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Abstract: The presented work is split into two parts. The first part is devoted to the
theory of the discontinuous Galerkin finite element (DGFE) method for the space-time
discretization of a nonstationary convection-diffusion initial-boundary value problem
with nonlinear convection and linear diffusion. The DGFE method is applied sep-
arately in space and time using, in general, different space grids on different time
levels and different polynomial degrees p and q in space and time discretization. The
main result is the proof of error estimates in L2(L2)-norm and in DG-norm formed
by the L2(H1)-seminorm and penalty terms. The second part of the thesis deals with
the realization of fluid-structure interaction problem of the compressible viscous flow
with the elastic structure. The time-dependence of the domain occupied by the fluid
is treated by the ALE (Arbitrary Lagrangian-Eulerian) method, when the compress-
ible Navier-Stokes equations are formulated in the ALE formulation. The deformation
of the elastic body, caused by the aeroelastic forces, is described by the dynamical
elasticity equations. Both these systems are coupled by the transmission conditions.
For the space discretization of the flow problem the DGFE method is used. The time-
discretization is realized by the backward difference formula. The structural problem
is discretized by conforming finite element method and the Newmark method. The
fluid-structure interaction is realized via weak or strong coupling algorithms. The de-
veloped technique is tested by numerical experiments and applied to the simulation
of vibrations of vocal folds during phonation onset.
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Abstrakt: Předkládaná práce je rozdělena do dvou část́ı. Prvńı část se zabývá
teoríı nespojité Galerkinovy metody konečných prvk̊u (DGFEM) pro časoprostorovou
diskretizaci nestacionárńıho problému konvekce-difuze s nelinearńı konvekćı a linearńı
difuźı. DGFEM je aplikována odděleně v čase a prostoru s užit́ım obecně rozd́ılných
śıt́ı na r̊uzných časových úrovńıch a polynomů obecně rozd́ılných řád̊u p a q pro pros-
torovou a časovou diskretizaci. Hlavńım zájmem této části je d̊ukaz odhadu chyby
metody v L2(L2)-normě a v DG-normě. Druhá část práce pojednává o problému in-
terakce stlačitelného vazkého prouděńı s elastickým tělesem. Časová závislost oblasti
vyplněné tekutinou je brána v potaz pomoćı ALE metody a stlačitelné Navierovy-
Stokesovy rovnice jsou formulovány v ALE tvaru. Deformace elastického tělesa
zp̊usobená aerodymickými silami je popsána pomoćı dynamických rovnic elastického
tělesa. Oba systémy jsou propojeny přechodovými podmı́nkami. Diskretizece prouděńı
je v prostoru provedena pomoćı DGFEM a v čase s využit́ım metody zpětných dife-
renćı. Problém elastické struktury je diskretizován pomoćı metody konečných prvk̊u
a Newmarkovy metody. Interakce je realizována pomoćı silné a slabé vazby. Vyvinutá
technika je testována na numerických experimentech a aplikována na simulaci vibraćı
lidských hlasivek na začátku fonace.
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Introduction

At the current speed of technology progress, the coupled problems describing the
interactions of fluid flow with elastic structure motion are of great importance in
many fields of physical and technical sciences such as biomechanics, aerospace, civil
and mechanical engineering, etc.. The need of the modeling of flow around flexible
structures leads to the developement of a new scientifical and technical discipline:
the aeroelasticity. The aeroelasticity has many important engineering and scientific
applications (e.g. in aerospace industry - aircraft design and safety; in civil engineering
- stability of bridges, towers, smokestacks or skyscrapers; in mechanical engineering -
bladed machines, ect.). The consequence of the aeroelastic effects can positively (the
flow-induced vibration producing voice in human vocal folds) or negatively (the flow-
induced vibration leading to material fatigue or inducing excessive noise generation)
affect the operation of the system. The problems of the interaction of fluid flow
with elastic structures were studied by a number of different methods in several
books (e.g. [36], [27], [51], [28], [14], [54], [55]). Mostly, simplified linearized problems
applied in technology are used. Recently, the research focuses also on mathematical
and numerical modeling of nonlinear coupled problems. This represents complicated
mathematical problems caused by the time-dependence of the computational domain
and by the necessity of coupling of the flow problem with the elasticity problem. Here,
we can mention for example the papers [42], [38], [40], [52]. In the case of overcoming
the problems of coupling elasticity of the body with the flow problem we need to solve
difficulties linked with the simulation of compressible flow. Due to the simulation of
compressible flow in the time dependent domain, which is affected by the behaviour of
the elastic structure, it is necessary to treat problems caused by nonlinear convection
dominating over diffusion, i.e. boundary layers and wakes for large Reynolds numbers
and instabilities caused by acoustic effects for low Mach numbers. A suitable numerical
method for the solution of compressible flow suffering from mentioned difficulties is
the discontinuous Galerkin finite element (DGFE) method.

This thesis is split into two main parts. The first part is devoted to the theoretical
analysis of the space-time discontinuous Galerkin method for nonlinear convection-
diffusion problems. In the second part we are concerned with the simulation of flow-
induces vibrations of human vocal folds.

The discontinuous Galerkin finite element method represents a good technique
allowing to realize numerical approximations of nonlinear differential equations in do-
mains with a complex geometry, whose solutions have a complicated structure. The
use of piecewise polynomial approximations of the sought solution on finite element
meshes without any requirement on the continuity between neighbouring elements can
be considered as an generalization of the finite volume and finite element methods.
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This gives us the advantages of the both mentioned methods and the possibility of
applications on unstructured grids used in the case of complex geometries. The DGFE
methods allow also to construct higher order schemes in a natural way, which is suit-
able for the approximation of discontinuous solutions of conservation laws or solutions
of singularly perturbed convection-diffusion problems having steep gradients.

The original DGFE method was first used in [59] for the solution of a neutron
transport linear equation and analyzed theoretically in [50] and later in [46]. The deve-
lopement of the DGFE techniques for the numerical solution of second-order elliptic
problems or parabolic problems ([5], [66]) and a biharmonic problem ([10]) comes
nearly simultaneously. Further, the DGFE method was applied to a wide range of
problems, e.g. convection-diffusion linear or nonlinear problems ([15], [17], [18], [35],
[32]), compressible flow ([11], [12], [13], [21], [22], [41], [65]), etc.. Theoretical analysis
of various types of the DGFE method can be found, e.g. in [6], [7], [8], [60], [45].

In the first part of this thesis we are concerned with the space-time discontinu-
ous Galerkin discretization applied separately in space and in time for the numerical
solution of a nonstationary nonlinear convection-diffusion equation with a linear dif-
fusion and nonlinear convection. The diffusion coefficient is a fixed positive constant.
A singularly perturbed case with dominating convection is not considered. The main
subject of this part of the thesis is the derivation of error estimates of the space-time
DGFE method. Error estimates are derived under the assumption that the triangu-
lations on all time levels are uniformly shape regular and the exact solution has some
regularity properties. The time interval is split into subintervals and on each time level
a different space mesh may be used in general. This is a suitable approach particularly
in the case of the use of the space mesh adaptivity in the course of increasing time.
Moreover, the triangulations used for the space discretization may be nonconforming
with hanging nodes. The nonsymmetric, symmetric and incomplete versions of the
discretization of the diffusion terms and interior and boundary penalty (i.e. NIPG,
SIPG or IIPG versions) are used in the discontinuous Galerkin formulation. Piecewise
polynomial approximations of different degrees p and q are applied for the space and
time discretization. The error estimates are optimal in time, if the Dirichlet boundary
conditions have behaviour in time as a polynomial of degree ≤ q.

The structure of the first part of the thesis is the following. The continuous problem
is formulated together with the main assumptions. Then the discontinuous Galerkin
discretization in space and time is described. Further, some auxiliary results concern-
ing properties of the forms appearing in the definition of the approximate solution
are obtained. On the basis of these results the abstract error estimate is derived and
the error estimates of the discontinuous Galerkin space-time discretization in terms
of the sizes of the space and time meshes are proven.

In this part of the thesis we often cite and use techniques from articles [23], [24],
[25] and [26]. In these articles only the space discretization of the problem is carried
out by the discontinuous Galerkin finite element method. By contrast we deal with
both space and time discontinuous Galerkin discretization.

The second part of this thesis is devoted to the numerical simulation of fluid-
structure interaction. Especially we are focused on the modeling of flow-induced vi-
brations of the human vocal folds during the phonation onset. It means that we need
to take into account the simulation of compressible viscous flow in a time-dependent
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domain together with the elasticity behaviour of the channel walls formed by an
elastic structure.

Our goal is the numerical finite element (FE) simulation of interaction of 2D
compressible viscous flow in the glottal region with a compliant tissue of the human
vocal folds modeled by a 2D elastic layered structure. A question is the mathematical
and physical description of the mechanism for transforming the airflow energy in
the glottis into the acoustic energy representing the voice source in humans. The
primary voice source is given by the airflow coming from the lungs that causes self-
oscillations of the vocal folds. The voice source signal travels from the glottis to the
mouth, exciting the acoustic supraglottal spaces, and becomes modified by acoustic
resonance properties of the vocal tract [62].

In [3] we can find an overview of the current state of mathematical models for the
human phonation process. Such models are valuable tools for providing insight into
the basic mechanisms of phonation and in future could help with surgical planning,
diagnostics and voice rehabilitation. In current publications various simplified glottal
flow models are used. They are based on the Bernoulli equation ([62]), 1D models
for an incompressible inviscid fluid ([43]), 2D incompressible Navier-Stokes equations
solved by the finite volume method ([4]) or finite element method ([20]). Acoustic wave
propagation in the vocal tract is usually modeled separately using linear acoustic
perturbation theory ([63]). Also the work [57], which is concerned with the finite
volume solution of the Navier-Stokes equations for a compressible fluid with prescribed
periodic changes of the channel cross-section of the glottal channel, can be found. The
phonation onset was studied by using the potential flow model and three-mass lumped
model for the vibrating vocal folds in [44] and for a 2D isotropic elastic model of the
vocal folds in [67].

In the second part of this thesis we shall describe step by step a technique of the
numerical simulation of vocal folds vibrations induced by compressible viscous flow.
The first chapter of this part will be devoted to the description of the airflow by
the Navier-Stokes equations or by the Euler equations. The dimensionless governing
equations will be derived and the transformation of the governing equations to the
arbitrary Lagrangian-Eulerian (ALE) form will be presented, which allows us to treat
the time-dependency of the domain occupied by air. In the second chapter of this
part we shall pay attention to the model of human vocal folds that are considered
as isotropic elastic bodies. The linear elasticity equations used for the description of
vibrations of vocal folds are presented. In the next chapter we shall take into account
the coupled problem, which presents a strongly nonlinear dynamical system. Coupling
conditions together with the continuous coupled problem will be described.

Further two chapters will be focused on the discretization of the flow and struc-
tural problems separately. The flow problem is discretized in space by the discon-
tinuous Galerkin finite element method, using piecewise polynomial approximations,
in general discontinuous on interfaces between neighbouring elements. The time dis-
cretization is carried out by the backward difference formula (BDF) in time. The
structural problem is approximated by conforming finite elements and the Newmark
method.

The next chapter will present the construction of the ALE mapping with the aid of
a stationary elasticity problem together with its discretization and the formulation of
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the discrete fluid-structure interaction problem. The weak (loose) and strong coupling
algorithms will be described.

Further, the algorithmization of the developed method and the description of the
programme which was worked out are presented. The described method was applied
to the solution of several problems. First we present the results obtained in a simplified
computational domain with the use of three different meshes with different numbers
of elements. The comparison of these results allows us to demonstrate the convergence
tendency of the method. The applicability and robustness of the developed method
are shown on the second example representing approximate human vocal folds region
with a more realistic model of an elastic part. At the end we mention some open
problems and specify subjects for a further work.
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Part I

Analysis of space-time
discontinuous Galerkin method for

nonlinear convection-diffusion
problems
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Chapter 1

Continuous problem

In Part I we shall be concerned with the theoretical analysis of the space-time discon-
tinuous Galerkin method for the numerical solution of a nonstationary convection-
diffusion equation. This problem represents a very simplified model of the flow prob-
lem, which will be an ingredient of the problem simulated in Part II.

In this chapter the continuous problem for the mentioned model equation is formu-
lated and the main assumptions are introduced. The presented problem is simplified
due to the targeting the error analysis.

In what follows we denote by IR the set of all real numbers and by IN the set of
all natural numbers.

Let us consider a bounded polyhedral domain Ω ⊂ IRd (d = 2 or 3) and a time
interval (0, T ) ⊂ IR with T > 0. Then we formulate the following initial-boundary
value problem: Find u : QT = Ω× (0, T ) −→ IR such that

∂u

∂t
+

d∑

s=1

∂fs(u)

∂xs
− ε∆u = g in QT = Ω× (0, T ), (1.1)

u|∂Ω×(0,T ) = uD, (1.2)

u(x, 0) = u0(x), x ∈ Ω. (1.3)

We assume that ε > 0 is a constant, g : QT −→ IR and f = (f1, . . . , fd), fs ∈
C1(IR), |f ′

s| ≤ C, s = 1, . . . , d. This means that the fluxes fs are Lipschitz-continuous
in IR, which simplifies the problem and makes some further estimates possible. As an
example of an application of this assumption we can mention estimate (3.10).

It is possible to prove the existence and uniqueness of a weak solution to problem
(1.1)-(1.3) using techniques presented in [61].

In the following part we use the standard notation of function spaces (see, e.g.
[49]). If ω is a bounded domain, we define the Lebesgue spaces

L∞(ω) =
{

measurable functions ϕ; ‖ϕ‖L∞(ω) = essupx∈ω |ϕ(x)| <∞
}

,

L2(ω) =

{

measurable functions ϕ; ‖ϕ‖L2(ω) =

(
∫

ω

|ϕ|2
)1/2

<∞

}

11



Chapter 1. Continuous problem

and the Sobolev space

Hk(ω) =







ϕ ∈ L2(ω); ‖ϕ‖Hk(ω) =




∑

|α|≤k

‖Dαϕ‖2L2(ω)





1/2

<∞







,

with the seminorm

|ϕ|Hk(ω) =




∑

|α|=k

‖Dαϕ‖2L2(ω)





1/2

.

We also use the Bochner space. Let X be a Banach space with a norm ‖·‖X and
a seminorm |·|X and let s be an integer. Then we define:

C([0, T ];X) =

{

ϕ : [0, T ] → X, continuous, ‖ϕ‖C([0,T ];X) = sup
t∈[0,T ]

‖ϕ(t)‖X <∞

}

,

L2(0, T ;X) =

{

ϕ : (0, T ) → X, strongly measurable, ‖ϕ‖2L2(0,T ;X) =

∫ T

0

‖ϕ‖2X dt <∞

}

,

Hs(0, T ;X) =

{

ϕ ∈ L2(0, T ;X); ‖ϕ‖2Hs(0,T ;X) =

∫ T

0

s∑

α=0

∥
∥
∥
∥

∂αϕ

∂tα

∥
∥
∥
∥

2

X

dt <∞

}

.

Moreover, we set

|ϕ|C([0,T ];X) = sup
t∈[0,T ]

|ϕ|X ,

|ϕ|L2(0,T ;X) =

(∫ T

0

|ϕ|2X dt

)1/2

,

|ϕ|Hs(0,T ;X) =

(
∫ T

0

∣
∣
∣
∣

∂sϕ

∂ts

∣
∣
∣
∣

2

X

dt

)1/2

.

We say that u satisfying (1.1)-(1.3) is a strong solution, if

u ∈ L2(0, T ;H2(Ω)) (1.4)
∂u
∂t

∈ L2(0, T ;H1(Ω)). (1.5)

The strong solution satisfies equation (1.1) pointwise (almost anywhere).
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Chapter 2

Discretization

The aim of this chapter is the derivation of the discrete problem. First we need to
explain our requirements on the construction of a mesh in QT and used notation. Also
spaces of discontinuous functions and forms defined on this spaces will be presented.

2.1 Construction of a mesh in QT

In the time interval [0, T ] we shall construct a partition formed by time instants
0 = t0 < . . . < tM = T and denote the interval Im = (tm−1, tm) with the time step
τm = tm − tm−1. Then we have [0, T ] =

⋃M
i=1 Īm, Im ∩ In = ∅ for m 6= n.

For each Im we consider a partition Th,m of the closure Ω̄ of the domain Ω into a
finite number of closed d-dimensional simplices (triangles for d = 2 and tetrahedra for
d = 3) with mutually disjoint interiors. We shall call Th,m a triangulation of Ω and the
standard properties of Th,m used in the finite element method are not required. This
means that the so-called hanging nodes (and in 3D also hanging edges) are admitted.
The partitions Th,m can be in general different for different m.

K1

K2

K3

K4

K5

Γ1

Γ2

Γ3Γ4

Γ5

Γ6

Γ7

Γ8

~nΓ1

~nΓ2

~nΓ3

~nΓ4

~nΓ5

~nΓ6

~nΓ7

~nΓ8

Figure 2.1: Example of elements Kl, l = 1, . . . , 5, and faces Γl, l = 1, . . . , 8, with
the corresponding normals nΓl
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Chapter 2. Discretization

Let K, K ′ ∈ Th,m. We say that K and K ′ are neighbouring elements (neighbours),
if the set ∂K ∩ ∂K ′ has positive (d − 1)-dimensional measure. We call Γ ⊂ K a
face of K, if it is a maximal connected open subset either of ∂K ∩ ∂K ′, where K ′

is a neighbour of K, or of ∂K ∩ ∂Ω. Fh,m denotes the system of all faces of all
elements K ∈ Th,m. Further, by FB

h,m = {Γ ∈ Fh,m; Γ ⊂ ∂Ω} we denote the set of
all boundary faces and set F I

h,m = Fh,m\F
B
h,m, which is the set of all inner faces.

Obviously, Fh,m = F I
h,m ∪ FB

h,m.
For each Γ ∈ Fh,m we define a unit normal vector nΓ.We assume that for Γ ∈ FB

h,m

the normal nΓ has the same orientation as the outer normal to ∂Ω. For each face
Γ ∈ F I

h,m the orientation of nΓ is arbitrary but fixed. See Figure 2.1.
In our further considerations we shall use the following notation. For an element

K ∈ Th,m we set hK = diam(K), hm = maxK∈Th,mhK, h = maxm=1,...,Mhm. By ρK
we denote the radius of the largest d-dimensional ball inscribed into K and by |K|
we denote the d-dimensional Lebesgue measure of K. d(Γ) denotes the diameter of
Γ ∈ Fh,m. Finally, we set τ = maxm=1,...,Mτm.

2.2 Spaces of discontinuous functions and forms

defined on these spaces

Let a function ϕ be defined in
⋃M

m=1 Im. Than we denote

ϕ±
m = ϕ(tm±) = lim

t→tm±
ϕ(t), {ϕ}m = ϕ(tm+)− ϕ(tm−). (2.1)

Let k > 0 be an integer. Over a triangulation Th,m we define the Broken Sobolev
spaces

Hk(Ω, Th,m) =
{
v; v|K ∈ Hk(K) ∀K ∈ Th,m

}
(2.2)

equipped with the seminorm

|v|Hk((Ω,Th,m) =




∑

K∈Th,m

|v|2Hk(K)





1/2

. (2.3)

For each face Γ ∈ F I
h,m there exist two neighbouring elements KL

Γ , K
R
Γ ∈ Th,m such

that Γ ⊂ ∂KL
Γ ∩ ∂KR

Γ . We use convention that nΓ is the outer normal to the element
KL

Γ and the inner normal to the element KR
Γ . For v ∈ H1(Ω, Th,m) and Γ ∈ F I

h,m we
introduce the following notation:

v|LΓ = the trace of v|KL
Γ
on Γ,

v|RΓ = the trace of v|KR
Γ
on Γ,

〈v〉Γ = 1
2

(
v|LΓ + v|RΓ

)
, (2.4)

[v]Γ = v|LΓ − v|RΓ .

We can see that the value [v]Γ depends on the orientation of nΓ, but the value [v]Γ nΓ

is independent of this orientation.
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Chapter 2. Discretization

Now, we assume that Γ ∈ FB
h,m and KL

Γ ∈ Th,m is such an element that Γ ⊂
KL

Γ ∩ ∂Ω. For v ∈ H1(Ω, Th,m) we define v|RΓ by extrapolation, i.e.

v|RΓ := v|LΓ = the trace of v|KL
Γ
on Γ. (2.5)

In case of an appearance of [·]Γ and 〈·〉Γ in an integral
∫

Γ
. . . dS, where Γ ∈ Fh,m,

we omit the subscript Γ and write simply [·] and 〈·〉 . If Γ ∈ FB
h,m and v ∈ H1(Ω, Th,m),

then
∫

Γ
vdS means

∫

Γ
v|LΓdS.

For a fixed constant CW > 0 we introduce the notation

h(Γ) =
hKL

Γ
+ hKR

Γ

2CW

for Γ ∈ F I
h,m, (2.6)

h(Γ) =
hKL

Γ

CW

for Γ ∈ FB
h,m.

In order to derive the DG scheme for the numerical solution of problem (1.1)-
(1.3), we shall assume that u is a strong solution of this problem. We proceed in the
following way: We multiply (1.1) by an arbitrary function ϕ ∈ H2(Ω, Th,m), integrate
over K ∈ Th,m, use Green’s theorem, summing over all K ∈ Th,m and obtain the
identity

∑

K∈Th,m

∫

K

∂u(t)

∂t
ϕdx+

∑

K∈Th,m

∫

∂K

f(u(t)) · nϕdS −
∑

K∈Th,m

∫

K

f(u(t)) · ∇ϕdx

+
∑

K∈Th,m

ε

∫

K

∇u(t) · ∇ϕdx−
∑

K∈Th,m

ε

∫

∂K

(∇u(t) · n)ϕdS =

∫

Ω

gϕdx. (2.7)

Here n denotes the unit outer normal to ∂K. The surface integrals over ∂K make
sense due to the regularity of u. We split them according to the type of faces Γ that
form the boundaries of the elements K ∈ Th,m :

∑

K∈Th,m

∫

∂K

(n · ∇u)ϕdS =
∑

Γ∈FB
h,m

∫

Γ

(nΓ · ∇u)ϕdS

+
∑

Γ∈FI
h,m

∫

Γ

nΓ ·
(
(∇u|LΓ)ϕ|

L
Γ − (∇u|RΓ )ϕ|

R
Γ

)
dS. (2.8)

Due to the assumption that u ∈ L2(0, T ;H2(Ω)),

[u] = 0 = [∇u] , ∇u|LΓ = ∇u|RΓ = 〈∇u〉 , Γ ∈ F I
h,m. (2.9)

Thus, the integrand of the second integral in (2.8) can be written in the form

n · (∇u|LΓ)ϕ|
L
Γ − n · (∇u|RΓ )ϕ|

R
Γ = n · 〈∇u〉 [ϕ] . (2.10)
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Chapter 2. Discretization

Due to above relations we have

∑

K∈Th,m

∫

K

∂u(t)

∂t
ϕx +

∑

K∈Th,m

∫

∂K

f(u(t)) · nϕS−
∑

K∈Th,m

∫

K

f(u(t)) · ∇ϕdx

+ε
∑

K∈Th,m

∫

K

∇u(t) · ∇ϕdx− ε
∑

Γ∈FI
h,m

∫

∂K

n · 〈∇u(t)〉 [ϕ] dS

−ε
∑

Γ∈FB
h,m

∫

∂K

n · ∇u(t)ϕdS =

∫

Ω

gϕdx. (2.11)

If u ∈ L2(0, T ;H2(Ω)) ∩ L2(0, T ;H2(Ω, Th,m)) and u satisfies the Dirichlet boundary
condition, then

∑

Γ∈Fh,m

∫

Γ

n · 〈∇ϕ〉 [u] dS =
∑

Γ∈FB
h,m

∫

Γ

n · ∇ϕuDdS ∀ϕ ∈ H2(Ω, Th,m) (2.12)

and

∑

Γ∈Fh,m

∫

Γ

h(Γ)−1

∫

Γ

[u] [ϕ] dS =
∑

Γ∈FB
h,m

h(Γ)−1

∫

Γ

uϕdS ∀ϕ ∈ H2(Ω, Th,m), (2.13)

since [u] = 0 for Γ ∈ F I
h,m and [u] = u|Γ = uD for Γ ∈ FB

h,m. We called
∑

Γ∈Fh,m

∫

Γ
h(Γ)−1

∫

Γ
[u] [ϕ] dS and

∑

Γ∈FB
h,m

h(Γ)−1
∫

Γ
uϕdS ∀ϕ ∈ H2(Ω, Th,m) in-

terior and boundary penalty.
Then we approximate fluxes through the faces Γ with the aid of numerical flux

H = H(u, ϕ,n) in the form

∫

Γ

f(u(t)) · nϕS ≈

∫

Γ

H(u|LΓ, u|
R
Γ ,n)ϕdS. (2.14)

If we apply the described technique and sum (2.11) with θ-multiple (θ =
−1, 0 or 1) of (2.12), we define the forms for u, ϕ ∈ H1(Ω, Th,m), u ∈ L∞(QT )

ah,m(u, ϕ) = ε
∑

K∈Th,m

∫

K

∇u · ∇ϕdx (2.15)

−ε
∑

Γ∈FI
h,m

∫

Γ

(〈∇u〉 · nΓ [ϕ] + θ 〈∇ϕ〉 · nΓ [u]) dS

−ε
∑

Γ∈FB
h,m

∫

Γ

(∇u · nΓϕ+ θ∇ϕ · nΓu) dS,

Jh,m(u, ϕ) =
∑

Γ∈FI
h,m

h(Γ)−1

∫

Γ

[u] [ϕ] dS +
∑

Γ∈FB
h,m

h(Γ)−1

∫

Γ

uϕdS, (2.16)

Ah,m = ah,m + εJh,m, (2.17)
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Chapter 2. Discretization

bh,m(u, ϕ) = −
∑

K∈Th,m

∫

K

d∑

s=1

fs(u)
∂ϕ

∂xs
dx (2.18)

+
∑

Γ∈FI
h,m

∫

Γ

H
(
u|LΓ , u|

R
Γ ,nΓ

)
[ϕ]Γ dS

+
∑

Γ∈FB
h,m

∫

Γ

H
(
u|LΓ , u|

R
Γ ,nΓ

)
ϕ|LΓdS.

By (·, ·) we denote the scalar product in L2(Ω) and by ‖·‖ we denote the norm in
L2(Ω).

H is a numerical flux. We assume that it has the following properties.

(H1) H(u, v,n) is defined in IR2×B1, where B1 = n ∈ IRd; |n| = 1, and is Lipschitz-
continuous with respect to u, v :

|H(u, v,n)−H(u∗, v∗,n)| ≤ LH (|u− u∗|+ |v − v∗|) , u, v, u∗, v∗ ∈ IR, n ∈ B1.

(H2) H(u, v,n) is consistent :

H(u, v,n) =
d∑

s=1

fs(u)ns, u ∈ IR, n = (n1, . . . , nd) ∈ B1.

(H3) H(u, v,n) is conservative:

H(u, v,n) = −H(u, v,−n), u, v ∈ IR, n ∈ B1.

Finally, the right-hand side form is defined on the basis of data:

lh,m(ϕ) = (g, ϕ) + ε
∑

Γ∈FB
h,m

(

h(Γ)−1

∫

Γ

uDϕdS − θ

∫

Γ

∇ϕ · nΓuDdS

)

. (2.19)

In the above forms we take θ = −1, θ = 0, θ = 1 and we obtain the nonsymmetric
(NIPG), incomplete (IIPG) and symmetric (SIPG) variants of the approximation of
the diffusion terms.

Base on it we will use the following norm in space H1(Ω, Th,m) :

‖ϕ‖DG,m =




∑

K∈Th,m

|ϕ|2H1(K) + Jh,m(ϕ, ϕ)





1/2

. (2.20)

2.3 Discrete problem

Let p, q ≥ 1 be integers. For each m = 1, . . . ,M we define the finite-dimensional space

Sp
h,m =

{
ϕ ∈ L2(Ω);ϕ|K ∈ P p(K) ∀K ∈ Th,m

}
. (2.21)
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Chapter 2. Discretization

By Πm we denote the L2(Ω)−projection on Sp
h,m, i.e., if ϕ ∈ L2(Ω), then Πmϕ ∈ Sp

h,m

and
(Πmϕ− ϕ, ψ) = 0, ∀ψ Sp

h,m. (2.22)

The approximate solution will be sought in space

Sp,q
h,τ =

{

ϕ ∈ L2(QT );ϕ|Im =

q
∑

i=0

tiϕi with ϕi ∈ Sp
h,m,m = 1, . . . ,M

}

. (2.23)

In what follows we shall use the notation U ′ = ∂U/∂t, u′ = ∂u/∂t, Dq+1 =
∂q+1/∂tq+1.

Definition 2.1: We say that the function U is an approximate solution of problem
(1.1)-(1.3), if U ∈ Sp,q

h,τ and

∫

Im
((U ′, ϕ) + Ah,m (U, ϕ) + bh,m (U, ϕ)) dt+

(
{U}m−1 , ϕ

+
m−1

)

=
∫

Im
lh,m(ϕ)dt, ∀ϕ ∈ Sp,q

h,τ , ∀m = 1, . . . ,M, (2.24)

(U−
0 , ϕ) = (u0, ϕ), ∀ϕ ∈ Sp

h,1.

It is possible to see that the exact strong solution u satisfies the identity
∫

Im
((u′, ϕ) + Ah,m (u, ϕ) + bh,m (u, ϕ)) dt+

(
{u}m−1 , ϕ

+
m−1

)

=
∫

Im
lh,m(ϕ)dt, ∀ϕ ∈ Sp,q

h,τ , ∀m = 1, . . . ,M, (2.25)

if we set u(0−) = u(0).

Remark 2.1: It is also possible to consider q = 0. In this case, scheme (2.24)
represents a version of the backward Euler method. Since it can be analyzed in a
similar way as, for example, in [24], we shall be concerned only with q ≥ 1.

In the error analysis we shall use the Sp,q
h,τ−interpolation π of function v ∈

H1(0, T ;L2(Ω)) defined by

(a) πv ∈ Sp,q
m,τ , (2.26)

(b) (πv)(tm−) = Πmv(tm−),

(c)

∫

Im

(πv − v, ϕ∗)dt = 0, ∀ϕ∗ ∈ Sp,q−1
h,τ , ∀m = 1, . . . ,M.

In [32], Lemma 4, it was proven that πu is uniquely determined. Moreover, by [32],
Lemma 9,

πu|Im = π(Πmu)|Im . (2.27)

The main goal is the derivation of the estimation of the error e = U − u, which
can be expressed in the form

e = ξ + η, (2.28)

where

ξ = U − πu, ξ ∈ Sp,q
h,τ , (2.29)

η = πu− u.
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Chapter 2. Discretization

As we see, the function η is the error of the interpolation of the exact solution u.
Then, in virtue of (2.24) and (2.25),

∫

Im
((ξ′, ϕ) + Ah,m (ξ, ϕ)) dt+

(
{ξ}m−1 , ϕ

+
m−1

)
=
∫

Im
(bh,m (u, ϕ)− bh,m (U, ϕ)) dt

−
∫

Im
((η′, ϕ) + Ah,m (η, ϕ)) dt−

(
{η}m−1 , ϕ

+
m−1

)
, ∀ϕ ∈ Sp,q

h,τ . (2.30)
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Chapter 3

Derivation of an abstract error
estimate

This chapter will be devoted to the derivation of estimates of the function ξ in terms
of the interpolation error η.

3.1 Assumption on the triangulation

In our further considerations, by C and c we shall denote positive generic constants,
independent of h, τ, ε, u, U, which can attain different values in different places. In
the sequel, we shall consider a system of triangulations Th,m, m = 1, . . . ,M, h ∈
(0, h0), h0 > 0, which is shape regular and locally quasiuniform: there exist constants
CR, CQ > 0 such that

hK
ρK

≤ CR, K ∈ Th,m, m = 1, . . . ,M, h ∈ (0, h0), (3.1)

hK ≤ CQhK′ , for neighbouring elements K,K ′ ∈ Th,m. (3.2)

Then there exist positive constants C−, C+ such that

C−hK ≤ h(Γ) ≤ C+hK′ , Γ ∈ Fh,m, Γ ⊂ K ∈ Th,m, h ∈ (0, h0), m = 1, . . . ,M.
(3.3)

3.2 Auxiliary results

In the analysis of the discontinuous Galerkin finite element method (DGFEM) we use
the following important tools.

Multiplicative trace inequality : There exists a constant CM > 0 independent of
v, h, K and M such that

‖v‖2L2(∂K) ≤ CM

(

‖v‖L2(K) |v|H1(K) + h−1
K ‖v‖2L2(K)

)

,

v ∈ H1(K), K ∈ Th,m, h ∈ (0, h0), m = 1, . . . ,M. (3.4)
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Chapter 3. Derivation of an abstract error estimate

Inverse inequality : There exists a constant CI > 0 independent of v, h, K and M
such that

|v|H1(K) ≤ CIh
−1
K ‖v‖L2(K) , v ∈ P p(K), K ∈ Th,m, h ∈ (0, h0), m = 1, . . . ,M.

(3.5)
(For proofs, see, e.g. [16], [25].)

Let us remind two widely used inequalities:
Young’s inequality: For arbitrary a, b, c > 0 we have

ab ≤ 2ab ≤ ca2 +
b2

c
. (3.6)

Discrete Cauchy inequality: For arbitrary ai, bi ∈ IR, i = 1, . . . , n it holds

n∑

i=1

aibi ≤

√
√
√
√

n∑

i=1

a2i

√
√
√
√

n∑

i=1

b2i . (3.7)

Coercivity of the form Ah,m : It holds

Ah,m(ξ, ξ) ≥
ε

2
‖ξ‖2DG,m (3.8)

provided

CW > 0 for NIPG, (3.9)

CW ≥ CM(1 + CI)(1 + CQ) for IIPG,

CW ≥ 2CM(1 + CI)(1 + CQ) for SIPG.

(See, [30].)
Consistency of bh,m : For any ϕ ∈ Sp,q

h,τ and k > 0,

|bh,m (u, ϕ)− bh,m (U, ϕ)| ≤ C ‖ϕ‖DG,m

(
‖ξ‖2 + σ̃2

m(η)
)1/2

≤
ε

k
‖ϕ‖2DG,m +

Ck

ε

(
‖ξ‖2 + σ̃2

m(η)
)
, (3.10)

where
σ̃2
m(η) =

∑

K∈Th,m

(

‖η‖2L2(K) + h2K |η|2H1(K)

)

. (3.11)

It should be mention that the constant Ck in the last expression depends on k. The
proof can be carried out in a similar way as in [23] or [26].

At the end of this section we add some useful lemmas that will be used in following
sections.

Lemma 3.1: There exists constant CMI > 0 independent of v, h, K such that it
holds

hK ‖v‖2L2(∂K) ≤ CMI ‖v‖
2
L2(K) v ∈ P p(K), K ∈ Th,m, h ∈ (0, h0), m = 1, . . . ,M.

(3.12)
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Proof: Starting by (3.4) and using the inverse inequality (3.5) for estimation of
|v|H1(K) we get

‖v‖2L2(∂K) ≤ CM

(

‖v‖L2(K)CIh
−1
K ‖v‖L2(K) + h−1

K ‖v‖2L2(K)

)

= h−1
K CM(CI + 1) ‖v‖2L2(K) . (3.13)

By setting CMI = CM(CI + 1) we obtain (3.12).

Lemma 3.2: There exists a constant CO > 0 independent of v, h, K such that

hK ‖v‖2L2(∂K) ≤ CO

(

‖v‖2L2(K) + k2K |v|2H1(K)

)

(3.14)

v ∈ H1(K), K ∈ Th,m, h ∈ (0, h0), m = 1, . . . ,M.

Proof: Starting from (3.4) and using the Young inequality we obtain

hK ‖v‖2L2(∂K) ≤ CM

(

‖v‖L2(K) hK |v|H1(K) + ‖v‖2L2(K)

)

≤ CM

(

‖v‖2L2(K) + h2K |v|2H1(K) + ‖v‖2L2(K)

)

≤ CO

(

‖v‖2L2(K) + h2K |v|2H1(K)

)

,

where CO = 2CM .

Lemma 3.3: There exists a constant CN > 0 independent on v, h, K such that

hK |∇v|2L2(∂K) ≤ CN

(

|v|2H1(K) + h2K |v|2H2(K)

)

(3.15)

v ∈ H2(K), K ∈ Th,m, h ∈ (0, h0), m = 1, . . . ,M.

Proof: The proof follows from Lemma 3.2.

3.3 Derivation of estimates for ξ

Let us substitute ϕ := ξ in (2.30) and analyze individual terms. A calculation yields

2

∫

Im

(ξ′, ξ) dt+ 2
(
{ξ}m−1 , ξ

+
m−1

)
=

∫

Im

d

dt
‖ξ‖2 dt+ 2

(
{ξ}m−1 , ξ

+
m−1

)

=
∥
∥ξ−m

∥
∥
2
−
∥
∥ξ+m−1

∥
∥
2
+ 2

(
{ξ}m−1 , ξ

+
m−1

)
(3.16)
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and

2
(
{ξ}m−1 , ξ

+
m−1

)

=
(
{ξ}m−1 , ξ

+
m−1

)
+
(
{ξ}m−1 , ξ

+
m−1

)

=
∥
∥ξ+m−1

∥
∥
2
−
(
ξ−m−1, ξ

+
m−1

)
+
(
ξ+m−1 − ξ−m−1, ξ

+
m−1 − ξ−m−1

)
+
(
ξ+m−1 − ξ−m−1, ξ

−
m−1

)

=
∥
∥ξ+m−1

∥
∥
2
+
∥
∥{ξ}m−1

∥
∥
2
−
∥
∥ξ−m−1

∥
∥
2
−
(
ξ−m−1, ξ

+
m−1

)
+
(
ξ+m−1, ξ

−
m−1

)

=
∥
∥ξ+m−1

∥
∥
2
+
∥
∥{ξ}m−1

∥
∥
2
−
∥
∥ξ−m−1

∥
∥
2
. (3.17)

Hence,

2

∫

Im

(ξ′, ξ) dt+ 2
(
{ξ}m−1 , ξ

+
m−1

)
=
∥
∥ξ−m

∥
∥
2
−
∥
∥ξ−m−1

∥
∥
2
+
∥
∥{ξ}m−1

∥
∥
2
. (3.18)

Further, we shall be concerned with estimates of the right-hand side of (2.30).

Lemma 3.4: Let us have arbitrary functions u, v ∈ H1(Ω, Th,m). Then

Jh,m(u, v) ≤ (Jh,m(u, u))
1/2(Jh,m(v, v))

1/2. (3.19)

Proof: Using the definition of the form Jh,m and both, integral and discret, Cauchy
inequalities, we obtain

Jh,m(u, v) = =
∑

Γ∈FI
h,m

h(Γ)−1

∫

Γ

[u] [ϕ] dS +
∑

Γ∈FB
h,m

h(Γ)−1

∫

Γ

uϕdS

≤
∑

Γ∈FI
h,m

h(Γ)−1

(∫

Γ

[u]2 dS

)1/2(∫

Γ

[v]2 dS

)1/2

+
∑

Γ∈FB
h,m

h(Γ)−1

(∫

Γ

u2dS

)1/2(∫

Γ

v2dS

)1/2

≤




∑

Γ∈FI
h,m

h(Γ)−1

∫

Γ

[u]2 dS +
∑

Γ∈FB
h,m

h(Γ)−1

∫

Γ

u2dS





1/2

×




∑

Γ∈FI
h,m

h(Γ)−1

∫

Γ

[v]2 dS +
∑

Γ∈FB
h,m

h(Γ)−1

∫

Γ

v2dS





1/2

= (Jh,m(u, u))
1/2(Jh,m(v, v))

1/2. (3.20)

Lemma 3.5: For an arbitrary k̃ > 0 there exists a constant C̃ > 0 independent of
U, ξ, ϕ, h such that for an arbitrary ϕ ∈ Sp

h,m we get an estimate

ah,m(η, ϕ) ≤ ε

(
1

k̃
‖ϕ‖2DG,m + C̃σ2

m(η)

)

, (3.21)
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where
σ2
m(η) = ‖η‖2DG,m +

∑

K∈Th,m

h2K |η|2H2(K) . (3.22)

Proof: The definition of the form ah implies that

ah,m(η, ϕ)

= ε
∑

K∈Th,m

∫

K

∇η · ∇ϕdx (3.23)

−ε
∑

Γ∈FI
h,m

∫

Γ

(〈∇η〉 · nΓ [ϕ] + θ 〈∇ϕ〉 · nΓ [η]) dS

−ε
∑

Γ∈FB
h,m

∫

Γ

(∇η · nΓϕ+ θ∇ϕ · nΓη) dS,

≤ ε
∑

K∈Th,m

∫

K

|∇η · ∇ϕ| dx

+ε
∑

Γ∈FI
h,m

∫

Γ

∣
∣∇η|LΓ

∣
∣+
∣
∣∇η|RΓ

∣
∣

2
|[ϕ]| dS

+ε
∑

Γ∈FI
h,m

∫

Γ

∣
∣∇ϕ|LΓ

∣
∣+
∣
∣∇ϕ|RΓ

∣
∣

2
|[η]| dS

+ε
∑

Γ∈FB
h,m

∫

Γ

|∇η| |ϕ| dS + ε
∑

Γ∈FB
h,m

∫

Γ

|∇ϕ| |η| dS.

If we choose arbitrarily δ1, δ2 > 0, then by the application of the Young inequality
and inequality (3.3) we obtain

ah,m(η, ϕ)

ε

≤
∑

K∈Th,m

∫

K

(

|∇η|2

δ1
+ δ1 |∇ϕ|

2

)

dx

+
∑

Γ∈FI
h,m

∫

Γ

(
h(Γ)

δ1

(∣
∣∇η|LΓ

∣
∣
2
+
∣
∣∇η|RΓ

∣
∣
2
)

+
δ1
h(Γ)

|[ϕ]|2
)

dS

+
∑

Γ∈FI
h,m

∫

Γ

(

h(Γ)δ2

(∣
∣∇ϕ|LΓ

∣
∣
2
+
∣
∣∇ϕ|RΓ

∣
∣
2
)

+
1

h(Γ)δ2
|[η]|2

)

dS

+
∑

Γ∈FB
h,m

∫

Γ

(
h(Γ)

δ1
|∇η|2 +

δ1
h(Γ)

|ϕ|2
)

dS

+
∑

Γ∈FB
h,m

∫

Γ

(

h(Γ)δ2 |∇ϕ|
2 +

1

h(Γ)δ2
|η|2
)

dS.
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Using Lemmas 3.1 and 3.3 we have

ah,m(η, ϕ)

ε

≤ δ1 ‖ϕ‖
2
DG,m + CMIδ2

∑

K∈Th,m

|ϕ|2H1(K) +
1

δ2
Jh,m(η, η)

+
1

δ1

∑

K∈Th,m

|η|2H1(K) +
CN

δ1

∑

K∈Th,m

(

|η|2H1(K) + h2K |η|2H2(K)

)

≤
1

k̃
‖ϕ‖2DG,m + C̃σ2

m(η),

where

δ1 =
1
2k̃
, δ2 =

1
2k̃CMI

,

C̃ = max
{

1
δ2
, 1
δ1
+ CN

δ1

}

.

With the aid of Lemmas 3.4 and 3.5 we can also show that for ϕ ∈ Sp,q
h,τ and k > 0

we have
|Ah,m (η, ϕ)| ≤

ε

k
‖ϕ‖2DG,m + Cεσ2

m(η), (3.24)

where
σ2
m(η) = ‖η‖2DG,m +

∑

K∈Th,m

h2K |η|2H2(K) . (3.25)

Now (2.30), where we set ϕ := ξ, relation (3.18) and estimates (3.8), (3.10), (3.24)
imply that

∥
∥ξ−m

∥
∥
2
−
∥
∥ξ−m−1

∥
∥
2
+
∥
∥{ξ}m−1

∥
∥
2
+ ε

∫

Im

‖ξ‖2DG,m dt

≤ −2

∫

Im

(η′, ξ) dt− 2
(
{η}m−1 , ξ

+
m−1

)
+

2ε

k

∫

Im

‖ξ‖2DG,m dt

+
C

ε

∫

Im

‖ξ‖2 dt+ C

∫

Im

(

εσ2
m (η) +

1

ε
σ̃2
m (η)

)

dt. (3.26)

Further, we shall be concerned with the expression
∫

Im

(η′, ξ) dt+
(
{η}m−1 , ξ

+
m−1

)
. (3.27)

Integration by parts yields
∫

Im

(η′, ξ) dt =
(
η−m, ξ

−
m

)
−
(
η+m−1, ξ

+
m−1

)
−

∫

Im

(η, ξ′) dt. (3.28)

Since η = πu− u and ξ′ ∈ Sp,q−1
h,τ , by the definition of π, we have

∫

Im

(η, ξ′) dt = 0. (3.29)
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Thus,
∫

Im

(η′, ξ) dt+
(
{η}m−1 , ξ

+
m−1

)
(3.30)

=
(
η−m, ξ

−
m

)
−
(
η+m−1, ξ

+
m−1

)
+
(
η+m−1, ξ

+
m−1

)
−
(
η−m−1, ξ

+
m−1

)
.

Further, since ξ−m ∈ Sp
h,m and

η−m = (πu)(t−m)− u(tm) = Πmu(tm)− u(tm), (3.31)

in view of the definition of Πm and (2.26b),

(
η−m, ξ

−
m

)
= 0. (3.32)

Similarly,
(
η−m−1, ξ

−
m−1

)
= 0 and, hence, using also Young’s inequality, we have

∣
∣
(
η−m−1, ξ

+
m−1

)∣
∣ =

∣
∣
(
η−m−1, ξ

+
m−1 − ξ−m−1

)∣
∣ =

∣
∣
(
η−m−1, {ξ}m−1

)∣
∣

≤
1

2

(∥
∥{ξ}m−1

∥
∥
2
+
∥
∥η−m−1

∥
∥
2
)

. (3.33)

From (3.31)-(3.33) we find that

∣
∣
∣
∣

∫

Im

(η′, ξ) dt+
(
{η}m−1 , ξ

+
m−1

)
∣
∣
∣
∣
≤

1

2

∥
∥{ξ}m−1

∥
∥
2
+

1

2

∥
∥η−m−1

∥
∥
2
. (3.34)

This and (3.26) imply that

∥
∥ξ−m

∥
∥
2
−
∥
∥ξ−m−1

∥
∥
2
+ ε

(

1−
2

k

)∫

Im

‖ξ‖2DG,m dt (3.35)

≤
C

ε

∫

Im

‖ξ‖2 dt+ 2
∥
∥η−m−1

∥
∥
2
+ C

∫

Im

Rm (η) dt,

where

Rm (η) = εσ2
m (η) +

1

ε
σ̃2
m (η) . (3.36)

In what follows, it will be necessary to estimate the terms with η and
∫

Im
‖ξ‖2 dt.

3.4 Estimate of
∫

Im
‖ξ‖2 dt

For the estimation of the expression
∫

Im
‖ξ‖2 dt we shall use the technique from [34],

which was applied to the analysis of the time DG methods combined with the con-
forming finite element method.

By Pq we shall denote the set of all polynomials in t ∈ IR of degree ≤ q. Then
Pq(0, 1) is the set of all polynomials in t ∈ (0, 1) of degree ≤ q. In the interval (0, 1]
we shall consider the Gauss-Radau quadrature formula

∫ 1

0

ϕ(t)dt ≈

q+1
∑

i=1

wiϕ(ϑi), (3.37)
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where 0 < ϑ1 < . . . < ϑq+1 = 1 are the Radau integration points and wi > 0 are the
Radau weights. We can refer, for example, to formulas from [58] on page 131. The
formulas need to be transformed from interval [-1,1) to (0,1]. This can be done by
following considerations. First, we seek the function

t̃ = α(t) ∈ [−1, 1] ,

for which holds
α(0) = 1 and α(1) = −1.

This gives us the function
t̃ = −2t+ 1.

Using the substitution theorem and the relation (3.37) we obtain

∫ 1

0

ϕ(t)dt = −
1

2

∫ −1

1

ϕ(
1− t̃

2
)dt̃ =

1

2

∫ 1

−1

ϕ(
1− t̃

2
)dt̃ ≈

1

2

q+1
∑

i=1

w̃iϕ(
1− ϑ̃i

2
) =

q+1
∑

i=1

wiϕ(ϑi).

For ϑi ∈ (0, 1] and ϑ̃i ∈ [−1, 1) we have

ϑi =
1− ϑ̃i

2
,

wi =
w̃i

2
.

Then the formula (3.37) is transformed to the interval (tm−1, tm], which yields

∫

Im

ϕ (t) dt ≈ τm

q+1
∑

i=1

wiϕ
(
tm,i
)
, (3.38)

where tm,i = tm−1 + τmϑi. Formulas (3.37) and (3.38) are exact for polynomials of
degree ≤ 2q.

Lemma 3.6: Let p ∈ Pq and let p̃ ∈ Pq be the Lagrange interpolation of the function
p(t)/t at the points ϑi, i = 1, . . . , q + 1. Then

∫ 1

0

p′p̃dt+ p(0)p̃(0) =
1

2

(

p2(1) +

q+1
∑

i=1

wiϑ
−2
i p2(ϑi)

)

. (3.39)

Proof: Let v ∈ Pq−1(0, 1) be given by

p(t) = p(0) + tv(t). (3.40)

According to the definition of p̃, we can write

p̃(t) = v(t) + p(0)Λ(t), (3.41)

where Λ ∈ Pq(0, 1) is the interpolant of 1/t at the Radau points ϑi, i = 1, . . . , q + 1.
Obviously the degree of p̃ given by (3.41) is ≤ q. Moreover, by (3.40) and (3.41) we
have

p̃(ϑi) = v(ϑi) + p(0)ϑ−1
i and v(ϑi) =

p(ϑi)− p(0)

ϑi

.
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Hence, we see that p̃(ϑi) = p(ϑi)/ϑi for i = 1, . . . , q + 1. This means that p̃ given by
(3.41) is the Lagrange interpolation of p(t)/t. Hence, Λ(1) = 1.

Now we get

∫ 1

0

p′p̃dt =

∫ 1

0

(v(t) + tv′(t)) (v(t) + p(0)Λ(t)) dt (3.42)

=

∫ 1

0

v2(t)dt+ p(0)

∫ 1

0

v(t)Λ(t)dt+

∫ 1

0

tv′(t)v(t)dt+ p(0)

∫ 1

0

tv′(t)Λ(t)dt.

Integration by parts yields

∫ 1

0

tv′(t)v(t)dt =
1

2

∫ 1

0

t
d

dt

(
v2(t)

)
dt =

1

2
v2(1)−

1

2

∫ 1

2

v2(t)dt (3.43)

and
∫ 1

0

tΛ′(t)Λ(t)dt =
1

2

∫ 1

0

t
d

dt

(
Λ2(t)

)
dt =

1

2
Λ2(1)−

1

2

∫ 1

0

Λ2(t)dt =
1

2
−

1

2

∫ 1

0

Λ2(t)dt.

(3.44)
Hence, in view of (3.42) and (3.43),

∫ 1

0

p′p̃dt =
1

2

∫ 1

0

v2(t)dt+
1

2
v2(1)+p(0)

(∫ 1

0

tv′(t)Λ(t)dt+

∫ 1

0

v(t)Λ(t)dt

)

. (3.45)

Let s ∈ Pq(0, 1). Taking into account that Λ(t), ts′(t) ∈ Pq(0, 1), Λ(ϑi) = ϑ−1
i , i =

1, . . . , q+1, and the integration formula (3.37) in exact for polynomials of degree ≤ 2q,
we get

∫ 1

0

ts′(t)Λ(t)dt =

q+1
∑

i=1

wiϑis
′(ϑi)ϑ

−1
i =

q+1
∑

i=1

wis
′(ϑi)

=

∫ 1

0

s′(t)dt = s(1)− s(0). (3.46)

Thus,
∫ 1

0

tv′(t)Λ(t)dt = v(1)− v(0) (3.47)

and ∫ 1

0

tΛ′(t)Λ(t)dt = 1− Λ(0). (3.48)

Further, we find that

∫ 1

0

v(t)Λ(t)dt =

q+1
∑

i=1

wiϑ
−1
i v(ϑi), (3.49)

∫ 1

0

v2(t)dt =

q+1
∑

i=1

wiv
2(ϑi) (3.50)
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and
∫ 1

0

Λ2(t)dt =

q+1
∑

i=1

wiϑ
−2
i . (3.51)

Taking into account (3.44) and (3.48), we get

Λ(0) = 1−

∫ 1

0

tΛ′(t)Λ(t)dt =
1

2
+

1

2

∫ 1

0

Λ2(t)dt =
1

2

(

1 +

q+1
∑

i=1

wiϑ
−2
i

)

. (3.52)

Further, we have

v(1) = p(1)− p(0),

v(ϑi) + p(0)ϑ−1
i = p(ϑi)ϑ

−1
i , (3.53)

p(0)p̃(0) = p(0)v(0) + p2(0)Λ(0),

as follows from (3.40) and (3.41).
Now, (3.43), (3.45), (3.47), (3.49), (3.50), (3.52), (3.53) and tedious calculation

yield

∫ 1

0

p′p̃dt+ p(0)p̃(0) =
1

2
p2(1) +

1

2

q+1
∑

i=1

wi

(
v(ϑi) + p(0)ϑ−1

i

)2

=
1

2

(

p2(1) +

q+1
∑

i=1

wiϑ
−2
i p2(ϑi)

)

, (3.54)

which we wanted to prove.

Lemma 3.7: Let p ∈ Pq and let p̃ ∈ Pq be the Lagrange interpolation of the function
τmp(t)/(t− tm−1) at the Radau points tm,i, i = 1, . . . , q + 1 :

p̃(tm,i) = τmp(t
m,i)/(tm,i − tm−1) = p(tm,i)ϑ−1

i . (3.55)

Then

∫

Im

p′p̃dt+ p(tm−1)p̃(tm−1) =
1

2

(

p2(tm) +

q+1
∑

i=1

wiϑ
−2
i p2(tm,i)

)

. (3.56)

Proof follows by the transformation of (3.39) to the interval Im.
Now, by ξ̃ we shall denote the Lagrange interpolation of τmξ(t)/(t− tm−1) at the

Radau points tm,i, i = 1, . . . , q + 1. This means that for each x ∈ Ω, the function
ξ̃(·, x) is a polynomial in t of degree ≤ q, which means that ξ̃ ∈ Sp,q

h,τ . In what follows
we shall denote

‖ξ‖2m = τm

q+1
∑

i=1

wiϑ
−1
i

∥
∥ξ(tm,i)

∥
∥
2
. (3.57)
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Let us set ϕ := ξ̃ in (2.30). Then, using the relation
(

{ξm−1} , ξ̃
+
m−1

)

=
(

ξ+m−1, ξ̃
+
m−1

)

−
(

ξ−m−1, ξ̃
+
m−1

)

and transferring the second term to the right-hand side,

we get
∫

Im

(ξ′, ξ̃)dt+ (ξ+m−1, ξ̃
+
m−1)

︸ ︷︷ ︸

(a)

+

∫

Im

Ah,m(ξ, ξ̃)dt

︸ ︷︷ ︸

(b)

= (ξ−m−1, ξ̃
+
m−1)

︸ ︷︷ ︸

(c)

−

∫

Im

(η′, ξ̃)dt−
(

{η}m−1 , ξ̃
+
m−1

)

︸ ︷︷ ︸

(d)

(3.58)

−

∫

Im

Ah,m(η, ξ̃)dt

︸ ︷︷ ︸

(e)

+

∫

Im

(

bh,m

(

u, ξ̃
)

− bh,m

(

U, ξ̃
))

dt

︸ ︷︷ ︸

(f)

.

In what follows, we shall analyze individual terms (a)-(f).

(a) By Fubini’s theorem and (3.56)
∫

Im

(

ξ′, ξ̃
)

dt+
(

ξ+m−1, ξ̃
+
m−1

)

=

∫

Ω

(∫ tm

tm−1

ξ′ξ̃dt+ ξ+m−1ξ̃
+
m−1

)

dx (3.59)

=

∫

Ω

1

2

(

(
ξ−m
)2

+

q+1
∑

i=1

wiϑ
−2
i

(
ξ
(
tm,i
))2

)

dt

=
1

2

(

∥
∥ξ−m

∥
∥
2
+

q+1
∑

i=1

wiϑ
−2
i

∥
∥ξ
(
tm,i
)∥
∥
2

)

.

Hence, since ϑ−1
i ≥ 1, in view of the notation (3.57), we get the inequality
∫

Im

(

ξ′, ξ̃
)

dt+
(

ξ+m−1, ξ̃
+
m−1

)

≥
1

2

(
∥
∥ξ−m

∥
∥
2
+

1

τm
‖ξ‖2m

)

. (3.60)

(b) We use the following lemma:

Lemma 3.8: Under assumptions (3.9) we have
∫

Im

Ah,m

(

ξ, ξ̃
)

dt ≥
ε

2

∫

Im

‖ξ‖2DG,m dt. (3.61)

Proof: In view of (2.15) and (2.17),
∫

Im

Ah,m

(

ξ, ξ̃
)

dt = ε

∫

Im

∑

K∈Th,m

∫

K

∇ξ · ∇ξ̃dxdt

−ε

∫

Im

∑

Γ∈FI
h,m

∫

Γ

(

〈∇ξ〉 · nΓ

[

ξ̃
]

− θ
〈

∇ξ̃
〉

· nΓ [ξ]
)

dSdt

−ε

∫

Im

∑

Γ∈FB
h,m

∫

Γ

(

∇ξ · nΓξ̃ − θ∇ξ̃ · nΓξ
)

dSdt+ ε

∫

Im

Jh,m

(

ξ, ξ̃
)

dt.
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The expressions ξ|Γ, [ξ]Γ , ξ̃|Γ,
[

ξ̃
]

Γ
, ∇ξ and ∇ξ̃ are polynomials in t of de-

gree ≤ q. Hence,
∫

K
∇ξ · ∇ξ̃dx,

∫

Γ
[ξ]Γ ·

[

ξ̃
]

Γ
dS,

∫

Γ
〈∇ξ〉 · n

[

ξ̃
]

dS, Jh,m

(

ξ, ξ̃
)

,

etc. are polynomials in t of degree ≤ 2q. Therefore, we can express the integrals
∫

Im
. . . dt with the aid of the integration formula (3.38). We also use the relations

ξ̃(tm,i) = ξ(tm,i)ϑ−1
i , ∇ξ̃(tm,i) = ∇ξ(tm,i)ϑ−1

i ,
[

ξ̃(tm,i)
]

=
[
ξ(tm,i)ϑ−1

i

]
. Then, by

(2.15)-(2.17)we get
∫

Im

Ah,m(ξ, ξ̃)dt (3.62)

= ετm

q+1
∑

i=1

wi




∑

K∈Th,m

∫

K

(

∇ξ(tm,i) · ∇ξ̃(tm,i) + Jh,m

(

ξ(tm,i), ξ̃(tm,i)
))

dx

−
∑

Γ∈FI
h,m

∫

Γ

(〈
∇ξ(tm,i)

〉
· nΓ

[

ξ̃(tm,i)
]

− θ
〈

∇ξ̃(tm,i)
〉

· nΓ

[
ξ(tm,i)

])

dS

−
∑

Γ∈FB
h,m

∫

Γ

(

∇ξ(tm,i) · nΓξ̃(t
m,i)− θ∇ξ̃(tm,i) · nΓξ(t

m,i)
)

dS





= τm

q+1
∑

i=1

ϑ−1
i wi

(
ah,m

(
ξ(tm,i), ξ(tm,i)

)
+ εJh,m

(
ξ(tm,i), ξ(tm,i)

))

In virtue of (3.8), under the assumptions (3.9), we have

ah,m
(
ξ(tm,i), ξ(tm,i)

)
+ εJh,m

(
ξ(tm,i), ξ(tm,i)

)
≥
ε

2

∥
∥ξ(tm,i)

∥
∥
2

DG,m
, i = 1, . . . , q + 1.

(3.63)
If we use (3.62), (3.63), inequality ϑ−1

i ≥ 1 and take into account that ‖ξ‖2DG,m is a
polynomial in t of degree ≤ 2q, we find that

∫

Im

Ah,m

(

ξ, ξ̃
)

dt ≥
ε

2
τm

q+1
∑

i=1

ϑ−1
i wi ‖ξ‖

2
DG,m

≥
ε

2
τm

q+1
∑

i=1

wi ‖ξ‖
2
DG,m =

ε

2

∫

Im

‖ξ‖2DG,m dt,

what we wanted to prove.

Remark 3.1: If X is a space with a scalar product ((·, ·)) inducing the norm ‖·‖ and
the mapping ξ : Im → X is a polynomial in t of degree ≤ q, i.e., ξ =

∑q
j=0 αjt

j, αj ∈

X, then ‖ξ‖2 is a polynomial of degree ≤ 2q, as follows from the relation

‖ξ‖2 = ((ξ, ξ)) =

((
q
∑

j=0

αjt
j,

q
∑

j=0

αjt
j

))

=

2q
∑

r=0






∑

i,j
i+j=r

((αi, αj))




 tr. (3.64)
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Chapter 3. Derivation of an abstract error estimate

(c) By the Cauchy inequality,
∣
∣
∣

(

ξ−m−1, ξ̃
+
m−1

)∣
∣
∣ ≤

∥
∥ξ−m−1

∥
∥

∥
∥
∥ξ̃+m−1

∥
∥
∥ . (3.65)

Lemma 3.9: There exists a constant c1 independent of hK , τm, ξ such that
∥
∥
∥ξ̃+m−1

∥
∥
∥

2

≤
c1
τm

‖ξ‖2m . (3.66)

Proof: The function ξ̃ is the Lagrange interpolant to τmξ(t)/(t− tm−1) at the points
tm,i = tm−1 + τmϑi, i = 1, . . . , q + 1. This means that

ξ̃(t) = τm

q+1
∑

i=1

ξ(tm,i)

tm,i − tm−1

q+1
∏

j=1
j 6=i

t− tm,j

tm,i − tm,j
= τm

q+1
∑

i=1

ξ(tm,i)

τmϑi

q+1
∏

j=1
j 6=i

t− tm−1 − τmϑj

τm (ϑi − ϑj)
.

Setting t = tm−1, we get

ξ̃+m−1 =

q+1
∑

i=1

ξ
(
tm,i
)
ϑ−1
i

q+1
∏

j=1
j 6=i

−ϑj

ϑi − ϑj

and, thus, since ϑ−1
i ≤ ϑ−1

1 ,

∥
∥
∥ξ̃+m−1

∥
∥
∥

2

≤ C(q)

q+1
∑

i=1

ϑ−1
i ϑ−1

1

∥
∥ξ(tm,i)

∥
∥
2






q+1
∏

j=1
j 6=i

ϑj

ϑi − ϑj






2

≤ C̃(q)

q+1
∑

i=1

ϑ−1
i

∥
∥ξ(tm,i)

∥
∥
2






q+1
∏

j=1
j 6=i

ϑj

ϑi − ϑj






2

. (3.67)

By [58], the Radau weights are defined as

wi =

∫ 1

0

q+1
∏

j=1
j 6=i

z − ϑj

ϑi − ϑj

dz

and w∗ := mini=1,...,q+1wi > 0. Moreover, let us set

w∗∗ := maxi=1,...,q+1






q+1
∏

j=1
j 6=i

ϑj

ϑi − ϑj






2

.

Hence, since wi ≥ w∗, we get

∥
∥
∥ξ̃+m−1

∥
∥
∥

2

≤ C̃(q)

q+1
∑

i=1

ϑ−1
i

∥
∥ξ(tm,i)

∥
∥
2 w∗∗w∗

w∗
≤ c1

q+1
∑

i=1

ϑ−1
i

∥
∥ξ(tm,i)

∥
∥
2
wi =

c1
τm

‖ξ‖2m ,

with c1 = C̃(q)w∗∗/w∗.
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(d) Integration by parts implies that
∫

Im
(η′, ξ̃)dt+ ({η}m−1 , ξ̃

+
m−1) (3.68)

= −

∫

Im

(η, ξ̃′)dt+ (η−m, ξ̃
−
m)− (η+m−1, ξ̃

+
m−1) + (η+m−1, ξ̃

+
m−1)− (η−m−1, ξ̃

+
m−1).

It holds that ξ̃′ ∈ Sp,q−1
h,τ and thus, in view of (2.26), c),

∫

Im

(η, ξ̃′)dt = 0. (3.69)

Further, η−m = (πu)(t−m) − u(tm) = Πmu(tm) − u(tm) and ξ̃
−
m ∈ Sp

h,m. This and (2.22)
imply that

(η−m, ξ̃
−
m) = 0. (3.70)

Hence, in virtue of (3.68)-(3.70) we find that
∫

Im

(η′, ξ̃)dt+ ({η}m−1 , ξ̃
+
m−1) = −(η−m−1, ξ̃

+
m−1) ≤

∥
∥η−m−1

∥
∥

∥
∥
∥ξ̃+m−1

∥
∥
∥ . (3.71)

(e) We use the following lemma:

Lemma 3.10: If k > 0, then there exists a constant C > 0 such that
∣
∣
∣
∣

∫

Im

Ah,m

(

η, ξ̃
)

dt

∣
∣
∣
∣
≤
ε

k

∫

Im

‖ξ‖2DG,m dt+ Cε

∫

Im

σ2
m (η) dt. (3.72)

Proof: Let k̂ > 0. Using (3.24) with ϕ := ξ̃, we get
∣
∣
∣
∣

∫

Im

Ah,m

(

η, ξ̃
)

dt

∣
∣
∣
∣
≤
ε

k̂

∫

Im

∥
∥
∥ξ̃
∥
∥
∥

2

DG,m
dt+ Cε

∫

Im

σ2
m (η) dt. (3.73)

Now we shall estimate
∫

Im

∥
∥
∥ξ̃
∥
∥
∥

2

DG,m
dt. The function ξ̃(t) =

∑q
j=0 αjt

j, where αj ∈

Sp
h,m is the Radau interpolation of the function τmξ(t)/(t− tm−1). Hence,

∥
∥
∥ξ̃
(
tm,i
)
∥
∥
∥

2

DG,m
=
∥
∥ξ
(
tm,i
)∥
∥
2

DG,m
ϑ−2
i , i = 1, . . . , q + 1,

and
∥
∥
∥ξ̃ (t)

∥
∥
∥

2

DG,m
is a polynomial in t of degree ≤ 2q. Thus,we get

∫

Im

∥
∥
∥ξ̃ (t)

∥
∥
∥

2

DG,m
dt = τm

q+1
∑

i=1

wi

∥
∥
∥ξ̃
(
tm,i
)
∥
∥
∥

2

DG,m
= τm

q+1
∑

i=1

wiϑ
−2
i

∥
∥ξ
(
tm,i
)∥
∥
2

DG,m

≤ ϑ−2
1 τm

q+1
∑

i=1

wi

∥
∥ξ
(
tm,i
)∥
∥
2

DG,m
= ϑ−2

1

∫

Im

‖ξ‖2DG,m dt.

Hence, ∫

Im

∥
∥
∥ξ̃
∥
∥
∥

2

DG,m
dt ≤ Ĉ

∫

Im

‖ξ‖2DG,m dt. (3.74)

From (3.73) with k̂ := Ĉk and (3.74) we get the estimate (3.72), which we wanted to
prove.
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(f) Now, by (3.10), (3.74) and Young’s inequality,
∣
∣
∣
∣

∫

Im

bh,m(u, ξ̃)− bh,m(U, ξ̃)dt

∣
∣
∣
∣
≤
ε

k

∫

Im

‖ξ‖2DG,m dt+
C

ε

(∫

Im

‖ξ‖2 dt+

∫

Im

σ̃2
m (η) dt

)

.

(3.75)

Lemma 3.11: There exist constants C, C∗ > 0 such that

∫

Im

‖ξ‖2 dt ≤ Cτm

(
∥
∥ξ−m−1

∥
∥
2
+
∥
∥η−m−1

∥
∥
2
+

∫

Im

Rm(η)dt

)

, (3.76)

provided
0 < τm ≤ C∗ε, (3.77)

where Rm(η) is defined by (3.36).
Proof: If we proceed similarly as in the proof of (3.74), using (3.57) and the

inequalities 1 ≤ ϑ−1
i ≤ ϑ−1

1 , we get

∫

Im
‖ξ‖2 dt = τm

∑q+1
i=1 wi ‖ξ (t

m,i)‖
2
≤ ‖ξ‖2m , (3.78)

‖ξ‖2m ≤ ϑ−1
1 τm

∑q+1
i=1 wi ‖ξ (t

m,i)‖
2
= ϑ−1

1

∫

Im
‖ξ‖2 dt.

Now, estimates (3.58), (3.60), (3.61), (3.65), (3.66), (3.71), (3.72) and (3.75) yield

1

2

∥
∥ξ−m

∥
∥
2
+

1

2

1

τm
‖ξ‖2m +

ε

2

∫

Im

‖ξ‖2DG,m dt

≤
∥
∥ξ−m−1

∥
∥ ‖ξ‖m

√
c1
τm

+
∥
∥η−m−1

∥
∥ ‖ξ‖m

√
c1
τm

+
2ε

k

∫

Im

‖ξ‖2DG,m dt

+
C

ε

∫

Im

‖ξ‖2 dt+ Cε

∫

Im

σ2
m(η)dt+

C

ε

∫

Im

σ̃2
m(η)dt.

This, (3.36), (3.78), Young’s inequality and the choice k := 8 imply that

∥
∥ξ−m

∥
∥
2
+
ε

2

∫

Im

‖ξ‖2DG,m dt+

(

1

2τm
−
C̃

ε

)
∫

Im

‖ξ‖2 dt (3.79)

≤ C

(
∥
∥ξ−m−1

∥
∥
2
+
∥
∥η−m−1

∥
∥
2
+

∫

Im

Rm(η)dt

)

.

Let us put C∗ = 1/(4C̃), where C̃ is the constant from (3.79), and assume that (3.77)

holds. Then 1
2τm

− C̃
ε
≥ 1

4τm
and (3.79) implies (3.76).

Summarizing estimates (3.35) with k := 8 and (3.76), we find that for m =
1, . . . ,M,

∥
∥ξ−m

∥
∥
2
+
ε

2

∫

Im

‖ξ‖2DG,m dt ≤
(

1 +
c

ε
τm

)∥
∥ξ−m−1

∥
∥
2
+C

∥
∥η−m−1

∥
∥
2
+C

∫

Im

Rm(η)dt, (3.80)

with constants c, C > 0.
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Chapter 3. Derivation of an abstract error estimate

Lemma 3.12: (Discrete Gronwall’s lemma) Let xn, bn and cn, n ∈ IN, be non-
negative sequences and let an, n ∈ IN, be positive nondecreasing sequence. If

x0 + c0 ≤ a0,

xn + cn ≤ an +
n−1∑

j=0

bjxj for n ≥ 1, (3.81)

then

xn + cn ≤

(

1 +
b0x0
a0

)

an

n−1∏

j=0

(1 + bj) for n ≥ 0. (3.82)

Proof: We start from relation (3.81) divided by an. Using the assumption of non-
decreasing sequence an we obtain

xn
an

+
cn
an

≤ 1 +
n−1∑

j=0

bj
xj
an

≤ 1 +
n−1∑

j=0

bj
xj
aj
. (3.83)

If we set vn := 1 +
∑n−1

j=0 bj
xj

aj
for n > 0, we have

vn − vn−1 = bn−1
xn−1

an−1

≤ bn−1

(
xn−1

an−1

+
cn−1

an−1

)

≤ bn−1vn−1. (3.84)

It gives us

vn ≤ (1 + bn−1)vn−1 ≤ (1 + bn−1)(1 + bn−2)vn−2

≤ v1

n−1∏

j=1

(1 + bj) =

(

1 + b0
x0
a0

) n−1∏

j=1

(1 + bj). (3.85)

The relation (3.85) together with (3.83) and the definition of vn leads to (3.82).

Finally, we come to the abstract error estimate.

Theorem 3.13: Let (3.77) hold. Then there exist constants C, c > 0 such that the
error e = U − u satisfies the estimate for all m = 1, . . . ,M :

∥
∥e−m

∥
∥
2
+
ε

2

m∑

j=1

∫

Im

‖e‖2DG,j dt (3.86)

≤ Cexp(ctm/ε)

(
m∑

j=1

∥
∥η−j

∥
∥
2
+

m∑

j=1

∫

Ij

Rj(η)dx

)

+2

(

∥
∥η−m

∥
∥
2
+ ε

m∑

j=1

∫

Ij

‖η‖2DG,j dt

)

.
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Proof: Summing the relation (3.80) over all j = 1, . . . ,m and applying the discrete
Gronwall’s lemma 3.12, where we set

xm =
∥
∥ξ−m

∥
∥
2
,

cm =
ε

2

m∑

j=1

∫

Ij

‖ξ‖2DG,m dt,

bm =
c

ε
τm+1,

am =
∥
∥ξ−0

∥
∥
2
+ C

m∑

j=1

∥
∥η−j−1

∥
∥
2
+ C

m∑

j=1

∫

Ij

Rj(η)dt, (3.87)

and the inequality 1 + x ≤ ex for x ∈ IR gives us the estimate

∥
∥ξ−m

∥
∥
2
+
ε

2

m∑

j=1

∫

Ij

‖ξ‖2DG,j dt (3.88)

≤ Cexp(ctm/ε)

(

∥
∥ξ−0

∥
∥
2
+

m∑

j=1

∥
∥η−j

∥
∥
2
+

m∑

j=1

∫

Ij

Rj (η) dt

)

,

where tm =
∑m

j=1 τj and m = 1, . . . ,M. In view of the definition of U−
0 in Definition

2.1 we have ξ−0 = 0. If we use the relation e = ξ + η, the triangle inequality and the
Young’s inequality we obtain

‖e‖2 = ‖ξ + η‖2 ≤ ‖ξ‖2 + 2 ‖ξ‖ ‖η‖+ ‖η‖2 ≤ 2
(
‖ξ‖2 + ‖η‖2

)
, (3.89)

‖e‖2DG,j = ‖ξ + η‖2DG,j ≤ ‖ξ‖2DG,j + 2 ‖ξ‖DG,j ‖η‖DG,j + ‖η‖2DG,j (3.90)

≤ 2
(

‖ξ‖2DG,j + ‖η‖2DG,j

)

.

Using these considerations in (3.88) we immediately get (3.86).
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Chapter 4

Error estimation
in terms of h and τ

This section will be devoted to obtaining error estimates in dependence on the mesh
sizes τ and h. They will be obtained on the basis of estimate (3.88), the relations

e = U − u = ξ + η,

πu|Im = π (Πmu) |Im , (4.1)

η|Im = (πu− u) |Im = η(1) + η(2),

with η(1) = (Πmu− u) |Im , η
(2) = (π (Πmu)− Πmu) |Im ,

and estimates of individual terms on the right-hand side of (3.86) containing η, which
will be proven in the sequel. To this end, we assume that the exact solution satisfies
the regularity condition

u ∈ Hq+1
(
0, T ;H1 (Ω)

)
∩ C

(
[0, T ] ;Hp+1 (Ω)

)
(4.2)

and that the meshes satisfy shape regularity conditions (3.1), (3.2), (3.8) and (3.77).
Obviously, C ([0, T ] ;Hp+1 (Ω)) ⊂ L2 (0, T ;Hp+1 (Ω)) . Moreover, let

τm ≥ Ch2m, m = 1, . . . ,M. (4.3)

Let us note that this assumption is not necessary, if the space meshes do not depend
on time, i.e. all meshes Th,m, m = 1, . . . ,M, are identical - see Section 4.4.

As shown in [16] if r ≥ 1 is integer and µ = min(r, p), then for m = 1, . . . ,M and
any v ∈ Hr+1(Ω) we have the standard estimates

‖Πmv − v‖L2(K) ≤ Chµ+1
K |v|Hµ+1(K) ,

|Πmv − v|H1(K) ≤ ChµK |v|Hµ+1(K) , (4.4)

|Πmv − v|H2(K) ≤ Chµ−1
K |v|Hµ+1(K)

for K ∈ Th,m, h ∈ (0, h0) and

(a) ‖Πmv‖L2(K) ≤ ‖v‖L2(K) for v ∈ L2(K), K ∈ Th,m, h ∈ (0, h0), (4.5)

(b) |Πmv|H1(K) ≤ C |v|H1(K) for v ∈ H1(K), K ∈ Th,m, h ∈ (0, h0)
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It is possible to find that

Dq+1(Πmu) = Πm(D
q+1u). (4.6)

Actually, by (2.22), Πmu(·, t) ∈ Sp
h,m and for all t ∈ Im,

∫

Ω

(Πmu (x, t)− u (x, t))ϕ (x) dx = 0, ∀ϕ ∈ Sp
h,m. (4.7)

The differentiation with respect to t yields
∫

Ω

(
Dq+1Πmu (x, t)−Dq+1u (x, t)

)
ϕ (x) dx = 0, ∀ϕ ∈ Sp

h,m. (4.8)

Moreover, obviously Dq+1 (Πmu(t)) ∈ Sp
h,m and thus, (4.6) holds.

If we take in the mind that Πmu(·, t) ∈ Sp
h,m then we have ∇Πmu(·, t) ∈ Sp−1

h,m ⊂
Sp
h,m. So we can write

∫

Ω

(∇(Πmu (x, t)− u (x, t)))ϕ (x) dx = 0, ∀ϕ ∈ Sp
h,m. (4.9)

Hence, ∫

Ω

(∇Πmu (x, t)−∇u (x, t))ϕ (x) dx = 0, ∀ϕ ∈ Sp
h,m. (4.10)

By the differentiation with respect to t we get
∫

Ω

(
Dq+1∇Πmu (x, t)−Dq+1∇u (x, t)

)
ϕ (x) dx = 0, ∀ϕ ∈ Sp

h,m. (4.11)

Again Dq+1 (∇Πmu(t)) ∈ Sp
h,m and we obtain

Dq+1 (∇Πmu) = ∇Πm

(
Dq+1u

)
. (4.12)

4.1 Time interpolation

Lemma 4.1: Let ϕ ∈ C((tm−1, tm];S
p
h,m), m = 1, . . . ,M. Then for each x ∈

K, K ∈ Th,m, t ∈ Im, m = 1, . . . ,M we have

πϕ(x, t) = P̃mϕ(x, t) (4.13)

where P̃m is defined in the following way: For ω ∈ C((tm−1, tm]),

(a) P̃mω ∈ Pq(Im), (4.14)

(b)

∫

Im

(

P̃mω(t)− ω(t)
)

tjdt = 0, ∀j = 0, . . . , q − 1,

(c) P̃mω(tm−) = ω(tm−).

Proof: Letm ∈ {1, . . . ,M} . From the definition of the operators π and P̃m it follows
that for each K ∈ Th,m the function πϕ and P̃mϕ are on K×Im polynomials of degree
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≤ q in t ∈ Im and of degree ≤ p in x ∈ K. Moreover, πϕ(x, tm−) = ϕ(x, tm−) =
P̃mϕ(x, tm−) for all x ∈ K. Obviously, condition (2.26),(c) is equivalent to

∫

Im

(∫

K

(πϕ (x, t)− ϕ (x, t)) σ (x) dx

)

tjdt = 0, (4.15)

∀j = 0, . . . , q − 1, ∀σ ∈ P p(K), ∀K ∈ Th,m.

Further, by (4.14), for any K ∈ Th,m,
∫

Im

(

P̃mϕ(x, t)− ϕ(x, t)
)

tjdt = 0, ∀j = 0, . . . , q − 1, ∀x ∈ K. (4.16)

Let σ ∈ P p(K). Then (4.16) and Fubini’s theorem imply that

0 =

∫

K

(∫

Im

(

P̃mϕ (x, t)− ϕ (x, t)
)

tjdt

)

σ (x) dx (4.17)

=

∫

Im

(∫

K

(

P̃mϕ (x, t)− ϕ (x, t)
)

σ (x) dx

)

tjdt,

∀j = 0, . . . , q − 1, ∀σ ∈ P p(K), ∀K ∈ Th,m.

Comparing (4.17) with (4.15) and taking in to account the fact that the operator π
is uniquely determined by conditions (2.26), we immediately get (4.13).

Lemma 4.2: If ω ∈ Hq+1(Im), then

∥
∥
∥P̃mω − ω

∥
∥
∥

2

L2(Im)
≤ Cτ 2q+2

m

∥
∥Dq+1ω

∥
∥
2

L2(Im)
, (4.18)

where C > 0 is a constant independent of ω, m and t.
Proof: We proceed in several steps.

1. We transform the interval [tm−1, tm] into the reference interval [0, 1] by the
transformation

t = tm − ϑτm, ϑ ∈ [0, 1]. (4.19)

If ω ∈ Hq+1(Im) and s(ϑ) = ω(tm − ϑτm), then s ∈ Hq+1(0, 1) and

P̃m(ω)(tm − ϑτm) = (Ps)(ϑ), (4.20)

where the operator P is defined by

(a) Ps ∈ Pq(0, 1), (4.21)

(b)

∫ 1

0

(Ps (ϑ)− s (ϑ))ϑjdθ = 0 ∀j = 0, . . . , q − 1,

(c) Ps(0+) = s(0+).

Moreover, if we set Zm(t) = P̃mω(t) − ω(t), t ∈ (tm−1, tm), z(ϑ) = Ps(ϑ) −
s(ϑ), ϑ ∈ (0, 1), we have z(ϑ) = Zm(tm − ϑτm) and

Dq+1z(ϑ) = (−1)q+1τ q+1
m Dq+1Zm(tm − ϑτm), ϑ ∈ (0, 1). (4.22)
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By the substitution theorem,

|z|2L2(0,1) =

∫ 1

0

|z(ϑ)|2 dϑ

=

∫ 1

0

|Zm(tm − ϑτm)|
2 dϑ =

1

τm

∫

Im

|Zm(t)|
2 dt

=
1

τm
‖Zm‖

2
L2(Im) , (4.23)

∣
∣Dq+1z

∣
∣
2

L2(0,1)
=

∫ 1

0

∣
∣Dq+1z(ϑ)

∣
∣
2
dϑ

=

∫ 1

0

∣
∣(−1)q+1τ q+1

m Dq+1Zm(tm − ϑτm)
∣
∣
2
dϑ

=

∫ 1

0

τ 2q+2
m

∣
∣τ q+1

m Dq+1Zm(tm − ϑτm)
∣
∣
2
dϑ

= τ 2q+1

∫

Im

|Zm(t)|
2 dt

= τ 2q+1
m

∥
∥Dq+1Zm

∥
∥
2

L2(Im)
.

2. Since conditions (4.21)a)-c) determine the values of the operator P uniquely, it
is clear that

Pr = r for r ∈ P(0, 1). (4.24)

Now we prove that the operator P is a continuous mapping of the space
Hq+1(0, 1) into L2(0, 1). Let un ∈ Hq+1(0, 1), n = 1, 2, . . . , un → 0 inHq+1(0, 1)
for n→ ∞. The continuous imbendding Hq+1(0, 1) →֒ C([0, 1]) implies that

un ⇉ 0 in [0, 1] (4.25)

and, hence
Pun(0) → 0. (4.26)

For j = 1, . . . , q − 1 we have

∫ 1

0

(Pun − un)(ϑ)ϑ
jdϑ = 0. (4.27)

This and (4.25) imply that

∫ 1

0

Pun(ϑ)ϑ
jdϑ =

∫ 1

0

un(ϑ)ϑ
jdϑ→ 0, j = 0, . . . , q − 1. (4.28)

Since Pun ∈ Pq(0, 1), we can write

Pun(ϑ) =

q
∑

i=1

c
(n)
i ϑi + Pun(0), ϑ ∈ [0, 1]. (4.29)
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Integration yields

∫ 1

0

Pun(ϑ)ϑ
jdϑ =

∫ 1

0

q
∑

i=1

c
(n)
i ϑi+jdϑ+ (Pun)(0)

∫ 1

0

ϑjdϑ (4.30)

=

q
∑

i=1

c
(n)
i

1

i+ j + 1
+ (Pun)(0)

1

j + 1
, j = 0, . . . , q − 1.

Using (4.26), (4.28), (4.30) and the fact that the matrix ( 1
i+j+1

)i,j=1,...,q is regular

(see [39]), we find that

c
(n)
i → 0 for i = 1, . . . , q as n→ ∞

and, thus, Pun ⇉ 0 in [0, 1] and Pun → 0 in L2(0, 1).

3. The above results allow us to apply Theorem 3.1.4 from [16] and get the estimate

‖z‖L2(0,1) ≤ C
∥
∥Dq+1z

∥
∥
L2(0,1)

(4.31)

with a constant C > 0 independent of z ∈ Hq+1(0, 1). This and (4.23) imply
that

‖Zm‖L2(Im) ≤ Cτ 2q+2
m

∥
∥Dq+1z

∥
∥
L2(Im)

. (4.32)

Taking into account that Dq+1P̃mω = 0, we immediately get (4.18).

Lemmas 4.1 and 4.2 imply that for ϕ ∈ Hq+1(Im, S
p
h,m) we have

‖πϕ(x, ·)− ϕ(x, ·)‖2L2(Im) =
∥
∥
∥P̃mϕ(x, ·)− ϕ(x, ·)

∥
∥
∥

2

L2(Im)
(4.33)

≤ Cτ 2q+2
m

∥
∥Dq+1ϕ(x, ·)

∥
∥
2

L2(Im)
, x ∈ K, K ∈ Th,m.

4.2 Estimates of terms with η

Our further goal is to estimate the expressions

∥
∥η−m

∥
∥
2
,

∫

Im

‖η‖2L2(K) dt,

∫

Im

|η|2H1(K) dt,

∫

Im

|η|2H2(K) dt, Jh,m(η, η).

By (4.1),

‖η‖2L2(K) ≤ 2
∥
∥η(1)

∥
∥
2

L2(K)
+ 2

∥
∥η(2)

∥
∥
2

L2(K)
, (4.34)

|η|2Hs(K) ≤ 2
∣
∣η(1)

∣
∣
2

Hs(K)
+ 2

∣
∣η(2)

∣
∣
2

Hs(K)
, s = 1, 2.
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Lemma 4.3: The following estimates hold for K ∈ Th,m and m = 1, . . . ,M :

∥
∥η−m

∥
∥ ≤ Chp+1 |u(tm)|Hp+1(Ω) , (4.35)

∫

Im

∥
∥η(1)

∥
∥
2

L2(K)
dt ≤ Ch

2(p+1)
K |u|2L2(Im,Hp+1(K)) , (4.36)

∫

Im

∣
∣η(1)

∣
∣
2

H1(K)
dt ≤ Ch2pK |u|2L2(Im,Hp+1(K)) , (4.37)

h2K

∫

Im

∣
∣η(1)

∣
∣
2

H2(K)
dt ≤ Ch2pK |u|2L2(Im,Hp+1(K)) . (4.38)

Proof: It is enough to use (4.4).

The derivation of the estimates of terms with η(2) is more complicated.

Lemma 4.4: For K ∈ Th,m, m = 1, . . . ,M, we have

∫

Im

∥
∥η(2)

∥
∥
2

L2(K)
dt ≤ Cτ 2(q+1)

m |u|2Hq+1(Im;L2(K)) , (4.39)

∫

Im

∣
∣η(2)

∣
∣
2

H1(K)
dt ≤ Cτ 2(q+1)

m |u|2Hq+1(Im;H1(K)) , (4.40)

h2K

∫

Im

∣
∣η(1)

∣
∣
2

H2(K)
dt ≤ Cτ 2(q+1)

m |u|2Hq+1(Im;H1(K)) . (4.41)

Proof: (a) The use of Fubini’s theorem and (4.13), (4.6), (4.33), (4.5)(a) and (4.18)
yields the relations

∫

Im

∥
∥η(2)

∥
∥
2

L2(K)
dt =

∫

Im

(∫

K

∣
∣η(2)

∣
∣
2
dx

)

dt

=

∫

K

(∫

Im

∣
∣η(2)

∣
∣
2
dt

)

dx =

∫

K

∥
∥
∥P̃m(Πmu)− Πmu

∥
∥
∥

2

L2(Im)
dx

≤ Cτ 2q+2
m

∫

K

∥
∥Dq+1(Πmu)

∥
∥
2

L2(Im)
dx

= Cτ 2q+2
m

∫

Im

(∫

K

∣
∣Dq+1(Πmu)

∣
∣
2
dx

)

dt

= Cτ 2q+2
m

∫

Im

(∫

K

∣
∣Πm(D

q+1u)
∣
∣
2
dx

)

dt

≤ Cτ 2q+2
m

∫

Im

(∫

K

∣
∣Dq+1u

∣
∣
2
dx

)

dt

= Cτ 2q+2
m |u|2Hq+1(Im;L2(K)) . (4.42)

(b) Further, due to Fubini’s theorem, (4.13), (4.33), (4.12) and (4.5)(b), we find
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that
∫

Im

∣
∣η(2)

∣
∣
2

H1(K)
dt =

∫

Im

(∫

K

∣
∣
∣∇
(

Πmu− P̃m (Πmu)
)∣
∣
∣

2

dx

)

dt

=

∫

K

(
∫

Im

d∑

j=1

(
∂

∂xj
(Πmu)− P̃m

(
∂

∂xj
(Πmu)

))2

dt

)

dx

≤ Cτ 2q+2
m

∫

K

|∇ (Πmu)|
2
Hq+1(Im) dx

= Cτ 2q+2
m

∫

K

(∫

Im

∣
∣Dq+1∇ (Πmu)

∣
∣
2
dt

)

dx

= Cτ 2q+2
m

∫

Im

(∫

K

∣
∣∇
(
ΠmD

q+1u
)∣
∣
2
dx

)

dt

= Cτ 2q+2
m

∫

Im

∣
∣Πm

(
Dq+1u

)∣
∣
2

H1(K)
dt

≤ Cτ 2q+2
m

∫

Im

∣
∣Dq+1u

∣
∣
2

H1(K)
dt = Cτ 2q+2

m |u|2Hq+1(Im;H1(K)) .

(c) Using a similar process as in (b) and (3.5), we find that

∫

Im

∣
∣η(2)

∣
∣
2

H2(K)
dt =

∫

Im





∫

K

∣
∣
∣
∣
∣

d∑

i,j=1

∂2

∂xi∂xj

(

Πmu− P̃m (Πmu)
)
∣
∣
∣
∣
∣

2

dx



 dt

=

∫

K

(
∫

Im

d∑

i,j=1

(
∂2

∂xi∂xj
(Πmu)− P̃m

(
∂2

∂xi∂xj
(Πmu)

))2

dt

)

dx

≤ Cτ 2q+2
m

∫

K

∣
∣
∣
∣
∣

d∑

i,j=1

∂2

∂xi∂xj
(Πmu)

∣
∣
∣
∣
∣

2

Hq+1(Im)

dx

= Cτ 2q+2
m

∫

K





∫

Im

∣
∣
∣
∣
∣
Dq+1

d∑

i,j=1

∂2

∂xi∂xj
(Πmu)

∣
∣
∣
∣
∣

2

dt



 dx

= Cτ 2q+2
m

∫

Im





∫

K

∣
∣
∣
∣
∣

d∑

i,j=1

∂2

∂xi∂xj

(
ΠmD

q+1u
)

∣
∣
∣
∣
∣

2

dx



 dt

= Cτ 2q+2
m

∫

Im

∣
∣Πm

(
Dq+1u

)∣
∣
2

H2(K)
dt

≤ Cτ 2q+2
m

∫

Im

∣
∣Πm

(
Dq+1u

)∣
∣
2

H2(K)
dt

≤ Cτ 2q+2
m

∫

Im

C2
Ih

−2
K

∣
∣Πm

(
Dq+1u

)∣
∣
2

H1(K)
dt

≤ C̃τ 2q+2
m h−2

K

∫

Im

∣
∣Dq+1u

∣
∣
2

H1(K)
dt

= C̃τ 2q+2
m h−2

K |u|2Hq+1(Im;H1(K)) .

This yields (4.41).
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Finally, we shall be concerned with the estimation of
∫

Im
Jh,m(η, η)dt. It holds

Jh,m(η, η) =
∑

Γ∈FI
h,m

h(Γ)−1

∫

Γ

[η]2 dS +
∑

Γ∈FB
h,m

h(Γ)−1

∫

Γ

η2dS (4.43)

≤ C
∑

Γ∈FI
h,m

h(Γ)−1

(∫

Γ

[Πmu− u]2 dS +

∫

Γ

[π (Πmu)− Πmu]
2 dS

)

+C
∑

Γ∈FB
h,m

h(Γ)−1

(∫

Γ

(Πmu− u)2 dS +

∫

Γ

(π (Πmu− u)− Πmu)
2 dS

)

= C (Jh,m (Πmu− u,Πmu− u) + Jh,m (π (Πmu)− Πmu, π (Πmu)− Πmu)) .

Lemma 4.5: There exists a constant CJ > 0 such that it holds
∫

Im

Jh,m(Πmu− u,Πmu− u)dt ≤ CJh
2p |u|2L2(Im;Hp+1(Ω)) . (4.44)

Proof: The definition of the form Jh,m together with Young’s inequality gives us

Jh,m(Πmu− u,Πmu− u)

=
∑

Γ∈FI
h,m

h−1(Γ)

∫

Γ

[Πmu− u]2 dS +
∑

Γ∈FB
h,m

h−1(Γ)

∫

Γ

(Πmu− u)2dS

=
∑

Γ∈FI
h,m

h−1(Γ)

∫

Γ

(
(Πmu− u)|LΓ − (Πmu− u)|RΓ

)2
dS

+
∑

Γ∈FB
h,m

h−1(Γ)

∫

Γ

(Πmu− u)2dS

≤
∑

Γ∈FI
h,m

2h−1(Γ)

∫

Γ

{(
(Πmu− u)|LΓ

)2
−
(
(Πmu− u)|RΓ

)2
}

dS

+
∑

Γ∈FB
h,m

h−1(Γ)

∫

Γ

(Πmu− u)2dS.

Using (3.3) and Lemma 3.2 we get

Jh,m(Πmu− u,Πmu− u) ≤
2

C−

∑

Γ∈Fh,m

∫

Γ

h−1(Γ)(Πmu− u)2dS

≤
2CO

C−

∑

K∈Th,m

(

‖Πmu− u‖2L2(K)

h2K
+ |Πmu− u|2H1(K)

)

.

Finally, using estimations (4.4) with µ = p we obtain

∫

Im

Jh,m(Πmu− u,Πmu− u)dt ≤

∫

Im

2CO

C−

Ch2p
∑

K∈Th,m

|u|2Hp+1(K) dt.
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It leads to
∫

Im

Jh,m(Πmu− u,Πmu− u)dt ≤ CJh
2p |u|2L2(Im;Hp+1(Ω)) .

Further, we shall estimate the expression

∫

Im

Jh,m(π(Πmu)− Πmu, π(Πmu)− Πmu)dt.

Lemma 4.6: Let Dirichlet data uD = uD(x, t) have the behavior in t as a polynomial
of degree ≤ q :

uD(x, t) =

q
∑

j=0

ψj(x)t
j, (4.45)

where ψj ∈ Hp+1/2(∂Ω) for j = 0, . . . , q. Then

∫

Im
Jh,m (π (Πmu)− Πmu, π (Πmu)− Πmu) dt ≤ Cτ 2q+2

m |u|2Hq+1(Im,H1(Ω)) , (4.46)

m = 1, . . . ,M.

For general data uD, if there exists a constant C̄ > 0 such that τm ≤ C̄hK for all
K ∈ Th,m, h ∈ (0, h0) and m = 1, . . . ,M, then

∫

Im

Jh,m (π (Πmu)− Πmu, π (Πmu)− Πmu) dt ≤ Cτ 2qm |u|2Hq+1(Im,H1(Ω)) , m = 1, . . . ,M.

(4.47)
Proof: We proceed in two steps.

(I) Let Γ ∈ F I
h,m, i.e. Γ ⊂ Ω. If we set ϕ := Πmu, we can write

∫

Im

(∫

Γ

[π (Πmu)− Πmu]
2 dS

)

dt

=

∫

Im

(∫

Γ

[πϕ− ϕ]2 dS

)

dt

=

∫

Γ

(∫

Im

[πϕ (x, ·)− ϕ (x, ·)]2 dt

)

dS

=

∫

Γ

‖[πϕ (x, ·)− ϕ (x, ·)]‖2L2(Im) dS

=

∫

Γ

∥
∥
∥

[

P̃mϕ (x, ·)− ϕ (x, ·)
]∥
∥
∥

2

L2(Im)
dS.

Using the relation [

P̃mϕ− ϕ
]

= P̃m [ϕ]− [ϕ] , (4.48)
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and the estimate (4.33), we find that

∫

Im

(∫

Γ

[π (Πmu)− Πmu]
2 dS

)

dt

=

∫

Γ

∥
∥
∥

[

P̃mϕ (x, ·)− ϕ (x, ·)
]∥
∥
∥

2

L2(Im)
dS

≤ Cτ 2q+2
m

∫

Γ

∥
∥Dq+1 [ϕ (x, ·)]

∥
∥
2

L2(Im)
dS. (4.49)

If we take into account that

Dq+1 [ϕ(x, ·)] =
[
Dq+1ϕ(x, ·)

]
, (4.50)

[
Dq+1u

]
= 0,

and use Fubini’s theorem, we obtain

∫

Im

(∫

Γ

[π (Πmu)− Πmu]
2 dS

)

dt (4.51)

=

∫

Γ

(∫

Im

[π (Πmu)− Πmu]
2 dt

)

dS

≤ Cτ 2q+2
m

∫

Γ

(∫

Im

∣
∣Dq+1 [ϕ (x, t)]

∣
∣
2
dt

)

dS

= Cτ 2q+2
m

∫

Im

(∫

Γ

[
Dq+1 (Πmu− u)

]2
dS

)

dt.

The application of the multiplicative trace inequality implies that

∑

Γ∈FI
h,m

∫

Γ

[
Dq+1 (Πmu− u)

]2
dS (4.52)

≤ C
∑

K∈Th,m

∫

∂K

[
Dq+1 (Πmu− u)

]2
dS = C

∑

K∈Th,m

∥
∥Dq+1 (Πmu− u)

∥
∥
2

L2(∂K)

≤ C
∑

K∈Th,m

(∥
∥Dq+1 (Πmu− u)

∥
∥
L2(K)

∣
∣Dq+1 (Πmu− u)

∣
∣
H1(K)

+h−1
K

∥
∥Dq+1 (Πmu− u)

∥
∥
2

L2(K)

)

.

By (4.6),
Dq+1 (Πmu− u) = Πm(D

q+1u)−Dq+1u. (4.53)

In view of (4.2), we have Dq+1u ∈ L2(Im, H
1(Ω)). This and the approximation prop-

erties (4.4) of Πm imply that

∥
∥Πm

(
Dq+1u

)
−Dq+1u

∥
∥
L2(K)

≤ ChK
∣
∣Dq+1u

∣
∣
H1(K)

, (4.54)
∣
∣Πm

(
Dq+1u

)
−Dq+1u

∣
∣
H1(K)

≤ C
∣
∣Dq+1u

∣
∣
H1(K)

.
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Summarizing (3.3), (4.51), (4.52), (4.53) and (4.54), we get

∫

Im




∑

Γ∈FI
h,m

h(Γ)−1

∫

Γ

[π (Πmu)− Πmu]
2 dS



 dt (4.55)

≤ Cτ 2q+2
m

∫

Im

∑

K∈Th,m

∣
∣Dq+1u

∣
∣
2

H1(K)
dt = Cτ 2q+2

m |u|2Hq+1(Im;H1(Ω)) .

(II) In what follows, we shall assume that Γ ∈ FB
h,m, i.e. Γ ⊂ ∂Ω ∩ ∂K for some

K ∈ Th,m, and estimate the expression

(∗) :=

∫

Im

(

h(Γ)−1

∫

Γ

|π (Πmu)− Πmu|
2 dS

)

dt. (4.56)

Proceeding in a similar way as above, we find that

(∗) ≤ Cτ 2q+2
m h(Γ)−1

∫

Γ

∥
∥Dq+1 (Πmu)

∥
∥
2

L2(Im)
dS (4.57)

= Cτ 2q+2
m h(Γ)−1

∫

Im

(∫

Γ

∣
∣Dq+1 (Πmu)

∣
∣
2
dS

)

dt

= Cτ 2q+2
m h(Γ)−1

∫

Im

(∫

Γ

∣
∣Πm

(
Dq+1u

)∣
∣
2
dS

)

dt.

If we apply the multiplicative trace inequality and use the assumption that τm ≤ C̄hK
for all K ∈ Th,m, we get

∫

Im




∑

Γ∈FI
h,m

h(Γ)−1

∫

Γ

|π (Πmu)− Πmu|
2 dS



 dt ≤ Cτ 2qm |u|2Hq+1(Im,H1(Ω)) . (4.58)

Now let us assume that the Dirichlet data uD = uD(x, t) satisfy (4.45). Then
Dq+1u|∂Ω = Dq+1uD = 0. This and (4.57) imply that

(∗) ≤ Cτ 2q+2
m

∫

Im

(

h(Γ)−1

∫

Γ

∣
∣Πm(D

q+1u)−Dq+1u
∣
∣
2
dS

)

dt. (4.59)

Now, we use (4.59), Lemma 3.2 and estimates (4.54) and get the estimate

∫

Im




∑

Γ∈FB
h,m

h(Γ)−1

∫

Γ

|π (Πmu)− Πmu|
2 dS



 dt

≤ CCOτ
2q+2
m

∑

K∈Th,m

∫

Im

‖Πm(D
q+1u)−Dq+1u‖

2
L2(K)

h2(K)
dt

+CCOτ
2q+2
m

∑

K∈Th,m

∫

Im

∣
∣Πm(D

q+1u)−Dq+1u
∣
∣
2

H1(K)
dt (4.60)

≤ CJ ′τ 2q+2
m

∫

Im

∑

K∈Th,m

∣
∣Dq+1u

∣
∣
2

H1(K)
dt = CJ ′τ 2q+2

m |u|2Hq+1(Im;H1(Ω)) .

Finally, summarizing estimates (4.55), (4.58) and (4.60), we get (4.46) and (4.47).
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4.3 Main result

In this section we shall conclude the analysis of the error estimate.

Theorem 4.7: Let u be the exact solution satisfying the regularity condition (4.2)
of problem (1.1)-(1.3) with the Dirichlet data uD defined by (4.45). Let U be the
approximate solution to problem (1.1)-(1.3) obtained by scheme (2.24) over spatial
meshes Th,m and time partition Im, m = 1, . . . ,M, satisfying conditions (3.1), (3.2),
(3.77) and (4.3). Then there exist constants C, c > 0 independent of h, τ, m, ε, u
such that

∥
∥e−m

∥
∥
2
+
ε

2

m∑

j=1

∫

Im

‖e‖2DG,j dt (4.61)

≤ Cexp (ctm/ε)

(
m∑

j=1

(

h2pj |u|2L2(Ij ,Hp+1(Ω)) + τ 2q+1
j |u|2Hq+1(Ij ,H1(Ω))

)(

ε+
1

ε

)

+ h2p |u|2C([0,T ],Hp+1(Ω))

)

+ Ch2p+p |u|2C([0,T ],Hp+1(Ω))

+Cε
m∑

j=1

(

h2pj |u|2L2(Ij ,Hp+1(Ω)) + τ 2q+2
j |u|Hq+1(Ij ,H1(Ω))

)

,

m = 1, . . . ,M, h ∈ (0, h0),

or simply,

∥
∥e−m

∥
∥+

ε

2

m∑

j=1

∫

Im

‖e‖2DG,j dt (4.62)

≤ Cexp (ctm/ε)

((

h2p |u|2L2(0,T ;Hp+1(Ω)) + τ 2q+2 |u|Hq+1(0,T ;H1(Ω))

)(

ε+
1

ε

)

+h2p |u|2C([0,T ],Hp+1(Ω))

)

, m = 1, . . . ,M, h ∈ (0, h0).

Proof: In order to prove (4.61), we start from (3.86) and estimate the terms contain-
ing η. In virtue of (3.36), (3.22), (3.11),

Rj(η) = εσ2
j (η) +

1

ε
σ̃2
j (η) (4.63)

= ε




∑

K∈Th,j

(

|η|2H1(K) + h2K |η|2H2(K)

)

+ Jh,j (η, η)





1

ε

∑

K∈Th,j

(

‖η‖2L2(K) + h2K |η|2H1(K)

)

.

Now, (4.63) together with (4.34) and Lemmas 4.3 and 4.4 yield the estimate
∫

Ij

Rj(η)dt ≤ C

(

ε+
1

ε

)
∑

K∈Th,j

(

h2pK |u|2L2(Ij ;Hp+1(K)) + τ 2q+2
j |u|2Hq+1(Ij ;H1(K))

)

.

(4.64)
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This and the inequalities τj ≤ τ, hK ≤ hj ≤ h lead to
∫

Ij

Rj(η)dt ≤ C

(

ε+
1

ε

)(

h2p |u|2L2(Ij ,Hp+1(Ω)) + τ 2q+2 |u|2Hq+1(Ij ,H1(Ω))

)

(4.65)

Similarly, we get
∫

Ij

‖η‖DG,j dt ≤ Cε
∑

K∈Th,j

h2pK |u|2L2(Ij ;Hp+1(K)) ≤ Cεh2pj |u|L2(Ij ;Hp+1(Ω)) . (4.66)

Further, by (4.35) and (4.3),

m∑

j=1

∥
∥η−j

∥
∥
2
≤ C

M∑

j=1

τjh
2p
j |u(tj)|

2
Hp+1(Ω) ≤ CTh2p |u|2C([0,T ],Hp+1(Ω)) . (4.67)

Finally, using (3.88) and (4.65)-(4.67), we arrive at estimates (4.61) and (4.62), which
we wanted to prove.

Remark 4.1: As we see, estimate (4.61) is not uniform with respect to ε→ 0. Just
on the contrary, the constant in this estimate behaves as Cexp(cT/ε), which blows up
to ∞ as ε → 0. This is consequence of the application of Young’s inequality used for
the treatment of nonlinear terms and Gronwall’s lemma. The question, how to avoid
this bad behavior of the error estimate, remains open.

4.4 The case of the identical meshes on all time

levels

If all meshes Th,m, m = 1, . . . ,M are identical, which means that Th,m = Th for all
m = 1, . . . ,M, then all spaces Sp

h,m and forms ah,m, bh,m, . . . are the same: Sp
h,m =

Sp
h, ah,m = ah, bh,m = bh, . . . for all m = 1, . . . ,M. This implies that {ξ}m−1 ∈ Sp

h

and by (2.29), (2.26)(a) and (2.22), we have (η−m−1, {ξ}m−1) = 0. Hence,
∫

Im

(η′, ξ) dt+
(
{η}m−1 , ξ

+
m−1

)
= 0. (4.68)

Moreover, it is possible to show that the expression
∑m

j=1

∥
∥η−j

∥
∥
2
does not appear

in estimate (3.88) and instead of estimate (3.86) we get the estimate

∥
∥e−m

∥
∥
2
+
ε

2

m∑

j=1

∫

Im

‖e‖2DG,j dt (4.69)

≤ Cexp(ctm/ε)

(
m∑

j=1

∫

Ij

Rj(η)dt

)

+ 2
∥
∥η−m

∥
∥
2
+ 2ε

m∑

j=1

∫

Ij

‖η‖2DG,j dt,

m = 1, . . . ,M.

Due to fact that
∑m

j=1

∥
∥η−j

∥
∥
2
does not appear in the abstract error estimate (3.86),

assumption (4.3) can be omitted in the process of the derivation of the error estimate
(4.61) and (4.62). This leads us to the following result.
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Theorem 4.8: Let u be the exact solution satisfying the regularity condition (4.2)
of the problem (1.1)-(1.3) with the Dirichlet data uD defined by (4.45). Let U be the
approximate solution to the problem (1.1)-(1.3) obtained by scheme (2.24) over spatial
meshes Th,m = Th for all m = 1, . . . ,M, and time partition Im, m = 1, . . . ,M, satisfy-
ing condition (3.1), (3.2) and (3.77). Then there exist constant C, c > 0 independent
of h, τ, m, ε, u such that error estimates (4.61) and (4.62) hold.

4.5 L2(QT )-error estimate

Finally, we shall be concerned with the L2(L2)-error estimate, i.e. the error estimate
in the norm of the space L2(QT ).

Theorem 4.9: Let u be the exact solution satisfying the regularity condition (4.2)
of the problem (1.1)-(1.3) with the Dirichlet data uD defined by (4.45). Let U be the
approximate solution to the problem (1.1)-(1.3) obtained by scheme (2.24) over spatial
meshes Th,m and time partition Im, m = 1, . . . ,M, satisfying conditions (3.1), (3.2),
(3.77) and (4.3). Then there exist constants C, c > 0 independent of h, τ, m, ε, u
such that

‖e‖2L2(QT ) ≤ C
(
h2p+2 + ecT/εh2p

)
|u|2C([0,T ],Hp+1(Ω)) (4.70)

+C

(

ε+
1

ε

)
(
1 + ecT/ε

) (

h2p |u|2L2(0,T ;Hp+1(Ω)) + τ 2q+2 |u|2Hq+1(0,T ;H1(Ω))

)

+C
(

h2p+2 |u|2L2(0,T ;Hp+1(Ω)) + |u|2Hq+1(0,T ;L2(Ω))

)

.

Proof: It follows from (3.76) that

∫ T

0

‖ξ‖2 dt ≤ C
M∑

m=1

τm

(
∥
∥ξ−m−1

∥
∥
2
+
∥
∥η−m−1

∥
∥
2
+

∫

Im

Rm(η)dt

)

. (4.71)

This and (3.89) yield

∫ T

0

‖e‖2 dt ≤ C
M∑

m=1

τm

(
∥
∥ξ−m−1

∥
∥
2
+
∥
∥η−m−1

∥
∥
2
+

∫

Im

Rm(η)dt

)

+2

∫ T

0

‖η‖2 dt. (4.72)

Now we use (3.88) with m := m− 1 < M, ξ0 = 0, η−0 = Π1u
0 − u0 and get

‖e‖2L2(QT ) =

∫ T

0

‖e‖2 dt ≤ C
M∑

m=1

τm

(
∥
∥η−m−1

∥
∥
2
+

∫

Im

Rm(η)dt (4.73)

+ CecT/ε

(
M∑

j=1

∥
∥η−j

∥
∥
2
+

M∑

j=1

∫

Ij

Rj(η)dt

))

+ 2 ‖η‖2L2(QT ) .
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Further, by (4.64), (4.67) and (4.35),

∑M
j=1

∫

Ij
Rj(η)dt ≤ C

(
ε+ 1

ε

) (

h2p |u|2L2(0,T ;Hp+1(Ω)) + τ 2q+2 |u|2Hq+1(0,T ;H1(Ω))

)

,(4.74)
∑M

j=1

∥
∥η−j

∥
∥
2
≤ Ch2p |u|2C([0,T ];Hp+1(Ω)) , (4.75)

∥
∥η−m−1

∥
∥
2
≤ Ch2p+2 |u|2C([0,T ],;Hp+1(Ω)) , (4.76)

∫

Im
Rm(η)dt ≤ C

(
ε+ 1

ε

) (

h2p |u|2L2(Im;Hp+1(Ω)) + τ 2q+2 |u|2Hq+1(Im;H1(Ω))

)

. (4.77)

Moreover, (4.34), (4.36) and (4.39) imply that

‖η‖2L2(QT ) =
M∑

m=1

∫

Im

‖η‖2 dt (4.78)

≤ C
M∑

m=1

(

h2p+2 |u|2L2(Im;Hp+2(Ω)) + τ 2q+2 |u|2Hq+1(Im;L2(Ω))

)

= C
(

h2p+2 |u|2L2(0,T ;Hp+1(Ω)) + τ 2q+2 |u|2Hq+1(0,T ;L2(Ω))

)

.

From estimates (4.73)-(4.78) we get

‖e‖2L2(QT ) ≤ C
M∑

m=1

τm

(

h2p+2 |u|2C([0,T ];Hp+1(Ω)) (4.79)

+

(

ε+
1

ε

)(

h2pm |u|2L2(Im;Hp+1(Ω)) + τ 2q+2
m |u|2Hq+1(Im;H1(Ω))

))

+ecT/ε
(

h2p |u|2C([0,T ];Hp+1(Ω))

+

(

ε+
1

ε

)(

h2p |u|2L2(0,T ;Hp+1(Ω)) + τ 2q+2 |u|2Hq+1(0,T ;H1(Ω))

))

+C
(

h2p+2 |u|2L2(0,T ;Hp+1(Ω)) + τ 2q+2 |u|2Hq+1(0,T ;L2(Ω))

)

.

This and the relation
∑M

m=1 τm = T yield the final estimate (4.70).

Remark 4.2: Similarly as in Section 4.4, it is possible to formulate the L2(L2)-error
estimate in the case of identical space meshes on all time levels.

Theorem 4.10: Let u be the exact solution satisfying the regularity condition (4.2)
of the problem (1.1)-(1.3) with the Dirichlet data uD defined by (4.45). Let U be the
approximate solution to the problem (1.1)-(1.3) obtained by scheme (2.24) over spatial
meshes Th,m = Th for all m = 1, . . . ,M, and time partition Im, m = 1, . . . ,M, satisfy-
ing condition (3.1), (3.2) and (3.77). Then there exist constant C, c > 0 independent
of h, τ, m, ε, u such that error estimate (4.70) holds.

51



Part II

Numerical simulation of
flow-induced vibrations

52



Chapter 5

Flow problem

This chapter will be devoted to the description of 2D compressible flow. Mostly we
will be focused on the compressible viscous flow. Governing equations and their di-
mensionless form will be presented. In the second part of this chapter our aim will be
concerned with the Arbitrary Lagrangian-Eulerian (ALE) method that plays crucial
role in the treatment of time-dependence of the domain occupied by the fluid. Based
on this the governing equations in the ALE formulation will be described.

5.1 Navier-Stokes equations for compressible vis-

cous flow and their possible simplifications

We consider compressible flow in a bounded domain Ωt ⊂ IR2 depending on time
t ∈ [0, T ]. We use the following notation: ρ – density, p – pressure, E – total energy,
v = (v1, v2) – velocity vector, θ – absolute temperature, cv > 0 – specific heat at
constant volume, γ > 1 – Poisson adiabatic constant, µ > 0, λ = −2µ/3 – viscosity
coefficients, k > 0 – heat conduction coefficient.

The compressible viscous flow is described by the Navier-Stokes equations. The
detailed derivation of these equations can be found in [31].

The system consisting of the continuity equation, the Navier-Stokes equations
and the energy equation is simply called the compressible Navier-Stokes equations
and reads

∂ρ

∂t
+

2∑

j=1

∂(ρvj)

∂xj
= 0, (5.1)

∂(ρvi)

∂t
+

2∑

j=1

∂(ρvivj)

∂xj
=

2∑

j=1

∂τij
∂xj

, i = 1, 2, (5.2)

∂E

∂t
+

2∑

j=1

∂(Evj)

∂xj
=

2∑

i=1

∂

∂xi

(
2∑

j=1

τijvj + k
∂θ

∂xi

)

. (5.3)
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This system needs to be completed by the thermodynamical relations

p = (γ − 1)

(

E −
ρ |v|2

2

)

, (5.4)

θ =
1

cv

(
E

ρ
−

|v2|

2

)

. (5.5)

Because of the modeling of the airflow we neglect the outer volume force and use
the model of the Newtonian fluid. It means that the stress tensor T = {τij} is linearly
dependent on the velocity deformation tensor D(v) = {dij} :

T = (−p+ λdivv)I+ 2µD(v). (5.6)

The term T V =
{
τVij
}
= λdivvI + 2µD(v) is the viscous part of the stress tensor.

Thus,

τij = −pδij + τVij , (5.7)

τVij = λdivvδij + 2µdij(v), dij(v) =

(
∂vi
∂xj

+
∂vj
∂xi

)

, (5.8)

I is the unit tensor and µ and λ are called the first and second viscous coefficients. In
the kinetic theory of gases the conditions

µ ≥ 0, 3λ+ 2µ ≥ 0, (5.9)

are derived. The condition 3λ+2µ = 0 holds for monoatomic gases, but this is usually
used even in the case of more complicated gases. We shall assume that µ and λ are
constants.

The above system (5.1)-(5.3) is equipped with the initial conditions prescribing
the state of the flow in time t = 0

v(x, 0) = v0(x),

ρ(x, 0) = ρ0(x), (5.10)

p(x, 0) = p0(x),

where the initial data v0, ρ0, p0 are given.
The behavior of the fluid flow on the boundary ∂Ωt of the domain Ωt is described

by the boundary conditions. We assume that ∂Ωt is formed by mutually disjoint parts,
where ΓI is the inlet, ΓO is the outlet and ΓWt

denotes impermeable walls that may
move in dependence on time. Hence, ∂Ωt = ΓI ∪ΓO ∪ΓWt

. We consider the following
boundary conditions:

Inlet ΓI : ρ|ΓI×(0,T ) = ρD, v|ΓI×(0,T ) = vD = (vD1, vD2), (5.11)
2∑

j=1

(
2∑

i=1

τVij ni

)

vj + k
∂θ

∂n
= 0 on ΓI × (0, T );

Moving wall ΓWt
: v = z(t),

∂θ

∂n
= 0 on {(x, t); x ∈ ΓWt

, t ∈ (0, T )} ;

Outlet ΓO :
2∑

i=1

τVij ni = 0,
∂θ

∂n
= 0, j = 1, 2, on ΓO × (0, T )
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with given data ρD, vD, zD, where zD represents the velocity of a moving wall. By
n we denote the unit outer normal to the boundary ∂Ωt.

If we set µ = λ = k = 0 in (5.1-5.5), we obtain the model of inviscid compressible
flow, described by the continuity equation, the Euler equations, the energy equation
and thermodynamical relations:

∂ρ

∂t
+

2∑

j=1

∂(ρvj)

∂xj
= 0, (5.12)

∂(ρvi)

∂t
+

2∑

j=1

∂(ρvivj + δijp)

∂xj
= 0, i = 1, 2, (5.13)

∂E

∂t
+

2∑

j=1

∂((E + p)vj)

∂xj
= 0, (5.14)

p = (γ − 1)(E − ρ |v|2 /2). (5.15)

This system is simply called the compressible Euler equations.
System (5.1)-(5.3) can be written in the form

∂w

∂t
+

2∑

i=1

∂f i(w)

∂xi
=

2∑

i=1

∂Ri(w,∇w)

∂xi
, (5.16)

where
w = (w1, w2, w3, w4)

T = (ρ, ρv1, ρv2, E)
T = IR4 (5.17)

is the so-called state vector. The functions ρ, v1, v2, p are called primitive or physical
variables, whereas w1 = ρ, w2 = ρv1, w3 = ρv2, w4 = E are conservative variables.
Further,

f i(w) = (fi1(w), . . . , fi4(w))T = (ρvi, ρv1vi + δ1ip, ρv2vi + δ2ip, (E + p)vi)
T , i = 1, 2,

(5.18)
is the flux of the quantity w in the direction xi. Often, f i, i = 1, 2, are called inviscid
fluxes. If we express inviscid fluxes with the aid of the conservative variables, we
obtain

f 1(w) =







w2

w2
2/w1 + (γ − 1) [w4 − (w2

2 + w2
3)/(2w1)]

w2w3/w1
w2

w1
[γw4 − (γ − 1)(w2

2 + w2
3)/(2w1)]






, (5.19)

f 2(w) =







w2

w2w3/w1

w2
3/w1 + (γ − 1) [w4 − (w2

2 + w2
3)/(2w1)]

w3

w1
[γw4 − (γ − 1)(w2

2 + w2
3)/(2w1)]






. (5.20)

The domain of definition of the vector-valued functions f i is the open set D ⊂ IR4

of vectors w = (w1, . . . , w4)
T such that the corresponding density and pressure are
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positive:

D =
{
w ∈ IR4; w1 = ρ > 0, w2 = ρv1 ∈ IR, w3 = ρv2 ∈ IR, (5.21)

wm −
m−1∑

i=2

w2
i /(2w1) = p/(γ − 1) > 0

}

.

Obviously, f s ∈ C1(D)m. By Ri(w,∇w) we denote the so-called viscous fluxes

Ri(w,∇w) = (Ri1, . . . , Ri4)
T = (0, τVi1 , τ

V
i2 , τ

V
i1v1+τ

V
i2v2+k∂θ/∂xi)

T , i = 1, 2. (5.22)

Now, let us have a short insight into properties of the inviscid fluxes f s, s = 1, 2.
From (5.19) and (5.20) we can see that the inviscid fluxes are homogeneous, which
means that they fulfill the relation

f s(αw) = αf s(w), α > 0, s = 1, 2. (5.23)

Based on this it is possible to show that

f s(w) = As(w)w, s = 1, 2, (5.24)

where As(w) are the 4× 4 Jacobi matrices of the mapping f s defined for w ∈ D by

As(w) =
Df s(w)

Dw
=

(
∂fsi(w)

∂wj

)m

i,j=1

. (5.25)

For w ∈ D and n = (n1, n2)
T ∈ IR2, |n| = 1, we set

P(w,n) =
2∑

s=1

f s(w)ns, (5.26)

which is the flux of the quantity w in the direction n. The Jacobi matrix
DP(w,n)/Dw can be expressed in the form

DP(w,n)

Dw
= P(w,n) =

2∑

s=1

As(w)ns. (5.27)

The viscous fluxes Rs(w,∇w) have a property similar to the homogeneity of the
inviscid fluxes (5.23). The term Rs(w,∇w) can be expressed in the form

Rs(w,∇w) =
2∑

j=1

Ksj(w)
∂w

∂xj
, s = 1, 2, (5.28)

where Ksj are 4 × 4 matrices dependent on w and independent of ∇w. Explicit
formulae for Ksj read

K11(w) =








0
− (2µ+ λ) w2

w2
1

−µw3

w2
1

{K11}41

0
(2µ+ λ) 1

w1

0
(

2µ+ λ− k
cv

)
w2

w2
1

0
0
µ
w1(

µ− k
cv

w3

w2
1

)

0
0
0
k

cvw1







,
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K12(w) =








0
−λw3

w2
1

−µw2

w2
1

− (λ+ µ) w2w3

w3
1

0
0
µ
w1

µw3

w2
1

0
λ
w1

0
λw2

w2
1

0
0
0
0







,

K21(w) =








0
−µw3

w2
1

−λw2

w2
1

− (λ+ µ) w2w3

w3
1

0
0
λ
w1

λw3

w2
1

0
µ
w1

0
µw2

w2
1

0
0
0
0







,

K22(w) =








0
−µw2

w2
1

− (2µ+ λ) w3

w2
1

{K22}41

0
µ
w1

0
(

µ− k
cv

)
w2

w2
1

0
0

(2µ+ λ) 1
w−1(

2µ+ λ− k
cv

)
w3

w2
1

0
0
0
k

cvw1







,

where

{K11}41 = − (2µ+ λ)
w2

2

w3
1

− µ
w2

3

w3
1

+
k

cv

(

−
w4

w2
1

+
w2

2 + w2
3

w3
1

)

,

{K22}41 = −µ
w2

2

w3
1

− (2µ+ λ)
w2

3

w3
1

+
k

cv

(

−
w4

w2
1

+
w2

2 + w2
3

w3
1

)

.

5.2 Dimensionless form of the Navier-Stokes equa-

tions

In order to be able to carry out experiments on small models and to transfer the
results to the original real flow, the dimensionless form of the Navier-Stokes equations
is used.

Let us introduce the following positive reference quantities : a reference length L∗,
a reference velocity U∗ (scalar quantity), a reference density ρ∗, a reference viscosity
µ∗ and a reference heat conduction coefficient k∗. All other reference quantities can
be derived from these basic ones: we choose L∗/U∗ for t, ρ∗U∗2 for both p and E,
U∗2/cv for θ. We denote by primes the dimensionless quantities

x′i =
xi
L∗
, v′i =

vi
U∗
, v′ =

v

U∗
, ρ′ =

ρ

ρ∗
, (5.29)

p′ =
p

ρ∗U∗2
, E ′ =

E

ρ∗U∗2
, θ′ =

cvθ

U∗2
, t′ =

tU∗

L∗
,

µ′ =
µ

µ∗
, λ′ =

λ

λ∗
, k′ =

k

k∗
.

Now, we transform equation (5.2) for i = 1. The reader will see that in the similar
way it is possible to transform also other equations of system (5.1)-(5.3).

∂ρv1
∂t

(x, t) = ρ∗U∗∂ρ
′v′1
∂t

(x′, t′) = ρ∗U∗∂ρ
′v′1
∂t′

(x′, t′)
∂t′

∂t

=
ρ∗U∗2

L∗

∂ρ′v′1
∂t′

(x′, t′) , (5.30)
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∂ρv21
∂x1

(x, t) = ρ∗U∗2∂ρ
′v′21
∂x1

(x′, t′) = ρ∗U∗2∂ρ
′v′21
∂x′1

(x′, t′)
∂x′1
∂x1

=
ρ∗U∗2

L∗

∂ρ′v′21
∂x1

(x′, t′) (5.31)

∂p

∂x1
(x, t) = ρ∗U∗2 ∂p

′

∂x1
(x′, t′) = ρ∗U∗2 ∂p

′

∂x1
(x′, t′)

∂x′1
∂x1

=
ρ∗U∗2

L∗

∂p′

∂x′1
, (5.32)

∂2v1
∂x21

(x, t) =
∂

∂x1

(
∂v1
∂x1

(x, t)

)

= U∗ ∂

∂x1

(
∂v′1
∂x1

(x′, t′)

)

= U∗ ∂

∂x1

(
∂v′1
∂x′1

(x′, t′)
∂x′1
∂x1

)

=
U∗

L∗

∂

∂x1

(
∂v′1
∂x′1

(x′, t′)

)

=
U∗

L∗

∂2v′1
∂x′21

(x′, t′)
∂x′1
∂x1

=
U∗

L∗2

∂2v′1
∂x′21

(x′, t′). (5.33)

Remaining terms are treated in the same way:

∂ρv1v2
∂x2

(x, t) =
ρ∗U∗2

L∗

∂ρ′v′1v
′
2

∂x′2
(x′, t′), (5.34)

∂2v1
∂x22

(x, t) =
U∗

L∗2

∂2v′1
∂x′21

(x′, t′), (5.35)

∂2v2
∂x1∂x2

(x, t) =
U∗

L∗2

∂2v′2
∂x′1∂x

′
2

(x′, t′). (5.36)

Using relations (5.30)-(5.36) we obtain the dimensionless form of equation (5.2) for
i = 1 :

∂(ρ′v′1)

∂t′
+

2∑

j=1

∂(ρ′v′1v
′
j)

∂x′j
= −

∂p′

∂x′1
+

µ∗

ρ∗U∗L∗

2∑

j=1

∂τ ′V1j
∂x′j

. (5.37)

Now, if we introduce the Reynolds and Prandtl numbers by

Re =
ρ∗U∗L∗

µ∗
, P r =

cpµ
∗

k∗
, (5.38)

system (5.1)-(5.3) can be written in the dimensionless form

∂ρ′

∂t′
+

2∑

j=1

∂(ρ′v′j)

∂x′j
= 0, (5.39)

∂(ρ′v′i)

∂t′
+

2∑

j=1

∂(ρ′v′iv
′
j)

∂x′j
= −

∂p′

∂x′i
+

1

Re

2∑

j=1

∂τ ′Vij
∂x′j

, i = 1, 2, (5.40)

∂E ′

∂t′
+

2∑

j=1

∂(E ′v′j)

∂x′j
= −

2∑

j=1

∂(p′v′j)

∂x′j
+

1

Re

(
2∑

j=1

∂

∂x′j

(
2∑

i=1

τ ′Vji v
′
i

))

(5.41)

+
γk′

RePr
∇θ′.
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Here the viscous part of the stress tensor has the dimensionless form

τ ′Vij = λ′divv′δij + 2µ′d′ij(v
′), d′ij(v

′) =

(
∂v′i
∂x′j

+
∂v′j
∂x′i

)

. (5.42)

Finally we add the thermodynamical relations (5.4) and (5.5) expressed in the di-
mensionless form

p′ = (γ − 1)

(

E ′ −
ρ′ |v′|2

2

)

, (5.43)

θ′ =

(
E ′

ρ′
−

|v′2|

2

)

. (5.44)

Based on (5.39)-(5.41), the system of governing equations can be formulated in
the dimensionless conservative form

∂w′

∂t′
+

2∑

i=1

∂f i(w
′)

∂x′i
=

2∑

i=1

∂R′
i(w

′,∇w′)

∂x′i
in QT ′ , (5.45)

where QT ′ = Ω′ × (0, T ′), Ω′ = {(x′1, x
′
2); x

′
1 = x1/L

∗, x′2 = x2/L
∗, (x1, x2) ∈ Ω} ,

T ′ = TU∗/L∗ and

w′ = (ρ′, ρ′v′1, ρ
′v′2, E

′)T ∈ IR4 (5.46)

w′ = w′(x′, t′), x′ ∈ Ω′, t′ ∈ (0, T ′),

f i(w
′) = (ρ′v′i, ρ

′v′1v
′
i + δ1ip

′, ρ′v′2v
′
i + δ2ip

′, (E ′ + p′)v′i)
T

R′
i(w

′,∇w′) =
1

Re
(0, τ ′Vi1 , τ

′V
i2 , τ

′V
i1 v

′
1 + τ ′Vi2 v

′
2 +

γk′

Pr

∂θ′

∂x′i
)T .

Formally, system (5.45) has the same form and properties as system (5.16) and there-
fore the primes are omitted, if we consider the equations in the dimensionlles form.

5.3 ALE method

In order to simulate flow in a time-dependent domain, we employ the Arbitrary
Eulerian-Lagrangian (ALE) method. Let us denote by Ωref = Ω0 the computational
domain at the initial time. It is also called the reference or original configuration. By
At we denote a smooth, one-to-one mapping of the reference configuration onto the
computational domain Ωt at time t (the so-called current configuration), i.e.

At : Ω̄ref −→ Ω̄t, (5.47)

X 7−→ x(X, t) = At(X).

We call At the ALE mapping.
Based on this mapping we define the domain velocity z̃ at all points X of the

reference configuration Ωref for each time level:

z̃ : Ω̄ref × (0, T ) −→ IR2, (5.48)

z̃(X, t) = ∂
∂t
x(X, t) = ∂

∂t
At(X),
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Figure 5.1: ALE mapping

which can be transformed to the space coordinates x by the relation

z = z̃(A−1
t (x), t), t ∈ (0, T ), x ∈ Ω̄t. (5.49)

With the aid of the ALE mapping we introduce the ALE derivative DA

Dt
of a smooth

function f = f(x, t), x ∈ Ωt, t ∈ (0, T ). We set

DA

Dt
f(x, t) =

∂f̃

∂t
(X, t), X = A−1

t (x), (5.50)

where
f̃(X, t) = f(At(X), t), X ∈ Ωref , t ∈ (0, T ). (5.51)

Using the chain rule, we find that

DA

Dt
f =

∂f

∂t
+ (z · ∇)f, (5.52)

DA

Dt
f =

∂f

∂t
+ div(fz)− fdiv(z). (5.53)

It follows from (5.52)-(5.53) that the time derivative of a function f can be expressed
in the form

∂f

∂t
=

DA

Dt
f − (z · ∇)f, (5.54)

∂f

∂t
=

DA

Dt
f + fdivz − div(fz). (5.55)

The application of relations (5.54) and (5.55) to the statevector w leads to the
ALE formulations of the governing system (5.16).

If we use the relation (5.54), we will get the first possible ALE formulation

DAw

Dt
+

2∑

i=1

∂f i(w)

∂xi
−

2∑

i=1

zi
∂w

∂xi
=

2∑

i=1

∂Ri(w,∇w)

∂xi
. (5.56)
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On the basis of (5.55) we obtain

DAw

Dt
+

2∑

i=1

∂gi(w)

∂xi
+wdivz =

2∑

i=1

∂Ri(w,∇w)

∂xi
. (5.57)

Here gi, i = 1, 2, is the ALE flux of w in the direction xi defined as

gi(w) = f i(w)− ziw. (5.58)

Numerical experiments carried out in [56] proved better applicability of the ALE
form (5.57). For this reason we shall be concerned just with the discretization of
(5.57).
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Problem of an elastic structure

In this chapter we shall pay attention to the mathematical description of the defor-
mation of elastic bodies. For the good explication of all relations we start from the
presentation of terms like stress tensor and strain tensor. This allows us to derive the
static elasticity problem based on which we pass to the dynamical equations of elastic
body with the aid of d’Alembert’s principle. The complex overview of the problem of
elastic structure can be found, for example, in [53].

We can meet the stress tensor and other quantities also in the description of flow
problem. For this reason we shall denote these quantities with the index b, if necessary.

6.1 The stress tensor

The solid body is a domain Ωb ⊂ IR3. An open subset V of the solid body Ωb such
that V̄ ⊂ Ωb fulfilling the condition of the Lipschitz-continuous boundary ∂V , will be
called a control volume. If x ∈ ∂V then we denote by n the unit outer normal to
∂V in x. The volume force f = (f1, f2, f3)

T is the density of the force acting on any
particle contained in a control volume of the solid body Ωb. We assume f ∈ C(Ω̄)3.

The stress vector T (x,n) represents the density of the inner (surface) forces in
the body acting from a part Ωb \ V on a part V̄ at the point x and depend on the
position x and on the unit outer normal n. We assume that T (x,n) ∈ C(Ω̄ × S)3,
where S is the surface of the unit sphere.

As a consequence of the third Newton’s law we obtain T (x,n) = −T (x,−n).
The stress vector can be determined by its values for the normals parallel to the

axis of the coordinates. Let us set

τ bji = Ti(x, ej), i, j = 1, 2, 3, (6.1)

where e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1). Quantities τ bji(x), i, j = 1, 2, 3, are
called components of the stress tensor. Especially τ bii, i = 1, 2, 3, are denoted normal
stresses and τ bji, i 6= j, i, j = 1, 2, 3, are shear stresses. Similarly to fluid mechanics
it is possible to show that

Ti(x,n) =
3∑

j=1

njτ
b
ji(x), i = 1, 2, 3. (6.2)
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The matrix
{
τ bij(x)

}

i,j=1,2,3
represents the stress tensor at the point x.

Supposing that τ bij ∈ C1(Ωb) and fi ∈ C(Ωb), i, j = 1, 2, 3, we can express the
equilibrium of the forces by the equations

3∑

j=1

∂τ bji
∂xj

(x) + fi(x) = 0, i = 1, 2, 3, x ∈ Ωb, (6.3)

For the derivation see e.g. [53]. Further, it is possible to prove the symmetry of the
stress tensor

τ bij(x) = τ bji(x), i, j = 1, 2, 3, x ∈ Ωb (6.4)

by the equilibrium of the angular momentum.

6.2 The strain tensor

Now, we shall define the tensor of finite strain characterizing variation of the distance
of two points of the body Ωb. Let have a point x ∈ Ωb. A deformation changes the
body Ωb to Ω̃b and the point x change the position to point y. We suppose that there
exists a function of points describing the deformation

x −→ y(x) = x+ u(x), (6.5)

where u(x) is a vector of displacement. We assume that the transformation y(x) is
the diffeomorphism and ui ∈ C3(Ωb).

Let v ∈ IR3 be an arbitrary vector and the point x+ tv ∈ Ωb, where t ∈ IR (suffi-
ciently small). Now, we shall explore the function ϕ(t) representing square difference
of the length of the line segments determined by points x and x+ tv before and after
the deformation

ϕ(t) = |[x+ tv + u(x+ tv)]− [x+ x(x)]|2 − |x+ tv − x|2

= |tv + u(x+ tv)− u(x)|2 − t2 |v|2

=
3∑

i=1

(tvi + ui(x+ tv)− ui(x))
2 − t2 |v|2

=
3∑

i=1

(ui(x+ tv)− ui(x))
2 + 2t

3∑

i=1

vi(ui(x+ tv)− ui(x)). (6.6)

Further we set ψi(τ) = ui(x + τtv), i = 1, 2, 3. Based on the assumption of the
smoothness of u we have

ψ′
i(τ) =

3∑

j=1

∂ui
∂xj

(x+ τtv)tvj, i = 1, 2, 3. (6.7)

Then

ψi(1)− ψi(0) =

∫ 1

0

ψ′
i(τ)dτ, i = 1, 2, 3. (6.8)
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Now, we can express the function ϕ with the aid of ψ′
i(τ) :

ϕ(t) = 2t
3∑

i=1

(ψi(1)− ψi(0))vi +
3∑

i=1

(ψi(1)− ψi(0))
2 (6.9)

= 2t2
3∑

i,j=1

∫ 1

0

∂ui
∂xj

(x+ τtv)vjvidτ + t2
3∑

i=1

(
3∑

j=1

∫ 1

0

∂ui
∂xj

(x+ τtv)vjdτ

)2

.

The function ϕ has at the point 0 the smooth second order derivative. It holds
that ϕ(0) = ϕ′(0) = 0 and only ϕ′′(0) can be nonzero. For this reason ϕ′′ is the lowest
order derivative of ϕ, which can represent the deformation

1

2
ϕ′′(0) = 2

3∑

i,j=1

∂ui
∂xj

(x)vjvi +
3∑

i=1

(
3∑

j=1

∂ui
∂xj

(x)vj

)2

=
3∑

i,j=1

(
∂ui
∂xj

(x) +
∂uj
∂xi

(x)

)

vivj +
3∑

i,j,k=1

∂uk
∂xi

(x)
∂uk
∂xj

(x)vivj. (6.10)

Using the notation

2εij =
∂ui
∂xj

+
∂uj
∂xi

+
3∑

k=1

∂uk
∂xi

∂uk
∂xj

, i, j = 1, 2, 3 (6.11)

we write
1

2
ϕ′′(0) = 2

3∑

i,j=1

εijvivj. (6.12)

The matrix {εij}
3
i,j=1 is called the tensor of finite strain.

The linear part (with respect to the gradient of displacement) of the tensor of finite

strain (6.11) εi,j = εi,j

(
∂u1

∂x1
, ∂u1

∂x2
, . . . , ∂u3

∂x3

)

is called small strain tensor and denoted

by eij :

eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)

, i, j = 1, 2, 3. (6.13)

6.3 Generalized Hooke’s law

In this section we shall describe the relation between the strain and stress tensor. For
a wide range of materials the linear generalized Hooke’s law represents a convenient
characterization of their properties. It is expressed as the linear relation between the
stress tensor and small strain tensor at point x ∈ Ωb, i.e.

τ bij =
3∑

k,l=1

cijklekl, i, j = 1, 2, 3. (6.14)

We can notice that there is no absolute term in (6.14). It corresponds with the as-
sumption that in the case of zero stress tensor also the small strain tensor is equal to
zero.
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Chapter 6. Problem of an elastic structure

If the constants cijkl(x) do not depend on the choice of coordinate system, the
material of the body is said to be isotropic at the point x ∈ Ωb.

The generalized Hooke’s law for isotropic material can be written in a form:

τ bij(x) = λb(x)divu(x)δij + 2µb(x)eij(x), i, j = 1, 2, 3. (6.15)

The coefficients λb, µb are so-called Lamé coefficients and δij is the Kronecker delta.
The proof of (6.15) can be found in [53].

Now our aim turns to properties of the Lamé coefficients. Let suppose that there
exists an inverse law to the generalized Hooke’s law. So we are able to express com-
ponents of the small strain tensor by the stress tensor components. Then the system
(6.14) can be solved clearly with respect to eij. It is useful to take in a mind that
divu =

∑3
i=1 eii. The determinant of the matrix of system (6.15) is equal to

(2µb)5(3λb + 2µb). (6.16)

Because we suppose this determinant is nonzero, it results in

µb 6= 0, 3λb + 2µb 6= 0. (6.17)

Further it is possible to show
µb > 0, λb > 0 (6.18)

(for derivation see [53]).
In a technical practice are mostly instead of the Lamé coefficients λb, µb used the

Young modulus E and the Poisson ratio σ defined by

1

E
=

λb + µb

µb(3λb + 2µb)
, σ =

λb

2(λb + µb)
. (6.19)

In the opposite way the Lamé coefficients can be expressed by the Young modulus E
and the Poisson ratio σ

µb =
E

2(1 + σ)
, λb =

Eσ

(1 + σ)(1− 2σ)
. (6.20)

It is seen from (6.19) that

(λb > 0 ∧ µb > 0) ⇐⇒ (E > 0 ∧ 0 < σ <
1

2
). (6.21)

6.4 Dynamical equations of an isotropic elastic

body

Till now just the conditions of equilibrium of forces were taken into account. In this
section we shall derive the equations of motion of an isotropic elastic body. We assume
that ui, τ

b
ij and fi, i, j = 1, 2, 3 are in general functions of the space coordinates

xi, i = 1, 2, 3 and time t and have the continuous derivatives of the required order.
Dynamical equations can be derived from the equilibrium equations (6.3) by the

use of d’Alembert’s principle (see [64]). It allows us to add the term representing the
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Chapter 6. Problem of an elastic structure

acceleration of the body to equations (6.3) and we obtain the equations of motion in
the form

3∑

j=1

∂τ bij
∂xj

+ fi = ρb
∂2ui
∂t2

, i = 1, 2, 3. (6.22)

Further, to equations (6.22) we add the term

Cρb
∂ui
∂t
, i = 1, 2, (6.23)

where C ≥ 0 is a real constant. This term represents the dissipative structural damp-
ing, which is natural for real bodies. Then equations (6.22) read

ρb
∂2ui
∂t2

+ Cρb
∂ui
∂t

−
2∑

j=1

∂τ bij
∂xj

= fi i = 1, 2, 3. (6.24)

6.5 Formulation of 2D problem of the motion of

an isotropic elastic body

In the previous section of this chapter we suppose the three dimensional model of
an elastic body. The aim of this work is the complet description of the two dimen-
sional model of the fluid-structure interaction. For this reason we need to simplify the
dynamical equations (6.24) of an elastic body for the two dimensional case. In the
two-dimensional case the third component of the displacement is equal to zero:

u3 = 0. (6.25)

It means that u = (u1(x, t), u2(x, t)). Similarly, we obtain

τ bi3 = τ b3i = 0, i = 1, 2,

f3 = 0.

Let us have a time interval (0, T ) and a domain Ωb with the Lipschitz-continuous
boundary ∂Ωb consisting from two disjoint parts Γb

W and Γb
D such that ∂Ωb = Γb

W∪Γb
D.

Further, we assume that f = 0. Then the complete system of the two dimensional
dynamical equations of an elastic body can be written in the form

ρb
∂2ui
∂t2

+ Cρb
∂ui
∂t

−
2∑

j=1

∂τ bij
∂xj

= 0 in Ωb × (0, T ), i = 1, 2, (6.26)

u(0, ·) = u0 in Ωb, (6.27)

∂u

∂t
(0, ·) = r0 in Ωb, (6.28)

u = ud in Γb
D × (0, T ), (6.29)

2∑

j=1

τ bijnj = Tn
i in Γb

W × (0, T ), (6.30)

where equations (6.26) were completed by the initial conditions (6.27)-(6.28) and
the boundary conditions (6.29)-(6.30). We assume that all presented functions are
sufficiently smooth.
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Chapter 7

Coupled problem

Till now we were concerned with the separate flow or structure problem as described
in Chapters 5 and 6. The aim of this work is the fluid-structure interaction problem.
For this reason this chapter will be devoted to the formulation of the continuous
coupled problem together with the coupling conditions.

As mentioned in Chapter 5 the flow problem is represented by the Navier-Stokes
equations (5.1)-(5.3) completed by the thermodynamical relations (5.4)-(5.5) and the
initial conditions (5.10) and the boundary conditions (5.11) in the bounded domain
Ωt ⊂ IR2 depending on time t ∈ [0, T ].

The structure problem is defined by system (6.26)-(6.30) in the bounded domain
Ωb ⊂ IR2.

The interaction between the flow and the structure takes place on their common
boundary Γ̃Wt

at the time t. It is given by

Γ̃Wt
=
{
x ∈ IR2; x = X + u(X, t), X ∈ Γb

W

}
. (7.1)

Thus, the domain Ωt is determined by the displacement u of the part Γb
W at time

t. It gives us the possibility how to construct a convenient ALE mapping At. This
procedure will be described in Section 10.1.

If the domain Ωt occupied by the fluid at time t is known, we can solve the flow
problem and compute the surface force acting on the body on the part Γ̃Wt

, which
can be transformed to the reference configuration, i.e. to the interface Γb

W . In the case
of the linear elasticity model, when only small deformations are considered, we get
the transmission condition for the force balance between the aerodynamic forces and
the forces on the structure surface

2∑

j=1

τ bij(X)nj(X) = −
2∑

j=1

τ fij(x)nj(X), i = 1, 2, (7.2)

where τ fij are the components of the stress tensor of the fluid:

τ fij = −pδij + τVij , i, j = 1, 2, (7.3)

the points x and X satisfy the relation

x = X + u(X, t). (7.4)
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and n(X) = (n1(X), n2(X)) denotes the unit outer normal to the body Ωb on Γb
W at

the point X. Because the fluid problem is solved as a dimensionless one in contrast
to the structural problem, we need to transform the dimensionless stress tensor of the
fluid in the following way:

τ fij(x, t) = ρ∗U∗2p′(x′, t′) +
µ∗U∗

L∗
τVij (x

′, t′). (7.5)

This can be shown in a similar way as in (5.30)-(5.36).
Further, the fluid velocity is defined on the moving part of the boundary Γ̃Wt

by
the second transmission condition on the velocity equality of the fluid and structure
particle on the FSI boundary

v(x, t) = zD(x, t) =
∂u(X, t)

∂t
. (7.6)

The obtained velocity can be written in the dimensionless form as

v′(x′, t′) =
v(x, t)

U∗
. (7.7)

Finally, we formulate the continuous fluid-structure interaction (FSI) problem: We
want to determine the domain Ωt, t ∈ (0, T ] and functions w = w(x, t), x ∈ Ω̄t, t ∈
[0, T ] and u = u(X, t), X ∈ Ω̄b, t ∈ [0, T ] satisfying equations (5.57), (6.26), the
initial conditions (5.10), (6.27), (6.28), the boundary conditions (5.11), (6.29), (6.30)
and the transmission conditions (7.2), (7.6).

This FSI problem represents a strongly nonlinear dynamical system. Theoretical
analysis of qualitative properties of this problem, as the existence, uniqueness and
regularity of its solution, is open. Therefore, in the sequel we shall be concerned with
its numerical solution.
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Chapter 8

Discretization of the flow problem

This chapter is devoted to the discretization of the system of equations (5.57) with
the initial condition (5.10) and the boundary condition (5.11). The space semidis-
cretization will be carried out by the discontinuous Galerkin finite element method
(DGFEM). The time discretization will be realized by the backward difference formula
(BDF) method.

8.1 Space semidiscretization

We construct a polygonal approximation Ωht of the domain Ωt. By Tht we denote a
partition of the closure Ω̄ht of the domain Ωht into a finite number of closed triangles
K with mutually disjoint interiors such that Ω̄ht =

⋃

K∈Tht
K.

By Fht we denote the system of all faces of all elements K ∈ Tht. Further, we intro-
duce the set of all boundary faces FB

ht = {Γ ∈ Fht; Γ ⊂ ∂Ωht} . In the FB
ht we distin-

guish the set F IO
ht =

{
Γ ∈ FB

ht; Γ ⊂ ΓI ∪ ΓO ⊂ ∂Ωht

}
of all boundary faces lying on

the input and output, the set FW
ht =

{
Γ ∈ FB

ht; Γ ⊂ ΓWt
⊂ ∂Ωht

}
of all boundary faces

lying on the impermeable wall and the set FD
ht =

{
Γ ∈ FB

ht; a Dirichlet condition is
prescribed on Γ} of all “Dirichlet” boundary faces. Finally, F I

ht = Fht \ F
B
ht denotes

the set of all inner faces.
Each Γ ∈ Fht is associated with a unit normal vector nΓ to Γ. For Γ ∈ FB

ht the
normal nΓ has the same orientation as the outer normal to ∂Ωht. We set d(Γ) =
length of Γ ∈ Fht.

For each Γ ∈ F I
ht there exist two neighbouring elements K

(L)
Γ , K

(R)
Γ ∈ Tht such

that Γ ⊂ ∂K
(R)
Γ ∩ ∂K

(L)
Γ . We use the convention that K

(R)
Γ lies in the direction of nΓ

and K
(L)
Γ lies in the opposite direction to nΓ. See Figure 8.1. The elements K

(L)
Γ , K

(R)
Γ

are called neighbours. If Γ ∈ FB
ht, then the element adjacent to Γ will be denoted by

K
(L)
Γ .
The approximate solution will be sought in the space of piecewise polynomial

functions
Sht = [Sht]

4, with Sht = {v; v|K ∈ Pr(K) ∀K ∈ Tht}, (8.1)

where r ≥ 1 is an integer and Pr(K) denotes the space of all polynomials on K of
degree ≤ r. A function ϕ ∈ Sht is, in general, discontinuous on interfaces Γ ∈ F I

ht.

By ϕ
(L)
Γ and ϕ

(R)
Γ we denote the values of ϕ on Γ considered from the interior and
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K
(L)
Γ

K
(R)
Γ

Γ

~nΓ

Figure 8.1: Neighbouring elements

the exterior of K
(L)
Γ , respectively, and set

〈ϕ〉Γ =
ϕ

(L)
Γ +ϕ

(R)
Γ

2
, (8.2)

[ϕ]Γ = ϕ
(L)
Γ −ϕ

(R)
Γ . (8.3)

These functions represent the average and the jump of a function ϕ ∈ Sht on Γ ∈ Fht.
In order to derive the discrete problem, we assume that w is a sufficiently regular

classical solution of (5.57). Therefore, w|
(L)
Γ = w|

(R)
Γ = w|Γ. In what follows, it will

be suitable to use these symbols instead of w|Γ because of the definition of the dis-
cretization forms in terms of an approximate solution. If we multiply system (5.57)
by a test function ϕh ∈ Sht, integrate over K ∈ Tht, apply Green’s theorem and sum
over all elements K ∈ Tht, we obtain

∑

K∈Tht

∫

K

DAw

Dt
·ϕhdx+

∑

K∈Tht

∑

Γ⊂∂K

∫

Γ

2∑

1

gs(w)(nΓ)s ·ϕh|
(L)
Γ dS

−
∑

K∈Tht

∫

K

2∑

s=1

gs(w) ·
∂ϕh

∂xs
dx+

∑

K∈Tht

∫

K

wdivz ·ϕhdx

=
∑

K∈Tht

∑

Γ⊂∂K

∫

Γ

2∑

s=1

Rs(w|
(L)
Γ ,∇w|

(L)
Γ )(nΓ)s ·ϕh|

(L)
Γ dS

−
∑

K∈Tht

∫

K

2∑

s=1

Rs(w,∇w) ·
∂ϕh

∂xs
dx. (8.4)

Let us have a look on some terms of (8.4). First we take in mind the inviscid

flux
∫

Γ

∑2
1 gs(w)(nΓ)s · ϕh|

(L)
Γ dS through the edge Γ, Γ ⊂ ∂K, K ∈ Tht. It will be

approximated with the aid of the numerical flux Hg:

2∑

s=1

gs(w)(nΓ)s ≈ Hg(w|
(L)
Γ ,w|

(R)
Γ ,nΓ). (8.5)

We assume the following conditions for a general numerical flux H :
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1. H(w1,w2,n) is defined in D × D × B1, where B1 = {n ∈ IR2; |n| = 1} .
H(w1,w2,n) is locally Lipschitz-continuous, which means that for each a > 0
there exists a constant LH(a) such that

|H(w1,w2,n)−H(w∗
1,w

∗
2,n)| ≤ LH(a) (|w1 −w∗

1|+ |w2 −w∗
2|) , (8.6)

w1,w2,w
∗
1,w

∗
2 ∈ IR4, |w1| , |w2| , |w

∗
1| , |w

∗
2| ≤ a, n ∈ B1.

2. H(w1,w2,n) is consistent :

H(w1,w1,n) =
2∑

s=1

gs(w1)ns, w1 ∈ IR4, n = (n1, n2) ∈ B1. (8.7)

3. H(w1,w2,n) is conservative:

H(w1,w2,n) = −H(w2,w1,−n), w1,w2 ∈ IR4, n ∈ B1. (8.8)

Using (8.5), (8.8) and

n|
(L)
Γ = −n|

(R)
Γ , Γ ∈ Fht, (8.9)

we obtain

∑

K∈Tht

∑

Γ⊂∂K

∫

Γ

2∑

1

gs(w)(nΓ)s ·ϕh|
(L)
Γ dS (8.10)

≈
∑

K∈Tht

∑

Γ⊂∂K

∫

Γ

Hg(w|
(L)
Γ ,w|

(R)
Γ ,nΓ) ·ϕh|

(L)
Γ dS

=
∑

Γ∈FI
ht

∫

Γ

(

Hg(w|
(L)
Γ ,w|

(R)
Γ ,nΓ) ·ϕh|

(L)
Γ +Hg(w|

(R)
Γ ,w|

(L)
Γ ,nΓ) ·ϕh|

(R)
Γ

)

dS

+
∑

Γ∈FB
ht

∫

Γ

Hg(w|
(L)
Γ ,w|

(R)
Γ ,nΓ) ·ϕh|

(L)
Γ dS

=
∑

Γ∈FI
ht

∫

Γ

Hg(w|
(L)
Γ ,w|

(R)
Γ ,nΓ) · [ϕh]Γ dS

+
∑

Γ∈FB
ht

∫

Γ

Hg(w|
(L)
Γ ,w|

(R)
Γ ,nΓ) ·ϕh|

(L)
Γ dS.

We shall choose the numerical flux in a form convenient for a semi-implicit lin-
earization with respect to time. Namely, we shall seek the numerical flux in the form

H(wL,wR,n) = AL(wL,wR,n)wL + AR(wL,wR,n)wR (8.11)

with some matrices AL, AR : D × D × IR2 −→ IR4×4. As an example we can use
the Vijaysundaram numerical flux HV S defined in the following way. Using relations
(5.24), (5.26), (5.27), we obtain

2∑

s=1

gs(w)ns =
2∑

s=1

f s(w)ns − zsnsw =
2∑

s=1

(As(w)ns − zsnsI)w

= (P(w,n)− (z · n) I)w = Pg(w,n)w (8.12)
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We take in the mind that the matrix P(w,n) can be diagonalized as shown in [31].
Hence, there exists a nonsingular matrix T = T(w,n) such that

P(w,n) = TIΛT−1, (8.13)

where IΛ = IΛ(w,n) = diag(λ1, λ2, λ3, λ4) is the diagonal matrix with diagonal ele-
ments λi = λi(w,n) equal to eigenvalues of the matrix P(w,n). The eigenvalues λi
have the form

λ1 = v · n− a,

λ2 = λ3 = n · v, (8.14)

λ4 = n · v + a,

where a =
√

γp/ρ is the speed of sound. Applying (8.13) to (8.12) we see that also
matrix Pg(w,n) can be diagonalized

Pg(w,n) = TIΛT−1 − (z · n)I = TIΛgT
−1, (8.15)

where

IΛg = IΛ− (z · n)I = diag(λg1, λg2, λg3, λg4), (8.16)

λgi = λi − z · n for i = 1, . . . , 4. (8.17)

We define the ”positive” and ”negative” parts of the matrix Pg:

P±
g (w,n) = TIΛ±

g T
−1, IΛ±

g = diag(λ±g1, . . . , λ
±
g4), (8.18)

where λ+g = max {λg, 0} and λ−g = min {λg, 0} . Then we define the Vijayasundaram
numerical flux HV S as

HV S(wL,wR,n) = P+
g

(
wL +wR

2
,n

)

wL + P−
g

(
wL +wR

2
,n

)

wR. (8.19)

The presented considerations lead us to the definition of an inviscid form

b̂h(w,ϕh) (8.20)

= −
∑

K∈Tht

∫

K

2∑

s=1

(As(w)− zsI)w ·
∂ϕh

∂xs
dx

+
∑

Γ∈FI
ht

∫

Γ

(

P+
g (〈w〉Γ ,nΓ)w|(L)Γ + P−

g (〈w〉Γ ,nΓ)w|(R)
Γ

)

· [ϕh]Γ dS

+
∑

Γ∈FB
ht

∫

Γ

(

P+
g (〈w〉Γ ,nΓ)w|

(L)
Γ + P−

g (〈w〉Γ ,nΓ)w|
(R)
Γ

)

·ϕh|
(L)
Γ dS.

Now we shall pay attention to the discretization of the viscous terms. Using rela-
tion (5.28) and the zero natural Neumann boundary condition from (5.11), the term
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∑

K∈Tht

∑

Γ⊂∂K

∫

Γ

∑2
s=1 Rs(w,∇w)(nΓ)s ·ϕh|

(L)
Γ dS can be written in the form

∑

K∈Tht

∑

Γ⊂∂K

∫

Γ

2∑

s=1

Rs(w|
(L)
Γ ,∇w|

(L)
Γ )(nΓ)s ·ϕh|

(L)
Γ dS

=
∑

K∈Tht

∑

Γ⊂∂K

∫

Γ

2∑

s=1

2∑

k=1

Ksk(w|
(L)
Γ )

∂w

∂xk
|
(L)
Γ (nΓ)s ·ϕh|

(L)
Γ dS

=
∑

Γ∈FI
ht

∫

Γ

2∑

s=1

2∑

k=1

Ksk(w|
(L)
Γ )

∂w

∂xk
|
(L)
Γ (n

(L)
Γ )s ·ϕh|

(L)
Γ dS

+
∑

Γ∈FI
ht

∫

Γ

2∑

s=1

2∑

k=1

Ksk(w|
(R)
Γ )

∂w

∂xk
|
(R)
Γ (n

(R)
Γ )s ·ϕh|

(R)
Γ dS

+
∑

Γ∈FD
ht

∫

Γ

2∑

s=1

2∑

k=1

Ksk(w|
(L)
Γ )

∂w

∂xk
|
(L)
Γ (nΓ)s ·ϕh|

(L)
Γ dS.

In virtue of the sufficient regularity of w, the following relations are valid:

w|
(L)
Γ = w|

(R)
Γ ,

n
(L)
Γ = −n

(R)
Γ ,

∂w

∂xk
|
(L)
Γ =

∂w

∂xk
|
(R)
Γ for k = 1, 2.

Thus

Ksk(w|
(L)
Γ )

∂w

∂xk
|
(L)
Γ = Ksk(w|

(R)
Γ )

∂w

∂xk
|
(R)
Γ =

〈

Ksk(w)
∂w

∂xk

〉

Γ

. (8.21)

This implies that

∑

K∈Tht

∑

Γ⊂∂K

∫

Γ

2∑

s=1

Rs(w|Γ(L) ,∇w|Γ(L))(nΓ)s ·ϕh|
(L)
Γ dS (8.22)

=
∑

Γ∈FI
ht

∫

Γ

2∑

s=1

〈
2∑

k=1

Ksk(w)
∂w

∂xk

〉

Γ

(nΓ)s · [ϕh]Γ dS

+
∑

Γ∈FD
ht

∫

Γ

2∑

s=1

2∑

k=1

Ksk(w|
(L)
Γ )

∂w

∂xk
|
(L)
Γ (nΓ)s ·ϕh|

(L)
Γ dS.

Now, we introduce stabilization terms, which are equal to zero for a sufficiently
regular solution due to the relation [w]Γ = 0 :

Θ
∑

Γ∈FI
ht

∫

Γ

2∑

s=1

〈
2∑

k=1

KT
sk(w)

∂ϕh

∂xk

〉

Γ

(nΓ)s · [w]Γ dS. (8.23)

On the part of the boundary where the Dirichlet conditions are prescribed, we add
the term

Θ
∑

Γ∈FD
ht

∫

Γ

2∑

s=1

2∑

k=1

KT
sk(w|

(L)
Γ )

∂ϕh

∂xk
|
(L)
Γ (nΓ)s ·w|

(L)
Γ dS. (8.24)

73



Chapter 8. Discretization of the flow problem

This expression will be compensated by

Θ
∑

Γ∈FD
ht

∫

Γ

2∑

s=1

2∑

k=1

KT
sk(w|

(L)
Γ )

∂ϕ

∂xk
|
(L)
Γ (nΓ)s ·wBdS, (8.25)

where wB is the boundary state defined on the basis of the Dirichlet boundary con-
ditions and extrapolation:

wB = (ρD, ρDvD1, ρDvD2, cvρDθ
(L)
Γ +

1

2
ρD |vD|

2) on ΓI , (8.26)

wB = w
(L)
Γ on ΓO, (8.27)

wB = (ρ
(L)
Γ , ρ

(L)
Γ zD1, ρ

(L)
Γ zD2, cvρ

(L)
Γ θ

(L)
Γ +

1

2
ρ
(L)
Γ |zD|

2) on ΓWt
. (8.28)

The presented considerations lead to the definition of the viscous form

âh(wh,ϕh) =
∑

k∈Tht

∫

K

2∑

s=1

2∑

k=1

Ksk(wh)
∂wh

∂xk
·
∂ϕh

∂xs
dx (8.29)

−
∑

Γ∈FI
ht

∫

Γ

2∑

s=1

〈
2∑

k=1

Ksk(wh)
∂wh

∂xk

〉

Γ

(nΓ)s · [ϕh]Γ dS

−
∑

Γ∈FD
ht

∫

Γ

2∑

s=1

2∑

k=1

Ksk(wh|
(L)
Γ )

∂wh

∂xk
|
(L)
Γ (nΓ)s ·ϕh|

(L)
Γ dS

−Θ
∑

Γ∈FI
ht

∫

Γ

2∑

s=1

〈
2∑

k=1

KT
sk(wh)

∂ϕh

∂xk

〉

Γ

(nΓ)s · [w]Γ dS

−Θ
∑

Γ∈FD
ht

∫

Γ

2∑

s=1

2∑

k=1

KT
sk(wh|

(L)
Γ )

∂ϕh

∂xk
|(L)Γ (nΓ)s ·w|(L)Γ dS,

wh, ϕh ∈ Sht.

The constant Θ is chosen as Θ = −1 or Θ = 0 or Θ = 1, which leads to the nonsym-
metric version or to the incomplete version or to the symmetric version, respectively,
of the viscous form.

Now we introduce the interior and boundary penalty form

Jh(wh,ϕh) =
∑

Γ∈FI
ht

∫

Γ

σ [wh]Γ · [ϕh]Γ dS+
∑

Γ∈FD
ht

∫

Γ

σwh|
(L)
Γ ·ϕh|

(L)
Γ dS, wh, ϕh ∈ Sht,

(8.30)
where the weight σ is defined by

σ|Γ =
CW

d(Γ)Re
. (8.31)

Here d(Γ) denotes the diameter of Γ ∈ Fht and CW > 0 is a suitable constant. The
first term on the right-hand side of (8.30) vanishes, when wh is replaced by the exact
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regular solution. The term containing the integrals over Γ ∈ FD
ht are compensated by

∑

Γ∈FD
ht

∫

Γ

σwB ·ϕh|
(L)
Γ dS. (8.32)

The boundary state vector wB is again defined by (8.26)-(8.28).
The reaction form reads

dh(w,ϕh) =
∑

K∈Tht

∫

K

wdivz ·ϕhdx. (8.33)

Finally, we introduce the right-hand side form containing the compensation terms
(8.25) and (8.32):

l̂h(w,ϕh) =
∑

Γ∈FD
ht

∫

Γ

σwB ·ϕh|
(L)
Γ dS (8.34)

−Θ
∑

Γ∈FD
ht

∫

Γ

2∑

s=1

2∑

k=1

KT
sk(w|

(L)
Γ )

∂ϕ

∂xk
|
(L)
Γ (nΓ)s ·wBdS.

Now, the semidiscrete solution of problem (5.57) is defined as a function wh ∈
C1((0, T ),Sht) fulfilling the conditions

(
DAwh

Dt
(t),ϕh

)

+ dh(wh(t),ϕh) + b̂h(wh(t),ϕh) (8.35)

+âh(wh(t),ϕh) + Jh(wh(t),ϕh) = l̂h(wh(t),ϕh) ∀ϕh ∈ Sht, ∀t ∈ (0, T ),

wh(0) = w0
h, (8.36)

where w0
h is L2(Ωh0)-projection of w0 on Sh0. It means that

(
w0

h,ϕh

)
=
(
w0,ϕh

)
∀ϕh ∈ Sh0. (8.37)

Let us mention that in our numerical experiments we use the incomplete formulation
(Θ = 0).

8.2 Application of the boundary conditions in the

inviscid terms

For the numerical flux Hg(w|
(L)
Γ ,w|

(R)
Γ ,nΓ) on Γ ∈ Fht appearing in the definition of

the inviscid form b̂h it is necessary to specify the boundary state w|(R)
Γ .

First we are interested in a situation on the moving impermeable wall, where the
condition

v · n = z · n (8.38)
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is prescribed. We use this condition in the numerical flux Hg. Using (8.38), we can
write

HW
g (w,n) := Hg(w,w,n) =

2∑

s=1

f s(w)ns − (z · n)w

= f 1(w)n1 + f 2(w)n2 − (z · n)w

=







ρv1n1 + ρv2n2

(ρv21 + p)n1 + ρv1v2n2

ρv1v2n1 + (ρv22 + p)n2

(E + p)v1n1 + (E + p)v2n2







− z · n







ρ
ρv1
ρv2
E







= p







0
n1

n2

z · n







+ z · n







ρ
ρv1
ρv2
E







− z · n







ρ
ρv1
ρv2
E







= (γ − 1)

(

w4 −
w2

2 + w2
3

2w1

)







0
n1

n2

z · n






. (8.39)

We see that
HW

g (αw,n) = αHW
g (w,n), α > 0. (8.40)

In [31] it is shown that

HW
g (w,n) = DwH

W
g (w,n)w, (8.41)

where DwH
W
g (w,n) is the Jacobi matrix DHW

g (w,n)/Dw. The Jacobi matrix

DwH
W
g (w,n) can be expressed in the form

DwH
W
g (w,n) = (γ − 1)









0
w2

2+w2
3

2w2
1
n1

w2
2+w2

3

2w2
1
n2

w2
2+w2

3

2w2
1

(z · n)

0
−w2

w1
n1

−w2

w1
n2

−w2

w1
(z · n)

0
−w3

w1
n1

−w3

w1
n2

−w3

w1
(z · n)

0
n1

n2

z · n









.

(8.42)

Further, we need to specify the value w|
(R)
Γ for Γ ∈ F IO

ht , when w|
(L)
Γ is known. We

apply the approach using a solution of the local Riemann problem, which has been
already described in [56].

Let us introduce a new Cartesian coordinate system x̃1, x̃2 in IR2 with the origin
at the center of gravity of the edge Γ, the coordinate x̃1 is oriented in the direction
of the normal n and x̃2 tangent to Γ. The Euler equations transformed into this new
coordinate system have the form

∂q

∂t
+

2∑

s=1

∂f s(q)

∂x̃s
= 0, (8.43)

as follows from the rotational invariance of the Euler equations. Here

q = Q(n)w, (8.44)
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where Q has form

Q(n) =







1
0
0
0

0
n1

−n2

0

0
n2

n1

0

0
0
0
1






. (8.45)

Now we neglect the tangential derivative ∂/∂x̃2 and get the system with one space
variable x̃1 in the form

∂q

∂t
+
∂f 1(q)

∂x̃1
= 0. (8.46)

Now we write system (8.43) in the nonconservative form

∂q

∂t
+ A1(q)

∂q

∂x̃1
= 0. (8.47)

Finally, we linearize this system around the state qL = Q(n)wL and obtain the linear
system

∂q

∂t
+ A1(qL)

∂q

∂x̃1
= 0, (8.48)

which will be considered in the set (−∞, 0)× (0, ∞) and equipped with the initial
condition

q(x̃1, 0) = qL, x̃1 ∈ (−∞, 0) (8.49)

and the boundary condition

q(0, t) = qR, t > 0. (8.50)

The goal is to choose qR in such a way that the initial-boundary value problem
(8.48)-(8.50) is well posed, i.e. has a unique solution. The solution can be written in
the form

q(x̃1, t) =
4∑

s=1

µ(x̄1, t)rs, (8.51)

where rs = rs(qL) are the eigenvectors of the matrix A1(qL) corresponding to its
eigenvalues λ̃s = λ̃s(qL) and creating a basis in IR4. Moreover,

qL =
4∑

s=1

αsrs, qR =
4∑

s=1

βsrs. (8.52)

Substituting (8.51) into (8.48) and using the relation A1(qL)rs = λ̃srs, we find that
problem (8.48)-(8.50) is equivalent to 4 mutually independent linear initial-boundary
value scalar problems for s = 1, . . . , 4:

∂µs

∂t
+ λ̃s

∂µs

∂x̃1
= 0 in (−∞, 0)× (0,∞),

µs(x̃1, 0) = αs, x̃1 ∈ (−∞, 0), (8.53)

µs(0, t) = βs, t ∈ (0,∞),

77



Chapter 8. Discretization of the flow problem

which can be solved by the method of characteristics, where the characteristics have
the form

x̃1 = λ̃st+ x̃01.

Using the fact that the solution µs is constant along characteristics, we find that

µs(x̃1, t) =

{

αs, x̃1 − λ̃st < 0,

βs, x̃1 − λ̃st > 0.
(8.54)

The conclusion is that if
a) λ̃s > 0, then βs = αs (βs is not prescribed, but it is obtained by the extrapola-

tion of µs to the boundary x̃1 = 0),
b) if λ̃s = 0, then βs is not prescribed (but can be defined as βs = αs by the

continuous extension of µs to the boundary x̃1 = 0),
c) if λ̃s < 0, then βs must be prescribed.

Furthermore, we incorporate the fact that

λ̃s(qL) = λs(w
L,n), s = 1, . . . , 4, (8.55)

where λs(w
L,n) are the eigenvalues of the Jacobi matrix P(wL,n) defined in (5.27).

We can conclude, that we prescribe npr quantities characterizing w, where npr is the
number of negative eigenvalues λs, and extrapolate nex = 4− npr quantities. In what
follows, we describe how the quantities βs should be prescribed.

We shall take some state q0
R = Q(n)w0

R. The state w0
R is the state vector of the

far-field flow, or the incoming fluid at the inlet, or the initial condition, depending
on the situation and interpretation. This state and above results will allow us to
determine the sought boundary state wR. We express the state q0

R in the form

q0
R =

4∑

s=1

γsrs. (8.56)

If we denote by T the matrix, which has rs for its columns, we can see that for
β = (β1, . . . , β4)

T and γ = (γ1, . . . , γ4)
T we have

qL = Tα ⇔ α = T−1qL, (8.57)

q0
R = Tγ ⇔ γ = T−1q0

R.

Now we calculate the state qR according to the presented process:

qR :=
4∑

s=1

βsrs = Tβ, (8.58)

where β = (β1, . . . , β4)
T and

βs =

{

αs, λs ≥ 0,

γs, λs < 0.
(8.59)

Finally wR = Q−1(n)qR and we can use this to calculate H(wL,wR,n).
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In view of these results the form b̂h (8.20) can be rewritten in the following way

b̂h(w,ϕh) (8.60)

= −
∑

K∈Tht

∫

K

2∑

s=1

(As(w)− zsI)w ·
∂ϕh

∂xs
dx

+
∑

Γ∈FI
ht

∫

Γ

(

P+
g (〈w〉Γ ,nΓ)w|

(L)
Γ + P−

g (〈w〉Γ ,nΓ)w|
(R)
Γ

)

· [ϕh]Γ dS

+
∑

Γ∈FIO
ht

∫

Γ

(

P+
g (〈w〉Γ ,nΓ)w|

(L)
Γ + P−

g (〈w〉Γ ,nΓ)w|
(R)
Γ

)

·ϕh|
(L)
Γ dS

+
∑

Γ∈FW
ht

∫

Γ

DwH
W
g (w|(L)Γ ,n|Γ)w|(L)Γ ·ϕh|

(L)
Γ dS,

where the state w|
(R)
Γ on Γ ∈ F IO

ht is obtained by the described procedure.

8.3 Time discretization

The condition (8.35) is equivalent to a large system of ordinary differential equations.
For solving this system we can apply several numerical schemes like Runge-Kutta
schemes that are conditionally stable and the time step is strongly limited by the CFL-
stability condition. This stability condition becomes very restrictive with increasing
polynomial degree r of the discontinuous Galerkin space semidiscretization. Further,
the fully implicit backward Euler method can be used. This method leads to a large
system of highly nonlinear algebraic equations, whose numerical solution is rather
complicated. For this reason we construct the semi-implicit scheme based on a suitable
partial linearization of the form b̂h.

We consider a partition 0 = t0 < t1 < . . . < tM = T of the interval [0, T ]
and set τm = tm − tm−1, m = 1, . . . ,M. We use the symbol wm

h , w
m
h ∈ Shtm , for

the approximation of wh(tm). Assuming that we know wk
h for k ≤ m − 1, we are

interested in finding the approximate solution wm
h at time tm.

First we shall approximate the ALE derivative. As an illustration we shall derive
the second order scheme. We choose arbitrary, but fixed x ∈ Ωht. The definition of
the ALE mapping gives us x = At(X), X ∈ Ωh0. In view of (5.51) we set w̃(X, t) :=
w(At(X), t). Using the Taylor expansion of the function w̃ at tm, we can write

w̃(tm−1) = w̃(tm − τm) = w̃(tm)− τm
∂w̃

∂t
+
τ 2m
2

∂2w̃

∂t2
+O(τ 3m)

w̃(tm−2) = w̃(tm − (τm + τm−1)) = w̃(tm)− (τm + τm−1)
∂w̃

∂t

+
(τm + τm−1)

2

2

∂2w̃

∂t2
+O((τm + τm−1)

3).

We neglect the terms O(τ 3m) and O((τm + τm−1)
3) and solve the system with two
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unknowns ∂w̃
∂t
(tm) and

∂2w̃
∂t2

(tm), i.e.

(

−τm
−(τm + τm−1)

τ2m
2

(τm+τm−1)2

2

)

·

(
∂w̃
∂t
(tm)

∂2w̃
∂t2

(tm)

)

≈

(
w̃(tm−1)− w̃(tm)
w̃(tm−2)− w̃(tm)

)

.

As a solution we obtain

∂w̃

∂t
(tm) ≈

2τm + τm+1

τm(τm + τm−1)
w̃(tm)−

τm + τm−1

τmτm−1

w̃(tm−1)

+
τm

τm−1(τm + τm−1)
w̃(tm−2).

We set
ŵk

h(x) = wk
h(Atk(A

−1
tm (x))), x ∈ Ωhtm . (8.61)

These assumptions lead to the second order approximation of the ALE derivative of
wh in time tm :

DAwh

Dt
(tm) ≈

2τm + τm+1

τm(τm + τm−1)
wm

h −
τm + τm−1

τmτm−1

ŵm−1
h +

τm
τm−1(τm + τm−1)

ŵm−2
h . (8.62)

In a similar way we can derive an approximation of the ALE derivative of a general
order q in time. It can be written in the form

DAwh

Dt
(tm) ≈ χ0w

m
h +

q
∑

l=1

χlŵ
m−l
h , (8.63)

where the coefficients χl, l = 0, . . . , q depend on τm−l, l = 0, . . . , q − 1. In the
beginning of our calculation, when m < q, we approximate the ALE derivative in
time by formulas of lower order. Values of coefficients χl, l = 0, . . . , q for q = 1, 2, 3
can be found in [29].

In some terms we shall apply an extrapolation. As an example we shall derive the
extrapolation of the second order. Starting from the Taylor expansion of the function
w̃ at the point tm, we obtain

w̃(tm−1) = w̃(tm − τm) = w̃(tm)− τm
∂w̃

∂t
(tm) +O(τ 2m),

w̃(tm−2) = w̃(tm − (τm + τm−1))

= w̃(tm)− (τm + τm−1)
∂w̃

∂t
(tm) +O((τm + τm−1)

2), .

Again, we neglect the terms O(τ 2m) and O((τm + τm−1)
2) and solve the system with

two unknowns w̃(tm) and
∂w̃
∂t
(tm)

(
1
1

−τm
−(τm−1τm)

)

·

(
w̃(tm)
∂w̃
∂t
(tm)

)

≈

(
w̃(tm−1)
w̃(tm−2)

)

.

As a solution we obtain

w̃(tm) ≈
τm + τm−1

τm−1

w̃(tm−1)−
τm
τm−1

w̃(tm−2). (8.64)
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The definition of w̃(tm) together with the knowledge of wm−1
h , wm−2

h and (8.61) give
us the extrapolation of second order of wh in time tm. We shall denote by w̄m

h the
extrapolation of wh at time tm. The extrapolation w̄m

h has the form

w̄m
h =

τm + τm−1

τm−1

ŵm−1
h −

τm
τm−1

ŵm−2
h . (8.65)

In the same way we can derive the extrapolation of an arbitrary order q, which can
be written in the form

w̄m
h =

q
∑

l=1

ιlŵ
m−l
h . (8.66)

The constants ιl, l = 1, . . . , q, depend on τm−l, l = 0, . . . , q − 1. In case of m < q
we use an extrapolation of order ≤ m. Values of the coefficients ιl, l = 0, . . . , q, for
q = 1, 2, 3 can be found in [29].

In the time discretization of the inviscid terms we need to apply the extrapolation
together with a linearization. This will be carried out by replacing the argument wm

h

by its extrapolation w̄m
h in nonlinearities of the form b̂h defined in (8.60). This leads

to the form

bh(w̄
m
h ,w

m
h ,ϕh) (8.67)

:= −
∑

K∈Thtm

∫

K

2∑

s=1

(As(w̄
m
h )− zms I)wm

h ·
∂ϕh

∂xs
dx

+
∑

Γ∈FI
htm

∫

Γ

(

P+
g (〈w̄

m
h 〉Γ ,nΓ)w

m
h |

(L)
Γ + P−

g (〈w̄
m
h 〉Γ ,nΓ)w

m
h |

(R)
Γ

)

· [ϕh]Γ dS

+
∑

Γ∈FIO
htm

∫

Γ

(

P+
g (〈w̄

m
h 〉Γ ,nΓ)w

m
h |

(L)
Γ + P−

g (〈w̄
m
h 〉Γ ,nΓ)w̄

m
h |

(R)
Γ

)

·ϕh|
(L)
Γ dS

+
∑

Γ∈FW
htm

∫

Γ

DwH
W
g (w̄m

h |
(L)
Γ ,n|Γ)w

m
h |

(L)
Γ ·ϕh|

(L)
Γ dS.

The same approach can be used for the viscous form (8.29) and the right-hand
side form (8.34):

ah(w̄
m
h ,w

m
h ,ϕh) :=

∑

k∈Thtm

∫

K

2∑

s=1

2∑

k=1

Ksk(w̄
m
h )
∂wm

h

∂xk
·
∂ϕh

∂xs
dx (8.68)

−
∑

Γ∈FI
htm

∫

Γ

2∑

s=1

〈
2∑

k=1

Ksk(w̄
m
h )
∂wm

h

∂xk

〉

Γ

(nΓ)s · [ϕh]Γ dS

−
∑

Γ∈FD
htm

∫

Γ

2∑

s=1

2∑

k=1

Ksk(w̄
m
h |

(L)
Γ )

∂wm
h

∂xk
|
(L)
Γ (nΓ)s ·ϕh|

(L)
Γ dS

−Θ
∑

Γ∈FI
htm

∫

Γ

2∑

s=1

〈
2∑

k=1

KT
sk(w̄

m
h )
∂ϕh

∂xk

〉

Γ

(nΓ)s · [w
m
h ]Γ dS
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−Θ
∑

Γ∈FD
htm

∫

Γ

2∑

s=1

2∑

k=1

KT
sk(w̄

m
h |

(L)
Γ )

∂ϕh

∂xk
|(L)Γ (nΓ)s ·w

m
h |

(L)
Γ dS.

lh(w̄
m
h ,ϕh) :=

∑

Γ∈FD
htm

∫

Γ

σw̄B ·ϕh|
(L)
Γ dS (8.69)

−Θ
∑

Γ∈FD
htm

∫

Γ

2∑

s=1

2∑

k=1

KT
sk(w̄

m
h |

(L)
Γ )

∂ϕ

∂xk
|
(L)
Γ (nΓ)s · w̄BdS.

These considerations lead us to the following semi-implicit scheme: For eachm ≤ 1
we look for wm

k ∈ Shtm such that

wm
h ∈ Shtm ,

(

χ0w
m
h +

q
∑

l=1

χlŵ
m−l
h ,ϕh

)

+ dh(w
m
h ,ϕh) + bh(w̄

m
h ,w

m
h ,ϕh) (8.70)

+ah(w̄
m
h ,w

m
h ,ϕh) + Jh(w

m
h (t),ϕh) = lh(w̄

m
h (t),ϕh)

∀ϕh ∈ Shtm , m = 1, 2, . . . ,

wh(0) = w0
h.

8.4 Shock capturing

In order to avoid spurious oscillations in the approximate solution in the vicinity of
discontinuities or steep gradients, we apply artificial viscosity forms introduced in
[33].

It is based on the discontinuity indicator gm(K) defined by

gm(K) =

∫

∂K

[
ρ̂m−1
h

]2
dS/(hK |K|3/4), K ∈ Thtm , (8.71)

where
ρ̂m−1
h (x) = ρm−1

h (Atm−1(A
−1
tm (x))). (8.72)

By
[
ρ̂m−1
h

]
we denote the jump of the density on ∂K at time tm−1 and |K| denotes

the area of the element K. The indicator gm(K) was constructed in such a way that
it takes an anisotropy of the computational mesh into account. Now we introduce the
discrete discontinuity indicator

Gm(K) = 0 if gm(K) < 1, K ∈ Thtm (8.73)

Gm(K) = 1 if gm(K) ≥ 1, K ∈ Thtm , (8.74)

and add the artificial viscosity form

βh(ŵ
m−1
h ,wm

h ,ϕh) = ν1
∑

K∈Thtm

hKG
m(K)

∫

K

∇wm
h · ∇ϕhdx (8.75)
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with ν1 = O(1) to the left-hand side of (8.70). Since the artificial viscosity form is
rather local, it is proposed to augment the left-hand side of (8.70) by adding the form

Ĵh(ŵ
m−1
h ,wm

h ,ϕh) = ν2
∑

Γ∈FI
htm

1

2
(Gm(K

(L)
Γ ) +Gm(K

(R)
Γ ))

∫

Γ

[wm
h ] · [ϕh] dS, (8.76)

where ν2 = O(1). This allows to strengthen the influence of neighbouring elements
and improves the behavior of the method.

The resulting scheme has the following form: For each m = 1, 2, . . . we seek
wm

k ∈ Shtm such that

wm
h ∈ Shtm ,

(

χ0w
m
h +

q
∑

l=1

χlŵ
m−l
h ,ϕh

)

+ dh(w
m
h ,ϕh) + bh(w̄

m
h ,w

m
h ,ϕh) (8.77)

+ah(w̄
m
h ,w

m
h ,ϕh) + Jh(w

m
h (t),ϕh) + βh(ŵ

m−1
h ,wm

h ,ϕh)

+Ĵh(ŵ
m−1
h ,wm

h ,ϕh) = lh(w̄
m
h (t),ϕh)

∀ϕh ∈ Shtm , m = 1, 2, . . . ,

wh(0) = w0
h.
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Chapter 9

Discretization of the structural
problem

This chapter is devoted to the discretization of the structural problem

ρb
∂2ui
∂t2

+ Cρb
∂ui
∂t

−
2∑

j=1

∂τ bij
∂xj

= 0 i = 1, 2, (9.1)

with the initial conditions

u(·, 0) = 0 in Ωb, (9.2)

∂u

∂t
(·, 0) = 0 in Ωb. (9.3)

and the boundary conditions

u = 0 on Γb
D × (0, T ), (9.4)

2∑

j=1

τ bijnj = Tn
i on Γb

W × (0, T ), i = 1, 2. (9.5)

Let us remind that we apply the generalized Hooke’s law for an isotropic body (6.15).
Hence,

τ bij(x) = λb(x)divu(x)δij + 2µb(x)eij(x), i, j = 1, 2.

The space discretization will be carried out by the conforming finite element
method (FEM). The time discretization will be realized with the aid of the New-
mark method.

9.1 Space discretization

By Ωb
h we denote a polygonal approximation of the domain Ωb. We construct a trian-

gulation T b
h of the domain Ωb

h formed by a finite number of closed triangles with the
following properties:

• Ω̄b
h =

⋃

K∈T b
h
K.
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• The intersection of two different elements K,K ′ ∈ T b
h is either empty or a

common edge of these elements or their common vertex.

• The vertices of elements adjacent to ∂Ωb
h, which belong to ∂Ωb

h are elements of
∂Ωb.

• The set Γ̄W ∩ Γ̄D is formed by vertices of some elements K ∈ T b
h .

Further, by Γb
Wh and Γb

Dh we denote the parts of ∂Ωb
h approximating Γb

W and Γb
D.

The approximate solution of the structural problem will be sought in the finite-
dimensional space Xh = Xh ×Xh, where

Xh =
{
vh ∈ C(Ω̄b

h); vh|K ∈ Ps(K), ∀K ∈ T b
h

}
. (9.6)

and s ≥ 1 is an integer. Let us mention that in our numerical experiments we set
s = 1. In Xh we define the subspace Vh = Vh × Vh, where

Vh =
{

yh ∈ Xh; yh|Γ̄b
Dh

= 0
}

. (9.7)

The derivation of the space semidiscretization can be obtained in a standard way.
If we assume that u = (u1, u2) is a sufficiently regular classical solution of (9.1)-(9.5),
we multiply system (9.1) by any test function yhi ∈ Vh, i = 1, 2 and integrate over
Ωb

h. This leads to

∫

Ωb
h

ρb
∂2ui(t)

∂t2
yidx+

∫

Ωb
h

Cρb
∂ui(t)

∂t
yidx−

∫

Ωb
h

2∑

j=1

∂τ bij(u(t))

∂xj
yidx = 0 i = 1, 2. (9.8)

Using the Green’s theorem and applying the boundary conditions (9.5), we get

∫

Ωb
h

ρb ∂
2ui(t)
∂t2

yidx+
∫

Ωb
h

Cρb ∂ui(t)
∂t

yidx+
∫

Ωb
h

∑2
j=1 τ

b
ij(u(t))

∂yi
∂xj

dx =
∫

Γb
W

Tn
i (t)yidS

i = 1, 2. (9.9)

Based on this approach and the use of the generalized Hooke’s law for an isotropic
body (6.15), we set the forms defined for uh = (uh1, uh2), yh = (yh1, yh2) ∈ Xh

abh(uh,yh) =

∫

Ωb
h

2∑

j=1

τ bij(uh(t))
∂yhi
∂xj

dx (9.10)

=

∫

Ωb
h

λbdivuh divyhdx+ 2

∫

Ωb
h

µb

2∑

i,j=1

ebij(uh) e
b
ij(yh)dx

=

∫

Ωb
h

λb
(
∂uh1(t)

∂x1
+
∂uh2(t)

∂x2

)(
∂yh1
∂x1

+
∂yh2
∂x2

)

dx

+2

∫

Ωb
h

µb

(
∂uh1(t)

∂x1

∂yh1
∂x1

+
∂uh2(t)

∂x2

∂yh2
∂x2

)

dx

+

∫

Ωb
h

µb

(
∂uh1(t)

∂x2
+
∂uh2(t)

∂x1

)(
∂yh1
∂x2

+
∂yh2
∂x1

)

dx,
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(uh,yh)Ωb
h

=

∫

Ωb
h

uh · yhdx =
2∑

i=1

∫

Ωb
h

uiyidx, (9.11)

(uh,yh)Γb
Wh

=

∫

Γb
Wh

uh · yhdS =
2∑

i=1

∫

Γb
Wh

uiyidS. (9.12)

We shall use the notation u′
h(t) = ∂uh(t)

∂t
and u′′

h(t) = ∂2uh(t)
∂t2

. Then we define the
approximate solution of the structural problem as a function t ∈ [0, T ] → uh(t) ∈ V h

such that there exist the derivatives u′
h(t), u

′′
h(t) and the identity

(ρbu′′
h(t),yh)Ωb

h
+ (Cρbu′

h(t),yh)Ωb
h
+ abh(uh(t),yh) = (T n

h (t),yh)Γb
Wh
, (9.13)

∀yh ∈ V h, ∀t ∈ [0, T ] ,

and the initial conditions

uh(X, 0) = 0, X ∈ Ωb
h, (9.14)

u′
h(X, 0) = 0, X ∈ Ωb

h, (9.15)

are satisfied.
The discrete problem (9.13)-(9.15) is equivalent to the solution of a system of

ordinary differential equations. First, we start from finding the basis of the space V h

for the linear elements. We assume that k is the number of all vertices of T b
h and

n is the number of all vertices in Ωb
h ∪ Γb

Wh. Then we can number the vertices in
the following way: P1, . . . , Pn are the vertices in Ωb

h ∪ Γb
Wh and Pn+1, . . . , Pk are the

vertices on Γ̄b
Dh. Now, let us define the basis of the space Xh :

ϕj ∈ Xh : ϕj(Pj) = δij, i, j = 1, . . . , k. (9.16)

Then the system of K = 2k vector-valued functions (ϕ1, 0), . . . , (ϕk, 0), (0, ϕ1), . . . ,
(0, ϕk) forms a basis of the space Xh. The basis of Vh is formed by ϕj, j = 1, . . . , n.
Then the system of N = 2n vector-value functions (ϕ1, 0), . . . , (ϕn, 0), (0, ϕ1), . . . ,
(0, ϕn) form a basis of the space V h.We denote by uhi ∈ Vh, i = 1, 2, the components
of the vector uh. Then the function uhi, i = 1, 2 in time t ∈ [0, T ] can be express by
the basis functions of the space V h in the form

uhi(t) =
n∑

j=1

p
(i)
j (t)ϕj, i = 1, 2, with p

(i)
j (t) = uhi(Pj, t), t ∈ [0, T ] . (9.17)

We see that each function uh ∈ V h can be expressed by N coefficients p
(i)
j (t) ∈

IR, i = 1, 2, j = 1, . . . , n, and define the vector-valued function p(t) :

p(t) = (p
(1)
1 (t), . . . , p(1)n (t), p

(2)
1 (t), . . . , p(2)n (t))T . (9.18)

From (9.17) we have

u′hi(t) =
n∑

j=1

p
′(i)
j (t)ϕj, i = 1, 2, t ∈ [0, T ] , (9.19)

u′′hi(t) =
n∑

j=1

p
′′(i)
j (t)ϕj, i = 1, 2, t ∈ [0, T ] . (9.20)
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We transform equation (9.13) using the basis functions. We shall proceed term
by term and use the basis functions (ϕ1, 0), . . . , (ϕn, 0), (0, ϕ1), . . . , (0, ϕn), as a test
function yh. First, we have a look at the terms (ρbu′′

h(t),yh)Ωb
h
+ (Cρbu′

h(t),yh)Ωb
h
:

(ρb(u′′
h(t) + Cu′

h(t)), (ϕj, 0))Ωb
h

=
n∑

i=1

(ρbϕi, ϕj)Ωb
h
(p

′′(1)
i (t) + Cp

′(1)
i (t)), (9.21)

(ρb(u′′
h(t) + Cu′

h(t)), (0, ϕj))Ωb
h

=
n∑

i=1

(ρbϕi, ϕj)Ωb
h
(p

′′(2)
i (t) + Cp

′(2)
i (t)), (9.22)

j = 1, . . . , n.

We define the elements of the matrix {mij}
N
i,j=1 :

mij = m(i+n)(j+n) = (ρbϕi, ϕj)Ωb
h
, i, j = 1, . . . , n, (9.23)

m(i+n)j = mi(j+n) = 0, i, j = 1, . . . , n. (9.24)

We use the same approach in the term abh(uh,yh) defined by (9.10):

abh(uh, (ϕj , 0)) =

∫

Ωb
h

(

(λb + 2µb)
∂uh1
∂x1

∂ϕj

∂x1
+ µb∂uh1

∂x2

∂ϕj

∂x2

)

dx

+

∫

Ωb
h

(

λb
∂uh2
∂x2

∂ϕj

∂x1
+ µb∂uh2

∂x1

∂ϕj

∂x2

)

dx

=
n∑

i=1

p
(1)
i

∫

Ωb
h

(

(λb + 2µb)
∂ϕi

∂x1

∂ϕj

∂x1
+ µb ∂ϕi

∂x2

∂ϕj

∂x2

)

dx

+
n∑

i=1

p
(2)
i

∫

Ωb
h

(

λb
∂ϕi

∂x2

∂ϕj

∂x1
+ µb ∂ϕi

∂x1

∂ϕj

∂x2

)

dx, (9.25)

j = 1, . . . , n,

abh(uh, (0, ϕj)) =

∫

Ωb
h

(

(λb + 2µb)
∂uh2
∂x2

∂ϕj

∂x2
+ µb∂uh2

∂x1

∂ϕj

∂x1

)

dx

+

∫

Ωb
h

(

λb
∂uh1
∂x1

∂ϕj

∂x2
+ µb∂uh1

∂x2

∂ϕj

∂x1

)

dx

=
n∑

i=1

p
(2)
i

∫

Ωb
h

(

(λb + 2µb)
∂ϕi

∂x2

∂ϕj

∂x2
+ µb ∂ϕi

∂x1

∂ϕj

∂x1

)

dx

+
n∑

i=1

p
(1)
i

∫

Ωb
h

(

λb
∂ϕi

∂x1

∂ϕj

∂x2
+ µb ∂ϕi

∂x2

∂ϕj

∂x1

)

dx, (9.26)

j = 1, . . . , n.

Further, we define the elements of the matrix {kij}
N
i,j=1 :

kij =

∫

Ωb
h

(

(λb + 2µb)
∂ϕi

∂x1

∂ϕj

∂x1
+ µb ∂ϕi

∂x2

∂ϕj

∂x2

)

dx, (9.27)

k(i+n)j =

∫

Ωb
h

(

λb
∂ϕi

∂x2

∂ϕj

∂x1
+ µb ∂ϕi

∂x1

∂ϕj

∂x2

)

dx, (9.28)
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ki(j+n) =

∫

Ωb
h

(

λb
∂ϕi

∂x1

∂ϕj

∂x2
+ µb ∂ϕi

∂x2

∂ϕj

∂x1

)

dx, (9.29)

k(i+n)(j+n) =

∫

Ωb
h

(

(λb + 2µb)
∂ϕi

∂x2

∂ϕj

∂x2
+ µb ∂ϕi

∂x1

∂ϕj

∂x1

)

dx, (9.30)

i, j = 1, . . . , n.

For the right-hand side we define the coefficients gi, i = 1, . . . , N, in the following
way:

gi(t) = (Tn
h1(t), ϕi)Γb

Wh
, i = 1, . . . , n, (9.31)

gi+n(t) = (Tn
h2(t), ϕi)Γb

Wh
, i = 1, . . . , n. (9.32)

The matrix M = {mij}
N
i,j=1 is called the mass matrix and the matrix K = {kij}

N
i,j=1 is

the stiffness matrix. The vector G(t) = (g1(t), . . . , gN(t)) represents the aerodynamic
force. The discrete problem (9.13) is equivalent to the system of ordinary differential
equations

M(p′′(t) + Cp′(t)) +Kp(t) = G(t), (9.33)

p : [0, T ] → IRN , G : [0, T ] → IRN .

The initial conditions (9.14)-(9.15) are equivalent to

p(0) = 0, p′(0) = 0. (9.34)

9.2 Time discretization

This section will be devoted to the solution of the discrete initial value problem (9.33)-
(9.34). To this end we shall use the Newmark method([19]), which is often used in
structural mechanics.

9.2.1 Newmark method

First, we derive the Newmark scheme for the general initial value problem of the
second order

y′′(t) = ψ(t, y(t), y′(t)), (9.35)

y(0) = y0, (9.36)

y′(0) = r0, (9.37)

where ψ : [0, T ]× IR2 → IR is a continuous function and y0, r0 ∈ IR. We consider the
partition of the time interval [0, T ] formed by the time instants 0 = t0 < t1 < . . . <
tM = T, where τm = tm − tm−1, m = 1, . . . ,M. Let us assume that y ∈ C4([0, T ]).
Then we express the value of y(tm) using the Taylor expansion of the third order at
the point tm−1 :

y(tm) = y(tm−1+ τm) = y(tm−1)+ τmy
′(tm−1)+

1

2
τ 2my

′′(tm−1)+
1

6
τ 3my

′′′(tm−1)+O(τ
4
m).

(9.38)
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On the right-hand side of (9.38) we add and subtract the term τ 2mδ(y
′′(tm)−y

′′(tm−1)),
where δ ∈ IR is a parameter:

y(tm) = y(tm−1) + τmy
′(tm−1) + τ 2m

(

δy′′(tm) +

(
1

2
− δ

)

y′′(tm−1)

)

−τ 2mδ(y
′′(tm)− y′′(tm−1)) +

1

6
τ 3my

′′′(tm−1) +O(τ 4m). (9.39)

Using the Taylor expansion for the second-order time derivative of the function y at
the point tm−1, we obtain

y′′(tm)− y′′(tm−1) = τmy
′′′(tm−1) +O(τ 2m). (9.40)

Relations (9.39) and (9.40) give us

y(tm) = y(tm−1) + τmy
′(tm−1) + τ 2m

(

δy′′(tm) +

(
1

2
− δ

)

y′′(tm−1)

)

+τ 3m

(
1

6
− δ

)

y′′′(tm−1) +O(τ 4m). (9.41)

We consider the term τ 3m
(
1
6
− δ
)
y′′′(tm−1) + O(τ 4m) as the error of the order O(τ 3m).

Assuming that y is the solution of the initial value problem (9.35)-(9.37), we can write

y(tm) = y(tm−1) + τmy
′(tm−1) + τ 2m (δψ(tm, y(tm), y

′(tm)) (9.42)

+

(
1

2
− δ

)

ψ(tm−1, y(tm−1), y
′(tm−1))

)

+O(τ 3m).

With the use of the Taylor expansion we can derive the value of the first derivative
of y at the point tm :

y′(tm) = y′(tm−1 = τm) = y′(tm−1) + τmy
′′(tm−1) +

1

2
τ 2my

′′′(tm−1) +O(τ 3m). (9.43)

We add and subtract the term φ(y′′(tm) − y′′(tm−1)), where φ ∈ IR is a parameter,
and get

y′(tm) = y′(tm−1) + τm(φy
′′(tm)) + (1− φ)y′′(tm−1))

+τ 2m

(
1

2
− φ

)

y′′′(tm−1) +O(τ 3m). (9.44)

Again, we consider the term τ 2m
(
1
2
− φ
)
y′′′(tm−1) + O(τ 3m) as the error of the order

O(τ 2m). Assuming that y is the solution of the initial value problem (9.35)-(9.37), we
can write

y′(tm) = y′(tm−1)+τm(φψ(tm, y(tm), y
′(tm))+(1−φ)ψ(tm−1, y(tm−1), y

′(tm−1)))+O(τ
2
m).

(9.45)
Using the approximation ym ≈ y(tm), rm ≈ y′(tm), putting ψm = ψ(tm, ym, rm)

and neglecting the discretization error, we obtain the Newmark scheme

ym = ym−1 + τmrm−1 + τ 2m

(

δψm +

(
1

2
− δ

)

ψm−1

)

, (9.46)

rm = rm−1 + τm(φψm + (1− φ)ψm−1). (9.47)

In our numerical experiments, the parameters δ = 1
4
and φ = 1

2
were used. This

choice yields the Newmark method of the second order.
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9.2.2 Time discretization of the structural problem

Using the derived Newmark scheme, we shall solve the system of ordinary differential
equations (9.33) with the initial conditions (9.34).

First, we transform system (9.33) to the more suitable form:

p′′ = M−1G−M−1Kp− Cp′. (9.48)

Let us set p0 = p(0) = 0, r0 = p′(0) = 0, Gm = G(tm), and introduce the approx-
imations pm ≈ p(tm), rm ≈ p′(tm) for m = 1, . . . ,M. The Newmark scheme can be
written in the form

pm = pm−1 + τmrm−1 + τ 2m
(
δ
(
M−1Gm −M−1Kpm − Crm

)
(9.49)

+

(
1

2
− δ

)
(
M−1Gm−1 −M−1Kpm−1 − Crm−1

)
)

,

rm = rm−1 + τm
(
φ
(
M−1Gm −M−1Kpm − Crm

)
(9.50)

+ (1− φ)
(
M−1Gm−1 −M−1Kpm−1 − Crm−1

))
.

From equation (9.50) we express rm :

rm =
1

1 + Cφτm

(
rm−1 + τm

(
φ
(
M−1Gm −M−1Kpm

)
(9.51)

+ (1− φ)
(
M−1Gm−1 −M−1Kpm−1 − Crm−1

)))
.

The substitution of (9.51) in (9.49) yields the relation

pm = pm−1 + τmrm−1 + δτ 2m

(

M−1Gm −M−1Kpm −
C

1 + Cφτm
rm−1

−
Cφτm

1 + Cφτm

(
M−1Gm −M−1Kpm

)

−
Cφτm

1 + Cφτm
(1− φ)

(
M−1Gm−1 −M−1Kpm−1 − Crm−1

)
)

+

(
1

2
− δ

)

τ 2m
(
M−1Gm−1 −M−1Kpm−1 − Crm−1

)
. (9.52)

For the sake of simplicity we set

ξm = δτ 2m

(

1−
Cφτm

1 + Cφτm

)

=
δτ 2m

1 + Cφτm
. (9.53)

The substitution of (9.53) in (9.52) yields the relation which can be written in the
form

(
I+ ξmM

−1K
)
pm (9.54)

= pm−1 + (τm − Cξm) rm−1 + ξmM
−1Gm

+

(

C (φ− 1) ξmτm +

(
1

2
− δ

)

τ 2m

)
(
M−1Gm−1 −M−1Kpm−1 − Crm−1

)
.

If pm−1 and rm−1 are known, then pm is obtained from system (9.54) and afterwards
rm is computed from (9.51).
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Chapter 10

Realization of the coupled
fluid-structure interaction problem

The aim of this chapter is the description of the complete coupled fluid-structure
interaction problem. In the first section we shall be interested in the construction of
the ALE mapping. It allows us a treatment of the time dependence of the domain Ωt.
The second section will present the coupling procedures. Namely, we shall describe
the strong coupling and the weak coupling.

10.1 Construction of the ALE mapping

The aim of this section is the construction of the ALE mapping At. The time-
dependence of the domain is caused by the deformation of the common interface
between the domain Ωt occupied by the fluid and the elastic body:

Γ̃Wt
=
{
x ∈ IR2; x = X + u(X, t), X ∈ Γb

W

}
, (10.1)

where u(X, t) is the displacement of the part Γb
W at time t.

The ALE mapping is constructed with the aid of an artificial stationary elasticity
problem. We seek the displacement d = (d1, d2) defined in Ω0 as a solution of the
elastostatic system

2∑

j=1

∂τaij
∂xj

= 0 in Ω0, i = 1, 2, (10.2)

where τaij are the components of the artificial stress tensor,

τaij = λadivdδij + 2µaeaij, i, j = 1, 2, (10.3)

eaij(d) =
1

2

(
∂di
∂xj

+
∂dj
∂xi

)

, i, j = 1, 2.

The Lamé coefficients λa and µa are related to the artificial Young modulus Ea and
to the artificial Poisson number σa as in (6.20). The boundary conditions for d are
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prescribed by

d|ΓI∪ΓO
= 0, (10.4)

d|ΓW0
\Γb

W
= 0, (10.5)

d(x, t) = u(x, t), x ∈ Γb
W . (10.6)

The solution of (10.2) gives us the ALE mapping of Ω̄0 onto Ω̄t in the form

At(x) = x+ d(x, t), x ∈ Ω̄0, (10.7)

for each time t.
System (10.2) is discretized by the conforming piecewise linear finite elements on

the mesh Th0 used for computing the flow field in the beginning of the computational
process in the polygonal approximation Ωh0 of the domain Ω0. We seek the approxi-
mate solution dh of the artificial stationary elasticity problem (10.2) on Ωh0 with the
discrete boundary conditions

dh|ΓIh∪ΓOh
= 0, (10.8)

dh|ΓW0h
\Γb

Wh
= 0, (10.9)

dh(x, t) = u(x, t), x ∈ Γb
Wh. (10.10)

We introduce the finite element spaces

Dh =
{
dh = (dh1, dh2) ∈ C(Ω̄h0)

2; dhi|K ∈ P1(K) ∀K ∈ Th0, i = 1, 2
}
,

Hh = {ωh ∈ Dh; ωh(Q) = 0 for all vertices Q ∈ ∂Ω0} ,

and the form

Ba
h(dh,ωh) =

∫

Ωh0

2∑

i,j=1

τaij(dh)
∂ωi

∂xj
dx (10.11)

=

∫

Ωh0

λa
(
∂dh1
∂x1

+
∂dh2
∂x2

)(
∂ωh1

∂x1
+
∂ωh2

∂x2

)

dx

+2

∫

Ωh0

µa

(
∂dh1
∂x1

∂ωh1

∂x1
+
∂dh2
∂x2

∂ωh2

∂x2

)

dx

+

∫

Ωh0

µa

(
∂dh1
∂x2

+
∂dh2
∂x1

)(
∂ωh1

∂x2
+
∂ωh2

∂x1

)

dx, (10.12)

which was obtained from the left-hand side of (10.2) by multiplying by any test func-
tion ωh ∈ Hh, integrating over Ωh0 and use of Green’s theorem. Then the approximate
solution of problem (10.2) with the boundary conditions (10.4)-(10.6) is defined as a
function dh ∈ Dh satisfying the Dirichlet boundary conditions (10.8)-(10.10) and the
identity

Ba
h(dh,ωh) = 0 ∀ωh ∈ Hh. (10.13)

The use of linear finite elements is sufficient, because we need only to know the
movement of the points of the mesh.
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If the displacement dh is computed at time tm, then in view of (10.7), the approx-
imation of the ALE mapping is obtained in the form

Atmh(x) = x+ dh(x), x ∈ Ωh0. (10.14)

The knowledge of the ALE mapping at the time instants tm, tm−1, tm−2, . . . allows us
to approximate the domain velocity with the aid of the backward difference formula
of a general order q at time tm derived in the same way as in (8.63). We get

zh,m(x) = χ0x+

q
∑

l=1

χlAtm−l
(A−1

tm (x)), x ∈ Ωhtm , (10.15)

where the coefficients χl, l = 0, . . . , q, depend on τm−l, l = 0, . . . , q−1. Let us mention
that in our computation we use the first order formula:

zh,m(x) =
x−Atm−1(A

−1
tm (x))

τm
, x ∈ Ωhtm . (10.16)

10.2 Coupling procedure

In the solution of the complete coupled fluid-structure interaction problem it is nec-
essary to apply a suitable coupling procedure. The general framework can be found
e.g. [9]. Here we apply two different procedures.

First, we present the weak coupling algorithm:

1. Compute the approximate solution of the flow problem (5.57) on the time level
tm.

2. Compute the stress tensor of the fluid τ fij and the aerodynamical force acting

on the structure and transform it to the interface Γb
Wh by (7.2).

3. Solve the elasticity problem (9.1), compute the deformation uh,m at time tm
and approximate the domain Ωhtm+1 .

4. Determine the ALE mapping Atm+1h by (10.7) and approximate the domain
velocity zh,m+1 by (10.15).

5. Set m := m+ 1, go to 1).

The strong coupling procedure represents a more complicated coupling algorithm.
It follows this outline:

1. Assume that the approximate solution wm
h of the flow problem and the defor-

mation uh,m of the structure are known on the time level tm.

2. Set u0
h,m+1 := uh,m, k := 1 and apply the iterative process:

(a) Compute the stress tensor of the fluid τ fij and the aerodynamical force

acting on the structure and transform it to the interface Γb
Wh.
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(b) Solve the elasticity problem, compute the approximation of the deforma-
tion uk

h,m+1 and construct the approximation Ωk
htm+1

of the flow domain at
time tm+1.

(c) Determine the approximations of ALE mapping Ak
tm+1h

and the domain

velocity zk
h,m+1.

(d) Solve the flow problem in Ωk
htm+1

and obtain the approximate solution

wk
h,m+1.

(e) If the variation of the displacement uk
h,m+1 and uk−1

h,m+1 is larger than the
prescribed tolerance and k < 50, go to a) and k := k + 1. Else Ωhtm+1 :=
Ωk

htm
, wm+1

h := wk
h,m+1, u

m+1
h := uk

h,m, m := m+ 1 and goto 2).

The difference between these two coupling algorithms will be presented on our
numerical results in Chapter 13.
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Algorithmization

11.1 Algorithmization of the flow problem

For the algorithmization of problem (8.77) and finding the function wm
h we need to

transform system (8.77) to the system of linear algebraic equations. This subject is
described in this section.

First, we start from the choice of the appropriate basis functions of the space Sht.
By K̂ we denote the reference element with vertices Â = (0, 0), B̂ = (1, 0), Ĉ = (0, 1).
Further, we assume that the space Sht is created by the polynomials of degree ≥ 1.
For this reason we search the basis functions of the space Pp(K̂) in the form

ψ̂j(x̂1, x̂2) =

p
∑

l=0

p−l
∑

k=0

qjkl(x̂1)
k(x̂2)

l, j = 1, . . . , dp, qjkl ∈ IR, (11.1)

where

dp :=
(p+ 1)(p+ 2)

2
(11.2)

is the dimension of the space Pp(K̂). In the following way we define the set D̂ of the

points of the element K̂ :

D̂ =

{(
k

p
,
l

p

)

; k, l = 0, . . . , p, k + l ≤ p

}

. (11.3)

It is possible to show that card(D̂) = dp. Using the notation x̂n, n = 1, . . . , dp, for the

elements of the set D̂, there exists the basis ψ̂1, . . . , ψ̂dp of the space Pp(K̂) fulfilling

the condition ψ̂j(x̂n) = δjn, j, n = 1, . . . , dp.
For each element Kt ∈ Tht let us define the space Pp(Kt). The element Kt has the

vertices AKt , BKt , CKt , for which it holds At(A
K0) = AKt = (aKt

1 , aKt

2 ), At(B
K0) =

BKt = (bKt

1 , bKt

2 ), At(C
K0) = CKt = (cKt

1 , cKt

2 ). Further, we consider the linear map-
ping FKt : K̂ → Kt with the properties FKt(Â) = AKt , FKt(B̂) = BKt , FKt(Ĉ) =
CKt . This is one-to-one mapping and we can write x = FKt(x̂) = UKtx̂+ V Kt . The
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matrices UKt and V Kt have the forms

UKt =

(
bKt

1 − aKt

1

bKt

2 − aKt

2

cKt

1 − aKt

1

cKt

2 − aKt

2

)

, (11.4)

V Kt =

(
aKt

1

aKt

2

)

(11.5)

The inverse mapping can be expressed as x̂ = (FKt)−1(x) = (UKt)−1(x−V Kt), where
the inverse matrix (UKt)−1 has the form

(UKt)−1 =
1

det(UKt)

(
cKt

2 − aKt

2

aKt

2 − bKt

2

aKt

1 − cKt

1

bKt

1 − aKt

1

)

. (11.6)

Here, we denote by det(UKt) the determinant of the matrix UKt .We define the points
xKt
n := FKt(x̂n) Kt ∈ Tht, and we seek the basis functions ψKt

1 , . . . , ψKt

dp
on the

elementKt ∈ Tht fulfilling the conditions ψ
Kt

j (xKt
n ) = δjn, j, n = 1, . . . , dp. These basis

functions are defined unambiguously. Because of the linearity of the function (FKt)−1,
ψ̂j((F

Kt)−1(x)) is the polynomial of degree ≤ p. It holds that ψ̂j((F
Kt)−1(xKt

n )) =

ψ̂j(x̂n) = δjn = ψKt

j (xKt
n ), j, n = 1, . . . , dp. It follows from the unambiguity that

ψKt

j (x) = ψ̂j((F
Kt)−1(x)), j = 1, . . . , dp.

Using the chain rule we derive the derivative of the basis functions ψKt

j , j =
1, . . . , dp :

∂ψKt

j

∂x1
(x) =

∂

∂x1
ψ̂j((F

Kt)−1(x)) =
2∑

i=1

∂ψ̂j

∂x̂i
((FKt)−1(x))

∂((FKt)−1)i
∂x1

(x)

= (∇ψ̂j)((F
Kt)−1(x)) ·

(

(UKt)−1

(
1
0

))

. (11.7)

For x̂ fulfilling x = FKt(x̂) it holds

∂ψKt

j

∂x1
(x) =

∂ψKt

j

∂x1
(FKt(x̂)) = (∇ψ̂j)(x̂) ·

(

(UKt)−1

(
1
0

))

. (11.8)

In a similar way we can show that

∂ψKt

j

∂x2
(x) = (∇ψ̂j)(x̂) ·

(

(UKt)−1

(
0
1

))

. (11.9)

If we have defined the space Pp(Kt) for all elements Kt ∈ Tht, we can define the
vector-valued basis functions ΨKt

j,d = (ψKt

j δ1d, . . . , ψ
Kt

j δ4d), d = 1, . . . , 4, j = 1, . . . , dp.
These functions form the basis of the space Sht. From this it follows that the number of
degrees of freedom dofh of this space is dofh = 4dpcard(Tht). For the sake of simplicity
we introduce the set I of the indices of elements of the triangulation Tht such that
Tht = {Ki; i ∈ I = {0, 1, . . . , c; c ∈ IN}} . Then we shall number the basis functions
of the space Sht by the index l = i4dp + (d − 1)dp + j for i ∈ I, d ∈ {1, . . . , 4} , j ∈
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{1, . . . , dp} . Then Ψl,m
h (x) := Ψ

Ktm

j,d and the sought solution can be written in the
form

wm
h =

dofh∑

l=1

ζml Ψl,m
h . (11.10)

In view of the ideas presented above we can write the discrete problem (8.77) in
the form

dofh∑

l=1

ζml χ0

(

Ψl,m
h ,Ψr,m

h

)

+

dofh∑

l=1

ζml

(

dh(Ψ
l,m
h ,Ψr,m

h ) + bh(w̄
m
h ,Ψ

l,m
h ,Ψr,m

h )

+ ah(w̄
m
h ,Ψ

l,m
h ,Ψr,m

h ) + Jh(Ψ
l,m
h ,Ψr,m

h ) + βh(ŵ
m−1
h ,Ψl,m

h ,Ψr,m
h ) (11.11)

+ Ĵh(ŵ
m−1
h ,Ψl,m

h ,Ψr,m
h )
)

= lh(w̄
m
h (t),Ψ

r,m
h )−

(
q
∑

l=1

χlw
m−l
h ,Ψr,m

h

)

,

r = 1, . . . , dofh. (11.12)

Finally, we rewrite system (11.11) in the form

Am
h ζ

m
h = Lm

h , (11.13)

where Am
h is the matrix with elements

{Am
h }rl = χ0(Ψ

l,m
h ,Ψr,m

h ) + dh(Ψ
l,m
h ,Ψr,m

h ) + bh(w̄
m
h ,Ψ

l,m
h ,Ψr,m

h )

+ah(w̄
m
h ,Ψ

l,m
h ,Ψr,m

h ) + Jh(Ψ
l,m
h ,Ψr,m

h ) + βh(ŵ
m−1
h ,Ψl,m

h ,Ψr,m
h )

+Ĵh(ŵ
m−1
h ,Ψl,m

h ,Ψr,m
h ), (11.14)

and Lm
h is the vector with components

{Lm
h }r = lh(w̄

m
h (t),Ψ

r,m
h )−

(
q
∑

l=1

χlw
m−l
h ,Ψr,m

h

)

. (11.15)

The vector
ζm
h = (ζm1 , . . . , ζ

m

dofh
)T (11.16)

defines the approximate solution by (11.10).

11.1.1 Numerical integration

In this section we shall be concerned with the computation of the integrals determining
the elements of the matrices of system (11.13). In most cases we are not able to
compute these integrals exactly. For this reason we shall use 1D and 2D quadrature
formulae.

In the case of computations of 1D integrals we use 1D Gaussian quadrature for-
mulae of higher order of accuracy derived for the interval [0, 1] .We consider formulae
that are accurate for polynomials with degree ≤ 5. Let us have a function e(ϑ) defined
on the interval [0, 1] . Then the three point rule reads

∫ 1

0

e(ϑ)dϑ ≈
3∑

j=1

̟je(ϑj), (11.17)
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j ϑj ̟j

1. (1−
√

3/5)/2 5/18
2. 0.5 4/9

3. (1 +
√

3/5)/2 5/18

Table 11.1: Gauss three point rule on the interval [0, 1].

where ̟j and ϑj are given in Table 11.1.
Before starting the computation of 1D integrals we need to use a parameterization

of all edges of the elements K ∈ Tht. The line segments ÂB̂, B̂Ĉ, ĈÂ of the reference
element K can be written as η̂1(ϑ) = (ϑ, 0), η̂2(ϑ) = (1 − ϑ, ϑ, ), η̂3(ϑ) = (0, 1 −
ϑ) for ϑ ∈ [0, 1] . Using these functions and the function FKt , the line segments
AKtBKt , BKtCKt , CKtAKt can be expressed in the form

ηKt

s (ϑ) = FKt(η̂s(ϑ)), ϑ ∈ [0, 1] for s = 1, 2, 3. (11.18)

For the computation of the integrals over the line segment parameterized by η̂s we
define the function sts(ϑ) :

sts(ϑ) :=

√
(
∂(ηKt

s (ϑ))1
∂ϑ

)2

+

(
∂(ηKt

s (ϑ))2
∂ϑ

)2

. (11.19)

This function represents the length of the line segment parameterized by η̂s and we
can write dS = sts(ϑ)dϑ. In view of these consequences we can show an example of
the computation of the integral over the edge Γ ∈ Fht with the parametric expression
ηKt
s (ϑ) = FKt(η̂s(ϑ)). This type of integrals we can find in system (11.13), especially

in form ah(w̄
m
h ,Ψ

l,m
h ,Ψr,m

h ). Let us define L(x) on Ω̄ht then using (11.7), (11.19) and
(11.17) we obtain

∫

Γ

L(x)ψKt

k (x)
∂ψKt

l

∂x1
(x)dS (11.20)

=

∫ 1

0

L(ηKt

s (ϑ))ψKt

k (ηKt

s (ϑ))
∂ψKt

l

∂x1
(ηKt

s (ϑ))sts(ϑ)dϑ

=

∫ 1

0

L(ηKt

s (ϑ))ψ̂k(η̂s(ϑ))(∇ψ̂l)(η̂s(ϑ)) ·

(

(UKt)−1

(
1
0

))

sts(ϑ)dϑ

≈
3∑

j=1

̟jL(η
Kt

s (ϑj))ψ̂k(η̂s(ϑj))(∇ψ̂l)(η̂s(ϑj)) ·

(

(UKt)−1

(
1
0

))

sts(ϑj).

For the computation of 2D integrals we use 2D Gaussian quadrature formulae of
higher order of accuracy derived for the reference element K̂. We use the formulae
that are accurate for polynomials with degree ≤ 5. Let us have a function f defined
on the reference element K̂. Then the seven point rule reads

∫

K̂

f(x̂)dx̂ ≈
7∑

j=1

ςjf(x̂j), (11.21)
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j x̂
(1)
j -coordinate x̂

(2)
j -coordinate ςj

1. 0.333333333333333 0.333333333333333 0.225
2. 0.470142064105115 0.470142064105115 0.132394152788506
3. 0.470142064105115 0.05971587178977 0.132394152788506
4. 0.05971587178977 0.470142064105115 0.132394152788506
5. 0.101286507323456 0.101286507323456 0.125939180544827
6. 0.101286507323456 0.797426985353087 0.125939180544827
7. 0.797426985353087 0.101286507323456 0.125939180544827

Table 11.2: Gauss seven point rule on the reference triangle K̂.

where ςj and x̂j = (x̂1j , x̂
1
j) are given in Table 11.2. As an example we compute

the integral of the function from (11.20) over an element K ∈ Tht. Again this type
of integrals can be found in system (11.13), especially in form bh(w̄

m
h ,Ψ

l,m
h ,Ψr,m

h ).
Applying the substitution theorem, (11.7) and (11.21) we get

∫

K

L(x)ψKt

k (x)
∂ψKt

l

∂x1
(x)dx (11.22)

=

∫

K̂

L(FKt(x̂))ψKt

k (FKt(x̂))
∂ψKt

l

∂x1
(FKt(x̂))detUKtdx̂

=

∫

K̂

L(FKt(x̂))ψ̂k(x̂)(∇ψ̂l)(x̂) ·

(

(UKt)−1

(
1
0

))

detUKtdx̂

≈
7∑

j=1

ςjL(F
Kt(x̂j))ψ̂k(x̂j)(∇ψ̂l)(x̂j) ·

(

(UKt)−1

(
1
0

))

detUKt .

11.2 Algorithmization of the structural problem

In Section 9.1 we have defined the matrices M, K and the vector G(t). In order
to express their elements, we use the numerical integration. The integral over any
element K ∈ T b

h will be approximated in the following way

∫

K

χ(x)dx ≈
1

3
|K|

3∑

i=1

χ(PK
i ), (11.23)

where χ(x) is a function defined on the element K ∈ T b
h , P

K
i are the vertices of the

triangle K ∈ T b
h and |K| is the surface of the triangle K ∈ T b

h . The integral over any
edge Γ ∈ ¯ΓWh, Γ ⊂ K, K ∈ T b

h , will be approximated by

∫

Γ

χ(x)dx ≈
1

2
|Γ| (χ(P Γ

1 ) + χ(P Γ
2 )), (11.24)

where P Γ
1 , P

Γ
2 are the end points of Γ and |Γ| denotes the length of the edge Γ.
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Using definitions (9.23), (9.24) of the elements mij, i, j = 1, . . . , N of the matrix
M, we obtain

mij = (ρbϕi, ϕj)Ωb
h
=
∑

K∈Tht

∫

K

ρbϕiϕjdx ≈
1

3

∑

K∈Tht

|K|
3∑

k=1

ρb(PK
k )ϕi(P

K
k )ϕj(P

K
k ),

i, j = 1, . . . , n. (11.25)

From the definition of the basis functions ϕj, j = 1, . . . , n in (9.16) we see that the
matrix M is diagonal and its values on the diagonal are determined by the density
ρb in the given vertex of the triangulation and by the size of a support of a basis
function.

Let us remind that in most of cases we can assume that the density ρb is constant.
Thus,

mij = δijmi, i, j = 1, . . . , n, (11.26)

where

mi =
1

3
ρb |supp(ϕi)| =

1

3
ρb

∑

K∈T b
h
; Pi∈K

|K| , i = 1, . . . , n. (11.27)

Since every function ϕ ∈ Xh is linear on each element K ∈ T b
h , the derivatives

∂ϕ
∂xi

|K , i = 1, 2, are constant. Then we use the notation

∂ϕ

∂xi
|K = ϕ

(i)
K , K ∈ T b

h , (11.28)

and the elements kij , i, j = 1, . . . , N, of the matrix K can be written in the form

kij =

∫

Ωb
h

(

(λb + 2µb)
∂ϕi

∂x1

∂ϕj

∂x1
+ µb ∂ϕi

∂x2

∂ϕj

∂x2

)

dx (11.29)

=
∑

K∈T b
h

∫

K

(λb + 2µb)ϕ
(1)
iKϕ

(1)
jK + µbϕ

(2)
iKϕ

(2)
jKdx

=
∑

K∈T b
h

|K|
(

(λb + 2µb)ϕ
(1)
iKϕ

(1)
jK + µbϕ

(2)
iKϕ

(2)
jK

)

=
∑

K∈T b
h
; Pi,Pj∈K

|K|
(

(λb + 2µb)ϕ
(1)
iKϕ

(1)
jK + µbϕ

(2)
iKϕ

(2)
jK

)

,

k(i+n)j =
∑

K∈T b
h
; Pi,Pj∈K

|K|
(

λbϕ
(2)
iKϕ

(1)
jK + µbϕ

(1)
iKϕ

(2)
jK

)

, (11.30)

ki(j+n) =
∑

K∈T b
h
; Pi,Pj∈K

|K|
(

λbϕ
(1)
iKϕ

(2)
jK + µbϕ

(2)
iKϕ

(1)
jK

)

, (11.31)

k(i+n)(j+n) =
∑

K∈T b
h
; Pi,Pj∈K

|K|
(

(λb + 2µb)ϕ
(2)
iKϕ

(2)
jK + µbϕ

(1)
iKϕ

(1)
jK

)

, (11.32)

i, j = 1, . . . , n.
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The use of the numerical integration for the right-hand side vector G leads to

gi(t) =
1

2

∑

Γ⊂Γb
Wh

|Γ|Tn
h1(t, Pi), (11.33)

gi+n(t) =
1

2

∑

Γ⊂Γb
Wh

|Γ|Tn
h2(t, Pi), (11.34)

i = 1, . . . , n.
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Implementation

In this chapter we shall describe the most important part of the program used for our
numerical experiments. In our simulations we use the C program created by Václav
Kučera that was originally designed for the flow in the time-independent domains.
Tests of this method and program are presented in [48]. In this program we modified
some parts in order to allow computations in time-dependent domains using the ALE
method. The results of these modifications allowing the treatment of the motion of
the domain, which is prescribed as a graph of a function, are presented in [56]. As
the next step we completed this program by the C module for computations of the
dynamic elasticity problem and the elastostatic problem. This module was originally
developed by Adam Kośık for the computations of purely elasticity problems or the
problem of the interaction of an elastic body with an incompressible flow as described
in [47]. Here, the tests of the code were also carried out. The modification of the
both parts of the program, the flow part and the elastic part, was necessary for
the cooperation of these two different modules. The program part which treats the
interaction between the flow part and the elastic part, was newly developed as well as
the part containing the ALE method. Now, we have two variants of the program. Each
of these two variants allows the different coupling procedure as described in Section
10.2. It means that we are able to solve the problems of the flow in time-independent
domains as well as the fluid-structure interaction of the flow and an elastic structure.
In the following sections of this chapter we shall pay attention to the mesh generation
and some details of the program and the used technique.

Let us shortly remind that the algorithmization technique was in detail described
in Chapters 8, 9 and 11. Only the small modification of the final Newmark scheme
(9.54) and (9.51) will be presented in order to get a favourable program implementa-
tion. The coupling ideas and the computation of the ALE mapping are described in
Chapter 10.

If we solve the flow part of the problem, we need to go from the one time level to the
next one. It means that on each time level we create system (11.13). The matrix Am

h of
this system is nonsymmetric and sparse on each time level. For this reason we use for
the solution of system (11.13) the Generalized Minimal Residual (GMRES) method.
The description of this method can be found in e.g. [56], Section 6.3. For improving
of the properties of the method we apply the block diagonal preconditioning, where
the block is created by all variables of one element of the triangulation.
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12.1 Mesh generation

The finite element method as well as the discontinuous Galerkin finite element method
are based on the construction of a triangulation in the computational domain. On
this triangulation we compute the approximate solution of the problem, where the
number of the elements of the triangulation and their size play the role in the accuracy
of the solution. On the other hand, the growth of the number of elements causes
computations more complicated and more time-consuming. Moreover, in the case of
fluid-structure interaction problem we need to connect the triangulation T b

h of the
domain Ωb

h of the structure to the triangulation Th0 of the domain Ωh0 occupied by
the fluid. It has to be done in the suitable way, because these two domains have the
common boundary Γb

W .
For simplified computational examples as in Section 13.1 the use of tensor-product

meshes would be convenient. For the reason of solving mainly more complicated
problems with a broken computational domain we apply more general meshes. As
an example see Section 13.2.

For the generation of meshes used in our computations we apply the open source
software GMSH [37]. This program gives us the possibility to easily guarantee that the
vertices of the triangulations T b

h lying on the common boundary Γb
W are the same as

the vertices of the triangulations Th0 lying on the common boundary Γb
W . It allows us

an easy handling of the information between the fluid and the structure. The further
advantage of the GMSH software is the possibility of an easy creation of subdomains
of the computational domain, which allows us to define, for example, different material
properties in different subdomains of the structure. Also the refinement of the mesh
in the desired parts of the domain is possible without bigger complications. These
possibilities make the GMSH software more advantageous in comparison with the
ANGENER software [1].

On the other hand, the ANGENER software makes a convenient output format
of the file containing the triangulation. For this reason we use this triangulation file
format as a standard input format of the triangulation in our program. We employ the
properties of this format in our program. The ANGENER format of the triangulation
data guarantees the regularity of the triangulation, the positive orientation of the
vertices of elements of the triangulation, the arranging of vertices on the boundary,
etc.

From the above mentioned reasons we combine the advantages of both softwares.
We create a mesh of the computational domain by the GMSH software and then
the triangulation format is transformed to the ANGENER format using as the input
format of the triangulation in our program.

12.2 Implementation of the Newmark scheme

From the discretization of the structural problem we obtain system (9.33) of ordinary
differential equations with the mass matrix M, the stiffness matrix K and the right-
hand side vector G. Since we assume in our computations the the density ρb and
coefficients characterizing material properties are constant with respect to time, it is
sufficient to compute the elements of the matrices M and K only on the first time
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level. On the other hand, the right-hand side vector G has to be computed again
on each time level from relations (11.33) and (11.34). Applying relations (11.26) and
(11.27), we obtain the elements of the mass matrix M and by relations (11.29)-(11.32)
we get the elements of the stiffness matrix K. Both these matrices are sparse. System
(9.33) is solved with the aid of the Newmark method.

The implementation of the Newmark method is realized by relations (9.54) and
(9.51), where we multiply equation (9.54) by the matrix M. Then for the nonuniform
partition 0 = t0 < t1 < . . . < tM = T of the time interval [0, T ] with τm = tm −
tm−1, m = 1, . . . ,M , we get system (9.54) in the following form

(M+ ξmK)pm = Mpm−1 + (τm − Cξm)Mrm−1 + ξmGm + (C(φ− 1)ξmτm

+

(
1

2
− δ

)

τ 2m

)

(Gm−1 −Kpm−1 − CMrm−1), (12.1)

where ξm is given by relation (9.53). Similarly we multiply equation (9.51) by M :

Mrm =
1

1 + Cφτm
(Mrm−1 + τm (φ(Gm −Kpm)

+(1− φ)(Gm−1 −Kpm−1 − CMrm−1)
))
. (12.2)

In our computations we use an identical time step τm = τ for each m ∈ IN. It means
that we can also set ξm = ξ. If we set r̃m = Mrm, equations (12.1) and (12.2) have
the form

(M+ ξK)pm = Mpm−1 + (τ − Cξ)r̃m−1 + ξGm + (C(φ− 1)ξτ

+

(
1

2
− δ

)

τ 2
)

(Gm−1 −Kpm−1 − Cr̃m−1), (12.3)

r̃m =
1

1 + Cφτ
(r̃m−1 + τ (φ(Gm −Kpm)

+(1− φ)(Gm−1 −Kpm−1 − Cr̃m−1)
))
. (12.4)

From the reason of not doing repetitive computations, in memory we save some further
information. For example, the left-hand side of (12.3) does not have to be computed
on each time level and we define the matrix B

B = M+ ξK (12.5)

and two real coefficients

ηb1 =
1

1 + Cφτ
, (12.6)

ηb2 = C(φ− 1)ξτ +

(
1

2
− δ

)

τ 2. (12.7)

On each time level we need to compute vectors q̃1
m, q̃

2
m defined as

q̃1
m = Gm −Kpm, (12.8)

q̃2
m = q̃1

m − Cr̃m. (12.9)
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After these modifications equations (12.3) and (12.4) read

Bpm = Mpm−1 + (τ − Cξ)r̃m−1 + ξGm + ηb2q̃
2
m−1 (12.10)

r̃m = ηb1(r̃m−1 + τ(φq̃1
m + (1− φ)q̃2

m−1)). (12.11)

The system of linear algebraic equations (12.10) is solved by the method of conju-
gate gradients, which use the fact that the matrix B is symmetric and positive definite.
It follows from the properties of the matrix K, which is also symmetric and positive
definite.

12.3 Description of the program

In this section we shall be concerned with the structure of our program. Especially we
shall pay attention to the file main.c, which represents the heart of the program. Let
us remind that the flow part of the problem is solved with the aid of dimensionless
variables. On the other hand, the structural part of the problem uses dimensional
variables. Then data handling between these two parts of the program need to be
transformed according the relations presented in Section 5.2.

12.3.1 main.c

The main function int main() starts with the declaration of the constants described
in Table 12.1. The initial time step tau is given in the dimensionless form and is ap-
plied in the flow problem. For the application in the part of the program, where the
structure problem is solve, we multiply tau by the constant COEFT representing the
characteristic time (COEFT= L∗/U∗). The structures and variables used in both parts
of the program are defined and the function gettriang(vert,el,ed,tri1) reads the
information about the triangulation of the flow problem saved in the file tri1. As men-
tioned in Section 12.1, all meshes used in computations are saved in the ANGENER
format. The initialization of the initial conditions for the flow problem is carried out
by the functions setinitialconditions(el,0) and setinitialconditions(el,1)

that determines the initial conditions as constant state, read from the data set
constants.h. Usually we begin the computation of flow in the fixed domain Ωh0.
After some time interval we release the ALE mapping and solve the fluid-structure
interaction problem. The function loadstate(el,act,statex, &time,0) allows us
to start the computation of an interaction from the state saved in the data set statex.

Type Notation Use
integer stepsave Frequency of results saving.
integer iterations Total number of time levels.
double tau Initial time step.
char tri1[] Name of the data set where the triangulation is saved.

Table 12.1: Initial constants.
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Notation Variable
0 density

VELOC velocity
VELOCX x-th component of velocity
VELOCY y-th component of velocity
PRESS pressure

ENTROPY entropy
MACH Mach number

Table 12.2: Variables.

For the structure part of the problem we define the time step taureal=tau*COEFT.
By the function init struct(taureal) we initialized the structure part of the prob-
lem, when the triangulation is read as well as initial conditions, etc. For the artificial
elastostatic problem used to finding of the ALE mapping we apply the analogous func-
tion init static elasticity(next moving vertex, count moving vertex). The
function inter edge adresse(ed,n inter edge,interaction edges) plays an im-
portant role for the connection of the structural and flow problem. This function
searches the vertices of T b

h and Th0, which have the same coordinates and present
the vertices of the common boundary Γb

Wh, where the interaction takes place. The
addresses of these vertices are saved in the structure interaction edges.

Now we shall be concerned with the heart of the main function int main().
It means that we describe the most important parts of the loop through all time
levels that directs the whole process carried out by the program. First, we shall
pay attention to this loop of the weak coupled variant of the program. The func-
tion iteration(el,ed,&mat,x,b,act,tau,20,1E-10,&error,&gmiters,btemp,0)

computes the solution of the flow problem on the given time level. As follow from the
transmission condition (7.2), we need to determine the stress tensor on the edges lying
on the common boundary Γb

Wh, where the interaction takes place. This is done by the
function average stress tensor interaction edge(interaction edges,n inter

edge,act,stress). The elastic problem is solved by the function step struct(dis-

placement, stress, taureal). The ALE mapping is computed by the function
step static elasticity(all displacement, displacement) and the triangula-
tion on the next time level is created by the function renewtriangulation elastic(el,

ed,vert,time,tau,all displacement). The saving of the chosen flow variable
is carried out by the function savesolution(el, vert,i/stepsave,act,time,X),
where X is the chosen variable. For the notation of the variables see Table 12.2. The
structure variables are saved by the function save structure(i / stepsave).

In the case of the strong coupled variant of the program the loop is more com-
plicated. Before we start this loop, we solve the flow problem on the first time level,
which is realized by the function iteration(el,ed,&mat,x,b,act,tau,20,1E-10,

&error,&gmiters,btemp,0,0). Then we enter the loop over all time levels, where we
start by computing the stress tensor for transmission condition (7.2) (average stress

tensor interaction edge(interaction edges,n inter edge,act,stress)), the
structural problem (step struct(displacement, stress, taureal, 0)), the ALE
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mapping (step static elasticity(all displacement, displacement)) and the
new triangulation (renewtriangulation elastic(el,ed,vert,time,tau,all dis-

placement,1)). Further, we stay on the same time level and run an inner loop de-
scribed in Section 10.2. When this loop is successfully finished, the results are saved
in the same way as in the weak coupled variant of the program.

12.3.2 Constants.h

In this data set the conditions of a computation and input variables of the flow
problem are defined. In Table 12.3 we describe the most important constant for setting
the computation. In Tables 12.4 - 12.8 the possible setting of these constants can be
found.

Let us mention that the material properties of the elastic structure are saved
in the data set nm cfg.h. Constants for the artificial elastostatic problem used for
determinding the ALE mapping can be found in the file elastostatics.h.

Notation Use
ELASTICITY Choice of dealing with a FSI problem.
COUPLING Choice of the type of coupling in a FSI problem.

NUMBER COUPLING LOAP Number of inner iterations in case of the strong coupling.
ALE Setting for dealing with a time-dependent domain.

Table 12.3: Constants used for the adjustment of the type of the computation.

ELASTICITY Meaning
0 Flow problem without an interaction.
1 Fluid-structure interaction problem.

Table 12.4: Adjustment of the constant ELASTICITY.

COUPLING Meaning
0 Weak coupling.
1 Strong coupling.

Table 12.5: Adjustment of the constant COUPLING.

ALE Type of problem
0 Problem on a time-independent domain.
11 Problem on a time-dependent domain.

Table 12.6: Adjustment of the constant ALE.

Notation Initial condition
RHO0 Initial density.
VX0 Initial x-th component of velocity.
VY0 Initial y-th component of velocity.
P0 Initial pressure.

Table 12.7: Notation of initial conditions of the flow problem .
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Notation Boundary condition
RHOIN Density on the inlet boundary.
VXIN X-th component of velocity on the inlet boundary.
VYIN Y-th component of velocity on the inlet boundary.
POUT Pressure on the outlet boundary.

Table 12.8: Notation of boundary conditions of the flow problem.
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Chapter 13

Numerical experiments

This chapter will be devoted to our numerical results. All presented results have
been inspired by the problem of an airflow in human vocal folds. The simulation of
vocal folds vibrations induced by compressible viscous flow represents a complicated
problem of fluid-structure interaction.

First we shall be concentrated on the experimental analysis of computational ac-
curacy, especially on the impact of a density of a computational mesh on the solution.
For this reason we shall be interested in the solution of a problem in a simple com-
putational domain. It allows us to compare the behaviour of the solution on meshes
with a different number of elements and show a convergence tendency. All these com-
parisons will be carried out in context of weak and strong coupling procedures (see
Section 10.2).

The second example will be focused on the demonstration of the applicability of
the developed scheme, when the computational domain is more realistic and better
characterizes the vocal tract. The properties of the elastic bodies better approximate
material properties of human vocal folds.

Let us mention that all presented computations were carried out on the cluster
Sněhurka at the Faculty of Mathematics and Physics, Charles University in Prague
(see [2]).

13.1 Example 1

We consider the model of flow through a channel with two bumps which represent
time dependent boundaries between the flow and a simplified model of vocal folds (see
Figure 13.1). The numerical experiments were carried out for the following data: mag-
nitude of the inlet velocity vin = 4 m/s, the viscosity µ = 15·10−6 kgm−1 s−1, the inlet
density ρin = 1.225 kgm−3, the outlet pressure pout = 97611 Pa, the Reynolds number
Re = ρinvinH/µ = 5227, heat conduction coefficient k = 2.428 ·10−2 kgm s−2 K−1, the
specific heat cv = 721.428m2 s−2 K−1, the Poisson adiabatic constant γ = 1.4. The
inlet Mach number is Min = 0.012. The parameter of the computational accuracy of
the GMRES solver was 10−10. The Young modulus and the Poisson ratio have values
Eb = 25000 Pa and σb = 0.4, respectively, the structural damping coefficient is equal
to the constant C = 100 s−1 and the material density ρb = 1040 kgm−3. The used
time step was 8 · 10−6s.
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Figure 13.1: Computational domain at time t = 0 with a finite element mesh and
the description of its size: LI = 50mm, Lg = 15.4mm, LO = 94.6mm, H = 16mm.
The width of the channel in the narrowest part is 1.6mm.

Mesh Colour used in graphs Flow part Structure part
Mesh 1 red 5398 1998
Mesh 2 green 10130 2806
Mesh 3 blue 20484 4076

Table 13.1: Computational meshes.

In the numerical experiments quadratic (r = 2) and linear (s = 1) elements were
used for the approximation of flow and structural problem, respectively.

In Table 13.1 we characterize the used computational meshes by the number of
elements in the flow part and in the structure part of the mesh. Figure 13.1 shows
the situation at the initial time t = 0 corresponding to the computational mesh 1.
In Figure 13.2 we compare three different meshes in the flow domain and structure
domain used in our computations. In the case of the flow channel we show only the
narrowest part of the computational domain, which represents the most problematic
part of the channel. Figure 13.3 presents the position of the point A in the flow
channel, where the analysis of the mesh impact was carried out. In Figure 13.4 we
see the positions of sensor points used in the analysis of flow-induced deformations.

First we tested the influence of the density of the computational meshes on the
oscillations of the pressure in the point A. The corresponding Fourier analyses are
carried out by the software Matlab. Figure 13.5 shows the behaviour of the pressure
amplitude

(p− paverage)(t) = p(A, t)−
1

T

∫ T

0

p(A, t)dt (13.1)

computed with the aid of the strong coupling (on top) and the weak coupling (at the
bottom). There are also presented corresponding Fourier analyses. It seems that in
case of the weak coupling the mesh is already enough fine. No further improvement
of the solution can be seen. See Table 13.3.

In order to compare an impact of the used coupling procedure we present the
graphs of the pressure amplitude p− paverage on the mesh 1 computed by the strong
coupling (blue) and the weak coupling (red). Figure 13.6 shows that the difference
between the results obtained by the strong and weak coupling is not too large. The
main difference is in a higher stability of the strong coupling during the calculation
on a long time interval. On the other hand, the strong coupling requires naturally
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Figure 13.2: The detail of the flow meshes (left) 1, 2 and 3 in the narrowest part of
the channel at time t = 0. The detail of the structure meshes (right) 1, 2 and 3 at
time t = 0.
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Figure 13.3: Position of the point A in the flow channel, where the analysis of the
convergence tendency was carried out.

Figure 13.4: Positions of some sensors in the narrowest part of the channel used in
the analysis

longer CPU time.
Now, let us deal with the flow field in the channel and the flow-induced deforma-

tions of the vocal folds model. In what follows, we shall present the results obtained
by the computation on the coarse mesh (mesh 1 in Table 13.1). The coarse mesh was
chosen in order to allow us the computation on the long time interval in a reasonable
time. The strong coupling was used. In Figures 13.7 and 13.8 we can see the com-
putational mesh and the velocity field near the vocal folds at several time instants.
Figures 13.9 and 13.10 show the pressure isolines and the velocity isolines in the whole
channel at same time instants. The maxima of the fluid velocity v ≈ 54 ms−1 and the
pressure 2 kPa correspond to the parameters of normal phonation. We can observe the
Coanda effect represented by the attachment of the main stream (jet) successively to
the upper and lower wall and formation of large scale vortices behind the glottis. The
character of the vocal folds vibrations can be indicated in Figure 13.11, which shows
the displacements dx and dy of the sensor points on the vocal folds surface (marked in
Figure 13.4) in the horizontal and vertical directions, respectively. Moreover, the fluid
pressure fluctuations in the middle of the gap as well as the Fourier analysis of the

Mesh Colour used in graphs Dominating frequency [Hz]
Mesh 1 red 121.3
Mesh 2 green 83.96
Mesh 3 blue 93.28

Table 13.2: Comparison of dominating frequency for the strong coupling on the
different meshes.
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Mesh Colour used in graphs Dominating frequency [Hz]
Mesh 1 red 121.3
Mesh 2 green 121.3
Mesh 3 blue 121.3

Table 13.3: Comparison of dominating frequency for the weak coupling on the dif-
ferent meshes.
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Figure 13.5: Dependence of the quantity p − paverage and its Fourier analysis com-
puted on three meshes: strong coupling (on top), weak coupling (at the bottom).
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Figure 13.6: Comparison of the weak coupling (red) and the strong coupling (blue)
on the mesh 1.
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signals are shown here too. The vocal folds vibrations are not fully symmetric due to
the Coanda effect and are composed of the fundamental horizontal mode of vibration
with the corresponding frequency 113 Hz and by the higher vertical mode with the
frequency 439 Hz. The increase of vertical vibrations due to the aeroelastic instability
of the system results in a fast decrease of the glottal gap. At about t = 0.2 s, when
the gap is nearly closed, the fluid mesh deformation in this region is too high and the
numerical simulation stopped. The dominant peak at 439 Hz in the spectrum of the
pressure signal corresponds well to the vertical oscillations of the glottal gap, while
the influence of the lower frequency 113 Hz associated with the horizontal vocal folds
motion is in the pressure fluctuations negligible. The modeled flow-induced instability
of the vocal folds is called phonation onset followed in reality by a complete closing of
the glottis and consequently by the vocal folds collisions producing the voice acoustic
signal.
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Figure 13.7: Detail of the mesh and the velocity distribution in the vicinity of the
narrowest part of the channel at time instants t = 0.1950, 0.1957, 0.1963, 0.1970 s.
The legend shows the dimensionless values of the velocity. For getting the dimensional
values multiply by U∗ = 4.
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Figure 13.8: Detail of the mesh and the velocity distribution in the vicinity of the
narrowest part of the channel at time instants t = 0.1976, 0.1982, 0.1989, 0.1995 s.
The legend shows the dimensionless values of the velocity. For getting the dimensional
values multiply by U∗ = 4.
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Figure 13.9: Velocity isolines at time instants t = 0.1976, 0.1982, 0.1989, 0.1995 s.
The legend shows the dimensionless values of the velocity. For getting the dimensional
values multiply by U∗ = 4.

PRESSURE: -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70

Figure 13.10: Pressure isolines at time instants t = 0.1976, 0.1982, 0.1989, 0.1995
s. The legend shows the dimensionless values of p− pout. For getting the dimensional
values multiply by ρ∗U∗2 = 19.6.
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Figure 13.11: Vibrations of sensor points from the vocal folds and their Fourier
analyses and the fluid pressure fluctuations in the middle of the gap and their Fourier
analysis.
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Figure 13.12: The scheme of the vocal tract.

subdomain Eb σb

Ωb
1 100000 0.4

Ωb
2 1000 0.495

Ωb
3 8000 0.4

Ωb
4 12000 0.4

Table 13.4: Material characteristics of the solid part Ωb.

13.2 Example 2

Here we present numerical results obtained with the aid of the weak coupling tech-
nique and applied to the interaction of airflow in the domain Ωt, representing the
human vocal tract, with human vocal folds represented by the domain Ωb.

We use the same time step τ = 4.35 · 10−5 s for the flow problem and the
structural problem. For the flow problem the following data set was applied: µ =
1.8375 · 10−5 kgm−1 s−1, k = 2.428 · 10−2 kgm s−3 K−1, cv = 721.428m2 s−2 K−1, Re =
ρinvin2HI/µ = 4640. At the inlet we prescribe the velocity vector vin = (4, 0)m s−1

and the density ̺fin = 1.225 kgm−3. At the outlet the pressure pout = 97611 Pa is
prescribed.

We assume that the vocal folds are isotropic bodies with the constant material
density ̺b = 1040 kgm−3. The values of the Young modulus Eb and the Poisson ratio
σb are different in four subdomains of Ωb. See Figures 13.12, 13.13 and Table 13.4.
The damping coefficient C = 0.1 s−1.

Figure 13.13: Scheme of the computational domain Ωf at time t = 0 with the
description of its size: L = 87mm, HI = 8.7mm, HO = 8mm. The width of the
channel in the narrowest part is 1mm.
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Figure 13.14: Detail of the mesh of the flow problem (on top) and the mesh of the
structural problem (at the bottom).

The mesh of the domain Ωt consists of 5002 elements. The detail of the flow domain
can be seen in Figure 13.14. The mesh of the structural part of the problem has 710
elements, see Figure 13.14. Again, quadratic elements (r = 2) and linear elements
(s = 1) were used for the approximation of flow and structural problem, respectively.

The character of the vocal folds vibrations can be indicated in Figure 13.15 show-
ing horizontal and vertical displacements of the elastic body. This Figure also allows
the comparison with the fluid pressure fluctuations in the middle of the gap. The
Fourier analyses are provided. Figures 13.16 and 13.17 show the flow velocity and
the flow pressure with the deformation of the computational domain at several time
instants during the aeroelastic instability onset. The details of the flow velocity and
the flow pressure in the narrowest part of the channel can be seen in Figures 13.18
and 13.19. Again we can see the Coanda effect and big vortices leaving the domain
through the boundary ΓO. As seen in Figures 13.16 and 13.17 the pressure and the
velocity correspond to the parameters of normal phonation (see e.g. [63]).
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Figure 13.15: Vibrations of the sensor point lying inside the area Ωb
3 (see Figure

13.12) of the upper vocal fold and the fluid pressure fluctuations in the middle of the
gap and their Fourier analyses.
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VELOCITY: 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5

Figure 13.16: Velocity isolines at time instants t = 0.261, 0.272, 0.283, 0.294, 0.304,
0.315, 0.326, 0.337 s. The legend shows the dimensionless values of the velocity. For
getting the dimensional values multiply by U∗ = 4.
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PRESSURE: -22 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18

Figure 13.17: Pressure isolines at time instants t = 0.261, 0.272, 0.283, 0.294,
0.304, 0.315, 0.326, 0.337 s. The legend shows the dimensionless values of p − pout.
For getting the dimensional values multiply by ρ∗U∗2 = 19.6.
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Figure 13.18: Detail of the velocity field (left) and the pressure field (right) in
the neighbourhood of the narrowest part of the channel at time instants t =
0.261, 0.272, 0.283, 0.294 s.
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Figure 13.19: Detail of the velocity field (left) and the pressure field (right) in
the neighbourhood of the narrowest part of the channel at time instants t =
0.304, 0.315, 0.326, 0.337 s.
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Conclusion

In the first part of this thesis, we have formulated and theoretically analyzed the dis-
continuous Galerkin finite element method for the space-time discretization of a non-
stationary convection-diffusion initial-boundary value problem with nonlinear convec-
tion, linear diffusion and a Dirichlet boundary condition. In the space discretization,
we use polynomial approximations of degree p ≥ 1, and the nonsymmetric (NIPG),
incomplete (IIPG) and symmetric (SIPG) variants of the diffusion terms are consid-
ered. The discontinuous approximations of degree q ≥ 1, in general q 6= p, are used in
time. Under the assumption that the Dirichlet data behave in time as polynomials of
degree ≤ q, the derived estimates in L2(H1)-norm are optimal in space and time. The
error estimate in L2(L2)-norm is optimal in time, but suboptimal in space. In the case
of general Dirichlet data, the error estimates are suboptimal in time. The derivation
of the optimal error estimates in space and time in the case of the SIPG method with
the general Dirichlet data, the numerical realization of the discrete problem and the
experimental demonstration of the results present the possible direction of the future
work.

The second part of this thesis was devoted to the fluid-structure interaction prob-
lem motivated by the flow-induced vibrations of human vocal folds. It means that we
have described the coupled problem of compressible viscous flow and the deformation
of an elastic body. In the outline of this part of the thesis we can distinguish sections
dedicated to the flow problem, to the structural problem and to their coupling. At
the end of the work a separate chapter was devoted to examples of our numerical
results.

The flow problem was described by the compressible Navier-Stokes equations
and the dimensionless form of these equations was derived. Further, the governing
equations were formulated in the arbitrary Lagrangian-Eulerian (ALE) form and dis-
cretized in space by the discontinuous Galerkin finite element method. The time dis-
cretization was carried out by the backward difference formula in time. The suitable
algorithmization was mentioned.

The structural problem is represented by the dynamical equations of an isotropic
elastic body. For its discretization we used the conforming finite element method. For
the time discretization the Newmark method was applied. Again, the algorithmization
was discussed.

The ALE mapping was introduced with the aid of an artificial elastostatic prob-
lem in the domain occupied by flow. We formulated two different possible coupling
procedures, the strong and weak coupling. The developed method was programmed
in the language C.

The last chapter of the thesis was devoted to numerical experiments carried out
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for two examples. Both cases were inspired by the airflow in the human vocal tract,
which induces the self oscillations of human vocal folds.

On the first simplified model we have presented both coupling procedures and
compared their results. The experiments showed that the difference between the re-
sults obtained by the strong and weak coupling is not too large. The main difference
is in a higher stability of the strong coupling during solving the problem on a long
time interval. On the other hand, the strong coupling requires naturally longer CPU
time. As follows from the description of both coupling procedures, the weak coupling
is simpler than the strong coupling and thus less time consuming. Because the results
of both coupling procedures perfectly match at the beginning of the computation
(see Figure 13.6), the weak coupling seems to be a good tool for testing computations
before starting the more complicated computations. The use of three successively
refined meshes allowed the comparison of the solutions via testing quantity (13.1).
These results, showed in Figure 13.5, demonstrate the convergence tendency of the
method.

On the second example we have presented the more realistic problem with pa-
rameters better characterizing the properties of the tissue of human vocal folds. The
elastic structure domain was split in four subdomains with the same material density,
but with different Poisson ratio and Young’s modulus in each of them. Also the shape
of the computational channel was more realistic. Even if there were big deformations
of the structure causing creation of the massive vortices in the flow domain, no dif-
ficulties in the flow part were marked and the vortices were smoothly leaving the
domain.

The possible future work is the treatment of the complete closure of the channel.
This effect occurs during the phonation in human vocal folds and together with the
acoustic resonances of the human vocal tract causes the creation of human voice.
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[35] M. Feistauer and K. Švadlenka. Discontinuous Galerkin method of lines for
solving nonstationary singularly perturbed linear problems. J. Numer. Math.,
2:97–117, 2004.

[36] Y. Fung. An Introduction to the Theory of Aeroelaticity. Dover Publications,
New York, 1969.

[37] C. Geuzaine and J.-F. Remacle. Gmsh: a three-dimensional finite element mesh
generator with built-in pre- and post-processing facilities. International Journal
for Numerical Methods in Engineering, 79:1309–1331, 2009.

[38] C. Grandmont. Existence of a weak solutions for the unsteady interaction of a
viscous fluid with an elastic plate. SIAM J. Math. Sci., 40:716–737, 2008.

[39] R. Gregory and D. Karney. A Collection of Matrices for Testing Computational
Algorithms. Wiley-Interscience, New York, 1969.

[40] M. Guidorzi, M. Padula, and P. Plotnikov. Hopf solutions to a fluid-elastic
interaction model. Math. Models Methods Appl. Sci., 18:215–269, 2008.

[41] R. Hartmann and P. Houston. Adaptive discontinuous Galerkin finite element
methods for compressible euler equations. In Technical report 2001-42 (SFB
359). IWR Heidelberg.

130



Bibliography

[42] K. Hoffman and V. Starovoitov. On a motion of a solid body in a viscous fluid.
Two-dimensional case. Advanced in Mathematical Sciences and Applications,
9:633–648, 1999.
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