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1 Introduction

Surface Plasmon is a phenomenon originating frorkeaove oscillations of
electrons on the surface of metals and their intema with light. Today, its most
important application is in the field of biosensomshich provide a tool for study of
molecular interactions and rapid and sensitive aliete of chemical biological
species.

Sensors utilizing surface plasmons on planar nuké&héctric interfaces (Surface
Plasmon Resonance sensors) have been implementadions configurations [1-
3] and employed in numerous application areas dhetubiomolecular interaction
analysis [4], medical diagnostics [5], environménteonitoring [6, 7] and food
safety [8]. This technology has been under devedyrfor the last two decades.

There are two types of surface plasmons: surfagenpins propagating on planar
metal-dielectric interfaces and surface plasmonaliped on metallic nanoparticles
and structures of sub-micrometer dimensions (Ieedlsurface plasmon, LSP)[9].

Surface plasmons localized on metallic nanopaditiave already found various
technological [10], [11], and sensing applicatiansluding nanoparticle SERS
spectroscopy [12], detection labels [13], colorineetsensors [14], ratiometric
sensors [15] as well as applications in medicajmstics [16-18].

An important approach to biosensing utilizes the that the properties of surface
plasmons are very sensitive to changes in refragtidex in the proximity of the
metal-dielectric interface. This is the effect eif@dd in Surface Plasmon Resonance
chemical sensors and biosensors [19]. A layer oéptrs on the surface of the
sensor binds selectively the detected moleculelutisn. The captured molecules
change the refractive index profile in the vicindf the metal-dielectric interface.
The resulting change in properties of the surfdasrpon is then measured optically
and provides direct information about the bindiB@][

Biosensor applications of nanoparticles and nanottres utilising this property of
surface plasmons have been demonstrated on spheaeles [14], triangular
particles [18, 21], rod-like particles [22-24], mehells [25] and nanorings [26].
Their performance has been theoretically analynd@7] and [28]. More complex
nanostructures have been proposed: nanohole af28ys30] and nanoparticle
arrays [31, 32]. These new approaches to biosensawg several interesting
properties not found in biosensors with surfacesmlans on planar metallic inter-



faces, in particular larger parameter space fdinmopation of the sensing struc-
tures.

This work focuses on Surface Plasmon Resonanceorsensilizing localized
surface plasmons on spherical metallic nanopasticléhis work systematically
explores the performance of these sensors thealtgtio order to gain understand-
ing of the major factors involved and gives expemtal verification of the results
of theoretical analysis.

1.1 Localized Surface Plasmon

The interaction of light with a metallic nanopaleican be described by a simpli-
fied model (Figure 1). The metallic nanoparticlensists of a negatively charged
cloud of free conduction electrons and a positiveharged background (the lat-

tice)[31]. The electric field of the incident lighkerts a force on the electron cloud,
which is displaced, but is being pulled back by é¢hectrostatic force of the posi-

tively charged background. The electron cloud tbhekaves as a damped linear
harmonic oscillator and as such has a resonanidrery. From this we can expect a
peak (resonance) to appear in the spectra of diftaptical quantities [31].
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Figure 1. The principle of Localized Surface Plasni®esonance: conduction
electrons and the lattice of a metallic nanosphsran excited harmonic oscillator
(from [31]).

e cloud

The optical response of an illuminated nanoparticén be divided into absorption,

scattering and extinction. Absorption is due to @hlosses in the metal. Scattered
light is emitted by the oscillations of the electrdoud. Extinction is the summed

effect of these two mechanisms on the illuminabegm of light — it describes loss

in its intensity. Extinction is straightforwardlyeasured by measuring transmission;
therefore extinction is the property of interestthis work. Scattering can also be
measured, for example, in dark-field microscopy][33

Extinction, scattering and absorption can be chiaraed by their effective cross-
sections. The absorption cross-section is defiredha ratio of the power (W)

1 “Nano” today usually implies quantum effects. Exkaugh this word is used here, optical
properties of metallic nanoparticles larger thamfrOcan be described by a classical theory.



absorbed by the particle and the intensity &) of the incident light. Similar
definitions apply to extinction and scattering &@ections. The unit of cross-
section ism?.

In an approximation of particles small comparedhwthie wavelength, it can be
shown that the extinction cross-secti@g,; for a particle of permittivitye; in a
dielectric medium of permittivity,, is [16]

Coa() ~m{ 200 @
At wavelengths for whicls, is close to—2¢,,, the denominator will be very small
and extinction will have a maximum. This is the kpgaedicted by the damped
oscillator model. When the refractive index (petiwity) of the dielectric medium
changes, the wavelength of maximum extinction ckangs well. This can be
observed in Figure 4, where the extinction spectfoima 30 nm gold nanoparticle
on media of different refractive indices was pldtte

Extinction (a.u.)

450 500 550 600 650 700
Wavelength (nm)

Figure 2: Dependence of extinction spectrum of ard0gold spherical nanoparti-
cle on the refractive index of the medium.

1.2 Biosensorsbased on L SPson metallic nanoparticles

The refractive index (RI) change, which inducesghit in maximum of extinction
and scattering, can occur either in the voluméiefrhedium or only in the vicinity
of the surface of the particle. This effect carekploited for sensing and biosensing
[18].



In a sensor based on spectroscopy of LSPs on meataloparticles, the surfaces of
the particles are covered with immobilized bioradtign elements. Target mole-
cules are brought into contact with the nanopasiadnd specifically bind to the
biorecognition elements. This changes the refradtidex profile in the vicinity of
the surface. Consequently, the extinction (scag@nmaximum shifts. This shift can
be spectroscopically measured. From the magnitddieo shift the amount of
molecules that have bound can be determined [18].

Molecular Local change Shift of
binding > in RI —»|  extinction 3| Sensor output
maximum

Figure 3: Basic scheme of biosensing with localizedace plasmons.



2 Aim of work

The aim of this work is to explore the potentiallo€alized surface plasmons on
metallic nanoparticles as a sensing platform. @fticexcited localized surface
plasmons are studied both theoretically and expariaily. A set of appropriate
modeling tools is selected and described. Bothyainal and numerical simulations
are pursued to describe, both qualitatively andntjtaively, the phenomenon of
optical excitation of surface plasmons on metali@moparticles. Optimization of
the nanoparticles as a sensing platform with rasjpethe main design parameters
is also performed. Experimental setup for spectpiccharacterization of local-
ized surface plasmons on metallic nanoparticlessiablished. Selected systems of
nanoparticles are investigated in terms of theilitglio serve as a high-accuracy
refractometric sensors. Ability of the nanopartiblsed sensing platform to detect
molecular binding events is also demonstrated.



3 Theory

3.1 Electromagnetic M odeling Tools

This section describes the four techniques usetidaretical section of this work.
These are:

1. Electrostatic approximation: a simple analyticaltimoel, limited to spherical
particles small compared with the wavelength,

2. Mie theory: an analytical method, restricted thescal particles,

3. Discrete Dipole Approximation: a numerical methdidyited to isolated
particles and

4. Finite Differences in Time Domain: a numerical noathallowing arbitrary
geometry, but computationally expensive.

3.1.1 Electrostatic approximation

The simplest quantitative model of LSP on a nanoparis the electrostatic

approximation [16]. Here we suppose that the glartis much smaller than the
wavelength of the incident light, so that the fieldthe incident wave is approxi-
mately constant in the vicinity of the patrticle. €lfproblem of interaction of a

nanosphere with light is then reduced to the mucipler problem of a sphere in a
homogeneous electric field. The electrostatic thexan also be extended to parti-
cles with an overlayer [16].

In this analysis, the electric field of the LSP ahd extinction and scattering cross-
sections will be calculated.

Let the static, uniform electric field bE, = Exe,. The charge induced on the
surface of the sphere of permittivity and radiusa in medium of permittivitye,
will disturb this field. The electric fields insidend outside of the sphere will be
denotedE; andE, and their potential®, (r,8) andd,(r,#) (in spherical coordi-
natesr,,p). These potentials satisfy La Place’s equatiotheregions inside and
outside the sphere. On the surface of the sphleeepotential and its derivative
weighted by permittivity is required be continuous:
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We also require thatm ®, =-Eyz. The first (dipolar) solutions are
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@, is a sum of the incident field and the field ofideal dipole. The potential of an
ideal dipole of dipole momemt is

p [t _ pcosd
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(5)

The field generated by the sphere is that of aalidgole with a dipole moment of

- 3 8 " &m
p = 4ne,a o2 Eo. (6)
The sphere behaves as an dipole with polarizabititywhich is defined by
P =éemaEq:
— 3 8 7 ¢ém
o =4ra —81 T2e, (7)
From the radiating dipole’s polarizability, its @xdtion and scattering cross-sections

can be determined. This is described in [16], cl&apFor an ideal dipole with
polarizability o, the cross-sections for extinction and scatteairey

Cext = kIMm{a} , (8)
_Kk*
Csca = 6r |ox |2 (9)

where k is the wave-vector size arlch{} denotes imaginary part of a complex
number. Finally, the equations for extinction andtgering cross-sections for sphere
small compared with the wavelength are

_ 3 & " ¢&m
C., = drka |m{—81 . ng}, (10)
C. =8 146/ 7¢m | (11)
sca =3 o+ 2%,

As these equations only apply to small particles,which scattering is negligible
compared with absorption, the equation @y, is in fact the equation faZ,y,..

A plot of extinction spectra for particles of difémt sizes, computed from the
electrostatic approximation (thick line) is in Frgud. Extinction spectra from the
Mie theory (which provides exact solution of thensaproblem) are plotted for



comparison. In this figure, the spectra are nomedlito remove the dependence on
a® described by Equation (10). We can see that thstipo and shape of the
spectrum in electrostatic approximation doesn’tngfea with particle size. The
position of the maximum is accurate to within 10 fon particles of size up to 30
nm and the shape is well described for particlewgbout 80 nm.

From Equations (10) and (11) it can be deducedth®atalues of the cross-sections
are high when the denominator of the fraction isl§me. if &; (metal permittivity)
approachesg,, (permittivity of the medium). The minimum value thie denomina-
tor (and maximum value of extinction) depends oa dmelectric function of the
metal of the particle. For gold, silver and copplee, resulting peak is easily observ-
able in the spectrum, while for most other methés peak is far less pronounced.
[16].
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Figure 4: Comparison of extinction cross-sectioecsf@, normalized by their
maximum value, for spherical particles as computad the electrostatic
approximation (thick line) and by the Mie theorkift lines) from 10 to 120 nm
diameter in 10 nm increments (without normalizatitme spectra would grow
with cube of the diameter).

3.1.2 Mietheory

The Mie theory [16] is the exact and complete sofuto the problem of scattering
and absorption of light by a sphere of arbitrarynptex refractive index, with no

approximations. It was first published by GustaveNt 1908 [34]. The theory is
based on expressing the incident plane wave, thitesed and interior electromag-
netic (EM) fields as a sum of vector spherical hamios. The expansion coeffi-
cients are then found using the boundary condition the sphere’s surface
(continuity of tangential components). Because nbe complete EM field is



known, any quantity of interest, e.g. scatteringertinction cross-section, can be
calculated.

The Mie theory can be extended to particles withesigal overlayer. The derivation
is nearly identical, only more complicated [16].

I mplementation

An implementation of the Mie theory has been wnitie the Python programming
language, see Appendix for the program listing. é@nputations involving coated
particles, a Matlab implementation by C. Matzles][Bas been used.

Derivation

A detailed derivation of the Mie theory is given[ir6]. In the following section, its
main points will be described.

Vector spherical harmonics

The vector spherical harmonidd (r) and N(r), into which the fields will be
expanded, are the solutions of Maxwell’s equationa homogeneous domain and
have the form of

xM
k 1
wherek is the wave-vector size and is the generating function. The generating

function will be selected to satisfy the scalar eaquationd%y +k?y =0. With
this choiceM andN satisfy the vector wave equation and are alsorgeree-free.

M =0Ox(ry) and N = (12)

We then solve the scalar wave equation by separatiovariables in spherical
coordinates. Two sets of generating functions, erehodd, result:

Yemn :Cosm(pPrr]n (co® I, kr
Yomn :sinm(pPrr]n (cod y, kr

where z, is any of the four spherical Bessel functions,y,,ht, h(?),

h (p) = jn(p) +iyn(p), P (p) = jn(p) ~iya(p) and R is the associated Legen-
dre polynomial of degrea and ordem. Now we have a complete and orthogonal
set of basis functions:
MG =0x(ry&h), MGh=0x(rpbh
ODxM&n o = BXMEhy (14)
k ’ omn k

wherei is from 1 to 4 and denotes whether the correspgnfilinction is based on
the spherical Bessel function, in the followingerd;,,,y,,h{" or h(2).

(13)

NG =

Incident field

The sphere is illuminated by a plane wave of thienfo
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E; = Ee*co¥g,. (15)

The expansion of the plane wave into vector sphkharmonics can be found in
[16], Chapter 4. The result is

_ n2n+1 M& )
E = Eoz_‘i n(n+1) —iN§)). (16)

Internal and Scattered fields

The expansion of the scattered fields has theviatig form:

Es =Y E,(ia,N§) -bM )

; (17)
- K NE (NG (3)
=—>»E Noin +a,M
i E n (lbn oln a-n eln
wherekE, is defined to simplify the equations as
_in 2n+1
En =1"Eo n(n+1)’ (18)

The vector harmonics with the superscript (3) aasedl on the spherical Hankel
functions h{Y (p) = j,(p) +iy,(p). They were selected because they represent an
outgoing spherical wave. The fact that vector hariecgwith m#1 are not present

in the expansion of the incident field requirest tie@se harmonics are not t present
in the scattered and internal fields’ expansiotiseei

The internal fields exhibit the following form

E; =Y E (NG, —idM &)
n=l . (19)
Hl— ZE (NS +icm )y

The vector harmonics (1) based on theBessel functions were selected because
Y, diverges near 0.

The next step is to determine the expansion caoefiisa,, b, G,, d,

Boundary condition and expansion coefficients

The boundary condition that is used to obtain tkpaasion coefficients is the
continuity of tangential field components on thaese’s surface

(Ei+E3_E1)xér:(Hi+Hs_Hl)xér:O- (20)

When substituting the expansions (16), (17) and {i® the component form of
condition (20) and using the orthogonality of thector spherical harmonics —
equating the left and right hand sides of (20) tegrterm — we obtain four linear

11



equations for everyn. These can be solved yielding equations dgrh,, c,, d,.
Since for determining the scattering, absorptiod axtinction cross-sections only
the scattered field is needed, oalyandb, are shown here:

_ My (MY (X) —yn(X)y n(Mx)
My (MX)EH (X) = Ea(X)n(MX)

b, =¥ (MX)yn (X) = My (X n(MX)
Y (MY, (X) = ME (X (MX)

with the following definitions:y,, (p) = pjn(p) andé&,(p) = phiP (p) (the Riccati-
Bessel functions), m is the relative refractive index of the particle,
M= Naricie/ Nmegiun @Nd X is the size factox = kr wherer is the radius of the
particle.

(21)

Cross-sections

The process of obtaining the extinction and sdatjecross-sections from the
expansion coefficients is in detail described i6][Lhapter 4 and yields

2

Cou =25 (2n+ DRefa, + b}, (22
n=1

Crea= 253 (2n+ 1) P+ 1 - (23
n=1

Limits of usability

The cross-sections are expressed as an infinite Bumumerical evaluation, this
sum has to be truncated. More terms are needddrfygr particles (in comparison
with the wavelength). This sets a limit on the #tsize for which the Mie theory
is usable without numerical problems. In the visilavelength range, dielectric
particles of several microns in diameter can bemded, in the case of metallic
particles roughly one wave-length is the limit [16]

Small particlelimit

If only terms withn =1 are taken, then the resulting formulae for cresgigns are
identical to those obtained from the electrostagiproximation. This shows that the
electrostatic approximation is basically a smalttigke limit of the Mie theory.

3.1.3 Discrete Dipole Approximation (DDA)

The Discrete Dipole Approximation is a numericalthoel for analysis of light
scattering on particles of arbitrary shape [36]wtirks by first discretizing the
particle into a cubic grid of polarizable dipolefose polarizablities are computed
from the material’'s dielectric function. Every dips polarization is given by the
sum of the incident plane wave field and the dig&kls of all other dipoles, which

12



depend on their polarizations. Then, the self-giast polarizations for the dipoles
are determined.
I mplementation
In this work, the DDSCAT 6.1 implementation by Draiand Flatau [37] was used.

Derivation

The polarization induced in theh element is (omitting the frequency dependence
eia)t)
P =aEpc(r), (24)

where the local electric field,,. = ¢ 'R is the sum of the incident field and a
contribution from all other dipoles in the particle

"B = Einc (11 ) + Edipote(r; ) =E oexpk 0 )-D_A; R . (25)
j#i
Eo, andk are amplitude and wave-vector of the incident wawvel the interaction
matrix is(j #i)
1_|kr” 2
R 3¢ Py (29)

ij

exp(kr; )
Aj B :T”{kzﬁj x(f B )+
I

Substituting (26) into (25) and rearranging terngsoltain an equation in a form
A'[P=E, (27)

whereA' is a matrix built from the previous matri. ForN dipoles,P andE are
3N-dimensional vectors and’ is a3N x 3N matrix. By solving theseN8 complex
linear equations the polarization vectlis obtained and from it the extinction and
scattering cross-section can be directly calculated

N
Coxt() =X S IM{E}pe (P} (28)

ol j=1
2

4 N
Coca(l) = —lEk > [dAl> [P, ~AM P exp(-ikAt, ) - (29)
j=1

0

Limitations

Although DDA doesn't require large computing resms for small particles (in
visible, this is < 100 nm for metallic particlesdax 10um for dielectric particles),
these requirements grow with the square of theigarvolume because of the
3N x 3N matrices. This severely limits the methods’ usgbflor plasmonic nanos-
tructures other than isolated particles. For systesns, the FDTD method is more
efficient, since its computational complexity groasy linearly with the simulated
volume.

13



3.1.4 FiniteDifferencesin Time Domain (FDTD)

The Finite Differences in Time Domain method (FDTDredtly solves Maxwell's
equations by discretizing the electric and magrfezids and the material constants
on a finite rectangular grid and advancing thedBein time by directly using the
Maxwell’s curl equations [38]. The spatial derivatsvare replaced by differences,
and, unlike other methods, which suppose harmaeidsf with a given frequency
(work in the frequency domain), FDTD follows the &nevolution of the fields;
hence the name. FDTD could be thought of as a “nigalexxperiment”.

The method was first introduced by Yee in 1966 [B8f, became widely used only
in the last two decades with the availability ofyaoful enough computers.
I mplementation

In this work, the commercial package Lumerical FD$8lutions from Lumerical,
Inc., Canada [40], was used, running on a clustesisting of 12 nodes, 2.4 GHz
CPU and 2 GB RAM each.

Derivation

FDTD solves the Maxwell’s curl equations in the form

oH 1 P (30)
Zl=-=0xE-Z-H
o u H

where ¢ is the electric conductivityy~ magnetic conductivity (non-zero only in
special casesy, permittivity andu permeability of the medium.

Re-writing these in cartesian coordinates, we obggjuations for the time deriva-
tives of all field components, where derivativedl we replaced by finite differ-
ences. Let’s takél, as an example. The equation féyg is

oH, _1{9E, OoE, |
ot uloz ay "HX)'

(31)

The discretization scheme introduced by Yee [39] bansee in Figure 5. The
positions at which individual components of thédgeare placed in one grid cell are
chosen so that central differences can be useeviuating the spatial derivatives
as in the eq. (31) foH, and the other five equations. For the same red&sdie)ds
are stored for time t while the H fields are stofedtime t +1/2At. Using this
scheme, we can substitute (31) with
ED(i,j k+1/2)-E} G ,j k-1/2)
HE2G, 0 K)-HEY20i k). 1 | ergisvaeres iz
At Cu(i,jk) Ay '
—o (i, j K)HY () k)

(32)
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whereH}}, which is not being stored in the Yee grid, is poed as
_ H)r(1+1/2 + H)r(1—1/2

2
The notation H}(i,j,k) means the value ofH, in timestepn at point

x=1[AX, y= j[Ay, z= kIA z By manipulating the expression (32), we arrivéhat
explicit update expression fot, :

Hy

(33)

_ol(iik)at
n+l/2(; — 2u(i.j k) n-1/2 6
HX (l,],k)— 1+O‘D(i,j,k)At HX (i’J»k)
2u(ijk) (34)
At Ey(i,j k+1/2)Ey (i.j k-1/2)
u(ijk) Az
1+ a"(i,j k)t [E_ E7 (i,j+1/2k }-E7 (i,j-1/2k)
2u(i,jk) Ay

— N
I

F
ML, K
H, +H
A, HA T,
Eu/ —¥
p - P,
X y

Figure 5: Yee cell, the discretization scheme fOTB. It is chosen to facilitate
the evaluation of the discretized Maxwell's curuatjons by central differences.
From [38].

The frequency dependence of required quantities m&amobtained by discrete
Fourier transform from their time dependence assthmulation progresses in time.
The cross-sections for absorption and scatterimgbeacomputed numerically by
integrating the Poyinting vector over a surfaca@unding the particle. Similarly,
other quantities can be computed because complieteniation about the EM field
is available.

Since the area of space which has been discratifedte, there arises the problem
of updating the field values on the edge of thd.gBioundary conditions are needed
that would simulate either a closed (e.g. a perdeciductor) or an open boundary

15



(this corresponds to scattering problems). A bound=ondition transparent to
outgoing waves, not giving any non-physical reflmts was introduced as the
Perfectly Matched Layer in 1994 by Berenger [414l aiowed the expansion of
FDTD to scattering problems.

Advantages

The main advantage of FDTD over frequency domaithous is that from a single
simulation with a broadband pulse it is possibleyéd the frequency response for
the whole spectrum by Fourier transform. The systessponse to a pulse can be
also obtained (in frequency domain methods, it Wda¢ necessary to synthesize it
by inverse Fourier transform from a set of harmalutions). The FDTD method
also allows the use of periodic boundary condifieseful for simulating arrays of
particles or photonic crystals).

Another advantage is that the computational tinevgronly linearly with volume
of the simulated area, while in some other methodisiding DDA this growth is
quadratic.

Disadvantages

The FDTD method requires large amounts of memony processing power,
especially for 3D simulations. For simulating agénmetallic nanoparticle of 200
nm size, a single workstation with 2 GB of RAM idfecient; for larger problems,
PC clusters are often used.

3.2 Sensitivity of sensors based on L SPs on nanoparticles

In this section, the methods introduced in the joev section will be used to
analyze the ability of metallic nanoparticles toveeas LSP based sensors and
measure small changes in refractive index. Spedlficanalytical results based on
the electrostatic approximation and numerical tssbased on Mie theory, DDA
and FDTD will be presented. These results have bEsnsubmitted for publication
[42].

There are several factors influencing the abilityL8P based sensors to resolve
small changes in refractive index. Sensitivity bk tLSP based sensor can be
defined as a ratio of the change in the wavelenfthaximum extinction,e,, and
the refractive index change that induced the changg,.,.. Depending on the
spatial distribution of the refractive index changensitivity for two important
limiting cases can be defined. Bulk refractive madensitivity Sz defines sensitiv-
ity of changes in the refractive index which océuamogeneously in the whole
medium surrounding the particle. Surface refracinadex sensitivity is defined as
sensitivity to refractive index changes occurrinithm a thin layer at the surface of
the particle. Mathematically, the sensitivities t@nexpressed as

16



SB — dmpeak and SS — dj~peak

medium dr]Iayer

: (35)

where n,, denotes the refractive index of the thin layer.

3.2.1 Relation of L SP eigenfrequency to peak wavelength

Localized Surface Plasmon can be described as a onfdtie EM field localized on
the metallic nanoparticle. Since the particle maleis lossy and this mode is
radiative (scattering cross-section is non-zetw ,digenfrequency,. of this mode
is complex. The eigenfrequency can be determirmd fquations foC,,; (10) and
Csces (12). It is the frequency for which they diverge, the value of the denomina-
tor & (w) +2¢,, is zerd. Thus the condition for resonant excitation of &P in
electrostatic approximation is

&1 (0res) = —2¢ . (36)

Excitation of the LSP at a frequency close to igeefrequency is called the Local-
ized Surface Plasmon Resonance. The complex eggpré@ncyw,.. is related to the
real frequencyw,e,x for which a peak (maximum) in extinction and seatty can
be experimentally observed. Any shift of the compb®le w,. (due to change in
em) IS accompanied by a shift of the maximwp,a. If we lies close to the real
axis, then

da)peak = Re{dw (4, (37)

because of properties ef(w). In reality, the imaginary part ab,.. is comparable
with the real part. If we accept (37) as an appration, then changes ipeqx
(which can be correlated with experiment), canitedyazed by analyzing changes in
wrec (Which can be done analytically).

In the following text, instead of peak frequeney,... Ppeak wavelength
Jpeak = 21C/ @ peq Wll be used, since wavelength is used more iniceptFor
convenience, resonant frequency (eigenfrequergy) will also be replaced by
resonant wavelength,. with the same definition, even though complex wave
length is not often used in literature.

3.2.2 Bulk refractiveindex senditivity

Sensitivity of theresonantwavelength to a change in refractive index of e
dium can be obtained by differentiating the resaeasondition (36):

2 Metal permittivity for complex is a valid quantity, because it is defined usimgitmpulse
response function of the metal in the same wayeamittivity for realw is defined.
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an,  de, A, %”m’ (38)

whereg, is the metal permittivity and,, and n,, is the permittivity and refractive
index of the medium. Using (37), the bulk RI samdit S; of thepeakwavelength
to a change in refractive index of the medium is

S =Ref OI”““35} =4, (39)

where g, denotes the real part of metal permittivity:: g +iej. As follows from
(39), the main factor which influences the bulksRhsitivity is the derivative of the
real part of the particle’s dielectric function.

In Table 1, bulk RI sensitivity for a particle sounded by a dielectric with a
refractive indexn,, =1.3% has been computed by three different methodsy Mib
thoery, 2. by computing extinction spectra using €) and determining the
sensitivity from them and 3. by eq. (39). Cleathg electrostatic approximation
holds only for small particles (diameter < 30 niWjth increasing particle size, the
bulk RI sensitivity also increases as illustratedrigure 6 which presents sensitivity
data obtained from extinction spectra calculatethieyMie theory.

Bulk RI sensitivity Sg = diyear/ dN mediun
Diameter (nm) Mie theory El.stat. (10) El.stat. 39
16 85 81 95
30 93 81 95
80 159 81 95

Table 1: Bulk RI sensitivity for a spherical goldricle in a medium of refractive
index of 1.33 computed by Mie theory, by determinthe sensitivity from spec-
tra obtained from (10) and by eq. (39).
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Figure 6. Bulk RI sensitivity of a spherical goldrnoparticle in a medium of
refractive index of 1.33 as a function of its didemecomputed by Mie theory.

3.2.3 Surfacerefractiveindex sensitivity

In the electrostatic approximation, extinction &r@ection of a coated sphere is [16]

_ 8% 3 m (62 —em)(e1+2e2) +(1-A)(e1— ) (e m+ 26 )
Cox =731 {<ez+2sm><sl+zez>+zl—Axez—sm)(sl—sz)}

(p=1-:25)

(r+t)?

, (40)

whereg; andr denote permittivity and radius of the particle apcdndt denote the
permittivity and the thickness of the dielectrigda andim{} denotes imaginary
part of a complex numbeA is the volume fraction of the layer versus tharent
particle. For a layer of zero thickneas=0 and for infinite thicknes\ =1. The
pole ofC,: (1) occurs at the zero of the denominator. The vafug for which the
denominator is equal to zero is:

_ 2A(em —&2) —6ep

(41)
2A(2—2‘ -1)+3

&

This is the resonance condition for a coated gdartisimilar to the resonance
condition (36) for uncoated particle. The sendiyivian be obtained by differentia-
tion, as in the previous section. If we assume allsmcrease of permittivity within
the layere, — ¢, +de,, the corresponding changg — ¢, +de; required for the
system to stay at the resonance (pole) can benelotddy differentiating Equation
(42):
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2A(E2-1)+3

N 2A(em —&2) —6em .\ Em

de; = de .
KR 20 -1+ 32 &2

(42)

If we assume a layer with a refractive index cldsethat of the background
(62 —&m) < &5, then (42) can be simplified to

dSl = _ZAdEIz, (43)
and the surface RI sensitivity ifsonantwavelength can be expressed as:
dj«res - _ 4
E = EnzA (44)
di

Using (37), the surface RI sensitivi8 of thepeakwavelength to a change in RI of

the layer is
dA, 4
=R€{ res}z__ A
S an ] = Tw

7
&1

(45)

di

For very thin layers t(« r) the volume fractionA can be approximated by
3t/(r +3). Comparing (45) to eq. (39) f&;, we see that
S= 34,

since we have assumed = n,,. In the approximation of sparse layer, the surface
RI sensitivity is basically equal to the bulk Rhsgivity times a factor correspond-
ing to how much of the total “field volume” the kEytakes up. As follows from eq.
(45), for a fixed layer thickness, larger partickehibit lower surface refractive
index sensitivity. However, this effect is partlynepensated by the general increase
in sensitivity with an increasing particle size diiie 6), which was observed for
bulk RI sensitivity. This increase is not captutsdthe electrostatic approximation
used to derive equation (45).

(46)

To compare analytical results for surface refractimdex sensitivity with other
approaches, surface sensitivity of gold particléh @dielectric overlayer in medium
of n,, =1.3% was calculated for different sizes and layer thedses using different
methods. For comparison, see Table 2.

Surface sensitivityss = dieq/ dn
Diameter | Layer A: Mie B: EI. C: EL D: E: F:
(nm) (nm) Theory stat. (40) | stat. (45) | Ssmie [A | FDTD | DDA
16 3 51 50 43 52 55 49
30 5 51 46 39 54 51 48
80 5 40 23 19 47 34 31

Table 2. Surface refractive index sensitivity fpherical gold particles with a thin

overlayer calculated for three different diametand overlayer thicknesses using

Mie theory, electrostatic approximation (eq. (4@)gctrostatic approximation for

20



sparse thin overlayers (eq. (45)), eq. (46) using bensitivity from Mie theory,
by FDTD and by DDA.

In Table 2, letters A to F represent the following:
A: S obtained from extinction spectra computed by Meoty,

B: S obtained from extinction spectra computed by ebstatic approxima-
tion (eq. (40)), i.e. without further approximatsleading to eq. (45),

C: S obtained from eq. (45) (sparse layer approximation

D: S obtained from eq. (46), but using the valueSgfobtained from Mie the-
ory (Table 1).

E: S obtained from extinction spectra computed by FDTD,
F: Ssobtained from extinction spectra computed by DDA.

As follows from Table 2, there is a good agreemiestween the electrostatic
approximation (Equation (40)) and Mie theory foradier particles. With increasing
particle size, the electrostatic approximation éasingly underestimates the
sensitivity and for particles of a diameter of 8@ which clearly cannot be de-
scribed by the electrostatic approximation) predsensitivity smaller than that
determined by using Mie theory by a factor of altb@sColumn D shows that this
discrepancy is due to the inability of the elediatis approximation to describe
effects of increasing particle size. The dependemc is still valid even for larger

particles.

Dependence of the surface sensitivity on partidde somputed by the Mie theory

is presented in Figure 7. Clearly, for very thigdes (thickness — 2 nm), the surface
refractive index sensitivity decreases with an e@asing particle size for particle

diameters up to about 80 nm and then slowly ine®agth an increasing particle

size. Surface sensitivity for systems includingckler overlayers follow the same

trend; however the initial decrees for smaller iple$ is less pronounced and the
sensitivity starts to grow for smaller particlesdaie growth with the increasing

particle size is faster (Figure 7). For layers lwtkness > 20 nm, the sensitivity
monotonically increases with particle size.

Numerical evaluation of equations f8 (39) andSs (45) requires the knowledge
of dg; /di at complexi,.s at which the derivative is meant to be taken. Thisie is
not available from experimental data. In the datsented in tables 1 and 2, the
value of this derivative at the peak wavelenggh, was used instead. This fact also
contributed to the discrepancy between the resgiisitions foiSz (39) andSs (45)
and other, more accurate methods. But, these estpnssserve to provide insight
and not exact numerical values.
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Figure 7: Surface refractive index sensitivity éogold particle as a function of its
diameter calculated for five different thicknesséshe dielectric overlayer using
the Mie theory.

As follows from Figure 7, surface sensitivity irases with increasing thickness of
the overlayer to become equal to bulk refractivdein sensitivity. In order to
achieve 50 per cent value of the bulk refractivdein sensitivity, the volume
fraction A needs to be equal to 0.5 which determines th&ribgs of the overlayer
tso =0.25 .

3.2.4 Figureof merit

As illustrated in [20], ability of SPR sensors tesolve small refractive index
changes is directly proportional to refractive indensitivity and indirectly propor-
tional to the width of the resonant feature:

resolution~§ , 47)
w

where isw width of the peak. In order to evaluate varioussggy schemes with
respect to their actual sensing potential we intoedthe figure of meriy defined
as

r=2, (48)

whereSis sensitivity andv is width of the extinction peak (or transmissiop)d
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As the extinction peak is rather asymmetric, irs tivork we shall calculate the
width of the peak by approximating the vicinity thie maximum by a Lorentzian
profile and use the FWHM (full width at half maxim of this Lorentzian.

Width of the extinction peak

In the electrostatic approximation, eq. (10) camdwritten as

8% 3 3erem
Cext = r , 49
T (2o ) e 4

whereg; =¢; +ieg1. In order to obtain approximate width of the egtion peak, we
expandC,, into Taylor series around the peak wavelenggh,, neglect higher
order terms, and approximate the imaginary pampesfittivity around/,e, by a
constant. This yields foC,;

2 3e1 (Apeak)e
Cext = 87; 3 - 1( peal;) m (50)
(5, G e +(30 p?
which has a form of a Lorentzian curve negar,with a FWHM equal to
— 261 (ipeak) . (51)

di

/peak

Similarly to the sensitivity, the width of the remmt extinction feature depends on
the derivative of the real part of the particleigléctric function, but also on the
value of the imaginary. By combining eq. (39) fayand (51) forw, we obtain

S 2
B=— =" Ny (52)
T w gl(ﬂpeak) "

Clearly, the figure of merit does not depend ondégvative of the real part of the
dielectric function, but only on its imaginary paifthis suggests that the use of

metal with smaller losses will lead to sensors pittentially better performance.

The width of the extinction feature for large pads cannot be calculated by the
electrostatic approximation and has to be deterhiram Mie theory. As follows
from Figure 8, the width of the extinction featui@ gold spherical particles
remains approximately constant for particle diameje to about 80 nm and then
increases rapidly with increasing particle diamelig to radiative losses.
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Figure 8. Width of the extinction feature as a fioc of particle diameter deter-
mined by Mie theory.

Figures of merit of bulk and surface sensitivitg ahown in Figure 9 and Figure 10,
respectively. As follows from Figure 9, performanck refractive index LSPR
sensors based on spherical gold particles may sidvgtantially depending on the
size of the used particle. This calculations sugties for refractometry, the diame-
ter of the particles giving the best performancaraind 80 nm.

Dependence of a LSP biosensor performance on tieecdithe particles may be
more complex and will depend also on the thickridghe overlayer within which
the refractive index change occurs. From Figurdt t@n be seen that for layers of
thickness up to 10 nm, smallest particles provitashighest figure of merit. The
actual choice would be influenced by the fact thaparticles of diameter less than
10 nm the extinction peak broadens due to limitedteon free pathlength [9]. For
layers thicker then 10 nm, optimal particle diameten the range 80—100 nm.
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Figure 9. Figure of merit for bulk RI sensitivifyatio of bulk RI sensitivity to
peak width). This takes into account the influeatpeak width on sensor resolu-
tion. For larger (> 40 nm diameter) particles atiste damping leads to peak
broadening which decreases the figure of merit itkesghe sensitivity still
increasing for larger particles. Compare with Fegér
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Figure 10. Figure of merit for surface RI sensfti\iratio of surface RI sensitivity
to peak width). for different thicknesses of thedayer. This takes into account
the influence of peak width on sensor resolutiéior larger (> 40 nm diameter)
particles radiative damping leads to peak broadgmihich decreases the figure
of merit despite the sensitivity still increasiray farger particles. Compare with
Figure 7.
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3.25 Sendtivity of L SPson non-spherical particles

The electrostatic approximation can be extendetletat spheroidal particles [16].
The main difference is that the resonance condijen2e,, = 0, from which the
bulk refractive index sensitivity is obtained, cges tog +Ley, =0, where the
shape factoL increases with particle aspect ratlo<2 for a spherel. =12 for a
4:1 aspect ratio spheroid [16]). This translatea worresponding increase in bulk
RI sensitivity:

S =2k, (53)

]
=1

di

The widthw is not influenced directly by the shape factorcas be seen from the
way it was derived, (49)—(51). The changed resoaaondition results in shift of
of the peak wavelength into near infrared regiae (slot of permittivity in Fig. 21).

In this region, the imaginary part of the permitinis considerably smaller than in
the visible range. This leads to narrowing of thdinetion peak and further
improvement in the figure of merit, eq. (52).

To explore these effects numerically, the extintspectra of spheroidal particles of
different sizes, aspect ratios and Rl of mediumehbeen computed using the
FDTD method. From these spectra, the bulk RI seitgitS;, width w and the
figure of merit for bulk sensitivityg was obtained. These results are in Table 3 and
Figure 11.

The polarization of the incident light was alohg fonger axis of the particles and
the particles were oriented with their longer gpespendicular to the wave-vector.
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Figure 11: Extinction spectra of spheroidal goldtipkes of different aspect ratios

and constant length (80 nm). Computed by FDTD.

Size (nm)| Aspectratij Bulk senS; | Peak widthw | FOM y =S5/ W

Aspect ratio dependenc

D

140 x 47 1:3 449 67 6.7
140 x 35 1:4 442 52 8.5
140 x 23 1:6 595 35 17.0

Size dependence:

80 x 20 1:4 317 18 17.6
140 x 35 1:4 442 52 8.5
200 x 50 1:4 487 100 4.9

Table 3: Bulk sensitivity, peak width and figureraérit for gold spheroidal parti-
cles of different sizes and aspect ratios. “Sizelengthx width. Data computed
by FDTD.

In this orientation, the electric field of the ident wave changes in the direction of
one of the two smaller axis. The 80 x 20 and 14Bxm particles are then in the
region of applicability of the electrostatic appiroation. Comparing results for
these particles with electrostatic results for siglaé particles, the prediction given
by Equation (53) is confirmed: the bulk RI sensiyivs 6 times higher for highly
elongated (1:6) particles than for spheres.
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Some trends can be observed from Table 3. Witkeal fparticle length and increas-
ing aspect ratio, the peak wavelength redshifts, snsitivity increases and peak
width decreases (due to decreasing imaginary parhetal permittivity). This
results in three-fold increase in the figure of mnapon changing the aspect ratio
from1:3tol:6.

With a fixed aspect ratio and increasing parti¢ke sthe sensitivity increases, but
the peak width increases more quickly. Upon inangathe particle length from 80
to 200 nm the figure of merit decreases more thegettimes.

These results agree with experimental observationsChen et al. [25] who

achieved bulk refractive index sensitivity of 36@/RIU using gold nanorods with

an aspect ratio of 5.2. The peaks in this workesaft significant inhomogeneous
broadening (~100 nm width), which decreases thad merit.

3.2.6 Comparison of LSPR and planar SPR sensors

A theoretical comparison of bulk RI sensitivity,rieice Rl sensitivity and their
corresponding figures of merit for LSP sensors vgitinerical particles of 80 nm
diameter (Mie theory) and spheroidal particles 6f>*8 20 nm (length x width)
(FDTD) with SPR sensors with prism and grating detgopresented in Table 4.

Bulk: Sg Surface: Line width | FoM bulk: [ FoMsurf.: | Penetration
mrivy | SR TS am) | x=Se/w | 2=Ss/w | depth (nm)*
10 nm layer
Au spherical,
80 nm 160 70 100 1.6 0.7 10
diameter
Au spheroidal, _
80 X 20 nm 320 - 18 18 8** -
prism-coupled
SPR, 750 nm 5000 350 60 80 5.8 200
grating-
coupled SPR, 640 45 8 80 5.6 200
750 nm***

Table 4: Comparison of performance related parameteSPR and LSP sensors.
*For LSP, the penetration depth is defined as tiekhess of the layer at which
the surface sensitivity is half of the bulk RI sé@xiy. For SPR, it is defined as
the distance from the interface at which the eiedteld intensity drops to 1/e.
**Estimated under the assumption that the ratics@ffor spheroid to spherical is

the same as this ratio f&; . ***Data taken from [20].
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In terms of figure of merit for bulk RI sensitivjtg LSP sensor based on spherical
particles is clearly outperformed by convention®RSsensors by a factor of 50,
while a LSP sensor based on spheroidal particlshgna factor of 4.

Regarding the figure of merit for surface Rl sewgy, a spherical particle LSP
sensor still performs about 10 times worse; but gagormance of a spheroidal
particle based LSP sensor is comparable to thedmfentional SPR sensors.

Taking into account that advanced nanostructurés iwiproved sensitivity [26, 43]
and peak width [44] have been proposed, LSP sehs@esthe potential to be equal
or better than SPR sensors in terms of performenarcteristics.
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4 EXxperimental

In this Chapter, gold spherical nanoparticlesqguilil solutions are studied by means
of transmission spectroscopy. The shift of the parnkcle transmission dip due to

changes in refractive index profile of its dieléctenvironment is experimentally

demonstrated.

4.1 Materials

The samples were obtained from Nanocs, Inc (Nevk,YOISA), product codes
GNB30 and GNB50. They were spherical gold nanogagiof diameter 30 and 50
nm in agueous solution, coated with a polymer lageprevent aggregation and
labeled with biotin, about 6 biotin molecules peartile, according to the
manufacturers datasheet.

4.2 Experimental setup

Properties of the samples and their changes duehamges in their dielectric
environment were characterized by means of trarssomsspectroscopy. The
transmission spectra were measured on a setupteg@icFigure 12. Light from a
halogen lamp (CLH500, Zeiss, Germany) is coupléd anmultimode optical fiber
(100 um core diameter). The optical fiber illuminatesdimator, which creates a
parallel beam. The beam is incident on micro-cevé8tarna, USA) with 10 mm
pathlength and2x5 mm optical window (10Qul volume), containing the liquid
sample. The transmitted light is coupled into demting optical fiber (40@um core
diameter) using a GRIN lens (2 mm diameter) andudind into a spectrometer
(MCS501 fiber spectrometer, Zeiss, Germany), wisaonnected to a PC.
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Figure 12: A schematic of the experimental setup rfeeasuring transmission
spectra.

The light source was left to stabilize for two h@uFhe samples in the cuvette were
changed in-place, without removing the cuvette fitsmmount, to prevent problems
with referencing. Between the measurements, thettiwas repeatedly flushed
with deionized water and dried by compressed air.

The collecting optical fiber with GRIN lens was q¢a close to the micro-cuvette
(5 mm) to minimize the influence of sample inhomages on the beam and its
spectral composition.

All displayed spectra have been divided by the gmasission spectrum of their
corresponding reference. A reference spectrum weasuared after each sample.

The positions of the transmission dip were deteeahibby fitting a third degree
polynomial to the dip (half of the dip’s depth wased) and taking the minimum of
this polynomial as the dip position.

4.3 Transmission spectra and comparison with Mie
theory

The transmission spectra of the solutions of 30 %hdm particles were measured
with integration time of 350 ms and each displagpéctra was obtained by averag-
ing 170 spectra for a total time of 60 s. As anegfee, the transmission spectrum of
deionized water was used. Results are shown iné&it@ and Figure 14.
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Figure 13: Comparison of transmission spectra assared for the 30 nm particle
samples (Experimental) and as computed by the ihiert.
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Figure 14: Comparison of transmission spectra assared for the 50 nm particle
samples (Experimental) and as computed by the ihiert.

The transmission spectrum were also computed bivitegheory. The transmission
spectrum of a nanoparticle solution can be obtain@th the extinction spectrum

using [16]

T(A) = e NdGex (4) (54)

whereT is transmissionn numeric concentration of the particlé€s,,; extinction
cross-section of a particlé, the light pathlengthC,,; has been determined by eq.
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(22). Comparison of measured and computed trangmispectra for 30 nm gold
particles can be seen in Figure 13 and Figure 14.

Since the concentration of the samples was not krewactly,n was determined to
result in the same transmission at the dip mininagnm the experimental spectrum.
Specifically, n=4.2x103° particlesm® for 30 nm particles anch=7.2x 134
particlesm® for 50 nm particles. Because of this free paramete can only
compare with experiment the relative valuedg§; and not its absolute value.

For 30 nm patrticles, the shape of the transmisspactrum is described well by the
Mie theory using the permittivity model of gold st in the Appendix. The dip
position differs by 6 nm. This difference is causgthe permittivity model, as the
properties of the nanoparticle gold might be ddfdérfrom those of bulk gold for
which the experimental data on which the modelaselol were measured. Another
reason could be the dispersion in size of the gasti

The same conclusions apply to the 50 nm nanopastidihe off-dip parts of the

experimental spectrum probably show extinction bknown species present in the
sample. Unfortunately, the 50 nm samples also mdférom significant aggrega-

tion of the colloid particles before the measureimeas made, which resulted in
low free nanoparticle concentration and consequesdty weak extinction (< 3 %

dip in transmission).

4.4 Senditivity of dip position to medium refractive index

In this measurement, the bulk RI sensitiviy of the transmission dip will be
determined. For this, the position of the transiaisslip for nanoparticle samples in
solutions of different refractive index was measure

To change the RI of the solution in which the mde8 are immersed, the samples
have been diluted by a series of water solutiordiethylene glycol (DEG) (Sigma-
Aldrich, USA) of increasing concentrations. pl0of the undiluted sample (GNB30,
GNB50) was mixed with 200l of a DEG solution. The DEG concentrations were
selected to yield concentrations of 0 %, 20 %, 4@ 60 % (volume fraction) of
DEG in the final nanoparticle solution. The RI b&tDEG solutions was measured
on refractometer DSR- (Schmidt+Haensch, Germany). The RI of DEG was
determined to be 1.4453 at 500 nm. As a referdhedransmission spectra of DEG
solutions of said concentrations were used.

Diethylene glycol (DEG) was selected to simulatprapriate changes in solution
RI. High viscosity of DEG, however, caused problesith sample homogeneity. To
obtain maximum homogenity, the samples were

1. shaked on a laboratory shaker,

2. let stand for an hour to homogenize by diffusion,
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3. after injection into the cuvette, they were allowEsl minutes to settle
down

To minimize the influence of residual inhomogeneiye GRIN lens on the collect-
ing fiber was selected instead of an ordinary l@msits larger acceptance angle,
which results in lower sensitivity to beam angwaviation.

The transmission spectra were measured with irtiegréime of 350 ms and each
displayed spectra was obtained by averaging 17€&rspi®r a total time of 60 s.

In Figure 15 and Figure 17 it is shown how the graission spectra change with
changing refractive index of the solution. In Figur6 (B) and Figure 18 (B) the
positions of transmission dips have been plottedinsg the refractive index of
solution. These positions were obtained by fittihg dip by a third degree polyno-
mial and taking the minimum of this polynomial d® tdip position. For fitting,
only the portion of the dip from its minimum to h#ile dip’s depth was used.
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Figure 15: Transmission spectra of 30 nm partitlemlutions of different Rls.
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Figure 16: A: Transmission spectra of 30 nm partich solutions of different Rls
normalized to have the same minimum value, showlhegshift of the peak with
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RI. B: Dependence of transmission dip position olutson RI. The line is only a
guide to the eye.
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Figure 17: Transmission spectra of 50 nm partitlesolutions of different RIs.
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Figure 18: A: Transmission spectra of 50 nm patich solutions of different RIs
normalized to have the same minimum value, showlhegshift of the peak with
RI. B: Dependence of transmission dip position @ntion RI. The line is a guide
to the eye only.

The bulk RI sensitivitySg has been estimated by linear fit of the dip positi
dependence on solution RI:

30 nm diameter particle§; = (92+ 6) nm/RIU (Mie theory: 93 nm/RIU)
50 nm diameter particle§s = (150+ 30 nm/RIU (Mie theory: 114 nm/RIU)
(the errors here are determined by the linear fit).

The value of bulk RI sensitivity for 30 nm partigles in good agreement with the
prediction by Mie theory. For 50 nm particles, Hggeement is much worse, which
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is caused mainly by the very low concentrationreéfparticles in the samples. This
resulted in the transmission dip being very shalldlen, any influence that

contributes a slope to the spectrum can shift {hygagent position of the peak
significantly. These include extinction caused ltlyeo species in the sample (which
couldn’'t be accounted for by referencing) and tlaet fthat due to residual

inhomogeneity, the sample formed a gradient ofative index and bent the beam.
The beam shift resulted in change of overall intgn&igure 17). Because of RI

dispersion (chromatic aberration), this can alsulted in spectral change. This is
visible for the 50 nm particle samples

45 Senditivity of dip position to presence of a
biomolecular layer

In this measurement, the sensitivity of the nantglartransmission dip to changes
in the RI of a thin surface layer is demonstrat8decifically, it is shown that
nanoparticles can be used to detect the presensteptavidin molecules in solu-
tion. The GNB30 nanopatrticles are functionalizeabéled) by biotin molecules.
Streptavidin and biotin are known for their hightoal affinity and create a very
strong bond, one of the strongest non-covalent &¢f]. After adding streptavidin
molecules to a solution of biotin-functionalized noparticles, streptavidin is
expected to bind to the particles via biotin anct@ase the average RI in a layer on
the particle’s surface.

The transmission spectrum was monitored continyourslthis experiment. The
spectra were measured with 350 ms integration @me with averaging of 15
spectra, for a total measurement time of 5 s persmpectrum. These spectra were
continuously loaded by a Matlab program createdHisr purpose, which processed
them by dividing them by a reference spectrum (Hfamsmission spectrum of
deionized water) and fitting a third degree polyianio the transmission dip to
find the dip’s wavelength and depth.

A solution of streptavidin (Sigma-Aldrich, USA) imater in a concentration of 0.5
ug/ml was prepared. After starting the acquisitibtransmission spectra, 20 of
the streptavidin solution was added into @0of 30 nm particles solution (as
received, not diluted) and immediately after tH00 ul of the resulting solution
was injected into the micro-cuvette.

Three experiments were performed. In the first experiments, streptavidin was
added to the nanoparticle solution as describedeabio show that the change in
dip position is due to the presence of streptayidirtontrol experiment was run
where the nanoparticle solution was only diluted206@ ul of deionized water and

200ul of the resulting solution was injected into th&rm-cuvette.

The dependence of the dip wavelength on time issho Figure 19.
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Figure 19: Detection of streptavidin by 30 nm paets — dependence of the posi-
tion of the transmission dip on time. Two identieaperiments have been made
(Exp. 1 and Exp. 2) and a control experiment (Gaptwvith no streptavidin. The
shift of the dip shows the binding of streptavidimto the particles.

In the first hour we observe a redshift of the mam transmission of about 6—8
nm which is caused by binding of streptavidin males to the particle surface.

It can be seen in figure Figure 19 that the stgrtiip positions in experiments 1 and
2, when compared to the control experiment, diffgrl0 nm. This was possibly
caused by Rayleigh scattering on streptavidin nuds; which contributed a slope
to the spectrum resulting in an apparent shifhefttansmission dip.

Since four biotin molecules can bind to one strédta molecule, streptavidin can
interlink the nanopatrticles and thus induce aggregaThe aggregation is mani-
fested by decrease of free nanoparticle conceotraind consequently the shallow-
ing of the transmission dip. This effect can beeobsd in Figure 20, where the
depth of the transmission dip (i.e. transmissiothatminimum) is plotted against
time. After 4 hours, the colloid began to aggregatd after 12 hours, there was
nearly no colloid left in the solution. This wastribe case for the control experi-
ment. From the dependence of dip depth on timarnthe seen that the majority of
the dip wavelength shift occurred before any majmanges in concentration. This
shows that the shift in the wavelength was not wuthese changes, which could
have influenced the apparent position of the dip.

37



Transmission at dip

1.0

0.9

0.8

0.7

0.6

0.5

0.4

/--——

Exp. 1
Exp. 2
- = Control

- R EE gy TR em T en em e e = e

0 2

4 6 8 10 12 14
Time (hours)

Figure 20: Detection of streptavidin by 30 nm paes — dependence of the depth
of the transmission dip on time. Two identical exxpents have been made (Exp.
1 and Exp. 2) and a control experiment (Controlfhwio streptavidin. The in-
crease in transmission after 4 hours correspondgdeegation of the particles.
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5 Conclusions

The phenomenon of Localized Surface Plasmons oalletanoparticles and their
optical excitation has been studied both theoryi@nd experimentally. Several
theoretical approaches to analysis of localizedaserplasmons and interaction of
light with nanoparticles have been described. Sakttatures of light interacting
with the nanoparticle were studied. Special attentivas given to analysis of
sensitivity of these features to refractive indéranges occurring at the surface or
throughout the whole medium surrounding the nanaparand to width of the
features. Both play an important role with resgechanoparticles with LSP being
used as a sensing platform.

Using the electrostatic approximation, simple folmeushowing the major factors
influencing these parameters have been derivedhgubie Mie theory, the FDTD
method and the DDA method, the above mentionedpatexs have been numeri-
cally computed for a range a particle sizes andisgnlayer thicknesses. It was
concluded that for sensing applications involvihg tise of layers less than 10 nm
thick, 10 nm particle diameter is the best cholar systems with thicker layers,
particles in diameter range 80—100 nm have beendaptimal. Finally, it was
demonstrated that by using non-spherical partiofekigh aspect ratios a further
(ten-fold increase) in the figure of merit can lohiaved.

In the experimental part of the work, a proceduré a laboratory setup for measur-
ing transmission spectra of liquid nanoparticle glas, along with associated data
acquisition and analysis software was developeds @howed comparison of the
shape and position of the transmission spectratia@oretical predictions of Mie
theory. Both were found to be in good agreementthEéamore, experimental value
of the bulk refractive index sensitivity was detered. For 30 nm diameter parti-
cles, it is in excellent agreement with theoretadiction, yielding a value of 90
nm/RIU. Finally, it was demonstrated that adsomptmf streptavidin molecules
results in a shift of the transmission minimum pfta 6 nm.

Future work will be aimed toward further exploratiof non-spherical metallic
particles and, especially, toward the understandingrdered metallic arrays and
nanostructures. The complex interplay of localizedface plasmons and light
offers numerous fascinating opportunities for farthesearch in this direction.
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7 Appendix

7.1 Gold permittivity model

In all numerical computations in this work, permity of gold is described by the
model consisting of a Drude and a Lorentz term

2 2
wp + &Lg (55)

ivew+w?  wd - 2idgw - w?

0 =7.077, 0p =1.390F6 y. =141110s =2.323, 4.83506°,5, =9.267 16

e(w)=¢e —

A plot of this permittivity together with experimeh data from [46] and [47] is
shown in Fig. 21.
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Permittivity

400 500 600 700 800 900
Wavelength (nm)

Fig. 21:. Permittivity of gold as a function of welggth. Theoretical model and
experimental data from [46] (CRC) and [47] (SOPRA).
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7.2 Theprogrammie.py

This program implements the Mie theory as describdd8]. It requires thacipy

scientific numerical library for the Python prognauing language.

#

# Implementation of the Mie theory

# Pavel Kvasnicka, 2007-04-11

#

# source: Born, Wolf: Principles of oOptics
#

o

from scipy import *

# from numpy.oldnumeric import * # for Python 2.4

Tam = 550e-9 # default wavelength
nI = 1.33

nII = 0.57 + 2.45j

a = 15e-9 # particle radius

max1 = 20 # number of terms to_sum ) . )
theta_samps = 15 # for numerical integration (includes endpoints)

c_light = 3e8
outname = 'extXlam20.dat' # outfile

# special functions
def psi(el,rho):
return sqrt(pi*rho/2) * special.jv(el+0.5, rho)

def chi(el,rho):
return -sqrt(pi*rho/2) * special.yv(el+0.5, rho)

def dzetl(el,rho):
return psi(el,rho)-1j*chi(el,rho)

def psib(el,rho):
def psil(rrho): return psi(el,rrho)
return derivative(psil, rho, dx=le-5, order=5)

def dzetlD(el,rho):
def dzetl1(rrho): return dzetl(el,rrho)
return derivative(dzetll, rho, dx=le-5, order=5)

def TegPml(el,x): return special.lpmn(l,el,x)[0][1][el]
def TegPmlD(el,x): return special.lpmn(l,el,x)[1][1][el]

# declare variables as global
omg=1amI=TamII=kI=kII=g=n=0.01
def dopocti_parametry():

# compute other parameters

global omg,lamI, lamII,kI,kII,q,n

omg = 2*pi*c_light/Tam
lJamI = lam/nI

TamII = Tam/nII

kI = omg/c_light*nI
kI = omg/c_light*nII
q = kI*a

n = nII/nI

elfaktor = ones(max1+1,Complex)
def predpocitej_elfaktor():
global elfaktor
for el in range(1l,maxT1+1):
elfaktor[el] = 1.j**(el+1) * (2.%*el+1l.)/(el*(el+1.))

eB ones(max1+1,Complex)
mB ones(max1+1,CompTlex)
def v¥pocti_koef1c1enty():
obal eB, mB

%or el in range(l,max1+1): # range() behaves as if #2 1is not present!

eB[el] = elfaktor[el] * (n*psiD(el,q)*psi(el,n*q) - psi(el,q)*psib(el,n*q))

/\
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(n*dzetlD(e'I ,q)s':ps.i (e'l 'n_,.‘_q) _
dzetl(el,q)*psip(el,n*q))

mB[el] = elfaktor[el] * (n*psi(el,q)*psiD(el,n*q) - psiD(el,q)*psi(el,n*q))

/ \
dzetlb(el,q)*psi(el,n*q))

(n*dzetl(el,q)*psiD(el,n*q) -

def ssin(x): # hack ;-)
s = sin(x)
if s 1= 0: ret
else: return 0 0000000001

R1
R2
def predpocitej_uhlovou_cast()
global R1, R2
d_th = pi/(theta_samps-1) # jsou tam i krajni body!
for e; in range(l max1+1):
t

ones((max1+1,theta_samps),Float)

for i 1n range(theta_samps): # i = 0O:theta_samps-1. theta_samps 1iteraci

# hack:
1f th>pi%0.999999: th=th*0.99999

ones((max1+1,theta_samps),Float) #max1+1l: index 0 zustava nevyuzity

i totiz legPmlD diverguje, ale_ *sin ma konecnou Timitu.

# boﬁuze1 numericky to nevychazi ;-)
R1[el,i] = 1eng1D(e1 cos(th)) *sin(th)
R2[el,i] = ﬁPml(e] cos(th)) *1/ssin(th)
th = th + d_t

# nakonec by melo byt th = pi + d_th.

def Qsca_ integraci(print_integrand=0):

"Vypocita Qsca pro aktualni parametry integracii vzdaleneho pole.’

integrand = ones(theta_samps,Float)
osa_theta = ones(theta_samps,Float)
d_th = pi/(theta_samps-1)
th = 0.
for i in range(theta_samps):
th_slozka = 0
phi_slozka= 0.
#print '(th=",th,")',
for el in range(l,max1+1): # for el=1l:max]
th_slozka += eB[el]*R1[el,i] - mB[el]*R2[el,1]
phi_slozka += eB[el]*R2[el,i] - mB[el]*R1l[el,1]

integrand[i] = sin(th)*(th_sTozka*conjugate(th_slozka) +

phi_slozka*conjugate(phi_sTozka)).real
osa_theta[i] = th
th = th + d_th
#

Qs = integrate.simps(integrand,osa_theta) * 1/(a**2 * kI**2)

if print_integrand: print 'integrand',integrand
return Qs

def Qext_analyticky():
"sig_ext podle B-w str. 661, eq (119)"
sig_ext = 0.
for el in range(l,max1+1):

sig_ext += (-1.j)**(el+1) * el*(el+1l)*(eB[el] + mB[el])

sig_ext = sig_ext.real;
sig_ext = sig_ext*lamI**2 / (2%pi)
return sig_ext/(pi*a**2)

def Qsca_analyticky(Q:

"sig_sca skoro podle B-w str. 661, eq (119) a pod]e toho pdfka..

"\n tak ne... predelal jsem to vic na to pdfko :-)"
sig_sca = 0.
for el in range(l max1+1)

delitel = 1.j**(el+1) * (2.*el+1.)/(el*(el+1.))

sig_sca += (2 ‘el+1)* (abs(eB[e]%/de11te1)““2 + abs(mB[el]/delitel)**

sig_sca = sig_sca* 1amI *2 / (2*pi
return sig_sca/(pi*a**2)

def zap1s Xy_ Eo]e(qak¥, kam) :
= open(
for i in range(jaky. shape[O])
f.write(str(jaky[i][0])+"' "+str(jaky[i][1]DD+'\n")
f.close()

2"\

2)
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diel_fce = ones((200,3),Float)
#

def nacti_diel_fci(jmeno_souboru):
g1oba1 diel_fce

1 [1 # index Tomu
f = open(]meno souboru, 'r')
Tines = f.readlines()
for 1 in lines:
fields = 1.split

O
il += [[ float(fields[0])* 1e 6 f1oat(f1e1ds[1]) float(fields[2]) 1] #

vnejs1 zavorky se slejou s il
el_fce = array(11)

def interpoluj_il(pozad_lam):
levy=-1 # Tibovolne
pravy=-1
for 1 in range(]en(d1e1 _fcel[:,0])):
if d1e1 ce[1 0] < pozad_Tam:

e
if die]_fce[i,O] > pozad_lam:
pravy=1i
break #
# mame oboji
Tev = diel_fce[levy]
prav = diel_fce[pravy]

return [lev[1l] + (prav[1l]-lev[1])*(pozad_lam-Tev[0])/(p
lev[2] + (prav[2]-Tev[2])*(pozad_Tlam-Tev[0])/(p

# w% deddkdhd R T T T T T

def Qextxlambda(lam_start, lam_step, num_steps):
"napocita zavislost Qext vs. lambda do pole"

global Tam

global nII # budeme menit z diel_fce
res = ones((num_steps,2),Float)
Tam_Tlocal = lam_start;

for i in range(num_steps):

Tam = lam_Tocal # nastavime globalni
i1 = dinterpoluj_iT(Tam)
nII = i1[0] + i1[1]*1j # nastavime globalni

dopocti_parametry()
vypocti_koeficienty() # zmenilo se totiz q!

res[i][0] = Tam

res[i][1] = Qext_analyticky(
Tam_local = Tam_local + Tam_step
print '*',

return res

def predpocty():
predpocitej_uhlovou_cast()
predpocitej_elfaktor()
#

dopocti_parametry()
vypocti_koeficienty()

def main(Q:
global a
global nI # necessary

nacti_diel_fci('au_radan.dat')
nI=1.33
for d in range(20,121,20):
a = 0.5%d*1le-9 # polomer
predpocty()

\

rav[0]-Tev[O

[01),
rav[0]-Tev[0])]

QextXlambda_res = Qextxlambda(lam_start=400e-9,Tam_step=1.5e-9,num_steps=200)

zapis_xy_pole(Qextxlambda_res, 'aul33_ext'+str(d)+'

print d
=1.38
for d in range(20,121,20):
a = 0.5*d*1le-9 # polomer
predpocty()

.dat")

QextXlambda_res = Qextxlambda(lam_start=400e-9, Tam_step=1.5e-9,num_steps=200)
zapis_xy_pole(QextXlambda_res, 'aul38_ext'+str(d)+'.dat')

print d

47



nacti_diel_fci('ag_palik.dat")
nI=1.33
for d in range(20,101,20):
a = 0.5%d*1le-9 # polomer
predpocty()

QextXlambda_res = Qextxlambda(lam_start=400e-9,Tam_step=1.5e-9,num_steps=200)

zapis_xy_pole(QextxXlambda_res, 'agl33_ext'+str(d)+'.dat')
print d
nI=1.38
for d in range(20,101,20):
a = 0.5*d*1le-9 # polomer
predpocty()

QextXlambda_res = Qextxlambda(lam_start=400e-9,Tam_step=1.5e-9,num_steps=200)

zapis_xy_pole(QextXlambda_res, 'agl38_ext'+str(d)+'.dat')
print d

main()
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