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Abstract

Gene loops are chromatin structures formed by juxtaposition of distal genomic regions. Since 

these regions are often involved in transcription cycle control, gene loops therefore provide 

another mechanism of regulation of gene expression. This thesis summarizes recent findings

about gene loops, focusing specifically on loops formed by interactions between promoter and 

terminator regions of genes transcribed by the eukaryotic RNA polymerase II. Different cases of 

gene loops discovered in several yeast genes, the mammalian BRCA1 tumor suppressor and the 

HIV-1 integrated provirus are described, including mechanisms that possibly lead to the

formation of these structures. Since gene loops and interactions between promoter and terminator 

in yeast have been linked to the transcriptional memory, their involvement in this phenomenon is 

discussed. Finally, as BRCA1 and HIV-1 are directly linked to serious human diseases, the 

potential significance of alterations of gene loops in the development of various pathological 

conditions is presented.

Keywords: gene loops, chromatin loops, chromatin conformation, transcriptional memory, 

transcription, gene expression, regulation
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Abstrakt

Genové smyčky jsou chromatinové struktury, k jejichž vzniku dochází při fyzické interakci 

vzdálených oblastí DNA. Jelikož se tyto oblasti často podílejí na kontrole transkripčního cyklu, 

genové smyčky tvoří další úroveň regulace genové exprese. Tato práce shrnuje aktuální znalosti o 

genových smyčkách, přičemž se zaměřuje speciálně na smyčky vzniklé interakcemi 

promotorových a terminátorových oblastí genů transkribovaných pomocí eukaryotické 

polymerázy II. Jsou rozebrány smyčky objevené u kvasinkových genů, u savčího tumor 

supresoru BRCA1 a také u integrovaného genomu viru HIV-1, a to včetně mechanismů, jež 

pravděpodobně vedou k jejich vzniku. Jelikož byla nalezena spojitost mezi genovými smyčkami

a transkripční pamětí u kvasinek, je popsán jejich fyziologický význam při tomto jevu. V 

souvislosti s přímým spojením BRCA1 a HIV-1 se závažnými lidskými chorobami je dále 

navržen obecný význam poruch ve funkci genových smyček při vzniku závažných patologických 

stavů.

Klíčová slova: genové smyčky, chromatinové smyčky, konformace chromatinu, transkripční 

paměť, transkripce, genová exprese, regulace
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1. Introduction

The research of gene expression activation has for a long time focused primarily on

studies of transcription initiation mechanisms and promoter selection. The commonly accepted 

model of transcription of protein-coding genes in eukaryotes is quite straightforward. It involves

the initial recruitment of RNA polymerase II (RNAP II) to the transcription initiation site by a set 

of DNA-binding and protein-binding general transcription factors assembled stepwise to form a 

preinitiation complex (PIC). After elongation of the nascent pre-mRNA from a linear DNA 

template, the transcription terminates after encountering a terminator sequence, with RNAP II 

dissociating from the template. An important feature of this model is that in order to reinitiate the 

transcription, de novo assembly of the PIC and subsequent recruitment of RNAP II is required.

However, there has been a growing amount of evidence during the last decade challenging this 

straightforward model of RNAP II transcription cycle and suggesting that the whole process is 

more intricate and complex.

In vitro studies have indicated that a subset of transcription initiation factors remains at 

the promoter region after the RNAP II leaves the promoter. These factors form a so-called 

“scaffold” complex which then facilitates a rapid reassembly of the complete initiation complex

upon reactivation of transcription (Yudkovsky et al., 2000).

Moreover, many studies have suggested the involvement of higher order chromatin 

structures called chromatin loops or gene loops in eukaryotic transcription. These topological 

arrangements were discovered to bring distal regulatory regions into proximity, causing

activation or repression of genes. Gene loops have been observed in various species and cell 

types and have been shown to work over wide range of distances. For example, long-range 

parental-specific gene loops formed by interactions between imprinted H19 and Igf2 genes 

influence the expression of these genes over a distance of ~100 kb (Murell et al., 2004). In the 

case of mouse β-globin gene, locus control regions were observed in proximity with the β-globin 

promoter over a distance of 40-60 kb in expressing tissue, whereas this interaction was not 

observed in non-expressing tissue (Tolhuis et al., 2002). These structures therefore provide an 

explanation for the long known, but not understood mechanism of long-range actions of various 

distal regulatory DNA elements, such as enhancers or silencers.
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This thesis will focus specifically on the role of physical interactions between promoter 

and terminator regions of eukaryotic genes transcribed by RNAP II. After describing the basic 

model of transcription cycle, main methods primarily used for analyzing distal genomic 

interactions and gene looping will be covered. The recent knowledge about gene loops and their 

function in transcriptional memory in yeast Saccharomyces cerevisiae and evidence about the 

juxtaposition of promoter and terminator regions in mammals will then be presented. In 

conclusion, the future perspectives and the importance of gene looping in pathological conditions

will be discussed.

2. Eukaryotic transcription by RNAP II

Transcription is the process of RNA synthesis from the DNA template. It is the first step 

of gene expression, during which the information stored in the molecule of DNA is converted 

into the final gene product, protein or RNA. Enzyme that catalyzes the transcription reaction is 

called RNA polymerase. RNA polymerases are multisubunit enzymes that vary in size, 

composition and function. In bacteria and archaea, all genes are transcribed by a single RNA

polymerase. In eukaryotes, transcription is catalyzed by three RNA polymerases (RNAP I, RNAP 

II and RNAP III) that are all similar in their structure and features, but each transcribes a different 

set of genes. While RNAP I and III transcribe genes encoding ribosomal RNAs, transfer RNAs 

and small nuclear RNAs, the RNAP II is responsible for transcription of all protein-coding 

eukaryotic genes.

The transcription of protein-coding genes by RNAP II consists of three successive phases 

– initiation, elongation and termination. The initiation starts with the RNAP II binding to a 

specific DNA region called the promoter, which is a sequence critical for correct positioning of 

the enzyme at the transcription start site. However, the recruitment of RNAP II to the 

transcription start site depends on additional proteins called general transcription factors (GTFs). 

These GTFs assemble in a stepwise fashion by DNA-protein and protein-protein interactions into 

the preinitiation complex (PIC), which is then escorting the RNAP II to the promoter site. Five 

general transcription factors, TFIIB, TFIID, TFIIE, TFIIF and TFIIH, are required in vivo to 

initiate transcription from most eukaryotic protein-coding genes.
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PIC formation is initiated by the TATA-binding protein (TBP), a subunit of TFIID that 

binds to the TATA box promoter element. Although TATA box is a widespread element among 

yeast promoters, most eukaryotic promoters lack this sequence. In these cases, other TFIID 

subunits initiate the PIC assembly by binding to other promoter elements, including the initiator 

(Inr) or the downstream promoter element (DPE). However, TBP is always involved in the 

process of PIC assembly, regardless of the sequence specificity. After TFIIB associates with the 

TBP, the DNA-TBP-TFIIB complex is able to recruit RNAP II, which is escorted to the promoter 

by TFIIF. The assembly of PIC is then completed by binding of TFIIE and TFIIH (for review see 

Buratowski, 1994).

The progression of the RNAP II through the transcription cycle is dependent on covalent 

modifications of a unique structure in its C-terminal domain (CTD). This structure consists of 

multiple repetitions of a conserved heptapeptide sequence: Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. 

Changes in the phosphorylation status of Ser2 and Ser5 cause transitions between the initiation-

competent and elongation-competent form of the RNAP II. Specifically, it has been shown that 

RNAP II is recruited to the promoter when its CTD is unphosphorylated. Phosphorylation of this 

terminal domain is required for an event called "promoter clearance", in which the RNAP II 

leaves the promoter and proceeds to the elongation phase (for review see Zhang et al., 2012).

TFIIH general transcription factor and CTD kinase 1 complex phosphorylate the CTD 

(Cho et al., 2001). In turn, Ssu72, a part of the 3’-end processing complex, was shown to 

dephosphorylate the CTD and thus participate in the conversion of the RNAP II to the initiation-

competent dephosphorylated form (Krishnamurthy et al., 2004).

The functional significance of phosphorylation and dephosphorylation of CTD is not 

limited only to transitions between initiation and elongation phases. Prior to its release from the 

RNAP II, the nascent RNA molecule has to undergo a number of processing changes – capping, 

cleavage and polyadenylation. The CTD serves as a “platform” for attachment of various pre-

mRNA processing enzymes, dependending on its phosphorylation status (for review see Zhang et 

al., 2012). Shortly after the elongation starts, a 7-methylguanylate cap is added to the 5’-end of 

the nascent RNA by a capping enzyme temporarily bound to the CTD. Cleavage and 

polyadenylation are initiated by encountering a conserved poly(A) signal region towards the 3’-

end of the nascent pre-mRNA. This sequence is recognized by a CTD-bound 3’-end processing 
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complex which cleaves the pre-mRNA and synthesizes up to 250 adenosine residues at its 3’-end, 

thus creating a poly(A)-tail.

After encountering the poly(A) signal on the template strand, the elongation still 

continues for more than 1000 bases downstream from this site. After cleavage and 

polyadenylation of the nascent pre-mRNA are finished, the transcription is terminated and the 

RNAP II leaves the DNA template. 

3. Techniques for studying gene loops

A number of methods have been developed or adapted to detect and analyze higher order 

chromatin structures. Two of the most important techniques required for understanding and 

interpretation of results presented in this thesis are briefly described below.

Capturing chromosome conformation

Capturing chromosome conformation (3C) is the most widely used method for studying 

physical interactions between multiple genomic loci. It allows the detection and quantification of

the frequency of interaction between distant parts of DNA by producing specific ligation products 

(Dekker et al., 2002). Although originally it has been developed to analyze long range genomic 

interactions spanning hundreds of kilobases, it was later adapted even to study contacts between 

regions as close as 1kb (Ansari and Hampsey, 2005; Singh and Hampsey, 2007).

Its principle relies on the formaldehyde cross-linking of protein interactions which

mediate contacts between distal genomic loci. After chromatin extraction, partial purification and 

digestion by restriction enzyme, cross-linked DNA fragments are isolated. The digested DNA is 

then religated in diluted solution. If the regions of interest are indeed physically interacting, they 

are ligated to each other. This occurs with greater frequency in contrast to random intermolecular

ligation because intramolecular ligation reaction is a more favorable in diluted solution.

The physical interaction of two distal DNA fragments is proved by PCR amplification. As 

seen in the figure 1, a segment that forms a gene loop is spanned by a pair of two divergent 

primers (denoted A and B in figure 1). If the analyzed segment indeed adopts a looping 

conformation, the intramolecular ligation of the cross-linked DNA fragments causes the primers 
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to become convergent and after a PCR amplification a specific A-B PCR product can be 

observed.

Indirect ChIP

Indirect ChIP (schematically presented in figure 1) is based on chromatin 

immunoprecipitation. ChIP in general is used for locating DNA-binding sites of a particular 

protein. After chemical cross-linking of the DNA-binding proteins to the DNA itself and 

subsequent isolation and fragmentation of chromatin, the protein-bound DNA fragments are 

immunoprecipitated and identified by PCR. However, in contrast to ChIP, in indirect ChIP the 

indirectly associated DNA fragments and not the directly bound DNA fragments are analyzed by 

PCR.

Figure 1. Capturing chromosome conformation and indirect ChIP. (Taken and adapted from Kadauke and 

Blobel, 2009.)
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4. Promoter-terminator interactions in yeast

One of the first insights leading to the discovery of distal genomic interactions between 

promoter and terminator regions was the discovery of a physical interaction between the 3'-end 

pre-mRNA processing factor Ssu72 and a general transcription factor TFIIB (Sun and Hampsey,

1996; Dichtl et al., 2002; Krishnamurthy et al., 2004). Moreover, Ssu72 protein was found to be 

associated not only to the terminator regions of yeast genes but to the promoter regions as well

(Nedea et al., 2003). These results suggested that complexes and sequences participating in distal 

regions during transcription may be brought into physical proximity resulting in a formation of a 

looped chromatin conformation.

Dependence of gene looping on active transcription

First thorough and detailed evidence supporting the hypothesis of gene loops and 

juxtaposition of promoter and terminator regions, initially presented by O’Sullivan, 2004, was 

provided by Ansari and Hampsey, 2005 and Singh and Hampsey, 2007. By using a mutant strain 

rpb1-1 expressing a temperature sensitive form of RNAP II that functions normally at permissive 

temperature but stops transcribing at 37°C (Nonet et al., 1987), chromatin conformations of 

various genes were analyzed. After cultivation at permissive temperature, 3C analysis of isolated 

chromatin revealed a clear looping PCR profile in rbp1-1 and wild-type strains, indicating the 

juxtaposition of promoter and terminator regions. However, when shifted to a non-permissive 

temperature when no transcription occurs, the signal disappeared from rpb1-1 strain while it was 

still present in the wild-type (Ansari and Hampsey, 2005; Singh and Hampsey, 2007). Similar 

results were obtained by testing a gene-specific repression of both BUD3 and SEN1 transcription

by putting them under control of GAL1 promoter. In this case the looping occurred only when the 

cells were grown in the presence of the transcription-inducing galactose and was not detected 

when exposing cells to glucose (Ansari and Hampsey, 2005). This suggested that gene loops not 

only do exist but their formation correlates with active transcription. Moreover, the precise site of 

chromatin juxtaposition was mapped specifically to promoter and terminator regions only. No 

other part of each of the studied ORFs seemed to be participating in gene loops (Ansari and 

Hampsey, 2005; Singh and Hampsey, 2007).
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Factors required for the formation of gene loops

The first factor investigated for its possible role in gene looping was Ssu72, a phosphatase 

known to be an important part of the 3’-end processing complex and also an interaction partner of 

the THIIB general transcription factor (Sun and Hampsey, 1996; Dichtl et al., 2002; 

Krishnamurthy et al., 2004). Another factor investigated for its possible influence in gene looping

was Pta1, also a component of the 3’-end processing machinery and a known interaction partner 

of the Ssu72 protein (Nedea et al., 2003; Krishnamurthy et al., 2004).

To examine the roles of both proteins in loop formation, two strains expressing degron-

tagged forms of Ssu72 and Pta1 were used. In these strains under permissive conditions, protein 

levels of Ssu72 and Pta1 are as in the wild-type. However, the shift to 37°C causes a rapid 

depletion of the tagged proteins by a proteolysis-mediated degradation (Dohmen et al., 1994). 3C 

analysis of chromatin extracted from ssu72-td and pta1-td cells after 1 hour of incubation in 37°C 

revealed a strong reduction of PCR signal which was in contrast to wild-type strains, where this 

signal remained unchanged. Importantly, this change was not caused by an indirect effect of 

globally impaired transcription as RNA levels remained unchanged (Ansari and Hampsey, 2005).

These results show that 3’-end processing complex is necessary for establishing contacts between 

promoter and terminator regions of yeast genes.

The same negative impact on the formation of gene loops was observed in sua7-1 yeast 

strain that expresses a mutated homolog of the general transcription factor TFIIB. Interestingly, 

although 3C revealed that the formation of loops was clearly impaired in sua7-1, no negative 

effect on transcription levels has been observed, suggesting that the role of TFIIB in this process

is transcription independent (Singh and Hampsey, 2007). In the wild-type strain, ChIP revealed 

the association of TFIIB to terminator region of PMA1 and BLM10, in addition to its binding to 

the promoter. However, in sua7-1 mutant, the association of TFIIB homolog to the terminator but 

not to the promoter was markedly diminished, further confirming the absence of gene loops

(Singh and Hampsey, 2007).

Importantly, because the TATA-binding protein (TBP) did not bind to the 3’-end region,

the association of TFIIB described above could not be caused by a presence of a cryptic promoter
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(Singh and Hampsey, 2007). TFIIB therefore binds to the terminator region independently of the 

TBP and transcription initiation.

As Ssu72 is a known binding partner of TFIIB, its role in TFIIB association to terminator 

regions was analyzed using ChIP assay of chromatin extracted from the ssu72-td mutant. After 

the depletion of the Ssu72 protein, the association of TFIIB to the terminator, but not to the 

promoter region, was diminished (Singh and Hampsey, 2007). It is therefore clear that TFIIB 

association to the terminator depends on the 3’-end processing complex which Ssu72 is a part of.

Since 3’-end processing complex is recruited to the 3’-end of the nascent pre-mRNA, an initial

round of transcription seems to be necessary for the juxtaposition of promoter and terminator and 

formation of gene loop.

A model of gene loops in yeast

Taken together, these results provide a clear evidence for the existence of gene loops in 

yeast. After analyzing a wide range of different genes it can be assumed that these higher order 

chromatin structures may be a common phenomenon of the yeast RNAP II transcription.

The current model of gene loop formation is depicted in figure 2. Upon transcription 

initiation, RNAP II, TFIIB and TFIIF leave the promoter region, whereas the rest of the pre-

initiation complex (PIC) remains associated with the promoter in the form of a “scaffold” 

complex (Yudkovsky et al., 2000). Ssu72, discovered to be a crucial factor in the formation of 

gene loops, plays possibly two roles in this process. Firstly, it has been shown to serve as a 

RNAP II CTD Ser5 phosphatase (Krishnamurthy et al., 2004) and is therefore partly responsible 

for the conversion of an elongation-competent phosphorylated form of the RNAP II to its 

initiation-competent dephosphorylated form. Secondly, since it has been discovered to physically 

interact with TFIIB (Sun and Hampsey, 1996; Dichtl et al., 2002) and is also required for TFIIB 

localization to terminator regions during gene looping (Singh and Hampsey, 2007), it could 

mediate TFIIB association with RNAP II at the promoter-terminator juxtaposition. However, this 

possibility yet remains to be confirmed. Since the “scaffold” contains all components necessary 

for the initiation of transcription except RNAP II, TFIIB and TFIIF, this model provides an 

elegant mechanism for possible rapid transcription re-initiation.
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Figure 2. A model of transcription dependent gene looping. (Taken and adapted from Ansari and 

Hampsey, 2005.)

5. Transcriptional memory in yeast

The existence of gene loops and promoter-terminator juxtaposition has been thoroughly 

analyzed and confirmed. Nevertheless, the functional significance of looping in transcription has

remained unknown, notably because the disruption of looping did not seem to have any influence 

on transcription levels, as noted above (Ansari and Hampsey, 2005; Ansari and Hampsey, 2007).

However, the discovery of the promoter and terminator juxtaposition with its possible facilitation 

of transcription re-initiation provided an elegant solution to the unresolved phenomenon of 

transcriptional memory in yeast.



17

The term “transcriptional memory” has been coined to describe the ability of yeast genes 

to “store” information about their previous transcriptional activity. This effect enables cells to 

rapidly reinitiate transcription following a certain period of repression. Yeast GAL genes are

induced in the presence of galactose as the only source of carbon and repressed when exposed to 

glucose. It has been observed that although the GAL induction is relatively slow and takes up to 2 

hours until it reaches a peak of its transcription activity, its full re-induction after a period of 

repression is just a matter of minutes (Brickner et al., 2007; Kundu et al., 2007; Zacharioudakis et 

al., 2007). Several factors have been discovered to contribute to the transcriptional memory, 

including a H2A.Z histone variant (Brickner et al., 2007), Gal1 catabolic enzyme 

(Zacharioudakis et al., 2007) or SWI/SNF chromatin remodeling complex (Kundu et al., 2007). 

However, the exact molecular mechanism by which cells maintain a memory of the recent 

transcriptional activity remained unknown.

The role of looping in transcriptional memory

The role of gene loops in transcriptional memory was determined by measuring activation 

kinetics of the GAL10 gene (Lainé et al., 2009), which has been confirmed to form gene loops 

upon its transcriptional activation (Singh and Hampsey, 2007).

Remarkably, the time-scale 3C analysis of GAL10 during the phase of glucose repression 

revealed loops persisting for more than 6 hours after the moment the repression of transcription 

had started (Lainé et al., 2009).

Activation kinetics of GAL10 was measured in sua7-1 strain expressing a mutated 

homolog of TFIIB known to impair gene looping but maintaining a normal transcription 

phenotype (Singh and Hampsey, 2007). RT PCR did not reveal any significant difference in 

mRNA accumulation kinetics between the wild-type and sua7-1 following an initial galactose 

induction. Both required more than 1 h for full activation. However, 3C assay of cells exposed to 

the same conditions revealed gene loops in the wild-type only (Lainé et al., 2009). This suggested

that the initial round of transcription of GAL10 does not depend on the presence of gene loops. 

Importantly, after galactose re-induction following a period of glucose repression, the maximal 

transcription activity in the wild-type was reached in about 2 min. This was in contrast with sua7-
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1 strain where the time required for maximal reactivation was similar to the situation after initial 

galactose induction (Lainé et al., 2009).

Taken together these results proved that GAL10 transcription displays rapid reactivation 

kinetics in strains with the ability to form gene loops. In contrast, cells unable to form gene loops 

have lost the ability of rapid transcription re-induction.

The role of the nuclear pore complex in transcriptional memory

Another factor discovered to play an important role in transcriptional memory is an 

interaction of actively transcribed genes with nuclear pore complex (NPC). There have been 

several reports of genes localizing to the nuclear periphery upon their transcription activation, for 

example GAL regulon genes, INO1, HXK1 and α-factor induced genes (Luthra et al. 2007; 

Brickner and Walter, 2004; Taddei et al., 2006; Cassolari et al. 2004). Moreover, translocation of 

GAL1 and INO1 to the nuclear periphery has been reported to remain unchanged even during the 

state of repression and this peripheral retention has been implied to enhance rates of gene 

expression by facilitating its rapid re-induction (Brickner et al., 2007). 

The interaction between transcriptionally active genes and the NPC is mediated by 

myosin-like protein 1 (Mlp1), a perinuclear protein located in the filamentous mesh of the NPC 

basket (Casolari et al., 2005; Luthra et al., 2007). Apart from this function, Mlp1 was shown to 

be involved in mRNA quality control by nuclear retention of incorrectly spliced mRNAs (Galy et 

al., 2004; Vinciguera et al., 2005).

Myosin-like protein 1 in a looping-mediated memory effect

To investigate the possible role of Mlp1 in transcription and looping mediated 

transcriptional memory, a series of experiments was performed in the wild-type and mlp1∆ 

strains. The target of these experiments was HXK1, a gene known to translocate to NPC upon 

transcriptional activation (Taddei et al., 2006).

Consistently with a number of yeast genes analyzed previously, the 3C analysis of HXK1

in the wild-type showed looping structures during its transcription activity and even 1 h after 

glucose repression (O’Sullivan 2004; Ansari and Hampsey, 2005; Singh and Hampsey, 2007; 

Tan-Wong et al., 2009). In contrast to wild-type, 3C of mlp1∆ strain revealed a loss of promoter-

terminator juxtaposition as early as 5 min after an exposures to glucose (Tan-Wong et al., 2009). 
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ChIP assay of Mlp1 revealed its transcription dependent association with 5’-end and 3’-end

region of HXK1 gene in wild-type cells which remained present for up to 1 h after glucose 

repression. This binding correlated with the presence of gene loops (Tan-Wong et al., 2009).

These results support the idea of the involvement of Mlp1 in the maintenance of

promoter-terminator juxtaposition during transcriptional repression. To examine the direct 

involvement of Mlp1 in transcriptional memory, RT PCR time-course analysis of mRNA 

accumulation kinetics was performed. While wild-type cells displayed an expected rapid 

accumulation of HXK1 mRNA during re-induction after 1 h of glucose repression, this memory 

effect was completely absent in the mlp1∆. However, after only 10 min of repression, when gene 

loops still persist even in the mlp1∆ strain, mRNA accumulation kinetics in wild-type and mlp1∆

strains were identical (Tan-Wong et al., 2009).

In conclusion these data indicate that Mlp1 is required for the maintenance of 

transcriptional memory and stability of promoter-terminator interactions in HXK1 gene during 

repression, but it does not participate in the initial formation of gene loops. This was further 

confirmed by repeating the Mlp1 ChIP analysis of HXK1 gene in the sua7-1 strain. While Mlp1 

ChIP of the wild-type yeast revealed a 5’-end and 3’-end binding of HXK1 gene during active 

transcription and after 1 hour of glucose repression, this binding was completely lost in the 

mutant sua7-1 strain (Tan-Wong et al., 2009). This proves that Mlp1 attachment to 5’-end and 3’-

end regions of HXK1 occurs after the juxtaposition is formed and that it probably attaches to the 

base of the gene loop where the promoter-terminator interaction takes place.

Even though the physiological role of gene loops in transcriptional memory in yeast has 

been thoroughly investigated and confirmed, the ability of a gene to form this topological

structure does not necessarily implicate its ability to display a memory effect. INO1 translocates

to the nuclear periphery upon transcription activation and forms gene loops by promoter-

terminator juxtaposition (Brickner et al., 2007). However, in contrast to HXK1, it does not 

maintain this chromatin structure after glucose repression at all and thus is not able “memorize” a 

previous transcriptional activity (Tan-Wong et al., 2009). ChIP assay revealed that Mlp1 is still 

bound to the promoter and poly(A) regions of INO1 gene, but this Mlp1 attachment is lost during 

transcription repression (Tan-Wong et al., 2009). This suggests that although gene loops are 
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necessary for the effect of transcriptional memory, their primary function may be in tethering the 

active genes to the site of mRNA control and nuclear export to cytoplasm. 

A model of transcriptional memory in yeast

The present understanding of the role of gene loops in yeast transcriptional memory is

summarized in figure 3. Following transcription initiation and an initial round of transcription, 

the promoter and terminator regions of a gene are juxtaposed (as presented in chapter 4). This 

topological structure is then translocated to the NPC by a yet unknown mechanism and tethered 

to the NPC by the myosin-like protein 1, thus anchoring the actively transcribing unit close to the 

site of pre-mRNA processing, quality control and export. Mlp1 is responsible for stabilization of 

the promoter-terminator juxtaposition and maintaining its position near the NPC during short-

term repression. This stabilization allows a rapid mRNA accumulation after re-induction of 

transcription. However, after long periods of repression this anchoring breaks, the gene loop

leaves the nuclear periphery and the DNA adopts the linear conformation again (Tan-Wong et al., 

2009).

Gene looping and subsequent tethering to the NPC as just described is not specific only to 

genes displaying memory effect, since they occur even in case of genes that lack the ability of 

rapid re-induction after a period of transcription repression. Transcriptional memory enables a

rapid reinduction and accumulation of mRNA several orders of magnitude faster in comparison 

to initial induction, fulfilling immediate metabolic needs of the yeast cell. However, in case of the

majority of genes, this prolonged retention of gene loop at the NPC would not provide any 

significant advantage for the cell and their promoter-terminator interactions therefore end almost 

immediately after the transcription ceases.
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Figure 3. Effect of a short-term and long-term repression on transcriptional memory. (Taken and adapted 

from Tan-Wong et al., 2009.)

6. Gene loops in the mammalian BRCA1 gene

BRCA1 (breast cancer susceptibility gene 1) is a gene associated with both sporadic and 

familial breast cancers and it has been discovered to play an important role in DNA repair,

regulation of the cell cycle and apoptosis in response to DNA damage (for review see Yoshida and 

Miki, 2004). In contrast to familiar breast cancers, where mutation in BRCA1 is often the cause of 

the disease, alterations in BRCA1 sequence have not been observed in sporadic breast cancers
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(Futreal et al.,1994; Merajver et al., 1995). Moreover, tumor tissue biopsies revealed significantly 

lower levels of the BRCA1 expression in comparison to normal breast tissue, suggesting that not a 

mutation but a defect in BRCA1 gene regulation occurs. (Thompson et al., 1995; Magdinier et al.,

1998). One possible mechanism for the BRCA1 downregulation has been suggested to occur 

through the hypermethylation of the BRCA1 promoter region (Dobrovic and Simpfendorfer, 1997). 

However, since this epigenetic modification has been observed only in a subset of all analyzed 

cases, another regulatory mechanism has to be at work in a BRCA1-related tumorigenesis.

The expression of BRCA1 is under complex regulation by two estrogen-stimulated 

promoters (Xu et al. 1997). Furthermore, the activity of both promoters is regulated by two 

conserved noncoding sequences (CNS-1 and CNS-2) in intron 2 of the BRCA1 gene (Wardrop et 

al. 2005). These two regulatory elements have a opposite effect on BRCA1 expression. A 

mutation in the CNS-1 reduces the BRCA1 expression by 30%, in turn, a mutation in the CNS-2 

leads to 200% increase (Wardrop et al. 2005).

3C analysis of BRCA1 was performed on the DNA isolated from the breast cancer cell 

line MCF7. Using primers surrounding 5’-end, 3’-end and intron 2 it was shown that the 5’-end

promoter region associates with intron 2 and 3’-end of BRCA1. Moreover, additional two gene 

loops between the 5’-end and the region between introns 2 and 3 and between intron 13 and exon 

15 were also detected (Tan-Wong et al., 2008).

Estrogen treatment has been shown to cause an elevation of the BRCA1 expression 

indirectly through its mitogenic effect on cell proliferation, possibly as a response to associated 

increase in DNA synthesis (Spillman and Bowcock, 1996, Marks et al., 1997). The effect of 

BRCA1 induction on its 3C looping profile after exposure to estrogen was therefore investigated. 

Relative cross-linking frequency between 5’-end and 3’-end regions of the BRCA1 were 

decreased after 5 h of estrogen treatment and after 24 h the signal corresponding to the 5’-end and 

3’-end interaction completely disappeared. Interestingly, the loop formed by interaction of the 5’-

end region and regulatory sequences in intron 2 as well as two remaining loops remained 

unchanged (Tan-Wong et al., 2008). Similar activation/repression dependent looping has been 

previously observed in yeast. However, in this particular case the promoter and terminator 

interaction seems to occur during transcription repression, in contrast to gene loops found in 
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yeast that depend on active transcription (Ansari and Hampsey, 2005; Singh and Hampsey 2007).

Surprisingly, treating of MCF7 cells with transcription inhibitor following an estrogen induction 

impaired the formation of gene loops. Thus, even though promoter-terminator juxtaposition 

occurs during BRCA1 repression, active transcription is still required for the formation of gene 

loops (Tan-Wong et al., 2008).

Figure 4. A proposed model of the BRCA1 gene looping. (Taken and adapted from Tan-Wong et al., 

2008.)

The proposed model of a loop-based transcriptional regulation of BRCA1 involves two

different chromatin conformations, schematically depicted in figure 4. In the repressed state the 

gene forms a so-called “four-leaf clover” structure with promoter and terminator regions brought 

into proximity along with regulatory sequences in intron 2, sequences in regions spanning introns 

3 and 5 and sequences in regions spanning intron 13 and exon 15. The activity of a “gene loop

mediator” factor (protein or RNA) has been suggested to mediate the recruitment of all required 

regulatory factors to corresponding DNA regions, bringing them into proximity and thus forming 

a “four-leaf clover” conformation. The dependency of the promoter-terminator juxtaposition on 

active transcription may be explained by a need of a prior transcription and translation of the 

“gene loop mediator”. Upon BRCA1 induction, the whole chromatin structure is relaxed to a 

“three-leaf clover” conformation by releasing the promoter-terminator juxtaposition and thus 
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making the promoter accessible for RNAP II to initiate transcription. It has been proposed, that a 

“transcription inducer” which tethers the “gene loop mediator” away from the gene loop is 

required for this change in chromatin conformation and for transcription activation (Tan-Wong et 

al. 2008).

Different looping profiles were observed in various breast cancer cell lines 

correspondingly with previous observations of reduced mRNA levels in samples of breast tumor 

tissues (Tan-Wong et al. 2008; Thompson et al., 1995; Magdinier et al., 1998). These changes in 

chromatin conformations and therefore in interactions between regulatory elements may affect

regulation of BRCA1 expression. In this regard, further investigation of the role of conserved 

noncoding sequences in intron 2 (Wardrop et al. 2005) and other possible elements participating 

in the BRCA1 looping may provide important insights into regulations of this gene. Deeper 

understanding of the gene loops and their influence on the BRCA1 gene expression may provide a 

crucial tool for future diagnosis and treatment of BRCA1-related cancers.

7. Gene loops in the HIV-1 provirus

A common feature of many retroviruses, including the human immunodeficiency virus

type 1 (HIV-1), is the presence of long terminal repeats (LTR). These sequences result from the 

conversion of a single stranded RNA viral molecule into its double stranded DNA proviral form

integrated into host’s genome by reverse transcription. Two identical LTRs, consisting of three 

regions: U5, R and U3, flank the itegrated provirus. However, although being identical, each of 

these LTRs serves a different purpose. While the 5’LTR promotes transcription initiation, the

3’LTR promotes 3’-end processing of HIV-1 transcripts, cleavage and polyadenylation (Böhnlein 

et al., 1989).

In the 5’LTR, U3 sequence contains RNAP II promoter and enhancer elements critical for 

the in vivo transcription of the virus (Böhnlein et al., 1989). Since the basal transcription of HIV-

1 provirus is relatively low, the Tat (trans-activator) protein encoded by virus is required for 

maximal HIV-1 transcription. This protein augments RNAP II initiation and elongation by 

binding to the hairpin structure TAR (trans-activation response element), encoded by the R 
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region of the 5’LTR and located near the 5’-end of the viral mRNA (Feng and Holland, 1988;

Ratnasabapathy et al. 1990).

In the 3’LTR, R and U5 regions promote cleavage and polyadenylation of the transcribed 

HIV-1 mRNA (Böhnlein et al., 1989). Importantly, since R and U5 regions in the 5’LTR are also 

capable of promoting 3’-end processing, major splice donor site (MSD) downstream of the 

5’LTR is required to inhibit premature processing activity, which causes production of short and 

defective transcripts (Ashe et al. 1997). In addition, U3 region of the 3’LTR can also serve as a 

Tat-inducible promoter, similarly to its duplicate in 5’LTR. However, because the activity of the 

5’LTR promoter region significantly exceeds that of the 3’LTR, the promoter/enhancer activity 

of this downstream region is suppressed (Klaver and Berkhout, 1994; Cullen et al., 1984).

Chromatin conformation of the HIV-1 provirus was analyzed in the U1 cell line derived 

from chronically infected promonocyte cell line U937 (Folks et al., 1987). Since the basal HIV-1 

full-length mRNA production in this cell line is very low due to the defective Tat, an exogenous 

Tat expression or an exposure to TPA phorbol ester are required to induce proviral transcription

(Emiliani et al., 1998; Lusic et al., 2003).

Upon Tat-induced and TPA-induced transcription, 3C and sequencing revealed 

interactions of the 5’ U3 promoter with the 3’ U5 poly(A) signal and between both LTRs and an 

adjacent 5’ proximal sequence containing the MSD. These interactions, albeit very weak, were 

also observed in non-induced cells, consistent with low basal HIV-1 transcription. Moreover, 

after blocking the ongoing TPA-induced transcription by flavopridol treatment, the 3C looping 

signal was diminished back to the control levels, suggesting that the formation of HIV-1 gene 

loops depends on active transcription (Perkins et al., 2008).

The possible dependence of gene loops formation on specific HIV-1 sequences was 

examined using HeLa cells transfected with proviral plasmid. Since 3C of this plasmid revealed 

the same genomic interactions that were observed in the U1 cell line, this approach enabled direct 

manipulation of HIV-1 regulatory sequences (Perkins et al., 2008).

After introducing an artificial point mutation to the MSD region, the previously observed 

HIV-1 looping was completely lost and the plasmid adopted a simple circular conformation.

Since MSD is required for blocking the activity of R and U5 regions of the 5’LTR, this structural 
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change correlates with a switch from full-length HIV-1 mRNA transcription, terminating at the 

3’LTR poly(A) signal, to the production of short and defective mRNAs prematurely terminated 

after encountering the 5’LTR poly(A). Furthermore, a mutation in the 3’ poly(A) signal in the

3’LTR also impaired the 5’-3’LTRs juxtaposition, while 5’LTR-MSD interaction remained 

unaffected. Interestingly, replacing the 5’ U3 promoter with the cytomegalovirus (CMV) 

promoter or replacing the 3’LTR with a synthetic poly(A) site (SPA), while leaving the 5’LTR

unchanged, did not affect HIV-1 provirus looping (Perkins et al., 2008).

Figure 5. Interactions between 5’ and 3’ LTRs causing the looping conformation of the HIV-1 provirus.

(Taken and adapted from Perkins et al., 2008.)

Taken together, these results show that the proviral genome forms two loops under 

ongoing transcription as depicted in figure 5. One loop is formed by juxtaposition of the 5’ U3 

and R regions with the 3’ U5 poly(A) signal region, second loop juxtaposes both LTRs with the

5’ proximal MSD sequence. The latter interaction is consistent with the involvement of MSD in 

blocking the cleavage and polyadenylation activity of 5’LTR poly(A) signal in favor of the 

3’LTR poly(A) (Ashe et al., 1997). Active transcription is not the only prerequisite of HIV-1 

looping, although it seems that ongoing transcription is crucial for a long-term maintenance of 

HIV-1 gene loops. A point mutation in the MSD that activates the 5’LTR poly(A) signal, as well 

as an inactivation of the 3’ poly(A) signal both abolished HIV-1 looping conformation. This 

suggests that HIV-1 gene loops strictly depend on competitive interactions between the two 



27

different cleavage and polyadenylation signals and secure the correct transcription of the full-

length HIV-1 mRNA. In turn, neither the replacement of the 5’ U5 promoter with the CMV 

promoter nor the replacement of the 3’ poly(A) with a synthetic poly(A) site did affect gene loops 

formation. Therefore, gene loops may not be limited to the HIV-1 retrovirus only.

8. Conclusions

In this thesis the recent knowledge about gene loops and juxtapositions of promoter and 

terminator regions in a wide range of genes transcribed by RNA polymerase II has been 

presented.

In yeast, it was shown that an initial round of transcription with the subsequent physical 

interaction between the 3’-end processing complex and the general transcription factor TFIIB is 

required for the formation of gene loops which, in some cases, were detected even after a certain 

period of transcription repression. This persistence of gene loops under repressive conditions was 

linked to the phenomenon of transcriptional memory, which enables yeast cells to rapidly reach 

maximum transcription levels in case of transcription re-induction.

Another example of gene loops was reported in the BRCA1 tumor suppressor, a gene 

associated with breast cancer. BRCA1 was showed to respond to estrogen induction with distinct 

changes in looping conformation. Interestingly, although the looping is transcription dependent,

similarly to the case observed in yeast genes, the juxtaposition of the promoter and terminator of 

BRCA1 gene occurs only during the repressed state of the gene. Therefore, this interaction may

block initiation factors from binding to promoter elements and relaxation of this structure is 

required to release the promoter which makes the transcription initiation possible.

Finally, the looping conformation of the HIV-1 provirus has been described. In the 

integrated HIV-1 provirus, the 3’-end and 5’-end long terminal repeats (LTRs) together with a 

major splicing donor site are brought into close proximity by a yet unknown mechanism. This 

juxtaposition depends on an ongoing transcription and strictly depends on a competitive 

interaction between the two cleavage and polyadenylation signal sequences.



28

Gene loops and their functions in eukaryotic transcription are still little understood and a 

lot of questions still remains to be answered. Since a wide range of genes have been discovered to 

display a transcription dependent looping conformation in yeast, it would be of highest interest to 

find gene loops in higher eukaryotes. What is the precise molecular mechanism behind the

formation of these loops? Is there just one general mechanism of gene looping or more of them?

Mammalian Ssu72 and TFIIB proteins were shown to physically interact as their yeast homolgs 

do (St-Pierre et al., 2005), which raises a possibility that the mechanism of gene looping in higher 

eukaryotes may be similar to the mechanism in yeast. Since many metazoan cells display a rapid 

response to certain stimuli, they would certainly benefit from the rapid reactivation of response 

genes by a mechanism similar to yeast transcriptional memory. However, this possibility remains 

to be investigated.

The general process of RNAP II transcription is well understood. However, further 

research of gene specific transcription regulation by gene loops may lead to future understanding

of mechanisms that give rise to some pathological conditions. It has been suggested that BRCA1

gene loops may participate in the regulation of BRCA1 expression. Since there have been

numerous reports of a downregulation of BRCA1 mRNA levels in breast tumor tissues, 

alterations in normal BRCA1 looping may be involved in this process.

Gene loops could also provide another explanation for the effect of viral oncogenesis. 

HIV-1 transcription normally starts from the 5’LTR promoter. However, the disruption of the

HIV-1 provirus looping conformation, with a successive loss of suppression of the 3’LTR 

promoter and enhancer activity, may enhance the transcription of downstream oncogenes.

Overall, gene loops and promoter-terminator juxtapositions provide another mechanism of 

regulation of gene expression. Since these promoter-terminator interactions have been observed 

in a wide range of genes in both yeast and mammalian cells, it is possible that this type of 

transcription control is a wide-spread phenomenon of eukaryotic RNAP II transcription. Last but 

not least, deeper understanding of the involvement of gene loops in the regulation of gene 

expression may help to explain the mechanisms behind various pathological conditions.
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