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Abstract 

All plant cells are encapsulated in a cell wall that determines the cells’ shape and size 

and is essential to many of their vital processes. The cell wall of streptophyte plants is 

composed mainly of polysaccharides of high molecular weight. Cellulose, the main 

constituent of the plant cell wall, is synthesized by protein complexes bound to the PM, while 

hemicelluloses and pectins are synthesized in the Golgi apparatus. Several proteins that 

participate in the synthesis of cell wall polysaccharides have been identified, but hundreds of 

them remain to be discovered. Secretory pathway plays an important role in plant cell wall 

biogenesis as it transports cellulose synthase complexes and noncellulosic polysaccharide 

molecules to the cell surface. Some regulatory mechanisms that might be involved in cell wall 

material secretion, such as actin cytoskeleton, Ca
2+

 gradient or PIP kinases have been 

proposed; however, the regulation of this process is very complex and far from being 

understood. FT-IR spectroscopy is a method that can detect molecular vibrations and provide 

information about chemical composition of virtually all substances. It has been used 

successfully in screens for cell wall mutants, the study of interactions between cell wall 

polymers, as well as other areas of cell wall biology. FT-IR spectroscopy is proposed as a 

suitable tool for future research of the role of the secretory pathway in plant cell wall 

biogenesis. 
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Cell wall, secretory pathway, FT-IR spectroscopy, cellulose, pectin, hemicellulose 
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Abstrakt 

Všechny rostlinné buňky jsou obklopeny buněčnou stěnou, která ustavuje jejich 

velikost a tvar a je nezbytná pro mnoho zásadních buněčných procesů. Buněčná stěna 

streptofytních rostlin je tvořena převážně vysokomolekulárními polysacharidy. Celulóza, 

hlavní složka buněčné stěny rostlin, je syntetizována transmembránovými proteinovými 

komplexy přímo na povrchu buňky, zatímco hemicelulózy a pektiny jsou tvořeny v Golgiho 

aparátu. Bylo popsáno několik proteinů účastnících se syntézy těchto polysacharidů, nicméně 

stovky dalších teprve čekají na objevení. Proteiny nutné pro syntézu celulózy a molekuly 

hemicelulóz a pektinů syntetizované v Golgiho aparátu jsou transportovány na povrch buňky 

sekreční drahou, tato dráha tedy hraje důležitou roli v biogenezi buněčné stěny. Hypotézy o 

regulaci sekrece komponent buněčné stěny počítají s působením aktinového a 

mikrotubulárního cytoskeletu, vápníkového gradientu nebo PIP kináz; komplexní regulace 

tohoto procesu však zdaleka není popsána. FT-IR spektroskopie je metoda schopná detekce 

molekulárních vibrací, s jejíž pomocí je možné získat informace o chemickém složení 

prakticky všech látek. Tato metoda je úspěšně používána v identifikaci mutantů s abnormální 

buněčnou stěnou, ve studiu interakcí mezi jednotlivými složkami buněčné stěny a v dalších 

experimentech týkajících se buněčné stěny. FT-IR spektroskopie je navržena jako ideální 

nástroj pro budoucí výzkum role sekreční dráhy v biogenezi buněčné stěny rostlin. 

 

Klíčová slova 

Buněčná stěna, sekreční dráha, FT-IR spektroskopie, celulóza, pektiny, hemicelulózy 
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List of abbreviations 

Arabidopsis Arabidopsis thaliana (L.) Heynh. 

ATR attenuated total reflectance 

CESA cellulose synthase 

CSL cellulose synthase-like 

EGFP enhanced green fluorescent protein 
flax Linum usitatissimum L. cv. Novotorzhskii 

FT Fourier transform 

FT-IR  Fourier transform infrared 

GA Golgi apparatus 
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GAUT galacturonosyltransferase  
GAX glucuronoarabinoxylan 

GFP green fluorescent protein 

GM glucomannan 

HG homogalacturonan 

IR infrared 

kam1 katamari1 
KOR1 korrigan1 

LatB latrunculin B 
LDA linear discriminate analysis 

LOF loss of function 

maize Zea mays L. 

MIR mid-infrared 

MLG mixed-linkage glucan 

MTs microtubules 

NIR near-infrared 

PC principal component score 

PCA principal component analysis 

pea Pisum sativum L.  

PIP5K phosphatidylinositol-4-phosphate 5-kinase 
PM plasma membrane 

RG-1 rhamnogalacturonan 1 

RG-2 rhamnogalacturonan 2 

RGXT rhamnogalacturonan xylosyltransferase  
rice Oryza sativa L. 

rose Rosa sp. L. 

spruce Picea abies (L.) Karst. 
TGN Trans Golgi Network 

tobacco Nicotiana sp.L. 

VHA-a1 vacuolar V-ATPase subunit a1 

XG xyloglucan 

XGA xylogalacturonan 

XGD xylogalacturonan deficient 
XY xylan 

YFP yellow fluorescent protein 
ZPD zero path difference 
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1. Introduction 

The plant cell wall is a more or less rigid structure that encapsulates all plant cells 

and determines their shape and size. It plays crucial roles in processes such as growth and 

development, defense against pathogens or cell to cell signaling and transport. Plant cell 

walls are also of utmost importance to mankind, as we use them to produce food, clothing, 

fuels and paper (Geisler et al., 2008; Alonso-Simón et al., 2011). The knowledge and 

understanding of plant cell wall biogenesis and functions are thus essential for progress in 

both basic and applied research. Although our knowledge of plant cell wall chemical 

composition is relatively good, most mechanisms responsible for its biogenesis remain yet 

to be discovered. 

Fourier Transform Infrared (FT-IR) spectroscopy is a classical method used in the 

analysis of small molecules as well as large biopolymers.  A variety of information about 

the studied substance can be then obtained from its IR spectrum, including chemical 

structure, redox state, bond properties, hydrogen bond presence and more (Barth, 2007). 

The first part of this overview summarizes current knowledge about plant cell wall 

biogenesis with focus on the role of the secretory pathway in this process; the second part 

describes basic principles of FT-IR spectroscopy. Several applications of this method in the 

study of the cell wall are presented in the end with the intention to show that FT-IR 

spectroscopy is a powerful tool that could provide more insights into mechanisms of cell 

wall biogenesis in the future. 
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2. Secretory pathway in plant cell wall polysaccharide 

biosynthesis 

2.1  Cell wall composition 

The plant cell wall is a network structure formed mainly by polysaccharides of high 

molecular weight, which are embedded in an aqueous solution, with important components 

of proteins, glycoproteins and in many cases also other substances, such as lignin (Liepman 

et al., 2005; Geisler et al., 2008; Jensen et al., 2008). As this work is focused on cell wall 

polysaccharides, other cell wall components won’t be discussed further on. The main 

classes of cell wall polysaccharides are cellulose, hemicelluloses and pectins (Somerville et 

al., 2004). 

Cellulose is the basic polysaccharide that constitutes the cell wall of streptophyte 

plants and the most abundant biopolymer on the planet (Kimura et al., 1999). A cellulose 

molecule is formed by a chain of β-1,4-linked glucose residues. In cell walls, cellulose is 

present in the form of para-crystalline microfibrils, which are composed of 30-36 glucan 

chains connected by hydrogen bonds (Kimura et al., 1999; Paredez et al., 2006). 

Hemicelluloses, which are branched polysaccharides formed by a heavily substituted 

neutral sugar backbone, crosslink cellulose microfibrils by hydrogen-bonding to their 

surface. There are four basic kinds of hemicelluloses: xyloglucans (XG), 

glucuronoarabinoxylans (GAX – esp. in type II grass cell walls), glucomannans (GM) and 

mixed-linkage glucans (MLG) (Somerville et al., 2004; Lerouxel et al., 2006). Pectins are 

defined as polysaccharides with a high content of galacturonic acid residues. The main 

classes of pectins are homogalacturonan (HG), rhamnogalacturonan 1 (RG-1), 

rhamnogalacturonan 2 (RG-2) and xylogalacturonan (XGA) (Sterling et al., 2006; Jensen et 

al., 2008). Some highly specialized cell walls, such as in the case of plasmodesmata (there 

directly involved in size exclusion limit regulation), pollen tubes or newly synthesized 

walls during cytokinesis or after a wound, also contain callose, which is an amorphous β-

1,3-glucan chain (Verma and Hong, 2001). 

The relative amounts of polysaccharide components listed above depend on the type 

of the cell wall, its developmental stage, and they also vary among different plant taxa. The 

primary cell wall usually contains similar amounts of cellulose, hemicelluloses and pectins; 
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the secondary wall has usually higher amounts of cellulose and less of the other 

polysaccharides (Jensen et al., 2008; Sandhu et al., 2009). The content of pectin goes up to 

35% in the primary walls of dicotyledons and nongraminaceous monocotyledons, while 

graminaceous monocots, i.e. cereals and grasses, usually only have about 10% pectin in 

their primary walls (Sterling et al., 2006). While the most abundant hemicellulose in 

dicotyledons and non-graminaceous monocotyledons is XG, grasses contain larger amounts 

of xylan (Kerr and Fry, 2003). A model of an Arabidopsis leaf mesophyll cell wall is 

presented in figure 1. 

 
Figure 1 Model of the cell wall of an 
Arabidopsis leaf mesophyll cell. The 
amount of cellulose is reduced for better 
clarity; the amount of other polymers is 
reduced as well in approximately the 
same ratio. Due to this reduction, the 
hemicellulose cross-links (XG and GAX) 
are much longer in the figure than in 
reality. Courtesy of (Somerville et al., 
2004) 

 

 

 

 

2.2  Cell wall polysaccharide biosynthesis 

2.2.1 Model systems used in the study of plant cell wall biogenesis 

Our knowledge of the mechanisms responsible for the synthesis of the plant cell 

wall is still very limited. Attempts for biochemical purification of enzymes responsible for 

cell wall polysaccharide biosynthesis, as well as mutant screens and reverse genetic 

methods, have so far only been successful in several cases (Jensen et al., 2008). The 

proteins involved in the synthesis of the cell wall polysaccharides are present in very low 

concentrations in the cell, they are membrane bound and not very stable, which makes them 

difficult to isolate and study biochemically; also, wide genetic redundancy among these 

genes is probably a great complication in approaches based on mutational genetics (Jensen 

et al., 2008; Sandhu et al., 2009) 
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Heterologous expression systems have been used with relative success to identify 

genes and proteins involved in the cell wall synthesis. GAUT1, a galacturonosyltransferase 

required for the synthesis of pectin in Arabidopsis, has been characterized when transiently 

expressed in the human kidney HEK293 cell line. (Sterling et al., 2006); AtCslA9, a β-

glucomannansynthase that catalyzes the polymerization of hemicellulosic backbones, has 

been expressed and characterized in a similar manner in Drosophila Schneider 2 cells 

(Liepman et al., 2005). 

Germinating pollen grains and developing root hairs are highly specialized plant 

cells with very fast apical growth; both of these systems are widely used to study the cell 

wall biogenesis. New cell wall material must be constantly transported to the growing tip 

and the cell wall must be continuously rebuilt for such growth to be possible (Chen et al., 

2007; Ischebeck et al., 2008; Fan et al., 2011). This makes the growing pollen tube and root 

hair perfect systems for the study of mechanisms by which cell wall material, synthesized 

within the cell, is transported to the cell surface and incorporated into the wall. 

Another question that has to be addressed if we want to understand how plants make 

their cell walls is what happens with the polysaccharide building blocks once they’re 

synthesized and transported to the cell surface. Experiments conducted with cell suspension 

cultures of maize and rose fed with radioactive-labeled monosaccharides have provided 

some insight into such in muro polysaccharide modifications (Thompson and Fry, 1997; 

Kerr and Fry, 2003). 

The Paul Knox lab has developed a wide range of monoclonal antibodies against 

specific cell wall components over the past two decades, including JIM5 against de-

esterified pectins, JIM7 against esterified pectins, and many more (Knox et al., 1991; 

Clausen et al., 2003). These commercially available antibodies are widely used in cell wall 

research (Chen et al., 2007; Jensen et al., 2008). FM4-64 is an amphiphilic fluorescent dye 

that can only enter living cells by endocytosis and marks the PM and endomembranes 

including endocytic and secretory vesicles (Parton et al., 2001). This dye has been used 

extensively in the research of plant vesicle trafficking and its role in cell wall biogenesis 

(Dettmer et al., 2006; Fan et al., 2011). 
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2.2.2 Synthesis of cellulose and callose 

Cellulose and callose are, unlike other cell wall polysaccharides, synthesized by 

protein complexes bound to the PM and deposited directly into the wall.  

The transmembrane cellulose synthase complex of higher plants, which is one of the 

largest protein complexes known, is often called a “rosette”. It is believed to be a hexameric 

complex formed by six subunits, each of which contains six cellulose synthase (CESA) 

proteins along with multiple other proteins (Kimura et al., 1999). Each of the CESA 

subunits synthesizes an individual β-1,4-glucan chain from cytosolic UDP-glucose and the 

complex leaves a complete new cellulose microfibril in the cell wall (Somerville et al., 

2004; Lerouxel et al., 2006). The elongation of a cellulose microfibril forces the rosette to 

move through the PM, usually in a direction perpendicular to the direction of cell 

elongation. There is good evidence that this pattern is maintained by cortical MTs, which 

serve as guiding tracks of the active rosette complexes (Paredez et al., 2006). 

Plant genomes encode multiple CESA genes; the model plant Arabidopsis thaliana 

features 10 CESA homologues. It has been proven that at least three different CESA 

protein isoforms are required to form a functional cellulose synthase complex, indicating 

that multiple CESA genes are not redundant, but their functions are slightly different. For 

example, it has been hypothesized that cellulose synthesis in primary and secondary cell 

walls is carried out by different CESA homologues (Richmond and Somerville, 2000; 

Taylor et al., 2003; Lerouxel et al., 2006).  

Although cellulose microfibrils are deposited directly into the cell wall upon 

synthesis at the PM, the secretory pathway is essential for cellulose biosynthesis. 

KORRIGAN1 (KOR1) is a β-1,4-endoglucanase necessary for cellulose synthesis, although 

its precise biochemical function remains unclear. Experiments with GFP-KOR1 fusion 

protein revealed that KOR1 localizes to the PM, GA and early endosomes and that its 

regulated secretory pathway dependent cycling between these compartments is required for 

cellulose biosynthesis (Robert et al., 2005). Arabidopsis CESA6 has also been shown to be 

present at the PM, GA and  in secretory vesicles (Paredez et al., 2006). These results 

strongly support the hypothesis that cellulose deposition is regulated by the cycling of 

proteins involved in microfibril synthesis between the PM and intracellular pools (Lerouxel 

et al., 2006). 
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The synthesis of callose is considered to follow similar patterns as the synthesis of 

cellulose. Sequence homologies between CESA genes and putative callose synthases, 

including identical transmembrane domains, support this hypothesis. However, we have 

considerably less information about the biosynthesis of callose compared to cellulose, 

partly because of problems with purification of enzymes that catalyze callose synthesis 

(Verma and Hong, 2001). 

2.2.3 Synthesis of hemicelluloses 

Hemicelluloses, i.e. XG, GAX, GM and MLG, are, unlike cellulose, synthesized 

from monosaccharide precursors in the GA and transported to the cell wall in secretory 

vesicles (Northcote and Pickett-Heaps, 1966; Kerr and Fry, 2003; Liepman et al., 2005). 

Once these polysaccharides are secreted to the PM surface, they are further processed and 

incorporated into the wall network (Thompson and Fry, 1997; Kerr and Fry, 2003). 

In silico analyses of Arabidopsis and other plant species’ genomes have revealed 

many cellulose synthase-like (CSL) genes based on their sequence similarity to the CESA 

genes. The CSL genes, which can be further divided into different families, are part of the 

Cellulose synthase superfamily along with the CESA genes (fig. 2). All CSL genes had 

originally been predicted to encode membrane-bound glycosyltransferases that locate to the 

GA and are involved in the synthesis of non-cellulosic cell wall polysaccharides (Richmond 

and Somerville, 2000). However, recent results indicate that some of the CSL genes’ 

products have β-1,4-glucan synthase activity at the PM in the tip regions of growing root 

hairs (Park et al., 2011), suggesting that the CSL family members may also carry out 

cellulose synthase functions in the synthesis of the cell wall. 

Figure 2 An unrooted phylogenetic tree of the CESA 
superfamily. The tree was created by the software 
ClustalX 1.8 from publicly available protein sequences, 
color boxes represent subfamilies. At - Arabidopsis; Gh - 
cotton; Le - tomato; Mt - Medicago truncatula; Os - rice; 
Pt - Populus tremuloides; Pt/Pa - Populus tremula × 
Populus alba. Courtesy of (Richmond and Somerville, 
2000) 
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To test the CSL genes’ glycosyltransferase activity, Liepman et al. transfected 

Drosophila S2 cells with several CSL cDNA clones from Arabidopsis and rice and 

conducted enzyme activity assays with the recombinant proteins (Liepman et al., 2005). 

The microsomal fractions from lysates of transformed S2 cells were isolated, as all the CSL 

proteins were expected to be membrane bound. These fractions were incubated with 

a mixture of radiolabeled nucleotide diphosphate-sugars. GFP-transformed cells were used 

as negative controls and maize and pea microsomal fractions as positive controls. In this 

assay, the cells expressing the AtCslA9 protein incorporated GDP-mannose and 

GDP-glucose into insoluble polymers. Further experiments led to the conclusion that 

AtCslA9 produces β-mannan if it has access to GDP-mannose, β-glucan if it has access to 

GDP-glucose and β-linked mixed polymer when it has access to both nucleotide-sugars. 

The protein was thus characterized as β-glucomannan synthase (Liepman et al., 2005). 

These results strongly support the hypothesis that hemicelluloses are synthesized in the GA 

by glycosyltransferases encoded by genes of the CSL families. 

There is good evidence that hemicelluloses are further processed upon their 

incorporation into the cell wall. Interestingly though, this processing is very different in 

dicots and graminaceous monocots, as shown by studies with rose and maize cell 

suspension cultures fed with radiolabeled arabinose (Thompson and Fry, 1997; Kerr and 

Fry, 2003). In the rose cell culture, radiolabeled arabinose was incorporated into XG 

molecules which were then deposited into the cell wall. The average molecular weight of 

individual XG molecules after 2 days was approximately 5 times lower than immediately 

after the labeling. At the same time, about 25% percent of the XG, which had originally 

been incorporated into the cell wall, disappeared into the culture medium. These results 

suggest that in dicots, the “loose end” parts of the XG molecules that don’t form hydrogen 

bonds with cellulose microfibrils are cleaved and discarded from the cell wall (Thompson 

and Fry, 1997). The situation was quite different in the maize culture. Here, the 

radiolabeled arabinose was incorporated not only to XGs, but also to xylan molecules. The 

hemicellulose molecules found in the wall only 15 minutes after the labeling increased in 

size about 40-fold compared to the molecules present in the protoplasm. This indicates that 

after secretion into the cell wall, the xylan and XG molecules of grasses probably form 

large polymers, possibly by the mechanisms of transglucosylation. Some of the 

hemicellulose molecules were also trimmed later on as some radioactivity was found in the 
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culture medium, but this occurred at much lower levels than in the rose culture (Kerr and 

Fry, 2003). 

2.2.4 Synthesis of pectins 

Pectins, that is HG, RG-I, RG-II and XGA, are synthesized in the GA like 

hemicelluloses and then transported to the cell surface by the secretory pathway (Northcote 

and Pickett-Heaps, 1966; Jensen et al., 2008). The enzymes predicted to be necessary for 

pectin biosynthesis include glycosyltransferases, methyltransferases and acetyltransferases. 

The proteins that have been proven to play a role in pectin biosynthesis include a HG 

galacturonosyltransferase, RG-2 xylosyltransferase and XGA xylosyltransferase (Egelund 

et al., 2006; Sterling et al., 2006; Jensen et al., 2008). A vast number of other proteins need 

to be identified if we want to fully understand the mechanisms of pectin biosynthesis. 

An enzyme with HG galacturonosyltransferase (HG GalAT) activity was partially 

purified from an Arabidopsis cell culture and its sequence analysis revealed that it was a 

product of the gene At3g61130. The protein, when transiently expressed in human kidney 

cell line HEK293, incorporated GalA from radiolabeled UDP-GalA into HG molecules and 

was thus named galacturonosyltransferase 1 (GAUT1). A GAUT1 antiserum was shown to 

block GalAT activity in Arabidopsis cell culture, confirming that GAUT1 was indeed a 

GalAT. Furthermore, a HG specific exopolygalacturonase cleaved 98.9% of the GAUT1 

product, proving the enzyme was producing HG (Sterling et al., 2006). In silico analyses of 

the GAUT1 amino acid sequence revealed that the genome of Arabidopsis contained 14 

coding regions with 56-84% sequence similarity to GAUT1 and 10 coding regions with 42-

53% sequence similarity. These were named GAUT 2-15 and GATL (GalAT-like) 1-10, 

respectively. The authors suggest that all these genes form a GAUT1-related gene 

superfamily and encode putative GalATs involved at different stages of pectin biosynthesis 

(Sterling et al., 2006). 

Two loci in the Arabidopsis genome, At4g01770 and At4g01750, were identified as 

putative cell wall polysaccharide glycosyltransferases by a bioinformatic approach and their 

functional characteristics were studied (Egelund et al., 2006). The proteins encoded by 

these genes were transiently expressed in insect cells, which were then incubated with 

different combinations of radiolabeled nucleotide diphosphate-sugars and monosaccharide 

acceptors. These assays showed that both gene products catalyzed the transfer of D-xylose 
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from UDP-xylose onto L-fucose by an α-(1,3) linkage, which makes them (1,3)-α-D-

xylosyltransferases. Such a linkage is only known in the pectin RG-2; the two proteins were 

thus named Rhamnogalacturonan Xylosyltransferase 1 and 2 (RGXT1 and RGXT2), 

respectively (Egelund et al., 2006). The localization of RGXT1 to the GA was confirmed 

by colocalization of a RGXT1-EGFP construct with a BODIPY TR Ceramide dye, which is 

known to stain the GA (fig.3). RGXT-2 localized in the same manner (Egelund et al., 

2006). 

 

Another Arabidopsis genome locus At5g33290 was predicted to encode a type II 

membrane protein with glycosyltransferase activity localized in the secretory pathway. T-

DNA insertion mutants in this locus contained approximately 25% less cell wall xylose 

compared to the wild type, the content of other cell wall monosaccharides wasn’t affected 

by the mutation. Immunological assays with antibodies specific to galactan, arabinan, XG 

and xylan showed that the lack of xylose wasn’t due to a shortage of either of these 

polysaccharides. The cell wall polysaccharide fraction of both wild type and the mutant 

plants were treated with the enzyme XGA hydrolase, which cleaves xylogalacturonan 

molecules but not other pectic substrates. Nine new different oligosaccharides were present 

in the wild type plants after this treatment, while no changes were detectable in the 

insertional mutant, indicating that the decreased level of xylose was due to the absence of 

XGA. Based on these results, the protein encoded by the At5g33290 locus was named 

Xylogalacturonan Deficient 1 (XGD1) (Jensen et al., 2008). A XGD1-YFP construct was 

shown to colocalize with the STtmd-GFP GA marker fusion protein, providing further 

Figure 3 Subcellular localization of RGXT1. GFP fluorescence in cells expressing RGXT-EGFP fusion protein 
(F); signal from the BODIPY TR dye which localizes specifically to the GA (G); images F and G merged 
together show clearly that RGXT-EGFP colocalizes with the BODIPY TR dye, proving that RGXT1 is a GA-
resident protein. Courtesy of (Egelund et al., 2006) 
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evidence for the model in which pectins are, like hemicelluloses, synthesized in the GA and 

then transported to the cell wall via the secretory pathway (Jensen et al., 2008). 

2.3  Secretory pathway and the deposition of pectins and hemicelluloses 

into the cell wall 

The hypothesis that non-cellulosic cell wall polysaccharides are synthesized in the 

GA and transported to the cell surface in GA-derived secretory vesicles has been postulated  

already in the 1960’s (Northcote and Pickett-Heaps, 1966). Nevertheless, the factors that 

underlie exocytosis and are thus responsible for proper cell wall composition remain largely 

unknown (Ischebeck et al., 2008). What is known in this field has been observed mostly in 

growing pollen tubes and root hairs; several such studies will be presented here. 

Actin cytoskeleton seems to play an important role in determining the cell wall 

composition by regulating secretion and possibly by some other mechanisms (Vidali et al., 

2001; Chen et al., 2007; Ischebeck et al., 2008). Pollen germination and pollen tube growth 

rates of Picea meyeri are reduced in a dose-dependent manner when the actin 

depolymerizing drug latrunculin B (LatB) is applied (Chen et al., 2007). When normal 

germinating pollen grains are stained with FM4-64, they mostly show a characteristic 

reverse V-like (inverted cone) pattern which marks secretory vesicles travelling towards the 

growing tip of the cell (Parton et al., 2001). When FM4-64 was applied to the pollen grains 

of Picea meyeri grown on medium containing LatB, this pattern wasn’t apparent at all. 

Instead, the whole pollen tube was evenly stained with the dye, suggesting that vesicle 

trafficking was strongly disturbed in these cells (Chen et al., 2007). FT-IR spectrometry 

analysis of cell wall composition revealed that walls of the LatB treated cells contained 

significantly less esterified pectins, cellulose and protein. An immunolabeling assay with 

JIM5 and JIM7 antibodies also showed that the distribution pattern of esterified and de-

esterified pectin within the growing pollen tube was changed dramatically by the 

application of LatB. All these results clearly indicate that F-actin depolymerization caused 

by the application of LatB severely disturbed secretory vesicle trafficking, which led to 

abnormalities in composition of the cell wall (Chen et al., 2007). 

Vidali et al. observed reduced pollen germination and pollen tube growth in 

Arabidopsis after treatment with LatB and other actin depolymerizing agents. However, the 
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effect of actin depolymerization on the rate of cytoplasmic streaming was much weaker. 

The authors thus proposed that guiding secretory vesicles might not be the only function of 

actin cytoskeleton in the biogenesis of the cell wall in the pollen tube and that 

microfilaments may have additional functions in this process (Vidali et al., 2001). 

Mur3 is a well described Arabidopsis fucose-deficient cell wall mutant .(Reiter et 

al., 1997). Tamura et al. have isolated an Arabidopsis mutant with defective actin 

cytoskeleton and endomembrane organization and named it katamari1 (KAM1). Genetic 

and in silico analyses revealed that mur3 and KAM1 were allelic mutations of the gene 

At2g20370 (Tamura et al., 2005). Further experiments and analyses indicated that the 

KAM1/MUR3 encoded protein localizes to the GA. The protein’s lumenal C-terminal part 

has glycosyl-transferase activity and its cytosolic N-terminal domain indirectly binds actin 

microfilaments. This led the authors to formulate a hypothesis that the KAM1/MUR3 is a 

multifunctional protein that’s involved in the synthesis of cell wall material as well as in the 

organization of actin cytoskeleton.  Furthermore, since actin cytoskeleton is an important 

factor in the exocytosis of GA-synthesized cell wall polysaccharides, KAM1/MUR3 might 

play a role in the crosstalk between the synthesis and transport of non-cellulosic cell wall 

components (Tamura et al., 2005). 

CdCl2 treatment caused Ca
2+

 gradient disruption and actin filament 

depolymerization and disorganization in Arabidopsis root hairs. FM4-64 labeling of CdCl2 

treated roots also showed that their vesicle trafficking was disturbed, and FT-IR analyses 

revealed altered composition of the cell wall. These results indicate that Ca
2+

 signaling 

probably plays an important role in the regulation of cell wall material secretion, either 

directly or by regulating the actin filaments which guide the secretory vesicles (Fan et al., 

2011). Calcium is also known as a positive regulator of callose synthase activity 

(Fredrikson and Larsson, 1992). 

While Arabidopsis double LOF mutants in phosphatidylinositol-4-phosphate 

5-kinases 4 and 5 (PIP5K4 and PIP5K5) showed reduced pollen germination and defective 

pollen tube growth and morphology, pollen tubes of tobacco cells overexpressing either 

PIP5K4 or PIP5K5 exhibited multiple branching events and increased apical deposition of 

pectins. These results point out the possible role of PIP kinase signaling in the regulation of 

cell wall polysaccharides secretion (Ischebeck et al., 2008). 
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VHA-a1, a vacuolar V-ATPase VHA-a subunit isoform found preferentially in the 

Trans-Golgi Network (TGN), is necessary for proper trafficking of both endocytic and 

secretory vesicles in Arabidopsis root hairs and cell suspensions (Dettmer et al., 2006). 

However, whether the role of the V-ATPase is only to maintain specific pH values required 

for vesicle trafficking or whether it has different regulatory function remains unclear. These 

results also suggest that the secretory and endocytic pathways meet in the TGN, which 

serves also as the early endosome in plant cells, and that some endocytosed material might 

be carried back to the cell surface by exocytosis from this compartment (Dettmer et al., 

2006).  

Cell wall pectins have been indeed shown to be actively endocytosed in maize root 

apices (Baluska et al., 2002) and Arabidopsis seeds during imbibition (Pagnussat et al., 

2012). These findings have led to the formulation of a hypothesis that some cell wall 

polysaccharides might be recycled in plant cells during various growth, morphogenetic 

and/or developmental processes (Baluska et al., 2002; Pagnussat et al., 2012). 
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3. Fourier Transform Infrared (FT-IR) spectroscopy in the 

study of plant cell walls 

3.1  FT-IR principles and procedures 

3.1.1 The physics behind FT-IR 

Vibration spectroscopy is a study of molecular vibrations through changes in these 

vibrations caused by interaction with electromagnetic radiation (Trchová, 1995). Infrared 

(IR) spectroscopy is one of the two major methodological approaches to vibration 

spectroscopy, the other one being Raman spectroscopy (Trchová, 1995; Siebert and 

Hildebrandt, 2008). 

Atoms within a molecule don’t stand still; they vibrate in a certain direction, with 

a certain strength and frequency. FT-IR and Raman spectroscopy are called vibration 

spectroscopy methods because they are capable of detecting these molecular vibrations 

(Siebert and Hildebrandt, 2008). In FT-IR spectroscopy, this is possible because a 

molecular vibration of a chemical bond can absorb an IR beam when it has the same 

frequency; the probability of absorption depending on the polarity and strength of the bond, 

mass of the vibrating atoms and other intra- and intermolecular factors (Barth and Zscherp, 

2002). Practically all polar molecular bonds can absorb IR radiation of some wavelength 

and thus all biomolecules can be studied by FT-IR spectroscopy (Barth, 2007). 

An IR spectrometer is a device that registers and visualizes the absorbance and/or 

transmittance of IR radiation by the substance studied. The IR spectrum ranges 

approximately from 780 nm to 1000 μm and can be divided into three parts: near-infrared 

(780 nm - 2.5 μm), mid-infrared (2.5 μm – 50 μm) and far-infrared (50 μm – 1000 μm). In 

an IR spectrum plot absorbance is plotted against wavenumber, which is the inverse of the 

wavelength and is expressed in the unit cm
−1

 (Barth, 2007).  

Dispersive spectrometers, which were commonly used up to the 1970s, used 

a monochromator and scanned the absorption/transmission for each wavelength separately. 

These machines were expensive and the process was very time-consuming: the collection 

of a single spectrum took up to several hours (Siebert and Hildebrandt, 2008). The Fourier 

transform (FT) is a mathematical expression of frequency as a function of time. In a FT-IR 
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spectrometer, time can be expressed as distance of the movable mirror (see next paragraph); 

the FT can then be modified to express frequency as a function of distance. The 

introduction of this principle to IR spectroscopy allowed scanning the absorption and/or 

transmission of multiple wavelengths simultaneously, thus reducing the spectra collection 

time enormously; this is called Felgett’s advantage. The FT-IR spectrometers, unlike the 

older monochromator ones, have good resolution even at wide apertures (Jacquinot’s 

advantage) and they don’t need to be calibrated (Connes’ advantage) (Trchová, 1995).  

Thanks to the above advantages, the FT-IR spectrometers have replaced the older 

dispersive ones completely over the past three decades (Siebert and Hildebrandt, 2008). 

The principle component of most FT-IR spectrometers is a Michelson 

interferometer (Griffiths, 1975; Siebert and Hildebrandt, 2008), which consists of a beam 

splitter, a fixed mirror and a movable mirror (fig.4). The beam produced by the light source 

divides in two on the beamsplitter; one half is reflected back to the beamsplitter by a fixed 

mirror, the other half by a movable mirror that moves back and forth along the axis of the 

beam.  Thanks to the moving mirror, a phase difference occurs between these two beams 

when they recombine at the beamsplitter which causes them to interfere (Griffiths, 1983). 

Figure 4 
A diagram of the Michelson Interferometer. 
Courtesy of (Griffiths and De Haseth, 2007) 

 

 

 

 

 

If the light source is monochromatic and the distance of the movable mirror from 

the beamsplitter is equal to that of the fixed mirror, there is no phase difference and the two 

beams interfere constructively upon recombination on the beamsplitter (this position of the 

mirror is called ZPD – Zero Path Difference). If the distance of the movable mirror changes 

by ¼ of the wavelength, the phase difference of the two beams is ½ wavelength and they 

interfere destructively (Griffiths, 1975). In reality though, the IR radiation source is 

polychromatic and emits photons of various wavelengths. All the beams interfere 
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constructively in ZPD; in all other movable mirror positions, some of them interfere 

constructively, some destructively (Trchová, 1995). The light wave leaving the beamsplitter 

is called the interferogram and it is the sum of all interfering beams of all wavelengths. The 

interferogram is detected by a detector and turned into a conventional IR spectrum by the 

FT (Siebert and Hildebrandt, 2008). If a substance is placed between the beamsplitter and 

the detector, it absorbs some of the radiance while letting another part pass. The sample‘s 

absorbance spectrum (fig.5) is expressed as the ratio of the background spectrum and the 

spectrum transmitted through the sample (Griffiths, 1983).  

3.1.2 Statistical methods in FT-IR spectra evaluation 

A FT-IR spectrum contains an enormous amount of data. When spectra of several 

samples are compared, the absorption at each wavelength represents one variable that needs 

to be included in the comparison. This makes it impossible to analyze FT-IR spectra by 

visual inspection; instead, multivariate statistical methods must be applied in order to 

obtain relevant information from a set of FT-IR spectra. Factor analysis, linear discriminant 

analysis and cluster analysis are most commonly used for this purpose (Mouille et al., 2003; 

Smith-Moritz et al., 2011). 

Factor analysis is a method used to replace a large amount of variables in a data set 

by a lower amount of new variables without significant data loss. The basic concept of 

factor analysis is that most variables in a large data set are correlated with each other and 

can be explained by the existence of much fewer latent features (for example, different IR 

absorption of plant cell wall material at various wavenumbers can be explained by different 

contents of one or several cell wall polysaccharides). The aim of factor analysis is to 

explain as much of the original variability of a data set as possible by introducing a new set 

of independent variables that is as small as possible (Hebák and Hustopecký, 1987; 

Kopecký, 1998). Principal Component Analysis (PCA) is a factor analysis method widely 

used in FT-IR spectra evaluation (Chen et al., 1998; Smith-Moritz et al., 2011).  In this 

method, the new variables are called Principal Component Scores (PCs). The PCs are 

ordered (PC1, PC2….) by the amount of variability of the data they explain. When two PCs 

are plotted against each other (usually, but not necessarily the first two PCs), clusters in the 

data set can be indentified (fig.5b,7). FT-IR data processed by PCA can either be evaluated 

directly by the inspection of PC plots or they can be further analyzed by linear discriminate 

and/or cluster analyses. 
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The aim of Linear Discriminate Analysis (LDA) is to project the variability of the 

data set in several variables into a single new variable (Hebák and Hustopecký, 1987). 

Variability is projected as distance on a single axis after LDA treatment, hence the word 

linear in its name. Several algorithms can be used to transfer variability from several 

variables into one, including normalized distance, Euclid distance and Mahalanobis 

distance, but only Mahalanobis distance respects both differential variability and correlation 

structure of the original data set (Hebák and Hustopecký, 1987). In FT-IR spectra analysis, 

Mahalanobis distance of the samples is typically calculated from the first few PCs obtained 

by PCA of the spectra (Chen et al., 1998; Smith-Moritz et al., 2011). 

Cluster analysis is used to organize data into clusters so that the members of each 

cluster are more similar to each other than to any member of any other cluster (Hebák and 

Hustopecký, 1987; Kopecký, 1998). The similarity of samples is determined by one 

variable, in FT-IR spectra analysis typically the Mahalanobis distance (Mouille et al., 

2003). Several clustering algorithms have been described, for example hierarchical 

clustering, centroid-based clustering, the Ward algorithm etc., each of which is 

advantageous in different applications. The result of cluster analysis can be visualized as a 

dendrogram (fig.5c,8)(Kopecký, 1998). 

3.2  FT-IR spectroscopy applications in cell wall biology 

FT-IR spectroscopy in combination with multivariate statistical analysis is a 

powerful tool for the study of the plant cell wall. Comparison of FT-IR spectra can reveal 

even very slight modifications in the polysaccharide composition of the cell wall. 

Moreover, different absorption values at certain wavenumbers can be linked directly to 

different amounts of specific cell wall components. Significant progress in assigning FT-IR 

absorption bands to individual polysaccharides has been made by Kacurakova et al. (tab.1) 

(Kacurakova et al., 2000). 
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Several FT-IR spectroscopy applications in the identification of cell wall mutants 

and the study of interactions between cell wall polymers will be presented here. There are 

many more possible ways of using FT-IR based methods in cell wall biology, for example 

the study of effects of cellulose biosynthesis inhibitors on cell wall architecture (Alonso-

Simón et al., 2011), chemotyping of plant tissues (Gorzsas et al., 2011) or cotton fibre 

development (Abidi et al., 2010). However, describing all of these applications exceeds the 

framework of this overview. Many FT-IR applications in the study of cell wall architecture 

and plant growth and development in general are covered in an excellent review (Dokken et 

al., 2005).  

 

 

Table 1 FT-IR absorption band wavenumbers of cell wall polysaccharides (vs: very strong, s: strong IR band 
intensity; spectral data of compounds I–IV are taken from the literature). Courtesy of (Kacurakova et al., 
2000) 

 

No Compound (C–OH), (C–O–C), (C–C), ring     (Cl–H), ring 

1 Pectin 1144s 1100vs   1047, 1017vs 953 896   857 835 

2 Rhamnogalacturonan 1150 1122 1070vs 1043vs, 989s 951, 916 902   846 823 

3 Galactan 1155 1134 1072vs 1038vs   893 883     

4 Arabinan 1141 1097 1070 1039vs 918 895     807 

5 Arabinogalactan     1074vs 1045vs   897 868   808 

6 Arabinogalactan 1139   1078vs 1043, 985     880 842   

7 Arabinogalactan (Type II) 1156   1078vs 1040 916 892 879     

8 
Arabinogalactan (Type 
II)+Glucomannan (9:1, (w/w) 1146   1066vs 1034   896 872   809 

9 Arabinogalactorhamnoglycan       1049vs 914     837 810 

10 Xyloglucan 1153 1118 1078vs 1041vs 945 897       

11 Glucan 1151 1104sh 1076sh 1041vs, 1026vs 916     840   

12 Glucomannan 1150   1092vs, 1064vs 1034vs 941 898 872   814 

13 Galactoglucomannan 1149   1064a 1034vs, 960 934 897 872   813 

14 
Arabinoglucuronoxylan + 
Galactoglucomannan 1161, 1151 1109 1070 1038vs   898 881   809 

I Pectin 1152 1004vs 1082, 1051 1022vs, 972   891   834   

II GX 1147   1084 1047vs, 985   897       

III Starch 1155 1110 1082 1026vs 931     850   

IV Cellulose 1162 1120   1059vs, 1033vs 930 898       
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3.2.1 Sample preparation techniques 

Most FT-IR spectrometers are capable of measurements in the transmission or 

reflectance mode. While the Attenuated Total Reflectance (ATR) technique is widely used 

in the analysis of proteins and other purified substances in solid and liquid state (Trchová, 

1995; Barth, 2007), it is not usually applied to plant material, possibly because it is very 

heterogenous and doesn’t have very good reflectance properties (Chen et al., 1998). 

Direct transmission measurements of samples that have been handled minimally 

yield the best absorption spectra (Trchová, 1995). Dried hypocotyls of young seedlings can 

be measured directly on a FT-IR spectrometer attached to a microscope with good results. 

However, if these results should provide information about the composition of the cell wall, 

the seedlings must be grown in the dark on a sucrose-free medium so that they don’t 

contain starch, whose absorption bands would otherwise overlap those of the cell wall 

polysaccharides (Mouille et al., 2003).  

Several problems need to be addressed so that transmission FT-IR measurements of 

cell wall in leaves can be successful. The leaves can’t contain any starch for the reason 

mentioned above; they must as well be depleted of chlorophyll, sugars and other small 

molecules, whose absorption bands would also spoil the signal of the cell wall 

polysaccharides. The starch problem is solved effectively by growing the plants in the dark 

2-3 days before harvesting; chlorophyll and other molecules can be extracted from the 

harvested leaves by hot ethanol. FT-IR spectra collected from freeze-dried, starch-free, 

chlorophyll-depleted leaves provide good information about the composition of the cell 

wall. This sample preparation method has been proposed for measurements of small areas 

of  leaves on a spectrometer with microscope accessory (Chen et al., 1998). However, 

light-grown and dark-grown (i.e. starch depleted) wild type Arabidopsis plants could be 

clearly divided when whole leaves are processed according to this protocol and their spectra 

are measured on a macroscopic spectrometer (fig.5), suggesting that this sample preparation 

technique could be used on a macroscopic level as well (Glanc, unpublished data). 
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The cell wall material can also be extracted from the plant tissue and homogenized 

prior to FT-IR spectra collection. Thin sheets of isolated primary and secondary cell wall 

material have been shown suitable for FT-IR transmission measurements (Åkerholm and 

Salmén, 2001; Stevanic and Salmen, 2008). Some powder samples can be successfully 

measured when mixed with an optically neutral carrier, such as KBr, and pressed into 

transparent pellets (Trchová, 1995). However, this method hasn’t proved suitable for 

measuring the spectra of isolated cell wall material (Glanc, unpublished data). 

 

3.2.2 FT-IR spectroscopy in the identification and classification of cell wall mutants 

Studies of cell wall deficient mutants are crucial for identification of genes and 

mechanisms responsible for proper cell wall biogenesis. Classic forward genetics approach 

is one way to obtain such mutants. In a forward genetics experiment, a large amount of 

samples is mutagenized. Subsequently, mutants with desired phenotype are identified, 

Figure 5 
Figure 5  
a)FT-IR spectra of light-grown and dark-grown 
wildtype Arabidopsis leaves (3 leaves of 5 
plants, i.e. 15 samples  in each group) 
b)The first PC of the spectra explained 86,6% of  
total variance, light-grown and dark-grown 
samples clearly divided along the PC1 axis in a 
PC plot 
c) A dendrogram constructed by the Ward 
algorithm from Manhattan distance of the 
samples calculated from PCA results shows that 
the light-grown and dark-grown samples form 
two very distinct clusters 
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isolated and used for further analyses. The efficiency of such a mutant screen depends on 

an effective and high-throughput screening method (Smith-Moritz et al., 2011). The teams 

of McCann and Höfte have come up with such screening methods for cell wall mutants 

based on Fourier Transform mid-Infrared spectroscopy (FT-MIR) (Chen et al., 1998; 

Mouille et al., 2003). Recently, a new screening method based on Fourier Transform near-

Infrared (FT-NIR) spectroscopy was presented (Smith-Moritz et al., 2011). 

McCann and his team based their screening method on the FT-IR transmission 

spectra of whole, chlorophyll depleted, freeze-dried leaves (Chen et al., 1998). After being 

baseline-corrected and area-normalized, these spectra were analyzed with PCA and LDA. 

This method successfully divided groups of wild-type Arabidopsis plants from those with 

characterized cell wall mutations; furthermore, it discriminated different mutants (mur1 and 

mur4) from each other (fig.6,7). The method was then tested directly on an EMS-

mutagenized population of 1000 flax plants. 59 plants were identified as putative cell wall 

mutants, chemical analyses of their cell wall sugar composition revealed that 36 of these 59 

samples had actually altered amounts of at least one cell wall component (Chen et al., 

1998). 

 

 

 

 

 

 

 

 

 

 

Figure 6 (left) 
Representative wild-type (a) and mutant (b) 
baseline-corrected, area-normalized spectra 
and their calculated variance (c). Courtesy of 
(Chen et al., 1998) 
Figure 7 (above) 
A PCA plot showing that wild-type, fucose-
deficient mur-1 and arabinose deficient mur-
4 mutants can be divided based on their IR 
spectra. Courtesy of (Chen et al., 1998) 
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Höfte’s team has chosen hypocotyls of 4-day-old etiolated Arabidopsis seedlings as 

material for transmission spectra collection (Mouille et al., 2003). They also treated the 

baseline-corrected, area-normalized spectra with PCA. Subsequently, they calculated the 

Mahalanobis distance between the spectra and used it to create a dendrogram of the 

samples (Mouille et al., 2003) An article focused solely on the statistical methods used in 

this work has been published (Robin et al., 2003). The final dendrogram (fig. 8) seemed 

biologically meaningful as it clustered all cellulose mutants in one branch. Moreover, it 

clustered mutations of comparable strength together; the method has thus also proved to be 

very useful in cell wall mutant screens (Mouille et al., 2003). 

Very recently, the team of Miguel Vega-Sánchez has presented a new method to 

identify cell wall mutants, based on the NIR spectra rather than the MIR ones (Smith-

Moritz et al., 2011). In their study, whole Arabidopsis leaf rosettes of previously 

characterized cell wall mutants were analyzed. PCA was applied to the area-normalized, 

baseline-corrected spectra, and Mahalanobis distance was calculated for individual samples, 

using the wild type Col-0 plants as a reference. The mutants clearly clustered together in 

groups separate from each other and from the wild type (Smith-Moritz et al., 2011). 

Next, several thousand mutagenized rice samples were analyzed and their 

Mahalanobis distance counted, using random samples as a reference. 5% of the samples 

with the greatest Mahalanobis distance were biochemically tested for cell-wall composition 

and 33% of these were shown to have altered content of at least one cell wall 

polysaccharide. The cell wall composition of part of these very same samples was then 

correlated with their spectra. Based on such calibration, cell wall composition of the other 

half of the samples was counted and showed 0,98 correlation coefficient with the 

experimental values (Smith-Moritz et al., 2011). 
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In the next step, cell wall composition 

was predicted in all samples from the original 

population based on the comparison of their 

spectra with the calibration set. Putative 

mutants were selected, their cell wall 

composition tested experimentally. 60% of 

the putative mutants did indeed have altered 

content of at least one cell wall 

polysaccharide component (Smith-Moritz et 

al., 2011).The recently described method of 

Vega-Sánchez has two major advantages over 

the previous two: it requires almost no 

sample processing at all, and it can be 

performed on a regular FT-IR spectrometer 

that is not attached to a microscope (Smith-

Moritz et al., 2011). However, the results are 

less informative. Another drawback of Vega-

Sánchez’s and McCann’s methods is that 

they can’t be applied to mutants that never 

grow leaves big enough for spectra 

collection, such as some cellulose deficient 

mutants. As one can see, all three FT-IR 

based methods for identification of cell wall 

mutants described above have certain 

advantages and drawbacks and neither one 

of them is universally better than the others. 

We can expect some alterations to these or 

completely new methods to be described in 

the future. 

Figure 8 
A dendrogram of the mutants used in the study 
obtained by hierarchical cluster analysis of their FT-IR 
spectra. Different mutant alleles of the same gene are 
written in the same color. C1-C7 are clusters of similar 
mutants, the cellulose-deficient mutants are in the C2 
cluster. Courtesy of (Mouille et al., 2003) 
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3.2.3 Dynamic two-dimensional FT-IR spectroscopy in the study of interactions 

between cell wall polymers 

Dynamic FT-IR and two-dimensional FT-IR (2D FT-IR) are two advanced FT-IR 

techniques that have been used extensively over the past two decades in polymer research 

(Noda, 1989; Åkerholm and Salmén, 2001; Stevanic and Salmen, 2008). Dynamic and 2D 

FT-IR spectra, or a combination of the two, provide information on the changes that take 

place in a sample under mechanical stress and also on the interactions between polymers 

present in a sample. Also, they enhance the resolution in areas where overlapping peaks 

occur in conventional spectra (Åkerholm and Salmén, 2001). Dynamic FT-IR and 2D FT-

IR are thus very useful in the study of properties and composition of plant cell walls. 

The basic concept of 2D FT-IR spectroscopy is that the sample is exposed to an 

external perturbance during the collection of the spectrum, typically it is being repeatedly 

mechanically stretched in one direction. Knowing the frequencies of this strain and of the 

movement of the interferometer’s movable mirror, two different spectra can be obtained: 

one where the sample is maximally stretched (in-phase spectrum) and the other where it is 

completely relaxed (out-of-phase spectrum) (Noda, 1989). These two spectra are then 

correlated with each other, resulting in a three dimensional plot, where the x and y axes 

represent the wavenumber scale of the in-phase and out-of-phase spectra and the z axis the 

resulting correlation intensity (fig.9) (Noda, 1989). 

The spectrum of a sample under mechanical stress can be divided by the spectrum 

of the same sample without any perturbation. When absorbance is greater or smaller under 

the strain, the resulting spectrum shows positive or negative peaks, respectively. Such 

a spectrum is called dynamic. If dynamic spectra are plotted against each other instead of 

the static ones, the result is a dynamic 2D spectrum (Åkerholm and Salmén, 2001). 

Åkerholm and Salmén used dynamic 2D FT-IR spectroscopy to study the 

interactions between cellulose and two hemicelluloses, xylan and glucomannan, in the 

secondary cell walls of tracheid fibers of spruce (Åkerholm and Salmén, 2001). They 

prepared thin sheets of extracted holocellulose pulp with different contents each 

polysaccharide. Based on multivariate analysis of static FT-IR spectra of these sheets, 

specific absorption bands were assigned to each polysaccharide (1735, 1600 and 1245 cm
-1
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to xylan, 810 and 870 cm
-1

 to glucomannan and 1315, 1335 and 1430 cm
-1

 to cellulose) 

(Åkerholm and Salmén, 2001).  

The samples were then exposed to a sinusoidal strain in a direction parallel or 

perpendicular to the cellulose fiber orientation in the sheets. Two sets of dynamic FT-IR 

spectra were collected for each strain direction, the IR source being polarized parallel or 

perpendicular to the strain direction, respectively. (Åkerholm and Salmén, 2001).  

The dynamic spectra of the samples that were stretched perpendicularly to the fiber 

orientation had peaks at wavenumbers specific for all three studied polymers at both 

parallel and perpendicular IR polarization, meaning that all the polymers were affected by 

the strain. When the strain was applied parallel to the fiber orientation though, the results 

were quite different. The dynamic spectra had peaks at the cellulose-specific wavenumbers 

in both directions of IR polarization, while there were no peaks present in the xylan 

regions, suggesting the strain results in molecular changes of cellulose, but not xylan 

molecules. The glucomannan peaks appeared only when the IR was polarized perpendicular 

to the strain direction (and in this case, also the fiber orientation)(fig. 10a). This means that 

the glucomannan molecules are affected by the strain and also that they are oriented parallel 

to the cellulose microfibrils, which could be caused by interactions between cellulose and 

glucomannan. 2D correlation of the dynamic spectra provided further evidence for this 

hypothesis, as the dynamic 2D FT-IR spectrum had crosspeaks between all the bands 

specific for cellulose and glucomannan (fig.10b)(Åkerholm and Salmén, 2001).  

Figure 9 A static IR absorption spectrum of a mixture of polystyrene and polyethylene (a); 2D IR correlation 
spectrum of the same sample under tensile oscillatory strain with a frequency of 23 Hz and amplitude of ca. 0,1% 
sample length in Fishnet representation (b) and contour map representation (c). Courtesy of (Noda, 1989) 
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Stevanic and Salmen were interested in the differences between interactions of 

polymers in the primary and secondary cell walls (Stevanic and Salmen, 2008). For this 

purpose, thin sheets of isolated primary cell wall material of spruce were prepared and 

dynamic FT-IR spectra were collected according to (Åkerholm and Salmén, 2001). These 

spectra contained peaks at wavenumbers characteristic for all major cell wall components at 

both 0° and 90° IR polarization: cellulose around 3240, 3270 and 1435 cm
-1

, lignin around 

1270 and 1510 cm
-1

, hemicelluloses around 1735 and 1595 cm
-1

 and also peaks in a wide 

region between 1665-1555 cm
-1

, which contain signal from proteins as well as pectin 

(Stevanic and Salmen, 2008). These results indicate that the polymers of the primary cell 

wall constitute a very tight network where all the components interact with each other and 

all of them respond to a mechanical stress applied in any direction. This is very different 

from the situation in the secondary cell wall, where the major constituent cellulose interacts 

only with some other components and is much more affected by mechanical stress than 

other polysaccharides (Åkerholm and Salmén, 2001; Stevanic and Salmen, 2008). 

 

Figure 10  
a) Dynamic FT-IR in-phase and out-of-phase spectra of the sample under low amplitude sinusoidal strain 
parallel to the fiber orientation, with IR source polarized parallel (0°) and perpendicular (90°) to the strain 
direction. Peaks at cellulose-specific wavenumbers are present in both polarization modes, glucomannan 
peaks are significant only at 90° polarization mode and there are no xylan peaks visible at either mode  
b) Dynamic 2D FT-IR spectrum obtained by plotting the two in-phase spectra mentioned above against 
each other. Crosspeaks at all wavenumbers specific to cellulose and glucomannan suggest the existence of 
strong interactions between these two polymers.  Courtesy of (Åkerholm and Salmén, 2001) 
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4. Outlook 

Some genes that take part in the biogenesis of the plant cell wall have been 

identified and their protein products characterized as presented in this work. However, the 

vast majority of mechanisms involved in cell wall biogenesis remain unknown. For 

illustration, the genome of Arabidopsis encodes over 730 putative glycosyltransferases and 

glycosyl hydrolases, as well as several hundred different proteins that are thought to have a 

function in cell wall biogenesis (Somerville et al., 2004). 

The experiments and results described earlier in this work demonstrate that various 

FT-IR spectroscopical techniques provide a powerful tool for the study of various aspects 

of plant cell wall biology, including chemical composition, interactions between polymers 

and mutant identification. Nevertheless, only few groups have attempted to use FT-IR 

spectroscopy to unravel the mechanisms by which exocytosis affects biogenesis of the cell 

wall (Chen et al., 2007; Fan et al., 2011). 

There is strong evidence that the secretory pathway plays a key role in the plant cell 

wall biogenesis. However, only several studies addressing the effects of secretory pathway 

malfunctions on cell wall synthesis and composition have been published (Tamura et al., 

2005; Ischebeck et al., 2008). If we want to fully understand the role of the secretory 

pathway in cell wall biogenesis regulation, the effects of many more vesicle trafficking 

mutations and pharmacological treatments on cell wall composition need to be examined, 

and FT-IR spectroscopy seems to be the ideal tool for such experiments. 
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