
Charles University in Prague

Faculty of Mathematics and Physics

BACHELOR THESIS

Marek Linka

Universal Blog Manager

Department of Distributed and Dependable Systems

Supervisor of the bachelor thesis: Mgr. Pavel Ježek

Study programme: Computer Science

Specialization: IP

Prague 2012

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1
of the Copyright Act.

In Date Signature

Název práce: Universal Blog Manager

Autor: Marek Linka

Katedra/Ústav: Katedra distribuovaných a spolehlivých systémů

Vedoucí bakalářské práce: Mgr. Pavel Ježek

Abstrakt: Sdílení názorů a pocitů na Internetu (blogování) se s přibývajícimi lety
stává stále populárnější. Vývojáři aplikací na tento trend reagovali a vytvořili
mnoho desktopových aplikací ulehčujících publikovaní obsahu. Ale téměř
žadná z dostupných aplikací nedokáže uživateli spřístupnit celý potenciál
blogovací platformy. Rozhodli jsme se proto zaplnit tuto medzeru tím, že
navrhneme desktopovou aplikaci rozšiřitelnou pomocí zásuvných modulů,
která by byla schopna spřistupnit jakýkoliv blog a využít celý jeho potenciál,
zatímco by zůstala intuitivní a jednoduchá na použití. Dokončením našeho
záměru jsme vytvořili aplikaci dostatečně mocnou pro experty, ale stále
dostatečně jednoduchou i pro běžného uživatele. Tato aplikace účinně zaplňuje
mezeru vytvořenou aplikacemi, které se víc zaměřují na publikovaní obsahu.

Klíčová slova: Blog, Zásuvný modul, Windows, Internet

Title: Universal Blog Manager

Author: Marek Linka

Department/Institute: Department of Distributed and Dependable Systems

Supervisor of the bachelor thesis: Mgr. Pavel Ježek

Abstract: Sharing opinions and feeling on the Internet (blogging) is becoming
increasingly popular with passing years. Application developers reacted to this
trend and created many desktop applications making publishing simple. But
almost none of these applications bring the whole power of the blogging engine
to the user. We decided to fill this gap by designing a plugin-extensible desktop
application capable of accessing any blog and harnessing all its potential, while
still remaining simple and intuitive. By completing our intent, we created an
application powerful enough for an exert user, yet simple enough for an average
blogger. This application effectively fills the gap left open by more publishing-
focused blogging tools.

Keywords: Blog, Plugin, Windows, Internet

i

Dedication
To my father - for teaching me that hard work is the only way to achieve
a true success.

ii

1. Introduction ... 1
1.1. What is a blog? .. 1
1.2. Blogging basics and terminology 1
1.3. Problem statement .. 2
1.4. Goals of this thesis ... 2
1.5. Project history and evolution ... 3

2. Analysis ... 4
2.1. Basics ... 4

2.1.1. Target platform .. 4
2.1.2. Areas of interest ... 4

2.2. Plugins .. 5
2.2.1. Plugin architecture basics 5
2.2.2. Dynamic loading ... 6
2.2.3. Unified architecture ... 7
2.2.4. Exceptions .. 10
2.2.5. Plugin management .. 10

2.3. Data structures ... 13
2.3.1. Plugins and data ... 13

2.4. Modular user interface .. 14
2.5. The WYSIWYG editor ... 15
2.6. Application updates ... 16

3. Plugins .. 17
3.1. WordPress Plugin ... 17

3.1.1. XML Remote Procedure Call 17
3.1.2. Retrieving blog statistics 19

3.2. Blogger Plugin .. 21
3.2.1. Blogger Data API .. 21
3.2.2. Authorization ... 21

4. Implementation .. 23
4.1. Assemblies .. 23
4.2. Main executable .. 24
4.3. Plugin proxy library ... 26

4.3.1. Plugin interfaces ... 27
4.3.2. Blog entities .. 30
4.3.3. Plugin exceptions .. 31
4.3.4. Custom message box implementation 32
4.3.5. Miscellaneous ... 32

4.4. Modular UI components library 33
4.5. WordPress plugin .. 34
4.6. Blogger plugin ... 35
4.7. Plugin manager ... 36

5. Comparison with similar applications 38
5.1. Microsoft Live Writer 2011 .. 38

5.1.1. How UBM differs ... 38
5.2. BlogJet 2 ... 39

5.2.1. How UBM differs ... 39

Universal Blog Manager

iii

5.3. BlogDesk ... 40
5.3.1. How UBM differs ... 40

5.4. Conclusion .. 40
6. Conclusion .. 42

6.1. Fulfillment of thesis goals ... 42
6.2. Future development .. 42

A. Table of links .. 44
B. Plugin Development Guide ... 46

B.1. Introduction ... 46
B.2. Creating a simple plugin ... 46
B.3. Debugging .. 47
B.4. Advanced features .. 48

B.4.1. UI describing methods .. 48
B.4.2. Advanced interfaces ... 48

B.5. Exceptions .. 49
C. User Manual ... 50

C.1. Installation .. 50
C.1.1. System Requirements .. 50
C.1.2. Installation instructions 50

C.2. Typical usage scenarios ... 50
C.2.1. Registering an account 50
C.2.2. Logging into an account 53
C.2.3. Creating blog content ... 54
C.2.4. Moderating comments .. 55
C.2.5. Managing plugins ... 56

D. Content of the enclosed CD ... 59

1

1. Introduction

1.1. What is a blog?
Blog: a Web site that contains an online personal
journal with reflections, comments, and often hyperlinks
provided by the writer; also: the contents of such a site.

— Merriam-Webster Online Dictionary[1]

In short, a blog is a user's own personal space on the web. The user
can use it to write about anything and everything he or she wants –
from his/her day to day life to the latest trends in software engineering.
It is a place to express and share opinions about the world.

The term blog evolved as a blend of the words ‚web log‘. This notion
alone implies the nature of the earliest blogs – they were just day to
day logs of people's lives. As the Internet penetration increased over
the years, blogging became available to more and more people. As
many of the potential users were not skilled enough in HTML and
similar technologies, blogging tools and platforms were created to
simplify the process.

There are many blogging platforms nowadays, ranging from very
simple mail-based web applications designed for personal blogs to
complex and robust Content Management Systems (CMS) employed
by large companies and international corporations.

Among the most popular platforms are: WordPress[2], Tumblr[3],
Blogger[4], Posterous[5], Movable Type[6] and many more. It should
be noted however, that basic blogging concepts are platform
independent and the terminology is usually common for all of the
blogging platforms.

1.2. Blogging basics and terminology
The basic component of a blog is a blog post (post). Posts represent
a journal entry written by the blog author and displayed to the blog
visitors. Posts usually contain text, images, audio and video content.

There are several ways a user can create a blog post – by sending
an e-mail to a special e-mail address, using an online blog post editor
or by using a special desktop/mobile application. Since blogs are
basically web pages, most blogging platforms use HTML to store blog
content. However, no average computer user can write well-formed

Introduction

2

HTML code, therefore most of the blogging platforms offer WYSIWYG
(What you see is what you get) mode editing. In this mode, the user
sees the document exactly as it will be rendered on the web, without
the need to actually see and understand HTML.

However, writing a post is just the tip of the iceberg – most platforms
offer additional features, such as publishing blog pages (they are
basically static posts and are usually displayed in a different manner),
tracking number of people visiting the blog, the ability to modify the
look and feel of the blog etc.

More complex platforms even offer their own application
programming interface (API) to allow third party application
developers to integrate their applications with blogs.

1.3. Problem statement
As stated before, there are many different blogging platforms
available to the user. But the moment a user chooses a specific
platform, it is very difficult to switch it for a different one. Since each
of the platforms has its own user interface and there is basically no
standardization, the user might choose to stay with his/her platform
just to avoid the need to learn a new “set of tricks”.

The aim of this thesis is to solve this problem - to hide the big and
small differences behind a unified user interface, so the user need not
remember whether he/she is currently publishing to a Blogger account
or a WordPress account. Migrating a blog from one provider to another
will be also made less painful for its owner - the provider will change,
but the user interface will remain the same.

Admittedly, there are several applications that offer similar features,
but their approach is different - they concentrate on the most common
tasks and ignore the advanced features of the respective blogging
platforms. On the other hand, this thesis aims to be as flexible as
possible, allowing the user to complete tasks he would otherwise be
able to complete only by the use of the original blogging platform's
user interface.

1.4. Goals of this thesis
The overall goal of this thesis is to create a platform independent blog
management tool (by “platform” we mean a blogging platform).

Introduction

3

This can be decomposed into the following project goals:

• Universality - the ability to support any popular blogging platform

• Extensibility - the process of extending the list of supported
platforms must be as simple as possible

• User-friendliness - the application must remain simple to use
and user-friendly even when working with many different blogging
platforms

To meet the project goals we decided to split the application
into two parts – the main application (user interface) and plugins
(functionality). This way the user interface remains platform-
independent and the task of extending the list of supported platforms
is as simple as installing a new plugin.

1.5. Project history and evolution
This project began several years back as a simple idea to write a
library for interacting with the WordPress API. After the library was
finished, we decided to write a simple application demonstrating the
capabilities of our new library. The demo application slowly grew in
size and complexity and when it was finished, it was a full-fledged
WordPress management solution designated as version no. 1.

The next iteration of development brought technological
advancements as well as vast improvements to the abilities
and overall application robustness. Upon finishing, the application
reached version no. 2.

After that, we decided to incorporate other platforms into our
application and that lead to creation of the Universal Blog Manager
(UBM) project covered in this thesis.

4

2. Analysis

2.1. Basics
This chapter describes the most basic decisions made at the start of
the project and states the areas the analysis will focus on.

2.1.1. Target platform
Before we could start analyzing the issues we will face while working
on the project, we had to choose a target platform for out application.
We wanted UBM to be a desktop application for Windows, so we
had basically two options: either use C++ or a language from the
Microsoft .NET family. Of course, there are several more possibilities,
but those are more exotic and not so widespread. In the end, the
author decided to use Microsoft C# and .NET Framework 2.0 (later
upgraded to 3.5), because he is more skilled in the language and
because he considered C++ an overly complicated language for
writing this kind of application.

2.1.2. Areas of interest
There are several key areas we needed to analyze while working on
this thesis:

1. Plugins

The most important area of all - how to implement the extensibility
of our applications in a simple and efficient way, including exception
handling and plugin management.

2. Data structures

How to store the application and user data coming from different
sources in different form in a way that would allow out API to remain
as simple as possible.

3. Application's user interface

The application's user interface must be flexible enough to
accommodate as many different blogging platforms (plugins) as
possible while remaining simple and intuitive.

Analysis

5

4. WYSIWYG HTML editor

As stated before, most blogging platforms provide their own
WYSIWYG HTML editors. To compete with them, we had to
implement one of our own.

5. Application management

Blogging platforms evolve fast and so do their APIs. We had to
create a way to deliver updates to the end user reliably and quickly.

2.2. Plugins
When writing a plugin-enabled application, the first question that
should be asked is “What is a plugin?” By definition, plugin (or plug-in)
is “a small piece of software that supplements a larger program” [7].

This chapter discusses the decisions made regarding the plugin
architecture, including exception handling and the way the main
application uses the plugins.

2.2.1. Plugin architecture basics
Most plugin-enabled applications use plugins only to extend its
features, but are fully functional even without them. UBM is a little
different in this matter. The whole application is designed to manage
blogs that are usually stored in the Internet, but only the plugins know
what address to connect to and what data to send. In other words, the
application does not know where the data is coming from. Basically,
the main application is a front-end, while plugins provide the back-end.
There is a clearly specified contract between the to, which provides
a layer of abstraction for the application - the application only knows
“what” to do, but doesn't care “how” to do it.

Implementing a plugin support imposes a specific set of requirements
on the main application. First, the application must be able to load
plugins dynamically, by which we mean that the plugins are not hard-
coded into the main application, but can be added later by the end
user.

Second, the application must provide a standardized interface that
the plugins must implement in order to be recognized by the main
application. As a side-effect, this also enforces the developer to
analyze the functions of the main application to a deeper extent, thus
improving the overall application robustness.

Analysis

6

There are more issues to take into consideration when writing a
plugin-enabled application, such as exception handling and plugin
management, all of which will be covered in the subsequent sections.

2.2.2. Dynamic loading
Dynamic loading is the cornerstone of any viable plugin architecture.
In short, it means that the main application must be able to find, load
and use available plugins at run-time.

Without the ability to load plugins at runtime, the application would
have to be recompiled every time a “plugin” is added to it. This is not
desirable for an application that is to be used by an average computer
user.

Fortunately, .NET Framework contains everything necessary for
implementing dynamic load in a relatively simple way - using .NET
Reflection.

.NET Reflection is a part of .NET Framework that allows for
programmatic access and analysis of .NET assemblies. By using
reflection, it is possible to load an external assembly into memory,
inspect its content (classes, methods etc.) and even create instances
of its classes and call methods.

There are two technologies built on top of the reflection API - Managed
Add-in Framework (MAF) and Managed Extensibility Framework
(MEF). Both technologies provide a way to create plugin-enabled
applications. MAF is older of the two and shipped with .NET
Framework 3.5, MEF is available from .NET Framework 4. Using
these technologies would most likely result in a simpler and more
robust application design, but we could not use them from historical
reasons - the original project targeted .NET Framework 2.0.

When implementing a plugin architecture in .NET without any third-
party libraries (or aforementioned technologies), reflection API is
virtually the only way to go, because .NET Framework does not
provide any other way to load assemblies at runtime.

It is also important to mention that from the beginning of the project
we expect a single plugin to be stored in a single .NET assembly
(compiled code library used for deployment, versioning, and security).
While theoretically possible, it is not recommended to spread one
plugin among several assemblies, nor to include multiple plugins in
a single assembly. The reason behind this recommendation is that it
could greatly complicate plugin management for the end user (what if

Analysis

7

the user wanted to uninstall a plugin stored in an assembly containing
several other plugins?).

2.2.3. Unified architecture
In order for our main application to make any use of available plugins,
we must provide means of communication between the application
and its plugins. In more technical terms, we must create an interface
through which the components exchange data and commands.

Both sides of the relation must “understand” the interface, meaning
that the interfaces must be visible to both the plugins and the
application, otherwise it would be impossible to call plugin methods
from the application.

If we kept all the shared data in the main application assembly,
we would also complicate plugin development - every developer
considering to write a new plugin would have to install the whole
application. In such a case, plugins would have to reference the
main application assembly to see the required interfaces. And
since assembly references are version-sensitive (if assembly A.dll
references assembly B.dll with version 1.0.0.0, this reference will
be broken when updating B.dll to version 1.0.0.1), upgrading the
main application to a newer version would be a breaking change. All
installed plugins would be unusable after every application update.

In order to facilitate this requirement and avoid the mentioned
problems, we decided to declare our interfaces, shared data types and
other constructs needed on both sides of the equation in a separate
library (“proxy” library). Both the main application and the plugins
reference this library, thus having access to all the shared objects
contained within.

It is very important to design this shared library to change as little as
possible over time. Any breaking change made to this library breaks
all plugins written against its objects, meaning every plugin would
have to be rewritten.

By extracting shared objects into a separate assembly we also make
plugin development easier, because the only thing a third-party plugin
developer needs to start writing a plugin is this shared library - no
need to install the whole application.

2.2.3.1. Interface vs. class inheritance
After designing the unified architecture, it is vital to be able to enforce
it. Without enforcement, the unification is only a recommendation.

Analysis

8

Therefore we needed a way of saying “if this plugin is capable of doing
A, it also must be capable of doing B and C, otherwise it is not a valid
plugin”.

In .NET, such an enforcement might be done by using class or
interface inheritance. The main premise of this approach is this: “If
a class extends class X/implements interface Y, it is a valid plugin”.
Inheritance will make sure that all the necessary properties and
methods are implemented.

The matter of class vs. interface is closely related to the monolithic
vs. granular problem (discussed later) - abstract class is better suited
to work with monolithic plugin base, while interfaces combine better
with the granular approach.

The main limiting factor in this debate is the fact that C# only allows
a class to extend a single parent class, whereas a single class can
implement an unlimited number of interfaces.

Since we decided to use the granular approach to plugin base, we
had to use interfaces to enforce plugin integrity.

2.2.3.2. Singularity vs. granularity
There are two main approaches to defining a plugin through an
interface. The first is to use a single large interface containing all the
plugin methods. This is very straightforward and easily implemented
both in the application and in the plugins.

The main application benefits from this approach, because the
developers can be sure that when a plugin implements this interface,
it must contain all the methods the main application needs.

The second approach is the exact opposite. Instead of a single
monolithic interface, we divide the interface methods to small groups
according to their usage (e.g. methods for managing blog posts,
methods for managing pages etc.).

Both approaches have its benefits, but also their limitations. A
monolithic plugin base would require less overhead in the main
application, where the UI changes according to plugin capabilities.
Checks would require less type casting and type comparisons could
be dropped entirely. The downside of this solution is that it is not
flexible - adding support for new features would require breaking
changes in the plugin base and existing plugins would stop working.

Granular approach is much more flexible - adding a new set of
features would only require creating a new interface and check

Analysis

9

whether a particular plugin implements it. Old plugins would still
remain functional, only the new features would be unavailable. In this
scenario, the main application must constantly check whether a plugin
implements a specific interface required for a specific function, which
requires a lot of type comparisons and casting.

We decided to use the granular approach to plugin base, mainly
because even though it is more complex, it is better to optimize the
application API for the plugin developers, not for the main application
developers. It also provides a better solution of backwards plugin
compatibility.

2.2.3.3. Constructors
In C#, it is impossible to enforce existence of a constructor with
a specific signature using inheritance. This greatly complicates the
loading of installed plugins, since the main application must be able
to create instances from the plugin classes even though it does not
know what constructors are available.

After much deliberation and researching, we decided to require
the plugin developers to provide a default public parameterless
constructor for each plugin. This way the main application can create
instances of plugins using the reflection API with little complexity. It is
impossible to truly enforce the existence of this specific constructor -
the closest thing (which we implemented) was to reject a plugin if it
doesn't contain it. This way if a developer wants to debug a plugin,
he/she must implement the default constructor in order for the plugin
to at least load properly.

Using parameterless constructors to create plugin instances means
that the instances will not be fully initialized - the application is unable
to provide any user data (such as username and password) to the
plugin. Therefore, the plugin created using its default constructor is
practically useless.

We circumvented this limitation by introducing a special LogOn
method, which is used to finalize plugin initialization by providing the
user data needed.

It is very important that this method returns a new instance of the
plugin. This is necessary, because the end user might have several
accounts using the same plugin. If the LogOn method only finalized
initialization of itself, it would be impossible to work with two same-
plugin accounts at the same time.

The LogOn method should be therefore considered a factory method.
Factory method design pattern is usually employed whenever it is

Analysis

10

desirable to leave the decision which class to instantiate to the derived
classes. This is only partially true for UBM, as the LogOn method
usually returns an instance of the same type as it was called on.
The main benefits of using a factory method pattern in UBM are a)
to be able to enforce its existence using interface inheritance and b)
encapsulating the possibly complex code necessary to initialize the
plugin into a single method, thus preventing potential code duplication
and hiding the complexity from the main application.

2.2.4. Exceptions
It is very important to think about exception handling when designing
a plugin architecture for an application. The root of the problem lies
in the fact that the main application designer doesn't know how the
plugins are implemented on the inside.

The plugin might throw virtually any kind of exception, including
custom types. This makes exception handling very problematic –
it is not feasible to prepare for every possibility. Writing a general
catch clause in every potentially dangerous place is not considered
a good practice, because it will catch even exceptions the user
code is not able to handle properly - e.g. OutOfMemoryException or
StackOverflowException.

We decided that the best way to circumvent this is to declare our own
custom exception types in the proxy library and demand that every
plugin must not throw any other type of exception.

Of course, there is no way to enforce this behavior in our interfaces
and classes and we must rely on the plugin developers to respect
this rule. Additionally, the main application contains an application-
level exception handler for all the exceptions that are not caught. This
approach allows the application to terminate gracefully even in the
event of an unexpected exception (whether it comes from a plugin or
the application itself).

2.2.5. Plugin management
The last non-trivial issue with plugins lies in their management. The
end user must be able to install and uninstall plugins. But what does
“to install a plugin” actually mean?

The answer to this question depends on the way the main application
searches for plugins: a) the easiest way is to use a special folder to
store plugins. At startup, the application just looks through the folder's

Analysis

11

content and loads all available plugins. Or b) it would be possible
to use Windows registry to store the necessary information. c) or
something entirely different (such us custom-formatted configuration
files) could be implemented.

When writing the UBM, we decided to go with the technique
designated as a), because it is very easy to implement and minimizes
the risk of malfunction in case of damaged registry or configuration
files. Also, it is very simple to “install” a plugin – just copy the plugin to
the right folder and restart the application. Every computer user can
manage such a task.

However, copying assemblies is still not very user-friendly, even if
it is simple. It involves opening the application installation directory,
locating the necessary folder and pasting the plugin assembly. This
can be tiresome for many potential end users. To improve the ease
of use of UBM, we decided to write a plugin management application
to improve the user experience. The main function of this plugin
manager is to provide the end user with a simple and clean way of
managing installation and uninstallation of UBM plugins.

As discussed above, plugin installation is simple. The user selects
plugins he/she wants to install, the plugin manager verifies that the
selected assemblies contain valid plugins and then performs the
copying automatically.

Plugin uninstallation, however, poses a significant challenge. In order
for the user to pick the desired plugin he/she wants to uninstall, the
plugin manager must be able to display details about the currently
installed plugins (such as plugin name, author, version etc.). Because
plugins are contained within .NET assemblies and there are no files
containing meta-information, the plugins must be loaded and certain
methods executed to read this information.

The problem lies in the fact that once an assembly is loaded into the
main application domain, its source file cannot be deleted until the
application that loaded it is terminated - meaning that once the plugin
manager loads a plugin and displayed its meta-information, it cannot
“uninstall” it by deleting the assembly file.

To solve this problem, we at first intended to create a third executable
(other than the main application and the plugin manager) that would
receive the list of plugins the user decided to uninstall, wait until
the manager is terminated (thus ensuring the plugin assemblies are
unlocked) and then delete the files. This solution was rejected early
in the analysis process, however, because even though working, it is
more of a workaround than a solution to the core problem. Additionally,

Analysis

12

it is not “clean” and the plugin manager must be terminated/restarted
each time a plugin is uninstalled, which interrupts the user's workflow.

After researching the topic of dynamic unloading, we decided to
use temporary application domains to load plugin information. The
following section provides details on using application domains to
achieve run-time assembly unloading.

2.2.5.1. Dynamic assembly unloading in .NET
Framework

In order to solve the plugin uninstallation issue cleanly and robustly,
we must be able to dynamically load and unload the plugin
assemblies. After researching the subject, we designed a solution
based on .NET application domains.

According to the Microsoft Developer Network[25] (MSDN),
application domains

provide an isolation boundary for security, reliability, and
versioning, and for unloading assemblies. Application
domains are typically created by runtime hosts, which
are responsible for bootstrapping the common language
runtime before an application is run.

— Microsoft Developer Network - Application
Domains[26]

Additionally, the MSDN article describing the AppDomain class states
the following:

If an assembly is loaded into the default application
domain, it cannot be unloaded from memory while the
process is running. However, if you open a second
application domain to load and execute the assembly,
the assembly is unloaded when that application domain
is unloaded.

— Microsoft Developer Network - AppDomain class
(System)[27]

That is exactly the behavior we need in order to facilitate dynamic
assembly unloading - we load the assembly into a separate temporary
application domain, retrieve the necessary information, pass this
information to the main application domain and unload the temporary
domain, thus unlocking the assembly.

However, there is still a small problem hidden in this concept - in order
to prevent the main application domain from also loading the plugin

Analysis

13

assembly (which would result in locking the assembly files), no plugin
object may pass the application domain boundary. In other words,
we must not use any objects from the plugin assembly in our main
application domain. This complicates the process of retrieving and
displaying the plugin information.

The solution to this limitation is to use a special object that can pass
application boundaries safely to retrieve the data from the plugin (in
the temporary domain) and pass it to the plugin manager (in the main
application domain). We can create such an object by extending the
MarshalByRefObject class.

When a class is derived from MarshalByRefObject, we are capable
of instantiating it in the temporary domain and call it from the main
application domain using a proxy. This way, we can analyse the plugin
assembly exclusively in the temporary domain and pass the results
safely to the main application domain, without exposing any plugin
assembly objects.

The combined use of application domains and an object derived
from the MarshallByRefObject class allows the plugin manager to
dynamically load plugin information, display it to the user and unload
the plugins from memory. This ensures the ability to delete plugin
assemblies, effectively unistalling them from UBM.

2.3. Data structures
This chapter discusses the topic of passing data between the main
application and its plugins. It covers both the basic concepts and the
implementation-specific details.

2.3.1. Plugins and data
When a developer decides to write a plugin-enabled application,
the reason usually is that he/she has some kind of data that can
be processed in many different ways depending on the back-end/
conditions/purpose etc.

There is no reason to use plugins when this data processing is very
simple – it would be much easier to hard-code such processing
into the main application. Therefore most plugins perform complex
operations on complex data. And here comes the problem: since
every plugin in our system might have different requirements, the main
application must store its data in a way that is able to accommodate
all of these requirements.

Analysis

14

An example: Suppose we have two plugins, both containing a
method to retrieve the latest blog post for the current user's account.
One plugin operates on WordPress blogs, the other on Blogger
blogs. WordPress blog posts contain many attributes, such as post
password or geolocation information. In comparison, Blogger posts
are much simpler and contain only a few attributes, such as post tags
and a permalink (a permanent link to a blog post/page that does not
change over time). And yet, the methods must in both cases return
the same data object.

Fortunately, C# programming language already provides means to
overcome this problem - in the form of rooted object hierarchy and its
Object class. In C#, everything is inherited from the Object class.
A collection of Objects is capable of storing any data, whether its
type is string, int or Uri. By using collections of Objects, we can
accommodate any and all requirements the plugins may provide.

To improve the concept, we decided not to use simple Object
collections, because it would unnecessarily complicate the process
of retrieving and manipulating the data. Instead, we used key-value
collections, where the key is of type String and the value is of type
Object. This way retrieving the right resource from the collection
is trivial, which greatly simplifies the inner workings of the plugins.
Every record is identified by name, therefore developers don't need
to operate with positions of objects in the collections.

It is also important to realize that using this approach means the main
application will not know how to display this “additional” data. Since
only the plugin knows what data of what type is stored where and
under which name, the plugins must be able to provide the main
application with descriptions specifying what data to display and how.

We designed a set of objects and methods for this purpose. You can
find more details about these in the next section.

2.4. Modular user interface
This section covers all the concepts and implementation details of
a user interface (UI) that supports working with extensible data
structures described in the previous section.

We have already established that plugins usually require extensible
data structures. But where does the data actually come from? It is
either from a back-end (usually well documented) or from the user.

The first possibility is fine – the plugin developer knows exactly what
data to expect and can prepare accordingly.

Analysis

15

The situation becomes much more interesting (and complex) when
a user's input is required. The complexity has its source in the fact
that in order to facilitate this input, the application must provide the
user with means of editing an extensible data structure it doesn't
completely understand. In simpler terms, the user interface must
be flexible enough to allow for any (supported/expected) data to be
edited.

The most important step leading to a solution to this issue is to discern
the types of data that are likely to be used by blogging platforms. In
other words: what UI components will we need to design to support
the most widely used data types? Some data can be very simple - for
example permalinks, which are usually in the form of simple text. Then
there are somewhat more complicated structures, such as dates and
times. And finally, there are data as complex as blog post categories,
which are usually in the form of a set of tree nodes (categories are
often hierarchical).

After we implemented the necessary components, we had to create
a set of methods that accept extensible data structures and return a
description of the UI to render. More details about these methods can
be found in the programmer's documentation.

2.5. The WYSIWYG editor
In short, WYSIWYG editors provide the ability to edit HTML (and other
structured languages, such as XML) in a visual editor (as opposed to
text-mode editing – manually writing the HTML tags).

Most blogging platforms use HTML to write and store blog posts
and other blog objects. They usually also provide a browser-based
WYSIWYG editor in their web administration interface to spare the
users the necessity to learn and use HTML markup. In order for UBM
to be a full-scale replacement of these web interfaces, we had to
provide a WYSIWYG editor of our own.

To create a WYSIWYG editor, we first need an HTML rendering
engine. There are several such engines available: Trident
(MSHTML)[8], Gecko[9] or WebKit[10]. Gecko is used by Mozilla's
Firefox browser, WebKit by Apple's Safari. Both these engines
are considerably more powerful then Microsoft's MSHTML (both in
performance and resource allocation), but since both of them are
written in C/C++ languages, incorporating them in a .NET application
means a non-trivial task of writing a very advanced wrapper library
around their objects. The greatest advantage of MSHTML over Gecko
and WebKit is that Microsoft already provides a complete .NET

Analysis

16

wrapper around MSHTML. And that is also the main reason we
decided to use MSHTML in UBM - writing a complete wrapper around
Gecko or WebKit is currently beyond the scope of the project.

The engine library contains classes, interfaces and other objects used
to manipulate HTML markup. Using this library we can take the page
rendered in our UI and programmatically change it according to our
demands – add formatting, insert images, modify text and many more.

2.6. Application updates
There is one last issue with blogging applications left to discuss:
blogging platforms are constantly evolving (for example, WordPress
releases several incremental versions per year). This means it is
probable that the APIs will change overtime, which will result in
malfunctioning plugins. In order to minimize the impact such an event
will have on the users, we should provide an easy way to distribute
application and plugin updates.

This idea has not been completely implemented yet - Universal Blog
Manager is distributed together with an updater application, but there
is currently no way of automatically updating individual plugins.

The updater application is quite simple - it contacts a web service in
the Internet, checks the current application version number against
the latest version number and if the server contains an updated
version, downloads it and unpacks it.

The ideal solution to the problem of plugin updating would be to create
a central repository of plugins in the Internet - this way the application
could check the versions there and automatically download updated
plugins. The concept is not particularly complicated and this feature
will definitely be added in the future versions of the Universal Blog
Manager.

17

3. Plugins

3.1. WordPress Plugin
This chapter analyzes our implementation of a Universal Blog
Manager plugin for the WordPress blogging platform.

3.1.1. XML Remote Procedure Call
WordPress is probably the most robust and complex blogging
platform currently available. Among other features, it also provides
its own API, which third-party developers can exploit to integrate
their applications with WordPress-powered blogs. At its core, the
WordPress API (WP API) is actually a set of XML Remote Procedure
Call (XML-RPC) methods. XML-RPC is a widely used standard for
calling complex methods from remote endpoints. It uses HTTP for
transport and XML for encoding.

The use of XML-RPC has several advantages - it is free, it is well
documented and implementations exist for all the currently popular
programming languages. Full XML-RPC specifications can be found
at the XML-RPC home page[12].

WordPress API specifications are available at the WordPress
Codex[13]. This specification only covers the WordPress-specific
methods. In addition, WordPress also completely supports Blogger
API[14], Metaweblog API[15] and Movable-type API[16].

3.1.1.1. XML-RPC in .NET Framework

The first issue we encountered when working on the WordPress
plugin was that while XML-RPC is a widely used technology, .NET
Framework does not support it natively in its Base Class Library
(BCL). There are several third-party implementations available for
download, but using them presents a different problem: if we used
a third party library, we would have to distribute it together with our
plugin. We dismissed the concept, as it might easily lead to plugin and
version conflicts (for example two plugins written against two different
versions of the same XML-RPC library).

To solve these issues, we decided to handle the XML-RPC ourselves.
We also noticed that we didn't need to write a universal XML-RPC
client library, but rather only a given set of XML-RPC methods with

Plugins

18

well documented parameter lists and endpoints - instead of solving
the problem in a universal way, we would only write a code for a
very specific subset of the problem. This significantly reduces the
complexity of the problem.

An XML-RPC call is basically a HTTP POST request to a specific
address with a payload in a specific format. Making HTTP requests
from .NET Framework is fairly simple - the BCL contains all the
necessary classes. The request body is filled with XML data in a
specific format (see the XML-RPC specifications).

3.1.1.2. Constructing XML-RPC queries and reading
responses

We already established that the data sent and received though the
use of XML-RPC are in the form of XML documents. .NET Framework
currently supports two different approaches to writing and reading
XML data - Document Object Model (DOM) manipulation and
LINQ-to-XML [17].

Since our initial implementation targeted .NET Framework 2.0, we
were forced to use the DOM approach (LINQ-to-XML became
available with .NET Framework 3.5). This led to a very long and
difficult-to-read code - every XML object (element, attribute etc.)
needed a separate line of code and it was very difficult to imagine
how the resulting XML document would look like. This in turn lead to
difficulties with debugging, when a simple mistake could take up to
thirty (or more) minutes to track down and fix.

This problem was solved by switching the target framework version
to 3.5 and rewriting the code to use LINQ-to-XML. LINQ-to-XML
supports functional XML tree construction - the whole XML document
can be created using a single function call. This function can be easily
split across multiple lines and indented so that the code resembles
the resulting XML file. The following example (taken from the MSDN)
illustrates the concept:

Plugins

19

Example 3.1. LINQ-to-XML - functional XML tree
construction

XElement contacts =
 new XElement("Contacts",
 new XElement("Contact",
 new XElement("Name", "Patrick Hines"),
 new XElement("Phone", "206-555-0144",
 new XAttribute("Type", "Home")),
 new XElement("phone", "425-555-0145",
 new XAttribute("Type", "Work")),
 new XElement("Address",
 new XElement("Street1", "123 Main St"),
 new XElement("City", "Mercer Island"),
 new XElement("State", "WA"),
 new XElement("Postal", "68042")
)
)
);

When reading and parsing the returned data, we found ourselves
in a similar position - the DOM approach led to a code that was
very difficult to read and maintain. On the other hand, LINQ-to-
XML allowed us to make use of the Language Integrated Queries
technology, resulting in a cleaner and simpler code.

3.1.2. Retrieving blog statistics
WordPress blogs track several statistics for their owners: number of
visits, links clicked, search engine terms visitors used to find the blog
and so on. We wanted to display these statistics in our application, but
after reading the WP API documentation, we discovered that there is
no (documented) API method for retrieving these statistics.

At first, we decided to omit this feature entirely and shelve it for later
versions. Over time, we gave this issue a great deal of deliberation
and decided that the only place where the statistics are available is
the web administration interface. With this in mind, we started to write
a set of methods that would scrape the statistics from the statistics
web page.

Plugins

20

That required two main steps:

1. Log into the administration interface and navigate to the statistics
page

2. Parse the HTML code and retrieve the statistics

3.1.2.1. Logging into the administration interface
WordPress uses forms authentication in its administration interface -
the user enters his credentials, the server verifies them and if the login
is successful, sends back a cookie that identifies the user as being
logged in.

In order for UBM to be able to navigate to the statistics page, it
needs to retrieve this login cookie from the WordPress servers.
This has been implemented by simulating the user's input on the
WordPress login web page - the application crafts an HTTP POST
request with the necessary information and submits it to the login
URL. But a problem within .NET Framework (all versions up to 4.0)
was encountered when implementing parsing the server's response:

The response we received from the server always stated
“Unauthorized” and the login cookie was not present, even though the
login information was correct.

It took almost a week to pinpoint the problem, because it was located
deep within the BCL. The issue arose because there is a problem
in Microsoft's implementation of the class used to make HTTP web
requests. The class handles cookies incorrectly when there is a
“Location” HTTP header present. Consider the following scenario:

• Make a POST HTTP request to the login URL containing valid
credentials

• The server verifies the login information and issues a response
containing a cookie definition and a redirection directive in a
Location header to a URL that requires login

• The .NET Framework parses the Location header, ends the
response parsing and immediately redirects to the specified page
without parsing potential cookie headers

• The protected web page checks for the authentication cookie,
fails to find it and redirects to the login page with the
“Unauthorized” response

We were forced to create a workaround for this issue that
involved parsing cookies “by hand”. Later on we discovered that

Plugins

21

an undocumented API exists that allows for simple retrieval of blog
statistics and incorporated this API into the plugin.

3.2. Blogger Plugin
This chapter discusses the important aspects of our implementation
of a plugin for the Blogger platform.

3.2.1. Blogger Data API
Blogger (just like its competitor, WordPress) also provides its own API.
The entire API uses HTTP and XML technologies, although it is not
XML-RPC based. Instead, the XML data are formatted according to
the Atom Publishing Protocol (AtomPub).

The complete specification of the Blogger Data API are available
from Google[19] . The AtomPub specifications are available from the
Internet Engineering Task Force[20]

3.2.2. Authorization
Before the plugin can access the user's blog data, it must first prove
to the server that it is authorized to do so. Blogger Data API support
several authorization schemes:

• OAuth 2.0[21]

• OAuth 1.0[22]

• AuthSub[23]

• ClientLogin[24]

The OAuth schemes are the most advanced and secure - they both
allow the user to keep his/her login credentials hidden from the
client application. However, they were designed to be used mainly
in web applications - pages trying to connect with other pages. It is
still possible to use OAuth schemes from client-side (or “installed”)
applications, but the implementation is not entirely straight-forward.

The AuthSub authentication scheme can only be used to authenticate
web applications and is not suited for client applications.

ClientLogin is a very simple scheme, but it is much less secure then
the OAuth schemes - the user needs to enter his/her credentials
directly into the application, which presents a potential security issue.

Plugins

22

Since we decided to write the Blogger plugin mainly to demonstrate
the modularity of UBM, we decided to use the ClientLogin method,
because of its simplicity. In case we decided to release the plugin
publicly, we would have to rewrite the authentication code to use the
OAuth 2.0 scheme to provide the best possible protection to the users.

23

4. Implementation
This chapter covers the overall organization of the application and
describes its components.

4.1. Assemblies
The current version of UBM consists of six assemblies:

1. Main executable (UniversalBlogManager.exe)

Project name: UniversalBlogManager

This is the main executable of the whole thesis. It loads plugins and
provides the user with user interface that he/she can interact with.

2. Plugin proxy library (PluginBase.dll)

Project name: PluginBase

This assembly contains all the classes and interfaces that need
to be visible from both the main executable and the plugins. Main
application, plugins and the plugin manager reference this library.

3. Modular UI components library (ModularUIControls.dll)

Project name: ModularUIControls

This assembly contains all the currently implemented custom user
interface components used to work with extensible data structures
and blog objects. The main executable references this assembly.

4. WordPress plugin (Plugins\WordPressNet.dll)

Project name: WordPressNet

This assembly contains the implementation of the UBM plugin for
the WordPress platform. The main application loads this assembly
at run-time.

5. Blogger plugin (Plugins\BloggerNet.dll)

Project name: BloggerNet

This assembly contains the implementation of the UBM plugin for
the Blogger platform. The main application loads this assembly at
run-time.

Implementation

24

6. Plugin manager (PluginManager.exe)

Project name: PluginInstaller

This is a separate executable that allows end users to install and
uninstall plugins easily and comfortably.

The following picture desribes relationships between the project
assemblies. Grey arrow from assembly A to assembly B indicates that
A uses objects stored in B. It is apparent that the main executable
stands at the top of the hierarchy (right in the picture; it only consumes
entities from other assemblies), while the library containing plugin-
related entities is at the bottom (left in the picture; it only provides
classes and interfaces to other assemblies).

Figure 4.1. Assembly dependencies

All six assemblies will be discussed in detail in the following sections.

There are two third-party components referenced by the main
application - Agility HTML Framework[11] and MSHTML[8]. These are
beyond the scope of this thesis and will not be discussed here.

4.2. Main executable
The main executable is the central spot of the whole thesis and as
such references or uses all the other assemblies of the project. This
assembly contains virtually all the user interface available to the end
user (with the exception of modular user interface components stored
in the ModularUIComponents.dll assembly and the UI components
that might be implemented by plugins).

Implementation

25

User interface components are implemented using Windows
Presentation Foundation and every window/usercontrol is composed
of two files - [classname].xaml containing the UI definition
(in the form of eXtensible Application Markup Language) and
[classname].xaml.cs containg the interaction logic (a “code-
behind” file). By usercontrol we mean a separate reusable custom-
written user interface component - a piece of UI that was created by
us specifically for our application.

The main window (MainWindow class) contains only very little
functionality - it only hosts UI controls for accessing registered blog
accounts and the main menu. One of the menu items is capable of
starting the plugin manager application.

Probably the most important class in the whole assembly is
the AccountControl class (and usercontrol). This is the UI
component that provides the user with access to all the controls
for managing blog accounts and interacting with a single plugin
(each AccountControl represents a single account; therefore a
single plugin). It utilizes modular UI extensively, as well as plugin
manipulation using plugin interfaces. Its components also use several
usercontrols for displaying blog data, such as DropDownButton,
[Post/Page]List, [Post/Page]Item and others. These are simply
minor UI components designed to improve the ease of use of the
application.

Other application window classes all begin with the letter 'w' (e.g.
wManageAccounts) and can be divided into two categories: major and
minor. Major windows implement the core application functionality,
such as publishing blog posts or creating blog categories. Windows
are usually only used to create or edit blog data - ability to delete
blog objects is in most cases available directly in the AccountControl
object.

Several of the major windows contain WYSIWYG editor
implementation to allow the user to compose HTML documents
comfortably. This WYSIWYG editor is currently not encapsulated in a
single class/usercontrol, even though it would make its usage simpler.
Major windows all manipulate plugins using the interfaces and classes
from the PluginBase.dll assembly. They also usually use modular
user interface components.

Minor windows are used to perform minor tasks, such as registering
an account, verifying supplied user credentials or setting a master
password for the application. Several of these windows use
objects stored in the PluginBase.dll and ModularUIControls.dll

Implementation

26

assemblies, but most of them have no connection to the plugins or
modular UI components.

There are several support classes located in the main executable -
classes representing event arguments (all classes with names ending
with “Args”) or exceptions (classes ending with “Exception”) or classes
containing application settings and assembly-wide methods (Globals
class, with methods SaveAccounts, DecryptAccounts etc.).

4.3. Plugin proxy library
This assembly contains all the classes and interfaces required in both
the main application and the plugins. The main executable and plugins
reference this library, as it contains all the classes and interfaces used
in plugin contracts.

Every entity in this library belongs to one of the following categories
(every category will be discussed in detail later on):

• Plugin interfaces

All of the available plugin interfaces are in this group. These are
used to implement plugins and used by the main application to
manipulate and call plugin methods without knowing the exact type
of the plugin. The plugin manager application also utilizes these
interfaces when loading and analyzing plugins to install.

• Blog entities

This category contains all the classes representing blog entities,
such as articles, comments, categories etc. These classes are
used by plugins to return platform-specific plugin objects to the
main application in a unified way. Every time the main application
requests blog data, objects of this category are used to pass it.

• Plugin exceptions

This group contains all the classes plugin developers can use to
signal problems to the main application. These are usually raised
by plugins and caught in the main application wherever plugin
operations are performed (data retrieval and sending).

• Custom message box implementation

Two classes for displaying custom message boxes (that are
graphically consistent with the main application's UI) are in this

Implementation

27

category. Message boxes are used primarily by the main application
to display messages to the end user, but may be used by plugins
as well. The Blogger plugin currently uses objects in this category
to display messages related to logging into user accounts.

• Miscellaneous

The last group contains several classes that could not be fitted into
the previous categories.

4.3.1. Plugin interfaces
These are all the interfaces that define plugin capabilities. Several
of the interfaces inherit from other interfaces (such as IPosts). The
main application determines capabilities of a plugin by evaluating
what interfaces are implemented in it and modifies its user interface
accordingly.

These interfaces are the “building blocks” from which plugins
are constructed. They are usually entirely independent on other
interfaces, with the exceptions of the IProvider-IPosts/IPages
inheritance and the IComments-ITotalComments inheritance. The
following two figures illustrate the “hierarchy” of plugin interfaces.

The first figure (4.2) depicts the main plugin interfaces - IPosts and
IPlugins. These interfaces are considered “main” because they are
responsible for the most basic plugin functionality - retrieving posts
and pages respectively. They inherit from the IProvider interface
because we wanted to express the fact that when a plugin implements
one of them, it is automatically a valid plugin.

The second figure (4.3) illustrates the additional interfaces. These
are responsible for implementing additional functionality in plugins.
ITotalComments inherits from IComments, because for a blogging
platform to support retrieval of latest comments independent of their
parent articles, it must also support retrieving comments for specific
articles.

Implementation

28

Figure 4.2. Inheritance of the IProvider interface

+BlogAddress
+PluginName
+ProviderName
+PluginAuthor
+Version
+MoreInfo
+AccountIdentifier

+LogOn()
+GetAccountCreationForm()

<<Interface>>
IProvider

+CreatePost()
+DeletePost()
+EditPost()
+GetPosts()
+GetPostEditForm()
+PostExistsAtProvider()
+SavePost()
+LoadPost()

<<Interface>>
IPosts

+DeletePage()
+EditPage()
+GetPages()
+CreatePage()
+GetPageDisplayForm()
+GetPageEditForm()
+PageExistsAtProvider()
+SavePage()
+LoadPage()

<<Interface>>
IPages

Implementation

29

Figure 4.3. Other plugin interfaces

+GetStats()

<<Interface>>
IStats

+GetTags()
+GetTagsDisplayForm()

<<Interface>>
ITags

+GetLatestComments()

<<Interface>>
ITotalComments

+GetVerifyLoginForm()

<<Interface>>
ICredentialsVerification

+GetOptions()
+SetOptions()

<<Interface>>
IOptions

+DeleteComment()
+EditComment()
+GetComments()
+CreateComment()
+GetCommentEditForm()
+GetCommentContextMenu()
+CommentContextMenuListener()

<<Interface>>
IComments

+DeleteCategory()
+GetCategories()
+CreateCategory()
+GetCategoriesDisplayForm()
+GetNewCategoryForm()

<<Interface>>
ICategories

+GetEmbedDescriptors()
+GetEmbedCode()

<<Interface>>
IArticleEmbeds

+GetMediaLibrary()

<<Interface>>
IBlogMedia

4.3.1.1. Interface description

The following list briefly describes the responsibilities of the respective
interfaces (for full details see the programmer's documentation).

• IProvider

Specifies methods and properties required for every valid plugin.

• IPosts

Specifies methods required to work with blog posts.

• IPages

Specifies methods required to interact with blog pages.

Implementation

30

• IComments

Specifies methods necessary for a plugin to be able to manage blog
comments. Does not a contain method for retrieving the list of latest
comments.

• ITotalComments

Extends the IComments interface with a method to retrieve article-
independent list of latest comments.

• IArticleEmbeds

Specifies methods required to enable insrting of plugin-specific
embed codes into blog articles.

• ICredentialsVerification

Specifies methods necessary for credentials verifications.

• ICategories

Specifies methods necessary for interacting with blog categories.

• ITags

Specifies methods necessary for interacting with blog tags.

• IOptions

Specifies methods necessary for displaying and editing blog
options.

• IStats

Specifies methods necessary for the retrieval of blog statistics.

• IBlogMedia

Specifies methods necessary for the retrieval of blog media.

4.3.2. Blog entities
These classes are used to represent blog entities, such as posts,
pages or comments. They provide a layer of abstraction over the
actual blog data - it is not necessary for the main application to know
how the actual object data looks like (e.g. whether it is XML or JSON

Implementation

31

serialized), the plugin just needs to create the proper object from it
and pass it to the main application. Classes in this group are used in
the main application, plugins and the modular UI controls library.

Where metadata is expected, the classes contain special storage for
it (see the Extensible Data Structures in Analysis). This storage is
implemeted using a private Dictionary<string, object> with a
getter and setter in the form of an indexer (this[key]).

It is important to note that both blog posts and pages are represented
by the Article class, because these blog objects are usually very
similar in structure.

Contained classes: Article, BlogOption, Category, Comment,
CustomField, MediaItem, StatItem, Tag. Names of the classes are
self-explanatory.

4.3.3. Plugin exceptions
Classes contained in this group are designed to allow plugin
developers to throw exceptions into the main application safely (to
learn more about exceptions, see Exceptions in Analysis and the
Plugin Development Guide). The abstract PluginException class
is used as a common ancestor for all the other exception classes.

Throwing a UserFriendlyException will cause the main application
to display a message box to the user containing the content of the
exception message. This exception should be thrown in situations,
where the plugin wants to notify the user about an “expected”
exceptions - an exception that the user might be able to resolve. The
exception message should be clear and easy to understand to the
average end user.

When a plugin throws an InternalException, only a generic
message about an unexpected problem is displayed to the user
(unless the plugin debugging mode is active, see Debugging in Plugin
Development Guide for details). This exception type should be used in
cases where the exception is truly “unexpected” and it is not possible
for the end user to rectify the problem.

Contained classes: PluginException, UserFriendlyException,
InternalException.

The following figure illustrates the inheritance tree of plugin
exceptions described above.

Implementation

32

Figure 4.4. Exception class inheritance

+Message : string
+PluginDescription : PluginInfo

+PluginException()

PluginException

+UserFriendlyException(message : string)
+UserFriendlyException(info : PluginInfo, message : string)
+UserFriendlyException()

UserFriendlyException

+InternalException(message : string)
+InternalException(info : PluginInfo, message : string)
+InternalException()

InternalException

4.3.4. Custom message box implementation
These two classes implement a custom message box used
throughout the application. This message box has been designed
specifically to display messages in a way that is visually compatible
with the main application's user interface.

The actual message box window is marked as internal to prevent
other assemblies from instantiating it directly. The public static
CustomMessageBox class must be used to display a new message
box (this behavior is very similar to the one of the native .NET's
MessageBox class).

Classes: CustomMessageBox and CustomMessageBoxWindow.

4.3.5. Miscellaneous
These classes are used for various minor tasks mainly by the main
application.

Classes: CommentEventArgs, FormComponent, LoginInfo,
MenuDescriptor, PluginInfo, Support.

Implementation

33

The CommentEventArgs class represent event arguments for
comment-related events (from the IComments interface). Events are
raised by plugins and handled by the main application.

The FormComponent class is used to describe user interface
components in the UI-related plugin methods (see Modular User
Interface in Analysis). Plugins return collections of FormComponents
to the main application whenever plugin-specific user interface is
required.

The LoginInfo class stores information necessary to log into a plugin
account. This class is binary-serializable. Instances of this class are
created by the main application (in the account management window)
and passed to plugins when the user attempts to log into an account.

The MenuDescriptor class is similar in usage to the FormComponent
class - it is also used to describe user interface. Context menus for
working with comments are described using this class.

The PluginInfo class is lightweight object used to pass information
about plugins in situations where only the basic information is
necessary, not the whole plugin (such as when throwing an
exception). PluginInfo objects are currently only used in conjunction
with throwing plugin exceptions, which means the class is only used
in plugins.

The static Support class contains methods that might be useful to
plugin developers, but are not necessary. Only plugins currently use
its methods.

4.4. Modular UI components library
This assembly contains all the currently implemented modular UI
controls (to learn more about modular UI, see chapter Modular User
Interface in Analysis). These controls are used by the main application
to display and edit blog object properties and metadata. No other
projects/assemblies use objects stored in this assembly.

Mudular UI components are implemented as WPF usercontrols -
stand-alone and reusable UI components. To be considered modular,
they must also implement the IModularUIControl interface. This
allows the main application to intaract with different controls in the
same manner.

Usage of these controls is simple - whenever the user starts a task
that requires dynamic UI, the main application first queries the plugin

Implementation

34

for a description of the UI for this task. Then the application parses the
response and creates new instances of the required UI components,
sets their value and displays them to the user.

When information needs to be passed from modular UI to plugins,
the main application collects all the rendered modular UI components,
extracts their keys and values and creates a list of key-value pairs.
This list is then passed to the plugin. Since the plugin is the one
responsible for specifying keys for the UI components, it knows what
keys to expect.

Classes: CheckBox, DateSelector, IntegerBox,
Label, LinkLabel, MultilineLabel, MultilineTextBox,
TimeSelector, TextBox, PasswordBox, CategoryDisplayTree,
CategorySelectionTree, SelectionBox, StatsList. Names of the
classes should be self-explanatory.

4.5. WordPress plugin
The WordPressNet.dll assembly contains only a single public
class - WordPressApi, which contains the implementation of the
WordPress API. Since WordPress API is fairly complex (and
powerful), this class implements virtually all the available plugin
interfaces. To improve readability, the code has been split into several
files using the partial keyword. This class is used by the main
application and the plugin manager application through the plugin
interfaces abstraction (the actual WordPressApi type is never used).

The assembly also contains several internal classes (e.g. Author,
CommentCount or a static class Support) and an internal enum
(ArticleStatus). These classes are usually simple helper classes
used for preventing code repetition and extraction of often-used code.

There are also four internal UI windows declared in the assembly.
These are displayed whenever a user attempts to embed a special
object (such as a video or a music file) into a post/page. When the
main application sends a request to embed such an object (using the
plugin API), the required window is displayed to the user.

The WordPressApi class implements basically the whole WordPress
XML-RPC API and its visibility is set to public, therefore it is
theoretically possible to reuse this class in other projects that require
interaction with WordPress blogs. In such a scenario, however, it
is recommended to acquire the source code of the assembly and
remove the reference to the PluginBase.dll library, thus eliminating
the need to ship it with the WordPressNet.dll assembly.

Implementation

35

The following figure illustrates the relationship between the
WordPressApi class and the plugin interfaces.

Figure 4.5. WordPressApi class - plugin interface
inheritance

WordPressApi

<<Interface>>
IComments

<<Interface>>
ICredentialsVerification

<<Interface>>
IOptions

<<Interface>>
IPages

<<Interface>>
ICategories

<<Interface>>
IArticleEmbeds

<<Interface>>
IStats

<<Interface>>
ITotalComments

<<Interface>>
ITags<<Interface>>

IPosts

<<Interface>>
IBlogMedia

4.6. Blogger plugin
This section discusses the implementation of the Blogger UBM plugin.

The Blogger UBM plugin consists of a single class named
BloggerApi. Since the Blogger API is currently very simple, this
class implements only the IPosts and ITotalComments interfaces.
This class is used by the main application and the plugin manager
application through the plugin interfaces abstraction (the actual
BloggerApi type is never used).

The following figure illustrates the relationship between the
BloggerApi class and the plugin interfaces.

Implementation

36

Figure 4.6. BloggerApi class - plugin interface
inheritance

BloggerApi

<<Interface>>
IPosts

<<Interface>>
ITotalComments

In addition to the interface-enforced methods and properties, it also
contains several private helper methods.

You can find more technical details in the programmer's
documentation.

4.7. Plugin manager
The plugin manager application basically contains only a single
window (the main application window - MainWindow) and two classes
for retrieving plugin information from assemblies.

The application cannot be started without a command line parameter
specifying the location of the UBM executable. If this parameter is
not present, an error message is displayed and the application is
terminated.

The two classes for loading plugin information are called
PluginDescriptor and AppDomainProxy. PluginDescriptor class
is used to describe the plugin, including displaying the plugin
information in the user interface using XAML bindings. To retrieve
information from the actual plugin assemblies, it uses application
domains in combination with the AppDomainProxy class. The
AppDomainProxy extends the MarshalByRefObject class, which
means it can be used safely to perform cross-domain tasks (to learn
more about application domains and dynamic assembly unloading,
see Plugin management in Analysis). The process of retrieving plugin
information is as follows: first, the PluginDescriptor creates a
separate temporary application domain. Then, the AppDomainProxy
is instantiated in this temporary domain, loads the given assembly
and attempts to read its properties. Finally, the PluginDescriptor
reads the retrieved values and unloads the temporary domain, thus
removing the loaded assembly from memory.

Implementation

37

This application manipulates plugins using the abstraction provided
by the plugin interfaces located in the PluginBase.dll assembly.

38

5. Comparison with similar
applications

This chapter discusses application functionally similar to this thesis,
how they differ from it and how Universal Blog Manager (UBM)
addresses their shortcomings.

5.1. Microsoft Live Writer 2011
Microsoft Live Writer (MLSW) is a tool designed for home users - its
user interface is simple, but only has one goal: to allow users to create
new content quickly. The application's user interface is basically one
large post editor. This is very comfortable, because is allows users to
start writing immediately after the application is started.

MSLW supports several blogging platforms out-of-the-box, such as
WordPress, Blogger or SharePoint, but the list is not extensible.

5.1.1. How UBM differs
It is very difficult to compare UBM to MSLW, mainly because the latter
is not a true blog “manager” - while it is able to load an existing post
or page, this ability is hidden behind menus and additional dialogs.
Articles can be deleted using MSLW, but with the same limitation - the
ability is not readily available.

Working with other blog objects (such as comments) is omitted
entirely, as are advanced features like displaying blog statistics or
modifying blog settings. The application is only capable of working
with one article at a time - it is impossible to edit multiple posts or
pages at the same time.

Another advantage UBM has over MSLW is its ability to extend its list
of supported blogging platforms using easy-to-create plugins. MSLW
also supports plugins, but these are plugins of a different sort -
they extend the application with additional functions, such as screen
capturing and image upload.

There are several MSLW features that are not available in UBM yet,
for example the ability to preview blog posts including the blog's
visual theme or the ability to use spell check while writing an article.
These are mainly “cosmetic” features and have no direct impact
on the main application's functions. Spell-checking is a very handy

Comparison with similar applications

39

feature for a blogging application and has been placed on Universal
Blog Manager's roadmap (see Future development in the following
chapter).

Overall, we would describe MSLW as a tool useful for smaller and
simpler blogs, mainly because of its simplicity. Managing a larger blog
(or a customized CMS) is virtually impossible - these blogs usually
employ heavily modified or custom-written blogging platforms. MSLW
has no control over any potential customizations and is uncapable
of interacting with custom platforms. Many basic functions (such as
editing an existing older post) are not readily available. This makes for
a cumbersome user experience in case of larger and more popular
blogs.

5.2. BlogJet 2
BlogJet (BJ) belongs into the same category as the previously
mentioned MSLW - its primary function is quick post creation, but its
user interface is far less user-friendly. It uses the classic windows
application UI composed of toolbars and menus (as opposed to Live
Writer's Ribbon UI), which complicates navigation and orientation.

BJ currently supports 12 blogging platforms, such as WordPress,
Blogger, LiveJournal and all platforms supporting MetaWeblog or
MovableType APIs, but the list cannot be extended further.

5.2.1. How UBM differs
Since BJ is very similar to MSLW, it suffers from the same
drawbacks - unintuitive user interface, inability to browse recent
articles quickly and the overall inability to support platform-specific
features. Additionally, it is a paid application with 30 day trial period.

BJ does not support any kind of plugins - all the features are either
present in the application or simply not available. This is a great
drawback for a paid application aiming at the quickly evolving area
of blogging. The application is, just like MSLW, incapable of editing
multiple articles at the same time.

BlogJet also contains a very interesting feature not available in UBM:
the ability to create new articles cross-platform - to publish posts
to several accounts at once. This feature has been implemented in
previous versions of UBM, but had to be discontinued because of
technical limitation when we decided to make the application plugin-
extensible - since blog posts from different plugins have different

Comparison with similar applications

40

metadata, it would be impossible to cross-post anything but the post's
title and body, which we considered virtually useless. This feature has
been placed on the roadmap.

BJ is more suitable for experienced bloggers (its UI is not so intuitive
as the MSLW's Ribbon UI), but managing a larger or custom system
with it would range from very difficult to impossible (in case of custom
platforms - BJ would simply not support them). Article deletion is
hidden behind menus and features like post comments and statistics
are omitted.

5.3. BlogDesk
BlogDesk (BD) is also similar in concepts to the two previously
mentioned applications. The application is also focused on rapid
content publishing and it only provides basic blog management
functions not available directly from the main window. The user
interface is more intuitive and less distracting.

BD is only capable of working with a single article at a time, does not
handle diacritics in categories and was unable to retrieve the list of
published posts for our WordPress hosted blog.

BD currently supports all blogging platforms using the MovableType
and MetaWeblog APIs. This greatly limits the application's features,
since many blogging platforms provide their own custom API with
extended functionality.

5.3.1. How UBM differs
UBMs advantages over BD are virtually the same as with
the previously mentioned applications - clearer user interface,
extensibility and full support for true blog management (e.g. editing
several posts/posts from different accounts at once, deleting posts in
a single click etc.). BD also supports spell checking, although not as-
you-write.

5.4. Conclusion
After evaluating several of the most popular and highly-regarded
blogging tools, we concluded that UBM is a unique piece of blogging
software, mainly because its focus is evenly distributed between
content creation and content management. In our search we have not
found a free Windows application with capabilities similar to those of
UBM.

Comparison with similar applications

41

The inability to create, edit and moderate comments struck us as
the most critical shortcoming of the mentioned application - blogging
is about sharing opinions and the resulting discussion is one of the
most interesting parts of it. A blogging tool that does not provide its
users with the ability to interact with their readers fulfills only half of
its responsibilities.

42

6. Conclusion
This chapter summarizes the thesis and describes to what extent the
thesis goals were met. It also outlines potential for future development
of the application discussed in this thesis.

6.1. Fulfillment of thesis goals
We attempted to solve three problems of the blogging world with
this thesis: we wanted to create an application that is a) universal
(supports working with any blogging platform), b) extensible (its
features must be extensible using plugins) and c) user-friendly (its
user interface must be as simple as possible).

After evaluating the result of our work and comparing it to similar
applications, we can safely say that the first two thesis goals have
been successfully met. Our plugin architecture is flexible enough to
handle virtually any blogging platform back-end and present it to the
user in a unified way. The main application is capable of handling
plugins and extend its features.

By keeping the user interface as simple as possible, we managed
to create an application where every important function is no more
than three clicks away. By minimizing the number of various buttons
and toolbars we also allow bloggers to write their articles in an
environment that does not distract them.

We would estimate the degree to which the third thesis goal was met
to 90%. There are several improvements to the UI that would make for
an even greater user experience that did not make it into the current
application version. These are highlighted in the following section.

6.2. Future development
There are several areas for improvement in the current version of
UBM, ranging from plugin architecture through HTML rendering to
user interface:

Since our implementation of plugin architecture turned out to be viable
and powerful, future versions of UBM could incorporate plugins not
only to communicate with blogging platforms, but also to provide
users with additional functions that are plugin independent, such as
searching Wikipedia or taking screenshots.

Conclusion

43

The Internet Explorer rendering core used in the current version is not
entirely stable - it leaks memory over time and it is not very fast nor
web standards-compliant. The logical next step would be to replace
this rendering core with another one, such as Gecko or WebKit, both
of which are considerably faster and more compliant.

To simplify plugin management, a central plugin repository could
be constructed. This would make searching for a specific plugin
much more comfortable. It would also allow for automatic updating of
plugins.

Spell checking should be added to the application, allowing the users
to spot and correct typos and misspellings before publishing their
articles.

At last, plugins for more blogging platforms should be implemented,
allowing UBM to reach a wider audience of users.

44

Appendix A. Table of links
Table A.1. Table of links

[1] Blog: Merriam-Webster
dictionary

http://www.merriam-
webster.com/dictionary/blog

[2] Wordpress home page http://www.wordpress.com/
[3] Tumblr home page https://www.tumblr.com/
[4] Blogger home page http://www.blogger.com/
[5] Posterous home page https://posterous.com/
[6] MovableType home page http://www.movabletype.org/
[7] Plugin: Merriam-Webster

dictionary
http://www.merriam-
webster.com/dictionary/plugin

[8] MSHTML home page http://msdn.microsoft.com/
en-us/library/
aa741317%28v=vs.85%29.aspx

[9] Gecko Rendering Engine home
page

https://developer.mozilla.org/
en/Gecko

[10]WebKit home page http://www.webkit.org/
[11]HTML Agility Pack home page http://

htmlagilitypack.codeplex.com/
[12]XML-RPC specifications http://xmlrpc.scripting.com/
[13]WordPress XML-RPC

specifications
http://codex.wordpress.org/
XML-RPC_wp

[14]Blogger Developer Center http://code.blogger.com/
[15]MetaWeblog API

documentation
http://xmlrpc.scripting.com/
metaWeblogApi.html

[16]MovableType API
documentation

http://developer.typepad.com/

[17]LINQ-to-XML documentation http://msdn.microsoft.com/en-
us/library/bb387098.aspx

[18]XML DOM documentation http://www.w3.org/TR/DOM-
Level-3-Core/introduction.html

[19]Blogger API documentation http://code.google.com/
apis/blogger/docs/2.0/
reference.html

[20]Blogger API - AtomPub
specifications

http://www.ietf.org/rfc/
rfc5023.txt

http://www.merriam-webster.com/dictionary/blog
http://www.merriam-webster.com/dictionary/blog
http://www.merriam-webster.com/dictionary/plugin
http://www.merriam-webster.com/dictionary/plugin
http://msdn.microsoft.com/en-us/library/aa741317%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa741317%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa741317%28v=vs.85%29.aspx
https://developer.mozilla.org/en/Gecko
https://developer.mozilla.org/en/Gecko
http://www.webkit.org/
http://htmlagilitypack.codeplex.com/
http://htmlagilitypack.codeplex.com/
http://xmlrpc.scripting.com/
http://codex.wordpress.org/XML-RPC_wp
http://codex.wordpress.org/XML-RPC_wp
http://code.blogger.com/
http://xmlrpc.scripting.com/metaWeblogApi.html
http://xmlrpc.scripting.com/metaWeblogApi.html
http://developer.typepad.com/
http://msdn.microsoft.com/en-us/library/bb387098.aspx
http://msdn.microsoft.com/en-us/library/bb387098.aspx
http://www.w3.org/TR/DOM-Level-3-Core/introduction.html
http://www.w3.org/TR/DOM-Level-3-Core/introduction.html
http://code.google.com/apis/blogger/docs/2.0/reference.html
http://code.google.com/apis/blogger/docs/2.0/reference.html
http://code.google.com/apis/blogger/docs/2.0/reference.html
http://www.ietf.org/rfc/rfc5023.txt
http://www.ietf.org/rfc/rfc5023.txt

Table of links

45

[21]Blogger - OAuth 2.0
specifications

http://code.google.com/apis/
accounts/docs/OAuth2.html

[22]Blogger - OAuth 1.0
specifications

http://code.google.com/apis/
accounts/docs/OAuth.html

[23]Blogger - AuthSub
specifications

http://code.google.com/apis/
accounts/docs/AuthSub.html

[24]Blogger - ClientLogin http://code.google.com/
apis/accounts/docs/
AuthForInstalledApps.html

[25]MSDN http://msdn.microsoft.com/
[26]MSDN - Application domains http://msdn.microsoft.com/

en-us/library/
cxk374d9%28v=vs.90%29.aspx

[27]MSDN - Application domains http://msdn.microsoft.com/en-
us/library/system.appdomain
%28v=VS.90%29.aspx

http://code.google.com/apis/accounts/docs/OAuth2.html
http://code.google.com/apis/accounts/docs/OAuth2.html
http://code.google.com/apis/accounts/docs/OAuth.html
http://code.google.com/apis/accounts/docs/OAuth.html
http://code.google.com/apis/accounts/docs/AuthSub.html
http://code.google.com/apis/accounts/docs/AuthSub.html
http://code.google.com/apis/accounts/docs/AuthForInstalledApps.html
http://code.google.com/apis/accounts/docs/AuthForInstalledApps.html
http://code.google.com/apis/accounts/docs/AuthForInstalledApps.html
http://msdn.microsoft.com/
http://msdn.microsoft.com/en-us/library/cxk374d9%28v=vs.90%29.aspx
http://msdn.microsoft.com/en-us/library/cxk374d9%28v=vs.90%29.aspx
http://msdn.microsoft.com/en-us/library/cxk374d9%28v=vs.90%29.aspx
http://msdn.microsoft.com/en-us/library/system.appdomain%28v=VS.90%29.aspx
http://msdn.microsoft.com/en-us/library/system.appdomain%28v=VS.90%29.aspx
http://msdn.microsoft.com/en-us/library/system.appdomain%28v=VS.90%29.aspx

46

Appendix B. Plugin Development
Guide
B.1. Introduction

This document is part of the Universal Blog Manager bachelor
thesis. The goal of this document is to provide programmers with
guidelines concerning plugin development for the Universal Blog
Manager (UBM) application.

Before you proceed reading this document, we strongly recommend
to read the bachelor thesis, which will give you a clearer
understanding of how UBM is implemented and what the main
concerns are when writing plugins for the application.

B.2. Creating a simple plugin
Since UBM is a .NET application and uses .NET reflection to load
plugins, all plugins must be valid .NET assemblies. This means that
any new plugin must be written in a .NET language, such as C#, Visual
Basic.NET or F#.

The process of creating a plugin starts by creating an empty Class
Library project. It is necessary to create a class library project,
because UBM only accepts plugins contained within a DLL file.

The second step in creating a plugin is to reference the library
containing plugin interfaces. This library is called PluginBase.dll
and is part of the UBM distribution. This library is crucial, because it
contains all the classes and interfaces necessary to correctly declare
and implement a plugin.

The third step is to create a class that implements the IProvider
interface. Any class implementing this interface is considered a UBM
plugin, which means it will be loaded into the application. Please note
that a plugin implementing only this single interface has a very limited
functionality - namely it provides some very basic information about
the plugin itself, provides the user with the ability to add a new account
using this plugin and log into it afterwards (the meaning of “log into”
depends purely on the plugin itself). There will be no user interface
for managing blog objects.

There are two important details that need to be implemented correctly
in order for the plugin to operate: the plugin class must contain a

Plugin Development Guide

47

default parameterless constructor (this is required because of the
way the main application loads plugins) and the IProvider.LogOn
method must return a new instance of the plugin class. This
is necessary because if the method returned “itself”, it would be
impossible for the user to work with two different accounts using the
same plugin.

To allow the end user to actually interact with the blog account, more
interfaces must by implemented be the plugin class. There are several
interfaces supported by UBM, the most important of which is the
IPosts interface. This interface allows the user to interact with blog
posts (meaning anything the plugin considers a blog post). It inherits
from the IProvider interface, therefore implementing the IPosts
interface is enough to create a valid plugin. The same goes for the
IPages interface, which allows the user to interact with blog pages.

There are several more interfaces available, all of which are described
in detail in the programmer's documentation of the UBM bachelor
thesis.

After you implement all the necessary methods and properties, your
new plugin is ready to be compiled and tested. The next chapter
describes how to debug plugins.

B.3. Debugging
To execute the code of your new plugin, you must first make sure
that the plugin is being recognized by the UBM. Universal Blog
Manager searches for plugins in the [application executable
path]\Plugins folder. In order for your plugin to be loaded, you must
copy the compiled plugin assembly into this folder and restart the
main application. If everything went well (meaning the plugin was
recognized and loaded), you should see your plugin listed in the
About/About plugins window.

If your plugin was loaded, you can now interact with it and verify that it
behaves correctly. The main application contains a special command
line switch which, if present, will enable plugin debugging mode.
In this mode, every encountered exception will be displayed with
details, including the original error message and stack trace. Using
this command line switch while debugging plugins is recommended,
as it will make pinpointing potential issues much easier. To enable
the plugin debugging mode, start UBM with the /plugindebugmode
command line option.

Plugin Development Guide

48

B.4. Advanced features
There are several advanced features and interfaces available
for implementation, such as UI describing methods and the
ICredentialsVerification interface. This section discusses these
advanced features.

B.4.1. UI describing methods
Several of the available plugin interfaces contain methods used
to describe user interface necessary to perform certain tasks (e.g.
display a blog post metadata or add a new comment).

You can identify these special methods by their name - all of them are
named according to the following scheme: Get[task]Form, where
task is the name of the task the method is used for (such as post
display or page edit)

Most of these UI describing methods accept an argument. The value
of this argument decides whether to display an empty form (meaning
that the UI components will be “empty”) or to pre-fill the UI components
with values taken from the argument object.

If the value of the argument is null, the UI components should be left
empty. If the value is not null, the components should be initialized
with values of the argument object.

To learn more about the respective methods, see the programmer's
documentation.

B.4.2. Advanced interfaces
There are several advanced interfaces available to the
programmers, such as the ICredentialsVerification interface,
the IArticleEmbeds interface or the IBlogMedia interface.
Implementing these interfaces is purely optional - these interfaces
provide additional functionality and options to the user, but are not
vital to the basic plugin operations.

An example:

Consider the ICredentialsVerification interface. If a plugin
implements this interface, it means that the plugin is capable of
verifying the stored user credentials - while registering the account,
the main application allows the user to specify whether or not to

Plugin Development Guide

49

“remember” his/her credentials. If the user decides not to remember
the credentials, a special window will be displayed every time the user
attempts to log into this account, prompting the user to re-enter his/
her credentials.

As you can see, the ICredentialsVerification interface is not
necessary, but provides additional functionality (and in this case,
security). It is recommended to implement as many interfaces as
possible - more features means better user experience.

B.5. Exceptions
Exception handling should be implemented very carefully in
your plugins - throwing unexpected exception types can easily
crash the whole application. The PluginBase.dll contains three
exception classes: there is the abstract PluginException class
and two classes derived from it (UserFriendlyException and
InternalException). In case you need to throw an exception out
of your plugin, it is vital that you use one that is derived from the
PluginException class. It is recommended not to declare your own
exception types (even if they extend the PluginException) - use the
UserFriendlyException class to signal problems the user should
be notified about (such as network connection problems) and the
InternalException to signal unexpected and critical problems.

Throwing a UserFriendlyException will cause an information box
describing the problem to be displayed to the user, while throwing
an InternalException will only display a generic error message. If
plugin debugging mode is active (see above), every exception will be
displayed with technical details, including error message and stack
trace.

50

Appendix C. User Manual

C.1. Installation
C.1.1. System Requirements

Operating system: Windows 7/Vista/XP (both x86 and x64)

.NET Framework version: 3.5 SP1, including subsequent updates

Hard drive space: 15 MB

Other system requirement are the same as the requirements of
the .NET Framework

C.1.2. Installation instructions
Universal Blog Manager 1.0 (UBM) is distributed in the form
of a ZIP archive. To install the application, simply extract the
content of the archive into a directory of your choice using
7zip or other ZIP compatible application. After the extraction is
complete, you can launch the application by double-clicking the
UniversalBlogManager.exe file.

C.2. Typical usage scenarios
This chapter shows how to perform the most commonly used blogging
tasks using UBM. We would like to point out that certain parts of UBMs
user interface will change depending on the currently active plugin,
but the general concepts remain valid for any plugin. This manual is
written for the WordPress plugin, since it ships with UBM.

C.2.1. Registering an account
In order to interact with your blog account using UBM, you first need
to register the account in the UBM. You can register any number of
accounts in the Manage accounts window. This window is available
from the main application window using the Accounts → Manage
accounts (Ctrl+M) menu.

User Manual

51

Figure C.1. Manage accounts window

The windows will list all currently stored accounts. You can add a new
account using the New button or edit an existing account using the
Edit button. In both cases the window will expand to display editing
components.

User Manual

52

Figure C.2. Manage accounts window - edit mode

The first step in adding an account is to choose a plugin. You need
to specify a plugin that is capable of working with the blog provider
you want to use (e.g. if you are adding a WordPress account, you
must select a plugin for the WordPress platform). Next step is to
input information necessary for the plugin to access your account.
This might include blog address, username, password and/or other
credentials.

After you filled all the required fields, you can save the account using
the Save button. Verification of the supplied credentials is performed
at this step - if the plugin cannot access the account, you can double-
check your credentials.

The same concepts apply to account editing, with a single exception
- you cannot change plugin of an existing account.

User Manual

53

C.2.2. Logging into an account
After an account has been registered, the main application will display
it in a tabbed window - a tab for each account.

Figure C.3. Main window - account tabs

Before you can interact with your account using UBM, you must log
into it. Login is performed using the Log in button located in the upper
left corner of the account tab. Please note that logging into an account
might take as long as several minutes, depending on your Internet
connection speed and the amount of data the plugin loads.

The rest of the account tab will be unlocked after a successful login.
You can see latest blog posts, pages, statistics or other blog data
in the account tab. The account tab is further divided into separate
tabs to simplify orientation. Each tab corresponds to a single “facet”
of managing a blog - blog posts, blog pages, comments etc. You can
manage (view, delete) blog data in the account tab.

User Manual

54

Figure C.4. Main window - logged in

C.2.3. Creating blog content
The account tab allows you to view and delete existing blog content.
Creation of new content or editing is performed in separate windows
designed specifically for the purpose. We will demonstrate this on the
task of creating a new blog post.

To start creating a blog post, you must first be logged into a blog
account. Then selected the Posts tab in the account tab and click the
New post. A new windows will open, containing a blog post editor.

User Manual

55

Figure C.5. Blog post editor

Here you can write your new blog post. A WYSIWYG HTML editor is
available in this window, so you can write rich HTML blog posts using
a visual editor. Right window pane contains metadata editor - this
area will change depending on the plugin and will allow you to specify
various platform-specific blog post attributes, such as post categories
and tags.

After you have written your post, you can either save it locally or send
it to the blog provider (“publish it”). Local copy is saved using the Save
button, the post is published using the Send button.

Post editing is performed in the same window. The same principles
also apply to blog pages and comments, although the window for
creating comments is much simpler.

C.2.4. Moderating comments
Blogs usually allow visitors to comment on articles. UBM allows these
comments to be displayed in a hierarchical manner (where applicable)
and add, edit, delete and moderate them.

User Manual

56

Figure C.6. Displaying threaded post comments

You can manage a comment by right-clicking it. A context menu
appears, where you can select what you want to do with that particular
comment. The WordPress plugin allows for comment editing, replying,
deleting and moderation (changing comment status).

Figure C.7. Comment editing window

The comment editing window contains a simplified WYSIWYG editor.
Right window pane provides access to the extended properties of a
comment (where applicable).

C.2.5. Managing plugins
UBM is a plugin based application, which means it can be easily
extended to work with new blogging platforms. You can find the list of
currently installed plugins in the About plugins window available using
the Help → About plugins menu. This window also displays various
information about installed plugins, including author and version.

Installation of new plugins and unistallation of old plugins can be
performed using the plugin manager tool that ships with UBM. You
can start the plugin manager using the Tools → Plugin manager menu
item.

User Manual

57

Note

The plugin manager requires administrative right to function
properly.

Figure C.8. Plugin manager

You can uninstall an installed plugin by selecting it and clicking the
Uninstall button. Installation of a new plugin is performed using the
Add button. You must first select a plugin to install, then the plugin
manager will verify that the selected file is a valid plugin and if
everything is in order, the installation is finished by clicking the Install
button.

Note

Uninstalling a plugin requires all running instances of UBM to
be terminated.

Note

You can install several plugins at once by first adding them one
by one and then clicking the Install button.

User Manual

58

Important

Only install plugins you trust - once a plugin is installed and an
account is registered using this plugin, it will have access to
your user credentials!

59

Appendix D. Content of the enclosed
CD

The enclosed CD contains the following:

• Electronic version of the bachelor thesis (this document) in the form
of a PDF document

• Distribution package - a ZIP file containing the compiled project

• Source code package - a ZIP file containing the complete project
source code

• Programmer's documentation - a CHM (compiled HTML help file)
containing the programmer's documentation

	Universal Blog Manager
	Table of Contents
	1. Introduction
	1.1. What is a blog?
	1.2. Blogging basics and terminology
	1.3. Problem statement
	1.4. Goals of this thesis
	1.5. Project history and evolution

	2. Analysis
	2.1. Basics
	2.1.1. Target platform
	2.1.2. Areas of interest

	2.2. Plugins
	2.2.1. Plugin architecture basics
	2.2.2. Dynamic loading
	2.2.3. Unified architecture
	2.2.3.1. Interface vs. class inheritance
	2.2.3.2. Singularity vs. granularity
	2.2.3.3. Constructors

	2.2.4. Exceptions
	2.2.5. Plugin management
	2.2.5.1. Dynamic assembly unloading in .NET Framework

	2.3. Data structures
	2.3.1. Plugins and data

	2.4. Modular user interface
	2.5. The WYSIWYG editor
	2.6. Application updates

	3. Plugins
	3.1. WordPress Plugin
	3.1.1. XML Remote Procedure Call
	3.1.1.1. XML-RPC in .NET Framework
	3.1.1.2. Constructing XML-RPC queries and reading responses

	3.1.2. Retrieving blog statistics
	3.1.2.1. Logging into the administration interface

	3.2. Blogger Plugin
	3.2.1. Blogger Data API
	3.2.2. Authorization

	4. Implementation
	4.1. Assemblies
	4.2. Main executable
	4.3. Plugin proxy library
	4.3.1. Plugin interfaces
	4.3.1.1. Interface description

	4.3.2. Blog entities
	4.3.3. Plugin exceptions
	4.3.4. Custom message box implementation
	4.3.5. Miscellaneous

	4.4. Modular UI components library
	4.5. WordPress plugin
	4.6. Blogger plugin
	4.7. Plugin manager

	5. Comparison with similar applications
	5.1. Microsoft Live Writer 2011
	5.1.1. How UBM differs

	5.2. BlogJet 2
	5.2.1. How UBM differs

	5.3. BlogDesk
	5.3.1. How UBM differs

	5.4. Conclusion

	6. Conclusion
	6.1. Fulfillment of thesis goals
	6.2. Future development

	Appendix A. Table of links
	Appendix B. Plugin Development Guide
	B.1. Introduction
	B.2. Creating a simple plugin
	B.3. Debugging
	B.4. Advanced features
	B.4.1. UI describing methods
	B.4.2. Advanced interfaces

	B.5. Exceptions

	Appendix C. User Manual
	C.1. Installation
	C.1.1. System Requirements
	C.1.2. Installation instructions

	C.2. Typical usage scenarios
	C.2.1. Registering an account
	C.2.2. Logging into an account
	C.2.3. Creating blog content
	C.2.4. Moderating comments
	C.2.5. Managing plugins

	Appendix D. Content of the enclosed CD

