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Abstrakt 

 

 Tato diplomová práce analyzuje nové možnosti v předpovídání denního rozpětí cen 

(tj. rozdílu nejvyšší a nejnižší denní ceny instrumentu). Hlavním zaměřením naší práce je 

zkoumání možných zlepšení stávajících modelů používaných pro modelování denního rozpětí. 

Jmenovitě zkoumáme přínos použití eficientnějších odhadů denní volatility jakožto prediktorů 

denního rozpětí. Konkrétní odhady volatility zkoumané v této práci zahrnují range-based 

estimátory (Parkinson, Garman & Klass, Rogers & Satchell, atd.) a realizované míry denní 

variance (realizovaná variance, realizované rozpětí). Součástí těchto výzkumů je i empirické 

porovnání eficience jednotlivých range-based estimátorů denní volatility. 

 Dalším směrem výzkumu naší práce je analýza přínosů rozdělení obchodního dne do 

obchodních session na základě aktivity různých obchodních center (např. asijská, evropská, 

americká session). V tomto ohledu analyzujeme, zda odhady volatility získané z celodenních 

dat spolehlivě agregují informace pocházející z různých session. Naší intuicí je, že různé 

obchodní session přináší odlišné informace díky odlišné hloubce trhu. Předpokládáme, že 

jednotlivé session poskytují užitečné informace, které jsou v agregované míře denní volatility 

skryté (nevyužitelné).  

 Dále zkoumáme možnost průběžných aktualizací předpovědí denní volatility pomocí 

intraday informací dostupných v daném momentě. Konkrétně to znamená, že jakmile obchodní 

session skončí, míry její volatility a obchodní aktivity jsou zahrnuty do stávajícího modelu pro 

předpověď dnešní volatility. Tyto průběžně aktualizované předpovědi vykazují významné 

přínosy týkající se kvality předpovědi. Z toho vyplývá, že intraday obchodníci aktivní 

v pozdějších hodinách obchodování mají významnou výhodu oproti obchodníkům aktivním na 

začátku obchodního dne. 

 Modely uvažované v této práci zahrnují HAR, CARR a modely založené na kointegraci 

nejvyšší a nejnižší denní ceny. Modely podávající solidní výkon při in-sample modelování jsou 

porovnány pomocí out-of-sample předpovědí. Na rozdíl od výsledků publikovaných 

v literatuře, modely využívající kointegračního vztahu nejvyšší a nejnižší denní ceny podávají 

predikce špatné kvality. Nejlepším modelem pro modelování denních rozpětí se v naší práci 

ukázal HAR model využívající realizované rozpětí jako prediktor volatility v kombinaci 

s GARCH komponentou pro modelování volatility denních rozpětí.  



   

Abstract 

 

 In this thesis, we analyze new possibilities in predicting daily ranges, i.e. the differences 

between daily high and low prices. The main focus of our work lies in investigating how 

models commonly used for daily ranges modeling can be enhanced to provide better forecasts. 

In this respect, we explore the added benefit of using more efficient volatility measures as 

predictors of daily ranges. Volatility measures considered in this work include realized 

measures of variance (realized range, realized variance) and range-based volatility measures 

(Parkinson, Garman & Klass, Rogers & Satchell, etc). As a subtask, we empirically assess 

efficiency gains in volatility estimation when using range-based estimators as opposed to 

simple daily ranges. As another venue of research in this work, we analyze the added benefit 

of slicing the trading day into different sessions based on trading activity (e.g. Asian, European 

and American session). In this setting we analyze whether whole-day volatility measures 

reliably aggregate information coming from all trading sessions. We are led by intuition that 

different sessions exhibit significantly different characteristics due to different order book 

thicknesses and trading activity in general. Thus these sessions are expected to provide 

valuable information concealed in the aggregate volatility measure. 

 Next, we investigate the possibility to gradually update daily volatility forecasts by 

incorporating all up-to-date information. That means once a trading sessions ends its volatility 

and trading activity measures are used for updating the current day's volatility forecast. These 

updated forecasts exhibit very strong gains in terms of goodness-of-fit and thus short-term 

traders active in later sessions of the day can gain a significant advantage over traders active 

early in the day.  

 The array of models within which we investigate the aforementioned effects include the 

heterogeneous autoregressive model, conditional autoregressive ranges model and a vector 

error-correction model of daily highs and lows. Models performing well in terms of in-sample 

fit are challenged on out-of-sample, one-day-ahead forecasting. Contrary to results presented in 

literature, models based on co-integration of daily highs and lows fail to produce good quality 

forecasts. When one strives for the best one-day-ahead daily ranges forecasts a HAR model 

using realized ranges as predictors with a GARCH volatility-of-volatility component is the 

preferred option. 
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Introduction 

 Volatility of asset prices plays a critical role in finance. Value-at-risk estimation, 

option pricing and other activities common in the financial industry rely on its correct 

prediction. Recently, a huge body of research focused on volatility emerged. Nobel 

Prize awarded ARCH type models and their generalizations are examples of such 

advances (Engle 1982, Bollerslev 1986). 

 Since the true price generating process of real-world financial data is unknown, 

researchers and practitioners can merely estimate the characteristics of this process, 

including its volatility. In this respect, most research focuses on modeling and 

forecasting of returns' standard deviation, as standard deviation is the most popular 

volatility measure. However, other volatility measures exist and can be more useful, 

especially for short-term investment.  

 The work presented in this thesis views volatility modeling from the standpoint 

of a short-term investor or speculator whose investment horizon does not exceed one 

trading day. A crucial question for such an investor is how large a move is to be 

expected once a position is open. For this purpose, predictions of different volatility 

measures provide different levels of usefulness. An above-average standard deviation 

prediction indicates higher volatility, however it is difficult to assess the exact extent of 

future price movement, as there is no clear connection between standard deviation and 

ranges (differences between highest and lowest daily prices). A proper prediction of the 

day's range is, however, helpful as it can be directly translated into profit targets, stop 

losses, etc., and thus can be used for the management of an open position.  

 Contributions of this thesis to the existing body of volatility related literature are 

numerous. Firstly, we focus on predicting daily ranges using daily ranges themselves 

(Chou 2005) as well as different measures of volatility as predictors. While exploiting 

linkages between different volatility measures has already been published in some 

papers (Engle & Gallo 2003) neither of these papers focus specifically on daily ranges 

prediction. On top of that, in the existing literature linkages between volatility measures 

of comparable efficiency are discussed. In this work, however, we investigate linkages 

between volatility measures with sharply different efficiencies. More specifically, we 

investigate how well we can forecast precise volatility measures by noisy ones (daily 

ranges) and vice versa. This gives us some information on the cost-benefit tradeoff of 

obtaining pricey intraday data versus daily data obtainable free of charge. 
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 Further contributions include measuring empirical efficiency gains of different 

range-based volatility estimators. In the second half of the 20th century several 

range-based volatility estimators were proposed, with each new estimator either 

improving efficiency or relaxing crucial assumptions of the previous ones (Parkinson 

1980, Garman & Klass 1980, Rogers & Satchell 1990). In our work, we empirically test 

whether efficiency gains reported in theory are observable in practice. Had there been 

significant efficiency gains in daily volatility estimation for one specific range-based 

estimator, its use as a regressor for predicting daily ranges would be indicated. This 

stems from the intuitive idea that more precise measurement of volatility should act as 

better regressors/predictors. 

 Next, we investigate the role of different trading sessions, i.e. periods of 

a trading day defined by geographical location of traders predominantly active in the 

market (e.g. Asian, European and American sessions). Effects investigated are, for 

example, whether volatility measured on just the main sessions (main in terms of trading 

activity) provides a better measure of volatility than volatility measured on the whole 

trading day. If the former were the case, trading during less active sessions would be 

introducing noise into volatility measuring and better volatility estimates could be 

obtained by focusing solely on the most active sessions. Also, we investigate whether it 

pays off to slice up a day into trading sessions and then predict daily volatilities using 

volatilities and trading intensity variables measured on these separate sessions. As 

different trading sessions are characterized by different order book thicknesses and 

different traded volumes (resulting in different volatility-volume relationships), each 

session provides unique information. Since daily volatility/trading activity measures 

conceal this diversity across sessions, it is possible that models employing 

volatility/trading activity measured on separate lagged sessions as opposed to whole 

lagged days might bring gains in terms of goodness of fit. Next, using current day's 

session data, we create gradually updated daily volatility forecasts. As a session 

finishes, its volatility/trading activity measures are inserted into a model and an updated 

forecast is generated. Cumulatively adding sessions as they finish during the day 

provides for an opportunity to significantly increase forecasting performance of all 

models presented in this work. As the idea of updating daily volatility forecasts 

throughout the day is not present in current academic literature, it is one of the strongest 

contributions of our work. 
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 Lastly, we combine the results of our investigations described above with several 

existing models used for daily volatility modeling/forecasting. The work finishes by 

picking the best models for daily ranges prediction based on out-of-sample forecasting 

performance. Out results provide new insights into volatility forecasting and better 

forecasts of daily ranges as well as other volatility measures are thus made possible. 

 The work is organized as follows. In Section 1, we provide a reader with our 

motivation for daily ranges modeling. Section 2 describes out dataset, while Section 3 

continues with initial data analysis as well as an extensive correlation analysis. In 

Section 4, we compare various daily variance estimators in terms of efficiency and 

usefulness for daily ranges prediction. In Section 5, we empirically investigate our 

hypotheses on three different models designed for daily ranges prediction. The best 

models are then compared in an out-of-sample forecasting exercise in Section 6. 

A description of our findings concludes this thesis. 
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1. Motivation 

 In this section, we provide motivation for our interest in predicting daily ranges. 

For clarity of explanations, we firstly turn to technicalities related to naming 

conventions, as existing literature is not united in the matter of notations. Let us denote 

the price of a financial asset measured at time Tt ≤≤0  on day D  as DtP, . Then let us 

assume that log-price  

 

( )DteDt Pp ,, log=  (1) 

 

evolves according to a diffusion process 

 

DtDDtDDtDt dJcdWdtdp ,,,, ++= σµ  (2) 

 

where DDDt c,,, σµ  correspond to the drift, volatility and jump terms and DtDt JW ,, ,  are 

Wiener and constant-intensity Poisson processes1. The daily price range is defined as  

 

Dt
Tt

Dt
Tt

D PPR ,
0

,
0

infsup
≤≤≤≤

−=  (3) 

 

the daily log-range is defined as  

 

Dt
Tt

Dt
Tt

D ppR ,
0

,
0

log infsup
≤≤≤≤

−=  (4) 

 

and the daily log-return is denoted 

 

1,, −−= DTDTD ppr  (5) 

                                                 
1 Taking the variance and jump terms constant for the whole day is misleading in practice, as volatility 
exhibits intraday seasonality and jumps occur mostly around news announcements which are not 
distributed evenly in time. However, in the above context we chose to use this notation for simplifying the 
introduction.  
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Lastly, let us denote high, low, open and close prices observed during the day 

 

Dt
Tt

D ph ,
0
sup

≤≤
=       Dt

Tt
D pl ,

0
inf

≤≤
=  (6) 

                                         DfD po ,=             DTD pc ,=  (7) 

 

where f  is a portion of a trading day during which trading activity is minimal, i.e. in 

practice corresponds to postmarket of previous day combined with the premarket of the 

current day. From this explanation it is clear that T  does not necessarily represent the 

end of day. Instead, it represents a time at which trading activity halts (most commonly 

caused by exchange closure). 

 Before continuing to describe out motivation for daily ranges prediction, we give 

a short introduction into the matter of range-based volatility estimation, as this will 

facilitate easier explanation. As stated before, volatility of any real-world price process 

is unknown and thus we can only rely on its estimates. Fortunately, many possibilities 

exist in estimating volatility. Volatility estimates differ in their data intensiveness (using 

intraday versus end-of-day data), efficiency (precision of volatility estimation) and, 

surprisingly, popularity. Another factor that can serve as a distinguishing factor among 

volatility estimates is the length of time such a measure needs to produce an estimate. 

 For example, the most common measure of volatility, the standard deviation of 

returns, cannot be calculated from one daily return only. This inevitably leads to only 

being able to measure and forecast average volatility and commonly known features of 

volatility can be made less distinct or even disappear (e.g. the well-documented property 

of volatility clustering where periods with high levels of volatility are followed by 

periods of high volatility and vice versa). On the other hand, there are a number of 

estimates which are capable of estimating volatility for just one day using data provided 

by that day's trading. With such estimates of volatility it is possible to exploit any 

volatility related feature for forecasting. Two of the most popular measures used for the 

inference of most recent (one-day) variance, i.e. of the squared diffusion coefficientDσ , 

are the squared daily return 

 

2
D

S
D rr =  (8) 
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and the absolute daily return  

 

D
A

D rr =  (9) 

 

 However, already Parkinson (1980) showed that under the assumption 

of 0, =Dtµ , we can estimate 2
Dσ  by  

 

( ) ( )[ ] ( )2log12
2ln4ˆ D

Park
D R−=σ  

(10) 

 

and achieve approximately five times higher efficiency of variance estimation compared 

to squared daily returns. The efficiency gain can be intuitively attributed to the fact that 

an estimate which incorporates extreme price values takes into account the whole day's 

evolution of price while estimates based solely on close prices only utilize prices 

measured at one predetermined point during each day.  

 Still keeping the assumption of 0, =Dtµ  and following this idea further, 

Garman & Klass (1980) suggest an estimator  

 

( ) [ ] ( ) ( )( )[ ]
f

oclh

f

co DDDDDDGK
D −

−−−−+−= −

1

12ln25.0
78.012.0ˆ

2
12σ  

(11) 

 

and claim that the efficiency gain compared to (8) is approximately 7.4 regardless off . 

 The disadvantage of aforementioned range-based estimates of daily volatility is 

the restrictive assumption of zero drift. As GK
Dσ̂ , Park

Dσ̂  become biased with 0, ≠Dtµ , 

Rogers & Satchell (1990) relax this assumption and propose  

 

( ) ( )( ) ( )( )DDDDDDDD
RS
D chohclol −−+−−=2σ̂  

(12) 

 

which has only slightly lower efficiency compared to GK
Dσ̂ .  

 A recent work of Yang & Zhang (2000) provides a drift-independent estimator 

which allows for the presence of jumps occurring during exchange opening. Denoting n  

the number of days used for the estimate, we have  
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( ) ( ) n
DRSDCDO

YZ
D VkkVV ,,,

2
1ˆ −++=σ  

( )( ) ( )( )∑
=

−−−−−−−−
− −−+−−=

n

i
iDiDiDiDiDiDiDiD

n
DRS chohclolnV

0

1
,  

( ) ( )∑
=

−
− −−=

n

i
DiDDo oonV

0

21
, 1    ( ) ( )∑

=
−

− −−=
n

i
DiDDc ccnV

0

21
, 1  

∑
=

−
−=

n

i
iDD cnc

0

1
     ∑

=
−

−=
n

i
iDD ono

0

1
 

(13) 

 

To obtain minimum variance of 
YZ
Dσ̂  set 

 

1

1
34.1

34.0

−
++

=

n

n
k  

(14) 

 

 Lastly, Brunetti & Lindholdt (2002) show that the unbiased estimator of Dσ  

given by 

log

8
ˆ D

R
D R

πσ =  
(15) 

 

is approximately 6.5 times more efficient that the unbiased estimator 

 

A
D

A
D r

2
ˆ

πσ =  
(16) 

 

 Hence, the inclusion of extreme prices into variance estimates is capable of 

producing significant efficiency gains which is of vital importance for all applications 

relying on volatility. At the same time, range-based estimators, i.e. (10) - (16), do not 

require tick by tick data needed for the construction of finely spaced intraday returns.  

 In spite of high efficiency of several aforementioned volatility measures 

over log
DR  the daily range offers a unique property which is our main motivation for its 

prediction. While for long-term investment or option pricing a correct assessment of Dσ  

is crucial, short-term investors/day-traders are more likely to benefit from a precise 
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prediction of log
DR  itself rather than Dσ . To illustrate this point, let an imaginary agent 

open a position (by assumption in the direction coinciding with the future market 

direction) and let us investigate the best strategy for exiting such a position. Having 

a perfect prediction of the day's range allows the agent to set a reasonable value of profit 

target, as daily range relates directly to the extent of price movement2. Other volatility 

estimates, including the previously defined range-based ones, cannot be used in such 

a manner. Thus, we focus solely on daily ranges prediction. Other range-based 

estimators were not defined in vain, however. Using the above defined range-based 

estimators, we will investigate whether it is possible to benefit from higher precision of 

past volatility measurement (by using GK
Dσ̂  or RS

Dσ̂ ) for creating better daily range 

forecasts. Intuitively, forecasts produced by less noisy predictors should be superior. 

 Even though our main interest in predicting daily ranges stems from the desire 

for better money management in high-frequency trading, there is also a more general 

reason for which we should care about daily ranges prediction.  Precise predictions of 

daily ranges can be useful in predicting other measures of volatility, which has been 

demonstrated by several authors. For example, Engle & Gallo (2003) assume 

a multivariate MEM-GARCH process of daily ranges, daily realized volatilities and 

absolute daily returns. Estimation results show a significant level of interaction between 

these three volatility measures. By enriching the usual MEM-GARCH model for each 

measure by lagged values of the other measures, model forecasts match well those 

obtained from implied volatility indices. On a similar note, Corrado & Truong (2007) 

investigate the usefulness of adding squared daily ranges and implied volatility levels 

into a GJR-GARCH model for the variance of residual term and find both variables 

useful for improving forecast quality. Hence, having a precise expected value of the 

next day's range can be used per se as well as an input for the prediction of other 

volatility measures related to the next day. 

 To sum up, daily ranges have potential for practical uses in day-trading and they 

provide for improving forecasts of other volatility measures while placing minimal 

requirements on historical data. This explains our motivation. 

                                                 
2 Herein, a profit target is a predetermined amount of price movement in one direction after which a 
position is exited as further market movements in the direction of trade are considered unlikely. The exact 
target setting (for a long position) involves subtracting the lowest price for the day from the entry price 
and then subtracting this difference from the predicted range, arriving at an exit point nearing the highest 
price for the day.  
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2. Data Description 

 Having described the motivation of our work, we now turn to familiarizing the 

reader with our dataset. Data used throughout this thesis relate to the EUR/USD Forex 

futures contract traded on Chicago Mercantile Exchange from Nov, 9 2007 to 

Nov, 9 2011. Between these dates contracts with several different delivery months were 

traded, namely deliveries from 12-07 to 12-11 (MM-YY).  To allow for a study of the 

whole dataset at once without having to create a model separately for each delivery 

month, a continuous contract was created from available deliveries based on the 

maximum volume rule. Following this rule, data from a contract with specific delivery 

is taken into the continuous contract for a specific day if this delivery was the most 

heavily traded of all deliveries on that particular day. The list of cut-off dates3 is 

provided in the Appendix as Table A.1. Despite bid-ask data were available, for the 

work presented in this thesis we decided to work with prices defined by traded prices 

and to neglect the effect of market microstructure, i.e. no bid-ask smoothing was 

employed. Our reasons for this choice were several fold. Firstly, there is no clear 

consensus in literature as to which method of ridding data of the bid-ask bounce is the 

best one. Secondly, the main aim of this work is to provide for a general assessment of 

new possibilities in daily ranges forecasting. Even though we acknowledge there is a 

measurement error in very precise volatility measures induced by the presence of the 

bid-ask bounce, its magnitude is hardly significant enough to bias our results to a strong 

degree.  

 Next, we discuss timing conventions used throughout this thesis. Connected to 

the nature of Forex futures contracts is the concept of Electronic Trading Hours (ETH). 

Forex futures are usually traded in several trading sessions depending on the activity of 

different trading centers (East Asia, Europe and America). For this reason trading 

sessions, as recorded by the Exchange, do not coincide with calendar dates. Instead, 

a trading session dated Oct 15th starts on Oct 14th at 17:00 CST4 (start of East Asian 

session5) and ends on Oct, 15 at 16:00 (end of the U.S. trading session). In the period 

                                                 
3 i.e. dates between which a given delivery contract was the most heavily traded of all delivery contracts 
and thus (for the given period) is included in the continuous contract. 
4 Central Standard Time, time zone of the Exchange location. Throughout this thesis, all quotations of 
time are expressed in CST. 
5 To prevent misleading the reader, let us note that Asian trading centers (Singapore, Shanghai, Tokyo) as 
well as Australian centers (Sydney Futures Exchange, Australian Stock Exchange) are included in the 
East Asian session. 
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between 16:00 and 17:00 no trading center is open and thus trading activity is minimal. 

In order to have the sessions of all financial centers within one day of trading, we 

followed the ETH standard. 

 The last point related to data description is connected to the fact that during some 

days of year, trading is halted. The reasons might be national holidays or Exchange 

imposed restrictions on trading. Missing observations for such trading-free dates were 

not reconstructed artificially. Also, on several occasions the Exchange accepts orders 

only during a certain part of the day or trading activity is generally lower than normally 

(typically around Christmas and New Year's Eve). As readings of traded volume and 

volatility from these days could distort our results, we decided to omit them6. After 

removing holidays and days with illiquidity present in the market, our data sample 

consisted of 999 trading days. 

                                                 
6 Specifically, we omitted all dates between Dec 23rd and Jan 2nd from the continuous contract as well as 
any date for which total traded volume was less than 80,000 contracts. 
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3. Initial Data Analysis 

 In this section, we provide basic statistical analysis of data at hand. Our aim is to 

obtain preliminary insights into data behavior and the identification of patterns that 

could later be used for proper model construction, e.g. the distribution of error terms. 

Specific investigated features include the unconditional distribution of volatility coupled 

with time patterns present in volatility and trading activity measures (on a daily as well 

as intraday basis). Persistence of log-returns and log-ranges sampled at different 

frequencies is presented.  

 

3.1 Definition of ranges 

 Before moving forward, let us briefly investigate the type of daily ranges that 

will be modeled throughout this thesis. The existing literature does not address whether 

DR  or log
DR  is the correct specification of range. The general preference of log-prices in 

quantitative finance coupled with higher computation precision obtained when using 

values close to zero speak in favor of log
DR . However, our previously stated money 

management "technique" depends on a prediction of DR . Hence our first task is to 

determine whether predicting log
DR  is sufficient for our goal. For this purpose, we 

estimate a model  

 

DDD RR εβα ++= log
 (17) 

 

 Estimation results involving daily data from the whole sample are listed in the 

Appendix as Table A.2. Heteroskedasticity is present and thus inference based on 

AdjR2,7 should be taken into account only grossly. Treating heteroskedasticity via 

GARCH modeling could solve the problem only artificially, as we are estimating 
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and it is natural that the difference of two variables will not depend linearly on the 

logarithm of their ratio. 

 Taking into account ( ) 01684.0=DRE  and the fact that more than 70% of 

residuals lie within 001.00 ±  (in other words, the AdjR2 is very high despite possible 

bias), we chose log
DR  as the range variable since distortion is minimal8. 

 

3.2 Time Patterns  

 Having properly defined the daily range, in the following section we investigate 

day-of-the-week, hour-of-the-week and high-frequency intraday patterns. From these 

analyses we can infer hints that could help us in model design. For example, if 

significant differences in daily ranges are observed across days of week, enriching 

a model by dummies for separate days of the week might prove fruitful. Investigating 

intraday patterns of volatility and trading activity will enable us to determine the starting 

points of different trading sessions as well as visually assess the basic characteristics of 

the volume-volatility relationship. 

 

3.2.1 Intraday Patterns  

 Intraday patterns observed in financial data include, for example, volume spikes 

around exchange opening and regular news releases, a die-off of trading activity during 

premarket and postmarket periods etc. For the analysis of intraday patterns, one needs to 

assume trading windows which are spaced more finely than in intervals of whole days. 

Shortening this sampling period grants the researcher an ability to see more detailed 

information, on the other hand measurement errors stemming from microstructure noise 

as well as information overwhelm might become a problem - we might stop seeing the 

forest for the trees. In accordance with standards used in high-frequency trading and 

academic research focused on intraday data analysis, we arrived at the sampling period 

of 5 minutes and thus created 5-minute trading bars for the whole 4 year data sample. 

For each bar traded volume and  range were recorded. All 5-minute bars with the same 

timestamp (i.e. trading bars representing the same 5 minute interval in all days 

contained in our dataset) were collected and the recorded variables were averaged to 

                                                 
8 From here on, we use the term daily range for the range of daily extreme log-prices. 
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obtain a general idea of how the instrument at hand behaves during that specific 

5-minute window of the day. In spite of this procedure's simplicity, its results presented 

below were not published in academic literature yet.  

 

 

 

 

 

 

 

 

 

 

 

 

 In accordance with e.g. Dacorogna et al (1993), the distribution of observed 

averages is indicative of different trading activity depending on time of day, 

corresponding to different geographical distribution of market participant throughout the 

day.  

 In the first hours of trading, East Asian traders are active. The overall calm of 

this period as compared with the overall behavior is caused by three factors. Firstly, it is 

natural to expect that European and American investors, exporting companies, etc. will 

be attracted to EUR/USD futures contract more than East Asian traders. Secondly, 

opening times of different East Asian exchanges are not synchronized and thus surges in 

traded volume resulting from synchronized commencement of trading do not take place. 

Lastly, while in Europe and America we observe daylight saving time (DST), East 

Asian countries do not observe DST. Thus, the effect of e.g. Shanghai Stock Exchange 

opening affects different 5-minute bars depending on the actual DST observed in 

Chicago. This causes a possible effect of large East Asian stock exchanges openings to 

be diluted9. As the presence of European and American traders in this early time of the 

day cannot be ruled out and as we have no information related to whether a particular 

                                                 
9 As can be seen from two distinctly identifiable small surges in volume at 19:00 and 20:00 

Figure 1: Intraday volume/volatility patterns. Each bar represents the whole-sample average  
of volume/volatility for the corresponding 5 minute trading interval. 
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trade resulted from interactions of Asian traders exclusively10, we have no error-proof 

procedure for removing the impact of this DST effect. Considering, however, the 

average volume traded volume between 16:00 and 17:00 (non-trading period), we can 

see that the average volume attributable to East Asian traders is rather low as it is on 

average only quadruple of the average volume traded in this non-trading period. Hence, 

any attempts to correct for the DST effect would bring only marginal impact on our 

results. In other words, we need not worry about imprecision of data measurements 

stemming from DST mismatch between Asian traders and traders from Europe and 

America. 

 On the contrary, in the period between 1:00 and 2:00 a surge in trading volume 

attributable to the growing presence of European traders occurs. Another distinct surges 

at 2:00 (bar with timestamp 2:05) and 3:00 attributable to openings of some European 

exchanges11 occur. The last surge connected to Europe at 4:00 presents a puzzle. Minor 

volume surges occurring each 30 minutes can be attributed to regular news releases. As 

opposed to the East Asian case, when dealing with data created by mostly American and 

European trading, problems with DST are only minor, as time shifts in Europe and the 

United Stated are separated by two weeks. Thus, for only two weeks each year are data 

influenced by different DST zones in Europe and America. In the remaining weeks of 

the year, both continents are in the same DST zone. 

 The American session presents several distinct surges of trading activity at 7:30 

8:30 and 9:00 which are most likely related to opening of different exchanges. A small 

surge of volume at 12:00 is likely related to the closing of London session and 14:00  

marks the official end of U.S. trading. Position traders usually make trading decisions at 

the end of a trading day and if enough profit or loss is accumulated, positions are 

terminated. This is most likely the reason for volume surges accompanying ends of 

different sessions. 

 The heavily researched relationship between market activity and volatility does 

not seem to hold for our instrument. Comparing the European and American sessions, 

despite the average volume and transaction count nearly double in the American 

session, the increase in ranges is small. Moreover, comparing the East Asian session 

with the other two, we observe nearly identical levels of volatility on significantly lower 

                                                 
10 This would be feasible if the investigated futures contract was traded simultaneously on more 
exchanges as for example in Dacorogna et al (1993) 
11 Most importantly the London Stock Exchange and the Frankfurt Stock Exchange. 
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market activity. Lastly, taking into account the minimum trading activity during 

non-trading period and only a minute decline in volatility compared to overall level of 

volatility, we claim there is no relationship between average volatility and average 

market activity when talking about whole trading days. However, for different parts of 

the day there might be a relationship between market activity and volatility. This 

relationship seems to be different for each session, most likely due to different order 

book thicknesses Not   over different sessions.  

 Several papers (e.g. Chu & Lam 2008) indicate the usefulness of information 

provided by the market during illiquid periods (after close and/or before opening). Also, 

it is likely that general trading conditions (news releases, for example) affect the market 

for a period of several hours as opposed to just momentarily12. Hence we expect some 

relationships to hold between market behaviors of succeeding sessions. For this purpose, 

we divide the trading day into several time periods marked by volume surges, i.e. 

trading sessions. This division is more or less arbitrary and only in some cases reflects 

the opening times of exchanges around the world as a surge in trading activity is more 

informative than an opening of an Exchange. The specific periods are  

 

Session End Time   Session End Time  

preAsian 19:00  American - 1 9:00 

Asian 1:00  American - 2 14:00 

preEuropean 2:00  postAmerican - 1 15:00 

European 6:00  postAmerican - 2 16:00 

preAmerican 7:30  Non-Trading 17:00 

Table 1: Intraday session time delimiters. 

 

and Figure A.3 in the Appendix depicts this division visually. 

 Out of the previously mentioned 999 trading days that constitute our dataset,  

only 66 had some activity in the non-trading session, for which reason we omitted this 

session completely and never included it at any later stage of work. The remaining 

sessions were traded commonly and we observed only three missing observations for 

preAsian session and one missing observation for the European and preAmerican 

                                                 
12 Imagine, e.g. an ECB announcement with a strong impact on the EURUSD currency pair. European 
traders operate according to the announcement immediately, while American traders will react to this 
announcement only when they become active in the market, i.e. with a delay or several hours. 
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session. In these cases, missing observations were replaced with averages of given 

sessions' data of the preceding and succeeding day.  

 

3.2.2 Hour of the Week and Day of the Week Analysis  

 The same procedure as in the previous subchapter was used for a visual 

evaluation of the day of the week effect as well as hour of the week effect (as in 

Dacorogna et al 1993).  

 Investigating different hours of week in terms of market activity leads to several 

conclusions. Firstly, volume peaks in the middle of the week. All days show the same 

structure of calm East Asian session, a steep rise of activity with the commencement of 

European trading with a following setback. A surge of activity with American session 

start follows. Thursday and Friday seem to have significantly more active preAmerican 

and American1 sessions. Owing to the high number of observations (roughly 140 for 

each hour of week) these findings can be considered robust.  

 In terms of volatility, intraday patterns differ across days of the week. Focusing 

on ranges, the volatility of American session is significantly higher then for the rest of 

the day during Thursday and Friday, while during start of the week, volatilities of 

European and American session are comparable. The presented effects are documented 

in Figure 2. 

 

 

 

 

 

 

 

 

 

 

Figure 2: Hour of the week patterns in volume/volatility. A timestamp of 1-13:00:00 represents Monday from  
12:00 to 13:00. Gaps in the middle and right side of the Average Range chart capture the Non-Trading session. 

 

 Investigations of day of the week effect reveal a lower trading activity on 

Mondays while the remaining days seems to be equally active. Comparing daily ranges, 
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one observes generally higher volatility on Tuesdays and Thursdays. The effects are 

presented in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Day of the week patterns in volume/volatility. 

 

3.3 Descriptive Statistics 

 Having discussed time patterns present in our data, we now turn to providing the 

reader with a statistical notion of our dataset. For that purpose, descriptive statistics of 

data sampled at different frequencies are shown below.  

 

 Mean St. Dev Skew Kurt GHE 

Mr5  -0.0000003 0.0004894 0.3268 26.3631 0.493 

Hr1  -0.0000035 0.0016567 0.1055 8.2748 0.502 

Hr12  -0.0000277 0.0044624 0.0660 4.6478 0.511 

Dr1  -0.0000809 0.0079047 0.0473 1.1128 0.512 

log
5MR  0.0006353 0.0004806 3.2356 31.3406 0.974 

log
1HR  0.0023254 0.0015485 2.3790 11.5503 0.966 

log
12HR  0.0063174 0.0045183 1.8154 5.0818 0.981 

log
1DR  0.0121566 0.0055872 1.6842 4.1943 0.990 

Table 2: Descriptive statistics of data sampled at 5M, 1H, 12H and daily frequencies. 

 

 Growing mean values and standard deviations of returns with less frequent 

sampling are expected. Skewness as well as excess kurtosis of log-returns approaches 

zero with lowering sampling frequency. The growing similarity of log-returns' 

distribution to Gaussian distribution as sampling frequency is being lowered is 
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a well-documented feature of financial markets. However, when we check for normal 

distribution of log-returns, the null hypothesis is rejected regardless of sampling 

frequency and test type (Jarque-Bera, Kolmogorov-Smirnov) due to the well-known 

heavy-tailed feature of financial data13. The Hurst exponent of log-returns measured 

using Generalized Exponent method stays very close to 0.5 which is a value 

corresponding to random walk14. 

 Turning to ranges, growing mean values and standard deviations with lower 

sampling frequencies are an expected outcome as well. Both skewness and excess 

kurtosis fall in magnitude with lower sampling frequencies, most likely due to 

a relatively lower impact of bid-ask bounce. The Hurst Exponent is extremely high for 

ranges measured at all frequencies which indicates very strong persistence.  

 Speaking of distributional properties of ranges, Locke's nonparametric test 

rejects the null hypothesis of gamma distributed data at all feasible significance levels, 

which was contrary to our expectations. A frequency distribution of daily ranges, 

coupled with the best fitting gamma distribution p.d.f. is included in the Appendix as 

Fig. A.4. This unexpected behavior could be disentangled by considering the 

distributions of separate sessions' ranges. However, for these the null hypothesis of 

gamma distribution is rejected as well. The histograms of separate sessions' ranges are 

included in Fig. A.4 as well. Alizadeh, Brandt & Diebold (2001) argue that logs of 

ranges are approximately normally distributed. Checking for this, the null hypothesis of 

normal distribution was rejected both for daily log-ed ranges as well as for sessions' 

log-ed ranges (except for the European session, results not presented here for brevity 

reasons). Hence, distributional properties of daily ranges as well as session ranges 

remained unknown. 

 Lastly, turning to stationarity checking as a prerequisite for time series modeling 

of daily ranges, we ran the Augment Dickey-Fuller test. An ADF test with five lags and 

a constant included rejects the null hypothesis of unit-root in daily ranges with 

practically zero p-value, hence stationarity is claimed. 

 A time plot of daily ranges, included in the Appendix as Figure A.5,  reveals 

a period Q2 2008 - Q1 2009 of high volatility related to the financial crisis. Apart from 

this period, stationarity of the series is evident even visually. 

                                                 
13 For brevity purposes, p-values of Jarque-Bera and Kolmogorov-Smirnov tests were omitted, but in each 
case the null hypothesis of normal distribution was rejected on all feasible significance levels. 
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 To sum up this section, the dataset at hand does not exhibit any irregular 

patterns. Both log-returns as well as log-ranges behave in accordance with expectations 

(random walk of non-normally distributed log-returns, extremely high Hurst exponent 

of log-ranges). Neither gamma nor lognormal distribution seems to fit daily ranges in 

our data and based on the results of an ADF test stationarity of daily ranges can be 

claimed. Investigated intraday patterns reveal different market behavior during the 

trading day and for this reason we divide the day into several trading sessions 

distinguished by volume surges. 

 

3.4 Autocorrelations and cross correlations 

 Having described the basic characteristics of our dataset in the previous section, 

we continue with the issue of correlation analysis. Firstly, we investigate 

autocorrelations in daily ranges per se, as this will guide us in the selection of a proper 

ARMA-type model for later parts of this work. Next, we investigate correlations 

between daily ranges and trading activity variables (trading volume, average trade size 

and transaction count) measured both on whole days as well as separate sessions. These 

correlations will shed light on whether the inclusion of trading activity variables into 

models for daily ranges can prove fruitful. 

 Autocorrelations of daily ranges (Figure A.6) start at values of approximately 0.4  

and decay very slowly. The first autocorrelation inside the Barlett test critical interval is 

located beyond the 70th lag and hence we can assume an existence of a long memory 

process governing ranges. This conclusion is derived from highly significant 

autocorrelations at distant lags and an extremely large value of the Hurst exponent. The 

shape of PACF and ACF hint towards an AR(7) process governing ranges. We will, 

however, postpone model specification until Section 5. 

 Next, we investigate relationships between volatility and variables capturing 

trading activity, both on whole days as well as on separate intraday sessions. 

Correlations of trading activity variables (average trade size, traded volume and 

transaction count) and ranges within separate sessions as well as on whole days are 

reported in Table A.7. Contrary to the popularly held belief, whole day ranges depend 

(linearly) much more on transaction count and average trade size than on traded volume. 

                                                                                                                                                
14 GHE is the most efficient estimator of the Hurst exponent (see a recent comparison of all Hurst 
exponent estimators under heavy-tailed distributions in Baruník & Krištoufek  2010) 
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This result is in line with findings of Jones et al (1994) and Chan & Fong (2000). 

Focusing on Figure 1, one could suspect different range-volume relationships among 

intraday sessions, as these sessions differ hugely in trading activity with ranges differing 

only slightly. This feature can simply be attributed to different order book thicknesses 

during various sessions. The data confirm this as correlations of ranges and trading 

activity variables differ vastly across trading sessions. While for most sessions 

transaction count correlates with range more than volume, for the preEuropean session 

the opposite holds. The variance of correlations between ranges and average trade sizes 

across sessions is also high. To sum up, all trading sessions exhibit remarkably different 

volatility-trading relationship. Note that all correlations are of expected signs. 

 Correlations of daily ranges and sessions' trading activity/volatility are reported 

in Table A.8. High correlations among daily ranges and ranges/trading activity of early 

sessions hold promise of possible daily ranges prediction updates conditional on early 

trading activity/volatility. As opposed to previous results (Table A.7), transaction count 

of current day's sessions has a significantly lower correlation with current day's range, 

albeit still non-trivial. The same applies for traded volume, only to a larger extent. 

 Since daily ranges exhibit both strong autocorrelation and strong correlations 

with trading activity variables of separate current day sessions, we turn to the 

investigation of correlations between current daily ranges and variables (volatility and 

trading activity) measured on lagged sessions. The results are presented in Table A.9 

and are indicative of strong dependence of daily ranges on ranges, transaction counts 

and average trade sizes of different lagged sessions. Hence, the question arises what 

kind of dependence governs daily ranges. On one hand, current daily range could 

depend on past realizations of daily ranges provided that these lagged daily ranges 

embed all information contained in different past sessions. Or current daily range might 

depend on lagged variables measured over separate sessions and as these are also related 

to lagged daily ranges, the autoregressive property of daily ranges might only hide the 

true dependence of daily ranges on different lagged sessions' variables. The 

investigation of whether or not does lagged daily range contain all useful information 

for daily ranges forecasting will be carried out in Section 5.1. 

 Next, we briefly investigate mutual correlations among volatility and trading 

activity variables of intraday sessions. For example, we measure the correlation between 

preAsian volume and European range. These session variables have been shown to 

exhibit high correlations with daily ranges. However, if these session variables are also 
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highly mutually correlated, they do not convey unique information and thus their 

inclusion in any model will only lead to a cosmetic increase in explanatory power as 

well as a reduction in degrees of freedom. By checking mutual correlations between 

these trading variables measured on separate sessions, we check the uniqueness of 

information they carry. High correlations between realized variance, realized range and 

range measured on the same session are expected, hence we only investigate 

correlations between realized ranges, average trade sizes and transaction counts of all 

intraday sessions. The resulting 27x27 (three variables for nine sessions) matrix is too 

large, hence we do not provide it here but the whole matrix can be obtained upon 

request. Out of 351 unique correlations, only 33 are above 0.6, only 8 are above 0.75 

and none is above 0.9. Hence, even though there are some session variables which 

exhibit significant mutual correlations, their number is not as high so as to invalidate the 

inclusion of sessions' trading variables into models for daily ranges. 

 Lastly, Dacorogna (1997) investigates causality between coarsely grained and 

finely grained (i.e. long-term and short-term) volatility and finds that long-term 

volatility causes short term volatility. This result is arrived at by studying asymmetric 

cross-correlations between long and short term volatilities. As this question lies out of 

the focus of this work, cross correlations with negative lags are not presented in 

Table A.9 but can be provided by authors upon request.  

 To sum up, daily ranges are strongly autocorrelated. Correlations between daily 

ranges, volatility and trading activity variables measured over separate sessions of the 

same day are high. Combining these two results led us to the investigation of 

correlations between daily ranges and lagged volatility and trading activity variables 

measured over separate sessions. These correlations proved to be high as well. Further 

investigations proved that different session variables of one trading day convey unique 

information. Thus we arrive at the question of whether strong autocorrelation in daily 

ranges is indeed a dependence of daily volatility on lagged daily volatility, or whether 

today's range depends on previous day's session variables. If the latter was the case then 

the dependence of today's range on yesterday's range would be only indirect, as both 

would be predominantly driven by yesterday's volatility and trading activity variables 

measured over different sessions. 
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4. Comparing volatility measures 

 In the preceding Section, we provided the first building blocks for our later work 

focused on modeling daily ranges. After showing the possible benefits of slicing up 

a day into trading session, we continue by analyzing different venues of enhancing 

models commonly used for daily ranges modeling. Specifically, we investigate the 

usefulness of regressing daily ranges on other measures of volatility. 

 Thus, in this section, we firstly introduce the concept of realized measures of 

variance (realized variance and realized range) which use intraday data for the 

calculation of daily variance. We are motivated by high efficiency gains compared to 

range-based estimators. After familiarizing the reader with realized measures of 

variance, we investigate whether range-based volatility estimators differ in their 

efficiency even on real-world data or whether their differing efficiency is confined to 

simulated processes. Our motivation is to infer which range-based volatility estimator 

provides the best efficiency on real-world data. A range-based estimator with the lowest 

measurement error should be used as a regressor in daily ranges modeling to obtain the 

best fit in case intraday returns for realized range/variance are not available (data costs, 

illiquid markets15). Moreover, as our dataset provides intraday returns, we assess the 

imprecision in daily variance estimation when using daily ranges/range-based estimators 

instead of realized ranges/realized variance.  

 

4.1. Realized measures of variance 

 In their influential paper, Andersen et al (2001) introduce the concept of realized 

variance for the estimation of daily variance, where realized variance is simply a sum of 

squared intraday returns. By using high frequency data, volatility measured by this 

approach can be considered observed rather than latent (as in e.g. ARMA-GARCH 

models of log-returns) and by increasing sampling frequency, one can theoretically 

approach true volatility of the underlying process with arbitrary precision. In practice, 

however, increasing sampling frequency brings increased precision of measurement and 

at the same time increased bias induced by market microstructure. As with higher 

sampling frequencies asset returns diminish while microstructure effects remain of 

                                                 
15 For example selected bond markets or energy markets with very distant delivery dates. 



 

 

24 

  

relatively constant size, extremely frequent sampling induces a strong bias into volatility 

measurements.  

 Martens & van Dijk (2007) and Christensen & Podolskij (2007) in independent 

studies build upon the work Parkinson (1980) who shows that  squared daily ranges 

provide efficiency gains compared to squared daily returns. These two studies take 

Parkinson's insights and apply it to the topic of measuring daily variance on intraday 

data. Specifically, they propose the replacement of squared intraday returns in the 

calculation of realized variance by squared intraday ranges. Daily variance estimate 

obtained by this procedure was coined realized range and according to empirical 

sections in Marten & van Dijk and Christensen & Podolskij realized range provides 

efficiency gains over realized variance. As the observed (high frequency) range is likely 

to overestimate the true range of underlying price process due to market microstructure 

(the period's highest price occurred more likely on ask and vice versa for the lowest 

price), both papers propose bias-correcting constants. While Martens & van Dijk 

suggest normalizing each square of intraday range by ( )[ ]2ln4  (as Parkinson 1980), 

Christensen & Podolskij alter the normalizing constant depending on sampling 

frequency. In our measurements, we followed the former approach.  

 The question of optimal sampling frequency bringing the best precision-bias 

tradeoff for measuring realized variance and realized range has been investigated by 

several authors. In our work, we chose to sample returns at 5-minute intervals, as this 

sampling frequency was firstly proposed by Andersen & Bollerslev (1998) for 

measuring ex post daily foreign exchange volatility. Also this sampling frequency was 

originally used in Andersen et al (2001). Thus, in our work realized variance was 

calculated as the sum of squared differences between the log-close and log-open prices 

for each 5-minute bar of the ETH (whole day) session. Daily realized ranges were 

calculated as summed squared differences of log-high and log-low prices of each 

5-minute bar normalized by ( )[ ]2ln4 .  

 Time plots of squared daily log-ranges divided by ( )[ ]2ln4 (i.e. Parkinson's 

measure of daily variance), daily realized variance and daily realized ranges are shown 

in Figure A.10. Owing to similarity of realized range/realized variance construction it is 

not surprising to find nearly identical development of these measures. Comparing 

squared daily ranges and realized variables we observe a good match, however, some 

differences are present. As we will see in succeeding analysis, the differences between 
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realized ranges and daily ranges are significant. Correlations of daily ranges and lagged 

values of ranges, realized variances and realized ranges (daily as well as sessions) can 

be found in Table A.1116. Other volatility measures (standard deviation of returns, 

squared or absolute daily returns, etc.) were omitted from this exercise as they are 

significantly less efficient than realized variables. Reported correlations reveal an 

expected pattern - ETH range is more correlated with lagged realized variables than 

with its own lagged values17. Hence, realized variables seem to be higher quality 

predictors of ETH ranges. Comparing realized variance and realized range in a similar 

manner, we find that correlations of realized range and ETH range are higher in 63 out 

of 80 cases than correlations of ETH ranges and realized variance, indicating superiority 

of realized range for ETH range forecasting. The question of whether to augment an 

autoregressive model of ETH ranges by lagged values of realized ranges or whether to 

replace lagged daily ranges by lagged realized ranges remains to be investigated in 

subsequent sections. 

 To sum up, in this section we investigated which realized measures of daily 

variance is a better predictor of daily ranges. Theoretical results favor realized ranges 

due to higher efficiency compared to realized variance. Our empirical results are in 

accordance with this conclusion, as daily and sessions ranges exhibit higher correlations 

with daily and sessions realized ranges than with daily and sessions realized variances.  

 

4.2. Assessing efficiency gains of range-based estimators 

 In this section, we draw upon conclusions of the previous section. We firstly 

investigate the general relationship between daily ranges and realized ranges, including 

efficiency gains of using realized ranges as compared to daily ranges. Secondly, we are 

interested in whether differing efficiencies of range-based estimators presented in 

Section 1 are measurable on our dataset.  

 The first exercise (assessing the usefulness of realized ranges for daily ranges 

modeling) complements our previous investigations of correlations. In volatility related 

                                                 
16 Correlations of daily ranges and lagged daily ranges are reported redundantly (already contained in 
Table A.9). In Table A.11 we state them for comparison purposes with other volatility measures. 
17 In 71 cases out of 80 cases in total (8 lags for 10 trading sessions), correlations of ETH range with 
lagged realized variances of different sessions are higher than correlations of ETH range with (normal) 
range of different sessions. For lagged realized range, this result is 74 cases out of 80. 
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literature, Mincer-Zarnowitz regressions18 are used to assess a performance of one 

measure of volatility against a benchmark (usually realized variance). We use the same 

methodology for comparative quality assessment of daily ranges and realized 

ranges/realized variance. For this purpose we estimate  

 

( ) ( )[ ] DDD RRR εβα ++= 2ln4/
2log

 

( ) ( )[ ] DDD RRV εβα ++= 2ln4/
2log

 

(19) 

 

 i.e. how well daily squared daily ranges match realized measures of variance. 

Estimation results of (19) are shown in Table A.12. If squared daily ranges and realizes 

ranges/variance were comparable in terms of accuracy, residuals would show no 

heteroskedasticity, α  would be close to zero and β  would be close to unity. Our results 

suggest that squared daily ranges cannot replace realized measures of variance, as 

residuals exhibit strong heteroskedasticity (mostly pronounced in the time period related 

to the onset of crisis). Moreover, Chow tests carried out on both halves of the whole set 

and later on quarters of the set reject the null hypothesis of time-invariant values of α  

and β  parameters. Intuitively, this can be attributed to the fact that daily ranges neglect 

a large part of intraday information. For example, if we consider a "V" and a "W" 

shaped evolution of prices within a day, daily ranges for these days might be the same 

but in that case both realized measures will be much larger for the second day. This 

changing daily structure uncaptured by the daily range is the reason for a failing 

time-invariance of parameter estimates. The general strong decrease of AdjR2 for both 

models in the second half of our dataset indicates that in calmer times, differences in 

measures calculation pronounce the differences in measured volatilities.  

 Having investigated parameter stability and obtaining a general idea of that daily 

ranges and realized variance measures can not be interchanged, we now turn to an 

investigation of how well range-based estimators compete with each other and with 

realized measures (in terms of efficiency). For this purpose, equations resembling (19) 

were estimated with HAC standard errors (to account for heteroskedasticity).  

                                                 
18 Mincer, J. A., Zarnowitz, V. (1969) The Evaluation of Economic Forecasts: Analysis of Forecasting 
Behavior and Performance, NBER Books, National Bureau of Economic Research 
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The only difference compared to (19) is that in this exercise, we regress all range-based 

measures on both realized measures and vice versa. That is, we estimate 
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 Recalling the definition of Garman & Klass volatility measure in (11), the value 

of parameter f  needs to be chosen. As f  represents the portion of a day during which 

trading is halted, we set 241=f  since trading is practically absent only in the 

Non-Trading session between 16:00 and 17:00. In our computations daily open price is  

the first price traded in the preAsian session while the close price is the last price traded 

in the postAmerican2 session. Lastly, we neglected the Yang-Zhang measure of 

variance (13) as this measures average past variance rather than daily variance19. 

 The  results of (20), (21) are presented in Table A.13. As all five variables are 
measures of the same quantity (variance) and DD RVRR ,  estimates border on the true 
value of volatility, we can loosely interpret the results as follows: 10 =∧= βα  in the 

upper pane of Table A.13 imply that DD RVRR ,  are best predictors of all range-based 
variance estimates and can explain all variance related information captured in these 
range-based estimates.  
 On the other hand, β  estimates in the lower pane of Table A.13 indicate 

a decomposition of range-based volatility measures into information on variance and 

noise. These β  estimates as well as AdjR2 of all models indicate that approximately 

57% of information in range-based variance estimates is related to variance of the 

underlying process and the remaining share of information is noise. From this we could 

roughly infer efficiency gains of using realized ranges/variance instead of range-based 
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estimates. We need to bear in mind that microstructure noise and possible jumps were 

not removed from intraday data, hence values of realized ranges/variances might be 

biased. Even though this bias is most likely small, for exact assessment of efficiency 

gains we cannot neglect it.   

 Lastly, for range-based variance estimators we observe a clash of theoretical and 

empirical results. While in theory, Garman & Klass as well as Rogers & Satchell 

estimators promise significantly higher efficiency over Parkinson's measure, our results 

do not confirm this. β  estimates as well as AdjR2 in the lower-pane of Table A.13 are 

nearly identical for all three range-based estimators. Hence we observe no significant 

efficiency gain. We thus do not have any reason to use the RS or GK measure as 

predictors in daily ranges modeling instead of daily ranges themselves. 

 To sum up, in this section we showed that linkages between realized measures of 

variance and daily ranges are strongly time-variant. Neither range-based estimator can 

match the precision of realized ranges/variance. Only roughly 57% of information 

provided by range-based estimators is related to variance, the remaining part is error 

measurement. Even though Garman & Klass and Rogers & Satchell estimates promise 

significant efficiency gains compared to Parkinson's measure, our results indicate 

roughly equal efficiency of all three range-based volatility estimators. 

                                                                                                                                                
19 Rogers & Satchell (1991) propose a procedure for correcting the bias of both RS and GK measures 
resulting from infrequent trading. As our data have at least 80,000 contracts traded each day, the bias 
correction terms would be minuscule and hence we chose their omission in RS, GK construction. 
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5. Modeling daily ranges 

 In this section, we take the results of preceding sections and try to exploit these 

results for improving several existing approaches to volatility modeling. This section 

provides the bulk of our contribution to volatility modeling literature. At first, we 

provide an overview of plausible models for daily ranges prediction present in current 

academic literature. Next, we focus on several models which were chosen for this thesis 

either due to their general properties (goodness of fit) or their specific focus on daily 

ranges modeling. For each of these models we investigate the added benefit of using 

more precise volatility measures for daily ranges prediction. Also, we investigate the 

added benefit of slicing up historical data into sessions. Lastly, we evaluate the 

possibility to obtain updated daily volatility forecasts of increasing quality as time 

passes during a trading day.  

 Modeling daily ranges is in a certain way special. Unlike many other variables in 

economics or finance for which usually one approach is used dominantly (e.g. VAR for 

monetary economics variables), volatility and daily ranges especially can be modeled 

using various approaches. Generally, these can be separated into two groups depending 

on whether or not the assumption of long memory is exploited. In this thesis, we only 

focus on models which do not incorporate long memory. Our reasons for this choice  are 

comparative ease of estimation, high prevalence in published papers and better 

economic interpretation of models that do not assume long memory.  

 When modeling volatility and neglecting the assumption of long memory, simple 

AR (ARCH type, see Engle 1982) or more refined GARCH models can be used. 

However, several papers question the validity of GARCH-type models. For example, 

Starica (2003) finds that a GARCH-type model can only be used for short-term 

volatility prediction on the most commonly known market indices (S&P, DJIA). 

Moreover, misspecification of the GARCH process (e.g. omitting the IGARCH effect 

when it is in place) dramatically decreases the forecasting performance of the model. As 

GARCH models in general incorporate only lagged values of different measures of 

volatility, it is possible that such omission of an important explanatory variable is 

common.  

 Recent developments in volatility modeling applicable to modeling daily ranges 

are, for example, mixtures of long, medium and short-term volatilities (HAR of Corsi 

2004) or one can exploit previously mentioned linkages between various measures of 
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volatility for predicting daily ranges, as in Engle & Gallo (2003). Following the latter 

approach, having a good prediction of daily range is not beneficial only per se, but also 

has a side benefit of providing for better predictions of other measures of volatility. 

Other daily ranges modeling approaches that can be mentioned are vector 

error-correction models (Cheung et al 2007) or models incorporating data sampled at 

different frequencies (Ghysels 2003). Lastly, when considering predictions related 

specifically to futures markets, models rooted in cost-of-carry theory of futures contracts 

(e.g. Zeng & Swanson 1998) or models based on readings of implied volatility 

(Jorion 1995) can be used. 

 Apart from the aforementioned drawbacks of current volatility 

modeling/forecasting techniques, another type of drawback present in this area is the 

error-minimization approach. According to this approach, the best model chosen from 

a group is the one with the lowest mean squared error or similar error-based measure of 

goodness of fit. However, Leitch and Tanner (1999) provide arguments against this 

approach. Their findings confirm that models performing well in such 

error-minimization need not be the ones with greatest real-life applicability. On the 

contrary, their findings suggest that sometimes models with the worst mean squared 

error are the ones with greatest real life value (as measured by e.g. profitability of 

a trading strategy utilizing the model's forecast). Part of research suggests that ranges 

prediction can indeed result in profitable trading strategies (Cheung 2007, 

Cheung et al 2010). Including the topic of error-minimizing versus profit-maximizing 

daily range/volatility forecasts would make this thesis too large a body of possibly 

incomplete research. Hence, in this thesis, our aim is to assess possibilities and 

limitations of the error-minimizing approach of volatility forecasting only.  

 In the next sections, we discuss and estimate the models chosen for this thesis. 

 

5.1 ARMA-GARCH 

 As the first approach for daily ranges modeling, we chose the prevalent method 

of time-series analysis in economics, the ARMA-GARCH model. Our motivation for 

this exercise is to obtain a base model to which we can compare other models designed 

specifically for volatility, or even better, for daily ranges. The application of 

ARMA-GARCH type models to volatility modeling is not uncommon. Examples of this 

approach can be found in, for example, Pong et al (2003) who use an ARMA model in 
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predictions of realized volatility or Ahoniemi (2009) where ARMA models are used for 

modeling and forecasting of various instruments' implied volatility. 

 Estimation of ARMA-GARCH models was carried out by jointly considering 

both the mean-of-volatility as well as volatility-of-volatility component. Selection of the 

best specification of both components was carried out with three criteria in mind: 

parsimony of both components, absence of autocorrelations in both residuals and their 

squares and the match of expected and true distribution of model residuals. The 

presence of "bad-new" or "leverage" effect, i.e. the effect of increased volatility 

following a drop in market prices, was investigated by including a dummy for previous 

day's price decrease in the mean-of-volatility equation. Following ACF/PACF of daily 

ranges (Figure A.6), an AR(7) model was suspected. The mean-of-volatility component 

was capable of removing autocorrelations in residuals, but suffered from an insignificant 

7th AR lag. However, upon switching to AR(6) model for mean-of-volatility a strong 

autocorrelation in residuals on 7th lag appeared. Hence, the AR(7) specification was 

kept.  

 Squared residuals of a pure AR(7) process exhibited significant autocorrelations 

on all lags, hence a volatility-of-volatility component was needed. Here, GARCH(1,1) 

with T-distributed residuals of the AR(7) component was found to be the best 

specification as it removed autocorrelations in squared residuals on nearly all lags. Both 

ARCH and GARCH terms were significant. The estimated degrees of freedom 

pertaining to residuals' Student distribution was significantly different from 2 (normal 

distribution). Added second ARCH or GARCH terms turned out insignificant, ruling out 

the need for a more complex GARCH component. Thus, we considered the 

GARCH(1,1)- t specification well justified. 

 ARCH models used for modeling log-return volatility are known to suffer from 

a necessity to include many lags of the ARCH term to remove autocorrelations in 

squared residuals. GARCH models solve this by allowing for an MA term in volatility 

prediction, which is commonly able to replace many ARCH terms. As an AR(7) model 

of volatility is rather complex, attempts were made to reduce the number of terms by 

estimating an ARMA model of daily ranges. Both ARMA(1,1)-GARCH(1,1)-t and 

ARMA(2,2)-GARCH(1,1)-t models were incapable of removing autocorrelations in 

residuals themselves. Specifying more complicated ARMA models was unfeasible due 

to two reasons. Firstly, our motivation was to obtain a model parsimonious compared to 

AR(7). Secondly, estimations of ARMA(2,2) contained two pairs of common roots 
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indicating that ARMA(2,1) model was the most complex identifiable ARMA model on 

our dataset.  More complicated models would have a non-invertible MA component.  

 For this reason, attempts to include MA terms into the mean-of-volatility 

component were halted and AR(7)-GARCH(1,1)-t  was taken as the best representative 

of the ARMA-GARCH class of models. On a last note, all parameter estimates in the 

AR(7)-GARCH(1,1)-t model were positive, which is a desired property in a volatility 

forecasting model. This, by preventing volatility forecasts to be negative, ensures that a 

volatility forecast will always be at the practitioner's disposal. Surprisingly, the previous 

day's "bad-news" effect is insignificant. 

 To sum up, the first model for daily ranges was drawn from classical 

ARMA-GARCH approach. AR(7) model jointly estimated with GARCH(1,1)-t 

component was chosen as the best specification and in-sample estimation results are 

presented in Table A.14. Table A.15 contains Q-Q plots of AR(7)-GARCH(1,1) 

residuals with normally and T-distributed disturbances. Albeit the Q-Q plot of residuals 

using T-distribution is not perfect, it is much better than if we had used normal 

distribution. 

 

5.2 Heterogeneous autoregressive model 

 The idea that markets transform information into prices efficiently had been the 

cornerstone of academic thinking in finance for the last 50 years even since Eugene 

Fama introduced the concept of the Efficient Market Hypothesis in the 1960s. 

Implications of this hypothesis range from impossibility to make a consistent profit in 

any market to prices being constantly at their equilibrium levels, reflecting all the 

fundamental information available. One of the assumptions that allowed academics to 

arrive at such strong conclusions is the homogeneity of market participants. That means 

traders are expected to share the same opinion, to be capable of assessing available 

information in the same way (thus differences in market actions are driven solely by 

different information sets) and also, their decision making horizons are expected to be 

equal.  

 The last assumption was questioned by Muller et al (1993) where the collective 

of authors propose the Heterogeneous Market Hypothesis. This hypothesis expects 

participants to differ in their investment horizon. Retail traders can be divided into 

intraday traders and position traders who hold their positions for several days. Active 
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portfolio managers update the composition of held assets weekly or bi-weekly. Large 

institutions with long-term investment horizons, such as pension funds, update their 

portfolios on a basis of months, whereas central banks are likely to intervene in the FX 

markets etc. on a quarterly basis. Differences in the length of investment horizon are 

given by differing capabilities to withstand losses, different amounts of capital invested 

and different motives to trade. While retail traders can usually withstand only small 

adverse movements before terminating a position with a loss, large institutions rely 

more on long-term growth and thus short-term fluctuations are not a reason for quitting 

an open trade. Lastly, central banks are predominantly interested in protecting the 

country's price stability or exchange rate and the profitability motive in trading is absent 

in this case. As reaction time of economies to central banks' moves is long, it is not 

surprising that central banks are not interested in weekly or even monthly market 

changes.  

 In subsequent work, Dacorogna et al (1997) use the insights of HMH to propose 

an extension of GARCH models, namely HARCH model (heterogeneous GARCH). The 

basic idea in HARCH is to combine volatility views of differing time horizons so as to 

capture the views of more types of market participants. In empirical applications, the 

HARCH effect is significant and thus validates the view of HMH.  

 Corsi (2003) follows up to HARCH modeling by proposing his own model. 

Firstly Corsi comments on mainstream methods of volatility modeling. On one hand, 

long memory models suffer from difficult estimation procedures, dubious economic 

interpretation and need a long buildup period. On the other hand, parsimonious 

(G)ARCH type models are unable to fully replicate stylized facts related to volatility. 

For example, returns normalized by volatility forecasts depart from normal distribution 

and autocorrelations of volatilities exhibit an exponential as opposed to hyperbolic 

decline observed in reality. To correct for these shortages, Corsi draws upon the 

conclusions of HARCH and argues that a correctly specified volatility model should 

incorporate different market views by focusing on volatilities measured over periods of 

different lengths, i.e. short-term, medium-term and even long-term volatilities (to 

capture the long-memory property). Specifically, for the modeling of realized variance, 

Corsi proposes a model of the following specification 
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where )(a
DRV  is a simple average of realized variances of days ( ]DaD ;− , i.e. 

DD RVRV =)1( . In other words, a HAR model intuitively combines volatility of the 

previous trading day and average volatilities of the last week's and last month's trading. 

Estimation can be performed using OLS and in empirical work, HAR volatility 

predictions attain great in-sample fit and out-of-sample forecasts while replicating 

volatility related stylized facts.  

 In a succeeding work, Corsi & Reno (2009) assess the "bad-news" effect on 

volatility known from the family of T-GARCH models. The "bad-news" (or leverage) 

effect draws upon the idea that bear markets are usually accompanied by larger 

volatility than bull markets. The specification enriched by leverage effect 
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includes an indicator variable )(a
DI  equal to one in case the average daily return )(a

Dr  

measured over days ( ]DaD ;−  is negative. On Corsi & Reno's dataset, all 31...ββ  

estimates are significant indicating that volatility has "long memory" not only in itself, 

but also remembers short-term, medium-term and long-term market declines. In 

in-sample modeling and out-of-sample forecasting, this new (LHAR - Leveraged HAR) 

model performs better than the original specification (22). 

 

5.1.1. Basic HAR modeling 

 Having introduced the HAR models in general in the preceding section, we 

continue by estimating the basic HAR specification on our dataset. In this section, we do 

not consider data measured on trading sessions yet. Instead, we investigate general 

dependencies between daily ranges, lagged daily ranges, lagged realized ranges and 

lagged daily trading activity variables. 

 Despite the original HAR (22) was proposed for realized variance, there should 

be no problem applying it to any other volatility/variance measure. Moreover, as 

opposed to the previous ARMA-GARCH model, HAR models turned out to be suitable 

for the description of long-memory processes, for example, daily ranges. It is for this 

reason why, merging the logics of HAR and findings of preceding sections (Sections 

1.1.5, 1.1.6), we propose to augment the LHAR model by variables significantly 
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correlated with the daily range. These include lagged average daily, weekly and monthly 

trade size and transaction count. Moreover, we augment the daily ranges HAR model by 

realized ranges due to their superior efficiency. As previous results imply, daily and 

realized ranges do not hold the same information, hence it is possible that the inclusion 

of both into a HAR model will turn out useful.  

 Dealing with heteroskedasticity in modeling daily ranges with realized ranges 

can be accomplished either by robust standard error estimation or via simultaneous 

estimation of a HAR and GARCH model. We chose to utilize the former approach and 

allow for HAR-GARCH modeling only for specifications in which we observe a marked 

improvement of the augmented model over the base HAR specification. We chose not to 

apply the volatility-of-volatility modeling using GARCH to all models in order to firstly 

obtain results directly comparable to those of Corsi's. Also, as the number of models 

estimated in this section is large and there is no automated way of determining the best 

GARCH specification for volatility of residuals, estimating a HAR-GARCH model for 

all specifications would be extremely time consuming. Lastly, we model a HAR 

dependence in both volatility as well as variance measures, i.e. daily ranges and their 

squares.   

 The list of augmented HAR models considered in this section, coupled with their 

specifications, is presented in Table A.16. However, for the sake of clarity, we briefly 

define the different specification of HAR models used from here on to prevent 

confusion. The base specification for daily ranges modeling is  
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 Including the leverage effect into a HAR model of daily ranges leads to the 

LHAR specification given by  
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 In order to infer modeling performance gains stemming from using more precise 

information on volatility, we regress daily ranges on realized ranges solely in the 

R-HAR specification, i.e.  
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 To investigate the added benefit of using variables representing trading activity 

(average trade size/transaction count20) and their possible long-term influence on 

volatility, we define models with -S/-C suffixes as  
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 Lastly, to investigate the effect of mixing both realized ranges and daily ranges 

into one equation (i.e. to infer whether these measures contain useful and different 

information), we define a HAR-R specification 
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 Thus, the complicated R-LHAR-SC model is nothing but a HAR model where 

realized ranges are used as regressors but daily ranges are not (Eq. 26)). On top of that, 

the specification is enriched by information on leverage effect, average trade size and 

transaction count as described in (25), (27) and (28). 

 With all the HAR specifications clearly defined, we now turn to empirical 

estimations. Firstly, we focused on HAR, HAR-R and R-HAR specifications, i.e. we 

investigated whether realized ranges alone can be used for daily ranges modeling or 

whether they should at least be added to a standard base HAR specification. The 

estimated results are presented in Table A.17. The results of HAR-R model indicate that 

neither for variance nor for volatility modeling does mixing of daily and realized ranges 

into one model bring gains. Concurrently using both daily ranges and realized ranges as 

                                                 
20 Logarithms (not levels) of average trade size and transaction count were used in all regressions 
contained in this thesis. 
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regressors does not yield any benefit, indicating that daily ranges do not contain any 

useful information other than information on variance (in line with expectations). 

 Moreover, results from HAR and R-HAR models indicate that neither variable is 

strictly superior in terms of goodness-of-fit when modeling daily ranges. The increase in 

AdjR2 is relatively small and as heteroskedasticity induced a bias into this measure of fit 

quality, comparisons are limited. For this reason, all further models are evaluated with 

either daily or realized ranges being the RHS measure of (average) volatility, as neither 

shows clearly superior to the other.  

 In-sample estimation results of all specifications are presented in Table A.18 for 

volatility models and Table A.19 for variance models. In volatility modeling, square 

roots of realized ranges were used as regressors instead of realized ranges, on the other 

hand in variance modeling, squared daily ranges were modeled. For relieving 

hetoroskedasticity, HAC method was used. 

 Focusing firstly on Table A.18 (volatility modeling), we do not observe any 

significant increase in AdjR2 for either model. Contrary to Corsi, the "bad-news" effect 

is not consistently significant in all models. Moreover, only in LHAR-S model were all 

three "bad-news" terms found to be significant at least on a 95% critical level. In 

general, however, only the first-lag "bad-news" effect seems to be present in the data. 

Next, when comparing HAR vs. R-HAR and  LHAR vs. R-LHAR (i.e. we compare the 

benefit of using realized ranges for predicting daily ranges), we see that R-HAR and 

R-LHAR have a higher count of significant parameter estimates. Most notably, in 

HAR/LHAR models the lack of autoregressive dependency of order one is rather 

surprising. Since this anomaly is not present in R-HAR/R-LHAR models, where 

realized ranges are used as regressors, this can only be caused by the noise included in 

daily ranges. 

 Focusing on the added benefit of including transaction count and average trade 

size (-S/-C specifications), we cannot observe any significant effects stemming from 

these variables. Comparing the models enriched by these trading activity variables to 

models without these variables, we find only weak significance of monthly average 

trade size. When investigating the effect of including transaction count into a HAR 

model, we find no significance of estimated parameters under any specification. 

 Following to Table A.19 (variance modeling), we firstly find a consistently 

significant "bad-news" effect from the previous day (in all specifications), which is in 

line with the well documented leverage feature of financial returns. However, except for 
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two specifications, weekly and monthly "bad-news" effects are absent, contrary to 

Corsi & Reno's results. Comparing squared daily ranges and realized ranges for squared 

daily ranges forecasting, we cannot claim one to be strictly superior to the other. 

Similarly as for the volatility equation discussed in the previous paragraph, neither 

transaction count nor average trade size bring significant information related to squared 

daily ranges. Parameter estimates of these variables are significant only in several 

specifications. Considering the practically zero increment in AdjR2, which could also be 

only due to insufficient penalization of R2 for parameter count, we find no practical 

value in augmenting a HAR variance model with these trading activity variables.  

 The results of previous two paragraphs demonstrate that trading activity 

variables which are highly correlated with daily ranges do not have any significant 

modeling power. We are led to the question of whether this conclusion holds generally 

for all volatility/variance measures or whether it is specific to daily ranges only. For this 

purpose, we evaluated the same battery of models as in the previous two paragraphs. 

However, this time the roles of realized and daily ranges were swapped. This means that 

realized ranges were used as explained variable and in the R-HAR specification, daily 

ranges were used as regressors. Any significant impact of average trade size or 

transaction count in these HAR models would indicate a strong difference in the 

possibility to model daily as opposed to realized ranges via trading activity variables. 

However, as presented in Tables A.20 and A.21, no systemic impact of these measures 

of trading activity is observed. In accordance with intuition, in this setting R-HAR 

specification is inferior to a HAR specification for both volatility and variance. In other 

words, we cannot gain better realized ranges predictions by using a noisier measure of 

volatility (daily ranges). Considering, however, the data-intensiveness of realized ranges 

as opposed to daily ranges, the drop in explanatory power between HAR and R-HAR as 

judged by AdjR2, is rather small21. Plainly speaking, even realized ranges can be 

modeled by daily ranges to a great extent. Even though this kind of modeling does not 

make sense once we have realized ranges at our disposal, the attained AdjR2 in R-HAR 

specification is very surprising. Turning to other aspects of the results, a consistent 

finding is a strongly significant weekly "bad-news" effect (in all models where this term 

is included) and in all models of the R-LHAR class, we find strong significance of all 

"bad-news" effects. A noteworthy fact is a consistently significant parameter of previous 

                                                 
21 From 74.7% to 70.4% in volatility equation and from 72.3% to 66.8% in variance equation, 
respectively. 
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day's (realized as well as daily) range in all specifications, which is in contrast to the 

findings of tables A.18 and A.19 (previous paragraphs), where an AR(1) dependence 

was missing. 

 To sum up the results of this section, we conclude that when modeling daily 

ranges best results are obtained from an R-HAR specification, while for squared daily 

ranges modeling, LHAR specification seems the most plausible. The added benefit of 

having a more precise measure of volatility (realized range) brings only a small increase 

in daily ranges modeling in-sample performance. High noise content of daily ranges as a 

LHS variable is responsible for worse modeling possibilities by means of daily ranges 

as opposed to realized ranges and the use of realized ranges can not make up for the 

high noise content of daily ranges on the LHS. We managed to show that daily ranges 

do not contain any useful information not captured in realized ranges and that the 

difference between these two variables in pure information noise. A striking result of 

our work presented here is the extent to which realized ranges can be explained by daily 

ranges. Taking into account the low efficiency of daily as compared to realized ranges, 

we expected the capabilities of daily ranges to predict realized ranges very low. 

Contrary to Corsi & Reno (2009), there seems to be no connection between the 

"bad-news" effects measured over different horizons and daily volatility/variance. The 

significant weekly "bad-news" effect in some specifications is rather an exception than 

a rule. Lastly, including measures of trading activity into a HAR model does not bring 

any improvements for either volatility or variance modeling. Thus we can conclude that 

their information is already fully reflected in lagged volatility/variance measures 

themselves.  

 

5.1.2. HAR modeling including lagged sessions' info rmation 

 In Section 1.1.7, possible dependencies between daily ranges and lagged values 

of trading activity variables and volatility measured over separate trading sessions were 

suggested. Here, we investigate the possibility of augmenting previously presented HAR 

specifications by these lagged session variables and whether such augmentations lead to 

better fits. 

 As the number of possible regressors is high (5 variables for each of 9 sessions), 

finding an answer to our question (added benefit of using lagged sessions' information) 

is tackled using two approaches. In the former one, we augment the base HAR model 
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(24) by all lagged values of one measure, e.g. we investigate the additional explanatory 

power of ranges of all lagged sessions. In the latter approach, we augment the base HAR 

specification by all volatility/trading activity variables related to one specific session. 

For example, we investigate the additional explanatory power of trading taking place in 

the Asian session of the preceding day.  

 Estimation results of the former approach for daily ranges are summarized in 

Tables A.22/A.23. The results suggest that anything but a few selected variables has an 

impact on the next day's range. Most notable increases in explanatory power are gained 

from the inclusion of American2's realized range and realized variance. However, if we 

have these at hand, we can predict daily ranges by realized ranges which was proven 

earlier to be the preferred option. Overall, the increases in explanatory power of the 

models fall behind our expectations and the decomposition of neither variable among 

separate sessions brings a strong predictive advantage. This conclusion holds both for 

daily ranges and their squares. To distinguish between features typical for daily ranges 

and for volatility measures in general, we ran the same battery of models for realized 

ranges and the results are summarized in Tables A.24/A.25. Variables capturing trading 

activity have no bearing on the next day's realized range. However, the decomposition 

of lagged daily realized ranges/variances into realized ranges/variances of separate 

lagged sessions seems to bring some gains. In the volatility equation all parameter 

estimates related to sessions' realized ranges/variances are significant and in the 

variance equation at least some of these parameters are significant, in contrast to other 

investigated variables. Unfortunately increases in explanatory power stemming from 

sessions' RR and RV are not significant22. Our motivation for delving into this exercise 

was to infer whether it is some specific session's data which is responsible for the 

autoregressive property in daily/realized ranges. For example, if the decomposition of 

realized ranges among sessions produced an increase in AdjR2, today's volatility would 

most likely depend strongly on the realized ranges of the most important sessions, while 

the information provided by the least active sessions would just create noise in the 

realized range. However, this turns out not to be the case and we can say that the all 

trading sessions (even the least active ones) bear some important information for 

volatility modeling. In other words, neither session can be disregarded from volatility 

measurements due to, for example, its low traded volume. 

                                                 
22 Problems with multicollinearity (as whole days realized measures are a sum of sessions' realized 
measures) were most likely countered by the exclusion of non-trading session from all our regressions. 
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 Next, we turn to the approach of adding all trading variables related to one 

specific session of the previous day. Estimation results for daily ranges modeling are to 

be found in Tables A.26/A.2723. Confirming the results of the previous paragraph, 

neither session has such a strong bearing on the succeeding daily range that we could 

exploit it in any manner. Despite several terms (mostly realized ranges as in the 

previous paragraph) are significant, no dramatic increase in the share of explained daily 

ranges information is observed. Testing the same hypothesis on realized ranges, we 

obtain estimates in Tables A.28/A.29. While parameters related to some sessions are 

significant again, AdjR2 values remain basically unchanged.  

 To sum up this section, we showed evidence of no added benefit of decomposing 

the previous day into separate sessions. Hence, we conclude that all information relevant 

for daily volatility prediction is already contained in lagged daily volatility measures. 

On top of that, we find that even information provided by the least actively traded 

session is important for the next day's range prediction. Both findings are very strong 

results of our work. 

 

5.1.3. HAR modeling including non-lagged sessions' information 

 In the preceding section we investigated the usefulness of information provided 

by lagged trading sessions. In general, no useful information in past trading sessions 

was found. In this section, we wish to infer whether it is possible to obtain more precise 

daily volatility predictions throughout the day as separate sessions end and their 

volatility/trading activity measures are incorporated into a model on-the-fly. To give an 

example of the this approach, American investors might create a one-day-ahead forecast 

of daily or realized ranges based on information available at the end of the previous 

trading day. Later, these predictions could be made more accurate by including 

information related to preAsian, Asian and other sessions preceding the American 

session. Even though these sessions are not likely traded by American investors, they 

can provide useful information.  

 To explore this venue, we added non-lagged realized ranges, ranges, trade count 

and average trade size of different sessions to the basic HAR specification. Firstly, we 

do this in a non-cumulative manner, i.e. the benefit of adding each session separately is 

                                                 
23 Due to frequent multicollinearity problems, realized variance was omitted from variables describing 
each trading session.  
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investigated. Later we proceed to build forecast updates that utilize all intraday 

information available at the end of some trading session. For comparison purposes, we 

estimate the volatility forecast updating possibility both in daily ranges and realized 

ranges. 

 Estimation results for the non-cumulative approach are presented in 

Tables A.30/A.31 for daily ranges and A.32/A.33 for realized ranges. The results for 

daily ranges are indicative of a possibility to obtain more accurate volatility forecasts 

using up-to-date information. Each session's information is capable of producing 

a marked improvement in a volatility forecast, with most importance to be attributed to 

realized ranges and ranges, which are significant for nearly all sessions. On the other 

hand, knowing the average trade size seems to have no real benefit as it is only 

significant in models using information available late in the day. Turning to estimation 

results for realized ranges forecasts, the same pattern appears. In line with intuition and 

previous results, sessions' realized ranges are more useful than simple ranges of these 

sessions.  

 In the last exercise related to HAR specification, we investigate the cumulative 

adding of information related to today's sessions. For example, by adding information 

stemming from the preAsian, Asian and preEuropean session, we put ourselves in the 

position of traders active during the European session. We investigate, whether 

European traders can gain significant benefits by using information from already passed 

sessions. Moreover, we are interested in whether we can obtain better and better daily 

volatility forecasts as time passes.  

 We report estimation results in Table A.34/A.35 for daily ranges and 

Table A.36/A.37 for realized ranges. The results for daily ranges indicate a strong 

possibility to provide more accurate predictions of daily volatility as more information 

becomes available. More specifically, entities that start to trade in the American1, 

American2 sessions can gain nearly twice as precise forecasts of the current day's range 

compared to traders in the preAsian session. As investigating the possibility of gradual 

forecast updating it not present in the academic literature yet, this result is an important 

contribution of our work to the current body of knowledge on volatility modeling. 

Another nice feature of obtained results is that once a variable is significant in one 

model, it remains significant even when information from following sessions is added. 

This is intuitive, as different sessions are expected to provide different information due 

to the presence and activity of different trading entities. Unfortunately, neither 



 

 

43 

  

investigated variable (realized range, range, ...) has universal significance in all sessions. 

Also, it is unclear why in some sessions it is realized range and in other simple range 

that is significant for the days range prediction. Lastly, focusing on the same set of 

estimations for realized range forecast updates, we find a strong explanatory power of 

each sessions' realized range for the whole day's realized range. This result stems 

naturally from the fact that whole-day realized range is a sum of separate sessions' 

realized ranges. However, even though the idea is very simple, the practical benefit is 

tremendous. Just as for daily ranges, traders operating during the American1 and 

American2 session can predict whole-day realized range with much higher precision 

using data on already passed sessions, giving them an advantage over their Asian and 

European counterparts. Turning to other regressors, transaction count and average trade 

size are significant in only a marginal number of cases, which simplifies the model 

strongly.  

 To sum up, our results show that participants in later sessions can benefit much 

from considering data provided by the market up until the time a trade is taken. This 

result holds irrespective of whether daily or realized ranges are modeled. Focusing, for 

example, on traders from American1 and later sessions, gains in predictive power are 

approximately 20+ percentage points of AdjR2 for daily ranges and 25+ percentage 

points  for realized ranges. Even though the results are somehow mixed (no one variable 

is significant in all sessions), magnitudes of predictive power increases suggest that 

these model improvements are not a result of simple curve fitting.  
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5.1.4. HAR modeling - concluding remarks 

 Corsi's HAR approach to volatility modeling is suitable both for daily ranges as 

well as realized ranges modeling. Our results suggest that while some benefits can be 

gained by predicting daily ranges by realized ranges, these benefits are small. Thus in 

the absence of intraday data daily ranges can be modeled by average daily ranges of the 

last day, week and month without having to worry about fit quality.  

 A HAR model of realized ranges regressed on lagged realized ranges produces 

a much better fit than a HAR model of daily ranges regressed on lagged daily ranges. 

This stems naturally from the fact that daily ranges are noisy and having a noisy LHS 

variable can never result in a great fit. However, when we have an exact volatility 

measurement as LHS variable, we can attain very good fits by using even noisy proxies, 

as demonstrated by high AdjR2 of realized ranges regressed on daily ranges.  

 Our results show no benefit of using lagged trading sessions' information 

compared to using previous day's information as a whole. From this we conclude that 

lagged daily volatility reliably aggregates all past information relevant for daily 

volatility modeling. However, gradual updating of end-of-day daily volatility forecasts 

by up-to-date information provides significant gains in predictive accuracy and thus 

works to the benefit of traders active in later sessions of the day.  

 As both the idea of intraday volatility forecast updating and the result that lagged 

daily volatility captures all information relevant for daily volatility modeling are 

missing in current volatility related literature, these findings create a core of this thesis' 

contribution to volatility related base of knowledge. 
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5.2 CARR  

 As stated earlier, several approaches can be used for daily ranges modeling. In 

this section, we continue by assuming a different than HAR model for the task at hand. 

Firstly, we briefly introduce the model. We describe the estimation procedure and 

follow to estimates on our dataset. At the end of the section, we provide comparisons 

between the new model and HAR model. 

 One stream of volatility related literature focuses on so called Multiplicative 

Error Models (MEM), which are suitable for modeling any positive-valued variable. 

Probably the best-known application of a MEM model is the autoregressive conditional 

duration (ACD) model proposed by Engle & Russell (1998) for trade durations. 

Application of MEM modeling to volatility are, for example, the seminal work of 

Engle (2002) which was followed by a stream of alike literature. Also, the already 

mentioned work of Engle & Gallo (2006) combines features of VAR and MEM 

modeling.  

 An example of a MEM model focused specifically on daily ranges modeling can 

be found in Chou (2005). Chou combines the idea of GARCH volatility modeling, 

where volatility predictions are modeled by an ARMA process, and the logics of 

a MEM model. The newly generated model is coined conditional autoregressive range 

(CARR) model of order qp, . The specification can be written as  
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where Dε  is assumed to follow a positive-valued distribution with unity mean. More 

specifically, in MLE estimates of the model Chou assumes either Weibull distributed 

Dε   of Exponentially distributed Dε  (which are a special case of Weibull distributed 

ones). Investigations carried out on the S&P 500 futures contract reveal superior 

volatility forecasts of CARR models as compared to GARCH models, the rejection of 

null hypothesis of exponentially distributed Dε , presence of a strong "bad-news" effect 

in the volatility-of-volatility equation as well as a benefit of adding absolute returns (as 

a complementary measure of volatility) into Dλ  equation. Exponential distribution is 
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found to be incorrect for Dε , while with the assumption of Weibull distributed Dε , 

estimated residuals DDD R λε ˆ/ˆ log=  are nearly Weibull distributed.  

 In our work, we followed the methodology of Chou and estimated a CARR 

model with Exponentially and Weibull distributed Dε  term via MLE. Likelihood 

functions can be written as  
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 In case 1=θ , the Weibull distribution collapses into the Exponential one and 

this property can be used to evaluate which distribution is more appropriate (by testing 

1ˆ =θ ).  

 Estimations on our dataset were carried out according to (31) using robust 

standard error estimation techniques (QML covariance matrix). The results for daily 

ranges prediction are presented in Table A.38 for both ( )•≈ ExpDε  and 

( )•≈ ,θε WeibullD  respectively. Table A.49 contains estimation results of the same 

exercise applied onto square roots of realized ranges. Both for daily and realized ranges 

only a model for volatility was estimated, as modeling variance resulted in negative 

variance predictions. An attempt to correct for this situation by rewriting (30) into  
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produced strongly upward-biased predictions of squared daily ranges and realized 

ranges, hence we opted for not modeling variance further. 

 Optimal values of lags qp,  were determined based on parameter significance 

and in both cases 1== qp  was found to be optimal. Recalling that the previously 

investigated HAR model is just a special case of AR model with many lags, we observe 

a situation which is classic in volatility modeling. Before the onset of GARCH 

modeling, ARCH models were used for modeling latent volatility and usually many lags 
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were needed to model away all dependencies in volatility. This drawback of ARCH 

models was resolved by GARCH models, where the added GARCH term (actually an 

MA term in the ARMA process of volatility predictions) was capable of replacing many 

distant lags in ARCH models. As a result, GARCH(1,1) is the most frequently found 

specification of volatility that is capable of capturing all dependencies in volatility. In 

the case of HAR versus CARR, we observe the same situation. While in a HAR model, 

the long-term volatility plays a significant role in all specifications, a CARR model only 

needs one lag of each variable (range and Dε )  to be complete. This result was 

confirmed when we tried to include medium-term and long-term volatility into the 

CARR specification and both turned out insignificant (results not presented here for 

brevity reasons). 

 Comparing Exponentially and Weibull distributed error terms Dε , we find 

strong evidence for ( )•≈ ,θε WeibullD  being the correct of these two specifications as 

we can reject the hypothesis of 1ˆ =θ  for both daily ranges and square root of realized 

ranges. However, when comparing other parameter estimates we see that changes in 

these parameters induced by considering Weibull as opposed to Exponential distribution 

for Dε  are negligible, which is a result in accordance with those of Chou's. Neither do 

in-sample fitted values change, as can be seen in Figures A.40/A.41. 

 Before delving into augmentations of the CARR(1,1) model, we compared the 

in-sample modeling performance of CARR(1,1) model with Weibull distributed errors 

to the modeling performance of a base HAR specification (24). In-sample fitted value 

plots for daily ranges and square roots of realized ranges are depicted in Figures A.42 

and A.43. When neglecting the buildup period of MLE estimation, we observe a striking 

similarity of fitted values indicating a near identity of both models. This is in line with 

the previous discussion regarding AR models with many lags and corresponding ARMA 

models, which need only few lags to capture the same information. For these reasons, 

we did not delve into CARR model augmentations, as estimation results and sessions' 

information significance would nearly certainly be the same as in case of a HAR model. 

Hence, we can conclude by saying that CARR and HAR models provide nearly the 

same level of modeling performance and this is true regardless of whether the MEM 

error term is assumed to be Exponentially or Weibull distributed. HAR models offer the 

advantage of avoiding maximum likelihood estimation. MLE in our case turned out to 

be impossible in the case of variance variables, where a negative prediction of variance 
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measure prevented the evaluation of log-likelihood function. Moreover, a great 

advantage of HAR models compared to CARR is the possibility to use realized 

measures of volatility as regressors and their general simplicity.  

 Summing up, in this section we consider a CARR model for daily ranges. 

Estimation results show that assuming Weibull distributed residuals is correct, however 

estimation problems arise when working with variance data (squared daily ranges, 

realized ranges). Strikingly similar in-sample fits of a base HAR model and 

a CARR(1,1) model with Weibull disturbances correspond well to the fact that HAR is 

actually an AR model with a high number of distant lags while CARR(1,1) model is in 

fact an ARMA(1,1) of daily ranges. Due to their similar modeling performance no 

further investigations are performed and we move to the next model. 
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5.3 Cointegration of high and low prices 

 In this section, we present the last model considered in this thesis. Owing to its 

different approach to daily ranges modeling, we can investigate the effect of different 

session variables than in Sections 5.1.2 and 5.1.3. Firstly, we introduce the model 

theoretically. Next, we provide estimations of the model's basic specification as well as 

of an augmented specification found in literature. Lastly, we investigate the added 

benefit of using lagged sessions' trading variables as well as the possibility to obtain 

updated volatility forecasts throughout the day.  

 We start the theoretical introduction into co-integration by defining spurious 

regression. A spurious regression arises in economics when one tries to relate two 

variables which share a common trend and/or seasonal pattern in an equation of these 

variables' levels. As an example, we can use an economy's annual gross product tY  and 

expenditures on consumption tC  which are known to be a share of the gross product. 

When we run a regression of the following specification  

 

ttt bCaY ε++=  (33) 

 

the obtained fit is very good, but the conclusion of a relationship between tt CY ,  other 

than a common trend/seasonal pattern is flawed, unless these series are co-integrated.  

 Co-integration was firstly proposed in Granger (1981) and following work on it 

includes, for example, Granger  & Weiss (1983) and Engle & Granger (1987). Without 

a formal definition, further explanations would be cumbersome. Thus, let us assume two 

time series tt yx ,  which are both integrated or order one. We call these series 

co-integrated if for some ℜ∈a  the linear combination tt axy −  is integrated of order 

zero, i.e. stationary.  

 As stated, two co-integrated series share a common trend/seasonal pattern and at 

the same time deviations from this common component are stationary. In order to model 

such series, one has to consider both long-term information (common component) as 

well as short-term information (deviation from common component). For this purpose, 

the class of error-correction models (ECM) was developed and these models have a long 
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tradition in time series econometrics dating back to Sargan (1964). Continuing with our 

previous example of co-integrated series tt yx , , the error correction term is defined as  

 

ttt axy −=ξ  (34) 

 

and the error correction model of tt yx ,  is then defined as  

 

tttt uxy +∆+=∆ − γαξ 1  (35) 

 
where tu  is i.i.d. The error correction term 1−tξ  in (35) can be thought of as an 

equilibrium error from the previous period. For example, if 0=∆ tx  and 01 >−tξ  then 

1−ty  was above its equilibrium value. In order to compensate for this, ty∆  needs to be 

negative to revert to equilibrium. From this it naturally follows that for the system of 

tt yx ,  to be stable we need 0<α . Lastly, from the definition of co-integration all 

variables of (35) are stationary, hence spurious regression is not present anymore. 

 Cheung (2007) investigates the usefulness of vector error-correction-models24 

for daily ranges modeling on several stock indices (S&P 500, NASDAQ and DJIA). 

Since daily high and daily low prices are expected to be integrated of order one while 

the daily range is stationary (as shown in Section 3.3) an error correction model for 

changes in daily highs and daily lows could be formulated where daily range would 

serve as the error correcting term. Cheung's tests for co-integration via ADF testing as 

well as via Johansen procedure confirms that ( )1,1, CIlh DD ≈∆∆ , the co-integrating 

vector is found to be approximately  [ ]007.1,1−  for all stock indices under investigation. 

Thus, daily ranges are found to be a close approximation of the stationary sum of daily 

high and low prices' deviations from their common trend and seasonal pattern. Knowing 

this, Cheung adopts a VECM model for DD lh ∆∆ , , i.e.  
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24 i.e. a set of error-correction-models applied jointly onto co-integrated variables 
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and the error correcting term (daily range) turns out significant. As common in the 

finance literature, Cheung checks for the effect of day-of-the-week dummies 

(vector D ). However, the effect is negligible both in terms of parameter estimate 

significance and in terms of added explanatory power, hence the base specification is 

(36) with day-of-the-week dummies excluded. The best value of lag parameter p  is 

found by Cheung to be 6 - 7 depending on instrument and generally the predictive 

power of the model is low, specifically from 8% to 17% in terms of AdjR2 depending on 

instrument and variable ( Dh∆  or Dl∆ ).  

 In order to improve the model's predictive power, Cheung tries to include several 

exogenous variables. Firstly, the added benefit of using lagged and contemporaneous 

de-trended traded volume is investigated. Despite strong parameter significance 

improvements in AdjR2 are only minor. Trying to improve the model in an alternative 

way, Cheung draws upon the intuitive idea that more price observations for each 

instrument should give more information about the characteristics of its evolution. 

Hence he adds changes of daily open and daily close prices as well as daily returns into 

(36). In this augmented model, the vast majority of added variables are significant and 

the model's predictive power rises dramatically (to levels of 37.6% to 48.9% in terms of 

AdjR2).  

 In a follow-up work, Cheung et al (2010) investigate the possible profitability of 

daily ranges predictions obtained via a VECM model like (36). These predictions are 

tied exclusively to exotic options traded on the Hong Kong market, namely the so called 

Callable bull/bear contracts. Even though only the base specification (36) is used to 

produce daily ranges forecasts, the performance of most strategies is good, i.e. they are 

profitable even net of transaction and interest costs. Strategy results vary depending on 

parameters settings and the issuer of CBBCs, however, taking into consideration the 

simplicity of these strategies, the results are very encouraging. 

 Lastly, He, Kwok & Wan (2010) investigate the possibilities of modeling 

changes of daily highs and lows using various techniques, including the random walk 

model, ARIMA-type forecasting and VECM modeling. In-sample fit compared by 

traditional means of MAD, MSE25, percentage of correct directional changes of ranges 

and trading strategy profitability speak clearly in favor of VECM modeling.  

                                                 
25 Mean Absolute Deviation and Mean Squared Error, respectively. 
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 In this section, we delve into ranges modeling via VECM of  daily high and low 

prices because in no other model can we exploit their co-integration. As daily ranges are 

stationary and they are the difference of daily high and low prices, this problem is 

a textbook example of what VECMs should be employed on. Further, the use of a 

VECM is desired due to the difference of this approach compared to those so far 

investigated. HAR, CARR and VECM differ firstly in their specific applications - HAR 

and CARR models are nearly exclusively used for volatility modeling, while VECMs 

are used in many fields of finance (e.g. the modeling of consumers' consumption 

changes as a response to changes in income, spreads between long-term and short-term 

interest rates, etc). An interesting consequence of this difference is the fact that in a 

VECM of highs and lows, modeling volatility is not the topic of interest per se, instead 

daily ranges modeling comes out of the model as a by-product.  

 Considering the high impact of enriching the base VECM specification by 

variables such as changes of daily open and daily close prices, we evaluate the added 

benefit of using these variables following Cheung. As intuition behind adding these 

variables is that more price observations should bring more information exploitable for 

modeling, we take this idea a step further. Namely, we also incorporate changes in open 

and close prices measured over different trading sessions. While there might be no 

effect of lagged sessions' variables on ranges per se (as in HAR modeling), there might 

be an effect of these variables on changes of ranges. Since the added benefit of 

regressing on changes in sessions' open and close prices cannot be inferred in 

a HAR/CARR model, using these changes in a VECM is the only choice of evaluating 

their usefulness.  

 In this section, we proceed exactly as we proceeded in Section 4.1 on HAR 

modeling. Firstly, we formally investigate the assumptions of a VECM model, secondly 

we assess the predictive power and proper specification of (36) on our dataset. Next, we 

investigate the usefulness of Cheung's augmentations (changes in daily open, close 

prices and daily returns) and lastly, we turn to improving the model with 

sessions-related variables. 

 For the identification of a co-integration relationship between daily highs and 

lows, we follow the Engle-Granger test. As the ADF-test for daily highs and daily lows 

confirms the ( )1I  property26, we run a regression of  

                                                 
26 ADF test with five lags and a constant, obtained p-values for lows and highs were 0.2236 and 0.2195. 
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DDD lh εβα ++=  (37) 

 

to obtain the co-integrating vector. Estimation results are presented in Table A.44. As 

ADF testing for the presence of unit-root in residuals of (37) returns a p-value of 

practically zero, we can conclude that daily highs and lows are co-integrated. The 

estimated co-integrating vector is [ ]967.0,1−  and taking into account the standard error 

of β , we can reject the hypothesis of 1=β . For this reason we chose not to 

approximate the error correcting term by lagged daily range but instead to calculate it 

accurately as DDD lhEC 967.0−= . As the next step, we investigate the appropriate 

number of lags p  based on parameter significance. Following Cheung, we set the 

number of lags equal for both equations (as in eq. 36). Estimation results presented in 

Table A.45 show that in general, changes in daily low prices have a much stronger and 

longer memory of preceding daily high/low changes. The lagged error-correction term is 

insignificant in the Dl∆  equation. For changes in daily highs, on the other hand, a clear 

dependence is present only on previous change of daily low and the error-correction 

term. Signs of significant parameters in both equations are according to expectations 

and speak in favor of an mean-reverting process in daily ranges. For example, in daily 

lows equation, lagged increases in high prices are followed by an increase in daily low 

prices, so as to keep the daily range in bounds (positive parameters of ( )ih −∆ ), whereas 

lagged drops in daily lows are followed by an increase in lows, which again presses the 

daily range towards its mean value (negative parameters of ( )il −∆ ). The daily ranges 

process would be explosive it there wasn't for these properties. The significant 

error-correction term parameter negativeness in daily high equation confirms this 

behavior as an increase in daily range (which is an approximation to the error-correction 

term) pushes down the next day's high price, hence likely decreasing the range.  

 Lastly, the explanatory power of the model for both equations is rather high, 

considering on one hand the low number of significant lags for the daily high equation 

and on the other hand the explanatory power of base model in Cheung's paper. This high 

reading of AdjR2 might be caused by the crisis period, which in general increases the 

explanatory power of volatility models. However, estimating the base specification on 

the second half of our dataset (no volatility outliers), the explanatory power drops only 

by one percentage point (estimation results not presented for brevity reasons). 
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 Having established the base VECM model, we turn to the investigation of 

day-of-the-week effect and for correctness purposes, we also try to enrich the model by 

lagged traded volume, average trade size and transaction count. Similar to Cheung's 

results, we do not find any support for the presence of day-of-the-week effect. Neither 

dummy has a significant parameter estimate, at the same time no increase in AdjR2 

takes place27. The same conclusion applies to lagged trading activity variables, hence we 

omit all of these variables and day-of-the-week dummies in further models. Estimation 

results of the enriched model are listed in Table A.46.  

 Next, following Cheung's approach, we enrich the base VECM by 

iDiDiD coco −−− ∆∆ ,,  which stand for the lagged changes in daily open and daily close 

prices and lagged daily returns, respectively. Model specification thus changes to  
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(38) 

 

The mDo −∆  terms are taken from 0=m  as we can utilize today's open price in our 

predictions. Optimal parameters of srq ,,  were chosen based on parameter significance 

while keeping 6=p  as in the base specification. Estimation results are presented in 

Table A.47 for 1,2,4 === srq . Several points deserve mentioning: 

• Significance of the daily highs equation parameters changes dramatically. After 

adding mDlDkD coco −−− ∆∆ ,, , lagged values of changes in daily highs become 

strongly significant and their values change dramatically. Also, the 2nd and 3rd 

lags of changes in daily lows are significant. From the added variables, changes 

in daily opens seem to be the most important for the daily high equations, as lags 

up to the fifth one are strongly significant. AdjR2 for the daily high equation 

enjoys a more than two-fold increase, hence explanatory power is significantly 

better. 

• In the daily lows equation significance of parameters changes as well. It turns 

out that normalization of lagged changes in daily highs and daily lows by lagged 

changes in daily opens produces significant results in both the Dh∆  and Dl∆  

equation and  in both equations the model's predictive power enjoys a significant 

rise. 

                                                 
27 This is an interesting result if we recall the distribution of daily ranges by days of the week in Figure 3.  
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• The significance of error-correction term remains unaffected in both equations, 

despite heavy changes in significance of other parameters. The null hypothesis 

of no autocorrelations in residuals is not rejected just as in the base specification, 

hence we consider the augmented model well specified. 

 

 So far, modeling endeavors were inspired by the work of Cheung's. Our results 

are very similar in terms of significance of added parameters as well as in terms of 

increased modeling power. In the next paragraphs, we follow up by incorporating 

information related to different trading sessions. We follow the methodology 

implemented in Section 4.1. It means that we firstly try to enrich specification (38) by 

separately adding a certain variable measured over lagged sessions (e.g. include lagged 

changes in opens of all sessions) and then by separately adding changes of all variables 

related to one specific lagged session. As a VECM is a model in changes, session 

variables of interest in this exercise will be changes of volume, changes of average trade 

size, changes of transaction count, changes of realized range and changes of OHLC 

prices of each session. Estimation results for exercises in this section are voluminous28, 

hence we do not present detailed estimation results here. These detailed estimation 

results can be obtained from authors upon request.  

 Turning to the former approach, we find that in general, adding lagged variables 

of one kind measured over separate sessions does not bring any dramatic increase in 

explanatory power of the model. The extent of model improvements are captured in the 

table below29. 

 

 Specification 

  base +Volume +Trans +TradeSize +RR +Open +High +L ow +Close 

AdjR 2 (∆H) 0.547 0.551 0.554 0.547 0.566 0.558 0.561 0.577 0.553 

AdjR 2 (∆L) 0.495 0.495 0.493 0.495 0.497 0.500 0.507 0.558 0.499 

AIC -15.96 -15.94 -15.93 -15.96 -15.97 -15.96 -15.95 -16.09 -15.97 

BIC -15.73 -15.55 -15.48 -15.73 -15.54 -15.44 -15.39 -15.65 -15.64 

HQC -15.87 -15.79 -15.76 -15.87 -15.81 -15.76 -15.74 -15.92 -15.84 

Table 3: VECM improvements after adding changes of variables measured over lagged sessions. 

 

                                                 
28 8 variables per session, 5 lags per variable. 
29 A maximum of 5 lags were used in these models and  models presented in Table. A.4. For example, in 
the +Volume column changes in session trading volumes over the preceding five days were added to the 
base specification for each of 9 sessions. 
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 Drawbacks of this exercise's results are two-fold. For neither added variable 

were we able to obtain significance in any session, that would be strong and across all 

lags. Instead, dependencies on, e.g. 2nd lag of change of preAsian volume and 4th lag of 

change in European volume were found, which are both counter-intuitive and most 

likely a result of curve-fitting. Secondly, increases in explanatory power are negligible 

compared to the number of added parameters (only slight improvement of ICs). Before 

closing this exercise, we applied the logics of (38) onto separate sessions, i.e. instead of 

expecting changes of daily high/lows to depend on lagged sessions' high/low changes, 

we investigated the dependence of daily high/lows changes on lagged sessions' 

normalized high/low changes. Estimation results, however, do not support this 

hypothesis, as can be seen from the table below. Due to estimation output size, we omit 

it again.  

 Specification  

  base +Open+Low  +Open+High  

AdjR 2 (∆H) 0.547 0.568 0.565 

AdjR 2 (∆L) 0.495 0.509 0.505 

AIC -15.96 -15.92 -15.89 

BIC -15.73 -15.00 -14.94 

HQC -15.87 -15.57 -15.53 

Table 4: Model improvements after adding changes of high & open and  
low & open prices of different lagged sessions. 

 

 Next, we investigate whether a certain lagged session is important for the 

evolution of daily high and low prices. Thus we add lagged changes of all variables tied 

to one session and investigate the model's improvement in modeling power. The 

obtained results are presented in the table below. 

 

 Specification 

  base +preAs +As +preEu +Eu +preAm +Am1 +Am2 +postAm 1 +postAm2 

AdjR 2 (∆H) 0.547 0.546 0.556 0.552 0.552 0.550 0.545 0.551 0.551 0.551 

AdjR 2 (∆L) 0.495 0.498 0.495 0.507 0.500 0.503 0.490 0.490 0.505 0.492 

AIC -15.96 -15.90 -15.93 -15.92 -15.92 -15.93 -15.88 -15.90 -15.93 -15.90 

BIC -15.73 -15.31 -15.33 -15.32 -15.33 -15.34 -15.29 -15.32 -15.33 -15.31 

HQC -15.87 -15.68 -15.70 -15.69 -15.69 -15.70 -15.65 -15.68 -15.70 -15.68 

Table 5: VECM improvements after adding changes of all variables related to lagged sessions30. 
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 Unfortunately, the addition of neither session's variables brings a model 

improvement. Hence, we conclude that there is no benefit in using historical session 

variables for improving modeling performance in a VECM approach.  

 As a last exercise connected to VECM modeling of daily ranges, we assess the 

possibility to improve forecasts of changes of daily high and daily low prices by 

utilizing session variables as they become available during the day, as in Section 4.1.3. 

For this purpose, we cumulatively add the same variables as in the previous exercise to 

the base model (38), i.e. we start with variables of the current day's preAsian session. 

Then we proceed to adding variables of the Asian session, etc. Increases in explanatory 

powers with additional sessions are expressed in Table 6 below. As estimation results 

consist of two tables with nearly 100 rows each, we do not report them here. 

 

 Specification 

  base +1 sess +2 sess +3 sess +4 sess +5 sess +6 s ess +7 sess +8 sess +9 sess 

AdjR 2 (∆H) 0.547 0.566 0.650 0.661 0.757 0.780 0.828 0.912 0.919 0.923 

AdjR 2 (∆L) 0.495 0.548 0.618 0.641 0.758 0.779 0.830 0.919 0.923 0.925 

AIC -15.96 -16.07 -16.31 -16.38 -16.93 -17.07 -17.52 -19.03 -19.19 -19.27 

BIC -15.73 -15.74 -15.90 -15.89 -16.35 -16.40 -16.85 -18.27 -18.34 -18.33 

HQC -15.87 -15.94 -16.15 -16.19 -16.71 -16.82 -17.26 -18.74 -18.87 -18.91 

Table 6: VECM improvements obtained by cumulatively adding all variables related to current day's sessions. 

 

 A trend of increases in explanatory power with passage of time is obvious from 

the results and is in accordance with the results of the same exercise when utilizing 

a HAR model (Section 4.1.3). However, the conclusions of this exercise differ from the 

conclusions of Section 4.1.3, where the current day's session ranges and realized ranges 

were the most useful for forecast updating. Most notably it seems that for modeling 

changes in daily high/low prices, the most actual change in close price is the most 

relevant variable, as in nearly all cases the change in close price of the just-added 

session is strongly significant, many times being the only significant variable of current 

day's trading. Just as in the results of HAR modeling, once a variable becomes 

significant upon being added to the model, it remains significant for the remainder of 

the day (except for close prices of sessions for aforementioned reasons). Unfortunately, 

variables that are significant in some sessions need not be significant in others (i.e. 

significance of realized range of preEuropean session but no significance of realized 

                                                                                                                                                
30 These variables were lagged changes in: session range, session realized range, session average trade 
size, session transaction count, session traded volume and session OHLC prices. Maximum number of 
lags used was 4. 
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range measured over other sessions), hence we again face the possibility of curve fitting 

driving our results. The usefulness of evolving close price for the prediction of changes 

in highs and lows is, however, a nice result. 

 As the feature of dependence of daily high/low changes on most up-to-date 

readings of close price changes is rather striking, we decided to simplify the cumulative 

model. Instead of utilizing changes of all trading variables related to the just-finished 

session, we focus on the added benefit of using the change in close price of each session 

only. By this, we can infer the relative importance of current sessions' close price 

change compared to the importance of other variables related to the same session. Thus, 

for each session we add only the change of its close price and compare the 

goodness-of-fit measures with those obtained in the previous Table 6. 

 

 Base +1 sess +2 sess +3 sess +4 sess +5 sess +6 ses s +7 sess +8 sess +9 sess 

AdjR 2 (∆H) 0.547 0.564 0.640 0.650 0.738 0.758 0.798 0.858 0.869 0.870 

AdjR 2 (∆L) 0.495 0.545 0.617 0.635 0.746 0.764 0.812 0.878 0.878 0.881 

AIC -15.96 -16.07 -16.29 -16.34 -16.82 -16.93 -17.30 -18.29 -18.43 -18.49 

BIC -15.73 -15.73 -16.04 -16.08 -16.55 -16.66 -17.01 -18.00 -18.13 -18.17 

HQC -15.87 -15.87 -16.19 -16.24 -16.71 -16.83 -17.19 -18.18 -18.32 -18.37 

Table 7: VECM improvements obtained by cumulatively adding changes in closes related to current day's sessions. 

  

 In general, results in Table 6 contain higher AdjR2 measures for both the high 

and low equation. Despite the fact that these better models use many more exogenous 

variables, adding them is justified as the values of all information criteria are lower for 

these more complicated models, as compared to models with only the sessions' change 

of close. On the other hand, if we focus on AdjR2 in both tables, we see that the added 

benefit of variables different than changes of session closes is not that high, as  

• adding the progressing information on changes of session closes is capable of 

significantly improving the forecasts during the day 

• the maximum difference in AdjR2 between the two specifications is roughly 5 

percentage points, which is rather small compared to differences between 

regressors count of both specifications (9 regressors per session in Table 6 

versus one regressor per session in Table 7) 

 

 To conclude this section, we can state that the enrichment of a classic VECM 

model of daily highs and daily lows by daily open and daily close price changes indeed 

improves the modeling performance significantly, in accordance with previous research. 
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However, the inclusion of lagged sessions' variables turns out to be of no value for 

modeling. The only benefit obtainable from session information are session variables 

pertaining to the current day. Of these variables, changes in sessions' close prices play 

a role more significant than all other session variables combined. A possibility to obtain 

forecast of rising quality with passage of time is demonstrated, as in the case of HAR 

modeling. 
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6. Out-of-sample Forecasting Exercise 

 In the preceding sections we investigated the possibility to fit  daily ranges 

in-sample, i.e. on data which were used for estimation. Even though some models 

performed better than others in-sample, an evaluation of out-of-sample forecasting is 

necessary to discern real-life qualities of different models. Usually, an over-fitted model 

(due to large number of parameters) or a model with incorrect specification can provide 

superb in-sample forecasts, while out-of-sample forecasting quality can be poor. 

 The viability of HAR models for out-of-sample volatility forecasting is a well 

established fact in related literature. VECM models are believed to provide good 

forecasts as well since their predictions are often used as inputs into trading strategies.  

Our motivation in this section is thus two-fold. Firstly, we wish to infer in general 

whether HAR/VECM models of daily ranges bring forecasts of significantly higher 

quality than selected benchmark models. Secondly, we wish to infer whether there are 

gains in using realized ranges for the prediction of daily ranges. Despite the in-sample 

modeling difference between HAR and R-HAR models was small, an assessment of 

their out-of-sample forecasting performance is what truly indicates the use of realized 

ranges for daily ranges prediction. 

 In finance literature, several methods for out-of-sample forecasting exist. For 

example, one step ahead (next day), five steps ahead (next week) or twenty steps ahead 

(next month) forecasts can be evaluated, depending on the desired use of these forecasts. 

Longer-term forecasts will be interesting for longer-term investors, while next day 

forecasts will suffice for intraday traders.  

 Another type of distinction is whether to use rolling-window forecasting or 

anchored forecasting. In the former method a certain number of observations is included 

in the estimation set and after making a forecast, this set moves by one observation, 

dropping the oldest observation and adding the one for which a forecast was being 

previously done. In the latter approach, the estimation dataset grows over time as no 

observation is dropped and only the most recent observation is added after the forecast 

is generated. Using this method, the estimation dataset coincides with the whole dataset, 

once all forecasts have been made.  

 In this work, we focus solely on one-step-ahead forecasts of daily ranges using 

a rolling window method. Firstly, our motivation for modeling daily ranges stems from 

a desire to provide for better money management to intraday traders, who only care 
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about the next day's volatility. Secondly, when using anchored forecasting, quality of 

forecasts obtained early in the dataset and late in the dataset are incomparable, as more 

observations for estimation should provide for a better model. Hence, with anchored 

forecasting it is difficult to infer whether better forecasting performance in the late part 

of dataset is caused by better estimation due to a larger estimation set or by a generally 

better fit of the model. For this reason, we use solely rolling-window forecasting. 

Window length was set to the minimum number of observations allowing for a MLE 

estimation of all models on all rolling-windows, i.e. 400 observations, yielding 599 

one-step-ahead forecasts.  

 For assessing differences in forecast quality several loss functions can be used. 

Some of the most popular loss functions are RMSE, MAE and Q-LIKE. These loss 

functions, for a difference series { }n

tte 1=  of target volatility series̀ and volatility forecast 

series { }n

tth 1= , are defined as 
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 Forecasts of better models produce lower values of loss functions. Drawbacks of 

these measurements are firstly the sensitivity of MSE to outliers and generally, neither 

squared nor absolute error needs to correspond to the forecast user's loss function. 

However, as loss functions of different economics agents are not identical, no error 

measure can express exactly which model is better under all circumstances. 

Patton (2011) compares the use of different loss functions in the framework of latent 

variable forecasting, where forecast error of the latent variable is composed of the model 

dependent error as well as an error introduced by observing the latent variable via some 

proxy (e.g. daily ranges are a proxy for true volatility of the underlying price process, 

i.e. by using daily ranges we commit to a measurement error). As Patton discusses, 

when picking an optimal loss function for proxy variable forecasting two loss function 

characteristics need to be fulfilled. Firstly, a model producing an optimal forecast of 

tth σ=  needs to be identified by the loss function as the best model. Although requiring 

this property seems intuitive, MAE commonly used in research does not exhibit this 

behavior. A second desired property is loss function robustness. A loss function is called 

robust if the ranking of two possibly imperfect (volatility) forecasts by expected 
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(average) loss is the same whether the ranking is done using the true conditional 

volatility or some conditionally unbiased volatility proxy. In other words, a robust loss 

function needs to be immune to the fact that forecasts errors contain measurement error 

of the latent variable. Only MSE and Q-LIKE functions satisfy both of these conditions, 

hence we only use these when comparing forecasts in our work. 

 Lastly, simply comparing magnitudes of RMSE or Q-LIKE does not give us 

information about the significance of these variables' differences across models. In order 

to solve for this last drawback, one has to use different methods. In this work, we used 

the same test as Patton, i.e. a volatility forecast comparison test based on the work of 

Diebold & Mariano (1995) and West (1996).  

 Following literature on volatility forecasting, we decided to compare the 

forecasting power of models discussed in Sections 5.2 and 5.4 to several benchmark 

models. The first considered benchmark is the random-walk model yielding the 

well-known naive forecast. Another benchmarks are models popular in retail trading, 

where the average weekly and monthly volatility are considered "good" predictors of 

next day's volatility. We follow two approaches with these average volatilities. Namely, 

forecasts equal to previous day's average weekly and monthly volatilities31 were used as 

well as forecasts obtained from the following models 
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with GARCH(1,1) governing the volatility of Student-distributed Dε .  

 A more sophisticated AR(7)-GARCH(1,1)-t discussed in Section 5.1 was used to 

obtain the best of benchmark forecasts. By adding these benchmark models to our 

forecasting exercise, we can firstly infer whether HAR/VECM models outperform the 

simplest of models before turning to comparing these complicated models one with 

another. HAR models used herein were enriched by a GARCH(1,1)-t to make 

comparisons between AR(7), (40), (41) and HAR models comparable.  

 Lastly, only models for daily ranges forecasting were considered, as these are the 

only ones obtainable from a VECM of highs and lows. As the number of models 
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estimated in this thesis is large, only base specifications and specifications with a clear 

increase in explanatory power stemming from additional variables were used for 

forecasting. Moreover, as the viability of enriching models by current day's data was 

clearly illustrated in both HAR and VECM sections, we do not provide out-of-sample 

forecasts for these specifications, as their number would be large. Hence, the list of 

models chosen for out-of-sample forecasting is the following: 

 

Model Description Reference 

RW Random walk - volatility forecast is equal to previous day's volatility.  

SMA5 Average weekly volatility - forecast is a SMA of last five volatilities  

SMA22 Average monthly volatility - forecast is a SMA of last 22 volatilities  

SMA5GARCH SMA5 with a constant and GARCH modeling included Eq. (40) 

SMA22GARCH SMA22 with a constant and GARCH modeling included Eq. (40) 

RSMA5GARCH SMA5GARCH using average realized range as predictor Eq. (41) 

RSMA22GARCH SMA22GARCH using average realized range as predictor Eq. (41) 

 
AR7 

AR(7)-GARCH(1,1)-t model derived forecasts A.14 

HARGARCH Forecasts of a HAR model with leverage effect from the previous trading 
day, GARCH modeling included 

A.18 

RHARGARCH Forecasts of a R-HAR model without any leverage effect, GARCH 
modeling included 

A.18 

VECM Forecasts of VECM of Highs and Lows with 6 lags A.45 

VECMAUG Forecasts of VECM of Highs and Lows with 6 lags enriched by 
information on changes of closing and opening prices 

A.47 

Table 8: List of models considered for out-of-sample forecasting evaluation. 

 

 An overview of forecasting performance as measured by RMSE and Q-LIKE is 

listed in the table below. 

 

Model RMSE Q-LIKE Model RMSE Q-LIKE 

RW 0.000027 -3.452526 RSMA22GARCH 0.000016 -3.500115 

SMA5 0.000017 -3.496000 AR7 0.000015 -3.500018 

SMA22 0.000016 -3.499393 HARGARCH 0.000015 -3.500247 

SMA5GARCH 0.000015 -3.499870 RHARGARCH 0.000015 -3.502932 

SMA22GARCH 0.000016 -3.499282 VECM 0.000016 -3.498304 

RSMA5GARCH 0.000015 -3.502441 VECMAUG 0.000016 -3.497844 
Table 9: Average RMSE and Q-LIKE of one-step-ahead rolling-window forecasts. 

 

 As expected, naive forecasts perform the worst of all models. Mutual 

comparisons of other models are impossible due to small differences in both MSE and 

                                                                                                                                                
31 i.e. )5log(

1
logˆ

−= DD RR  and )22log(
1

logˆ
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Q-LIKE. An apparently puzzling feature of the results is the nearly identical forecasting 

performance of VECM and VECMAUG, despite the latter having 3x higher AdjR2 

in-sample.  

 To assess differences in forecasting accuracy statistically, we performed 

Diebold-Mariano-West test for both MSE and Q-LIKE loss functions. The resulting 

matrix is listed below as Table 10. A negative test statistic in row A and column  B 

indicates that model B provides better forecasts than model A.   
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-6.41 -6.02 -6.97 -6.14 -7.03 -6.28 -7.21 -6.79 -7.31 -6.82 -6.51 
RW 

-6.92 -6.79 -7.46 -6.72 -7.51 -6.83 -7.68 -7.31 -7.76 -7.43 -7.15 
 -1.07 -3.67 -1.28 -3.86 -1.57 -3.49 -2.99 -4.49 -1.47 -1.00 

SMA5 
 -1.55 -3.84 -1.40 -4.01 -1.75 -3.17 -3.07 -4.29 -1.36 -0.95 
  -0.85 -0.48 -2.08 -0.96 -1.05 -1.41 -2.68 -0.06 0.20 

SMA22 
  -0.25 0.11 -1.87 -0.60 -0.32 -0.65 -2.33 0.47 0.65 
   0.67 -2.02 0.26 -0.51 -0.44 -2.99 0.91 1.22 

SMA5GARCH 
   0.34 -2.60 -0.14 -0.16 -0.49 -2.94 1.03 1.21 
    -2.28 -1.41 -0.82 -1.31 -2.60 0.14 0.38 

SMA22GARCH 
    -2.24 -1.47 -0.37 -0.85 -2.60 0.39 0.56 
     1.85 1.20 1.92 -1.17 1.64 1.87 

RSMA5GARCH 
     1.79 1.87 2.43 -0.85 2.17 2.28 
      -0.45 -0.64 -2.20 0.39 0.62 

RSMA22GARCH 
      0.05 -0.11 -2.14 0.71 0.88 
       0.12 -2.17 1.42 1.66 

AR7 
       -0.20 -2.26 1.33 1.43 
        -3.29 0.97 1.27 

HARGARCH 
        -3.23 1.12 1.32 
         2.37 2.64 

RHARGARCH 
         2.54 2.66 
          0.81 

VECM 
          0.52 

Table 10: Test statistics of Diebold Mariano West test  (MSE and Q-Like) applied onto ranges forecasts 
of different models. Null hypothesis is of equal forecasting power and critical values corresponding to 

95% confidence level are -1.96, 1.96. Insignificant values are printed in grey. 
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The observed data provide several conclusions: 

• The first row confirms our findings in Table 10 as all models provide better than 

naive forecasts. 

• SMA5 is significantly dominated by SMA5GARCH which is in turn 

significantly dominated by RSMA5GARCH. SMA22 is not dominated by 

SMA22GARCH, but both are (at least according to one measure) dominated by 

RSMA22GARCH. These rankings are in accordance with expectations, as in 

the first instance we allow for a more flexible model and in the second instance, 

we provide a more precise measure of volatility as a predictor.  

• Better performance of HARGARCH compared to SMA5 is an expected result, 

however an impossibility to distinguish HARGARCH forecasts from other 

model's forecasts (except for RHARGARCH) is a surprising feature. As 

HARGARCH combines both SMA5GARCH and SMA22GARCH one would 

expect the combined model to perform better. 

• The clearly best model is RHARGARCH, which is capable of dominating each 

model except for RSMA5GARCH. From this, we can conclude that for proper 

out of sample forecasting of daily ranges, using high quality volatility measures 

is critical.  

• Lastly, turning to VECM models we observe a disappointing bad quality of 

forecasts. Neither VECM can beat any other model except for RW, moreover 

both are significantly worse in terms of forecast quality than RHARGARCH. 

The puzzle of a three-fold increase in AdjR2 of VECMAUG over VECM 

in-sample not reflected in an increased forecasting performance is confirmed, as 

forecasts of both VECMs cannot be distinguished. The root of this puzzle can 

be investigated by analyzing in-sample range predictions of both VECMs. 

Apparently, both VECMs produce nearly identical in-sample range predictions 

as illustrated in Figure A.48. The increase in separate equations' AdjR2 thus 

brings advantage when modeling daily highs and daily lows, however there is 

no guarantee that smaller errors in daily highs and daily lows equations in 

VECMAUG do not add up to produce larger errors in daily ranges forecast32. 

 

                                                 
32 Simply put, the difference of two large errors of the same sign can be small, however the difference of 
two small errors of opposing signs can be large.  
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 To conclude, in this section we investigate out-of-sample forecasting 

performance of selected models. Models rooted in the co-integration of daily high and 

low prices dominate only the random-walk model. Moreover, no difference in the 

forecasts of base and augmented VECM is found. A general conclusion is that models 

incorporating realized ranges as opposed to daily ranges as predictors perform better 

out-of-sample. This confirms the results of our in-sample investigations. Surprisingly, 

a HAR model of daily ranges with a GARCH volatility-of-volatility component does not 

outperform models based solely on weekly or monthly average ranges with the same 

GARCH component. The clearly best model is an R-HAR model with a GARCH(1,1)-t 

volatility-of-volatility component.  
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Summary  

 In this thesis, we enrich the body of knowledge focused on daily ranges 

modeling by several new findings.  

 A general analysis of our dataset shows that market behavior significantly 

changes on intraday basis. The volume-volatility relationship does not hold in general. 

Based on surges in traded volume corresponding to a changing composition of traders 

by geographical location, we divide the trading day into separate sessions. For these 

sessions, we observe varying degrees of volume-volatility relationship, corresponding to 

different book thicknesses. Generally, however, volatility is significantly more 

correlated with average trade size and transaction count than with traded volume, 

contrary to popularly held belief. An extensive correlation analysis of trading variables 

(volatility, trading activity) reveals that these trading variables measured over different 

sessions convey unique information, which is reliably aggregated by daily volatility 

measures. In other words, considering daily volatilities and session variables separately 

does not yield any gain as daily volatilities already embody all information useful for 

next-day volatility forecasting.  

 Regressing daily ranges on range-based volatility estimates (Garman & Klass, 

Rogers & Satchell) is not expected to yield benefit, as our investigations show that all 

considered range-based estimators provide the same level of efficiency on real-world 

data. This is in sharp contrast with theoretical results, where Garman & Klass and 

Rogers &Satchell estimators show significant efficiency gains compared to daily ranges. 

Specifically, approximately 40% of information provided by herein considered 

range-based estimators as well as squared daily ranges is pure noise, while only 60% of 

information is related to the variance of the price generating process. 

 Using highly efficient realized ranges for the prediction of daily ranges shows 

small gains in terms of in-sample fit. Out-of-sample forecasting performance, however, 

shows advantages of regressing daily ranges on realized ranges. In accordance with 

intuition, realized ranges and daily ranges are found to contain the same useful 

information and the difference of these measures is pure noise. 

 While the information content of lagged sessions is fully reflected in lagged 

daily volatilities, information provided by current day's sessions can be used to improve 

end-of-day daily volatility forecasts. Specifically, if we utilize all up-to-date information 

provided by the market, traders active in the American sessions can gain at least 20-25 
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percentage points of AdjR2 compared to their Asian counterparts. Variables most 

important for this gradual updating of volatility forecasts are model-dependent. In 

a HAR model of daily ranges and realized ranges, current-day session ranges and 

realized ranges are dominant in terms of predictive power. In a VECM of daily highs 

and daily lows, however, the most actual session's closing price is the most relevant 

predictor.  

 Comparison of models based on out-of-sample forecasting performance reveals 

several points. Firstly, even the simplest models based on average weekly or monthly 

volatility can beat the random-walk specification. Surprisingly, many models considered 

in volatility related literature provide forecasts of quality only comparable to forecasts 

of these simplest models. Namely, ARMA-GARCH and HAR-GARCH models of daily 

ranges can only beat a model which predicts the next day's volatility to be equal to 

average daily range of the last week. An R-HAR-GARCH model utilizing realized 

ranges for the prediction of daily ranges is the model of choice, as it can statistically 

beat nearly all models considered in this thesis. Models based on the co-integration of 

daily highs and daily lows are reported in literature to be of great usefulness in terms of 

trading strategy profitability. However, on our dataset, their high quality in-sample fits 

pertain only to daily high and daily low prices modeling. On out-of-sample daily ranges 

forecasting, VECM models are only capable of beating the random-walk specification.  

 As our main motivation for modeling daily ranges was to provide for a way of 

money management to intraday traders, a logical follow-up to our work would be to 

investigate out-of-sample forecasting properties of gradually updated models throughout 

the day. Next, drawing upon the results of Leitch & Tanner (1998), comparisons of 

models chosen by error-minimization as opposed to profit-maximization might bring 

interesting results. As the occurrence of news releases causes jumps in prices as well as 

sessions' ranges and realized ranges, including information on news releases might bring 

additional insights and improvements of cumulative volatility forecast updates. Possible 

methods of investigating these might be threshold models, whereby an occurrence of 

a news release is not modeled via a dummy variable representing a fundamental news 

being released. Instead, an above threshold session range/realized range could be taken 

as a proxy of a news event impact. Possible spillovers of news releases into increased or 

decreased volatilities of other sessions as well as whole days could be investigated. 

Lastly, a part of research suggests that order imbalance (a measure of whether buyers or 

sellers are more aggressive in the market at the moment) is a trading activity measure 
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that needs to be taken into account, complementing herein discussed trading activity 

measures. Hence, investigations of the order imbalance might contribute to our 

understanding of volume-volatility relationship and might provide novel ways of 

volatility prediction. 
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Contents of CD 

 The attached compact-disc contains the whole dataset (total_data.gdt) in 

a format readable by gretl. All results can be replicated using this dataset. The ./carr 

directory contains MLE scripts for the estimations of CARR with Exponentially as well 

as Weibull distributed disturbance terms. Lastly, the ./rolling_forecasts directory 

contains all scripts necessary for automatic generation of out-of-sample forecasts 

presented in Section 6. All other models tested in-sample were created using gretl's 

built-in tools (OLS, VECM), hence no scripts are provided for these. 
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Appendix 

 

Delivery Start Date End Date  Delivery Start Date End Date 

12-Jul 09.11.2007 11.12.2007  3-Oct 11.12.2009 10.03.2010 

3-Aug 12.12.2007 12.03.2008  6-Oct 11.03.2010 10.06.2010 

6-Aug 13.03.2008 12.06.2008  9-Oct 11.06.2010 09.09.2010 

9-Aug 13.06.2008 11.09.2008  12-Oct 10.09.2010 09.12.2010 

12-Aug 12.09.2008 11.12.2008  3-Nov 10.12.2010 10.03.2011 

3-Sep 12.12.2008 11.03.2009  6-Nov 11.03.2011 09.06.2011 

6-Sep 12.03.2009 10.06.2009  9-Nov 10.06.2011 15.09.2011 

9-Sep 11.06.2009 09.09.2009  12-Nov 16.09.2011 09.11.2011 

12-Sep 10.09.2009 10.12.2009     
Table A.1: List of cut-off dates for the construction of a continuous contract (DD.MM.YYYY). 

 
 
 
 

 coefficient std. error t-ratio p-value 

c 0.0010 0.00008 12.5812 <0.00001 

Rlog 1.30378 0.00594 219.2555 <0.00001 

 
Log-Lik 5479.26  AdjR2 0.98 
Table A.2: Estimation results for model (17). 

 
 

 

 
Figure A.3: Division of a trading day into trading sessions. 
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Figure A.4: Frequency distribution of daily ranges and session ranges with gamma p.d.f. giving the best fit. 
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Figure A.5: Time plot of daily ranges (Nov 9th 2007 - Nov 9th 2011). 
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Figure A.6: ACF, PACF of daily ranges. 

 
 Volume Transactions Trade Size 

All day 0.2470 0.3936 -0.4298 

preAsian 0.5312 0.5780 -0.0968 

Asian 0.4853 0.5260 -0.1518 

preEurope 0.3976 0.3362 -0.1979 

Europe 0.4365 0.5285 -0.3057 

preAmerica 0.4112 0.5425 -0.3739 

America1 0.4930 0.5776 -0.3007 

America2 0.3746 0.5127 -0.4041 

postAmerica1 0.5265 0.6404 -0.3571 

postAmerica2 0.1731 0.2106 -0.0688 
Table A.7: Correlations of ranges with traded volume,  number of transactions and average trade size for different sessions,  

including ETH session. For example, the correlation of preAsian range and preAsian volume is 0.5312. 



 
 

 Volume Transactions Range Trade Size 

preAsian 0.1024 0.1723 0.4506 -0.2549 

Asian 0.1524 0.2229 0.5422 -0.2976 

preEuropean 0.1098 0.2178 0.4981 -0.3741 

European 0.1489 0.2651 0.6140 -0.4251 

preAmerican 0.1890 0.3221 0.5320 -0.4153 

American1 0.1611 0.2625 0.5408 -0.3879 

American2 0.2348 0.3825 0.7027 -0.4196 

postAmerican1 0.3018 0.4046 0.5962 -0.3762 

postAmerican2 0.1640 0.2561 0.4474 -0.2488 
Table A.8: Correlations of daily ranges with volume, transaction count and average trade size of different sessions  

of the current day. For example, correlation of daily ranges with ranges of preAsian session is 0.4506. 

 
 

Session Variable Lag 

  1 2 3 4 5 6 7 8 

Volume -0.0128 -0.0081 0.0090 -0.0045 0.0013 0.0152 0.0080 0.0054 

Transactions -0.3379 -0.3349 -0.3246 -0.3172 -0.3141 -0.3125 -0.3025 -0.3020 

Range 0.3185 0.2978 0.3041 0.3212 0.2946 0.2974 0.3069 0.2858 
preAsian 

Trade Size -0.2572 -0.2447 -0.2305 -0.2551 -0.2512 -0.2109 -0.2320 -0.2257 

Volume 0.0057 0.0161 0.0154 0.0191 0.0186 0.0046 0.0392 0.0086 

Transactions 0.0837 0.0879 0.0809 0.0889 0.0814 0.0634 0.0926 0.0656 

Range 0.3890 0.3796 0.4013 0.3740 0.3839 0.3496 0.3354 0.3526 
Asian 

Trade Size -0.3208 -0.3013 -0.2834 -0.3005 -0.2840 -0.2534 -0.2449 -0.2589 

Volume -0.0195 -0.0089 -0.0604 -0.0639 -0.0286 -0.0295 -0.0009 -0.0459 

Transactions 0.0763 0.0863 0.0321 0.0293 0.0590 0.0589 0.0742 0.0363 

Range 0.3090 0.3016 0.2921 0.3152 0.2964 0.2657 0.2959 0.2363 
preEuropean 

Trade Size -0.3745 -0.3847 -0.3837 -0.3663 -0.3720 -0.3465 -0.3201 -0.3430 

Volume -0.0248 0.0030 -0.0499 -0.0400 -0.0555 -0.0483 -0.0190 -0.0707 

Transactions 0.0984 0.1271 0.0709 0.0766 0.0535 0.0533 0.0822 0.0253 

Range 0.3295 0.3685 0.3203 0.3650 0.2992 0.2642 0.3197 0.2703 
European 

Trade Size -0.4701 -0.4609 -0.4542 -0.4429 -0.4409 -0.3946 -0.4026 -0.3967 

Volume 0.0118 0.0140 -0.0379 -0.0046 -0.0637 -0.0347 0.0021 -0.0335 

Transactions 0.1358 0.1445 0.0805 0.1025 0.0553 0.0785 0.1082 0.0601 

Range 0.3227 0.3388 0.3004 0.3393 0.2743 0.2833 0.3027 0.2630 
preAmerican 

Trade Size -0.4205 -0.4442 -0.4077 -0.3926 -0.4043 -0.3787 -0.3617 -0.3565 

Volume -0.0028 -0.0130 -0.0408 -0.0146 -0.0504 -0.0087 -0.0246 -0.0639 

Transactions 0.1018 0.0903 0.0547 0.0811 0.0384 0.0800 0.0562 0.0184 

Range 0.3195 0.3176 0.3022 0.3401 0.2626 0.3119 0.2543 0.2240 
American1 

Trade Size -0.4073 -0.4016 -0.3829 -0.3826 -0.3686 -0.3514 -0.3362 -0.3421 

Volume 0.0185 0.0196 -0.0105 -0.0132 -0.0057 0.0065 0.0312 -0.0421 

Transactions 0.1819 0.1711 0.1319 0.1284 0.1254 0.1368 0.1499 0.0839 

Range 0.3942 0.3662 0.3571 0.3510 0.3534 0.3325 0.3407 0.3021 
American2 

Trade Size -0.4495 -0.4305 -0.4231 -0.4205 -0.4034 -0.3909 -0.3625 -0.3848 

Volume 0.1310 0.1397 0.1015 0.0861 0.0830 0.1007 0.1620 0.0726 

Transactions 0.2363 0.2398 0.1920 0.1759 0.1730 0.1835 0.2306 0.1559 

Range 0.4389 0.4173 0.4172 0.4040 0.3825 0.3839 0.4234 0.3568 
postAmerican1 

Trade Size -0.3700 -0.3421 -0.3387 -0.3292 -0.3347 -0.3311 -0.2674 -0.2832 

Volume 0.0192 0.0096 0.0129 0.0218 0.0158 0.0327 0.0550 0.0053 

Transactions 0.0983 0.0889 0.0943 0.0946 0.0818 0.0988 0.1242 0.0643 

Range 0.2977 0.2405 0.3014 0.2582 0.2616 0.2923 0.2725 0.2635 
postAmerican2 

Trade Size -0.2340 -0.2503 -0.2506 -0.2513 -0.2339 -0.2359 -0.2105 -0.2123 
Table A.9: Correlations of daily ranges with lagged trading variables of different sessions. For example, the correlation of today's range and yesterday's preAsian transaction 

count is -0.3379. All values significant at least on a 95% level are printed in black. 
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Figure A.10: Time plots of daily ranges, square root of daily realized ranges  

and daily realized volatilities constructed from 5-minute returns. 

 
Session Variable Lag  

  0 1 2 3 4 5 6 7 8 

Range 1.0000 0.4471 0.4673 0.4388 0.4254 0.3918 0.4142 0.4280 0.3545 

RV 0.7659 0.5889 0.5810 0.5486 0.5499 0.4989 0.5105 0.5024 0.4669 ETH 

RR 0.7584 0.5914 0.5873 0.5504 0.5539 0.5048 0.5176 0.5149 0.4684 

Range 0.4506 0.3185 0.2978 0.3041 0.3212 0.2946 0.2974 0.3069 0.2858 

RV 0.4817 0.4276 0.3959 0.4101 0.3885 0.3733 0.3922 0.3820 0.3638 preAsian 

RR 0.5017 0.4152 0.3860 0.3993 0.3986 0.3910 0.3866 0.3858 0.3645 

Range 0.5422 0.3890 0.3796 0.4013 0.3740 0.3839 0.3496 0.3354 0.3526 

RV 0.5217 0.4408 0.4900 0.4694 0.4553 0.4331 0.4254 0.4101 0.4044 Asian 

RR 0.5464 0.4557 0.4997 0.4711 0.4665 0.4330 0.4250 0.4162 0.4063 

Range 0.4981 0.3090 0.3016 0.2921 0.3152 0.2964 0.2657 0.2959 0.2363 

RV 0.5979 0.4368 0.4197 0.4036 0.4224 0.3836 0.4020 0.4002 0.3492 preEuropean 

RR 0.6223 0.4762 0.4826 0.4433 0.4654 0.4350 0.4547 0.4406 0.4096 

Range 0.6140 0.3295 0.3685 0.3203 0.3650 0.2992 0.2642 0.3197 0.2703 

RV 0.5999 0.4394 0.4541 0.4360 0.4358 0.3613 0.3623 0.3844 0.3525 European 

RR 0.6394 0.4790 0.5012 0.4731 0.4674 0.3969 0.4102 0.4365 0.3795 

Range 0.5320 0.3227 0.3388 0.3004 0.3393 0.2743 0.2833 0.3027 0.2630 

RV 0.5174 0.3765 0.4199 0.3233 0.3372 0.3063 0.3457 0.3228 0.2920 preAmerican 

RR 0.5068 0.3539 0.4053 0.3271 0.3222 0.3367 0.3307 0.3220 0.2750 

Range 0.5408 0.3195 0.3176 0.3022 0.3401 0.2626 0.3119 0.2543 0.2240 

RV 0.4874 0.3402 0.3609 0.3181 0.3485 0.2817 0.3516 0.2604 0.2642 American1 

RR 0.4981 0.3792 0.3796 0.3356 0.3905 0.3097 0.3920 0.3149 0.3030 

Range 0.7027 0.3942 0.3662 0.3571 0.3510 0.3534 0.3325 0.3407 0.3021 

RV 0.7059 0.5503 0.4835 0.4623 0.4664 0.4276 0.4201 0.4384 0.3964 American2 

RR 0.6935 0.5492 0.4956 0.4759 0.4704 0.4335 0.4297 0.4467 0.3967 

Range 0.5962 0.4389 0.4173 0.4172 0.4040 0.3825 0.3839 0.4234 0.3568 

RV 0.5557 0.4230 0.3709 0.3792 0.3598 0.3549 0.3355 0.3587 0.3195 postAmerican1 

RR 0.5910 0.4643 0.4237 0.3999 0.3952 0.3719 0.3633 0.3995 0.3595 

Range 0.4474 0.2977 0.2405 0.3014 0.2582 0.2616 0.2923 0.2725 0.2635 

RV 0.4883 0.3420 0.3423 0.3307 0.3186 0.3412 0.3372 0.3650 0.3009 postAmerican2 

RR 0.4777 0.3475 0.3336 0.3506 0.3224 0.3365 0.3378 0.3494 0.2938 
Table A.11: Correlations of ETH (daily) ranges with different sessions' lagged volatility measures.  

For example, the correlation of today's daily range and yesterday's preAsian realized range is 0.4152. 



 

LHS Variable α β AdjR2 Dataset Chow p-value 

0.000028 0.5681 0.58 whole 0.0000 

0.000029 0.5921 0.61 1st half 0.0000 RRD 

0.000032 0.4302 0.38 2nd half 0.0003 

0.000026 0.5888 0.60 whole 0.0000 

0.000028 0.6183 0.64 1st half 0.0007 RVD 

0.000031 0.4178 0.39 2nd half 0.0019 

Table A.12: OLS results of  ( ) ( ) εβα +×+= 2ln4/
2log

DRVolMeasure  (model (19)). In Chow test, data sets were always halved, 

 i.e. for example in the second row, the first half of dataset was halved and Chow test was carried out on first quarters of the whole dataset. 
 

Regressor Dependent variable 

 (Rlog)2/4ln(2) (Rlog)2/4ln(2) (σGK)2 (σGK)2 (σRS)2 (σRS)2 

-0.0000009 -0.0000003 -0.0000036 -0.0000035 -0.0000041 -0.0000045 c 
0.0000027 0.0000020 0.0000024 0.0000021 0.0000037 0.0000037 

       
1.0155  0.9837  1.0640  RRD 
0.0566  0.0517  0.0744  

       
 1.0165  0.9918  1.0640 RVD 
 0.0399  0.0453  0.0744 

       
AdjR2 0.5765 0.5981 0.5453 0.5740 0.5991 0.5991 

 

Regressor Dependent variable 

 RRD RVD 

0.0000277 0.0000313 0.0000281 0.0000258 0.0000292 0.0000256 c 
0.0000024 0.0000032 0.0000027 0.0000024 0.0000032 0.0000032 

       
0.5680   0.5888   (Rlog)2/4ln(2) 
0.0368   0.0391   

       
 0.5547   0.5791  (σGK)2 
 0.0551   0.0588  

       
  0.5634   0.5791 (σRS)2 
  0.0387   0.0588 

       
AdjR2 0.5765 0.5453 0.5991 0.5981 0.5740 0.5740 

Table A.13: Results of regressing range-based measures of variance on realized measures of variance and vice versa. HAC method for standard errors, bold estimates are 
significant on 99% level.  

 
Mean Equation 

Variable coefficient std. error z-Statistic p-value. 

C 0.0100 0.0005 19.7114 0.0000 

AR(1) 0.1308 0.0309 4.2265 0.0000 

AR(2) 0.1520 0.0302 5.0327 0.0000 

AR(3) 0.0679 0.0318 2.1329 0.0329 

AR(4) 0.1136 0.0313 3.6305 0.0003 

AR(5) 0.0699 0.0312 2.2372 0.0253 

AR(6) 0.0858 0.0311 2.7556 0.0059 

AR(7) 0.1243 0.0305 4.0771 0.0000 
       

Variance Equation 

Variable coefficient std. error z-Statistic p-value 

C 0.0000 0.0000 1.8755 0.0607 

RESID(-1)^2 0.0444 0.0148 2.9966 0.0027 

GARCH(-1) 0.9378 0.0197 47.5484 0.0000 

T-DIST. DOF 5.6714 0.9829 5.7700 0.0000 
    

AdjR2 0.3412 Log-lik 4049.6090 
Table A.14: Estimation results of ARMA(7)-GARCH (1,1) -t applied to daily ranges 
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Table A.15: Q-Q plots of residuals from ARMA(7)-GARCH(1,1) with normally (left)  
and Student (right) distributed disturbances. Notice a better fit in the right figure. 

 
 RHS variables 

Model Range I RR Trade Size Trans. Count 

HAR ×     

R-HAR   ×   

LHAR × ×    

LHAR-R × × ×   

LHAR-S × ×  ×  

LHAR-C × ×   × 

LHAR-SC × ×  × × 

LHAR-RSC × × × × × 

R-LHAR  × ×   

R-LHAR-S  × × ×  

R-LHAR-C  × ×  × 

R-LHAR-SC  × × × × 
Table A.16: List of modified HAR models. For variance models, the explained variable is squared daily range and RR stands for realized range. 

For volatility models we explain daily ranges and RR stands for square root of realized ranges. I stands for the leverage effect. 

 
 Variance Equation Volatility Equation 

 HAR R-HAR HAR-R HAR R-HAR HAR-R 

c 0.0000 0.0000 0.0000 0.0014 0.0010 0.0011 

R(1)(-1)  0.0482  -0.0016 0.0466  -0.0023 

R(5)(-1) 0.4356  -0.0571 0.3958  -0.0450 

R(22)(-1) 0.3884  -0.1535 0.4444  -0.1942 

RR(1)(-1)  0.7952 0.7857  0.4807 0.4957 

RR(5)(-1)  1.3463 1.1959  0.6917 0.7783 

RR(22)(-1)  0.4086 0.8406  0.2972 0.5784 

AdjR2 0.3346 0.3684 0.3668 0.3560 0.3910 0.3900 
Table A.17: Investigation of relationships between daily ranges and realized ranges from HAR perspective.  

Parameter estimates significant on 95% critical level are printed in bold. 
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c 0.0014 0.0010 0.0011 0.0037 0.0035 0.0066 0.0138 0.0017 0.0011 0.0061 0.0061 0.0131 0.0142 0.0011 0.0012 0.0107 0.0122 

 **      * **  **  * **   ** * 
Rlog,(1)(-1)  0.0466  -0.0023 0.0623 0.0188 0.0325 0.0028 0.0745 0.0247 0.0892 0.0485 0.0616 0.0293     

          *        
Rlog,(5)(-1) 0.3958  -0.0450 0.3201 0.3783 0.2911 -0.0368 0.3335 -0.0505 0.2668 0.3293 0.2568 -0.0422     

 ***   *** *** **  ***  ** ** *      
Rlog,(22)(-1) 0.4444  -0.1942 0.4495 0.4959 0.5103 -0.3870 0.4410 -0.2068 0.3970 0.4803 0.4313 -0.4324     

 ***   *** *** ***  ***  *** *** ***      
I(1)(-1)         0.0876 0.0561 0.0878 0.0855 0.0853 0.0548 0.0530 0.0546 0.0526 0.0533 

        **  ** ** **      
I(5)(-1)        -0.1362 -0.1145 -0.1476 -0.1195 -0.1291 -0.1390 -0.0973 -0.1063 -0.1068 -0.1087 

          *   *     
I(22)(-1)        -0.4054 -0.0025 -0.4092 -0.4293 -0.4454 0.0366 -0.0584 -0.0509 -0.0383 -0.0601 

        *  *        
RR(1)(-1)   0.4807 0.4957    0.5561  0.4384    0.4776 0.4735 0.4972 0.4920 0.5174 

  *** ***    **  **    ** *** *** ** ** 
RR(5)(-1)  0.6917 0.7783    0.8932  0.7723    0.9090 0.6587 0.5108 0.9664 0.8166 

  *** *      *    * *** ** *** * 
RR(22)(-1)  0.2972 0.5784    0.6833  0.6268    0.7761 0.3272 0.4368 0.0308 0.1066 

  *            ** **   
size(1)(-1)     -0.0023  -0.0025 0.0002   -0.0019  -0.0022 0.0000  0.0007  0.0005 

                  
size(5)(-1)    -0.0061  -0.0065 -0.0044   -0.0066  -0.0068 -0.0048  -0.0065  -0.0039 

                  
size(22)(-1)    0.0071  0.0076 0.0036   0.0060  0.0061 0.0040  0.0058  0.0026 

          *     *   
count(1)(-1)      0.0010 0.0011 -0.0004    0.0009 0.0010 -0.0003   -0.0001 -0.0002 

                  
count(5)(-1)     0.0001 0.0002 -0.0021    -0.0002 -0.0001 -0.0023   -0.0029 -0.0023 

                  
count(22)(-1)     -0.0013 -0.0016 0.0014    -0.0012 -0.0014 0.0015   0.0022 0.0016 

                  
AdjR2 0.3560 0.3910 0.3900 0.3581 0.3556 0.3586 0.3922 0.3648 0.3902 0.3676 0.3646 0.3680 0.3927 0.3913 0.3912 0.3939 0.3925 

Table A.18: Estimation results of different HAR model specifications for daily ranges (volatility). 
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c 0.0000 0.0000 0.0000 0.0001 0.0001 0.0003 0.0005 0.0000 0.0000 0.0001 0.0002 0.0005 0.0005 0.0000 0.0000 0.0004 0.0005 
 **      ** ** * *  * ** *  ** ** 

Rlog,(1)(-1)  0.0482  -0.0016 0.0598 0.0261 0.0349 -0.0027 0.0864 0.0395 0.1021 0.0614 0.0684 0.0366     

          *        

Rlog,(5)(-1) 0.4356  -0.0571 0.3801 0.4576 0.4014 0.0621 0.3866 0.0465 0.3540 0.4244 0.3819 0.0590     
 ***   *** *** **  ***  ** *** **      

Rlog,(22)(-1) 0.3884  -0.1535 0.3690 0.3929 0.3623 -0.2991 0.3712 -0.1734 0.3103 0.3635 0.2794 -0.3309     
 ***   *** *** **  ***  ** *** *      

I(1)(-1)         0.0046 0.0037 0.0047 0.0047 0.0046 0.0037 0.0033 0.0034 0.0034 0.0035 
        *** ** *** *** *** ** ** ** ** ** 

I(5)(-1)        -0.0046 -0.0044 -0.0052 -0.0043 -0.0045 -0.0055 -0.0037 -0.0039 -0.0045 -0.0044 
             *     

I(22)(-1)        -0.0161 0.0010 -0.0158 -0.0172 -0.0182 0.0008 0.0004 0.0004 0.0002 -0.0010 
            *      

RR(1)(-1)   0.7952 0.7857    0.7751  0.6911    0.6271 0.8202 0.8595 0.7280 0.7486 
  *            * *   

RR(5)(-1)  1.3463 1.1959    1.4415  1.2180    1.5039 1.3317 1.1654 1.8385 1.7166 
  **            ** * *** ** 

RR(22)(-1)  0.4086 0.8406    0.9069  0.9275    0.9978 0.4339 0.5105 0.0470 0.0151 
                  

size(1)(-1)     -0.0001  -0.0001 0.0000   0.0002  -0.0001 0.0000  0.0001  0.0000 
          **        

size(5)(-1)    -0.0002  -0.0002 -0.0001   -0.0004  -0.0002 -0.0001  -0.0002  -0.0001 
          **        

size(22)(-1)    0.0002  0.0002 0.0001   0.0002  0.0001 0.0001  0.0001  0.0000 
                  

count(1)(-1)      0.0000 0.0000 0.0000    0.0000 0.0000 0.0000   0.0000 0.0000 
     * *     * **      

count(5)(-1)     0.0000 0.0000 -0.0001    -0.0001 -0.0001 -0.0001   -0.0001 -0.0001 
             *   ** * 

count(22)(-1)     0.0000 0.0000 0.0000    0.0000 0.0000 0.0000   0.0001 0.0001 
                  

AdjR2 0.3346 0.3684 0.3668 0.3362 0.3340 0.3364 0.3687 0.3485 0.3705 0.3514 0.3488 0.3516 0.3728 0.3714 0.3705 0.3746 0.3732 
Table A.19: Estimation results of different HAR model specifications for squared daily ranges (variance). 
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c 0.0004 0.0006 0.0004 -0.0002 0.0022 0.0016 0.0018 0.0005 0.0005 0.0009 0.0029 0.0038 0.0042 0.0008 0.0033 0.0003 0.0038 

 ** ** **     *** ***    * *** ***   

Rlog,(1)(-1)  0.4586  0.3600 0.4691 0.3921 0.4149 0.3390 0.4072 0.2978 0.4203 0.3355 0.3582 0.2634     

 ***  *** *** *** *** *** *** *** *** *** *** ***     

Rlog,(5)(-1) 0.3304  0.2886 0.3148 0.4671 0.4360 0.3292 0.2996 0.2206 0.2750 0.4337 0.3893 0.2344     

 ***  ** *** *** *** ** *** * *** *** ***      

Rlog,(22)(-1) 0.1605  0.2542 0.1816 0.0948 0.1146 0.2937 0.1999 0.2755 0.1963 0.1443 0.1424 0.3420     

 ***   ***    *** * *** ** * *     

I(1)(-1)         -0.0032 0.0167 -0.0009 -0.0004 0.0006 0.0179 0.0335 0.0337 0.0314 0.0314 

              ** ** ** ** 

I(5)(-1)        -0.1039 -0.1174 -0.1066 -0.1086 -0.1089 -0.1231 -0.1396 -0.1436 -0.1216 -0.1252 

        *** *** *** *** *** *** *** *** *** *** 

I(22)(-1)        -0.0934 -0.1242 -0.0960 -0.0942 -0.1042 -0.1336 -0.2949 -0.3077 -0.3026 -0.3173 

         **    ** *** *** *** *** 

RR(1)(-1)   0.0916 0.0493    0.0432  0.0566    0.0516 0.0964 0.1013 0.0666 0.0713 

  *** ***    **  ***    ** *** *** *** *** 

RR(5)(-1)  0.2503 0.0362    0.0492  0.0520    0.0703 0.2029 0.1866 0.1955 0.1754 

  ***            *** *** *** *** 

RR(22)(-1)  0.2367 -0.0554    -0.0924  -0.0372    -0.0973 0.2379 0.1975 0.2769 0.2417 

  ***            *** *** *** *** 

size(1)(-1)     0.0017  0.0012 0.0007   0.0015  0.0010 0.0004  -0.0007  -0.0009 

    **      **        

size(5)(-1)    -0.0025  -0.0014 -0.0015   -0.0029  -0.0019 -0.0021  -0.0019  -0.0020 

    **      ***        

size(22)(-1)    0.0011  0.0004 0.0009   0.0011  0.0005 0.0011  0.0010  0.0014 

                  

count(1)(-1)      0.0005 0.0004 0.0003    0.0006 0.0004 0.0004   0.0011 0.0011 

     *      *     *** *** 

count(5)(-1)     -0.0011 -0.0009 -0.0007    -0.0011 -0.0008 -0.0006   -0.0001 -0.0002 

     **      **       

count(22)(-1)     0.0004 0.0003 0.0002    0.0003 0.0002 0.0000   -0.0009 -0.0010 

                  

AdjR2 0.7470 0.7040 0.7515 0.7476 0.7479 0.7476 0.7512 0.7564 0.7622 0.7568 0.7576 0.7573 0.7627 0.7346 0.7366 0.7415 0.7439 
Table A.20: Estimation results of different HAR model specifications for square root of realized ranges (volatility). 
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c 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 0.0001 

 ** *** **         *  ** **   

Rlog,(1)(-1)  0.4976  0.3962 0.5113 0.4607 0.4831 0.4297 0.4533 0.3591 0.4690 0.4112 0.4329 0.3154     

 ***  *** *** *** *** *** *** *** *** *** *** ***     

Rlog,(5)(-1) 0.2755  0.2489 0.2527 0.3567 0.3151 0.2175 0.2492 0.1959 0.2227 0.3470 0.3058 0.1518     

 ***   ** *** ***  **  ** *** ***      

Rlog,(22)(-1) 0.1708  0.2458 0.1851 0.1297 0.1487 0.2315 0.1978 0.2244 0.1862 0.1465 0.1291 0.2660     

 ***   *** ** **  ***  *** ** *      

I(1)(-1)         0.0003 0.0007 0.0003 0.0003 0.0004 0.0008 0.0010 0.0010 0.0011 0.0011 

             * *** *** *** *** 

I(5)(-1)        -0.0023 -0.0025 -0.0024 -0.0025 -0.0025 -0.0028 -0.0030 -0.0031 -0.0028 -0.0028 

        *** *** *** *** *** *** *** *** *** *** 

I(22)(-1)        -0.0022 -0.0029 -0.0023 -0.0023 -0.0026 -0.0037 -0.0076 -0.0078 -0.0078 -0.0082 

         *    ** *** *** *** *** 

RR(1)(-1)   0.0629 0.0334    0.0008  0.0012    0.0387 0.0673 0.0692 0.0560 0.0577 

  *** **      **    ** *** *** *** *** 

RR(5)(-1)  0.1237 0.0100    0.0012  0.0006    0.0369 0.1024 0.0948 0.1085 0.1003 

  ***            *** *** *** *** 

RR(22)(-1)  0.1384 -0.0237    -0.0011  -0.0003    -0.0326 0.1288 0.1067 0.1350 0.1100 

  ***            *** *** *** *** 

size(1)(-1)     0.0000  0.0000 0.0000   0.0000  0.0000 0.0000  0.0000  0.0000 

    **  *    **        

size(5)(-1)    -0.0001  0.0000 0.0000   -0.0001  -0.0001 -0.0001  0.0000  0.0000 

    **      ***  ** *     

size(22)(-1)    0.0000  0.0000 0.0000   0.0000  0.0000 0.0000  0.0000  0.0000 

                  

count(1)(-1)      0.0000 0.0000 0.0000    0.0000 0.0000 0.0000   0.0000 0.0000 

     *      *     *** *** 

count(5)(-1)     0.0000 0.0000 0.0000    0.0000 0.0000 0.0000   0.0000 0.0000 

     **      ** *      

count(22)(-1)     0.0000 0.0000 0.0000    0.0000 0.0000 0.0000   0.0000 0.0000 

                  

AdjR2 0.7234 0.6676 0.7295 0.7239 0.7238 0.7237 0.7272 0.7340 0.7401 0.7347 0.7352 0.7355 0.7451 0.7132 0.7154 0.7178 0.7210 
Table A.21: Estimation results of different HAR model specifications for realized ranges (variance). 



 

 HAR HAR + Rlog HAR + RR HAR + RV HAR + size HAR + count HAR + vol 

c 0.0014 0.0020 0.0017 0.0017 0.0062 -0.0015 -0.0007 

 ** *** *** *** ***   

Rlog,(1)(-1)  0.0466 -0.0373 -0.0775 -0.0931 0.0627 0.0305 0.0313 

   * **    

Rlog,(5)(-1) 0.3958 0.3469 0.1689 0.1441 0.3561 0.4005 0.4003 

 *** ***   *** *** *** 
Rlog,(22)(-1) 0.4444 0.3891 0.2741 0.2931 0.3643 0.4377 0.4514 

 *** *** *** *** *** *** *** 
preAsian(-1)  -0.0411 0.0534 0.3548 0.0005 -0.0002 -0.0001 

        
Asian(-1)  0.1986 0.3623 0.2977 -0.0010 0.0002 0.0002 

  **      
preEurope(-1)  -0.0675 0.1755 0.1834 0.0022 0.0000 0.0001 

        
Europe(-1)  -0.0607 0.1043 0.0138 -0.0066 -0.0004 -0.0007 

     ***  * 
preAmerican(-1)  -0.0624 -0.1394 0.0863 0.0031 -0.0001 0.0000 

        
America1(-1)  0.0759 0.3148 0.2586 0.0024 0.0003 0.0003 

        
America2(-1)  0.0780 0.6316 0.7355 -0.0049 0.0002 0.0000 

   *** *** **   
postAm1(-1)  0.3169 0.6446 0.5111 0.0000 0.0005 0.0003 

  ** *     
postAm2(-1)  0.1168 0.4086 0.2390 0.0018 -0.0002 0.0001 

     **   
AdjR2 0.3557 0.3638 0.3864 0.3888 0.3618 0.3527 0.3529 

Table A.22: Estimation results of enriching a HAR of daily ranges (volatility) with yesterday's sessions variables. 
 

 HAR HAR + Rlog HAR + RR HAR + RV HAR + size HAR + count HAR + vol 

c 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 

 **  ** *** **   
Rlog,(1)(-1)  0.0489 -0.0097 -0.0893 -0.1134 0.0604 0.0385 0.0389 

   * **    
Rlog,(5)(-1) 0.4357 0.4284 0.3034 0.2573 0.4033 0.4483 0.4467 

 ***  * * *** *** *** 
Rlog,(22)(-1) 0.3885 0.3578 0.2337 0.2364 0.3060 0.3711 0.3809 

 ***  ** ** *** *** *** 
preAsian(-1)  0.4144 3.3519 6.0777 0.0000 0.0000 0.0000 

        
Asian(-1)  0.2719 0.6564 0.3899 0.0000 0.0000 0.0000 

        
preEurope(-1)  -0.5601 0.6404 1.7077 0.0001 0.0000 0.0000 

        
Europe(-1)  -0.1385 0.5418 0.1000 -0.0002 0.0000 0.0000 

     ***  * 
preAmerican(-1)  -0.5208 -2.6053 -0.8287 0.0001 0.0000 0.0000 

   **     
America1(-1)  0.1701 1.2421 0.8061 0.0001 0.0000 0.0000 

        
America2(-1)  0.0956 2.1567 2.6786 -0.0002 0.0000 0.0000 

   ***  **   
postAm1(-1)  1.0767 5.8685 4.4220 0.0000 0.0000 0.0000 

    ***    
postAm2(-1)  0.1917 -1.3047 -2.5796 0.0001 0.0000 0.0000 

     **   
AdjR2 0.3346 0.3432 0.3713 0.3790 0.3402 0.3320 0.3317 

Table A.23: Estimation results of enriching a HAR of daily ranges (variance) with yesterday's sessions variables. 
 



 
 HAR HAR + Rlog HAR + RR HAR + RV HAR + size HAR + count HAR + vol 

c 0.0004 0.0006 0.0008 0.0007 -0.0006 0.0000 -0.0004 

 ** *** *** ***    
RR(1)(-1)  0.4586 0.4230 -1.1137 -0.1061 0.4581 0.4492 0.4472 

 *** *** ***  *** *** *** 
RR(5)(-1) 0.3304 0.3170 0.2191 0.2615 0.3318 0.3325 0.3369 

 *** *** *** *** *** *** *** 
RR(22)(-1) 0.1605 0.1488 0.1114 0.1597 0.1850 0.1519 0.1604 

 *** *** ** *** *** *** *** 
preAsian(-1)  -0.0223 0.3710 0.2023 0.0000 0.0000 0.0000 

   *** **    
Asian(-1)  0.0298 0.6418 0.2441 -0.0006 -0.0002 -0.0002 

   *** ***    
preEurope(-1)  0.0000 0.4778 0.2108 0.0002 0.0001 0.0001 

   *** **    
Europe(-1)  -0.0179 0.5842 0.1276 -0.0010 -0.0001 -0.0002 

   *** **    
preAmerican(-1)  0.0162 0.4367 0.1696 0.0013 0.0002 0.0003 

   *** ** *  * 
America1(-1)  -0.0219 0.6405 0.2005 0.0006 -0.0002 -0.0002 

   *** ***    
America2(-1)  -0.0077 0.8811 0.2822 -0.0005 0.0000 0.0000 

   *** ***    
postAm1(-1)  0.1508 0.7032 0.4030 0.0000 0.0002 0.0002 

  *** *** ***    
postAm2(-1)  0.0221 0.5867 0.3211 0.0005 0.0002 0.0002 

   *** ***   * 
AdjR2 0.7470 0.7511 0.7681 0.7642 0.7480 0.7489 0.7498 

Table A.24: Estimation results of enriching a HAR of realized ranges (volatility) with yesterday's sessions variables. 
 

 HAR HAR + Rlog HAR + RR HAR + RV HAR + size HAR + count HAR + vol 

c 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 ** *** *** ***    
RR(1)(-1)  0.2755 0.4925 -0.6123 -0.0242 0.4892 0.4971 0.4870 

 *** ***   *** *** *** 
RR(5)(-1) 0.1708 0.2385 0.2377 0.2327 0.2797 0.2730 0.2836 

 *** *** ** ** *** *** *** 
RR(22)(-1) 0.4976 0.1728 0.1642 0.1853 0.1607 0.1910 0.1678 

 *** *** *** *** *** *** *** 
preAsian(-1)  0.0081 1.3003 1.1314 0.0000 0.0000 0.0000 

    **    
Asian(-1)  0.0953 1.1690 0.5978 0.0000 0.0000 0.0000 

  ** * **    
preEurope(-1)  -0.1028 2.2815 1.2675 0.0000 0.0000 0.0000 

   *** **    
Europe(-1)  -0.0497 0.7993 0.0942 0.0000 0.0000 0.0000 

      *  
preAmerican(-1)  0.0013 0.7431 0.4165 0.0000 0.0000 0.0000 

      * ** 
America1(-1)  -0.0137 0.9945 0.4091 0.0000 0.0000 0.0000 

   *     
America2(-1)  -0.0194 0.9788 0.4479 0.0000 0.0000 0.0000 

   *     
postAm1(-1)  0.2992 2.8740 1.6037 0.0000 0.0000 0.0000 

  * *** *    
postAm2(-1)  0.0337 2.1294 1.2603 0.0000 0.0000 0.0000 

   *     
AdjR2 0.7234 0.7331 0.7357 0.7423 0.7245 0.7244 0.7255 

Table A.25: Estimation results of enriching a HAR of realized ranges (variance) with yesterday's sessions variables. 



 
 

 HAR + preAs + As + preEu + Eu + preAm + Am1 + Am2 + postAm1 + postAm2 

c 0.0014 0.0070 0.0088 0.0050 0.0099 0.0042 0.0061 0.0111 0.0092 0.0041 
 ** ** *** * ***   *** *** * 

Rlog,(1)(-1)  0.0466 0.0513 0.0449 0.0443 0.0765 0.0507 0.0521 0.0090 -0.0080 0.0231 
     *      

Rlog,(5)(-1) 0.3958 0.3269 0.2648 0.2977 0.2673 0.3639 0.3428 0.2432 0.3391 0.3520 
 *** *** ** *** ** *** *** *** *** *** 

Rlog,(22)(-1) 0.4444 0.3678 0.3507 0.3963 0.3093 0.4033 0.3810 0.2487 0.2763 0.4025 
 *** *** *** *** *** *** *** *** *** *** 

session_size(-1)  -0.0006 -0.0017 0.0000 -0.0025 -0.0006 -0.0007 -0.0012 -0.0001 0.0007 
     **      

session_count(-1)  -0.0007 -0.0006 -0.0005 -0.0005 -0.0002 -0.0004 -0.0008 -0.0010 -0.0006 
  * *     * **  

session_rr(-1)  1.5741 0.7989 1.5748 1.1203 0.5863 0.8348 1.3642 3.5647 1.4440 
  ** ** *** ***  ** *** *** ** 

session_rng(-1)  -0.2103 -0.0045 -0.1602 -0.2492 -0.1253 -0.1729 -0.1899 -0.7318 0.0314 
  *  * ***   ** **  

AdjR2 0.3557 0.3602 0.3636 0.3595 0.3669 0.3551 0.3605 0.3856 0.3802 0.3620 
Table A.26: Estimation results of enriching a HAR of daily ranges (volatility) with all lagged variables of separate sessions. 

 
 

 HAR + preAs + As + preEu + Eu + preAm + Am1 + Am2 + postAm1 + postAm2 

c 0.0000 0.0002 0.0001 0.0001 0.0003 0.0000 0.0001 0.0003 0.0002 0.0001 
 ** *   **   ** *  

Rlog,(1)(-1)  0.0489 0.0576 0.0636 0.0575 0.0855 0.0761 0.0657 0.0080 -0.0152 0.0332 
           

Rlog,(5)(-1) 0.4357 0.3570 0.3180 0.3325 0.3349 0.4181 0.3993 0.3086 0.4144 0.4317 
 *** *** ** ** ** *** *** ** *** *** 

Rlog,(22)(-1) 0.3885 0.3162 0.3575 0.3604 0.2758 0.3977 0.3397 0.2060 0.2509 0.3761 
 *** *** *** *** ** *** *** * ** *** 

session_size(-1)  0.0000 0.0000 0.0000 -0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 
     **      

session_count(-1)  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
         *  

session_rr(-1)  12.0724 2.6825 9.4780 3.6780 -0.5068 2.7778 3.9588 22.4499 6.1127 
    * ***  * *** ***  

session_rng(-1)  -0.4198 -0.2372 -0.3946 -0.5385 -0.4091 -0.4145 -0.3745 -2.3736 0.0406 
  ***  *** ** **  **   

AdjR2 0.3346 0.3435 0.3401 0.3383 0.3486 0.3356 0.3384 0.3718 0.3583 0.3345 
Table A.27: Estimation results of enriching a HAR of daily ranges (variance) with all lagged variables of separate sessions. 



 
 

 HAR + preAs + As + preEu + Eu + preAm + Am1 + Am2 + postAm1 + postAm2 

c 0.0004 0.0011 0.0022 0.0010 -0.0002 -0.0021 -0.0013 -0.0006 0.0012 0.0000 
 **  **   *     

RR(1)(-1)  0.4586 0.4541 0.4323 0.4247 0.4704 0.4536 0.5046 0.3919 0.3496 0.4129 
 *** *** *** *** *** *** *** *** *** *** 

RR(5)(-1) 0.3304 0.3043 0.3005 0.2889 0.3405 0.3465 0.3259 0.3470 0.3407 0.3172 
 *** *** *** *** *** *** *** *** *** *** 

RR(22)(-1) 0.1605 0.1543 0.1446 0.1694 0.1675 0.1963 0.1910 0.1695 0.1311 0.1728 
 *** *** *** *** *** *** *** *** ** *** 

session_size(-1)  0.0000 -0.0004 0.0002 0.0003 0.0008 0.0007 0.0005 0.0004 0.0004 
      ** *    

session_count(-1)  -0.0001 -0.0002 -0.0001 0.0000 0.0001 0.0001 0.0000 -0.0002 0.0000 
           

session_rr(-1)  0.3578 0.1375 0.5336 0.0030 -0.0452 -0.0977 0.1498 0.8308 0.4654 
  **  ***     *** ** 

session_rng(-1)  -0.0836 0.0098 -0.0694 -0.0247 -0.0056 -0.0193 -0.0219 -0.0909 -0.0056 
  **  **       

AdjR2 0.7470 0.7476 0.7475 0.7490 0.7464 0.7474 0.7481 0.7474 0.7557 0.7511 
Table A.28: Estimation results of enriching a HAR of realized ranges (volatility) with all lagged variables of separate sessions. 

 
 

 HAR + preAs + As + preEu + Eu + preAm + Am1 + Am2 + postAm1 + postAm2 

c 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0001 0.0000 0.0000 0.0000 0.0000 
 ** *    **     

RR(1)(-1)  0.2755 0.4685 0.4912 0.4562 0.5657 0.5210 0.5431 0.4674 0.4074 0.4635 
 *** *** *** *** *** *** *** *** *** *** 

RR(5)(-1) 0.1708 0.2455 0.2573 0.2302 0.2943 0.2845 0.2625 0.2883 0.2843 0.2712 
 *** ** *** *** *** *** *** *** *** *** 

RR(22)(-1) 0.4976 0.1638 0.1715 0.1911 0.1584 0.2102 0.2050 0.1834 0.1579 0.1815 
 *** *** *** *** *** *** *** *** *** *** 

session_size(-1)  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
      *     

session_count(-1)  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
      *     

session_rr(-1)  0.1560 1.5039 2.4761 -0.3969 -0.6925 -0.3587 0.1242 1.9402 2.0295 
    **  ***     

session_rng(-1)  0.0009 -0.0019 -0.0020 -0.0003 0.0002 -0.0001 -0.0004 0.0006 0.0000 
   ** **       

AdjR2 0.7234 0.7240 0.7241 0.7257 0.7245 0.7257 0.7247 0.7230 0.7317 0.7267 
Table A.29: Estimation results of enriching a HAR of realized ranges (variance) with all lagged variables of separate sessions. 

 



 
 

 HAR + preAs + As + preEu + Eu + preAm + Am1 + Am2 + postAm1 + postAm2 

c 0.0014 0.0069 0.0031 0.0052 0.0080 -0.0078 -0.0081 -0.0051 0.0015 -0.0042 
 ** **   *** ** *   * 

Rlog,(1)(-1)  0.0466 0.0165 -0.0040 -0.0229 -0.0201 -0.0092 0.0267 0.0025 -0.0330 0.0013 
           

Rlog,(5)(-1) 0.3958 0.3114 0.2200 0.2204 0.1404 0.3036 0.3312 0.2029 0.2941 0.2612 
 *** *** ** **  *** *** ** *** *** 

Rlog,(22)(-1) 0.4444 0.2990 0.3478 0.2572 0.2678 0.3011 0.3544 0.1619 0.1544 0.3185 
 *** *** *** *** *** *** *** ** * *** 

session_size(-1)  -0.0008 -0.0006 -0.0010 0.0000 0.0010 0.0009 0.0021 -0.0003 -0.0012 
        *  * 

session_count(-1)  -0.0006 -0.0001 -0.0004 -0.0009 0.0009 0.0008 0.0002 0.0003 0.0013 
  *   ** ** *   *** 

session_rr(-1)  1.1895 0.5216 2.5973 1.1779 1.1137 -0.0237 0.8843 3.1053 1.9973 
  **  *** *** **  *** *** ** 

session_rng(-1)  0.4868 0.5265 0.4403 0.6013 0.4932 0.6079 0.6159 0.0931 0.3552 
  *** *** *** *** *** *** ***  *** 

AdjR2 0.3557 0.3926 0.4277 0.4380 0.4897 0.4449 0.4487 0.5803 0.4712 0.4570 
Table A.30: Estimation results of enriching a HAR of daily ranges (volatility) with all non-lagged variables of separate sessions. 

 
 

 HAR + preAs + As + preEu + Eu + preAm + Am1 + Am2 + postAm1 + postAm2 

c 0.0000 0.0002 0.0000 0.0002 0.0002 -0.0003 -0.0002 -0.0001 0.0000 -0.0002 
 ** **  * ** **    ** 

Rlog,(1)(-1)  0.0489 0.0154 -0.0171 -0.0411 -0.0305 0.0070 0.0450 0.0192 -0.0339 -0.0066 
           

Rlog,(5)(-1) 0.4357 0.4279 0.3389 0.2817 0.2227 0.4447 0.4245 0.2915 0.3900 0.4089 
 *** *** ** *** * *** *** *** *** *** 

Rlog,(22)(-1) 0.3885 0.2057 0.2969 0.1426 0.2424 0.2212 0.2493 0.0556 0.1248 0.1934 
 *** * ***  ** * **   * 

session_size(-1)  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
          * 

session_count(-1)  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
  *   ** *** *   *** 

session_rr(-1)  10.2267 1.2881 26.1560 4.0828 1.5179 -1.2037 2.4316 18.7943 20.6278 
  ***  *** ***   ** ** * 

session_rng(-1)  1.0867 1.1967 0.7474 1.2093 1.5482 1.3817 1.1150 1.1391 0.7087 
  *** *** *** *** *** *** ***  *** 

AdjR2 0.3346 0.3907 0.4320 0.4519 0.4969 0.4154 0.4140 0.5833 0.4689 0.4568 
Table A.31: Estimation results of enriching a HAR of daily ranges (variance) with all non-lagged variables of separate sessions. 



 
 

 HAR + preAs + As + preEu + Eu + preAm + Am1 + Am2 + postAm1 + postAm2 

c 0.0004 0.0016 0.0011 0.0008 0.0022 -0.0016 -0.0005 0.0015 0.0017 0.0002 
 ** **   **    **  

RR(1)(-1)  0.4586 0.3660 0.2940 0.3179 0.2281 0.3454 0.3375 0.2683 0.3454 0.3908 
 *** *** *** *** *** *** *** *** *** *** 

RR(5)(-1) 0.3304 0.2951 0.1681 0.1971 0.1816 0.2614 0.2864 0.1598 0.2554 0.2558 
 *** *** ** *** *** *** *** *** *** *** 

RR(22)(-1) 0.1605 0.1318 0.1653 0.1513 0.1267 0.1020 0.1083 -0.0245 0.0180 0.1380 
 *** *** *** *** ** ** ***   *** 

session_size(-1)  0.0000 -0.0002 -0.0002 0.0001 0.0001 -0.0002 -0.0004 -0.0004 -0.0004 
          * 

session_count(-1)  -0.0002 0.0000 -0.0001 -0.0003 0.0002 0.0001 0.0000 0.0000 0.0001 
  *   **      

session_rr(-1)  0.5574 0.7572 1.3075 1.1860 0.8643 0.5935 0.9763 1.6599 1.1601 
  *** *** *** *** *** *** *** *** *** 

session_rng(-1)  0.1454 0.0180 0.0639 -0.0270 0.0631 0.0609 0.0032 -0.1770 -0.0278 
  ***  *   *  **  

AdjR2 0.7470 0.7720 0.8065 0.8009 0.8343 0.8083 0.8206 0.8967 0.8139 0.7784 
Table A.32: Estimation results of enriching a HAR of realized ranges (volatility) with all non-lagged variables of separate sessions. 

 
 

 HAR + preAs + As + preEu + Eu + preAm + Am1 + Am2 + postAm1 + postAm2 

const 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0001 0.0000 0.0000 0.0000 0.0000 
 **     **     

RR(1)(-1)  0.2755 0.4038 0.3432 0.3174 0.2284 0.4166 0.3962 0.3174 0.4033 0.4467 
 *** *** *** *** *** *** *** *** *** *** 

RR(5)(-1) 0.1708 0.2615 0.0654 0.1072 0.1779 0.2445 0.2879 0.1701 0.2251 0.2459 
 *** ***   * *** *** *** ** ** 

RR(22)(-1) 0.4976 0.1320 0.2404 0.1785 0.1707 0.1126 0.0764 -0.0363 0.0466 0.1517 
 *** ** *** *** ** **    *** 

session_size(-1)  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
        * **  

session_count(-1)  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
     ** **    ** 

session_rr(-1)  3.2941 1.5640 7.6308 2.5546 1.8434 1.2749 1.5566 6.3087 4.2190 
  *** *** *** *** *** *** *** *** *** 

session_rng(-1)  0.0866 0.0514 -0.0102 -0.0328 0.1180 0.0968 0.0088 -0.3830 0.0034 
  **    *** *  *  

AdjR2 0.7234 0.7491 0.7928 0.7966 0.8314 0.7739 0.7880 0.8859 0.7892 0.7447 
Table A.33: Estimation results of enriching a HAR of realized ranges (variance) with all non-lagged variables of separate sessions. 



 

   + preAs + As + preEu + Eu + preAm + Am1 + Am2 + postAm1 + postAm2   

  HAR + 1 session + 2 sessions + 3 sessions + 4 sessions + 5 sessions + 6 sessions + 7 sessions + 8 sessions + 9 sessions   

c 0.0014 ** 0.0069 ** 0.0036  0.0032  0.0054  -0.0016  -0.0086 ** -0.0085 ** -0.0100 ** -0.0088 ** c 

Rlog,(1)(-1) 0.0466  0.0165  -0.0074  -0.0369  -0.0575  -0.0729 * -0.0717 ** -0.0504 * -0.0598 ** -0.0561 * Rlog,(1)(-1) 

Rlog,(5)(-1) 0.3958 *** 0.3114 *** 0.2081 ** 0.1456  0.0383  0.0275  0.0094  -0.0314  -0.0194  -0.0693  Rlog,(5)(-1) H
A

R
 

Rlog,(22)(-1) 0.4444 *** 0.2990 *** 0.3163 *** 0.2636 *** 0.2335 *** 0.2072 ** 0.1948 ** 0.0812  0.0682  0.0207  Rlog,(22)(-1) 

H
A

R
 

size   -8.223E-04  0.0003  0.0001  -0.0003  -0.0005  -0.0008  -0.0006  -0.0005  -0.0005  size 

count   -0.0006 * -0.0007  -0.0005  -0.0001  -0.0003  -0.0002  0.0001  0.0001  0.0003  count 

rr   1.1895 ** 0.9638  1.2342 ** 0.9701 * 1.2331 ** 1.2847 ** 0.6371  0.3973  0.1999  rr p
re

A
s 

rng   0.4868 *** 0.1751  -0.1475  -0.2888  -0.3788 ** -0.4299 ** -0.3536 ** -0.2640 * -0.3549 ** rng 

p
re

A
s 

size     -0.0007  -0.0003  -0.0009  -0.0003  0.0005  0.0000  0.0003  0.0004  size 

count     0.0004  0.0008  0.0003  0.0003  -0.0001  -0.0003  -0.0005  -0.0010 ** count 

rr     0.2347  -0.0964  -0.0907  -0.1594  0.0365  -0.0060  -0.0028  0.3406  rr 

A
s 

rng     0.4616 *** 0.2987 ** 0.2862 ** 0.3033 ** 0.3182 *** 0.3907 *** 0.3819 *** 0.3246 *** rng 

A
s 

size       -0.0001  0.0006  0.0012  0.0004  0.0000  0.0000  0.0002  size 

count       -0.0007  -0.0009  -0.0011 * -0.0009  -0.0006  -0.0004  -0.0005  count 

rr       2.0927 *** 2.1608 *** 2.0065 *** 1.8218 ** 1.6384 *** 1.4940 ** 1.6822 *** rr p
re

E
u

 

rng       0.3122 * 0.0090  0.0191  -0.0379  -0.2573 * -0.2876 ** -0.3628 *** rng 

p
re

E
u

 

size         0.0010  0.0013  0.0017  -0.0003  -0.0007  -0.0006  size 

count         -0.0002  -0.0014 ** -0.0020 *** -0.0016 *** -0.0015 *** -0.0014 *** count 

rr         0.3731  0.2776  0.2715  -0.3505  -0.2998  -0.2937  rr 

E
u

 

rng         0.5704 *** 0.5890 *** 0.6073 *** 0.7030 *** 0.7007 *** 0.6706 *** rng 

E
u

 

size           -0.0002  -0.0008  -0.0013  -0.0011  -0.0012  size 

count           0.0022 *** 0.0020 *** 0.0019 *** 0.0018 *** 0.0018 *** count 

rr           0.6279  0.5540  0.4935  0.3884  0.4252  rr p
re

A
m

 

rng           -0.0055  -0.1102  -0.2387 * -0.2064  -0.2195 * rng 

p
re

A
m

 

size             0.0014  0.0000  -0.0005  -0.0006  size 

count             0.0016 *** 0.0017 *** 0.0014 ** 0.0012 ** count 

rr             -0.2474  -0.3072  -0.1530  -0.0129  rr A
m

1 

rng             0.3560 *** 0.2303 ** 0.2327 ** 0.2199 ** rng 

A
m

1 

size               0.0047 *** 0.0060 *** 0.0051 *** size 

count               -0.0007  -0.0005  -0.0003  count 

rr               0.5888 ** 0.3675  0.2984  rr A
m

2 

rng               0.5762 *** 0.5482 *** 0.5478 *** rng 

A
m

2 

size                 -0.0012  -0.0016 ** size 

count                 0.0005  -0.0001  count 

rr                 -0.5446  -0.2208  rr 

p
o

st
A

m
1 

rng                 0.5942 ** 0.4409 * rng 

p
o

st
A

m
1 

size                   -0.0005  size 

count                   0.0014 *** count 

rr                   -0.6192  rr 

p
o

st
A

m
2 

rng                   0.3197 *** rng 

p
o

st
A

m
2 

 AdjR2 0.3557  0.4330  0.4330  0.4568  0.5213  0.5502  0.5903  0.7090  0.7189  0.7406  AdjR2  
Table A.34: Estimation results of enriching a HAR of daily ranges (volatility) with all non-lagged variables of separate sessions, cumulatively. 



 

   + preAs + As + preEu + Eu + preAm + Am1 + Am2 + postAm1 + postAm2   

  HAR + 1 session + 2 sessions + 3 sessions + 4 sessions + 5 sessions + 6 sessions + 7 sessions + 8 sessions + 9 sessions   

c 0.0000 ** 0.0002 ** 0.0001  0.0001  0.0002 * 0.0000  -0.0003 ** -0.0002  -0.0003 * -0.0002  c 

Rlog,(1)(-1) 0.0489  0.0154  -0.0224  -0.0526  -0.0779  -0.0890 * -0.0835 * -0.0537  -0.0716 * -0.0692  Rlog,(1)(-1) 

Rlog,(5)(-1) 0.4357 *** 0.4279 *** 0.3340 ** 0.2474 ** 0.1266  0.1219  0.1106  0.0628  0.0641  0.0152  Rlog,(5)(-1) H
A

R
 

Rlog,(22)(-1) 0.3885 *** 0.2057 * 0.2513 ** 0.1661  0.2164 * 0.2023 * 0.1907 * 0.0477  0.0474  -0.0366  Rlog,(22)(-1) 

H
A

R
 

size   -3.046E-05  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  size 

count   0.0000 * 0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  count 

rr   10.2267 *** 7.7554 * 8.7800 ** 5.3054  6.7751  7.0405  2.7240  1.4226  0.5757  rr p
re

A
s 

rng   1.0867 *** 0.0557  -0.8254  -1.0622  -1.2623 * -1.1749  -0.8697  -0.6276  -1.0272 ** rng 

p
re

A
s 

size     0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  size 

count     0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  count 

rr     0.6409  -1.0789  -0.8673  -0.9632  -0.4845  -0.8453  -0.5588  0.6959  rr 

A
s 

rng     1.1062 *** 0.8034 ** 0.7591 ** 0.7823 *** 0.7597 *** 0.9195 *** 0.8725 *** 0.7124 *** rng 

A
s 

size       0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  size 

count       0.0000  0.0000  0.0000 * 0.0000 * 0.0000  0.0000  0.0000  count 

rr       21.0380 *** 17.1055 *** 16.1247 *** 16.0165 *** 12.4311 ** 11.3931 ** 13.0675 *** rr p
re

E
u

 

rng       0.6858  -0.0017  0.1124  -0.0400  -0.5635  -0.6898  -0.8704 * rng 

p
re

E
u

 

size         0.0000  0.0001  0.0001  0.0000  0.0000  0.0000  size 

count         0.0000  -0.0001 *** -0.0001 *** -0.0001 *** -0.0001 *** 0.0000 *** count 

rr         1.5001  1.3675  1.0122  -1.9241  -1.4163  -1.5678  rr 

E
u

 

rng         1.2097 *** 1.2493 *** 1.2791 *** 1.5272 *** 1.4925 *** 1.3603 *** rng 

E
u

 

size           0.0000  -0.0001  -0.0001 * -0.0001 * -0.0001 ** size 

count           0.0001 *** 0.0001 *** 0.0001 *** 0.0001 *** 0.0001 *** count 

rr           1.5616  2.2873  2.1128  1.6732  2.0848 * rr p
re

A
m

 

rng           -0.0572  -0.4158  -0.5995  -0.4499  -0.5741  rng 

p
re

A
m

 

size             0.0000  0.0000  0.0000  0.0000  size 

count             0.0001 *** 0.0000 *** 0.0000 ** 0.0000 ** count 

rr             -1.3864  -0.4427  0.2105  0.4741  rr A
m

1 

rng             0.6569 ** 0.2333  0.2367  0.3129  rng 

A
m

1 

size               0.0001 *** 0.0002 *** 0.0001 *** size 

count               0.0000  0.0000  0.0000  count 

rr               2.2327 ** 1.8245 * 1.6612 * rr A
m

2 

rng               0.9364 *** 0.8471 *** 0.8823 *** rng 

A
m

2 

size                 0.0000  0.0000 * size 

count                 0.0000 ** 0.0000  count 

rr                 -9.9770 * -8.2860 * rr 

p
o

st
A

m
1 

rng                 3.3281 *** 2.9421 *** rng 

p
o

st
A

m
1 

size                   0.0000  size 

count                   0.0000 *** count 

rr                   0.0852  rr 

p
o

st
A

m
2 

rng                   0.6358 *** rng 

p
o

st
A

m
2 

 AdjR2 0.3346  0.3907  0.4352  0.4672  0.5350  0.5522  0.5738  0.7152  0.7339  0.7655  AdjR2  
Table A.35: Estimation results of enriching a HAR of daily ranges (variance) with all non-lagged variables of separate sessions, cumulatively. 



 

   + preAs + As + preEu + Eu + preAm + Am1 + Am2 + postAm1 + postAm2   

  HAR + 1 session + 2 sessions + 3 sessions + 4 sessions + 5 sessions + 6 sessions + 7 sessions + 8 sessions + 9 sessions   

c 0.0004 ** 0.0016 ** 0.0007  0.0004  0.0013  0.0004  -0.0006  0.0009 *** 0.0010 *** 0.0012 *** c 

RR(1)(-1) 0.4586 *** 0.3660 *** 0.2741 *** 0.2141 *** 0.0991 *** 0.0675 ** 0.0040  -0.0108  -0.0116 * -0.0168 *** RR(1)(-1) 

RR(5)(-1) 0.3304 *** 0.2951 *** 0.1684 *** 0.1242 ** 0.0795 * 0.0666  0.0624 ** -0.0051  -0.0093  -0.0160  RR(5)(-1) H
A

R
 

RR(22)(-1) 0.1605 *** 0.1318 *** 0.1699 *** 0.1676 *** 0.1444 *** 0.1173 *** 0.0951 *** -0.0055  -0.0156 * -0.0189 ** RR(22)(-1) 

H
A

R
 

size   4.569E-05  0.0006 ** 0.0004 * 0.0003  0.0002  0.0000  0.0000  0.0000  0.0000  size 

count   -0.0002 * -0.0002  -0.0002  -0.0002  -0.0002  -0.0001  0.0000  0.0000  0.0000  count 

rr   0.5574 *** 0.1655  0.3185 ** 0.3654 *** 0.4743 *** 0.5128 *** 0.3015 *** 0.2589 *** 0.2287 *** rr p
re

A
s 

rng   0.1454 *** 0.1316 *** 0.0248  -0.0001  -0.0451  -0.0664 * -0.0233 ** -0.0057  -0.0038  rng 

p
re

A
s 

size     -0.0005 * -0.0004  -0.0005  -0.0004  0.0001  -0.0001  -0.0001  -0.0001  size 

count     0.0002  0.0003 * 0.0001  0.0002  0.0001  0.0001 ** 0.0000  0.0000  count 

rr     0.7003 *** 0.5591 *** 0.4729 *** 0.4332 *** 0.4868 *** 0.3873 *** 0.3886 *** 0.4002 *** rr 

A
s 

rng     -0.0264  -0.0719 ** -0.0446 * -0.0308  -0.0329  0.0063  0.0040  0.0031  rng 

A
s 

size       -0.0001  0.0004  0.0006 * 0.0003  0.0001  0.0001  0.0001 * size 

count       -0.0001  -0.0003 * -0.0003 ** -0.0003 ** -0.0001  0.0000  0.0000  count 

rr       0.8934 *** 0.5975 *** 0.4594 *** 0.4039 *** 0.2053 *** 0.1764 *** 0.1644 *** rr p
re

E
u

 

rng       0.0600  0.0361  0.0531 * 0.0608 * 0.0133  0.0075  0.0034  rng 

p
re

E
u

 

size         0.0001  0.0001  0.0004  -0.0001  -0.0002  -0.0002  size 

count         0.0001  0.0000  0.0000  0.0001  0.0001  0.0001  count 

rr         0.8521 *** 0.6966 *** 0.6217 *** 0.3654 *** 0.3757 *** 0.3786 *** rr 

E
u

 

rng         -0.0524 *** -0.0410 *** -0.0304 ** 0.0058  0.0059  0.0049  rng 

E
u

 

size           0.0000  0.0003  0.0000  0.0000  0.0000  size 

count           0.0001  0.0002 * -0.0001  -0.0001  -0.0001  count 

rr           0.6816 *** 0.3523 *** 0.3312 *** 0.3169 *** 0.3087 *** rr p
re

A
m

 

rng           -0.0328  -0.0143  -0.0056  -0.0029  -0.0016  rng 

p
re

A
m

 

size             -0.0005  0.0001  0.0000  -0.0001  size 

count             0.0000  0.0001 ** 0.0001  0.0001  count 

rr             0.5524 *** 0.4197 *** 0.4455 *** 0.4502 *** rr A
m

1 

rng             0.0136  -0.0099  -0.0060  -0.0050  rng 

A
m

1 

size               0.0002  0.0002  0.0001  size 

count               -0.0003 *** -0.0003 *** -0.0002 *** count 

rr               0.7308 *** 0.6696 *** 0.6547 *** rr A
m

2 

rng               0.0063  0.0005  0.0016  rng 

A
m

2 

size                 0.0001  0.0000  size 

count                 0.0000  0.0000  count 

rr                 0.1258 *** 0.1392 *** rr 

p
o

st
A

m
1 

rng                 0.0417 *** 0.0102  rng 

p
o

st
A

m
1 

size                   0.0000  size 

count                   0.0000  count 

rr                   0.2074 *** rr 

p
o

st
A

m
2 

rng                   0.0025  rng 

p
o

st
A

m
2 

 AdjR2 0.7470  0.7720  0.8130  0.8299  0.8699  0.8899  0.9305  0.9928  0.9944  0.9952  AdjR2  
Table A.36: Estimation results of enriching a HAR of realized ranges (volatility) with all non-lagged variables of separate sessions, cumulatively. 



 

   + preAs + As + preEu + Eu + preAm + Am1 + Am2 + postAm1 + postAm2   

  HAR + 1 session + 2 sessions + 3 sessions + 4 sessions + 5 sessions + 6 sessions + 7 sessions + 8 sessions + 9 sessions   

c 0.0000 ** 0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  c 

RR(1)(-1) 0.2755 *** 0.4038 *** 0.3145 *** 0.2166 *** 0.0912 ** 0.0638 ** 0.0205  0.0102  0.0080  0.0004  RR(1)(-1) 

RR(5)(-1) 0.1708 *** 0.2615 *** 0.0765  0.0195  0.0283  0.0205  0.0456  0.0021  0.0004  0.0010  RR(5)(-1) H
A

R
 

RR(22)(-1) 0.4976 *** 0.1320 ** 0.2260 *** 0.2145 *** 0.2048 *** 0.1828 *** 0.1407 *** 0.0173  0.0034  -0.0040 * RR(22)(-1) 

H
A

R
 

size   -3.258E-08  0.0000 * 0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  size 

count   0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000 ** count 

rr   3.2941 *** 0.8838  1.1930 ** 1.2554 *** 1.7392 *** 1.9460 *** 1.3879 *** 1.2123 *** 1.1097 *** rr p
re

A
s 

rng   0.0866 ** 0.1466 *** 0.0695  0.0414  -0.0487  -0.0612  -0.0330 ** -0.0080  -0.0048  rng 

p
re

A
s 

size     0.0000 * 0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  size 

count     0.0000  0.0000 ** 0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  count 

rr     1.7171 *** 1.2668 *** 1.0578 *** 1.0212 *** 1.1396 *** 0.9442 *** 0.9694 *** 0.9921 *** rr 

A
s 

rng     -0.0497  -0.0906 ** -0.0417  -0.0227  -0.0335  0.0152 * 0.0035  0.0012  rng 

A
s 

size       0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  size 

count       0.0000  0.0000 * 0.0000 ** 0.0000 ** 0.0000  0.0000  0.0000  count 

rr       5.8133 *** 3.1851 *** 2.4444 *** 2.1868 *** 1.2614 *** 1.0782 *** 0.9978 *** rr p
re

E
u

 

rng       -0.0129  0.0160  0.0908  0.0859  0.0163  0.0112  0.0063  rng 

p
re

E
u

 

size         0.0000  0.0000  0.0000 * 0.0000  0.0000  0.0000  size 

count         0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  count 

rr         2.0119 *** 1.8159 *** 1.5508 *** 0.9341 *** 0.9883 *** 0.9903 *** rr 

E
u

 

rng         -0.0815 *** -0.0565 ** -0.0434 ** 0.0052  0.0005  -0.0006  rng 

E
u

 

size           0.0000  0.0000  0.0000  0.0000  0.0000  size 

count           0.0000 ** 0.0000 ** 0.0000  0.0000  0.0000  count 

rr           1.5430 *** 1.1522 *** 1.0516 *** 1.0261 *** 1.0212 *** rr p
re

A
m

 

rng           -0.0690 * -0.0691  -0.0219 ** -0.0080  -0.0088  rng 

p
re

A
m

 

size             0.0000 * 0.0000 *** 0.0000  0.0000  size 

count             0.0000  0.0000 *** 0.0000  0.0000  count 

rr             1.0135 *** 0.9510 *** 0.9994 *** 1.0039 *** rr A
m

1 

rng             0.0427  -0.0106 * -0.0034  -0.0016  rng 

A
m

1 

size               0.0000  0.0000  0.0000  size 

count               0.0000 ** 0.0000  0.0000  count 

rr               1.1284 *** 1.0260 *** 1.0101 *** rr A
m

2 

rng               0.0098 * -0.0034  -0.0013  rng 

A
m

2 

size                 0.0000  0.0000  size 

count                 0.0000  0.0000  count 

rr                 0.8261 *** 0.9564 *** rr 

p
o

st
A

m
1 

rng                 0.0715 *** 0.0044  rng 

p
o

st
A

m
1 

size                   0.0000  size 

count                   0.0000  count 

rr                   1.0609 *** rr 

p
o

st
A

m
2 

rng                   0.0033 *** rng 

p
o

st
A

m
2 

 AdjR2 0.7234  0.7491  0.7994  0.8275  0.8773  0.8946  0.9247  0.9963  0.9988  0.9996  AdjR2  
Table A.37: Estimation results of enriching a HAR of realized ranges (variance) with all non-lagged variables of separate sessions, cumulatively. 



 

 coefficient std. error z-value p-value Signif 

     c  0.000237 0.000109 2.172 0.0299 ** 

      ( )2
ˆ Park

Dσ  0.125382 0.019581 6.403 0.0000 *** 

     
tλ  0.855489 0.024893 34.37 0.0000 *** 

      

      

 Log-lik 3358.603 AIC -6711.21  

 SchC -6696.54 HQC -6705.63   

 coefficient std. error z-value p-value Signif 

     c  0.000239 0.000142 1.679 0.0931 * 
      ( )2

ˆ Park
Dσ  0.120257 0.024412 4.926 0.0000 *** 

     
tλ  0.860145 0.032996 26.07 0.0000 *** 

     θ  2.91085 0.081051 35.91 1.86E-28 *** 

      

 Log-lik 3972.282 AIC -7936.56  

 SchC -7917.02 HQC -7929.13   
Table A.38: Estimation results of a CARR(1,1) model applied to daily ranges with Exponentially (left) and Weibull (right) distributed error term 

 
 

 coefficient std. error z-value p-value Signif 

     c  0.000318 0.000095 3.342 0.0008 *** 

      
DRR  0.432174 0.048672 8.879 0.0000 *** 

     
tλ  0.526041 0.056391 9.328 0.0000 *** 

      

      

 Log-lik 3827.76 AIC -7649.52  

 SchC -7634.86 HQC -7643.94   

 coefficient std. error z-value p-value Signif 

c  0.000400 0.000187 2.138 0.0325 ** 

DRR  0.479382 0.079693 6.015 0.0000 *** 

tλ  0.461144 0.098789 4.668 0.0000 *** 

θ  5.16716 0.248847 20.76 9.08E-96 *** 

      

 Log-lik 5021.462 AIC -10034.9  

 SchC -10015.3 HQC -10027.5   
Table A.39: Estimation results of a CARR(1,1) model applied to square root of realized ranges with Exponentially (left) and Weibull (right) distributed error term. 
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Figure A.40/A.41: In-sample comparison of E-CARR(1,1) and W-CARR(1,1) fitted values from Table A.38 (left) and Table A.39 (right). 
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Figure A.42/A.43: In-sample comparison of W-CARR(1,1) and HAR applied to daily ranges and square roots of realized ranges. 
 
 
 
 

 coefficient std. error t-ratio p-value  

const 0.0229479 0.00085053 26.9807 <0.00001 *** 

AllLow 0.967126 0.00254251 380.3821 <0.00001 *** 

 
Log-Lik 3842.0  AdjR2 0.99 

Table A.44: Estimating the co-integrating vector or daily highs and lows. Dependent variable: AllHigh 
 
 



 
 
 
 
 

∆(h)  ∆(l)   ∆(h)  ∆(l)   ∆(h)  ∆(l) 
A.45 

coeff sign  coeff sign   
A.46 

coeff sign  coeff sign   
A.47 

coeff sign  coeff sign 

c 0.0063 ***  0.0013    c 0.0068 *  0.0021    c 0.0042 ***  -0.0005  

∆(h(-1)) -0.0273   0.5955 ***   ∆(h(-1)) 0.0414   0.6070 ***   ∆(h(-1)) -0.7441 ***  -0.0973  

∆(h(-2)) -0.1253 *  0.3704 ***   ∆(h(-2)) -0.0655   0.3811 ***   ∆(h(-2)) -0.5372 ***  -0.0283  

∆(h(-3)) -0.0100   0.3332 ***   ∆(h(-3)) 0.0377   0.3417 ***   ∆(h(-3)) -0.3606 ***  -0.0661  

∆(h(-4)) -0.0061   0.2474 ***   ∆(h(-4)) 0.0277   0.2464 ***   ∆(h(-4)) -0.2617 ***  -0.0591  

∆(h(-5)) -0.0614   0.1550 **   ∆(h(-5)) -0.0399   0.1576 **   ∆(h(-5)) -0.2472 ***  -0.0121  

∆(h(-6)) -0.0375   0.0830 *   ∆(h(-6)) -0.0281   0.0795    ∆(h(-6)) -0.1103 ***  0.0259  

∆(l(-1)) 0.4229 ***  -0.2431 ***   ∆(l(-1)) 0.3470 ***  -0.2526 ***   ∆(l(-1)) -0.1451 **  -0.7871 *** 

∆(l(-2)) -0.0748   -0.4959 ***   ∆(l(-2)) -0.1359 *  -0.5077 ***   ∆(l(-2)) -0.2639 ***  -0.6608 *** 

∆(l(-3)) 0.0588   -0.2935 ***   ∆(l(-3)) 0.0094   -0.3011 ***   ∆(l(-3)) -0.1234 *  -0.5160 *** 

∆(l(-4)) 0.0434   -0.2068 ***   ∆(l(-4)) 0.0092   -0.2050 ***   ∆(l(-4)) -0.0941   -0.3833 *** 

∆(l(-5)) 0.0317   -0.1946 ***   ∆(l(-5)) 0.0095   -0.1991 ***   ∆(l(-5)) -0.0745   -0.2833 *** 

∆(l(-6)) 0.0395   -0.0988 *   ∆(l(-6)) 0.0317   -0.0919 *   ∆(l(-6)) 0.0406   -0.0920 ** 

EC(1) -0.2668 ***  -0.0577    EC(1) -0.3289 ***  -0.0739    EC(1) -0.1892 ***  0.0200  

        Tue 0.0002   -0.0007    ∆(o) 0.7909 ***  0.6558 *** 

        Wed 0.0009   0.0006    ∆(o(-1)) 1.1005 ***  0.8642 *** 

        Thu 0.0009   -0.0001    ∆(o(-2)) 0.6372 ***  0.6485 *** 

        Fri 0.0002   -0.0005    ∆(o(-3)) 0.4399 ***  0.5545 *** 

        Vol(-1) 0.0000   0.0000    ∆(o(-4)) 0.3518 ***  0.3754 *** 

        Count(-1) 0.0000   0.0000    ∆(o(-5)) 0.2085 ***  0.1681 *** 

        Size(-1) 0.0000   -0.0001    ∆(c(-1)) -0.2976 *  -0.0914  

                ∆(c(-2)) -0.2572 **  -0.0790  

                ret(-1) 0.4838 **  0.4043 ** 

                      

AdjR2 0.2116   0.1465    AdjR2 0.2104   0.1451    AdjR2 0.5473   0.4947  

LB(20) 5.6029   12.3733    LB(20) 5.4636   12.0478    LB(20) 11.9264   19.6827  

p-value 0.9990   0.9030    p-value 0.9990   0.9140    p-value 0.9190   0.4780  
Tables A.45, A.46, A.47: Estimates of base VECM model, investigating the effect of additional variables. 
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Table A.48: In-sample daily ranges predictions of both VECMs, namely models A.45 (red) and A.47 (blue), whole dataset. 
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