OSTRAVSKA UNIVERZITA V OSTRAVE

DIZERTACNI PRACE

2011 MGR. ZBYNEK URBAN






UNIVERSITY OF OSTRAVA
FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS

VARIATIONAL SEQUENCES IN MECHANICS
ON GRASSMANN FIBRATIONS

PHD THESIS

AUTHOR: MGR. ZBYNEK URBAN

SUPERVISOR: PROF. RNDR. DEMETER KRUPKA, DRSC.

2011






OSTRAVSKA UNIVERZITA V OSTRAVE
PRIRODOVEDECKA FAKULTA

KATEDRA MATEMATIKY

VARIATIONAL SEQUENCES IN MECHANICS
ON GRASSMANN FIBRATIONS

DIZERTACNI PRACE

AUTOR PRACE: MGR. ZBYNEK URBAN

VEDOUCI PRACE: PROF. RNDR. DEMETER KRUPKA, DRSC.

2011



vi

Preface

The aim of this work is to extend that part of modern variational theory consid-
ering the basic variational objects as a Lagrangian, Euler-Lagrange equations and
Helmholtz equations as elements of a differential sequence, introduced by D. Krupka
as the variational sequence, from its basic structures of fibred manifolds and their
finite order jet prolongations to Grassmann prolongations of manifolds. The classes
of differential forms, entering the second order variational sequence, are determined
by means of charts. We find that the meaning of classes is different from the fibred
situation; this also implies important consequences for the global considerations
which is a part of author’s present studies.

I wish to thank my advisor Professor Demeter Krupka for all the scientific and
material support when he was going with me through my studies from its early
beginnings. I also acknowledge Professors Willy Sarlet, Frans Cantrijn, Raffaele
Vitolo and their collaborators for their kind hospitality during my stays abroad.

Not at least, my warmest thanks are to my wife and parents.

Olomouc, March 2011 Zbynék Urban
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Abstract

Extension of the variational sequence theory in mechanics to the Grassmann fibra-
tions (prolongations) of 1-dimensional submanifolds is presented. The coordinate
expressions of classes of differential forms, entering the variational sequence, are
determined for arbitrary second order forms. In particular, the meaning of classes as
the well-known variational objects (Lagrangian, Euler-Lagrange form, Helmholtz-
Sonin form) is pointed out. The correspondence with the variational theory of
parameter-invariant problems on manifolds is discussed in terms of the theory of
jets (slit tangent bundles) and contact elements.

Key Words: jet, contact element, Grassmann fibration, contact form, variational se-
quence, Euler-Lagrange equations, Helmholtz conditions, parameter-invariant vari-
ational theory.

Abstrakt

Tato prace se zabyvd zobecnénim teorie variani posloupnosti na Grassmannova
prodlouzeni 1-rozmérnych podvariet. Tridy diferencidlnich forem, jakoZto ele-
menty variacni posloupnosti, jsou uréeny lokéalné pro libovolné formy druhého fadu.
Zabyvame se variatnim vyznamem tfid (Lagrangian, Eulerova-Lagrangeova forma,
Helmholtzova-Soninova forma). Pomoci teorie jetd a kontaktnich elementl ukazu-
jeme vztah s variacni teorii parametricky invariatnich problemt.

Klicova slova: jet, kontaktni element, Grassmannova fibrace, kontaktni forma,
variacni posloupnost, Eulerovy-Lagrangeovy rovnice, Helmholtzovy podminky, in-
variantni variaéni teorie.
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1. INTRODUCTION

This work is devoted to the problem of extension of the variational sequence
theory, whose basic geometric structures are fibred manifolds, to Grassmann fibra-
tions, the underlying structures for global variational functionals, describing sub-
manifolds; we refer to Urban and Krupka [57]. The approach is based on Ehres-
mann’s theory of jets and contact elements [8]; we refer to Saunders [51] and, for
the most appropriate setting, to Grigore and Krupka [15], D. Krupka and M. Krupka
[31, 39], Krupka and Urban [38].

The theory of variational sequences on finite order jet bundles, as introduced by
Krupka [25], was a consequence of previous results from 70’s on the Lepage forms
[20, 23] and was supported by ideas of the variational bicomplexes [61, 54, 56, 1, 2].
The basic purpose of these theories was to introduce adequate variational construc-
tions which allow us to understand global characteristics of the Euler-Lagrange
mapping, the problem of characterizing the kernel and the image of the Euler-
Lagrange mapping. It is not our aim in this work to compare these two approaches;
for differences between these theories we refer to e.g. Krupka [29] and Vitolo [60].

Generally speaking, the underlying structure for both variational sequences and
bicomplexes is a fibred manifold and its jet prolongations. However, there is an im-
portant class of variational principles with a different underlying structure, namely
integral variational functionals for parameter-independent curves in a manifold. Our
objective is to study the variational sequences, associated with variational func-
tionals for 1-dimensional submanifolds or, in other words, functionals for non-
parametric curves in a manifold. The basic concept, defining the variational in-
tegral, we introduce by means of a differential form; the notion of the Lagrange
function appears as a secondary one. In this sense we follow basic ideas on varia-
tional theory on fibred manifolds (Krupka [20, 21, 22, 23, 25], Krupkova [40, 41],
and references therein). The underlying structures, the manifolds of higher order
velocities (higher order tangent bundles) are comparatively simple, and allow us to
avoid technicalities, present in multidimensional problems; in particular, we wish
to make basic formulas explicit, to give clear ideas for proofs. We also discuss dif-
ferences between the variational sequence theory for submanifolds and the fibred
mechanics (cf. Krupka [27], Krupkova and Prince [43, 42] and Musilova [48]). For
the classical and modern geometric analysis of parameter-invariant integrals and
geometric structures, related with them, we refer to Gelfand and Fomin [9], Grigore
[13, 14], Grigore and Krupka [15].

The variational principles, corresponding with the theory explained in this work,
belong to the foundations of the Riemann-Finsler geometry (the theory of geodesics,
see e.g. Gromoll et al. [16], Chern et al. [5]); it turns out that if a Lagrangian satis-
fies a positive homogeneity conditions, the corresponding variational functional can
be defined by means of a 1-form, the well-known Hilbert form (Crampin and Saun-
ders [6], Chern et al. [5], Urban and Krupka [58]). It should also be pointed out that
the variational principles of the same type appear in relativistic particle mechanics
(see e.g. Landau and Lifshitz [44]) and in physical applications of Finsler geometry
(see e.g. Ingarden [17]).



To characterize differences between “parameter-invariant” and “fibred” varia-
tional integrals, consider for example the two variational principles in Finsler ge-
ometry. Let X be a manifold and 7X \ {0} its slit tangent bundle. Any regular curve
t — ¥(t) in X induces a curve t — ¥(¢) in TX \ {0}. If a Finsler function F is given,
we have two integrals of the form

and
b
E( =5 [ P

the length and the energy of the segment ¥ : [a,b] — X. While the energy depends on
parametrization, the length is parameter-invariant. The homogeneity of F implies
that the integrand of L(7) can be written by means of a differential form (the Hilbert
form). The number L(y) depends on the “directions” (i.e. contact elements) of y
rather than on its tangent vectors. We consider in this work the variational sequence
for the integrals of the type L(7).

In standard classical sources, usually only basic properties of parameter-invariant
variational integrals are considered (see e.g. Gelfand and Fomin [9]). Our aim is
not only to extend the classical theory to global theory whose underlying spaces are
manifolds, but also state some new results on the local and global structure of those
integrals. One of our principal results is an analogue of the Helmholtz variationality
conditions, which are very-well known for the integrals of the type E(7).

Basic ideas and the method of constructing the variational sequence are formu-
lated for higher order Grassmann fibrations. Nevertheless, the classes of differential
forms are completely determined for second order variational sequence. The theory
can be extended to variational sequences for n-dimensional submanifolds; however,
this is not the objective of this work. In a different geometric setting, for particle
mechanics with constrains, represented by smooth manifolds, and “higher order me-
chanics”, we refer to Grécia et al. [11] and Krupkova [41]. For different approach to
the subject we refer to Manno and Vitolo [46]; however, we do not compare the ob-
tained results because [46] is more or less oriented to applications, and we consider
a detail comparison non-adequate.

In Section 2 we present the concepts and properties of the jet theory of manifolds
of higher order velocities, the parameter groups, acting on these manifolds, and
the higher order Grassmann fibrations, whose points are the orbits. In particular,
the structure of first order grassmannians is considered separately. Our treatment
in next sections is based on introducing of specific invariant coordinate systems,
needed, among others, for the proofs. For further use, we also discuss the concepts
of formal derivative morphism, horizontal and vertical vectors and horizontalization
in associated charts on manifolds of regular velocities.

Section 3 is devoted to contact forms both on manifolds of regular velocities and
Grassmann fibrations. In particular, on the basis of theory of contact forms on fibred
manifolds (Krupka [24, 28]), we study the canonical decomposition of forms into
its contact components.
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Main results of this work are contained in Section 4. The observation that the
exterior algebra Q,CY of smooth differential k-forms on the r-th Grassmann pro-
longation G'Y of a manifold Y contains an ideal of “contact” forms, allows us
to introduce the “contact subsequence” and the corresponding quotient sequence
of the De Rham sequence on G’Y. The “horizontalization” mapping that can be
used for this construction differs from an analogous concept applied in the fibred
case. The sequence can serve as an abstract framework for introducing basic vari-
ational concepts like Lagrangian, Euler-Lagrange expressions and Helmholtz ex-
pressions, known from the local theory. Utilizing existence of charts, adapted to
immersions, we transform the study of the sequence morphisms to the form that
has been applied in the fibred case (Krupka [27]). The classes of forms then repre-
sent the Lagrangians (1-forms), Euler-Lagrange expressions (2-forms), Helmholtz
expressions (3-forms), etc. We derive explicit formulas for classes entering first
and second order sequence by the method used by Krupka [27, 33], and we find
that the local expressions of classes coincides with formulas described in the fibred
situation (Krupka [25, 27], Krbek and Musilova [19]). The mapping, assigning to
the Lagrange class its Euler-Lagrange expressions, represents the Euler-Lagrange
mapping; assigning to a system of source Euler-Lagrange expressions its Helmholtz
expressions, we get the Helmholtz mapping. The meaning of the classes, however,
differs essentially from the variational sequence in fibred mechanics. This is explic-
itly apparent from the transformation laws of the components of the classes.

In Section 5 we introduce, in the context considered, the integral variational func-
tionals for parametrized problems on velocity spaces, and study independence of
the integral on parametrization. In our geometric setting this is equivalent to pro-
jectability of the Lagrangian onto Grassmann fibration. We also give a direct in-
terpretation of classes and their morphisms in terms of the variational theory of
differential forms on first order Grassmann fibrations.

As a principal consequence of the variational sequence we find that the global
properties of the Euler-Lagrange mapping for submanifolds can be derived in the
same way as in the fibred case. The presented theory shows that the variational se-
quence admits a sheaf representation; this implies, in particular, that we can always
characterize differences between local and global properties of the Euler-Lagrange
and Helmholtz morphisms in terms of the cohomology groups, measuring local and
global variationality, of the underlying manifolds G"Y’; for fibred mechanics, com-
pare with Krupka [27]. However, we do not include in this work the discussion of
global aspects of the theory of parameter-invariant problems, which lie outside the
classical variational theory (e.g. the global inverse problem).



CONVENTIONS.

Throughout this work, we denote by Y a smooth manifold of dimension m + 1,
with m > 1 be an integer. For the local coordinates on Y we reserve the letters
y,y2, ..,y or briefly (yX), and their jet prolongations (yX,yK,...,yX). In
lower order considerations, we use the dot symbol to denote yX,X, X instead
of y¥,yX,yX, respectively. All mappings and curves are supposed to be smooth on
their domain of definition. As usual, the k-th derivative of a function f: R — Ris
denoted by D¥ f = dkf / dr¥, and the i-th partial derivative of a function F : R” — R
is denoted by D;F = dF /dt', with t and (¢!,#2,...,") the canonical coordinates on
R and R”, respectively.

We use the Einstein summation convention. Also, we often distinguish anti-
symmetric indices in this way: Ag, o,...0,,v,v,...v, 1 antisymmetric in two mutually
distinct sets of indices, {010, ...0;} and {v;Vv,...v;}. The symbol

alt(010;...0,VIVa ... V)
then means that we antisymmetrize in all the indices.

Let/ > 1 and 1 < p <1 be fixed integers. We need a convention regarding
summation through all partitions of the set {iy,is,...,i;} of integers. A p-tuple
(I,L,...,1,) is called a p-partition of the set {i1,i2,...,i;},ifall [;, 1 < j < p, are
mutually disjoint subsets of {i,i,...,i;}, and U;l; = {iy,iz,...,i;}. In particular,
we consider in this work the case when i} =iy = ... = i; = 1. By the length |I;| we
mean simply the number of its elements. Then the symbol

(1.1) )
(I 12, 0p)
denotes the summation through all p-partitions of the set {ij,iy,...,i;}, where i} =
hb=...=1i=1.
The composite of two differentiable mappings is again differentiable, and the
formula for its derivative is known as the chain rule. We often need the higher order
generalization of this formula in the following form.

Lemma 1.1. Ler U C R and V C R™ be open sets. Let g:U — 'V, g = (g°),
1 <o <m and f:V — R be smooth mappings. Then

(1.2)
D'(fog)(r)
1
=Y Y D, ...D5,D, f(g(t))D"g%t)... DIl g% (1) DI g% ().
p:1 (Il a127 7113)
Proof. The proof can be found in D. Krupka and M. Krupka [31]; see also Munkres
[47]. O

Example 1.1. Let us give the formula 1.2 without the summation convention; for
[ =3 we have

D*(fog)(t) = Do,De, Do, f(g(t))Dg% () Dg (t)Dg° (1)
+3Dg, Do, f(g(t))D*g%(t)Dg® (t) + Do, £ (g(t)) D8 ().



Because of frequent use, we state here the standard result.

Theorem 1.1 (Rank Theorem). Let X and Y be manifolds, n = dimX, m = dimY,
and let q be a positive integer such that ¢ < min(n,m). Let W C X be an open set,
andlet f : W — Y be a C" mapping. The following two conditions are equivalent:

(a) f has constant rank on W equal to q.

(b) To every point xo € W there exists a chart (U, @), ¢ = (x'), at xo, an open
rectangle P C R" with centre 0 € R" such that ¢(U) = P, ¢(xp) =0, a chart (V,y),
v = (y°), at yo = f(x0), and an open rectangle Q C R™ with centre 0 € R™ such
that y(V) = O, y(y9) =0, and

yo-of:x67 G: 1727"'7q,

1.3
(1.3) yof=0,0=qg+1,q+2,...,m.

Proof. This theorem is proved in standard books on analysis on manifolds, see e.g.
Krupka [30], Narasimhan [49]. O



2. MANIFOLDS OF JETS AND CONTACT ELEMENTS OF CURVES

In this section we present some basic aspects of the jet theory of higher order
velocities and regular velocities, the associated parameter group actions, and the
higher order Grassmann fibrations of 1-dimensional submanifolds. The latter form
natural underlying structures of variational functionals for non-parametric curves in
a manifold. The basic references for this material are Ehresmann [8], Grigore and
Krupka [15], Krupka and Krupka [31], Krupka and Urban [38] and Saunders [51].
Another reference for differential invariants on velocity spaces is Olver [50].

2.1. Velocities.

Basic notions and statements. Let r > 0 be an integer. By a velocity of order r at
apoint y € ¥ we mean an r-jet P € J, ) (R,Y), P =JyC, such that y = {(0), whose
representative is a curve § in manifold Y, defined on a neighbourhood of the origin
0 € R. Velocities of order r are also called fangent vectors of order r. We denote

'Y = |J Jjp,) (R.Y),
yeyY
and define surjective mappings, the canonical r-jet projections ©° : T'Y — T°Y,
where 0 < s < r, by 7°°(J5¢) = J§<.

We consider the set 7"Y with standard geometric structures. Recall that every
chart (V,y) on Y, with coordinate functions w = (yX), where 1 <K <m+1, in-
duces on the set V" = (7°0) ~1(V) a collection of functions y" = (y& yK yK . yK),
defined by

i (J58) = D' )(0).
Denoting tré{ the K-component of the translation x — x — & of R, note that we

can also use an equivalent formula yX (J5¢) = D! (tr{;(/g“ 0V £)(0). Then it is straight-

forward to verify that the pairs (V”,y"), the associated charts, define a smooth
structure of 7"Y. In particular, the higher order chain formula (1.2) shows that the
coordinate transformation is polynomial in coordinate functions. Together with this
structure, we call T"Y the manifold of velocities of order r over Y, and its dimension
isequal (m+1)- (r+1). The associated local trivialization

Q1) VUL (§(0), (g o) WE)) € V x Iy o) (RR™)

shows that T"Y is a fibration with base Y, projection "%, and type fibre the manifold
of r-jets with source 0 € R and target 0 € R J(ro 0 (R, R+ ).

Group actions. Recall here the standard definition of a group action on a differ-
entiable manifold. We say that a Lie group G acts differentiably to the right on
a manifold X if there is a differentiable map ¢ : X x G — X such that for any
element a € G the map p — ¢(p,a) is a diffeomorphism of P onto itself, and
o (¢(p,a),b) = ¢(p,ab) for any a,b € G and p € X. If for any element a € G that
is not the identity element of G and for any p € X we have ¢(p,a) # p, then we say
that the group action of G on X is free. For details on the geometry of G-structures,
see e.g. Sternberg [52].
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The r-th differential group of R, denoted by L', is the set of r-jets Jyo of diffeo-
morphisms o : I — J, where I and J are open intervals in R containing the origin 0,
such that (0) = 0. The group operation is given by the composition of jets then.
The canonical coordinates ay,az, .. .,a, on L” are defined by a;(Jjct) = D' at(0). In
these coordinates L” = {Jjo € J0.0) (R R) | a1 (Jja) # 0}.

The differential group L" acts on itself and on T"Y to the right by composition of
jets; we have

(2.2) L'xL > (Jéoc,J(Sﬁ) — JyaoJyB :Jé((xoﬁ) el
and
(2.3) T'Y xL' > (JSC,JSOC) —>J6COJ6(X :J(;(Z;oa) eTY,

respectively. To formulate the coordinate equations of these actions, denote a; =
ai(Jya), by =ai(J§B), a = a)(JiaoJyB), and 55 = yK(J o Jhet) in a chart (V, y),
v =(").

Lemma 2.1. The group actions (2.2) and (2.3) are expressed by the equations

l
(2.4) a=3 ) bbby,
p=1(I1,Iy,...I,)
K _ K K_ v K
(2.5) V=Y om =X X vanap---ay,),
le (11712,...711;)
respectively.

Proof. In the chart (V, y), y = (%) on ¥, yK(J5{ o J50t) = D' (yX§ 0 ) (0). Hence,
using the higher order chain rule (Lemma 1.1),

YT o Thar) = Z Y Dr(y*¢)(0)p"a(0)D e (0)... D er(0),

p=1(I1,b,....Ip)

proving (2.5). By the same argument we obtain equations (2.4) of the group opera-
tion in L". O

Jet prolongation of curve. We introduce the concept of the prolongation of a curve
in Y to a curve in the manifold of velocities 7"Y .

Let y be a smooth curve in Y, defined on an open interval / C R. Then for any
t € I we have the mapping s — yotr_(s), defined on a neighbourhood of the origin
0 € R so that the r-jet Jy(yotr_;) is defined; we get the curve

(2.6) I35t —Ty(t)=Jy(yotr—;) €T'Y.

We call T"y the r-jet prolongation of the curve Y.

Note that for every u : J — I, an isomorphism of open intervals, and every s € J,
the r-jet Jy(try (s)OM O tr_) belongs to the differential group L"; denote

s = tryopotr—s, p'(s)=Jols.
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Lemma 2.2. (a) The mapping (2.6) has the chart expression
2.7) ¥ oT" () = DO o T 1) (0).
(b) The mapping (2.6) satisfies

(2.8) T (you)(s) = T"y(u(s)) o w'(s).

Proof. (a) Differentiating the curve s — yK o T"~ly(s) = D'~1(yXy)(s) at a point
tel, we get

DOK o T 17)(1) = DD (7)) (1) = D' 65 7))
— D (¥ yotr_)(0) =y o T7(1).

(b) By the definition of 7"y and ", we have on J,

T"(you)(s) =Jo(yopotr—g) = Jo(yotr (s otry (s opotr—y)
=Jp(yo tr_”(s)) oJ(r)(tr”(s) opotr_g) =T y(u(s))ou’(s),

which proves the property (2.8). U

Formal differentiation. We now introduce the concepts of formal derivative mor-
phism and of formal derivative of a function, both on r-th order velocities bundle.
Formal derivatives play a basic role in higher order computations. In the context
of this work the reader can find its definition and basic properties in D. Krupka
and M. Krupka [31], Tulczyjew [55]; for analogues in jet prolongations of fibred
manifolds we refeer to Krupka [28].

We can canonically identify the tangent space ToR and the vector space R. De-
note by 7 the canonical coordinate on R, and (d/dt)( the vector of canonical basis
of the 1-dimensional vector space TyR. We define a mapping § : 7Y — TT'~'Y
by

d
29) st =12 () |
0

with T7~1{ the (r — 1)-jet prolongation of the representative {, defined by (2.6).
8(J5¢) is a tangent vector of 7"~ at the point 71 (0) = J; ' ¢ = = 1(J50).
From the definition, note that 6 does not depend on the choice of a chart. The
morphism of fibrations & is a vector field along the projection t°" !, meaning that
the following diagram is commutative

TT 1y

N

Ty ——T'Y
Th
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We express 0 in terms of the chart (V",y") on T"Y. Using Lemma 2.2, (2.7), for
arbitrary J5§ € T"Y we obtain

S(IEE) =TT ¢ <d> ZD Y oT™18)(0 )( ? )ﬂ_lg

ayl

= Totorto (o) | =Tt ()

ayl =0

Let W C Y be an opet set, W ~! = (¢~ ~1(W), and let f: W~! — R be
a function. In analogy with the formal derivative morphism &, (2.9), (2.12), for
every chart (V,y), y = (yK ) on Y such that V. C W, formula

f ll/rfl -1
(2.10) f(p8) = Z)’1+1 (/o) <%
yl ll/rflrr,rfl(_](gc)
defines a function 5 f : W" = (7"9)~1(W) — R.
Note, in particular, that if f = yf is a coordinate function, it holds on V/*!

@2.11) SyF =yf.
Then by 2.2, (2.7), for any smooth curve ¥ in Y we have

D(yf oT" ') (t) = D" (Y* o) (1) = D' (X o yorr,)(0)

= Vi (Jh(rotr—)) = yity (T7¥(1)),
hence

D(foT" 'y)(t)=D(fo (v ") oy ToT ly) (1)

_y (9(1‘0(1//"1)‘1))
1=0 Iy y (T (1))

=Y () (a(f °("’Zl’_l))
1=0 YN (T 1y(1))

dy;
=06f(T"y(t)) = (8foT"y)(t).

We call 6 the formal derivative morphism of order r, and 8 f the formal derivative
of a function f. The following lemma summarize their properties.

D(yi oT"'7)(1)

Lemma 2.3. (a) 6 has a chart expression
r—1 a
(2.12) =Yk —.
[g() +1 ay;(
(b) For any functions f,g W'~ - R,
6(f+8)=06(f)+6(g), 6(f-g)=06(f)-g+f 6(g)
(c) For every function f : W'~ — R and every curve I 5t — y(t) €Y

S(N(Ty(1) =D(foT" '7)(1).
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In the following lemma we give explicit transformation formulas between charts,
needed for proofs. Suppose we have the transformation equations from a chart
(V,w), v = (y%), to a chart (U,9), ¢ = ("), of the form y¥ = FM(yX). We
want to determine the functions FZM , defining the induced transformations y‘ﬁ” =

EMK K K vK).

Lemma 2.4. Let (V,y), w = (yX), and (U, ), ¢ = ("), be two charts on Y such
that V NU # 0. Suppose that the transformation equations from (V,y), y = (yX)
to (U,0), ¢ = (M), are known in the form

’

(2.13) M = FM(y%).

Then, by means of associated charts on T"Y, the transformation equations from
(V' y"), to (U, "), are given by

1 apFM
M_ K,
@1 BI=Y X gy gyl 1S
17277

Proof. We proceed by induction. First note that for [ = 1, (2.14) is of the form

v OFM .

FM = ayKyl SFM,

Since the functions FM : V N U — R satisfy equations (2.13), we have on V! N U!

UG = D E)(0) = DUy oy ) 0)

_(9Fv ! Key(0) = Koy ((PEv

—( e )MO)D(y 0=t (“58) L
= 8" (1%,

thus the assertion holds for r = 1.

Suppose now that » > 1 and (2.14) holds for some fixed /, 1 </ < r—1. We shall
prove the assertion for [+ 1, provided the functions F M (2.13), are defined on yli+l
By assumption, we have

=M M K K K K
VO =F (Y20 )



on V/NU'. Then by (2.10), and (2.11), §/ =,
FlY, =83 =8k

- i ) o ( il )yK‘ Vi
/ ) ayKl &sz . apr ‘11| ‘12| |IP‘

r=1(I1,h,....I,
’ oPFM
+Y Y _
p=1(I .. 8YK“9YK2 Ldyte
.<8 1 K2 p+ 152 Kp+ +K1 K, 5Kp>
Y inl il TV ) Vi T YY) 9V
! aP-HFM
= K
; (1 122 ) 0YKoyK19yke . ayks ylywy\m yu\
oPFM
+ Z Z _
p=1(I b,.. ayK' dyK2 .. dykr

. 1 2 p K| K> K,
(yvl|+1yuz|'“y|1p\ TPl y|1 i y|1p|+1)
[+1 apFM

o Z Z yKl sz pr
K J J oo e J 5
D= sty OYR19YR2 Oy UVARRRRIVA

where (Ji,J/2,...,J,) denotes p-partitions of the set {ji, j2,..., ji+1}, With jj =
=...=jir1=1 U

2.2. Regular velocities.

Basic notions and statements. From now on we are concerned with velocities which
are regular by means of the jet composition. A velocity P € T"Y, P = J§{, is said
to be regular, if there exists an r-jet Q € J(ry.O) (Y,R), y = £(0), such that Qo P =
Jpidr. The following two equivalent conditions, characterizing regular velocities,
are direct consequences of the rank theorem on manifolds (cf. Theorem 1.1).

Lemma 2.5. A velocity P € T"Y, P = Ji(, is regular if and if only one of the equiv-
alent conditions is satisfied:

(a) Every representative of P is an immersion at the origin 0 € R.

(b) There exists a chart (V,w), w = (yX), at y = £(0) and an index L, 1 < L <
m-+ 1, such that

(2.15) D(y$)(0) #0

Denote by Imm 7Y the subset of regular velocities in 7"Y, and analyze its basic
topological and differentiable structure. Let P € Inm7"Y, P = Jj{, be a point. Fix
a chart (V,y), yv = (yX), at y = £(0), and consider the associated chart (V" y"),
v = (K, y{( , y§ ,...,¥%), on T’Y; restricting the coordinate functions to the set
V' NImmT7"Y, we get a chart on Inm7"Y. Then by Lemma 2.5, we can suppose
that yf(P) = 0 for some L, 1 < L < m+ 1. From the continuity of coordinate func-
tions, it follows that the point P has a neighbourhood on which y]L is not vanishing.
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Also, since for every local diffeomorphism o at 0 € R and every immersion § the
composition { o & is again an immersion, we see that P oA belongs to Imm7"Y for
every A = Jya. Thus, the canonical right action on T"Y, defined by (2.3), induces
aright action on Imm7"Y, and we have

Lemma 2.6. The set of regular velocities ImmT"Y forms an open, dense, and L’ -
invariant subset of T"Y. The manifold structure of ImmT"Y is induced by the
canonical structure of T'Y .

Note that local trivialization (2.1) of T"Y induces local trivialization of Imm7"Y
over Y with projection 7/ and type fibre Imm J(’O_O) (R,R"*1),

For a regular velocity P = Jj{, the structure of manifold Imm7"Y allows us to
assign to every chart (V, y), v = (yX), at y = £(0), the collection of (m+ 1) charts
(vl y), 1 <L<m+1, at P € ImmT"Y, by shrinking the coordinate functions
v = (YK K 3K ... ¥K) to the domains of the form

= {P e V"|y{(P) #0}.

We set y"L = (yE yE vk vk v, v9,39,...,y9) for every index L, with, accord-
ing to this new coordinates on Imm 7Y, the index o is supposed to run through the
sequence (1,2,...,L—1,L+1,...,m;m+ 1), complementary to the index L. Ob-
viously, the domains V"L, 1 < L < m+ 1, cover the set V' = (’L"'f())_1 (V), and the
charts (V*F y"L) form an atlas on Inm7"Y .

Consider the group action Imm7"Y X L" > (P,A) — PoA € ImmT"Y, induced by
the canonical right action (2.3) on 7"Y, and the equivalence relation % on Imm7"Y
“there exists A € L" such that Q = PoA”. The following lemma characterizes this
equivalence and is used to prove invariance of certain new coordinates on Imm7"Y,
adapted to the canonical group action of L’.

Lemma 2.7. Let P,Q € ImmT"Y. The following conditions are equivalent:

(@) (PQ) € Z.

(b) There exist a chart (V,y), y = (yX), on Y, an index L, 1 <L <m++1, and an
element A € L" such that P,Q € V"F, and the coordinates yf = le (P), y‘f = )7{( (0),
a; = a;(A) satisfy

—K
(2.16) FK=yK 3¢ —): Y ypa|11‘a|[2""a|1p|’
p=1(11,h,....[

and the recurrence formula

L
y

2.17) a=" a=L(#-% ¥ ypa\11|a|12|---aup|
Y1 Vi p=2(I1 ;...

Proof. First suppose that (a) is satisfied. There exists a chart (V, y), v = (yX), on
Y such that P,Q € V’, and the group action (P,A) — Q = PoA is expressed by
(2.5) of Lemma 2.1. Then in terms of L-adapted chart, for some L, 1 <L <m+1,



P,Q € V"L and (2.5) becomes of the desired form

=L __ L 0 _ G
=yt ¥ , V= Z )y ypa|11|auz|---“|1p\»
p=1(I1,b,...I)

and

l
L L L
e =3 —=Y, X ¥pau -,
p:2 (11 7127-~-71p)
Conversely, assume that condition (b) is satisfied. Then (2.16) and (2.17) are equiv-
alent with the chart expression of the L"-action meaning that P and Q belong to the
same L’ -orbit which is the condition (a). ]

Vertical vectors, horizontal forms. Let (V,y), y = (yK ), be a chart on Y, and con-
sider a tangent vector & to Imm T"Y at a point P € V'L P = Jy¢. Note that an r-jet
Q € V", Q =Jjy, belongs to V"L if and only if the mapping ¢ — yF o y(¢) is a diffeo-
morphism at 0 € R. The mapping (y" o {)~! oy o1 is defined on a neighbourhood
of Pin V"L, and it stands here for a projection.

Then, we call § L-vertical, if

(2.18) Tp((y* 0 §) oyt o). & =0.
One can now define the induced concept of a horizontal form as follows. A differ-
ential k-form 1) on V"* is said to be L-horizontal, if the contraction iz 1 (P) vanishes

for every point P € V" and whenever € is an L-vertical vector tangent to Imm 7Y
at P. However, in this sense every k-form, k > 2, is horizontal if and only if it is
everywhere zero form. Horizontal 1-forms are then of the form Ady".

We can easily find the chart expression of an L-vertical vector. Suppose that & is
expressed in the chart (V"*F, y"l) by

r 0
2.19 = K (—)
( : : 12(')51 8yf P

Denoting ¢ the canonical coordinate on R, we get

(2.20) Tp((y o) toytor™) £ = sz) (%)0’

(no summation through L) hence (2.18) gives us X = 0. Thus, the vertical vector
&, (2.19), is expressed by

(2.21) §=¢° ( ) Zél (aK),

with o running through 1,2,... ,m+1, o # L.

Remark 1. Note that the definition of a vertical vector to Imm7"Y is not chart
independent. However, if we restrict ourselves to the choice of charts with a fixed
non-vanishing coordinate w* on Imm7T"Y, we get a good geometric meaning of
this vertical vector. For that purpose, consider two charts on Y, (V, y), w = (yX),
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and (U, ), @ = (%), such that VN U # 0. Then also V"X NU"M £ @ for some
1 <L,M <m+1. Let £ be a tangent vector to Imm 7"Y at a point P = J;{,

=y (om) =& (%)

and let the coordinate transformation @y ~! be expressed by the equations

Hence, on VIENU'M | we get
7Y (P) =D(F*E)(0) = Dn w1 (wE(0))D(NE)(0)
and
gL =D )(0) =Dk (y o~ ") (9L (0)DF*)(0) = D (Y o~ ') (9L (0)EX.

Suppose now that & is L-vertical in the chart (V"*F y"F), i.e. (2.18) holds hence
EL = 0. Then

éM( ) _ De(y N (wy(0)&°
7 (P) dt Dy(7My~ )(‘l":( )) Y(P)

does not vanish for non-zero tangent vector and & is not M-vertical in the chart
(Ur,M (Pr,M )
, .

Horizontalization of vectors. In the next paragraph, the concept of horizontaliza-
tion of tangent vectors to the manifold of regular velocities Imm7"Y is consid-
ered. Similarly to fibred manifolds, the horizontalization mapping is introduced as
a morphism of fibrations over the canonical projection. But since here we are not
equipped with the base manifold projection, the construction is proceeded with the
help of non-vanishing coordinate functions again.

A new mapping on V" C Imm T"Y with values in TImm 7" ~'Y, arising from the
formal derivative morphism & and associated with the non-vanishing L-coordinate,
we define by

(2.22) _ 5
yl

Choose now a point P € V'l P = Jy¢. Tts representative ¢ then defines the
(r — 1)-prolongation of {, the curve t — T"~!{(¢) in Inm 7" ~'Y, defined on some
neighbourhood of the origin 0 € R by (2.6). Then the composite

Tr—lgo (yLo C)_l oyLo ,L.r,O

is a mapping from a neighbourhood of P in Imm 7Y into 7/~ (V"L) C Imm 7"~y
Further, let £ be a tangent vector to Imm 7"Y at the point P, locally expressed by
(2.19), and consider the vector hLJj,

(2.23) HE=Tp(T" (o (y* o) Toyror0) &,
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Then hE€ is tangent to Imm 77~ 'Y at the point 7"~ '{ o (Yro )1 oyt o 79(P) =
77~1(P). Applying the chain rule, we get

BEE = Taary tyaop T 1o Tp((r 0 §) oyt o170 &
=ToT" ¢ oTp((yFo &) toytor™0). &
Then
to(yrol) oylot o (y) L  y¥ 0K, ... 3K =10 (R0 )1 (M),

hence

and consequently by Lemma 2.2, (a),

1 d 1 o 0
o= s (2) st B )
ylf(P) 0 dt () ylf(P) ;) l+]( ) 8)’{< Tr,r—l(P)

= P = aup)Et

(2.24)

(with no summation through L). The assignment & — AL from TImmT’Y to
TImm T"1Y is called L-horizontalization, and vector hLﬁ the L-horizontal com-
ponent of . Tt is easy to verify that 4’ is a morphism of fibrations over 7", in
other words, the following diagram is commutative

h
TImm7T’Y D TV"E —— TImm 7Ty

TT’YJ JTTrly

Imm7T’Y D V"t o Imm Ty

The transformation properties of the morphism A are described as follows.

Lemma 2.8. Let (V,y), v = (y5), and (U,9), ¢ = (%), are two overlapping
charts such that V"ENU™ £ 0 for some 1 < L,M < m+ 1. Then

T
i

AM AL

Proof. The proof is straightforward. 0

Remark 2. In comparison with the fibred manifolds, we have now a set of m + 1
horizontalization morphisms. However, it is worth to note that the structure of chart
expression of horizontal component of tangent vector to regular velocity bundles is
different from that one tangent to prolongations of fibred manifolds. This concept
of L-horizontalization of vectors can be generalized to regular n-velocities whose
representatives are immersions from R”. The morphism A could be then defined by
the inverse of regular matrix of appropriate coordinate functions.
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In an analogous way to the fibred case, we can now use the complementary con-
struction to introduce the contact components of a tangent vector & € TpImm 7Y,
P=JC € V"L Keeping the notation from preceding paragraphs, we observe that
both vectors hEE and Tpt" ! - £ belong to the tangent space of Imm 7" ~!Y at the
same point 7"~ (P). We define the L-contact component p*& of £ by

(2.25) prE =Tpr 1. E —pLE.

The chart expression of p“E follows immediately from the definition and (2.24).
Since

Lt 1§ = Zél (aK) :

ohr—1 (P)

e & ( K erVi d
=Y (g e —<P>) (5%)
I;O l y% ale anfl(p)

we obtain

(2.26)
r_Zl L(P)é( i ) +r_21 G(P)g( J )
I=1 ay% Trr—1 (P) =0 aylo onr—1 (P)
where
yr y?,
(227 Nt =dyp - ;“ dyt, nf =dyf — %dyL.
1 1

Note that the L-contact component p“& of & is L-vertical in the sense of (2.18).

Invariant charts. In what follows, we prove the structure theorems on invariant
coordinates and orbit manifolds of regular velocities with respect to the differential
group L" (for details, see Section 2.1). By means of a quotient projection, the L’-
invariant functions on Imm 7Y constitute new coordinates on an orbit manifold.

Theorem 2.1. Let (V,y), y = (yX), be a chart on Y, let L be an index, 1 <L <
m+1, and let © be an index, belonging to the complementary sequence.

(a) There exist unique functions w®,w$,wS,...,w?, defined on V"L, such that
c_ .0 L L L o
(2.28) ¥ =wT 7 = Z Yo Y
pP= 1 (Il 3127 ©9 )

These functions are L"-invariant and satisfy the recurrence formula
(2.29) Wi =Awy.

(b) The pair (V£ x"F), x5t = (whwh o wh, o owk o wo wS wS, ..., w?), inwhich
the functions w®,w$ ,wg,...,w¢ are defined by (2.28), and

L L L
M/L:yawl )’1aW2 y27"'awr:yra

is a chart on ImmT'"Y.
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(¢) The canonical group action of the differential group L" on ImmT"Y is de-
scribed by the equations

:W, :\’V7 Wl :Wl7
Y T
pIn|%n] - - Ll
p=1(,h,...I,)

Equations of the orbits are

wh=ct, wol=c% wl=c?,
where c*,c,c? € R.
Proof. We proceed by induction to prove existence of w®,w{,wg,...,w?.

For r = 1, let y'£ = (% yX) be associated coordinates on V!, and consider
functions wO, w9, defined by relations w° = y®,y% = ylw? (2.28). Then, obvi-
ously, w¥ = y1 o/ yf, and w®,w? are unique and well-defined functions on V£, The
functions w° ,w1 are L'-invariant. To show this, we need equations of L' action on
Imm7'Y; from Lemma 2.1, we have 7% = yX, & = yKq;. Hence w® = w?, and
we =39 /51 = 0¥ar)/(¥ia1) = y¥ /¥ = wP. It remains to show the recurrence
formula. From the expression of formal derivative o of coordinate functions (2.11)
it follows that w% = (1/yE)y? = (1/y1)8y° = 1/y1)5w = Aw? proving (2.29).

Now suppose that we are given the functions w® WY ,...,wl", 1<I<r-—1,
satisfying properties of (a). We apply induction and prove (a) for the functions
wo,wy, ... ,wi,wp, where wf | = Apwy. Using the formal derivative of a func-
tion (2.11) and morphism Ay we get

L L L
Yl =6y7 —Z )3 5<y‘,1|y‘,2|...y|,p‘wg>

p=1(N.b,....I,)
[
. L L L
= Z Z 5<y|11\y|12\"'y|1p‘>w
p=1(11,h,....I,)

+
T

M-~ I

L L L L LI+1
)3 Y| Y YTALwy + (1) TALwS

(2.30) (I 12y s1p)

_ L L L o L L L o
= Z <y|11\+1y\12|~'y|1,7|wp RIS R AT AL
(I Iy, )

p

L L L o
+ ---+y|11\y|12\ ...y‘,lewp)

+ Z Z y|L]1\y|L12\ . ~yﬁp|ny,‘f+1 + (}’%)HIWIGH-
p=1(l1.h,....Ip)
But we need to sum through partitions (J1,Ja,...,Jp,) of the set {1,1,...,1} of
[+ 1 elements in order to obtain y7 ; in the form (2.28). However, such parti-
tions (J1,J2,...,J,) arise from partitions (I1,h,...,I,) either by adding the ele-
ment 1 to some /i, or by adding the element 1 to get a new partition of the form
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(Ii,L,...,1,,{1}). One can see that these partitions are exactly applied in (2.30)
hence

)l—H

Vi1 = Z Z yfmyffz\ Vi, wp + 01 i
p=1(J1,/a,...
(2.31) 11
=X X ol
p=1(J1,J2,....0p)
This proves the existence of functions w®,w{,...,wy satisfying (2.28) and (2.29).
Uniqueness of these functions follows immediately from the fact that y?, 1 <1 <
r, are polynomial in functions w®,w?,...,w?, and wk is not equal zero on VLL The
L’-invariance condition is a consequence of Lemma 2.7.
The assertions (b) and (c¢) are immediate. ]

Each of the charts (V"F, w"F) and (V7 x"L) is referred to as subordinate to the
chart (V, y).

Remark 3. We can introduce the coordinates wX ,wlL,wf, [=1,2,...,r, on the set
V"L less formally as follows. First consider the first order r = 1. Let Jé(: c v,
Then by definition, D(y*{)(0) # 0, so the function ¢ — (y*{)(z) is a diffeomor-
phism on a neighbourhood of the origin 0 € R. We assign to this diffeomorphism
another one, with the same domain of definition, by the formula

(2.32) ar (1) = (0 (1) — (Y°€)(0) = (tryeg o) 0¥ E) ().
Then
(1) = e (1) + (8)(0) = (tr_yeg ()0 )(1).
o may be viewed as a reparametrisation of R, satistying o (0) = 0. Clearly,
JE = Jé(CocC’l oa) = J(%Cocgl oJya,
W UE) = DOX Loy ) (0)Dag (0) = 3 (4§ (Lot ) Detg 0),

and all derivatives of y*¢ and o coincide. We set

wK<Jéc> = KCa”(O) =y%£(0) =y~ (4 0),

2.3 WHILE) = DOHE)(0) = FHD).
WOE) = (y"CaC 0,
oc=1,2,....L—1,L+1,...,m+1. These formulas define real functions wX ,wk,w°

on the set V1. Note that from the identity D(ocglocg)(O) = Docg1 (0)Dag(0) =1
and from (2.32) and (2.33) it follows that

_ 1 1
Do (0= 5o 0] = ey




Then
wh(J68) =5 (450),
W (J¢) = (45 0),

W (3E) = DO7E) O)Dag (0) =

or, which is the same,

oc=12,...,L—1,L+1,... . m+1.
More generally, for higher order derivatives, we set

wh(J58) =y Ca 1(0) =y £ (0) =y (J50),
(2.34) wh(J58) = DP(Y*£)(0) = ¥, (J60),
WS (J58) = DP (Lo ) (0),
oc=12,...,L—1,L+1,...,m+1. Let for example, r = 2. We have
Dagl(ag(t))Docg () =1;
differentiating at = 0 we obtain
DzaEI(O)DaC(O)DaC (0) +Docgl(0)D2(xC(0) =0,
and
Doy ' (0)D? o (0) UL

D*az'(0) = — Do (0)Day(0) — (GLUL0))

Thus, we have on V2L
wh(IGE) =y (50).
WHIGE) =5 (50),
w0 =Y.
(5 8) =50,
(JOC)—DZ( “Ca‘l)( 0)
= D7) (0 (0)Da; (0)Da; (0)+ Do E) (g (0)D ez (0)
D*(y°$)(0 )Dag_l(O)Da_l( )+D(°¢)(0)D ag_l(o)
) 1 7 (J56)

=) ey Y O Gragy
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Omitting the argument ch , we have

K K
wo=y,
Lo L
W _ya

e
.o _ Y
WE =T,

y
L ..L
wo=y,

;0

O — R iy

Oh2 ()Y
oc=1,2,...,L—1,L+1,...,m+ 1. These equations can be solved with respect to
YR we get

Yo =wk,

=t

.0 __ L.o__ .L.CO
(2.35) ¥ =i =i,

gt =t

6=1,2,....L—1,L+1,....m+1.

Remark 4. Let us find the coordinate transformation equations from (V1.5 y 1) to
(V1M 71M) Suppose we have two charts on Y, (V, ), w = (yX), and (V, ), ¥ =

(%), such that VNV # 0. Let the coordinate transformation Wy ! be expressed
by the equations
= 0").
Then on V! NV!
kO
ayN

We restrict both sides of this transformation equation to the set VvILAYIM and
write on this set

) 2yY ayY
=Y o i i<v<mt1,vEM,

7Y
g7 Oy OYF
o yM oM >
M=L 555 T ey
Oo#L Yy y
But from (2.35), for 1 <v,c <m+1,v#M,0c #L,
=ttt
=i,
=wkWe,

=t
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so we have

hence
;L(ay‘v/ 9y®) W + (35" /Iy")

Y (9™ /dy®)wO + (IM /dyE)’

o#L

v (g P )

Note that the functions w" are independent of w'.

=
|

Remark 5. We wish to express Ay in terms of the chart (V"L x"*t) (Theorem 2.1,
(b)). The local expressions

J 9 9
Iy Iy I

are tangent vectors to Imm 7"~ 'Y, which determines the transformation properties
of 6 and A;. We have

0 r— lawM 0
6= Zyl+1a K Zyl+1 Z 8y{( aWM

r—1 [r—1 awL 0 r—1 [r—1 aw P
= ; (;yma K) 8wL ;)(Z(,)ym 9K ) g
o e 1( Iwe awg> P

0
_yla L"’ZWI—H&L ZZ

=5 Yi+13v a v +yl+1 ok awa
By the definition of the formal derivative (2.10),
1 1 (=) ow? -1 owe
o o o 14 \% )4
wh o =Aw) = — 0w = — ylL1—+ Vo=,
- S (% o TRy

hence we get

r—1

ZWH-la
L

= owi o

wi

d

r—1 a
(2.36) Ap = ol + ZOWZH awg +
p:




22
2.3. Contact elements, Grassmannians and Grassmann fibrations.

Contact elements. We denote by
(2.37) G'Y =ImmT"Y/L"

the quotient set, endowed with the quotient topology. The points of G'Y are called
contact elements of order r and type 1. Clearly, the type refers to immersions of
open intervals in R = R! into Y; in this work, we do not consider contact elements
of type different from 1. The contact element, containing a regular velocity P €
ImmT"Y, P = JiC, is denoted by [P|; the r-jet Jj¢ is called a representative of
[P]. Let us consider two C" immersions (j, {; in Y, defined on a neighbourhood of
0 € R. We say that {; and {, have contact up to order r at 0, if there exist charts
(V,w) and (U, @) at 0 such that J}( ! tr_y(0)) = (Gt tr_p(0)). "C1 and &
have contact up to order r” is equivalence on the set of immersions in Y, defined on
a neighbourhood of 0, and this relation induces an equivalence on the manifold of
regular velocities Imm7"Y. The next lemma is a simple observation.

Lemma 2.9. For any two immersions {; and {, in'Y, defined on a neighbourhood
of 0 € R, the following two conditions are equivalent:

(a) & and & have contact of order r at 0.

(b) There exists an element Jjo € L” such that Jj§ = Jy& o Jyor, ice. [JjC1] =
VoSl

We denote by n” : Inm7"Y — G'Y the quotient projection P — [P]. By the
definition of the quotient topology, the quotient projection 7" is continuous, and by
Lemma 2.1, we can make the diagram

(2.38) Imm7T'Y —— G'Y
lrr,o
Y

commutative by putting p"*([J5¢]) = 77°(J5¢). Generally, we have the canonical
projections p"* : G"Y — G*Y, where 0 < s < rand G'Y =Y, that satisfy

(2.39) pr,s o’ =1'o Tr,s, pr,O o’ = ,L.r,O.

The mapping p"? is also continuous: this observation follows from the continuity
of projections 70 and 7", and from the properties of final topology on G'Y.

The next theorem shows the quotient set of Imm 7Y with respect to the differ-
ential group L" to be the base manifold of a principal L"-bundle. Roughly speaking,
a manifold M is called the principle G-bundle, if (a) the quotient set of M modulo
G has a manifold structure, (b) M is locally trivial over M /G and (c) G acts freely
on M (for details see Bourbaki [4] and Dieudonné [7]).

As a consequence of Theorem 2.1, we have the following assertion.

Theorem 2.2. IfY is Hausdorff, then the canonical action of L” defines on ImmT"Y
the structure of a right principal L"-bundle with base G"Y. The projection &" of this
principal L"-bundle is an open mapping.
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Proof. We can trivialize the manifold Imm7"Y over G'Y, (2.37), in a natural way
by the mapping J;¢ — ([/5¢].J; (trwll,c(o) wk()) (cf. local trivialization of Inm 7Y
overY (2.1)).

It remains to show that (1) the equivalence relation on Imm7”Y from Lemma
2.7, (P,Q) € Z if and only if there exists an element A € L satisfying Q = PoA, is
a closed submanifold of the manifold product Imm7”Y x Imm7"Y, and (2) that the
right group action of L" on Imm7"Y, (P,A) — PoA (cf. 2.3), is free.

From Theorem 2.1, (c), it is immediate that the relation & is a submanifold of
Imm7"Y x Imm7T"Y. We shall verify that the complement set to & in this manifold
product is open. Let (P,Q) be a point of Inm7"Y x InmT7"Y where P and Q are
not equivalent velocities, i.e. (P,Q) ¢ #. Obviously then P # (Q, and since Y is
Hausdorft, there exist open neighbourhoods of P and Q which do not intersect, and
the product of which does not intersect the equivalence Z. It doesn’t matter whether
there is a chart V" with P,Q € V", or not. Hence we see that Z is closed.

Let us prove that the action (2.3) on Imm7"Y is free. To this purpose, suppose
that there exist P € Imm7T'Y, P = JgC, and A € L" such that P — PoA. Since P is
a regular velocity, there is an r-jet Q € J. (’ £(0),0) (Y,R) such that Qo P = Jjidg, hence
A = JidR, the identity element of L".

Finally, we show that the principle bundle projection, ", is an open mapping.
For every open set W in Inm7T"Y, the set 7:%(W) is open in Y since the projection
770 : ImmT"Y — Y is an open mapping. From the continuity of p™0 : G'Y — Y, it
follows that (W) = (p"*)~1("%(W)) is an open set in G'Y. O

In this section we suppose that the manifold Y is Hausdorff. We study the struc-
ture of the base G"Y of the principal L"-bundle Inm7"Y .

For simplicity, first let us consider grassmannians of the first order.

Grassmannians of type (m]+1) as jet manifolds. The set J(1070)(R,Rm+1) of 1-jets

with source 0 € R and target 0 € R”*! is canonically identified with the tangent
space ToR™ ! and also with R”*!, and is considered with its canonical vector
space, topological and smooth structures. The open set Imm J(l0 0) (R,R"™1) =

J (10 0) (R,R™ 1)\ {0} consists of regular 1-jets J} 1L, whose representatives are curves

w : I — R™F1 that are immersions at the origin 0 € R. Denote by z!,z2,...,z""!

the canonical global coordinates on J(lo,O) (R,R™*1) and Imm J(lo 0) (R,R™1). By
definition, an element J i € J (1070) (R,R™*1) belongs to the set Imm J(1070) (R,R™1)

if and only if there exists an integer L such that 1 <L < m+ 1, and zL(J(% U =

D(zFu)(0) # 0. The manifold Imm J(1070) (R,R™*1) is endowed with the right group

action of the differential group of R of order 1, L' = ImmJ (1070) (R,R),
Imm Jj, o) (R,R" 1) x L' 3 (Jou, /)

(2.40)
— Jok-Joo = Jg (pa) € Imm J o (R, R" 1)

(see also (2.3)). We denote the quotient set Imm J(1070) (R,R™) /L by G}, ,. The

class of an element J&u € Imm J(lO 0) (R, Rl ), i.e., the L'-orbit of J&[,L, is denoted
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m+1
is denoted by !'. We consider Gm 41 With the quotient topology. Our aim now will
be to study topological and smooth properties of Gm i1

Since D(ua)(0) = Du(a(0))De(0), the group action (2.40) is expressed in the
canonical coordinates zX on Imm J(]Qo) (R,R”*1) and the canonical coordinate a on
L' by
(2.41) Kp-Ha)y=a(a) - ZKUiun).

We introduce some charts on Imm 1(10_0) (R,R’"H ), adapted to the group action
(2.40). Denote for every integer L suchthat 1 <L <m+1

by [J4u], and the quotient projection Imm J(lo 0) R,R™ N 5 Jly — [Jiu] € G

(2.42) U" = {Jop € Imm J o o) (R,R™1) [ (Jpe) # 0}

UL is an open subset of Imm ‘](10,0) (R,R™*1), and we can write
m+1

(2.43) Imm Jj o (R, R"*1) = U Uk,

Note that U% is canonically diffeomorphic with the product R” x (R {0}).

Two points Jé Uy and J& Uy belong to the same orbit of the group action (2.40) if
and only if there exists J o € L! such that zX(J} o) = a(Ji @) - 25 (J§ 1) for all K.
Suppose we have J(%ul and J(% Up. Then by hypothesis, zL(J(%,ul) = ( for some L,
and since a(J}a) is always different from 0, also z-(J}p2) # 0. For this index L
condition z(J3 t2) = a(Ji @) - zE(J} ) implies
H(Jok2)

L (Jgm)’
so according to (2.41), foralloc =1,2,...,L—1,L+1,.... m+1

c jl c Jl

(2.45) Slot) _ 2 oka)

z (Jo/vll) z (J()UZ)
In particular, the functions u° : UL — R, defined by
2% (Jom)
H(om)”
are constant along the L!-orbits. We set ul(Jjpt) = zH(J ). We claim that the pair
(UE, x5, x* = (u",u), is a chart on ImmJ(lo_O) (R,R™*1). We have on UL

(2.44) a(Jja) =

(2.46) u (Jopt) =

ZG
(2.47) wh =75 u =

Z
Clearly, the image of the mapping x’ consists of the solutions of equations (2.47)
(2.48) F=ut, °=utul,

and can be canonically identified with the open set UZ. The charts (U%, x*) are said
to be subordinate to the canonical chart on Imm J(l0 0) (R,R™*1) (cf. Theorem 2.1).

Transformation equations (2.47) and (2.48) are obviously of class C*.
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The group action (2.40) is expressed in the subordinate chart (U*, y*) by

(o -Jpo) 2% (JgH)
LU Jha) L)

u (Jopt-Jo ) = u® (Jo 1),

(2.49)
ut(Jop-Joa) = 2 (Jou-Joor) = a(Jgo)z" (Jou) = alJge)u" (Jo).

Suppose we have two subordinate charts (UK 25, % = (WX, uY), and (UL, xb),
xL = (v£,v%), such that K # L, and a point J u € UX N UL. Then

Wt (o) = Jom),
(o)
2.50 Lty = ZUoH)
( ) u ( Onu) ZK(Jé,u)
Y (Joh)
u (Bu) = <o , vel{l,2,....m+1}, v#£K, L,
and
Fou) = vHow),
@51 Fop) = vH(Iup (o),
(Jon) = V(ou(on), o€{1,2,...,m+1}, v£K,L

Substituting from (2.51) in (2.50), we have

WK (o) = Kgu) =vEgunEow),
L7l L/l
() vE(Tg 1) 1
(2.52) ub(Bp) = = :
0 Kw) v u)VEGR) K lw)
uWﬁu)=:Z“““> IV (gR) VY gH)
K(Jgp)  VEUguVE(gu)  vE(gu)

(2 53) K L K L 1 1% VV
us=vy U =—, u =—.
) vK? VK
The inverse transformation is indeed of the same form
1 u®
(2.54) VK = s vh = uKuL, Vo = —-
u u

We are now in a position to define a smooth structure on the topological space

G,,.,- First we show that every subordinate chart (U%, %), x* = (u*,u°), on

Irnm]( 0,0) (R,R™1), induces a chart on G,L +1- By equation (2.49), the functions

9 : UL — R are constant along the Li-orbits; we set & ([J{p]) = u®(Ju) for ev-
ery point Jé u € UL, This formula can equivalently be written as

(2.55) iCon! =u°
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and defines some functions i° : UX — R, where UF = 8(U"). Denote by g the
mapping of U into R™ whose components are 7i°; we have the commutative dia-
gram

L

(2.56) UL 2 R x (R {0})

l@ Jprl
ZL

The pair (UF, %%), is obviously a chart on G,L 41: by the definition of the quotient
topology, the projection U of the set U’ is an open set in G}n 4 1» the set 7O c
R” is also open, and %* is a homeomorphism.

Let (UX, x%), xX = (X u"), and (UL, x%), & = (v*,v9), be subordinate charts
such that K # L, and let (UK, 7%), X = (@"), and (UF, z%), % = (¥9), be the
associated charts on G,L +1- Suppose we have an element [Jé ] of the intersection
UXNUE. Since the orbit [J}p] is contained in UX N UL, any representative Jj
belongs to UX NU¥, and its coordinates satisfy the transformation equations (2.53).
Consequently, the classes [Jip] € UK NTT satisfy the transformation equations

1
~I
u = \7_K7
(2.57)
‘76
i = —, 0=12,... . K-—1LK+1,....om+1.
v

The inverse transformation has equations of the same form.

In the next lemma, we summarize properties of the topological and smooth struc-

tures on the sets Imm J(]O_‘O) (R,R™) and G} . ,.

Lemma 2.10. The canonical group action (2.40) defines the structure of a right
principal L'-bundle on the manifold Imm J(lO 0) (R,R™1). The base of the bundle

G}n 41 is compact and Hausdorff.

Proof. Lemma 2.10 is a special case of Theorem 2.2 for » = 1 and ¥ = R"*1,

Let us show the local trivialization in this case. For this purpose, consider a subor-
dinate chart (U, x%), x* = (u*,u®), and the associated chart (U%, %), 7* = (i);
obviously, U = 8~1(T*). We have the commutative diagram

x- (75 'xid
(2.58) Ul ——— R" < (R\{0}) ——— 0L x L
l SL l SLy—1 l
oL X R x") L

defining a local trivialization of Imm J(1070) (R,R™1) over U C G}, | with projec-
tion 7! and type fibre L! = R\ {0},

(2.59) Uts B — (], ub(lp)) e OF x LY.
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This local trivialization is L'-equivariant by formula (2.49).
It remains to prove compactness of G,ln +1- We have a continuous mapping n! of
R™*1\ {0} onto G}, ;, sending a (nonzero) vector to the vector subspace of R™*!,

generated by this vector. Then G ms1 18 compact as the continuous image of the unit
sphere. 0

Grassmann fibrations. 1f Y = R™!, we have the canonical projections
0 Imm7'R™! 5 R™ D 27 Imm 7R — G'R™H pi0 TR 5 R
The fibre over 0 € R”*! in Imm7"R™ 1!, ImmJ(’O O)(R,Rm“), is a closed, L'-

invariant submanifold. We define
w1 = ImmJfo o (R, R™H) /1.

Since G/, = (p"°)71(0), G, is a closed submanifold of G'R™ . We call G/,

the Grassmannian of order r and type 1 over R"+1,

Lemma 2.11. The canonical group action of L” defines the structure of a right prin-
cipal L"-bundle on ImmJ(r0 0) (R,R™1). If r = 1, then the base G, is compact.

If r # 1, the base is not compact.
Proof. This is a direct consequence of Theorem 2.2 and Lemma 2.10. U

We now give an explicit description of the smooth structure on G'Y . Let (V"F, x"*),
xF = (wh, wf,w%, ,wk w® ;wi,wg,...,w?), be a subordinate chart on Imm7"Y
to the chart (V, ) on Y. Denote V"L = 1" (V’L) and y°F = (WE,we Wo, 09 ,... ,wP),
where

wH([P]) = wh(P), WO ([P]) = wO (P),
Wi ([P]) =wy (P), w3 ([P]) =w3 (P), ..., W7 ([P]) = w} (P).

Then the pair (V"L ") is a chart on G"Y, which is said to be associated with the
subordinate chart (V"L y"F).

We describe transformation equations between associated charts.

Lemma 2.12. Let (V,y), v = (y95), and (U, @), ¢ = (%), be two charts on Y
such that VU # 0, and let (V"L 7"F) and (™M ¢"M) be charts on G'Y, associ-
ated with the subordinate charts (V"F, x"t) and (U™ ™M), respectively. Let the
transformation formulas from (V, ) to (U, @) be given by the equations

M _ FM(

y Yy, 3V =FYORy0).

aFV+ JdFY
IyL w 9y°

. :v .
and the functions wy | satisfy the recurrence formula

Then

(2.60) WY =

_ w
2.61 WY = —L AL
( ) Wit1 = M LW
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Proof. From Theorem 2.1 (a), (2.29), and Lemma 2.8, we obtain
i} N
Wy = Aui) = =37 AL},
Wi

which proves (2.61). The expression (2.60) is now a consequence of the chart ex-
pression of Ay, (cf. (2.36)). O

Note that from the structure of the morphism Ay (2.22), we can write Ay =
d/dwt.
It is easily seen that every chart (V, y) on Y induces a local trivialization
(P™) "1 (V) 3 58] = (£(0), Vo (tryg () W) €V X Gy

Summarizing, we have this direct consequence of Theorem 2.1. For details on
fibration structures, we refer the reader e.g. Krupka [30].

Theorem 2.3. The orbit manifold G"Y has the structure of a fibration with base Y,
projection p™0, and type fibre G,,.1- The dimension of G'Y is

dimGY =m(r+1)+1.

The manifold G"Y together with the fibration structure described by Theorem 2.3,
is called the Grassmann fibration of order r over the manifold Y.

If y: I — Y is an immersion, such that 7"y(I) C V" 'L for some L, then the curve
(2.62) I5t—[T'y(t)=[T"y(t)| € G'Y
is called the Grassmann prolongation of y of order r. We have
Lemma 2.13. The mapping (2.62) has the chart expression
263 Wi o[T™](r) = whoy(t) = u_(]t), ;
Wi o [T7y)(1) = D(Wi_ o [T ylou™ " )(u(t), 1<I<r.

Proof. The chart expression of [T"y] (2.62) easily follows from Lemma 2.2 and
Remark 3, (2.34), in Sect. 2.1. O
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3. CONTACT FORMS

In this section we study differential forms, defined on manifolds of regular veloc-
ities and Grassmann fibrations, that vanish identically with respect to the canonical
prolongations of curves in these manifolds. In Section 2.1, we have introduced the
canonical projections 7" and p”* of InmT"Y and G’Y, respectively. Let ¥ be a
smooth manifold of dimension m + 1, m > 1. For an open subset W of Y we put
W’ = (70" (W) C ImmT’Y, and W = (p") "} (W) C G'Y.

3.1. Contact forms.

Contact forms on ImmT"Y. We denote by QW the ring of smooth functions on
W', and by QW the Q3W-module of smooth differential k-forms on W”. Let n €
QW be a 1-form. We say that 7 is contact, if

(3.1) T{'n =0

for all immersions §, defined on an open interval in R with values in W, where T"{
is the canonical jet prolongation (see Sect. 2.1, (2.6)). We note that in the context
of this definition of contactness, every function f on W’ is contact if and only if f
vanishes identically, and every k-form, k > 2, is contact.

In the next lemma we give a description of the contact ideal in terms of charts.

Lemma 3.1. Let W be an open set in Y, let | be a 1-form on (t"°) =1 (W), and let
(V,w), w = (yX), be an arbitrary chart on Y such thatV C W.

(a) M is contact if and only if for every subordinate chart (V"E, y"l),
n y
r—1 L r—1 ;
n=Y AN+ ) Aen’,
s=1 =0
where

Vi Vel
(3:2) ny=dys ==y, nf =dyf ——rdyt
1 1
The forms (3.2) are linearly independent.

(b) N is contact if and only if for every subordinate chart (V™°t, y"b),

where
WL 1
(3.3) of =awk — = dwh,  of =dwf —w{ dwh.

The forms (3.3) are linearly independent.

Proof. (a)LetI >t — 7y(t) €Y be a curve (immersion), defined on an open interval
in R with values in W C Y. We derive a formula for the pull-back 7"y*n. Let 1) be
expressed in associated chart (V"*F, y"L) by

r r
n=Y Aidy;+ Y ALayy.
[=0 [=0
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Since by Lemma 2.2, (a), yf oT"y(t) = D! (% 7y)(t), we have for every to € I, and
forevery & € T R, & = &y(d/dt),,

(A o T"y)(t0)d(yf o T y)(t0) - &

I
-

(T"y'n)(t0)- &

N
Il
o

(A o T"Y)(t0)D(yf o T")(to)d1 (t0) - &

|
-

(3.4)

T
S

A (5 (yte—iy))yia (g (vt ))di (t0) - €.

|
-

T
S

If the expression (3.4) vanishes for all y, we have
A; =0, A;=0,
AN ALY+ ATIYE ALY ALY Ay =0,

hence on V"L

(o)
AL+A1y2+ AL 1 +A°y1 +A§,y—i+ A —o,
y1 y% yl M I

Now we get

n= ZALdyl +ZA’ dy?
=1 [=0

(e}
( lyL+ AL 1 +A°y1 +A1y2+ .+Ar_1y—r)dyl‘

by v e
— ZAQ dy% yl+1 + ZAI <d o yl+1d >
=1 yl 1=0 yl

(b) Using the following chart properties of the canonical prolongation I >t —
T7y(t) € V"L of an immersion y: I — Y,

(W oT"y)(t) =woyou™" (u(r)),
(W oT"y)(t) =D(Wg_ o T 170# 1)(.“(0),
( V)(t

who T y)(1) = u(t) = (whoy)(r),
(Wi o T"y)(1) = DX ()(1),
the proof of assertion (b) is proceeded analogously to (a). U

The ideal of the exterior algebra Q.W of differential forms on W”, locally gen-
erated by contact 1-forms, is called the contact ideal. By a contact k-form we
mean any k-form, belonging to the contact ideal. We note that the sets of forms
{dyL,nSL,nl",dy,,dy,} {awt, o ,a)l",a’wL dw?}, where [ =0,1,....,r—1, s =
1,2,...,r— 1, both define a basis of linear forms on V"% C Imm T’Y, called the
contact basis.
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Contact forms on G"Y. Our aim now is to analyze contact forms on Grassmann
fibration G"Y. We denote by Q{)W the ring of smooth functions on W C G'Y, and
by QIZW the Q{)W—module of smooth differential k-forms on W’. Let 17 be a 1-form,
ne Q{W. We say that 7 is contact, if

[T°¢I'n =0

for all immersions §, defined on an open interval in R with values in W, where
[T"{] denotes the Grassmann prolongation of a curve { (see Sect. 2.3, (2.62)).

In the following lemma we give a description of the ideal Q"W in terms of charts.

Lemma 3.2. Let W be an open set in Y, let 1 be a 1-form on W', and let (V,y),
v = (yX), be an arbitrary chart on Y such that V.C W. Then 1 is contact if and
only if for every chart (V"°E, z"L), 7°F = (Wh,wo we, wg,...,w?), associated with
the subordinate chart (V"*F, y"F),

r—1
n=Y B,®°,

i=0

where
. -6 -G gL
(3.5) @F =dwi —wi_dw.
Proof. We can express 1) in chart (V£ 7"L) in the form
r
n = Braw"+ Y BLdwy .
1=0

Let I >t — T"y(t) € W be an immersion such that T"y(I) C V£, The Grassmann
prolongation of ¥, t — [T"y](t) (2.62), has the chart expression

(who [T (1) = u(r) = who¥(r),
(3.6) (W o[T™))(r) =W’ oyou " (u(r)),
(05f o [T"1])(1) = DOF{_y o [T ' Ylop™ ") (1e()) = D' (W o yo ™ ') (u(r)),
[ =1,2,...,r. We have for every ty € I,
([T"71*n)(t0) = (BLo[T"Y])(t0)d (W" o [T"Y]) (t0)
+IZ;,)(BQ o [T"y])(to)d (W7 o [T"¥])(t0)-
Using (3.6), we obtain
d(wf o[T"Y))(to) = d(D' (W yp ") o ) (10) = D(D' (W yp~") o ) (10)di (to)
=D (W yu ) (1 (1)) D (to)dt (19) = D (W yp ") ((10) ) d i (1)

Thus we have
([T n)(t0) = (BLo [T"Y))(t0)d i (t0)

Y (BL o [777) (1) D (7% 7 (11 10) )l 1),
[=0
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Now, if [T"y]*n vanishes for all ¥, we have

r—1

(BLo[T"7))(t0) + Y (B o [T74)) (10) D" (% yu ™) ((t0))
=0

+(BG o [T"7)) (10) D" (% yu ") (1 (10)) = 0.

Then, however, because Y is arbitrary,

r—1
By =0, Br+ Y BLw, =0,
=0
and turning back to 1-form 7, we get the desired result. U

In particular, the 1-forms (Df, 0 <i<r—1, are contact, and every contact 1-
form is expressible as a linear combination of ®@°. By definition, we see that @
are linearly independent.

The ideal of the exterior algebra of differential forms on W, locally generated by
contact 1-forms, is called the contact ideal, and is denoted by QZW. By a contact
k-form we mean any k-form, belonging to the contact ideal.

From now on, we adopt this notational convention: we will not distinguish be-
tween coordinates on Imm7"Y and G"Y, and so we will omit the sign ~ upon the
w-coordinates and the 1-forms @ as well; it is always clear from the context where
the coordinates or forms are defined.

A smooth differential k-form 1 € QIZW is said to be locally generated by I-forms
cofl’1 A a)i(zy2 A A a)i(lyl if in some associated chart on W" = (p"0)~(W) C G'Y, n is
expressible as

(3.7) N=0]' NOZN... A& ANg/5; ",

for some (k — I)-form n;’;{g;f{@ € Q; W. We call k'—f'orr'n N locally l-contact if
in the decomposition (3.7) at least one (k —I)-form 14,5, "5, does not contain any
contact 1-form w?.

Lemma 3.3. (a) Let W be an open set inY, and let (V, ), w = (yX), be an arbitrary
chart onY such thatV.C W. If (V" 7"F) is a chart on W™ C G'Y, associated with
the subordinate chart (V"*E, x"F), then the forms

(3.8) dwh, of , dw?,

where 0 < i < r— 1, define a basis of linear forms on V"L,

(b) Let W be an open set in Y. If (V,y), y = (y5), and (U, @), ¢ = (F5), are
two charts on Y such that V.U C W, VU # 0, and if (V"E, ") and (™M, §™M)
are charts on W™ C G'Y, associated with the subordinate charts (V"F, x"") and
(U™ ¢"M) respectively, then

_ owy  _, oM L ow)
(3.9) wlvz(m—wzvﬂm) o+ Zlawg“’ff’ 0<I<r—I.
p:
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Proof. The proof of assertion (a) is straightforward.

Let us prove (b). To derive the transformation formula (3.9) for 1-forms @],
we consider two associated charts (V"L 7"F), 7"°F = (wk,w®,wf w9, ..., w?), and
(M M), §™M = (WM,WV,W}’,WX,...,W)’), on W'. On VNU we have wM =
WM (Wl w), w¥ = wY (wh,wC), where 1 < o,v<m+1,6#L, v#M, and let
of =dwf —w?, dwh, @ =dw) —w) dwM, 1 =0,1,...,r—1, be 1-forms on

V'L and UM, respectively. Since W) =w/ (whwo wo, ... ,wy), we have
owY LoowY
d—V _ [ d L [ d (o
wy Sl w +p§) 8wg w,
owy & ow) Loow)
= +Y —Ltwl, |aw"+ Y Lo,
<8wL moowg ! moowg P
it — © AL L+8Wde<’: M+8WM dwr +8WM °
awL awo owk  ow° owe

and applying the transformation properties of morphism A, Lemma 2.8, we get

L 0 ow

_ w w W

v v _ WM _v _ i i

Wis = Auw —_wzluALWl = (awL Z a o p+1>
1

Hence
(3.10)
@) = dw) — w,VHdWM

ow owY owY
(awlL Za é p+1>dw +Zgwé 14

owY owY owM  ow owM
( i Z 8 é p+1> ((—8WL —I——awcwf> L awcaﬂ).

Since LoraaM g .
Wl w w o Wl _ o
— | =+ = = —LApM =AM =1
<8WL +8w"w1> wi . M ’
the terms in (3.10) containing dw’ vanish, and we obtain
d)v_zl,’a'}’wc 8W}’+Zl:8 }’ whk owM CALSIPN
! _p:() awg P owl = 8w1‘,’ WM e
_ zl: w5 B w_fAva owM ©°
moowg 7wy L owe
— — 1 —
_(ow]  _, owM o° + Z d lva)c
T \owo Hlgyo L owg P
p=

O

Corollary. Locally k-contact k-forms on wr form a submodule of the module of
differential k-forms Q; W, which we denote by ; ‘W
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The basis of 1-forms, constituted by the forms (3.8), is said to be the contact basis
on V",

We conclude this section with a version of Volterra-Poincaré lemma for contact
forms, with domain of definition to be the Cartesian product of open sets in Eu-
clidean spaces. The standard Volterra-Poincaré lemma for forms on star-shaped
open subsets in Euclidean spaces can be found in e.g. Narasimhan [49], Warner
[63]. Let U be an open interval in R, V an open ball in R” with centre 0. We de-
fine the homotopy mapping x : [0,1] x (U xV) — U x V by x(s,(¢,y°)) = (t,sy°),
where (z,y°) are the canonical coordinates on U x V. Consider a k-form n, k > 1,
on U x V. The pull-back x*n is a k-form on the set [0,1] x U x V. Clearly, we
can uniquely decompose x*n = ds A no(s) +n’(s), where no(s) and n’(s) are k-
forms that do not contain ds; the dependence on s is in coefficients only. Define
In = fol No(s), where the right-hand side means that we integrate the coefficients
of the form mo(s) over s from O to 1. [ is called the homotopy operator. Denot-
ing 7 the first Cartesian projection of U x V, and { : U — U x V the zero section,
{(t) = (¢,0), then it is standard to prove that

(3.11) n=Idn+din+n*{'n;

for the proof we refer to e.g. Krupka [30]. Regarding the structure of contact forms,
from (3.11) we now obtain the following result.

Lemma 3.4 (Volterra-Poincaré lemma). Let U be an open interval in R, V be an
open ball in R™ with centre 0. Let Tt be the first Cartesian projection of U X'V onto
U. If n € Q) (UxV) is a k-contact k-form such that dn = 0, then there exists

a (k—1)-contact (k—1)-form T € QZ_LC(U x V) satisfying dt = 1.

3.2. Canonical decomposition of forms. For our purpose of calculus of differ-
ential forms, we establish the basic considerations of decomposition of forms on
ImmT7"Y and G"Y into contact components. It is well-known that the decomposi-
tions play a fundamental role in the geometric variational theory on fibred spaces;
the general theory of modules of contact forms on fibred spaces can be found in
Krupka [25], [28]. In particular, it is shown that a certain pull-back of every k-form
defined on J"Y (the manifold of r-jets of smooth sections y: X — Y) can be decom-
posed into its horizontal and contact components. We note that this decomposition
is, however, different in the case of manifolds of regular n-velocities for n > 2. In
this work we consider n = 1 only, and it shows up that the local decompositions
by means of associated charts on Imm7"Y are formally of the same formula as in
the fibred case. However, by means of subordinate charts (cf. Sec. 2.2, Theorem
2.1) on ImmT7"Y we get different formulas for the contact components. We note
that, with respect to the structure of our manifolds, contact decompositions on G"Y
are naturally induced by decompositions on Imm7"Y. In Section 4, the crucial
computational task is to determine certain classes of differential forms. We start
with a particular but in calculations important case of the contact decomposition of
1-form d f, where f is a function defined on V"** in InmT"Y .

Decomposition of forms on InmT"Y. Let W CY is open and consider charts (V, y),
v = (yX),onY with V. C W, and associated chart (V"L y"L), y"k = (yK yK .. yK)
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on Imm7"Y. Fora C"~! function f: W'~! — R, where W' ~! = (¢/~10)~\(W), df
is 1-form on W, Let J;¢ € V*E C W be an arbitrary point, and let & be a tan-
gent vector to Imm 7Y at this point, expressed by & = X (9 /dyK) Jr¢- Using the
notation of horizontal and contact components of a tangent vector (cf. (2.24) and
(2.26)), we have

(eI df(J58) - & =df Iy ' E) - (Tyree™ ' &)
=df(J5 ') (W +phE),
=df(Jy'¢) - hRE+df(IS1E) - pRE,

where hLE and plE are the L-horizontal and L-contact components of &, respec-
tively. We put
51 W f(J58) - & =df (g E) hE = e,

prdfJ§g)-& =df(Ug~'0) - prE = dre f.
Then

hLdf<J6c> E=df(JyE) -t = 9thf

1=0 8yf 1§71
— v af wC r v 8f L gy WL r—1
_<,_Zo 9Wf’)u l+1<foc>+l;)(aw%)f_lc %uo@)d G10)-E
= ALf(IpC)aw™(J5 71 6) - &,
and
prdf(Ip)-& =df Iy ' 6) - prE = e f
r—1

J;
(gyf )Jug’”’f Wie) < +:_Z; (%)nggnf(féé) x:
L

r = af o(qr
awL> CsL(JOC)f*'E)(W) o] (Jp8)- &,

V/aye
where N and ny are contact forms defined by (3.2). Hence we have the following

Lemma 3.5. Let W be an open set inY, and let (V,y), w = (yX), be a chart on Y
suchthatVCW. If f € QuW, then

(3.13) (" N*df =htdf + phdf,

where

— —1
hLdf:<): ]; f+1+2 af l“) L= (ALf)dw*

L C c L
df: _a)l + Q)
lg’)8wl" S;& LS

(3.14)
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In (3.14), 1-forms 7, ol and morphism Ay are given by Lemma 3.1, (3.3), and by
(2.22), respectively.

Note that the decomposition of d f, given by (3.13), concerns the pull-back of d f
rather than df itself. The 1-forms hfd f and pLdf, defined by (3.12) and satisfying
(3.14), are called the L-horizontal and L-contact components of df.

Consider now a general k-form 1 € Q,Z*IW, and let &;,&,,. .., & be tangent vec-
tors to Imm 7Y at a point J;¢. From (2.25), we have

(3.15) T]{)Cr’v’*I &= thj +pL§j

forevery j=1,2,..., k. By the definition of pull-back of a differential form, we get
(z"" 1) n(J68) (&8, &)
=Ny IC)(TJ(;QT” ! 'il,TJ(ggTr’rfl &,y Tjggfr’rfl &)
=0y ) (W& + prEr e+ p Eas . WG+ PREL),

and decomposing this k-form into terms homogeneous of order k —/,/ =0,1,... k,
in horizontal components hLé i»Jj=1,2,...,k, we can write
(v = Z i,
1=0
where

P66 (&1 8-, &)

1 o B
= l'(k—_l)'glllz-~-l/l/+1~~-lkn<J6 IC)(pLgil>pL§iza"->pL§i1ﬂhL§iz+1""7hL§ik)

with summation through all values of the indices i1,1,...,i. But it follows from
the definition of L-horizontal components that h& i» J=1,2,...,k, all belong to
a 1-dimensional subspace of the tangent space to Imm 7Y at Jj{ (cf. (2.24)). Thus

(3.16) (t" 1 = pr_yn+pi,

where

PeinU§8) (61, &, &)

1 i1iy... 011 r—
= (k— 1)!8 Haked "77(10 IC)(pLéipréizv e 7pL€ik—l7hLéik)

=N ") (W, prE,. . PRE)
0y (P R pREs L PG
+...

05O (PR PR, . PR e 1 B,

and

PENGE) (615825, &) = (g ' O)(P 61, P 62, PRER).
We call the forms pf | n (resp. pin) the (k — 1)-contact (resp. k-contact) com-
ponent of 1, associated to the chart (V"L y"F). The k-form 7 is then called
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(k — 1)-contact (resp. k-contact) with respect to (V"F,y"t), whenever ptn =0
(resp. pk \n =0).

If k = 1, it is convenient to denote hf'n = pén and ptn = pfn, and extend the
definition of i to functions. For a function f € Q{W, we put hf f = (z7~1)*£.
Now, the decomposition (3.16) is of the form

(3.17) ("1 = htn + ptn.

Formulas (3.16), (3.17) are referred to as the canonical decomposition of the form
n, associated to the chart (V"*F y"L). However, this decomposition concerns rather
(7" ~1)*n than 1 itself.

The next lemma describes the (k— 1)-contact and k-contact components of a form
in any associated chart on Imm7"Y.

Lemma 3.6. Let W be an open setin Y, (V,y), w = (yX), a chart on Y such that

V CW,and (VE yrb), yt = (yb,y9 yE) an associated chart on InmT"Y where
[=0,1,...,r,s=1,2,...,r
(@) Ifa 1-formn € QE_IW has a chart expression

r—1 r—1
(3.18) n=Ady"+Y BLdyf + Y Cidyt
=0 s=1

(no summation through index L), then

o - <A+ZBI T )a
(3.19)
p%zZ%W+ZQ%
1=0 s=1
where T]SL and Ny are contact forms defined by (3.2).
(b) Let a k-formn € Q,C_IW, k > 2, has a chart expression of the form

n=9ondy"+y,
where the forms ¢ € er{jW, X € er;lW are expressed by

k—1 1
... [; Sjpl---Sk—1 o Oj L L
S dyll1 A... /\dylj’ /\dysj+l Ao Ndys,

¢Z—< it

s .8
x= Z]‘ o YA /\dyl /\dySH/\ Adyk
j=0
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N e . L
with coefficients A<jl S g B(yl / S’“ % antisymmetric in the double
indices (11) ey (lf) and in the indices sj+1, - Sk—_1,5k Then
(3.20)

Ok
1 Ll ..l I 1 1y1+1
Pl = =y (Aélc?z...ai B, la | M AT A AT A
L phbeiiscpo, o Gt « L
+(k—1)! 0102...0—1 nh /\nlz N /\nlk /\ngk,
and

Lot
(3:21) Pin = 17B6,6," S ANZ AL AN,

Proof. The assertion (a) is a particular case of (b) for ¢ =A and y = Bﬁ,alylCy +
Cidyg. Note that using the coordinate expressions (2.24) and (2.26) of horizontal
and contact components of a tangent vector we immediately obtain

dy (Jy ) (p"E) =
dyg(Jy ' §)(p"&) = ny (U68)(8),

(3.22) dyy (J5' 5 (p"6) = P (J56)(&),
dyK(Ur1 ) () = y;Tld VAN (E),

s=1,2,....,r—1,1=0,1,...,r — 1, for every tangent vector & to Inm7’Y at the
point J;¢. Consider now, for instance, the (k — 1)-contact component of 7. From
linearity of p¥ | we obtain p¥ |1 = pt (¢ Ady")+ pt x. Applying the coor-
dinate expression of ), the non-vanishing terms in the (k — 1)-contact component
plkgl x are such where at most one exterior derivative of yt coordinate appears.
Thus, it is sufficient to consider ¥ of the form

1 .
X:m%lé..vfi Y dyP Ady A Adypt Ay

1 onn

Using (3.22), it is straightforward to compute

X<J671 C)(thlvpLépré?n cee 7pL§k)

Oy
| A A AR |
:ﬁBéléz o kL ’7111/\77122/\ /\nzk "AGYH(I5E) (61,6, Ek)

1 Il By sk

1)1 Boroeoin g AN A AN IO (2,8 8 M (U6 0) (6),
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hence we get

Ok
1 y
L R
Pk_1X:WBc§1§2 ‘o ;L nl]‘Anl;/\ /\nzkk "Ady"

1 l[ 12 lk, Sk k L
" (k—1)! BGIGZ"'G"*II nlll A n122 A A ., 1 ATy, -

Analogously, we obtain

1 L.l
P (@ ndy") = WAC;@ G My AT A AT Ay
The coordinate expression of the k-contact component pin can be derived by the
same way. ([l

Remark 6. Tt is not difficult to express the (k— 1)-contact and k-contact components
of a form in a subordinate chart (V"*F, L), x" = (wh, wy Swh),1=0,1,....r,5s=
1,2,...,r, on ImmT7T"Y. For simplicity, consider a 1-form 1 € Qle, expressed
by (3.18). Obviously, for the horizontal component 21 in (3.19) we get

r—1 I+1 WL
L., s U s+1
h n— A+ZB LZ Z W|11‘W|12| W|I ‘W —|—ZC L dW
=0 W1 p=1(1, b....I,) Wi
where we sum through all p-partitions of the set {i1,i2,... 4,11} with ij =i =

. =i;41 = 1. To express the contact component p*n of n (3.19) by means of
a subordinate chart, it is sufficient to find the expression of the contact 1-forms nt
and 7. We get nF = wF, s =1,2,...,r — 1, and after straightforward calculation

n?=o°,
Ny =wiof +wer,
N5 = (W)’ o5 +wiof +2wiws of +wf o,
Ny = (wh) of +3wins s +wiof
+3(w§ (W) + wiwh) of + 3wiwg 0F +wf o,

(3.23)
L L L .o
-y ¥ M %
p=1(I.I,....],
ok L L o
+ Z (s) Z ) W|L11|W|Iz| WY
s=1 p=1(I.h,....],
where [ =0,1,...,r— 1, and in the latter term of 1) we sum through all p-partitions
of the set {iy,i,...,jj_st withij =i =...=i_y=1.
Note that from (3.23) it follows that for a general k-form 1 € Q’_IW the k-contact
component pén (3.21) is a linear combination of k-forms @ 1 A a)122 ARPRYAY ) 75N

L L L
CO] +1 /\wj +2/\ /\wjk'
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Decomposition of forms on G"Y. Let " be the quotient projection from Imm7"Y
to G'Y (cf. (2.38)), and p""~! the canonical projection from G'Y to G"~'Y (cf.
(2.39)). Consider a general k-form n € Q,’(*IW, defined on W1 c G~ 1y.

Analogously to the preceding paragraphs, we can construct the contact decompo-
sition of forms, defined on the Grassmann fibration G"Y. To this end, consider first
the concept of horizontalization of a tangent vector. Choose a point [Jj¢] € G'Y,
and let (V"*F, 7"L') be an associated chart at [J}¢]. Let & be a tangent vector to G'Y
at a point [Jj(], locally expressed by

=2 () 5 (ap)

We assign to & a tangent vector A& as follows (cf. (2.23)). Define
(3.24) W& =Ty ([T o (W) owhop™) - &,

and we can easily observe that (3.24) is a tangent vector to G"~'Y ata point [J; ' ¢],
with a coordinate expression given by

“Le WL r—1 . i r_lW(y 0 i
e =avilh el g((awL)[Jslc]+z)—:<) IH(JOC)(‘?W?)[JSICJ)'

Using complementary construction, we define a tangent vector p-& by the formula
(cf. 2.25)

(3.25) Tyrp™ - & =&+ pe,

where

l

d
& = of ([15¢]) - 5 :
P 1 0 (aw )[1614’}

The tangent vectors A& and pL& are again called the L-horizontal and L-contact
components of £, respectively.

Let &1, &, ..., & be tangent vectors to G'Y at a point [J;{], and compute the pull-
back of 1 by the canonical projection p’"~!. By the definition of pull-back and
applying (3.25) we get

P n([5E)) (1. &, - )
= n([JS‘IC])(T[ngp”"I 'élaT[JgC}p”_l &, .. .,T[J(mp”_l &)
=0y DR & + pE, 1 e+ PR, WG+ PG

Now, using similar arguments as in (3.16), we get

(3.26) (p"™N*n = pk_n+pkn,
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where
(Ve (61,62, &)
= ﬁeilizmiklikn ([J6_1 C]) ' (ﬁLgh aﬁLéip ceey ~L§ik717ﬁL§l‘k)
= (5 SN (R &, P&, PHE)
+ (V5 ) (P &1, h 6, 5185 &)
+...
+n (5 DB 6 P, P 1 HRE),
and

ﬁén([J(r)C])(glviéZ? .o '7&16) = ’7(%71 ])(ﬁLébﬁLgZ? cee 7p~L€k)'

are the (k — 1)-contact and k-contact components of 1, respectively.

Now, we can describe the contact components of a form by means of associated
charts on G'Y.

Lemma 3.7. Let W be an open set in Y, (V,y), w = (%), a chart on Y such that
Vcw, (Vvik xrh), it = (WL,WIG,WSL), be subordinate chart on InmT"Y, and
let (VPE 770, 77t = (WL,wf), be associated chart on G'Y, where | =0,1,...,r,
s=1,2,...,r.

(@) Ifa 1-formn € QTIW has a chart expression

r—1
(3.27) n=Braw"+ Y BLdw]
=0

(no summation through index L), then

r—1
htn = pon = (BL+ ) Blcrwf—o—l) dw',
(3.28) o

p'n=pin =Y Byof,

1=0
where @ are contact forms defined by (3.5).
(b) Let a k-formn € Q,C*IW, k > 2, has a chart expression of the form
n=¢Ardw"+y,

where the forms ¢ € QZ:{W, X € Q,C_]W are expressed by

1 L.

= — e 9 (o7) Ok—1
¢ - (k_ 1)!A0162~..Gk_1 dwll /\dwlz /\.../\dwlk71 s
_ Lphts dwC Adw A A dw*
x - k' 0102...0; [ I ‘e lk 5
. . . .. : . 11 12 lk—l lk
with coefficients antisymmetric in the double indices ( 61)’ ( 62) ooy (GJH)’ (Gk),
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Then
(3.29)
I I

. 1 Ll ..l
pi—ln = m <A(;1(?20']; : +B(7102 Wl +1> (!)lll A a)l 2NN (Olcfll /\dWL
and
1
(3.30) pn = Bgllc%z ‘o a)ll/\a)le /\a)

Proof. Analogously to the proof of Lemma 3.6, the result is now straightforward.
U

Corollary. For function f € Q(’)_]W, (p"NY*df = htdf + ptdf, where

htdf = (a L+Za Gle) dwh = Apfdw*,

Jdf
owy

(3.31)
prdf =

Corollary. A k-formn € QZ*IW is k-contact if and only if ﬁé_l N vanishes or, which
is the same,

1
k!
where 0 < Iy,lp,.... [ <r—2.

I 1
(3.32) N = —Bg6,. Gk(olll/\wlz/\ /\a)l,

We note that for n = 1, a k-contact k-form corresponds to the concept of a strongly
contact form, introduced by Krupka [25] in the context of fibred manifolds with an
n-dimensional base manifold.

Note that, of course, the formula (3.28) for contact component of a 1-form coin-
cides with the expression for a contact 1-form, Lemma 3.2.

Remark 7. We can obtain the results of Lemma 3.7 in a slightly different way. Note
that for an arbitrary tangent vector § to Imm7"Y at J|C, Tyrem” - £ is a tangent

vector to G"Y at ©"(JjC) = [Jy¢], and one can consider tangent vectors to G'Y of

this form. Indeed, an arbitrary tangent vector & to G'Y at [J5€], represented by
a curve t — [T"{](¢) (see 2.62), has its pre-image in the tangent mapping 77",
represented by r — T"{(¢). From (2.39), the quotient projection 7" and canonical
projections p’ =1 : G'Y — G"~'Y and 7"~! : ImmT"Y — ImmT’"~'Y satisfy the
identity p""~!on” = "1 o 7", Hence and from (3.15) we obtain

T[J(;C}pr’r_l © TJ’Cnr g = TJ’ (pnr—l © nr) ‘:
(3.33) :TJ(;C( T orrr l) g r IC a IOTjé(:Tr’r_l'é
= Tjgflg”ril (WM& + prE).
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The tangent vectors TJ6€7tr_1 -hEE and TJ6Cﬂ:’_1 - p“& have then the following co-
ordinate expressions,

d d
e weea() ke (i) m(2)
JO C aWL [‘]6*14’} % ayl J6—1§ + aW; [‘1671&:}

wy d
Tya,n ' phé = < ) Nt (J5¢) - € (—) ,
Bt n e MWy V"¢

and for arbitrary tangent vectors &;,&,,...,& to InmT"Y at a point J;{, we com-
pute the pull-back of n by the canonical projection p"~!. By the definition of
pull-back and using (3.33) we get

(™ (G (T &1, Ty e -G Ty - )
= (g N (T (W& + ph&0), Ty 21 (W&o 4 p8),
--’ngflgﬂr_l (W& + pE)).

Hence

r,rfl)*

(p n=pr_\n+pen,

where
ﬁléfln([J(’)’C])(TJ(ggﬂ:r : é],Tj(gCﬂr : 52, ceey TJ(;)*Cﬂr . gk)

— (k_l 1)!8i1i2...ik_1ikn([J6—1C])

'(Tjgflgﬂril 'pLéiHT‘](')’*l{:’ T p 5127 Jr 14 T l'pLéik—l’TJ671§ﬂ’-r71 'hLéik)

and
PN (oS (Tye - &1, Type 0 &2, Type - &)
= (U V(T PP Ty ™ P, Ty T PR
Now, if n € Q?‘lW is a 1-form on W1, expressed by
r—1

N =Brdw"+ Y Bodwf,
=0

then
R (JGEN) (T - &) = (BL+ ZBcaKypH)dWL(JSC)-&,

(5D (T n - &) = ;)Béwfuso '3

where @ are contact forms defined by (3.3). The contact components of a k-form,
k > 2, can be derived analogously.
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Remark 8. Finally, let us mention here the basic formulas for exterior derivative of
contact forms, useful in many coordinate calculations. We restrict to first order case
since the various higher order analogues are straightforward. We have the following
contact k-forms, antisymmetric in all indices,

dw® = —wf Ndwt,
d(0% N 0%?) = (0] N0 — o A @) Adwh,
A0 NO2N0%) = —(0' AN0%? A% — 0 A% A%

+ @7 A% A0%) Adwh,

A" NO2N ... \N©%)

k
= (DY (1) o Ao AL AT A% AL A 0% Adwt.
=1
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4. VARIATIONAL SEQUENCES: MECHANICS

In this section we define the variational sequence on r-th order Grassmann fibra-
tion G"Y and we prove the basic structure results. The classes of differential forms,
entering the variational sequence, are determined for an arbitrary first and second
order k-form. The ideas and methods are motivated by the existing theory on fi-
bred manifolds; we refer to D. Krupka [25, 27], M. Krbek and J. Musilova [18],
D. Krupka and J. Sedé&nkova [34] and references therein. We consider the struc-
ture of manifolds of velocities which arise in the study of variational principles for
curves in the manifold Y. It should be pointed out that in this context higher order
prolongations of manifolds of regular velocities are considered.

4.1. The structure of 7%Y. To illustrate the basic structures, we collect here coor-
dinate formulas, needed in the theory of variational sequences on first order Grass-
mann fibration G'Y where the prolongations of fourth order arise. The higher order
case is proceed analogously.

We use a simplified notation for the charts on manifolds of regular velocities
Imm7'Y, Inm7T?Y, Inm73Y and Imm7?Y, and the corresponding charts on the
Grassmann fibrations G'Y, G?Y, G°Y and G*Y. For a given chart (V,y), v =
(v%). on ¥, we denote by (V!,y'), y' = (K 55), (V2 y2), y? = (45 % %),
(V2 92), yd = (0% K 55, 575) and (VA y), = (5 55,55, 55 57F) the as-
sociated charts. The corresponding subordinate charts on the manifold of regular
velocities Inm 7Y are denoted by (V£ yhE), ybl = (yL yb yo y9), etc.; the
second subordinate charts are denoted by (V£ y1'F), y1E = (wh wh wo w?), etc.
For further use we need transformation formulas between these subordinate charts.
The transformation equations between (V4L y*L) and (V4L y*F) are of the form

WL:yLv WL:)-)L, WL:y7 W :y )
1

w® =19 WG_iO‘ w9 — G_)LL-G
=y, 1 — .Ly ’ 2_(yL)2 y yLy I
(A O N L AW
wn g (T (),
- (Wﬁyiy“— s (455 - 154)2) 0
(vF)* it (vh)?
- )3 (Oh)>yt = 1055555 + 15(yL)3)yG>
and
yh=wh yt=wt, gt =it it =
PP e LN i (UG
' YO = wg (Wh)? + 3wgwhwl + wlwk,
T = w§ (W) + 6w () g (it 4 3(95)7) W
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Consider the differential group L*: in the context of this subsection, L* describes
the change of parameters in variational functionals for parametric variational prob-
lems, whose Lagrangians are of order 4. L* acts canonically on 7%Y and Imm 74Y
to the right by composition of jets,

(4.3) T*Y x L* 5 (3¢, Jga) — J§C oJgae = J3(L o) € T*Y.

Recall that the canonical coordinates ay,a»,a3 and a4 on L* are defined by a(Jg o) =
Da(0), d(Jgar) = D*a(0), @(Jgar) = D>a(0), and &’ (Jjar) = D*@(0). To derive
the equations of this action we consider the coordinate expression  — (YK o o) (¢)
of a representative of Jg (§ o ax). Denote the coordinates of regular velocities Jg o,
J3C and J§ (Lo @) by (a,d,a, @), (Y€, 55,35, 55,§K) and (8,25, 25,28, 27F),
respectively. Differentiating at + = 0, we obtain the equations of the group action
(4.3), expressed in the subordinate chart (V4L yhl) yhl = (yK (K 3K 57K 5Ky

& =)k, &=y,
K =38 +%a, K =%a) +35%aa+y"d,
E =5 (a)  + 65" () a+ 5" (4ad +3(a)?) +57d
In the subordinate chart (V*£, y*L), denote the coordinates of J§ ¢ and J3 (¢ o ) by
(WLavawLaWL,W‘L»"VGvW?ng’Wg?Wg) and (ZL,Z‘L7‘Z‘L7'ZL’ -Z.L7ZG7Z?’Z(2;7Z§7Z2>’
respectively. The group action (4.3), restricted to Imm 7Y, is then expressed in the
chart (V*L x*L) by the equations

Eowk E—ila,
2k =il (a)* + 6wk (a) ka4 wh(d4ad +3(a)?) +wha,
(o) (o}

c c () o) 9 o
z=w, 7] =Wy, 7y =Wy, Z3:W37 y =Wy

Hence, equations of the L*-orbits of (4.3) are

4.4)  wk=ck, wo =", wl=cY, w§

where c%,¢%,¢¥,¢5,c,c§ €R.

Let G*Y be the Grassmann fibration of order 4 over Y. Recall that the elements of
G*Y, called the contact elements of order 4, are such classes of regular velocities of
Imm 7Y, whose representatives belong to the same L*-orbit. We denote by [J3¢]
the contact element represented by J§¢. For a chart (V, y), y = (&), on Y, we have
a subordinate chart (V4L y*L), y4b = (wh wh wh, Wk, 'W'L,wﬂwf,wg,wg,wff),

on InmT4Y. By (4.4), we get real valued functions on V*L = z#(V4L), defined by

(SN =whUC), W UGED) = wo(5C), W (5¢)) = wl (450),

for all JS‘C e V4L where 1 < k < 4. For every index L, 1 <L <m+ 1, the pair
(VAL 74, 24 = (Whowe w9, WS, we WY ), is a chart on G*Y .
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Let v be a smooth curve in Y, defined on an open interval I C R. The canonical
4-jet prolongation of ¥ is a smooth curve in 74Y, defined by

I3t — TH(1) =J(yotr_,) € T*Y.

LetI >t — y(t) €Y be an immersion such that T#y(I) C V*£. Then the canonical
prolongation T*y of 7y has the chart expressions

YooTHy(t) =y oy(t), ¥ oT*y(t) =D oy)(1),
FoTHy(t) =D* (Y o)1), FXoTHy(t) =D’ (X)),
Ko THy(t) = D* (X o ) (1),

and

who THy(t) = u(r) = whoy(0),
Who THy(t) = Du(t) = D(Wro T y)(1),
W o THy(t) = D*u(t) = D*(wh o T?y) (1),
o THy(t) = Du(t) = D’ (Wro T'y) (1),
it o THy(t) = D*u(r) = D*(wh o y) (1),

)

)

2

4.2. The contact subsequence. Let W C Y be an open set, p"’ : G'Y — Y the
canonical projection (2.39), W" = (p")~1(W), and QW the module of smooth
differential k-forms on W’. Let fl,’{ W be the submodule of fl,’{W of k-contact k-
forms on W, defined by (3.7). Recall that by Lemma 3.7, k-contact k-forms are
expressed as a linear combinations of @ A W A ... A @ (k factors). We extend the
c}eﬁnitim} of Q,’CW = ker ﬁéfl, k > 1, in the following sense. We put £~26W = {0},
oW =Q] W, and

(4.5) W = W+dQp | W,

meaning that a k-form 1 € fl,’cW belongs to @),’{W if and only if every point of W”
has a neighbourhood where 1) is decomposable as 1 =t + du’ for some k-contact
k-form p € QF ‘W and some (k — 1)-contact (k—1)-form u' € Q7 | W. O;W is
a subgroup of the Abelian group fl,’cW, and we get a subsequence of Abelian groups

(4.6) 0—— OW —— OLW O,w . e;,w 0

of the De Rham sequence 0 -+ R — QSW — Q{W — QEW — ... Q]er — 0,
where M = mr+ 1, N =dimG"Y = m(r+ 1) + 1. In both preceding sequences, all
arrows denote the exterior derivative operator d.

If any misunderstanding may not arise with previous definitions of contactness
of differential forms, the elements of (:),’(W are simply said to be the contact forms.
In all following diagrams we omit the underlying set W.
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Remark 9. The subset (:),’(W of QIZW has the structure of a real vector space but not
of a submodule of the module fl,’cW. Forif f € Q{)W is a function and 7n) belongs to
O;W, n = p+du’ on some neighbourhood in W, then we have f1 = fu+ fdu' =
fu+d(fu')—df A, which belongs to ;W if and only if f is constant.

Theorem 4.1. The subsequence (4.6) of the De Rham sequence is exact.

Proof. We prove this theorem directly, employing the structure of spaces C:),’CW of
contact forms. Let W C Y be open, (V, ), v = (yX), achart on Y such that V C W,
and (V"L 77F), 7°F = (wh,wo, wl w9, ..., w?), the associated chart on W

Let k = 1. For 1-form 1 € O[W, = AL @ (the sum through 0 </ < r—1), it
is sufficient to show that if dn =0, then n = 0. We have 0 =dn = dAi, Nop +
ALdoP = dAL N of —Ai,dwl"+1 Adwk. Since the term dAL A @ does not contain
dW16+1 A dwk of the contact basis, it follows that Ag =0, and 1 = 0. This is the
exactness of (4.6) in the first term O W.

Let2 <k <m+1,andletn € O;W. By the definition of O,W (4.5), n = u +dp’
on some neighbourhood in W”, where € Q; W and p' € Qf_; .W. We wish to
show that if dn = 0, then there exists a contact (k — 1)-form 19 € ®;_,W such
that 1 = dng. The condition dn = 0 implies du = 0. Suppose that u is of the
form u :Alc}llézﬁjjé]’j a)l?‘ A a)l(zr2 Ao A a)lc:" (the sum through 0 < [y,lp,.... [ <r—1;
cf. (3.32)). Differentiating y we get du = dA% 2 A o' NOZN Ao+
Af}l 22;;;éjgd (a)l(lrl A (x);zjz Ao A col(ky ©), where the first term does not contain dwz’ Adwh,
Iy = max{ly,lp,...,I;} + 1, whereas in the latter term d(colc];1 A on)lczyz A A a)l(;") is

a linear combination of terms of contact basis, all containing dwr and dwlq"; for
s

details see Remark 8 of Sect. 3.2. Hence we get Aglgzjjjé’lj =0, and u = 0. This

means 1] = dt’, and we put 1o = p’, an element of ®}_,W. This however verifies
the exactness of (4.6) in the term O; W. ]

The subsequence (4.6) is called the contact subsequence of the De Rham se-
quence of smooth differential forms on an open subset W” in the Grassmann fibra-
tion G'Y.

Remark 10. The space of contact k-forms C:),ZW is a direct sum of the module QZ N4
and of the image of the module Q,’C_l’ W in the mapping d. In other words: For
every contact form 1 € C:),r(W there exist a unique k-contact k-form U € Q,’Q W and
a unique (k—1)-contact (k—1)-form u’ € Q,Z_LCW such that 1 = u+du’. For if
n = 0, then it is sufficient to prove that g = 0 and u’ = 0. Differentiating 1, we
get du = 0. Applying the same steps used in the proof of Theorem 4.1 we get the
desired result.

Remark 11. We note that Theorem 4.1 is indeed a direct consequence of Volterra-
Poincaré lemma for contact forms on G'Y, Lemma 3.4. Suppose 1 € O;W is
a contact form, uniquely decomposed as ) = y +du’ for some u € Q,’{ W and

u' e erﬁl  W. From the assumption dn = 0 it follows that du = 0, and by Lemma
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3.4 we get duy = u, where Uy belongs to Q,’{f 1.c.W. Now, we have n = dng for
Mo = Ho+ W', the element of G} | W.

4.3. The variational sequence. Now, we are in a position to define the Krupka’s
variational sequence as the quotient sequence of De Rham sequence by its subse-
quence of contact forms (4.6).

It is well known that the quotient sequence by a subsequence is exact if and only

if the subsequence is exact (see e.g. Warner [63]). Thus, for the quotient sequence
(4.7) 0RO —=Q/O] — ... Q) /0.1 —...—>Qy—0

we have the following result.

Theorem 4.2. The quotient sequence (4.7) is exact.

We call (4.7) the r-th order variational sequence on Grassmann fibration G’Y.
Let [n] denotes the class of a differential k-form 1 € Q;W, and we define quotient
mappings E : QIW /O[W — QF W/ e 41 W in the variational sequence (4.7) by

(4.8) E(lp]) = ldp].
We have the diagram

o QO HQ;/(:);HQ,QH/@,QH — ..

T

ol o ol
Qk_l Qk Qk+1 4)...

T | T

~ d ~
r r
®kfl ®k

~ d
,
o, —L ..

where the upper arrows denote the quotient mappings E, making all upper squares
commutative.

Our goal now is to study the inclusion of the r-th order variational sequence to

variational sequence of order (r+ 1). The situation is represented by the following
“section” diagram

0 0 0
)P
I
- - - - I
0--+0 /0, — Q1 /Qr ——— @ - — - - 50
(4.9) 0 Ol ———— Q! /et —— o
() (pr 1y
0 O ——— O /O ———0
/T\

|
|
0 0 0
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where 1 and p"t!" denote the canonical injection (:),’(W — Q,ﬁW and the canonical
projection G"*Y — G'Y, respectively, and W is well defined by

W = (W /SW) /(@ W /W),
The quotient mappings E,
Qw /W — o tw /et w,  ertlw/@w — QI w /Orw

are defined independently of the choise of a representant, making all correspon-
dent squares commutative. The exactness of diagram (4.9) insure the correctness of
using the increasing degree method for differential forms, the technique used to cal-
culating explicit expressions of the quotient mappings in the variational sequence.
What remains to show is the exactness of the upper row and the right column of
4.9).

Theorem 4.3. The quotient mapping fZ,’CW / (:)ZW — Q,ZHW / C:),rCHW is injective.
Proof. Letn € Q,iW be a k-form on W”. It is necessary and sufficient to show that

if 1 satisfies (p"*1")*n € (:),ZHW, then n € O;W. By assumption, (p""1")*n is
uniquely decomposable as

(P = p+du,
where u € Q,’(JEIW and p' € er:} W. The forms u’ and p have the following

expressions in the contact basis dw’, @9, o7,...,07,dw] | on Qr Hw,
1 Ll
I 1 1 01 o)
e Y Asole o) AOT A NG
’ OSZI 7127“~7lk71§r
1 Bk o] 02
L= 7 Z 0107.. O'kwl /\wl ARERVAN G

|
k. 0§117127"'7lk§r

Wb oley phbol : z .
where Ag g, ot |, B& & o are smooth functions on W' C G'1Y, antisym-

metric in double indices (I, o;). Because of the p’*!"-projectability of the form
(p"t1")*n, the terms in (p"*'")*n containing the base form dw?, | should vanish.
Obviously, these terms appear only in the form du’. We obtain

aAl] 12 lk,l

010,...0; O;

(4.10) ) %mllww,m A@ANdw) =0,
0<ly by, i <1 Wil

L.l ) ) .
hence dAL 21 /0dwY,, = 0. From analysis of the exterior derivative of contact
010...0_| r+1 y
forms in
Z Alllz--~lk ld( 1/\(1)2/\ /\kafl)
0107...0; 1 Iy lk 170
Ogll‘lz,,.,,lkilgr
Lh+b+..4+4:>0
we immediately obtain that dw)_ ; is contained in such terms d(®, PN a)l A

Lyl
colki1 ') where some @) appears. Hence Ag, 5, 6, | =0 whenever lk_l = r. Thus,
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the form u’ must be of the form
1
Al] b ... lk,la)lcl A a)le AN a)lckfl,
1 2 k—1

!
H = Z 0102...0k—
(k_1)!0§11,lz,~-~7lk71§r*1 e

and is defined on G"Y. Then, however, the form u is also defined on G"Y, and so

is the form du. The terms in du containing dw) | A dw! should vanish separately.

. . o . . L.l
From this requirement, we derive similar conditions for coefficients Bg, 5, s Of U,

defined on G"Y, and we get

1
p= Y Bi‘,lgz_'jjé,’ja)ffl NOP A A colf",
k! 0<l,lp,.... [ <r—1
and the form u belongs to fz; W.

Then, however, the form n = u +du’, defined on W”, belongs to @),’CW as re-
quired. U

The following theorem now completes the exactness of diagram (4.9) in all terms,
and it is immediate consequence of the 3 x 3 lemma (see e.g. Greub, Halperin and
Vanstone [12]).

Theorem 4.4. The quotient mapping (:),r(“W / (:),r(W — QZHW / fl,’cW is injective.

4.4. Classes as elements of variational sequence. In this part we give a varia-
tional meaning to the classes of differential 1, 2, and 3-forms, the elements of the
variational sequence. The classes of first and second order k-forms are determined
by means on certain prolongations of a Grassmann fibration. Naturally, we may ask
whether there exists an appropriate representative of a class of differential forms be-
longing to this class. This is the representation problem of the variational sequence
by means of forms. For its general solution on fibred manifolds, we refer to Krbek
and Musilova [18, 19]. In this context, one of the main requirements on represen-
tatives was to be a globally defined differential form satisfying the transformation
rules. However, considering the Grassmann prolongations as the underlying struc-
tures we shall see that important variational object such as the Euler-Lagrange class
or Helmholtz class are not longer represented by differential forms.

As usual, we denote
o (o o L
o] =dw; —wp dw-, 1>0,

the contact linear forms defined on prolongation of a Grassmann fibration. The
contact basis on G'Y is formed by dw’, P, dwy, where 0 <[ <r—1.

Classes entering Ist order variational sequence. The next theorem describes the
classes of first order variational sequence by means of associated charts.

Theorem 4.5. Let (V,y), v = (yX), be a chart on Y, and let (V1'E 1), 7't =
(wE,w® w9, be an associated chart on W' C G'Y.

(a) Let n € QiW be expressed in the contact basis by N = Adwt + B50° +
Codw?. Then the class [1] is an element of Q2W /©IW defined by

(4.11) (N] = (A+Cows)dwt.
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(b) Letn € QéW be expressed in the contact basis by
N =Acw° Adwk+ Bydw) A dwt

1 1
+5Co 6, ®°' AN 0% + Dy gdw} A 0° + 5Dv, vdw(' Adwi?.

Then the class (1] is an element of Q3W /©3W defined by
] = Es([n]) 0 Aaw",

where

d

(c) Letn € Q%W be expressed in the contact basis by
1 (o] (o) L
n = EAalgza) AN @2 Ndw

1
+ Byodw] AN@° Adwh + EBvledwY' A alw}/2 Adwr

1 1
+ 6C0‘16263 6061 /\ (1)62 /\ (l)o-3 + ED\/’GledWY /\ (DG' /\ (Do-z
1 1
+ EDVIV%GdWYI AN dwrz AN (DG + gDvl V2V3dWY1 AN dW;}z A\ dWYS .

Then the class [n] is an element of Q3W /©W defined by

1
(0] = 3Eo0x([N]) @ N 0 Adit + Fy o([n]) 0} A @ Nt

1
‘l‘i vlvz([n])wgl /\COV2 /\dWL,

where

d

1
Eclcrz([n]) :A(Fldz ‘|‘Du7alczwg + EW (862701 _BGI-,Gz + (D”GZ»GI _D#C’lﬁz)wg

d

+ W(Bﬁlﬁz +D01 Gzllwlil)> >

1
Fvo([n]) = 5 (Bv.oc+Bo.v+ (Duv.oc +Ducv)Ws ),

Fvl VZ([n]) = BV2V1 +Dv2vluwg.

(c') The class ] of N € QIW, expressed as in (c), is an element of Q3W /O3W
defined by

1
M) = 5E6,6,(In)) 07 A @ Ndw" + Fy 5([n]) @) A @ ndw'
1
+ EF\£1V2([n]) wfl /\ a)]v2 /\de7
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where

d
Ely 6,(N]) = Acir + Dyp.ciosWh — e (Bs,,0, + Duay o,y ) alt(0102),

1
Fyo((n) = 5 (By.o +Bov+ (Dpv,o + Duoy)wh ) ,

F\sz([n]) = BVIVZ +D/~1V1V2WI;'

(d) Letk > 3. Letn € Q,lW be expressed in the contact basis by

1
n - WAO-IGZ'“kal w01 A a)Gz VANRAVAN COGk*l VAN dWL
1 v,
+ Z ]'(k— 1 _]-)‘BV[VQ...Vj,G]62”,(yk717de¥1 /\dwrz/\/\dwlj
1<j<k—17° :
AGC A Q%A .. A% AdwE
1
+ Ecmdz...dkwo-l AO2A...\@%
1 v,
+ —Dvlvz...v_j,cloz.l.ok,jdw\l/l /\CIW}/2 VAR /\dw1’

1§j§kj!(k_j)!
AOCTAO2 N ... A\ ©%,

Then the class [1) is an element of QW /©;W defined by

1
] = mEmaz...GH (M) @ A% A... A% Adwh

1 v v vj
+ Z_ J-!(k_1_j>!FV1V2~--Vj,0162~~~Gk717j([n])wl1/\wlz/\"‘/\wlj
1<j<k—1

AT NGO A ... AO% =i Adwh,
where

k—1
EG162--.61¢71([77]) :A6102-4-0k71 + (_1) DH70102-~01<71W5
d

k—1
- dwL (30170203---61(71 + (_1) Du61,6203...ok,1wg> alt(0'162...6k,1),

k=2

Fvl,olcz...ak,z([n]) I ( V1,610203...0,_» T Boy vi0:03...00_»

-+ (—1)k_1 (Duv] ,010203...0;_> +Du61,\/1 6263~~-(7k72) WI2J) alt(cl 02... kaz)’
FV1V2...Vj,6162...0k_|_j([n]) =

BV1V2...Vj,Gng...Gk,1,j + (_1)kilD,LtvlV2...Vj,0'10'2...6k,1,jw‘1217 2 S ] S k_ 1

Proof. We compute pull-backs of forms 7 in projections p™* : G'Y — G*Y, and
factorize by contact forms in sense of (4.5).

(a) The result is immediate from (p>!)*n = (A + Cowg)dw! + Bc@° + Co0F .
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(b) For the 2-form 17 we obtain
(p2’1>*77 = (AG - DV,GWE/)COO- /\dWL + (Bv] +Dv17v2W;2)(Ulvl /\dWL

1 1
+ =Co,0,0°' AW + Dy 0 N ®° + =Dy,y, 0" N @,

2 2
But from dwV = -/ Adwk, we have
(By, + Dy, v,w3?) 0" Adw" = d(By, + Dy, v,w3*) A @"* —d((By, + Dy, v,w5*) ")
d
- dwk (Bvl +DV17V2WXZ) o" Adw" —d((By, +DV17V2W;2)COVI)

+ ﬁLd(BVI +DV1,V2W;/2> /\ wVI bl

where a function is decomposed by Lemma 3.7, (3.31). Hence we get the class of
(p>)*n 4.12).
(¢) From dw§ Adw* = of Ndw*, dw? = of +wJdw" we have

1
<p2,1)*n = E(Aclcz + Dy 6,6,W3 ) 0N N 0% Adwr
(4.13) + (By.c — Dyuowh )@} A@® Adw*
1

+ E(Bvl v, + Dy, v,v, w;@)a)lv‘ A A dw" + contact forms.
First, we apply the formula
d() A@°) = (0 A% + o} Aof) Adwh,
and obtain 1 pull-backed on w3,
(4.14)

p—

<p371)*n = _(AO'10'2 +DH,G]O'2W§)0~)61 /\sz /\dWL

1
(Bv.o —Dyp.owh)+

+ EW((

Bsv —l—DGvuwé‘))) o A @°® Adwh

= NN

+ E(BGV + ngﬂwg)a)zv A ®@° Adwh + contact forms.

Decomposing the middle term in (4.14) into forms with antisymmetric and sym-
metric coefficients, and utilizing the formula

(4.15) d(0’ No%) = (o} Ao° —of AoV) Adw",

we easily obtain 3-form on w4,

1 d
(BV,G _DV[.L,GWI; + Em ((Bo'v +D0v‘uwl;))) (l)]v /\ (OG /\dWL

1
- 2 ((BV»O' +BG7V) + (DMV,G +D‘uc,v)Wg) (Dlv A @ Adwh

1 d u d "
~ 27k \ Bv.o = Bow) + (Duvio = Duo.v)wy + -7 (Bov + Dovuw; )

oV A @° Adwk + contact forms.

4,1)

Hence and from (4.14) we get (p™")*n of the required form.
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(c") Since the second term in (pz’l )*n (4.13) is not antisymmetric in indices vy,
o, we utilize formula (4.15) to obtain

(Bvy.c — Dyyvy,owy2) 0" A @% Adw*

1 d
=57 7 (Bv.o—Dy, oWy )@V A @ Adwh  alt(v) o)
1
+ _(Bvl.,d +BG,V1 - (DV1V2,G +D(7V27V1>W¥2)m1‘/1 A o /\dWL

2
-+ contact forms.

This implies (p!)*n of the required form.

(d) The class of a k-form, k > 3, on G'Y, can be derived analogously to the
method used in (¢’) (compare also with Krupka [27, 33]). We use the elementary
theory of Young diagrams, decomposing tensors into its symmetric and antisym-
metric components. To the author’s knowledge, there is no adequate reference for
this material. However, since we discuss only the four “variational” terms in the
sequence, we omit here a tedious calculation. U

Now we determine the quotient mappings (4.8) in first order variational sequence.

Theorem 4.6. Let (V,y), w = (yX), be a chart on Y, and let (V1'E j11), 7't =
(wE,w® w9, be an associated chart on W' C G'Y.

(a) If f € QLW then E(f) = (df /dw")dwt.
(b) Let n € Q%W be expressed in the contact basis by N = Adw! + B50° +
CodwS. Then

(4.16) E([n]) = Es([dn]) ©° Adw*,

where

dA  dC d 0dA  9C d*c
Es([dn]) = Iwo T awcvng T awl <8w‘1’ + awgng) + -

(c) Letn € Q%W be expressed in the contact basis by

N = Ac@° Adw" 4 Bydw} Ndw"

1 1
+ ECGI 62(1.)61 A 0)62 +Dv7gdWY VAN (UG + EDV1 vdeYI A d\’VY2

Then

E(M)) = 5 Eoyo([d]) 0% A 0% Adwh 4 Fy o ([dm) 0} A 0° Adi
4.17)

1
+ EFVG([dn]) @) A ©® Adw*,
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where

Esyv([dn)) = dAg, A,  (IDuoy 9Due,\ u 1 d (JAg JAq
ovilen owol  Jwo2 owo2 owo! 2 2dwk ow?! 8w‘172
8B62 o aBGl aD‘u7GI . aDu,o'z 8D0'2‘u B aDGl‘u W‘u
awo  Iwo ow?? ow{! dwO Iw 2
L1 d*> (9Bs, 9B, N dDgyu  9Dgyy AR d*Dg,c,
2d(wk)2 \ow('  ow( owyl  owp 2 d(wh)3

Fr.o(ldn)) = E(awy T owT T o awe ( awy T owe T aw

* aw0> 2 Tt L(DV"’+D"’V)>’

9B, 9Bs oDy, Doy dDyo
Fys(ldn]) = — =24 Dgy—D - b .
volldn)) =5 = 5y TPov ~Drot ( W awl )" Tt

Proof. (a) By definition of quotient mapping E : fZ(I)W — Q% w/ (:)1W (4.8), we have
E(f) =E([f]) = [df]. We obtain the result immediately from

df af af
( )(df) —d —|—a N ‘|—m 1.

(b) Differentiating n € Q}W we have
dn = Ps@° Adw* + Qudw} Adw*

! 1
+5Rs 0, 0% N0+ Sv,adw\l/ Aw° + ESW deW}/1 A dW‘{za

2
where
JA  JBs; JBs 4 0A aCy ICy 4
418 PG_BW"_(?WL_(?W“W]’ Qv_aw}’_ v_awL_aw“WI’
(4.18) o Bo, 0B 9Bs  ICy L ac, 9,
010y — aWGl aWGz’ vV,0 — 8WY 8w‘7’ ViV, — 8WY1 8w¥2 .

Now we find the class of 2-form d1), as determined by Theorem 4.5, (b), (4.12). We
get

[(p>1)*dn] = Eo([dn])@® Adwt,

where
d \% (o L
([dn]) SV GWZ dWL (QG+S6\/W2) (0] /\dW .

Substituting the coefficients from (4.18) into E4([dn]), we obtain (4.16).



(c) Differentiating n € Q;W we have

1
dn = EPC,IGZQ)"1 A ®% A dwt

1
+Qy.cdw] A Adwh + 50w v dw\" Adw(> A dw*

1
+—R6,6,0, 0% AN O A 0% + =Sy 6,6,dw] A 0% N 0%

6 2
1
+55 vy.cdw)' Adw) A @ + &S vovsdwit Adw) Adw)?,
where
PG o) = 8Ao-2 . aAGl + aCGlGZ + aCGle Wlil
%2 9w gwo2  gwl owH ’
dAs JBy aDv,c aDV,O' u
Ovo = ow]  Iwo TOet G T M
0B 0B dD oD
(419) QV[ v, — W‘\jzl - aW\‘Z +DV1,V2 _DVQ,V| + av‘;lva aw‘:‘luvz Wlf)
1 1
R _ C6102 C6203 C0'30'1 — DV,G] . DV702 CGIGZ
G19203 7 Jyos T gwor | gwor’ VO gy, gyo owy’
Sy v G:DV27G_DV1,G+DV1V2 Svivey :DV1V2 DV2V3 DV3V1‘
e (9w¥1 8w¥2 owo’ 12 8w¥3 8w¥1 8w¥2

We apply Theorem 4.5, (c), and find the class of 3-form dn. We get
1
[(P™)dn) = SEoroy([dn)) 0% AT Adwh + Fy o([dn]) o} A @7 Adw"

1
+ =Fyv,([dN]) @' A @™ Adw*,

2
where
v 1 d v
EGl 62([‘“7]) = PG] (o} +SV701 W2 + Em Q62701 - Q01702 + (SVGLGI - SV61702)W2
d v
+ W(cho'z +S(5162VW2) )

1
Foo(ldn)) = 5 (Qv.o + Qo+ (Suv.o + Suov)wh)
Fyv, ([dn]) = Qv,v, +SV2V1#W[;-

Substituting back the coefficients from (4.19) into Es,q,([dnN]), Fvc([dn]) and
Fy,v,([dn]), we obtain (4.17). O
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Classes entering higher order order variational sequence. The next theorem de-
scribes the classes of second order variational sequence by means of associated
charts. Classes of 1 and 2-forms are described also for arbitrary finite order.

Theorem 4.7. Let (V,y), v = (yX), be a chart on Y, and let (V"L 3"F), 7™t =
(WL,wo,wf, ws,...,w?), be an associated chart on WrC G'Y.
(a) Letn € Q{W be expressed in the contact basis by

r—1
N =Adw"+ Y BLof +Codw?.
=0
Then the class [n] is an element of QTAW / (:)TFIW defined by
(4.20) [N] = (A+Cow?, | )dw*.
(b) Let n € QEW be expressed in the contact basis by
r—1
n=Y ALo ndw"+B,dw) Ndw"
=0
1 r—1 r—11—-1 .
(4.21) +5 ) Co® N0+ ) Y Gl Aaf
=0 [=15=0

r—1
1
+ Y, Dy odwy A O + 2 Dyyuydw)t Adw)?.
=0

Then the class (0] is an element of Q3™ 'W /@3 'W defined by

(] = Es([n]) @° Adw",

where
4.22)
v d' v rd \
EG([T]]) - lz‘(’)<_1)ld(wl‘)l <AIG _D{/.,O'Wr+1> + (_1> d(WL)r (BG —Dvowr+1) .

(c) Letn € Q%W be expressed in the contact basis by

n = %Acylczco"1 A% Ndw" + A, cof Aw® Adwh + %A{,Mwlvl A@* Adw*
+ Bysdwy A@® Adwh +B%,7deg Aof Adwh+ %Bvlwdw;l Adwy? Ndw*
+ éCc,lc;ma)"1 AO2NO% + %C&m 5,0 N7 A0
+ %C&lvma)l‘“ /\a)f’z/\a)"—%éC\l,l\,mcol"1 Ao A\ o)
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1 1

5 2Dvlv2 o—dw;1 /\alw;2 A ®°
1

+ 6Dv1 vovs AWyt Adwy> Adwy? + D), wedwy A ol Nw°

1

1
+ 2D1/ GlddeZ AN wl ol A w{72 + EDLI\Q GdW;I /\dW;z AN wfy

Dv 0'10'2dW2 A 0)61 A (1)62 +

Then the class [n] is an element of QLW /®IW defined by

] = %Evc([rl]) o' A w° AdwF
1
+Fys([n]) @ Aw® Adwh+ EFVG([n])wZV/\a)G/\de

1
+Gy.s([n]) @Y Aw® Adwh+ EGV"(MD ) A 0% Adw*,

where

1 d
Evo([n]) =Avo + Dyvows — 3wk (Alv,a ~Agy+(Duye—Dpo.y) é‘)
1 d? 1 &3
43 2ty W+ Phoa) =3 g (Bhe ~ By + (Dha = Dha )5 )
1 d
+ Al (Bvo +Dyuvowy),

1
FVJ([T’]):E(A%/G""AGV"’_(DI vc+Dqu) él

d
-
2

d(wk)?
FVG([n]):Aé'v"i_Dl vW3 —|—(ng BG,V)—'—(DMV,G_DIUG,V)WI;

1 d
Tl (Blv,a—Bé,wL(DLvo Dyis.v) é‘)
d? y

_2W(BVG+D/JVGW3)7
L/ 1 u
Gro([]) = =5 (Bl +Bly+ (Do + Dho )W ).

Bv c +BO' v+ (Duv c +Duo v)Wg)

+ (B‘VG+BGV+(DIM+DWV)w§‘))

Gvo([n]) = Bv.c + Duvows -
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(d) Let k> 3. Letn € Q,%W be expressed in the contact basis by
1

n = WAGIGZMkaleI AOZA ... \@%! /\dVVL
1 1 M1 75} vj
+ e 1mAﬂlﬂ2~--ﬂj:GI0'2--~0'k—1—jw1 A ARRRVAY O
SJSK—
AT A®NA ... A @% 1T AdwE
1 v,
+ Z mBW"Z-“VﬁGI 62.,_01(717de¥1 A dW;z N... /\szj
1<j<k—17" :
AT A®A ... A @% 1T AdwE

1 1

D D) B 4
: 1 i 1V2... Vi, U1, 125, 141,01 02... O — 1 — j—|
1<jsk—21<ire - M k=1 = j=1)! ! !

AW AL ANAWY ANOM AL A @) AT AL A @1 AdwE
1 v,
+ Z WDV1V2...Vj,0'10'2,,.0k7jdwgl /\CI‘/V;/2 N... /\dwzj
1<j<kJ J):
ADCTADO A ... N\
1 1

+ Z Z "l'(k— '_l)yDV1V2~-~Vj7.ul7N2:--~7N176162--~Gk—j—1
1<j<k—11<i<k—j /- \K =]

dw;1 /\.../\dw;j /\a)f“ /\.../\a)lv’ A A ...\ @%i-! + contact forms.

Then the class [1) is an element of QW /©W defined by

1
n] = mEcrl 0.0 (M)W AO% A ... A @%1 A dw*

1 1 M
+ — ElW (e AaA... Ao
1<t JHk=1=))! HF2- K 0102+ Okt : : :

AT A% A ... A@%1-i Adw

1 Vi o v V)
+ Z, valV2~~-Vj,(7]62~-~Gk—1—j([n])w21/\wZZ/\"'/\wZJ
2<j<k—1

AT A% A ... A@%1-i Adw
1 1

+ . —Fyvs. v .. o n])
1§j§<—21§l§§1—j]m(k_l_]_l)! Viva..Vj, Ui lp...Hy,0103...0k_1— j—|

0 A ANOY ANOM AL AGM A AL A 0% Adwt,
where

k—1
EG1<’2--~01<—1 ([77]) = AG102-~-Gk—1 + (_1) D#70162-~Gk—1wl;

d 1 k—17p1
- W <A01,6263...0k,| + (_1) DV,G],GzG}..Gk,]Wg)

dZ k—1
3 (301,620'3~-~0'k71 +(=1) DMO'170'20'3-~~GJ<71W’31> alt(610,...0,1),

* d(wth)
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k—2
1 _ 1 1
E,U,Gldz..‘dk_z([n]) - k— 1 (A‘u,(fldz...dk_z +A01,/.102...Gk_2
k—1 1 1
+ (_1) (Dv.,u,crlcz...ck,Q +DV7617,LLGQ...G](,2)W¥

d
- dWL (BN761762~~-01<_2 +BG],,U02...Gk_z

+(—1)k_l (Dvu,olcz..‘ck_z +Dvcl,u02...ck_2)wg>> alt(cl 0)... Gk—Z)?

1 _ 4l k—1p1 v
EN1N270102-~61<73([77]) _AH1H270102~-01¢73 + (_1) DV7M1M2,0102-~01<73W3

k
- (Bm,lizGlu-kas _BH27N101-~GI<—3) + (_1) (DVM,MzGlmkas _DVH27H101~~G/<73)W§7

1
E,ul,llz...,llj,O]O'z...O'k,l,j([n])

_ 4l Ck—lpl v .
_A/.Llyz...,u_,-,ol62...Gk,1,j +( 1) DV“LLLLLZ“.[,L]‘,GIGz...Gk,l,jw?)7 3<j<k-2,

1 ! k—1p1 \%
E,Ulllz--llkq ([n]) _Alllllz--llkq +(=1) DV,#1M2~--Mk71W3
d 1 k—1p1
dwl <BIJ1,H2--~V1<71 +(=1) DV”I:HZ--#IHIW;) alt(lifiz - - Me—1),
FMle-n,ujm0'2~~-Gk—1__,'([n])
= BV1V2~-~Vj70'10'2-~~0'k—1—j + (_1)kilDuVIV2...Vj,610'2...0'k,1,jwél7 2 S .] S k — 17

k—2

1 1

Fv,uluz...uk_z([n]) = m (Bv,uluz...uk_z ""BIJhVIJz..,uk,2

+ (—l)k_l (Dé'v,uluz‘..uk,z +D<17u1,vu2..luk,2> W?) alt(.uI,UZ cee ,le_z),

1
V1V2...Vj,p,1[12...,ul,6162...0']{,1,]‘,1([n])
_ pl _1\k—1pl T
- BVlV2-~~Vj7ﬂl”2-~-ﬂl7o'l02-~~Gk—l—j—l + ( 1) DTVIV2~--Vj7/41/-12~-~l"176162~--Gk717j71w3’

1<j<k—=2,1<I<k-3.

Proof. Factorizing by contact forms in sense of (4.5) we obtain the classes in a rou-
tine way.
(a) The result follows from (p"*!7)*n = (A+Cow?, | )dwt +Y BLof +Con?.
(b) Using dw? = 0f +w?, dw" and dof = —of  Adw", 1=0,1,...,r—1,in
chart expression (4.21) of 2-form 1 we get
r—1
(™) = (Ag — Dy owyy )07 Adwh = Y (AG =Dy gwy, )daf
I=1

— (Bo +Doyw);)day

up to contact forms. But from —fdw = df A @ — d(fw) for arbitrary function f,
applied to AL, — D!, sw, | and Bs +Dgyw). |, we obtain

d
(pr+27r)*n _ (AG _DV,GW:’/—FI — W(Aé _D%/,O'WI"/—FI)) ®° Adwh

r—1
d ! d
+) W(Aa =Dy ow/11)dof 5 + W(Bc —Dyowy;1)do7,
=2
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up to contact forms. Taking now for f the derivatives of functions AL — Dl‘,vcw)’ 1

and B + Dgywy, |, we obtain after r — 1 steps the pull-back (pZ 1y n of 1, as
required.

The proofs of assertions (c) and (d) are routine and follows from the previous
analysis of contact forms. 0

Now we analyze the quotient mappings (4.8) in second order variational se-
quence which are related to basic variational concepts as we shall see later; namely
the mappings E : QuW — QW /W, E : QW /O'W — QLW /OLW, and E :
QEW / (:)SW — fng / @gW; the first two mappings are determined also for arbitrary
finite order.

Theorem 4.8. Let (V,y), y = (yX), be a chart on Y, and let (V"E, g"b), 7™t =
(whw® we wg, ... .w?), be an associated chart on W™ C G'Y.

() If f € LW, then E(f) = (df /dw!)dwt.
(b) Let n € QEW be expressed in the contact basis by

r—1
N =Adw"+ Y BLof +Codw?.
=0

Then
(4.23) E([n)) = Ec([dn]) @ Adw*,
where
JdA  JC
Es(ldn]) = 0 +ﬁ“’¥+1

r d! dA dC dtic
IRV vV _oy vl o
+1:21( 1) d(WL)l (awff + aW?_ WH—I) +( 1) d(WL)r—H :

(c) Letn € Q%W be expressed in the contact basis by
N =Ac0° Adwk + AL o) Adw* + Bydwy A dw*

1 1
+5Co10,0” A 0% + Ed1 O A0 +C 0 Aw®

1
+Dy gdwy A@° + Dy, dwy Aoy + EDvledwgl Adws?.

Then

E(n]) = Evo(ldm)) @ 7 07 Adv*

1
(4.24) +Fys([dn]) @ Aw® Adwh+ EFVG([dn]) o) A @° Ndwh

1
+Gy.o([dn]) o) Ao Ndw" + 5 Gvo([dn)) o) A° Adw",
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where

s A, <8Du,v_8Du7G) W 1 d (8AG A,

EVG([dn]) - IwV - WO owo owY W3 — EdWL &WY o awif
aAé. B 0A) n oDy _ oDy 6 i aDL,v B aD}uo W
owv  ow° ow? owy owe owV 3

L1 oy oy dDyy  ID) o L
2d(wk)? \ owy 9wl owg owy 3
1 & (9A; A, IBs; 9By  (IDyy IDys o

4dwk)3 \owy dwg  Iw) Iwf ows  ow) ) 3

aD! aD!
D -D Hyv u,o M
Do ‘”H( wg  owy )"

1 d* (dBs 9B, 1 | dDyy  IDus\ y
T ) (awg “awg T2 Pro Do)t ( e owy ) W3>
1 &
+ Ed(wL)S (Dvo)>
_1[(0As 0A, O0AL JA, [(IDus  OIDpuy
Frolldn)) =3 (awy owg dwY  aw® \ Jdw}) = ow?
. oDy, N oD}, ) - d 8A3 8A(\; _(9Bs 9By
owo owY dwt 8w2 awz owY  owo
. aD’u?v aD”7G . aDuG . 8D“v W'u
8wg 8w§ awY owo 3

N d*> (0Ag  0A, (9dBs 9By N Dy N dDys
d(wk)?> \ owy = dw§ owy  Iwf owy  Iwy
D, 9D, d
g a:;) W3 Gty Pro +D:”V)> |
_ [J0As; OJAy oAl 0AL dBs OBy
Fro(ldn]) = (awg B a_wg) (awf “owy ) T 9w T awe
<8D,W  dDys  IDuy IDys  IDis aD}W) "

owo owY owg owy owy B ow?

w3

L1d JdAL OJA, 0Bs 9By, [dDuy 9dDyus
2 dwl owy odwg  dw] Iw] ows owy
oD! oD} 3 d d
u,v uo u 1 1
+ WS owt ) W3> + EW(DV,G —Dq v — W(Dm —Dg )

L, & (&BG an+(30Nv apw) u)_zd(ds

A2 \awy awg T\ aws  awy )3 wiys (Pva):
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1 oA}, aAg_ dBs OB,
2\ow§  Iwy owy = owy

(aD“v ODyo 8D}”F 8D}W

Gy o(ldn]) = - ) - (Dyo+ Do)

d
) u 1 1
— — +——(pl 1D
ows owy owy owg ) s de( Ve G’V)> ’

JdBs JB oD oD d
Guolldn) = G = 504D} g = Db+ (G~ T4 )k S (Do)

Proof. Analogously to the proof of Theorem 4.6, all the classes can be determined
by direct computation. U

Remark 12. We remark that in the previous theorem, for example the class [dn] =
E([n]) of n € Q3W can be described in a different basis, and on a different prolon-
gation of a manifold. Namely,

E() = 3o ([dn)) 0 h o ndv*

1
(4.25) +Fy o ([dn]) o) Ao Adw" + 5Fv’(,([dn]) o) Aof Adw*

+ Gl (M) @) A OF Adwh+ 3 Glg([d)) @) A0S Ad:
please compare with (4.24). The reason why to prefer some class of a form and
why another not lies in the fact that classes of forms need not to be well-defined
forms. This circumstance is even more apparent in the case of fibred manifolds; in
Grassmann fibrations, in general, the classes do not define forms. Roughly speak-
ing, we prefer such classes witch correspond to the variational objects, known from
the local theory. This fact suggests to study invariance of classes with respect to
isomorphisms of underlying manifolds.

In Theorem 4.6 we deal with the quotient mappings E, defined in Sect. 4.3 by
(4.8). Now we wish to characterize the mappings E : QW /@IW — QW /OIW
and E : QW /OIW — Q3W /O3W in a different way.

Although the classes (4.11) and (4.12) are defined in an abstract way in the vari-
ational sequence theory, they are closely related to the variational theory on Grass-
mann fibrations (cf. Sect. 5). This is the motivation for the terminology, we now
introduce.

Let (V,y), w = (yX), be a fixed chart on Y. Consider a 1-form p € QlW, ex-
pressed in the contact basis by ) = Adw’ + B @° +Csdw?, and define a Lagrange
function %1 : V> — R by

(4.26) L =A+Cow§.
The corresponding Euler-Lagrange expressions &5(.%47) : V3F — R are of the form

0%, d 4 > 04
owo  dwhk ow?  d(wh)? ows

(4.27) Eo(LL) =

Then by Theorem 4.5 we have [n] = £ dw*.
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Leta I-form 1 € Q)W be expressed in the contact basis by Adw’ + er;(]) BLoP +
Csdw?. We define a Lagrange function for n, %7 : V1. = R, by

(4.28) L =A+Cow? |,

and the corresponding Euler-Lagrange expressions &5 (%1) : V211 — R are of
the form

0.4 d 0%

Letn € fléW be a 2-form, expressed in the contact basis by
N =As0° A aw* + Bsdw§{ A dw"

1 1
+ EC"V(OG A®@" + Dy gdw A ©° + ED"VdW? AdwY,

and we set

d
(4‘.30) 86 - AG - Dv,gwg - W (BG —I—ngwg) 5

the class of 1 (cf. Theorem 4.5, (4.12)). Then the Helmholtz expressions, defined
by &5, are given by

431)
Je Jde
3 _ Y% | Yv
%v(SK) - awéf awg’
des dey 3 d (de;  de
2 _Jfc Z%v 2 .~ =
Hov(Ex) = owy dw§  2dwt <‘9W§ 8w§’) ,

| _1[(des dey  d (des | ey
Hov(ex) =3 (awy o T ant \awy Tang ) )
des dey 1 d <8£G dey 1 d? ((986 dey >)

0 . N - _ _ _
%V(SK)_(?WV owe  2dwh \dw{ oJw] 2d(wh)>\dw} Iwg

Letn € QEW be a 2-form, expressed in the contact basis by

r—1 r—1
1
=Y A0 Adw"+Bydw] Adw'+ 2 Y Cop,07 N0
=0 =0

r—11—1 r—1 1
+Y Y o) Aol + Y D, gdw! AP + 5 Dvivadw)t Adw)?.
I=1s=0 [=0

and we set
(4.32)
r—1 1
d
_ ) [ ) \% \%
o = E)(_l) d(wh)! (AG _Dv,oWr+1> + (_l)rd(WL)r (Bc —Dchr+1) ;
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the class of 1) (cf. Theorem 4.7, (4.22)). Then for r = 2 the Helmholtz expressions,
defined by &4, are given by

(4.33)
o€ de
Ao (&) =5 5+ 58
5 5
des  dey 5 d [(des  de
4 %0 Z=v - T — =
Hov(en) = 50v ~ aug 2de(c9w§ 9W§’)’

3 1 des  dgy ., d des  dgy
Hov (&) = 2\ Iwy + owg 2de owy + owsg))’
_des dey 3 d (des  dey 5 d3 des  dey
Cowy  ow§  2dwl \ow)y owg 2d(whk)3 \owY dw? )’

| 1 (des  dey d [(des  dey a3 des  dey
Hov (&) =3\ 50 T 508~ \awt " awe ) T amiy \awy “awe ) )
_Jdes  dey 1 d (des  dey +1 d3 des  dey
CowY dwo 24wl \ow] ow? 4d(wk)3 \owy  owg

1 & des  dey
2d(wk)> \owY odw?
One can see that Euler-Lagrange expressions (4.27) and (4.29) and Helmholtz

expressions (4.31) and (4.33) coincide with the coefficients of classes (4.16), (4.23),
(4.17) and (4.24), respectively. The following result is important for applications.

r%/ﬂcrzv(gK)

r}fé)v(gK)

Theorem 4.9. Let (V,y), v = (yX), be a chart on Y, let (V£ j'1), 7't =
(W ow®, we wg, ... .wP), be an associated chart on W™ C G'Y.

(a) Let n € Q{W be expressed in the contact basis by Adw" -I-er;é Bldcof +
Cosdw?. Then

E([n)) = Eo([dn]) &° ndw",
where
Es(ldn]) = &6(£1),
and £, is defined by (4.28), resp. (4.26) forr = 1.
(b) Let n € Q%W be expressed in the contact basis by
N = Ac@° Adw* + Bedw§ Adw"

1 1
+ Ecavw" A @Y+ Dy gdw{ A0 + EDGvdW? Adwy.

Then

E([n]) = %EGV([dn]) 0% A ¥ AdwE + Fy o ([dn]) o) A o® Adwh

1
+ EFVG([dn]) @) A @% Ndw*,
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where
Eys([dn]) :jﬁ?v(g,c), Fy o ([dn]) :=%ﬂcylv(£1<>7
Fyo(ldn)) = 5, (&), A5, (ex) =0,

are the Helmholtz expressions (4.31) and € is defined by (4.30).
(c) Letn € Q%W be expressed in the contact basis by

N =As0° Adwk + Al o AdwE + Bydwy A dwF

1 1
+ ECC;K;Z(:)"l A% 4 ECél O A0 +C 0 Aw®

1
+Dy gdwy A@° + Dy, dwy Aoy + EDvledw;1 Adw?.

Then
E()) = 3 Evo(dn]) 0" A 0° Adw*
+Fv76([dn])a)lv/\a)"/\de+%Fvc([dn])wz"/\w"/\de
+GV7G([dn])w3"/\w"/\de+%Gvc([dn])wXAw"/\de,
where

Eys([dn]) = %ﬂc?v(sk)’ Fyo([dn]) = «%%lv(&c% Fyo([dn]) %ﬂczv(gk)a
Gys([dn]) = =%%3v(81<)7 Gyo([dn]) = %ﬂc?v(sk), %?V(SK) =0,
are the Helmholtz expressions (4.33) and € is defined by (4.32).

Proof. The proof follows from Theorems 4.6, 4.8 and is routine. O

The following theorem describes the transformation properties of coefficients of
quotient mappings in first order variational sequence.

Theorem 4.10. Let (V'L 7V5) and (UM ' M) be associated charts on W' such
that VIENT'M £ 0, where g1 = (wh,wo, w9), oM = (WM Y wY).
_@Ifne QlW, and its class [n) € Q3W /@3W is expressed by [n] = £ dw* =
L dwM, then "
_ dw
(b) If n € QIW, and if [n] € Q3W /O3W is expressed by

[n] = Eo([n]) @° ndw" = Ey([p]) @ A",

then
il ow’ oW dwM
Eo(ln) = ¥, Bu(ln) (G~ g ) -
V#EM

Proof. Both results (a), (b) are immediate consequences of coordinate transforma-
tions on G'Y. [l
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Remark 13. Theorem 4.10 shows that in the Grassmann fibrations the transforma-
tion properties of local expressions for classes are completely different as in the
fibred case. In particular, the Euler-Lagrange class and the Helmholtz class can-
not be described by a differential form on some suitable higher order Grassmann
fibration.
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5. APPLICATIONS: THE CALCULUS OF VARIATIONS

5.1. Variational functionals. Suppose we have a 1-form 7 on Inm7''Y. Let I be
an open interval, and let y: I — Y be an immersion. Any compact subinterval K of
I defines the variational integral, associated with 1,

5.1) me(r) = [ (T'y'n.

Lemma 5.1. Let y: I — Y be an immersion, J an open interval, and 1L : J — I an
isomorphism. The following conditions are equivalent:

(a) For any two compact intervals L C J and K C I such that u(L) = K,
Mk (¥) = Ne(you).
(b) n satisfies
(5.2) (T'y)n = (™ )'T! (you)n.

Proof. We show that (a) implies (b). We transform the variational integral 1z (yo 1)
by means of the change of variables formula. We have

me(yom) = [ (W) (T (yom)) .
If Nk () = ne(you), then

J@yyn= [ @) T em) .

K K

Since this equality is satisfied for all K, we have the condition (5.2).
The converse is obvious. U

Condition (5.2), called the invariance condition, expresses independence of the
variational integral (5.1) on parametrization. We say that the 1-form 1 and the
immersion Y satisfy the invariance condition, if condition (5.2) holds for all diffeo-
morphisms U.

Let ¥ e denote the diffeomorphism J3¢§ — J{C ol of T'Y.

Lemma 5.2. Let y: 1 — Y be an immersion. The following conditions are equiva-
lent:

(a) n satisfies the invariance condition for all diffeomorphisms | : J — 1.
(b) Forall Jla € L!

1 1
T'yn=T }fk‘Pjéa*n.
Proof. This is just a restatement of Lemma 5.1. 0

If the invariance condition is satisfied, we denote
(5.3) Q= y(K).

Then the number 1Nk (y) depends only on the segment Q, and we sometimes denote

me(@) = [ (17,
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For every compact interval K C [ the variational integral (5.1) defines the varia-
tional functional, associated with 1,

(5.4) CRY 27— nk(y) = /K(TW)*n €R,

where CZY is the set of immersions y: K — Y of class C2.

As before, let W be an open setin Y, and let y: I — Y be an immersion. By the
Grassmann prolongation of y of order r we mean the curve [T”y] in the Grassmann
fibration G'Y, defined by

[T7y](2) = T"y(2).
Let 1 be expressed in a chart (V, y), w = (yX), by
N = Ardw" +Ac@® + Brdw" + Bodw,

and let y: I — Y be an immersion of an open interval / C R into Y such that y(1) C V
and T'y(I) C VF for some index L. One can easily determine the chart expression
for the 1-form T'y*n. We get
D*(w'y)
T'y'n=((ALoT'y)+ (BLoT y)— 1=
7= (o4 BoTn g T
D*(wey)D(wty) =D y)D*(wry) | 1
wh.
D(why)?

+(BsoT'y)

Introducing the Lagrange function £ by

)
L =Ar —|—BGW(27 +BL_—L,
w

we can also write
(5.5) T'y'n = (L o T?y)dw".
Lemma 5.3. n satisfies the invariance condition if and only if
BL=0, Ap=A;(w'wow¥), Bs=Bs(wk,w w?).
If i satisfies the invariance condition, then 7 is projectable onto G'Y; the varia-

tional integral (5.4) depends only on the Grassmann prolongation [T'y]. Denoting
the projection of 1 by the same letter, we can write

(5.6) me(@) = [ [,

From now on we suppose that the 1-form 1 satisfies the invariance condition. In
this case
(5.7 L =Ar —l—ngg,

where Ay, = Ap(WE,wo W), B = Bg(wE,w®,w). The integral (5.6) can be writ-
ten as

(5.8) Nk (Q) = /K (L 0 T2y)dwt.

Formula (5.7) shows that .7 coincides with the class of 7 in the variational se-
quence (Theorem 4.5, (a)).
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5.2. The Euler-Lagrange equations. Let 1 be a 1-form, satisfying the invariance
condition (5.2), and let .Z;, (5.7) be the corresponding Lagrange function. In this
case we can regard the functions w”, w®, w?,wg as coordinates on G?Y (previously
denoted by WL,W",WT,WE’ ). From (5.8) it now follows that the extremals of the
variational functional ng are determined by the Euler-Lagrange expressions

04, d 0% d* 04
59 Es (L) = — .
(59) o(Z1) owo  dwk ow? * d(wh)? w§
Note that the 1st order form 1 defines a 2nd order Lagrangian and, from (5.7), 3rd

order Euler-Lagrange expressions (5.9). Thus, the extremals satisfy the system of
the 3rd order differential equations & (.%;) o T3y = 0 for a curve 7.

The Euler-Lagrange expressions define a 2-form on V3£,
(5.10) & = E5( L) 0% Ndwr.

In the variational problems on fibred manifolds, (5.10) is a global 2-form on the
corresponding jet space. On the Grassmann fibration G?Y, the expressions &5 (-27)
do not define a global 2-form; instead, we have a class as expressed in the variational
sequence theory in Sect. 4.4.

In particular, this observation illustrates the differences in the geometric struc-
tures of variational principles on fibred manifolds and Grassmann fibrations.

5.3. The Helmholtz equations. We are now interested in the variationality of the
expressions

L
(5.11) € = ec(wh,w¥ wi, wy, wy).

The basic local theory is well known. It was discovered by direct calculation that

the system of functions &g is variational if and only if the Helmholtz expressions

(4.31) vanish identically,

des  dey 0

owy  owg 7

des dey, 3 d [des dgy

owy owg  2dwl \ow) oIwg

Je de d (Jde de

St =t (e 5eg ) =0

wl  owy dwl \dw) Iw§

dec dey 1 d (deg dey 1 d* [des  dey \\ 0
owv  Iw®  2dwk \ow}) Iw§ 2d(wb)2\owy owg))

Originally, these expressions were discovered for functions € of the form &; =

&s(t,4",4",¢") by Helmholtz.

In this work we derived (5.12) from the variational sequence theory, and we gen-
eralized the results to second order variational sequence. In particular, the observa-
tion that the mapping assigning to the expressions &5 (5.11) the Helmholtz expres-
sions (5.12) is a part of the variational sequence (see Sect. 4.3, (4.7), and Sect. 4.4,
Theorem 4.9, (b), and higher order analogues), allows us to discuss the concept of
global variationality by the same way as in the fibred case (Krupka [27]).

=0,
(5.12)
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The variational sequence theory allows us to assign to an arbitrary 2-form p de-
fined on Inm T'Y its class [p] in the quotient Q}/@}. The factorization defines an
expression for [p] explicitly. If p is of the form dn for some 1-form 1 on ImmT''Y,
whose class is [n] = .2 dw", then the class [dp] is uniquely determined by the
functions (5.12). For the second order, compare with (4.33).

Thus, the variationality problem for differential equations on Grassmann fibra-
tions is locally described in adapted formulas similarly as in the fibred case. Differ-
ences arise in the structure of classes, see Remark 13.

The existence of the interpretation of the Helmholtz mapping as one arrow of an
exact sequence allows us to understand differences between local and global aspects
of the inverse variational problem for submanifolds; the differences are character-
ized by the cohomology of the manifold G'Y .
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