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Study programme: physics, theoretical physics

2009
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V Praze dne 16.4.2009 Jan Oľsina
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Introduction

Small molecules often form functional aggregates in Nature. This is particularly impor-
tant in biophysics, where molecular aggregates play an important role in many processes.
For example in photosynthesis, chloroplast pigment molecules bunch into so called light-
harvesting photosynthetic antennae [1]. This enables the cell to catch light more efficiently,
because the antenna has larger effective cross-section than the pigment molecule itself.
Energy is transferred into so called reaction centers on various time scales after that.

An ultrafast time evolution of electronic states of such molecular aggregates is a subject
of experimental studies by means of a femtosecond optical spectroscopy – pump-probe,
hole-burning, two dimensional spectroscopy [2], and other methods. This is connected with
the studies of energy transfer in biological systems [3]. Ultrafast energy transfer has been
observed in LHC-II [4] and in Fenna-Matthews-Olson bacteriochlorophyll a protein (FMO)
complexes in the Green bacterium [3], and many other photosynthetic systems.

Theoreticians are focused particularly on 2D femtosecond spectroscopy recently, (see
e.g. [2] for more details), because it enables to investigate not only the time evolution
of the aggregate populations of states, but also the time evolution of coherences between
them. It opens a unique possibility for testing variety of models and comparing them with
experimental data, such as Engel’s and Fleming’s measurement on the FMO1 [5].

Figure 1: Structure of the FMO complex, [1].

1The FMO protein was the first chlorophyll-containing protein to have its structure determined to
atomic resolution. For this reason, much of a current understanding of the principles of pigment-protein
derives from studies of this system [1]. These results make it interesting for further investigation.
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To calculate a spectroscopic response for the above mentioned molecular aggregate
models, we need to consider the system time evolution. Since the investigated molecular
aggregates are not isolated systems, Schrödinger equation is not applicable and another
description has to be used. The Quantum Master Equation (QME), which can be derived
by the Nakajima-Zwanzig formalism [6, 7], is widely used for that purpose. It is based on
an often well-founded approximations (see Ref. [6]), particularly that surrounding of the
system can be described statistically and part of density operator describing it can be pro-
jected out. Since the QME is an integro-differential equation and therefore not simple for
numerical solution, additional approximations are often used, namely the Markov approx-
imation and subsequent secular approximation. Using these, the QME can be converted
into an ordinary differential equation.

Both of these approximations have some problems – the Markov approximation, as
we show in this work, breaks down for wide range of parameters and leads to completely
unphysical thermodynamic equilibrium in these cases. The secular approximation can fix
this problem, but completely neglects the coherence transfer terms. There are articles [8, 9]
suggesting coherence transfer effects are generally negligible and the secular approximation
gives accurate description of the open system evolution, but also papers against [10].

In this work, we apply the above mentioned formalism to molecular aggregates, which
we describe by a simple model. We investigate the question whether the coherence transfer
effects play important role in system evolution, how strong these effects are, and how
much do the above mentioned approximations differ from the QME. Our concern in the
coherence transfer is motivated by measurements performed on FMO complex. They show
that there are oscillations in FMO 2D spectrum lasting so long, that it cannot be explained
by the secular Redfield theory [5]. This indicates that the coherence transfer terms, best
described by the QME without the additional approximations, could be responsible for
these oscillations. We compare the QME with the Markov and the secular approximations
in this work. We illustrate, that the QME is the best of these methods for coherence
transfer description on an example of a trimer. We subsequently calculate its evolution
superoperator components to study coherence transfer.

Notation

In this work we use the common bra-ket formalism. Operators defined on system’s Hilbert
space are denoted by a hat-symbol as Ô. The density operator is denoted by letter ρ,
without hat. Superoperators, expressing general linear action on the density operator, are
denoted like O. If we explicitly write matrix indices, they always go through the states of
the system. Lower indices denote matrix element in given representation while upper indices
refer to the matrix/operator itself. (They are used e.g. for labelling of projector operators,
etc.) The Einstein summation rule is not used. All summations are denoted explicitly. A+

denotes a matrix hermitian conjugate to a matrix A, A∗ stands for a complex conjugate
matrix and AT is a transposed matrix, but we use more often explicit index notation
for matrix transpose. Bachmann-Landau symbol (“Big Oh” symbol), used for notation of
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algorithm asymptotic behaviour, is denoted O(f(n)). (We do not use standard O-notation
since it conflicts with the superoperator notation). In whole work, we use the following
convention and notation for the Fourier transform:

f̃(ω) =

∞∫

−∞

dt f(t) e−itω , (1a)

f(t) =
1

2π

∞∫

−∞

dω f̃(ω) eitω . (1b)

Spectroscopic Units

We use the widely used “spectroscopic” units in this work. Distance is measured in Ång-
ströms, temperature in Kelvins, time in femtoseconds and energy is given by wavenumber
of a photon with given energy

E = hν = 2π~
c

λ
= 2π~ck . (2)

Here, λ denotes the wavelength, k represents the wavenumber, c is the speed of light and ~

denotes the reduced Planck’s constant. We are free to set values of ~ and c, because they
just scale our units to natural units. In spectroscopic units, we require

2π~c = 1 . (3)

Considering

~ = 1.05457 × 10−34 m2 kg s−1 ,

c = 2.99792458× 108 m s−1 ,

kB = 1.3806503× 10−23 m2 kg s−2 K−1 ,

we get

2π~c = 1.98645× 10−23 J/cm−1 ,

therefore

J = 5.03412 × 1022 cm−1 ,

~ = 5308.84 fs cm−1 ,

c = 2.99792 × 10−5 fs−1 cm ,

kB = 0.695036 cm−1 K−1 .

In these units, most of results are stated, but for the numerical calculation it is more proper
to use units, in which the above mentioned basic constants are approximately equal to 1.
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Chapter 1

Used Theory

1.1 Brief Summary of the Density Operator Formal-

ism

When we study an open quantum system, which is surrounded by a greater system (reser-
voir), we encounter the problem, that unless the systems are non-interacting at all, the
total wave function Ψ(si, rj), where si are variables related to the system and rj to the
reservoir, cannot be separated into ψS(si)ψR(rj). Furthermore it is impossible to describe
the subsystem by a wave function ψS(si), where the variables rj have been projected out.
As an example let’s consider two electrons which have been prepared in a state

|Ψ〉 = |↑〉 |↑〉 + |↓〉 |↓〉 . (1.1)

The first electron cannot be clearly described by a one-electron wave function – if we choose
any linear combination of states |↑〉, |↓〉, there would have to be a proper basis in which the
electron was in a pure state. However this is not possible – information about the electron
state is encoded in the state of the second electron and therefore we cannot recognize its
state from statistical ensemble of electrons in states |↑〉, |↓〉, with no superposition through
any measurement, done only on the first electron. Such states are called mixed states and
we need the density operator formalism to describe them. (One can read more on this topic
in Ref. [6, 7].)

In density operator formalism, system state is fully described by an operator ρ, (ex-
pressed by matrix elements ρij), which determines statistical behaviour of the system. In
case of statistical ensemble, the density operator is defined as

ρ =
∑

i

ωi |Ψi〉 〈Ψi| , (1.2)

where ωi are probabilities of occupancy of i-th pure state. Density matrix formalism can-
not distinguish between statistical ensemble of systems in pure states, where ωi describes
probability of getting the system in state |i〉 and between statistical ensemble of (all the
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same) systems in states similar to the state from Eq. (1.1). One might argue that there is
even no difference between them, because statistical ensemble was prepared, just like the
state from Eq. (1.1), by entanglement with a greater system – the measuring instrument.
We called states (1.2) mixed states.

Density matrix has trace normalized to unity Tr ρ = 1. Mean value of a physical quantity
represented by an operator Â is given by

〈
Â

〉
= Tr Âρ. (1.3)

Probabilities of finding the system in a given state in chosen basis are given by diagonal
elements of density matrix. The time evolution of system is given by Liouville equation

∂ρ

∂t
= −

i

~

[
Ĥ, ρ

]
−
, (1.4)

which can be easily derived from Schrödinger equation.

1.2 Superoperator Representation

In the density operator formalism, action of a general linear operator on the system cannot
be described as an action of a matrix on a vector, because ρ is not vector of system Hilbert
space. It is therefore convenient to introduce “superoperator representation”, in which we
write action of a superoperator as

(Aρ)mn =
∑

m′n′

Amn,m′n′ρm′n′ . (1.5)

Comma denotes that we consider pair of indices to form one multiindex in superoperator
representation. We define superoperator Kronecker δ as

δij,i′j′ ≡ δii′δjj′. (1.6)

Which representation is currently used in text can be easily found out by index structure
of particular formula. In superoperator notation, Liouville equation (1.4) takes form of

d

dt
ρ(t) = −iLρ(t) , (1.7)

where

L• ≡
1

~

[
Ĥ, •

]
−

(1.8)

is the so-called Liouville superoperator or Liouvillian.
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1.3 Superoperator Projectors

Let us denote the projector on a s-th state by P̂s. It is defined as

(
P̂s

)
ij
≡ δisδjs. (1.9)

We introduce projector on ij, kl-th component of superoperator P ij,kl as

(
P ij,klO

)
i′j′,k′l′

≡ Oij,kl δij,i′j′ δkl,k′l′ . (1.10)

Let us explicitly highlight that Einstein summation rule is not used here. We easily verify
that relation

P2 = P (1.11)

holds.
For superoperators whose action on density matrix has a form of a product of two

general matrices from right and left

Oρ = ÔlρÔr (1.12)

we can write Pij,kl as

P ij,klO = P̂iÔ
lP̂kρ P̂lÔ

rP̂j . (1.13)

Relation (1.11) is evidently satisfied here since Eq. (1.13) has again a form of Eq. (1.12)
and P̂i are projectors.

Of course not all superoperators have a form of Eq. (1.12) since the number of elements
of a general superoperator is N4 (where N is the size of the basis of the used Hilbert
space), while each of matrices Ôl, Ôr have only N2 elements. However, all superoperators
used here can be expressed by the Eq. (1.13), or as sum of such terms.

1.4 Quantum Master Equation

There is an apparatus for modelling the time evolution of open systems based on several
assumptions. We will briefly repeat derivation of the Quantum Master Equation, following
[6], and discuss which approximation we make and how well they are satisfied.

1.4.1 Definitions

Let us write the complete Hamiltonian of a quantum system as

Ĥ = ĤS + ĤS−R + ĤR , (1.14)
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where ĤS, ĤR act only on the subsystem, reservoir respectively. The operator ĤS−R present
the interaction between the subsystem and the reservoir. Now we introduce interaction
representation. Let

ÛS(t) = e−
i
~
ĤSt (1.15)

be time evolution operator of the unperturbed system. Then a given operator Â in inter-
action representation is

Â(I) = Û+
S ÂÛS . (1.16)

We furthermore define projectors

P• ≡ ρRTrR• , (1.17)

Q ≡ 1 − P (1.18)

in order to separate subsystem and reservoir parts of the complete density operator ρS+R.
Property (1.11) holds since TrRρR = 1 and ρR acts only on reservoir states.

The basis of the used Hilbert space in which ĤS is diagonal, so-called exciton basis,
has a special importance. On one hand, it is because in the canonical thermodynamic
equilibrium, into which a closed system finally evolves, the density matrix (1.25) is diagonal
particularly in the exciton basis. Therefore it is almost the right basis for description of
the thermal equilibrium of open systems, if the system-reservoir coupling is small. On the
other hand, because any spectroscopic measurement on the system projects it to ĤS energy
eigenstate, in the exciton basis. We denote operators and superoperators in exciton basis
by superscript Â(exc).

1.4.2 QME Derivation

We begin with the density matrix of the whole system ρS+R(t). Its time evolution is gov-
erned by the Liouville equation

d

dt
ρS+R(t) = −

i

~

[
Ĥ, ρS+R(t)

]
−
. (1.19)

Now assume that our system is composed of a small subsystem, an open system whose time
evolution we want to model, and its surrounding (reservoir), which is in good approximation
in thermal equilibrium. We are interested in time evolution of the subsystem reduced
density matrix

ρS(t) = TrR (ρS+R(t)) , (1.20)

while the reservoir is described only statistically. TrR traces through reservoir states of the
system.
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Let us take, following Ref. [6], trace of Eq. (1.19) over reservoir states. We receive

d

dt
ρS(t) = −

i

~
TrR

[
ĤS + ĤS−R + ĤR, ρS+R(t)

]
−

= −
i

~

[
ĤS, ρS(t)

]
−
−

i

~
TrR

[
ĤS−R + ĤR, ρS+R(t)

]
−
. (1.21)

Because of cyclic invariance of trace and the fact that ĤR acts purely on the reservoir
states of the system commutator of ĤR and ρS+R(t) vanishes.

Let us assume ĤS−R to be in the form

ĤS−R =
∑

u

P̂uΦu , (1.22)

where P̂u acts solely on the subsystem states and Φu solely on the reservoir states. There
are good physical reasons for this separation and it is self-consistent with our system model,
described in the Chapter 2. See Eq. (2.4).

After introducing mean-field approximation, i.e. replacing ĤS−R by expectation value
of the result, Eq. (1.21) splits into two

d

dt
ρS(t) = −

i

~

[
ĤS +

∑

u

P̂uTrR (ΦuρR(t)) , ρS

]
(1.23a)

d

dt
ρR(t) = −

i

~

[
ĤR +

∑

u

ΦuTrS

(
P̂uρS(t)

)
, ρR

]
. (1.23b)

As shown in Ref. [6], applying the second order perturbation theory on equation (1.23a)
in the interaction picture, we can write

d

dt
ρ

(I)
S (t) = −

i

~
TrR

(
ρeq

R

[
Ĥ

(I)
S−R(t), ρ

(I)
S (t)

]
−

)
(1.24)

−
1

~2

∫ t

t0

dτ TrR

([
Ĥ

(I)
S−R(t), (1 − P)

[
Ĥ

(I)
S−R(τ), ρeq

R ρ
(I)
S (τ)

]
−

]

−

)
,

where

ρeq
R =

e
−

ĤR

kBT

TrR

(
e
−

ĤR

kBT

) , (1.25)

and ρR = ρeq
R in the projector (1.17). Now we replace Φu by its mean values and fluctuations

from mean values using statistical description of reservoir. We define correlation functions
as

Cuv(t) =
1

~2
〈∆Φu(t)∆Φv(0)〉R , (1.26)
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where

∆Φu(t) = Φu(t) − 〈Φu〉R , (1.27)

〈•〉R ≡ TrR(•) . (1.28)

Considering this, equation (1.24) takes form

d

dt
ρ

(I)
S (t) = −

i

~

∑

u

〈Φu〉
[
P̂ (I)

u (t), ρ
(I)
S (t)

]
−

−
∑

uv

t∫

t0

dτ

(
Cuv(t− τ)

[
P̂ (I)

u (t), P̂ (I)
v (τ)ρ

(I)
S (τ)

]
−

(1.29)

−Cuv(−t+ τ)
[
P̂ (I)

u (t), ρ
(I)
S (τ)P̂ (I)

v (τ)
]
−

)
.

This is the well known Quantum Master Equation. How is the system affected by reservoir
depends on a particular form of the correlation function.

It can be shown [6] that Eq. (1.29) takes form

d

dt
ρS(t) = −

i

~

[
ĤS +

∑

u

〈Φu〉 P̂u, ρS(t)

]

−

−
∑

uv

t∫

t0

dτ

(
Cuv(τ)

[
P̂u, ÛS(τ)P̂vρS(t− τ)Û+

S (τ)
]
−

(1.30)

−Cuv(−τ)
[
P̂u, ÛS(τ)ρS(t− τ)P̂vÛ

+
S (τ)

]
−

)
.

in Schrödinger picture.

1.5 Correlation Functions

1.5.1 Correlation Function and Thermodynamics

In the previous section, we have seen that in the second order perturbation theory, the in-
formation about the evolution of the reservoir, including its thermodynamical properties,
is contained in correlation functions (1.26). We will specify a particular form of the cor-
relation functions later. Let us now investigate, which properties can be derived generally
from the thermodynamics.

As discussed in Ref. [6], one can derive that all correlation functions fulfil property

Cuv(t) =
1

~2
〈∆Φu(t)∆Φv(0)〉R =

[
1

~2
〈∆Φv(0)∆Φu(t)〉R

]∗

= C∗
vu(−t) , (1.31)
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or

C̃∗
uv(ω) = C̃vu(ω), (1.32)

where

C̃uv(ω) ≡

∫
dt e−iωtCuv(t). (1.33)

There is another important property of the correlation functions, relating it to the tem-
perature of the bath. Let us start denoting its real and imaginary part

C(+)
uv (t) = Cuv(t) + C∗

uv(t), C(−)
uv (t) = Cuv(t) − C∗

uv(t) . (1.34)

Now if we take into account the definition (1.26), we can rewrite Eq. (1.33) as

C̃uv(ω) =
1

~2

∫
dt e−iωt

∑

αβ

〈α| ρeq
R e

iĤRt/~∆Φue
−iĤRt/~ |β〉 〈β|∆Φv |α〉

=
1

~2

∑

αβ

∫
dt e−i(ω+ωαβ)tf(Eβ) 〈β|∆Φu |α〉 〈α|∆Φv |β〉 , (1.35)

where we separated trace over the electronic and bath degrees of freedom, expressed ĤR in
energy representation, and rewrote it into the transition frequencies between the reservoir
energy levels ωαβ = (Eα −Eβ)/~. The function

f(Eα) ≡ 〈α| ρeq
R |α〉 =

e−Eα/kBT

∑
β e

−Eβ/kBT
(1.36)

is the Boltzmann function of the thermal distribution. Performing an integration over t
yields

C̃uv(ω) =
2π

~

∑

αβ

f(Eβ) 〈β|∆Φu |α〉 〈α|∆Φv |β〉 δ(ω + ωαβ) , (1.37a)

C̃vu(ω) =
2π

~

∑

αβ

f(Eα) 〈β|∆Φu |α〉 〈α|∆Φv |β〉 δ(ω + ωβα) . (1.37b)

Using the identity

e−Eβ/kBT δ(ω + ωαβ) = e−(Eα+~ω)/kBT δ(ω − ωβα) (1.38)

we get

C̃uv(ω) = e−~ω/kBT C̃vu(−ω) , (1.39)
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which relates negative frequencies of correlation function to positive ones. One can also
rewrite Eq. (1.39) as

C̃uv(ω) =
C̃

(±)
uv (ω)

1 ± e−~ω/kBT
= (1 + n(ω)) C̃(−)

uv (ω) , (1.40)

where

n(ω) =
1

e~ω/kBT − 1
(1.41)

is the Bose-Einstein distribution function.

1.5.2 Correlation Function of a Damped Harmonic Oscillator

In the subsequent simulations, we describe the reservoir by so-called multi-mode Brownian
oscillators model. The quantum correlation function of a harmonic oscillator can be exactly
derived from its classical counterpart thanks to a special property – its independence
on temperature. This derivation is beyond scope of this work. Ref. [11] devotes a lot of
attention to this topic, namely Chapter 8, including appendixes 8B, 8D and 8E. One can
find some interesting remarks also in Ref. [12].

We will use only limiting case of an overdamped harmonic oscillator, here. Its correlation
function reads

C(t) = −i~λΛ e−Λ|t| sgn t+ λΛ~ coth

(
β~Λ

2

)
e−Λ|t| +

4Λλ

β

∞∑

n=1

νne
−νn|t|

νn
2 − Λ2

, (1.42)

where

νn ≡
2πn

~β
, β ≡

1

kBT
, Λ ≡

1

τC
, (1.43)

kB is Boltzmann constant, T thermodynamic temperature, τC coherence time of relaxation
and λ is reorganisation energy. Frequencies νn are so-called Matsubara frequencies.
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1.6 Markov Approximation

The Markov approximation is very useful way how to make computations based on the
Quantum Master Equation more numerically feasible. The QME is an integro-differential
equation, hence it represents a much more complicated problem for numerical solution than
ordinary differential equations. The Markov approximation is based, as explained in Ref.
[6], on an assumption that ĤS−R is much smaller than ĤS. Therefore the presence of ĤS−R

causes time evolution much slower than the corresponding evolution caused by the ĤS.
The slow evolution can be separated in the interaction representation, Eq. (1.16), which
leads us to

ρS(t− τ) = ÛS(t− τ − t0)ρ
(I)
S (t− τ)Û+

S (t− τ − t0)

≈ ÛS(−τ)ÛS(t− t0)ρ
(I)
S (t)Û+

S (t− t0)Û
+
S (−τ)

= ÛS(−τ)ρS(t)Û
+
S (−τ) . (1.44)

Applying this to the QME (1.29), we receive the final equation

d

dt
ρ

(I)
S (t) = −

i

~

∑

u

〈Φu〉
[
P̂ (I)

u (t), ρ
(I)
S (t)

]
−

−
∑

uv

t∫

0

dτ

(
Cuv(t− τ)

[
P̂ (I)

u (t), P̂ (I)
v (τ)ρ

(I)
S (t)

]
−

(1.45)

−Cuv(−t+ τ)
[
P̂ (I)

u (t), ρ
(I)
S (t)P̂ (I)

v (τ)
]
−

)
,

which is no longer integro-differential, but an ordinary differential, because ρ(t) can now
be taken out of the integral and the integral can be explicitly calculated as a function of t.
We set t0 = 0 without loss of generality (WLOG).

In numerical calculation, we use Eq. (1.45) in a form

Λ̂u(t) ≡
∑

v

∫ t

0

dτ Cuv(τ)P̂
(I)
v (−τ) , (1.46a)

Ĥ
(eff)
S ≡ ĤS +

∑

u

P̂u

(
〈Φu〉R − i~Λ̂u(t)

)
, (1.46b)

d

dt
ρ(t) = −

i

~

(
Ĥ

(eff)
S ρS(t) − ρS(t)Ĥ

(eff)+
S

)
+

∑

u

(
P̂uρS(t)Λ̂

+
u (t) − Λ̂u(t)ρS(t)P̂u

)
.

(1.46c)

If the relation (1.46a) converges to a constant value on a considerably shorter time scale
compared to a characteristic time evolution of the system, additional approximation can
be made by using

Λ̂∞
u ≡ Λ̂u(+∞) (1.47)
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in Eq. (1.46c) instead of Eq. (1.46a). Such equations are called Redfield equations, while
Eqs. (1.46) are called Redfield equations with time-dependent Redfield tensor.

1.7 Secular Approximation

The secular approximation is an additional approximation imposed on Eq. (1.46c), often
used in publications related to non-linear optical experiments. It makes numerical solution
of Eq. (1.46c) faster, simpler, and it stabilizes it significantly, as we show later. It moreover
leads to the canonical thermal equilibrium even in cases when (1.46c) gives completely
wrong answers.

Let us rewrite equation (1.46c) as

d

dt
ρS

(exc)
ab (t)

∣∣∣∣
diss

= −
∑

cd

R
(exc)
ab,cd(t) ρS

(exc)
cd (t) , (1.48)

where R(t) is time-dependent Redfield tensor and “diss” on the left equation side denotes,
that we take only the dissipation part of the system density operator time derivative.
The secular approximation consists of neglecting terms of R(exc) which do not represent
population transfer (a = b, c = d) nor coherence dephasing (a 6= b, a = c, b = d). Such
terms oscillate rapidly in the interaction picture (see Ref. [6] Eq. (3.294) for more detailed
information) and therefore almost do not contribute.

1.8 Thermodynamic Equilibrium

The QME (1.29) involves relaxation of the system to thermodynamic equilibrium. In vari-
ous approximation of the QME, different equilibrium is obtained. As explained in Ref. [6]
in detail, the secular approximation leads to the canonical thermodynamic equilibrium

ρeq
S =

e−ĤS/kBT

Tr
(
e−ĤS/kBT

) . (1.49)

However, if we use the Markov approximation without the secular approximation, it cannot
be proven that system settles to the canonical thermal equilibrium (1.49) nor that we
receive positive probabilities of occupancy of states for all times. In fact, as our numerical
model shows, for certain parameters we receive negative probabilities even in thermal
equilibrium, which is due to specific failure of the Markov approximation discussed in the
Chapter 3.

May and Kühn in Ref. [6] also claim that the QME itself, with no additional approxi-
mations, leads to canonical thermodynamic equilibrium (1.49) as well. However, their proof
is incorrect – there is a correction to Eq. (1.49) which changes basis in which the relaxation
takes place from the exciton basis to another one. It happens, because the described system
is not closed. (Thermodynamics demands relaxation to canonical thermal equilibrium for
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closed systems only.) There are articles supporting and giving reasons for this result, e.g.
the article [13]. We devote the Section 3.3 to this problem.

1.9 Fourier Transform Solution of the QME

We can rewrite the QME (1.30) into the superoperator formalism as

d

dt
ρS(t) = −iLρS(t) −

t∫

t0

dτ M(t− τ)ρS(τ) , (1.50)

where L is Liouville superoperator (1.8) and M(t) is superoperator representing all terms
affecting ρS under integral over τ in (1.30). Let us denote

M(t) = Θ(t)M(t) , (1.51)

ρ̄(t) = Θ(t)ρ(t) . (1.52)

Now we can rewrite Eq. (1.50) as

d

dt
ρ̄S(t) = −iLρ̄S(t) −

∞∫

−∞

dτ M(t− τ)ρ̄S(τ) + ρ0
S δ(t) , (1.53)

where δ-function represents initial condition ρ̄S(0) = ρ0
S. Since ρ̄S(t) = 0 and and M(t) = 0

for t < 0, they form natural boundary for the integral on rhs of Eq. (1.50) and it is replaced
by convolution. (If we WLOG define t0 = 0, in addition.)

We take Fourier transform of (1.53)

iω ˜̄ρS(ω) = −iL ˜̄ρS(ω) − M̃(ω)˜̄ρS(ω) + ρ0
S , (1.54)

which gives us the solution

˜̄ρS(ω) =
1

iω + iL + M̃(ω) + ε
ρ0

S ≡ Gε(ω)ρ0
S (1.55)

in frequency domain. Gε(ω) is Green’s function and ε is small positive value which represents
regularization in which ρS(t) = 0 for t < 0. By performing inverse Fourier Transform we
have

ρ̄S(t) = lim
ε→0+

1

2π

∫ ∞

−∞

dω eiωt Gε(ω)ρ0
S . (1.56)
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1.9.1 Discrete Fourier Transform

An analytic solution of QME using Fourier transform is out of question. We therefore
rewrite all the above expressions into the discrete Fourier transform (DFT), which can be
directly used for numerical solution of QME.

In the DFT we cover interval t ∈
[
−1

2
Tmax,

1
2
Tmax

]
by N points in which we know

function values of used functions. We can in addition define

∆t ≡
Tmax

N
, (1.57)

Ωmax =
2πN

Tmax
. (1.58)

In this normalisation, the DFT has a form

f̃(ωs) =
N∑

r=1

f(tr)e
−2πi(r−1)(s−1)/N , (1.59a)

f(tr) =
1

N

N∑

s=1

f̃(ωs)e
2πi(r−1)(s−1)/N , (1.59b)

which has same properties when acting on convolution and function derivative as Fourier
transform in normalisation used above, namely

f̃ ′(t)[ω] = iωf̃(ω) , (1.60a)

˜f(t) ∗ g(t)[ω] = f̃(ω)g̃(ω) , (1.60b)

where discrete convolution is defined as

f(t) ∗ g(t)[tn] ≡
∞∑

m=−∞

f(tn)g(tm−n) . (1.61)

Now we rewrite Eq. (1.53) in discretised form

d

dt
ρS(tr) = −iLρS(tr) −

∞∑

m=−∞

M(tr − tm)ρS(tm)∆t+ ρ0
S

1

∆t
δ1r . (1.62)

One ∆t clearly emerges from discretisation of convolution integral in Eq. (1.53) while the
other one fixes normalisation of discretised δ-function – if it is equal to 1

∆t
for r = 1, which

is interval of length ∆t, its integral over t is the same as of the original δ-function.
To perform numerics, we use Mathematicar, which internally uses FFT algorithm

[14, 15], for the DFT.
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1.9.2 Numerical Handling of the Regularization

As we can see from Eq. (1.55), Inverse Fourier transform is dependent on a small imaginary
part of ω represented by ε-regularization. We would like to write the limit (1.56) ε→ 0 in
terms of the DFT which would allow us to obtain solution ρS(t) non-zero only for t > 0.
Value of ε has to be sufficiently small so that the result wouldn’t depend on it, but at the
same time it has to be big enough compared to discretisation of time axis, ε ≈ ∆t. (If it
were not, the DFT wouldn’t even notice there is any ε!) So now we have a problem since
clearly our result depends on ratio of ε and ∆t.

Luckily there is a way out of the trouble. This ε-sensitivity is characteristic only for
functions which do not tend to zero for |t| → ∞ but to finite constant. (Solution of QME
doesn’t tend to zero since populations end in constant thermal equilibrium.)

Let w(t) be typical diagonal element of ρS(t), solution of QME. Let

lim
t→∞

w(t) = w0 6= 0, (1.63)

w(t) = w(t)Θ(t), (1.64)

hold. We introduce

wN(t) = e−αtw(t) , (1.65a)

wH(t) = eαtw(t) , (1.65b)

where α > 0 is additional parameter. Because wN(t), unlike w(t), is L2-integrable, its

Fourier transform w̃N(ω) is L2-integrable and therefore it does not have poles on real axis
(and doesn’t need ε-regularization).

Parameter α has a very similar meaning as ε, which we can see from

˜(w′(t))N = (iω + α) w̃N(ω) , (1.66)

where α stands for small imaginary part of ω, like ε. However it is not so localised in ω = 0.
Its value has to be determined from numerical behaviour of the DFT. It turns out that
for α too small ultra-fast oscillations appear in frequency domain after applying the DFT,
while for α too big regularization doesn’t fulfil its purpose. We use the value α ≈ Tmax/7.

1.9.3 Convergence of the DFT

While for solving differential equations, the methods used here are very precise and con-
verge is fast, the convergence of the DFT is a bit more problematic. Namely the thermal
equilibrium to which the system converges for t → ∞ is a “local” effect in the differential
equation (and therefore the difference between the numerical and the real solution of the
equation is minimal), in the DFT method it is a “global” effect (we need all frequencies
for its description) and its error can be much bigger. For this reason, a question of the
convergence is crucial.
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To investigate the DFT convergence, we need to know the long time limit solution of the
QME. If we take the QME in the form (1.50) and we demand the solution to be constant,
then we can conclude that the limiting solution of the QME has to be an eigenvector of
the superoperator

Y∞
QME ≡ −iL +

∞∫

0

dτ M(τ) (1.67)

corresponding to the eigenvalue 0. One can obtain this eigenvector by numerical integration
of superoperator (1.67)

Fig. 1.1 shows the dependence of the maximum1 relative difference

∆ρ

Tr ρ
≡ max

ij

∣∣∣∣∣

(
ρ#
∞ − ρeig

∞

)
ij

Tr ρeig
∞

∣∣∣∣∣ (1.68)

between limiting numerical solutions of the QME, ρ#
∞, calculated by the DFT with # steps

and the eigenvector of the superoperator (1.67), ρeig
∞ , respective to eigenvalue 0.

0 5000 10 000 15 000
ð

0.1

0.2

0.3

0.4

DΡ�Tr Ρ

Figure 1.1: Relative error of the DFT dependent on number of steps.

For # = 8192 is the error of the DFT sufficiently small. It is the value we use for all
calculations performed in this work.

1The maximum is taken over all matrix elements ij.
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1.10 Initial Conditions Created by an Ultra-Short Laser

Pulse

If we want to use QME and Redfield equations equations for description of time evolution
of real system, we need to know how does an excitation by laser pulse look like and use it
to set the initial condition.

Let us assume a relaxation-free Liouville equation, with a semi-classical light-matter
interaction Hamiltonian in dipole approximation

dρS

dt
= −iLρS −

i

~
[−µ̂E(t), ρS]−

≡ −iLρS + iD(t)ρS E(t) . (1.69)

We take dipole moment operator and electric field to be scalars in our simple model. The
operator µ̂ is dipole moment operator and

D(t)• ≡
1

~
[µ̂E(t), •]− (1.70)

is dipole moment superoperator.
We rewrite the above equation into interaction picture

dρ
(I)
S

dt
(t) = iD(I)(t) ρ

(I)
S (t) E(t) (1.71)

and write its formal solution as

ρ
(I)
S (t) = ρ

(I)
S (t0) + i

∫ t

t0

D(I)(τ)ρ
(I)
S (τ) E(τ) . (1.72)

For t0 < 0, for

ρ
(I)
S (t0) = |g〉 〈g| (1.73)

and for ultra-short pulse

E(t) = δ(t)E0 , (1.74)

Eq. (1.72) can be written as

ρ
(I)
S (t) = |g〉 〈g| + iD(I)(0) |g〉 〈g| E0 Θ(t) . (1.75)

Finally, by substituting Eqs. (1.74) and (1.75) into Eq. (1.71) we get

dρ
(I)
S

dt
(t) = iD(I)(0)

(
|g〉 〈g| + iD(I)(0) |g〉 〈g| E0 Θ(t)

)
δ(t) E0

=

[
iE0 D

(I)(0) |g〉 〈g| −
E0

2

2
D2(I)

(0) |g〉 〈g|

]
δ(t) . (1.76)
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Here we used the identity

Θ(t)δ(t) =
1

2
δ(t) . (1.77)

(The δ-function is intrinsically symmetric.) We rewrite Eq. (1.76) to the Schrödinger pic-
ture, yielding

dρS

dt
(t) = −iLρS(t) +

[
iE0 U

+(−t0)D |g〉 〈g| −
E0

2

2

(
U+(−t0)D

)2
|g〉 〈g|

]
δ(t) . (1.78)

This result can be interpreted so that the ultra-short laser pulse sets the initial condition
to be used with the equation of motion to

ρ0
S = |g〉 〈g| + iE0 U

+(−t0)D |g〉 〈g| −
E0

2

2

(
U+(−t0)D

)2
|g〉 〈g| . (1.79)

It should be noted that U+(−t0) is just a phase factor and since |g〉 〈g|, D |g〉 〈g| and
D2 |g〉 〈g| belong to different blocks of ρS, whose evolutions are independent for the model
Hamiltonian used in the chapters that follow, it can be WLOG chosen as

U+(−t0) = 1 . (1.80)
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Chapter 2

System Model

2.1 Hamiltonian

The following system Hamiltonian construction is based on the article [16].

2.1.1 Monomer Hamiltonian

Let us recall Hamiltonian (1.14) and specify its particular form for a studied system. First
we consider molecule which can be in an electronic ground state or an electronic excited
state with energies εg, εe, respectively. Besides electron excitation energies, it has some
vibrational degrees of freedom (DOF) connected with the movement of the nuclei. They
generally depend on many coordinates, but we will replace them by generalized coordinate
Q in our model. We can write the Hamiltonian in the form

Ĥm = (εg + Vg(Q)) |g〉 〈g| + (εe + Ve(Q)) |e〉 〈e| . (2.1)

Now we rearrange the terms in Eq. (2.1) and separate the system, the reservoir and the
interaction part

Ĥm = εg |g〉 〈g| + εe |e〉 〈e| + Vg(Q) (|g〉 〈g| + |e〉 〈e|) + (Ve(Q) − Vg(Q)) |e〉 〈e|

= εg |g〉 〈g| + εe |e〉 〈e| + Vg(Q) 1+ Φ(Q) |e〉 〈e|

= Ĥ
′m
S + Ĥ

′m
R + Ĥ

′m
S−R . (2.2)

Here

Ĥ
′m
S ≡ εg |g〉 〈g| + εe |e〉 〈e| , (2.3a)

Ĥ
′m
R ≡ Vg(Q) 1 , (2.3b)

Ĥ
′m
S−R ≡ Φ(Q) |e〉 〈e| , (2.3c)

Symbol 1 represents an unit operator on the electronic Hilbert space, and the operators
Vg(Q), Ve(Q) represent energies of all nuclear DOF depending on generalized coordinate
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Figure 2.1: Excitation between shifted harmonic potentials.

Q in ground and excited electronic state, respectively. In our model, we consider Vg(Q),
Ve(Q) to be mutually shifted harmonic potentials. (See the illustrating Fig. 2.1.) Now we
write their difference as

Φ(Q) ≡ Ve(Q) − Vg(Q) , (2.4)

which is identical with Φi used in (1.22).
Only by shifting of εe in (2.3a) we can write ∆Φ, defined as (1.27), instead of Φ in

(2.3c). Therefore

Ĥm
S = ǫg |g〉 〈g| + ǫe |e〉 〈e| , (2.5a)

Ĥm
R = Vg(Q) 1 , (2.5b)

Ĥm
S−R = ∆Φ(Q) |e〉 〈e| , (2.5c)

and

ǫg ≡ εg , (2.6a)

ǫe ≡ εe + 〈Φ(Q)〉R . (2.6b)

∆Φ(Q) is described through correlation functions by its mean value. If Qg0
denotes the

value of the coordinate Q in the minimum of Vg(Q) and analogously for Qe0
, then the

difference

λ = Ve(Qg0
) − Ve(Qe0

) , (2.7)

is called reorganisation energy. It is one of the parameters of the correlation function (1.42).
(See Fig. 2.1.)

As we can see from structure of Quantum Master Equation, Ĥm
R does not act on the

system density operator. The reservoir acts on the system through Ĥm
S−R which can be

expressed by the means of correlation functions (1.26) in second order perturbation theory.
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2.1.2 Aggregate Hamiltonian

The system we further examine in this work, is an aggregate of n molecules, where each
of them is supposed to be in its ground state |g〉 or in first excited state |e〉. Let us now
concentrate on constructing its Hamiltonian.

We assume that only states where one or two molecules of the aggregate are excited
have an effect on calculating of an optical spectra. We denote them as

|i〉 ≡ |g1〉 . . . |gi−1〉 |ei〉 |gi+1〉 . . . |gn〉 , (2.8a)

|i < j〉 ≡ |g1〉 . . . |gi−1〉 |ei〉 |g...〉 |ej〉 |gj+1〉 . . . |gn〉 , (2.8b)

and refer to them as to one and two-exciton states, respectively. We also use the notation

|I〉 =





|i〉 for I = i ≤ n

|i < j〉 for I > n, i(I) < j(I)
(2.9)

if it is necessary to work with whole basis of one and two-exciton states together.
The Hamiltonian of the aggregate is

ĤS =
∑

u

ǫu |u〉 〈u| +
∑

u 6=v

(Juv |u〉 〈v| + c.c) +
∑

u<v

(ǫu + ǫv) |u < v〉 〈u < v| (2.10)

+
∑

u<v, r<s
¬(u=r∧v=s)

(jrsuv |u < v〉 〈r < s| + c.c) ,

where ǫi represents electronic excitation energy of i-th molecule, while Juv, jrsuv represent
mutual interaction energies of the particular molecules. We can rewrite the Hamiltonian,
Eq. (2.11), into the form

ĤS =
∑

u

(∆ǫu + Ω) |u〉 〈u| +
∑

u 6=v

(Juv |u〉 〈v| + c.c)

+
∑

u<v

(∆ǫu + ∆ǫv + 2Ω) |u < v〉 〈u < v| (2.11)

+
∑

u<v, r<s
¬(u=r∧v=s)

(jrsuv |u < v〉 〈r < s| + c.c) ,

where

∆ǫi ≡ ǫi − Ω , (2.12)

represents differences between electronic energies of i-th molecule and Ω is the energy of
the optical excitation, typically much larger that differences of energies of molecules. When
performing calculations inside one- or two-exciton density matrix block, Ω can be omitted,
because it represents only a constant shift of the energy. However, one cannot do this when
examining the coherences between these blocks.
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2.2 Correlation Functions

In our model, we always assume interaction with harmonic potential described by correla-
tion functions (1.42). Probably the simplest model is to assume that fluctuations on each
molecule are local and therefore independent of other molecules. In this case it holds

Cij(t) =
1

~2
δijCi(t) (2.13)

for 1-exciton states in local basis.
Correlation functions for 2-exciton states can be constructed unambiguously from this

assumption. Beginning with definition (1.26) we write

Ci<j,u<v(t) = 〈(∆Φi(t) + ∆Φj(t)) (∆Φu(0) + ∆Φv(0))〉R
= (δiu + δiv)Ci(t) + (δju + δjv)Cj(t) , (2.14)

which means not only that the diagonal elements of Ci<j,u<v are nonzero, but also that
those, for which one excited molecule in states |i < j〉, |u < v〉 is shared, are nonzero.

We can also consider a model in which fluctuations on molecules are not strictly local,
but there are cross-correlation terms exponentially decaying with molecular distance. In
this case the correlation functions are not restricted by Eq. (2.13) and their reorganisation
energy is given as

λij = λ0e
−αf(i,j) , (2.15)

where

f(i, j) = f(j, i) (2.16a)

f(i, i) = 0 (2.16b)

is distance function of molecules, for example

f(i, j) = |i− j| (2.17)

for an acyclic aggregate or

f(i, j) = min
k∈Z

|i− j − kn| (2.18)

for a cyclic aggregate. Correlation functions for 2-exciton states are then given by

Ci<j,u<v(t) = Ciu(t) + Civ(t) + Cju(t) + Cjv(t) , (2.19)
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2.3 Asymptotic Behaviour of a Markov Approximation-

Based Algorithm

Let n be number of the molecules in considered aggregate and N is the length of basis
of the used Hilbert space. Then the density matrix, whose evolution we calculate, has N2

elements. Considering only 1-exciton and 2-exciton states,

N = n+
n(n− 1)

2
= O

(
n2

)
. (2.20)

In Eq. (1.45), which we numerically solve, integrals of correlation function (1.46a) have
to be calculated. There is N of them and each has N2 elements, so we need N3 time-
dependent functions to be calculated. Components of the evolution superoperator, relevant
for the 2D-spectra calculations mentioned in the Introduction, give amplitudes of the tran-
sition, among the elements of the 1-exciton density matrix block and the 1-exciton block,
and coherences between the 1-exciton and 2-exciton density matrix blocks. Therefore there
is (2nN)2 elements of evolution superoperator to be calculated.

Hence asymptotic memory and time evaluation requirements of the algorithm are O(n6).

2.4 Direct Solution of the QME by Expanding Cor-

relation Functions into Exponential Functions

Taking closer look on equation (1.29), we can see that if the correlation function Cuv(t)
has property

Cuv(t+ τ) = Cuv(t)Cuv(τ) , (2.21)

(being linear or exponential function), or if it is sum of such terms

Cuv(t+ τ) =
∑

µ

Cµ
uv(t)C

µ
uv(τ) , (2.22)

we can take it outside the integral in rhs of QME and rewrite it into an ordinary differential
equation

d

dt
ρ

(I)
S (t) = −

i

~

∑

u

〈Φu〉
[
P̂ (I)

u (t), ρ
(I)
S (t)

]
−

−
∑

uvµ


P̂ (I)

u (t), Cµ
uv(t)

t∫

t0=0

dτ Cµ
uv(−τ)P̂

(I)
v (τ)ρ

(I)
S (τ) − h.c.




−

, (2.23)

where the transposition in Hermitian conjugation is related to “inner” indices on Hilbert
space on which all used operators are defined, not to indices u, v. We can rewrite this
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equation to the form more convenient for numerical calculation

d

dt
ρ

(I)
S (t) = −

i

~

∑

u

〈Φu〉
[
P̂ (I)

u (t), ρ
(I)
S (t)

]
−

−
∑

uvµ

[
P̂ (I)

u (t), Cµ
uv(t)γ

µ
uvD

µ
v (t) − Cµ

uv
∗(t)γµ

uv
∗Dµ

v
+(t)

]
−
, (2.24a)

d

dt
D̂µ

v (t) =eωµtP̂ (I)
v (t)ρ

(I)
S (t) , (2.24b)

providing

Cµ
uv(t) = γµ

uve
−ωµt , (2.25)

where γµ
uv are time independent. This reduces the size of D̂-matrices by one index saving

memory during calculation.1 Properties (2.22), (2.25) are indeed satisfied in case of the
correlation function (1.42) if we do not take the Matsubara sum to infinity, but only to
some finite number. In this case ωµ are the Matsubara frequencies.

Similar approach of the direct QME solution by taking advantage of the particular form
of correlation functions is described e.g. in the article of Tannor and Meier [17].

1There is furthermore a suitable numerical trick – to substitute D̂µ
v (t) = e−ωµtD̂◦µ

v (t) preventing it
from exponential growth, but we will not make this in detail, since, as shown later, this method suffers
from numerical instability and cannot be used easily.
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Chapter 3

Results of Numerical Computation

3.1 Failure of the Markov Approximation with Non-

Secular Terms

From the numerical calculations we can see that the Markov approximation without ne-
glecting the non-secular terms gives different thermal equilibrium than the secular approx-
imation, Eq. (1.49). This difference is particularly sensitive to the ratio J/∆ǫ, where J is
of the same order of magnitude as interaction energies in aggregate Hamiltonian (2.10)
and ∆ǫ is in the order of magnitude of the differences between the excitation energies in
the one- and two-exciton bands. For small J/∆ǫ, the difference in detail balance is so high
that negative probabilities occur.

This behaviour is a specific failure of the Markov approximation with non-secular terms.
The secular approximation, which leads to the canonical thermal equilibrium, is based on
an assumption that the coherence transfer terms in Eq. (1.46c) do not contribute due to
their fast oscillations in the excitonic basis. Their contribution however, is not small.

Let us write Eqs. (1.46) in the superoperator form

d

dt
ρS(t) = Y(t)ρS(t) , (3.1)

where Y(t) is the superoperator representing the action of the rhs of the Eq. (1.46c) on the
density operator1. As the Y(t) becomes constant due to the correlation functions tending
to zero, and Λ̂u(t) approaches Λ̂∞

u , Eq. (3.1) becomes a linear differential equation with
constant coefficients

d

dt
ρS(t) = Y∞ρS(t) . (3.2)

However, Y∞ can still contain relatively big terms representing a coherence-coherence
transfer.

1Technically, it is the sum of the time-dependent Redfield tensor R(t) and the effective Liouvillian L(eff)

defined by Eq. (1.4), with use of the effective Hamiltonian Ĥ
(eff)
S from the Eq. (1.46b).
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Eq. (3.2) has the solution

ρS(∞) = lim
t→∞

exp(tY∞) ρ0
S (3.3)

for t → ∞. The density matrix ρS(∞) is well-defined if Y∞ has non-positive eigenvalues.
Typically there are zero eigenvalues for the vector subspace of populations and negative
eigenvalues for the dying coherences. In fact, our numerical model shows that there can be
even positive eigenvalues for coherences due to the coherence-coherence transfer terms. In
that case, equation (3.3) diverges. Now we can see that for t → ∞, ρS(t) cannot oscillate
in the Schrödinger picture and therefore has to oscillate in the interaction picture. In that
case, the Markov approximation is no longer fulfilled and it can lead to an unphysical or
incorrect result.

We can conclude that the secular approximation saves the numerical stability of the
model. It gives the canonical thermal equilibrium and ensures that the eigenvalues of Y∞

are non-positive. However it cannot, from the principle, describe the coherence transfer
effects, which, as we show later in this work, cannot be generally neglected and play an
important role in the description of the long-lasting oscillations.

3.1.1 Markov Approximation Failure in Case of a Dimer

Let us examine the failure of the Markov approximation on a particular physical system
– a dimer. We are interested in a time evolution of the one excitonic block of the density
matrix and we therefore choose respective part of the Hamiltonian (2.10) as

ĤS =

(
ǫ1 J
J ǫ2

)
. (3.4)

Let

ǫ1 = 0 , (3.5a)

ǫ2 = ∆ǫ , (3.5b)

where ∆ǫ is difference between the electronic excitation levels. Unlike in other numerical
experiments presented in this work, we set an initial condition to be

(
ρ0

S

)
ij

= δij (3.6)

in local basis. (One of molecules is in an excited state, others are in the ground state.)
Fig. 3.1 shows the result in the excitonic basis. The Redfield equations with the Markov

approximation and with the additional secular approximation are compared. In the first
row, populations are plotted. At the beginning, both cases give approximately the same
result, but at some critical time, equations with and without the secular approximation
start to differ from each other and on the time scale much larger that coherence time τ i

C,
positivity of the Markov solution breaks down. We obtain a strongly unphysical result. In
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the next row, real and imaginary part of (single) coherence is plotted in the Schrödinger
picture. In the secular approximation, coherence disappears on the scale of τ i

C. In Redfield
equations, coherence prevails and it slowly stops oscillating.

We can illustrate our explanation of the Markov approximation failure on the plot of
the dimer coherence in the interaction picture (Fig. 3.1) – as one can see here, until ap-
proximately τ i

C, coherence does not oscillate. As the Markov approximation demands, it
is more or less slow envelope with no fast oscillations2. However as the coherence stops
oscillating in the Schrödinger picture (as the evolution superoperator from Eq. (3.3) be-
comes constant), it starts to oscillate in the interaction picture. This causes the Markov
approximation failure and the populations becomes strongly negative and unphysical.

3.2 Numerical Instability in Direct Solution of the

QME

We implemented the method described in the Section 2.4 in Mathematicar 6.0 and we used
multiple numerical methods to solve set of differential equations (2.24) for a dimer. However
we encountered severe numerical instability causing diverging ultra-fast oscillations. We
therefore used the method based on convolution described in the Section 1.9 instead.

3.3 Discussion of Canonical Equilibrium in the QME

If we take the QME in the form (1.50) and want to study its constant solution and its
uniqueness, we simply look for eigenvectors of the superoperator (1.67) corresponding to
the eigenvalue 0. This eigenvalue was non-degenerate in cases we tested, which means the
QME has unique long-time limit solution here. Moreover, our numerical results suggests
that, the solution of the QME doesn’t always lead to canonical equilibrium (1.49) – there
are some coherences which remain non-zero even for t→ ∞.

This result contradicts the proof in book of May-Kühn [6], where authors claim that
limit solution of the QME is canonical equilibrium. Their argumentation proofs that if there
is constant solution of the QME ρ0

QME, which has zero coherences, then its populations
are distributed according to canonical equilibrium. They however do not verify that this
solution satisfies the QME in its coherences part, which it doesn’t. In fact, non-canonical
equilibrium as unique constant solution of the QME does not contradict thermodynamics
either, because the canonical equilibrium is proven to establish only in closed, canonical
systems, while the QME describes an open system in interaction with reservoir.

Some articles support this result, e.g. [13]. It gives multiple reasons why equilibrium of
an open system differs from the canonical one. In general, we can say that terms of the

2The left Fig. 3.1c shows that there are some fast oscillations of the slow envelope even in the beginning
of the time evolution – this might mean that the Markov approximation prediction that oscillations of
population states (Fig. 3.1a, left) are bigger than those predicted by the secular approximation (Fig. 3.1a,
right), might be also wrong.
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(b) Coherence 12 in the Schrödinger picture.
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(c) Coherence 12 in the interaction picture.

Figure 3.1: Markov approximation failure.
∆ǫ = 240 cm−1, J = 300 cm−1, τ i

C = 75 fs, λi = 200 cm−1, T = 100 K.

29



total Hamiltonian connecting system and reservoir are responsible, because they cause that
(canonical) equilibrium state of the total system cannot be decomposed into system and
reservoir part and the system relaxes to an equilibrium which is a superposition between
them. This effectively changes the basis in which the subsystem relaxes to equilibrium.

3.4 Time Evolution of a Trimer

3.4.1 Parameters of the Numerical Experiment

In this section, we examine an aggregate of three molecules in detail. It is the simplest
system, where more than one coherence is present in the one-exciton block. It is therefore
not too complicated to be clearly described3 and, on the other hand, it involves all of the
coherence transfer effects we are interested in.

Let us start with the Hamiltonian

ĤS =
(
0
)
⊕




∆ǫ1 + Ω J12 J13

J12 ∆ǫ2 + Ω J23

J13 J23 ∆ǫ3 + Ω


 (3.7)

written as a direct sum of the ground-state block and the one exciton block, according to
Eq. (2.11). The two-exciton block is omitted, because we do not use it now. Its presence
is however crucial for calculation of nonlinear spectra. Further in this work, we use more
specific form of Hamiltonian (3.7), assuming

∆ǫ ≡ ∆ǫ2 − ∆ǫ1 = ∆ǫ3 − ∆ǫ2 , (3.8a)

J ≡ J12 = J13 = J23 . (3.8b)

Figure 3.2: Illustration of the trimer structure.

Correlation functions Ci(t) of i-th molecule depend on the bath temperature T , re-
organisation energy λi and correlation time τ i

C. The local model of correlation functions
(2.13) is used, i.e. the fluctuations on different molecules are not correlated. The system

3Despite the fact that a trimer is the simplest system where all the effects we are interested in are
involved, it is still pretty complicated. Especially number of graphs is big. For this reason we decided to
move most of them to Appendix A, although we refer to them from the text of this section.
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is excited by a short laser pulse to the state given by (1.78) at t = 0. The dipole moment
operator

µ̂ = µ0




0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0


 (3.9)

is used. Again, only the ground state and the one-exciton block are given. The laser field
intensity E0 from Eq. (1.78) and dipole momentum amplitude µ0 are chosen to be4

E0µ0 = 0.4 cm−1 fs (3.11)

in the whole work, if not stated otherwise.
In the second order description of the excitation, the two-exciton block is not excited.

The population of the ground state is constant after the excitation, so we calculate only the
time evolution of the populations of one-excitons and evolution of the optical coherences
(OC).

3.4.2 Comparison of the Time Evolution in Various Approxima-

tions

We compare the time evolution of the trimer populations and optical coherences solved
using the QME, the Markov approximation and secular approximation in this subsection.
In appendix A.1, we can see results of three numerical experiments, performed for different
electron excitation energy levels, ∆ǫ, on figures A.1-A.5.

Let us examine the time evolution of the 1-exciton block. On Fig. A.1, we can see that
for a homotrimer with ∆ǫ = 0, the lower excitonic state is twice degenerated. Because
of this fact, aggregate is in the excitonic eigenstate after excitation in t = 0, therefore
difference between the secular approximation and the Markov approximation is very small.
(There are no coherences to be neglected in the excitonic basis and the system apparently
stays approximately in the excitonic eigenstate.) Fig. A.3a illustrates failure of the Markov
approximation (see Section 3.1) – the negative probabilities occur in the thermal equilib-
rium and the coherences do not disappear. Transforming it into bases where coherences
are zero cannot, of course, change negative populations to be positive. From the graphs

4There might be certain confusion about the used units, but it can be easily checked that everything is
all right. There is a term

E(t)µ0

~
=

E0µ0δ(t)

~
(3.10)

in the time evolution equation (1.69). This term contributes to the value of the density matrix time
derivative, which has dimension of inverse time. E(t)µ0 has clearly a dimension of energy, therefore because
δ(t) has a dimension of inverse time, E0, defined by Eq. (1.74), has a dimension of energy multiplied by
time. It represents laser electric field intensity integrated over time.
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on Figs. A.1f-A.3f, we can see that coherences in the direct solution of the QME do not
disappear too. This is discussed in Section 3.3 in detail.

Fig. A.4 shows the time evolution of the optical coherences. One can see very a sharp
difference between the Redfield equations and the QME, which predicts an oscillations of
the OC envelope.

In Section A.4, we also examine case where the interaction energies λi related to the i-th
molecule differ from each other. Numerical calculations suggest (Fig. A.13) that difference
between molecules interaction energies increases the value of the coherences which remain
in limit t → ∞. It also slightly changes the shape of the optical coherences envelope – it
adds some characteristic oscillations. (Compare Fig. A.13b and Fig. A.14b with Fig. A.4e.)

We can make an important observation – coherences in the Markov approximation decay
approximately in the same time as in the secular approximation, while in the QME solution,
they decay in much longer time. This is an important result, because it implies that the
observed long lasting oscillations in the FMO 2D spectrum [5], can be explained by the
QME, but not by the Redfield equations.

3.4.3 Temperature Dependence

Let us examine a temperature dependence of the system time evolution. We take the
Hamiltonian of the trimer (3.7) again, and perform calculation based on the QME for
multiple temperatures. The result is shown on Fig. A.11. We focus only on the population
1, coherence 12 and optical coherence 2 of the trimer to preserve clarity. The results for
other populations and coherences are analogous.

First observation we can make is that the population approaches the thermal equilib-
rium, which shifts with temperature. The amplitude of oscillations in the beginning of the
time evolution increases with temperature, so do their frequency, although there is only
a small shift in it. We can make the same observation in case of the one-exciton coher-
ence. Their persisting real part decreases with temperature, which raises the question if
the excitonic basis is the one where relaxation takes places at least in high temperature
limit.

In the time evolution of the optical coherence, we can see only its envelope – its oscil-
lations are too fast to be reasonably plotted and depend only on properties of ĤS, not of
the correlation functions properties (T ,λi,τ

i
C). Frequency of the occurrence of the envelope

maxima increases with the temperature much like its amplitude. Numerical result also
does not suggest that the optical coherence decay time would be significantly temperature-
dependent.

3.4.4 Coherence Transfer Effects, Time Evolution Superoperator

Probably the best way of illustrating coherence transfer effects is to study the components
of the time evolution superoperator Uij,kl(t), which transforms the density operator element
ρSkl = δkl to matrix ρSij(t). (Let indices i, j, k, l, go through 1-exciton states and index g
represent ground state in this subsection.)
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Elements of Uij,kl(t), where k 6= l, i 6= j and k 6= i∨j 6= l represent coherence-coherence5

transfer, elements k 6= l, i = j represent contribution from coherence to population, ele-
ments k = l, i = j from population to population and elements k = l, i 6= j contribution
from population to coherence. Elements Ugj,gl(t) are related to optical coherences. Case
j = l represent OC dephasing, while case j 6= l represent OC-OC transfer.

In the appendix A.2, U is calculated for the trimer for energy differences ∆ǫ = 20 and
∆ǫ = 120, using the QME. Generally, we can say that all components of the type coher-
ence → populations and coherence → coherences disappear in sufficiently long time, while
components of the type population → populations do not relax exactly to the canonical
equilibrium, therefore even terms population → coherences do not disappear in long times.
However, only the real part of the coherences remains in the excitonic basis. Further, coher-
ences survive much longer time than the coherence time τ i

C used in correlation functions.
This effect can be attributed to the sensitivity of the QME to whole system history.

Optical coherences (Fig. A.8) exhibit fast oscillations because of the large energy differ-
ence between ground state and one-exciton block. They depend on the Hamiltonian ĤS, in
particular on value of optical frequency Ω, and not on much slower relaxation process de-
scribed by correlation function properties. From these reasons we can focus only on slowly
changing envelope of these oscillations.

5Here, by word coherence, we understand in particular the coherence inside the 1-exciton block, i.e. not
the optical coherences.
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Chapter 4

Conclusion

We modelled numerically the time evolution superoperators for molecular aggregates, con-
sidering the one-exciton states1, in the Markov and secular approximations and the convo-
lutional QME with no additional approximation. Comparing them, we can conclude that
the Markov approximation does not give correct results for wide range of parameters nor
can it explain long-lasting oscillations of the coherences visible in the FMO 2D spectra. The
secular approximation, which completely neglects coherence transfer effects, is numerically
more stable than the Markov approximation and leads to canonical thermal equilibrium.
The QME itself predicts long-lasting coherences oscillations, most probably because the
system time evolution is given by its whole history (damped by the correlation function),
not only by its actual state. They may be caused by oscillations of coherences in the one-
exciton block, i.e. by the coherence transfer effects. This means that the Redfield equations
cannot explain the long-lasting coherences oscillations observed on the FMO complex while
the QME can.

It have been observed and discussed on the basis of numerical calculations, that the
exciton basis is generally not the one in which the relaxation to the thermal equilibrium
takes place. This effect, again, cannot be explained by the secular approximation.

The temperature dependence of the trimer time evolution has been examined and it has
been observed that the amplitude of the populations oscillations increases with temperature
in our model, coherence decay time does not change significantly and the frequency of the
optical coherence envelope maxima, as well as frequency of the populations oscillations,
increases.

The amplitude of the coherence-transfer effects has been discussed on an example of a
trimer. The value of the coherence-coherence terms is approximately one order of magni-
tude smaller than the value of coherence itself and it cannot be generally neglected. They
contribute to coherences and population oscillations and they last approximately the same
time as the coherences themselves. The coherence transfer cannot be separated from a
contribution of the QME convolution terms, therefore it cannot be said, that presence of
one coherence contributes to change of a second coherence. Only the components of the

1However, we described also the theory for the two-exciton states and our program is written to use
them as well.
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time evolution superoperator can be calculated – they were calculated in the Subsection
3.4.4 and the related appendix A.2.

The obtained results indicate that there are aspects of the problem that cannot be
satisfactorily described by the Redfield equations and the QME without the Markov and
secular approximations has to be solved directly instead. The obtained evolution superop-
erators can be used to calculate 2D spectra of molecular aggregates in order to get a direct
comparison with experiment. This is also a course of the planned future work on this field.
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Appendix A

Supplementary Graphs

Here, we present all graphs which would clutter the previous chapters.
In all sections of this appendix, except of the section A.2, following notation holds:

population 1, coherence 12 and OC 1 are blue, population 2, coherence 13 and OC 2 are
purple and population 3, coherence 23 and OC 3 are yellow. In section A.3, different colours
denote different temperatures specified in the figure description. Temperature ordering
from the lowest to the highest can be easily assigned according to thermal equilibria of
populations.

We also remind that populations in the 1-exciton block are not normalized to unity –
the initial condition is given by a laser ultra-short pulse of a chosen intensity, therefore
there is also some occupancy of the ground state, whose time evolution is trivial and not
plotted. In the section A.2, on the other hand, components of time evolution superoperator
are plotted directly, and normalisation of populations to unity holds.
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A.1 Comparison of Evaluation Methods, Trimer
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Figure A.1: Populations of the trimer.
∆ǫ = 0 cm−1, J = 200 cm−1, τ i

C = 100 fs, λi = 100 cm−1, T = 300 K.
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Figure A.2: Populations of the trimer.
∆ǫ = 20 cm−1, J = 200 cm−1, τ i

C = 100 fs, λi = 100 cm−1, T = 300 K.
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(c) Secular approximation, populations (d) Secular approximation, coherences, Absx.
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Figure A.3: Populations of the trimer.
∆ǫ = 120 cm−1, J = 200 cm−1, τ i

C = 100 fs, λi = 100 cm−1, T = 300 K.
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(a) Markov approximation, ∆ǫ = 0 cm−1. (b) Markov approximation, ∆ǫ = 20 cm−1.
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(c) Secular approximation, ∆ǫ = 0 cm−1. (d) Secular approximation, ∆ǫ = 20 cm−1.
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(e) QME, ∆ǫ = 0 cm−1. (f) QME, ∆ǫ = 20 cm−1.

Figure A.4: Optical coherences of the trimer, Abs x.
Ω = 104 cm−1, J = 200 cm−1, τ i

C = 100 fs, λi = 100 cm−1, T = 300 K.
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(a) Markov approximation, ∆ǫ = 120 cm−1.
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(b) Secular approximation, ∆ǫ = 120 cm−1.
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(c) QME, ∆ǫ = 120 cm−1.

Figure A.5: Optical coherences of the trimer, Abs x.
Ω = 104 cm−1, J = 200 cm−1, τ i

C = 100 fs, λi = 100 cm−1, T = 300 K.
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A.2 Trimer Time-Evolution Superoperator
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(a) population 1 → populations. (b) population 1 → coherences, Re x.
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(c) population 2 → populations. (d) population 2 → coherences, Re x.
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(e) population 3 → populations. (f) population 3 → coherences, Rex.

Figure A.6: Uij,kl(t), components: populations → populations & coherences.
∆ǫ = 20 cm−1, J = 200 cm−1, τ i

C = 100 fs, λi = 100 cm−1, T = 300 K.
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(a) coherence 12 → populations. (b) coherence 12 → coherences, Rex.
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(c) coherence 13 → populations. (d) coherence 13 → coherences, Rex.
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(e) coherence 23 → populations. (f) coherence 23 → coherences, Re x.

Figure A.7: Uij,kl(t), components: coherences → populations & coherences.
∆ǫ = 20 cm−1, J = 200 cm−1, τ i

C = 100 fs, λi = 100 cm−1, T = 300 K.
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(a) OC 1 → OCs , ∆ǫ = 20 cm−1, Abs x. (b) OC 1 → OCs, ∆ǫ = 120 cm−1, Absx.
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(c) OC 2 → OCs , ∆ǫ = 20 cm−1, Absx. (d) OC 2 → OCs, ∆ǫ = 120 cm−1, Absx.
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(e) OC 3 → OCs , ∆ǫ = 20 cm−1, Absx. (f) OC 3 → OCs, ∆ǫ = 120 cm−1, Absx.

Figure A.8: Ugj,gl(t), components: optical coherences → optical coherences.
Ω = 104 cm−1, J = 200 cm−1, τ i

C = 100 fs, λi = 100 cm−1, T = 300 K.
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(a) population 1 → populations. (b) population 1 → coherences, Re x.
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(c) population 2 → populations. (d) population 2 → coherences, Re x.
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(e) population 3 → populations. (f) population 3 → coherences, Rex.

Figure A.9: Uij,kl(t), components: populations → populations & coherences.
∆ǫ = 120 cm−1, J = 200 cm−1, τ i

C = 100 fs, λi = 100 cm−1, T = 300 K.
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(a) coherence 12 → populations. (b) coherence 12 → coherences, Rex.
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(c) coherence 13 → populations. (d) coherence 13 → coherences, Rex.
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(e) coherence 23 → populations. (f) coherence 23 → coherences, Re x.

Figure A.10: Uij,kl(t), components: coherences → populations & coherences.
∆ǫ = 120 cm−1, J = 200 cm−1, τ i

C = 100 fs, λi = 100 cm−1, T = 300 K.
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A.3 Temperature Dependence, Trimer
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(a) QME, population 1 (b) QME, OC 2, Abs x.
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(c) QME, coherence 12, Rex (d) QME, coherence 12, Imx.

Figure A.11: T dependence of selected trimer population and coherence time evolution.
∆ǫ = 120 cm−1, J = 200 cm−1,Ω = 104 cm−1, τ i

C = 100 fs, λi = 100 cm−1,
T = 100 K, 200 K, 300 K & 500 K.
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(a) QME, population 1 (b) QME, OC 2, Abs x.
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Figure A.12: T dependence of selected trimer population and coherence time evolution.
∆ǫ = 20 cm−1, J = 200 cm−1,Ω = 104 cm−1, τ i

C = 100 fs, λi = 100 + 60i cm−1,
T = 100 K, 200 K, 300 K & 500 K.
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A.4 Trimer Time Evolution for Another Interesting

Cases
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Figure A.13: Trimer time evolution with different reorganisation energies on its molecules.
∆ǫ = 0 cm−1, J = 200 cm−1, ,Ω = 104 cm−1, τ i

C = 100 fs, λi = 100 + 60i cm−1, T = 300 K.
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Figure A.14: Trimer time evolution with different reorganisation energies on its molecules.
∆ǫ = 0 cm−1, J = 200 cm−1,Ω = 104 cm−1, τ i

C = 100 fs, λi = 100 + 60i cm−1, T = 100 K.
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