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Abstrakt

Tato diplomova prace analyzuje nové moznostifedpovidani denniho ro&p cen
(tj. rozdilu nejvysSi a nejnizSi denni ceny instemtu). Hlavnim zawtenim naSi prace je
zkoumani moznych zlepSeni stavajicich mogeluzivanych pro modelovani denniho ré&zp
Jmenovi¢ zkoumame finos pouZziti eficientjSich odhad denni volatility jakozto prediktdr
denniho rozgti. Konkrétni odhady volatility zkoumané v této g@r&ahrnuji range-based
estimatory (Parkinson, Garman & Klass, Rogers &l8alt, atd.) a realizované miry denni
variance (realizovana variance, realizované ggpSowasti tchto vyzkuni je i empirické
porovnani eficience jednotlivych range-based estimalenni volatility.

DalSim smirem vyzkumu nasi prace je analyzanpsi rozcleni obchodniho dne do
obchodnich session na zaldaaktivity riznych obchodnich center (rfamsijska, evropska,
americka session). V tomto ohledu analyzujeme, adleady volatility ziskané z celodennich
dat spolehli¥ agreguji informace pochazejici #iznych session. Nasi intuici je, zézmé
obchodni sessioniipasi odlisSné informace diky odliSné hloubce trRiedpokladame, zZe
jednotlivé session poskytuji uzitee informace, které jsou v agregovanéendenni volatility
skryté (nevyuzitelné).

Déle zkoumame moznostuieznych aktualizaci fgdpowdi denni volatility pomoci
intraday informaci dostupnych v daném monieKbnkrétré to znamena, Ze jakmile obchodni
session skati, miry jeji volatility a obchodni aktivity jsou henuty do stavajiciho modelu pro
piedpowd dnesni volatility. Tyto prbézrné aktualizované fedpowdi vykazuji vyznamneé
piinosy tykajici se kvality i@dpowdi. Z toho vyplyva, Ze intraday obchodnici aktivni
v pozdjSich hodinach obchodovani maji vyznamnou vyhodwtopbchodnikm aktivnim na
zatatku obchodniho dne.

Modely uvazované v této praci zahrnuji HAR, CARRadely zaloZené na kointegraci

e

porovnany pomoci out-of-sampleieplpovdi. Na rozdil od vysledk publikovanych
predikce Spatné kvality. NejlepSim modelem pro nhmdei dennich rozfi se v naSi praci
ukazal HAR model vyuzZivajici realizované reétipjako prediktor volatility v kombinaci

s GARCH komponentou pro modelovani volatility detmniozgti.



Abstract

In this thesis, we analyze new possibilities iadicting daily ranges, i.e. the differences
between daily high and low prices. The main fociwr work lies in investigating how
models commonly used for daily ranges modelinglmenhanced to provide better forecasts.
In this respect, we explore the added benefit afigusnore efficient volatility measures as
predictors of daily ranges. Volatility measures sidared in this work include realized
measures of variance (realized range, realizecdaneg) and range-based volatility measures
(Parkinson, Garman & Klass, Rogers & Satchell, .e&k9 a subtask, we empirically assess
efficiency gains in volatility estimation when ugirrange-based estimators as opposed to
simple daily ranges. As another venue of researc¢his work, we analyze the added benefit
of slicing the trading day into different sessitnased on trading activity (e.g. Asian, European
and American session). In this setting we analyfetier whole-day volatility measures
reliably aggregate information coming from all iragl sessions. We are led by intuition that
different sessions exhibit significantly differeabharacteristics due to different order book
thicknesses and trading activity in general. Thinbes¢é sessions are expected to provide
valuable information concealed in the aggregatatiiy measure.

Next, we investigate the possibility to graduallgdate daily volatility forecasts by
incorporating all up-to-date information. That meamce a trading sessions ends its volatility
and trading activity measures are used for upddhiagcurrent day's volatility forecast. These
updated forecasts exhibit very strong gains in $eoh goodness-of-fit and thus short-term
traders active in later sessions of the day can gasignificant advantage over traders active
early in the day.

The array of models within which we investigate #iorementioned effects include the
heterogeneous autoregressive model, conditiona@regressive ranges model and a vector
error-correction model of daily highs and lows. Mtedperforming well in terms of in-sample
fit are challenged on out-of-sample, one-day-alHeeztasting. Contrary to results presented in
literature, models based on co-integration of daighs and lows fail to produce good quality
forecasts. When one strives for the best one-dagéhldaily ranges forecasts a HAR model
using realized ranges as predictors with a GARCHtilby-of-volatility component is the

preferred option.
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Finally, ARFIMA modeling will be used to infer the usefulness of long-memory property of daily
ranges.
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Introduction

Volatility of asset prices plays a critical rolefinance. Value-at-risk estimation,
option pricing and other activities common in tieahcial industry rely on its correct
prediction. Recently, a huge body of research fedusn volatility emerged. Nobel
Prize awarded ARCH type models and their genetadiza are examples of such
advances (Engle 1982, Bollerslev 1986).

Since the true price generating process of realewfonancial data is unknown,
researchers and practitioners can merely estintetecharacteristics of this process,
including its volatility. In this respect, most essch focuses on modeling and
forecasting of returns' standard deviation, asdsteth deviation is the most popular
volatility measure. However, other volatility meess exist and can be more useful,
especially for shofterm investment.

The work presented in this thesis views volatilitpdeling from the standpoint
of a short-term investor or speculator whose inmesit horizon does not exceed one
trading day. A crucial question for such an investo how large a move is to be
expected once a position is open. For this purppsa]ictions of different volatility
measures provide different levels of usefulness.aBave-average standard deviation
prediction indicates higher volatility, howeveistdifficult to assess the exact extent of
future price movement, as there is no clear comredtetween standard deviation and
ranges (differences between highest and lowest geides). A proper prediction of the
day's range is, however, helpful as it can be tydranslated into profit targets, stop
losses, etc., and thus can be used for the manageiman open position.

Contributions of this thesis to the existing badyolatility related literature are
numerous. Firstly, we focus on predicting dailyges using daily ranges themselves
(Chou 2005) as well as different measures of Mdlats predictors. While exploiting
linkages between different volatility measures laready been published in some
papers (Engle & Gallo 2003) neither of these pafmras specifically on daily ranges
prediction. On top of that, in the existing litersd linkages between volatility measures
of comparable efficiency are discussed. In thiskwbowever, we investigate linkages
between volatility measures with sharply differefticiencies. More specifically, we
investigate how well we can forecast precise vitthatmeasures by noisy ones (daily
ranges) and vice versa. This gives us some infoomain the cost-benefit tradeoff of

obtaining pricey intraday data versus daily dat@iolable free of charge.



Further contributions include measuring empirietiiciency gains of different
range-based volatility estimators. In the secontf bé the 20th century several
range-based volatility estimators were proposedh vdach new estimator either
improving efficiency or relaxing crucial assumptsoof the previous ones (Parkinson
1980, Garman & Klass 1980, Rogers & Satchell 1980pur work, we empirically test
whether efficiency gains reported in theory areepisble in practice. Had there been
significant efficiency gains in daily volatility #sation for one specific range-based
estimator, its use as a regressor for predictinty danges would be indicated. This
stems from the intuitive idea that more precise susament of volatility should act as
better regressors/predictors.

Next, we investigate the role of different tradisgssions, i.e. periods of
a trading day defined by geographical locationratiérs predominantly active in the
market (e.g. Asian, European and American sessidff§@cts investigated are, for
example, whether volatility measured on just thénnsassions (main in terms of trading
activity) provides a better measure of volatilihat volatility measured on the whole
trading day. If the former were the case, tradingrd) less active sessions would be
introducing noise into volatility measuring and teetvolatility estimates could be
obtained by focusing solely on the most activeisass Also, we investigate whether it
pays off to slice up a day into trading sessiorns thien predict daily volatilities using
volatilities and trading intensity variables mea&slron these separate sessions. As
different trading sessions are characterized bferit order book thicknesses and
different traded volumes (resulting in differentlatdity-volume relationships), each
session provides unique information. Since dailyatiaty/trading activity measures
conceal this diversity across sessions, it is [pissithat models employing
volatility/trading activity measured on separatgded sessions as opposed to whole
lagged days might bring gains in terms of goodradskt. Next, using current day's
session data, we create gradually updated dailgptiipl forecasts. As a session
finishes, its volatility/trading activity measuraee inserted into a model and an updated
forecast is generated. Cumulatively adding sessamghey finish during the day
provides for an opportunity to significantly incseaforecasting performance of all
models presented in this work. As the idea of updataily volatility forecasts
throughout the day is not present in current acadétarature, it is one of the strongest

contributions of our work.



Lastly, we combine the results of our investigasiolescribed above with several
existing models used for daily volatility modelifyecasting. The work finishes by
picking the best models for daily ranges predictiased on out-of-sample forecasting
performance. Out results provide new insights imbtdatility forecasting and better
forecasts of daily ranges as well as other volgtitieasures are thus made possible.

The work is organized as follows. In Section 1, pvevide a reader with our
motivation for daily ranges modeling. Section 2algees out dataset, while Section 3
continues with initial data analysis as well as exttensive correlation analysis. In
Section 4, we compare various daily variance estirmain terms of efficiency and
usefulness for daily ranges prediction. In Sectignwe empirically investigate our
hypotheses on three different models designed &ty danges prediction. The best
models are then compared in an out-of-sample fetecpa exercise in Section 6.

A description of our findings concludes this thesis



1. Motivation

In this section, we provide motivation for ourdrdst in predicting daily ranges.
For clarity of explanations, we firstly turn to legcalities related to naming
conventions, as existing literature is not unitedhe matter of notations. Let us denote

the price of a financial asset measured at tiheet <T on dayD as P, ,. Then let us

assume that log-price

Poo =100, (Rs ) (1)
evolves according to a diffusion process
dpp = 4 pdt+o,dW , +c,dJd )

where 4, ,,0,,C, correspond to the drift, volatility and jump terasdW, ,,J, , are

Wiener and constant-intensity Poisson procés3ée daily price range is defined as

Ro = SUpR, —inf Rp (3)
the daily log-range is defined as
R = supp,, — inf pp (4)
ost<T Ost<sT =~
and the daily log-return is denoted
'n = Prpo = Prpa (5)

! Taking the variance and jump terms constant fervihole day is misleading in practice, as volatilit
exhibits intraday seasonality and jumps occur miostlound news announcements which are not
distributed evenly in time. However, in the abowatext we chose to use this notation for simplifythe
introduction.



Lastly, let us denote high, low, open and closegzriobserved during the day

h, = sup Pio lp = oigIT Pio (6)
Ost<T <ts
Op = Psp Co = Prpo (7)

where f is a portion of a trading day during which tradiagfivity is minimal, i.e. in
practice corresponds to postmarket of previousadeibined with the premarket of the
current day. From this explanation it is clear tfladoes not necessarily represent the
end of day. Instead, it represents a time at whiathing activity halts (most commonly
caused by exchange closure).

Before continuing to describe out motivation failg ranges prediction, we give
a short introduction into the matter of range-basettility estimation, as this will
facilitate easier explanation. As stated befordatldy of any real-world price process
is unknown and thus we can only rely on its estamaFortunately, many possibilities
exist in estimating volatility. Volatility estimasediffer in their data intensiveness (using
intraday versus end-of-day data), efficiency (mieri of volatility estimation) and,
surprisingly, popularity. Another factor that caerve as a distinguishing factor among
volatility estimates is the length of time such aasure needs to produce an estimate.

For example, the most common measure of volatilitg standard deviation of
returns, cannot be calculated from one daily retunty. This inevitably leads to only
being able to measure and forecast average vojaitid commonly known features of
volatility can be made less distinct or even disape.g. the well-documented property
of volatility clustering where periods with highvids of volatility are followed by
periods of high volatility and vice versa). On tbather hand, there are a number of
estimates which are capable of estimating volgtibr just one day using data provided
by that day's trading. With such estimates of withatit is possible to exploit any
volatility related feature for forecasting. Twotbie most popular measures used for the

inference of most recent (one-day) variance, f¢h® squared diffusion coefficieat,,

are the squared daily return

re°=r,’ (8)



and the absolute daily return
ro =|rp| 9)

However, already Parkinson (1980) showed that wunthe assumption

of 14, =0, we can estimater; by

(o5 = lan(2) e 0o)

and achieve approximately five times higher efficig of variance estimation compared
to squared daily returns. The efficiency gain canrtuitively attributed to the fact that
an estimate which incorporates extreme price vaaless into account the whole day's
evolution of price while estimates based solely abose prices only utilize prices

measured at one predetermined point during each day

Still keeping the assumption of;,, =0 and following this idea further,

Garman & Klass (1980) suggest an estimator

(5§K )2 — O_lz[OD _fCD—l] +078 O'S(hD _ID)2 _1(EI?(2)_1)[CD_OD] (11)

and claim that the efficiency gain compared toig@pproximately 7.4 regardless fof
The disadvantage of aforementioned range-basedatses of daily volatility is

the restrictive assumption of zero drift. &5°,d5* become biased withy, , # 0,

Rogers & Satchell (1990) relax this assumption @iagose

(65 = (1, =0 )15 5 )+ (hy =05 )y — ) (12)

which has only slightly lower efficiency comparedds” .
A recent work of Yang & Zhang (2000) provides #tdndependent estimator
which allows for the presence of jumps occurringrimexchange opening. Denotimg

the number of days used for the estimate, we have



] ; 13)
( ) lZ(OD =i ) VcD =(n_1)_lZ(CD—| _CD)2
i=0 i=0
Cp = n_liCD—l Op = n_lzn:oD—|
i=0 i=0
To obtain minimum variance (f?gz set
_ 034
134+ 171 (14)
n-1

Lastly, Brunetti & Lindholdt (2002) show that thebiased estimator af,

T 5o (15)
e

is approximately 6.5 times more efficient that tidiased estimator

16

Hence, the inclusion of extreme prices into var@amstimates is capable of

given by

producing significant efficiency gains which is wafal importance for all applications
relying on volatility. At the same time, range-badsstimators, i.e. (10) - (16), do not
require tick by tick data needed for the constarcof finely spaced intraday returns.

In spite of high efficiency of several aforemengd volatility measures
overRY® the daily range offers a unique property whiclous main motivation for its
prediction. While for long-term investment or optipricing a correct assessmentaf

is crucial, short-term investors/day-traders areranitkely to benefit from a precise



prediction of RS itself rather thaw, . To illustrate this point, let an imaginary agent

open a position (by assumption in the directionncmiing with the future market
direction) and let us investigate the best strategyexiting such a position. Having
a perfect prediction of the day's range allowsatpent to set a reasonable value of profit
target, as daily range relates directly to the retxté price movemeft Other volatility
estimates, including the previously defined rangsell ones, cannot be used in such
a manner. Thus, we focus solely on daily rangedigiien. Other range-based
estimators were not defined in vain, however. Udging above defined range-based

estimators, we will investigate whether it is pbtsito benefit from higher precision of
past volatility measurement (by usingS“ or 65°) for creating better daily range

forecasts. Intuitively, forecasts produced by lesisy predictors should be superior.

Even though our main interest in predicting dadnges stems from the desire
for better money management in high-frequency tigydihere is also a more general
reason for which we should care about daily rargyesliction. Precise predictions of
daily ranges can be useful in predicting other messs of volatility, which has been
demonstrated by several authors. For example, Eh@allo (2003) assume
a multivariate MEM-GARCH process of daily rangesilyl realized volatilities and
absolute daily returns. Estimation results shovgaificant level of interaction between
these three volatility measures. By enriching teeal MEM-GARCH model for each
measure by lagged values of the other measureselnfioitcasts match well those
obtained from implied volatility indices. On a slari note, Corrado & Truong (2007)
investigate the usefulness of adding squared daitges and implied volatility levels
into a GJR-GARCH model for the variance of residiemm and find both variables
useful for improving forecast quality. Hence, hayia precise expected value of the
next day's range can be used per se as well agpanm for the prediction of other
volatility measures related to the next day.

To sum up, daily ranges have potential for prattises in day-trading and they
provide for improving forecasts of other volatilitpeasures while placing minimal

requirements on historical data. This explainsroativation.

2 Herein, a profit target is a predetermined amafnprice movement in one direction after which a
position is exited as further market movementhidirection of trade are considered unlikely. €ract
target setting (for a long position) involves salbting the lowest price for the day from the emrice
and then subtracting this difference from the predi range, arriving at an exit point nearing thghést
price for the day.
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2. Data Description

Having described the motivation of our work, wemturn to familiarizing the
reader with our dataset. Data used throughouttii@sis relate to the EUR/USD Forex
futures contract traded on Chicago Mercantile Ewrgeafrom Nov, 9 2007 to
Nov, 9 2011. Between these dates contracts witbrakdifferent delivery months were
traded, namely deliveries from 12-07 to 12-11 (MMJY To allow for a study of the
whole dataset at once without having to create deieeparately for each delivery
month, a continuous contract was created from ahigl deliveries based on the
maximum volume rule. Following this rule, data fr@arcontract with specific delivery
is taken into the continuous contract for a speaifay if this delivery was the most
heavily traded of all deliveries on that particulday. The list of cut-off datésis
provided in the Appendix as Table A.1. Despite &#t- data were available, for the
work presented in this thesis we decided to worth yrices defined by traded prices
and to neglect the effect of market microstructure, no bid-ask smoothing was
employed. Our reasons for this choice were sevieldl Firstly, there is no clear
consensus in literature as to which method of ngdiata of the bid-ask bounce is the
best one. Secondly, the main aim of this work ipriavide for a general assessment of
new possibilities in daily ranges forecasting. E¥leaugh we acknowledge there is a
measurement error in very precise volatility measunduced by the presence of the
bid-ask bounce, its magnitude is hardly significambugh to bias our results to a strong
degree.

Next, we discuss timing conventions used throughios thesis. Connected to
the nature of Forex futures contracts is the conckglectronic Trading Hours (ETH).
Forex futures are usually traded in several tradieggions depending on the activity of
different trading centers (East Asia, Europe andeAca). For this reason trading
sessions, as recorded by the Exchange, do notideimdth calendar dates. Instead,
a trading session dated Oct™Starts on Oct 4 at 17:00 CST (start of East Asian
sessior) and ends on Oct, 15 at 16:00 (end of the U.Slirtgasession). In the period

3 j.e. dates between which a given delivery contveas the most heavily traded of all delivery coctisa
and thus (for the given period) is included in toatinuous contract.

* Central Standard Time, time zone of the Exchangation. Throughout this thesis, all quotations of
time are expressed in CST.

® To prevent misleading the reader, let us noteAlsin trading centers (Singapore, Shanghai, Tokgo)
well as Australian centers (Sydney Futures ExchaAgsstralian Stock Exchange) are included in the
East Asian session.
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between 16:00 and 17:00 no trading center is opdrtaus trading activity is minimal.
In order to have the sessions of all financial eentwithin one day of trading, we
followed the ETH standard.

The last point related to data description is emted to the fact that during some
days of year, trading is halted. The reasons mighnhational holidays or Exchange
imposed restrictions on trading. Missing observaifor such trading-free dates were
not reconstructed artificially. Also, on severakasions the Exchange accepts orders
only during a certain part of the day or trading\aty is generally lower than normally
(typically around Christmas and New Year's Eve).réadings of traded volume and
volatility from these days could distort our resulive decided to omit thémAfter
removing holidays and days with illiquidity presentthe market, our data sample
consisted of 999 trading days.

® Specifically, we omitted all dates between Det 28d Jan ' from the continuous contract as well as
any date for which total traded volume was less @000 contracts.
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3. Initial Data Analysis

In this section, we provide basic statistical gsigl of data at hand. Our aim is to
obtain preliminary insights into data behavior ahé identification of patterns that
could later be used for proper model constructeg, the distribution of error terms.
Specific investigated features include the uncamakt distribution of volatility coupled
with time patterns present in volatility and tragliactivity measures (on a daily as well
as intraday basis). Persistence of log-returns lageranges sampled at different

frequencies is presented.

3.1 Definition of ranges

Before moving forward, let us briefly investigdtee type of daily ranges that
will be modeled throughout this thesis. The exgstiterature does not address whether
R, or RY is the correct specification of range. The genpraference of log-prices in
guantitative finance coupled with higher computatfrecision obtained when using
values close to zero speak in favor Bf?. However, our previously stated money

management "technique" depends on a predictiolRpf Hence our first task is to

determine whether predictingR® is sufficient for our goal. For this purpose, we

estimate a model

R, =a+ ARy +¢, (17)

Estimation results involving daily data from théale sample are listed in the
Appendix as Table A.2. Heteroskedasticity is presamd thus inference based on
AdjR?*’ should be taken into account only grossly. Treptiveteroskedasticity via
GARCH modeling could solve the problem only artdlty, as we are estimating

H
Ho - Lp :a+ﬂlog(L—Dj+£D

D

(18)

" Adjusted R-Square
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and it is natural that the difference of two valkesbwill not depend linearly on the
logarithm of their ratio.

Taking into accountE(R,)=0.01684 and the fact that more than 70% of
residuals lie within0+ 0001 (in other words, the AdjRis very high despite possible

bias), we chosRy® as the range variable since distortion is minfmal

3.2 Time Patterns

Having properly defined the daily range, in th#dwing section we investigate
day-of-the-week, hour-of-the-week and high-freqyeimdraday patterns. From these
analyses we can infer hints that could help us wdeh design. For example, if
significant differences in daily ranges are obsdraeross days of week, enriching
a model by dummies for separate days of the wegtngrove fruitful. Investigating
intraday patterns of volatility and trading actywill enable us to determine the starting
points of different trading sessions as well asially assess the basic characteristics of

the volume-volatility relationship.

3.2.1 Intraday Patterns

Intraday patterns observed in financial data ide|uor example, volume spikes
around exchange opening and regular news releashs;off of trading activity during
premarket and postmarket periods etc. For the aisabf intraday patterns, one needs to
assume trading windows which are spaced more fitnelg in intervals of whole days.
Shortening this sampling period grants the researan ability to see more detailed
information, on the other hand measurement erteraraing from microstructure noise
as well as information overwhelm might become afam - we might stop seeing the
forest for the trees. In accordance with standaskd in high-frequency trading and
academic research focused on intraday data analysiarrived at the sampling period
of 5 minutes and thus created 5-minute trading f@rshe whole 4 year data sample.
For each bar traded volume and range were recoAde8-minute bars with the same
timestamp (i.e. trading bars representing the s&mminute interval in all days

contained in our dataset) were collected and tberded variables were averaged to

8 From here on, we use the term daily range forahge of daily extreme log-prices.
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obtain a general idea of how the instrument at hbedaves during that specific
5-minute window of the day. In spite of this progegls simplicity, its results presented

below were not published in academic literature yet

Average Volume Average Range

0.0016

0.0014

0.0012

0.001 1

0.0008 | l

0.0006 |

Figure 1: Intraday volume/volatility patterns. Each bar resarats the whole-sample average
of volume/volatility for the corresponding 5 minutading interval.

In accordance with e.g. Dacorogna et al (1993, distribution of observed
averages is indicative of different trading actvitlepending on time of day,
corresponding to different geographical distribatad market participant throughout the
day.

In the first hours of trading, East Asian tradars active. The overall calm of
this period as compared with the overall behasaraused by three factors. Firstly, it is
natural to expect that European and American imvesexporting companies, etc. will
be attracted to EUR/USD futures contract more tkast Asian traders. Secondly,
opening times of different East Asian exchangesatesynchronized and thus surges in
traded volume resulting from synchronized commeresgrof trading do not take place.
Lastly, while in Europe and America we observe gyl saving time (DST), East
Asian countries do not observe DST. Thus, the effée.g. Shanghai Stock Exchange
opening affects different 5-minute bars dependimgtioe actual DST observed in
Chicago. This causes a possible effect of large Asian stock exchanges openings to
be diluted. As the presence of European and American tradetss early time of the

day cannot be ruled out and as we have no infoomaglated to whether a particular

° As can be seen from two distinctly identifiableadihsurges in volume at 19:00 and 20:00
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trade resulted from interactions of Asian tradersluesively”’, we have no error-proof

procedure for removing the impact of this DST effeConsidering, however, the

average volume traded volume between 16:00 and1(ndn-trading period), we can

see that the average volume attributable to EastnAtsaders is rather low as it is on
average only quadruple of the average volume tradéuis non-trading period. Hence,
any attempts to correct for the DST effect woulthdpronly marginal impact on our

results. In other words, we need not worry aboytreuision of data measurements
stemming from DST mismatch between Asian tradex taders from Europe and

America.

On the contrary, in the period between 1:00 ai®@ 2 surge in trading volume
attributable to the growing presence of Europeaders occurs. Another distinct surges
at 2:00 (bar with timestamp 2:05) and 3:00 attableg to openings of some European
exchanges occur. The last surge connected to Europe atgr@8ents a puzzle. Minor
volume surges occurring each 30 minutes can hibwtttd to regular news releases. As
opposed to the East Asian case, when dealing \aiid cteated by mostly American and
European trading, problems with DST are only mirasr time shifts in Europe and the
United Stated are separated by two weeks. Thusrigrtwo weeks each year are data
influenced by different DST zones in Europe and Aoze In the remaining weeks of
the year, both continents are in the same DST zone.

The American session presents several distingesuof trading activity at 7:30
8:30 and 9:00 which are most likely related to opgrof different exchanges. A small
surge of volume at 12:00 is likely related to thesmg of London session and 14:00
marks the official end of U.S. trading. Positioaders usually make trading decisions at
the end of a trading day and if enough profit osslos accumulated, positions are
terminated. This is most likely the reason for wo&usurges accompanying ends of
different sessions.

The heavily researched relationship between ma&gtity and volatility does
not seem to hold for our instrument. Comparing Eueopean and American sessions,
despite the average volume and transaction couatlynelouble in the American
session, the increase in ranges is small. Moreammmparing the East Asian session

with the other two, we observe nearly identicaklevof volatility on significantly lower

19 This would be feasible if the investigated futuresntract was traded simultaneously on more
exchanges as for example in Dacorogna et al (1993)
™ Most importantly the London Stock Exchange andrtenkfurt Stock Exchange.
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market activity. Lastly, taking into account the nimum trading activity during
non-trading period and only a minute decline inatitity compared to overall level of
volatility, we claim there is no relationship betwmeaverage volatility and average
market activity when talking about whole trading/slaHowever, for different parts of
the day there might be a relationship between nbhaakévity and volatility. This
relationship seems to be different for each sessiwst likely due to different order
book thicknesses Not over different sessions.

Several papers (e.g. Chu & Lam 2008) indicate ubefulness of information
provided by the market during illiquid periods &ftlose and/or before opening). Also,
it is likely that general trading conditions (neme$eases, for example) affect the market
for a period of several hours as opposed to jushemiarily’2. Hence we expect some
relationships to hold between market behaviorsio€seding sessions. For this purpose,
we divide the trading day into several time periodarked by volume surges, i.e.
trading sessions. This division is more or lesstiay and only in some cases reflects
the opening times of exchanges around the worla sisrge in trading activity is more
informative than an opening of an Exchange. Theiipgeriods are

Session End Time Session End Time
preAsian 19:00 American - 1 9:00
Asian 1:00 American - 2 14:00
preEuropean 2:00 postAmerican - 1 15:00
European 6:00 postAmerican - 2 16:00
preAmerican 7:30 Non-Trading 17:00

Table 1 Intraday session time delimiters.

and Figure A.3 in the Appendix depicts this divisiasually.

Out of the previously mentioned 999 trading ddyat tconstitute our dataset,
only 66 had some activity in the non-trading sessfor which reason we omitted this
session completely and never included it at angrlatage of work. The remaining
sessions were traded commonly and we observedtbrdg missing observations for

preAsian session and one missing observation fer Ehropean and preAmerican

2 |magine, e.g. an ECB announcement with a strorgaanon the EURUSD currency pair. European
traders operate according to the announcement inatedd while American traders will react to this
announcement only when they become active in thiahd.e. with a delay or several hours.
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session. In these cases, missing observations meptaced with averages of given

sessions' data of the preceding and succeeding day.

3.2.2 Hour of the Week and Day of the Week Analysis

The same procedure as in the previous subchapasr wged for a visual
evaluation of the day of the week effect as wellhasir of the week effect (as in
Dacorogna et al 1993).

Investigating different hours of week in termsnadirket activity leads to several
conclusions. Firstly, volume peaks in the middlghed week. All days show the same
structure of calm East Asian session, a steepofisetivity with the commencement of
European trading with a following setback. A suddeactivity with American session
start follows. Thursday and Friday seem to havaiggntly more active preAmerican
and Americanl sessions. Owing to the high numbesbskrvations (roughly 140 for
each hour of week) these findings can be considermast.

In terms of volatility, intraday patterns diffecrass days of the week. Focusing
on ranges, the volatility of American session gn#icantly higher then for the rest of
the day during Thursday and Friday, while duringrtsbf the week, volatilities of
European and American session are comparable. rEiserded effects are documented

in Figure 2.

Average Volume Average Range
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Figure 2: Hour of the week patterns in volume/volatility. imestamp of 1-13:00:00 represents Monday from
12:00 to 13:00. Gaps in the middle and right sifithe Average Range chart capture the Non-Tradasgien.

Investigations of day of the week effect revealower trading activity on
Mondays while the remaining days seems to be ggaative. Comparing daily ranges,
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one observes generally higher volatility on Tuesdagd Thursdays. The effects are

presented in Figure 3.

Average Volume Average Range
300000 00126

250000 0.0124
200000 0.0122
150000 0.012
100000 0.0118
50000 0.0116 l
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MOoN TUE WED THU FRI MOoN TUE WED THU FRI

Figure 3: Day of the week patterns in volume/volatility.

3.3 Descriptive Statistics

Having discussed time patterns present in our, daaiow turn to providing the
reader with a statistical notion of our dataset. that purpose, descriptive statistics of
data sampled at different frequencies are showawbel

Mean St. Dev Skew Kurt GHE
lsm -0.0000003 0.0004894 0.3268 26.3631 0.493
My -0.0000035 0.0016567 0.1055 8.2748 0.502
Ion -0.0000277 0.0044624 0.0660 4.6478 0.511
Mo -0.0000809 0.0079047 0.0473 1.1128 0.512

9 0.0006353  0.0004806  3.2356 31.3406  0.974
%9 0.0023254  0.0015485  2.3790  11.5503  0.966
% 0.0063174  0.0045183  1.8154 50818  0.981
%9 0.0121566  0.0055872  1.6842  4.1943  0.990

Table 2: Descriptive statistics of data sampled at 5M, 12H And daily frequencies.

Growing mean values and standard deviations afrmstwith less frequent
sampling are expected. Skewness as well as excessik of log-returns approaches
zero with lowering sampling frequency. The growisgmilarity of log-returns'
distribution to Gaussian distribution as samplinggbiency is being lowered is
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a well-documented feature of financial markets. degr, when we check for normal
distribution of log-returns, the null hypothesis ligjected regardless of sampling
frequency and test type (Jarque-Bera, Kolmogorow®m) due to the well-known
heavy-tailed feature of financial d&taThe Hurst exponent of log-returns measured
using Generalized Exponent method stays very chosed.5 which is a value
corresponding to random wafk

Turning to ranges, growing mean values and standawiations with lower
sampling frequencies are an expected outcome ds Bah skewness and excess
kurtosis fall in magnitude with lower sampling frempcies, most likely due to
a relatively lower impact of bid-ask bounce. Thers¢ilExponent is extremely high for
ranges measured at all frequencies which indicaggsstrong persistence.

Speaking of distributional properties of rangeschke's nonparametric test
rejects the null hypothesis of gamma distributeth @ all feasible significance levels,
which was contrary to our expectations. A frequenltstribution of daily ranges,
coupled with the best fitting gamma distributioml.p. is included in the Appendix as
Fig. A.4. This unexpected behavior could be disegied by considering the
distributions of separate sessions' ranges. Howdweerthese the null hypothesis of
gamma distribution is rejected as well. The hishogs of separate sessions' ranges are
included in Fig. A.4 as well. Alizadeh, Brandt &dbiold (2001) argue that logs of
ranges are approximately normally distributed. ®hegfor this, the null hypothesis of
normal distribution was rejected both for daily ded ranges as well as for sessions'
log-ed ranges (except for the European sessionltsasot presented here for brevity
reasons). Hence, distributional properties of dadmpges as well as session ranges
remained unknown.

Lastly, turning to stationarity checking as a prpirisite for time series modeling
of daily ranges, we ran the Augment Dickey-Fulkstt An ADF test with five lags and
a constant included rejects the null hypothesisuoit-root in daily ranges with
practically zero p-value, hence stationarity isrokd.

A time plot of daily ranges, included in the Appenas Figure A.5, reveals
a period Q2 2008 - Q1 2009 of high volatility reldtto the financial crisis. Apart from

this period, stationarity of the series is evideven visually.

13 For brevity purposes, p-values of Jarque-Berakaithogorov-Smirnov tests were omitted, but in each
case the null hypothesis of normal distribution wejected on all feasible significance levels.
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To sum up this section, the dataset at hand doésexhibit any irregular
patterns. Both log-returns as well as log-rangdgbe in accordance with expectations
(random walk of non-normally distributed log-retsyrextremely high Hurst exponent
of log-ranges). Neither gamma nor lognormal distiitn seems to fit daily ranges in
our data and based on the results of an ADF tasibsarity of daily ranges can be
claimed. Investigated intraday patterns revealed#fit market behavior during the
trading day and for this reason we divide the dafp iseveral trading sessions

distinguished by volume surges.

3.4 Autocorrelations and cross correlations

Having described the basic characteristics ofdataset in the previous section,
we continue with the issue of correlation analysiirstly, we investigate
autocorrelations in daily ranges per se, as thisguide us in the selection of a proper
ARMA-type model for later parts of this work. Nexiye investigate correlations
between daily ranges and trading activity varialfteeding volume, average trade size
and transaction count) measured both on whole dswygell as separate sessions. These
correlations will shed light on whether the inclusiof trading activity variables into
models for daily ranges can prove fruitful.

Autocorrelations of daily ranges (Figure A.6) strvalues of approximately 0.4
and decay very slowly. The first autocorrelatioside the Barlett test critical interval is
located beyond the 0ag and hence we can assume an existence of anienpry
process governing ranges. This conclusion is deriveom highly significant
autocorrelations at distant lags and an extrenaetyel value of the Hurst exponent. The
shape of PACF and ACF hint towards an AR(7) proggsserning ranges. We will,
however, postpone model specification until Secton

Next, we investigate relationships between vatgtiand variables capturing
trading activity, both on whole days as well as separate intraday sessions.
Correlations of trading activity variables (averagaede size, traded volume and
transaction count) and ranges within separate @esdis well as on whole days are
reported in Table A.7. Contrary to the popularlydhieelief, whole day ranges depend

(linearly) much more on transaction count and ayetsade size than on traded volume.

14 GHE is the most efficient estimator of the Hurgpenent (see a recent comparison of all Hurst
exponent estimators under heavy-tailed distribatiorBarunik & KriStoufek 2010)
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This result is in line with findings of Jones et (4994) and Chan & Fong (2000).
Focusing on Figure 1, one could suspect differange-volume relationships among
intraday sessions, as these sessions differ hugélgding activity with ranges differing
only slightly. This feature can simply be attribditeo different order book thicknesses
during various sessions. The data confirm this @setations of ranges and trading
activity variables differ vastly across trading seass. While for most sessions
transaction count correlates with range more th@ome, for the preEuropean session
the opposite holds. The variance of correlatiorts/éen ranges and average trade sizes
across sessions is also high. To sum up, all tgeskssions exhibit remarkably different
volatility-trading relationship. Note that all cetations are of expected signs.

Correlations of daily ranges and sessions' tradrtiyity/volatility are reported
in Table A.8. High correlations among daily rangesl ranges/trading activity of early
sessions hold promise of possible daily rangesiqgtied updates conditional on early
trading activity/volatility. As opposed to previoussults (Table A.7), transaction count
of current day's sessions has a significantly loegerelation with current day's range,
albeit still non-trivial. The same applies for teaddvolume, only to a larger extent.

Since daily ranges exhibit both strong autocoti@baand strong correlations
with trading activity variables of separate curreddy sessions, we turn to the
investigation of correlations between current dadgyges and variables (volatility and
trading activity) measured on lagged sessions. rékalts are presented in Table A.9
and are indicative of strong dependence of daihgea on ranges, transaction counts
and average trade sizes of different lagged sessidance, the question arises what
kind of dependence governs daily ranges. On onel,hamrent daily range could
depend on past realizations of daily ranges pravithat these lagged daily ranges
embed all information contained in different pastsons. Or current daily range might
depend on lagged variables measured over sepasaiess and as these are also related
to lagged daily ranges, the autoregressive proprtaily ranges might only hide the
true dependence of daily ranges on different laggedsions' variables. The
investigation of whether or not does lagged dafigge contain all useful information
for daily ranges forecasting will be carried ouSection 5.1.

Next, we briefly investigate mutual correlationsiang volatility and trading
activity variables of intraday sessions. For exanple measure the correlation between
preAsian volume and European range. These sessioables have been shown to

exhibit high correlations with daily ranges. Howe\ié these session variables are also
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highly mutually correlated, they do not convey wsqginformation and thus their
inclusion in any model will only lead to a cosmeiticrease in explanatory power as
well as a reduction in degrees of freedom. By cimecknutual correlations between
these trading variables measured on separate sgssi@ check the uniqueness of
information they carry. High correlations betweealized variance, realized range and
range measured on the same session are expectede ke only investigate
correlations between realized ranges, average saés and transaction counts of all
intraday sessions. The resulting 27x27 (three kbagafor nine sessions) matrix is too
large, hence we do not provide it here but the whuhktrix can be obtained upon
request. Out of 351 unique correlations, only 38 @vove 0.6, only 8 are above 0.75
and none is above 0.9. Hence, even though thersane session variables which
exhibit significant mutual correlations, their nuenbs not as high so as to invalidate the
inclusion of sessions' trading variables into medet daily ranges.

Lastly, Dacorogna (1997) investigates causalitiwben coarsely grained and
finely grained (i.e. long-term and short-term) vy and finds that long-term
volatility causes short term volatility. This resig arrived at by studying asymmetric
cross-correlations between long and short termtiitkss. As this question lies out of
the focus of this work, cross correlations with atdge lags are not presented in
Table A.9 but can be provided by authors upon reique

To sum up, daily ranges are strongly autocorrdlaBorrelations between daily
ranges, volatility and trading activity variablegasured over separate sessions of the
same day are high. Combining these two results usdto the investigation of
correlations between daily ranges and lagged Vityaind trading activity variables
measured over separate sessions. These correlptiovesd to be high as well. Further
investigations proved that different session vdesiof one trading day convey unique
information. Thus we arrive at the question of vileetstrong autocorrelation in daily
ranges is indeed a dependence of daily volatilityagged daily volatility, or whether
today's range depends on previous day's sessi@bhe. If the latter was the case then
the dependence of today's range on yesterday's mangld be only indirect, as both
would be predominantly driven by yesterday's vbtatand trading activity variables

measured over different sessions.
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4. Comparing volatility measures

In the preceding Section, we provided the firgtdag blocks for our later work
focused on modeling daily ranges. After showing plossible benefits of slicing up
a day into trading session, we continue by anatyaifferent venues of enhancing
models commonly used for daily ranges modeling.cBipally, we investigate the
usefulness of regressing daily ranges on other unesi®f volatility.

Thus, in this section, we firstly introduce thencept of realized measures of
variance (realized variance and realized range)chvhise intraday data for the
calculation of daily variance. We are motivatedhigh efficiency gains compared to
range-based estimators. After familiarizing the dezawith realized measures of
variance, we investigate whether range-based lbjagstimators differ in their
efficiency even on real-world data or whether trdffering efficiency is confined to
simulated processes. Our motivation is to inferohhiange-based volatility estimator
provides the best efficiency on real-world dataafAge-based estimator with the lowest
measurement error should be used as a regresdailyiranges modeling to obtain the
best fit in case intraday returns for realized edwgriance are not available (data costs,
illiquid markets®). Moreover, as our dataset provides intraday netuwe assess the
imprecision in daily variance estimation when usilagly ranges/range-based estimators

instead of realized ranges/realized variance.

4.1. Realized measures of variance

In their influential paper, Andersen et al (2001tjoduce the concept of realized
variance for the estimation of daily variance, vehexalized variance is simply a sum of
squared intraday returns. By using high frequenata,dvolatility measured by this
approach can be considered observed rather thant Ieds in e.g. ARMA-GARCH
models of log-returns) and by increasing sampliregdency, one can theoretically
approach true volatility of the underlying procegsh arbitrary precision. In practice,
however, increasing sampling frequency brings imeee precision of measurement and
at the same time increased bias induced by marketstructure. As with higher

sampling frequencies asset returns diminish whilerestructure effects remain of

15 For example selected bond markets or energy nsavkiét very distant delivery dates.
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relatively constant size, extremely frequent sangpinduces a strong bias into volatility
measurements.

Martens & van Dijk (2007) and Christensen & Polipl§€2007) in independent
studies build upon the work Parkinson (1980) whowshthat squared daily ranges
provide efficiency gains compared to squared degfyirns. These two studies take
Parkinson's insights and apply it to the topic adasuring daily variance on intraday
data. Specifically, they propose the replacemensafared intraday returns in the
calculation of realized variance by squared intyadanges. Daily variance estimate
obtained by this procedure was coined realized gaagd according to empirical
sections in Marten & van Dijk and Christensen & BisHij realized range provides
efficiency gains over realized variance. As theepbsd (high frequency) range is likely
to overestimate the true range of underlying ppicecess due to market microstructure
(the period's highest price occurred more likelyask and vice versa for the lowest
price), both papers propose bias-correcting cotstawhile Martens & van Dijk

suggest normalizing each square of intraday rangd4m(2)] (as Parkinson 1980),

Christensen & Podolskij alter the normalizing canst depending on sampling
frequency. In our measurements, we followed theé&rapproach.

The question of optimal sampling frequency briggthe best precision-bias
tradeoff for measuring realized variance and redlizange has been investigated by
several authors. In our work, we chose to samglans at 5-minute intervals, as this
sampling frequency was firstly proposed by Ande&dollerslev (1998) for
measuring ex post daily foreign exchange volatilAiso this sampling frequency was
originally used in Andersen et al (2001). Thus,our work realized variance was
calculated as the sum of squared differences betiweelog-close and log-open prices
for each 5-minute bar of the ETH (whole day) sessiDaily realized ranges were
calculated as summed squared differences of log-lgd log-low prices of each

5-minute bar normalized bjgin(2)].
Time plots of squared daily log-ranges divided [ayn(2)] (i.e. Parkinson's

measure of daily variance), daily realized variaand daily realized ranges are shown
in Figure A.10. Owing to similarity of realized ga/realized variance construction it is
not surprising to find nearly identical developmenft these measures. Comparing
squared daily ranges and realized variables weredse good match, however, some

differences are present. As we will see in succepdnalysis, the differences between
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realized ranges and daily ranges are significaotrelations of daily ranges and lagged
values of ranges, realized variances and realiaedes (daily as well as sessions) can
be found in Table A.14. Other volatility measures (standard deviationreturns,
squared or absolute daily returns, etc.) were enhiftom this exercise as they are
significantly less efficient than realized variableReported correlations reveal an
expected pattern - ETH range is more correlateth Veijged realized variables than
with its own lagged valués Hence, realized variables seem to be higher tyuali
predictors of ETH ranges. Comparing realized vagaand realized range in a similar
manner, we find that correlations of realized raagd ETH range are higher in 63 out
of 80 cases than correlations of ETH ranges arlizeglavariance, indicating superiority
of realized range for ETH range forecasting. Thestjon of whether to augment an
autoregressive model of ETH ranges by lagged valfiesalized ranges or whether to
replace lagged daily ranges by lagged realized emnmgmains to be investigated in
subsequent sections.

To sum up, in this section we investigated whiehlized measures of daily
variance is a better predictor of daily ranges.cdrbecal results favor realized ranges
due to higher efficiency compared to realized varé@a Our empirical results are in
accordance with this conclusion, as daily and sessianges exhibit higher correlations

with daily and sessions realized ranges than watly édnd sessions realized variances.

4.2. Assessing efficiency gains of range-based estimators

In this section, we draw upon conclusions of thevipus section. We firstly
investigate the general relationship between daihges and realized ranges, including
efficiency gains of using realized ranges as coegb#n daily ranges. Secondly, we are
interested in whether differing efficiencies of garbased estimators presented in
Section 1 are measurable on our dataset.

The first exercise (assessing the usefulnessadizeel ranges for daily ranges

modeling) complements our previous investigatiohsaorelations. In volatility related

18 Correlations of daily ranges and lagged daily eangre reported redundantly (already contained in
Table A.9). In Table A.11 we state them for comgami purposes with other volatility measures.

In 71 cases out of 80 cases in total (8 lags fbtrading sessions), correlations of ETH range with
lagged realized variances of different sessionshagler than correlations of ETH range with (normal
range of different sessions. For lagged realizedeathis result is 74 cases out of 80.
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literature, Mincer-Zarnowitz regressidfisare used to assess a performance of one
measure of volatility against a benchmark (usuablized variance). We use the same
methodology for comparative quality assessment aflydranges and realized
ranges/realized variance. For this purpose we agtim

RR, = a+ﬁl f 1ain(2 )] £ (19

RV, =a+ AR 14in(2)|+ &,

i.e. how well daily squared daily ranges matcHized measures of variance.
Estimation results of (19) are shown in Table Alf3quared daily ranges and realizes
ranges/variance were comparable in terms of acguresiduals would show no

heteroskedasticityg would be close to zero anél would be close to unity. Our results

suggest that squared daily ranges cannot repleaalezee measures of variance, as
residuals exhibit strong heteroskedasticity (mogtlynounced in the time period related
to the onset of crisis). Moreover, Chow tests earout on both halves of the whole set
and later on quarters of the set reject the nydlotttyesis of time-invariant values af

and S parameters. Intuitively, this can be attributedh® fact that daily ranges neglect

a large part of intraday information. For exampfewe consider a "V" and a "W"
shaped evolution of prices within a day, daily & dor these days might be the same
but in that case both realized measures will behrlamer for the second day. This
changing daily structure uncaptured by the dailggemis the reason for a failing
time-invariance of parameter estimates. The gerstrahg decrease of AdjRor both
models in the second half of our dataset indicttas in calmer times, differences in
measures calculation pronounce the differenceseiasnred volatilities.

Having investigated parameter stability and obtgjra general idea of that daily
ranges and realized variance measures can nott&ehanged, we now turn to an
investigation of how well range-based estimatorsypete with each other and with
realized measures (in terms of efficiency). Fos {hurpose, equations resembling (19)
were estimated with HAC standard errors (to accéamteteroskedasticity).

18 Mincer, J. A., Zarnowitz, V. (1969) The Evaluatioh Economic Forecasts: Analysis of Forecasting
Behavior and Performance, NBER Books, National Buref Economic Research



The only difference compared to (19) is that irs thxercise, we regress all range-based

measures on both realized measures and vice Jvdrahis, we estimate

(Reef/ain(2) =a+pmRY, +&,
(ﬁgK)Z =a+ RV, &,
(653)2 =a+ RV, +¢&;

RV, =a+ A|R ) 14in(2)|+ &,

RV, =a+ ﬂ(&SK )2 +&,

(R 14In(2) =a+mRR, +¢,

(6F  =a+mR +e,  (20)
(OA-SS)2 =a+PRR, +¢&,

RR, =a+A|Re ) 14in(2)+ &,

RR =a+ plexf +e (1)

RV, =a+ ,8(&53)2 +£, RR =a+ ,8(655)2 +&,

Recalling the definition of Garman & Klass voldtilmeasure in (11), the value

of parameterf needs to be chosen. As represents the portion of a day during which
trading is halted, we sef =124 since trading is practically absent only in the

Non-Trading session between 16:00 and 17:00. Ircoorputations daily open price is
the first price traded in the preAsian session athie close price is the last price traded
in the postAmerican2 session. Lastly, we neglediesl Yang-Zhang measure of
variance (13) as this measures average past vanatteer than daily variante

The results of (20), (21) are presented in Tabls. As all five variables are
measures of the same quantity (variance) BRJl, R\, estimates border on the true
value of volatility, we can loosely interpret thesults as followsa =0C S =1 in the

upper pane of Table A.13 imply th&R,,R\, are best predictors of all range-based

variance estimates and can explain all variancate@linformation captured in these
range-based estimates.
On the other handf estimates in the lower pane of Table A.13 indicate

a decomposition of range-based volatility measimés information on variance and
noise. TheseB estimates as well as AdjRf all models indicate that approximately
57% of information in range-based variance estimaserelated to variance of the
underlying process and the remaining share of inédion is noise. From this we could

roughly infer efficiency gains of using realizechgas/variance instead of range-based
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estimates. We need to bear in mind that microsirachoise and possible jumps were
not removed from intraday data, hence values dizesh ranges/variances might be
biased. Even though this bias is most likely snfall,exact assessment of efficiency
gains we cannot neglect it.

Lastly, for range-based variance estimators wemesa clash of theoretical and
empirical results. While in theory, Garman & Klaas well as Rogers & Satchell
estimators promise significantly higher efficienmyer Parkinson's measure, our results

do not confirm this.3 estimates as well as Adji the lower-pane of Table A.13 are

nearly identical for all three range-based estimsatblence we observe no significant
efficiency gain. We thus do not have any reasomudge the RS or GK measure as
predictors in daily ranges modeling instead ofydeahges themselves.

To sum up, in this section we showed that linkdgstseen realized measures of
variance and daily ranges are strongly time-varibieither range-based estimator can
match the precision of realized ranges/variancely @oughly 57% of information
provided by range-based estimators is related t@mnee, the remaining part is error
measurement. Even though Garman & Klass and Rdg&atchell estimates promise
significant efficiency gains compared to Parkinsomeasure, our results indicate

roughly equal efficiency of all three range-basetitility estimators.

9 Rogers & Satchell (1991) propose a procedure éorecting the bias of both RS and GK measures
resulting from infrequent trading. As our data hatdeast 80,000 contracts traded each day, tte bia
correction terms would be minuscule and hence wselheir omission in RS, GK construction.
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5. Modeling daily ranges

In this section, we take the results of precediections and try to exploit these
results for improving several existing approachewadlatility modeling. This section
provides the bulk of our contribution to volatilitjodeling literature. At first, we
provide an overview of plausible models for daiénges prediction present in current
academic literature. Next, we focus on several isoglich were chosen for this thesis
either due to their general properties (goodnesiit)obr their specific focus on daily
ranges modeling. For each of these models we iigatstthe added benefit of using
more precise volatility measures for daily rangesdption. Also, we investigate the
added benefit of slicing up historical data intesssens. Lastly, we evaluate the
possibility to obtain updated daily volatility farasts of increasing quality as time
passes during a trading day.

Modeling daily ranges is in a certain way spediallike many other variables in
economics or finance for which usually one appraaalsed dominantly (e.g. VAR for
monetary economics variables), volatility and dadynges especially can be modeled
using various approaches. Generally, these caeferaed into two groups depending
on whether or not the assumption of long memorgxigloited. In this thesis, we only
focus on models which do not incorporate long mgmOur reasons for this choice are
comparative ease of estimation, high prevalencepublished papers and better
economic interpretation of models that do not asslong memory.

When modeling volatility and neglecting the asstiorpof long memory, simple
AR (ARCH type, see Engle 1982) or more refined GAR@G0dels can be used.
However, several papers question the validity ofR&&l-type models. For example,
Starica (2003) finds that a GARCH-type model carlyome used for short-term
volatility prediction on the most commonly known nket indices (S&P, DJIA).
Moreover, misspecification of the GARCH procesg.(@mitting the IGARCH effect
when it is in place) dramatically decreases thedasting performance of the model. As
GARCH models in general incorporate only laggedueal of different measures of
volatility, it is possible that such omission of @amportant explanatory variable is
common.

Recent developments in volatility modeling apgdleato modeling daily ranges
are, for example, mixtures of long, medium and stesm volatilities (HAR of Corsi

2004) or one can exploit previously mentioned |lgds between various measures of
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volatility for predicting daily ranges, as in EngeGallo (2003). Following the latter
approach, having a good prediction of daily rargyedt beneficial only per se, but also
has a side benefit of providing for better predict of other measures of volatility.
Other daily ranges modeling approaches that can nientioned are vector
error-correction models (Cheung et al 2007) or nedgorporating data sampled at
different frequencies (Ghysels 2003). Lastly, whmonsidering predictions related
specifically to futures markets, models rootedasteof-carry theory of futures contracts
(e.g. Zeng & Swanson 1998) or models based on ngadbf implied volatility
(Jorion 1995) can be used.

Apart from the aforementioned drawbacks of currenolatility
modeling/forecasting techniques, another type aivdack present in this area is the
error-minimization approach. According to this aggrh, the best model chosen from
a group is the one with the lowest mean squarexd errsimilar error-based measure of
goodness of fit. However, Leitch and Tanner (19p8)vide arguments against this
approach. Their findings confirm that models perfig well in such
error-minimization need not be the ones with gtateal-life applicability. On the
contrary, their findings suggest that sometimes ef®avith the worst mean squared
error are the ones witbreatest real life value (as measured by e.g. tatfity of
a trading strategy utilizing the model's forecaBiut of research suggests that ranges
prediction can indeed result in profitable tradirggrategies (Cheung 2007,
Cheung et al 2010). Including the topic of erronrimizing versus profit-maximizing
daily range/volatility forecasts would make thisedis too large a body of possibly
incomplete research. Hence, in this thesis, our ®nio assess possibilities and
limitations of the error-minimizing approach of atlity forecasting only.

In the next sections, we discuss and estimatemthaels chosen for this thesis.

5.1 ARMA-GARCH

As the first approach for daily ranges modeling, ehose the prevalent method
of time-series analysis in economics, the ARMA-GAR@odel. Our motivation for
this exercise is to obtain a base model to whictcarecompare other models designed
specifically for volatility, or even better, for itha ranges. The application of
ARMA-GARCH type models to volatility modeling is hancommon. Examples of this
approach can be found in, for example, Pong é2@03) who use an ARMA model in
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predictions of realized volatility or Ahoniemi (280where ARMA models are used for
modeling and forecasting of various instrumentglied volatility.

Estimation of ARMA-GARCH models was carried out joyntly considering
both the mean-of-volatility as well as volatility-eolatility component. Selection of the
best specification of both components was carriat with three criteria in mind:
parsimony of both components, absence of autoetiwak in both residuals and their
squares and the match of expected and true distnibwf model residuals. The
presence of "bad-new" or "leverage" effect, i.ee thffect of increased volatility
following a drop in market prices, was investigabsdincluding a dummy for previous
day's price decrease in the mean-of-volatility ¢éigna Following ACF/PACF of daily
ranges (Figure A.6), an AR(7) model was suspedikd.mean-of-volatility component
was capable of removing autocorrelations in resdgjumut suffered from an insignificant
7" AR lag. However, upon switching to AR(6) model foean-of-volatility a strong
autocorrelation in residuals orl" Tag appeared. Hence, the AR(7) specification was
kept.

Squared residuals of a pure AR(7) process exkilsignificant autocorrelations
on all lags, hence a volatility-of-volatility compent was needed. Here, GARCH(1,1)
with T-distributed residuals of the AR(7) componeméis found to be the best
specification as it removed autocorrelations inasgd residuals on nearly all lags. Both
ARCH and GARCH terms were significant. The estirdadegrees of freedom
pertaining to residuals’ Student distribution wagigicantly different from 2 (normal
distribution). Added second ARCH or GARCH termswed out insignificant, ruling out
the need for a more complex GARCH component. Thwe, considered the
GARCH(1,1)- t specification well justified.

ARCH models used for modeling log-return volailéare known to suffer from
a necessity to include many lags of the ARCH teanrdmove autocorrelations in
squared residuals. GARCH models solve this by atigWior an MA term in volatility
prediction, which is commonly able to replace m&RCH terms. As an AR(7) model
of volatility is rather complex, attempts were madereduce the number of terms by
estimating an ARMA model of daily ranges. Both ARKAL)-GARCH(1,1)-t and
ARMA(2,2)-GARCH(1,1)-t models were incapable of m@rmg autocorrelations in
residuals themselves. Specifying more complicat®MA models was unfeasible due
to two reasons. Firstly, our motivation was to abtmodel parsimonious compared to
AR(7). Secondly, estimations of ARMA(2,2) containgdo pairs of common roots
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indicating that ARMA(2,1) model was the most conxpigentifiable ARMA model on
our dataset. More complicated models would hawerainvertible MA component.

For this reason, attempts to include MA terms ithe mean-of-volatility
component were halted and AR(7)-GARCH(1,1)-t waseh as the best representative
of the ARMA-GARCH class of models. On a last nailt,parameter estimates in the
AR(7)-GARCH(1,1)-t model were positive, which isdasired property in a volatility
forecasting model. This, by preventing volatilityécasts to be negative, ensures that a
volatility forecast will always be at the practitier's disposal. Surprisingly, the previous
day's "bad-news" effect is insignificant.

To sum up, the first model for daily ranges waswdr from classical
ARMA-GARCH approach. AR(7) model jointly estimatedith GARCH(1,1)-t
component was chosen as the best specificationmedmple estimation results are
presented in Table A.14. Table A.15 contains Q-@tsplof AR(7)-GARCH(1,1)
residuals with normally and T-distributed disturbes. Albeit the Q-Q plot of residuals
using T-distribution is not perfect, it is much teetthan if we had used normal
distribution.

5.2 Heterogeneous autoregressive model

The idea that markets transform information intcgs efficiently had been the
cornerstone of academic thinking in finance for thst 50 years even since Eugene
Fama introduced the concept of the Efficient Markégpothesis in the 1960s.
Implications of this hypothesis range from imposgipto make a consistent profit in
any market to prices being constantly at their ldgum levels, reflecting all the
fundamental information available. One of the agstizns that allowed academics to
arrive at such strong conclusions is the homoggméitmarket participants. That means
traders are expected to share the same opiniohe tcapable of assessing available
information in the same way (thus differences irrketactions are driven solely by
different information sets) and also, their deaisiaking horizons are expected to be
equal.

The last assumption was questioned by Muller ¢1993) where the collective
of authors propose the Heterogeneous Market Hypthd@his hypothesis expects
participants to differ in their investment horizdRetail traders can be divided into
intraday traders and position traders who holdrtpesitions for several days. Active
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portfolio managers update the composition of halsets weekly or bi-weekly. Large

institutions with long-term investment horizonsclsuas pension funds, update their
portfolios on a basis of months, whereas centrakgare likely to intervene in the FX

markets etc. on a quarterly basis. Differenceshanlength of investment horizon are
given by differing capabilities to withstand lossd#ferent amounts of capital invested
and different motives to trade. While retail traxdean usually withstand only small
adverse movements before terminating a positiom @itloss, large institutions rely

more on long-term growth and thus short-term flatiins are not a reason for quitting
an open trade. Lastly, central banks are predortiinamterested in protecting the

country's price stability or exchange rate andpiteditability motive in trading is absent

in this case. As reaction time of economies to re¢rdanks' moves is long, it is not
surprising that central banks are not interestedvaekly or even monthly market

changes.

In subsequent work, Dacorogna et al (1997) uséngights of HMH to propose
an extension of GARCH models, namely HARCH modetglogeneous GARCH). The
basic idea in HARCH is to combine volatility views differing time horizons so as to
capture the views of more types of market partimipaln empirical applications, the
HARCH effect is significant and thus validates tew of HMH.

Corsi (2003) follows up to HARCH modeling by prgomg his own model.
Firstly Corsi comments on mainstream methods oétialy modeling. On one hand,
long memory models suffer from difficult estimatigmocedures, dubious economic
interpretation and need a long buildup period. @e bther hand, parsimonious
(G)ARCH type models are unable to fully replicatglized facts related to volatility.
For example, returns normalized by volatility faxsts depart from normal distribution
and autocorrelations of volatilities exhibit an erpntial as opposed to hyperbolic
decline observed in reality. To correct for thesmrigages, Corsi draws upon the
conclusions of HARCH and argues that a correctlgcsjgd volatility model should
incorporate different market views by focusing aatilities measured over periods of
different lengths, i.e. short-term, medium-term agwkn long-term volatilities (to
capture the long-memory property). Specifically, tioee modeling of realized variance,

Corsi proposes a model of the following specifioati

RV, =a, +a,RV, , +a,RV® +a,RV®? +¢ (22)
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where RV(® is a simple average of realized variances of dés-a;D], i.e.

RV =RV, . In other words, a HAR model intuitively combingslatility of the

previous trading day and average volatilities @& ldst week's and last month's trading.
Estimation can be performed using OLS and in emgdirwork, HAR volatility
predictions attain great in-sample fit and out-@afaple forecasts while replicating
volatility related stylized facts.

In a succeeding work, Corsi & Reno (2009) asshss"bad-news" effect on
volatility known from the family of T-GARCH model§.he "bad-news" (or leverage)
effect draws upon the idea that bear markets atmllysaccompanied by larger

volatility than bull markets. The specification efmed by leverage effect
RVD = aO + alRVD—l + a2 RVD(S—)l + a3 RVD(gi) + IBlI I(Dlzlrél—)l + 182| I(DS—)er(Ei)l + ﬁ3| Ig2_21) r.D(2—22L) + gD (23)

includes an indicator variablel equal to one in case the average daily retth
measured over dayéD—a; D] is negative. On Corsi & Reno's dataset, All..S;

estimates are significant indicating that volatilitas "long memory" not only in itself,
but also remembers short-term, medium-term and -femg market declines. In
in-sample modeling and out-of-sample forecastihig, hew (LHAR - Leveraged HAR)

model performs better than the original specifmai{22).

5.1.1. Basic HAR modeling

Having introduced the HAR models in general in fireceding section, we
continue by estimating the basic HAR specificatbonour dataset. In this section, we do
not consider data measured on trading sessionsingtead, we investigate general
dependencies between daily ranges, lagged dailgesariagged realized ranges and
lagged daily trading activity variables.

Despite the original HAR (22) was proposed folirea variance, there should
be no problem applying it to any other volatilitghance measure. Moreover, as
opposed to the previous ARMA-GARCH model, HAR madeirned out to be suitable
for the description of long-memory processes, faneple, daily ranges. It is for this
reason why, merging the logics of HAR and findirgdspreceding sections (Sections

1.1.5, 1.1.6), we propose to augment the LHAR mduelvariables significantly
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correlated with the daily range. These include ¢éabygverage daily, weekly and monthly
trade size and transaction count. Moreover, we angthe daily ranges HAR model by
realized ranges due to their superior efficiencg. pkevious results imply, daily and
realized ranges do not hold the same informatiengé it is possible that the inclusion
of both into a HAR model will turn out useful.

Dealing with heteroskedasticity in modeling daibnges with realized ranges
can be accomplished either by robust standard esbmation or via simultaneous
estimation of a HAR and GARCH model. We chose tlizatthe former approach and
allow for HAR-GARCH modeling only for specificatisnn which we observe a marked
improvement of the augmented model over the base bj#ecification. We chose not to
apply the volatility-of-volatility modeling using &RCH to all models in order to firstly
obtain results directly comparable to those of @or#lso, as the number of models
estimated in this section is large and there isutomated way of determining the best
GARCH specification for volatility of residuals, tesating a HAR-GARCH model for
all specifications would be extremely time consupitastly, we model a HAR
dependence in both volatility as well as variancsasures, i.e. daily ranges and their
squares.

The list of augmented HAR models considered ia $igiction, coupled with their
specifications, is presented in Table A.16. Howget@r the sake of clarity, we briefly
define the different specification of HAR modelsedsfrom here on to prevent

confusion. The base specification for daily rangesleling is
log — log log,(5) log,(22)
RD - aO + alRD—l + 0'2 RD—l + aS RD—l + ED (24)

Including the leverage effect into a HAR model dzfily ranges leads to the

LHAR specification given by

log — log log(5) log,(22)
RD - aO + alRD—l + 0'2 RD—l + aS RD—l (25)
® ®) 6 (22) - (22)
+ ﬁll D—er—l + :le D—1rD—1 + IBSI D-1 rD—:I. + ‘SD
In order to infer modeling performance gains stemgnfrom using more precise

information on volatility, we regress daily ranges realized ranges solely in the

R-HAR specification, i.e.
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th?g :ao+a1RR3—1+a2RR<35—)1+a3RRg—21)+£D (26)

To investigate the added benefit of using varsbépresenting trading activity
(average trade size/transaction cé)ntend their possible long-term influence on

volatility, we define models with -S/-C suffixes as

log — log log,(5) log,(22)
RD - ao + alRD—l + az RD—1 + 0'3 RD—l (27)

VTS, VTS +1TSE + &,

log — log log,(5) log,(22)
RD - ao + alRD—l + az RD—1 + 0'3 RD—l (28)

+ 51TCD—1 + 52TCI(35—)1 + 53TCI§2—2]? + gD

Lastly, to investigate the effect of mixing botmlized ranges and daily ranges
into one equation (i.e. to infer whether these mess contain useful and different

information), we define a HAR-R specification

Rll:?g =a, + alRllggl + a, Rlljogi(S) + a, Rg’?]’.(ZZ) (29)
+¢RR,, +BRRY, + @RRY + ¢,

Thus, the complicated R-LHAR-SC model is nothing & HAR model where
realized ranges are used as regressors but daggsaare not (Eq. 26)). On top of that,
the specification is enriched by information ondeage effect, average trade size and
transaction count as described in (25), (27) a8l (2

With all the HAR specifications clearly defined,ewnow turn to empirical
estimations. Firstly, we focused on HAR, HAR-R &ReHAR specifications, i.e. we
investigated whether realized ranges alone canskd tor daily ranges modeling or
whether they should at least be added to a stanblasé HAR specification. The
estimated results are presented in Table A.17.ré&dts of HAR-R model indicate that
neither for variance nor for volatility modeling@®mixing of daily and realized ranges
into one model bring gains. Concurrently using ladily ranges and realized ranges as

20 | ogarithms (not levels) of average trade size &madisaction count were used in all regressions
contained in this thesis.
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regressors does not yield any benefit, indicatimai tdaily ranges do not contain any
useful information other than information on vadar(in line with expectations).

Moreover, results from HAR and R-HAR models indécthat neither variable is
strictly superior in terms of goodness-of-fit whandeling daily ranges. The increase in
AdjR? is relatively small and as heteroskedasticity @®tlia bias into this measure of fit
quality, comparisons are limited. For this reasahfurther models are evaluated with
either daily or realized ranges being the RHS mreasti(average) volatility, as neither
shows clearly superior to the other.

In-sample estimation results of all specificatiame presented in Table A.18 for
volatility models and Table A.19 for variance madeln volatility modeling, square
roots of realized ranges were used as regresssiesath of realized ranges, on the other
hand in variance modeling, squared daily rangesewerdeled. For relieving
hetoroskedasticity, HAC method was used.

Focusing firstly on Table A.18 (volatility modegjjy we do not observe any
significant increase in Adjor either model. Contrary to Corsi, the "bad-newtféct
is not consistently significant in all models. Mover, only in LHAR-S model were all
three "bad-news" terms found to be significant edst on a 95% critical level. In
general, however, only the first-lag "bad-news'eeffseems to be present in the data.
Next, when comparing HAR vs. R-HAR and LHAR vsLRAR (i.e. we compare the
benefit of using realized ranges for predictinglydaanges), we see that R-HAR and
R-LHAR have a higher count of significant paramegstimates. Most notably, in
HAR/LHAR models the lack of autoregressive depewgieaf order one is rather
surprising. Since this anomaly is not present iHAR/R-LHAR models, where
realized ranges are used as regressors, this tamemraused by the noise included in
daily ranges.

Focusing on the added benefit of including traieaccount and average trade
size (-S/-C specifications), we cannot observe sigpificant effects stemming from
these variables. Comparing the models enrichechbeget trading activity variables to
models without these variables, we find only weanificance of monthly average
trade size. When investigating the effect of ingbgdtransaction count into a HAR
model, we find no significance of estimated pararsetnder any specification.

Following to Table A.19 (variance modeling), wesfiy find a consistently
significant "bad-news" effect from the previous day all specifications), which is in

line with the well documented leverage featureimdiicial returns. However, except for
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two specifications, weekly and monthly "bad-news$fees are absent, contrary to
Corsi & Reno's results. Comparing squared dailgearand realized ranges for squared
daily ranges forecasting, we cannot claim one tostietly superior to the other.
Similarly as for the volatility equation discussedthe previous paragraph, neither
transaction count nor average trade size bringfggnt information related to squared
daily ranges. Parameter estimates of these vasiadle significant only in several
specifications. Considering the practically zererément in AdjR, which could also be
only due to insufficient penalization of’Ror parameter count, we find no practical
value in augmenting a HAR variance model with thesding activity variables.

The results of previous two paragraphs demonstthée trading activity
variables which are highly correlated with dailyngas do not have any significant
modeling power. We are led to the question of wéethis conclusion holds generally
for all volatility/variance measures or whetheisispecific to daily ranges only. For this
purpose, we evaluated the same battery of modeis #e previous two paragraphs.
However, this time the roles of realized and dealyges were swapped. This means that
realized ranges were used as explained variablenatice R-HAR specification, daily
ranges were used as regressors. Any significantadnpf average trade size or
transaction count in these HAR models would indicat strong difference in the
possibility to model daily as opposed to realizadges via trading activity variables.
However, as presented in Tables A.20 and A.21,ystesic impact of these measures
of trading activity is observed. In accordance witkuition, in this setting R-HAR
specification is inferior to a HAR specificationrfooth volatility and variance. In other
words, we cannot gain better realized ranges pred& by using a noisier measure of
volatility (daily ranges). Considering, howevere ttiata-intensiveness of realized ranges
as opposed to daily ranges, the drop in explangtower between HAR and R-HAR as
judged by AdjR, is rather smalf. Plainly speaking, even realized ranges can be
modeled by daily ranges to a great extent. Evenghdhis kind of modeling does not
make sense once we have realized ranges at owsédlsphe attained Adfftin R-HAR
specification is very surprising. Turning to othespects of the results, a consistent
finding is a strongly significant weekly "bad-neweffect (in all models where this term
is included) and in all models of the R-LHAR clag& find strong significance of all

"bad-news" effects. A noteworthy fact is a congiitesignificant parameter of previous

2L From 74.7% to 70.4% in volatility equation and rfro72.3% to 66.8% in variance equation,
respectively.
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day's (realized as well as daily) range in all #mations, which is in contrast to the
findings of tables A.18 and A.19 (previous paraygsp where an AR(1) dependence
was missing.

To sum up the results of this section, we concliidg when modeling daily
ranges best results are obtained from an R-HARIfsgs®n, while for squared daily
ranges modeling, LHAR specification seems the nptetisible. The added benefit of
having a more precise measure of volatility (readizange) brings only a small increase
in daily ranges modeling in-sample performance hHigise content of daily ranges as a
LHS variable is responsible for worse modeling pmbtses by means of daily ranges
as opposed to realized ranges and the use of edalanges can not make up for the
high noise content of daily ranges on the LHS. Wanaged to show that daily ranges
do not contain any useful information not capturedrealized ranges and that the
difference between these two variables in purermé&tion noise. A striking result of
our work presented here is the extent to whichzedlranges can be explained by daily
ranges. Taking into account the low efficiency aflglas compared to realized ranges,
we expected the capabilities of daily ranges todipterealized ranges very low.
Contrary to Corsi & Reno (2009), there seems tonbe connection between the
"bad-news" effects measured over different horizang daily volatility/variance. The
significant weekly "bad-news" effect in some spieeaiions is rather an exception than
a rule. Lastly, including measures of trading astiinto a HAR model does not bring
any improvements for either volatility or variano®deling. Thus we can conclude that
their information is already fully reflected in Iged volatility/variance measures

themselves.

5.1.2. HAR modeling including lagged sessions' info rmation

In Section 1.1.7, possible dependencies betweiyn rdages and lagged values
of trading activity variables and volatility measdrover separate trading sessions were
suggested. Here, we investigate the possibiligugimenting previously presented HAR
specifications by these lagged session variabldsadnether such augmentations lead to
better fits.

As the number of possible regressors is high (&lbkes for each of 9 sessions),
finding an answer to our question (added benefiisafig lagged sessions' information)

is tackled using two approaches. In the former eveeaugment the base HAR model
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(24) by all lagged values of one measure, e.g.nwvestigate the additional explanatory
power of ranges of all lagged sessions. In therdapproach, we augment the base HAR
specification by all volatility/trading activity vebles related to one specific session.
For example, we investigate the additional explaryapower of trading taking place in
the Asian session of the preceding day.

Estimation results of the former approach for Wa#nges are summarized in
Tables A.22/A.23. The results suggest that anytbimga few selected variables has an
impact on the next day's range. Most notable irsgedn explanatory power are gained
from the inclusion of American2's realized rangd agalized variance. However, if we
have these at hand, we can predict daily range#lized ranges which was proven
earlier to be the preferred option. Overall, ther@éases in explanatory power of the
models fall behind our expectations and the decaitipa of neither variable among
separate sessions brings a strong predictive aalyanThis conclusion holds both for
daily ranges and their squares. To distinguish bebtwfeatures typical for daily ranges
and for volatility measures in general, we ran shene battery of models for realized
ranges and the results are summarized in Table¥A2Z5. Variables capturing trading
activity have no bearing on the next day's realimetje. However, the decomposition
of lagged daily realized ranges/variances intoizedl ranges/variances of separate
lagged sessions seems to bring some gains. In dlaility equation all parameter
estimates related to sessions' realized rangeswas are significant and in the
variance equation at least some of these paramatersignificant, in contrast to other
investigated variables. Unfortunately increasesexplanatory power stemming from
sessions' RR and RV are not signifiéan®ur motivation for delving into this exercise
was to infer whether it is some specific sessia@& which is responsible for the
autoregressive property in daily/realized ranges. éxample, if the decomposition of
realized ranges among sessions produced an indreAs§R?, today's volatility would
most likely depend strongly on the realized rangfebie most important sessions, while
the information provided by the least active sessiwould just create noise in the
realized range. However, this turns out not to lee dase and we can say that the all
trading sessions (even the least active ones) beare important information for
volatility modeling. In other words, neither sessican be disregarded from volatility

measurements due to, for example, its low tradéahve.

22 problems with multicollinearity (as whole days lized measures are a sum of sessions' realized
measures) were most likely countered by the exatusf non-trading session from all our regressions.
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Next, we turn to the approach of adding all trgdirariables related to one
specific session of the previous day. Estimaticults for daily ranges modeling are to
be found in Tables A.26/A.23% Confirming the results of the previous paragraph,
neither session has such a strong bearing on tteeeading daily range that we could
exploit it in any manner. Despite several terms dtiyorealized ranges as in the
previous paragraph) are significant, no dramaticgase in the share of explained daily
ranges information is observed. Testing the sanpothgsis on realized ranges, we
obtain estimates in Tables A.28/A.29. While pararsetelated to some sessions are
significant again, AdjRvalues remain basically unchanged.

To sum up this section, we showed evidence ofduea benefit of decomposing
the previous day into separate sessions. Hencepmaude that all information relevant
for daily volatility prediction is already contaithen lagged daily volatility measures.
On top of that, we find that even information paed by the least actively traded
session is important for the next day's range ptiedi. Both findings are very strong

results of our work.

5.1.3. HAR modeling including non-lagged sessions' information

In the preceding section we investigated the uisefs of information provided
by lagged trading sessions. In general, no usefokmation in past trading sessions
was found. In this section, we wish to infer whetihés possible to obtain more precise
daily volatility predictions throughout the day agparate sessions end and their
volatility/trading activity measures are incorp@eitnto a model on-the-fly. To give an
example of the this approach, American investoghinireate a one-day-ahead forecast
of daily or realized ranges based on informationilable at the end of the previous
trading day. Later, these predictions could be mat®e accurate by including
information related to preAsian, Asian and othessgms preceding the American
session. Even though these sessions are not likeed by American investors, they
can provide useful information.

To explore this venue, we added non-lagged rahliaeges, ranges, trade count
and average trade size of different sessions twaisec HAR specification. Firstly, we

do this in a non-cumulative manner, i.e. the bérgfadding each session separately is

% Due to frequent multicollinearity problems, reelizvariance was omitted from variables describing
each trading session.
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investigated. Later we proceed to build forecastlatgs that utilize all intraday
information available at the end of some tradingsgm. For comparison purposes, we
estimate the volatility forecast updating possipibboth in daily ranges and realized
ranges.

Estimation results for the non-cumulative approaahe presented in
Tables A.30/A.31 for daily ranges and A.32/A.33 fealized ranges. The results for
daily ranges are indicative of a possibility to aibhtmore accurate volatility forecasts
using up-to-date information. Each session's in&irom is capable of producing
a marked improvement in a volatility forecast, witlost importance to be attributed to
realized ranges and ranges, which are significannéarly all sessions. On the other
hand, knowing the average trade size seems to haveeal benefit as it is only
significant in models using information availab#d in the day. Turning to estimation
results for realized ranges forecasts, the sanmerpappears. In line with intuition and
previous results, sessions' realized ranges are ms®ful than simple ranges of these
sessions.

In the last exercise related to HAR specificatiae, investigate the cumulative
adding of information related to today's sessidtts. example, by adding information
stemming from the preAsian, Asian and preEurope&msisn, we put ourselves in the
position of traders active during the European isassWe investigate, whether
European traders can gain significant benefitsfggiinformation from already passed
sessions. Moreover, we are interested in whethecameobtain better and better daily
volatility forecasts as time passes.

We report estimation results in Table A.34/A.35r fdaily ranges and
Table A.36/A.37 for realized ranges. The results daily ranges indicate a strong
possibility to provide more accurate predictiondafly volatility as more information
becomes available. More specifically, entities tetdrt to trade in the Americanl,
American2 sessions can gain nearly twice as préaiseasts of the current day's range
compared to traders in the preAsian session. Assiiyating the possibility of gradual
forecast updating it not present in the acadertecdiure yet, this result is an important
contribution of our work to the current body of kviedge on volatility modeling.
Another nice feature of obtained results is thateoa variable is significant in one
model, it remains significant even when informatfoom following sessions is added.
This is intuitive, as different sessions are expedb provide different information due

to the presence and activity of different tradingtitees. Unfortunately, neither
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investigated variable (realized range, rangehas) universal significance in all sessions.
Also, it is unclear why in some sessions it is izl range and in other simple range
that is significant for the days range predictidastly, focusing on the same set of
estimations for realized range forecast updatesfivdea strong explanatory power of
each sessions' realized range for the whole dagbzed range. This result stems
naturally from the fact that whole-day realized gans a sum of separate sessions'
realized ranges. However, even though the idea&rng simple, the practical benefit is
tremendous. Just as for daily ranges, traders tipgrauring the Americanl and
American2 session can predict whole-day realizedygawith much higher precision
using data on already passed sessions, giving #readvantage over their Asian and
European counterparts. Turning to other regress@issaction count and average trade
size are significant in only a marginal number ase&s, which simplifies the model
strongly.

To sum up, our results show that participantsaterl sessions can benefit much
from considering data provided by the market ugl uhé time a trade is taken. This
result holds irrespective of whether daily or readl ranges are modeled. Focusing, for
example, on traders from Americanl and later sassigains in predictive power are
approximately 20+ percentage points of Adfr daily ranges and 25+ percentage
points for realized ranges. Even though the result somehow mixed (no one variable
is significant in all sessions), magnitudes of jmtde power increases suggest that

these model improvements are not a result of sircyntee fitting.



44

5.1.4. HAR modeling - concluding remarks

Corsi's HAR approach to volatility modeling is tanle both for daily ranges as
well as realized ranges modeling. Our results ssigtiat while some benefits can be
gained by predicting daily ranges by realized rangieese benefits are small. Thus in
the absence of intraday data daily ranges can leled by average daily ranges of the
last day, week and month without having to worrgutfit quality.

A HAR model of realized ranges regressed on laggatized ranges produces
a much better fit than a HAR model of daily rangegressed on lagged daily ranges.
This stems naturally from the fact that daily ramgee noisy and having a noisy LHS
variable can never result in a great fit. Howeweghen we have an exact volatility
measurement as LHS variable, we can attain verd jteoby using even noisy proxies,
as demonstrated by high AdjBf realized ranges regressed on daily ranges.

Our results show no benefit of using lagged trgdsessions' information
compared to using previous day's information ashalev From this we conclude that
lagged daily volatility reliably aggregates all pasformation relevant for daily
volatility modeling. However, gradual updating afdeof-day daily volatility forecasts
by up-to-date information provides significant gaim predictive accuracy and thus
works to the benefit of traders active in latersgass of the day.

As both the idea of intraday volatility forecagidating and the result that lagged
daily volatility captures all information relevarior daily volatility modeling are
missing in current volatility related literaturéese findings create a core of this thesis'
contribution to volatility related base of knowledg
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5.2 CARR

As stated earlier, several approaches can be foseathily ranges modeling. In
this section, we continue by assuming a differaahtHAR model for the task at hand.
Firstly, we briefly introduce the model. We deserithe estimation procedure and
follow to estimates on our dataset. At the endhef $ection, we provide comparisons
between the new model and HAR model.

One stream of volatility related literature focsisen so called Multiplicative
Error Models (MEM), which are suitable for modeliagy positive-valued variable.
Probably the best-known application of a MEM maddhe autoregressive conditional
duration (ACD) model proposed by Engle & RusselP98) for trade durations.
Application of MEM modeling to volatility are, foexample, the seminal work of
Engle (2002) which was followed by a stream of alikerature. Also, the already
mentioned work of Engle & Gallo (2006) combines téeas of VAR and MEM
modeling.

An example of a MEM model focused specificallydaily ranges modeling can
be found in Chou (2005). Chou combines the ide&ARCH volatility modeling,
where volatility predictions are modeled by an ARM#ocess, and the logics of
a MEM model. The newly generated model is coineadd@mnal autoregressive range

(CARR) model of ordem, q. The specification can be written as

q p (30)
RS’ = A6y Ao =+ aR% +D By
= =

where £, is assumed to follow a positive-valued distribntaith unity mean. More
specifically, in MLE estimates of the model Chowswases either Weibull distributed
&, of Exponentially distributeds, (which are a special case of Weibull distributed
ones). Investigations carried out on the S&P 50turés contract reveal superior
volatility forecasts of CARR models as compareds#tRCH models, the rejection of
null hypothesis of exponentially distributedl , presence of a strong "bad-news" effect
in the volatility-of-volatility equation as well as benefit of adding absolute returns (as

a complementary measure of volatility) in#y equation. Exponential distribution is
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found to be incorrect for,, while with the assumption of Weibull distributeg), ,

estimated residuals, = R /jD are nearly Weibull distributed.

In our work, we followed the methodology of Chondaestimated a CARR
model with Exponentially and Weibull distributed, term via MLE. Likelihood

functions can be written as

LExponentia(ai ’ﬁj ; R.”Rn) = _i|:|n(/1t)+/15:|

i-1 t

L@ BB R R, ) = g“{%} ' gm(r(“jt/ﬁ)R ] _(r(ljt/@)R Jg

(31)

In cased =1, the Weibull distribution collapses into the Expotigl one and
this property can be used to evaluate which digtidin is more appropriate (by testing
6=1).

Estimations on our dataset were carried out acegrdo (31) using robust
standard error estimation techniques (QML covaBantrix). The results for daily

ranges prediction are presented in Table A.38 forth b&, = Exp(-) and
£, =Weibull(@+) respectively. Table A.49 contains estimation resalf the same

exercise applied onto square roots of realizedasngoth for daily and realized ranges
only a model for volatility was estimated, as mauplvariance resulted in negative

variance predictions. An attempt to correct fos thituation by rewriting (30) into

R =&, Ap = 0)+Zq:exp(ai RS®, +Zp:exr‘('3i Mo- .

produced strongly upward-biased predictions of sepiedaily ranges and realized
ranges, hence we opted for not modeling variandbdu

Optimal values of lags,q were determined based on parameter significance
and in both casep =q=1 was found to be optimal. Recalling that the praslg

investigated HAR model is just a special case ofA&lel with many lags, we observe
a situation which is classic in volatility modelinggefore the onset of GARCH

modeling, ARCH models were used for modeling lataatility and usually many lags
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were needed to model away all dependencies iniNylaihis drawback of ARCH
models was resolved by GARCH models, where the ad@&RCH term (actually an
MA term in the ARMA process of volatility predictig) was capable of replacing many
distant lags in ARCH models. As a result, GARCH)lslthe most frequently found
specification of volatility that is capable of caphg all dependencies in volatility. In
the case of HAR versus CARR, we observe the saimatisin. While in a HAR model,
the long-term volatility plays a significant role all specifications, a CARR model only

needs one lag of each variable (range apd to be complete. This result was

confirmed when we tried to include medium-term dodg-term volatility into the
CARR specification and both turned out insignificdresults not presented here for
brevity reasons).

Comparing Exponentially and Weibull distributedroerterms £,, we find

strong evidence foe, =Weibu||(t9,-) being the correct of these two specifications as

we can reject the hypothesis 6f=1 for both daily ranges and square root of realized
ranges. However, when comparing other parametenasis we see that changes in
these parameters induced by considering Weibuwpassed to Exponential distribution

for £, are negligible, which is a result in accordancthwiose of Chou's. Neither do

in-sample fitted values change, as can be seeigunds A.40/A.41.

Before delving into augmentations of the CARR(Inigdel, we compared the
in-sample modeling performance of CARR(1,1) modghwVeibull distributed errors
to the modeling performance of a base HAR spetifina(24). In-sample fitted value
plots for daily ranges and square roots of realizedjes are depicted in Figures A.42
and A.43. When neglecting the buildup period of Médimation, we observe a striking
similarity of fitted values indicating a near ideytof both models. This is in line with
the previous discussion regarding AR models witimyrlags and corresponding ARMA
models, which need only few lags to capture theesarformation. For these reasons,
we did not delve into CARR model augmentationsestimation results and sessions'
information significance would nearly certainly thee same as in case of a HAR model.
Hence, we can conclude by saying that CARR and Hiwdrlels provide nearly the
same level of modeling performance and this is tegardless of whether the MEM
error term is assumed to be Exponentially or Weithstributed. HAR models offer the
advantage of avoiding maximum likelihood estimatibtLE in our case turned out to
be impossible in the case of variance variablegrevla negative prediction of variance
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measure prevented the evaluation of log-likelihdoehction. Moreover, a great
advantage of HAR models compared to CARR is thesipdgy to use realized
measures of volatility as regressors and their igesenplicity.

Summing up, in this section we consider a CARR ehddr daily ranges.
Estimation results show that assuming Weibull disted residuals is correct, however
estimation problems arise when working with varg@argata (squared daily ranges,
realized ranges). Strikingly similar in-sample fitf a base HAR model and
a CARR(1,1) model with Weibull disturbances coraagp well to the fact that HAR is
actually an AR model with a high number of diste@gs while CARR(1,1) model is in
fact an ARMA(1,1) of daily ranges. Due to their 8an modeling performance no

further investigations are performed and we mouhéonext model.
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5.3 Cointegration of high and low prices

In this section, we present the last model comsitién this thesis. Owing to its
different approach to daily ranges modeling, we icesestigate the effect of different
session variables than in Sections 5.1.2 and 5Hir8tly, we introduce the model
theoretically. Next, we provide estimations of thedel's basic specification as well as
of an augmented specification found in literaturastly, we investigate the added
benefit of using lagged sessions' trading variabkesvell as the possibility to obtain
updated volatility forecasts throughout the day.

We start the theoretical introduction into co-grion by defining spurious
regression. A spurious regression arises in ecam®mhen one tries to relate two
variables which share a common trend and/or sebgpatigrn in an equation of these

variables' levels. As an example, we can use ancgey's annual gross produét and
expenditures on consumptid® which are known to be a share of the gross product

When we run a regression of the following specifara

Y, =a+hC +¢ (33)

the obtained fit is very good, but the conclusidraaelationship betweel;,C, other

than a common trend/seasonal pattern is flaweésarhese series are co-integrated.
Co-integration was firstly proposed in Granger§l)Pand following work on it

includes, for example, Granger & Weiss (1983) Bndle & Granger (1987). Without

a formal definition, further explanations would caembersome. Thus, let us assume two

time series x,y, which are both integrated or order one. We ca#ls¢h series
co-integrated if for soma 0 the linear combinatiory, —ax is integrated of order

zero, i.e. stationary.

As stated, two co-integrated series share a contread/seasonal pattern and at
the same time deviations from this common compoasnstationary. In order to model
such series, one has to consider both long-terornrdtion (common component) as
well as short-term information (deviation from commcomponent). For this purpose,

the class of error-correction models (ECM) was ted and these models have a long
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tradition in time series econometrics dating backsargan (1964). Continuing with our

previous example of co-integrated senesy, , the error correction term is defined as
{t =Y —ax (34)
and the error correction model &f, y, is then defined as

Ay, = as,; + )X + U, (35)

where u, is i.i.d. The error correction tern€,_, in (35) can be thought of as an
equilibrium error from the previous period. For exde, if Ax, = 0 and &,_, > Othen
Y,., was above its equilibrium value. In order to congsge for this Ay, needs to be

negative to revert to equilibrium. From this it matly follows that for the system of

X,Y, to be stable we need <0. Lastly, from the definition of co-integration all

variables of (35) are stationary, hence spuriogsession is not present anymore.
Cheung (2007) investigates the usefulness of veatimr-correction-moded$
for daily ranges modeling on several stock indi(@&P 500, NASDAQ and DJIA).
Since daily high and daily low prices are expedtedbe integrated of order one while
the daily range is stationary (as shown in Sec8@) an error correction model for
changes in daily highs and daily lows could be falated where daily range would
serve as the error correcting term. Cheung's festso-integration via ADF testing as

well as via Johansen procedure confirms tha,Al, = CI(11), the co-integrating
vector is found to be approximatelyl- 1007] for all stock indices under investigation.

Thus, daily ranges are found to be a close appratxom of the stationary sum of daily

high and low prices' deviations from their commant and seasonal pattern. Knowing

this, Cheung adopts a VECM model #th,, Al , i.e.

Xp :(AhD’AlD)T
: (36)
Xp :a"'zlgixo—i + Iog1"'5[)'*"90
i=1

4 j.e. a set of error-correction-models appliedtjgionto co-integrated variables
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and the error correcting term (daily range) turm$ significant. As common in the
finance literature, Cheung checks for the effect ddy-of-the-week dummies
(vector D). However, the effect is negligible both in termok parameter estimate
significance and in terms of added explanatory ppWwence the base specification is

(36) with day-of-the-week dummies excluded. Thet wedue of lag parametep is
found by Cheung to be 6 - 7 depending on instrunaeat generally the predictive

power of the model is low, specifically from 8%1@% in terms of AdjRdepending on
instrument and variabledn, or Al,).

In order to improve the model's predictive pow@hneung tries to include several
exogenous variables. Firstly, the added benefiisifg lagged and contemporaneous
de-trended traded volume is investigated. Despiteng parameter significance
improvements in AdjRare only minor. Trying to improve the model in a@ternative
way, Cheung draws upon the intuitive idea that mpmnee observations for each
instrument should give more information about thereacteristics of its evolution.
Hence he adds changes of daily open and daily gioses as well as daily returns into
(36). In this augmented model, the vast majorityadded variables are significant and
the model's predictive power rises dramaticallyl¢iels of 37.6% to 48.9% in terms of
AdjR?).

In a follow-up work, Cheung et al (2010) investegéhe possible profitability of
daily ranges predictions obtained via a VECM mdda (36). These predictions are
tied exclusively to exotic options traded on thengld&kong market, namely the so called
Callable bull/bear contracts. Even though only tlase specification (36) is used to
produce daily ranges forecasts, the performancaast strategies is good, i.e. they are
profitable even net of transaction and interestcd3trategy results vary depending on
parameters settings and the issuer of CBBCs, hawéasla@ng into consideration the
simplicity of these strategies, the results are esicouraging.

Lastly, He, Kwok & Wan (2010) investigate the pbggies of modeling
changes of daily highs and lows using various teghes, including the random walk
model, ARIMA-type forecasting and VECM modeling.-dample fit compared by
traditional means of MAD, MSE percentage of correct directional changes ofeang

and trading strategy profitability speak clearlyfaror of VECM modeling.

% Mean Absolute Deviation and Mean Squared Errapeetively.
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In this section, we delve into ranges modelingWieCM of daily high and low
prices because in no other model can we explait toeintegration. As daily ranges are
stationary and they are the difference of dailyhhand low prices, this problem is
a textbook example of what VECMs should be emplogead Further, the use of a
VECM is desired due to the difference of this apgio compared to those so far
investigated. HAR, CARR and VECM differ firstly their specific applications - HAR
and CARR models are nearly exclusively used foatdly modeling, while VECMs
are used in many fields of finance (e.g. the modelof consumers' consumption
changes as a response to changes in income, sfiretagken long-term and short-term
interest rates, etc). An interesting consequencthief difference is the fact that in a
VECM of highs and lows, modeling volatility is ntite topic of interest per se, instead
daily ranges modeling comes out of the model agjarbduct.

Considering the high impact of enriching the ba4€CM specification by
variables such as changes of daily open and dkiberices, we evaluate the added
benefit of using these variables following CheuAg. intuition behind adding these
variables is that more price observations shouldgbmore information exploitable for
modeling, we take this idea a step further. Nam&byalso incorporate changes in open
and close prices measured over different tradirggises. While there might be no
effect of lagged sessions' variables on ranges@€as in HAR modeling), there might
be an effect of these variables on changes of sman§ece the added benefit of
regressing on changes in sessions' open and closes pcannot be inferred in
a HAR/CARR model, using these changes in a VECRkhesonly choice of evaluating
their usefulness.

In this section, we proceed exactly as we proakedeSection 4.1 on HAR
modeling. Firstly, we formally investigate the asgions of a VECM model, secondly
we assess the predictive power and proper speaiiicaf (36) on our dataset. Next, we
investigate the usefulness of Cheung's augmengatiohnanges in daily open, close
prices and daily returns) and lastly, we turn tophaving the model with
sessions-related variables.

For the identification of a co-integration relatghip between daily highs and
lows, we follow the Engle-Granger test. As the Af@Bt for daily highs and daily lows

confirms thel (1) property®, we run a regression of

% ADF test with five lags and a constant, obtainadues for lows and highs were 0.2236 and 0.2195.
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hy =a+ A, +&; (37)

to obtain the co-integrating vector. Estimationutessare presented in Table A.44. As
ADF testing for the presence of unit-root in residuof (37) returns a p-value of
practically zero, we can conclude that daily higimsl lows are co-integrated. The
estimated co-integrating vector [iﬂ,— 0967] and taking into account the standard error
of [, we can reject the hypothesis ¢f =1. For this reason we chose not to
approximate the error correcting term by laggedydange but instead to calculate it
accurately aseC, =h, — 0967, . As the next step, we investigate the appropriate
number of lagsp based on parameter significance. Following Cheung,set the
number of lags equal for both equations (as in3&(. Estimation results presented in
Table A.45 show that in general, changes in dany prices have a much stronger and
longer memory of preceding daily high/low changése lagged error-correction term is
insignificant in theAl; equation. For changes in daily highs, on the ofiaerd, a clear
dependence is present only on previous change ibyf ld&v and the error-correction
term. Signs of significant parameters in both eguat are according to expectations
and speak in favor of an mean-reverting procesiaily ranges. For example, in daily
lows equation, lagged increases in high priceda@lewved by an increase in daily low
prices, so as to keep the daily range in boundsit(pe parameters o&h(—i)), whereas
lagged drops in daily lows are followed by an ims®e in lows, which again presses the
daily range towards its mean value (negative patarmef Al (—i)). The daily ranges

process would be explosive it there wasn't for éhg@soperties. The significant
error-correction term parameter negativeness iy daigh equation confirms this
behavior as an increase in daily range (which iagproximation to the error-correction
term) pushes down the next day's high price, hékely decreasing the range.

Lastly, the explanatory power of the model fortbetjuations is rather high,
considering on one hand the low number of sigmiidags for the daily high equation
and on the other hand the explanatory power of besel in Cheung's paper. This high
reading of AdjR might be caused by the crisis period, which inegehincreases the
explanatory power of volatility models. Howevertiggting the base specification on
the second half of our dataset (no volatility amj, the explanatory power drops only
by one percentage point (estimation results naemed for brevity reasons).
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Having established the base VECM model, we turrth® investigation of
day-of-the-week effect and for correctness purposesalso try to enrich the model by
lagged traded volume, average trade size and tamisacount. Similar to Cheung's
results, we do not find any support for the presesicday-of-the-week effect. Neither
dummy has a significant parameter estimate, atsétee time no increase in AdjiR
takes plac¥. The same conclusion applies to lagged tradingigcvariables, hence we
omit all of these variables and day-of-the-week ohies in further models. Estimation
results of the enriched model are listed in TahkGA

Next, following Cheung's approach, we enrich thaséo VECM by
Ao,_,Ac,_,cq,_; which stand for the lagged changes in daily oped daily close

prices and lagged daily returns, respectively. Msgecification thus changes to

p a r s (38)
Xp = a+2ﬂixD—i +ZyjAoD—j +25jACD—k +Z¢mCOD—m +PEC, 1t &
i=1 j=0 k=1 m=1

The Ao,_,, terms are taken froom=0 as we can utilize today's open price in our
predictions. Optimal parameters qfr,s were chosen based on parameter significance
while keeping p=6 as in the base specification. Estimation resuléspaesented in
Table A.47 forq = 4,r = 2,s= 1 Several points deserve mentioning:

» Significance of the daily highs equation parametdanges dramatically. After

adding Ao,_,,Ac,_,,c0o,_,,, lagged values of changes in daily highs become

strongly significant and their values change dracaly. Also, the 3% and &
lags of changes in daily lows are significant. Fritte added variables, changes
in daily opens seem to be the most important ferdily high equations, as lags
up to the fifth one are strongly significant. Adjfor the daily high equation
enjoys a more than two-fold increase, hence exfbayngower is significantly
better.

* In the daily lows equation significance of parametehanges as well. It turns
out that normalization of lagged changes in daigghk and daily lows by lagged
changes in daily opens produces significant resaolisoth the Ah, and Al
equation and in both equations the model's priedipower enjoys a significant

rise.

%" This is an interesting result if we recall thetigition of daily ranges by days of the week igufe 3.



55

» The significance of error-correction term remaimaftected in both equations,
despite heavy changes in significance of othermaters. The null hypothesis
of no autocorrelations in residuals is not rejegtest as in the base specification,

hence we consider the augmented model well spdcifie

So far, modeling endeavors were inspired by thekwad Cheung's. Our results
are very similar in terms of significance of addeatameters as well as in terms of
increased modeling power. In the next paragraphes,fallow up by incorporating
information related to different trading sessiondle follow the methodology
implemented in Section 4.1. It means that we firsty to enrich specification (38) by
separately adding a certain variable measured lagged sessions (e.g. include lagged
changes in opens of all sessions) and then by aepaadding changes of all variables
related to one specific lagged session. As a VEGM imodel in changes, session
variables of interest in this exercise will be ches of volume, changes of average trade
size, changes of transaction count, changes oizegalange and changes of OHLC
prices of each session. Estimation results forases in this section are volumindys
hence we do not present detailed estimation refidts. These detailed estimation
results can be obtained from authors upon request.

Turning to the former approach, we find that imgml, adding lagged variables
of one kind measured over separate sessions dodxing any dramatic increase in

explanatory power of the model. The extent of maahgrovements are captured in the
table belovf.

Specification
base +Volume +Trans +TradeSize +RR  +Open +High +L ow +Close
AdjR? (AH) | 0.547 0.551 0.554 0.547 0.566 0.558 0.561 0.577 0.553
AdjR? (AL) | 0.495 0.495 0.493 0.495 0.497 0500 0.507 0.558 0.499
AIC -15.96 -15.94 -15.93 -15.96 -15.97 -1596 -15.95 -16.09 -15.97
BIC -15.73 -15.55 -15.48 -15.73 -15.54 -1544 -15.39 -15.65 -15.64
HQC -15.87 -15.79 -15.76 -15.87 -15.81 -15.76 -15.74 -1592 -15.84

Table 3: VECM improvements after adding changes of variables unedover lagged sessions.

8.8 variables per session, 5 lags per variable.
29 A maximum of 5 lags were used in these models amatlels presented in Table. A.4. For example, in

the +Volume column changes in session trading volumes oveptbeeding five days were added to the
base specification for each of 9 sessions.
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Drawbacks of this exercise's results are two-féldr neither added variable
were we able to obtain significance in any sesdioat, would be strong and across all
lags. Instead, dependencies on, €"§la) of change of preAsian volume aritildg of
change in European volume were found, which ard lbounter-intuitive and most
likely a result of curve-fitting. Secondly, increasin explanatory power are negligible
compared to the number of added parameters (oiglyt sSmprovement of ICs). Before
closing this exercise, we applied the logics of) (88to separate sessions, i.e. instead of
expecting changes of daily high/lows to dependaggéd sessions' high/low changes,
we investigated the dependence of daily high/lovmsinges on lagged sessions'
normalized high/low changes. Estimation resultswéwer, do not support this

hypothesis, as can be seen from the table below.t®estimation output size, we omit
it again.

Specification
base +Open+Low +Open+High
AdjR? (AH) | 0.547 0.568 0.565
AdjR? (AL) | 0.495 0.509 0.505
AIC -15.96 -15.92 -15.89
BIC -15.73 -15.00 -14.94
HQC -15.87 -15.57 -15.53

Table 4: Model improvements after adding changes of highp&mand
low & open prices of different lagged sessions.

Next, we investigate whether a certain lagged i@ess important for the
evolution of daily high and low prices. Thus we dagged changes of all variables tied
to one session and investigate the model's imprewenm modeling power. The
obtained results are presented in the table below.

Specification
base +preAs +As +preEu +Eu +preAm +Aml  +Am2 +postAm 1 +postAm2
AdjR? (AH) | 0.547 0.546 0.556 0.552 0.552 0.550 0.545  0.551 0.551 0.551
AdjR?(AL) | 0.495 0.498 0.495 0.507 0.500 0.503 0.490  0.490 0.505 0.492
AlC -1596  -1590 -1593 -1592 -1592  -1593  -15.88 -15.90 -15.93 -15.90
BIC -15.73  -1531  -1533 -1532 -1533  -1534  -1529 -15.32 -15.33 -15.31
HQC -15.87  -15.68 -1570 -1569 -1569  -1570  -15.65 -15.68 -15.70 -15.68

Table 5: VECM improvements after adding changes of all vaeisbelated to lagged sessiths
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Unfortunately, the addition of neither sessionariables brings a model
improvement. Hence, we conclude that there is neefitein using historical session
variables for improving modeling performance in BGM approach.

As a last exercise connected to VECM modeling afydranges, we assess the
possibility to improve forecasts of changes of yWaiigh and daily low prices by
utilizing session variables as they become availalokring the day, as in Section 4.1.3.
For this purpose, we cumulatively add the samealbbes as in the previous exercise to
the base model (38), i.e. we start with variablethe current day's preAsian session.
Then we proceed to adding variables of the Asiasien, etc. Increases in explanatory
powers with additional sessions are expressed bteTé below. As estimation results

consist of two tables with nearly 100 rows eachgdeeot report them here.

Specification
base +1 sess +2 sess +3 sess +4 sess +5 sess +6s ess +7 sess +8 sess +9 sess
AdjR? (AH) 0.547 0.566 0.650 0.661 0.757 0.780 0.828 0.912 0.919 0.923
AdjR? (AL) 0.495 0.548 0.618 0.641 0.758 0.779 0.830 0.919 0.923 0.925
AIC -15.96 -16.07 -16.31 -16.38 -16.93 -17.07 -17.52 -19.03 -19.19 -19.27
BIC -15.73 -15.74 -15.90 -15.89 -16.35 -16.40 -16.85 -18.27 -18.34 -18.33
HQC -15.87 -15.94 -16.15 -16.19 -16.71 -16.82 -17.26 -18.74 -18.87 -18.91

Table 6: VECM improvements obtained by cumulatively addingvatiables related to current day's sessions.

A trend of increases in explanatory power withspge of time is obvious from
the results and is in accordance with the resulth® same exercise when utilizing
a HAR model (Section 4.1.3). However, the conclasiof this exercise differ from the
conclusions of Section 4.1.3, where the currentsdsgssion ranges and realized ranges
were the most useful for forecast updating. Mostbly it seems that for modeling
changes in daily high/low prices, the most actdange in close price is the most
relevant variable, as in nearly all cases the changclose price of the just-added
session is strongly significant, many times beimg dnly significant variable of current
day's trading. Just as in the results of HAR madglionce a variable becomes
significant upon being added to the model, it remaignificant for the remainder of
the day (except for close prices of sessions foreafientioned reasons). Unfortunately,
variables that are significant in some sessionsl me# be significant in others (i.e.

significance of realized range of preEuropean sasbut no significance of realized

% These variables were lagged changes in: sessime raession realized range, session average trade

size, session transaction count, session tradadmeolnd session OHLC prices. Maximum number of
lags used was 4.
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range measured over other sessions), hence wefagaithe possibility of curve fitting
driving our results. The usefulness of evolvingselgrice for the prediction of changes
in highs and lows is, however, a nice result.

As the feature of dependence of daily high/lownges on most up-to-date
readings of close price changes is rather strikivegdecided to simplify the cumulative
model. Instead of utilizing changes of all tradweyiables related to the just-finished
session, we focus on the added benefit of usinglthaege in close price of each session
only. By this, we can infer the relative importangk current sessions' close price
change compared to the importance of other vasaiglated to the same session. Thus,
for each session we add only the change of itseclpgce and compare the
goodness-of-fit measures with those obtained irpthgious Table 6.

Base +1 sess +2 sess +3 sess +4 sess +5 sess +6ses s +7 sess +8 sess +9 sess

AdjR? (AH) 0.547 0.564 0.640 0.650 0.738 0.758 0.798 0.858 0.869 0.870
AdjR? (AL) 0.495 0.545 0.617 0.635 0.746 0.764 0.812 0.878 0.878 0.881
AlC -15.96 -16.07 -16.29 -16.34 -16.82 -16.93 -17.30 -18.29 -18.43 -18.49
BIC -15.73 -15.73 -16.04 -16.08 -16.55 -16.66 -17.01 -18.00 -18.13 -18.17
HQC -15.87 -15.87 -16.19 -16.24 -16.71 -16.83 -17.19 -18.18 -18.32 -18.37

Table 7: VECM improvements obtained by cumulatively addingradies in closes related to current day's sessions.

In general, results in Table 6 contain higher Adifeasures for both the high
and low equation. Despite the fact that these bettedels use many more exogenous
variables, adding them is justified as the valuieallanformation criteria are lower for
these more complicated models, as compared to sedtd only the sessions' change
of close. On the other hand, if we focus on AtijRboth tables, we see that the added

benefit of variables different than changes of is@ssloses is not that high, as

adding the progressing information on changes s$isa closes is capable of
significantly improving the forecasts during theyda

the maximum difference in AdfRbetween the two specifications is roughly 5
percentage points, which is rather small compa@ddifferences between

regressors count of both specifications (9 regresger session in Table 6

Versus one regressor per session in Table 7)

To conclude this section, we can state that theelement of a classic VECM

model of daily highs and daily lows by daily operdalaily close price changes indeed

improves the modeling performance significantlyagtordance with previous research.
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However, the inclusion of lagged sessions' varglens out to be of no value for
modeling. The only benefit obtainable from sessidormation are session variables
pertaining to the current day. Of these variabb&snges in sessions' close prices play
a role more significant than all other sessionaldas combined. A possibility to obtain
forecast of rising quality with passage of timedemonstrated, as in the case of HAR

modeling.
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6. Out-of-sample Forecasting Exercise

In the preceding sections we investigated the ipiisg to fit daily ranges
in-sample, i.e. on data which were used for estonatEven though some models
performed better than others in-sample, an evalnaif out-of-sample forecasting is
necessary to discern real-life qualities of différenodels. Usually, an over-fitted model
(due to large number of parameters) or a model ithrrect specification can provide
superb in-sample forecasts, while out-of-sampledasting quality can be poor.

The viability of HAR models for out-of-sample vtlay forecasting is a well
established fact in related literature. VECM modate believed to provide good
forecasts as well since their predictions are ofte&d as inputs into trading strategies.
Our motivation in this section is thus two-fold.rgtly, we wish to infer in general
whether HAR/VECM models of daily ranges bring fasts of significantly higher
guality than selected benchmark models. Secondiyygh to infer whether there are
gains in using realized ranges for the predictibdally ranges. Despite the in-sample
modeling difference between HAR and R-HAR models weall, an assessment of
their out-of-sample forecasting performance is wihally indicates the use of realized
ranges for daily ranges prediction.

In finance literature, several methods for ousafple forecasting exist. For
example, one step ahead (next day), five stepdalmext week) or twenty steps ahead
(next month) forecasts can be evaluated, deperuirige desired use of these forecasts.
Longer-term forecasts will be interesting for longgrm investors, while next day
forecasts will suffice for intraday traders.

Another type of distinction is whether to use inglwindow forecasting or
anchored forecasting. In the former method a aeriamber of observations is included
in the estimation set and after making a foreddwss, set moves by one observation,
dropping the oldest observation and adding the fonavhich a forecast was being
previously done. In the latter approach, the egtonadataset grows over time as no
observation is dropped and only the most recenergbtion is added after the forecast
is generated. Using this method, the estimatioasgdtcoincides with the whole dataset,
once all forecasts have been made.

In this work, we focus solely on one-step-aheaédasts of daily ranges using
a rolling window method. Firstly, our motivationrfmodeling daily ranges stems from

a desire to provide for better money managemennttaday traders, who only care
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about the next day's volatility. Secondly, whenngsanchored forecasting, quality of
forecasts obtained early in the dataset and latkerdataset are incomparable, as more
observations for estimation should provide for &dvemodel. Hence, with anchored
forecasting it is difficult to infer whether bett@recasting performance in the late part
of dataset is caused by better estimation dueldogar estimation set or by a generally
better fit of the model. For this reason, we usklgorolling-window forecasting.
Window length was set to the minimum number of obs#ons allowing for a MLE
estimation of all models on all rolling-windowseg.i.400 observations, yielding 599
one-step-ahead forecasts.

For assessing differences in forecast quality reg\Vess functions can be used.

Some of the most popular loss functions are RMSBEMind Q-LIKE. These loss

functions, for a difference seri@{e[}f:l of target volatility seriesand volatility forecast

series{h}’_,, are defined as

MSE=n"Y" & MAE=n"Y"le| QLIKE=n"Y" (nh+o,/h) (39)

Forecasts of better models produce lower valudésssffunctions. Drawbacks of
these measurements are firstly the sensitivity &BMo outliers and generally, neither
squared nor absolute error needs to corresponthetcdfarecast user's loss function.
However, as loss functions of different economigerds are not identical, no error
measure can express exactly which model is bettaieru all circumstances.
Patton (2011) compares the use of different losstfons in the framework of latent
variable forecasting, where forecast error of #tent variable is composed of the model
dependent error as well as an error introduceddsgnving the latent variable via some
proxy (e.g. daily ranges are a proxy for true vibtgtof the underlying price process,
i.e. by using daily ranges we commit to a measurngneeror). As Patton discusses,
when picking an optimal loss function for proxy radne forecasting two loss function
characteristics need to be fulfilled. Firstly, a debproducing an optimal forecast of
h = o, needs to be identified by the loss function asbiést model. Although requiring
this property seems intuitive, MAE commonly usedrésearch does not exhibit this

behavior. A second desired property is loss fumctabustness. A loss function is called

robust if the ranking of two possibly imperfect fatity) forecasts by expected
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(average) loss is the same whether the rankingorge dusing the true conditional
volatility or some conditionally unbiased volagliproxy. In other words, a robust loss
function needs to be immune to the fact that fastscarrors contain measurement error
of the latent variable. Only MSE and Q-LIKE funetgsatisfy both of these conditions,
hence we only use these when comparing forecastsr iwork.

Lastly, simply comparing magnitudes of RMSE or B{ does not give us
information about the significance of these vaeabtifferences across models. In order
to solve for this last drawback, one has to uske@int methods. In this work, we used
the same test as Patton, i.e. a volatility forecastparison test based on the work of
Diebold & Mariano (1995) and West (1996).

Following literature on volatility forecasting, wedecided to compare the
forecasting power of models discussed in SectioBsafd 5.4 to several benchmark
models. The first considered benchmark is the ramd@lk model yielding the
well-known naive forecast. Another benchmarks ameers popular in retail trading,
where the average weekly and monthly volatility eomsidered "good" predictors of
next day's volatility. We follow two approaches lwihese average volatilities. Namely,
forecasts equal to previous day's average weeklyramnthly volatilities* were used as

well as forecasts obtained from the following madel

jog =a,t 0’1R||309i5) +tép Rgg =, t ale)?i(ZZ) tép (40)

log — (5) log — (22)
RS =a, +a,RRY, + &, R =g, +a,RR® + ¢, (41)

with GARCH(1,1) governing the volatility of Studedistributed& .
A more sophisticated AR(7)-GARCH(1,1)-t discusge&ection 5.1 was used to

obtain the best of benchmark forecasts. By addiegea benchmark models to our
forecasting exercise, we can firstly infer wheth&XR/VECM models outperform the
simplest of models before turning to comparing ¢hesmplicated models one with
another. HAR models used herein were enriched bGARCH(1,1)-t to make
comparisons between AR(7), (40), (41) and HAR m®demparable.

Lastly, only models for daily ranges forecastingrevconsidered, as these are the

only ones obtainable from a VECM of highs and lows. the number of models
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estimated in this thesis is large, only base spatibns and specifications with a clear
increase in explanatory power stemming from addgiovariables were used for
forecasting. Moreover, as the viability of enriapimodels by current day's data was
clearly illustrated in both HAR and VECM sectiongg do not provide out-of-sample
forecasts for these specifications, as their nunwmuld be large. Hence, the list of

models chosen for out-of-sample forecasting isalewing:

Model Description Reference
RW Random walk - volatility forecast is equal to previous day's volatility.
SMA5 Average weekly volatility - forecast is a SMA of last five volatilities
SMA22 Average monthly volatility - forecast is a SMA of last 22 volatilities
SMA5GARCH SMAGS with a constant and GARCH modeling included Eq. (40)
SMA22GARCH SMA22 with a constant and GARCH modeling included Eq. (40)
RSMA5GARCH SMAS5GARCH using average realized range as predictor Eq. (41)
RSMA22GARCH SMA22GARCH using average realized range as predictor Eq. (41)
AR7 AR(7)-GARCH(1,1)-t model derived forecasts A.14
HARGARCH Forecasts of a HAR (r;;(;/?le(; ngg:ﬁ\:ﬁ;%%ﬁ neéf;ancctlzrgg:j the previous trading A18
RHARGARCH Forecasts of a R-HAR mnc])(c)lg:emtghionuctl lj:\(r;()e/dleverage effect, GARCH A18
VECM Forecasts of VECM of Highs and Lows with 6 lags A.45
VECMAUG Forecasts of VECM of Highs and Lows with 6 lags enriched by A47

information on changes of closing and opening prices
Table 8: List of models considered for out-of-sample for¢icasevaluation.

An overview of forecasting performance as measbse®MSE and Q-LIKE is
listed in the table below.

Model RMSE Q-LIKE Model RMSE Q-LIKE
RW 0.000027 -3.452526 RSMA22GARCH 0.000016 -3.500115
SMA5 0.000017 -3.496000 AR7 0.000015 -3.500018
SMA22 0.000016 -3.499393 HARGARCH 0.000015 -3.500247
SMAS5GARCH 0.000015 -3.499870 RHARGARCH 0.000015 -3.502932
SMA22GARCH 0.000016 -3.499282 VECM 0.000016 -3.498304
RSMA5GARCH 0.000015 -3.502441 VECMAUG 0.000016 -3.497844

Table 9: Average RMSE and Q-LIKE of one-step-ahead rollingdaw forecasts.

As expected, naive forecasts perform the worstathf models. Mutual
comparisons of other models are impossible dueniall differences in both MSE and

Sie. R% = R and RY? = R | respectively.
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Q-LIKE. An apparently puzzling feature of the rasus the nearly identical forecasting
performance of VECM and VECMAUG, despite the lataving 3x higher AdjR
in-sample.

To assess differences in forecasting accuracyisttatly, we performed
Diebold-Mariano-West test for both MSE and Q-LIK&s$ functions. The resulting
matrix is listed below as Table 10. A negative t&@sttistic in rowA and column B

indicates that modd provides better forecasts than model

T I p 6 T
s 8 £ B 2 £ s g - 9
< < 5 3 ) Q 5 < g 3] S
> s red N Is] N < V] & i}
a n < < s < 4 < > 0
s < = s < T >
n = < 7] T X
(7] [hd ha
RW -6.41 -6.02 -697 -6.14 -7.03 -6.28 -7.21 -6.79 -7.31 -6.82 -6.51
-6.92 -679 -7.46 -672 -751 -6.83 -7.68 -7.31 -7.76 -7.43 -7.15
SMAS -3.67 -3.86 -3.49 -299 -4.49
-3.84 -4.01 -3.17 -3.07 -4.29
-2.08 -2.68
SMA22 5 a3
-2.02 -2.99
SMASGARCH
-2.60 -2.94
SMA22GARCH -2.28 -2.60
-2.24 -2.60
RSMA5GARCH 043 017 208
-2.20
RSMA22GARCH 514
-2.17
AR7 5 o6
HARGARCH 2;2
RHARGARCH ;2; 5'22
VECM

Table 10: Test statistics of Diebold Mariano West test (M@t Q-Like) applied onto ranges forecasts
of different models. Null hypothesis is of equaldcasting power and critical values corresponding t
95% confidence level are -1.96, 1.96. Insignificealues are printed in grey.
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The observed data provide several conclusions:

The first row confirms our findings in Table 10abkmodels provide better than
naive forecasts.

SMAS is significantly dominated by SMAS5GARCH whicls in turn
significantly dominated by RSMAS5GARCH. SMA22 is ndbminated by
SMA22GARCH, but both are (at least according to mme&asure) dominated by
RSMA22GARCH. These rankings are in accordance wxpectations, as in
the first instance we allow for a more flexible nabdnd in the second instance,
we provide a more precise measure of volatilita gsedictor.

Better performance of HARGARCH compared to SMARmsexpected result,
however an impossibility to distinguish HARGARCHrégasts from other
model's forecasts (except for RHARGARCH) is a gsipg feature. As
HARGARCH combines both SMA5GARCH and SMA22GARCH oneuld
expect the combined model to perform better.

The clearly best model is RHARGARCH, which is cdpalf dominating each
model except for RSMASGARCH. From this, we can dode that for proper
out of sample forecasting of daily ranges, usirghiguality volatility measures
Is critical.

Lastly, turning to VECM models we observe a disapiag bad quality of
forecasts. Neither VECM can beat any other modekpixfor RW, moreover
both are significantly worse in terms of forecastlgy than RHARGARCH.
The puzzle of a three-fold increase in Afljef VECMAUG over VECM
in-sample not reflected in an increased forecagigr@prmance is confirmed, as
forecasts of both VECMs cannot be distinguishece fidot of this puzzle can
be investigated by analyzing in-sample range ptiedis of both VECMSs.
Apparently, both VECMs produce nearly identicalsemple range predictions
as illustrated in Figure A.48. The increase in sagaequations’ AdjRthus
brings advantage when modeling daily highs andydaivs, however there is
no guarantee that smaller errors in daily highs dady lows equations in

VECMAUG do not add up to produce larger errorsailydranges foreca$t

32 Simply put, the difference of two large errorgiué same sign can be small, however the difference
two small errors of opposing signs can be large.
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To conclude, in this section we investigate ousafple forecasting
performance of selected models. Models rooted enctirintegration of daily high and
low prices dominate only the random-walk model. &torer, no difference in the
forecasts of base and augmented VECM is found. eige conclusion is that models
incorporating realized ranges as opposed to daitges as predictors perform better
out-of-sample. This confirms the results of oursample investigations. Surprisingly,
a HAR model of daily ranges with a GARCH volatitby-volatility component does not
outperform models based solely on weekly or mon#hvgrage ranges with the same
GARCH component. The clearly best model is an R-HA&el with a GARCH(1,1)-t

volatility-of-volatility component.
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Summary

In this thesis, we enrich the body of knowledgeuked on daily ranges
modeling by several new findings.

A general analysis of our dataset shows that rbhaboedavior significantly
changes on intraday basis. The volume-volatilitatrenship does not hold in general.
Based on surges in traded volume correspondingdmaaging composition of traders
by geographical location, we divide the trading dlatyp separate sessions. For these
sessions, we observe varying degrees of volumeylaelationship, corresponding to
different book thicknesses. Generally, however, atility is significantly more
correlated with average trade size and transaatmmt than with traded volume,
contrary to popularly held belief. An extensiveretation analysis of trading variables
(volatility, trading activity) reveals that thesmading variables measured over different
sessions convey unique information, which is réjiadggregated by daily volatility
measures. In other words, considering daily valetd and session variables separately
does not yield any gain as daily volatilities athga@mbody all information useful for
next-day volatility forecasting.

Regressing daily ranges on range-based volagktymates (Garman & Klass,
Rogers & Satchell) is not expected to yield benefit our investigations show that all
considered range-based estimators provide the $arakof efficiency on real-world
data. This is in sharp contrast with theoreticauhes, where Garman & Klass and
Rogers &Satchell estimators show significant edfindy gains compared to daily ranges.
Specifically, approximately 40% of information prded by herein considered
range-based estimators as well as squared daiyesans pure noise, while only 60% of
information is related to the variance of the pgemerating process.

Using highly efficient realized ranges for the giotion of daily ranges shows
small gains in terms of in-sample fit. Out-of-samfibrecasting performance, however,
shows advantages of regressing daily ranges oifz@datanges. In accordance with
intuition, realized ranges and daily ranges arenfouo contain the same useful
information and the difference of these measuresiis noise.

While the information content of lagged sessiomduilly reflected in lagged
daily volatilities, information provided by curreday's sessions can be used to improve
end-of-day daily volatility forecasts. Specificalifwe utilize all up-to-date information

provided by the market, traders active in the Acarisessions can gain at least 20-25
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percentage points of AdfRcompared to their Asian counterparts. Variablesstmo
important for this gradual updating of volatilitprécasts are model-dependent. In
a HAR model of daily ranges and realized rangesreattday session ranges and
realized ranges are dominant in terms of predighower. In a VECM of daily highs
and daily lows, however, the most actual sessidio'sing price is the most relevant
predictor.

Comparison of models based on out-of-sample fetawa performance reveals
several points. Firstly, even the simplest modeised on average weekly or monthly
volatility can beat the random-walk specificati@urprisingly, many models considered
in volatility related literature provide forecasit quality only comparable to forecasts
of these simplest models. Namely, ARMA-GARCH andR4&ARCH models of daily
ranges can only beat a model which predicts theé day's volatility to be equal to
average daily range of the last week. An R-HAR-GAR@odel utilizing realized
ranges for the prediction of daily ranges is thedetmf choice, as it can statistically
beat nearly all models considered in this thesied®is based on the co-integration of
daily highs and daily lows are reported in literatto be of great usefulness in terms of
trading strategy profitability. However, on our aset, their high quality in-sample fits
pertain only to daily high and daily low prices netidg. On out-of-sample daily ranges
forecasting, VECM models are only capable of begtive random-walk specification.

As our main motivation for modeling daily rangeasmo provide for a way of
money management to intraday traders, a logicédvieup to our work would be to
investigate out-of-sample forecasting propertiegratiually updated models throughout
the day. Next, drawing upon the results of LeitchT&nner (1998), comparisons of
models chosen by error-minimization as opposedréditpnaximization might bring
interesting results. As the occurrence of newsasas causes jumps in prices as well as
sessions' ranges and realized ranges, includingmattion on news releases might bring
additional insights and improvements of cumulatreatility forecast updates. Possible
methods of investigating these might be threshotdlets, whereby an occurrence of
a news release is not modeled via a dummy variapeesenting a fundamental news
being released. Instead, an above threshold sexssige/realized range could be taken
as a proxy of a news event impact. Possible sgitkoef news releases into increased or
decreased volatilities of other sessions as weNviasle days could be investigated.
Lastly, a part of research suggests that orderlanba (a measure of whether buyers or

sellers are more aggressive in the market at thmend is a trading activity measure
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that needs to be taken into account, complemertergin discussed trading activity
measures. Hence, investigations of the order imioalamight contribute to our

understanding of volume-volatility relationship amdight provide novel ways of
volatility prediction.
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Contents of CD

The attached compact-disc contains the whole eatéstal data.gdt in
a format readable by gretl. All results can be ioapéd using this dataset. Thiearr
directory contains MLE scripts for the estimatianis<CARR with Exponentially as well
as Weibull distributed disturbance terms. Lastlge t/rolling_forecasts directory
contains all scripts necessary for automatic getoeraof out-of-sample forecasts
presented in Section 6. All other models testedample were created using gretl's
built-in tools (OLS, VECM), hence no scripts areyded for these.
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Appendix

Delivery Start Date End Date Delivery Start Date End Date
12-Jul 09.11.2007 11.12.2007 3-Oct 11.12.2009 10.03.2010
3-Aug 12.12.2007 12.03.2008 6-Oct 11.03.2010 10.06.2010
6-Aug 13.03.2008 12.06.2008 9-Oct 11.06.2010 09.09.2010
9-Aug 13.06.2008 11.09.2008 12-Oct 10.09.2010 09.12.2010
12-Aug 12.09.2008 11.12.2008 3-Nov 10.12.2010 10.03.2011
3-Sep 12.12.2008 11.03.2009 6-Nov 11.03.2011 09.06.2011
6-Sep 12.03.2009 10.06.2009 9-Nov 10.06.2011 15.09.2011
9-Sep 11.06.2009 09.09.2009 12-Nov 16.09.2011 09.11.2011
12-Sep 10.09.2009 10.12.2009

Table A.1: List of cut-off dates for the construction of a inoous contract (DD.MM.YYYY).
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Figure A.3: Division of a trading day into trading sessions.

12:05:00

12:35:00

13:05:00
13:35:00
14:05:00
14:35:00
15:05:00

coefficient std. error t-ratio p-value
c 0.0010 0.00008 12.5812 <0.00001
R 1.30378 0.00594  219.2555  <0.00001
Log-Lik 5479.26 AdiR®>  0.98
Table A.2: Estimation results for model (17).
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FigureA.4: Frequency distribution of daily ranges and sessioiges with gamma p.d.f. giving the best fit.
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Figure A.5: Time plot of daily ranges (NovV'®007 - Nov & 2011).
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Table A.7: Correlations of ranges with traded volume, nunadféransactions and average trade size for diffesessions,
including ETH session. For example, the correlatibpreAsian range and preAsian volume is 0.5312.
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Figure A.6: ACF, PACF of daily ranges.
Volume Transactions Trade Size

All day 0.2470 0.3936 -0.4298
preAsian 0.5312 0.5780 -0.0968
Asian 0.4853 0.5260 -0.1518
preEurope 0.3976 0.3362 -0.1979
Europe 0.4365 0.5285 -0.3057
preAmerica 0.4112 0.5425 -0.3739
Americal 0.4930 0.5776 -0.3007
America2 0.3746 0.5127 -0.4041
postAmerical 0.5265 0.6404 -0.3571
postAmerica2 0.1731 0.2106 -0.0688




Volume Transactions Range Trade Size

preAsian 0.1024 0.1723 0.4506 -0.2549
Asian 0.1524 0.2229 0.5422 -0.2976
preEuropean 0.1098 0.2178 0.4981 -0.3741
European 0.1489 0.2651 0.6140 -0.4251
preAmerican 0.1890 0.3221 0.5320 -0.4153
Americanl 0.1611 0.2625 0.5408 -0.3879
American2 0.2348 0.3825 0.7027 -0.4196
postAmericanl 0.3018 0.4046 0.5962 -0.3762
postAmerican2 0.1640 0.2561 0.4474 -0.2488

Table A.8: Correlations of daily ranges with volume, trangattount and average trade size of different sessio
of the current day. For example, correlation ofydainges with ranges of preAsian session is 0.4506

Session Variable Lag
1 2 3 4 5 6 7 8
Volume
preAsian Transactions -0.3379 -0.3349 -0.3246 -0.3172 -0.3141 -0.3125 -0.3025 -0.3020
Range 0.3185 0.2978 0.3041 0.3212 0.2946 0.2974 0.3069 0.2858
Trade Size -0.2572 -0.2447 -0.2305 -0.2551 -0.2512 -0.2109 -0.2320 -0.2257
Volume
Asian Transactions 0.0837 0.0879 0.0809 0.0889 0.0814 0.0634 0.0926 0.0656
Range 0.3890 0.3796 0.4013 0.3740 0.3839 0.3496 0.3354 0.3526
Trade Size -0.3208 -0.3013 -0.2834 -0.3005 -0.2840 -0.2534 -0.2449 -0.2589
Volume -0.0639
preEuropean Transactions 0.0763 0.0863 0.0742
Range 0.3090 0.3016 0.2921 0.3152 0.2964 0.2657 0.2959 0.2363
Trade Size -0.3745 -0.3847 -0.3837 -0.3663 -0.3720 -0.3465 -0.3201 -0.3430
Volume -0.0707
European Transactions 0.0984 0.1271 0.0709 0.0766 0.0533 0.0822
Range 0.3295 0.3685 0.3203 0.3650 0.2992 0.2642 0.3197 0.2703
Trade Size -0.4701 -0.4609 -0.4542 -0.4429 -0.4409 -0.3946 -0.4026 -0.3967
Volume -0.0637
preAmerican Transactions 0.1358 0.1445 0.0805 0.1025 0.0785 0.1082 0.0601
Range 0.3227 0.3388 0.3004 0.3393 0.2743 0.2833 0.3027 0.2630
Trade Size -0.4205 -0.4442 -0.4077 -0.3926 -0.4043 -0.3787 -0.3617 -0.3565
Volume -0.0639
Americani Transactions 0.1018 0.0903 0.0547 0.0811 0.0800
Range 0.3195 0.3176 0.3022 0.3401 0.2626 0.3119 0.2543 0.2240
Trade Size -0.4073 -0.4016 -0.3829 -0.3826 -0.3686 -0.3514 -0.3362 -0.3421
Volume
American? Transactions 0.1819 0.1711 0.1319 0.1284 0.1254 0.1368 0.1499 0.0839
Range 0.3942 0.3662 0.3571 0.3510 0.3534 0.3325 0.3407 0.3021
Trade Size -0.4495 -0.4305 -0.4231 -0.4205 -0.4034 -0.3909 -0.3625 -0.3848
Volume 0.1310 0.1397 0.1015 0.0861 0.0830 0.1007 0.1620 0.0726
postAmerican1 Transactions 0.2363 0.2398 0.1920 0.1759 0.1730 0.1835 0.2306 0.1559
Range 0.4389 0.4173 0.4172 0.4040 0.3825 0.3839 0.4234 0.3568
Trade Size -0.3700 -0.3421 -0.3387 -0.3292 -0.3347 -0.3311 -0.2674 -0.2832
Volume
postAmerican2 Transactions 0.0983 0.0889 0.0943 0.0946 0.0818 0.0988 0.1242 0.0643
Range 0.2977 0.2405 0.3014 0.2582 0.2616 0.2923 0.2725 0.2635
Trade Size -0.2340 -0.2503 -0.2506 -0.2513 -0.2339 -0.2359 -0.2105 -0.2123

Table A.9: Correlations of daily ranges with lagged tradingafales of different sessions. For example, theatation of today's range and yesterday's preAs@arsaction
count is -0.3379. All values significant at leastap95% level are printed in black.
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Figure A.10: Time plots of daily ranges, square root of daiglized ranges
and daily realized volatilities constructed fronmiaute returns.
Session Variable Lag
0 1 2 3 4 5 6 7 8
Range 1.0000 0.4471 0.4673 0.4388 0.4254 0.3918 0.4142 0.4280 0.3545
ETH RV 0.7659 0.5889 0.5810 0.5486 0.5499 0.4989 0.5105 0.5024 0.4669
RR 0.7584 0.5914 0.5873 0.5504 0.5539 0.5048 0.5176 0.5149 0.4684
Range 0.4506 0.3185 0.2978 0.3041 0.3212 0.2946 0.2974 0.3069 0.2858
preAsian RV 0.4817 0.4276 0.3959 0.4101 0.3885 0.3733 0.3922 0.3820 0.3638
RR 0.5017 0.4152 0.3860 0.3993 0.3986 0.3910 0.3866 0.3858 0.3645
Range 0.5422 0.3890 0.3796 0.4013 0.3740 0.3839 0.3496 0.3354 0.3526
Asian RV 0.5217 0.4408 0.4900 0.4694 0.4553 0.4331 0.4254 0.4101 0.4044
RR 0.5464 0.4557 0.4997 0.4711 0.4665 0.4330 0.4250 0.4162 0.4063
Range 0.4981 0.3090 0.3016 0.2921 0.3152 0.2964 0.2657 0.2959 0.2363
preEuropean RV 0.5979 0.4368 0.4197 0.4036 0.4224 0.3836 0.4020 0.4002 0.3492
RR 0.6223 0.4762 0.4826 0.4433 0.4654 0.4350 0.4547 0.4406 0.4096
Range 0.6140 0.3295 0.3685 0.3203 0.3650 0.2992 0.2642 0.3197 0.2703
European RV 0.5999 0.4394 0.4541 0.4360 0.4358 0.3613 0.3623 0.3844 0.3525
RR 0.6394 0.4790 0.5012 0.4731 0.4674 0.3969 0.4102 0.4365 0.3795
Range 0.5320 0.3227 0.3388 0.3004 0.3393 0.2743 0.2833 0.3027 0.2630
preAmerican RV 0.5174 0.3765 0.4199 0.3233 0.3372 0.3063 0.3457 0.3228 0.2920
RR 0.5068 0.3539 0.4053 0.3271 0.3222 0.3367 0.3307 0.3220 0.2750
Range 0.5408 0.3195 0.3176 0.3022 0.3401 0.2626 0.3119 0.2543 0.2240
Americanl RV 0.4874 0.3402 0.3609 0.3181 0.3485 0.2817 0.3516 0.2604 0.2642
RR 0.4981 0.3792 0.3796 0.3356 0.3905 0.3097 0.3920 0.3149 0.3030
Range 0.7027 0.3942 0.3662 0.3571 0.3510 0.3534 0.3325 0.3407 0.3021
American2 RV 0.7059 0.5503 0.4835 0.4623 0.4664 0.4276 0.4201 0.4384 0.3964
RR 0.6935 0.5492 0.4956 0.4759 0.4704 0.4335 0.4297 0.4467 0.3967
Range 0.5962 0.4389 0.4173 0.4172 0.4040 0.3825 0.3839 0.4234 0.3568
postAmericanl RV 0.5557 0.4230 0.3709 0.3792 0.3598 0.3549 0.3355 0.3587 0.3195
RR 0.5910 0.4643 0.4237 0.3999 0.3952 0.3719 0.3633 0.3995 0.3595
Range 0.4474 0.2977 0.2405 0.3014 0.2582 0.2616 0.2923 0.2725 0.2635
postAmerican2 RV 0.4883 0.3420 0.3423 0.3307 0.3186 0.3412 0.3372 0.3650 0.3009
RR 0.4777 0.3475 0.3336 0.3506 0.3224 0.3365 0.3378 0.3494 0.2938

Table A.11: Correlations of ETH (daily) ranges with differeessions' lagged volatility measures.
For example, the correlation of today's daily raagd yesterday's preAsian realized range is 0.4152.



LHS Variable a B AdjR? Dataset Chow p-value

0.000028 0.5681 0.58 whole 0.0000
RRo 0.000029 0.5921 0.61 1st half 0.0000
0.000032 0.4302 0.38 2nd half 0.0003
0.000026 0.5888 0.60 whole 0.0000
RVo 0.000028 0.6183 0.64 1st half 0.0007
0.000031 0.4178 0.39 2nd half 0.0019

TableA.12: OLS results ofVolMeasure = a + 2 (R%) /4In(2) + £ (model (19)). In Chow test, data sets were alvieaysed,
i.e. for example in the second row, the first ldilflataset was halved and Chow test was carriedrofirst quarters of the whole dataset.

Regressor Dependent variable
(Rlog)2/4|n(2) (Rlog)2/4|n(2) (GGK)Z (O_GK)Z (GRS)Z (GRS)Z
c -0.0000009 -0.0000003 -0.0000036 -0.0000035 -0.0000041 -0.0000045
0.0000027 0.0000020 0.0000024 0.0000021 0.0000037 0.0000037
RR 1.0155 0.9837 1.0640
D
0.0566 0.0517 0.0744
RV 1.0165 0.9918 1.0640
D
0.0399 0.0453 0.0744
D2
AdjR 0.5765 0.5981 0.5453 0.5740 0.5991 0.5991
Regressor Dependent variable
RRD RVD
c 0.0000277 0.0000313 0.0000281 0.0000258 0.0000292 0.0000256
0.0000024 0.0000032 0.0000027 0.0000024 0.0000032 0.0000032
(R°)/4In(2) 0.5680 0.5888
0.0368 0.0391
(%2 0.5547 0.5791
0.0551 0.0588

(@) 0.5634 0.5791
0.0387 0.0588
AdjR? 0.5765 0.5453 0.5991 0.5981 0.5740 0.5740

Table A.13: Results of regressing range-based measuresiahearon realized measures of variance and vicavetAC method for standard errors, bold estimates
significant on 99% level.

Mean Equation

Variable coefficient std. error z-Statistic p-value.
Cc 0.0100 0.0005 19.7114 0.0000
AR(1) 0.1308 0.0309 4.2265 0.0000
AR(2) 0.1520 0.0302 5.0327 0.0000
AR(3) 0.0679 0.0318 2.1329 0.0329
AR(4) 0.1136 0.0313 3.6305 0.0003
AR(5) 0.0699 0.0312 2.2372 0.0253
AR(6) 0.0858 0.0311 2.7556 0.0059
AR(7) 0.1243 0.0305 4.0771 0.0000

Variance Equation

Variable coefficient std. error z-Statistic p-value
Cc 0.0000 0.0000 1.8755 0.0607
RESID(-1)"2 0.0444 0.0148 2.9966 0.0027
GARCH(-1) 0.9378 0.0197 47.5484 0.0000
T-DIST. DOF 5.6714 0.9829 5.7700 0.0000
AdjR? 0.3412 Log-lik 4049.6090

Table A.14: Estimation results of ARMA(7)-GARCH (1,1) -t appli¢o daily ranges



Quantiles of Normal

Quantiles of Student's t

Table A.15: Q-Q plots of residuals from ARMA(7)-GARCH(1,1) wittormally (left)

Model

and Student (right) distributed disturbances. No#idetter fit in the right figure.

Range

RR

RHS variables

Trade Size

Trans. Count

HAR
R-HAR

LHAR
LHAR-R
LHAR-S
LHAR-C

LHAR-SC
LHAR-RSC

R-LHAR
R-LHAR-S
R-LHAR-C

R-LHAR-SC

X

X

X

X

X

X

X

Table A.16: List of modified HAR models. For variance modelee explained variable is squared daily range andt&fds for realized range.
For volatility models we explain daily ranges arid &tands for square root of realized ranges. dstér the leverage effect.

Variance Equation

Volatility Equation

HAR R-HAR HAR-R HAR R-HAR HAR-R
c 0.0000 0.0000 0.0000 0.0014 0.0010 0.0011
RM(-1) 0.0482 -0.0016 0.0466 -0.0023
R®(-1) 0.4356 -0.0571 0.3958 -0.0450
R®(-1) 0.3884 -0.1535 0.4444 -0.1942
RR™M(-1) 0.7952 0.7857 0.4807 0.4957
RR®)(-1) 1.3463 1.1959 0.6917 0.7783
RR®(-1) 0.4086 0.8406 0.2972 0.5784
AdjR? 0.3346 0.3684 0.3668 0.3560 0.3910 0.3900

Table A.17: Investigation of relationships between daily ranged realized ranges from HAR perspective.

Parameter estimates significant on 95% criticagllewe printed in bold.
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c 0.0014  0.0010 0.0011  0.0037 0.0035 0.0066 0.0138  0.0017 0.0011  0.0061 0.0061 0.0131  0.0142 0.0011 0.0012 0.0107  0.0122
*% * *% *% * *% *% *
R9®(1) 0.0466 -0.0023 0.0623  0.0188 0.0325 0.0028 0.0745 0.0247 0.0892 0.0485 0.0616  0.0293
*
R°9G)(1) 0.3958 -0.0450 0.3201  0.3783  0.2911 -0.0368 0.3335 -0.0505 0.2668 0.3293  0.2568  -0.0422
*kk *kk *kk *% *kk *% *% *
R°92)(_1) 0.4444 -0.1942  0.4495  0.4959 05103 -0.3870  0.4410 -0.2068 0.3970  0.4803  0.4313  -0.4324
*kk *kk *kk *kk *kk *kk *kk *kk
19(¢-1) 0.0876  0.0561 0.0878 0.0855 0.0853 0.0548 0.0530 0.0546  0.0526  0.0533
*% *% *% *%
19(-1) -0.1362 -0.1145 -0.1476 -0.1195 -0.1291 -0.1390 -0.0973 -0.1063 -0.1068  -0.1087
* *
1®9(-1) -0.4054 -0.0025 -0.4092 -0.4293 -0.4454  0.0366 -0.0584 -0.0509 -0.0383  -0.0601
* *
RR®(-1) 0.4807  0.4957 0.5561 0.4384 0.4776  0.4735  0.4972 04920 05174
*k*k *kk *% *% *% *kk *k%k *% *%
RR®)(-1) 0.6917  0.7783 0.8932 0.7723 0.9090 0.6587 05108 0.9664  0.8166
*kk * * * *kk *% *kk *
RR®(-1) 0.2972  0.5784 0.6833 0.6268 07761 03272  0.4368  0.0308  0.1066
* *% *%
size®(-1) -0.0023 -0.0025  0.0002 -0.0019 -0.0022  0.0000 0.0007 0.0005
size®(-1) -0.0061 -0.0065  -0.0044 -0.0066 -0.0068  -0.0048 -0.0065 -0.0039
size®?(-1) 0.0071 0.0076  0.0036 0.0060 0.0061  0.0040 0.0058 0.0026
* *
count®(-1) 0.0010  0.0011  -0.0004 0.0009  0.0010  -0.0003 -0.0001  -0.0002
count®(-1) 0.0001  0.0002  -0.0021 -0.0002 -0.0001  -0.0023 -0.0029  -0.0023
count®?(-1) -0.0013  -0.0016  0.0014 -0.0012  -0.0014  0.0015 0.0022  0.0016
AdjR? 0.3560 0.3910  0.3900 0.3581  0.3556  0.3586  0.3922  0.3648 0.3902 0.3676 0.3646  0.3680  0.3927 0.3913  0.3912  0.3939  0.3925

Table A.18: Estimation results of different HAR model spegdtions for daily ranges (volatility).
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c 0.0000 0.0000 0.0000 0.0001  0.0001  0.0003 0.0005 0.0000 0.0000 0.0001  0.0002 0.0005 0.0005 0.0000 0.0000  0.0004  0.0005
*% *% *% * * * *% * *% *%
R9®(-1) 0.0482 -0.0016 0.0598  0.0261  0.0349 -0.0027 0.0864 0.0395 0.1021  0.0614 0.0684  0.0366
*
R°9®)(-1) 0.4356 -0.0571 0.3801 0.4576  0.4014 0.0621 03866 0.0465 0.3540 0.4244  0.3819  0.0590
*kk *kk *kk *% *kk *% *kk *%
R'°92)(_1) 0.3884 -0.1535  0.3690  0.3929 03623 -0.2991 0.3712 -0.1734 0.3103  0.3635 0.2794  -0.3309
*k*k *k%k *kk *% *kk *% *k*k *
19(-1) 0.0046  0.0037 0.0047 0.0047 0.0046  0.0037 0.0033 0.0034 0.0034  0.0035
*kk *% *kk *kk *kk *% *% *% *% *%
19(-1) -0.0046  -0.0044 -0.0052 -0.0043 -0.0045 -0.0055 -0.0037 -0.0039 -0.0045  -0.0044
*
1©92)(-1) -0.0161 0.0010 -0.0158 -0.0172 -0.0182 0.0008  0.0004  0.0004  0.0002  -0.0010
*
RR®(-1) 0.7952  0.7857 0.7751 0.6911 0.6271  0.8202 0.8595 0.7280  0.7486
* * *
RR®(-1) 1.3463  1.1959 1.4415 1.2180 15039  1.3317 11654  1.8385  1.7166
*% *% * *kk *%
RR®(-1) 0.4086  0.8406 0.9069 0.9275 0.9978 04339 05105 0.0470  0.0151
size™(-1) -0.0001 -0.0001  0.0000 0.0002 -0.0001  0.0000 0.0001 0.0000
*%
size®(-1) -0.0002 -0.0002  -0.0001 -0.0004 -0.0002  -0.0001 -0.0002 -0.0001
*%
size®(-1) 0.0002 0.0002  0.0001 0.0002 0.0001  0.0001 0.0001 0.0000
count®(-1) 0.0000  0.0000  0.0000 0.0000  0.0000  0.0000 0.0000  0.0000
* * * *%
count®(-1) 0.0000  0.0000  -0.0001 -0.0001  -0.0001  -0.0001 -0.0001  -0.0001
* *% *
count®(-1) 0.0000  0.0000  0.0000 0.0000  0.0000  0.0000 0.0001  0.0001
AdjR? 0.3346 0.3684  0.3668  0.3362  0.3340  0.3364  0.3687 0.3485 0.3705 03514 0.3488 0.3516 0.3728 0.3714 03705 0.3746  0.3732

Table A.19: Estimation results of different HAR model spemdfions for squared daily ranges (variance).
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c 0.0004  0.0006 0.0004 -0.0002 0.0022 0.0016 0.0018 0.0005 0.0005 0.0009 0.0029  0.0038 0.0042 0.0008 0.0033  0.0003  0.0038
*% *% *% *kk *kk * *kk *kk
R%M(-1) 0.4586 0.3600  0.4691  0.3921 04149 03390 0.4072 02978 0.4203 0.3355 0.3582  0.2634
*k*k *k%k *k%k *kk *k%k *k%k *kk *kk *kk *kk *kk *kk
R%G)(-1) 0.3304 0.2886  0.3148  0.4671 04360 03292 0.2996 02206 0.2750 0.4337 0.3893  0.2344
*k*k *% *k%k *kk *k%k *% *kk * *kk *k*k *kk
R932(.1) 0.1605 0.2542  0.1816  0.0948  0.1146 02937  0.1999 02755 0.1963 0.1443  0.1424  0.3420
*k*k *k%k *kk * *kk *% * *
19(-1) -0.0032 0.0167 -0.0009 -0.0004 0.0006 0.0179  0.0335 0.0337 00314 0.0314
*% *% *% *%
19(-1) -0.1039  -0.1174 -0.1066 -0.1086 -0.1089 -0.1231 -0.1396 -0.1436 -0.1216 -0.1252
*kk *kk *kk *kk *kk *kk *kk *kk *kk *kk
1©2)(-1) -0.0934 -0.1242 -0.0960 -0.0942 -0.1042 -0.1336 -0.2949 -0.3077 -0.3026  -0.3173
*% *% *k%k *%kk *%kk *k%k
RR™(-1) 0.0916  0.0493 0.0432 0.0566 0.0516  0.0964  0.1013  0.0666  0.0713
*kk *kk *% *kk *% *kk *kk *kk *kk
RR®(-1) 0.2503  0.0362 0.0492 0.0520 0.0703  0.2029 0.1866  0.1955  0.1754
*kk *kk *kk *kk *kk
RR®)(-1) 0.2367  -0.0554 -0.0924 -0.0372 -0.0973  0.2379 01975 02769  0.2417
*kk *kk *kk *kk *kk
size™(-1) 0.0017 0.0012  0.0007 0.0015 0.0010  0.0004 -0.0007 -0.0009
*% *%
size®)(-1) -0.0025 -0.0014  -0.0015 -0.0029 -0.0019  -0.0021 -0.0019 -0.0020
*% *kk
size®(-1) 0.0011 0.0004  0.0009 0.0011 0.0005  0.0011 0.0010 0.0014
count®(-1) 0.0005  0.0004  0.0003 0.0006  0.0004  0.0004 0.0011  0.0011
* * *%kk *k%k
count®(-1) -0.0011  -0.0009  -0.0007 -0.0011  -0.0008  -0.0006 -0.0001  -0.0002
*% *%
count®(-1) 0.0004  0.0003  0.0002 0.0003  0.0002  0.0000 -0.0009  -0.0010
AdjR? 0.7470 07040  0.7515 0.7476  0.7479  0.7476 07512  0.7564 0.7622 07568 0.7576  0.7573  0.7627  0.7346 07366  0.7415  0.7439

Table A.20: Estimation results of different HAR model spegifions for square root of realized ranges (vatiatil
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c 0.0000  0.0000  0.0000  0.0000 0.0000 0.0000  0.0000 0.0000 0.0000 0.0000 0.0001  0.0001  0.0001 0.0000 0.0000 0.0000  0.0001
*% *kk *% * *% *%
R%M(-1) 0.4976 0.3962  0.5113 0.4607 0.4831  0.4297 04533  0.3591  0.4690 0.4112 04329  0.3154
*k*k *kk *k%k *k*k *k%k *k*k *k*k *kk *k*k *k%k *kk *k%
R%G)(-1) 0.2755 0.2489  0.2527 0.3567 0.3151  0.2175 0.2492  0.1959  0.2227 0.3470 0.3058  0.1518
*kk *% *kk *kk *% *% *kk *kk
R"°9#2(.1) 0.1708 0.2458  0.1851 0.1297 0.1487  0.2315 0.1978  0.2244  0.1862  0.1465 0.1291  0.2660
*k*k *k%k *% *% *k*k *k*k *% *
19(-1) 0.0003  0.0007 0.0003 0.0003 0.0004 0.0008 0.0010 0.0010 0.0011  0.0011
* *kk *kk *kk *kk
19(-1) -0.0023  -0.0025 -0.0024 -0.0025 -0.0025 -0.0028 -0.0030 -0.0031 -0.0028  -0.0028
*k*k *kk *k*k *k%k *kk *k%k *k%k *kk *kk *kk
1©2)(-1) -0.0022 -0.0029 -0.0023 -0.0023 -0.0026 -0.0037 -0.0076 -0.0078 -0.0078  -0.0082
* *% *kk *kk *kk *kk
RR®(-1) 0.0629  0.0334 0.0008 0.0012 0.0387 0.0673 0.0692 0.0560  0.0577
*k*k *% *% *% *k%k *kk *kk *kk
RR®(-1) 0.1237  0.0100 0.0012 0.0006 0.0369 01024 00948 0.1085  0.1003
*kk *kk *kk *kk *kk
RR®(-1) 0.1384  -0.0237 -0.0011 -0.0003 -0.0326  0.1288  0.1067  0.1350  0.1100
*k*k *k%k *%kk *kk *kk
size®(-1) 0.0000 0.0000  0.0000 0.0000 0.0000  0.0000 0.0000 0.0000
*% * *%
size®)(-1) -0.0001 0.0000  0.0000 -0.0001 -0.0001  -0.0001 0.0000 0.0000
*% *k*k *% *
size®?(-1) 0.0000 0.0000  0.0000 0.0000 0.0000  0.0000 0.0000 0.0000
count®(-1) 0.0000 0.0000  0.0000 0.0000  0.0000  0.0000 0.0000  0.0000
* * *kk *kk
count®(-1) 0.0000 0.0000  0.0000 0.0000  0.0000  0.0000 0.0000  0.0000
*% *% *
count®(-1) 0.0000 0.0000  0.0000 0.0000  0.0000  0.0000 0.0000  0.0000
AdjR? 0.7234  0.6676  0.7295  0.7239 0.7238 0.7237 07272 07340  0.7401 07347 0.7352  0.7355  0.7451  0.7132 07154  0.7178  0.7210

Table A.21: Estimation results of different HAR model spegafions for realized ranges (variance).



HAR HAR +R  HAR +RR HAR+RV  HAR+size  HAR+count  HAR +vol
c 0.0014 0.0020 0.0017 0.0017 0.0062 -0.0015 -0.0007
*% *kk *kk *kk *kk
R°9M(.1) 0.0466 -0.0373 -0.0775 -0.0931 0.0627 0.0305 0.0313
* *%
R°9G)(-1) 0.3958 0.3469 0.1689 0.1441 0.3561 0.4005 0.4003
*kk *kk *kk *kk *kk
R"°9#2(.1) 0.4444 0.3891 0.2741 0.2931 0.3643 0.4377 0.4514
*kk *kk *kk *kk *kk *kk *kk
preAsian(-1) -0.0411 0.0534 0.3548 0.0005 -0.0002 -0.0001
Asian(-1) 0.1986 0.3623 0.2977 -0.0010 0.0002 0.0002
*%
preEurope(-1) -0.0675 0.1755 0.1834 0.0022 0.0000 0.0001
Europe(-1) -0.0607 0.1043 0.0138 -0.0066 -0.0004 -0.0007
*kk *
preAmerican(-1) -0.0624 -0.1394 0.0863 0.0031 -0.0001 0.0000
Americal(-1) 0.0759 0.3148 0.2586 0.0024 0.0003 0.0003
America2(-1) 0.0780 0.6316 0.7355 -0.0049 0.0002 0.0000
*k*k *kk *%
postAm1(-1) 0.3169 0.6446 0.5111 0.0000 0.0005 0.0003
*% *
postAm2(-1) 0.1168 0.4086 0.2390 0.0018 -0.0002 0.0001
*%
AdjR? 0.3557 0.3638 0.3864 0.3888 0.3618 0.3527 0.3529
Table A.22: Estimation results of enriching a HAR of dailynges (volatility) with yesterday's sessions vagabl
HAR HAR +R°  HAR +RR HAR+RV  HAR+size HAR+count  HAR +vol
c 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000
*% *% *k%k *%
R°%M(-1) 0.0489 -0.0097 -0.0893 -0.1134 0.0604 0.0385 0.0389
* *%
R°9G)(-1) 0.4357 0.4284 0.3034 0.2573 0.4033 0.4483 0.4467
*kk * * *kk *kk *kk
R"9@2(.1) 0.3885 0.3578 0.2337 0.2364 0.3060 0.3711 0.3809
*kk *% *% *kk *kk *kk
preAsian(-1) 0.4144 3.3519 6.0777 0.0000 0.0000 0.0000
Asian(-1) 0.2719 0.6564 0.3899 0.0000 0.0000 0.0000
preEurope(-1) -0.5601 0.6404 1.7077 0.0001 0.0000 0.0000
Europe(-1) -0.1385 0.5418 0.1000 -0.0002 0.0000 0.0000
*kk *
preAmerican(-1) -0.5208 -2.6053 -0.8287 0.0001 0.0000 0.0000
*%
Americal(-1) 0.1701 1.2421 0.8061 0.0001 0.0000 0.0000
America2(-1) 0.0956 2.1567 2.6786 -0.0002 0.0000 0.0000
*kk *%
postAm1(-1) 1.0767 5.8685 4.4220 0.0000 0.0000 0.0000
*kk
postAm2(-1) 0.1917 -1.3047 -2.5796 0.0001 0.0000 0.0000
*%
AdjR? 0.3346 0.3432 0.3713 0.3790 0.3402 0.3320 0.3317

Table A.23: Estimation results of enriching a HAR of dailyges (variance) with yesterday's sessions variables



HAR HAR +R°®  HAR+RR HAR+RV  HAR+size  HAR +count HAR + vol
c 0.0004 0.0006 0.0008 0.0007 -0.0006 0.0000 -0.0004
*% *kk *kk *k%k
RRM(-1) 0.4586 0.4230 -1.1137 -0.1061 0.4581 0.4492 0.4472
*kk *k%k *kk *kk *k%k *kk
RR®)(-1) 0.3304 0.3170 0.2191 0.2615 0.3318 0.3325 0.3369
*kk *kk *kk *k%k *kk *k%k *kk
RR®(-1) 0.1605 0.1488 0.1114 0.1597 0.1850 0.1519 0.1604
*kk *kk *% *kk *kk *kk *kk
preAsian(-1) -0.0223 0.3710 0.2023 0.0000 0.0000 0.0000
*kk *%
Asian(-1) 0.0298 0.6418 0.2441 -0.0006 -0.0002 -0.0002
*kk *k%k
preEurope(-1) 0.0000 0.4778 0.2108 0.0002 0.0001 0.0001
*k*k *%
Europe(-1) -0.0179 0.5842 0.1276 -0.0010 -0.0001 -0.0002
*kk *%
preAmerican(-1) 0.0162 0.4367 0.1696 0.0013 0.0002 0.0003
*kk *% * *
Americal(-1) -0.0219 0.6405 0.2005 0.0006 -0.0002 -0.0002
*kk *k%k
America2(-1) -0.0077 0.8811 0.2822 -0.0005 0.0000 0.0000
*kk *k%k
postAm1(-1) 0.1508 0.7032 0.4030 0.0000 0.0002 0.0002
*kk *kk *kk
postAm2(-1) 0.0221 0.5867 0.3211 0.0005 0.0002 0.0002
*kk *kk *
AdjR? 0.7470 0.7511 0.7681 0.7642 0.7480 0.7489 0.7498
Table A.24: Estimation results of enriching a HAR of realizadiges (volatility) with yesterday's sessionsatags.
HAR HAR +R®®  HAR+RR HAR+RV  HAR+size  HAR +count HAR + vol
c 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
*% *kk *kk *k%k
RR®(-1) 0.2755 0.4925 -0.6123 -0.0242 0.4892 0.4971 0.4870
*kk *k%k *kk *k%k *kk
RR®)(-1) 0.1708 0.2385 0.2377 0.2327 0.2797 0.2730 0.2836
*kk *kk *% *% *kk *k%k *kk
RR®(-1) 0.4976 0.1728 0.1642 0.1853 0.1607 0.1910 0.1678
*kk *kk *kk *kk *kk *kk *kk
preAsian(-1) 0.0081 1.3003 1.1314 0.0000 0.0000 0.0000
*%
Asian(-1) 0.0953 1.1690 0.5978 0.0000 0.0000 0.0000
*% * *%
preEurope(-1) -0.1028 2.2815 1.2675 0.0000 0.0000 0.0000
*kk *%
Europe(-1) -0.0497 0.7993 0.0942 0.0000 0.0000 0.0000
*
preAmerican(-1) 0.0013 0.7431 0.4165 0.0000 0.0000 0.0000
* *%
Americal(-1) -0.0137 0.9945 0.4091 0.0000 0.0000 0.0000
*
America2(-1) -0.0194 0.9788 0.4479 0.0000 0.0000 0.0000
*
postAm1(-1) 0.2992 2.8740 1.6037 0.0000 0.0000 0.0000
* *kk *
postAm2(-1) 0.0337 2.1294 1.2603 0.0000 0.0000 0.0000
*
AdjR? 0.7234 0.7331 0.7357 0.7423 0.7245 0.7244 0.7255

Table A.25: Estimation results of enriching a HAR of realizadges (variance) with yesterday's sessions \lasab



HAR + preAs + As + preEu + Eu + preAm +Aml + Am2 + postAm1l + postAm2
¢ 0.0014 0.0070 0.0088 0.0050 0.0099 0.0042 0.0061 0.0111 0.0092 0.0041
*% *% *kk * *kk *kk *k%k *
log,(1)
RP9H(-1) 0.0466 0.0513 0.0449 0.0443 0.0765 0.0507 0.0521 0.0090 -0.0080 0.0231
*
log,(5)
RP9P(-1) 0.3958 0.3269 0.2648 0.2977 0.2673 0.3639 0.3428 0.2432 0.3391 0.3520
*kk *kk *% *kk *% *kk *kk *kk *kk *kk
log,(22)
RP9H5¢-1) 0.4444 0.3678 0.3507 0.3963 0.3093 0.4033 0.3810 0.2487 0.2763 0.4025
*kk *kk *kk *kk *kk *kk *kk *kk *kk *kk
session_size(-1) -0.0006 -0.0017 0.0000 -0.0025 -0.0006 -0.0007 -0.0012 -0.0001 0.0007
*%
session_count(-1) -0.0007 -0.0006 -0.0005 -0.0005 -0.0002 -0.0004 -0.0008 -0.0010 -0.0006
* * * *%
session_rr(-1) 1.5741 0.7989 1.5748 1.1203 0.5863 0.8348 1.3642 3.5647 1.4440
*% *% *kk *kk *% *kk *kk *%
session_rng(-1) -0.2103 -0.0045 -0.1602 -0.2492 -0.1253 -0.1729 -0.1899 -0.7318 0.0314
* * *kk *% *%
AdjR? 0.3557 0.3602 0.3636 0.3595 0.3669 0.3551 0.3605 0.3856 0.3802 0.3620
Table A.26: Estimation results of enriching a HAR of dailyges (volatility) with all lagged variables of se@i@ sessions.
HAR + preAs + As + preEu +Eu + preAm +Aml + Am2 + postAm1l + postAm2
¢ 0.0000 0.0002 0.0001 0.0001 0.0003 0.0000 0.0001 0.0003 0.0002 0.0001
*% * *% *% *
log.(1)
R (1) 0.0489 0.0576 0.0636 0.0575 0.0855 0.0761 0.0657 0.0080 -0.0152 0.0332
0g,(5)
RP9P(-1) 0.4357 0.3570 0.3180 0.3325 0.3349 0.4181 0.3993 0.3086 0.4144 0.4317
*k%k *k%k *% *% *% *kk *k%k *% *k%k *k%k
log,(22)
RP9H5¢-1) 0.3885 0.3162 0.3575 0.3604 0.2758 0.3977 0.3397 0.2060 0.2509 0.3761
*k%k *k%k *kk *kk *% *kk *k%k * *% *k%k
session_size(-1) 0.0000 0.0000 0.0000 -0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
*%
session_count(-1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
*
session_rr(-1) 12.0724 2.6825 9.4780 3.6780 -0.5068 27778 3.9588 22.4499 6.1127
* *kk * *kk *k%k
session_rng(-1) -0.4198 -0.2372 -0.3946 -0.5385 -0.4091 -0.4145 -0.3745 -2.3736 0.0406
*k%k *kk *% *%
AdjR? 0.3346 0.3435 0.3401 0.3383 0.3486 0.3356 0.3384 0.3718 0.3583 0.3345

Table A.27: Estimation results of enriching a HAR of dailyges (variance) with all lagged variables of sefgesassions.



HAR + preAs + As + preEu + Eu + preAm +Aml + Am2 + postAm1l + postAm2
¢ 0.0004 0.0011 0.0022 0.0010 -0.0002 -0.0021 -0.0013 -0.0006 0.0012 0.0000
*% *% *
RR®W(-1)
0.4586 0.4541 0.4323 0.4247 0.4704 0.4536 0.5046 0.3919 0.3496 0.4129
*k%k *k%k *kk *kk *kk *kk *k%k *kk *k%k *k%k
(5),
RR™(-1) 0.3304 0.3043 0.3005 0.2889 0.3405 0.3465 0.3259 0.3470 0.3407 0.3172
*kk *kk *kk *kk *kk *kk *kk *kk *kk *kk
(22)
RR™(-1) 0.1605 0.1543 0.1446 0.1694 0.1675 0.1963 0.1910 0.1695 0.1311 0.1728
*kk *kk *kk *kk *kk *kk *kk *kk *% *kk
session_size(-1) 0.0000 -0.0004 0.0002 0.0003 0.0008 0.0007 0.0005 0.0004 0.0004
*% *
session_count(-1) -0.0001 -0.0002 -0.0001 0.0000 0.0001 0.0001 0.0000 -0.0002 0.0000
session_rr(-1) 0.3578 0.1375 0.5336 0.0030 -0.0452 -0.0977 0.1498 0.8308 0.4654
*% *kk *kk *%
session_rng(-1) -0.0836 0.0098 -0.0694 -0.0247 -0.0056 -0.0193 -0.0219 -0.0909 -0.0056
*% *%
AdjR? 0.7470 0.7476 0.7475 0.7490 0.7464 0.7474 0.7481 0.7474 0.7557 0.7511
Table A.28: Estimation results of enriching a HAR of realizadges (volatility) with all lagged variables @&jparate sessions.
HAR + preAs + As + preEu + Eu + preAm +Aml + Am2 + postAm1l + postAm2
¢ 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0001 0.0000 0.0000 0.0000 0.0000
*% * *%
RRM(-1)
0.2755 0.4685 0.4912 0.4562 0.5657 0.5210 0.5431 0.4674 0.4074 0.4635
*kk *kk *kk *kk *kk *kk *kk *kk *kk *kk
(5),
RR™(-1) 0.1708 0.2455 0.2573 0.2302 0.2943 0.2845 0.2625 0.2883 0.2843 0.2712
*kk *% *kk *kk *kk *kk *kk *kk *kk *kk
RR®(-1)
0.4976 0.1638 0.1715 0.1911 0.1584 0.2102 0.2050 0.1834 0.1579 0.1815
*kk *kk *kk *kk *kk *kk *kk *kk *kk *kk
session_size(-1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
*
session_count(-1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
*
session_rr(-1) 0.1560 1.5039 2.4761 -0.3969 -0.6925 -0.3587 0.1242 1.9402 2.0295
*% *kk
session_rng(-1) 0.0009 -0.0019 -0.0020 -0.0003 0.0002 -0.0001 -0.0004 0.0006 0.0000
*% *%
AdjR? 0.7234 0.7240 0.7241 0.7257 0.7245 0.7257 0.7247 0.7230 0.7317 0.7267

Table A.29: Estimation results of enriching a HAR of realizediges (variance) with all lagged variables obsafe sessions.



HAR + preAs + As + preEu + Eu + preAm +Aml + Am2 + postAm1l + postAm2
¢ 0.0014 0.0069 0.0031 0.0052 0.0080 -0.0078 -0.0081 -0.0051 0.0015 -0.0042
*% *% *kk *% * *
log,(1)
RP9H(-1) 0.0466 0.0165 -0.0040 -0.0229 -0.0201 -0.0092 0.0267 0.0025 -0.0330 0.0013
log,(5)
RP9P(-1) 0.3958 0.3114 0.2200 0.2204 0.1404 0.3036 0.3312 0.2029 0.2941 0.2612
*kk *kk *% *% *kk *kk *% *kk *kk
log,(22)
RP9H5¢-1) 0.4444 0.2990 0.3478 0.2572 0.2678 0.3011 0.3544 0.1619 0.1544 0.3185
*kk *kk *kk *kk *kk *kk *kk *% * *kk
session_size(-1) -0.0008 -0.0006 -0.0010 0.0000 0.0010 0.0009 0.0021 -0.0003 -0.0012
* *
session_count(-1) -0.0006 -0.0001 -0.0004 -0.0009 0.0009 0.0008 0.0002 0.0003 0.0013
* *% *% * *kk
session_rr(-1) 1.1895 0.5216 2.5973 1.1779 1.1137 -0.0237 0.8843 3.1053 1.9973
*% *kk *kk *% *kk *kk *%
session_rng(-1) 0.4868 0.5265 0.4403 0.6013 0.4932 0.6079 0.6159 0.0931 0.3552
*kk *kk *kk *kk *kk *kk *kk *kk
AdjR? 0.3557 0.3926 0.4277 0.4380 0.4897 0.4449 0.4487 0.5803 0.4712 0.4570
Table A.30: Estimation results of enriching a HAR of dailyges (volatility) with all non-lagged variablessafparate sessions.
HAR + preAs + As + preEu + Eu + preAm +Am1l + Am2 + postAm1l + postAm2
¢ 0.0000 0.0002 0.0000 0.0002 0.0002 -0.0003 -0.0002 -0.0001 0.0000 -0.0002
*% *% * *% *% *%
log.(1)
R (1) 0.0489 0.0154 -0.0171 -0.0411 -0.0305 0.0070 0.0450 0.0192 -0.0339 -0.0066
log,(5)
RP9P(-1) 0.4357 0.4279 0.3389 0.2817 0.2227 0.4447 0.4245 0.2915 0.3900 0.4089
*kk *k%k *% *kk * *k%k *k%k *kk *k%k *k%k
log,(22)
RP9H5¢-1) 0.3885 0.2057 0.2969 0.1426 0.2424 0.2212 0.2493 0.0556 0.1248 0.1934
*k%k * *kk *% * *% *
session_size(-1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
*
session_count(-1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
* *% *kk * *k%k
session_rr(-1) 10.2267 1.2881 26.1560 4.0828 1.5179 -1.2037 2.4316 18.7943 20.6278
* k% *kk *kk *% *% *
session_rng(-1) 1.0867 1.1967 0.7474 1.2093 1.5482 1.3817 1.1150 1.1391 0.7087
*k%k *kk *kk *kk *k%k *k%k *kk *%k%k
AdjR? 0.3346 0.3907 0.4320 0.4519 0.4969 0.4154 0.4140 0.5833 0.4689 0.4568

Table A.31: Estimation results of enriching a HAR of dailyges (variance) with all non-lagged variables piasate sessions.



HAR + preAs + As + preEu + Eu + preAm +Aml + Am2 + postAm1l + postAm2
¢ 0.0004 0.0016 0.0011 0.0008 0.0022 -0.0016 -0.0005 0.0015 0.0017 0.0002
*% *% *% *%
(1),
RR™(-1) 0.4586 0.3660 0.2940 0.3179 0.2281 0.3454 0.3375 0.2683 0.3454 0.3908
*k%k *k%k *kk *kk *kk *kk *k%k *kk *k%k *k%k
(5),
RR™(-1) 0.3304 0.2951 0.1681 0.1971 0.1816 0.2614 0.2864 0.1598 0.2554 0.2558
*kk *kk *% *kk *kk *kk *kk *kk *kk *kk
(22)
RR™(-1) 0.1605 0.1318 0.1653 0.1513 0.1267 0.1020 0.1083 -0.0245 0.0180 0.1380
*kk *kk *kk *kk *% *% *kk *kk
session_size(-1) 0.0000 -0.0002 -0.0002 0.0001 0.0001 -0.0002 -0.0004 -0.0004 -0.0004
*
session_count(-1) -0.0002 0.0000 -0.0001 -0.0003 0.0002 0.0001 0.0000 0.0000 0.0001
* *%
session_rr(-1) 0.5574 0.7572 1.3075 1.1860 0.8643 0.5935 0.9763 1.6599 1.1601
*kk *kk *kk *kk *kk *kk *kk *kk *kk
session_rng(-1) 0.1454 0.0180 0.0639 -0.0270 0.0631 0.0609 0.0032 -0.1770 -0.0278
*kk * * *%
AdjR? 0.7470 0.7720 0.8065 0.8009 0.8343 0.8083 0.8206 0.8967 0.8139 0.7784
Table A.32: Estimation results of enriching a HAR of realizadiges (volatility) with all non-lagged variablefsseparate sessions.
HAR + preAs + As + preEu + Eu + preAm +Am1l + Am2 + postAm1l + postAm2
const 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0001 0.0000 0.0000 0.0000 0.0000
*% *%
RRYW(-1)
0.2755 0.4038 0.3432 0.3174 0.2284 0.4166 0.3962 0.3174 0.4033 0.4467
*kk *k%k *kk *kk *kk *kk *k%k *kk *k%k *k%k
(5),
RR™(-1) 0.1708 0.2615 0.0654 0.1072 0.1779 0.2445 0.2879 0.1701 0.2251 0.2459
*kk *k%k * *k%k *k%k *kk *% *%
RR®(-1)
0.4976 0.1320 0.2404 0.1785 0.1707 0.1126 0.0764 -0.0363 0.0466 0.1517
*k%k *% *kk *kk *% *% *k%k
session_size(-1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
* *%
session_count(-1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
*% *% *%
session_rr(-1) 3.2941 1.5640 7.6308 2.5546 1.8434 1.2749 1.5566 6.3087 4.2190
* k% *kk *kk *kk *k%k *k%k *kk *k%k *k%k
session_rng(-1) 0.0866 0.0514 -0.0102 -0.0328 0.1180 0.0968 0.0088 -0.3830 0.0034
*% *k%k * *
AdjR? 0.7234 0.7491 0.7928 0.7966 0.8314 0.7739 0.7880 0.8859 0.7892 0.7447

Table A.33: Estimation results of enriching a HAR of realizadges (variance) with all non-lagged variablesegfarate sessions.



+ preAs + As + preEu +Eu + preAm +Am1l +Am2 + postAml + postAm2
HAR + 1 session + 2 sessions + 3 sessions + 4 sessions + 5 sessions + 6 sessions + 7 sessions + 8 sessions + 9 sessions
c 0.0014 ki 0.0069 L 0.0036 0.0032 0.0054 -0.0016 -0.0086  **  -00085  **  -00100 **  -0.0088  ** c
& R°9M(.1) 0.0466 0.0165 -0.0074 -0.0369 -0.0575 -0.0729 * -0.0717 o -0.0504 * -0.0598 b -0.0561 * | R99O(1) e
T | R9O(1) 0.3958 ok 0.3114 ok 0.2081 o 0.1456 0.0383 0.0275 0.0094 -0.0314 -0.0194 -0.0693 Ro9®1) | T
R'°9®)(_1) 0.4444 ok 0.2990 ok 0.3163 ok 0.2636 ok 0.2335 ok 0.2072 o 0.1948 o 0.0812 0.0682 0.0207 R'°9®(_1)
size -8.223E-04 0.0003 0.0001 -0.0003 -0.0005 -0.0008 -0.0006 -0.0005 -0.0005 size
% count -0.0006 * -0.0007 -0.0005 -0.0001 -0.0003 -0.0002 0.0001 0.0001 0.0003 count %
a rr 1.1895 *x 0.9638 1.2342 w 0.9701 * 1.2331 - 1.2847 - 0.6371 0.3973 0.1999 rr a
g 0.4868 #k0.1751 -0.1475 -0.2888 -0.3788 ™ 04299  **  .0.3536  **  -0.2640 * -0.3549 = g
size -0.0007 -0.0003 -0.0009 -0.0003 0.0005 0.0000 0.0003 0.0004 size
” count 0.0004 0.0008 0.0003 0.0003 -0.0001 -0.0003 -0.0005 -0.0010 count 0
< rr 0.2347 -0.0964 -0.0907 -0.1594 0.0365 -0.0060 -0.0028 0.3406 rr <
g 0.4616  **  0.2987 * 0.2862 * 0.3033 - 0.3182  ** 03907  ** 03819  ***  0.3246 g
size -0.0001 0.0006 0.0012 0.0004 0.0000 0.0000 0.0002 size
@ count -0.0007 -0.0009 -0.0011 * -0.0009 -0.0006 -0.0004 -0.0005 count '{E
= rr 2.0927 %% 21608  ** 20065  ***  1.8218 - 1.6384 1.4940 ** 1.6822 rr a
g 0.3122 * 0.0090 0.0191 -0.0379 -0.2573 * 02876 **  -0.3628  w* g
size 0.0010 0.0013 0.0017 -0.0003 -0.0007 -0.0006 size
5 count -0.0002 -0.0014  * 00020 ***  -0.0016  **  -0.0015  **  -0.0014  *** count 5
. rr 0.3731 0.2776 0.2715 -0.3505 -0.2998 -0.2937 rr .
g 05704  ** 05890  ** 06073 %= 07030  * 07007  *%  0.6706  *x* g
size -0.0002 -0.0008 -0.0013 -0.0011 -0.0012 size
E | count 00022  ** 00020 ** 00019  ** 00018 ** 00018 ** | count | £
N rr 0.6279 0.5540 0.4935 0.3884 0.4252 rr £
g -0.0055 -0.1102 -0.2387 * -0.2064 -0.2195 * rng
size 0.0014 0.0000 -0.0005 -0.0006 size
‘é‘ count 0.0016 i 0.0017 ok 0.0014 ** 0.0012 i count ‘é‘
< rr -0.2474 -0.3072 -0.1530 -0.0129 rr <
g 0.3560  **  0.2303 o 0.2327 ** 0.2199 ** g
size 0.0047 fakiad 0.0060 i 0.0051 haicied size
‘é‘ count -0.0007 -0.0005 -0.0003 count ‘E
< rr 05888  ** 03675 0.2984 rr <
g 0.5762  *** 05482  * 05478  w* g
o size -0.0012 -0.0016  ** size .
E count 0.0005 -0.0001 count E
g rr -0.5446 -0.2208 rr g
rng 0.5942 *x 0.4409 * rng
~ size -0.0005 size ~
E count 0.0014 ok count E
g rr -0.6192 rr g
g 0.3197 el g
AdjR® 0.3557 0.4330 0.4330 0.4568 0.5213 0.5502 0.5903 0.7090 0.7189 0.7406 AdjR?

Table A.34: Estimation results of enriching a HAR of dailyges (volatility) with all non-lagged variablessefparate sessions, cumulatively.




+ preAs +As + preEu +Eu + preAm +Aml +Am2 + postAml + postAm2
HAR + 1 session + 2 sessions + 3 sessions + 4 sessions + 5 sessions + 6 sessions + 7 sessions + 8 sessions + 9 sessions
c 0.0000 ** 0.0002 ** 0.0001 0.0001 0.0002 * 0.0000 -0.0003 * -0.0002 -0.0003 * -0.0002 c
& R°9®(.1) 0.0489 0.0154 -0.0224 -0.0526 -0.0779 -0.0890 * -0.0835 * -0.0537 -0.0716 * -0.0692 RP9M(.1) &
T | R9O(1) 0.4357 ok 0.4279 ok 0.3340 o 0.2474 o 0.1266 0.1219 0.1106 0.0628 0.0641 0.0152 Ro9®1) | T
R°9®)(_1) 0.3885 ok 0.2057 * 0.2513 o 0.1661 0.2164 * 0.2023 * 0.1907 * 0.0477 0.0474 -0.0366 R'°9®(_1)
size -3.046E-05 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 size
% count 0.0000 * 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 count %
a rr 10.2267  ***  7.7554 * 8.7800 - 5.3054 6.7751 7.0405 2.7240 1.4226 0.5757 rr a
g 1.0867 w5 0.0557 -0.8254 -1.0622 -1.2623 * -1.1749 -0.8697 -0.6276 -1.0272 ** g
size 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 size
” count 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 count ”
< rr 0.6409 -1.0789 -0.8673 -0.9632 -0.4845 -0.8453 -0.5588 0.6959 rr <
g 11062  **  0.8034 - 0.7591 - 07823 % 07597  ** 09195 %+ 08725 07124  wx g
size 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 size
@ count 0.0000 0.0000 0.0000 * 0.0000 * 0.0000 0.0000 0.0000 count @
= rr 21.0380  **  17.1055  ***  16.1247  **  16.0165  ** 124311  * 113931  **  13.0675  *** rr =
g 0.6858 -0.0017 0.1124 -0.0400 -0.5635 -0.6898 -0.8704 * g
size 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000 size
5 count 0.0000 -0.0001  **  .0.0001  **  -0.0001  **  -0.0001  ** 00000  *=* count 5
. rr 1.5001 1.3675 1.0122 -1.9241 -1.4163 -1.5678 rr .
g 1.2097 12493  wx 12791  wx 1.5272 1.4925  ww 1.3603  xx g
size 0.0000 -0.0001 -0.0001 * -0.0001 * -0.0001 ** size
E | count 00001  ** 00001  ** 0000l  ** 0000l  ** 00001 ** | count | &
N rr 1.5616 2.2873 2.1128 1.6732 2.0848 * rr N
g -0.0572 -0.4158 -0.5995 -0.4499 -0.5741 g
size 0.0000 0.0000 0.0000 0.0000 size
‘é‘ count 0.0001 ol 0.0000 bk 0.0000 ki 0.0000 ** count ‘é‘
< " -1.3864 -0.4427 0.2105 0.4741 It <
g 0.6569 - 0.2333 0.2367 0.3129 g
size 0.0001 il 0.0002 il 0.0001 faiiad size
‘é‘ count 0.0000 0.0000 0.0000 count ‘é‘
< rr 22327 % 1.8245 * 1.6612 * rr <
rng 0.9364 ok 0.8471 il 0.8823 rokk rng
o size 0.0000 0.0000 * size o
E | count 0.0000  **  0.0000 count | E
g rr -9.9770 * -8.2860 * rr g
rng 3.3281 il 2.9421 rork rng
~ size 0.0000 size ~
§ count 0.0000 rx count §
g rr 0.0852 rr g
g 0.6358 el g
AdjR® 0.3346 0.3907 0.4352 0.4672 0.5350 0.5522 0.5738 0.7152 0.7339 0.7655 AdjR®

Table A.35: Estimation results of enriching a HAR of dailyges (variance) with all non-lagged variables piasate sessions, cumulatively.




+ preAs + As + preEu +Eu +preAm +Aml +Am2 + postAm1l + postAm2
HAR + 1 session + 2 sessions + 3 sessions + 4 sessions + 5 sessions + 6 sessions + 7 sessions + 8 sessions + 9 sessions
c 0.0004 b 0.0016 o 0.0007 0.0004 0.0013 0.0004 -0.0006 0.0009  ** 00010  **  0.0012 c
& RRM(-1) 0.4586 0.3660 ok 0.2741 o 0.2141 o 0.0991 0.0675 o 0.0040 -0.0108 -0.0116 * -0.0168 = | RRY(-1) &
T | RRO1) 0.3304 0.2951 wr 01684 % 01242 b 0.0795 * 0.0666 0.0624 o -0.0051 -0.0093 -0.0160 RROC1) | T
RR®(-1) 0.1605 ok 0.1318 ok 0.1699 ok 0.1676 ok 0.1444 ok 0.1173 ok 0.0951 w%.0.0055 -0.0156 * -0.0189 = | RR®(-1)
size 4.569E-05 0.0006 b 0.0004 * 0.0003 0.0002 0.0000 0.0000 0.0000 0.0000 size
% count -0.0002 * -0.0002 -0.0002 -0.0002 -0.0002 -0.0001 0.0000 0.0000 0.0000 count %
=3 rr 0.5574 wx0,1655 0.3185 b 0.3654  ** 04743 = 05128  ** 03015 = 02589 = 02287 re =,
rng 0.1454 01316 % 00248 -0.0001 -0.0451 -0.0664 * -0.0233  **  -0.0057 -0.0038 rng
size -0.0005 * -0.0004 -0.0005 -0.0004 0.0001 -0.0001 -0.0001 -0.0001 size
® count 0.0002 0.0003 * 0.0001 0.0002 0.0001 0.0001 b 0.0000 0.0000 count ”
< rr 0.7003 wx 05591 vt 0.4729 wx 04332 wr 04868 03873 03886  ***  0.4002 re <
rng -0.0264 -0.0719 = -0.0446 * -0.0308 -0.0329 0.0063 0.0040 0.0031 g
size -0.0001 0.0004 0.0006 * 0.0003 0.0001 0.0001 0.0001 * size
@ count -0.0001 -0.0003 * -0.0003 b -0.0003 o -0.0001 0.0000 0.0000 count @
a rr 0.8934  ** 05975  ** (04594  ** 04039 = 02053  * 01764 = 01644 = wx rr a
rng 0.0600 0.0361 0.0531 * 0.0608 * 0.0133 0.0075 0.0034 rng
size 0.0001 0.0001 0.0004 -0.0001 -0.0002 -0.0002 size
5 count 0.0001 0.0000 0.0000 0.0001 0.0001 0.0001 count 5
. rr 0.8521  ***  0.6966 wx 06217 v 03654 ¥ 03757 v 03786 @ rr .
rng -0.0524  *=  .0.0410  **  .0.0304 - 0.0058 0.0059 0.0049 rng
size 0.0000 0.0003 0.0000 0.0000 0.0000 size
E | count 0.0001 00002  *  -0.0001 -0.0001 -0.0001 count | E
N rr 0.6816 W 03523 v 03312 v (03169  ***  0.3087 re N
rng -0.0328 -0.0143 -0.0056 -0.0029 -0.0016 rng
size -0.0005 0.0001 0.0000 -0.0001 size
‘é‘ count 0.0000 0.0001 ki 0.0001 0.0001 count ‘é‘
< rr 0.5524  ** 04197  *** 04455  **  0.4502 re <
rng 0.0136 -0.0099 -0.0060 -0.0050 g
size 0.0002 0.0002 0.0001 size
P count -0.0003  **  .0,0003  **  -0.0002  *** count P
< rr 07308  *™  0.6696  *** 06547 " <
rng 0.0063 0.0005 0.0016 rmng
4 size 0.0001 0.0000 size 4
E | count 0.0000 0.0000 count | E
g rr 0.1258  **  0.1392 re g
rng 0.0417 rork 0.0102 rmng
~ size 0.0000 size ~
§ count 0.0000 count §
g rr 0.2074  ** re g
rng 0.0025 rmng
AdjR® 0.7470 0.7720 0.8130 0.8299 0.8699 0.8899 0.9305 0.9928 0.9944 0.9952 AdjR

Table A.36: Estimation results of enriching a HAR of realizatiges (volatility) with all non-lagged variablefsseparate sessions, cumulatively.




+ preAs + As + preEu + Eu + preAm +Aml +Am2 + postAm1l + postAm2
HAR + 1 session + 2 sessions + 3 sessions + 4 sessions + 5 sessions + 6 sessions + 7 sessions + 8 sessions + 9 sessions
c 0.0000 b 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 c
& RRM(-1) 0.2755 0.4038 ok 0.3145 ok 0.2166 o 0.0912 ** 0.0638 *x 0.0205 0.0102 0.0080 0.0004 RRY(-1) &
T | RRO1) 0.1708 0.2615 wx0,0765 0.0195 0.0283 0.0205 0.0456 0.0021 0.0004 0.0010 RROC1) | T
RR®(-1) 0.4976 ok 0.1320 o 0.2260 ok 0.2145 ok 0.2048 ok 0.1828 ok 0.1407 ok 0.0173 0.0034 -0.0040 * | RR®(-1)
size -3.258E-08 0.0000 * 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 size
% count 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 o count %
=3 rr 3.2941 % 0,8838 1.1930 b 1.2554 1.7392 1.9460 =+ 1.3879 wx 12123 wex 1.1097 rr =,
rng 0.0866 o 0.1466  **  0.0695 0.0414 -0.0487 -0.0612 -0.0330 * .0.0080 -0.0048 rng
size 0.0000 * 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 size
® count 0.0000 0.0000 b 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 count ”
< rr 17171 12668 ™+  1.0578 1.0212 11396  **  0.9442 w5 09694 e 09921 rr <
rng -0.0497 -0.0906 = .0.0417 -0.0227 -0.0335 0.0152 * 0.0035 0.0012 rng
size 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 size
@ count 0.0000 0.0000 * 0.0000 b 0.0000 o 0.0000 0.0000 0.0000 count @
a rr 58133  ** 31851 24444 % 21868 ¢t 12614 e 10782 % 00978  wx rr a
rng -0.0129 0.0160 0.0908 0.0859 0.0163 0.0112 0.0063 rng
size 0.0000 0.0000 0.0000 * 0.0000 0.0000 0.0000 size
5 count 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 count 5
. rr 20119  ** 1.8159 15508  **  0.9341 wr 00883 ¥t 0.9903 %+ rr .
rng -0.0815 = 0.0565  **  -0.0434 - 0.0052 0.0005 -0.0006 rng
size 0.0000 0.0000 0.0000 0.0000 0.0000 size
E | count 00000  * 00000  **  0.0000 0.0000 0.0000 count | E
N rr 15430  w 11522 = 10516  **  1.0261 = = 1.0212 rr N
rng -0.0690 * -0.0691 -0.0219 * -0.0080 -0.0088 rng
size 0.0000 * 0.0000  **  0.0000 0.0000 size
‘é‘ count 0.0000 0.0000 ok 0.0000 0.0000 count ‘é‘
< rr 1.0135 =+ 09510 % 09994 1.0039 rr <
g 0.0427 -0.0106 * -0.0034 -0.0016 g
size 0.0000 0.0000 0.0000 size
P count 0.0000 b 0.0000 0.0000 count P
< rr 11284 10260 10101 rr <
rng 0.0098 * -0.0034 -0.0013 rng
4 size 0.0000 0.0000 size 4
E | count 0.0000 0.0000 count | E
g rr 0.8261  *** 09564  * rr g
rng 0.0715 il 0.0044 rng
~ size 0.0000 size ~
E count 0.0000 count E
g rr 1.0609 rr g
rng 0.0033 el rng
AdjR® 0.7234 0.7491 0.7994 0.8275 0.8773 0.8946 0.9247 0.9963 0.9988 0.9996 AdjR®

Table A.37: Estimation results of enriching a HAR of realizadges (variance) with all non-lagged variablesegfarate sessions, cumulatively.




coefficient std. error z-value p-value Signif coefficient std. error z-value p-value Signif
c 0.000237 0.000109 2172 0.0299 * c 0.000239 0.000142 1.679 0.0931 *
(6e 0.125382 0.019581 6.403 0.0000 ek (60 0.120257 0.024412 4.926 0.0000 .
A 0.855489 0.024893 34.37 0.0000 o A 0.860145 0.032996 26.07 0.0000 work
% 2.91085 0.081051 35.91 1.86E-28 rxk
Log-lik 3358.603 AlC -6711.21 Log-lik 3972.282 AlC -7936.56
SchC -6696.54 HQC -6705.63 Schc -7917.02 HQC -7929.13
Table A.38: Estimation results of a CARR(1,1) model appliedaily ranges with Exponentially (left) and Weibfuight) distributed error term
coefficient std. error z-value p-value Signif coefficient std. error z-value p-value Signif
c 0.000318 0.000095 3.342 0.0008 ek c 0.000400 0.000187 2.138 0.0325 *x
JRR, 0.432174 0.048672 8.879 0.0000 o JRR, 0.479382 0.079693 6.015 0.0000 rxk
A 0.526041 0.056391 9.328 0.0000 xhk A 0.461144 0.098789 4.668 0.0000 il
5.16716 0.248847 20.76 9.08E-96 rxk
Log-lik 3827.76 AlC -7649.52 Log-lik 5021.462 AIC -10034.9
SchC -7634.86 HQC -7643.94 SchC -10015.3 HQC -10027.5
Table A.39: Estimation results of a CARR(1,1) model applieddquare root of realized ranges with Exponenti@ft) and Weibull (right) distributed error term.
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Figure A.40/A.41: In-sample comparison of E-CARR(1,1) and W-CARR]fitted values from Table A.38 (left) and Table38 (right).
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Figure A.42/A.43: In-sample comparison of W-CARR(1,1) and HAR agglio daily ranges and square roots of realizegesn

coefficient std. error t-ratio p-value

const 0.0229479 0.00085053 26.9807 <0.00001

AllLow 0.967126 0.00254251 380.3821 <0.00001
Log-Lik 3842.0 AdjR*  0.99

Table A.44: Estimating the co-integrating vector or daily higimsl lows. Dependent variable: AllHigh

2011




A4S A(h) A() A4S A(h) 0 Ad7 A(h) A()
coeff sign coeff sign coeff sign coeff sign coeff sign coeff sign
[ 0.0063 bl 0.0013 c 0.0068 * 0.0021 c 0.0042 rrx -0.0005
A(h(-1)) -0.0273 0.5955 rrx A(h(-1)) 0.0414 0.6070 rrx A(h(-1)) -0.7441 rorx -0.0973
A(h(-2)) -0.1253 * 0.3704 ok A(h(-2)) -0.0655 0.3811 ok A(h(-2)) -0.5372 ok -0.0283
A(h(-3)) -0.0100 0.3332 rrx A(h(-3)) 0.0377 0.3417 rrx A(h(-3)) -0.3606 rorx -0.0661
A(h(-4)) -0.0061 0.2474 ok A(h(-4)) 0.0277 0.2464 ok A(h(-4)) -0.2617 ok -0.0591
A(h(-5)) -0.0614 0.1550 o A(h(-5)) -0.0399 0.1576 o A(h(-5)) -0.2472 ok -0.0121
A(h(-6)) -0.0375 0.0830 * A(h(-6)) -0.0281 0.0795 A(h(-6)) -0.1103 ok 0.0259
A(I(-1)) 0.4229 bl -0.2431 rrx A(I(-1)) 0.3470 b -0.2526 rrx A(I(-1)) -0.1451 ** -0.7871 b
A(I(-2)) -0.0748 -0.4959 ok A(I(-2)) -0.1359 * -0.5077 ok A(I(-2)) -0.2639 ok -0.6608 o
A(I(-3)) 0.0588 -0.2935 ok A(I(-3)) 0.0094 -0.3011 ok A(I(-3)) -0.1234 * -0.5160 o
A(I(-4)) 0.0434 -0.2068 rrx A(I(-4)) 0.0092 -0.2050 rrx A(I(-4)) -0.0941 -0.3833 b
A(I(-5)) 0.0317 -0.1946 ok A(I(-5)) 0.0095 -0.1991 ok A(I(-5)) -0.0745 -0.2833 o
A(I(-6)) 0.0395 -0.0988 * A(I(-6)) 0.0317 -0.0919 * A(I(-6)) 0.0406 -0.0920 *x
EC(1) -0.2668 il -0.0577 EC(1) -0.3289 rork -0.0739 EC(1) -0.1892 rorx 0.0200
Tue 0.0002 -0.0007 A(0) 0.7909 % 0.6558 Frk
Wed 0.0009 0.0006 A(o(-1)) 1.1005 ok 0.8642 o
Thu 0.0009 -0.0001 A(o(-2)) 0.6372 % 0.6485 Frk
Fri 0.0002 -0.0005 A(o(-3)) 0.4399 % 0.5545 Frk
Vol(-1) 0.0000 0.0000 A(o(-4)) 0.3518 % 0.3754 Frk
Count(-1) 0.0000 0.0000 A(0(-5)) 0.2085 ok 0.1681 i
Size(-1) 0.0000 -0.0001 A(c(-1)) -0.2976 * -0.0914
A(c(-2)) -0.2572 ** -0.0790
ret(-1) 0.4838 ox 0.4043 b
AdjR? 0.2116 0.1465 AdjR? 0.2104 0.1451 AdjR? 0.5473 0.4947
LB(20) 5.6029 12.3733 LB(20) 5.4636 12.0478 LB(20) 11.9264 19.6827
p-value 0.9990 0.9030 p-value 0.9990 0.9140 p-value 0.9190 0.4780

TablesA.45, A.46, A 47: Estimates of base VECM model, investigating theafbf additional variables.
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Table A.48: In-sample daily ranges predictions of both VECNEmely models A.45 (red) and A.47 (blue), wholeadat.
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