(s) OL _ h(s)F"(t)

ds  F'(t) 7 ot (F'(1))?

are continuous functions, hence L is locally Lipschitz continuous and the so-
lutions to (4.14) are determined uniquely by their initial data. O

Example 4.1. Consider F'(z) = z, h(z) = z(1—xz), then the straightforward
computation yields (y = g and the ground state is given by

3 .
wy(z) = = (1 — tanh®(

5 573

The graph of the concerned ground state is shown in Figure 1.

Figure 1: Ground state solution for uy — ugz, + u(l —u) =0

Remark 4.1. In Theorem 4.1 we have stated the sufficiency of the as-
sumption (4.2) for the ground state’s existence. Moreover, as it follows
from the proof, this condition is also necessary. If this is not the case, i.e.
h(¢y) > 0, we can restrict ourselves to the case h((y) = 0, as h((y) > 0 con-
tradicts, by continuity of h, the definition of (y. In the case of h((y) = 0 we
obtain existence of a solution u(z) = (y, 2 € R and, by virtue of the unique-
ness of solutions to (4.14), no solution can satisfy (4.1).

34



Lemma 4.1. Let F € C*(R) and h € C'(R,) be such that the hypotheses
(2.1), (2.8) and (4.2) are satisfied.
Then for any € > 0 sufficiently small and the solution w of

—F(wgy)y + h(w) = 0
w(0) = (G +e (4.15)
w,(0) = 0

there exist constants L_ < 0 < L, such that w(L_) =0=w(L,).
Furthermore, if F' is odd, then L = —L,.

Proof. Multiplying the equation with w, and integrating in the space variable
yields, similarly to the first steps in the proof of Theorem 4.1,

Stw, (@) = H(w(z)) - H(G+¢).

Since h((y) < 0, we can choose £ > 0 sufficiently small such that A < 0 on
(Co — &, (o + £]. Consequently, we have Cy 1= —H((y + £) > 0.

Introducing the same definition of S, and S_ as in the proof of Theorem 4.1
we can write

we(z) = ?%waﬂ+%%m>0 (4.16)

“YH(w(x)) + Cy), < 0.

Since this problem admits under the condition w(0) = (y + £ one stationary
solution (which, in fact, does not solve (4.15)) and one solution increasing
on (—oc,0) and decreasing on (0, 00). Because of H(w) + Cy is positive for
w e (=0,(y+¢) with some 6 > 0, the estimates (4.11) estabilish integrability
of w— 1/S,"(H(w)), o € {+,—} on [0,y + £, so the solution must reach
zero at finite z, i.e., there exist constants L_ < 0 < L, such that w(L_) =
0 =w(L,). At last, if F'is odd, the symetry of functions S, and S_ implies
L =-L_. O

Remark 4.2. The assumption (2.1) on F' in Theorem 4.1 and in Lemma 4.1
can be waived in the sense that only existence of u > 0 such that

0<pu<Fllw), weR

is necessary. Indeed, as it follows from the construction of the solution to
(4.1), the derivative of w, can be estimated by virtue of (4.12) and (4.11) in
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the form

we(z)] < \/Q(H('w(l'))—H<w(0)))

"

< \/i sup{H(s) — H(w(0)) : s € [0,w(0)]}.

Thus boundedness of w, and continuous differentiability of F' yields a con-
stant v such that F'is Lipschitz continuous on the range of w, with constant
v and the rest of the procedures in the proof follows.
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5 Stability and Continuity

5.1 Stability of the Zero Solution

In this part we shall prove that the zero solution is stable. The crucial

assumption will be
h'(0) > 0.

First of all, we introduce an auxiliary lemma.

Lemma 5.1. Let ¢ be a nonnegative continuous function on R, such that

olt) < ols) + b /_‘tma) do (5.1)

holds for some b < 0 and any 0 < s <t < 0.
Then
o(t) < p(s)ett= < s <t <o

Proof. First of all, we observe that the function ¢ is non-increasing. Indeed,
since b < 0 and ¢(o) > 0, the integral term in (5.1) is non-positive, and thus
o(t) < (s) forany 0 < s < t < 0.

Moving the term ¢(s) to the left side of (5.1), dividing both sides by ¢ — s,
and letting s — t— yields

¢'(t) < bp(t) for almost all ¢ > 0.

If ¢(ty) = 0, then, by (5.1), it follows that ¢(¢) = 0 for any ¢t > ty, and
so the statement holds. Thus we can restrict ourselves to the case when
©(t) > 0. Dividing by ¢(t) one obtains

— In(p(t)) < b for almost all ¢ > 0;

whence from continuity of ¢ we finally obtain
(1) < ()™ forany 0 < s <t < .
O

Theorem 5.1. Suppose F' € C*(R) and h € C'(R,). Moreover, let the as-

sumptions (2.1) and (2.3) be satisfied.

Then the zero solution is locally asymptotically stable, i.e., there exists U
a L*(R,) N L>®(R, )-neighbourhood of wy = 0 in the set of non-negative

functions such that for any initeal datum w belonging to U the corresponding

solution to (1.1), (1.2) and (1.3) converges to zero in Wy*(R.) as t — oo.
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Proof. From h'(0) > 0, and continuous differentiability of h, there exist e > 0,
and 0 > 0 such that 0 < ¢ < h/(z) for any = € [0,£]. Let u be a solution
to (1.1), (1.2), and (1.3) with the initial datum uy € L*(R,) N L*(R,)
such that ||ug|[r=(r,) < . By virtue of Comparison principle (Remark 3.3),
w(t)||roo(r,y < € for all ¢ > 0. Multiplying (1.1) on F'(u,)., integrating over
(s,7") x R, , and employing the by parts integration formula for the space
variable yields, by virtue of (2.1),

/Ml(uw(T)) g/ //Mh F(ug)ug dz dt
: /; ta <207 [ [ ot

and Lemma 5.1 implies with the aid of (3.14)

I o,
ue(T)|| 2k, < C1HU0‘|LZ(R+)\/§€C”€ “r 0<s<T

where C'}, Cy and Cs are positive and depend only on 7z, 1, h and ||[u|| ooz, )-
Thus, by virtue of the imbedding of W,**(R. ) into L?(R, ) we obtain

(D) [,y < Clluollrege, e, 1 < T < oo (5.2)

whence the solutions starting from sufficiently small initial data converge
to zero in WOI’Z(]RJr), and thus the zero solution is locally asymptotically
stable. O

5.2 Continuous Dependence on the Initial Data

In this part we are going to prove that the solution semigroup of the problem
(1.1) is a continuous mapping for any fixed time ¢ > 0. Note that we have
already shown the continuity of the semigroup in case of a mapping

L*(Ry) N L*(R; ) — L*(Ry)

in Theorem 2.1 under the assumption that the solutions are locally bounded
and exist. However, it is possible to enlarge this result, but before, we have
to state an auxiliary lemma

Lemma 5.2. Let p: R, = R, be a bounded, strictly positive, locally Lips-
chitz continuous function satisfying |o.(x)| < Cyo for some constant C, > 0
and almost every x € R, .

Then the weighted spaces L*(R, , 0) and W, (R, o) are reflexive and sepa-
rable.
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Proof. 'To prove the lemma we have to modify several steps in paragraphs
2.15 and 3.14 by Adams [1].

First of all, we shall show that functions with compact support in R, are
dense in L*(R;,p). Consider a function u € L%(R,,p). For given ¢ > 0
there exists 2 > 0 such that, under notation Ir = (%, R) and I = [%, R,
ull2(r0) > lJullizr, ) — 5. Further, since Iy is a compact set, we have
that there exist A > § > 0 such that A > p(z) > § for any = € Ip.
Thus we have that the norms of L*(Ig, 0) and L?(Ip) are equivalent, and,
by density of continuous functions with compact support in L? spaces, there
exists a function ¢ € C¢(Ig) such that

lu = ellixre < Al = el < o (5.3)

N[ ™

Consider the set of all polynomials with rational coefficients and denote it by
P. This set is countable and, by virtue of the Weierstrass theorem, the set
Pr = {x7,u:u € P} is dense in C:(Ig). Thus, for given ¢ € Cr:(Iy) and
£ > 0 there exists p € P such that

Hp - SOHLQ(’R,Q) < ARH[) - QOHLOO(TH) < 5. (‘34)

DO ™

Combining (5.3) and (5.4) we get
lu—p| <e.

Denoting & = (Jp_, Pr we see that the set S is countable and dense in
L*(R;,0). On the other hand, from boundedness of p we can introduce
a o-finite measure v, v(E) = [, pdx for any E Lebesgue measurable. Thus
the space L?(Ry, p) is reflexive. To show that W,*(R,, o) and W'2(R, , o)
are separable and reflexive, it suffices to consider the following mapping:

Fiue WH(Ry, 0) = (u,uy) € (L*(Ry, 0))? =: LR, 0). (5.5)

Under notation W := [[W"2(R,, )], Wy := I[W,*(R,)], we have that
the sets W and W, are closed subspaces in L3(RR, , o), and the mapping I
is an isometric isomorphism between W'*(R, o) and W, W/OI’Q(RH o) and
W, respectively. Thus, as we show that the spaces W and W, are separable
and reflexive, we obtain the same conclusion for W"?(R,) and W,*(R. ).
However, as L3(R;, o) is separable, and separability in metric spaces pre-
serves for subsets, the sets W and W, are separable. Moreover, W and
W, are both closed and convex, thus weakly closed; weak compactness of
the unit ball in L3(IR,, o) then yields that the unit balls of W and W, are
weakly compact, and so W and W, are reflexive. Here, we have employed
the Banach Bourbaki characterization of reflexivity. O
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At this stage, we can state the desired lemma on continuous dependence
on initial data.

Lemma 5.3. Suppose F' € C*(R) and h € C'(R) satisfy (2.1), (2.3) and
(3.2). Moreover, assume that o : R, — R, is a bounded, locally Lipschitz
continuous function satisfying |o,(x)| < C,o(z) for some constant C, > 0
and almost every x € Ry.. For any t > 0 consider the mapping

O up > ul(t)
where u is a solution of (1.1), (1.2) and (1.3). Then, under notation
P={u:R, - R:u>0},
the following holds
(1) for any t >0, &, is continuous as a mapping
@,: I(R) N L®(R,) N P — L*(R,) N L(R,).
Moreover, for any u, v solutions to (1.1), (1.2) and (1.3) with ini-
tial data ug,vy € L*(R, )N L>®(Ry) N P there exist constants C, and

Cy depending solely on i, 11, ||ugl|zoo vy, |vollLe@r,) and the structural
properties of h such that

Ju(t) —v®)lr2m,y < Cre“lug — vollrez,) (5.6)
. 1 .
HLL(Z‘) — '(/"(t)H]‘x(RJr) S le,’(/?tq—“HU() — Uy }1/122(:}&+) X

Vi

X (luollrer ) + ol 2, )2 (5.7)
(11) for any t >0, ®; is continuous as a mapping
@, : L*(Ry,0) N LRy )N P — L*(R., o).
Moreover, for any u, v solutions to (1.1), (1.2) and (1.3) with initial
data ug,vg € L* (R, 0)NL>®(R, )N P there exists a constant C depend-

ing on ju, [, ||luol|r=ery), |vollre(r,y and the structural properties of h
such that

u(t) = v(t)|r2(r, 0 < e“!uy — vollz2 (ko) (5.8)
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Proof. (i) By virtue of Theorem 2.1, estimate (2.4), we conclude that (5.6)
holds. What remains to do is the verification of (5.7). To do this, we shall
employ the Interpolation inequality in the from

lu(e) = v (@) |1oe < Cllut) = v e, lult) = v(O)]1org -

Accordingly, all we need to do is to estimate the term [|u(t) — v(t)]]w(;,z(&).
Employing the integrability estimate (3.14), we obtain existence of constants
C'y and Cy depending solely on [z, p, [[ug|| 2o (x4 ), ||Vo]|r2(r,) and the strizctural
properties of h such that

IA

Hu(t)HWol’2(R+) + (@) lwr2ry)

1
< thf(”t%(Huollz,‘zcm) + llvollr2(r,))s

lu(t) = v w2,

and (5.7) follows.

(it) First of all, we observe that the mapping ®; is well-defined for initial
data from L*(R,, ) N P for any ¢ > 0. Indeed, undergoing the procedures
of approximating the unbounded-interval solution by bounded-interval ones
we are able to derive similar estimates on norms of the solution in weighted
space L*(R, , o) as in the case of L*(R,).

Considering u" to be a bounded-interval solution of (1.1), (1.2) and (1.3) on
(0,T) x Qn endowed with the initial datum ug € D(Qx) N P we can multiply
the equation on u" p and integrate over (0,7) x {0y to obtain

1 Lo L, wno
I O~ S B = = [ [ Fdlodsdss
QN
// 0. F(uy )u Ndz ds +
Qn
+// h(u™Mu™ odx ds.
0 Jay

By virtue of the Young inequality, the Lipschitz continuity of h on the range
of uV, the Gronwall lemma and the estimate |o,| < C,0, we infer that for
any 0 <s <t < o0

™ ()| 2,0 < 1w (8) 2r, 0 e ",

where C' depends only on s 1, hy |[u(s) ||,y and C,. Similarly, we obtain
also the estimate on u® in L2((0,7T); LZ(R+ 0)) forany 0 < s <t < o0

Jud 2oz, o) < Cullul (8) | r2gr, e,
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where C' and C, are constants depending on 71, u, h, [|u(s)|| 1=, and C,.

Since, by virtue of Lemma 5.2, the space I/VOl ’2(R+ , 0) is reflexive and separa-
ble, L2((0,T); Wy*(R,)) is reflexive and separable too. Employing the sim-
ilar arguments to those used in the proof of Theorem 3.2 we obtain the ex-
istence of a solution in L*((0, T); Wy (R, , 0)) N C([0,T); L3R, , p)) for any
initial datum wuy belonging to D(R; ) N P. Moreover, considering two solu-
tions u and v both lying in L2((0,T); Wy*(R. , 0)) with initial data ug, vy
belonging to L*(R,, 0) N L*(R, )N P, multiplying the difference of equations
for v and v by (u — v)p and integrating over (0,7) x R, we obtain

1 1 .
5““@) —v(®)|[ery, = EHUO — voll72(r ) +

_ /Ot/R(F(u]) — F(vy))(ug — ve)oda ds +
-/ t [ ) = Fle)) o) dids +
+/Ot/];(h(u) — h(v))(u —v)odz ds.

Employing the Young inequality on g,(F(u;) — F(v.))(u — v) together with
0| < C,o a.e., and continuous differentiability of h enables us to write

- ?’Q(RMQ) - “ 07— 0 [‘2(R+7Q)’
[u(t) = v(1)]] < e Juo = woll

with € a constant depending on 71, u, Cy, |[ul|r=w,), [|vollr=(r,), and h.
Similarly, we obtain the estimate on the difference of u, — v, in the space

L*((0,T); Wy (R, 0))
lue = vell ez, o < Cilluls) = v(s)[|rar,,0e™ ",

where €', and C, depend solely on i, p, h, ||u(s)||1=x,) and C,. These esti-
mates enable us to conclude, by arguments similar to those used in the proof
of Theorem 3.2, that the mapping @, is well-defined, continuous as a mapping
with values in L*(R,, p) and, moreover, (5.8) holds. O

Corollary 5.1. Let F € C*(R) and h € C'(R.) be such that hypotheses
(2.1), (2.3) hold. Consider the set

— 7, 2 00 “ug > 0 and
Ay = {uu € L*(R.)NL™(R,) : w(0) =g = [Ju(t)]lwr2(r,) —eoo 0 },

where u denotes the solution of (1.1), (1.2) and (1.3) corresponding to the ini-
tial datum ug. Then Aqy is open in the space of non-negative functions in

the topology of L*(Ry) N L>=(R,).
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Proof. Let uy € Ay; if u is the solution of (1.1), (1.2) and (1.3) corresponding
to ug, then it converges to zero in W, *(R, ), in particular, in L°(R. ): this
vields existence of a time ¢ > 0 such that [|u(t)||;=(k,) < § where § > 0 is
small enough so that A'(z) > 0 for 0 < 2 < 24. In view of the continuous
dependence on initial data (Lemma 5.3), there exists a neighbourhood U
of ug in the topology of L*(R,) N L*(R,) such that for any v, € U, v,
non-negative, the corresponding solution v satisfies |[u(t) — v(t)||p=(k,) < 9.
Thus, by virtue of the local asymptotical stability of the zero solution, we
obtain vy € Ay.

[

5.3 Zero Number Theory

In this part, we recall the results of the Zero number theory by Angenent [2].

Lemma 5.4. Let {u"}, be a sequence of continuous functions converging
locally uniformly to u in Ry. Moreover, assume that for any u" there exists
Y > 0 such that u™ is increasing on [0,v,] and decreasing on [v,, 00). Then
there exists a number 0 > v < oo such that u is non-decreasing on [0,~] and
non-increasing on [y, oc).

Proof. Consider the contrary, i.e., there exist numbers 0 < & < & < & < oo
such that u(y,) > u(y2) and u(y,) < u(7s). Denote

e =min{|u(&) —uw(&) 4,5 =1,2,3,i # j}.

By virtue of the uniform convergence on [€,, &], there exists ny such that for
n > ng |[u" = ul| (e e < 5o If v, belongs to [0,&,], then u"(&) < u™(&)
and thus |[u™(é3) —u(€s)] > 2. On the other hand, [u™ (&) —u(&;3)] < § which
is a contradiction. The case 7, € [£2,00) can be treated analogously. O

Theorem 5.2. Let F € C*(R) and h € C'(R,) satisfy hypotheses (2.1)
and (2.3). Moreover, let ug € L*(R.) N L>®(R,) be non-negative such that
there exists vy > 0 and wgy is non-decreasing on [0,7] and non-increasing
on [vy,00). Then for the corresponding solution u and any time t > 0 there
exists v; such that u(t) is non-decreasing on [0,7] and non-increasing on
[A/tv OO) :

Consequently, for any t > 0 and o > 0 the set

{z>0:u(t,z) > a}

is an (possibly empty) interval.
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Proof. Consider an arbitrary initial datum wuy € L*(R, ) N L>(R, ) satisfying
the assumptions of the theorem. From the density argument there exists
a sequence {ufl}, of non-negative smooth functions such that suppuf =
[0,n], uf satisfy the assumption of uy (more precisely, we can even require
ul (z) > 0 for x < v and ug,(z) < 0 for 2 > 7)), uy converge to ug
in L*(R,) and, moreover, u{ are uniformly bounded in L>(R,). In view
of the techniques of Theorem 3.2, the solutions u™ corresponding to wuj are
locally Holder continuous along with uy and ), and, by virtue of the Arzela
Ascoli theorem, there exists a subsequence converging locally uniformly to u
which is a solution corresponding to the initial datum uy. Consequently, in
view of Lemma, 5.4, it suffices to verify the desired property only for functions
u™.

Consider a smooth function uj with the support [0,7] such that there
exist g € (0,n) so that uf is increasing on [0, y] and decreasing on [y, 00).
Denote by Fs, hs smooth (C*(R), resp. C?(R,)) functions such that

51_i}gl+ | Fs — Fllc2wy, grgg 1hs = hllgr g,y = 0

and 0 < 5 < Fj(w) < 3, w € R hold. Let u® be the solution of modified

problem
up — Fy(ug)ug, + hs(u’) = 0

with initial datum u{ and homogeneous Dirichlet boundary conditions. Tak-
ing § € {>:n € N} we obtain, by virtue of the techniques of Theorem 3.2
and the Arzela Ascoli theorem, that there exists a subsequence (not rela-
beled) such that u’, ul, ul and u®, converge locally uniformly in [0, 7] x R,
0 < T < oo. Denote the limits by u, us, u, and u,,. Then the equation
writes as follows
§ 8y, .6 §

Uy — Fc;(ua,)uuz +/’L5(U ) =0,

N N~

—Ut —F' (ug )uze —h(u)

so the solution u™ = u can be obtained as a locally uniform limit of solutions
to problem with smoother coefficients. Again, by virtue of Lemma 5.4 it
suffices to verify the assertion only for u°.

The assertion for u? follows if we are able to show that the set of zeros of its
z-derivative is a singleton for any fixed time ¢ > 0. Since u® > 0 and ul} # 0,
the strong maximum principle (cf, e.g., Protter Weinberger [15]) assures that

ul(t,0) > 0 and ul(t,n) < 0 for any ¢ > 0. Considering the differentiated
B

T

problem for v = u

vy — a(t, x)vge + b(t, x)v, + c(t,z)v =0
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where a = Fj(ul), b= FY(ul)ul, and ¢ = hi(u®), we can apply Theorem 5.2
of Chapter 4 by LadyZenskaja [11] to do a bootstrap and, consequently, to
obtain sufficient smoothness of coefficients a, b, ¢ in order to apply the result
of the Zero number theory by Angenent [2]. Thus, since ug, has one zero v,
we obtain that u®(t) possesses exactly one zero ~; for any ¢ > 0 in accordance

with Angenent [2]. O

5.4 Concentrated Compactness

In this part we claim that if u is a solution to (1.1), (1.2) and (1.3) with ug 2> 0
being nondecreasing on [0, 7] and nonincreasing on [y, 00), and there exists
a sequence {t"},, t" =00 00, such that {u(t™)} is bounded in Wy (Ry),
then either u(t) converges to zero in W'?(R,) as t — oo, or u(t} converges
to a spatially shifted hump of the ground state solution, which travels to
infinity. More precisely, there exists a function y : Ry — Ry, y(t) =00 OC
so that
u(t) — wy(- + y(t)|lwrzw,) = 0 ast — oc.

This assertion will be verified in several steps.

Step 1

To begin with, we point out that, since the energy functional (3.17) is a non-
increasing function along {u(t) : t > 0}, and, under notation u" = u(t™),
|u™||lwr.2(,) is bounded, the energy is bounded too. Employing (3.18) we
conclude, with the aid of

it
/um@mm9m=mmm—EMM§c<w

where C depends solely on the boundedness of [[u"{[y12( ), that u belongs
to L2((1,00); L*(Ry)). In view of

k+1

" OO o0 >
/1mwmmw:24 tg(5) o, ds < o0,
1 k=1

we obtain existence of a sequence {7"}, |7" — 7" 71| < 2, 7" =, 00, such
that [Jus(7™)||r20r,) —n—s00 0 With the aid of (3.15) we finally obtain

}H& “ut(ﬁ)HL?(R” = 0.

Particularly, ||ul|| 2z, ) converges to zero and thus is bounded. Moreover, as
{u} satisfy (1.1), we obtain that u}, is bounded in L?(R, ), hence the whole
sequence u™ is bounded in W**(R,).
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Boundedness of {u"}, in W*?(R. ) yields a subsequence (not relabeled) con-
verging to some function @ weakly in W?22%(R, ). Consider any compact
Q) € [0,00). By virtue of the compact imbedding of W22(Q) into W"*(Q),
we obtain that u™ converges to @ in W"*(Q)) (passing to a subsequence, if
necessary).

Since u" is bounded in W22(R,), u® is bounded in L*(R,); whence, as
F € C*(R), we can write

/ P — F() do < K?/ = i, da
Q Q
where K denotes the Lipschitz constant of F' on the union of ranges of ul

and i,. We have proved that F'(u?) converges to ['(i;) in L*(Q). At this
stage, passing with n to infinity in (1.1) it writes as follows

up o= Fllupuy, - b)),
~—~ ————r ——r’

50 in 12(Q)  —F'(iig)ies in L2(Q)  —h(@) in L2(Q)

Convergence of F'(ul)u”, can be obtained by showing the weak convergence
[, - Plaied = [ - P de +
Q Q
= [ (it~ ) ) d 0 € DIQ)
Q

where on the right-hand side the first term converges to zero due to conveg-
ence of F'(u”) shown above, boundedness of ug, in L*(Q), and boundedness
of ¢ in L=(Q); convergence of the second term follows from the fact that
F'(ii;)¢ € L?(Q) is an admissible test function. Now, the norm convergence
follows from the fact that u} and h(u") are Cauchy sequences in L*(R,), and
thus F'(u™)u”, is a Cauchy sequence in L*(R,) too. Moreover, subtracting
the equations for u™ and u™, and estimating ug, — u™ yields, with the aid
of (2.1),

m

L‘LHU‘SLLJ - uy;”lﬁ(@) S 1|F,(UTLL>(USLI - uma:)HLz(Q)
luf — w12y + (™) = @™ |2+ ¢ (5:9)
I (F (u) = F'(u)ugzll 2@

IN

and thus we see that {u" }, is a Cauchy sequence in L*(Q), so the conver-
gence to @ in W??(Q) follows. We have shown that the function u lying in
W22(R, ) N Wy (R, ) solves the stationary problem

— F' (i) ilge + h(@) = 0 (5.10)
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in L?(Q) for any compact ¢ C R;. Continuity of @, u,, and (2.1) implies
continuity of @,,, thus @ satisfies the equation pointwise.
Consider now the initial value problem

F'(wp)wee = h(w), w(0) =0,w(0) = c. (5.11)

Multiplying both sides of the equation by w, and integrating from zero to x
we get, under notation S(t) = [; F'(s)sds, H(t) = [ h(s)ds,

S(wy(z)) = H(w(x)) + S(c).

Now, let us identify the values ¢ for which lim, . w(z) = 0; suppese this
case happens for ¢ # 0, i.e. d = S(c) > 0. From continuity of H(w(z)) we
can find R > 0 such that S(w,(z)) > 4. Thus, employing (4.10) we get

Therefore, by virtue of continuity of w,, we obtain that it cannot change
the sign, and its absolute value is estimated from below; whence w(z) is
unbounded, which is a contradiction. Therefore, we conclude that u is
a (unique) solution of the initial value problem with ¢ = 0, hence u = 0.

We have shown that for any compact Q C R, there exists a subsequence of
{u™}, which converges to zero in W22(Q)). The natural question is, whether
one can improve this result up to the whole R, . The problem arising at this
point is, if there are or are not any ‘humps’ of the solution that are travelling
to infinity, and whether one can approximate them in some sense.

Under the assumption that the initial datum wu; is non-decreasing on [0, vo),
and non-increasing on [y, oc) we get, by virtue of Theorem 5.2, that for any
n € N there exists exactly one point, denoted by y", at which u" attains
its (local) maximum. If there exists a subsequence ny such that u™k (y™)
converges to zero, then we obtain that |[u"|| e ,) converges to zero, and,
by virtue of the stability of the zero solution and (5.9), we conclude that
|u™||we.2(x, ) converges to zero. That is why we can assume for further inves-
tigations that u™(y") is bounded away from zero; moreover, let us extend each
u™, u" and u”, to be equal to zero on (—oc, 0], and denote v™ = u"(- — y").

Since v™ is a spatial shift of 4", the arguments concerning uniform bound-
edness of u" in W2?(R,) hold also for v". Thus there exists a subsequence
of v™ (not relabeled) converging to some function o weakly in W*?*(R). Fur-
ther, following the arguments concerning convergence of u™ for the case of
convergence of v", we conclude that for any compact  C R v™ converge to
§ in W22(Q) and © is a solution of the stationary problem (5.10) in L*(Q).
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By continuity of v and ©,, we obtain continuity of 7,,; whence, since by
Theorem 4.1 there exists the only solution to (4.1), we have ¢ = W

We shall prove that v™ converges to o = w, in W»?(R). In order to do this,
we shall show convergence of v™ in W'?(R) and then apply (5.9) for the case
of v™ and ) = R, to obtain convergence in W#?(R). Since h'(0) > 0, there
exists € > 0 sufficiently small and ¢ > 0 such that for any z € (0, £) we have
h'(z) > 6. By lim, o wy(z) = 0, there exists R, > 0 such that wy(z) < §
for |z| > R.. For given compact (), = [—R., R.], we deduce, by virtue of
convergence of v™ to w, in W?(Q.) and imbedding of W'2(Q.) into L>(Q, ),
that there exists ng such that for any n > ng we have [v"(z) — w,(z)| < 5 for
any = € (.. In particular, we get v"(+R.) < . As, by Theorem 5.2, J" is
non-decreasing for negative values, and non-increasing for the positive ones,
we get v" g o, < €. Recalling the equation for v

v = F(v)e + h(0") =0,

we obtain, with the aid of multiplying it by v" € W'(R, ) and integrating
by parts over [R., o), that

N——
u(vg)’< (vm)?<

/6 vy v" d +/ Fog)vy dr — [F(op)o"]% +/5 h(v"™)v" da = 0.

Re

Employing lim, o, w(z) = 0, boundedness of v™ in W2(R, ), and the Hélder
inequality yield

min{u, (5}H’(}HH’IZ/I/H,Q((RE’OC)) < Cle + 6,)

where 4,, stands for ||v}'|| 12(x) which converges to zero as n — oc. Undergoing
the same procedure for (—oc, — R,] we conclude, that for any £ > () there exist
a compact () C R and a number ng such that if n > 7, then

v w2y > o™ lwrewy — €.

At this stage, we continue in the following way: For given £ > 0 we find
a compact ) C R sufficiently large and a number ng so that for n > n
we have “UnHWI,E(Q) > HU"HWI,Q(R) — % and Hu’gHWl,2(Q) > nguwl,z(}\g) — %
Consequently, we can write for n > n,

H’l)n — U)gHWI,Q(R) S “Un — U/‘g Iu/l,’Z(Q) —+ HUTL”W"?(R\Q) -+ ngHW‘vQ(R\Q) < g,

in other words,

i 10" oy = .
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From convergence of v™ in W"?(R) we conclude, with the aid of the estimate
(5.9) done for the case of Q = R and u" = v™, that v, is a Cauchy sequence

and thus it converges to 0,, = wy, - in L*(R). This means that

nlgglo Hu" — wg(' + :l/n)“WZ»Q(R+) = 0.

Step 2

In this step, we are going to enlarge the result obtained in the previous part
to the large-time behaviour for all {u(t)},-,. First of all, we shall verify that
the boundedness of {u(t")} in W, (R, ) for some sequence #* — o implies
that the whole set {u(t)}. is bounded in W,*(R,). Indeed, if this is not
the case, i.e. there exists a sequence 7™ — oo such that u(7™) w2k )
i1s not bounded, then the regularity part of Theorem 3.2, more precisely
u e C((0,00); Wy *(Ry)), vields existence of a sequence o™ — oo such that
["U(O'Tb)j‘w()l,Q(ER+) = 2|lwy|lw12r). Consequently, since u(c") is bounded in

W, , the procedure of the previous step yields a subsequence of {o™ n
0 ,
(not relabeled), and a sequence {y"}, such that

“u(o.n) - wg(' + yn)HW2v2(R+) —n—so00 U

However, this is a contradiction with H’lL7LHW()1,2(R+) = 2||wy|lwr2r)-

At this stage, consider there exists a sequence 7 — oo such that the choice
of y", as described in the previous step, does not yield the convergence, i.e.
there exists £y > 0 such that

Ju(r") — wy (- + Y ) lwrer,y > €o.

Since Hu(T”)IIWon,z(RJr) is bounded, the procedure of Step 1 yields a subse-

quence (not relabeled) such that [Ju(7") —w,(- +y")|wezm, ) — 0asn — oc,
which is a contradiction.

Step 3
Clearly, there are many possible choices of the sequence {y"} (in fact, it is
a function and y" = y(t,)), not only the one used in Step 1. Nevertheless,
all these sequences satisfy the same property that is a convergence to infinity
for growing time. Indeed, assume for contradiction that for some sequence
7" — oo there exists a bounded sequence §" such that

li no_ . ~7 L2 = (.

T~ wy (4 7)o,y = 0
Then u" does not converge to zero over the compact set 0,sup{y™: n € N}],
which is a contradiction with the results of Step 1.

We have proved the following theorem.
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Theorem 5.3 (Concentrated compactness). Let F' be a twice differen-
trable function on R such that (2.1) is satisfied. Moreover, let h be a differ-
entiable function on R satisfying hypotheses (2.3) and (4.2). Furthermore,
let ug € L*(Ry) M L®(Ry) be non-negative such that there exists v, and ug
is non-decreasing on (0, 7], and non-increasing on (Y0, 00).

If w is a solution to (1.1), (1.2) and (1.3) such that there exists a sequence
{t"}, t" =, 00 00 and |]u(t")|lwé,z(;,€+) is uniformly bounded with respect to
n, then either

o u(t) converges to zero in W.>* ast — oo, or
0

e there exists a function y, limy_, . y(t) = oo such that

lim [lu(t) — wy(- + y(t) lwee, ) = 0.

t—oc

5.5 Stability of the Large-Norm Solutions

We already know that the solutions starting from sufficiently small initial
data converge to zero and the set of such initial data is open. Similarly, we
claim that also the set of initial data which solutions converge to infinity in

W, *(R,) is open.
First of all, we shall introduce a helpful Lemma.

Lemma 5.5. Assume that ' € C*(R) and h € CY(R,) be such that hy-
potheses (2.1), (2.8) and ({.2) are satisfied. Then for any e > 0 sufficiently
small there exists a constant L > 0 depending on & and the structural proper-
ties of h, such that if u is a solution of (1.1), (1.2) and (1.8) corresponding
to the initial datum uy € L*(R, ) N L®(R,) such that

ug > 0 on Ry and wy(z) > (o + ¢
Jor x in the interval (xg — L,zy + L) C Ry, then
tliﬁr(r)xO u(t) lwizr,) = oc.

Proof. Following the technique of the proof of Lemma 5.2 by Fasangova
Feireisl [6], we can pass with similar arguments. Let w be a solution of
the stationary problem

—F(wg), + h(w) =0, w(0) = +¢, w'(0) = 0.

From Lemma 4.1 we deduce that there exist constants L_, L, depending on
¢ and h such that w(L ) = 0 =w(L,). Put L := max{L_, L.} and define
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the function

(t.2) w(r —x0), ©€xg—L 29+ L] t>0
v(t,x) =
0, € (0,20 — L_)U (zg+ L, 00).

Consider the problem (1.1) with homogeneous Dirichlet boundary conditions
separately on (0,L_), (L_,L,), and (L,,oc), and take from each initial
datum the restriction of the function w(0,) to the appropriate interval.
Consequently, we have that the function w restricted on (0, L), (L_,L,),
and (L4, 00) is a solution of the problem considered separately on each of
the three mentioned intervals. Now, the Comparison principle (Lemma 3.1)
applied separately on the problems on the intervals (0,L_), (L_,L,) and
(L, 00) ensures
v(t,z) < u(t,z)

for £,z > 0. Consequently, we can write for the ground state solution Wy

sup w,(z) = (o < (o + & =supv(t,z) < supu(t, z)

x>0 x>0 x>0
and, since this holds for any t > 0, we conclude from Theorem 5.3 that
u(tn)||lwr2r,) cannot be bounded for any sequence ¢, — oo and thus
the statement follows. O

We have proved that there exists an initial datum which makes the cor-
responding solution’s W"?(R, ) norm converge to infinity. We claim even
more, our aim is to show that for any such a solution it is possible to find
a neighbourhood of the initial datum so that all the solutions corresponding
to these initial data converge in W, *(R, ) norm to infinity too. To do this, we
introduce two more lemmas which proofs are slight modifications of the pro-
cedures shown in Lemma 5.4 and Lemma 5.5 by Fagangova Feireisl [6].

Lemma 5.6. Assume that F' € C*(R) and h € CY(R.,) satisfy hypotheses
(2.1), (2.3 and (4.2). Moreover, let u be a solution of (1.1), (1.2) and (1.3)
with the initial datum uy € L*(Ry) N L=®(R.), ug > 0.

Then for any £ > 0 sufficiently small there exists a number L' > ( depending
on € and h such that if

uy > G —¢€, z€[a,b CRy

and b—a > L', then

Jim fJu(t)[[wro,) = oo



Proof. In view of Lemma 5.5, it suffices to verify that for any L > 0 and £ > 0
sufficiently small there exists L' > 0 such that if uy > (; — £ on an interval of
the length L', then there exists time ¢; > 0 and u(ty) > (; + £ on an interval
of the length 2L. By virtue of the Comparison principle it suffices to show
this property only for solutions starting from initial datum wug = (Co =€) X[a,b)s
where x¢ denotes the characteristic function of the set C.

Assume £ > 0 is sufficiently small so that A|[¢y — &, (, + 2¢] < 0 holds.
Considering v as a solution to the ordinary differential equation

vy + h(v) = 0,v(0) = () — ¢,

we conclude, by virtue of the negativity of h on [(y — &,y + 2¢], that there
exists ¢y > 0 such that v(t) > ¢y + 2¢ for any ¢ > t,. The proof follows if we
are able to show that the solution u stays ‘near’ v in some sense. To show
this, we introduce a weighted space L*(R, o) with the weight p(z) = e~le~¢
where ¢ = “—}l—’

Consider, without loss of generality, that the nonlinearity & is odd. More-
over, extend the initial datum wug to be odd on R. It is easy to see, that
the solution of the problem on R is odd, thus it coincides on R, with the orig-
inal one. Subtracting equations for v and u, multiplying the difference by
o(v—u), integrating over (0,T’) x R we obtain by virtue of the local Lipschitz
continuity of s, the Young inequality, |o,| < C,0 a.e., limyz) 00 0(z) = 0 and
the Gronwall lemma

u®) = v()le2r,e) < €l — vollr2(r p)- (5.12)

for some v > 0. Denote J = {z > 0 : u(ty,z) < +e}. By virtue of
Theorem 5.2, there exist «, 3 > 0 such that J = [0, ) U (8, 00). Estimating
the left-hand side of (5.12) from below yields

/R lu(ty) — v(t)|’0dx > /J((Cg +2e) — (G +¢))*odr = &2 / odz

J

o0 B
= ¢? </ e 1ol dy "/ e~ le—cl d:z)
0 @
+00 et (a+3)/2
52 (/ Qd.L _/ e—la:—(:| d.L)
0 c—(a+p8)/2

= 62(28_(5_")/2 — ef_(“+b>/2).

vV

On the other hand, the estimate of the right-hand side of (5.12) from above
gives

a 00
luo = voll7em, < / 4(Co —¢)’odx +/ (Co—€)°0dx
- b

oo

< 3¢y —e)e 02,
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Combining these estimates together with (5.12) yields

e~ (B-a)/2 <

g2

— £ B « 1 /e
(l +5———(<052 ) 627t°> e 1/2

Passing with L' to infinity shows that the left-hand side must also converge
to zero, 1.e., L converges to infinity. Thus we have proved that for arbitrarily
large L one can find L' such that for any solution starting with uy > (¢y — ¢)
on an interval of the length L' there exists ¢, > 0 and u(t) > ¢, + £ on some
interval of the length 2L. O

<6~(a+b)/2 + 5(Co - 5)26)27t08—(b~a)/2)

<

DO N

Lemma 5.7. Let ' € C*(R) and h € C'(R,) be such that (2.1), (2.3),
(3.2) and (4.2) hold.

Denote

. 2 00 “ug = 0 and
Ao 1= {uo € L*(Ry )N LR, ) : u(0) = uy => [u@) w2, ) =00 00 } ;

where u is a solution of (1.1), (1.2) and (1.3). Then the set A, is open in
the set of non-negative functions in the topology of L*(Ry) N L>®(Ry).

Proof. In view of Lemma 5.6 it suffices to show that for any u € A, there
exists € > ( such that if vy € L*(R, ) and [|u, — gl zeer,) < €, then vy € A
To do this, we shall show first that for any ¢ sufficiently small the set

J(t) == {zult,z) > ¢ — ¢}

is an interval with the length diverging to infinity while ¢ goes to infinity.
The fact that J(¢) is an interval follows from Theorem 5.2. To prove the un-
boundedness of |J(t)| let us suppose the contrary: Let there exist a con-
stant ¢ such that [J(¢,)| < ¢y for some sequence t,, going to infinity. Since
G = inf{s : H(s) < 0} > 0, where H(t) = jot h(s)ds, and h'(0) > 0,
there exists a constant ¢; such that H(s) > ¢s? for any s € (0,¢ — ).
Moreover, the hypothesis (3.2) implies the L>°(R, ) boundedness of the tra-
jectory {u(t) : ¢t > 0} and thus the existence of a constant ¢, such that
u(tn) |z, ) < co. Without loss of generality, we may assume co > (.
Now, since the energy functional is a nonincreasing function along any tra-



jectory, we can conclude with the aid of éf’UQ < 2[(v),v € R the following

—

E(ug) > E(u(ty,)) = / I(ug(ty,)) do + H(u(t,)) dz
Ry Ry
> g/ ut(t,) da + H(u(tn))(i:L'+/ H(u(t,)) dx
2 R+ J(tn) R'%\J(t")
> %/ u2(tn) do + [J(t,)| inf{H(s): 0 < s < co}+

<0

+c (/ u2(tn)dx—/ u2(tn)dx>
Ry J(tn)

. : )
> mm{g,(:1}|[u(tn)}]f,vl,2(;,&+) + o (—ercs +inf{H(s): 0< s < 2}) .

Thus we can write

. 1 . e
Hu(tn)Hf,V|,2(R+) < ——— (E(up) + coc1c2 — cpinf{H(s) : 0 < s < ¢2})
mln{g, e}

which is a contradiction to u € A..

The stategy is to show that if v, is near u, in the L*(R;)NL*(R, )-norm, then
v(t) stays near u(t) in the L>(R, )-norm for some time t, and, consequetly,
to employ Lemma 5.6.

To do this, let us take ¢ > 0 as small as 2¢ is also an admissible value for
Lemma 5.6. Applying this lemma with 2¢ we obtain the necessary length L of
the interval to ensure the divergence of the solution’s trajectory in WH2(R,).
From the above part there exists time ¢, > 0 such that

{2 ulte,z) > G — 2e}| = |J(ty)| > L.

Lemma 5.3 yields existence of U, a L?(R,) N L>*(R; )-neighbourhood of uy,
such that if vy € U, then |[v(ty) — u(to)||z<(x,y < &. Thus we have

v(to,2) > ulte,z) —e > (o — 22, x € J(ty),

hence |[v(t)||w1.2r,) converges to infinity for ¢ — co. O



6 Proof of the Main Result

In this part of the work, we are going to collect all the results obtained before
and prove Theorem 1.1. We shall do this in two steps.

Step 1

Assume first that F' satisfies (2.1), and also the hypothesis (3.2) holds. Then,
by virtue of Corollary 5.1, the set 4, of initial data which solution converge to
zero in W, *(R,.) is open in the topology of L?(R, )NL>(R, ), and, in view of
Lemma 5.7, so does the set A,,. The connectedness of the set of non-negative
functions lying in L?(R,) N L>(R, ) implies that one of these sets must be
empty, or there exists a non-negative function wy € L*(R,) N L>*(IR, ) such
that neither Ay nor A, contains wy. As Aj is non-empty and, in view of
Lemma 5.5, the set A, does so, we obtain that the second case holds.

We infered the existence of a trajectory that is bounded in W'?(R,) and
does not converge to zero, thus employing Theorem 5.3 we conclude that
this trajectory converges the spatially localized wave of the ground state
solution, which travels to infinity.

Step 2

In the previous step, we got the existence of a trajectory converging to
the travelling wave of the ground state solution under additional assump-
tions on F' and h. Consider now that the additional assumptions on F' and
h are violated. Thus only the existence of p > 0 such that 0 < p < F'(w)
for any w € R holds. However, employing Remark 4.2 we get existence of
the ground state solution w, which belongs to W#?(R) N C*(R). Suppose
that ||wg|/c2ry < C and define the modifications of the functions /' and A in
the following way: Let F and h coincide with F and h on [-C —1,C + 1];
on the complement let they be extended to be sufficiently smooth and, in
the case of F, to satisfty 0 < 5 < Fllw) < F'(C+ 1) +1. For h, let
the extension be such that the hypothesis (3.2) is satisfied. Then the ground
state for the ‘tilded’ problem coincides with the former one and, by virtue of
the previous step, the existence of a solution u to the ‘tilded’ problem and
a function 7 : R, — Ry, lim; , §(t) = oo such that

Jim [[a(t) = wy (- + G(t) we,y =0

follows. By convergence in W??(IR,) we obtain, in particular, convergence
in C'(R,). Thus we can find time ¢y such that

[a(t) = we(- +g(0)llorm,) < 1 for any & = to.

Denoting vy = 7y = @(tp) one can see that the solutions v and © of the ‘un-
tilded” and ‘tilded” problem coincide, since F' and h coincide with F' and h



on [-C' —1,C + 1]. Thus we have
i (o (t) = w, (- +y(t))llweage,) = 0

for y(t) = g(t + t), which completes the proof of Theorem 1.1.
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7 Appendix

In this section we report several results we have recalled on throughout this
work.

The Aubin lemma (sometimes called also Aubin Lions lemma or Aubin
Ehrling lemma) serves as a useful tool to show compactness of imbeddings
between Bochner spaces. Here, we present the statement by Roubicek [16].

Proposition A.1 (Aubin lemma). Let Vi, V., be Banach spaces and Vs be
a metrizable, locally convex space; suppose that Vi is separable and reflezive.
Moreover, assume that V) is imbedded compactly into Vi and Vy s imbedded
continuously into Vs.
Then the imbedding

WPV, Vs) <

— LP
is compact for any 1 < p < oo, 1§q§oo I =(0,7),0 <T < ¢
in the sense that bounded sets in W'P4(I; V|, V3) are relatively compact in
L*(I;V}).

The Gronwall lemma (sometimes also called Gronwall Bellman lemma)
plays an essential role for showing lots of properties of solutions to differential
equations. One can find several, more or less general statements; here, we
adopt Lemma 1.3 of Chapter 5 by Gajewski et al. [8].

Proposition A.2 (Gronwall lemma). Let f : R — R be a continuous
function and let g be and non-decreasing function such that

f0 <o+ [ fe)ds teT

with some non-negative constant ¢, then
flt) <eglt), t€0,T].

The Interpolation inequality, sometimes called the Gagliardo Nirenberg
inequality, serves for interpolations between Sobolev spaces and can be of-
tenly used to show a convergence with not so much efort. Here, we bring
the statement of Theorem 1.8 by Roubicek [16].

Proposition A.3 (Interpolation inequality). Let 3 = 3, +...+ 3, such
that 3y..... 1 3, € NU {0}, moreover, let k € N and r, q and p satisfy
3 1k 1 3
- +A<~v>+(1—/\)4, Tea<1,0<8<k—1,
: noon g k

-
{

d



then the following holds:

H aﬁv
oxy'...0xy 5“

< CHUHW’”’ 0) HUHI(I 9))
LT(Q)

provided k — 3 — % is a not a negative integer (otherwise, it holds only for
A=12)
k

Oftenly, one meets the case when some type of an imbedding of vector-
valued Sobolev functions into the continuous ones is needed. For this purpose,
we introduce here Lemma 8.4 by Roubicek [16].

Proposition A.4 (Imbeddings of vector-valued Sobolev functions).

Let V' be a Banach space and let H be a Hilbert space such that the imbedding

()f V' ointo H is continuous and dense. Let g be the conjugate exponent to p,
Lq= _P_,_

Then the zmbeddmg of WP ([, V,V*) into C(I; H) is continuous. Moreover,

the following by-parts integration formula holds for any u,v € WHPI(L; V, V*)

and any 0 <t <ty < T

d d

(ults), v(t)) — (u(ty) v(t))) = /t 2<E“: v)v <(#Hz// u)y di

where (-, ) denotes the scalar product in H.
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SEZNAM OPRAV K DIPLOMOVE PRACI
LUKAS PouL, 2004

16: Example: f(t,z) = max{0, =7 — |t|]}, g(t) = 1 — |t| — In|t| €
L'(~1,1).

17: Lemma 3.2 (vi) Druhy vzorec zdola 3% [[u™ ()]|2, < — [ F(ul (t))ul (t)dz . . .

18: fadek 8: Multiplying (1.1) on F(ul), ...
21: ve vzorci pro odhad [{v;, )| méa byt viude v’V misto w.

25: radky 4, 5, 6: In view of the fact that convergence in L? implies
pointwise convergence almost everywhere of a certain subsequence, and
the Fubini theorem ...

27: ve formulaci Theorem 3.2 (4i), (iv) navic ‘bounded in terms of [,
s ve vzorci (3.14) pak norma vpravo L*(Rj.).

35: fadek 9 zdola: w +— 1/S;H(H(w) + Cp)

38: pred radek 13 vlozit: Similarly, we obtain

T
2 2
) ge,) < ),y =26 | (O,

and, by virtue of Lemma 5.1, ||u(T)|r2&,) < |Juollr2r,)e " for T > 0.
41: treti vzorec zdola: fo fQ yuNodx ds.
42: fadek 3: L*((0,7T); 1/1/"01’2(R+, 0)), v dalsich formulich pak R misto
R.
43: Lemma 5.4: 0 < v < oo, ve volbé ¢ := min{|u(§ — & 4= 1,3}
45: radek 5: u‘j.(f)
53: Lemma 5.7 A is open in the set of non-negative functions u
non-decreasing on [0, 7, ] and non-increasing on [v,, 00) in the topology
of L* N L.
54: vzorec nahofe: t, > 1, misto E(ug) psat E(u(1)), podobné ve druhém
VZOrCl.
55: fadek 8: The connectedness of the set of non-negative functions u
from L*(R,) N L>®(R,) nondecreasing on [0, v,] and non-increasing on

[vu, 00) implies ...



Asymptotické chovani FeSeni evoluénich parcialnich diferencialnich rovnic na
neomezenych prostorovych oblastech

Lukas Poul

Abstrakt: V praci se vénujeme studiu asymptotického chovani feseni kvazilinearni
evoluéni diferencialni rovnice parabolického typu $u_t = F(u x) x+h(u)$ na polopfimce.
Hlavnim vysledkem je diikaz existence feSeni, které pro dlouhé ¢asy konverguje k
cestujici vIng netrivialniho feseni stacionarniho problému na piimce. Hlavnimi néstroji
jsou Teorie nulovych bodi a Teorie koncentrované kompaktnosti. Vysledek je
zobeenénim tvrzeni znamého pro semilinearni parabolickou rovnicl.

K dosazeni vysledku bylo zejména potieba modifikovat Lionsovu metodu koncentrované
kompaktnosti znamou pro semilinearni rovnice do kontextu kvazilinearnich rovnic, dale
bylo potieba ziskat odhady na feseni a obejit tak metodu variace konstant uzivanou v
semilinearnich rovnicich pii zkoumani kvalitativnich vlastnosti feseni.

Vysledky prace byly prijaty k publikaci v casopise Mathematical Methods in Applied

Sciences.



