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1 Introduction 

Surface Plasmon is a phenomenon originating from collective oscillations of 
electrons on the surface of metals and their interaction with light. Today, its most 
important application is in the field of biosensors, which provide a tool for study of 
molecular interactions and rapid and sensitive detection of chemical biological 
species. 

Sensors utilizing surface plasmons on planar metal-dielectric interfaces (Surface 
Plasmon Resonance sensors) have been implemented in various configurations [1-
3] and employed in numerous application areas including biomolecular interaction 
analysis [4], medical diagnostics [5], environmental monitoring [6, 7] and food 
safety [8]. This technology has been under development for the last two decades. 

There are two types of surface plasmons: surface plasmons propagating on planar 
metal-dielectric interfaces and surface plasmons localized on metallic nanoparticles 
and structures of sub-micrometer dimensions (localized surface plasmon, LSP)[9]. 

Surface plasmons localized on metallic nanoparticles have already found various 
technological [10], [11], and sensing applications including nanoparticle SERS 
spectroscopy [12], detection labels [13], colorimetric sensors [14], ratiometric 
sensors [15] as well as applications in medical diagnostics [16-18]. 

An important approach to biosensing utilizes the fact that the properties of surface 
plasmons are very sensitive to changes in refractive index in the proximity of the 
metal-dielectric interface. This is the effect exploited in Surface Plasmon Resonance 
chemical sensors and biosensors [19]. A layer of receptors on the surface of the 
sensor binds selectively the detected molecule in solution. The captured molecules 
change the refractive index profile in the vicinity of the metal-dielectric interface. 
The resulting change in properties of the surface plasmon is then measured optically 
and provides direct information about the binding [20]. 

Biosensor applications of nanoparticles and nanostructures utilising this property of 
surface plasmons have been demonstrated on spherical particles [14], triangular 
particles [18, 21], rod-like particles [22-24], nanoshells [25] and nanorings [26]. 
Their performance has been theoretically analyzed in [27] and [28]. More complex 
nanostructures have been proposed: nanohole arrays [29, 30] and nanoparticle 
arrays [31, 32]. These new approaches to biosensing have several interesting 
properties not found in biosensors with surface plasmons on planar metallic inter-
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faces, in particular  larger parameter space for optimization of the sensing struc-
tures. 

This work focuses on Surface Plasmon Resonance sensors utilizing localized 
surface plasmons on spherical metallic nanoparticles. This work systematically 
explores the performance of these sensors theoretically in order to gain understand-
ing of the major factors involved and gives experimental verification of the results 
of theoretical analysis. 

1.1  Localized Surface Plasmon 

The interaction of light with a metallic nanoparticle can be described by a simpli-
fied model (Figure 1). The metallic nanoparticle consists of a negatively charged 
cloud of free conduction electrons and a positively charged background (the lat-
tice)[31]. The electric field of the incident light exerts a force on the electron cloud, 
which is displaced, but is being pulled back by the electrostatic force of the posi-
tively charged background. The electron cloud thus behaves as a damped linear 
harmonic oscillator and as such has a resonant frequency. From this we can expect a 
peak (resonance) to appear in the spectra of different optical quantities [31]. 

 
Figure 1: The principle of Localized Surface Plasmon Resonance: conduction 
electrons and the lattice of a metallic nanosphere as an excited harmonic oscillator 
(from [31]). 

The optical response of an illuminated nanoparticle1 can be divided into absorption, 
scattering and extinction. Absorption is due to ohmic losses in the metal. Scattered 
light is emitted by the oscillations of the electron cloud. Extinction is the summed 
effect of these two mechanisms on the illuminating beam of light – it describes loss 
in its intensity. Extinction is straightforwardly measured by measuring transmission; 
therefore extinction is the property of interest in this work. Scattering can also be 
measured, for example, in dark-field microscopy [33].  

Extinction, scattering and absorption can be characterized by their effective cross-
sections. The absorption cross-section is defined as the ratio of the power (W) 

                                                 
1 “Nano” today usually implies quantum effects. Even though this word is used here, optical 
properties of metallic nanoparticles larger than 10 nm can be described by a classical theory. 
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absorbed by the particle and the intensity (W/2m ) of the incident light. Similar 
definitions apply to extinction and scattering cross-sections. The unit of cross-
section is 2m . 

In an approximation of particles small compared with the wavelength, it can be 
shown that the extinction cross-section extC  for a particle of permittivity 1ε  in a 
dielectric medium of permittivity mε  is [16] 

 { }1 m
ext

1 m

( )
( ) Im

( ) 2
ε λ ε

C λ
ε λ ε

−
+

∼  (1) 

At wavelengths for which 1ε  is close to m2ε− , the  denominator will be very small 
and extinction will have a maximum. This is the peak predicted by the damped 
oscillator model. When the refractive index (permittivity) of the dielectric medium 
changes, the wavelength of maximum extinction changes as well. This can be 
observed in Figure 4, where the extinction spectrum for a 30 nm gold nanoparticle 
on media of different refractive indices was plotted. 
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Figure 2: Dependence of extinction spectrum of a 30 nm gold spherical nanoparti-
cle on the refractive index of the medium. 

1.2 Biosensors based on LSPs on metallic nanoparticles 

The refractive index (RI) change, which induces the shift in maximum of extinction 
and scattering, can occur either in the volume of the medium or only in the vicinity 
of the surface of the particle. This effect can be exploited for sensing and biosensing 
[18]. 
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In a sensor based on spectroscopy of LSPs on metallic nanoparticles, the surfaces of 
the particles are covered with immobilized biorecognition elements. Target mole-
cules are brought into contact with the nanoparticles and specifically bind to the 
biorecognition elements. This changes the refractive index profile in the vicinity of 
the surface. Consequently, the extinction (scattering) maximum shifts. This shift can 
be spectroscopically measured. From the magnitude of the shift the amount of 
molecules that have bound can be determined [18]. 

 
Figure 3: Basic scheme of biosensing with localized surface plasmons.  
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2 Aim of work 

The aim of this work is to explore the potential of localized surface plasmons on 
metallic nanoparticles as a sensing platform. Optically excited localized surface 
plasmons are studied both theoretically and experimentally. A set of appropriate 
modeling tools is selected and described. Both analytical and numerical simulations 
are pursued to describe, both qualitatively and quantitatively, the phenomenon of 
optical excitation of surface plasmons on  metallic nanoparticles. Optimization of 
the nanoparticles as a sensing platform with respect to the main design parameters 
is also performed. Experimental setup for spectroscopic characterization of local-
ized surface plasmons on metallic nanoparticles is established. Selected systems of 
nanoparticles are investigated in terms of their ability to serve as a high-accuracy 
refractometric sensors. Ability of the nanoparticle based sensing platform to detect 
molecular binding events is also demonstrated. 
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3 Theory 

3.1 Electromagnetic Modeling Tools 

This section describes the four techniques used in theoretical section of this work. 
These are:  

1. Electrostatic approximation: a simple analytical method, limited to spherical 
particles small compared with the wavelength, 

2.  Mie theory: an analytical method, restricted to spherical particles, 

3.  Discrete Dipole Approximation: a numerical method, limited to isolated 
particles and  

4. Finite Differences in Time Domain: a numerical method allowing arbitrary 
geometry, but computationally expensive.  

3.1.1 Electrostatic approximation 

The simplest quantitative model of LSP on a nanoparticle is the electrostatic 
approximation [16].  Here we suppose that the particle is much smaller than the 
wavelength of the incident light, so that the field of the incident wave is approxi-
mately constant in the vicinity of the particle. The problem of interaction of a 
nanosphere with light is then reduced to the much simpler problem of a sphere in a 
homogeneous electric field. The electrostatic theory can also be extended to parti-
cles with an overlayer [16]. 

In this analysis, the electric field of the LSP and the extinction and scattering cross-
sections will be calculated. 

 Let the static, uniform electric field be 0 0ˆ zE=E e . The charge induced on the 
surface of the sphere of permittivity 1ε  and radius a in medium of permittivity mε  
will disturb this field. The electric fields inside and outside of the sphere will be 
denoted 1E  and 2E  and their potentials 1Φ ( , )r θ  and 2Φ ( , )r θ  (in spherical coordi-
nates , ,r θ φ). These potentials satisfy La Place’s equation in the regions inside and 
outside the sphere. On the surface of the sphere, the potential and its derivative 
weighted by permittivity is required be continuous: 
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 1 2Φ Φ=   and  1 2
1 m
Φ Φ

( )ε ε r a
r r

∂ ∂= =
∂ ∂

. (2) 

We also require that 2 0lim Φ
r

E z
→∞

= − .  The first (dipolar) solutions are 

 m
1 0

1 m

3
Φ cos

2
ε

E r θ
ε ε

= −
+

 , (3) 

  1 m3
2 0 0 2

1 m

cos
Φ cos

2
ε ε θE r θ a E
ε ε r

−= − +
+

 . (4) 

2Φ  is a sum of the incident field and the field of an ideal dipole. The potential of an 
ideal dipole of dipole moment p is 

 
3 2

m m

cos
Φ

4 4

p θ

πε r πε r

⋅= =p r
 . (5) 

The field generated by the sphere is that of an ideal dipole with a dipole moment of 

 1 m3
m 0

1 m
4

2
ε ε

πε a
ε ε

−=
+

p E . (6) 

The sphere behaves as an dipole with polarizability α , which is defined by 

m 0ε α=p E : 

 1 m3

1 m
4

2
ε ε

α πa
ε ε

−=
+

. (7) 

From the radiating dipole’s polarizability, its extinction and scattering cross-sections 
can be determined. This is described in [16], chap. 3. For an ideal dipole with 
polarizability α , the cross-sections for extinction and scattering are 

 ext Im{ }C k α= , (8) 

 
4

2
sca | |

6
kC α
π

= . (9) 

where k  is the wave-vector size and Im{ }  denotes imaginary part of a complex 
number. Finally, the equations for extinction and scattering cross-sections for sphere 
small compared with the wavelength are 

 { }1 m3
ext

1 m
4 Im

2
ε ε

C πka
ε ε

−=
+

, (10) 

 
2

1 m4 6
sca

1 m

8
3 2

ε ε
C πk a

ε ε

−=
+

. (11) 

As these equations only apply to small particles, for which scattering is negligible 
compared with absorption, the equation for extC  is in fact the equation for absC . 

A plot of extinction spectra for particles of different sizes, computed from the 
electrostatic approximation (thick line) is in Figure 4. Extinction spectra from the 
Mie theory (which provides exact solution of the same problem) are plotted for 
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comparison. In this figure, the spectra are normalized to remove the dependence on 
3a  described by Equation (10). We can see that the position and shape of the 

spectrum in electrostatic approximation doesn’t change with particle size. The 
position of the maximum is accurate to within 10 nm for particles of size up to 30 
nm and the shape is well described for particles up to about 80 nm. 

From Equations (10) and (11) it can be deduced that the values of the cross-sections 
are high when the denominator of the fraction is small, i.e. if 1ε  (metal permittivity) 
approaches mε  (permittivity of the medium). The minimum value of the denomina-
tor (and maximum value of extinction) depends on the dielectric function of the 
metal of the particle. For gold, silver and copper, the resulting peak is easily observ-
able in the spectrum, while for most other metals the peak is far less pronounced. 
[16]. 
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Figure 4: Comparison of extinction cross-section spectra, normalized by their 
maximum value, for spherical particles as computed by the electrostatic 
approximation (thick line) and by the Mie theory (thin lines) from 10 to 120 nm 
diameter in 10 nm increments (without normalization, the spectra would grow 
with cube of the diameter). 

3.1.2 Mie theory 

The Mie theory [16] is the exact and complete solution to the problem of scattering 
and absorption of light by a sphere of arbitrary complex refractive index, with no 
approximations. It was first published by Gustav Mie in 1908 [34]. The theory is 
based on expressing the incident plane wave, the scattered and interior electromag-
netic (EM) fields as a sum of vector spherical harmonics. The expansion coeffi-
cients are then found using the  boundary conditions on the sphere’s surface 
(continuity of tangential components). Because now the complete EM field is 
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known, any quantity of interest, e.g. scattering or extinction cross-section, can be 
calculated. 

The Mie theory can be extended to particles with spherical overlayer. The derivation 
is nearly identical, only more complicated [16]. 

Implementation 

An implementation of the Mie theory has been written in the Python programming 
language, see Appendix for the program listing. For computations involving coated 
particles, a Matlab implementation by C. Mätzler [35] has been used. 

Derivation 

A detailed derivation of the Mie theory is given in [16]. In the following section, its 
main points will be described. 

Vector spherical harmonics 

The vector spherical harmonics ( )M r  and ( )N r , into which the fields will be 
expanded, are the solutions of Maxwell’s equations in a homogeneous domain and 
have the form of  

 ( )ψ= ∇×M r   and  
k

∇×= MN , (12) 

where k  is the wave-vector size and ψ  is the generating function. The generating 
function will be selected to satisfy the scalar wave equation 2 2 0ψ k ψ∇ + = . With 
this choice, M  and N  satisfy the vector wave equation and are also divergence-free. 

We then solve the scalar wave equation by separation of variables in spherical 
coordinates. Two sets of generating functions, even and odd, result: 

 e

o

cos (cos ) ( )

sin (cos ) ( )

m
mn n n

m
mn n n

ψ mφP θ z kr

ψ mφP θ z kr

=

=
, (13) 

where nz  is any of the four spherical Bessel functions (1) (2), , ,n n n nj y h h , 
(1) ( ) ( ) ( )n n nh ρ j ρ iy ρ= + , (2) ( ) ( ) ( )n n nh ρ j ρ iy ρ= −  and m

nP  is the associated Legen-
dre polynomial of degree n and order m. Now we have a complete and orthogonal 
set of basis functions: 

 

( ) ( ) ( ) ( )
e e o o

( ) ( )
e o( ) ( )

e o

( ), ( )

,

i i i i
mn mn mn mn

i i
mn mni i

mn mn

ψ ψ

k k

= ∇× = ∇×
∇× ∇×= =

M r M r
M M

N N
, (14) 

where i  is from 1 to 4 and denotes whether the corresponding function is based on 
the spherical Bessel function, in the following order: (1) (2), , orn n n nj y h h . 

Incident field 

The sphere is illuminated by a plane wave of the form 
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 cos
i 0 ˆikr θ

xe=E E e . (15) 

The expansion of the plane wave into vector spherical harmonics can be found in 
[16], Chapter 4. The result is 

 (1) (1)
i 0 o1 e1

1

2 1 ( )
( 1)

n
n n

n

nE i i
n n

∞

=

+= −
+∑E M N . (16) 

Internal and Scattered fields 

The expansion of the scattered fields has the following form: 

 

(3) (3)
s e1 o1

1

(3) (3)
s o1 e1

1

( )

( )

n n nn n
n

n n nn n
n

E ia b

k E ib a
ωµ

∞

=
∞

=

= −

= +

∑

∑

E N M

H N M

, (17) 

where nE  is defined to simplify the equations as 

 0
2 1
( 1)

n
n

nE i E
n n

+=
+

. (18) 

The vector harmonics with the superscript (3) are based on the spherical Hankel 
functions (1) ( ) ( ) ( )n n nh ρ j ρ iy ρ= + . They were selected because they represent an 
outgoing spherical wave. The fact that vector harmonics with 1m≠  are not present 
in the expansion of the incident field requires that these harmonics are not t present 
in the scattered and internal fields’ expansions either. 

The internal fields exhibit the following form 

 

(1) (1)
1 o1 e1

1

(1) (1)1
1 e1 o1

1

( )

( )

n n nn n
n

n n nn n
n

E c id

k
E d ic

ωµ

∞

=
∞

=

= −

−= +

∑

∑

E N M

H N M

. (19) 

The vector harmonics (1) based on the nj  Bessel functions were selected because 

ny  diverges near 0. 

The next step is to determine the expansion coefficients , , ,n n n na b c d . 

Boundary condition and expansion coefficients 

The boundary condition that is used to obtain the expansion coefficients is the 
continuity of tangential field components on the sphere’s surface 

 i s 1 r i s 1 rˆ ˆ( ) ( ) 0+ − × = + − × =E E E e H H H e  . (20) 

When substituting the expansions (16), (17) and (19) into the component form of 
condition (20) and using the orthogonality of the vector spherical harmonics – 
equating the left and right hand sides of (20) term-by-term – we obtain four linear 
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equations for every n. These can be solved yielding equations for , , ,n n n na b c d . 
Since for determining the scattering, absorption and extinction cross-sections only 
the scattered field is needed, only na  and nb  are shown here: 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

n n n n
n

n n n n

mψ mx ψ x ψ x ψ mx
a

mψ mx ξ x ξ x ψ mx
′ ′−= ′ ′−

 (21) 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

n n n n
n

n n n n

ψ mx ψ x mψ x ψ mx
b

ψ mx ξ x mξ x ψ mx
′ ′−= ′ ′−

, 

with the following definitions: ( ) ( )n nψ ρ ρj ρ=  and (1)( ) ( )n nξ ρ ρh ρ=  (the Riccati-
Bessel functions),  m is the relative refractive index of the particle, 

particle medium/m n n=  and x is the size factor x kr=  where r is the radius of the 
particle. 

Cross-sections 

The process of obtaining the extinction and scattering cross-sections from the 
expansion coefficients is in detail described in [16], Chapter 4 and yields 

 ext 2
1

2 (2 1)Re{ }n n
n

πC n a b
k

∞

=
= + +∑ , (22) 

 2 2
sca 2

1

2 (2 1)(| | +| | )n n
n

πC n a b
k

∞

=
= +∑ . (23) 

Limits of usability 

The cross-sections are expressed as an infinite sum. In numerical evaluation, this 
sum has to be truncated. More terms are needed for larger particles (in comparison 
with the wavelength). This sets a limit on the particle size for which the Mie theory 
is usable without numerical problems. In the visible wavelength range, dielectric 
particles of several microns in diameter can be computed, in the case of metallic 
particles roughly one wave-length is the limit [16]. 

Small particle limit 

If only terms with 1n =  are taken, then the resulting formulae for cross-sections are 
identical to those obtained from the electrostatic approximation. This shows that the 
electrostatic approximation is basically a small-particle limit of the Mie theory. 

3.1.3 Discrete Dipole Approximation (DDA) 

The Discrete Dipole Approximation is a numerical method for analysis of  light 
scattering on particles of arbitrary shape [36]. It works by first discretizing the 
particle into a cubic grid of polarizable dipoles, whose polarizablities are computed 
from the material’s dielectric function. Every dipole’s polarization is given by the 
sum of the incident plane wave field and the dipole fields of all other dipoles, which 
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depend on their polarizations. Then, the self-consistent polarizations for the dipoles 
are determined. 

Implementation 

In this work, the DDSCAT 6.1 implementation by Draine and Flatau [37] was used. 

Derivation 

The polarization induced in the i-th element is (omitting the frequency dependence 
iωte ) 

 loc ( )i i iα=P E r , (24) 

where the local electric field 1
loc i iα−=E P  is the sum of the incident field and a 

contribution from all other dipoles in the particle 

 1
inc dipole 0( ) ( ) exp( )i i i i i ij j

j i

α i−

≠
= + = ⋅ − ⋅∑P E r E r E k r A P . (25) 

0E  and k  are amplitude and wave-vector of the incident wave, and the interaction 
matrix is ( )j i≠  

 2 2
3 2

exp( ) 1
( ) [ 3 ( )]

ij ij
ij j ij ij j ij j ij ij j

ij ij

ikr ikr
k P r r

r r

 −  ⋅ = × × + − ⋅    
A P r r P r P . (26) 

Substituting (26) into (25) and rearranging terms we obtain an equation in a form 

 ′ ⋅ =A P E, (27) 

where ′A  is a matrix built from the previous matrix A . For N dipoles, P and E  are 
3N-dimensional vectors and ′A  is a 3 3N N×  matrix. By solving these 3N complex 
linear equations the polarization vector P is obtained and from it the extinction and 
scattering cross-section can be directly calculated: 

 *
ext inc2

10

4( ) Im{ }
N

j
j

πkC λ
=

= ⋅∑ E P
E

, (28) 

 
24

sca 2
10

ˆ ˆ ˆ( ) d [ ( )]exp( )
N

j j j
j

kC λ A ik
=

= − ⋅ − ⋅∑∫ P n n P n r
E

. (29) 

Limitations 

Although DDA doesn’t require large computing resources for small particles (in 
visible, this is < 100 nm for metallic particles and < 10 µm for dielectric particles), 
these requirements grow with the square of the particle volume because of the 
3 3N N×  matrices. This severely limits the methods’ usability for plasmonic nanos-
tructures other than isolated particles. For such systems, the FDTD method is more 
efficient, since its computational complexity grows only linearly with the simulated 
volume. 
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3.1.4 Finite Differences in Time Domain (FDTD) 

The Finite Differences in Time Domain method (FDTD) directly solves Maxwell’s 
equations by discretizing the electric and magnetic fields and the material constants 
on a finite rectangular grid and advancing the fields in time by directly using the 
Maxwell’s curl equations [38]. The spatial derivatives are replaced by differences, 
and, unlike other methods, which suppose harmonic fields with a given frequency 
(work in the frequency domain), FDTD follows the time evolution of the fields; 
hence the name. FDTD could be thought of as a “numerical experiment”.  

The method was first introduced by Yee in 1966 [39], but became widely used only 
in the last two decades with the availability of powerful enough computers. 

Implementation 

In this work, the commercial package Lumerical FDTD Solutions from Lumerical, 
Inc., Canada [40], was used, running on a cluster consisting of 12 nodes, 2.4 GHz 
CPU and 2 GB RAM each. 

Derivation 

FDTD solves the Maxwell’s curl equations in the form 

 

1

1

σ

t ε ε

σ

t µ µ

∗

∂ = ∇× −
∂
∂ = − ∇× −
∂

E H E

H E H
, (30) 

where σ  is the electric conductivity, σ∗ magnetic conductivity (non-zero only in 
special cases), ε  permittivity and µ  permeability of the medium.  

Re-writing these in cartesian coordinates, we obtain equations for the time deriva-
tives of all field components, where derivatives will be replaced by finite differ-
ences. Let’s take xH  as an example. The equation for xH  is 

 1 yx z
x

EH E
σ H

t µ z y
∗∂∂ ∂   = ⋅ − − ∂ ∂ ∂ 

. (31) 

The discretization scheme introduced by Yee [39] can be see in Figure 5. The 
positions at which individual components of the fields are placed in one grid cell are 
chosen so that central differences can be used for evaluating the spatial derivatives 
as in the eq. (31) for xH  and the other five equations. For the same reason, E fields 
are stored for time t while the H fields are stored for time 1/ 2∆t t+ . Using this 
scheme, we can substitute (31) with 

 

( , , 1/ 2) ( , , 1/ 2)
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∗

      −   = ⋅ −       − ⋅
 

, (32) 
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where n
xH , which is not being stored in the Yee grid, is computed as 

 
1/ 2 1/ 2

2

n n
x xn

x
H H

H
+ −+= . (33) 

The notation ( , , )n
xH i j k  means the value of xH  in timestep n at point 

∆ , ∆ , ∆x i x y j y z k z= ⋅ = ⋅ = ⋅ . By manipulating the expression (32), we arrive at the 
explicit update expression for xH : 

 

( , , )∆
2 ( , , )1/ 2 1/ 2
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1
( , , ) ( , , )

1

1

n n
y y

n n
z z

σ i j k t
µ i j kn n
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∗

∗

∗

+ −

+ − −

+ − −

 −    =    + 

     + ⋅    −+ 
2, )

∆

k
y

        
 

. (34) 

 
Figure 5: Yee cell, the discretization scheme for FDTD. It is chosen to facilitate 
the evaluation of the discretized Maxwell’s curl equations by central differences. 
From [38]. 

The frequency dependence of required quantities can be obtained by discrete 
Fourier transform from their time dependence as the simulation progresses in time. 
The cross-sections for absorption and scattering can be computed numerically by 
integrating the Poyinting vector over a surface surrounding the particle. Similarly, 
other quantities can be computed because complete information about the EM field 
is available. 

Since the area of space which has been discretized is finite, there arises the problem 
of updating the field values on the edge of the grid. Boundary conditions are needed 
that would simulate either a closed (e.g. a perfect conductor) or an open boundary 
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(this corresponds to scattering problems). A boundary condition transparent to 
outgoing waves, not giving any non-physical reflections was introduced  as the 
Perfectly Matched Layer in 1994 by Berenger [41] and allowed the expansion of 
FDTD to scattering problems. 

Advantages 

The main advantage of FDTD over frequency domain methods is that from a single 
simulation with a broadband pulse it is possible to get the frequency response for 
the whole spectrum by Fourier transform. The system’s response to a pulse can be 
also obtained (in frequency domain methods, it would be necessary to synthesize it 
by inverse Fourier transform from a set of harmonic solutions). The FDTD method 
also allows the use of periodic boundary condition (useful for simulating arrays of 
particles or photonic crystals). 

Another advantage is that the computational time grows only linearly with volume 
of the simulated area, while in some other methods including DDA this growth is 
quadratic. 

Disadvantages 

The FDTD method requires large amounts of memory and processing power, 
especially for 3D simulations. For simulating a single metallic nanoparticle of 200 
nm size, a single workstation with 2 GB of RAM is sufficient; for larger problems, 
PC clusters are often used. 

3.2 Sensitivity of sensors based on LSPs on nanoparticles 

In this section, the methods introduced in the previous section will be used to 
analyze the ability of metallic nanoparticles to serve as LSP based sensors and 
measure small changes in refractive index. Specifically, analytical results based on 
the electrostatic approximation and numerical results based on Mie theory, DDA 
and FDTD will be presented. These results have been also submitted for publication  
[42].  

There are several factors influencing the ability of LSP based sensors to resolve 
small changes in refractive index. Sensitivity of the LSP based sensor can be 
defined as a ratio of the change in the wavelength of maximum extinction peakλ  and 
the refractive index change that induced the change in peakλ . Depending on the 
spatial distribution of the refractive index change, sensitivity for two important 
limiting cases can be defined. Bulk refractive index sensitivity BS  defines sensitiv-
ity of changes in the refractive index which occur homogeneously in the whole 
medium surrounding the particle. Surface refractive index sensitivity is defined as 
sensitivity to refractive index changes occurring within a thin layer at the surface of 
the particle. Mathematically, the sensitivities can be expressed as 
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d

λ
S

n
=   , (35) 

where layern  denotes the refractive index of the thin layer.  

3.2.1 Relation of LSP eigenfrequency to peak wavelength 

Localized Surface Plasmon can be described as a mode of the EM field localized on 
the metallic nanoparticle. Since the particle material is lossy and this mode is 
radiative (scattering cross-section is non-zero), the eigenfrequency resω  of this mode 
is complex. The eigenfrequency can be determined from equations for extC  (10) and 

scaC  (11). It is the frequency for which they diverge, i.e. the value of the denomina-
tor 1 m( ) 2ε ω ε+  is zero2. Thus the condition for resonant excitation of the LSP in 
electrostatic approximation is 

 1 res m( ) 2ε ω ε= − . (36) 

Excitation of the LSP at a frequency close to its eigenfrequency is called the Local-
ized Surface Plasmon Resonance. The complex eigenfrequency resω  is related to the 
real frequency peakω  for which a peak (maximum) in extinction and scattering can 
be experimentally observed. Any shift of the complex pole resω  (due to change in 

mε ) is accompanied by a shift of the maximum peakω . If resω  lies close to the real 
axis, then  

 peak resd Re{d }ω ω= , (37) 

because of properties of 1( )ε ω . In reality, the imaginary part of resω  is comparable 
with the real part. If we accept (37) as an approximation, then changes in peakω  
(which can be correlated with experiment), can be analyzed by analyzing changes in 

resω  (which can be done analytically). 

In the following text, instead of peak frequency peakω , peak wavelength 

peak peak2π /λ c ω=  will be used, since wavelength is used more in optics. For 
convenience, resonant frequency (eigenfrequency) resω  will also be replaced by 
resonant wavelength resλ  with the same definition, even though complex wave-
length is not often used in literature. 

3.2.2 Bulk refractive index sensitivity 

Sensitivity of the resonant wavelength to a change in refractive index of the me-
dium can be obtained by differentiating the resonance condition (36): 

                                                 
2 Metal permittivity for complex ω  is a valid quantity, because it is defined using the impulse 
response function of the metal in the same way as permittivity for real ω  is defined.  
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1

res res m
md

m m m
d

d d d 4
d d d ε

λ

λ λ ε
n

n ε n
= = − , (38) 

where 1ε  is the metal permittivity and mε  and mn  is the permittivity and refractive 
index of the medium. Using (37), the bulk RI sensitivity BS  of the peak wavelength 
to a change in refractive index of the medium is 

 { }
1

res
B md

m
d

d 4Re
d ε

λ

λ
S n

n ′= = − , (39) 

where 1ε′ denotes the real part of metal permittivity: 1 1 1iε ε ε′ ′′= + . As follows from 
(39), the main factor which influences the bulk RI sensitivity is the derivative of the 
real part of the particle’s dielectric function. 

In Table 1, bulk RI sensitivity for a particle surrounded by a dielectric with a 
refractive index m 1.33n =  has been computed by three different methods: 1. by Mie 
thoery, 2. by computing extinction spectra using eq. (10) and determining the 
sensitivity from them and 3. by eq. (39). Clearly, the electrostatic approximation 
holds only for small particles (diameter < 30 nm). With increasing particle size, the 
bulk RI sensitivity also increases as illustrated in Figure 6 which presents sensitivity 
data obtained from extinction spectra calculated by the Mie theory. 

 

 Bulk RI sensitivity B peak mediumd /dS λ n=  

Diameter (nm) Mie theory El.stat. (10) El.stat. (39) 

16 85 81 95 

30 93 81 95 

80 159 81 95 

Table 1: Bulk RI sensitivity for a spherical gold particle in a medium of refractive 
index of 1.33 computed by Mie theory, by determining the sensitivity from spec-
tra obtained from (10) and by eq. (39). 



 

 19 

0 20 40 60 80 100 120 140 160
0

100

200

300

400

 

 

B
ul

k 
R

I S
en

si
tiv

ity
 S

B
 =

 d
λ p

ea
k 

/ d
n m

ed
iu

m
 (

nm
/R

IU
)

Particle diameter (nm)

 extinction
 scattering

 
Figure 6. Bulk RI sensitivity of a spherical gold nanoparticle in a medium of 
refractive index of 1.33 as a function of its diameter, computed by Mie theory. 

3.2.3 Surface refractive index sensitivity 

In the electrostatic approximation, extinction cross-section of a coated sphere is [16] 

{ }
( )3

3

2
2 m 1 2 1 2 m 23

ext 2
2 m 1 2 2 m 1 2

2 1 ∆ 28
2 2 2 1 ∆

∆ 1 r
r t

ε ε ε ε ε ε ε επC a
λ ε ε ε ε ε ε ε ε

+

− + + − − +
= + + + − − −

= −
( )

( )( ) ( )( )( )
Im
( )( ) ( )( )( ) , (40) 

where 1ε  and r  denote permittivity and radius of the particle and 2ε  and t  denote the 
permittivity and the thickness of the dielectric layer and Im{ }  denotes imaginary 
part of a complex number. ∆  is the volume fraction of the layer versus the entire 
particle. For a layer of zero thickness ∆ 0=  and for infinite thickness ∆ 1= . The 
pole of ext ( )C λ  occurs at the zero of the denominator. The value of 1ε  for which the 
denominator is equal to zero is: 

 
m

2

m 2 m
1

2∆( ) 6

2∆( 1) 3ε

ε

ε ε ε
ε

− −=
− +

. (41) 

This is the resonance condition for a coated particle, similar to the resonance 
condition (36) for uncoated particle. The sensitivity can be obtained by differentia-
tion, as in the previous section. If we assume a small increase of permittivity within 
the layer 2 2 2dε ε ε→ + , the corresponding change 1 1 1dε ε ε→ +  required for the 
system to stay at the resonance (pole) can be obtained by differentiating  Equation 
(41): 
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. (42) 

If we assume a layer with a refractive index close to that of the background 

2 m 2( )ε ε ε− ≪  , then (42) can be simplified to 

 1 2d 2∆dε ε= − , (43) 

and the surface RI sensitivity of resonant wavelength can be expressed as: 

 
1

res
2d

2
d

d 4
∆

d ε

λ

λ
n

n
= − . (44) 

Using (37), the surface RI sensitivity SS  of the peak wavelength to a change in RI of 
the layer is 

 { }
1

res
S 2d

2
d

d 4Re ∆
d ε

λ

λ
S n

n ′= = −  (45) 

For very thin layers (t r≪ ) the volume fraction ∆  can be approximated by 
( )3 / 3t r t+ . Comparing (45) to eq. (39) for BS , we see that 

 S B∆S S= , (46) 

since we have assumed 2 mn n≐ . In the approximation of sparse layer, the surface 
RI sensitivity is basically equal to the bulk RI sensitivity times a factor correspond-
ing to how much of the total “field volume” the layer takes up.  As follows from eq. 
(45), for a fixed layer thickness, larger particles exhibit lower surface refractive 
index sensitivity. However, this effect is partly compensated by the general increase 
in sensitivity with an increasing particle size (Figure 6), which was observed for 
bulk RI sensitivity. This increase is not captured by the electrostatic approximation 
used to derive equation (45). 

To compare analytical results for surface refractive index sensitivity with other 
approaches, surface sensitivity of gold particles with dielectric overlayer in medium 
of m 1.33n =  was calculated for different sizes and layer thicknesses using different 
methods. For comparison, see Table 2. 

 

 Surface sensitivity S peak 2d / dS λ n=  

Diameter 
(nm) 

Layer 
(nm) 

A: Mie 
Theory 

B: El. 
stat. (40) 

C: El. 
stat. (45) 

D:

B,Mie ∆S ⋅  
E: 

FDTD 
F:  

DDA 

16 3 51 50 43 52 55 49 

30 5 51 46 39 54 51 48 

80 5 40 23 19 47 34 31 

Table 2. Surface refractive index sensitivity for spherical gold particles with a thin 
overlayer calculated for three different diameters and overlayer thicknesses using 
Mie theory, electrostatic approximation (eq. (40)), electrostatic approximation for 
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sparse thin overlayers (eq. (45)), eq. (46) using bulk sensitivity from Mie theory, 
by FDTD and by DDA. 

In Table 2, letters A to F represent the following: 

A: SS  obtained from extinction spectra computed by Mie theory, 

B: SS  obtained from extinction spectra computed by electrostatic approxima-
tion (eq. (40)), i.e. without further approximations leading to eq. (45), 

C: SS  obtained from eq. (45) (sparse layer approximation), 

D: SS  obtained from eq. (46), but using the value of BS  obtained from Mie the-
ory (Table 1). 

E: SS  obtained from extinction spectra computed by FDTD, 

F: SS  obtained from extinction spectra computed by DDA. 

As follows from Table 2, there is a good agreement between the electrostatic 
approximation (Equation (40)) and Mie theory for smaller particles. With increasing 
particle size, the electrostatic approximation increasingly underestimates the 
sensitivity and for particles of a diameter of 80 nm (which clearly cannot be de-
scribed by the  electrostatic approximation)  predicts sensitivity smaller than that 
determined by using Mie theory by a factor of almost 2. Column D shows that this 
discrepancy is due to the inability of the electrostatic approximation to describe 
effects of increasing particle size. The dependence on ∆  is still valid even for larger 
particles.  

Dependence of the surface sensitivity on particle size computed by the Mie theory 
is presented in Figure 7. Clearly, for very thin layers (thickness – 2 nm), the surface 
refractive index sensitivity decreases with an increasing particle size for particle 
diameters up to about 80 nm and then slowly increases with an increasing particle 
size. Surface sensitivity for systems including thicker overlayers follow the same 
trend; however the initial decrees for smaller particles is less pronounced and the 
sensitivity starts to grow for smaller particles and the growth with the increasing 
particle size is faster (Figure 7). For layers of thickness > 20 nm, the sensitivity 
monotonically increases with particle size. 

Numerical evaluation of equations for BS  (39) and SS  (45) requires the knowledge 
of 1d / dε λ′  at complex resλ  at which the derivative is meant to be taken. This value is 
not available from experimental data. In the data presented in tables 1 and 2, the 
value of this derivative at the peak wavelength peakλ  was used instead. This fact also 
contributed to the discrepancy between the results equations for BS  (39) and SS  (45) 
and other, more accurate methods. But, these expressions serve to provide insight 
and not exact numerical values. 
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Figure 7: Surface refractive index sensitivity for a gold particle as a function of its 
diameter calculated for five different thicknesses of the dielectric overlayer using 
the Mie theory.  

As  follows from Figure 7, surface sensitivity increases with increasing thickness of 
the overlayer to become equal to bulk refractive index sensitivity. In order to 
achieve 50 per cent value of the bulk refractive index sensitivity, the volume 
fraction ∆  needs to be equal to 0.5 which determines the thickness of the overlayer 

50 0.25t r=  . 

3.2.4 Figure of merit 

As illustrated in [20], ability of SPR sensors to resolve small refractive index 
changes is directly proportional to refractive index sensitivity and indirectly propor-
tional to the width of the resonant feature: 

 resolution S
w

∼  , (47) 

where is w width of the peak. In order to evaluate various sensing schemes with 
respect to their actual sensing potential we introduce the figure of merit χ  defined 
as 

 S
χ

w
=  , (48) 

where S is sensitivity and w is width of the extinction peak (or transmission dip).  
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As the extinction peak is rather asymmetric, in this work we shall calculate the 
width of the peak by approximating the vicinity of the maximum by a Lorentzian 
profile and use the FWHM (full width at half maximum) of this Lorentzian. 

Width of the extinction peak 

In the electrostatic approximation,  eq. (10) can be rewritten as 

 
2

1 m3
ext 2 2

1 m 1

38
( 2 )

ε επC r
λ ε ε ε

′′
=

′ ′′+ +
 , (49) 

where 1 1 1iε ε ε′ ′′= + .  In order to obtain approximate width of the extinction peak, we 
expand extC  into Taylor series around the peak wavelength peakλ , neglect higher 
order terms, and approximate the imaginary part of permittivity around peakλ  by a 
constant. This yields for extC  
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2 1 peak m3
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peak 1 peakd
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which has a form of a Lorentzian curve near peakλ with a FWHM equal to  
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ε

λ λ

ε λ
w ′

′′
= . (51) 

Similarly to the sensitivity, the width of the resonant extinction feature depends on  
the derivative of the real part of the particle’s dielectric function, but also on the 
value of the imaginary. By combining eq. (39) for BS and (51) for w, we obtain  

 B
B m

1 peak

2
( )

S
χ n

w ε λ
= = − ′′ .  (52) 

Clearly, the figure of merit does not depend on the derivative of the real part of the 
dielectric function, but only on its imaginary part. This suggests that the use of 
metal with smaller losses will lead to sensors with potentially better performance. 

The width of the extinction feature for large particles cannot be calculated by the 
electrostatic approximation and has to be determined from Mie theory.  As follows 
from Figure 8, the width of the extinction feature for gold spherical particles 
remains approximately constant for particle diameter up to about 80 nm and then 
increases rapidly with increasing particle diameter due to radiative losses.  
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Figure 8. Width of the extinction feature as a function of  particle diameter deter-
mined by Mie theory.  

Figures of merit of bulk and surface sensitivity are shown in Figure 9 and Figure 10, 
respectively. As follows from Figure 9, performance of refractive index LSPR 
sensors based on spherical gold particles may vary substantially depending on the 
size of the used particle. This calculations suggest that for refractometry, the diame-
ter of the particles giving the best performance is around 80 nm.  

Dependence of a LSP biosensor performance on the size of the particles may be 
more complex and will depend also on the thickness of the overlayer within which 
the refractive index change occurs. From Figure 10 it can be seen that for layers of 
thickness up to 10 nm, smallest particles provide show highest figure of merit. The 
actual choice would be influenced by the fact that in particles of diameter less than 
10 nm the extinction peak broadens due to limited electron free pathlength [9]. For 
layers thicker then 10 nm, optimal particle diameter is in the range 80—100 nm. 
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Figure 9.  Figure of merit for bulk RI sensitivity (ratio of bulk RI sensitivity to 
peak width). This takes into account the influence of peak width on sensor resolu-
tion.  For larger (> 40 nm diameter) particles radiative damping leads to peak 
broadening which decreases the figure of merit despite the sensitivity still 
increasing for larger particles. Compare with Figure 6. 
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Figure 10. Figure of merit for surface RI sensitivity (ratio of surface RI sensitivity 
to peak width). for different thicknesses of the overlayer. This takes into account 
the influence of peak width on sensor resolution.  For larger (> 40 nm diameter) 
particles radiative damping leads to peak broadening which decreases the figure 
of merit despite the sensitivity still increasing for larger particles. Compare with 
Figure 7. 
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3.2.5 Sensitivity of LSPs on non-spherical particles  

The electrostatic approximation can be extended to treat spheroidal particles [16]. 
The main difference is that the resonance condition 1 m2 0ε ε+ = , from which the 
bulk refractive index sensitivity is obtained, changes to 1 m 0ε Lε+ = , where the 
shape factor L increases with particle aspect ratio (2L =  for a sphere, 12L =  for a 
4:1 aspect ratio spheroid [16]). This translates to a corresponding increase in bulk 
RI sensitivity: 

 
1

B md
d

2
ε

λ

LS n′= − . (53) 

The width w is not influenced directly by the shape factor, as can be seen from the 
way it was derived, (49)—(51). The changed resonance condition results in shift of 
of the peak wavelength into near infrared region (see plot of permittivity in Fig. 21). 
In this region, the imaginary part of the permittivity is considerably smaller than in 
the visible range. This leads to narrowing of the extinction peak and further 
improvement in the figure of merit, eq. (52). 

To explore these effects numerically, the extinction spectra of spheroidal particles of 
different sizes, aspect ratios and RI of medium have been computed using the 
FDTD method. From these spectra, the bulk RI sensitivity BS , width w and the 
figure of merit for bulk sensitivity Bχ  was obtained. These results are in Table 3 and 
Figure 11. 

 The polarization of the incident light was along the longer axis of the particles and 
the particles were oriented with their longer axis perpendicular to the wave-vector. 
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Figure 11: Extinction spectra of spheroidal gold particles of different aspect ratios 
and constant length (80 nm). Computed by FDTD. 

Size (nm) Aspect ratio Bulk sens. BS  Peak width w FoM B /χ S w=  

Aspect ratio dependence:  

140 × 47 1 : 3 449 67 6.7 

140 × 35 1 : 4 442 52 8.5 

140 × 23 1 : 6 595 35 17.0 

Size dependence:  

80 × 20 1 : 4 317 18 17.6 

140 × 35 1 : 4 442 52 8.5 

200 × 50 1 : 4 487 100 4.9 

Table 3: Bulk sensitivity, peak width and figure of merit for gold spheroidal parti-
cles of different sizes and aspect ratios. “Size” is length × width. Data computed 
by FDTD. 

In this orientation, the electric field of the incident wave changes in the direction of 
one of the two smaller axis. The 80 × 20 and 140 × 23 nm particles are then in the 
region of applicability of the electrostatic approximation. Comparing results for 
these particles with electrostatic results for spherical particles, the prediction given 
by Equation (53) is confirmed: the bulk RI sensitivity is 6 times higher for highly 
elongated (1:6) particles than for spheres. 
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Some trends can be observed from Table 3. With a fixed particle length and increas-
ing aspect ratio, the peak wavelength redshifts, the sensitivity increases and peak 
width decreases (due to decreasing imaginary part of metal permittivity). This 
results in three-fold increase in the figure of merit upon changing the aspect ratio 
from 1 : 3 to 1 : 6. 

With a fixed aspect ratio and increasing particle size, the sensitivity increases, but 
the peak width increases more quickly. Upon increasing the particle length from 80 
to 200 nm the figure of merit decreases more than three times. 

These results agree with experimental observations by Chen et al. [25] who 
achieved bulk refractive index sensitivity of 366 nm/RIU using gold nanorods with 
an aspect ratio of 5.2. The peaks in this work suffered significant inhomogeneous 
broadening  (~100 nm width), which decreases the figure merit. 

3.2.6 Comparison of LSPR and planar SPR sensors 

A theoretical comparison of bulk RI sensitivity, surface RI sensitivity and their 
corresponding figures of merit for LSP sensors with spherical particles of 80 nm 
diameter (Mie theory) and spheroidal particles of 80 × 20 nm (length × width) 
(FDTD) with SPR sensors with prism and grating couplers presented in Table 4. 

 

 
Bulk: BS  
(nm/RIU) 

Surface: 

SS (nm/RIU) 
10 nm layer 

Line width 
w (nm) 

FoM bulk: 

B /χ S w=  
FoM surf.: 

S /χ S w=  
Penetration 
depth (nm)* 

Au spherical, 
80 nm 

diameter  
160 70 100 1.6 0.7 10  

Au spheroidal, 
80 x 20 nm  320 – 18 18 ~8** – 

prism-coupled 
SPR, 750 nm 

*** 
5000 350 60 80 5.8 200 

grating-
coupled SPR, 
750 nm*** 

640 45 8 80 5.6 200 

Table 4: Comparison of performance related parameters of SPR and LSP sensors. 
*For LSP, the penetration depth is defined as the thickness of the layer at which 
the surface sensitivity is half of the bulk RI sensitivity. For SPR, it is defined as 
the distance from the interface at which the electric field intensity drops to 1/e. 
**Estimated under the assumption that the ratio of SS  for spheroid to spherical is 
the same as this ratio for BS  . ***Data taken from [20]. 
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In terms of figure of merit for bulk RI sensitivity, a LSP sensor based on spherical 
particles is clearly outperformed by conventional SPR sensors by a factor of 50, 
while a LSP sensor based on spheroidal particles only by a factor of 4. 

Regarding the figure of merit for surface RI sensitivity, a spherical particle LSP 
sensor still performs about 10 times worse; but the performance of a spheroidal 
particle based LSP sensor is comparable to that of conventional SPR sensors. 

Taking into account that advanced nanostructures with improved sensitivity [26, 43] 
and peak width [44] have been proposed, LSP sensors have the potential to be equal 
or better than SPR sensors in terms of performance characteristics. 
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4 Experimental 

In this Chapter, gold spherical nanoparticles in liquid solutions are studied by means 
of transmission spectroscopy. The shift of the nanoparticle transmission dip due to 
changes in refractive index profile of its dielectric environment is experimentally 
demonstrated. 

4.1 Materials 

The samples were obtained from Nanocs, Inc (New York, USA), product codes 
GNB30 and GNB50. They were spherical gold nanoparticles of diameter 30 and 50 
nm in aqueous solution, coated with a polymer layer to prevent aggregation and 
labeled with biotin, about 6 biotin molecules per particle, according to the 
manufacturers datasheet. 

4.2 Experimental setup 

Properties of the samples and their changes due to changes in their dielectric 
environment were characterized by means of transmission spectroscopy. The 
transmission spectra were measured on a setup depicted in Figure 12. Light from a 
halogen lamp (CLH500, Zeiss, Germany) is coupled into a multimode optical fiber 
(100 µm core diameter). The optical fiber illuminates a collimator, which creates a 
parallel beam. The beam is incident on micro-cuvette (Starna, USA) with 10 mm 
pathlength and 2 5×  mm optical window (100 µl volume), containing the liquid 
sample. The transmitted light is coupled into a collecting optical fiber (400 µm core 
diameter) using a GRIN lens (2 mm diameter) and brought into a spectrometer 
(MCS501 fiber spectrometer, Zeiss, Germany), which is connected to a PC. 
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Figure 12: A schematic of the experimental setup for measuring transmission 
spectra. 

The light source was left to stabilize for two hours. The samples in the cuvette were 
changed in-place, without removing the cuvette from its mount, to prevent problems 
with referencing. Between the measurements, the cuvette was repeatedly flushed 
with deionized water and dried by compressed air. 

The collecting optical fiber with GRIN lens was placed close to the micro-cuvette 
(5 mm) to minimize the influence of sample inhomogenities on the beam and its 
spectral composition. 

All displayed spectra have been divided by the transmission spectrum of their 
corresponding reference. A reference spectrum was measured after each sample. 

The positions of the transmission dip were determined by fitting a third degree 
polynomial to the dip (half of the dip’s depth was used) and taking the minimum of 
this polynomial as the dip position. 

4.3 Transmission spectra and comparison with Mie 
theory 

The transmission spectra of the solutions of 30 and 50 nm particles were measured 
with integration time of 350 ms and each displayed spectra was obtained by averag-
ing 170 spectra for a total time of 60 s. As a reference, the transmission spectrum of 
deionized water was used. Results are shown in Figure 13 and Figure 14. 
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Figure 13: Comparison of transmission spectra as measured for the 30 nm particle 
samples (Experimental) and as computed by the Mie theory. 
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Figure 14: Comparison of transmission spectra as measured for the 50 nm particle 
samples (Experimental) and as computed by the Mie theory. 

The transmission spectrum were also computed by the Mie theory. The transmission 
spectrum of a nanoparticle solution can be obtained from the extinction spectrum 
using [16] 

 ext ( )( ) e ndC λT λ −=  (54) 

where T  is transmission, n numeric concentration of the particles, extC  extinction 
cross-section of a particle, d  the light pathlength. extC  has been determined  by eq. 
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(22). Comparison of measured and computed transmission spectra for 30 nm gold 
particles can be seen in Figure 13 and Figure 14. 

Since the concentration of the samples was not known exactly, n was determined to 
result in the same transmission at the dip minimum as in the experimental spectrum. 
Specifically, 164.2 10n = ×  particles/ 3m  for 30 nm particles and 147.2 10n = ×  
particles/ 3m  for 50 nm particles. Because of this free parameter, we can only 
compare with experiment the relative value of extC  and not its absolute value. 

For 30 nm particles, the shape of the transmission spectrum is described well by the 
Mie theory using the permittivity model of gold shown in the Appendix. The dip 
position differs by 6 nm. This difference is caused by the permittivity model, as the 
properties of the nanoparticle gold might be different from those of bulk gold for 
which the experimental data on which the model is based were measured. Another 
reason could be the dispersion in size of the particles. 

The same conclusions apply to the 50 nm nanoparticles. The off-dip parts of the 
experimental spectrum probably show extinction by unknown species present in the 
sample. Unfortunately, the 50 nm samples also suffered from significant aggrega-
tion of the colloid particles before the measurement was made, which resulted in 
low free nanoparticle concentration and consequently very weak extinction (< 3 % 
dip in transmission). 

4.4 Sensitivity of dip position to medium refractive index 

In this measurement, the bulk RI sensitivity BS  of the transmission dip will be 
determined. For this, the position of the transmission dip for nanoparticle samples in 
solutions of different refractive index was measured. 

To change the RI of the solution in which the particles are immersed, the samples 
have been diluted by a series of water solutions of diethylene glycol (DEG) (Sigma-
Aldrich, USA) of increasing concentrations. 50 µl of the undiluted sample (GNB30, 
GNB50) was mixed with 200 µl of a DEG solution. The DEG concentrations were 
selected to yield concentrations of 0 %, 20 %, 40 % and 60 % (volume fraction) of 
DEG in the final nanoparticle solution. The RI of the DEG solutions was measured 
on refractometer DSR-λ  (Schmidt+Haensch, Germany). The RI of DEG was 
determined to be 1.4453 at 500 nm. As a reference, the transmission spectra of DEG 
solutions of said concentrations were used. 

Diethylene glycol (DEG) was selected to simulate appropriate changes in solution 
RI. High viscosity of DEG, however, caused problems with sample homogeneity. To 
obtain maximum homogenity, the samples were 

1. shaked on a laboratory shaker, 

2. let stand for an hour to homogenize by diffusion, 
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3. after injection into the cuvette, they were allowed 15 minutes to settle 
down 

To minimize the influence of residual inhomogeneity, the GRIN lens on the collect-
ing fiber was selected instead of an ordinary lens for its larger acceptance angle, 
which results in lower sensitivity to beam angular deviation.  

The transmission spectra were measured with integration time of 350 ms and each 
displayed spectra was obtained by averaging 170 spectra for a total time of 60 s. 

In Figure 15 and Figure 17 it is shown how the transmission spectra change with 
changing refractive index of the solution. In Figure 16 (B) and Figure 18 (B) the 
positions of transmission dips have been plotted against the refractive index of  
solution. These positions were obtained by fitting the dip by a third degree polyno-
mial and taking the minimum of this polynomial as the dip position. For fitting, 
only the portion of the dip from its minimum to half the dip’s depth was used. 
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Figure 15: Transmission spectra of 30 nm particles in solutions of different RIs. 
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Figure 16: A: Transmission spectra of 30 nm particles in solutions of different RIs 
normalized to have the same minimum value, showing the shift of the peak with 
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RI. B: Dependence of transmission dip position on solution RI. The line is only a 
guide to the eye. 
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Figure 17: Transmission spectra of 50 nm particles in solutions of different RIs. 
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Figure 18: A: Transmission spectra of 50 nm particles in solutions of different RIs 
normalized to have the same minimum value, showing the shift of the peak with 
RI. B: Dependence of transmission dip position on solution RI. The line is a guide 
to the eye only. 

 
The bulk RI sensitivity BS  has been estimated by linear fit of the dip position 
dependence on solution RI: 

30 nm diameter particles: B (92 6)S = ±  nm/RIU (Mie theory: 93 nm/RIU) 

50 nm diameter particles: B (150 30)S = ±  nm/RIU (Mie theory: 114 nm/RIU) 

(the errors here are determined by the linear fit). 

The value of bulk RI sensitivity for 30 nm particles is in good agreement with the 
prediction by Mie theory. For 50 nm particles, the agreement is much worse, which 
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is caused mainly by the very low concentration of free particles in the samples. This 
resulted in the transmission dip being very shallow. Then, any influence that 
contributes a slope to the spectrum can shift the apparent position of the peak 
significantly. These include extinction caused by other species in the sample (which 
couldn’t be accounted for by referencing) and the fact that due to residual 
inhomogeneity, the sample formed a gradient of refractive index and bent the beam. 
The beam shift resulted in change of overall intensity (Figure 17). Because of RI 
dispersion (chromatic aberration), this can also resulted in spectral change. This is 
visible for the 50 nm particle samples 

4.5 Sensitivity of dip position to presence of a 
biomolecular layer 

In this measurement, the sensitivity of the nanoparticle transmission dip to changes 
in the RI of a thin surface layer is demonstrated. Specifically, it is shown that 
nanoparticles can be used to detect the presence of streptavidin molecules in solu-
tion. The GNB30 nanoparticles are functionalized (labeled) by biotin molecules. 
Streptavidin and biotin are known for their high mutual affinity and create a very 
strong bond, one of the strongest non-covalent bonds [45]. After adding streptavidin 
molecules to a solution of biotin-functionalized nanoparticles, streptavidin is 
expected to bind to the particles via biotin and increase the average RI in a layer on 
the particle’s surface. 

The transmission spectrum was monitored continuously in this experiment. The 
spectra were measured with 350 ms integration time and with averaging of 15 
spectra, for a total measurement time of 5 s per one spectrum. These spectra were 
continuously loaded by a Matlab program created for this purpose, which processed 
them by dividing them by a reference spectrum (the transmission spectrum of 
deionized water) and fitting a third degree polynomial to the transmission dip to 
find the dip’s wavelength and depth. 

A solution of streptavidin (Sigma-Aldrich, USA) in water in a concentration of 0.5 
µg/ml was prepared. After starting the acquisition of transmission spectra, 200 µl of 
the streptavidin solution was added into 50 µl of 30 nm particles solution (as 
received, not diluted) and immediately after that, 200 µl of the resulting solution 
was injected into the micro-cuvette. 

Three experiments were performed. In the first two experiments, streptavidin was 
added to the nanoparticle solution as described above. To show that the change in 
dip position is due to the presence of streptavidin, a control experiment was run 
where the nanoparticle solution was only diluted by 200 µl of deionized water and 
200 µl of the resulting solution was injected into the micro-cuvette.  

The dependence of the dip wavelength on time is shown in Figure 19.  
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Figure 19: Detection of streptavidin by 30 nm particles – dependence of the posi-
tion of the transmission dip on time. Two identical experiments have been made 
(Exp. 1 and Exp. 2) and a control experiment (Control) with no streptavidin. The 
shift of the dip shows the binding of streptavidin onto the particles. 

In the first hour we observe a redshift of the minimum transmission of about 6—8 
nm which is caused by binding of streptavidin molecules to the particle surface.  

It can be seen in figure Figure 19 that the starting dip positions in experiments 1 and 
2, when compared to the control experiment, differ by 10 nm. This was possibly 
caused by Rayleigh scattering on streptavidin molecules, which contributed a slope 
to the spectrum resulting in an apparent shift of the transmission dip. 

Since four biotin molecules can bind to one streptavidin molecule, streptavidin can 
interlink the nanoparticles and thus induce aggregation. The aggregation is mani-
fested by decrease of free nanoparticle concentration and consequently the shallow-
ing of the transmission dip. This effect can be observed in Figure 20, where the 
depth of the transmission dip (i.e. transmission at the minimum) is plotted against 
time. After 4 hours, the colloid began to aggregate and after 12 hours, there was 
nearly no colloid left in the solution. This was not the case for the control experi-
ment. From the dependence of dip depth on time it can be seen that the majority of 
the dip wavelength shift occurred before any major changes in concentration. This 
shows that the shift in the wavelength was not due to these changes, which could 
have influenced the apparent position of the dip. 
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Figure 20: Detection of streptavidin by 30 nm particles – dependence of the depth 
of the transmission dip on time. Two identical experiments have been made (Exp. 
1 and Exp. 2) and a control experiment (Control) with no streptavidin. The in-
crease in transmission after 4 hours corresponds to aggregation of the particles. 
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5 Conclusions 

The phenomenon of Localized Surface Plasmons on metallic nanoparticles and their 
optical excitation has been studied both theoretically and experimentally.  Several 
theoretical approaches to analysis of localized surface plasmons and interaction of 
light with nanoparticles have been described. Spectral features of light interacting 
with the nanoparticle were studied. Special attention was given to  analysis of 
sensitivity of these features  to refractive index changes occurring at the surface or 
throughout the whole medium surrounding the nanoparticle and to width of the 
features. Both play an important role with respect to nanoparticles with LSP being 
used as a sensing platform. 

Using the electrostatic approximation, simple formulae showing the major factors 
influencing these parameters have been derived. Using the Mie theory, the FDTD 
method and the DDA method, the above mentioned parameters have been numeri-
cally computed for a range a particle sizes and sensing layer thicknesses. It was 
concluded that for sensing applications involving the use of layers less than 10 nm 
thick, 10 nm particle diameter is the best choice. For systems with thicker layers, 
particles in diameter range 80—100 nm have been found optimal. Finally, it was 
demonstrated that by using non-spherical particles of high aspect ratios a further 
(ten-fold increase) in the figure of merit can be achieved. 

In the experimental part of the work, a procedure and a laboratory setup for measur-
ing transmission spectra of liquid nanoparticle samples, along with associated data 
acquisition and analysis software was developed. This allowed comparison of the 
shape and position of the transmission spectra and theoretical predictions of Mie 
theory. Both were found to be in good agreement. Furthermore, experimental value 
of the bulk refractive index sensitivity was determined. For 30 nm diameter parti-
cles, it is in excellent agreement with theoretical prediction, yielding a value of 90 
nm/RIU. Finally, it was demonstrated that adsorption of streptavidin molecules 
results in a shift of the transmission minimum of up to 6 nm. 

Future work will be aimed toward further exploration of non-spherical metallic 
particles and, especially, toward the understanding of ordered metallic arrays and 
nanostructures. The complex interplay of localized surface plasmons and light 
offers numerous fascinating opportunities for further research in this direction.  
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7 Appendix 

7.1 Gold permittivity model 

In all numerical computations in this work, permittivity of gold is described by the 
model consisting of a Drude and a Lorentz term 
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A plot of this permittivity together with experimental data from [46] and [47] is 
shown in Fig. 21. 
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Fig. 21:. Permittivity of gold as a function of wavelegth.  Theoretical model and 
experimental data from [46] (CRC) and [47] (SOPRA). 
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7.2 The program mie.pymie.pymie.pymie.py 

This program implements the Mie theory as described in [48]. It requires the scipy 
scientific numerical library for the Python programming language. 
# 
# Implementation of the Mie theory 
# Pavel Kvasnicka, 2007-04-11 
# 
# source: Born, Wolf: Principles of Optics 
# 
 
from scipy import * 
# from numpy.oldnumeric import *  # for Python 2.4 
 
lam = 550e-9  # default wavelength 
nI  = 1.33  
nII = 0.57 + 2.45j  
a   = 15e-9  # particle radius 
 
maxl = 20  # number of terms to sum 
theta_samps = 15 # for numerical integration (includes endpoints) 
 
c_light = 3e8 
 
outname = 'extXlam20.dat' # outfile 
 
# special functions 
def psi(el,rho): 
    return sqrt(pi*rho/2) * special.jv(el+0.5, rho) 
 
def chi(el,rho): 
    return -sqrt(pi*rho/2) * special.yv(el+0.5, rho)  
 
def dzet1(el,rho): 
    return psi(el,rho)-1j*chi(el,rho) 
 
def psiD(el,rho): 
    def psil(rrho): return psi(el,rrho) 
    return derivative(psil, rho, dx=1e-5, order=5) 
 
def dzet1D(el,rho): 
    def dzet1l(rrho): return dzet1(el,rrho) 
    return derivative(dzet1l, rho, dx=1e-5, order=5) 
 
def legPm1(el,x): return special.lpmn(1,el,x)[0][1][el] 
def legPm1D(el,x): return special.lpmn(1,el,x)[1][1][el] 
 
# declare variables as global 
omg=lamI=lamII=kI=kII=q=n=0.01 
def dopocti_parametry(): 
    # compute other parameters 
    global omg,lamI,lamII,kI,kII,q,n 
    omg   = 2*pi*c_light/lam 
    lamI  = lam/nI 
    lamII = lam/nII 
    kI    = omg/c_light*nI 
    kII   = omg/c_light*nII 
    q     = kI*a 
    n     = nII/nI 
     
 
 
elfaktor = ones(maxl+1,Complex) 
def predpocitej_elfaktor(): 
    global elfaktor 
    for el in range(1,maxl+1): 
        elfaktor[el] = 1.j**(el+1) * (2.*el+1.)/(el*(el+1.)) 
 
 
eB = ones(maxl+1,Complex) 
mB = ones(maxl+1,Complex) 
def vypocti_koeficienty(): 
    global eB, mB 
    for el in range(1,maxl+1):  # range() behaves as if #2 is not present! 
        eB[el] = elfaktor[el] * (n*psiD(el,q)*psi(el,n*q) - psi(el,q)*psiD(el,n*q)) 
/ \ 
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                              (n*dzet1D(el,q)*psi(el,n*q) - 
dzet1(el,q)*psiD(el,n*q)) 
 
        mB[el] = elfaktor[el] * (n*psi(el,q)*psiD(el,n*q) - psiD(el,q)*psi(el,n*q)) 
/ \ 
                              (n*dzet1(el,q)*psiD(el,n*q) - 
dzet1D(el,q)*psi(el,n*q)) 
 
 
def ssin(x): # hack ;-) 
    s = sin(x) 
    if s != 0: return s 
    else: return 0.0000000001 
     
R1 = ones((maxl+1,theta_samps),Float) 
R2 = ones((maxl+1,theta_samps),Float)   #maxl+1: index 0 zustava nevyuzity 
def predpocitej_uhlovou_cast(): 
    global R1, R2 
    d_th = pi/(theta_samps-1)  # jsou tam i krajni body! 
    for el in range(1,maxl+1): 
        th = 0. 
        for i in range(theta_samps): # i = 0:theta_samps-1. theta_samps iteraci 
            # hack: 
            if th>pi*0.999999: th=th*0.99999 
            # v pi totiz legPm1D diverguje, ale *sin ma konecnou limitu. 
            # bohuzel numericky to nevychazi ;-) 
            R1[el,i] = legPm1D(el,cos(th))*sin(th) 
            R2[el,i] = legPm1(el,cos(th))*1/ssin(th) 
            th = th + d_th 
        # nakonec by melo byt th = pi + d_th. 
 
 
def Qsca_integraci(print_integrand=0): 
    "Vypocita Qsca pro aktualni parametry integracii vzdaleneho pole." 
    integrand = ones(theta_samps,Float) 
    osa_theta = ones(theta_samps,Float) 
    d_th = pi/(theta_samps-1) 
    th = 0. 
    for i in range(theta_samps): 
        th_slozka = 0. 
        phi_slozka= 0. 
        #print '(th=',th,')', 
        for el in range(1,maxl+1):  # for el=1:maxl 
            th_slozka += eB[el]*R1[el,i] - mB[el]*R2[el,i] 
            phi_slozka += eB[el]*R2[el,i] - mB[el]*R1[el,i] 
        integrand[i] = sin(th)*(th_slozka*conjugate(th_slozka) + 
phi_slozka*conjugate(phi_slozka)).real 
        osa_theta[i] = th 
        th = th + d_th 
    # 
    Qs = integrate.simps(integrand,osa_theta) * 1/(a**2 * kI**2) 
    if print_integrand: print 'integrand',integrand 
    return Qs 
 
def Qext_analyticky(): 
    "sig_ext podle B-W str. 661, eq (119)" 
    sig_ext = 0. 
    for el in range(1,maxl+1): 
       sig_ext += (-1.j)**(el+1) * el*(el+1)*(eB[el] + mB[el]) 
    sig_ext = sig_ext.real; 
    sig_ext = sig_ext*lamI**2 / (2*pi) 
    return sig_ext/(pi*a**2) 
 
def Qsca_analyticky(): 
    "sig_sca skoro podle B-W str. 661, eq (119) a podle toho pdfka..."\ 
    "\n tak ne... predelal jsem to vic na to pdfko :-)" 
    sig_sca = 0. 
    for el in range(1,maxl+1): 
       delitel = 1.j**(el+1) * (2.*el+1.)/(el*(el+1.)) 
       sig_sca += (2*el+1)*(abs(eB[el]/delitel)**2 + abs(mB[el]/delitel)**2) 
    sig_sca = sig_sca*lamI**2 / (2*pi) 
    return sig_sca/(pi*a**2) 
     
 
 
def zapis_xy_pole(jaky, kam): 
    f = open(kam, 'w') 
    for i in range(jaky.shape[0]): 
        f.write(str(jaky[i][0])+'    '+str(jaky[i][1])+'\n') 
    f.close() 
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diel_fce = ones((200,3),Float) 
# 
def nacti_diel_fci(jmeno_souboru): 
    global diel_fce 
    # 
    il = []  # index lomu 
    f = open(jmeno_souboru,'r') 
    lines = f.readlines() 
    for l in lines: 
        fields = l.split()       # Re n      Im n 
        il += [[ float(fields[0])*1e-6, float(fields[1]), float(fields[2]) ]]  # 
vnejsi zavorky se slejou s il 
    diel_fce = array(il) 
 
def interpoluj_il(pozad_lam): 
    levy=-1  # libovolne  
    pravy=-1 
    for i in range(len(diel_fce[:,0])): 
        if diel_fce[i,0] < pozad_lam:  
            levy=i 
        if diel_fce[i,0] > pozad_lam:  
            pravy=i 
            break #  
    # mame oboji 
    lev = diel_fce[levy] 
    prav = diel_fce[pravy] 
    return [lev[1] + (prav[1]-lev[1])*(pozad_lam-lev[0])/(prav[0]-lev[0]), \ 
            lev[2] + (prav[2]-lev[2])*(pozad_lam-lev[0])/(prav[0]-lev[0])] 
 
 
# **************************************************** 
# * Dependencies computation 
# **************************************************** 
 
def QextXlambda(lam_start, lam_step, num_steps): 
    "napocita zavislost Qext vs. lambda do pole" 
    # 
    global lam 
    global nII  # budeme menit z diel_fce 
    res = ones((num_steps,2),Float) 
    lam_local = lam_start; 
    for i in range(num_steps): 
        lam = lam_local # nastavime globalni 
        il  = interpoluj_il(lam) 
        nII = il[0] + il[1]*1j # nastavime globalni 
        dopocti_parametry() 
        vypocti_koeficienty()   # zmenilo se totiz q! 
        res[i][0] = lam 
        res[i][1] = Qext_analyticky() 
        lam_local = lam_local + lam_step 
        print '*', 
    return res 
 
 
def predpocty(): 
    predpocitej_uhlovou_cast() 
    predpocitej_elfaktor() 
    # 
    dopocti_parametry() 
    vypocti_koeficienty() 
 
 
def main(): 
    global a 
    global nI  # necessary 
 
    nacti_diel_fci('au_radan.dat') 
    nI=1.33 
    for d in range(20,121,20): 
       a = 0.5*d*1e-9 # polomer 
       predpocty() 
       QextXlambda_res = QextXlambda(lam_start=400e-9,lam_step=1.5e-9,num_steps=200) 
       zapis_xy_pole(QextXlambda_res, 'au133_ext'+str(d)+'.dat') 
       print d 
    nI=1.38 
    for d in range(20,121,20): 
       a = 0.5*d*1e-9 # polomer 
       predpocty() 
       QextXlambda_res = QextXlambda(lam_start=400e-9,lam_step=1.5e-9,num_steps=200) 
       zapis_xy_pole(QextXlambda_res, 'au138_ext'+str(d)+'.dat') 
       print d 
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    nacti_diel_fci('ag_palik.dat') 
    nI=1.33 
    for d in range(20,101,20): 
       a = 0.5*d*1e-9 # polomer 
       predpocty() 
       QextXlambda_res = QextXlambda(lam_start=400e-9,lam_step=1.5e-9,num_steps=200) 
       zapis_xy_pole(QextXlambda_res, 'ag133_ext'+str(d)+'.dat') 
       print d 
    nI=1.38 
    for d in range(20,101,20): 
       a = 0.5*d*1e-9 # polomer 
       predpocty() 
       QextXlambda_res = QextXlambda(lam_start=400e-9,lam_step=1.5e-9,num_steps=200) 
       zapis_xy_pole(QextXlambda_res, 'ag138_ext'+str(d)+'.dat') 
       print d 
 
main() 

 


