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Abstract

The main objective of this thesis is to inspect the abilities of the Ising model

to exhibit selected statistical properties, or stylized facts, that are common to

a wide range of financial assets. The investigated properties are heteroskedas-

ticity of returns, rapidly decaying linear autocorrelation, volatility clustering,

heavy tails, negative skewness and non-Gaussianity of the return distribution.

In the first part of the thesis, we test the presence of these stylized facts in

S&P 500 daily returns over the last 30 years. The main part of the thesis is

dedicated to the Ising model-based simulations and to discussion of the results.

New features such as Poisson process governed lag or magnetisation dependent

trading activity are incorporated in the model. We conclude that the Ising

model is able to convincingly replicate most of the examined statistical prop-

erties while even more satisfactory results can be obtained with appropriate

tuning.
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Abstrakt

Hlavńım ćılem této práce je zjistit, zdali je Ising̊uv model schopen reproduko-

vat vybrané statistické vlastnosti (někdy též stylizovaná fakta), které jsou ty-

pické pro širokou škálu finančńıch aktiv. Zkoumanými vlastnostmi jsou he-

teroskedasticita výnos̊u, rapidně klesaj́ıćı autokorelace, shluky volatilit, těžké
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chvosty, záporná šikmost a nenormalita rozděleńı výnos̊u. V prvńı části práce

testujeme př́ıtomnost těchto stylizovaných fakt̊u na denńıch výnosech indexu

S&P 500 za posledńıch 30 let. Hlavńı část práce je věnována Isingovým simu-

laćım a shrnut́ı souvisej́ıćıch výsledk̊u. Do modelu jsou také včleněny nové

prvky jako časová prodleva určená Poissonovým procesem či aktivita obchod-

ńık̊u ovlivněná velikost́ı celkové magnetizace. Docháźıme k závěru, že Ising̊uv

model je schopen spolehlivě replikovat většinu zkoumaných statistických vlast-

nost́ı, přičemž daľśıho zlepšeńı lze dosáhnout vhodnou modifikaćı modelu.
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Chapter 1

Introduction

Financial markets have undergone great transformation since the 1970s. With

the advent of electronic trading system, the volume of transactions escalated

and the geographical location of traders was no longer important. In 1973,

foreign currencies began to be traded in Foreign Exchange (FOREX) market

worldwide. As Mantegna & Stanley (1999) point out, the volume of FOREX

transactions in 1995 was 80 times higher than in 1973. Data from financial

time series are highly reliable and readily accessible to anyone which makes

them attractive to researchers not only from the field of economics but also, as

we shall see, from the area of physics.

Until the end of 1990s, economic systems were investigated mainly by

economists and mathematicians. Since then, however, the number of physicists

trying to explain economic phenomena with tools characteristic to statistical

mechanics has grown rapidly. One reason is that new discoveries in statisti-

cal mechanics, phase transition and non-linear dynamics over the last decades

may prove suitable for explaining and interpreting various economic processes.

The book by Mantegna & Stanley (1999), labelled by its publisher as the first

monograph on econophysics, provides basic introduction to financial analysis

targeted at researchers with background in physics. With reference to eco-

nomic processes, it accentuates the use of central limit theorem and law of large

numbers, discusses various distribution families of raw and logarithmic stock

returns, random walks, testing validity of Efficient Market Hypothesis (EMH),

scaling, option pricing, etc.

With the onset of computer-based analysis of the high-frequency financial

data, certain patterns or common statistical properties were exhibited by a lot

of mutually independent financial instruments and markets. Partial discussion
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of these can be found, for example, in works of Bollerslev et al. (1992), Brock

& De Lima (1995), Campbell et al. (1998) and Gopikrishnan et al. (2000).

Succinct overview of these properties, or stylized facts, with some empirical

examples is presented in a widely cited paper by Cont (2001). We chose this

work as a reference base for Chapter 2.

Even though the empirical stylized facts are commonplace in much of the

financial data, they are generally difficult to imitate with a specifically con-

structed model. Nevertheless, there has been a variety of more or less successful

attempts that are worth mentioning.

The Heterogeneous Agents Model (HAM), summarized for example by Brock

& Hommes (1998), Hommes (2006), or Baruńık et al. (2009) and used frequently

in the works trying to model financial processes, is a behavioural agent-based

model with emphasis on different expectations of each agent (we speak of he-

terogeneity of expectations, investment strategies and so on). As opposed to

traditional rational expectation theory, the HAM assumes imperfect knowledge

of market fundamentals, bounded rationality and high cost of information lead-

ing to erroneous and biased decisions of the agents. As Simon (1978) suggests,

this type of behaviour is more realistic than assuming perfect rationality of

agents.1 The argument is that agents do not have the ability to acquire and

evaluate all the information that is necessary to make a correct investment deci-

sion into the future. The agents rather adopt simple, straightforward strategies

based on their not always rigorously stipulated decision rules. Last but not

least, the development in computer science and mathematics has allowed for

numerical simulations of the HAM that was not possible before the 1970s.

Several HAM originated models have been introduced over the last decades.

Among these are agent-based models as pioneered in works of Caldarelli et al.

(1997) and Lux & Marchesi (1998) or minority games models elaborated by

Challet & Zhang (1997), Challet et al. (1999) and Challet et al. (2001). The

pitfall of these otherwise well designed models is relatively high difficulty and

excessive parametrisation that hinders simple analytical tractability. Another

branch of literature concerns spin models that also comprise the Ising model.

General spin model was described by Chowdhury & Stauffer (1998), the Ising

model-based simulations with many extensions were carried out mainly by Iori

(1999), Bornholdt (2001), Kaizoji et al. (2002), Sornette & Zhou (2005), Sieczka

& Ho lyst (2007) and many more.

1Nevertheless, rational expectations and EMH had been the basic paradigms in economic
theory until relatively recent times.
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There are various advantages of using the Ising model. Most prominently,

all models referenced in the literature describe two counteracting forces exerted

upon agents – the herding behaviour driving them to act in conformity and the

tendency to stay in minority where profits are realizable. While the former

force evokes setup of agent-based models, the latter is essential in all minority

game simulations. The Ising model as presented in this thesis is thus a synthesis

of both above mentioned models while preserving the simplicity needed for an

easy-to-understand evaluation. The major contribution of this thesis lies in

collection, sorting and mutual comparison of so far described variants of the

Ising model, in introducing many new extensions and upgrades of the model as

well as in suggestions for additional modifications.

The structure of the thesis is as follows. In Chapter 2, we investigate pres-

ence of some of the stylized facts in real data. We state reasons for choosing

Standard and Poor’s 500 (S&P 500) as the reference index and list the properties

we are about to contemplate. Chapter 3 is dedicated solely to the Ising simu-

lations. We describe the features of the model, define parameters and compare

the results of the simulations for different types of models. The ability to mimic

selected statistical properties of the real financial data is also discussed within

each section.

Majority of the regressions, statistical tables and analyses are performed

using Stata software while all the scripts needed for simulations of the Ising

model are written in Wolfram Mathematica. Figures and charts are also pro-

duced in Wolfram Mathematica software. Finally, some of the post-estimation

analyses such as Jarque-Bera (JB) or Ljung-Box tests are carried out in Gretl.

All scripts, do files and Wolfram Mathematica notebooks, necessary for under-

standing the principles of the simulations, are available upon request.



Chapter 2

Statistical properties of financial

markets

There is a wide range of statistical properties, often called stylized facts as

proposed by Cont (2001), that are common to most financial instruments and

markets. The aim of this chapter is to inspect and describe the price variation

on the S&P 500 index along with testing the presence of the stylized facts on

this stock market. The properties under scrutiny are absence of autocorrelation

in returns, slow decline in autocorrelation of absolute returns with increasing

lag, heteroskedasticity and heavy tails of returns distribution, aggregate nor-

mality of such distribution, volatility clustering, etc. We begin with statistical

description of the S&P 500 index in Section 2.1 and then proceed to inspection

of each stylized fact in corresponding subsections.

2.1 Standard & Poor’s 500 index

The S&P 500 index consists of 500 leading companies from various industry

sectors of the US economy and is traded on the two biggest stock exchanges

in the world (sorted by market capitalisation), i.e. on NYSE and on NASDAQ.

It is a market value weighted index which means that each stock is weighted

adequately to the market value of the firm. The S&P 500 is seen as the most

representative index of the US large cap companies.

We gathered daily data for the S&P 500 index over the last thirty years.

The data range from January 2, 1981 to November 11, 2011. The overall

development of the price P and daily returns (as defined in Equation 2.1 for
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∆t = 1) are depicted in Figure 2.1.1

r∆t(t) = log(Pt)− log(Pt−∆t) (2.1)

The S&P 500 index clearly reflected all major events and crises. During Black

Monday on October 17 in 1987, the price fell by more than 22%, the largest

one-day drop in the history of the index. The S&P 500 index enjoyed a period of

accelerating growth during the Dotcom bubble in late 1990s with subsequent

long lasting descend. The financial crisis of 2007-2009 saw another significant

fall in prices but since then the index has grown incessantly. The daily returns

clearly show signs of clustered volatility which will be described formally in

later subsections. Main characteristics of the S&P 500 index, daily log-returns

and daily absolute log-returns are summarized in Table 2.1. The table suggests

strongly leptokurtic distribution of the daily log-returns and negative skewness.

Note that the lowest value of daily returns is slightly less than 20 standard

deviations away from the mean value. If the distribution of returns were normal,

the probability of occurrence of such extreme values would practically equal

zero. We will now test the presence of stylized facts in these data.

1980 1990 2000 2010

200

400

600

800

1000

1200

1400

1600

(a) S&P 500 Index 2001-2011

1980 1990 2000 2010
-0.10

-0.05

0.00

0.05

0.10

(b) S&P 500 daily returns 2001-2011

Figure 2.1: S&P 500 index and daily returns

1There are several reasons for using logarithmic returns instead of raw returns. These
include time additivity and easier mathematical manipulation while showing only negligible
deviation from raw returns for small ∆t. For more thorough discussion of compound returns
see Meucci (2010).
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Variable Mean Std. Dev. Min. Max. Skewn. Kurt. N
index 708.94 464.05 98.22 1565.15 0.196 1.48 8034
r1 0 0.012 -0.229 0.11 -1.19 29.69 8033
|r1| 0.0077 0.0086 0 0.229 4.94 73.37 8033

Table 2.1: Summary statistics for S&P 500

2.1.1 Linear autocorrelation of daily returns

First, we define the sample Autocorrelation Function (ACF) as:

ρ(τ) =

∑T
t=τ+1(rt − r̄)(rt−τ − r̄)∑T

t=1(rt − r̄)2
(2.2)

where r is the return, τ is the time lag and r̄ = 1
T

∑T
t=1 rt is the time average.

We computed the values of the ACF for τ ∈ {1, . . . , 150} and summarized them

graphically in Figure 2.2. We also included the 95% confidence intervals around

zero. Here the null hypothesis is that there is no autocorrelation for given

lag on 5% significance level. If the null holds, the distribution of correlation

estimates asymptotically approaches normal distribution with increasing lag.2

The critical value of correlation for the 95% significance equals to 0± 1.96/
√
T

where T is the sample size (in our case T = 8033). In Figure 2.2, the confidence

intervals form a dashed belt approx. 0.0435 wide. We observe that sample

correlations at several lags are significantly different from zero which seems to

contradict the stylized fact of no autocorrelation of returns.

20 40 60 80 100 120 140
Τ

-0.06

-0.04

-0.02

0.00

0.02

Figure 2.2: Linear autocorrelation of S&P 500 daily returns with 95%
CIs

2To ensure such asymptotic convergence, the assumption of covariance stationarity of the
time series must also hold. As we shall see later, this assumption is fulfilled only asymp-
totically. Treatment of non-stationarity and further issues are partly discussed in Subsec-
tion 2.1.6.
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We also tested the presence of autocorrelation via the Ljung-Box test. Under

the null the returns are independently distributed and no non-zero autocorre-

lation may occur. The p-value of the Q-statistic for any given lag practically

equals to zero and the null hypothesis is rejected. See Ljung & Box (1978) for

definition and application of the test.

In our data, the autocorrelation of returns proved statistically significant.

Nevertheless, it is questionable whether ACF values ranging from approximately

-0.04 to 0.03 carry any economic importance. Furthermore, the calculation of

confidence intervals relies on the rarely met assumption of normality (discussed

in Subsection 2.1.6).

Even though absence of autocorrelation is listed as one of the stylized facts,

we cannot say it generally holds for any ∆t in Equation 2.1. For example,

Gopikrishnan & Plerou (1999) and Cont (2001) suggest that autocorrelation

disappears for ∆t in order of seconds or minutes.3 For ∆t > 1 day, the speed

of autocorrelation decay varies from sample to sample.

2.1.2 Autocorrelation of absolute returns

Various non–linear correlation functions were proposed to capture the difference

between the asset returns and white noise (Cont, 2001, p. 229). We will work

with sample ACF of absolute values of returns, defined as:

ρA(τ) =

∑T
t=τ+1(|rt| − |r|)(|rt−τ | − |r|)∑T

t=1(|rt| − |r|)2
(2.3)

Such definition is used as a measure of memory in volatility. To illustrate this,

we decompose returns into its magnitude and sign:

rt = sgn(rt)|rt| (2.4)

The autocorrelation plotted as a function of τ is shown in Figure 2.3.

We see that the the autocorrelation of absolute returns is fairly high for

τ ≤ 30 and remains positive for all analysed lags. Slow decay in the functional

values can be regarded as a sign of volatility clustering. This means that

phases of high volatility today will be most likely pursued by phases of high

volatility tomorrow, the day after tomorrow and so on. The CIs are not included

3It is necessary to point out that there were also studies that showed non-zero autocorre-
lation for very short ∆t. See, for example, Andersen & Bollerslev (1997).
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20 40 60 80 100 120 140
Τ

0.05

0.10

0.15

0.20

0.25

0.30

Figure 2.3: Autocorrelation of S&P 500 absolute daily returns

in Figure 2.3 since the distribution of absolute returns does not in any way

approach normal distribution.

The autocorrelation functions often exhibit various repetitive patterns with

increasing τ . If we plotted the values of our autocorrelation function up to τ =

500, for example, the patterns would also stand out. These regular fluctuations

are most likely caused through periodicity which is more pronounced for intra-

day market data as seen on various examples in Andersen & Bollerslev (1997).

It was observed (for example Cont et al., 1997) that the decay of auto-

correlation of absolute returns is asymptotically proportional to a power-law

function

ρA(τ) =
A

τα
(2.5)

where A and α are parameters with α empirically identified to lie between 0.2

and 0.4. The α parameter is characteristic for long-range dependent processes.

We also compared the decay of autocorrelation to exponential function, defined

as

ρA(τ) =
B

exp(βτ)
(2.6)

where B and β are also parameters with β typical for short-range depen-

dent processes. For comparison of the two reference functions, see Kantelhardt

(2009). For the S&P 500 returns, α and β were found to equal approximately

0.12 and 0.0096, respectively. The comparison for A = 0.137 and B = 0.24

is depicted in Figure 2.4. Since power-law is an asymptotic property, we are

interested in the behaviour of the ACF for high values of τ . Henceforth the

fitted power-law function is always computed with values for τ ≥ 60. It seems
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the power-law fit is more suitable to approximate the behaviour of the ACF for

high τ . However, its dominance is probably not as unambiguous as expected

or generally claimed.

20 40 60 80 100 120 140
Τ

0.10

0.20

0.30

0.15

Figure 2.4: Semi-log plot of decay of autocorrelation in absolute re-
turns (blue), including fitted power-law (purple) and ex-
ponential (purple) functions as defined in Equation 2.5
and Equation 2.6, respectively.

It is suitable to mention many other functional forms that were inspected

throughout the literature. These include logarithms, trigonometric functions

or powers of higher order. For further discussion of functional forms within

autocorrelation see Comte & Renault (1996).

2.1.3 Heteroskedasticity of returns

Simply by looking back at Subfigure 2.1(b) we see that the variance of re-

turns does alter with time. To detect heteroskedasticity, we choose to perform

Autoregressive Conditional Heteroskedasticity (ARCH) test as proposed by En-

gle (1982). Though the presence of ARCH does not necessarily imply that

Var(uit) = σ2
it, it does mean that there is a certain dynamic form of hetero-

skedasticity that would have to be considered for further regressions or data

analyses. Presence of ARCH only implies local non-stationarity whereas asymp-

totic stationarity of the model is not affected.

Assuming that returns have zero mean and no autocorrelation is present,

the ARCH(q) model is specified as follows:

r2
t = γ0 +

q∑
i=1

γir
2
t−i + ut (2.7)

where ut is an independent identically distributed (iid) sequence with zero mean
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and variance equal to σ2
u. Using Stata software, we performed ARCH(q) tests

for q ∈ {1, . . . , 4}. All the lags proved to be significant up to q = 4. The results

are summarized in Table 2.2. Only the results for ARCH(4) test are presented.

Table 2.2: ARCH(4) test results

S&P 500 returns

ARCH
L.arch 0.0993∗∗∗ (16.54)
L2.arch 0.188∗∗∗ (17.77)
L3.arch 0.177∗∗∗ (15.50)
L4.arch 0.204∗∗∗ (17.48)
cons 0.0000441∗∗∗ (46.34)

N 8033

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

The null hypothesis for the ARCH test is H0 : γi = 0 for i ∈ {1, . . . , q}. As

Table 2.2 suggests, we strongly reject the null in all four cases even on 0.1%

significance level. The ARCH(4) is present.

We also estimated the Generalized Autoregressive Conditional Heteroskedasticity

(GARCH) test introduced by Bollerslev (1986) and well explained by Engle

(2001). We use the GARCH(p,q) model described by Calvet & Fisher (2008):

rt = εt
√
ht (2.8)

ht = α +

p∑
i=1

βiht−i +

q∑
j=1

γjr
2
t−j (2.9)

Here, the log returns rt are modelled by iid standard normal random vari-

able εt scaled by the conditional variance of rt at time t − 1 labelled as ht.

This variable follows autoregressive process and is determined by past squared

returns r2
t . In our case, we computed the GARCH(1,1) model.

As seen in Table 2.3, the GARCH(1,1) effect is also very significant. More

information about GARCH models can be found in Subsection 2.1.6.

2.1.4 Heavy tails and normality

About a half century ago, Mandelbrot (1963) emphasized the non-Gaussian

character of empirical returns. The reason he states is that “the empirical
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Table 2.3: GARCH(1,1) test results

S&P 500 returns

ARCH
L.arch 0.0780∗∗∗ (43.75)
L.garch 0.913∗∗∗ (314.04)
cons 0.00000133∗∗∗ (10.93)

N 8033

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

distributions of price changes are usually too peaked to be relative to samples

from Gaussian populations.” As we shall see, the same issue arises in our case.

As can be inferred from Table 2.4, the sample kurtosis index of S&P 500 daily

log returns equals to 29.69. Given that the kurtosis of the normal distribution

is always 3, the distribution of returns has much heavier tails than normal

distribution. This means that the extreme values (far from the mean) are

more likely to occur than under the normal distribution with corresponding

expected value and variance.4 We found the empirical Probability Density

Function (PDF) of standardized returns using Smooth Kernel Estimation and

compared it with the normal PDF with zero mean and unit variance. Both PDFs

are plotted in Figure 2.5.

We also ran the JB test of normality introduced by Jarque & Bera (1980).

The null hypothesis is that both skewness and excess kurtosis (i.e. kurtosis

minus three) of the investigated distribution are zero. For our data the p-

value of the test is practically zero and the null is rejected at any reasonable

significance level.

Even though it is not too hard to approximate the distribution of returns,

its precise form has been subject to many attempts throughout the literature.

Suggestions include Student, hyperbolic or Wald distributions (Cont, 2001).

Blattberg & Gonedes (1974) and Eberlein et al. (1998) provide a thorough

discussion of further potential distribution families.

4The empirical kurtosis may actually reach far higher values. For certain daily stock
returns, Pagan (1996) identified kurtosis over 200. At the same time, however, it is necessary
to ponder these results with caution as they are very sensitive to data censoring. After
dropping the maximum observation, for example, kurtosis may drop by more than half.
Generally speaking, the smaller the ∆t in Equation 2.1 the more pronounced are the non-
Gaussian properties of return distributions.



2. Statistical properties of financial markets 12

-2 0 2 4

0.1

0.2

0.3

0.4

0.5

0.6

Normal

SP 500

Figure 2.5: Standardized empirical distribution of the S&P 500 daily
log returns

2.1.5 Aggregate normality

Even though it is common that the empirical distributions of daily returns do

not resemble normal even for large samples, it has been suggested by Cont

(2001) that with increasing ∆t in Equation 2.1 the distribution of returns does

approach normal. We computed the logarithmic returns for various lags and

summarized their statistical properties in Table 2.4.

Variable Mean Std. Dev. Min. Max. Skew. Kurt. N
Lag 1 0 0.012 -0.229 0.11 -1.19 29.69 8033
Lag 4 0.001 0.023 -0.336 0.165 -1.90 32.05 2007
Lag 8 0.002 0.03 -0.237 0.114 -1.13 10.06 1003
Lag 16 0.005 0.043 -0.234 0.156 -1.36 9.66 501
Lag 64 0.02 0.087 -0.367 0.291 -1.30 8.19 124
Lag 128 0.04 0.122 -0.449 0.277 -1.33 6.22 61

Table 2.4: Summary statistics for S&P 500 at different time lags.

While the mean remains very close to zero for all lags, the standard deviation

σ increases with lag as expected, roughly following the rule σ(∆t) = σ(1)
√

∆t,

where σ(1) is the standard deviation of returns for lag 1. The skewness hovers

around −1.3 which indicates that occurrence of lower negative values is more

probable than occurrence of the positive ones. This is also supported by the

list of minimum and maximum values. In all cases, |min| > |max|. The only

sustaining argument for aggregate normality is thus decreasing kurtosis. By

performing JB test, however, normality is still strongly rejected for any lag

even though the test statistic decreases with increasing lag. We conclude more

observations would be needed to accurately assess the issue of normality in
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our data. The negative skewness and other properties are well illustrated by

PDFs of empirical distributions of the log returns in Figure 2.6. The dashed

line belongs to standard normal PDF. The distributions were found by Smooth

Kernel Estimation.
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Lag 128
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Figure 2.6: Empirical distributions of standardized S&P 500 log re-
turns for various values of ∆t. The dashed line is standard
normal distribution.

2.1.6 Validity and statistical issues

To compute autocorrelations of returns, the assumption of covariance station-

arity is needed. By confirming presence of ARCH and GARCH, we conclude this

assumption is fulfilled only asymptotically and thus all statistical tests per-

formed on returns might be questionable. Nevertheless, it is possible to modify

the data in the following way. We introduce a new variable xt, defined as

xt =
rt
ht

(2.10)

where rt are the S&P 500 daily log returns as plotted in Figure 2.1 and ht is the

conditional variance of xt. The variable xt is already cleared off the GARCH

effect and should be homoskedastic, covariance stationary and thus suitable

for calculation of autocorrelations. However, this assumes that some specific

form of ARCH or GARCH is actually the true model for conditional variance

process, which is an issue beyond the scope of this work. We might also discuss

the relevance of ACF of |rt| since these are likely to be non-stationary. Once

again, however, this would account for a whole new paper. Thus, the main

goal of the thesis is still reserved to comparing statistical properties of returns
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generated by our model with the real-world observed data which are mainly

obtained from raw log returns. Therefore, we only use raw returns in the rest of

this work while focusing on standard stylized facts without further discussion

of their statistical correctness.



Chapter 3

Ising model-based simulations

In this chapter, we present various approaches to modelling statistical prop-

erties that are characteristic to financial markets. At the beginning of each

section we describe the general features of the simulated model and the dy-

namics it should follow. In following subsections we specify all the parameters

and conditions under which the simulations were performed and decide whether

the statistical properties of the simulated data are consistent with our expec-

tations, i.e. whether they approximate the properties obtained from real data.

For the sake of easier comparison, we placed tables with all relevant statistics

together in Appendix A. Due to lack of space within body of the text, plots

related to aggregate normality of returns are also included in Appendix A.

3.1 Simple Ising model

The Ising model is a ferromagnetic model in statistical mechanics consisting

of discrete integer variables, called spins, organized in a lattice. The spins can

only take values −1 and +1. In the economic terminology we can perceive the

+1 spin as a buyer and −1 as a seller.

3.1.1 Description of the model

We start with the modified Ising model as first defined in Bornholdt (2001).

The spins are organized in a squared lattice of k×k dimension. Let si(t) denote

the spin value on the i-th position in the lattice at time t ∈ {0, . . . , T}, and

i ∈ {1, . . . , k2}. The total magnetisation of the system at time t is given as
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M(t) =
1

k2

k∑
j=1

sj(t). (3.1)

The total magnetisation can be viewed as the general mood or tendency of the

whole market and is computed as a simple average of all spins. The interme-

diary between total magnetisation and neighbouring forces is the local field hi.

It is defined as

hi(t) =
k∑
j=1

Jijsi(t)− αsi(t) |M(t)| , (3.2)

where α > 0 is the global coupling constant, Jij = 1 for close neighbours of si

(but not si itself) and Jij = 0 otherwise. Whereas the first term tends to align

the value of si with its neighbours, the second term (beginning with α) does the

opposite. The higher the absolute total magnetisation is, the higher the chance

it will force si to flip its spin is. We say the first term induces ferromagnetic

order as it helps si imitate the behaviour of its neighbours while the second

term induces anti-ferromagnetic order since it tempts si to change the value of

its spin. The predefined constant α amplifies (α > 1) or mitigates (α < 1) the

strength of the magnetisation.

The local field hi summarizes the two counteracting inclinations of the agent

i. The first is that the decision to buy should be made only if everybody

else also decides to buy. Thus the first term in Equation 3.2 stands for the

herding behaviour. The conflicting tendency (represented by the second term

in the equation) is that only being in the minority of traders could possibly be

beneficial for the agent. This is reminiscent of the minority game as described

in Challet & Zhang (1997).

In our simulations, neighbours of si(t) are four sites adjacent to si(t) on both

horizontal and vertical axis. The structure of neighbours on borderline sites is

illustrated in Figure 3.1. This system is called Periodic boundary conditions.

Figure 3.1: Periodic boundary conditions
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The spins in the lattice are updated according to the following formulae:

si(t+ 1) = +1 with p =
1

1 + exp(−2βhi(t))
(3.3)

si(t+ 1) = −1 with 1− p (3.4)

where p is the probability of a spin flip and β is a parameter. The proba-

bility p can be regarded as the Cumulative Distribution Function (CDF) of the

independent variable hi. The function is plotted in Figure 3.2 for various val-

ues of β parameter (unrelated to β in Equation 2.5). Higher value of β implies

higher slope of CDF around zero. One can discern that for high β even a small

increment in local field hi leads to a great jump in probability of a spin flip to

+1. In other words, β parameter partially regulates the measure of volatility

during the simulation process as it controls the intensity of reaction to changes

in the local field hi.
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Figure 3.2: The CDF as defined in Equation 3.3 for four values of β.

To imitate the stylized facts observed on financial markets we are mainly in-

terested in the distribution of returns. Since the total magnetisation as defined

in Equation 3.1 can also take zero or negative values, we cannot use logarithmic

returns as a measure of relative change. Instead the return is simply defined as

r∆t(t) = M(t)−M(t−∆t), (3.5)

as proposed by Sieczka & Ho lyst (2007).
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3.1.2 The simulation

In our first simulation we work with a 2-dimensional 32 × 32 lattice. In each

time period t ∈ {0, . . . , 106}, randomly chosen spin was updated according to

Equation 3.3.1 The parameters in our simulation are α = 20 and β = 1.2 A

randomized matrix is used at time t = 0, i.e. si(0) = 1 with p = 0.5 for all i.

Since this matrix is not a result of our simulation we allow for a warm-up stage

(t ≤ 200 000).

The returns r∆t were computed in two different ways. First, we let ∆t = 100.

This time span is sufficient for observing patterns in return distribution. It is

also more realistic to compare r100 to daily returns on stock exchange as there

are many traders selling or buying during one specific time period. We further

loosened this parameter by letting the lag ∆t follow a Poisson process with

mean 100. This allows for higher flexibility in the number of participants in

each round. Also, letting 100 agents participate in trade during one time period

allows us to refer to r100 or r100k as “Lag 1” and “Lag k” returns, respectively.

This notation will be used often throughout the rest of this work.

If the r1 were computed, we would obtain a very limited set of information

because the lattice at time t may differ from the lattice at time t − 1 only

in one single site at most. For example, by computing r100 instead of r1 we

assume 100 traders participate in trade during one time period. Hence we

obtain 106/100 = 10 000 returns less 2 000 dedicated to warm-up stage. These

numbers may differ slightly in case of the Poisson process. In any case, all plots

depicting returns always range from 2000 to approximately 10 000.

Figure 3.3 shows the standardized returns after 106 iterations. It does not

alter fundamentally from Figure 2.1. The easily perceptible stages of stable

returns are occasionally interrupted by short periods of high volatility (called

intermittent phases). The main differences between the two plots is that the

Poisson process governed time lag allows for even higher occasional returns.

Four snapshots taken during the simulation with r100 are shown in Fig-

ure 3.4. In the first and third picture, the agents are mainly influenced by their

neighbours and total magnetisation plays marginal role in the decision process.

In economic terms, this imitates relatively stable development on financial mar-

kets with no or weak influx of important information. The second and fourth

1Each spin in the lattice carries the same weight and thus can be chosen with equal
probability 1/k2.

2These parameters were chosen to accent the phases of high volatility. For these values
the simulation process most closely replicates the real-world data.
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picture, however, show unstable intermittent phases where the role of neigh-

bours is ambiguous and global magnetisation reaches extreme values. These are

phases of high volatility that follow advent of new information into the market.

After the new piece of information is embraced, stability is re-established and

no extreme returns occur anymore.
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(a) Standardized returns r100 for t divisible by 100.

4000 6000 8000 10 000

-4

-2

0

2

4

6

(b) Standardized returns r∆t for ∆t following POI(100).

Figure 3.3: The returns for r100 and r∆t with ∆t ∼ POI(100).

228 322 495 287 596 972 706 960

Figure 3.4: Four snapshots taken during stable (first and third pic-
ture) and intermittent phases (second and fourth picture).
The number above represents the time at which the snap-
shots were taken.

We now investigate some of the statistical properties of returns. Following
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the same procedure as in Subsection 2.1.1, we examine the form of autocorre-

lation function for τ ∈ {1, . . . , 150}.

20 40 60 80 100 120 140
Τ

-0.02

0.00

0.02

(a) ACF for r100 returns.
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(b) ACF for returns with lag ∼ POI(100).

Figure 3.5: Correlation of r100 and r∆t with ∆t ∼POI(100).

As Figure 3.5 may suggest, the results do not differ much from the analysis

of S&P 500 returns (Figure 2.2). The confidence interval, defined as ±1.96/
√
T

for T = 8 000, equals to 0.022 for both r100 and Poisson process lag returns.

The Ljung-Box test also helped to reject the null hypothesis that returns are

independently distributed and no autocorrelation is present. The summary of

all the important statistics is presented in Table A.1. Note that mean and

standard deviation are not included since we work with standardized returns

for easier comparison. The mean and standard deviation are always equal to

zero and one, respectively. Instead we include the Ljung-Box Q-statistic for the

150th lag and the JB test statistic. The 5% critical region for the Q-statistic is

Q > χ2
0.05(150) = 179.581. For large samples the critical region for JB statistic

equals to JB > χ2
.05(2) = 5.99. For lag 1, the p-value of both tests is almost zero

so the null hypotheses of no autocorrelation and normality are rejected. For

higher lags the Q-statistic is still too high, but JB statistic gradually decreases

for both regular and Poisson lags. Furthermore, for both types of returns at

lag 64 the JB statistic equals to 4.108 and 2.599 with p-values of 0.103 and

0.219, respectively. In other words, the normality of returns is not rejected.

This suggests that the distribution of returns approaches normal distribution

with increasing lag. The plots of PDF of empirical distribution of returns are

given in Figure A.1.

With the autocorrelation function for absolute returns already defined (Equa-

tion 2.3), we plot its value to see the speed of autocorrelation decay. We used

semi-log scale plot to accent the difference between power-law and exponential

fits for higher τ . Since autocorrelation decay is an asymptotic property, we

focus on the fitting the reference functions for high values of τ . As such, the
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Variable A α B β
r100 0.201 0.152 0.249 0.007
POI(100) 0.193 0.193 0.251 0.009

Table 3.1: Parameters of the fitted power-law and exponential func-
tions for the ACFs of absolute returns as shown in Fig-
ure 3.6.

power-law function seems to provide a more precise fit in the case of r100 as can

be seen in Figure 3.6. For the Poisson lag, the correlation of absolute returns

seems to decay too fast and is rather approximated by the exponential fit. The

parameters for the fitted functions (described in Equation 2.5 and Equation 2.6)

are given in Table 3.1. Note that values of both α parameters are fairly close

to the α parameter of the S&P 500 returns (discussed in Subsection 2.1.2).
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(a) ACF for r100 absolute returns.
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(b) ACF for absolute returns with lag follow-
ing POI(100).

Figure 3.6: Correlation of absolute r100 and POI(100) lag returns from
the simulation of simple the Ising model plotted on a semi-
log scale. Power-law (purple) and exponential (green) fits
are presented.

3.2 Simple model with a strategy spin

The local field as defined in Equation 3.2 is a special version of a generalized

local field containing a strategy spin Ci:

hi(t) =
k∑
j=1

Jijsi(t)− αCi(t)M(t). (3.6)

The value of Ci depends on individual preferences of each agent. If Ci(t) =

+1 ∀t, then the agent i always seeks to be a minority trader. For example, if

M(t) is positive, i.e. the majority of spins at time t are equal to 1, then the
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second term in Equation 3.6 is negative and decreases the value of local field.

Holding the first term of Equation 3.6 unchanged, this lowers the probability

of opting for +1 at time t+ 1, as can be inferred from Equation 3.3.

The agents with strategy Ci(t) = Ci = +1 believe that the reason they

struggle to be in the minority is that, unlike the majority of traders, they

know the true, intrinsic value of the traded stock. These agents are called

fundamentalists. Agents with an opposite strategy, i.e. Ci(t) = Ci = −1, are

called chartists (or noise traders) and they prefer to act like the majority of

traders as proposed by Bornholdt (2001). It is noteworthy that the first division

of agents into fundamentalists and chartists was already common in many HAM

models described in Chapter 1.

If we ran the test from Subsection 3.1.2 again with modified local field (as in

Equation 3.6), we may obtain two different results. For Ci = −1 the results are

not too interesting since both terms in Equation 3.6 induce ferromagnetic order.

The returns rk quickly fall to zero for any integer k > 0 and the magnetisation

matrix consists only of 1’s or −1’s. For Ci = 1 the process stabilizes at certain

spin structure. The returns are negligible and no sudden bursts of volatility as

seen in Figure 3.3 may occur.

It would be more realistic to allow agents choose which strategy to follow

in each round. It remains yet to define the transition rule between the two

strategies. If we assume all agents choose the riskier strategy to expect higher

potential returns, Bornholdt (2001) defines the transition rule as

Ci(t+ 1) = −Ci(t) if si(t)Ci(t)M(t) < 0. (3.7)

Here, majority of traders always choose Ci(t) = 1 while minority of them always

pick Ci(t) = −1. For example, if the majority of traders at time t decide to

sell (M(t) < 0) and I happen to be part of that majority (si(t) < 0) but my

strategy is that I should switch to minority of traders (Ci(t) = 1), then I have

no reason to change my strategy for t + 1 as it is already configured to do so.

One can confirm that in this case si(t)Ci(t)M(t) = (−1) × 1 × (−1) > 0 and

so Ci(t+ 1) = Ci(t).

This process follows a similar dynamics as the one described in Subsec-

tion 3.1.2 but this time we keep track of the ratio of strategies used in each

round. Figure 3.7 shows the usual r100 standardized returns along with the

fraction of chartist strategies for the same simulation. The parameters of the

simulation are the same as in Subsection 3.1.2. The returns with lag follow-
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ing the Poisson process are not shown as they do not differ significantly from

Figure 3.7.
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(a) The standardized r100 returns for the simulation with a strategy spin.
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(b) Fraction of chartists in the same run.

Figure 3.7: Returns and fraction of chartists from the simple Ising
simulation with a strategy spin.

Nevertheless, properties of the standardized returns from both types of sim-

ulations are summarized in Table A.2. The normality of returns is strongly

rejected in both cases by the JB test for all lags but the trend in magnitudes

of the test statistics is clearly decreasing. The highest p-value (i.e. the highest

probability of not rejecting normality) is attained for Poisson returns of lag

16. In this case, the JB statistic equals 9.235 and p-value 0.0256 so we would

not reject normality on 1% significance level. The empirical PDFs of the return

distributions are plotted in Figure A.2.

The linear autocorrelation (as depicted in Figure 3.8, CIs included) is also

statistically significant and, for lower lags, the returns do not resemble white

noise as confirmed by the Ljung-Box Q-test. However, the magnitude of au-

tocorrelation remains relatively low (below 0.1) as commonly observed in real

financial data. For higher lags, the null of no autocorrelation is not rejected

(look for Q < χ2
0.05(150) = 179.581).

Unlike in the previous simulation, the autocorrelation of absolute returns

fades away very fast and eventually turns negative. This is captured in Fig-
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(a) ACF for r100 absolute returns.
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(b) ACF for returns with lag following
POI(100).

Figure 3.8: Correlation of r100 and POI(100) lag returns from the si-
mulation with a strategy spin.

ure 3.9. The simulation with Poisson lag generally shows higher correlation

but it is still more precisely modelled by the exponential fit. Parameters of

the fitted functions can be found in Table 3.2. Note that even though both

α parameters are higher than in the case of S&P 500, they still lie within the

commonly observed range 〈0.2, 0.4〉.
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(a) ACF for r100 absolute returns.
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(b) ACF for absolute returns with lag follow-
ing POI(100).

Figure 3.9: Correlation of absolute r100 and POI(100) lag returns from
the simulation of the simple Ising model with a strategy
spin. Power-law (purple) and exponential (green) fits are
presented.

It is interesting to plot magnetisation matrices with corresponding strategy

matrices side-by-side as we did in Figure 3.10. It is clear there is no regular

pattern through which the strategy of an agent may determine its future action.

The four snapshots show completely different combinations of the proposed

strategies and actual decisions. The first snapshot shows inverse relationship.

If the strategy is to sell, the decision actually made is to buy. The second picture

in the row displays a stable magnetisation matrix even though the strategies

of the agents are scattered arbitrarily. The first snapshot in the second row
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Variable A α B β
r100 0.066 0.372 0.182 0.022
POI(100) 0.103 0.212 0.194 0.014

Table 3.2: Parameters of the fitted power-law and exponential func-
tions for the ACFs of absolute returns as shown in Fig-
ure 3.9.

exhibits perhaps the most expected connection between strategy and action,

i.e. both matrices signal buy (or sell) at the same time. The last couple of

snapshots captures the turbulent regime in both magnetisation and strategy

matrix.

6295 6295 131 554 131 554

609 137 609 137 748 890 748 890

Figure 3.10: Four snapshots of magnetisation (black and white) and
strategy (purple and white) matrices at different time
periods.

3.3 Magnetisation dependent lag

So far, the number of trading participants in each round was independent of

magnetisation, i.e. on average there were as many traders during zero mag-

netisation as there were during phases of high magnetisation. As the empirical

data suggest (Karpoff (1987) and Jain & Joh (1988), for example), the number

of traders on real stock markets increases with price. Judging from reviewed

literature, no model in a hitherto published paper included this feature. In
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this section, we present our own model that successfully accommodates this

property.

First, we design the auxiliary function ω that inputs a value of magnetisation

and returns a corresponding number of trade participants. Since the mean value

of magnetisation is zero and extreme values of absolute magnetisation do not

usually exceed 0.5, the function should be very sensitive to changes at very low

magnetisation levels. The ω function is presented in Equation 3.8.

ω(x) = ba b
√
x2 + cc, (3.8)

where a, b, c > 0 are parameters and b. . . c stands for the floor function rounding

each real number to the largest previous integer. The c parameter sets the

minimum number of participants when the magnetisation is zero, a regulates

the range of the function and b determines the sensitivity to changes in the

independent variable. Figure 3.11 shows the plot of ω function for two different

domains.
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(a) The ω(x) function for x ∈ (−0.5, 0.5)
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(b) Detail of the ω(x) function for x ∈
(0, 10−3).

Figure 3.11: The ω(x) function for various values of x. The parame-
ters in this case are: a = 200, b = 7, c = 60.

x 0 0.05 0.1 0.2 0.5 1
ω(x) 60 144 163 186 224 260

Table 3.3: Value of the ω function for selected x.

We ran the simulation with the same parameters as in Subsection 3.1.2. This

time, however, we set the number of iterations so that we end up with exactly

8 000 returns. At each time period when r∆t was computed the ω function

found the appropriate number of participants for the next round. This number
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was then used as the λ parameter for the Poisson process. In other words, we

worked with r∆t where ∆t ∼ POI(ω(M(t))).

Figure 3.12 displays the r∆t returns along with plot of lags (or number

of participants) that were used for calculation of these returns. Due to higher

variability in lag selection the returns reach much higher values than in previous

simulations. The descriptive statistics of returns and magnetisation dependent

lags are included in Table A.3. Both normality and no autocorrelation null

hypotheses are strongly rejected by the JB and Ljung-Box tests, respectively,

for low lags. As we have already seen in the previous simulations, both JB

and Ljung-Box statistics decrease with higher lags. For lag 64, the p-value of

the JB test statistic equals to 0.445. In other words, normality is not rejected

on any usual significance level and the stylized fact of aggregate normality is

confirmed. The empirical PDFs are plotted in Figure A.3
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(a) The r∆t with ∆t determined by ω function and Poisson process.
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(b) Plot of lags used for calculation of the returns above.

Figure 3.12: The plots of returns and lags from the simulation with a
magnetisation dependent lag.

The graphs of ACFs of regular and absolute returns are displayed in Fig-

ure 3.13. It is clear the correlation of absolute returns decays exponentially at

the beginning but follows no obvious pattern for higher lags. Nevertheless, the

α parameter was estimated to be equal to 0.322 which is, once again, in hand

with the mentioned stylized facts.
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(a) ACF for r∆t returns.
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(b) ACF for r∆t absolute returns.

Figure 3.13: Plots of ACFs for linear and absolute returns. The power-
law and exponential fits are presented.

Variable A α B β
r∆t 0.145 0.322 0.261 0.017

Table 3.4: Parameters of the power-law and exponential fits of the
ACFs of absolute returns as plotted in Figure 3.13.

3.4 Threshold model

3.4.1 Description of the model

Sieczka & Ho lyst (2007) present their own model highly motivated by the work

of Bornholdt (2001). The main difference lies in the introduction of the third

possible action agents may perform. Besides buy and sell, the option stay

inactive is now available. While the local field of each agent is defined in

the same manner as in Equation 3.2, the spin update is now governed by the

following equation:

si(t+ 1) = sgnλ|M(t)|

(
T∑
j=1

Jijsj(t) + σνi(t)

)
, (3.9)

where sgnq is the threshold function, defined as:

sgnq(n) =


−1, if x < −q

0, if − q ≤ x < q

1, if q ≤ x

(3.10)

The λ > 0 parameter influences the width of range in which agents choose to

stay inactive. The ν is normally distributed random variable with zero mean

and unit variance representing unpredictable behaviour of each agent. Note

that, as opposed to models in previous sections, this is the first time any kind
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of stochastic term is used in the model. The σ parametrizes the strength of

this variable.

3.4.2 The simulation

The simulation of the threshold model is similar to one performed in Sub-

section 3.1.2. Randomly chosen spin is refreshed according to Equation 3.10

over the span of 106 iterations. We calculated both r100 as well as Poisson

lagged returns with mean and variance of the Poisson distribution equal to

100. At the beginning of the simulation, we repeatedly allowed for a warm-up

phase of 200 000 iterations. The standardized r100 returns and r∆t returns for

∆t ∼ POI(100), λ = 15 and σ = 1 are plotted in Figure 3.14.3 The main differ-

ence between the simple Ising returns are the units of the vertical axis. Due to

possibility of withholding from any trade activity, the threshold model returns

are much lower than in the previous case. The usual descriptive statistics for

different values of λ are included in Table A.4. Normality is rejected via JB test

for all λ. For λ = 5 and λ = 40, the null hypothesis of no autocorrelation is

not rejected because the value of Q test statistic does not exceed 179.581 (a 5%

critical value for the χ2 distribution with 150 degrees of freedom). For λ = 15

and different lags the JB test still rejects normality in all cases for regular re-

turns but decreases rapidly with increasing lag in the case of Poisson returns.

For lag 64, the JB test statistic and corresponding p-value equal to .286 and

0.858, respectively. These results suggest that the stylized fact of aggregate

normality holds for threshold model returns as well.

Figure 3.15 presents four snapshots of magnetisation matrix at various time

periods. The first and third snapshots confirm that agents choose no action

on the borderline where the influence of sellers and buyers is in balance. The

second and fourth snapshot show fairly stable phases with majority of dormant

traders.

The autocorrelation function of returns for three different lags is in Fig-

ure 3.16. For lag 2, the autocorrelation of returns remains clung to zero and

waver rather gently. The reason for this is that such a low lag does not allow

total magnetisation to change drastically in such a short time period. With

increasing lag, both linear and absolute ACFs manifest much higher variabili-

3For low λ the results are similar to the simple Ising model described in the previous
subsection. For high λ the belt of inactivity is too wide (caused by high q in Equation 3.10)
resulting in negligible yet stable returns. For λ = 15 the simulation pronounces the singular
features of the model.
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(a) Standardized threshold returns r100.
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(b) Standardized threshold returns r∆t with ∆t ∼ POI(100).

Figure 3.14: Threshold r100 returns and returns with lag following
POI(100).

ty and sudden bursts. As seen from the summary Table A.4, the presence of

autocorrelation is statistically confirmed by Ljung-Box test for all lags except

lag 16 in r100. For this lag the null hypothesis of no autocorrelation cannot be

rejected. To avoid overcrowded charts, the usual power-law and exponential

fits are not included in Figure 3.16. However, the usual α and β parameters

for Lag 2 and Lag 4 can be read from Table 3.5. Parameters for Lag 16 are not

included since the ACF of absolute returns often takes negative values.

Even though JB test strongly rejects normality for all lags in r100, the test

319 635 570 455 690 566 983 999

Figure 3.15: Four snapshots of the magnetisation matrix at different
time periods. In addition to black (+1) and white (−1),
red colour stands for inactive participants (0).
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(a) The autocorrelation of threshold model returns for λ = 15 and time lags 2, 4 and 16
represented by blue, purple and green lines, respectively.
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(b) The autocorrelation of threshold model absolute returns for λ = 15 and time lags 2, 4 and
16 represented by blue, purple and green lines, respectively.

Figure 3.16: The ACF for some values of λ (upper picture) and for
fixed λ but diferent lags (lower picture).

Variable A α B β
Lag 2 0.101 0.0352 0.132 0.00373
Lag 4 0.089 0.0832 0.119 0.0056

Table 3.5: Parameters of the power-law and exponential fits of the
ACFs of absolute returns as plotted in Figure 3.16.

statistic gradually decreases with increasing lag in case of Poisson returns and

for lag 64 the p-value of the test equals to 0.858. This, again, favours validity

of aggregate normality.
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3.5 Serial versus parallel update

In all of the examples and simulations above, the magnetisation matrix in each

time period t was updated serially which means that only one randomly chosen

spin was altered according to rules given by Equation 3.3 and Equation 3.4.

The alternative is to update all sites at once. This is called parallel updating.

In our simulation described in previous chapters, this would mean to update

32× 32 sites in one time period t.

We run a simulation similar to the one in Subsection 3.1.2 except that now

parallel updating of all sites is employed. Since any magnetisation matrix may

look completely different in two subsequent time periods, the warm-up phase

does not take but only a few iterations. The choice of α and β parameters

showed no special impact on the dynamics of the model. In fact, for any

reasonable value of α and β, the model always reaches a balanced state within

few iterations. The value of total magnetisation M(t) quickly falls to zero and

fluctuates in almost imperceptible amounts. The same holds for returns r1.

Figure 3.17 shows four snapshots taken during the simulation. In this case, the

process consisted of mere 103 iterations. Since the process becomes repetitive

after few dozens of iterations, increasing the number of iterations does not

uncover any new phenomena.

14 50 344 673

Figure 3.17: Four snapshots of magnetisation matrix using parallel
updates. The parameters are: T = 103, α = 20 and
β = 1. For t > 50, the probability of a spin flip on every
site is approximately 0.995.

The spin structure resembles a checker board that inverts its values at every

time period, i.e. si(t) = −si(t− 1) almost for every higher t. The inversion of

spin values is due to fact that the anti-ferromagnetic term in Equation 3.2 takes

very low values asM(t) approaches zero. Consequently, only neighbouring spins

play role in the decision making process of each agent. Once all the neighbours

adopt the same strategy, the agent is forced to follow them in the next round.
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Since this can be said about every spin in the magnetisation matrix, alternating

checker boards are the only possible outcome of the simulation. The decrease

in magnetisation due this stabilisation can be seen in Figure 3.18.

200 400 600 800 1000

-0.10

-0.05

0.00

0.05

Figure 3.18: Fall and stabilisation of magnetisation (measured on the
vertical axis) for T = 1000.

It is interesting to plot magnetisation matrices after stabilisation of the sim-

ulation for different structures of neighbours. In Figure 3.19, we present four

patterns to which the simulation converges for different number and organisa-

tion of neighbours (in Figure 3.17 the final stable pattern resembles a checker

board). The snapshots suggest that asymmetry in neighbour arrangement leads

to distorted organisation of the magnetisation matrix.

Figure 3.19: The impact of various neighbour configuration (in red)
on magnetisation matrix (upper row) when using parallel
updating of the sites. The parameters are α = 20 and
β = 1. All snapshots were taken after 500+ iterations.



Chapter 4

Conclusion

The goal of this thesis was to create a model that would reproduce the same

statistical properties as can be observed in real financial data. The selection of

the properties followed Cont (2001) and thereat listed stylized facts.

First, we investigated presence of stylized facts in S&P 500 index which

serves as a proxy for the whole US market. We confirmed that S&P 500 does

contain most of the common properties such as slow decay in autocorrelation

of absolute returns (more likely exhibiting power-law than exponential decay),

heteroskedasticity of returns, heavy tails and non-Gaussianity of the return dis-

tribution, negative skewness and positive excessive kurtosis. The test of aggre-

gate normality did not confirm that the distribution of r∆t returns approaches

normal with increasing ∆t (for definition of returns see Equation 2.1), even

though the JB test statistic gradually decreased with increasing lag. Strictly

speaking, the stylized fact stating that there is no autocorrelation in raw re-

turns does not hold for S&P 500 data either. In this case, the autocorrelations

of daily returns showed to be statistically significant but from the economic

viewpoint they are rather negligible as the value of ACF never exceeded 0.1.

In the main chapter of the thesis we ran various Ising model simulations in

effort to obtain a deterministic process featuring properties listed above. We

started with the simplest form of the model with adding extra features after

each execution. As a result, 17 different simulations were carried out. Results

of some important simulations were thoroughly discussed (e.g. the simple Ising

model with a fixed lag) while others only served to illustrate certain peripheral

phenomena (such as simulation with parallel updates under different structures

of neighbours).

The results of the simulations are generally inconclusive. While some of
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the easily replicable stylized facts were encountered in each simulation (depar-

ture from normality or positive excessive kurtosis and heavy tails), others were

achieved only in some cases (power-law decay or aggregate normality). Where

successful, however, these models (except threshold model) were able to repli-

cate the stylized facts without any random, erratic noise as it is common in

other techniques used to model financial markets. The ACF of absolute returns

showed exponential or even faster decay in most of the simulations. Impor-

tant exceptions are the simple Ising model with r100 returns and the magneti-

sation dependent lag model where number of trade participants depends on

actual magnetisation in each round. Here the ACF of absolute returns showed

slow, power-law decay for higher values of time lags suggesting long memory

in volatility. Generally, with increasing randomness incorporated in the model

(for example by letting the lag follow Poisson distribution) the ACF of absolute

returns declines much faster than in other cases.

There are manifold possibilities for further research. The author originally

pondered performing additional simulations of Ising three dimensional model

as in Preis et al. (2009). However, these simulations are much more compu-

tationally demanding with only small added value to the goal of this thesis.

Substantial tuning of the model can be accomplished through altering the de-

cision rule (recall strategy spin and Section 3.2) or neighbours arrangement.

To our best knowledge, none of the reviewed models in the literature was de-

signed to yield returns with negative skewness (neither was ours, and any such

results are coincidental). This would mean to break the point reflection of

the CDF in Equation 3.3 and allow for more likely occurrence of negative val-

ues. Ad hoc construction of such a CDF is not a simple task. In fact, none of

the most frequently used distributions allow for negative skewness but one can

find inspiration in definitions of generalized hyperbolic, skew normal or skew

student distributions. It would be also worthwhile to design a search engine

that would input certain descriptive statistics extracted from real financial data

as independent variables and return the most appropriate parameters (e.g. α

and β in Equation 3.2 and Equation 3.3) for the simulated model in order to

best approximate the real data. This would, once again, require much stronger

computational power at hand.
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Appendix A

Tables and plots

Notation remark: As already mentioned in Subsection 3.1.2, returns for the first

lag are labelled r100 since we allowed 100 agents to trade in one time period,

returns r100k are labelled as “Lag k”. To avoid confusion, only notation in the

form “Lag k” will be used in all summary tables.

Variable Min. Max. Skewn. Kurt. JB Q(150) N
Lag 1 -6.092 5.485 .0112 6.361 3774.87 267.16 8001
Lag 2 -5.707 5.272 -.1341 6.041 1560.88 262.65 3999
Lag 4 -6.397 6.074 -.0230 5.969 741.76 190.64 1999
Lag 16 -4.687 3.46 -.1752 4.842 76.235 120.54 499
Lag 64 -2.917 2.937 .0670 3.782 4.108 N/A 124
POI Lag 1 -5.971 6.513 .119 5.708 2476.8 258.80 8020
POI Lag 2 -5.132 5.319 .1408 5.500 1062.43 188.69 4009
POI Lag 4 -3.729 4.967 .2512 4.830 303.103 154.24 2004
POI Lag 16 -3.95 3.867 -.0706 4.652 59.873 218.32 500
POI Lag 64 -2.504 3.291 .1717 3.531 2.599 N/A 124

Table A.1: Summary statistics for the simple Ising simulation for dif-
ferent lags. The upper part of the table describes the
r100k, k ∈ {1, 2, 4, 16, 64}, the lower part summarizes re-
sults from the simple Ising model with Poisson lag.
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(a) Distributions for r100k, where k is the
value of the lag.
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(b) Distributions for lag following Poisson
distribution.

Figure A.1: Standardized empirical distributions of simple Ising
model returns for different lags. The dashed curve be-
longs to PDF of standard normal distribution.

Variable Min. Max. Skewn. Kurt. JB Q(150) N
Lag 1 -5.391 4.902 -.029 4.686 951.59 182.51 8001
Lag 2 -4.175 4.00 -.0299 4.142 219.234 211.924 3999
Lag 4 -4.603 3.54 -.1510 4.061 102.573 163.444 1999
Lag 16 -3.92 3.1 .0365 4.040 23.822 144.111 499
Lag 64 -2.951 3.963 .334 4.606 18.373 N/A 124
POI Lag 1 -5.105 5.103 -.031 4.713 983.24 246.84 8004
POI Lag 2 -5.268 4.889 -.1437 4.773 540.507 240.66 4001
POI Lag 4 -4.043 5.555 -.1316 4.846 292.733 161.54 2000
POI Lag 16 -3.132 3.427 .01288 3.644 9.235 195.37 499
POI Lag 64 -4.284 2.236 -.5357 5.038 31.569 N/A 124

Table A.2: Summary statistics for simple Ising model with a strategy
spin.
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(a) Distributions for r100k, where k is the
value of the lag.
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(b) Distributions for lag following Poisson
distribution.

Figure A.2: Standardized empirical distributions of simple Ising
model returns with a strategy spin for different lags.
Dashed curve belongs to standard normal distribution.
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Variable Min. Max. Skewn. Kurt. JB Q(150) N
Lag 1 -6.304 7.206 .1149 6.843 4953.71 243.28 8000
Lag 2 -8.201 7.771 .1324 7.368 3204.74 233.549 3999
Lag 4 -6.387 5.478 .0342 6.654 1122.92 192.862 1999
Lag 16 -4.811 4.65 -.0747 5.280 113.051 135.708 499
Lag 64 -2.642 2.887 .1782 3.303 1.406 N/A 124

Variable Mean Median Min. Max.
∆t 125 126 42 211

Table A.3: Summary statistics for returns from the simulation with
a magnetisation dependant lag. The lower table provides
basic descriptive statistics for lags ∆t produced by the ω
function.
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Figure A.3: Empirical distributions of returns from simulation with
magnetisation dependant lag.
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(a) Standardized smoothed empirical distri-
butions of the threshold model returns for
multiple values of λ. The dashed line belongs
to PDF of standard normal distribution. All
empirical distributions show signs of fat tails.
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(b) Standardized smoothed empirical distri-
butions of threshold model returns with λ =
15 and ∆t ranging from 4 to 64 (derived from
simulation with Poisson lag). The dashed line
represents PDF of standard normal distribu-
tion.

Figure A.4: The empirical distributions of threshold model returns.
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Variable Min. Max. Skewn. Kurt. JB Q(150) N
λ = 5 -4.327 4.333 0.017 3.556 103.959 145.51 7993
λ = 15 -4.704 4.19 .0278 3.812 221.913 229.93 8001
λ = 25 -5.516 4.693 -0.203 4.538 844.24 231.24 7987
λ = 40 -4.667 4.89 -0.0455 3.761 197.049 176.86 8003

Variable Min. Max. Skewn. Kurt. JB Q(150) N
Lag 1 -4.817 4.817 -.0094 4.116 416.424 183.91 8001
Lag 2 -4.084 4.299 -.00938 4.021 174.99 225.73 3999
Lag 4 -5.544 4.465 .0289 4.341 151.791 197.473 1999
Lag 16 -2.688 4.199 .2847 4.009 29.159 143.53 499
Lag 64 -4.165 4.885 .6469 8.839 211.067 N/A 124
POI Lag 1 -4.704 4.19 .0278 3.812 221.913 229.93 8001
POI Lag 2 -4.16 4.173 .0437 3.663 79.4953 242.26 3999
POI Lag 4 -4.115 4.549 .0294 3.829 58.46 241.31 1999
POI Lag 16 -4.093 2.622 -.2118 3.593 11.617 244.15 499
POI Lag 64 -2.664 2.408 .0593 3.142 .286 N/A 124

Table A.4: The upper table shows summary statistics for the thresh-
old simulations with POI(100) lagged returns and different
value of λ. The other table summarizes usual regular and
Poisson returns for λ = 15 and different lags.



Bachelor Thesis Proposal

Author Pavel Dvořák
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