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Katedra aplikované matematiky
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k = md, kde m ≥ 2, tzv. Hillovy simplexy.
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Chapter 1

Introduction

In this thesis we continue with the research of tetrahedral reptiles, which was initi-
ated in my bachelor thesis.

In this chapter we introduce the problem of simplicial reptiles, and we describe
its history and known results. At the end we present the results obtained in this
thesis.

1.1 History and motivation

We start with brief history of reptiles and related areas.
A reptile is a geometric figure such that copies (replicas) of the figure fit together

to form a larger similar figure. For example, it is easy to see that four congruent
squares fit together to form another square. It may look as a funny play for children,
on the other hand, by repeating this replicating process infinitely many times with
still larger squares, we can tile the plane, and tiling the plane has many interesting
applications.

What happens if we want to tile the space? This is a fascinating question and one
of the oldest geometric problems. It has a rich history. We restrict ourselves to tiling
the space by congruent polyhedra. Which polyhedra can tile the space? This question
arose first in ancient times in relation to Plato. Aristotle incorrectly thought that
not only the cube but also the regular tetrahedron could fill space. Aristotle had big
influence and authority, so when many of his later followers realized that something
was wrong, they assumed that somehow they must be mistaken. Later they asked
themselves which tetrahedra do actually tile space. Many of methods developed by
these scholars are still used today in the study of space-tiling polyhedra. The early
history of the space-tiling problem was discussed in detail by Struik in 1925 [1].
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Figure 1.1: The Menger sponge

The tiling problem arose from nature, because natural structures in their ideal
forms provide physical models of mathematical concepts. The space-filling model also
provides useful interpretations of crystal structures, thus the problem is a subject
of research by crystallographers as well as by mathematicians. We could mention
M. J. M. Hill and E. S. Fedorov. Hill worked on determining which tetrahedra
are congruent by dissection to cubes. He is also known for his achievement in the
field of crystallography. From his work we know that a space-tiling tetrahedron is
congruent by dissection to a cube [8]. Fedorov, a great Russian crystallographer and
geometer, proved that the convex parallelohedra (convex polyhedra that could tile
space with only translations) can be classified into five types: the cube, the hexagonal
prism, a dodecahedron with eight rhombic and four hexagonal faces, the rhombic
dodecahedron, and the truncated octahedron. A simplified proof of this theorem can
be found in [2].

The crystallography and the reptiles are also closely associated with fractals. In
fact, many fractals are constructed to be reptiles. Probably the simplest example in
three dimension is the Menger sponge, a generalization of the Sierpinski carpet. See
Figure 1.1 – it is taken from [21].

The space-filling is connected with Hilbert’s problems, namely with the first
part of 18th problem, which asks, whether there exists a polyhedron that tiles the 3-
dimensional Euclidean space but does not admit an isohedral (tile-transitive) tiling.
The first such tile in three dimensions was found by Karl Reinhardt in 1928. The
second part of Hilbert’s 18th problem is about densest sphere packing, also known
as Kepler’s conjecture.

Many people were fascinated by space-tiling polyhedra, among others Goldberg,
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Grünbaum, Shephard, Wells and Conway.
The first systematic study of space-tiling tetrahedra was made by D.M.Y. Som-

merville. The immediate inspiration for his study of tetrahedra was an error made
by a student. Sommerville wrote, “In the answer to the book-work question, set in a
recent examination to investigate the volume of a pyramid, one candidate state that
the three tetrahedra into which a triangular prism can be divided are congruent,
instead of only equal in volume. It was an interesting question to determine the
conditions in order that the three tetrahedra should be congruent, and this led to
the wider problem – to determine what tetrahedra can fill up space by repetitions.”
[3].

Sommerville [4] discovered a list of exactly four tilings (up to isometry and re-
scaling), but he assumed that all tiles are properly congruent (i.e., congruent by an
orientation-preserving isometry) and meet face-to-face. The gap at the end of his
proof was patched by Edmonds [5] in 2007. In the non-proper and non face-to-face
situations there are infinite families of non-similar tetrahedral tilers [9].

Many other famous people were interested in tetrahedra-tiling, for example H.S.M.
Coxeter, H.L. Davies, L. Baumgartner, M.Goldberg and E. Koch.

More about the history of space-filling questions can be found in the paper of
Senechal [10].

For additional information about reptiles and their connection to tiling, see
Golomb [6], Gardner [7], Gelbrich [15] and Bandt [14].

In recent years the subject of tilings has received a certain impulse from com-
puter graphics and other computer applications. In fact, our main motivation for
studying simplices that are k-reptiles comes from a paper by Adler [11] on proba-
bilistic marking of Internet packets. Matoušek says [13] that from this point of view,
it would be interesting to find a d-dimensional simplex that is a k-reptile with k as
small as possible.

In this thesis we will focus our attention on tetrahedra which can be reptiles. We
will prove that tetrahedron can be a k-reptile only for k of the form m3.

The thesis is organised as follows: In the rest of this chapter we present known
results about simplices that are reptiles, and at the end we introduce our contribution
to this problem and state our conjecture. Chapter 2 is devoted to theorems which will
be useful for our proof. Namely, the first part will be about scissor congruence and
connection with Hilbert 3rd problem, the second part will be about the geometry of
a tetrahedron, and in the third part we focus on theory of angles that are rational
multiples of π. In Chapter 3 we will present the proof of the theorem mentioned
above, i.e., a necessary condition for k such that there exists a tetrahedron that is
a k-reptile.
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1.2 Formulation of the problem

Recall that a d-dimensional simplex is the convex hull of (d+1) affinely independent
points in Rd.

Definition 1. A d-dimensional simplex S is called a k-reptile if there exist d-
simplices S1, S2, . . . , Sk with disjoint interiors and with S = S1 ∪ S2 ∪ . . . ∪ Sk that
are all mutually congruent and similar to S.

This definition prompts a question:

Question 2. For what k and d there exist d-dimensional simplicial k-reptiles?

1.3 Known results

For d = 2 the question was completely solved by Snover, Waiveris and Williams [16]:

Theorem 3. The triangle S is a k-reptile if and only if:

(a) k = m2 (m ≥ 2 and S is an arbitrary triangle) or

(b) k = 3m2 (m ≥ 1 and S is a right triangle with angles π
3

and π
6
) or

(c) k = m2 + l2 (m, l ≥ 2 and S is a right triangle whose two shorter sides have
ratio k : l).

(a) k = m2 (b) k = 3m2 (c) k = m2 + l2

Figure 1.2: Triangular k-reptiles in plane

This statement says (in case (a)) that each triangle is a k2-reptile. The corre-
sponding dissection is called standard [12]: We divide each side of the triangle by
k − 1 points into k parts of equal length. Then dissect S by straight lines through
these points parallel to the sides of S.

One can think that the standard dissection of a triangle into four smaller tri-
angles can be generalized to a dissection of tetrahedron, but the situation is more
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complicated, because when we cut off the corners of tetrahedron we obtain an octa-
hedron, which can almost never be tiled by congruent tetrahedra. It is known that
the standard tiling exists only if the original tetrahedron is a Hill tetrahedron.

Definition 4. A d-dimensional Hill simplex is the convex hull of the vectors 0, b1, b1+
b2, . . . , b1 + . . . + bd, where b1, . . . , bd are vectors of equal length such that the angle
between any two of them is the same and lies in the interval (0, 2π

3
) (see [13]).

In Figure 1.3 there is the decomposition of a Hill tetrahedron with (b1, b2, b3) =
(e1, e2, e3) the standard orthonormal basis, into 8 congruent pieces.

e2

e1

e3

Figure 1.3: A Hill tetrahedron is an 8-reptile

Hertel proved in [12] that a 3-dimensional simplex S is a k3-reptile using the stan-
dard dissection if and only if S is a Hill simplex. He conjectures that Hill simplices
are the only 3-dimensional simplicial reptiles.

Another partial result was obtained by Matoušek [13]: For d ≥ 3 no d-dimensional
simplex is a 2-reptile. He also mentioned the possibility of trying to prove nonexis-
tence of simplicial m-reptiles for m < 2d.

Finally, in my bachelor thesis I showed that no 3-dimensional tetrahedron can
be a 3-reptile.

1.4 Goals of this thesis

In this thesis we continue with studying 3-dimensional simplicial k-reptiles. The
main result of this thesis is the following theorem:

Theorem 5. A 3-dimensional simplex (tetrahedron) can be a k-reptile only for k of
the form m3 for some positive integer m.

This partially confirms the Hertel’s conjecture (the only tetrahedral k-reptiles
are the Hill tetrahedra).
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Consequence 6. There is no 3-dimensional tetrahedral k-reptile for k < 8. Thus
the smallest k for which there can exist a tetrahedral k-reptile is 8. And such a
tetrahedron really exists – at least the Hill one.

Furthermore, we wonder whether k = md is a necessary condition for existence
of simplicial d-dimensional k-reptiles.

Conjecture 7. A d-dimensional simplex can be a k-reptile only for k of the form
md for some positive integer m (d > 3).

If there is an affirmative answer, we will know that the least k for which there
exist simplices that are k-reptiles is 2d.
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Chapter 2

Preliminaries

In this chapter we present statements, which will be useful later for proving our
main theorem. First we focus on polytopes and the scissor congruence—this gives
a connection between rectifiable polytopes and tetrahedral reptiles. Then we focus
on the geometry of a tetrahedron, and the last part will be devoted to properties of
rational angles.

2.1 The scissor congruence

Here we introduce the notions and definitions related to Hilbert’s third problem.
See, Pak’s book [17], chapters 15–16 for more background, or Sah’s book [18] entirely
devoted to this topic.

Hilbert’s 3rd problem was the first in Hilbert’s famous problem list to be solved.
It is related to the following question: Given any two polyhedra of equal volume, can
the first one be cut into finitely many polyhedral pieces so that they can be reassem-
bled to form the second one? It was known that for planar polygons it is true – this
is the well-known Bolyai-Gerwien theorem. Hilbert expected the negative answer for
the three dimensional version of the problem, which was confirmed within a year by
his student Max Dehn giving a counterexample [19], [20].
Recall that a convex polytope is the convex hull of a finite set of points. A con-
vex polyhedron is a 3-dimensional convex polytope. General polytopes are defined
as finite unions of convex polytopes. Two polytopes P,Q ∈ R3 are scissor con-
gruent if P can be cut into finitely many smaller polytopes which can be rear-
ranged and assembled into Q. Thus the Hilbert third problem can be reformu-
lated: Are two polytopes of the same volume always scissor congruent? Dehn showed
that a regular tetrahedron is not scissor congruent to a cube of the same volume.
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It leads to the following definitions:
We say that a polytope in R3 is rectifiable if it is scissor congruent to a cube of

equal volume, and a polytope P ∈ R3 is called self-similar if it is scissor congruent
to a disjoint union of two or more polytopes similar to P .

By a dihedral angle of a polytope (also called the face angle) we mean the internal
angle at which two adjacent faces meet.

A polytope P in R3 is fortunate if π can be written as a positive rational com-
bination of its dihedral angles βi:

c1β1 + · · ·+ cmβm = π, ci > 0, ci ∈ Q and i = 1, . . . , m,

where m is number of edges in P . Otherwise, P is unfortunate.
Note that each rational coefficient in previous definition is strictly greater than

zero.

The Bricard condition says that an unfortunate polytope in R3 is not scissor
congruent to a cube.

Dehn’s counterexample immediately follows from this condition. It is not hard to
show that the regular tetrahedron is an unfortunate polytope. Indeed, the Bricard
condition is a very special consequence of the Dehn’s invariants, which are global
invariants involving dihedral angles and edge lengths.

Sydler’s criterion states that a polytope P ⊂ R3 is rectifiable if and only if P is
self-similar.

If we turn back to tetrahedral reptiles, we can conclude:

Lemma 8. Let tetrahedron S be a k-reptile. Then the positive rational combination
of dihedral angles of S equals π.

Proof. Since the k-reptile tetrahedron S is a self-similar polytope in R3, it is rctifiable
due to Sydler’s criterion S. According to the Bricard condition S is fortunate and
the lemma follows.

2.2 The geometry of a tetrahedron

In this section we show some necessary conditions for the existence of a tetrahedron
of given properties.

The next observation is well-known; it can be found for example in [5].
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Observation 9. The three dihedral angles at any vertex of a tetrahedron have sum
greater than π.

Proof. The intersection of a tetrahedron with a small sphere (unit for convenience)
centered at a vertex yields a spherical triangle whose angles are the dihedral angles
centered at that vertex. The surface area of the spherical triangle is the sum of its
angles minus π and thus dihedral angles add up to more than π.

There are two useful statements about simplices by Fiedler, which can be found
in [22]. Before stating them we define some notation. Given a simplex S with vertices
vi (i = 1, . . . , d+ 1), we will use the notation Fi for the facet opposite to vi and ϕij

for the dihedral angle formed by the facets Fi, Fj.

Theorem 10. (Fiedler) Let ϕij (i, j = 1, . . . , d + 1) be the dihedral angles of a
d-dimensional simplex. Then the matrix

A =











−1 cosϕ1,2 . . . cosϕ1,d+1

cosϕ2,1 −1 . . . cosϕ2,d+1
...

. . .
...

cosϕd+1,1 . . . . . . −1











satisfies the following conditions:

• A is negative semidefinite of rank d.

• The kernel of A is one-dimensional and it is generated by a vector with strictly
positive coordinates, i.e. there exists a vector w, wT = (w1, . . . , wd+1), such that
wi > 0 for i = 1, 2, . . . , d+ 1 and Aw = 0.

The proof can be found in Fiedler’s book [22], chapter 4.
Now we prove a straightforward but useful lemma:

Lemma 11. Let A be a matrix as above. Let vector v be a linear combination of
rows of A such that only two coordinates of v are nonzero. Then the values at these
coordinates must have the opposite signs.

Proof. Let v = a1v1 + · · ·+ anvn, where vi are rows of A and ai ∈ Z, i = 1, 2, . . . , n,
n ≤ d+ 1. Suppose that w is an arbitrary nonzero vector from the kernel K of the
matrix A. Thus vi · wT = 0, i = 1, 2, . . . , n, so v · wT = 0. Since the vector w has
strictly positive coordinates (by the Fiedler theorem) and the vector v has only two
nonzero coordinates (by the assumption), we get that these coordinates must have
the opposite signs (otherwise, w has coordinates with opposite signs or zeros).
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The second statement by Fiedler is:

Theorem 12. If two simplices in Rd coincide with length of one edge and in the
values of

(

d+1
2

)

− 1 corresponding dihedral angles, then they are congruent.

The proof can be found in Fiedler’s book [22].

2.3 Rational angles

By a rational angle we mean an angle that is a rational multiple of π, i.e., it can
be written in the form qπ, where q ∈ Q. Here we investigate which values can be
obtained from the cosine function at rational angles.

A quadratic irrationality is an irrational number that is a solution to some
quadratic equation with rational coefficients. Since we can get rid of fractions from a
quadratic equation by multiplying both sides by their common denominator, this is
the same as saying that quadratic irrationality is an irrational root of some quadratic
polynomial with integer coefficients. Therefore, quadratic irrationalities are all those
numbers that can be expressed in the form a+b

√
c

d
for integers a, b, c, d with b and

d nonzero and with c > 1 and square-free. Analogously we can define cubic and
quartic irrationality as an irrational solution of some cubic and quartic equation
with integer coefficients, respectively.

The following statement by Jahnel is from [23]:

Theorem 13. (Jahnel) Let α = m
n
· 2π be a rational angle. Assume that m,n ∈ Z,

n 6= 0 have no common factors. Then

1. cosα is a rational number if and only if ϕ(n) ≤ 2, i.e. for n = 2, 3, 4, and 6;

2. cosα is an algebraic number of degree d > 1 if and only if ϕ(n) = 2d.

Here ϕ means Euler’s totient function.

Recall that Euler’s totient function ϕ(n) is defined to be the number of integers
{1, 2, . . . , n} that are coprime to n. The integers m,n are coprime if they have no
prime factors in common, i.e., gcd(m,n) = 1, where gcd denotes the greatest com-
mon divisor of m and n. It is easy to see that ϕ(1) = 1 and ϕ(p) = p−1 for p prime.

We will present a proof of the Jahnel theorem, because it is a nice illustration of
cyclotomic fields. Furthermore, we explain it in more detail than it is in the paper
[23].
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Proof. A cyclotomic field Q(ζ) is a field obtained by adjoining a complex primitive
root of unity ζ to the rational numbers Q. An n-th root of unity z is primitive if
zm 6= 1 for all m ∈ {1, 2, . . . , n − 1}. It is clear that one of the primitive roots of

unity is e
2πi
n , denoted by ζn. Observe that the others primitive roots are ζm

n := e
m
n

2πi

for m,n coprime. Indeed, if gcd(m,n) = 1 then there exist integers a, b such that
am+ bn = 1 (Bézoute’s identity) and ζm

n is the m-th power of ζn. We can conclude
that Q(ζn) = Q(ζm

n ) for m,n coprime.
The degree of the minimal polynomial Φn of the cyclotomic field Q(ζn) is ϕ(n),

because
Φn(x) =

∏

1≤j≤n,

gcd(j,n)=1

(x− ζj
n).

The well-known formula cosα = cos 2πm
n

= ζm
n +ζ−m

n

2
implies that ζm

n solves the
equation

x2 − 2(cosα)x+ 1 = 0 over Q(cosα).

By the assumption m,n are coprime, thus [Q(ζn) : Q(cosα)] = 1 or 2.
Since Q(cosα) ⊆ R, we get that [Q(ζn) : Q(cosα)] = 1 only if ζn ∈ R, i.e., only

for n = 1, 2. Otherwise,

d = [Q(cosα) : Q] =
[Q(ζn) : Q]

[Q(ζn) : Q(cosα)]
=
ϕ(n)

2
,

and the proof is finished.

The Euler’s function satisfies the following inequality [24]:

Theorem 14. (Kendall, Osborn) ϕ(n) ≥ √
n, for n 6= 2 and n 6= 6.

Note that ϕ(2) = 1 and ϕ(6) = 2.
With regard to this theorem it is now easily possible to list all quadratic, cubic

and quartic irrationalities that occur as special values of the cosine function. In fact,
we will need only quadratic and quartic irrationalities, so we will investigate only
these two cases.

For the quadratic irrationalities ϕ(n) = 4, thus according to Theorem 14, n ≤ 16.
It can be easily checked that appropriate values of n are 5, 8, 10 and 12.

Similarly for the quartic irrationalities ϕ(n) = 8 we can restrict to n ≤ 64. The
appropriate values of n in this case are 15, 16, 20, 24 and 30.

The possible rational angles corresponding to quadratic and quartic irrationali-
ties are summarized in Table 2.1.
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Table 2.1: Possible rational angles α

(a) quadratic irrationalities

0◦ < α < 180◦

ϕ(n) n angles α values of cosα

4

5 72◦, 144◦ −1+
√

5
4

, −1−
√

5
4

8 45◦, 135◦ ±
√

2
2

10 36◦, 108◦ 1+
√

5
4
, 1−

√
5

4

12 30◦, 150◦ ±
√

3
2

(b) quartic irrationalities

60◦ < α < 120◦

ϕ(n) n angles α

8

15 96◦

16 671
2

◦
, 1121

2

◦

20 –

24 75◦, 105◦

30 84◦
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Chapter 3

Proof of Theorem 5

The proof presented in this chapter is based on the irrationality of k1/3 and charac-
terization of dihedral angles.

3.1 Outline of the proof

Fix k not of the form m3 and assume for contradiction that S is a tetrahedral k-
reptile. Let fi be the similarity map sending S to Si, i = 1, 2, . . . , k. Thus fi is an
isometry followed by scaling in the ratio k−1/3 (since the volume of Si is k-times
smaller than volume of S). Set α = k1/3; the map fi reduces the length of edge by
α−1. That is, the length of image of edge e is α-times smaller than the length of e.
The proof of Theorem 5 goes as follows:

1. First we show that α is irrational. This will play a key role in the whole proof.

2. Then we show that there must be at least three edges corresponding to the
same dihedral angle in S.

3. Since a positive rational combination of dihedral angles of S must be equal to
π (according to Lemma 8), we show that it suffices to distinguish two cases:

(a) All dihedral angles in S are multiples of the minimal dihedral angle, which
is of the form π

n
. To exclude this case we use Lemma 11 and the Fiedler

theorem.

(b) There are only two different dihedral angles in S. We exclude this by the
help of the Fiedler theorem and the knowledge of values of the cosine
function at rational angles (Table 2.1).
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3.2 Step 1 – the irrationality of α

Observation 15. For k not of the form m3, α = k1/3 is irrational.

Proof. The proof is simple. Assume for contradiction that k1/3 = p
q

for p, q ∈ N

coprime (k 6= m3 thus q cannot be 1). Cubing both sides we get: k = p3

q3 , but k is an

integer, so q3|p3 and thus also q|p, which is a contradiction.

3.3 Step 2 – indecomposable angles

e

Figure 3.1: The dihedral angle corresponding to the bold edge is not indecomposable

Choose one of the dihedral angles that cannot be subdivided 1 and denote it by
γ. Sometimes we will call such an angle indecomposable in S. Therefore, situation
from Figure 3.1 cannot happen for an indecomposable dihedral angle.

Lemma 16. There are at least three edges with dihedral angle γ in S. Moreover, no
two these edges have the same length.

Proof. First observe that there are at least two edges with dihedral angle γ in S

because no edge can be subdivided by itself while α−1 is irrational (by Observation
15). In more detail, assume for contradiction there is only one edge e with dihedral
angle γ in S. From the definition of a k-reptile (see Definition 1) there exists a
subdivision of S into smaller congruent tetrahedra. Consider such a subdivision.
Because γ is indecomposable in S and e is the only edge corresponding to γ, we can
conclude that in this subdivision e can consist only of its smaller copies (images).
Recall that the length of image of edge e is α-times smaller than the length of e.
Therefore, there exists k natural such that |e| = kα−1|e|, where |e| denotes the
length of e. This is a contradiction, because α is irrational.

1it means there are no dihedral angles δ1, δ2, . . . , δm different from γ in S such that γ =
∑

m

i=1
liδi,

where li ∈ N
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Now suppose there are only two edges e1, e2 with dihedral angle γ; denote their
lengths by x1, x2. We proceed analogously as above. Consider a subdivision of S
into smaller congruent tetrahedra from the definition of a k-reptile. The edge e1 is
composed only of smaller copies of the edges e1, e2 and so is the edge e2. Thus there
exist k1, k2, l1, l2 ∈ N0 such that

k1α
−1 · x1 + k2α

−1x2 = x1

l1α
−1 · x1 + l2α

−1x2 = x2.

This means that the edge e1 is constructed from k1 parts of the image of e1 and k2

parts of the image of e2, and similarly, e2 is constructed from l1 parts of the image
of e1 and l2 parts of the image of e2.

We want to describe a subdivision of S so we try to find some restrictive condi-
tions for k1, k2, l1, l2. In this setting x1, x2 are unknowns. One condition for solving
this system of linear equations is that the determinant of left side must be equal to
zero, which yields the following equation:

α2 − (k1 + l2)α + k1l2 − l1k2 = 0.

After substitution p := −(k1 + l2), q := k1l2 − l1k2 we get:

α2 + pα+ q = 0, (3.1)

where p, q ∈ Q. We check that p 6= 0 6= q. Indeed, if p = 0 then α2 + q = 0 which
is impossible (α2 is irrational). If q = 0 then α2 + pα = 0. It means that α + p = 0
which is also a contradiction. Multiplying the equation 3.1 by the factor qα and pα2,
respectively, and using fact that α3 = k we get:

qpα2 + q2α + qk = 0 (3.2)

qpα2 + kpα + p2k = 0. (3.3)

Subtracting (3.2) - (3.3):

(q2 − kp)α + (qk − p2k) = 0

Since α is irrational we get q2 = kp and qk = p2k. We know that p 6= 0, thus k = p3,
but k = α3 which is a contradiction (p is rational, α isn’t).

Consequence 17. There are at most 4 different dihedral angles in S.

Proof. It suffices to show that there is at least one indecomposable angle in S.
Indeed, consider the minimal dihedral angle in S.
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Figure 3.2: The sum of dihedral angles inside a face of S is equal to π

3.4 Step 3 – the elimination of cases

Observation 18. Consider a subdivision of S as in Definition 1. The dihedral angles
around any edge of this subdivision inside a face of S sum to π (see Fig. 3.2). This
sum is a non-negative integral combination of dihedral angles of S.

Note that there is always a face of a k-reptile with an edge inside. We can consider
a face with maximal area.

Lemma 19. There are exactly two different dihedral angles in S (each of them
corresponds to 3 edges of S), or every dihedral angle is a multiple of the minimal
dihedral angle β, which is of the form π

n
for some natural n.

Proof. Let ϕ be the smallest dihedral angle that is not a multiple of the minimal
dihedral angle β. Thus ϕ cannot be subdivided in S. According to Lemma 16, ϕ
corresponds to at least three edges in S, and so does β, and therefore, there are
exactly two different dihedral angles β and ϕ in S.

It remains to prove that if every dihedral angle is a multiple of β, then there is a
natural number n such that β = π

n
. Consider dihedral angles around an edge inside

a face with maximal area. These angles sum to π (Observation 18), and so there
exist natural numbers m1, . . . , mi for a suitable i such that m1β + . . . + miβ = π.
For n := m1 + . . .+mi we get that β = π

n
.

From now on, let us denote the minimal dihedral angle in S by β.
Lemma 8 says that there exists a positive rational combination of the dihedral

angles of S equal to π. In particular, it means that there cannot be only one irrational
multiple of π. So we can conclude:

Observation 20. If there are two different dihedral angles in S, then either both of
them are rational multiples of π or both of them are irrational multiples of π.
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v1 v2

v4

v3

(a) A path of the length 3

v1 v2

v4

v3

(b) A triangle

v1 v2

v4

v3

(c) A tripod

Figure 3.3: The bold edges correspond to the minimal dihedral angle of S

3.4.1 Multiples of the minimal dihedral angle β

We know that β = π
n

for some n. The angle β is minimal, thus β < π
2
, and so n ≥ 3.

Otherwise, all dihedral angles in S would be obtuse (greater than or equal to π
2
)

which is not possible.

Observation 21. There is no vertex in S whose three edges all have the minimal
dihedral angle β.

Proof. Assume for contradiction that there exists such a vertex v. According to
Observation 9 the sum of dihedral angles at the vertex v must be greater than π, so
β > π

3
. On the other hand, β < π

2
, thus there is no β of the form π

m
.

Thus there are only two possibilities for placing β into S (see, Fig. 3.3a, Fig.
3.3b). The bold edges in the figures correspond to the minimal dihedral angle β.
The other dihedral angles are multiples of β (some of them could also be β).

Let ϕ be a minimal dihedral angle in S such that the following condition holds:

2β + ϕ > π.

Note that such a ϕ always exists. Indeed, the inequality corresponds to the sum
at the vertex v1 or v4 in the case in the Fig. 3.3a, and to the sum at the vertices
v2, v3, v4 in the case in the Fig. 3.3b. We express ϕ as a multiple of β: ϕ = mβ

for a suitable natural number m. Since ϕ < π, we get β < π
m

. On the other hand,
π < 2β + ϕ = (m+ 2)β, and so β > π

m+2
. Thus we can conclude that β = π

m+1
and
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v1 v2

v4

v3

β

β

β

βϕϕ

(a) A four-cycle

v1 v2

v4

v3

β

β

β

ψϕϕ

(b) A path

Figure 3.4: The tetrahedron S

ϕ = m
m+1

π. With regard to Observation 21 it is sufficient to distinguish the following
tree cases:

1. There are only 2 different dihedral angles in S: Since β+ϕ = π, the case with
3 and 3 edges will be solved separately later. Therefore, the only remaining
possibility is when β corresponds to a four-cycle (Fig. 3.4a).

2. There exists ψ such that β < ϕ < ψ. Then π > ψ ≥ (m + 1)β and thus
β < π

m+1
which is a contradiction with β = π

m+1
.

3. Neither case 1. nor case 2. happened. Then there exists ψ such that β < ψ < ϕ

and 2β + ψ ≤ π. The only possibility of such an S is in Figure 3.4b.

It remains to show that such tetrahedra (Fig. 3.4a, 3.4b) cannot exist. We exclude
these cases at once, with the aid of the Fiedler theorem and Lemma 11.

Denote cos β by t (0 < t < 1); then cosϕ = −t since β + ϕ = π. According to
the Fiedler theorem we construct a matrix corresponding to S.

A =









−1 t −t s

t −1 t −t
−t t −1 t

s −t t −1









.

The matrix A corresponds to the tetrahedron with a four-cycle for s = t (Fig. 3.4a)
and to the path-tetrahedron for s = cosψ (Fig. 3.4b).

Adding second and third rows of A we get the vector u = (0,−1+ t, t−1, 0). The
second and third coordinate are the same, which is a contradiction to Lemma 11.

3.4.2 Only two dihedral angles in S

There are only three possible placings of dihedral angles in S – Fig. 3.3. The bold
edges correspond to the minimal dihedral angle in S.
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v2 v3

v4

v1

ϕ

ϕ

ϕ

Figure 3.5: The regular pyramid T

First we consider a tetrahedron S with a triangle or with a tripod (if we do not
distinguish angles, these two cases are the same) – Fig. 3.3b, 3.3c. Let ϕ be a dihedral
angle corresponding to the tripod and ψ angle corresponding to the triangle. Let
t := cosϕ, s := cosψ. Observe that s ∈ (0, 1) because ψ has to be smaller than π

2

(otherwise the planes F2, F3, F4 would not intersect). Let s be fixed. We want to find
some restrictive conditions for t. The matrix A of the tetrahedron S has the form









−1 s s s

s −1 t t

s t −1 t

s t t −1









.

The A is singular (semidefinite), thus the determinant of A must be equal to zero
and so t is a root of the polynomial:

det(A) = −(t+ 1)2(2t+ 3s2 − 1).

There are only two roots:

t1 = −1, t2 =
1 − 3s2

2
,

but only one of them is in interval (−1, 1). The dihedral angle ϕ is uniquely de-
termined by the angle ψ. Consider a regular pyramid with a tripod and a triangle
(see Fig. 3.5). This pyramid T has two different dihedral angles and corresponding
edges have the same length. According to Theorem 12, also S is a regular pyramid,
but this contradicts Lemma 16 because edge-lengths corresponding to same dihedral
angle must be different in a tetrahedral k-reptile.
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It remains to exclude a path-tetrahedron (Fig. 3.3a). Let ϕ, ψ be the dihedral
angles in S. Observe that

2ϕ+ ψ > π (3.4)

2ψ + ϕ > π, (3.5)

where (3.4) and (3.5) are the sums of dihedral angles at a vertex v1 and v2, respec-
tively.

By Observation 18 there exist m,n ∈ N0 such that mϕ+nψ = π. If ϕ, ψ are both
irrational multiples of π, we know that m,n > 0 (by Observation 20), so m = n = 1
and ϕ + ψ = π. If not, there are 3 possibilities: m = n = 1, m = 0 or n = 0.
Therefore, we distinguish two cases:

(a) ϕ+ ψ = π, and

(b) ϕ = π
m

, ψ is a rational multiple of π

Case (a) ϕ+ ψ = π

Without loss of generality ϕ < ψ (note that the equality is not possible). Denote
cosϕ by t (0 < t < 1); then cosψ = −t. The matrix A of a path-tetrahedron S has
the form:









−1 t −t −t
t −1 t −t
−t t −1 t

−t −t t −1









.

Adding the second and third rows of the matrixA we get the vector (0,−1 + t,−1 + t, 0)
which is a contradiction to Lemma 11.

Finally, the last case we solve with regard to knowledge of values of the cosine
function at rational angles.

Case (b) ϕ = π
m
, ψ is rational

It remains to exclude a path-tetrahedron (Fig. 3.3a). From (3.4), (3.5) is obvious
that max(ϕ, ψ) > π

3
and min(ϕ, ψ) < π

2
, because there must be at least one acute

angle in S.
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Again we distinguish 2 cases:

i) max(ϕ, ψ) = ϕ, thus ϕ = π
2
,

ii) max(ϕ, ψ) = ψ.

Ad i) Let t = cosψ (0 < t < 1). The matrix A is:








−1 0 t t

0 −1 0 t

t 0 −1 0
t t 0 −1









.

This matrix is singular (semidefinite), thus the determinant must be equal to zero.

det(A) = t4 − 3t2 + 1 = 0

The only solution from the interval (0, 1) is t =
√

5−1
2

, but this is not a value of the
cosine at rational angle (see Tab. 2.1a), thus ψ cannot be a rational angle.

Ad ii) Let t = cosϕ, s = cosψ. We know that ϕ ≤ π
3
< ψ.

The matrix A corresponding to a path-tetrahedron (Fig 3.3a) has the form:








−1 t s s

t −1 t s

s t −1 t

s s t −1









.

The eigenvalues of A are:

λ1 = −(
√

5 + 1)t+ (1 −
√

5)s+ 2

2
, λ2 =

(
√

5 − 1)t+ (−
√

5 − 1)s− 2

2
,

λ3 = −
√

5t2 + 6st+ 5s2 − t− s+ 2

2
, λ4 =

√
5t2 + 6st+ 5s2 + t+ s− 2

2
.

The matrix A is negative semidefinite, thus all eigenvalues must be nonpositive.
In addition, t ≥ 1

2
because ϕ ≤ π

3
. Now we can estimate the value of s:

0 ≥ λ2 =
(
√

5 − 1)t+ (−
√

5 − 1)s− 2

2

0 ≥ (
√

5 − 1)t+ (−
√

5 − 1)s− 2 ≥ (
√

5 − 1)

2
+ (−

√
5 − 1)s− 2

s ≥
√

5 − 5

2(
√

5 + 1)
=

5 − 3
√

5

4
,
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We used that t ≥ 1
2

and got s ≥ 5−3
√

5
4

. Since the arccosine function is decreasing

in the interval (−1, 1), we get arccos s ≤ arccos 5−3
√

5
4

< 115,3◦, and thus ψ < 116◦.
On the other hand, 180◦ < 2ϕ+ ψ < 2ϕ+ 116◦, so ϕ > 32◦. Because ϕ = π

n
we can

conclude that n = 3, 4, 5 and so t = 1
2
,
√

2
2
, 1+

√
5

4
.

We can easily compute that:

• Since t > s, then λ1 < λ2.

• Since s ∈
(

−1, 1
2

)

and t ∈
[

1
2
, 1
)

, then λ3 < 0

The matrix A must be singular (semidefinite), so either λ2 = 0 or λ4 = 0.

1. λ2 = 0 for s = 5−3
√

5
4

and t = 1
2
. Since s is not a value of the cosine at rational

angle (see Tab. 2.1a), ψ cannot be a rational angle.

2. λ4 = 0 leads to the equation

s2 + s(t+ 1) + t2 + t− 1 = 0. (3.6)

• For t1 = 1
2

it has a solution s1 = −3+
√

13
4

. Again, s1 is not among admis-
sible values of quadratic irrationalities, see Tab. 2.1a, so ψ cannot be a
rational angle.

• For t2 =
√

2
2

we get 97◦ < ψ = arccos s < 98◦. This value is not among
angles corresponding to quartic irrationalities, see Tab. 2.1b. How do we
know, that s is a quartic irrationality? We postpone the answer to the
end of this section.

• For t3 = 1+
√

5
2

we get s3 = 1−
√

5
4

, thus ψ = 108◦. In this case both ϕ = 36◦

and ψ are rational angles, but 2ϕ + ψ = 180◦ which is a contradiction
with 2ϕ+ ψ > 180◦ (the inequality 3.4).

It remains to show that s from the case (2) is really a quartic irrationality.

Substituting t =
√

2
2

into the equation 3.6 we get the equation

s2 + s

(√
2

2
+ 1

)

+

√
2

2
− 1

2
= 0.

Multiplying by 2 and rearranging we get:
√

2(s+ 1) = 1 − 2s− 2s2 (3.7)

4s4 + 8s3 − 2s2 − 8s− 1 = 0 (3.8)

26



In general, the squaring of an equation is not an equivalent operation, but the non-
equivalent operations may only put on a spurious solution but cannot cancel the
original one, thus if s satisfies the equation 3.7, then also satisfies the equation 3.8.

Now we claim that the polynomial on the left side of the equation 3.8 is irre-
ducible over Q, i.e., it has no rational roots. Showing this we will be done, because
it will mean that s cannot be a root of a polynomial of degree lower than four.

We will use the rational root theorem that states: If a polynomial in x with in-
tegral coefficients: anx

n+an−1x
n−1+ . . .+a0 has rational roots p

q
, then p|a0 and q|an.

By this theorem every rational solution of the equation 3.8 must be among the
numbers ±1,±1

2
,±1

4
. But we can easily check that none of these candidates satisfy

the equation 3.8.

We excluded all cases, therefore the proof of Theorem 5 is finished.
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Chapter 4

Conclusion

We proved that for d = 3, tetrahedral k-reptiles exist only for k of the form m3.
This partially confirms the Hertel’s conjecture, asserting that the only tetrahedral
k-reptiles are the Hill tetrahedra.

We conjecture, that k = md is a necessary condition also for existence simplicial
k-reptiles in dimensions d > 3. The dihedral angles have proven themselves as a
useful invariant. It is now a question which invariants will be helpful in higher
dimensions. Yet there remains still another open problem whether the standard
division is the only one for simplicial md-reptiles.
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