
Charles Univerzity in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Bc. Jindřich Vodrážka

Modelling Planning Problems

Department of Theoretical Computer Science and Mathematical
Logic

Supervisor of the master thesis: doc. RNDr. Roman Barták Ph.D.

Study programme: Computer science

Specialization: Theoretical computer science

Prague 2011

Acknowledgements

In this place I want to thank my supervisor doc. RNDr. Roman Barták Ph.D. for
his patience, support and critical comments that directed my effort while working
on this thesis.

I would also like to thank my parents for their continuous support during my
studies.

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In Prague on December 9, 2011 signature

Název práce: Modelováńı Plánovaćıch Problémů

Autor: Bc. Jindřich Vodrážka

Katedra: Katedra teoretické informatiky a matematické logiky

Vedoućı diplomové práce: doc. RNDr. Roman Barták Ph.D., KTIML

Abstrakt:
Téma předložené diplomové práce spadá do oblasti znalostńıho inženýrstv́ı v au-
tomatickém plánováńı. V posledńı době je pro reprezentaci plánovaćıch problémů
často využ́ıván koncept stavových proměnných. V rámci této práce je tento
koncept využit v novém formalismu pro modelováńı plánovaćıch domén. Na
základě tohoto formalismu je postaven prototyp nástroje určeného pro mode-
lováńı plánovaćıch domén a problémů. Možnosti tohoto nástroje jsou pak demon-
strovány na ukázkovém př́ıkladu klasické plánovaćı domény. Nástroj poskytuje
možnost exportu do standartńıho jazyka pro modelováńı plánovaćıch domén. T́ım
umožňuje propojeńı s existuj́ıćımi plánovaćımi systémy.

Kĺıčová slova: klasické plánováńı, stavové proměnné, znalostńı inženýrstv́ı

Title: Modelling Planning Problems

Author: Bc. Jindřich Vodrážka

Department: Department of Theoretical Computer Science and Mathematical
Logic

Supervisor: doc. RNDr. Roman Barták Ph.D., KTIML

Abstract:
This thesis deals with the knowledge engineering for Automated Planning. The
concept of state variables has been recently used with benefits for representation
of planning problems. In this thesis the same concept is used in a novel formal-
ism for planning domain and problem modeling. A proof-of-concept knowledge
modeling tool is developed based on the new formalism. This tool is then used
for modeling of example classical planning domain to show its capabilities. The
export to standard domain modeling language is also implemented in the tool in
order to provide connection to existing planning systems.

Keywords: classical planning, state variables, knowledge engineering

Contents

Introduction 3

1 Automated planning 5

1.1 State transition system . 5
1.2 Classical planning . 7

1.2.1 Set theoretic representation 8
1.2.2 Classical representation . 9
1.2.3 State variable representation 10

1.3 Extensions of classical planning 13
1.3.1 Temporal planning . 13
1.3.2 Planning with numeric fluents 14
1.3.3 Planning with uncertainty 14
1.3.4 HTN Planning . 14

2 Knowledge representation 15

2.1 Planning domain modelling . 15
2.1.1 PDDL . 15
2.1.2 IxTeT . 16
2.1.3 NDDL . 17
2.1.4 AML . 17
2.1.5 ANML . 18

2.2 Planning problem encodings . 18
2.2.1 Propositional encoding . 19
2.2.2 Multivalued state variables 19

2.3 Summary . 19

3 Knowledge modelling 21

3.1 GIPO . 21
3.2 itSIMPLE . 22
3.3 Lessons learned . 22

3.3.1 Operators in itSIMPLE 23
3.3.2 Operators in GIPO . 23

4 State variable based modelling 25

4.1 Formalism description . 25
4.1.1 Planning domain . 26
4.1.2 Planning problem . 31

4.2 Properties of new formalism . 35
4.2.1 Expressivity . 35
4.2.2 Discussion of new formalism 38

1

5 Implementation 40

5.1 Program architecture . 40
5.1.1 Input and output. 40
5.1.2 Internal data structures. 41

5.2 Program demonstration . 43
5.2.1 Depots domain . 43
5.2.2 Knowledge modelling with Vizzard 43

5.3 Developement enviroment . 46

6 Evaluation 47

6.1 Towards efficient problem modelling 47
6.2 New point of view . 48

6.2.1 Generalized finite state automata 49

7 Conclusion 52

7.1 Future work . 52

Bibliography 54

List of definitions 56

Attachments 58

A Depots domain from IPC 3 59

B Depots domain generated by Vizzard 60

C Generalized finite state automata 62

D Vizzard - user manual 63

D.1 Main menu . 63
D.2 Declarations . 63
D.3 Operators . 67
D.4 Tasks . 70

E XSD scheme files 74

E.1 Domain scheme . 74
E.2 Problem scheme . 77

F CD contents 80

2

Introduction

Process of knowledge integration into computer systems is gaining significant
attention in the recent years. One particular area where this claim certainly
holds is the Automated Planning.

While planners are being developed to solve complex problems there is also
much effort put into the development of knowledge engineering techniques for
modelling of planning problems. The knowledge engineering deals with the task
of formal description of models used for planning and schedulling, their validation
and maintenance.

There is a wide range of problems which are being modelled. Beginning with
comparatively easy benchmark problems and scaling up to applications such as
crude oil distribution in petroleum plant or computation of genome edit distances.
Throughout the text we will often refer to a specific area as planning domain.

By using the word ”easy” when talking about the benchmark problems we
mean ”easy to explain” or ”easy to describe”. Modifications of these problems are
still challenging enough to be included in the International Planning Competition.

We can observe that the knowledge engineering is an universal interdisci-
plinary area. Creating a model of a complex problem is a task for an expert who
understands the problem thoroughly. It is only through the model of the prob-
lem we can benefit from the planning technology. Therefore we need to provide
either high level language or a modelling tool that can support the description
of the problem models. There is a gap to be filled with the KE tools which
are easy to use for non-experts in planning. These tools (or languages) can be
specialized in a specific area of interest (e.g. bussines modelling) or provide a
general-purpose foundation for modelling various problems from different areas.
The general-purpose approach in particular poses a great challenge for KE.

In this thesis we are going to review existing general-purpose approaches for
planning problem modelling and we will also look into various ways how the input
data are transformed in the early stages of planning process.

We will examine in detail the process of knowledge modelling employed in lead-
ing contemporary KE tools for general-purpose planning. Based on the previous
background research in the field of KE for Automated Planning we will propose
a new formalism that will enable implementation of knowledge modelling tools
based on the concept of state variables. The concept will be explained along with
other concepts for planing problem representation in the first chapter.

The state variables are already succesfully used in many real planning applica-
tions. These applications are often specialized to the particular areas (e.g. space
research). On the other hand the models based on propositional representations
still play important role in the research of general-purpose planning.

In this thesis we will introduce a tool that uses state variables as building
stones of the planning domain. With developement of knowledge modeling tool
for general purpose planning based on the state variables we hope to bring some
new ideas and possibly provide a platform that can be further extended to model
”real world” problems. We will show that the state variable based approach is
suitable for creation of efficient models and that it also provides a new perspective
for the planning domain design process.

3

The modelling tool presented in this thesis is developed in order to prove that
the formalism mentioned before can be actually implemented in a real software
application. The program GUI can be used to design planning domain and prob-
lems. The program also supports export of the modelled planning domains and
problems to the language PDDL in order to provide connection to planners.

This work is structured into six chapters. In the first chapter we will give an
overview of the automated planning and we will look into classical planning in
more detail. The second chapter will describe various approaches to representa-
tion of planning problems. We will describe the languages used for knowledge
modelling and also some approaches to direct knowledge representation used by
planning systems. In the third chapter we will analyze the tools for knowledge
modelling currently in existence and also the main difficulities in the process of
formal model design. A new approach for knowledge modelling will be presented
in the fourth chapter together with suitable formalism. In the fifth chapter we
will present a proof-of-concept tool for knowledge modelling based on the formal-
ism presented in the fourth chapter. In the last chapter we will offer comparsion
of our formalism to another efficient representation based on the concept of state
variables. In the end we will also describe a new point of view on state variable
based knowledge modelling.

4

1. Automated planning

According to [20] planning could be defined as follows:

Definition. Planning is an abstract deliberation process that choses and organizes
actions by anticipating their expected outcomes. At the same time this deliberation
aims at achieving as best as possible some prestated objectives.

Automated planning is an area in AI which is examining this process com-
putationally. There are many forms of planning by the area of application. We
can refer to particular applications in space research [22], education [7] or indus-
try [31] or describe more general areas like path and motion planning, perception
planning, navigation planning, manipulation planning or communication plan-
ning. All these applications are working with some kind of a dynamic system
which can be generalized into a common model. In the first section of this chap-
ter we will introduce this model in order to use it later for reference. In the second
section we will describe classical planning to provide background for this work.
The last section is discussing other branches of automated planning.

1.1 State transition system

A general model used to describe dynamic systems for automated planning is
based on a state transition system:

Definition. A state transition system is a 4-tuple Σ = (S,A,E, γ) where:

• S = {s1, s2, . . .} - a finite or recursively enumerable set of states

• A = {a1, a2, . . .} - a finite or recursively enumerable set of actions

• E = {e1, e2, . . .} - a finite or recursively enumerable set of events

• γ : S ×A× E → 2S - a state transition function

We can represent this system as a directed graph with S as a set of nodes and
with the set of edges D:

D = {(s1, s2)|s1, s2 ∈ S ∧ ∃a ∈ A, e ∈ E : γ(s1, a, e) = s2}

For convenience we introduce a special empty action called no-op and a neutral
event ǫ.

In planning we use the state transition system to model some particular en-
viroment. Through actions and events the state of the system can be changed.
While we can control actions, the events on the other hand are modeling intrin-
sic dynamic properties of the enviroment and thus can not be controlled. The
process of planning can be understood as search for a path in the graph induced
from the state transition system.

Now we will informally introduce the terms of planning domain, planning
problem, plan and planner with the first three of them ilustrated later by the
example 1.

5

Planning domain is a term refering to the state transition system Σ.

Planning problem can be informally defined as a triple P = (Σ, s0, G):

• Σ - a planning domain

• s0 - an initial state

• G - a specification of goal conditions (e.g. set of propositions which we want
to be true in a goal state)1

Plan can be understood as a sequence of actions when considering the special
case of sequential planning (i.e. no more than one action can be executed in a
time). In general, actions can be organized into other than sequential structures
in plan. A valid plan for a planning problem P = (Σ, s0, G) is any plan that
starts in s0 and conforms to G.

Planner is an entity which processes the planning problem P = (Σ, s0, G) as
an input and outputs a valid plan for P .

Example 1. In this example we will describe a simple planning domain. In
this domain we will have vehicles that can move between places and transport
packages. The situation is displayed in figure 1.1. The package is at loc1, the

Figure 1.1: Logistic domain example

truck is at loc2 and the airplane is at loc3. Locations loc1 and loc2 are connected
with a road (line) while locations loc2 and loc3 are equipped with airport and it
is possible for the airplane to move from one to another (dashed line) if there is
no storm between them.

There are 40 possible states for this system if we count 2 possible states of
the storm, 5 possible positions2 for the package and 2 possible positions for each
vehicle. Therefore in a state transition system Σ = (S,A,E, γ) for this domain
|S| = 2× 2× 2× 5 = 40.

To enumerate the full list of actions from A we would have to fill in all available
combinations of suitable3 constant symbols from figure 1.1 into these templates:

move [Veh i c l e] f rom [Locat ion] t o [Loca t ion]
l o a d [Package] a t [Loca t ion] t o [Veh i c l e]
un l oad [Package] a t [Loca t ion] f rom [Veh i c l e]

1Specification of goal can also include restrictions on the plan or optimalization constraints.
2loc1,loc2,loc3,truck and airplane
3i.e. truck or airplane in place of Vehicle; loc1,loc2 or loc3 in place of Location; etc.

6

In the end we would have to include also the empty action in the list.
There are only two possible events in E not mentioning the neutral event ǫ:

b e g i n s t o rm b e tw e en l o c 1 and l o c 2
end s t o rm be twe en l o c 1 and l o c 2

With the planning domain Σ defined, we can define a planning problem P =
(Σ, s0, G) by describing s0 and G. The initial state s0 can be any of the 30 states
in S (let us suppose that the state s0 is depicted at figure 1.1). The goal conditions
can be described for example with the requirement that the package has to be at
loc3.

If there was no storm we could have easily come up with the following sequen-
tional plan for the planning problem P :

mo v e t r u c k f r om l o c 2 t o l o c 1
l o a d p a c k a g e a t l o c 1 t o t r u c k
mo v e t r u c k f r om l o c 1 t o l o c 2
un l o a d p a c k a g e a t l o c 2 f r om t r u c k
mo v e a i r p l a n e f r om l o c 3 t o l o c 2
l o a d p a c k a g e a t l o c 2 t o a i r p l a n e
mov e a i r p l a n e f r om l o c 2 t o l o c 3
un l o a d p a c k a g e a t l o c 3 f r om a i r p l a n e

However the structure of the plan can be more complicated. For example if we
had to wait for the storm to end we would need to include an unknown number
of no-op actions into our plan.

Complexity of planning is mostly due to the size of the graph that can arise
from the state transition system Σ. We can easily come up with the planing
problem where the graph grows immensely beyond the possibilities of explicit
representation. If we describe a system similar as in the example 1 with the
road network of 100 places, 20 trucks and 10 packages we get a system with the
approximate number of states 6 ∗ 1060.

Three implicit representations used in planning are presented in the following
section.

1.2 Classical planning

The classical planning is a branch of planning that was historically established
in order to reduce the complexity of planning by introducing several restrictions
to the general model (state transition system). The restrictions with their brief
description4 are as follows:

1. Finite set of states - the set of states of Σ is finite

2. Full observability - planner has full information about the state of the
system Σ

4More details can be found in [20].

7

3. Deterministic actions - for every state s ∈ S and action a ∈ A the set
γ(s, ǫ, a) contains only one state if any.

4. Static system - the set E is empty. This means that there are no events
modelled in the system.

5. Restricted goals - the goal conditions for a planning problem are specified
by a set of states G. Any plan that brings the system into a state from G

is considered valid.

6. Sequential plans - the plan is defined as a sequence of actions.

7. Implicit time - actions and events have no duration

8. Offline planning - the state of the world which is modelled by Σ is not
changed during the planning proces

In clasical planning we define a restricted state transition system as Σ =
(S,A, γ) without the set of events which is empty as a consequence of the restric-
tion 4. The transition function γ is simplified to:

γ : S × A→ S

This system can be also represented as a directed graph with the set of nodes S
and the set of edges D:

D = {(s1, s2)|s1, s2 ∈ S ∧ ∃a ∈ A : γ(s1, a) = s2}

There are three representations for the classical planning which are proven to
be equivalent in terms of expressive power [20].

• Set theoretic representation

• Classical representation

• State variable representation

These representations will be reviewed in the following three sections. The
construction of a restricted state transition system Σ = (S,A, γ) is described in
each of them. The paragraph Set of states is always refering to S and in a similar
manner the paragraphs Set of actions and Transition function are refering to A

and γ. Any additional paragraphs are specific for the given representation.

1.2.1 Set theoretic representation

A representation that uses simple propositions for the planning domain descrip-
tion is called set theoretic. To create a set theoretic representation for particular
enviroment, one have to define a set of all atomic propositions L.

Set of states in the set theoretic representation is defined as S ⊆ 2L. The
propositions that are present in a state s ∈ S are true in this state.

8

Set of actions in the set theoretic representation contains elements defined as
triples: a = (precond(a), effect+(a), effect−(a)) each component being a subset
of L.

• precond(a) - a set of propositions called preconditions

• effect+(a) and effect−(a) - sets of propositions called effects such that

effect+(a) ∩ effect−(a) = ∅

Transition function for the set theoretic representation is based on set oper-
ations.

Let s ⊂ L be the current state of the system. If a ∈ A is an action that is
applicable in s (i.e. precond(a) ⊆ s) then:

γ(s, a) = (s ∪ effect+(a)) \ effect−(a)

If a is not applicable, γ(s, a) is undefined. There is also an important property
of γ: ∀a ∈ A applicable in state s ∈ S we can rely on γ(s, a) ∈ S.

1.2.2 Classical representation

This representation is based on first-order logic. It can be understood as a lifted
version of the set theoretic representation.

To describe the classical representation we need to define a FOL5 language L
which contains a finite number of relation symbols, no function symbols and a
finite number of constant symbols and variables. The language L is also further
extended in order to include a set of operators which is to be described below.

Set of states in the classical representation is defined as S ⊆ 2GL where GL is
set of all grounded atoms of language L.

Operators in the classical representation act as the templates for actions. Each
operator o ∈ O from the set of operators of the language L is defined as:

o = (name(o), precond(o), effect(o))

• name(o) is an expression representing the operator o. The expression takes
the form n(x1, . . . , xk) where n is a domain-unique operator name and
x1, . . . , xk are variables that appear in precond(o) or effect(o). The ar-
ity of the operator is represented by the number k.

• precond(o) and effect(o) are sets of literals from the language L. (i.e.
relations from L or their negations).

Set of actions in the classical representation is the set of all grounded instances
of every operator o ∈ O.

5First order logic

9

Atom negations. If B is a set of literals we will denote the set of all atoms in
B with B+ and the set of all atoms whose negations are in B with B−.

Transition function for the classical representation is very similar to the set
theoretic representation. Let s ⊂ GL be the current state of the system. If a ∈ A

is an applicable action (here we require precond+(a) ⊆ s and precond− ∩ s = ∅)
we can state the rest of the definition exactly as in the case of the set theoretic
representation. That is:

γ(s, a) = (s ∪ effect+(a)) \ effect−(a)

If a is not applicable, γ(s, a) is undefined.
The following property of γ:
∀a ∈ A applicable in state s ∈ S we can rely on γ(s, a) ∈ S

is preserved as well.

1.2.3 State variable representation

Motivation behind the state variable representation is explained in the exam-
ple 2.

Example 2. Using the classical representation, we can model the position of the
package from example 1 with the flexible relation:

packPos(P,X)

where P ∈ {package} and X ∈ {loc1, loc2, loc3, truck, airplane}. As we know
that the package can not be simultaneously at two positions we can describe its
position with the function:

packPos : P → X

The state variable representation is using functions instead of flexible relations.

Classes. Not all constant symbols used in the description of a planning domain
can be used in the same way. When we have used the term suitable constant
symbols in example 1 we had the concept of classes in mind. We will use the
following definition of class :

Definition. Class T is a set of constant symbols with common properties (e.g. a
class of locations, a class of packages etc.)
If c is a constant symbol we will refer to it as an object symbol and denote its
class as Dc.

Example 3. In the domain from the example 1 we can define following classes:

Location = { loc1 , loc2 , loc3 }
Vehicle = { truck , airplane }
Truck = { truck }
Airplane = { airplane }
Package = { package }

It is possible to define class as subset of another existing class (e.g. Truck and
Airplane).

10

With introduction of classes it is convenient to use variables that can have
range of possible values defined:

Definition. An object variable x is a variable with a range of values Dx defined
as a union of one or more classes.

Definition. A term in the state variable representation is either an object symbol
or an object variable.

Definition. A k-ary relation is defined as an expression r(a1, . . . , ak) where r is
a relation name and ai is its i-th argument.

For the i-th argument of relation r we define the range of values Dri as a
union of one or more classes.

A rigid relation is defined by r:

r ⊆ Dr1 × . . .×Drk

Example 4. As an example of a rigid relation we can consider the way how the
road network is defined in the example 1. It can be done with the following ternary
relation:

reachable(L1 − Location , L2 − Location , V − Vehicle)

The classes for each argument are listed after the arguments for simplicity.

Definition. A k-ary state variable is defined as an expression vs(a1, . . . , ak)
where v is a state variable name and ai is its i-th argument. Symbol s ∈ S

is refering6 to a state of the restricted transition system Σ.
For the i-th argument of the state variable v we define the range of values Dvi

as a union of one or more classes.
In a similar manner we define the range of the state variable v itself (denoted

as Dv).
A function is defined by v:

v : S ×Dv1 × . . .×Dvk → Dv

Example 5. The position of the package from the example 1 can be described
with the following state variable:

packagePos : Package→ Location ∪ Vehicle

The state variable has only one argument with range of values defined with the
class Package and the range of the state variable itself is defined by the union of
two classes (Location and Vehicle).

Definition. An operator is defined as a triple

o = (name(o), precond(o), effect(o))

where:

• name(o) is an expression n(u1, . . . , uk) where n is a unique name of o

and u1, . . . , uk are object variables that appear anywhere in precond(o) or
effect(o).

6If omited, the expression v(a1, . . . , ak) refers to the current state of Σ

11

• precond(o) is a set of expressions on state variables and relations

• effect(o) is a list of value assignements to state variables in the form:

v(x1, . . . , xn)← x

Example 6. We will refer again to the example 1 for context. As an example
of planning operator in the state variable representation we will describe operator
LoadPackage in the following pseudo-code:

Operator[name: loadPackage (V , P)
precond: vehicleLoc(V) = packagePos(P)
effect : packagePos(P) ← V]

We have used two state variables vehicleLoc and packagePos in the set of ex-
pressions precond(loadPackage) to ensure that the vehicle and package are at
the same location. The assignment of V to the state variable packagePos(P)

describes actual act of ”loading” the package P to the vehicle V.

Language L used by the state variable representation consists of these compo-
nents:

• C - a set of object symbols

• V - a set of object variables

• R - a set of relations

• X - a set of state variables

• O - a set of operators

Example 7. In the following code we will describe the language L for the planning
domain from the example 1:

; set of object symbols
; is union of a l l classes { Location ∪ Vehicle ∪ Package ∪ Truck ∪

Airplane }
C = { loc1 , loc2 , loc3 , truck , airplane , package }

; set of object variables
V= { L1 , L2 , L3 , L4 − Location ,

V1 , V2 , V3 , V4 − Vehicle ,
P1 , P2 − Package }

; set of relations
R= { reachable(L1 , L2 , V1) }

; set of state variables
X= { vehicleLoc(truck) ∈ Location

vehicleLoc(airplane) ∈ Location
packagePos(package) ∈ Location ∪ Vehicle }

; set of operators
O= {

12

Operator[name: loadPackage (V2 , P1)
precond: vehicleLoc(V2) = packagePos(P1)
effect : packagePos(P1) ← V2] ,

Operator[name: unloadPackage (V3 , P2)
precond: packagePos(P2) = V3

effect : packagePos(P2) ← vehicleLoc(V3)] ,

Operator[name: moveVehicle (V4 , L3 , L4)
precond: vehicleLoc(V4) = L3 , reachable(L3 ,L4 ,V4)
effect : vehicleLoc(V4) ← L4] }

Set of states in the state variable representation is defined as:

S ⊆
∏

x∈X

Dx

A state s ∈ S is defined by the current values of all state variables from X :

{(x = c)|x ∈ X ∧ c ∈ Dx}

Set of Actions in the state variable representation contains all grounded op-
erators from O. If o ∈ O is an operator with name(o) = n(u1, . . . , uk) than we
can obtain its grounded version by assigning an object symbol bi ∈ C to object
variable ui for i ∈ 1, . . . , k. We always suppose that Dbi ⊆ Dui.

Transition function in the state variable representation: Let s ∈ S be the
current state of Σ. If a ∈ A is applicable (i.e. all expressions on state variables
from precond(a) holds in s) then the state γ(s, a) can be obtained by performing
all assignments from effect(a): If there is an assignment v(x1, . . . , xn) ← x in
effect(a) we change the value of v:

vγ(s,a)(x1, . . . , xn) = x

1.3 Extensions of classical planning

In this section other branches of planning are mentioned briefly. It is beyond
the scope of this work to go into details. Nevertheless many challenges arise
from these areas and there is a good reason to keep their existence in mind
while designing a new approach for modelling of planning problems. Real world
applications of automated planning often fall into one or more of the following
categories.

1.3.1 Temporal planning

When the restriction 7 is relaxed we talk about temporal planning. With the
non-zero duration of actions and events comes the need for representation of time
and parallel plans are possible.

13

1.3.2 Planning with numeric fluents

With the introduction of numeric fluents the restriction 1 has to be relaxed.
Numeric resources in particular are very important in real world applications.

1.3.3 Planning with uncertainty

Planning systems used in autonomous robots or vehicles are often relaxing restric-
tion 3 in order to model realistic systems. Probabilistic methods are incorporated
into planners for domains where the results of actions can not be determined ex-
actly.

1.3.4 HTN Planning

The abbreviation HTN stands for Hierarchical Task Network. It refers to ap-
proach that uses a similar representation as in the case of the classical planning.
The main difference is in the planning process itself. A goal for an HTN-planner
consists of set of tasks which can be decomposed into subtasks by using methods
described along with other input data. This decomposition proces stops at the
level of primitive tasks. These primitive tasks are then selected according to the
methods in order to perform the original task.

14

2. Knowledge representation

The question how do we represent knowledge in the Automated Planning is not
a simple one. We need to be more specific in order to answer correctly.

In the begining we need to get some formal description of ”the world”. There
are descriptive languages created for this purpose. These languages are also
used to describe input data for planners. The term input data is refering to the
description of the planning domain and the planning problem from chapter 1.

In the next step, the input data are usually processed in order to create the
grounded representation of the given planning problem. This grounded represen-
tation is encoded into data structures used by the planner itself.

The last step would include plan validation and interpretation which is beyond
the scope of this work. Therefore we will focus on the first two steps.

Transformation of the input data to the data structures is an important pre-
processing phase of the planning process. The overall complexity of this prepro-
cessing phase depends on the choice of the language for domain description on
one side and target planner on the other.

This chapter presents some of the main input data languages used today as
well as some of the principles for planning problem encoding. We will make the
choice of the preferred language and data representation for this work in the end
of this chapter together with overall summary.

2.1 Planning domain modelling

In this section we will review some languages used for planning domain modelling.
Despite our prevailing interest in classical planning we present also languages that
are specialized in temporal planning with the use of resources.

2.1.1 PDDL

Language PDDL (Planning Domain Definition Language) was developed in 1998
[19] as a problem-specification language for the AIPS-98 planning competition.
It has been used as a standard language for the planning competitions ever since
and has became a standard language for representation and exchange of planning
domain models. The key design principle to keep the language neutral is best
stated in a motto ”physics, not advice” [18].

The language is using lisp-like syntax in order to be easily parsed by planners
for further processing. The definitions of planning domain and planning problem
are separated into different files which makes it possible to define multiple plan-
ning problem statements based on a single domain definition. The expressive
power of the language can be controlled by specifying the set of requirements
(:strips is the default). This feature makes it possible for the planners to use
only a subset of PDDL’s language constructs usually resulting in simplified code
used for domain and problem encoding. Also this provides a natural way one can
use to specify the class of planning problems by naming the used requirements
and PDDL version.

15

(define (domain Example)
(: requirements : strips : typing)
(: types

Package Location Vehicle − object
Truck Airplane − Vehicle

)
(: predicates

(vehicleAt ?a − Vehicle ?b − Location)
(reachable ?a − Location ?b − Location ?c − Vehicle)
(packageAt ?a − Package ?b − (either Vehicle Location))

)
(: action moveVehicle

:parameters (?V − Vehicle ?L1 − Location ?L2 − Location)
: precondition (and

(vehicleAt ?V ?L1)
(reachable ?L1 ?L2 ?V)

)
: ef fect (and

(vehicleAt ?V ?L2)
(not (vehicleAt ?V ?L1))

)
)
. . .

Figure 2.1: Example domain in PDDL

Certain modifications were made since the language was introduced. A short
list of the main language extensions follows:

• PDDL 2.1: numeric expressions, metric, durative actions [8]

• PDDL 2.2: derived predicates, timed init literals [6]

• PDDL 3.0: constraints on plan trajectories [10]

Classical planning domains in PDDL are usually modelled by defining the
classes of objects, the relations between them and the actions with preconditions
and effects. An example of PDDL description of planning domain from example
1 is at figure 2.1.

2.1.2 IxTeT

IxTeT (Indexed Time Table) is a plan space temporal plannning system that
can work with uncertainties and resources. It features a formalism for planning
domain modelling.

According to [16] this formalism usesmulti-valued state attributes and resource
attributes to describe the state of system. These attributes can be temporally
quallified. The former with the predicates hold (value asserted over an interval)
and event (value is instantly changed) whereas the latter with the predicates use,
consume and produce.

16

To describe a change in the enviroment, the IxTeT formalism provides syntax
for describing planning operators that can be temporally binded to time-points.
Operators can define sub-tasks (HTN planning). In each operator, assertions are
stated to decide applicability, changes are described and sub-tasks specified.

2.1.3 NDDL

NDDL is a domain description language used by EUROPA which is a frame-
work for modelling and solving problems in planning, schedulling and constraint
programming developed by NASA [4].

The language has a syntax that bears close resemblance to C++ programming
language. We can define classes if:

• there is a need to refer to problem specific objects in operators (e.g. loca-
tions - each problem can have a different map)

• we need to refer to objects with internal structure (for example a Path can
have start, end and lenght)

• we need objects that change their state in time (i.e. agents that move
between locations)

Once defined, a class can be inherited and/or reused by other classes. The fol-
lowing code example shows the definition of class Rover [3]:

class Rover {
Commands commands;
Navigator navigator ;
Instrument instrument;
Battery mainBattery;

Rover(Battery r){
commands = new Commands() ;
navigator = new Navigator () ;
instrument = new Instrument() ;
mainBattery = r ;

}
}

There is no concept similar to planning operators in this language. The model
of planning domain using NDDL relies on temporally anotated predicates (to-
kens) and timelines. Changes in the system are constrained by special rules on
predicates.

2.1.4 AML

AML is a modelling language used in ASPEN which is another system for plan-
ning and schedulling developed by NASA [23]. The following language constructs
play the key role in the planning domain description:

• State timelines - evolution of a discrete state variable over time

• Resources and reservations - modelling of resources available in the domain

17

• Activities - planning operators with possible bindings in time

• Temporal constraints - modeling of relations between the activities

2.1.5 ANML

Developement of the Action Notation Modelling Language started in 2006 [26].
The language aims to be an alternative to all previously mentioned languages. It
supports both generative and HTN planning models and it is possible to translate
ANML to PDDL in most cases.

Using the language we are able to model domains with usage of resources,
temporally qualified actions and (possibly numeric) function symbols that can
take objects as arguments (state variables). Both numeric and object variables
can be declared. The language allows definition of vectors.

Each action in ANML has its name, the list of parameters (optional), duration
and might also define its internal variables and functions. Here is a code sample
of an ANML action for an autonomous robot:

action move(location from to) {
duration := 5;
[a l l] {

batterycharge > 2.0;
position == from :−> to ;
batterycharge :consumes 2.0;

}
}

The following temporally qualified statements can be contained in an ANML
action:

• condition - expression on variables
batterycharge > 2.0;

• effect - variable assignments
position :-> to

• change statement - relative changes of resources
batterycharge :consumes 2.0;

In the example above a condition and effect are combined into single line:
position == from :-> to

Temporal qualification is specified for whole blocks of statements with an interval
(e.g. [all]) or a single time point. More than one block can be specified in one
action.

2.2 Planning problem encodings

Once described in some modelling language a problem has to be encoded into
some structure that can be used by a planner. This work is not dealing with the
planning process performed by planners but we are interested in possibilities for
planning problem encoding. In this section we list some of these possibilities.

18

2.2.1 Propositional encoding

Problems from classical planning are easily encoded as sets of propositions. This
approach is implementing the set theoretic representation as mentioned in 1.2.1.
Planners using this representation perform set operations defined by the transition
function γ to explore the state space of given problem.

The state of the logistic domain from the example 1 can be encoded1 in the
set theoretic representation as the set of atoms:

s = { package loc1 truck loc2 airplane loc3
truck route loc1 loc2 truck route loc2 loc1
airplane route loc2 loc3 airplane route loc3 loc2 }

Advantage of the propositional encoding is in its simplicity.

2.2.2 Multivalued state variables

Encodings which use multivalued state variables are growing popular in classical
planning comunity. The SAS+ formalism [2] in particular has inspired many
researchers ([12],[5] or [28]). The idea of the SAS+ formalism is very close to the
state variable representation mentioned in 1.2.3 since in both cases the state of
the system is determined by a finite set of state variables assignments.

The SAS+ formalism uses state variables instead of atomic propositions as
opposed to the set theoretic representation or the classical representation. The
advantage is in implicit representation of mutual exclusion of some facts as ex-
plained in example 2. Another difference is in the definition of operators. Instead
of the preconditions and effects there are also prevailing conditions (i.e. precon-
ditions that are not changed in the operator).

Finite state automata. An approach based on the FSA is described in [28].
The idea is to use a FSA for representation of each state variable from a SAS+
representation of planning problem. Not only the representation is using finite
state automata equal to the SAS+ representation but it is also possible to combine
those automata together.

Although the question which automata should be combined is not fully an-
swered yet this approach has opened a new possibility for translation of proposi-
tional domains into SAS+ formalism. The method presented in [28] uses binary
FSA as a start point.

2.3 Summary

Languages. All presented languages has their strenghts and weaknesses. They
have been developed for different purposes and there is no way to select the best
one. We can however notice that on the one side we have languages developed
with certain domains in mind (NDDL,AML) and on the other side those devel-
oped for general purpose planning (PDDL,IxTeT,ANML).

1In classical planning - i.e. without events (storm)

19

For the purpose of this work we will prefer the language PDDL. The main
reason for this decision is the fact that it is the most widespread language used
by the planning comunity.

Encodings. The presented approaches to planning problem encoding are se-
lected to represent the two main streams used in the classical planning. We are
aware of other possibilities in existence such as planning as SAT [15], planning as
PT-net unfolding [14] or planning using BDD [27]. However the encoding using
multivalued state variables was the one we found most inspirative for our work.

Combination. In our new approach we would like to design planning domains
using directly multivalued state variables instead of propositions. Our motivation
is twofold:

1. domains created in this way should be easily translated to the SAS+ rep-
resentation

2. translation from the state variable representation into propositional repre-
sentation is less difficult than the reversed direction. Due to this fact it
should be easy to retain compatibility with PDDL.

20

3. Knowledge modelling

If we decide upon the input data format there is still one question left:

How do we obtain the input data?

There is undeniable progress in the field of the automated planning. Planners
are capable of solving various problems more and more efficiently and there is a
growing number of applications for the planning technology in various areas of
human activity. The input data modelling plays the key role here.

Our question can be answered by knowledge engineering which is an essential
field of the AI research. The knowledge modelling for the automated planning in
particular is discussed in this chapter.

According to [32] the process of design for planning domain models has fol-
lowing phases:

1. Requirements Specification

2. Knowledge Modelling

3. Model Analysis

4. Deploying model to planner

5. Plan synthesis

6. Plan Analysis and Post-Design

There are various tools in existence which are designed to assist through vari-
ous phases of this design process. Some of them are specialized to certain expert
areas where there is a need for exploiting benefits of planning technology such as
bussiness process modelling [11]. In the following text we do not mention these
specialized tools since we are interested mostly in general-purpose planning.

In the following sections we will present the two most significant contemporary
knowledge engineering tools used for the general-purpose planning. In the end of
this chapter we will focus on their solution of the phase 2.

3.1 GIPO

Historically the tool GIPO1 is one of the first graphic tools used for building
planning domain models. The program GIPO III, which features an experimental
GUI and tools environment, won the IKEPS competition in the class of general
Knowledge Engineering Tools for AI Planning in 2005.

The GIPO employs an object centric view through the planning domain de-
sign proces. The basic assumption of the object centric view is that within any
problem scenario that presents a planning problem there will be objects that are
changed in some way during the execution of plans [24]. The language OCLh [25]
is employed in the program for the internal data representation as a consequence.

1
Graphical Interface for Planning with Objects

21

The program is implemented in Java programming language and its interface
supports the two main operating modes. In the first mode user can design only
the classical planning domains whereas in the other mode the HTN features are
enabled to support HTN planning.

As for the planning domain design there is more than one way to acomplish
the task using various integrated tools and editors. The starting point for each
of them is the definition of so called sorts. The objects within the same sort may
undergo same changes and they also posses equal sets of properties.

Let us consider for example sort vehicle with cars as objects. After defining
the sort in GIPO we would be able to define the states such as parked and
on_the_way or the properties like fuel_level.

The process would continue with design of state machines and operators.
Finally, GIPO provides tools for task definition, domain validation and manual
plan stepper as well as an interfece through which the external planners can be
called.

3.2 itSIMPLE

The tool itSIMPLE was first introduced as a tool for modelling planning domains
in 2005 [33]. Since then the tool evolved into integrated enviroment which can be
considered the leading application for planning domain design today. It is under
active developement and there are notable achievements in its history.

For example the enviroment was used for the design and investigation of a
real application of planning technology in the petroleum industry [31]. Although
some simplifications were made to meet the abilities of used planners, the overall
approach provided promising results. From the knowledge engineering point of
view the itSIMPLE proved to be a capable tool for the design of the complex
planning domain which featured time, numeric resources, quality metrics and
optimalization.

The domain modelling integrated enviroment itSIMPLE which is currently
available in version 3.5 [29] is written in Java programming language and pro-
vides complex GUI which supports planning domain design and evaluation in
all the five stages: requirements specification, modelling, model analysis, testing
with planners and plan evaluation [30]. During this process, the UML diagrams
are used to present modelled domain to user. Features like export into PDDL
and domain model analysis with Petri nets are available while using XML for
converting one representation to another.

3.3 Lessons learned

The key task of the knowledge modelling phase is to capture the information
about possible changes in target dynamic system.

Therefore we have focused on the methods for change-modelling used by the
presented KE tools. BothGIPO and itSIMPLE use the concept of operators. The
main difference is in the way how they describe them. From the user perspective
the description of the operators is the most complex task no matter which tool

22

we use. In the following two sections we will summarize our experience with the
operator description in both presented tools.

3.3.1 Operators in itSIMPLE

In the itSIMPLE, the operators are declared in the class diagram. An operator
is later defined in the state machine diagrams of classes changed by the operator.
Preconditions and effects of the operator are defined with a formal constraint
language of UML. The constraints are entered by user in the state machines
diagrams. All the features of the PDDL2 language can be used, but there is a
limit on the number of arguments for the predicates.

The maximal arity of predicate is limited to 2 as a consequence of the way
predicates are defined. We can either define a relation between two classes or
declare an attribute for a class. Only two entities figures in both cases.

The change can be represented either with flexible relations or fluents (at-
tributes and most relations are translated as object fluents when exported to
PDDL version 3.1).

Summary.

• Although there are many advantages arising from the usage of UML dia-
grams we found the fact that the operator definition is scattered in many
diagrams confusing.

• The limited arity of the predicates certainly does not pose a constraint to
expressivity but we believe that certain constructs could be expressed in a
more compact way if we could use predicates with more arguments.

• It is convenient to use object fluents instead of propositions in most cases.

3.3.2 Operators in GIPO

The operators in GIPO are described as primitive transitions3. To define the
primitive transitions we have to define states for each sort. The state of the
sort is described by a set of predicates and these sets are used to describe pre-
vailing conditions, necessary changes and conditional changes in each primitive
transition.

Another way is to define state machines for each object sort in object life
history editor. All these state machines are displayed in a special diagram with
two kinds of vertexes and three kinds of edges. This diagram can be exported to
OCL.

Only flexible relations can be used for description of changes in GIPO.

Summary.

• Usage of the integrated tools requires complex understanding of the pro-
gram.

2up to the version 3.1
3This corresponds with the primitive tasks in HTN planning mentioned in the first chapter.

23

• Description of change with the flexible relations is often cumbersome and
complicated even for simple problems.

• The state machines employed in the object life history editor can be repre-
sented with the state variables.

24

4. State variable based modelling

In this chapter we would like to propose a new approach to modelling of planning
problems based on the concept of state variables. We will try to explain our
motivation in the following paragraphs.

Why state variables ? There is a growing number of planners using the SAS+
representation. Since the process of extracting the state variables from the propo-
sitional representation is complicated it would be of great benefit if we could
bypass it.

Both of the major KE tools presented (GIPO and itSIMPLE) provide a way
how to represent the concepts which are very closely bound to the concept of
multivalued state-variables when modeling planning domains (GIPO operates on
state machines and itSIMPLE uses state machine diagrams). This lead us to the
conclusion that the state variables are important building blocks for the majority
of problems in contemporar planning.

The concept of state variables is also the half-way between the traditional
proposition-based approach of the classical planning and the timeline based ap-
proach used by planning groups in space research. An approach based on state
variables might help to fill the gap between the two branches.

Why do we need a new approach ? All KE tools mentioned so far are
designed to guide the user through the process of planning domain design and let
her input some knowledge which is later compiled into data formats processed by
a particular planner. There are two points to be noted:

• There is no unified way for eliciting knowledge from the user.

• There is a standard language (PDDL) used by majority of planners.

This means that every KE tool is forced to conform to the standard, set by PDDL,
on one end and has no frame to fit in on the other. If we start from the user
we end up translating ”human readable knowledge” into PDDL. This task is not
easy because we do not exactly know how does the ”human readable knowledge”
looks like.

We propose to start from the other end and seek a suitable formalism on
the way from PDDL to ”human readable knowledge”. In this way we hope to
find a new perspective in planning problem modelling. Rather than providing
an user interface we aim to provide a well defined platform for planning problem
modelling on which various user interfaces can be based.

4.1 Formalism description

The proposed formalism is based on the state variable representation from clas-
sical planning. The main goals to achieve were:

• clear distinction between the planning domain and the planning problem

• expressive power comparable to STRIPS

25

• implicit support for typing

• space for further extension of expressive power

This section provides a complete description of the proposed formal model in-
cluding several examples to demonstrate the modelling framework.

4.1.1 Planning domain

In our formalism, the planning domain is defined as Σ = (H,R,V,O) where:

• H - a class hierarchy

• R - a set of declarations of rigid relations

• V - a set of declarations of state variables

• O - a set of planning operators

The class hierarchy defines the classes1 of objects and variables in the plan-
ning domain. The relevant definitions are as follows:

Definition 1. Class

Class T is defined as a triple (name(T), subc(T), const(T)) where

• name(T) is a class name unique in the domain

• subc(T) is a set of classes (subclasses of class T)

• const(T) is a set of problem independent constant symbols

Both sets subc(T) and const(T) can be empty.
Classes are structured into a tree hierarchy. A subtree of class T is a set of

classes denoted subtree(T) and defined recursively as:

subtree(T) = {T} ∪
⋃

R∈subc(T)

subtree(R)

For each two classes A and B in the hierarchy we demand that one of the
following conditions holds:

1. B ∈ subtree(A)
2. A ∈ subtree(B)
3. subtree(A) ∩ subtree(B) = ∅

When convenient we will use name(T) instead of T for simplicity. This is always
possible without any confusion because the class names are unique.

Definition 2. Root class

Root class in a planning domain Σ is a special class denoted TΣ with

name(TΣ) = object

The class hierarchy H of Σ is always defined as:

H = subtree(TΣ)

26

object + Vehicle + Truck
| + Airplane
+ Package
+ Location

Figure 4.1: Tree structure

Example 8. A tree structure for the logistic domain from example 1 is shown in
figure 4.1.

Suppose that Σ = (H,R,V,O) is our logistic domain. The class hierarchy H
with the tree structure from the figure 4.1 is:

H = {Truck, Airplane, Package, Location, V ehicle, object}

with the following class definitions:

(Truck, ∅, ∅)
(Airplane, ∅, ∅)
(Package, ∅, ∅)
(Location, ∅, ∅)

(V ehicle, {Truck, Airplane}, ∅)
(object, {V ehicle, Package, Location}, ∅)

Notice that this example does not contain any problem independent constants
and consequently:

∀C ∈ H : const(C) = ∅

If we introduce a new class gate into our logistic domain to control ground trafic
between places we may need to define class gate_state like this:

(gate state, ∅, {open, closed})

and include it in the tree structure by redefining the root class:

(object, {V ehicle, Package, Location, gate state}, ∅)

Constants open and closed in the class gate state are problem independent.
They retain their semantics in any planning problem related to Σ.

Relation declarations in our formalism represent the rigid relations in the
domain.

Definition 3. Declaration of relation

Declaration of relation with arity n is a tuple:

r = (name(r), args(r))

where:

• name(r) is name for relation r; unique in domain Σ

1In similar way as types are defined in :types section of a PDDL domain definition file

27

• args(r) is vector of arguments (a1, . . . , an) where ∀i : ai ∈ H

Example 9. Let us consider a simple planning domain Σ with a robot that can
move from one location to another. Let the class hierarchy of Σ be:

H = {(robot, ∅, ∅), (location, ∅, ∅), (object, {robot, location}, ∅)}

Now let us declare a rigid relation r:

r = (name(r), args(r))
name(r) = Adjacent

args(r) = (Location, Location)

Declarations of state variables are included to allow the description of the
dynamic properties of the planning domain. Each state variable has its range of
values which can change throughout the planning process.

Definition 4. Declaration of state variable

Declaration of state variable with arity n

is a triple:
v = (name(v), args(v), range(v))

where:

• name(v) is a name for the state variable v; unique in domain Σ

• args(v) is a vector of arguments (a1, . . . , an) where ∀i : ai ∈ H

• range(v) is set of classes such that range(v) ⊆ H

Example 10. State variables can be used to model dynamic properties of one or
more objects.

Let us first reconsider the robot domain from example 9 to show how we can
model a property of a single object.

We can declare the following state variable v in the domain:

v = (name(v), args(v), range(v))
name(v) = robotLocation

args(v) = (Robot)
range(v) = {Location}

This declaration yields a variable to store information about the robot’s position
for every robot defined later in a planning problem.

For our next example let us describe a building kit domain. In a building kit
domain we have components that can be connected together through joint points.
Each component has a fixed number of joint points on its surface. Our example
state variable can be declared using two classes (Joint, ∅, ∅)
and (ConnectionState, ∅, {connected, disconnected}):

v = (name(v), args(v), range(v))
name(v) = jointConnection

args(v) = (Joint, Joint)
range(v) = {ConnectionState}

28

This declaration yields a state variable for every two joints in the domain. Using
this description we can build compounds from available components while the state
of the system is described with the state variables based on the declaration of
jointConnection.

Object variables and terms are used in our formalism instead of variables
and constants.

Definition 5. Term

A term is defined as an entity with a reference to a class from H. If t is a
term we denote its class as L(t).

This definition of term leaves our formalism open for further expansion. An
example will be mentioned in the end of this chapter (section 4.2.2).

Definition 6. Term - class compatibility

If T ∈ H and t is a term, we say that t is compatible with T iff:

L(t) ∈ subtree(T)

Definition 7. Term - class set compatibility

If M ⊆ H is a set of classes we say that t is compatible with M iff:

∃T ∈M : L(t) ∈ subtree(T)

Remark. Here we would like to stress the following facts:

• Every constant symbol in our formalism is a term.

• If T ∈ H and the set of problem independent constants const(T) is not
empty, than:

∀c ∈ const(T) : L(c) = T

Definition 8. Object variable

An object variable b is variable with a range D(b) ⊆ H. Any term t that is
compatible with D(b) can be assigned to b.

We will denote the term assigned to b as b̄.

Definition 9. Object variable - class compatibility

An object variable b is compatible with class T ∈ H iff:

D(b) ⊆ subtree(T)

Expressions which refers to declarations of relations and state variables de-
scribed earlier, are the building stones of the operators in our formalism. There
are two kinds of expressions:

• Relation expressions are based on declarations from R

• Transition expressions are based on declarations from V

29

Definition 10. Relation expression

A Relation expression E based on n-ary relation declaration r ∈ R is defined
as a tuple:

E = (r, (x1, . . . , xn))

where (x1, . . . , xn) is a vector of object variables. If args(r) = (a1, . . . , an) we
demand that:

∀i ∈ 1, . . . , n : xi is compatible with ai

We will use notation (name(r), (x1, . . . , xn)) instead of (r, (x1, . . . , xn)) when con-
venient.

Definition 11. Transition expression

A Transition expression E based on n-ary state variable declaration v ∈ V is
defined as a tuple:

E = (v, (x1, . . . , xn, f , t))

where (x1, . . . , xn, f , t) is a vector of object variables. If args(v) = (a1, . . . , an)
we demand that:

∀i ∈ 1, . . . , n : xi is compatible with ai

For classes of two last object variables we demand only compatibility with at
least one class from range(v):

∃T1, T2 ∈ range(v) : f is compatible with T1 ∧ t is compatible with T2

We will use notation (name(v), (x1, . . . , xn, f , t)) instead of (v, (x1, . . . , xn, f , t))
when convenient.

Among the transition expressions we recognize two special cases:

Definition 12. Expression types

Let v ∈ V be n-ary state variable declaration.

• A prevailing transition expression is (v, (x1, . . . , xn, e, e)

• A non-prevailing transition expression is (v, (x1, . . . , xn, e, f) where e 6= f

Operators describes changes, which may occur in the planning domain, on
abstract level.

Definition 13. Operator

Operator o ∈ O is defined as a tuple o = (name(o), args(o), expr(o)) where:

• name(o) is name of planning operator which is unique in domain Σ

• args(o) is set of all object variables used in expressions in operator o

• expr(o) is a set of expressions

30

Example 11. In this example we provide a complete description2 of the planning
domain from example 1. In the following text we describe the content of each set
H,R,V and O.

For the class hierarchy H we will refer to the example 8 without the class T6

which was added only to demonstrate the concept of problem independent con-
stants.

The set R of relation definitions in this planning domain contain only one
relation:

r = (name(r), args(r))
name(r) = reachable

args(r) = (Location, Location, V ehicle)

The set V of state variable declarations contains two state variables:

v1 = (name(v1), args(v1), range(v1))
name(v1) = packagePos

args(v1) = (Package)
range(v1) = {Location, V ehicle}

v2 = (name(v2), args(v2), range(v2))
name(v2) = vehiclePos

args(v2) = (V ehicle)
range(v2) = {Location}

And finally the set of operators O which contains three operators:

definition comment

o1 = (name(o1), args(o1), expr(o1))
name(o1) = moveV ehicle

args(o1) = {L1, L2, V } {Location, Location, V ehicle}
expr(o1) = {(r, (L1, L2, V)), reachable(L1, L2, V)

(v2, (V, L1, L2))} vehiclePos(V) : L1→ L2

o2 = (name(o2), args(o2), expr(o2))
name(o2) = loadPackage

args(o2) = {P, L, V } {Package, Location, V ehicle}
expr(o2) = {(v2, (V, L, L)), vehiclePos(V) : L→ L

(v1, (P, L, V))} packagePos(P) : L→ V

o3 = (name(o3), args(o3), expr(o3))
name(o3) = unloadPackage

args(o3) = {P, L, V } {Package, Location, V ehicle}
expr(o3) = {(v2, (V, L, L)), vehiclePos(V) : L→ L

(v1, (P, V, L))} packagePos(V) : V → L

4.1.2 Planning problem

The planning problem relevant to a planning domain Σ = (H,R,V,O) is defined
as 5-tuple PΣ = (C,D,F , I,G).

• C - a typed set of constant symbols

2We left aside the storm since we do not model events.

31

• D - a set of relation definitions

• F - a set of state variable definitions

• I - an initial state

• G - a set of goal conditions

All examples in this section are refering to the planning domain definition in
example 11 and situation from figure 1.1.

Constant symbols defined in the planning problem PΣ are representing par-
ticular objects or properties of the world described by the planning domain Σ.
Let B be the set that contains all constant symbols defined in PΣ

3.

The set C is defined as:

C = B ∪ {
⋃

T∈H

const(T)}

Sometimes we need to refer to the set of constants that are compatible with
a particular class T :

C〈T 〉 = { c | c ∈ C ∧ L(c) ⊆ subtree(T)}

It is also convenient to define a set of constants that are compatible with a
set of classes Q ⊆ H:

C[Q] =
⋃

T∈Q

C〈T 〉

Example 12. The set C contains the following constant symbols:

constant symbol c L(c)

package Package

truck Truck

airplane Airplane

loc1 Location

loc2 Location

loc3 Location

Definition of relations provides semantics for the relation declarations from
R. As it was said before, the relations describes the rigid properties in the
planning domain. Once they are defined in the planning problem they do not
change through the rest of the planning process.

Definition 14. Relation based on declaration

Let r be n-ary relation declaration r ∈ R. With C defined and

args(r) = (a1, . . . , an)

we can denote n-ary relation based on r as αr:

αr ⊆ C〈a1〉 × . . .× C〈an〉

3We suppose that ∀c ∈ B : L(c) ∈ H

32

The set D is defined as:

D = { αr | r ∈ R}

Example 13. There is only one relation in our domain. Since it is a ternary
relation we will define it using a table with three columns. These columns will be
populated with the constant symbols from C. A line in the table will represent a
triple of constant symbols that are in the relation. Those triples not in the relation
are not included in the table.

a1 a2 a3

loc1 loc2 truck

loc2 loc1 truck

loc2 loc3 airplane

loc3 loc2 airplane

The relation presented in the table defines the route network depicted in figure
1.1.

Definition of state variables There is one big difference between the relations
and the state variables. If we declare a relation, there is a straightforward way to
define it once we know all the constant symbols from C.

Unfortunatelly in the case of state variables things are more complicated. By
declaring a state variable we are merely creating a template based on which many
state variables can be defined.

There is possibility of combinatorial explosion if we declare a state variable
with more than one argument as in the second part of example 10. This is due
to the fact that the number of the state variables defined in the planning problem
depends on the size of C.

For example if there is a state variable (stateV ar, (object, object, object)) de-
clared in V then for a planning problem with |C〈object〉| = n, there would be n3

state variables stateV ar in the set F .

Definition 15. State variables

Let v ∈ V be n-ary state variable declaration. A set of all matching n-tuples
that are compatible with args(v) = (a1, . . . , an) is defined as:

Mv = { (c1, . . . , cn) | ∀i ∈ 1, . . . , n : ci ∈ C〈ai〉}

For each n-tuple of constants (c1, . . . , cn) ∈ M a state variable based on v

denoted β(c1,...,cn)
v is defined as:

β(c1,...,cn)
v ∈ C[range(v)]

In the end we define a set of all state variables yielded by v:

χv = { β
(c1,...,cn)
v | (c1, . . . , cn) ∈ Mv}

When it is appropriate we will use a shortcut β~c
v or just β instead of β(c1,...,cn)

v .

33

The set F is defined as:
F =

⋃

v∈V

χv

Example 14. There are three state variables in the set F . One of them is yielded
by the constant symbol package and the other two comes from truck and airplane:

β~c
v ∈ C[range(v)]

packagePos(package) ∈ {loc1, loc2, loc3, truck, airplane}
vehiclePos(truck) ∈ {loc1, loc2, loc3}
vehiclePos(airplane) ∈ {loc1, loc2, loc3}

Initial state and goal Definition 16. Assignment of value to state

variable

Let β~c
v ∈ F be a state variable and d ∈ C[range(v)] be a constant. An

assignment of d to β~c
v is defined as a pair:

(β~c
v, d)

We will use following notation:
β~c
v = d

Definition 17. System state

Any state of the system determined by the domain Σ and the planning problem
PΣ can be completely descibed by a set of assignments Q such that:

∀β~c
v ∈ F ∃!d ∈ C[range(v)] : (β

~c
v = d) ∈ Q

We will refer to any set Q that conforms to the previous condition as a system
state.

The set I is a system state.
It is convenient to define a set of assignments that use a common state variable.

Let β~c
v ∈ F be the state variable. The set of assignments for β~c

v is defined as:

Mβc
v
= {(βc

v = d)|d ∈ C[range(v)]}

The set G is a non-empty set of assignments that uses only state variables
from a set K:

K ⊂ F : G =
⋃

β∈K

Mβ

It is possible for one state variable to have more than one assignment in the
set G. Therefore we need to describe which system states conforms to the set G
in order to be labeled as goal states.

Definition 18. Goal state

Let Σ be a planning domain and PΣ = (C,D,F , I,G) be a planning problem.
Let Q be a system state. We say that Q is a goal state iff:

∀β ∈ F ,Mβ ⊆ G : Mβ 6= ∅ ⇒ ∃a ∈Mβ : a ∈ Q

34

Example 15. In this example we define the sets of assignments I and G. The
set I contains an assignment for every state variable from F :

I

packagePos(package) = loc1
vehiclePos(truck) = loc2
vehiclePos(airplane) = loc3

The set G contains only one assignment which represents our demand to transport
the package to the location loc3:

G

packagePos(package) = loc3

4.2 Properties of new formalism

In this section we will first prove that our new formalism is powerful enough to
describe a restricted transition system from chapter 1. We will also describe the
main differences between our formalism and the representations from classical
planning.

4.2.1 Expressivity

Theorem 1. Any pair of planning domain Σ = (H,R,V,O) and planning prob-
lem PΣ = (C,D,F , I,G) as defined in this chapter, can be reduced to a restricted
transition system Σ

′

= (S,A, γ) defined in section 1.2 of chapter 1.

Proof. We will describe the construction of the set of states S, the set of actions
A and we will define the state transition function γ. To achieve this we will use
the planning domain Σ and the planning problem PΣ.

Set of states

S ⊆
∏

β~c
v∈F

C[range(v)]

A state s is a set of assignments that conforms to the condition in the definition
17.

Construction of action from operator: Let o = (name(o), args(o), expr(o))
be an operator from O. Let Ro ⊆ expr(o) be the set of all relation expressions
used in the operator o:

Ro = {(r, (x1, . . . , xn)) | (r, (x1, . . . , xn)) ∈ expr(o) ∧ r ∈ R}

A relation expression E ∈ Ro constraints possible assignments of constant
symbols to object variables from args(o). The constraint set by the relation ex-
pression E = (r, (x1, . . . , xn)) is met iff:

(x̄1, . . . , x̄n) ∈ αr

Where αr is the definition of r from D.

35

Set of actions A contains every possible action created from every operator
o ∈ O through any assignment of constant symbols from C to args(o) that meets
all the constraints set by Ro.

Definition of applicable action: Let s ∈ S be a state of the system and
a ∈ A be an action a = (name(a), args(a), expr(a)). Let Vo be the set of all
transition expressions (prevailing and non-prevailing) used in the operator o:

Vo = {(v, (x1, . . . , xn, f , f)) | (v, (x1, . . . , xn, f , f)) ∈ expr(o) ∧ v ∈ V}
⋃

{(v, (x1, . . . , xn, f , t)) | (v, (x1, . . . , xn, f , t)) ∈ expr(o) ∧ v ∈ V}

The action a is applicable in s iff:
For all transition expressions E ∈ Vo with β(x̄1,...,x̄n)

v defined in F :

(β(x̄1,...,x̄n)
v = f̄) ∈ s

Transition function γ: If an action a is applicable to state s we define a new
state s

′

as a modification of s:
For each non-prevailing transition E = (v, (x1, . . . , xn, f , t)) from expr(a) we re-
place the assignment (β(x̄1,...,x̄n)

v = f̄) in s with (β(x̄1,...,x̄n)
v = t̄).

Transition function is then defined as: γ(a, s) = s
′

for every state s and action a

applicable to s.

Example 16. In this example we will illustrate the key steps of the proof of the
theorem 1. We will refer to the planning domain Σ from example 11 and the
planning problem PΣ described in the examples 12,13 and 14.

The set of states S contains 45 states in total. There are three state variables
with domain sizes 3, 3 and 5 (example 14). Each state s ∈ S can be represented
by a set of three assignments such as:

s = {(vehiclePos(truck) = loc2),
(vehiclePos(airplane) = loc3),
(packagePos(package) = loc1)}

The elements of the set of actions A are based on opeators from O, constant
symbols from C and relation definitions from D. We will describe the construction
of all the actions derived from the operator moveVehicle (the operator o1 from
example 11).

As a first step we will determine the set of relation expressions used in the op-
erator. The set Ro1 contain only one relation expression (reachable,(L1,L2,L3)).

In the second step we write down the table of constants that represent all the
valid assignments to the object variables of the operator. The following table lists
all possible assignments for the object variables L1, L2, V ∈ args(o1) which meet
the constraint set by the relation expression (reachable,(L1,L2,V)):

L1 L2 V

loc1 loc2 truck

loc2 loc1 truck

loc2 loc3 airplane

loc3 loc2 airplane

36

In the last step we will create instances of the operator. For each line of the
previous table we get an action:

moveVehicle(loc1 , loc2 , truck)
moveVehicle(loc2 , loc1 , truck)
moveVehicle(loc2 , loc3 , airplane)
moveVehicle(loc3 , loc2 , airplane)

Similar procedure would be used to process all the operators from O.

Aplicable actions. If we consider the system state s described in the first para-
graph of this example, we find only two instances of moveVehicle to be applicable
in s:

moveVehicle(loc2 , loc1 , truck)
moveVehicle(loc3 , loc2 , airplane)

The action moveVehicle(loc1,loc2,truck) can not be applied because of the
instance of non-prevailing transition expression:

(vehiclePos, (truck, loc1, loc2))

which requires the assignment (vehiclePos(truck) = loc1) to be in s.

Theorem 2. Every restricted state transition system Σ = (S,A, γ) can be ex-
pressed as a planning domain Σ

′

= (H,R,V,O) and planning problem
PΣ′ = (C,D,F , I,G).

Proof. We will describe construction of Σ
′

and PΣ
′ from the restricted state

transition system Σ.

The planning domain Σ
′

. We will describe construction of H and the sets
R,V and O.

The set H will contain only the class TΣ′ :

TΣ′ = (object, ∅, ∅)

The set R will contain only one relation declaration r:

r = (name(r), args(r))
name(v) = reachable

args(v) = (object, object)

The set V will contain only one state variable declaration v:

v = (name(v), args(v), range(v))
name(v) = stateV ar

args(v) = ()
range(v) = {object}

37

The set O will contain only one operator o:

definition comment

o = (name(o), args(o), expr(o))
name(o) = operator

args(o) = {S1, S2} {object, object}
expr(o) = {(r, (S1, S2)), reachable(S1, S2)

(v, (S1, S2))} stateV ar() : S1→ S2

The planning problem PΣ
′ .

The set of constants C will contain all states from S. Each of them will
be given the root class object:

∀s ∈ S∃cs ∈ C : L(cs) = TΣ′

The set of relation definitions D will contain only the definition of the
binary relation based on r:

αr = {(cs1 , cs2) | cs1 , cs2 ∈ C : ∃a ∈ A : γ(s1, a) = s2}

The set of state variables F will contain only one state variable based
on v:

βv ∈ C

In the end we can choose any legal assignment to be the set I and any set
of assignments to construct the set G in order to get a complete definition for
PΣ

′ .

4.2.2 Discussion of new formalism

Separation of planning domain and problem. The formalism presented in
this chapter provides an alternative to the representations for classical planning
mentioned in the first chapter. We have proved that it can be used to describe
any restricted transition system Σ and that any restricted transition system Σ
can be expressed in our formalism.

Though it is possible to describe the planning domain independently from
planning problem in the classical representation, there was no suitable way to do
this in the state variable representation which can be defined only for particular
planning problem.

Our formalism, based on the state variable representation, makes this separate
description possible. This possibility enables creation of knowledge modelling
tools that can use state variables as a building stones instead of flexible relations.
Such modelling tools can be used to create planning domains and problems that
can be easily translated to representations such as FSA or directly to SAS+.
Although there are some successfull approaches [13] and ongoing research [28]
to provide conversion from the propositional representation to the state variable
representation, there was no formalism which could be used for modelling abstract
planning domains directly using only state variables for the description of change.

38

The approach to planning domain modeling using state variables can also
provide a new point of view on some planning domains. We will present an
example in the last chapter.

Extensibility. Usage of terms in our formalism enables possibilities for further
extension over the frame of classical planning. Apart from the constant symbols
we did not defined any other kinds of terms yet but we have left the definition
open. We can easily extend our formalism with numeric expressions for example
which is the main requirement for planning with time and resources.

Inheritance. If we have for example the class vehicle it is convenient to define
specialized classes like truck or airplane. They have common abilities like
carrying packages but they move differently. The requirement for :typing if we
are to use terminology of the PDDL language is common in planning.

From the three represetations for the classical planning only the state vari-
able representation uses the concept of classes. However the classes in the state
variable representation are defined only as sets of objects. It is not clear from
this definition what should be the relations between the classes like.

In our formalism we define class hierarchy explicitly as a part of the planning
domain.

Problem independent constants. The concept of constants that are defined
in the planning domain and are accessible in all related planning problems is
included in the language PDDL. We have found this concept convenient for rep-
resentation of some key features in some planning domains.

39

5. Implementation

In this chapter we would like to introduce a proof-of-concept implementation of
a modeling tool based on the formalism proposed in the previous chapter. This
tool is not intended to provide user friendly interface.

The developement of presented program was driven mainly by my previous
experience with the developement of VIZ [34]. Based on this experience I focused
on the implementation of the main domain design steps rather than their visual
appearance. In this way I have deliberately avoided the task of user interface
design. The task is impossible without proper specification of target user group
and requirements that this target group might have.

Resulting GUI is strictly minimalistic and can be used by anyone who is
familiar with the state variable representation described in 1.2.3. The program
was developed with a possibility of further extension with more sophisticated
visualization tools in mind. Its main purpose is to act as a core component ready
for further developement and experiments.

5.1 Program architecture

The program is developed in Java programming language in order to be portable.
All XML processing routines are using JAXB framework [21].

5.1.1 Input and output.

The state of all internal data structures can be exported/imported to/from XML.
Analogous to itSIMPLE, XML is suitably used as an intermediate language (fig-
ure 5.1). Different structure of XML files is used for the planning domain and for
planning problems. The program can convert XML descriptions of domain and
problems to PDDL. Supported subset of PDDL can be determined by the version
3.1 and the requirements:
:strips :typing :equality :object-fluents

Conversion of planning domain. Here we will demonstrate conversion of the
planning domain Σ from the example 11 to PDDL as implemented in the convertor
used by Vizzard. The convertor is actually translating XML files defined by the
XML scheme definitions from the attachement E.

Class hierarchy H will result in the following PDDL code:

(: types
Vehicle Package Location − object
Truck Airplane − Vehicle)

(: constants
foo − Location)

We have added dummy location foo to demonstrate translation of problem inde-
pendent constants.

40

Relation reachable from the set R will be encoded as:

(: predicates
(reachable ?A0 − Location ?A1 − Location ?A2 − Vehicle))

State variable packagePos from the set V will result in:

(: functions
(packagePos ?A0 − Package) − (either Vehicle Location))

Operators moveVehicle and loadPackage from the set O takes the form:

(: action moveVehicle
:parameters (?L1 − Location ?L2 − Location ?V− Vehicle)
: precondition (and (reachable ?L1 ?L2 ?V)

(= (vehiclePos ?V) ?L1))
: ef fect (assign (vehiclePos ?V) ?L2))

(: action loadPackage
:parameters (?X3 − Vehicle ?V− Vehicle

?P− Package ?L − Location)
: precondition (and (= (vehiclePos ?V) ?L)

(= (packagePos ?P) ?L))
: ef fect (assign (packagePos ?P) ?X3))

Planning problem described in the examples 12, 13, 14 and 15 will be trans-
lated as:

(define (problem example)
(:domain logistic)
(: requirements : strips : typing : equality : object−fluents)
(: objects
truck − Truck
loc1 loc3 loc2 − Location
package − Package
airplane − Airplane

)
(: init (reachable loc1 loc2 truck)

(reachable loc2 loc1 truck)
(reachable loc2 loc3 airplane)
(reachable loc3 loc2 airplane)
(= (packagePos package) loc1)
(= (vehiclePos truck) loc2)
(= (vehiclePos airplane) loc3))

(: goal (and (= (packagePos package) loc3))))

5.1.2 Internal data structures.

The scheme for the main data structures used in the program is displayed in
the figure 5.2. These structures represent modular components which are used
to store the planning domain and problem data. Their functions reflect the

41

Figure 5.1: Data formats

formalism defined in the chapter 4. The two main structures (dmDomain and
dmTask) can be exported to XML files.

Figure 5.2: Data formats

The structure called dmDomain manage the data for a planning domain Σ.
The inner structures of dmDomain are:

• classHierarchy - is a tree structure used to store the class hierarchy H

• relationSet - is a table with relation declarations (R)

• stateVariableSet - is a table with state variable declarations (V)

• operatorSet - is a list of operators (O)

Each of these structures provide an interface with methods for read-write access
to the modelled data. These methods can be used by future visualization tools.

Every dmTask structure is defined with a reference to dmDomain and it manage
the data for a planning problem PΣ:

• constantMap - is a map that contains a set of problem dependent constant
symbols (C)

• relationMap - is a map that contains a relation definition table for every
relation declaration (D)

42

• stateVariableMap - is a map that contains a set of state variables for
every state variable declaration (F). An initial value stored with every
state variable is sufficient to describe an initial state I. To describe a set
of goal states G we may store a set of target values as well.

Each of these structures also provide an interface to enable further extension with
more sophisticated visualization tools.

5.2 Program demonstration

In this section we will demonstrate the modeling capabilities of Vizzard by recre-
ating a classical benchmark domain from the International Planning Competition
[17].

Detailed description of program GUI used for this task can be found in the
sections Declarations and Operators of the attachement D. To create a particular
problem we will refer to the section Tasks from the same attachement.

5.2.1 Depots domain

For this demonstration we have chosen a well known benchmark domain called
Depots. It is a classical planning domain used in the third International Planning
Competition [17]. The domain is a combination of two other planning domains -
Blockworld and Logistic.

Domain description. The domain contains places,trucks, hoists
and packages stored on pallets in piles. A package can be loaded on a truck
in order to be transported from one place to another. Loading is done with hoist
which can unstack the package from the top of pile. We can see an example
situation on the figure 5.3.

5.2.2 Knowledge modelling with Vizzard

The design of the planning domain can be informally divided in two phases:

1. identification of the most important entities in the domain and establishing
of some relations

2. description of changes that may occur in the domain

Declarations. Using Vizzard, we can describe the sets H,R and V in the Dec-
larations panel to acomplish the first phase. We will refer to section D.2 in the
attachement D for the details concerning the GUI functions. The panel with the
Depots domain declarations in displayed in the figure 5.4.

Operators. Now we can describe the operators. There are five actions possible:

1. Lift - a package is lifted by a hoist from the top of the pile

2. Drop - a package is droped by a hoist on the top of the pile

43

Figure 5.3: Example situation

3. Unload - package is lifted by a hoist from a truck

4. Load - package is droped by a hoist on a truck

5. Drive - a truck moves from one place to another

The figure 5.5 shows the operator Load presented in Vizzard as an example.
The details concerning the GUI can be found in the section D.3 in the attachement
D.

1. The non-prevailing expression on the first row describe the change of Crate
position (the state variable cratePos). The Crate was previously lifted by
the Hoist and it will be loaded to Truck.

2. The second row present a condition (expressed with a prevailing transition)
that the Truck has to be at Place when loaded.

3. The third row contain a relation expression that binds Hoist on the same
Place where the Truck is standing.

4. The non-prevailing expression on the fourth row change property of the
Truck using task independent constant symbols in the operator.

5. The non-prevailing expression on the fifth row is describing change of Hoist’s
property.

44

Figure 5.4: Depots domain declarations

Figure 5.5: Operator Load in Vizzard

Resulting domain expressed in the PDDL language can be found in the at-
tachement B. The domain definition is using the requirement
:object-fluents which is only available in the version 3.1 of PDDL. Current
implementation does not provide conversion to propositional representation which
would have to be used in order to retain compatibility with earlier versions of the
language. The propositional version of the domain from the planning competition
is included for the purpose of comparsion and can be found in the attachement
A.

Planning problem. When we are content with the domain description we can
set out to define some planning problem using the panel labeled Tasks. With the
details for GUI handling we will refer to the last section of the attachement D.

We will use the example situation from the figure 5.3 in our problem definition.
The finished definition of the relation located is on the figure 5.6. Finally the
description of the initial values of the state variables based on cratePos together
with goal specification can be seen on the figure 5.7. Now we have been through
design of planning domain as well as planning problem with Vizzard.

45

Figure 5.6: Definition of relation located

Figure 5.7: Defintions for state variable cratePos

5.3 Developement enviroment

For the developement of the program Vizzard we have used the enviroment with
the following characteristics:

• Programming IDE: NetBeans IDE 7.0.1

• Java version: 1.6.0_24; Java HotSpot(TM) Client VM

• Operating system: Linux version 2.6.32-5-686

46

6. Evaluation

6.1 Towards efficient problem modelling

The planning domain known as towers of hanoi is used in [9] to explain motivation
for functional STRIPS formalism which is very close to our formalism. A problem
from the domain features a finite number of discs of different sizes that can be
moved from the top of one peg to the top of another peg. In the same time we
can not place bigger disc on top of a smaller disc.

It is argued in [9] that the number of ground actions depends on the number
of arguments in operators. When using functional STRIPS, we can model the
operators more efficiently than with the classical propositional STRIPS. With
more efficient model we can reduce the number of arguments which results in
smaller number of ground actions. As a result we can expect better planner
performance.

The two main differences between the functional STRIPS and our formalism
are that our formalism does not explicitly define preconditions and effects in op-
erator specification and that the functional STRIPS formalism does not describe
the abstraction of planning domain without reference to problem dependent in-
formation1.

With Vizzard we can create domain description comparable to the functional
STRIPS. The formulation of a problem for three towers as presented in [9] is in the
figure 6.2 whereas the description of the same problem created with Vizzard can
be seen in figures 6.1 (Declarations), 6.3 (Operator move) and 6.4, 6.5 (Task2).

When using platform provided by Vizzard as a starting point we can im-
plement various features that enables modelling of efficient planning domains
resembling those based on the functional STRIPS.

Figure 6.1: Hanoi towers - Declarations

1i.e. description of ”the world” in functional STRIPS contains problem specific constants
2We have altered screenshots in order to fit in two figures.

47

Domains: Peg: p1, p2, p3 ; the pegs
Disk: d1, d2, d3, d4 ; the disks
Disk∗: Disk , d0 ; the disks and a dummy bottom disk 0

Fluents : top : Peg→ Disk∗ ; denotes top disk in peg
loc : Disk→ Disk∗ ; denotes disc below given disc
size : Disk∗ → Integer ; represents disc size

Action : move(P1,P2: Peg) ;moves between pegs
Prec: top(P1) 6= d0, size (top(P1)) < size (top(P2))
Post: top(P1) := loc (top(P1)) , loc (top(P1)) := top(P2) , top(P2) := top(P1)

Init : loc (d1) = d0, loc (d2) = d1, loc (d3) = d2, loc (d4) = d3,
top(p1) = d4, top(p2) = d0, top(p3) = d0,
size (d0) = 4, size (d1) = 3, size (d2) = 2, size (d3) = 1, size (d4) = 0

Goal: loc (d1) = d0 , loc (d2) = d1, loc (d3) = d2, loc (d4) = d3,
top(p3) = d4

Figure 6.2: Hanoi towers - functional STRIPS

Figure 6.3: Hanoi towers - operator move

6.2 New point of view

One of the advantages of Vizzard is the possibility of direct conversion into a
formalism close to the SAS+ representation. The great deal of inspiration for
this thesis came from the question if the finite state automata, as defined for
example in [28], can be used for knowledge modelling in some way.

Though we did not managed to answer this question yet we have gained a
different perspective while attempting to do so.

This section is included in order to demonstrate a new point of view on plan-
ning domains which is based on our formalism from the chapter 4.

We will now describe Depots domain with generalized finite state automata.
We do not attempt to provide any formal definition of GFSA. The term ”gen-
eralized” is used in order to differ these automata from FSA. Let us explain the
main differences:

• There is neither initial state nor goal states in GFSA.

• The state in GFSA can be either constant symbol or set of constant symbols.

• The transition function in GFSA is based on the operators from our for-
malism.

48

Figure 6.4: Hanoi towers - relation definitions

Figure 6.5: Hanoi towers - state variables

One GFSA also corresponds to one state variable declaration from our formal-
ism and it can refer to other GFSA’s through the transition function. Therefore,
in non-trivial case, it makes only sense to talk about a set of GFSA’s connected
with a set of operators.

6.2.1 Generalized finite state automata

The diagrams in the attachement C show the generalized finite state automata
for each state variable declaration from the Depots domain.

The edges in the diagrams are labeled with the names of the operators from
the Depots domain. The definitions of operators can be seen in figure 6.7.

Now we will describe the aforementioned diagrams in more detail using the
figure 6.6 as example for reference. The circular nodes refer to the classes from
the domain. Each class determines sets of objects. The rectangular nodes mark
objects represented with the problem independent constants.

The semantics of the edges in the diagrams is explained in following two
points:

49

Figure 6.6: Diarams of GFSA for Depots domain

50

• If a loop edge is labeled with the operator O it means that either no
non-prevailing transition is included among the expressions of O (e.g. oper-
ator Drive in the diagram for cratePos or hoistAvailable) or a prevailing
transition that requires the state variable to retain its value is included (e.g.
operators Load, Unload, Lift, Drop in the diagram for truckPos).

• A non-loop edge labeled with the operator O denote that there is a non-
prevailing transition included among the expressions of O that change the
value of the state variable from an object A to a different object B. We
distinguish two cases:

1. The class of A is equal with the class of B (e.g. operator Drive in
the diagram for truckPos)

2. The class of A is different from B (e.g. operators Load, Unload, Lift
and Drop in the diagram for cratePos and hoistAvailable)

Lift(C − crate, S − surface,H − hoist, P − pallet, L− place)
cratePos(C) : S → H

palletTop(P) : C → S

hoistAvailable(H) : true→ false

attached(H,L)
located(P, L)

Drop(C − crate, S − surface,H − hoist, P − pallet, L− place)
cratePos(C) : H → S

palletTop(P) : S → C

hoistAvailable(H) : false→ true

attached(H,L)
located(P, L)

Load(C − crate,H − hoist, T − truck, L− place)
cratePos(C) : H → T

truckEmpty(T) : true→ false

hoistAvailable(H) : false→ true

truckPos(T) = L

attached(H,L)

Unload(C − crate,H − hoist, T − truck, L− place)
cratePos(C) : T → H

truckEmpty(T) : false→ true

hoistAvailable(H) : true→ false

truckPos(T) = L

attached(H,L)

Drive(T − truck, L1− place, L2− place)
truckPos(T) : L1→ L2
reachable(L1, L2, T)

Figure 6.7: Depots domain - operators

51

7. Conclusion

This thesis dealt with knowledge engineering for Automated Planning. Through-
out the text we have identified the main challenges in the general-purpose knowl-
edge modelling for the classical planning and pointed out the benefits of the state
variable representation.

We have proposed a new formalism based on the state variable representation
which enable strict separation of the planning domain abstraction from planning
problem. This feature is important in the knowledge modelling if we want to
achieve knowledge reusability (i.e. one planning domain can be used for multiple
planning problems).

Another important feature of our formalism is that the definition of planning
operator, which is usually the most complicated part of planning domain mod-
els, is basically reduced to one set of expressions with interconnected variables.
The preconditions and effects are not explicitly distinguished. We have demon-
strated that the two types of expressions (relation expressions and state variable
expressions) are sufficient for modeling of various operators in classical planning
domains.

We have implemented the knowledge modelling tool called Vizzard which is
based on the new formalism. It was demonstrated that this tool can be success-
fully used to model classical planning domains and problems. The representation
entered by the user in program GUI can be exported into the standard language
for planning domain modelling called PDDL which is a widespread input format
for planners.

Although our tool does not provide fullfledged user interface it can be used
by researchers in planning community who are already familiar with the concept
of state variables.

It was argued in the last chapter that the representation based on the formal-
ism used in the program is comparable to the efficient domain models based on
the functional STRIPS and that it provides a new point of view on the knowledge
modelling.

7.1 Future work

Program Vizzard presented in this thesis provide base platform for KE modelling
tools. It can be extended with various tools for visualization in order to make
the design comprehensible for non-experts in planning.

For example the design of a comprehensible visualization tool for planning
operators can be quite challenging. The platform provided by Vizzard can be
used to test and evaluate such a tool.

The program can be also extended to allow modelling of planning domains
with numeric resources or time. These extensions are essential for modelling of
”real world” problems.

To provide a better connection to planners it is possible to implement con-
version to earlier versions of PDDL that does not support the :object-fluents
requirement. Although this is a step back from a more compact domain rep-
resentation it would be convenient to provide the conversion in order to retain

52

backward compatibility with existing planners.
Methods for the import of existing planning domains encoded in PDDL can

be also implemented in order to enable modification of existing planning domains
and to explore possibilities of conversion from the propositional representation to
the representation based on the state variables.

53

Bibliography

[1] Various authors. Pddl online resources. http://ipc.informatik.uni-
freiburg.de/PddlResources, November 2011.

[2] Christer Bäckström and Bernhard Nebel. Complexity results for sas+ plan-
ning. Computational Intelligence, 11:625–656, 1995.

[3] Chavier Barreiro. Nddl example: The planetary rover.
http://code.google.com/p/europa-pso/wiki/ExampleRover, November
2011.

[4] Sara Bernardini and David E. Smith. Translating pddl2.2 into a constraint-
based variable/value language. In Proceedings of the Workshop on Knowl-
edge Engineering for Planning and Scheduling (KEPS), 18th International
Conference on Automated Planning and Scheduling (ICAPS), 2008.

[5] Yixin Chen, Ruoyun Huang, and Weixiong Zhang. Fast planning by search
in domain transition graph. In Proceedings of the Twenty-Third AAAI Con-
ference on Artificial Intelligence (AAAI 2008), pages 886–891, 2008.

[6] Stefan Edelkamp and Jörg Hoffmann. Pddl 2.2: The language for the clas-
sical part of the 4th international planning competition. Technical report,
Fachbereich Informatik and Institut für Informatik, 2004.

[7] Susana Fernández and Daniel Borrajo. Solving clustered oversubscription
problems for planning e-courses. In Proceedings of SPARK, Scheduling and
Planning Applications woRKshop, ICAPS, pages 36–43, September 2009.

[8] Maria Fox and Derek Long. Pddl2.1: An extension to pddl for expressing
temporal planning domains. J. Artif. Intell. Res. (JAIR), 20:61–124, 2003.

[9] Héctor Geffner. Logic-based artificial intelligence, chapter Functional strips:
a more flexible language for planning and problem solving, pages 187–209.
Kluwer Academic Publishers, Norwell, MA, USA, 2000.

[10] Alfonso Gerevini and Derek Long. Preferences and soft constraints in pddl3.
In A. Gerevini and D. Long, editors, Proceedings of ICAPS workshop on
Planning with Preferences and Soft Constraints, pages 46–53, 2006.

[11] Arturo González-Ferrer, Juan Fernández-Olivares, and Luis Castillo. Jab-
bah: A java application framework for the translation between business
process models and htn. In Proceedings of the 3rd ICKEPS Competition
(collocated with ICAPS Conference), pages 28–37, 2009.

[12] Malte Helmert. The fast downward planning system. J. Artif. Intell. Res.
(JAIR), 26:191–246, 2006.

[13] Malte Helmert. Concise finite-domain representations for pddl planning
tasks. Artificial Intelligence, 173(5-6):503–535, 2009.

54

[14] Sarah L. Hickmott and Sebastian Sardiña. Optimality properties of planning
via petri net unfolding: A formal analysis. In Proceedings of the International
Conference on Automated Planning and Scheduling (ICAPS), pages 170–177.
AAAI Press, September 2009.

[15] Henry Kautz. Deconstructing planning as satisfiability. In Proceedings of the
21st national conference on Artificial intelligence - Volume 2, pages 1524–
1526. AAAI Press, 2006.

[16] Philippe Laborie and Malik Ghallab. Planning with sharable resource con-
straints. In Proceedings of International Joint Conference on Artificial In-
telligence (IJCAI-95), pages 1643–1651, 1995.

[17] Derek Long, Maria Fox, David E. Smith, Drew McDermot, Fahiem Bacchus,
and Hector Geffner. International planning competition 3. http://ipc.icaps-
conference.org, 2002.

[18] Drew McDermott. The 1998 ai planning systems competition. AI Magazine,
21(2):35–55, 2000.

[19] Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin
Ram, Manuela Veloso, Daniel Weld, and David Wilkins. PDDL - the plan-
ning domain definition language. Technical report, CVC TR-98-003/DCS
TR-1165, Yale Center for Computational Vision and Control, 1998.

[20] Dana Nau, Malik Ghallab, and Paolo Traverso. Automated Planning: Theory
& Practice. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2004.

[21] Group of contributors. Java architecture for xml binding.
http://jaxb.java.net, November 2011.

[22] Sudhakar Y. Reddy, Jeremy D. Frank, Michael J. Iatauro, Matthew E. Boyce,
Elif Kürklü, Mitchell Ai-Chang, and Ari K. Jónsson. Planning solar array
operations on the international space station. ACM Trans. Intell. Syst. Tech-
nol., 2:41:1–41:24, July 2011.

[23] R Sherwood, A Govindjee, D Yan, G Rabideau, S Chien, and A Fukunaga.
Using aspen to automate eo-1 activity planning. In Proceedings of the IEEE
Aerospace Conference, Snowmass, CO, March 1998.

[24] Ron M. Simpson, Diane E. Kitchin, and Thomas L. McCluskey. Planning
domain definition using gipo. Knowl. Eng. Rev., 22:117–134, June 2007.

[25] Ron M. Simpson, Thomas L. McCluskey, Donghong Liu, and Diane E.
Kitchin. Knowledge representation in planning: A pddl to oclh transla-
tion. In International Syposium on Methodologies for Intelligent Systems
(ISMIS), pages 610–618, 2000.

[26] David E. Smith, Jeremy Frank, and William Cushing. The anml language.
In Proceedings of Workshop on Knowledge Engineering for Planning and
Scheduling (KEPS), 2008.

55

[27] Hans-Peter Störr. Planning in the fluent calculus using binary decision dia-
grams. AI Magazine, 22(3):103–106, 2001.

[28] Daniel Toropila and Roman Barták. Using finite-state automata to model
and solve planning problems. In Proceedings of the Eleventh AI*IA Sympo-
sium on Artificial Intelligence, pages 183–189, University of Brescia, 2010.

[29] Tiago S. Vaquero. itsimple project. http://code.google.com/p/itsimple,
November 2011.

[30] Tiago S. Vaquero, Victor Romero, Flavio Tonidandel, and José R. Silva.
itsimple 2.0: An integrated tool for designing planning domains. In Pro-
ceedings of International Conference on Automated Planning and Schedulin
(ICAPS), pages 336–343, 2007.

[31] Tiago S. Vaquero, Fernando Sette, José R. Silva, and J. Christopher Beck.
Planning and scheduling of crude oil distribution in a petroleum plant. In
Proceedings of SPARK, Scheduling and Planning Applications woRKshop,
ICAPS, pages 99–106, 2009.

[32] Tiago S. Vaquero, José R. Silva, and J. Christopher Beck. A brief review
of tools and methods for knowledge engineering for planning & scheduling.
In Proceedings of the Workshop on Knowledge Engineering for Planning and
Scheduling (KEPS), pages 7–14, 2011.

[33] Tiago Stegun Vaquero, Flavio Tonidandel, and José Reinaldo Silva. The
itsimple tool for modeling planning domains. In Proceedings of the First
International Competition on Knowledge Engineering for AI Planning and
Scheduling (ICKEPS). AAAI Press, 2005.

[34] Jindřich Vodrážka and Lukáš Chrpa. Visual design of planning domains.
In Proceedings of Workshop on Knowledge Engineering for Planning and
Scheduling (KEPS), pages 68–69, 2010.

56

List of Definitions

1 Class . 26
2 Root class . 26
3 Declaration of relation . 27
4 Declaration of state variable . 28
5 Term . 29
6 Term - class compatibility . 29
7 Term - class set compatibility . 29
8 Object variable . 29
9 Object variable - class compatibility . 29
10 Relation expression . 30
11 Transition expression . 30
12 Expression types . 30
13 Operator . 30
14 Relation based on declaration . 32
15 State variables . 33
16 Assignment of value to state variable 34
17 System state . 34
18 Goal state . 34

57

Attachments

58

A. Depots domain from IPC 3

Example of planning PDDL domain from International Planning Competition.

(define (domain Depot)
(: requirements : typing)
(: types place locatable − object

depot distributor − place
truck hoist surface − locatable
pallet crate − surface)

(: predicates (at ?x − locatable ?y − place)
(on ?x − crate ?y − surface)
(in ?x − crate ?y − truck)
(l i f t ing ?x − hoist ?y − crate)
(available ?x − hoist)
(clear ?x − surface))

(: action Drive
:parameters (?x − truck ?y − place ?z − place)
: precondition (and (at ?x ?y))
: ef fect (and (not (at ?x ?y)) (at ?x ?z)))

(: action Lift
:parameters (?x − hoist ?y − crate ?z − surface ?p − place)
: precondition (and (at ?x ?p) (available ?x)

(at ?y ?p) (on ?y ?z) (clear ?y))
: ef fect (and (not (at ?y ?p)) (l i f t ing ?x ?y)

(not (clear ?y)) (not (available ?x))
(clear ?z) (not (on ?y ?z))))

(: action Drop
:parameters (?x − hoist ?y − crate ?z − surface ?p − place)
: precondition (and (at ?x ?p) (at ?z ?p)

(clear ?z) (l i f t ing ?x ?y))
: ef fect (and (available ?x) (not (l i f t ing ?x ?y))

(at ?y ?p) (not (clear ?z)) (clear ?y) (on ?y ?z)))

(: action Load
:parameters (?x − hoist ?y − crate ?z − truck ?p − place)
: precondition (and (at ?x ?p) (at ?z ?p) (l i f t ing ?x ?y))
: ef fect (and (not (l i f t ing ?x ?y)) (in ?y ?z) (available ?x)))

(: action Unload
:parameters (?x − hoist ?y − crate ?z − truck ?p − place)
: precondition (and (at ?x ?p) (at ?z ?p)

(available ?x) (in ?y ?z))
: ef fect (and (not (in ?y ?z))

(not (available ?x)) (l i f t ing ?x ?y)))
)

59

B. Depots domain generated by

Vizzard

Example of planning domain generated from the model created in the program
Vizzard.

(define (domain Depots)
(: requirements : strips : typing : equality : object−fluents)
(: types hoist place movable boolean − object

depot distributor − place
truck surface − movable
crate pallet − surface)

(: constants
true false − boolean)

(: predicates
(located ?A0 − pallet ?A1 − place)
(reachable ?A0 − place ?A1 − place ?A2 − truck)
(attached ?A0 − hoist ?A1 − place))

(: functions
(cratePos ?A0 − crate) − (either truck hoist surface)
(truckEmpty ?A0 − truck) − boolean
(palletTop ?A0 − pallet) − surface
(hoistAvailable ?A0 − hoist) − boolean
(truckPos ?A0 − truck) − place)

(: action Drop
:parameters (?PL − place ?H − hoist ?CT− crate

?S − surface ?PA− pallet)
: precondition (and (= (palletTop ?PA) ?S)

(= (cratePos ?CT) ?H)
(= (hoistAvailable ?H) false)
(attached ?H ?PL)
(located ?PA ?PL))

: ef fect (and (assign (palletTop ?PA) ?CT)
(assign (cratePos ?CT) ?S)
(assign (hoistAvailable ?H) true)))

(: action Lift
:parameters (?PL − place ?H − hoist ?S − surface

?CT− crate ?PA− pallet)
: precondition (and (= (palletTop ?PA) ?CT)

(= (cratePos ?CT) ?S)
(= (hoistAvailable ?H) true)
(attached ?H ?PL)
(located ?PA ?PL))

: ef fect (and (assign (palletTop ?PA) ?S)
(assign (cratePos ?CT) ?H)
(assign (hoistAvailable ?H) false)))

60

(: action Load
:parameters (?PL − place ?H − hoist

?T − truck ?CT− crate)
: precondition (and (= (truckEmpty ?T) true)

(= (hoistAvailable ?H) false)
(= (cratePos ?CT) ?H)
(= (truckPos ?T) ?PL)
(attached ?H ?PL))

: ef fect (and (assign (truckEmpty ?T) false)
(assign (hoistAvailable ?H) true)
(assign (cratePos ?CT) ?T)))

(: action Unload
:parameters (?PL − place ?H − hoist

?T − truck ?CT− crate)
: precondition (and (= (truckEmpty ?T) false)

(= (hoistAvailable ?H) true)
(= (cratePos ?CT) ?T)
(= (truckPos ?T) ?PL)
(attached ?H ?PL))

: ef fect (and (assign (truckEmpty ?T) true)
(assign (hoistAvailable ?H) false)
(assign (cratePos ?CT) ?H)))

(: action Drive
:parameters (?T − truck ?To − place ?From − place)
: precondition (and (= (truckPos ?T) ?From)

(reachable ?From ?To ?T))
: ef fect (assign (truckPos ?T) ?To)))

61

C. Generalized finite state

automata

Diagrams for generalized state automata based on the example domain Depots.

62

D. Vizzard - user manual

In this attachement we will describe the program GUI. This manual is divided
into four sections. Each of them refers to the specific GUI component.

1. Main menu

2. Declarations

3. Operators

4. Tasks

D.1 Main menu

The main menu contains standard options File, Edit and Help. Their detailed
description can be found in this section.

File. Through this option we can manipulate XML files, created by Vizzard,
that contain the domain description. Relevant menu options for this task are:

• New - start description of new planning domain

• Open - load a file with previously saved planning domain

• Save - save changes to existing file

• Save as - save the current domain snapshot to a new file

The option labeled Export PDDL converts current XML representation of
current planning domain to PDDL format. The resulting file is limited by PDDL
requirements :typing, :strips, :equality and :object-fluents. We will refer
to [1] (PDDL 3.1) for details.

If we select the option Exit, the program asks for confirmation and terminates.

Edit. There is only one option in this section. It is labeled Domain properties
and we can use it to change the name of the domain.

D.2 Declarations

There are basicly three tasks that can be achieved through Declarations panel
(figure D.1). We will adress all of them in this section.

Class hierarchy declaration is the first task to do. The classes are declared in
the left-most segment called Class tree (figure D.2). One class is always defined
in the Class tree. Its name is object and it is the root of the class hierarchy.

New classes may be inserted in order to describe the class hierarchy. There is
also possibility to define problem independent constants for the domain.

63

Figure D.1: Declarations panel

Figure D.2: Class tree

• To add a new subclass:

1. select a parent class

2. click the right mouse button anywhere in the Class tree

3. select the option Add class in the popup-menu summoned by the click

4. enter the subclass name in the dialog (the name has to be unique)

An alternative is to select a parent class and press the Insert key. New
subclass will be added with automatically generated unique name.

• To add a new constant to class we proceed in similar way as when adding
a new subclass. Only in the pop-up menu we need to select the option Add
constant.

• To delete a node from the class hiererchy:

1. select the node we want to delete

2. summon the pop-up menu in the Class tree

3. select the option Delete node

64

Both class and constant nodes can be deleted this way. An alternative is
to select the target node and press Delete key.

• To rename a node:

1. double-click the name of the renamed node

2. enter a new name in simple dialog

Both class and constant nodes can be renamed this way.

Relation declaration is the second task. It can be skipped if we do not want
to include any rigid relations to the domain we are designing. Relations are listed
in the top-most table on the right side, called Relation declaration table (figure
D.3).

Figure D.3: Relation declaration table

A row in the table represents one rigid relation declaration. Relation name
is written in the first column and the relation arguments are listed begining in
the second column. In this table we define classes for relation arguments and the
number of arguments is defined as a side effect.

List of possible actions for the Relation declaration table:

• To declare new relation:

1. right click anywhere in the Relation declaration table

2. select the option Add new relation in the popup-menu summoned by
the click

New relation will be added with automatically generated unique name.

• To rename a relation we just double-click on the relation name and edit
the name in the table.

• To declare argument class of any relation we can drag a class from Class
tree and drop it in the relation line to the appropriate column.

• Number of columns in the Relation declaration table can be manipulated by
the options Add argument column and Del argument column in the pop-up
menu that is summoned by clicking the right mouse button in the Relation
declaration table.

• To delete relation:

1. left click on the relation row in order to select it

2. right click anywhere in the Relation declaration table to summon a
pop-up menu

3. select the option Delete relation from the menu

65

State variable declaration is the third task. Every domain aspect that is
subject to any changes shall be described here. The state variables are listed in
the bottom-most table on the right side, called State variable declaration table
(figure D.4).

Figure D.4: State variable declaration table

One row in the State variable declaration table represents declaration of a
state variable set1. For simplicity we will say state variable instead of set of state
variables.

The state variable name is displayed in the first column of the table row. The
second column lists classes that altogether define the range of the state variable.
The state variable arguments are defined in similar way as in the case of the rigid
relations, only beginning in the third column.

The list of possible actions for State variable declaration table:

• To declare new state variable:

1. right click anywhere in the State variable declaration table

2. select the option Add state variable in the pop-up menu summoned by
the click

A new row in the State variable declaration table will be created with au-
tomatically generated name in the first column.

• To rename a state variable we can just double-click in the first column and
edit the name in the table.

• Argument classes are defined in the same way as in the Relation declaration
table.

• The value range of any state variable can be defined by dragging and
droping classes from the Class tree into the second column of appropriate
row.

• To clear value range of the state variable:

1. left click on the state variable row in order to select it

2. right click anywhere in the State variable declaration table to summon
a pop-up menu

3. select the option Clear state variable range from the menu

• To delete state variable:

1See definition 15.

66

1. left click on the state variable row in order to select it

2. right click anywhere in the State variable declaration table to summon
a pop-up menu

3. select the option Delete state variable from the menu

D.3 Operators

The panel labeled Operators (figure D.5) is used to describe all kinds of changes
which may occur in our planning domain. These changes are described through
the operators. All the operators are listed on the left (Operator list). If we
select an operator in the Operator list, details are displayed on the right in a
table (Expression table). In this section we will descibe available actions in the
Operator list and the Expression table.

Figure D.5: Operators panel

Operator list is used for the operator management. Apart from selecting the
operators for detailed display in the expression table we can add, remove and
copy the operators using a pop-up menu raised by the right click anywhere in the
Operator list. Possible menu items are:

• Create operator - create an empty operator. A unique name must be
entered in the dialog.

• Copy operator - create a copy of the operator currently selected. A unique
name for the copy must be entered in dialog.

• Delete operator - delete the operator currently selected.

Expression table is a component that is meant to list and edit the expressions
of the operator selected in the operator list. Each row in the expression table
represents one expression. There are three kinds of possible expressions:

• relation expression - a condition based on a rigid relation

• prevailing transition expression - a condition based on a state variable

• non-prevailing transition expression - change of a state variable

67

Figure D.6: Expressions

Example featuring all possible expressions is displayed in figure D.6. On the
first row we can see the relation expression, the prevailing transition expression
is on the second row and we can see the non-prevailing transition expression on
the third row.

Here is the list of actions for the expression management:

• To add a relation expression:

1. right click anywhere in the expression table to summon a pop-up menu

2. in the menu choose the option Insert expression → Add relations
to display a Select relations dialog

3. The dialog features two lists (Available relations and Selected rela-
tions) and three buttons (Include, Exclude and Done). (see figure
D.7) The buttons Include and Exclude are used to manipulate the
items in the two lists (i.e. we can include and exclude selected rela-
tions). All the relations present in the Selected relations list are used
to create new relation expressions in the operator as soon as the
button Done is clicked.

• To add a transition expression:

1. right click anywhere in the expression table to summon a pop-up menu

2. in the menu choose the option Insert expression → Add transitions
to display Select transitions dialog

3. The dialog features three lists (State variable declarations, State vari-
able transitions and Selected transitions), three buttons (Include, Ex-
clude and Done) and one checkbox labeled prevailing. (see figure D.8)

In this dialog we can select transitions that we want to use for the
transition expressions creation.

We start by selecting an item in the State variable declarations list.
As soon as we select a state variable declaration, the State variable
transitions list fills with the available transitions for the state variable
declaration.

Using the checkbox we can controll which kind of transitions is cur-
rently presented in the State variable transitions list.

We can manipulate the content of the Selected transitions list with the
buttons Include and Exclude (i.e. we can include and exclude selected
transitions).

As soon as the button Done is clicked, the items from the Selected tran-
sitions list are included as transition expressions in the Expression
table.

68

4. To delete an expression from the expression table we need to select
corresponding line (selected line is highlighted) in the table and sum-
mon the pop-up menu by clicking the right mouse button in the table.
In the menu we select the option Delete expression.

Figure D.7: Select relations dialog

Every expression contains slots that can be connected together by variables
or assigned a constant symbol. Slot cells in the expression table are distiguished
with different color. In each slot we can read the name of assigned variable or
constant with their class in square brackets. Blue color of the text is indicating
a constant. We can see an example in the figure D.6.

By clicking on the slot with the left mouse button we either select it (if it was
not selected) or deselect it (if it was already selected). The figure D.9 shows two
expressions - all slots are selected in the first expression and no slot is selected in
the second one.

We can clear the selection (i.e. deselect all selected slots) by clicking the
button Clear selection in the toolbar above the expression table.

List of actions for the selected slots:

• To bind the selected slots by common object variable:

1. right click anywhere in the expression table to summon a pop-up menu

2. select the option Set value → Variable

3. enter the variable name in the dialog

The entered name has to be unique in the current operator.

• To assign a constant symbol to selected slots:

1. right click anywhere in the expression table to summon a pop-up menu

2. select the option Set value → Constant

69

Figure D.8: Select transitions dialog

Figure D.9: Slot selection example

3. select a constant from the dialog offered

Some constant, which is compatible with all selected slots, has to be defined
in the domain in order to perform this action.

D.4 Tasks

This panel (figure D.10) is meant to provide support for modelling of planning
problems. We suppose that a planning domain was previously defined using the
Declarations panel and the Operators panel.

The panel has three main components:

• task management toolbar - task handling procedures

• class tree - management of constant symbols

• definition panel - definition of rigid relations and specification of initial state
together with goal conditions

In this section we will describe their purpose and associated actions in more
detail.

70

Figure D.10: Tasks panel

Task management toolbar features one combo box and buttons Create,
Delete, Save, Load and Export.

The combobox displays name of the task that is being edited at the moment.
We will refer to such task as current task. We can change the current task by
selecting another item in the combo box.

The functionality provided by the buttons is descibed below:

• Create button is used to create a new task. Clicking this button will sum-
mon a dialog asking for the new task name. When the name is confirmed
we are able to select the associated task in the combo box.

• Delete button is used to remove the current task. Its name is removed from
the combo box.

• Save button is used to write the current task on disk in XML format. A
file select dialog is presented after clicking the button.

• Load button is used to read a task which was previously saved using the
Save button.

• Export button is used to write the current task on disk in PDDL format.
A file select dialog is presented after clicking the button.

The class tree placed on the left side of the Tasks panel contains the exact
copy of the class hierarchy defined in the Declarations panel. However in this
case the classes can not be manipulated. The Class tree in the Tasks panel is
used to define task dependent constant symbols.

Actions for manipulation of the task dependent constants:

• To define a new constant:

1. select some class in the Class tree

2. right click anywhere in the Class tree to summon a pop-up menu

3. in the menu select the option Add constant

4. enter the name for the constant in the offered dialog

A new node, with the name entered in the last step, will appear in the tree
under the class that was selected in the first step. Another alternative is to
select a class and press the Insert key. New constant will be defined with
automatically generated name.

71

• To rename constant just doubleclick on the target constant and enter new
name in the offered dialog.

• To delete constant:

1. select target node in the Class tree

2. press Delete key

Only problem dependent constants can be removed this way. They can be dis-
tinguished from the problem independent constants by color.

Definition panel placed on the right side od the Tasks panel (see figure D.11),
features two tabs labeled Relations and State variables. Both tabs have similar
structure - a list on the left side and a table on the right side.

Figure D.11: Definition panel

In the case of the Relations tab, the list contains the names of the relations
declared in the domain, whereas in the case of the State variables tab, the list is
filled with the names of the state variable declarations. In both cases we can use
these lists to select a particular relation or a state variable name.

The tables in both tabs can be edited by draging constant symbols from Class
tree or using toolbars above them. Most of the cells in the tables initially contains
the symbol ”*” to indicate undefined value (those cells have red color). The value
of a cell can be defined by draging a constant symbol from the Class tree and
droping it to the cell (the cells with defined values are green). The example
situation is displayed in figure D.12. Both tables are described in more detail in
following paragraphs.

Figure D.12: Definition table cells

72

Relation definition table displays definition of the relation that was pre-
viously selected in the Relation list. The number of columns in the table corre-
sponds with the number of arguments of the relation. Columns are labeled with
the names of corresponding argument classes.

Initially there are no rows in the table. We can add new rows using the
toolbar above the table. Each row in the table defines the tuple of constants in
the relation. We can define such tuples using the drag & drop approach suggested
in the figure D.12 to fill empty rows or to change values in existing rows.

The toolbar can be used to:

• add specified number of empty rows - use the spin box to set the
number and then click the button Add rows

• delete rows - while holding the Ctrl key, click the left mouse button on
rows you wish to delete. When done, click the button Del rows.

State variable definitions table displays the list of all the state variables
defined in the current task that are based on the state variable declaration, cur-
rently selected in the State variable list. The columns in the table are labeled with
the names of the state variable argument classes begining in the first column.

The two last columns are labeled Init and Goal. The cells int the Init column
contains initial values for the state variables. They are used to specify an initial
state of the system.

The cells in the Goal column can contain sets of constants. The conditions
for a goal state are restricted through these sets.

The drag & drop approach suggested in the figure D.12 can be used in similar
way as in the case of the Relation definition table to fill the cells in both Init and
Goal columns.

The main difference is that we can not add or delete any rows2 and we can
change values only in the two last columns3.

The toolbar above the State variable definitions table can be used to:

• reset selected column - click to either of Init or Goal column to select it
and then click on the Reset column button. All the cells in the column will
be will be reseted to the default value ”*”.

• reset single cell - click on the toggle button Reset cell. As long as the
button is toggled you can reset any single cell to the default value ”*” if
you click on it.

2There is a finite number of state variables based on the number of defined constants in the
problem.

3Each state variable is uniquely defined by its arguments.

73

E. XSD scheme files

Schemes for XML files used by the program Vizzard.

E.1 Domain scheme

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:jxb="http://java.sun.com/xml/ns/jaxb"
jxb:version="2.0">

<!−− root element −−>
<xsd:element name="domain" type="domainType"/>

<!−− root element definition −−>
<xsd:complexType name="domainType">

<xsd:sequence>
<xsd:element name="properties"

type="domainProperties" minOccurs="1" maxOccurs="1"/>
<xsd:element name="classes"

type="classTreeType" minOccurs="1" maxOccurs="1"/>
<xsd:element name="relations"

type="relationListType" minOccurs="1" maxOccurs="1"/>
<xsd:element name="stateVariables"

type="stateVariableListType" minOccurs="1" maxOccurs="1"/>
<xsd:element name="operators"

type="operatorListType" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>

</xsd:complexType>

<!−− domain properties START−−>
<xsd:complexType name="domainProperties">

<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="requirements" type="pddlRequirementsListType

"/>
</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="pddlRequirementsListType">
<xsd:sequence>

<xsd:element name="requirement" type="xsd:string" maxOccurs="
unbounded"/>

</xsd:sequence>
</xsd:complexType>
<!−− domain properties END−−>

<!−− classes definition START−−>
<xsd:complexType name="classTreeType">

74

<xsd:sequence>
<xsd:element name="node" type="nodeType"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="nodeType">
<xsd:sequence>

<xsd:element name="type" type="xsd:string"/>
<xsd:element name="children" type="childrenListType"/>

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>

</xsd:complexType>

<xsd:complexType name="childrenListType">
<xsd:sequence>

<xsd:element name="node" type="nodeType"
maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>
<!−− classes definition END−−>

<!−− relations definition START−−>
<xsd:complexType name="relationListType">

<xsd:sequence>
<xsd:element name="relation" type="relationType"

maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="relationType">
<xsd:sequence>

<xsd:element name="argument" type="argumentType"
maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>

</xsd:complexType>

<xsd:complexType name="argumentType">
<xsd:attribute name="number" type="xsd:int"/>
<xsd:attribute name="class" type="xsd:string"/>

</xsd:complexType>
<!−− relations definition END−−>

<!−− stateVariables definition START−−>
<xsd:complexType name="stateVariableListType">

<xsd:sequence>
<xsd:element name="stateVariable" type="stateVariableType"

maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>

75

<xsd:complexType name="stateVariableType">
<xsd:sequence>

<xsd:element name="argument" type="argumentType"
maxOccurs="unbounded"/>
<xsd:element name="valueRange" type="valueRangeType"/>

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>

</xsd:complexType>

<xsd:complexType name="valueRangeType">
<xsd:sequence>

<xsd:element name="class" type="xsd:string"
maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>
<!−− stateVariables definition START−−>

<!−− operators definition START−−>
<xsd:complexType name="operatorListType">

<xsd:sequence>
<xsd:element name="operator" type="operatorType"

maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="operatorType">
<xsd:sequence>

<xsd:element name="expression" type="expressionType"
maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>

</xsd:complexType>

<xsd:complexType name="expressionType">
<xsd:sequence>

<xsd:element name="slot" type="slotType"
maxOccurs="unbounded"/>

</xsd:sequence>
<!−− expression type: relation/prevailing state var./non−prevailing

state var .−−>
<xsd:attribute name="type" type="xsd:string"/>
<xsd:attribute name="delegate" type="xsd:string"/>

</xsd:complexType>

<xsd:complexType name="slotType">
<xsd:sequence>

<xsd:element name="content" type="xsd:string"/>
</xsd:sequence>
<!−− content type: variable name/constant name/wildcard−−>
<xsd:attribute name="contentType" type="xsd:string"/>
<xsd:attribute name="slotIndex" type="xsd:int"/>

76

<xsd:attribute name="contentClass" type="xsd:string"/>
</xsd:complexType>
<!−− operators definition END−−>

</xsd:schema>

E.2 Problem scheme

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:jxb="http://java.sun.com/xml/ns/jaxb"
jxb:version="2.0">

<!−− root element −−>
<xsd:element name="task" type="taskType"/>
<!−− root element definition −−>
<xsd:complexType name="taskType">

<xsd:sequence>
<xsd:element name="properties" type="taskProperties"/>
<xsd:element name="constants" type="constantsSectionType"/>
<xsd:element name="relations" type="relationSectionType"/>
<xsd:element name="stateVariables" type="

stateVariablesSectionType"/>
</xsd:sequence>

</xsd:complexType>
<!−− task properties START−−>
<xsd:complexType name="taskProperties">

<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="domain" type="xsd:string"/>
<xsd:element name="requirements" type="pddlRequirementsListType

"/>
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name="pddlRequirementsListType">

<xsd:sequence>
<xsd:element name="requirement"

type="xsd:string" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
<!−− task properties END−−>
<!−− constants definition START−−>
<xsd:complexType name="constantsSectionType">

<xsd:sequence>
<xsd:element name="constantList"

type="constantListType" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name="constantListType">

<xsd:sequence>
<xsd:element name="constant"

type="constantType" maxOccurs="unbounded"/>
</xsd:sequence>

77

<xsd:attribute name="className" type="xsd:string"/>
</xsd:complexType>
<xsd:complexType name="constantType">

<xsd:attribute name="name" type="xsd:string"/>
</xsd:complexType>
<!−− constants definition END−−>
<!−− relations definition START−−>
<xsd:complexType name="relationSectionType">

<xsd:sequence>
<xsd:element name="relationDef"

type="relationDefType" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name="relationDefType">

<xsd:sequence>
<xsd:element name="signature" type="signatureType"/>
<xsd:element name="table" type="tableType"/>

</xsd:sequence>
<xsd:attribute name="relationName" type="xsd:string"/>

</xsd:complexType>
<xsd:complexType name="signatureType">

<xsd:sequence>
<xsd:element name="argument"

type="argumentType" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name="argumentType">

<xsd:attribute name="number" type="xsd:int"/>
<xsd:attribute name="class" type="xsd:string"/>

</xsd:complexType>
<xsd:complexType name="tableType">

<xsd:sequence>
<xsd:element name="row"

type="rowType" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name="rowType">

<xsd:sequence>
<xsd:element name="column"

type="xsd:string" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
<!−− relations definition END−−>
<!−− stateVariables definition START−−>
<xsd:complexType name="stateVariablesSectionType">

<xsd:sequence>
<xsd:element name="stateVariableDef"

type="stateVariableDefType" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name="stateVariableDefType">

78

<xsd:sequence>
<xsd:element name="signature" type="signatureType"/>
<xsd:element name="table" type="tableType"/>

</xsd:sequence>
<xsd:attribute name="stateVariableName" type="xsd:string"/>

</xsd:complexType>
<!−− signatureType and tableType defined previously for relation

definition −−>
<!−− stateVariables definition END−−>

</xsd:schema>

79

F. CD contents

The compact disk included with the thesis has following structure:

• thesis.pdf - the electronic version of this thesis.

• vizzard_user_manual.pdf - the user manual for the program Vizzard
(standalone attachement D)

• Vizzard - NetBeans project directory containing the program source files

• Vizzard.jar - the executable file of program Vizzard

– To run the program you need JRE installed on your system.

– The minimal version required is Java 1.6.0

– To run the program from the command line enter:

java -jar Vizzard.jar

• Examples - example domain and problem files in XML format used by
Vizzard

80

	Introduction
	Automated planning
	State transition system
	Classical planning
	Set theoretic representation
	Classical representation
	State variable representation

	Extensions of classical planning
	Temporal planning
	Planning with numeric fluents
	Planning with uncertainty
	HTN Planning

	Knowledge representation
	Planning domain modelling
	PDDL
	IxTeT
	NDDL
	AML
	ANML

	Planning problem encodings
	Propositional encoding
	Multivalued state variables

	Summary

	Knowledge modelling
	GIPO
	itSIMPLE
	Lessons learned
	Operators in itSIMPLE
	Operators in GIPO

	State variable based modelling
	Formalism description
	Planning domain
	Planning problem

	Properties of new formalism
	Expressivity
	Discussion of new formalism

	Implementation
	Program architecture
	Input and output.
	Internal data structures.

	Program demonstration
	Depots domain
	Knowledge modelling with Vizzard

	Developement enviroment

	Evaluation
	Towards efficient problem modelling
	New point of view
	Generalized finite state automata

	Conclusion
	Future work

	Bibliography
	List of definitions
	Attachments
	Depots domain from IPC 3
	Depots domain generated by Vizzard
	Generalized finite state automata
	Vizzard - user manual
	Main menu
	Declarations
	Operators
	Tasks

	XSD scheme files
	Domain scheme
	Problem scheme

	CD contents

