
Charles University in Prague

Faculty of Mathematics and Physics

DOCTORAL THESIS

Michal Malohlava

Variability of Execution Environments for
Component-based Systems

Department of Distributed and Dependable Systems

Thesis advisor: RNDr. Tomáš Bureš, Ph.D.

Study program: Computer Science

Specialization: Software Systems

Prague 2012

Acknowledgment

This work is a result of being a member of Department of Distributed and Dependable
Systems for the last five years. Therefore, my thanks go to all my colleagues who help
me to finish the thesis. I very appreciate the help and support from my advisor Tomáš
Bureš. I also would like to thank František Plášil for his patience and guidance in
writing. I thank all my colleagues for creating an inspiring working environment; a
particular thank goes to: Tom Poch, Ondra Šerý, Honza Kofroň, Pavel Parízek, Tomáš
Kalibera, Petr Hnětynka, Vlasta Babka, Pavel Ježek, Jarda Keznikl, Tom Pop, and Vilo
Šimko.

I am also grateful to Lionel Seinturier who allowed me to spend four amazing
months in in the INRIA ADAM team. I would like to thank my French colleagues Aleš
Plšek and Frédéric Loiret for creating not only an inspiring research environment, but
also for their endless enthusiasm.

My thanks also go to the institutions that provided financial support for my re-
search work. Through my doctoral study, my work was partially supported by the
Czech Science Foundation grant 201/09/H057, by Charles University institutional
funding SVV-2012-265312, by the Ministry of Education of the Czech Republic grant
MSM0021620838, and by the Q-ImPrESS research project by the European Union un-
der the ICT priority of the 7th Research Framework Programme.

All my friends deserve also a dedicated acknowledgment – thank you for being
here. And last, but not least, I am in debt to my parents, sister, and overall family for
their support and encouragement during my doctoral studies.

iii

I declare that I carried out this doctoral thesis independently, and only with the cited
sources, literature, and other professional sources.

I understand that my work relates to the rights and obligations under the Act No.
121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Charles
University in Prague has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 paragraph 1 of the Copyright Act.

In Prague 7th June 2012 Author’s signature

Název práce Variabilita běhových prostředí komponentových systémů

Autor RNDr. Michal Malohlava
michal.malohlava@d3s.mff.cuni.cz

(+420) 221 914 236

Katedra Katedra distribuovaných a spolehlivých systémů
Matematicko-fyzikální fakulta
Univerzita Karlova v Praze

Vedoucí RNDr. Tomáš Bureš, Ph.D.
disertační práce tomas.bures@d3s.mff.cuni.cz

(+420) 221 914 236

Adresa Katedra distribuovaných a spolehlivých systémů
Univerzita Karlova v Praze
Malostranské náměstí 25
118 00 Praha

Abstrakt
Znovu použitelnost je jedním ze základních pilířů softwarového inženýrství. Tato vlastnost

umožňuje vyvíjet systémy nejen rychleji ale také s menším úsilím. Proto tato dizertační práce
zkoumá limity znovu použitelnosti v rámci komponentových systémů. Na základě analýzy
současných komponentových systémů nachází jejich společné vlastnosti a rozdíly. Dosažené
poznatky shrnuje do návrhu meta-komponentového systému – softwarové výrobní linky pro
přípravu komponentových systémů na míru specifikovaným požadavkům.

Práce se dále soustředí na definici vlastního meta-komponentového systému a rozebírá jeho
důležité aspekty, které jsou klíčové pro přípravu nového komponentového systému – (1) kon-
figurovatelné běhové prostředí a (2) generování kódu. Pro řešení (1) práce přináší modelem
řízenou metodu přípravy konfigurovatelného běhového prostředí. V návaznosti na tuto metodu
rozebírá generování kódu, definuje a vysvětluje roli interoperability doménově specifických
jazyků v tomto procesu. Dále práce rozšiřuje koncept interoperability a definuje rodinu jazyků
parametrizovanou obecným programovacím jazykem.

Klíčová slova
Komponenta, Komponentový systém, CBSE, Běhové prostředí

michal.malohlava@d3s.mff.cuni.cz
tomas.bures@d3s.mff.cuni.cz

Title Variability of Execution Environments for Component-based Systems

Author Michal Malohlava
michal.malohlava@d3s.mff.cuni.cz

(+420) 221 914 236

Department Department of Distributed and Dependable Systems
Faculty of Mathematics and Physics
Charles University in Prague

Advisor RNDr. Tomáš Bureš, Ph.D.
tomas.bures@d3s.mff.cuni.cz

(+420) 221 914 236

Mailing address Department of Distributed and Dependable Systems
Charles University in Prague
Malostranské náměstí 25
118 00 Prague, Czech Republic

Abstract
Reuse is considered as one of the most crucial software engineering concerns. It allows for

delivering software systems faster with less effort. Therefore, the thesis explores limits of reuse
in the context of component systems. It analyzes in depth contemporary component systems,
finds their commonalities and variation points, and introduces a meta-component system – a
software product line which allows for producing a tailored component system based on a set
of requirements.

The thesis addresses the meta-component system definition and focuses on its crucial aspects
which play the key role in component systems preparation – (1) a configurable execution envi-
ronment and (2) generation of implementation artifacts. To address the first aspect, the thesis
proposes a model-driven method for creating configurable execution environments. Motivated
by creating execution environments, the thesis contributes to (2) by introducing a notion of
domain-specific languages interoperability in the context of the code generation. Furthermore,
the thesis elaborates the proposed notion resulting into a family of interoperable domain-specific
languages which is parametrized by a general purpose language.

Keywords
Component, Component system, CBSE, Execution environment, Variability

michal.malohlava@d3s.mff.cuni.cz
tomas.bures@d3s.mff.cuni.cz

x

Table of Contents

Chapter 1 Introduction 1

1.1 System Development and Reuse . 1

1.2 Component-based Software Engineering 1

1.3 Problem Statement . 4

1.4 Research Goals . 5

1.5 Overview of Contribution . 5

1.6 Publications . 6

1.7 Thesis Roadmap . 8

1.7.1 Notes on Conventions . 9

Chapter 2 State of the Art 11

2.1 Configurable Components . 11

2.2 Reflective Middleware . 14

2.3 Software Product Lines and Factories . 14

2.4 Component Systems and Their Execution Platforms 16

2.5 Lessons Learned . 18

Chapter 3 Domain Analysis 21

3.1 Component Model Domains . 21

3.1.1 Enterprise Application Domain . 22

3.1.2 User Interface Application Domain 23

3.1.3 Configuration Frameworks . 23

3.1.4 Embedded Systems Domain . 24

3.1.5 Lessons Learned . 25

3.2 Case-studies . 28

3.3 jPapaBench . 29

3.3.1 Motivation . 29

xi

Table of Contents

3.3.2 PapaBench Overview . 31

3.3.3 jPapaBench Design . 32

3.3.4 Technology Mapping . 37

3.3.5 Environment Simulator . 38

3.3.6 Workload . 38

3.3.7 jPapaBench Code Characteristics 38

3.3.8 Lessons Learned . 41

3.4 Real-time Java Connectors for Fractal Component System 41

3.4.1 Introduction . 42

3.4.2 Challenges of Distributed RTSJ-based Designing and Program-

ming . 43

3.4.3 Supporting Distribution in Real-time Java 45

3.4.4 Lessons Learned . 47

3.5 SOFA 2 Runtime Extension . 48

3.5.1 Introduction . 48

3.5.2 Prerequisites and Definitions . 50

3.5.3 Analysis and Solution Design . 52

3.5.4 Overall Design . 53

3.5.5 Evaluation . 56

3.5.6 Lessons Learned . 60

3.6 Summary . 61

Chapter 4 Towards Meta-component System 63

4.1 Introduction . 63

4.1.1 Structure of the Chapter . 64

4.2 Meta-component System . 64

4.3 Realization of Deployment and Execution Environment 67

4.4 Conclusion . 70

Chapter 5 µSOFA– Model-driven Method for Creating Configurable Execution

Environment 71

5.1 Motivation . 71

5.2 Outline of the Solution . 72

5.2.1 Illustrative Example . 74

5.2.2 Front-end: From Component Assembly to Execution Infrastruc-

ture . 75

5.2.3 Back-end: From Execution Infrastructure to Its Realization 77

xii

5.2.4 Lessons Learned . 78

5.3 Execution Environment Model . 80

5.3.1 Micro-components . 80

5.4 Non-functional Requirements . 82

5.4.1 Infrastructure Aspects . 82

5.4.2 Variation Points and Join-points 83

5.5 Transformation Process . 85

5.5.1 Front-end: From Component Assembly to Execution Infrastruc-

ture . 85

5.5.2 Back-end: From Execution Infrastructure to its Realization 87

5.6 Discussion . 88

Chapter 6 Models Interoperability 91

6.1 Introduction . 91

6.1.1 Problem Statement and Goals . 94

6.2 ECOGEN Method: Overall Strategy and Related DSL Families 95

6.3 EPLANG, CDL, and ADL Families . 97

6.3.1 Why Three Domain-specific Languages and Their Families 97

6.3.2 EPLANG Family . 98

6.3.3 ADL Family . 102

6.3.4 CDL Family . 103

6.4 ECOGEN-J Generation Framework . 104

6.4.1 Overview . 104

6.4.2 Handling Queries – Basic Idea . 107

6.4.3 Assimilation and DSLs Interoperability 107

6.5 Evaluation . 110

6.5.1 Comparison with a Standard Template-based Technique 110

6.5.2 DSL Interoperability via MetaBorg Tools 112

6.5.3 Applying the EPLang Idea to Other Domains 113

6.6 Related Work . 114

6.7 Conclusion . 115

Chapter 7 Evaluation 117

7.1 jPapaBench . 117

7.1.1 Back-end: From EIM to System Realization 118

7.1.2 µSOFA dvantages and Disadvantages 119

7.1.3 Role of Interoperability . 119

xiii

Table of Contents

7.2 RTSJ Connectors . 120

7.3 SOFA 2 Runtime Extension . 120

Chapter 8 Conclusion 121

Bibliography 123

Author’s References 135

Web References 137

Appendices 139

Appendix A Example of EPAC for Composite Element 141

Appendix B Example of EPAC for Composite Element 143

Appendix C EPLang-BC Example 145

Appendix D Denotational Semantics of Queries 147

xiv

Chapter 1
Introduction

1.1 System Development and Reuse

During last decades software system development has become a craft which relies on
many aspects covering system design, architecture decisions, implementation, docu-
mentation, testing. Those aspects are typically specified by an overall development
methodology clarifying all factors of system development.

One of the crucial aspects having an immediate impact on fast system delivery is
reuse of development artifacts. It represents a natural demand which can be directly
expressed by the popular statement “don’t repeat yourself” (often referenced shortly
as a DRY concept) [HT99] and which forces developers to divide development artifacts
into well-defined reusable modules encapsulating given assets (e.g., implementation,
documentation, or architecture artifacts) and defining their provisions and require-
ments. The strategy does not only help to reuse the artifacts in different contexts but
also forces developers to systematically separate concerns and define relations among
them. Therefore, it is considered as one of the key factors of proper software develop-
ment.

1.2 Component-based Software Engineering

One of development methodologies which consider reuse as a first-class concept is
called Component-Based Software Engineering (CBSE) [HC01, Szy02]. Component-based
development has been adopted in many domains – ranging from simple configu-
ration systems (e.g., Google Guice [12], Spring [31], iPOJO [EHL07]), desktop and
web applications (e.g., JavaBeans [26], Java Server Faces [29]), enterprise applica-
tions (e.g., EJB [27], CCM [13]) to embedded systems (e.g., Koala [OLKM00], MyCCM-
HI [VPK05a]).

It allows for building software from well-defined building blocks called compo-
nents communicating via precisely specified communication ports. The component
represents an entity of reuse which can participate in various contexts. Component
semantics can be based on a non-formal definition based on common conventions
(e.g., Spring [31], OSGi [4]), or it can be semi-formally defined by a rigorous compo-
nent model (SOFA [BHP06], Fractal [BCL+06], CCM [13]) which can be further refined

1

Chapter 1. Introduction

by a formalism (e.g., BIP [BBS06], FracToy [TMS10]). The component model states
rules for component definition including, for example, a form of their structure and
composition, behavior, data-flow, and control-flow. However, in order to actually de-
velop, deploy and execute a component system, the model itself is not enough. The
model has to be supplemented with various tools and runtime libraries which give the
model meaning and enables system development and execution. The following three
constituents typically participate in building component-based systems:

Design and development tools They enable to “draw” component and application
architectures and support their validation and implementation. The tools un-
derstand the component model and implement its rules and constraints. Such a
group of tools can include a graphical editor of component architectures, com-
piler, validator, processor of a component architecture description language,
generator of component implementation skeletons, repository for storing com-
ponents, analysis and verification tools, debugger, etc.

Deployment tools are responsible for transformation of designed component-based
architectures to a form ready to be executed. The tools involve support for plan-
ning of component distribution, adjusting and preparing execution infrastruc-
ture including generation of connectors for inter-component communication,
transformation of design components to runtime components (e.g., in the case
of embedded systems when design components are merged on code level and
runtime components are produced), compiling and bundling prepared artifacts.

Execution environment and tools allow for instantiating and executing deployed
components. The execution environment typically provides an infrastructure
which satisfies components dependencies including runtime libraries. Further-
more, it can support components execution by managing their lifecycle, distri-
bution, providing additional services (e.g., monitoring, persistence, transaction
management), and assuring other components’ non-functional requirements
(NFRs). The infrastructure can have different forms varying from an advanced
container provisioning a rich set of services, component interpreter instantiating
a given component assembly (i.e., a collection of components that together form
a component application), to a library providing only API which is compiled
with implementation of components.

The joint product of these four constituents (the component model and the three
categories of tools) is typically referred to as a component system (or framework) [CL02].

There are currently a number of different kinds of component systems. They are
typically tailored for a specific application domain or use. For example, in the enter-
prise domain, the stress lies more on a richer set of features (e.g., transactions, per-
sistence, transparent distribution, fault-tolerance), while in the domain of embedded
systems, the driving concerns are determinism, predictability, low resource consump-
tion, formal-based verification, rigorous testing, simulation, and hardware interaction.

Although, component systems tend to have significant differences in the compo-
nent model, tools and execution environment, there are unifying concepts and fea-
tures (e.g., encapsulation, reuse, composition, methodology) that all component sys-
tems share.

2

1.2. Component-based Software Engineering

Moreover, as the use of components spreads and software becomes more perva-
sive, it is typical to find applications that combine even several component systems
(e.g., one for user interface declaration, one for implementing business logic and one
for driving an embedded device controlled by the application). Such mixing of com-
ponent systems means however combining different models, tools and execution en-
vironments, which is typically not very well-supported. Also in fact it means dupli-
cating the support for the common component concepts in each utilized component
system (e.g., system designer, deployment tools).

Therefore, the primary demand is to remove duplication among different compo-
nent systems and share the common assets. The commonalities lead to an immediate
idea of sharing selected common parts of a component system (e.g., model, component
repository, deployment tools, runtime, management tools) or at least generic elements
which would be adaptable for a particular usage. These common building blocks
would serve to assemble a component system according to specified requirements.

The concept of reusing various systems’ assets is not new. It can be found
in many previous works – software product lines [PBVDL05, CN02], software fac-
tories [GS03a], even components themselves represent reuse as its primary prop-
erty [HC01, Szy02, CL02]. Nevertheless, these systems focus only on reuse in the
scope of one selected application domain and do not support reuse crossing domains.
Evidently, reuse among multiple application domains is considered as difficult or even
impossible because of their rich variance. However, the mentioned commonalities in
the structure of component systems could help to increase reuse crossing domains.

Therefore, the vision is to have a product line or rather a “meta-component system”
– a framework allowing construction of component systems for a particular domain
or a combination of domains by addressing domains’ needs.

The idea would bring several advantages. The meta-component system would
be beneficial in environments with specific domain-requirements (e.g., resource con-
straints, limited programming model) where utilization of existing component sys-
tems would be difficult and require their non-trivial adaptation. Furthermore, the
prepared component system would permit its user to focus on system development
without distraction of unnecessary adaptation to address domain requirements not
targeted by the too general component system.

Another advantage of using the meta-component system would be fast prototyp-
ing of applications. In this sense, the meta-component system would prepare a com-
ponent system which would enable to produce functional prototypes of a planned
component-based application.

In spite of the mentioned benefits, the meta-component system idea still brings
many questions concerning system variability, configurability, adaptation, model-
ing, assembling, and execution of applications. Many of them are already at
least partially solved by existing approaches: feature-oriented design and program-
ming [CE00], aspect-oriented programming [KLM+97] and modeling [SVB+06], prod-
uct lines [CN02, PBVDL05], software factories [GS03a]). However, to our best knowl-
edge, the overall concept reflecting component systems is still missing. Therefore, the
primary motivation for this thesis is to elaborate the idea of meta-component system
in more details and focus on missing parts which cannot be covered by existing ap-
proaches.

3

Chapter 1. Introduction

1.3 Problem Statement

Considering the presented idea of producing tailored component systems (and poten-
tially a combination of them), according to our best knowledge, there is no approach
which would clarify an overall concept or even implement it. There are several poten-
tial reasons including complexity of integration, adaptation, and generation of model-
ing and implementation artifacts, as well as ensuring their synergy and interoperabil-
ity. Furthermore, a missing rigorous notion of component systems tools and execution
environments further increases the difficulty of the problem.

Here, it is necessary to stress the key role of the execution environment and re-
lated deployment tools. The execution environments of contemporary component
systems miss a rigorous structure and semantics. They are often neglected as an “im-
plementation part”. However, according to our opinion based on SOFA 2 experience
and conducted case-studies, the execution environment encodes an important part
of component-model’s execution semantics and often ensures non-functional prop-
erties required for correct system execution. Furthermore, a deployment process of
component-based application frequently requires generation and adaptation of arti-
facts which become part of the execution infrastructure. But without knowing the
structure of the execution environment it is hard to perform the process.

Hence, if correct deployment and execution of component-based system are to be
ensured, the execution environment and related deployment tools cannot be encoded
as a big knot of code without rigorous structure and semantics. Instead of that, their
preparation and structure need to be explicitly described, modeled, and constructed.
That involves a structural design of the execution environment, its behavior, and a
process of adaptation and generation of artifacts which need to be prepared by de-
ployment tools. These requirements directly fit the idea of the meta-component sys-
tem which suggests assembling the execution environment and deployment tools on
demand from reusable artifacts.

Another problem which needs to be considered is preparation of the implemen-
tation (e.g., a Java class, XML configuration, persistence descriptor). Both mentioned
topics – meta-component system and execution environment – directly rely on it. The
preparation can have different forms – artifact configuration (e.g., configuration via
shell environment properties), its adaptation (e.g., source code optimization), or gen-
eration artifact from scratch (e.g., interceptors, configuration files). In all the cases,
the process of preparation typically depends on a set of models describing various
concerns – structure, data-flow, control-flow, behavior, code patterns, etc. How-
ever, having the set of various modeling assets brings a direct demand for their
synchronization and interoperability (often referenced as cooperation or coordina-
tion [JVB+10, BCC+10]). And the interoperability plays a key role in the process of ar-
tifact preparation based on code generation when modeling assets influence the form
of resulting code. However, in this context, the notion of interoperability among mod-
eling assets and model of code still misses a rigorous specification and it is replaced
by ad-hoc solutions based on different kinds of template languages.

4

1.4. Research Goals

1.4 Research Goals

Compared to existing approaches (e.g., ACME [GMW97], xADL [DHT01],
AADL [VPK05b], UML [RJB04, BRJ05]), which focus only on component modeling,
the thesis puts equal stress on component-based application modeling as well as on
the execution environment, and corresponding tools, which in our experience are cru-
cial points for general use of component systems.

The thesis addresses the meta-component system approach and corresponding
process of preparation of tailored component systems. The primary intention is to
adopt ideas of the product line engineering [CN02] and generative software develop-
ment (GSD) [Cza05b] with focus on producing families of component frameworks for
different target application domains rather than just for one domain.

Instead of providing a complete realization of the meta-component system, the
thesis aims at clarifying crucial aspects concerning the execution environment and its
preparation. The thesis targets the following goals:

G1 The first goal is to clarify the concept of the meta-component system based on
an analysis of contemporary component systems and case-studies utilizing dif-
ferent component systems.

G2 The second goal is to introduce a configurable execution environment and cor-
responding deployment process which would be suitable for the construction
of the meta-component system. The environment should be well-defined and
clearly express a structure of running applications and the underlying infras-
tructure. Furthermore, the designed environment should be capable of reflecting
differences in application deployment, which varies from advanced component
containers to a simple library linked with the application code.

G3 The last goal focuses on the process of execution environment preparation,
which typically copes with artifacts generation. The goal is to elaborate the role
of models participating in code generation and clarify the notion of their inter-
operability.

1.5 Overview of Contribution

The overall contribution of the thesis can be summarized in the following four points:

C1 specification of the meta-component system based on rigorous analysis of do-
main of component systems

C2 model-driven approach for execution environment construction

C3 models (described via DSLs) interoperability in the context of code generation

C4 parameterization of code generation by a target implementation language

The first part of the thesis clarifies the meta-component system idea based on three
case-studies and experience obtained during development of SOFA 2 component sys-
tem (C1). The case-studies focuses on different application domains to cover various

5

Chapter 1. Introduction

requirements, functional and non-functional properties which can appear. The case-
study jPapaBench has been partially published in [KPMS10] and used for exhaustive
testing of safety critical Java (SCJ) [HHL+09] with help of Java Pathfinder [22],[HP00].
Besides identified domain attributes, jPapaBench has shown to be a suitable bench-
mark for evaluation of real-time Java virtual machines (it was used in the follow-
ing publications [TPNV11, Puf11, ZM11]). The second case-study clarifies properties
required to be considered during designing an infrastructure responsible for remote
communication among real-time Java-based applications [MPL+08]. The case study
has been developed in the scope of Fractal component model and serves as a basis
of further research of producing domain specific component frameworks [LPM+09].
And finally the third case-study shows a compact way of extending the SOFA 2 execu-
tion environment to satisfy a specific non-functional requirement, particularly primi-
tive components implemented in a scripting language [KMBH11]. The case-study has
served to verify suitability of aspect-oriented injection of functionality into an execu-
tion environment infrastructure.

All the facts obtained during domain analysis and performed case-studies have
been summarized in a definition of the meta-component system [BHM09]. The con-
tribution is the clarification of its notion and declaration of its stakeholders and corre-
sponding process of compiling new component systems (C1).

The second goal of the thesis is covered by a µSOFA (C2) – a model-driven ap-
proach to assemble the component-based execution environment. It represents a part
of the presented meta-component system. The novelty of the approach lies in a par-
allel construction of a tailored execution environment and corresponding deployment
process with help of aspect-oriented modeling.

The described construction heavily relies on code generation which serves to create
and complete code artifacts which cannot be prepared in advance due to their depen-
dency on actual usage context. Hence, the last part of the thesis introduces a code gen-
eration process treating a family of domain-specific languages describing application
models and patterns of code to be generated [BMH08, MPBH12]. The part stresses the
demand for interoperability among these languages in the context of code generation
and proposes how it can be achieved with help of a small query language [MPBH12]
ensuring languages cooperation (C3). Furthermore, the thesis formalizes the interop-
erability concept by describing semantics of the query language. And finally, the pro-
posed code generation process depending on the family of interoperable languages is
parameterized by a target implementation language (C4) which directly fits into the
meta-component approach.

1.6 Publications

The thesis content (Chapter 3, Chapter 4, Chapter 6) is directly based on the following
reviewed publications:

[MPBH12] Malohlava M., Plášil F., Bureš T., Hnětynka P.: Interoperable DSL Families for Code
Generation, In Software: Practice and Experience, John Wiley & Sons, Ltd, ISSN:
1097-024X, DOI: 10.1002/spe.2118, April 2012.

[KMBH11] Keznikl J., Malohlava M., Bureš T., Hnětynka P.: Extensible Polyglot Programming
Support in Existing Component Frameworks, In Proceedings of 37th Euromicro

6

1.6. Publications

Conference on Software Engineering and Advanced Applications, Oulu, Fin-
land, Aug 2011.

[BHM09] Bureš T., Hnětynka P., Malohlava M.: Using a product line for creating component
systems, In Proceedings of the 2009 ACM symposium of Applied Computing
(SAC’09), Honolulu, Hawaii, USA, ACM, ISBN:978-1-60558-166-8, Mar 2009.

[MPL+08] Malohlava M., Plšek A., Loiret F., Merle P., Seinturier L.: Introducing Distribution
into a RTSJ-based Component Framework, In Proceedings of 2nd Junior Researcher
Workshop on Real-Time Computing, Rennes, France, Oct 2008.

Apart from the papers directly included in the thesis, the following co-authored
publications relate to component systems, their structure, and preparation including
code generation:

[PPO+12] Pop T., Plášil F., Outlý M., Malohlava M., Bureš T.: Property Networks Allow-
ing Oracle-based Mode-change Propagation in Hierarchical Components, Accepted for
publication in Proceedings of the 15th international ACM Sigsoft symposium on
Component based software engineering, 2012.

[MHB] Malohlava M., Hnětynka P., Bureš T.: SOFA 2 Component Framework and Its
Ecosystem, Extended abstract of the tutorial – accepted for publication in Pro-
ceedings of the 9th International Workshop on Formal Engineering approaches
to Software Components and Architectures (FESCA), 2012.

[PLM12] Plšek A., Loiret F., Malohlava M.: Component-Oriented Development for Real-Time
Java, A book chapter in the book Distributed, Embedded and Real-time Java Sys-
tems. Editors: T. Higuera-Toledano and A. Wellings, ISBN 978-1-4419-8157-8,
DOI 10.1007/978-1-4419-8158-5_11, February 2012.

[PKH+11] Pop T., Keznikl J., Malohlava M., Bureš T., Hnětynka P., Hošek P.: Introduc-
ing Support for Embedded and Real-time Devices into Existing Hierarchical Compo-
nent System: Lessons Learned, In Proceedings of 9th ACIS International Con-
ference on Software Engineering Research, Management and Applications
(SERA2011), Baltimore, Maryland, USA, pp. 3-11, ISBN 978-1-4577-1028-5, DOI
10.1109/SERA.2011.14, August 2011.

[BJM+11] Bureš T., Ježek P., Malohlava M., Poch T., Šerý O.: Strengthening Component Archi-
tectures by Modeling Fine-grained Entities, In Proceedings of 37th Euromicro Con-
ference on Software Engineering and Advanced Applications, Oulu, Finland,
pp. 124–128, ISBN 978-1-4577-1027-8, DOI 10.1109/SEAA.2011.27, August 2011.

[KPMS10] Kalibera T., Parizek P., Malohlava M., Schoeberl M.: Exhaustive testing of safety
critical Java, In Proceedings of the 8th International Workshop on Java Technolo-
gies for Real-Time and Embedded Systems (JTRES’10), Prague, Czech Republic,
164–174, ISBN 978-1-4503-0122-0, DOI 10.1145/1850771.1850794, 2010.

[HPB+10] Hošek P., Pop T., Bureš T., Hnětynka P., Malohlava M.: Comparison of Component
Frameworks for Real-time Embedded Systems, In proceedings of CBSE 2010, Prague,
Czech Republic, LNCS 6092, Springer, pp. 21-36, ISSN 0302-9743, ISBN 978-3-
642-13237-7, June 2010.

7

Chapter 1. Introduction

[LPM+09] Loiret F., Malohlava M., Plšek A., Merle P., Seinturier L.: Constructing Domain-
Specific Component Frameworks through Architecture Refinement, In Proceedings of
the 35th Euromicro Conference, Patras, Greece, Aug 2009.

[BMH08] Bureš T., Malohlava M., Hnětynka P.: Using DSL for Automatic Generation of Soft-
ware Connectors, In Proceedings of International Conference on Composition-
Based Software Systems (ICCBSS 2008), Madrid, Spain, IEEE Computer Society
Press, ISBN 0-7695-3091-5, pp. 138-147, Feb 2008.

[MB08] Malohlava M., Bureš T.: Language for reconfiguring runtime infrastructure of
component-based systems, In Proceedings of MEMICS 2008, Znojmo, Czech Re-
public, ISBN 978-80-7355-082-0, November 2008.

1.7 Thesis Roadmap

The thesis is divided into the following chapters:

Chapter 2 It gives an overview of the current state of the art. It surveys domains
which have an overlap with the intended meta-component system and identi-
fies commonalities which would be beneficial for meta-component system real-
ization as well as weak points which the meta-component system should fulfill.

Chapter 3 Since the meta-component system idea is motivated by the concept of soft-
ware product lines, the chapter performs a domain analysis whose goal is to
explore a domain of component systems and find common parts and variation
points which the meta-component system realization has to consider. The chap-
ter also provides three case-studies demonstrating use of different forms of exe-
cution environment.

Chapter 4 Based on the analysis, the chapter proposes an overall design of the meta-
component system.

Chapter 5 The chapter focuses on an execution environment as the crucial part of
the meta-component system. It describes µSOFA– the model-driven method to
construct an execution environment and assemble corresponding deployment
process according to application requirements.

Chapter 6 Since implementation artifacts constituting the execution environment of-
ten need to be generated, the chapter elaborates the topic in more details. It
explains the role of domain-specific languages in code generation and clarify the
notion of their interoperability with respect to code generation. Furthermore, it
also shows how the code generation process can be parameterized by a target
technology.

Chapter 7 The evaluation designs the three case-studies introduced in Chapter 3 with
help of µSOFA. The chapter also stresses the notion of interoperability in this
context.

Chapter 8 The last chapter summarizes the thesis, its contribution, and proposes pos-
sible future plans and directions.

8

1.7. Thesis Roadmap

1.7.1 Notes on Conventions

Selected parts of the thesis are based on the published papers (Chapter 3, Chapter 4,
Chapter 6). In this case, the paper content is adapted to fit into the thesis text flow and
the corresponding part of the thesis is marked by a vertical bar on the side of the text.
Moreover, the part is introduced by a citation of the paper. If the part contains a major
change, the changed text is considered as new and the vertical bar is ommited.

9

Chapter 1. Introduction

10

Chapter 2
State of the Art

The meta-component system idea is not unique and its characteristics, such as pro-
duction of tailored systems, sharing and configuring assets, can be observed in vari-
ous existing approaches. Therefore, the objective of the chapter is to explore related
approaches and finds similarities which would be beneficial for the meta-component
system realization. Essentially the related work can be categorized into four main
topics:

• Configurable component systems – the idea of tailoring a component system to ap-
plication requirements can be observed in existing component systems;

• Reflective middleware – it can be adjusted according to requirements specified by
the environment and applications participating in communication;

• Software product lines and factories – they share the idea of producing systems
which conform to specified requirements;

• Component systems and their execution environments – respecting the goal G2 it is
necessary to explore properties of contemporary component systems and their
execution environments.

The following sections are dedicated to each of these topics and elaborate them in
more details.

2.1 Configurable Components

The idea of producing dedicated component systems or at least their parts ac-
cording to domain requirements can be found in several works. They frequently
focus on preparation of one particular aspect of a component system while ne-
glecting the rest – for example, only a domain-specific component model is pre-
pared [LT09, Taw11], or extending an existing component system to support domain-
specific concerns [PLMS08, PPK+11]. To our best knowledge, there is no solution
which would prepare an entire component system. This section brings an overview of
selected approaches considering different ways of components configuration.

The Soleil approach [PLMS08], which is built on the top of the Fractal component
model [BCL+06], focuses on development of real-time systems with help of Real-time

11

Chapter 2. State of the Art

Specification For Java (RTSJ) [BGB+]. The Soleil’s driving aspect is a limited program-
ming model of RTSJ which extends the Java language by restrictions considering dif-
ferent kinds of memories, threads, and scheduling primitives. These concepts require
to be modeled at the architecture level to mitigate code generation and to introduce
early error detection. Therefore, the Soleil approach brings a notion of domain compo-
nents abstracting the RTSJ programming concepts – particularly the notion of memory
area representing heap, immortal and scoped memories and threading domain sym-
bolizing various kinds of RTSJ threads.

The domain component can be considered as an orthogonal concept to regular
functional components – a functional component can be encapsulated in different
kinds of domain components prescribing non-functional properties. Each domain
component has associated additional attributes (e.g., thread timing, size of a mem-
ory area) and defined semantics via Alloy [Plš09]. During application deployment,
the domain components are translated into RTSJ code which manages encapsulated
functional components (i.e., their content).

For transformation of the architecture into implementation, the Hulotte frame-
work ([LPM+09],[LRS+11]) is utilized. The Hullote represents a general framework
which supports modeling application non-functional requirements and their transla-
tion into runtime infrastructure. It introduces a process which allows for annotating
an architecture description with well-defined annotations. Annotations have asso-
ciated semantics in the form of container aspects which inject components into the
architecture description resulting into fine-grained architecture of runtime container.
The resulting architecture is further transformed into a form of code, compiled, and
executed. In the context of Soleil, domain-components are translated into a form of
Hullote annotations and then overall RTSJ application is generated.

To summarize, the overall combination of Soleil and Hulotte frameworks focuses
on preparation system realization, but it neglects the rest of artifacts participating in
system development (e.g., component designers, deployment tools). Although, the
approach of architecture refinement is highly configurable, it assumes the predefined
form of execution environment (a container) with its predefined deployment process
which cannot be changed. Furthermore, the container implementation technology is
fixed to the Java language only and there is no obvious way of introducing another im-
plementation or configuration technology (for example, C language, Spring/Guice).

The MICOBS project [PPK+11] shares the idea of preparation specific platform spe-
cific models and corresponding executable system. It is a multi-platform multi-model
component-based development framework. Its main goal is to introduce a framework
to realize systems built from components (even heterogeneous) which would be pos-
sible to deploy on various target platforms. Hence, it brings an explicit concept of
a target platform which requires to be modeled to reflect platform-dependent non-
functional properties. In the MICOBS view, the platform is defined by a particular
operating system, its API, CPU (and its architecture), and board.

On the architecture level, MICOBS defines a general component model called
MCAD describing the elementary system artifacts (component, component type, in-
terface, port). To achieve independence on a particular component model, the MCAD
model introduces a concept of a domain which can be of two kinds. The implementation-
oriented domain has a reference domain implementation (e.g., a contemporary compo-
nent system) and therefore can be directly utilized for system development and de-
ployment. On the other hand, the application-oriented domain represents an application

12

2.1. Configurable Components

specific component model without any direct implementation. Hence, it needs to be
transformed into implementation-oriented domain with help of model-to-model and
model-to-text transformations.

The MICOBS introduces also a concept of complex implementation-oriented domains
which composes multiple “primitive” implementation-oriented domains. From the
architecture perspective, it represents a system composed of multiple heterogeneous
component-models. In this case, additional transformation and code generation is
required to overcome the differences among the utilized models.

The MICOBS also copes with non-functional properties in a general way. It defines
a separated model decorating the MCAD model elements with platform independent
as well as dependent properties. The system-analysis model then defines a way of
transforming the properties into a form of system report.

The MICOBS approach does not specify a new runtime environment. It always
relies on an existing component-framework providing executable environment for
component-based systems. However, the MICOBS allows modeling with help of ad-
hoc models which needs to be transformed into a selected component model which
would allow deployment and execution.

Taweel’s Phd thesis An Approach to the Definition of Domain-specific Software Compo-
nent Models [Taw11] considers component models as an elementary approach to model
systems. It states that the models are used in various domains from enterprise to em-
bedded systems, which require not only adapting the model itself but also providing
domain-specific modeling artifacts to mitigate development effort.

However, in Taweel’s perspective the contemporary component models are de-
signed to be general-purpose to cover a large set of systems. And, even if a component
model is considered as domain-specific (e.g., the case of embedded systems) it does
not fully integrate domain knowledge of a particular domain. The thesis focuses on
deriving domain-specific component models based on a domain analysis producing
functional as well as a feature model of a selected domain. Based on a survey of se-
lected component models (PECOS, Koala, SaveCCM) from the perspective of domain-
modeling (considering extra-functional properties, support for product lines), the the-
sis introduces a generic component model which serves as a core of derived domain-
specific component models. The core of a proposed generic component model consists
of a set of predefined exogenous connectors with precisely defined semantics which
serve as a base for deriving new types of connectors as well as for defining control
and data flows. The generic model further clarifies the model notion of data encapsu-
lation and its relation to component composition as well as support of extra-functional
properties which are managed by connectors.

Thus the Taweel’s approach includes a description of methodology for deriving
domain-specific component models based on domain knowledge including functional
and features models. The derivation methodology specifies rules of: (i) selecting prim-
itive components as elements in the domain, (ii) composing and specifying new con-
nectors reflecting data and control flows in the domain, and (iii) mapping domain data
stores to encapsulated data.

To summarize, the proposed approach focuses only on preparation of a domain-
specific component model, which represents in our interpretation only one part of a
component system. It means that a specification and adaptation of tools and execution
environment is missing. Nevertheless, the proposal of generic component model con-
siders not only structural composition, but it also respects the data as well as control

13

Chapter 2. State of the Art

flow among components.

2.2 Reflective Middleware

The similar intention can be, for example, recognized in the area of reflective mid-
dleware [LQS04, BCA+01]. In this context, middleware can be straightforwardly spe-
cialized to a range of domains including multimedia, embedded systems, and mobile
computing. The main idea behind them is to provide a highly configurable middle-
ware layer which would reflect (statically or dynamically) requirements of an applica-
tion built on the top of this layer. To build such a layer, projects typically utilize some
ideas of component systems that ensure the demanded adaptability and dynamic re-
configuration.

A well-known member of the reflective middleware family is OpenORB [BCA+01].
It assembles a middleware layer with the help of the OpenCOM component sys-
tem [CBCP01] and it focuses on adaptation and runtime reflection. OpenORB pro-
vides multiple meta-layers for describing interfaces, architectures and resources.
These layers are fully configurable statically as well as dynamically (at runtime).

Another example of the reflective middleware is Dream [LQS04], which is built
using the Fractal component system [BCL+06]. Dream allows for building middle-
ware that offers messaging, scheduling, task creation, etc. For adaptation and runtime
reconfiguration it uses the principle of controllers provided by the Fractal component
model.

Both the mentioned examples partially realize the idea of the meta-component sys-
tem, however they focus on a single domain only and allow configuration just in the
scope of their domain. Also, they aim at adaptation and dynamism of resulting sys-
tems and therefore they do not consider requirements of embedded systems for static
configuration or efficient use of system resources.

Nevertheless, the important property of reflective middleware is that its realization
is encapsulated and independent – i.e., it contains all services required for its execution
as well as execution of applications built on the top of them and does not require any
kind of external support (naturally except operating system). These properties we
consider crucial to achieve a well-defined execution environment.

2.3 Software Product Lines and Factories

Obvious recurring patterns, demands to make software development cheaper, faster,
and easier are main reasons why reuse stands as one of primary intentions of soft-
ware development since its beginning [Par76, GS04] . Increasing software complex-
ity has brought several paradigms for rigorous systematic reuse. The most known
paradigm is represented by software product lines [Par76, CN02, PBVDL05] which es-
tablish a scope for systematic assets reuse by defining a common vocabulary, reusable
set of assets, and strategies to produce members of a desired product family. The inten-
tion of the product line is to identify common problem features for a desired product
family in advance and to prepare reusable implementation assets which would miti-
gate production of family members. The product line itself is defined by its analysis,
design, and implementation [CN02, GS04]. The product line analysis is based on a
survey of the problem space and identification of problems which the desired product

14

2.3. Software Product Lines and Factories

line is expected to solve. Based on the identified problems, their significant features
(e.g., stakeholders, commonalities, variation points) are selected and composed into
a domain model. The domain model describes desired problems and typically is ex-
pressed with help of a feature diagram [CE00, KCH+90].

The product line design specifies how the line will develop a product. Hence, it
is composed of its architecture describing high-level design of products emphasizing
common features and variation points and product line development process which
prescribes how particular product is developed. The design has to also provide a
mapping among domain model features and designed product architecture variation
points.

And finally, the product line implementation provides common implementation
assets (e.g., components, configuration files, documentation) required by the product
line architecture and development process.

During product development, the domain model allows for selecting features of
the desired product. The selection configures the product line architecture and pro-
cess. And the product line implementation is utilized to derive product architecture
and corresponding production plan prescribing product assembly. During assembly
the selected product line implementation assets are integrated together to provide the
desired product.

It is necessary to stress that the concept of product lines does not enforce to utilize
a given implementation and modeling technology. It only specifies a vocabulary and
set of strategies which mitigate reuse. The most known utilization of the product line
concept is called a software factory.

A software factory is defined as a model-driven product line [GS03b, GS04] – i.e.,
a product line which is driven by models defined with help of domain-specific lan-
guages. The definition of software factory says [GS04]:

“A software factory is a software product line that configures extensible tools,
processes, and content using a software factory template based on a software
factory schema to automate the development and maintenance of variants of an
archetypical product by adapting, assembling, and configuring framework-based
components.”

The factory schema prescribes a set of artifacts which are necessary to be developed
to produce a software product. The schema actually describes a family of products but
does not provide implementation. To build members of the family, the schema needs
to be implemented resulting into the software template. It contains assets (DSLs, tools,
frameworks) which are required to produce a family member. The template is then
loaded into Interactive Development Environment (IDE) which becomes a particular
software factory to produce members of the product family defined by the schema. In
contrary to the general idea of product lines, the software factory stresses the IDE as
a central part of the product line which serves not only to produce new products but
also to configure and produce a software template.

In the presented context, the meta-component system can be considered as a dedi-
cated software product line (respectively a factory, but we do not stress importance of
the IDE) which copes with a family of component systems.

15

Chapter 2. State of the Art

2.4 Component Systems and Their Execution Platforms

Contemporary component systems can be classified according various criteria. Most
of systems comparisons focus only on capabilities of component model with respect to
composition [LW07], component syntax and semantics [LW07, LW06], modeling extra-
functional properties [CCSV07, CSVC11], capability of modeling individual design
stages of component-based system [LW06, LW07, CSVC11, CCSV07], and component
reusability and persistence [Sam97].

In the majority of publications, an execution environment (called also a compo-
nent platform or container) is neglected due to the general opinion that the component
model can be run without any effort. But, contrary is the case. The common view of
running component-based system [CL02] is depicted in Figure 2.1. The overall system
execution infrastructure involves a component platform enabling component deployment
and execution (we call it also an execution environment). The component platform is
running on the top of an operating system (or a virtual machine). It can utilize a ded-
icated middleware for component communication. With respect to the component
platform, its boundaries are not fixed. The component platform can be a dedicated
application communicating with operating system via its API (e.g., OSGi [4], Frac-
tal [BCL+06], SOFA 2 [BHP06], EJB [27]). On the other hand, the component platform
can constitute a part of an operating system as in the case of COM [21]. The same goes
for middleware: it can be incorporated in the component platform or have a form of
external provider which the component platform utilizes via a well-defined interface.
This freedom in the component platform definition leads to various variants.

Furthermore, the concept of the running system is tightly connected to deploy-
ment tools which prepare components and the component platform for execution. The
deployment tools have the major influence on the form in which components are in-
stalled into the component platform. They have to know platform’s provided services
to satisfy components dependencies. The tools can be also responsible for preparation
an ad-hoc infrastructure ensuring components distribution [Bur06, BP04]. In this case,
the deployment tools have to consider not only provided middleware services but also
component platform particularities such as a component instance registry [BHP+07].
Although the relation between the component platform and deployment tools is ob-
viously close, it is often not considered.

Regarding the execution environment, it is necessary to clarify its form and how
it is prepared. In the component-based development process [Szy02, CCL06], the de-
ployment stage is identified as a point in an application lifecycle, when it is being pre-
pared for execution. The goal of the deployment process is to realize inter-connections
among components and ensure their requirements. The deployment process takes
components implementations and glues them together with respect to an application
architecture (fulfilling required services). The glue can be in a form of generated code,
library, or it can be provided by a container.

According to our best knowledge, a full-fledged survey of execution environments
has not been written yet. Nevertheless, limited overviews considering only selected
features exist. For example, the survey [LU07] elaborates execution environments of
desktop, and web systems regarding transient state, concurrency, and resource man-
agement. However, the survey neglects component systems containing an execu-
tion environment in a form of a container or embedded systems execution environ-
ments. Furthermore, the survey does not even consider other non-functional prop-

16

2.4. Component Systems and Their Execution Platforms

Figure 2.1: Conceptual view of running component-based system

erties which are often demanded by component-based systems (e.g., dependability,
distribution). Likewise, deployment tools are omitted.

Another survey [CSVC11] distinguishes two different kinds of component deploy-
ment: (i) compile-time deployment and (ii) runtime deployment. During compile-time
deployment the components are compiled and linked together. This kind of deploy-
ment is typical for embedded systems which are frequently deployed into an environ-
ment with limited resources (e.g., Koala [OLKM00], Pecos [GCW+02], Pin [HIPW05],
MyCCM-HI [VPK05a], ProCom [BCC+08]), for GUI builders (e.g., JavaBeans [26]), or
simple configuration frameworks (e.g., Google Guice [12], Spring [31]).

On the other hand, the runtime deployment allows components to be added, and
often to be replaced during system execution. This is a typical case for enterprise
systems which need continuous execution and do not have strict resource constraints
(e.g., CCM [13], EJB [27], OSGi [4], SOFA [BHP06], Fractal [BCL+06]).

In both cases of component deployment, there is only a minimal intention to rigor-
ously clarify a role and structure of the execution environment and its constructions.
Nevertheless, for example, the Fractal component model [BCL+06] brings a concept
of a component control membrane. Each Fractal component is composed of its content
which is encapsulated by a control membrane. The membrane is composed of several
controllers which can be controlled via dedicated control interfaces. Furthermore, a
controller can expose or require internal interfaces to communicate with other con-
trollers.

The controllers serve for managing component content (e.g., injection of binding,
attributes’ values, lifecycle) and non-functional requirements such as component in-
ternals introspection, distribution, or reconfiguration. The Fractal component model
specification does not intentionally clarify a notion of controllers and their semantics is
only weakly specified – it describes them as “objects” exposing interfaces. Hence, the
Fractal model implementation called Julia utilizes regular Java objects to assemble the
component membrane. On the other hand, the implementation of the Fractal specifi-
cation called AOKell [SPDC06] introduces a componentized membrane. In this case, the
membrane is represented as a composite Fractal component providing control inter-
faces and containing sub-components standing for particular controllers. This concept
enables to define the component membrane in a modular way and reuse it among
systems realizations. Nevertheless, the Fractal membrane definition omits interface

17

Chapter 2. State of the Art

interceptors which play a key role in specification of controllers observing calls on
interfaces (typical example is the lifecycle controller). As the result, this separation
limits reuse of componentized membrane. Furthermore, AOKell does not address a
kind of deployment – it implicitly relies on the runtime deployment. This deficiency
in deployment configuration is solved by Juliac framework (Julia Compiler) enabling
compile-time deployment by specifying a process generating and compiling the entire
system runtime infrastructure into a runnable binary.

The SOFA 2 component system [BHP06] adopts a similar approach for describ-
ing an infrastructure encapsulating a component. The SOFA component model in-
troduces a micro-component model which is simple, flat, and without distribution,
The model serves to describe non-functional aspects of components. The model intro-
duces a micro-component providing and requiring interfaces. The micro-components
are composed into so called aspects representing a non-functional requirement (e.g.,
management of lifecycle). Every aspect has a precisely defined location in the com-
ponent infrastructure which it can affect. During deployment time, the aspects are
woven around components contents and as a result they compose the entire appli-
cation infrastructure. SOFA 2 supports only the runtime deployment that means the
described process of weaving is performed in the scope of the SOFA runtime container.

2.5 Lessons Learned

The previous sections have shown four principal research areas which in some manner
overlap with the meta-component system idea. They have confirmed that there is
no solution which would implement the overall idea of the meta-component system
as has been introduced in Section 1.3. However, the state of the art discussion has
shown that there are approaches which could be useful for meta-component system
realization.

The part devoted to configurable components has shown that only partial solu-
tions exist bringing limited variability. They are either only focused on configurability
of a dedicated part of a component system – typically on the component model. Or
the solutions are tightly connected with a selected component system and do not go
beyond its boundaries. The analysis has also exhibited that components can be config-
ured with help of various forms of modeling aspects bringing mainly benefits of con-
cerns separation and reuse. On the other hand, the aspect-based approaches typically
suffer from loosely described dependencies among aspects (i.e., different weaving or-
ders of dependent aspects can lead to different results) and from inaccurate structural
definitions of aspects.

Reflective middleware can be considered as a working example of a configurable
system typically composed of components, which is adapted according to domain re-
quirements. In the scope of the meta-component system, the reflective middleware
could play a role of a highly configurable communication layer. Except that, the part
has stressed the reflective middleware is also encapsulated and independent – it mod-
els and implements all the necessary services and functionality to support application
communication and its own execution and management.

The closest area to the meta-component system is represented by product lines and
software factories. They bring a concept producing members of a described product
family based on desired features. Their important property is that they do not depend

18

2.5. Lessons Learned

on any application domain or application kind and only describes rules, strategies,
and concepts to improve reusability while producing software products. Since most
of component systems cope with various kinds of models (e.g., architecture, deploy-
ment, behavior), the model-driven product line introduced by the software factories
concept looks promising with respect to the meta-component system. Therefore, in
the design of meta-component system, we will follow best-practices recommended by
the product lines concept.

19

Chapter 2. State of the Art

20

Chapter 3
Domain Analysis

To clarify the motivation and understand the variability of component systems, the
thesis presents an analysis of contemporary component systems (Section 3.1) and three
case-studies (Section 3.2) which were implemented in the scope of different applica-
tion domains.

The motivation for the analysis also comes from the concept of product lines (sum-
marized in Section 2.3) which prescribes to perform a domain analysis to identify com-
mon features as well as variation points of a product family. Therefore, the presented
analysis focuses on existing component systems supporting the whole development
cycle [CCL06]. It identifies typical application domains, where these component sys-
tems are utilized. For each domain, the analysis discusses a typical usage scenario
of components and identifies requirements and specifics of the domain with respect
to component design, deployment, and execution. The analysis designates a scope
which will be covered by the proposed meta-component system as well as it speci-
fies a common vocabulary (in words of generative system development [Cza05b], the
analysis constitutes a problem space).

With respect to the thesis goals, the case-studies continue the analysis by demon-
strating three different forms of the execution environment and its construction. Each
case-study is supplemented by lessons learned which stress the relevant concepts im-
portant for the meta-component system and execution environment.

3.1 Component Model Domains
Based on
[BHM09]To better understand the commonalities and differences of the existing compo-

nent systems, we have analyzed a diverse set of existing component systems
(EJB [27],Koala [OLKM00], Fractal [BCL+06], OSGi [4], Gravity [CH04], Pin [HIPW05],
PECOS [NAD+02], ProCom [BCC+08], CCM [13], JavaBeans [26], JavaServer
Face [29], Robocop [Maa05], ProActive [BCM03]). The analysis focuses only on com-
ponent systems which support a complete application lifecycle, i.e., from design till
execution. Also, we have taken into account our experience, which comes from the
past decade of developing the SOFA 2 component system [BHP06].

The general analysis of the component systems has led us to identify four main
application domains (in other words, what is modeled using the components). These
domains are:

21

Chapter 3. Domain Analysis

D1 enterprise applications

D2 user interfaces

D3 configuration frameworks

D4 embedded systems.

We elaborate on each domain separately in the rest of the section. For each domain
we discuss a typical usage scenario of components and identify requirements and
specifics of the domain. We relate these specifics to the component systems typically
used in the domain and study what features the component systems in the domain
typically posses.

3.1.1 Enterprise Application Domain

This domain represents a large number of applications, typically used in a commercial
environment. An enterprise application often operates over a large amount of data
stored in databases – it collects data from users, saves them into a database, does
computation over stored data and presents the results. The application is typically
divided into multiple layers where one layer is used for presenting information to the
users (e.g., a thin client), next layer takes care of storing the data (e.g., into a database)
and another encapsulates the business logic of the application.

A component system is often used in the business logic layer (e.g., EJB [27],
CCM [13]), where the logic is divided into (often flat) components. Simple compo-
nent systems can be also identified in a view layer (e.g., Java Server Faces [29]) where
they are used to compose the user interface. The view layer however falls in the user
interface domain as discussed in Section 3.1.2.

From the component system point of view, a component in the enterprise applica-
tion is an encapsulated entity which communicates with other components through
local interfaces or through remote interfaces, which allow distribution. The commu-
nication is typically implemented by a procedure call but messaging is also possible
(e.g., via message sinks and sources in CCM, or via message-driven beans in EJB).
Middleware (such as RMI or CORBA) is often employed.

A component is typically represented by a set of classes that are deployed (i.e.,
loaded and instantiated) in a container which contains an execution environment for
components. In this sense a component is a well-identifiable unit even during runtime.
It is further possible to deploy and undeploy a component basically independently.

The enterprise orientation of this application domain requires support of various
services typically provided by the execution environment of the component system.
These services typically include database access, persistence, transactions, naming,
trading, web-service support, fault-tolerance (replication), etc. Each service has a stan-
dardized API defined by the component system (e.g., J2EE in EJB) and a reference to it
is looked up by the component implementation using naming service. The binding of
the services to particular entries in the naming registry can be typically configured in
the deployment descriptor of a component application.

In summary, the stress in the enterprise domain lies on having a rich set of services
(database, transaction, persistence, etc.) that ease the development of enterprise ap-
plications. Components tend to be rather independent units existing at runtime. The

22

3.1. Component Model Domains

composition of components (especially in the industrial component systems such as
EJB or CCM) is typically quite simple, presumably owing to the fact that the compo-
nent systems are usually flat. A lot of complexity in enterprise component systems is
concentrated in the execution environment, which has to provide all the services and
has to be able to manipulate components at runtime. To manage the complexity of
the deployment and management of deployed components, graphical tools are often
provided for this task.

3.1.2 User Interface Application Domain

This application domain represents component systems which are used to build
graphical-oriented user interfaces from predefined UI components (often called wid-
gets). UI components are not limited to desktop applications (e.g., JavaBeans compo-
nent system [26]), but they can be used to build web interfaces too (e.g., JSF [29]).

The UI components typically provide a standardized API that allows generic han-
dling of them (methods as show, hide, paint, etc.). The relations among components are
mainly of parent–child (corresponding to the graphical nesting of components) and
publisher–subscriber (making possible to react and reflect on changes done in another
component).

In this sense the component models are hierarchical and messaging (publish-
subscribe) is used as the primary communication style. Interesting feature is that the
messaging usually disregards parent component boundaries (i.e., it connects compo-
nents that do not reside in the same parent component).

The composition of UI components is typically performed on running compo-
nents, so as the result of the composition may be immediately visible (e.g., using the
Bean Builder 1). That requires components to be runtime entities, which are compos-
able and replaceable at runtime.

Important features of UI components are introspection and persistence. The for-
mer allows querying the component to obtain a list of its attributes and messaging
interfaces, which enables the UI design tools to compose and configure components
in a generic way without having previous knowledge of them. The latter feature al-
lows serializing a composition of configured components to a file and using the file
later to instantiate the user interface at runtime.

In summary, UI component systems are relatively light-weight and do not require
any elaborate services (as opposed to enterprise systems). The stress lies on easy and
generic composition of running components. UI component systems are typically lo-
cal (i.e., not distributed) with no or very simple deployment.

3.1.3 Configuration Frameworks

Configuration frameworks are component systems typically used for configuring, cus-
tomizing and extending an application. They span a wide range from simple plug-in
frameworks or flat component systems (such as OSGi [4]) up to elaborate hierarchical
component systems (such as Fractal [BCL+06] or OpenCOM [CBCP01]).

1JavaBean Builder – http://java.sun.com/developer/onlineTraining/Beans/Beans1/
builder-tools.html

23

http://java.sun.com/developer/onlineTraining/Beans/Beans1/builder-tools.html
http://java.sun.com/developer/onlineTraining/Beans/Beans1/builder-tools.html

Chapter 3. Domain Analysis

The common denominator of these systems is that components are well-defined
runtime entities, which means that they can be instantiated and composed at runtime;
basic introspection mechanism is also often present.

Typically, configuration frameworks do not rely on a rich execution environment.
Rather, the services usually provided by the execution environment are modeled as
application components – it often results in a need of accessing the same service com-
ponent from several other components. There are different ways of supporting this –
in OSGi a component may expose part of its functionality as a service and other com-
ponents may resolve a reference to the service dynamically at runtime, while Fractal
has the concept of the shared component, which allows using the same instance of a
component at several places in a nested architecture.

Component systems for the configuration are typically local, since for simple con-
figurations the distribution is usually not required. If the distribution becomes an
issue, it is realized by components wrapping middleware and acting as connectors.
However, in configuration frameworks aiming at grid computing [BCM03], the distri-
bution is the core concept together with special multicast and gathercast interfaces.

As the configuration frameworks address customization and extensibility of an ap-
plication, they also sometimes contain means allowing extensions of the component
system itself. For example in Fractal this is supported by having the possibility of cus-
tomizing component controllers, which act as management interfaces of a component.
This way, it is easily possible to switch on/off several checks (e.g., blocking calls to a
component that has not been started yet), alter existing functionality and implement
new one (e.g., verifying that calls to a component follow a particular behavior proto-
col).

In summary, the component systems for configurations tend to have a simple and
quite flexible execution environment. The environment does not offer rich services
itself, however these services may be introduced in the form of components as there
is typically a way of viewing a component instance as a shared service. The stress
lies on having a strong concept of a component that can be manipulated (instantiated,
composed, bound, replaced, etc.) at runtime. The example of Fractal also shows that it
is advantageous if component systems in this domain are hierarchical and extensible.

3.1.4 Embedded Systems Domain

This domain covers software for embedded systems – such as those found in cars,
mobile phones, home appliances, industry automation, etc. This area is rather wide
and the particular requirements of the embedded systems may quite differ, however
the common requirements typically include:

Efficient resource usage: The devices running embedded systems are typically small
with restrictions on power usage and overall cost (save for automation where
this is typically not a problem). This means that the embedded system must
perform correctly even with a slow CPU and little memory. As the result, the
coupling between hardware and software is quite high.

High demands on dependability: Embedded systems are often used for controlling
safety critical tasks (e.g., brakes in a car), where the cost of failure is very high (it
can even cost human lives).

24

3.1. Component Model Domains

Real-time: The correct function of embedded systems often depends not just on the
correct result of the computation but also on delivering the result in time. That
classifies many of the embedded systems as soft real-time or even hard real-time.

Component systems in this domain (e.g., Koala [OLKM00], Pecos [GCW+02],
Pin [HIPW05], ProCom [BCC+08], Robocop [Maa05], AUTOSAR [7]) reflect the hard-
ware limitations by assuming a thin execution environment, which provides only a
basic abstraction layer between hardware, a real-time operating system (RTOS), and
components. The execution environment typically offers only limited services such as
a persistent storage [Maa05].

In many cases components are transformed during deployment to RTOS concepts
(tasks, processes) and they are statically linked with the execution environment. Be-
cause of the absence of runtime components, components are mostly composed and
configured statically at deployment, which often includes creating a real-time sched-
ule for component execution based on the data/control-flow in the component ar-
chitecture [BCC+08]. Configuration at runtime is missing or is very restricted (e.g.,
only to setting attributes via a previously defined interface) [OLKM00]. The static
configuration, however, allows for dramatic optimizations such as discarding unused
components in an application [OLKM00].

The requirements on dependability put a lot of emphasis on analysis (such as of
resource consumption, worst-case execution time, reliability). This concern is often
reflected in the component systems by having a simple semantics for components,
which are sometimes seen as being purely reactive (i.e., having no own thread of ac-
tivity) [NAD+02, BCC+08]. The communication is also kept simple by supporting the
procedure call or the asynchronous message delivery. In some cases exogenous con-
nectors are employed to explicitly capture the data and control-flow [BCC+08]. To
allow for analysis, component models often support annotations for expressing re-
source usage, real-time requirements, reliability attributes, etc.

In summary, component systems for embedded devices have often no explicit exe-
cution environment running in a target device, but the environment is represented by
a bundle of libraries statically linked to components during deployment. Important
is the role of tools, which comprise a transformation of components to RTOS concepts
and linking with an execution environment, simulator and so on. The stress further
lies on analyzability and support for real-time.

3.1.5 Lessons Learned

Based on the analysis, it is possible to identify and analyze common characteristics of
component systems used in the listed application domains. The analyzed component
system significantly differ in three aspects:

(i) component model

(ii) supported non-functional requirements (including various runtime services)

(iii) form of execution environment and corresponding deployment process

It is necessary to mention that tools as a remaining component system constituent
also differ among individual component systems. However, there are either directly

25

Chapter 3. Domain Analysis

dependent on a component model and specified non-functional requirements (e.g.,
graphical designers, modelers, architecture analyzers, memory footprint analyzers) or
independent in the sense that they can be utilized without major changes by different
component systems (e.g., behavior checkers). Therefore, the tools are not considered
here as a significant aspect which would distinguish component systems.

Component model variability. Component models mainly differ in a set of features
supporting component modeling and development. The set is influenced by an appli-
cation domain which can enforce various features such as:

• vertical composition – hierarchical versus flat components

• horizontal composition – explicit versus implicit bindings

• operation-based v. port-based interfaces

• complete v. incomplete interface definition

• meta-class levels for components – (i) component as a singleton, (ii) component
and its instance, (iii) component type, component, and instance

• additional component kinds (e.g., active, passive components)

• partial versus fully-fledged development cycle

• endogenous v. exogenous connectors

• behavior modeling support

• data modeling support

• and more [CSVC11, LU07, LW06, CL02]

For example, enterprise applications require a rich set of modeling features includ-
ing hierarchical components, support for modeling non-functional services, and full-
fledged description of component assembling and deployment. On the other hand,
configuration frameworks and user interfaces are often supported by a simple (either
flat or hierarchical) component model which is mainly concerned with a component
assembly. And finally, the embedded component systems are typically based on a rig-
orous component model distinguishing between active and passive components and
stressing an importance of extra-functional properties (e.g., timing properties, memory
allocation) which can be further used for system validation or verification.

To support the meta-component system idea, this wide component model vari-
ability needs to be considered. The meta-component system should allow for prepar-
ing a component model with a defined set of modeling features. Fortunately, there
are many existing approaches which permit to handle modeling heterogeneity and
produce a model including desired features. Thus, for example, aspect-based model-
ing [VG07, SSK+06, GV07, KTG+06, PRJ+03] injecting desired features into a common
model can serve as a possible solution to cope with component model heterogeneity.
Also a template based method preparing the desired component model according to
specified features can serve as a solution [Cza05a]. Another possible way is to employ
the UML profiles mechanism [FPR00, RJB04] or EMF profiles [LWWC12] to create a
specialized component model.

26

3.1. Component Model Domains

Supported non-functional requirements. The second main difference among com-
ponent systems lies in supported non-functional requirements (NFRs). Each compo-
nent systems copes with its specific set of requirements which are primarily influenced
by a kind of developed applications. For example, enterprise systems support a rich
set of additional services including persistence, transaction management, transparent
distribution, load-balancing, etc. On the other hand, configuration frameworks en-
sure only basic execution services (e.g., lifecycle management, introspection) and all
additional NFRs need to be managed by applications themselves.

This unbounded variability of possible NFRs which need to be reflected puts
stress upon the component system participants and also directly impacts the meta-
component system. Nevertheless, the survey [CSVC11] brings a classification of non-
functional requirements (in the publication referenced as extra-functional properties)
according their management, specification, and composability. Regarding component
system realization, the most important classification is according NFRs management
which directly impact the component system and particularly its execution environ-
ment. For meta-component system realization it is necessary to consider NFRs man-
aged endogenously (only system wide) and exogenously (per collaboration as well as
system wide). Both of these NFRs groups directly influence component system’s ex-
ecution environment. The properties managed endogenously per collaboration does
not need to be further considered, since the component implementation is responsible
for them.

Form of execution environment. The execution environment form is the last identi-
fied major difference. The analysis of four applications domains brings three different
forms of execution environments:

EE1 Ad-hoc execution environment constructed in parallel with an application. This
kind of the environment is typically utilized by simple ad-hoc configuration
frameworks and control systems with a pre-generated off-line schedule. In this
case, the execution environment has to be encoded manually (or generated) as a
glue code connecting the components. The result of the deployment process is a
binary image of application which can be directly launched.

EE2 Execution environment as a library is used by component systems for embedded
applications domain, configuration frameworks, and user interfaces. In this
case, glue code connecting components is supplemented in a form of a static
library providing all necessary services (i.e., programming API). During deploy-
ment, the components (and also generated glue code) are compiled with the
library. As in the previous case, the result of deployment is a binary image of
application.

EE3 A container providing a rich set of execution services is characteristic for the do-
main of enterprise systems. Contrary to the previous execution environments,
the deployment process bundles the assembled applications into a form of pack-
age and installs it in the running container. The container is responsible for satis-
fying all application’s requirements including bindings among components and
non-functional properties.

27

Chapter 3. Domain Analysis

These three forms of execution environment need to be supported by the meta-
component system. That also includes a corresponding deployment process which
transforms components into their runnable form.

To summarize the identified differences in component systems, there are three
fundamental variation points. Since the differences in component models can be ad-
dressed by existing approaches and support of NFRs depends mainly on the capa-
bilities of the components’ execution environment, the remaining variation point –
form of execution environment – and the execution environment itself require more
detailed elaboration. Therefore, additional case-studies are conducted to understand
variability of execution environments.

3.2 Case-studies

The presented case-studies directly continue in the analysis and focus on the identified
forms of execution environment. The case-studies employ execution environments in
the same order as they were listed in Section 3.1.5 – i.e., the jPapaBench case-study uti-
lizes the simplest EE1 form of execution environment, the RTSJ connectors case-study
employs a library-based execution environment (EE2), and finally the last case-study
(SOFA 2 runtime extension) demonstrates the container-based form of the execution
environment (EE3). The objective of the section is to demonstrate the role of execution
environment during the system construction and identify important properties which
need to be considered by the meta-component system.

jPapaBench represents an on-board control system for a unmanned aerial vehicle
(UAV) implemented on the top of real-time Java virtual machine. The case-study
is designed to support two kinds of real-time Java virtual machines represented
by Real-time Specification for Java (RTSJ) [BGB+] and Safety Critical Java (SCJ) [17])
as well as regular Java virtual machine. The utilization of three kinds imple-
mentation technologies with their specificities has a direct impact on a form of
used component system and its execution environment. The case-study uses ad-
hoc module system – the modules are encapsulated and assembled with help
of selected target implementation technology. Hence, there is no explicit execu-
tion environment and further due to real-time domain constraints the case-study
does not utilize any kind of a library. The resulting system is self-contained and
can be directly run in a virtual machine. Therefore, the ad-hoc modules are more
runtime entities than architectural elements. Another important point, which
needs to be emphasized, is the configurability of modules. The module imple-
mentation has to reflect differences in programming models of plain Java, RTSJ
and SCJ.

The case-study has been also utilized as a real-time benchmark for evalu-
ation different aspects of real-time virtual machines – for example, the pa-
per [TPNV11] utilizes jPapaBench to perform a static analysis of code to detect
violation of SCJ rules, while the paper [Puf11] elaborates hard real-time garbage
collecting with help of jPapaBench, and finally authors of [ZM11] have utilized
jPapaBench as an inspiration for their C++-based benchmark and further analy-
sis.

28

3.3. jPapaBench

RTSJ connectors case-study focuses on proposing a component model for design
and implementation connectors for a clone of Fractal component system imple-
mented with help of real-time Java. The case-study uses regular Fractal compo-
nents to model and implement communication bindings and express real-time
Java extra-functional properties. In this case, components build a runtime infras-
tructure which directly implements desired communication style reflecting the
RTSJ specific programming model. The components have associated code gen-
erators producing RTSJ code. For execution, compilation with the Fractal library
is necessary.

SOFA 2 runtime extension case-study focuses on SOFA 2 component system suit-
able for designing enterprise systems. The case study introduces support of
components implemented with help of a scripting language. It demonstrates
how the SOFA runtime composed of micro-components can be extended to sup-
port scripting languages and how the extension mitigate differences between
the Java-based runtime model and its scripted extension. In this case, the micro-
components express runtime infrastructure which is directly instantiated by the
SOFA container providing the execution environment.

3.3 jPapaBench

The jPapaBench2 case-study represents the domain of embedded systems, particularly
the domain of Java-based real-time control systems. It utilizes an ad-hoc component
system including a non-formal component model and the simplest variant of the exe-
cution environment (i.e., variant EE1). The goal of the case-study is not only to show
the simplest variant of the execution environment, but it also demonstrates reusability
of components respecting differences in a technology used for execution environment
implementation.

The case-study was originally presented as a real-time benchmark in the pa-
per [KPMS10]. However, the section brings an extended version of the jPapaBench
description published as the technical report [Mal12].

[Mal12] Malohlava M.: jPapaBbench – a Realtime Benchmark, Technical Report n.
2012/1, Charles University in Prague, Department of Distributed and Dependable
Systems, 2012. Published in the condensed form in [KPMS10].

3.3.1 Motivation

The Java programming language is well-adopted in various domains of software de-
velopment due to its simplicity, huge set of additional libraries, large community and
long-term experience.

However, the language itself does not guarantee any determinism or predictabil-
ity of timing properties which represent important requirements for systems requiring

2The jPapaBench implementation can be downloaded from http://code.google.com/p/
jpapabench/

29

http://code.google.com/p/jpapabench/
http://code.google.com/p/jpapabench/

Chapter 3. Domain Analysis

real-time behavior (e.g., control systems, embedded systems, large-scale trading sys-
tems).

Therefore, dedicated language specifications – Real-Time Specification for Java
(RTSJ) [BGB+] and Safety Critical Java (SCJ) [17] – targeting development of real-time
Java applications were initiated.

The shared attribute of these specifications is that they follow the original Java lan-
guage specification, but extend and restrict the Java language programming model
to achieve determinism and predictability of timing properties. These properties are
guaranteed by modified garbage collector as well as by dedicated construct includ-
ing explicit memory allocation, non-heap real-time thread un-interruptible by garbage
collecting, etc.

Because of specificities of real-time domain, specification implementations in the
form of dedicated Real-time Java Virtual Machine (RT-JVM) require to be extensively
validated and verified if its execution characteristics and performance corresponds to
the specification.

Such testing can be typically provided in the form of an application benchmark
which would allow to characterize the properties of RT-JVM implementation under
real-time workload. Nevertheless, the domain of real-time Java lacks a suitable bench-
marks which would be based on real-life applications. On the other hand, many C-
based real-time benchmarks exists ([NCS+06], [GRE+01], [SWR+99], [20]) targeting
different real-time aspects (e.g., WCET, response time, jitter measurements, distribu-
tion). Therefore, it would be beneficial to re-implement a selected C-based benchmark
with help of different kinds of real-time Java not only to allow RT-JVM validation but
also allow comparison to runtime characteristics of C-based implementation.

One of C-based benchmarks is a project called Papabench [NCS+06]. The Pa-
pabench project represents an example of non-trivial real-life real-time application
benchmark. It implements a control system of unmanned aerial vehicle (UAV)
originating from the Paparazzi project [1]. The C-based benchmark targets WCET-
measurements and provides corresponding static characteristics of C-code (memory
allocation rate, branching).

From the real-time Java perspective, the Papabench project seems as an ideal
benchmark for RT-JVM because it: (i) provides a real-life control system of UAV which
(ii) has real-time requirements; (iii) includes several tasks performing non-trivial com-
putation; and (iv) has analyzable data- and control-flows. Furthermore, existence of
Java and C version of the benchmark would permit to compare static and runtime
characteristics of both implementations.

Therefore, this section introduces Java-based implementation of the Papabench
benchmark called jPapaBench and presents its design and code characteristics. In
summary, the section contribution is:

• real-life real-time benchmark for testing and verification of RT-JVM;

• design clarification with respect to supported three kinds of Java specification:
plain Java, RTSJ, and SCJ;

• characterization of jPapaBench code.

30

3.3. jPapaBench

Figure 3.1: PapaBench application scheme.

3.3.2 PapaBench Overview

The Papabench benchmark [NCS+06] implements a control system of UAV which was
originally deployed in the scope of the Paparazzi project [1]. While the Paparazzi
project support several airplanes and their configurations, the Papabench project se-
lects a particular airplane and relies on the corresponding software and hardware
configurations. Nevertheless, the Papabench strictly follows the original Paparazzi
software as well as hardware design.

Usage Scenario

The scenario in which the benchmark is deployed and executed is depicted on Fig-
ure 3.1. The autonomous flight of the airplane is driven by a predefined flight plan,
which is loaded into the plane in advance and contains a description of the desired
flight route and corresponding way-points which should be visited, eventually opera-
tions which should be performed (e.g., , taking photos). The whole flight is monitored
by a ground station which receives telemetry data from the airplane and provides their
visualization. Furthermore, if a critical situation occurs during an autonomous flight,
the airplane can be also controlled by a regular radio control (RC).

Airframe Design

Aircraft on-board hardware and software have to reflect the described usage scenario
including autonomous flying, airframe configuration, and manual airplane control.

Regarding the hardware design, the airplane configuration consists of two com-
putational MC0 and MC1 units connected via SPI bus and additional sensors and
actuators. The first unit (MC0) controls actuators and manages received commands
from radio control. That is why it is connected to actuators (airframe flaps, engine
gas) and radio control receiver. It also communicates with the second computation
unit MC1 via the SPI bus.

This unit is responsible for management and computation of the autonomous
flight according to a loaded flight plan and present flight telemetry. Furthermore,
the unit reports telemetry information to a ground station via a datalink typically in

31

Chapter 3. Domain Analysis

a form of a modem. To estimate an airplane position and attitude, the autopilot unit
utilizes GPS and IR sensors.

From the software perspective, each computational unit contains a deployed con-
trol system responsible for computation and communication with attached devices.
The fly-by-wire control system, which is deployed on the MC0 unit, is responsible for
configuration of actuators according to received commands from the autopilot unit
and the radio control.

The second computational unit MC1 contains an autopilot implementation which
manages the autonomous flight. It contains a navigator implementation which esti-
mates the airplane position and attitude according to data from GPS and IR sensors
and computes a new configuration for airplane actuators which is sent via SPI bus to
the fly-by-wire unit.

Each control system includes several running tasks with priorities varying from
25ms to 250ms. The Papabench implementation uses a simple timeline scheduling
without preemption. The side effect of the scheduling strategy is that no synchroniza-
tion is placed in Papabench implementation.

The whole airplane control system works in two independent modes: (i) manual
in which the fly-by-wire unit receives RC commands, passes them to autopilot which
performs airframe stabilization and returns the commands for actuators; and (ii) au-
tomatic mode which is fully driven by autopilot unit according to the flight plan. The
implementation also supports a fall-back mode, which is activated only when the au-
topilot does not response. Its activation causes setup up of actuators to a predefined
fall-back configuration assuring safe landing of the airplane. In these modes all tasks
are running but their computation paths are different.

3.3.3 jPapaBench Design

To bring Papabench into Java-based world, the resulting Java-benchmark has to sat-
isfy several requirements. With respect to real-time Java, the resulting benchmark
should fulfill common requirements summarized in Kalibera et al. [KHM+11] includ-
ing object-oriented design, code size and complexity, memory management, or multi-
threading.

Additionally, in our case jPapaBench implementation should also fulfill the follow-
ing aspects:

• preserve behavior of the original Papabench project, but use common Java con-
structs for the implementation. The resulting Java implementation should con-
tains the same data-flow and control-flow as the original C-implementation;

• provides an implementation in plain Java and different flavors of real-time Java
– RTSJ, SCJ Level 0, and SCJ Level 1;

• utilize common object-oriented and component design practices – separation
of concerns via modularization, encapsulation, inheritance and polymorphism
(which are not provided by the Papabench implementation);

• highly configurable (e.g., change memory allocation strategy);

• verifiable in the sense of worst-case execution time (WCET). That means, for
example, to avoid for unbounded loops.

32

3.3. jPapaBench

The jPapaBench benchmark implementation stems from the original benchmark
Papabench which is implemented in the pure C-language. The design of jPapaBench
follows the structure of the original implementation to preserve its properties – num-
ber of tasks and their timing properties, synchronization, interrupts, number of exter-
nal devices, and computation paths. However, the jPapaBench implementation has to
also reflect object-oriented/component design as well as target selected Java-kinds.

Therefore, the high-level jPapaBench design follows a layered approach [SVB+06],
where the implementation is divided into layers – only a higher layer can reference
a lower layer (see Figure 3.2). The actual implementation contains four layers: a
jPapaBench Core including entire benchmark computation logic, and three Java-kind
specific layers encapsulating the jPapaBench Core into corresponding constructs. The
jPapaBench Core design and implementation has to be flexible enough to enable such
encapsulation, but should not change computation characteristics. The purpose of the
design is to share the same computation characteristics among implementations in
selected Java-kind.

Figure 3.2: Layered jPapaBench structure.

The overall jPapaBench design relies on two kinds of components – modules and
tasks which allow separation of individual concerns spread over original Papabench
implementation. The module represents a static building block of the jPapaBench sys-
tem including abstraction of hardware devices. The modules can reference each other
and communicate via well-defined interfaces. The main objective of such separation is
to explicitly locate a place in the control system where the data are stored (e.g., aircraft
position, attitude, telemetry data). Furthermore, component-based design is highly
flexible and configurable – it permits to preserve the layered design, but, on the other
hand, it also allows to a Java-kind specific implementation to introduce its specific
implementation of a module if the original provided by jPapaBench Core cannot be
adapted or encapsulated.

The tasks represent sources of computation. They operate over the modules and
their data.

From the component-based perspective, the module represents a passive compo-
nent, the task stands for an active component. Both have well-defined required, pro-
vided interfaces.

Module Design

The overall design of the jPapaBench Core depicted on Figure 3.3 follows the structure
of the original Papabench implementation and identifies the components which are
spread over original C-implementation.

33

Chapter 3. Domain Analysis

Figure 3.3: Overall jPapaBench design.

Autopilot FBW Simulator
Task T (ms) Task T (ms) Task T (ms)

Radio Control 25 ReceiveRC 25 Environment 25
Stabilization 50 SendToAutopilot 25 GPS interrupt 250

Fly-by-wire link 50 CheckFailsafe 50 IR interrupt 50
Reporting 100 CheckAutopilot 50

Navigation 250
AltitudeControl 250
ClimbControl 250

Table 3.1: jPapaBench tasks and their periods.

Two top-level modules – fly-by-wire and autopilot– correspond to software parts
deployed on computational units MC0 and MC1. Each has a reference to additional
modules representing hardware devices or sub-units.

The fly-by-wire module is composed of two sub-modules FBWStatus (holding
fly-by-wire status information) and LinkToAutopilot (responsible for communication
with the autopilot) and two devices – remote control commands receiver (RC) and SPI
bus end-point (SPIBus).

The design of the autopilot includes the following four sub-modules:

• Estimator holding estimation of aircraft position;

• Navigator storing a current flight-plan;

• LinkToFBW responsible for management of a message channel to the fly-by-
wire unit;

• AutopilotStatus storing a flight data (i.e., telemetry).

Furthermore, the autopilot module controls three hardware devices: GPS, IR sen-
sors and a datalink transmitting telemetry data to the ground station.

The modules reflect the static design of the jPapaBench core. However, to ensure
correct airplane control (periodic) tasks needs to be running on each computational
node. The jPapaBench contains periodic tasks and interrupts handlers. Their periods
vary from 25-250ms (see Table 3.1).

The fly-by-wire module contains four computation tasks. Two of them –
CheckFailsafe and CheckAutopilot – are responsible for checking the consistency
of the whole system including autopilot responsiveness. If any error is detected

34

3.3. jPapaBench

Figure 3.4: Autopilot unit data-flow.

the fail-back mode is triggered, which causes sending default commands to actua-
tors and which should ensure safe landing of airplane. The ReceiveRC task is re-
sponsible for receiving commands from radio controller which are stored in module
LinkToAutopilot. It can also trigger switching between manual and auto mode of
flying. The last fly-by-wire’s task SendToAutopilot sends messages to the autopilot
unit.

A set of tasks deployed on the autopilot unit includes tasks responsible for au-
tonomous flying, telemetry reporting and communication with the fly-by-wire unit.
A collection of navigation tasks contains the Navigation task which setup desired fly-
ing parameters according to a given flight plan. The parameters serves as an input for
the consequent computation tasksClimbControl andAltitudeControlwhich compute
real-flying parameters based on actual plane position and attitude. The Stabilization
task translates computed flying parameters into an airframe configuration (flaps, gaz)
which are then send by the SendToFBW task to the fly-by-wire unit.

To give a deeper view of jPapaBench tasks, the following sections describes a data
and control flow of the implementation.

Data-flow

Data-flow diagrams (Figure 3.4 and Figure 3.5) visualizes tasks and their data depen-
dencies including inputs/outputs and data-stores in form of modules. The diagram
shows data-flows for both units.

The autopilot itself contains three main data-flows (see Figure 3.4). The first reflects
the computation of flight parameters according to estimate position of airplane and
a desired flight plan. The second handles communication with the fly-by-wire unit
and receiving commands from the unit. And the last one collects telemetry data and
reports them to the ground station.

In case of the fly-by-wire unit, it involves two data-flows – the former handles

35

Chapter 3. Domain Analysis

Figure 3.5: Fly-be-wire unit data-flow.

Figure 3.6: Autopilot unit control-flow.

radio control messages; the latter is interested in detecting and propagating fail-back
values to actuators.

Control-flow

The jPapaBench control-flow for both units is depicted on Figure 3.6 and Figure 3.7.
From the implementation perspective, the control-flow inherently influences tasks de-
pendencies and hence it has to be reflected to assure the right computation. In the
implementation the correct order is ensured by associating the right task priorities (in
plain Java, RTSJ, SCJ Level 1), respectively by construction of a correct schedule (in
SCJ Level 0).

The control-flow of the autopilot is based on a common control loop: the
Navigation tasks setups a desired flight course according to the flight plan stored by
Navigator module (see Figure 3.6). The desired flight course is then consulted with
the estimated airframe position by AltitudeControl, ClimbControl and Stabilization
tasks resulting into a configuration correcting the state of airframe. The configuration
is then reported to the fly-by-wire unit.

The fly-by-wire unit includes two control-flows (see Figure 3.7). The first ensures
that the commands received by the ReceiveRC task are correctly passed to the au-
topilot unit. The second flow manages a fail-safe mode of the airplane – if a system
inconsistency is detected by the CheckFailsafe task, it directly configures actuators.
Otherwise, the CheckAutopilot task validates status of the autopilot and in the case

36

3.3. jPapaBench

Figure 3.7: Fly-be-wire unit control-flow.

jPapaBench version Java kind Scheduling
jPapaBenchP J plain Java Executor service (fixed rate)

jPapaBenchRT SJ RTSJ Default – fixed-priority preemptive scheduling
jPapaBenchSCJ−L0 SCJ Level 0 Default – timeline scheduling (cyclic executive)
jPapaBenchSCJ−L1 SCJ Level 1 Default – fixed-priority preemptive scheduling

Table 3.2: jPapaBench scheduling policies.

that autopilot is not accessible, actuators are configured to fail-safe values too.

3.3.4 Technology Mapping

The core design is written in the plain Java and does not assume any real-time prop-
erties. Thus, to provide a kind of RT-benchmark, the core has to be encapsulated
into constructs of a selected RT-Java which ensure correct implementation of real-time
properties. The current jPapaBench version provides three kinds of encapsulation(see
Table 3.2).

Plain Java

The plain Java encapsulation focuses on rapid-prototyping, testing, and verification
of the implementation. For periodic task execution it utilizes a common Java executor
service with fixed execution rate.

RTSJ

The version encapsulating the core into RTSJ constructs and utilizes RealtimeThread
for periodic tasks execution. There are two implementations of the thread – the former
does not allow any allocation in task implementation, the later uses scope memory for
task’s allocated data.

SCJ

The SCJ version of jPapaBench provides implementations for SCJ levels 0 and 1.
Each level’s design encapsulates jPapaBench initialization into the Mission construct.
While the level 0 provides an explicit tasks schedule with minor cycle length equal
to 25ms and major cycle with 250ms length, the level 1 utilizes priority-based tasks
scheduling.

37

Chapter 3. Domain Analysis

3.3.5 Environment Simulator

To run and test jPapaBench, an environment simulator is provided. As the rest of the
system it is also implemented in conformity with the existing Papabench simulator
written in C and OCaml. However, in the case of jPapaBench, the simulator is a part
of running system and it is deployed in the same VM as jPapaBench implementation.

The simulator implementation consists of three tasks managing a flight model. The
flight model carries data necessary for environment simulation – e.g., last position and
attitude of airplane. The task EnvironmentSimulator periodically recomputes the
flight model according to the actual configuration of actuators and the last computed
flight model. The periodic tasksGPS and IR simulate behavior of GPS and IR devices
interrupts. Their computations depend on the computed flight model and provides
GPS position and IR attitude data with respect to the C-implementation characteris-
tics.

3.3.6 Workload

The workload is specified in the form of a flight plan. It declares way points which
should be visited by the aircraft. Furthermore, the flight plan can directly describe
desired parameters of the flight such as climb, attitude, or speed. If the flight plan
specifies the parameters, the Navigation task has to correct the real flight parameters
respectively. The flight plan itself is divided into so called navigation blocks represent-
ing a navigation target (i.e., to achieve the given way-point, altitude, or speed). The
transition between blocks are driven by specified conditions reflecting the position,
time, or current number of navigation cycles.

For the purpose of benchmarking, the whole flight plan can be bound to a given
number of navigation cycles. The purpose of the flight plan is to test different compu-
tation paths of jPapaBench implementation.

3.3.7 jPapaBench Code Characteristics

Code Complexity and Size

To characterize the complexity of jPapaBench implementation we follow the strategy
proposed by Blackburn et al. [BGH+06] and further adopted also in CDx benchmark
evaluation [KHM+11]. The Chidamber and Kemerer [CK94] metrics (CK-metrics) char-
acterize the complexity regarding various aspects. In the case of jPapaBench, ckjm
tool [30] was utilized to obtain CK-metrics. It provides the following metrics:

WMC represents weighted methods per class. For ckjm the value represents the num-
ber of methods declared by class.

DIT determines a depth of classes inheritance tree. However, the metric does not
compute with interfaces. The value is connected with the metric NOC.

NOC is a number of class’s immediate children. The values show, that the jPapaBench
core heavily uses inheritance, while the Java-kind specific modules do not. That
is caused by the fact, that they encapsulate the core with help of composition
which is more advantageous from the perspective of configurability than using
a plain inheritance.

38

3.3. jPapaBench

CBO characterizes coupling between classes based on a number representing a num-
ber of classes coupled to the given class (e.g., via inheritance, field access). In case
of jPapaBench, higher coupling is typical for helper classes or factories, lower for
tasks.

RFC determines how many methods can be invoked if a method is executed.3

LCOM represents a number counting class’s methods which are not related through
of sharing a class field. Higher number can signal that the class should be split
because it seems to be interested in different concerns.

The resulting measurements of jPapaBench are shown in Table 3.3. In comparison
with existing open-source project, the jPapaBench object-oriented metrics determines
satisfiable object-oriented design with good separation of concerns. Comparison the
values with measurements of existing Java benchmarks (DaCapo, CDx) shows that
jPapaBench is slightly more complex.

Additionally, to characterize real size of jPapaBench we have utilized Sonar tool [2]
extending CK-metrics by providing class-size statistics:

Classes contains a number of classes which are declared.

NCLOC/Physical lines identify the number of lines of executed code versus number
of physical lines corresponding to the number of carriage returns. Such compar-
ison gives also intuition how well is code commented.

Statements characterizes the number of Java statements as they are defined in Java
Language Specification [25]. The number is increased when the expression or
statement (if, else, while, do, for, switch, break, continue, return, throw, synchro-
nized, catch, finally) is processed. The lower number of statements characterizes
classes which carry only data (typically POJOs), higher number of statements is
typical for classes which contain computation.

Complexity determines a cyclomatic complexity (McCabe metric [McC76]) for a class.
It is defined as a sum of cyclomatic complexities of class’s methods. The number
itself determines the possible control paths within a method which is useful for
WCET analysis or program verification.

Table 3.4 identifies that in comparison with CDx benchmark the jPapaBench has
slightly lower number of code lines. Moreover, cyclomatic complexity detects that
the majority of jPapaBench methods contains only one control-flow path. However,
there are several methods which are complex containing more than twenty control-
paths. Typically, such a method includes a case-statement causing high number of
cyclomatic complexity.

With respect to these measurements, jPapaBench can be considered as a non-trivial
project with a medium size code base. Its design follows best-practices of object-
oriented design and splits different concerns into separated modules. As a result,
the jPapaBench represents a non-trivial object-oriented real-time Java benchmark.

3The ckjm tool computes only methods within a class body

39

Chapter 3. Domain Analysis

WMC DIT NOC
Med Max Sum Med Max Sum Med Max Sum

jPapaBench Core 2 33 795 1 3 258 0 40 59
jPapaBenchP J 5 12 25 1 1 5 0 0 0

jPapaBenchRT SJ 3 11 36 1 4 17 0 1 1
jPapaBenchSCJ 5 10 62 2 6 32 0 0 0

Simulator 2 17 66 1 2 18 0 0 0
All code 2 33 984 1 6 630 0 40 62

CBO RFC LCOM
Med Max Sum Med Max Sum Med Max Sum

jPapaBench Core 4 24 673 9 48 1708 0 435 3800
jPapaBenchP J 11 25 62 14 52 100 2 46 59

jPapaBenchRT SJ 1 26 70 8 46 133 2 41 67
jPapaBenchSCJ 3 40 89 16 47 203 8 45 164

Simulator 4 8 57 6 33 129 0 110 191
All code 4 40 951 9 52 2273 1 435 4281

WMC Weighted methods per class CBO Coupling between object classes
DIT Depth of inheritance tree RFC Response for a class

NOC Number of children LCOM Lack cohesion in methods

Table 3.3: Chidamber and Kemerer Java Metrics for jPapaBench

NCLOC/Physical lines Statements
Med Max Sum Med Max Sum

jPapaBench Core 18/61 195/367 3451/7700 3 79 1106
jPapaBenchP J 25/62 123/197 213/439 8 46 75

jPapaBenchRT SJ 24/62 110/180 266/584 4 42 83
jPapaBenchSCJ 51/105 96/163 499/1029 11 29 145

Simulator 20/57 114/171 404/921 4 55 124
All code 21/62 195/367 4833/10673 4 79 1533

Complexity Classes
Med Max Sum

jPapaBench Core 4 32 718 98
jPapaBenchP J 1 13 20 5

jPapaBenchRT SJ 4 9 33 8
jPapaBenchSCJ 9 12 65 9

Simulator 2 11 44 13
All code 4 32 880 133

Table 3.4: Class properties

40

3.4. Real-time Java Connectors for Fractal Component System

3.3.8 Lessons Learned

The jPapaBench represents a non-trivial case-study dealing with implementation of a
real-time system. Its design and implementation is constrained by characteristics of
the original C-based implementation – the jPapaBench implementation respects pre-
defined data- and control-flow. However, the resulting system is also well designed
with respect to component-based development.

Utilization of multiple implementation technologies brings a new level of variabil-
ity which needs to be reflected by the system architecture. Furthermore, the imple-
mentation itself manages manually assembly and instantiation of application com-
ponents. There are two reasons for this – (i) each implementation technology has a
slightly different way to assemble and execute the system, (ii) respecting explicit mem-
ory management of RTSJ/SCJ, it is almost impossible to utilizes existing containers,
libraries, and methods due to they often rely on unmanageable hidden memory allo-
cation (e.g., typically creation and manipulation with java.lang.String, java.util.List
instances).

From the component perspective, the jPapaBench implementation demonstrates
the following properties:

• Ad-hoc modules – the design utilizes a lightweight flat component framework
with explicit bindings. The system introduces two kinds of components – active
(called tasks) and passive (called modules).

• Manual assembly of the system – the resulting system is assembled from com-
ponents which are encapsulated into a selected implementation technology. The
technology has a direct impact on the assembly process – for example, there are
different ways for active component instantiation.

• No explicit runtime environment – resulting assembly is directly executable on
the top of a JVM.

• Non-functional requirements – the jPapaBench involves timing and memory
management. The former one is reflected by active modules, the second needs
to be reflected by a structure encapsulating a component. There is no explicit
mechanism to inject or declare these properties. They are directly encoded in the
implementation of the execution environment.

• Configurability – the jPapaBench implementation exposes two configuration
points. The first point considers modular design and allows for exchanging
a module with a new module satisfying substitutability principle. The second
configuration point is enforced by employing different kinds of implementation
technologies to produce an executable system. The technologies directly influ-
ence the glue code assembling components together.

3.4 Real-time Java Connectors for Fractal Component System

The section introduces an example utilizing a rigorous component system in the scope
of Java-based real-time embedded systems. Nevertheless, in this case the component
system is not used for application development, but it supports design and implemen-
tation of bindings among component. While the previous case-study demonstrates

41

Chapter 3. Domain Analysis

utilization of the simplest variant of the execution environment, this example employs
an execution environment which is partially generated and supported by a library
(variant EE2). The content of this section is based on the paper:

[MPL+08] Malohlava M., Plšek A., Loiret F., Merle P., Seinturier L.: Introducing
Distribution into a RTSJ-based Component Framework, In Proceedings of 2nd Junior
Researcher Workshop on Real-Time Computing, Rennes, France, Oct 2008.

3.4.1 Introduction

An upcoming era of massively developed real-time systems brings a challenge of de-
veloping large-scale, heterogeneous and distributed systems with variously stringent
QoS demands. To keep a complexity of such systems at reasonable levels, emerging
solutions in this area are recently based on RTSJ [BGB+] since it embeds real-time
properties such as predictability and determinism into a general-purpose program-
ming language.

However, the aspect of distribution in such systems still represents a challenge and
brings many open issues. The state-of-the-art of distributed and real-time Java lies
at its very beginning. A few proposals introducing specifications, profiles or frame-
works [AJ06, WCJW02, TAdM07] have been conducted, however, there is still a need
of a comprehensive solution proposing a full-fledged approach that would mitigate
complexities of real-time programming in distributed systems.

The previous work [PLMS08] proposes a component framework for development
of RTSJ-based systems. The framework provides a continuum between design and
implementation of such systems and offloads burdens from developers by automat-
ically generating an execution infrastructure of RTSJ-based systems. Nevertheless,
the aspect of distribution have not been addressed there. We however envisage that
supporting development of distributed real-time systems is a highly desired feature,
therefore as the key contribution of this work we focus on extensions of the framework
towards distribution support.

Related Work

The research area of distributed programming in the scope of real-time Java includes
several research directions. The leading initiative is represented by an integration
of Remote Method Invocation (RMI) into the RTSJ [WCJW02] and solving the task
related issues such as handling real-time properties [BW03, WCJW02] or memory al-
location [BVGVEA05, BW03]. The results of these projects are reflected in a status
report of JSR 50 [AJ06] which tries to cover all aspects of distribution (real-time prop-
erties handing, failure semantics, distributed threads and their scheduling). A similar
approach proposes a profile for distributed hard real-time programming [TAdM07],
however, a framework addressing a comprehensively challenge of developing such a
complex system still has not been proposed.

Another research area covers the Real-time CORBA specification,4 which can serve

4OMG, Real-time CORBA, v1.2, http://www.omg.org/technology/documents/formal/
real-time_CORBA.htm.

42

http://www.omg.org/technology/documents/formal/real-time_CORBA.htm
http://www.omg.org/technology/documents/formal/real-time_CORBA.htm

3.4. Real-time Java Connectors for Fractal Component System

as a particular base for a requirements analysis of real-time distributed systems. Its
main implementor in the RTSJ world is RTZen [RZP+05]. Although it is a middleware
implementing almost all parts of the Real-time CORBA specification within the scope
of RTSJ, it only focuses on a core of communication and does not provide any suitable
modeling abstraction.

From our point of view, all these projects focus only on low-level communication
issues and their integration into the scope of RTSJ, they do not address any higher
abstraction of the real-time communication. It could however be beneficial to reflect
distribution in different stages of the application lifecycle (design, implementation,
runtime).

3.4.2 Challenges of Distributed RTSJ-based Designing and Programming

Integration of distribution into a real-time component framework [PMS08] is a chal-
lenge involving an analysis of requirements dedicated to real-time systems as well as
requirements coming from used RTSJ. All these requirements affect not only a way
of specifying model artifacts (components, bindings and their properties) but also its
runtime structure and the process of its initialization.

In this section we therefore determine a scope of requirements which have to be
reflected by a distributed system within a real-time environment at all stages of the
application lifecycle.

Requirements and Challenges

Real-time properties. Since real-time programming introduces specific requirements
on distributed systems (e.g., priorities of running tasks, computational deadlines), they
play a substantial role during their development. These properties influence remote
connections and superimpose new constraints over them. Some realtime properties
have to be propagated between remote parts of applications (e.g., priority of a client
thread) and others have to be reflected during creation of the connection (e.g., end-to-
end time).
RTSJ requirements. Moreover, employing RTSJ in development of distributed RT-
Java-based systems is also affected by the particularities of its specification. It dis-
tinguishes between a heap memory and non-heap memory and specifies how they
can be accessed by the different threads. These facts enforce different memory allo-
cation ways as well as a specific utilization of schedulable entities (threads, timers,
events). However, the specification silences about distribution aspects and therefore
these complexities need to be resolved by the developers.
Integration level. Furthermore, the integration of distribution into a component
framework yields a decision at which level of abstraction the distribution will be incor-
porated into the framework and how a component-application developer will manip-
ulate with real-time properties. Whether to hide the manipulation from the developer
or not.

These questions were discussed in the scope of RMI integration into RTSJ pre-
sented in [WCJW02]. It distinguishes three basic levels of RMI integration (denoted as

43

Chapter 3. Domain Analysis

L0, L1 and L2) from different views.5 L0 is the minimal level of the integration with
no support for real-time properties from underlying technology. The level L1 requires
a transparent manipulation with scheduling parameters or timing constraints and fi-
nally L2 declares semantics for the distributed thread concept [AJ06] which represents
a fully transparent real-time programming model.

We partially adopt this idea of integration levels in our approach. The primary
objective is an integration of distribution into the RTSJ-based component system at
a level corresponding to L1. We however generalize the idea of the level L1, origi-
nally tightly coupled with RMI, to address the full span of possible communication
middlewares (RMI, CORBA) in distributed environments. We therefore address the
following contributions to meet this generic goal:

(i) Scheduling Parameters. To handle transparently scheduling parameters which
are associated to component threads. The task involves a transportation of
parameters from a client to a server where it is required, configuration of an
underlying middleware (e.g., in case of CORBA, creating priority lanes), pre-
reservation of connections for selected priorities, etc.;

(ii) Determinism. To ensure that the generated runtime infrastructure does not af-
fect determinism and timely delivery assured by a used underlying middleware;

(iii) RTSJ Rules and Restrictions. To handle memory and thread differences between
components and a used middleware. This also covers handling of a memory
allocation of call parameters (e.g., . CORBA parameter holders) and auxiliary
artifacts (e.g., adaptors, call serializers),

(iv) Communication Styles To provide different communication styles [Bur06,
MMP00] which are common in the real-time and embedded systems world (syn-
chronous and asynchronous method call, asynchronous messaging).

Goals

Our philosophy postulated in [PMS08] states that the RTSJ concerns influence the ar-
chitecture of applications and therefore must be considered at early stages of the sys-
tem development lifecycle. We have applied this in [PLMS08] where we propose a
framework clarifying all the steps of the system development lifecycle. In this work
we follow the same principles, there are therefore two key objectives:

(i) Development Methodology that clarifies specification of model artifacts and
properties that will cover distributed real-time requirements and create an ab-
stract layer which will hide low-level distribution concerns from component de-
signers, and

(ii) Execution Infrastructure that manages transparent deployment and run of dis-
tribution support inside the execution infrastructure.

5Programming model (identification of remote objects), development tools and implementation model (real-
time properties transport mechanism). In our case, the first two models are realized by the component
framework [PMS08] therefore the following text is interested in the third one.

44

3.4. Real-time Java Connectors for Fractal Component System

Although distribution has to be captured at all stages of the system development
lifecycle, in this section, we focus on the design and generation of an execution infras-
tructure.

3.4.3 Supporting Distribution in Real-time Java

The basic idea of our approach is inspired by a solution in which components com-
municate through architecture-level software connectors that are implemented using
a middleware [MDT03]. This approach preserves the properties of the architecture-
level connectors while leveraging the beneficial capabilities of the underlying middle-
ware. Moreover, we integrate this approach into the Soleil framework proposed in
[PLMS08].

Soleil is the execution infrastructure generator that generates a system’s infrastruc-
ture on the basis of a given architecture. Thus we automatically obtain connector
implementations, consequently mitigating complexities of the system development.
Additionally, the process of designing and implementing connectors addresses the
real-time challenges identified in Section 3.4.2.

From the high-level point of view, we adopt a general approach to a connector
generation presented in [Bur06], we however focus on more lightweight and espe-
cially RTSJ tightly coupled solution.

Applying Component Connectors

Design Time. At design time we perceive connectors as representations of bindings
between functional components. A binding has attached non-functional properties
such as monitoring, enforcement of a dedicated communication channel or prescribed
utilization of a given middleware. Furthermore, the binding connects components
which also have associated properties (e.g., call deadlines for interface operations) or
they receive derived properties from non-functional components in which they are
placed (e.g., memory allocation context, thread priorities). All these properties are
reflected in the connector architecture representing the binding.

The proposed connector architecture is based on a concept of chains of interceptors
which are connected to concerned interfaces, as illustrated in Figure 3.8. Each intercep-
tor in the chain symbolizes one non-functional concern which reflects communication
in situ (e.g., monitoring) or modifies communication (e.g., adaptation of method call
parameters). The presence and position of the interceptor in the chain is influenced by
properties of the modeled binding and also by a presence of other interceptors.

This representation of connectors allows us to build them easily with different
functionalities – by selecting relevant interceptors and their order in according to
specified properties. As well as, the division of the connector architecture into
separated interceptors permits handling real-time specific properties separately in
dedicated interceptors. The chosen architecture also brings advantages in dealing
with issues triggered by using RTSJ [PMS08] such as memory scopes crossing or
copying between memory areas.

Generation Process. The connector generation process includes:

i Chain Structure Selection. Which involves selecting interceptors and their order

45

Chapter 3. Domain Analysis

in according to binding properties (specified and derived) and also to RTSJ require-
ments, e.g., selecting memory allocation areas and adapting memory or thread dif-
ferences;

ii Interceptor Code Generation. The task involves generation of interceptors and
of a selected middleware specific code (e.g., initialization of middleware, setting
connection parameters).

Furthermore, different optimizations in the chain or in its selected parts are
possible, similarly as proposed in [PLMS08].

Runtime. The preservation of the connector architecture at the runtime level permits
modification of connector attributes. Either simple attribute modifications affecting
only one interceptor are possible (e.g., modification of middleware threads priority) or
even more advanced adaptations of the connector structures can be performed (e.g.,
update of interceptors in a chain, change of the interceptors order).

Illustration Example

The proposed concept was applied in an implementation of a simple example pre-
sented in [PLMS08]. Concretely, we model a real-time communication between two
active components – ProductLine and MonitoringSystem allocated in a non-heap mem-
ory. Both components have associated properties defining components’ thread priori-
ties. The binding between these components is modeled as a remote binding with two
associated non-functional properties — the first one enforces utilization of a distribu-
tion enabling technology (in our case we use RTZen middleware [RZP+05]) and the
second one identifies an asynchronous method call.

Figure 3.8: Structure of RTZen-based connector.

These simple properties involve several tasks which has to be covered by the gen-
erated connector and its chain architecture:

(i) implementation of core distribution with help of RTZen. This also involves gen-
eration of low-level CORBA interfaces, helpers, value holders in according to a
specified IDL;

(ii) configuration of underlying middleware – adjustment of CORBA policies to re-
flect components’ thread properties;

46

3.4. Real-time Java Connectors for Fractal Component System

(iii) asynchronous method calls in case the underlying middleware does not support
them; and

(iv) adaptation between memory areas;

(v) adaptation between functional and internally generated interfaces.

The core of the distribution implementation is generated in interceptors called
RTZenStub and RTZenSkeleton which mediate the communication with help of RTZen
middleware. At the server side, RTZenSkeleton registers itself as a remote object in
RTZen and serves like a proxy which delegates calls to a following interceptor which
adapts an internally generated interface to the server component’s functional inter-
face. The RTZenSkeleton interceptor also configures a priority with which remote calls
will be handled.

At the client side, RTZenStub obtains, via calling the encapsulated RTZen mid-
dleware, a reference to the remote object and delegates all incoming calls to it. How-
ever, this reference implements the internally generated interface, therefore it has to be
adapted to the functional interface by another interceptor called Adaptor. Finally, the
Serializer interceptor arranges asynchronous semantics for method calls – each call on
its provided interface is stored in a local queue and then served by a thread associated
with the queue.

3.4.4 Lessons Learned

The case-study incorporates the Fractal component system for modeling and devel-
opment bindings among components in the context of RTSJ-based systems. As in
the previous case-study, the selected implementation technology (i.e., RTSJ) directly
enforces the kind of non-functional properties which need to be reflected (i.e., mem-
ory allocation, priorities, deadlines). Even thought, the approach utilizes a general
component model based on Fractal to design a binding structure. Another important
identified property is utilization of adaptation in large scale. The component inter-
faces, component content, and execution infrastructure are adapted according to the
kind of binding. There are two kinds of adaptation – the former is based on code
generation, the latter employs code adjustment (by code merging). Both of methods
are used during execution environment construction – in this case-study, the prepared
code is linked with the Fractal library supporting the code.

To summarize, the case-study shows following properties:

• Utilization of a component model with explicit bindings and control layer.
The component model is based on the Fractal component model introducing hi-
erarchical components and explicit bindings. Moreover, each component has
also its control membrane. The membrane serves to manage non-functional
properties and memory allocation scopes for components composing the bind-
ing.

• Binding’s chains of components directly becomes a part of runtime environ-
ment. A binding is represented as a chain of components (they play role of
interceptors). The chain is a composite component which is managed by the
Soleil tool which generates necessary binding infrastructure. It is necessary to
point out, that the generated binding infrastructure directly becomes a part of

47

Chapter 3. Domain Analysis

the overall application infrastructure. Thus, during deployment and runtime
there is no difference between binding’s components and business-level compo-
nents – the approach utilizes the same formalism and infrastructure to manage
both.

• Adaptation and code generation of component interfaces, content, and infras-
tructure. The component system heavily relies on code adaptation and genera-
tion. However, the code is always linked with the Fractal runtime library (con-
trary to the previous case-study which does not contain any runtime library).

• Implementation technology impact. The utilized RTSJ has an impact on design
and implementation of the component system. The approach uses the Soleil
framework which brings into the Fractal component model a notion of domain
components to express RTSJ specificities. Domain components serve to model
memory allocation scopes and thread domains which directly reflect RTSJ con-
cepts and which need to be considered during the execution environment prepa-
ration. Moreover, control membranes of utilized components have to be tailored
to satisfy RTSJ rules.

• Multiple component system. The interesting property of the case-study is uti-
lization of the dedicated component system to implement bindings in the context
of another component system. The combination demonstrates benefits of mod-
eling execution infrastructure (i.e., a binding in the context of this case-study)
with help of components.

3.5 SOFA 2 Runtime Extension

The last case-study is concerned with the SOFA 2 [BHP06] component system focus-
ing on development enterprise systems. It provides an advanced container to launch
and execute component-based applications (i.e., EE3 variant). The case-study focuses
on the container configurability and demonstrates its extension providing new func-
tionality. The section is based on the following paper:

[KMBH11] Keznikl J., Malohlava M., Bureš T., Hnětynka P.: Extensible Polyglot
Programming Support in Existing Component Frameworks, In Proceedings of 37th Eu-
romicro Conference on Software Engineering and Advanced Applications, Oulu,
Finland, Aug 2011.

3.5.1 Introduction

Nowadays, agile development methodologies often incorporate rapid prototyping as
a method of early deployment and fast delivery of working solutions. Furthermore,
prototyping is often utilized for demonstrating new ideas, writing system tests, sim-
ulations or mocks. The cornerstone of rapid prototyping is an “elastic technology”
which can be easily utilized in different contexts, for different concerns. Furthermore,
such technology have to be inherently dynamic to allow on-the-fly changes of the im-
plementation and re-deployment.

48

3.5. SOFA 2 Runtime Extension

In the context of the systems without inherent support for rapid prototyping, poly-
glot programming ([32], [WC10]) incorporating multiple languages for building sys-
tems represents a well-adopted direction. Its idea is to utilize dedicated, especially
scripting/dynamic, programming languages for particular parts of system represent-
ing different concerns. A typical example is JavaScript [GME07] which is primarily
used in web development to improve HTML based user interfaces and incorporate
asynchrony into the stateless HTTP protocol; or the Groovy programming language
which is largely utilized, for example, for writing system unit tests. Utilization of
scripting languages permits fast development without a long cycle between change
and its deployment in a running system.

From the rapid prototyping perspective, the polyglot programming with scripting
languages is preferably used during the development phase in order to derive the cor-
rect implementation of the individual system parts, or to implement tests and mocks.
Production-ready code is then implemented in a particular programming language
according to the prototypes.

The rapid prototyping based on polyglot programming with scripting languages is
particularly important in the domain of component-based systems as they have a long
development cycle involving a dedicated cycle of component development [CCL06],
and require complex testing environments for a particular component as well as whole
system.

However, the existing advanced component-based frameworks, such as EJB [27],
OSGi [4], Fractal [BCL+06], SOFA 2 [BHP06], JBoss [FR03], COM [21] – i.e., those
with existing runtime environment often called as component container – lack the re-
quired dynamic features as they are based on statically typed programming lan-
guages. Therefore, to allow rapid prototyping in these frameworks the support for
polyglot programming is necessary.

Despite the spread of polyglot programming in other domains [18, 16], as far as
the mentioned advanced component-based frameworks are concerned, the possibil-
ity of combining components implemented in different programming languages in a
single application is still not usual. Therefore, it is not only difficult to rapidly pro-
totype new components, but also to write test- and mock-components for building
testing environments. This is primarily caused by the fact that (i) either the compo-
nent frameworks were not designed with such heterogeneity in mind (e.g., Fractal,
EJB), or (ii) the component frameworks support heterogeneity, but require a dedicated
component container for each language (e.g., CORBA and CCM [13] or SOFA 2), which
turns out to be very heavyweight and difficult to manage and use.

The need of polyglot programming support in advanced component frameworks
is partly satisfied by introducing virtual machines and common runtime mechanism
(e.g., .NET CLR or JVM). These techniques allow for programming language binding
on the byte-code level, thus making the combination of different languages invisible
for the concerned component framework and components. However, the problem still
persists when a particular language does not have a compiler for compilation to the
byte-code – e.g., it is purely interpreted, possesses features which cannot be mapped
to the byte-code or the compiler just does not exist.

These problems are especially true for JVM, for which only a few languages may
be integrated on the byte-code level (currently Java, Groovy, Scala and Clojure), but
many other languages are already supported by interpreters implemented in Java (e.g.,
JavaScript, PHP, Python, Ruby, Erlang, Prolog) or via JNI binding (C, C++, R, Fortran,

49

Chapter 3. Domain Analysis

Ada, MATLAB). The result of it is that Java-based component frameworks still need
some support for business code provided in different programming languages, which
in turn means the necessity to partially re-implement the concerned component frame-
works.

Therefore, we propose an alternative approach dealing with the problem. A
number of advanced component frameworks inherently support extension mecha-
nism, which allows extending their runtime environments by introducing interceptors
around the component’s business code. The interceptors are responsible for relaying
calls coming to and going out of an instantiated component. By reacting and possi-
bly modifying the calls, interceptors may influence of the behavior of the component
framework and enrich it of additional capabilities without having to change its core
implementation.

Goals

The section contributes to the problem of rapid prototyping of component-based sys-
tems by introducing a component system extension to address the issue of polyglot
programming with scripting languages in existing Java-based component frameworks
that support user-defined interceptors. We provide a solution that allows seamless
and transparent runtime integration of components implemented using different pro-
gramming languages inside one component container. Furthermore, the solution in-
herently allows easy updating of a component implementation at runtime.

The presented solution is generally applicable for Java-based component frame-
works with the extension mechanism based on custom interface interceptors (e.g.,
Fractal, SOFA 2, JBoss, Spring, Castle). The solution is a pure extension, which does
not require modification of component framework internals and it can be easily ex-
tended to support additional programming languages. Furthermore, the solution
stresses separation of concerns by separating the support for different languages into
component interceptors. Therefore, the component developer does not have to deal
with any language integration and scripting frameworks – he or she just provides
component implementation in a particular scripting language.

In addition to describing the solution concepts, we present results of a performance
benchmark to assess the performance impact of our approach, and we discuss the
lessons learned from implementing the solution for SOFA 2 component framework.

Section Structure

The rest of the section is organized as follows. In the next section the component
systems for which the presented approach is applicable are defined. In Section 3.5.3
analyzes and generally describes the presented approach. Section 3.5.5 presents a case
implementation allowing scripting support in the SOFA 2 component system, evalu-
ates the component developer experience and gives a brief performance analysis of
the approach.

3.5.2 Prerequisites and Definitions

Our approach allows introduction of components written in scripting languages into
an existing component framework and their combination with the components native

50

3.5. SOFA 2 Runtime Extension

Figure 3.9: Platform component overall view.

to the framework. This allows for rapid prototyping of selected parts of a component
application.

We assume that the associated component container is extensible in the way that
it provides the possibility of introducing custom component interface interceptors.
This has already become a de-facto standard way of extension, which is currently
supported by many component frameworks (e.g., all Fractal-based component sys-
tems [BCL+06, SPDC06], SOFA 2 [BHP06], JBoss [FR03], Spring [JHRS05], Castle).
Although, the terms used in each component framework differ to some extent, the
essential feature of custom interceptors is the same – relaying of component interface
calls. In this way, we can recognize a family of interceptor-based component frame-
works, for which the solution presented in the section is generally applicable.

To alleviate explanation, we use the terms featured in the Fractal specifica-
tion [BCL+06] – we recognize a component content, which is the business logic of a com-
ponent provided by the component developer, and a component membrane, which is the
wrapper around the content that contains the interceptors (see Figure 3.9). The mem-
brane thus displays the component interfaces on its outer boundary and relates them
to the content. There are essentially three main kinds of interfaces: provided business
interfaces, required business interfaces, and provided control interfaces. Business interfaces
reflect the core business functionality of the component provided by the developer,
thus they typically differ for each component. On the other hand, control interfaces
(also termed controllers) reflect the management side of the component – e.g., lifecy-
cle management, component bindings, interface queries (similar to Microsoft COM’s
IUnknown interface), etc. Controllers provide the component container and deploy-
ment and monitoring tools with an unified management interface for each component.

Interceptors in the membrane may intercept calls on the business interfaces as well

51

Chapter 3. Domain Analysis

as on the control interfaces in order to allow custom implementation of the interfaces
being called. This is particularly important in the case of control interfaces, where
the interceptors implement the majority of functionality offered by the control in-
terface, relaying only little (if anything) to the component content. The interceptors
together form a simple component architecture around the content. Thus we con-
sider them as a special kind of platform components, which are however at a differ-
ent level of abstraction compared to the application components. To emphasize the
component nature of interceptors, we term them micro-components (this term is used
interchangeably with interceptor) and distinguish provided and required interfaces on
micro-component boundaries.

Addressing the polyglot programming for components (i.e., the ability to develop
components in dedicated languages), we essentially deal with two types of program-
ming languages in our approach:

(i) There is a language native to the component container. We call this programming
language container language.

(ii) By the introduction of polyglot programming, the component business function-
ality (embodied in the component content) may be provided in a language dif-
ferent to the container language. We call this programming language content
language.

Referring back to the goals of the section, we primarily focus on Java as the con-
tainer language and either on Java or on a scripting language as the content language.

3.5.3 Analysis and Solution Design

The problem of integration of scripting languages into existing component frame-
works (by means of the polyglot programming) consists of two independent parts:

(i) integration of the container language with the content languages, and

(ii) integration with the component container.

The first part of the problem, the language-level integration, covers inherently two
issues – data and control flow integration. With regard to polyglot support, the data
flow integration comprises data type mapping, value conversion, integration of indi-
vidual language concepts, access to objects in the other language, mapping of inter-
faces, etc. The control flow integration comprises integration of method conventions,
handling of method return parameters (by value, by reference) and exception han-
dling.

All these concerns are typically handled by an adaptation framework. For integration
of scripting languages in Java-based containers, which we are primarily concerned
with, such an adaptation framework is the Java Scripting API (JSA) [24]. It provides
an unified interface for different scripting engines which are integrated in Java [19].
Each engine allows loading and executing code in its respective scripting language.
Furthermore, it ensures data type mapping, access to Java classes from the scripting
language, and their instantiation.

The second part of the problem of polyglot programming for components refers to
the integration of the adaptation framework (e.g., JSA) into the component system so
that it can be used to execute the component code.

52

3.5. SOFA 2 Runtime Extension

Figure 3.10: Basic idea.

Since, the first part of the problem has been already sufficiently solved by adap-
tation frameworks (e.g., JSA in the case of Java), we focus on the second part of the
problem only in the rest of the section.

3.5.4 Overall Design

Our approach introduces a specialized component runtime extension – further re-
ferred as the polyglot extension – which forms an adaptation layer between the compo-
nent container and the component implementation in the content language. It creates
a special environment inside the component membrane that allows executing code in
the content language, which is different to the container language, using an adapta-
tion framework. This environment is built using a set of membrane’s controllers and
interceptors and its general structure is shown in Figure 3.10. In particular, the poly-
glot extension ensures redirection of the control flow to the adaptation framework, and
integration of this framework with the related component controllers (e.g., life-cycle
controller).

The component content, i.e., the code in the content language, is not executable
by the container directly. It is managed by the language adaptor, which loads the com-
ponent content based on location provided by the content metadata and reroutes calls
with the help of interceptors, which “surround” the content. The adaptor transforms
calls into invocations of the adaptation framework that is part of the adaptor. The
framework then executes the code in the content language and returns a result (or an
exception), which is passed back via the interceptor. For required interfaces, the lan-
guage adaptor similarly transforms and redirects calls from the component content
to the corresponding interceptor. In the same manner, the polyglot extension allows

53

Chapter 3. Domain Analysis

propagation of control interfaces calls to the component content (from the low-level
view, a control interface is just another provided interface).

Both the caller and the callee of the component, as well as the rest of the compo-
nent controllers, do not note any difference between a common component and the
one with the polyglot extension (except for possible type incompatibilities of interface
call arguments and exception handling, which should be resolved by the author of
the prototype implementation).

In the rest of the section, we describe each of the polyglot extension elements in
more detail.

Provided Interface Interceptors

The interceptor on a provided interface redirects calls to the language adaptor. To
do this, the interceptor passes the method identification and values of arguments of
the called method. During the method call return, it returns the return value or an
exception.

Each interceptor has three interfaces. Two of them – one provided and one re-
quired – have the same type as the intercepted interface. Using these interfaces the
interceptor is connected in the membrane to the chain of interceptors for the particu-
lar interface. In normal case, the interceptor receives the call on the provided interface,
performs its functionality, and forwards call on the required interface. However in our
case, the interceptor stops the call and redirects it, i.e., the required interface is never
used and it can be omitted if the component system supports it.

As the interceptor is based on the type of the intercepted interface, i.e., it is unique
for each interface type, its implementation has to be either reflection-based or dynam-
ically generated at deployment or instantiation time.

The remaining interface of the interceptor is the required interface via which the
method call is redirected to the language adaptor. The type of this interface is the
same for all provided interface interceptors. Basically, it contains one method which
has two arguments, one for the intercepted method name and one for the original
argument array, and which returns a generic return value (e.g., an Object reference).
The interceptor implementation handles required type conversions.

Required Interface Interceptors

The required interface calls are (similarly to provided interfaces) redirected to the in-
terceptor corresponding to the particular required interface.

As in the case of the provided interfaces interceptor, there are three interfaces on
each required interface interceptor. Two of them – one provided and one required –
are used for connecting the interceptor to the interceptors chain (again, the provided
one in this case can be omitted if the component model allows it) and they have the
type of the intercepted interface. The remaining interface has also the same type as
the intercepted interface and is used for call redirections from the language adaptor.

Again, as the interceptor is unique for each interface type, its implementation has
to be reflection-based or dynamically generated.

54

3.5. SOFA 2 Runtime Extension

Control Interfaces

Certain controllers – such as the life-cycle management controller – may require access
to the component content, i.e., call methods on it. For example in the case of the life-
cycle control interface, it has methods for notifying the content about starting/stop-
ping the component and the content can react for example by starting/stopping its
internal threads.

As from the low-level view, the control interfaces are the same as provided inter-
faces, the situation is almost the same as in the case of the business provided interfaces.
The difference is that both the control interface interceptors and the language adaptor
have to cope with these control interfaces in order to invoke the associated functions
on the content (in case of the business interfaces, the calls are forwarded only based
on their names and types of arguments).

Component Content

The presented approach allows achieving maximal transparency and simplicity of
component implementation. The code implementing the particular component is rep-
resented by a regular source file containing purely code in the content language. The
developer only provides this file and in the component description (e.g., in an ADL de-
scription based on the particular component model) he/she defines the identification
of the used content language.

For languages without interfaces and/or object support, the methods of the pro-
vided interfaces have to be implemented as global functions. The language adaptor
can find the particular function using for example prescribed name convention.

The required interfaces are available via dependency injection which is managed
by the language adaptor. For example for scripting languages, the required interfaces
can be available as predefined variables, which are filled during the component in-
stantiation by the language adaptor.

Content Metadata

Content metadata is a unit implemented in the container language. The role of content
metadata is twofold:

1. it wraps component-specific information needed by the language adaptor, and

2. by itself forms a unit that is recognized by the component container as a compo-
nent.

Thus, from the container point of view, the content metadata has the role of com-
ponent content and in fact the content metadata is typically a class implemented in
the container language providing all the interfaces prescribed by the particular com-
ponent framework. From the language adaptor point of view, the content metadata
holds information about the real component content, i.e., at least the identification of
the content language and location of the content. The language adaptor uses this in-
formation to properly configure the adaptation framework and to load the particular
business code.

Moreover, the existence of separate content metadata allows keeping the language
adaptor independent of a particular component implementation. Additionally, since

55

Chapter 3. Domain Analysis

the content metadata in not directly involved in execution of the code in the content
language (it only points to its location), the content metadata class is independent of
the particular content language.

The content metadata may be generated automatically by an interceptor attached
to component instantiation if the component container allows such an extension or by
a dedicated tool during component development.

3.5.5 Evaluation

SOFA 2 Case–Study

To validate the presented approach, we have implemented it as an extension of the
Java-based SOFA 2 runtime (in SOFA 2 terminology, such an extension is called a
component aspect), further referred as the script aspect, allowing component imple-
mentation in scripting languages using JSA as the adaptation framework.

The aspect architecture is shown in Figure 3.11. The aspect consists of
several micro-components implementing the language adaptor controller (Call
Transceiver, Script Invoker and various Proxy micro-components). These
micro-components are responsible for integration with other component aspects, as
well as for implementation of the language adaptor logic. The aspect also comprises
designated micro-components representing the interface interceptors (which are re-
ferred as script interceptors in scope of polyglot support). The content meta-data has
a form of a generic component content created and initialized by the component con-
tainer for all components implemented in programming languages other than Java.

The language adaptor is implemented as follows. The Script Invoker micro-
component contains and manages the JSA scripting engine and transforms the in-
coming calls of the provided interfaces into the scripting engine invocations. The Call
Transceiver micro-component manages all the interceptors of the associated component
and redirects their notifications to the Script Invoker.

In SOFA 2 case, the interceptor implementation is dynamically generated using
a designated interceptor generator (with help of the ASM [6] bytecode manipulation
library).

For interaction with other component aspects (e.g., accessing the component con-
tent or reacting to the life cycle changes of the component), the script aspect intercepts
the Component and the Lifecycle control interfaces. The former allows tracking
changes of the component content in case of dynamic updates. The latter allows track-
ing lifecycle changes of the component (and therefore notifying the script code).

The script aspect introduces a new Script control interface (see Listin 3.1) which
allows manipulation of the encapsulated scripting engine and the associated compo-
nent implementation. Moreover, the Script interface is remotely accessible via Java
RMI.

Together with a designated tool which we had developed in order to access this
interface from command line (and thus to enable changes of implementation of a run-
ning component), we have successfully enabled the rapid prototyping of component
implementation using scripting languages in our Java-based component system.

The script aspect implementation can be found on the official SOFA 2 website6.

6http://sofa.ow2.org/extensions/index.html#dynamic

56

http://sofa.ow2.org/extensions/index.html#dynamic

3.5. SOFA 2 Runtime Extension

Figure 3.11: SOFA 2 Script aspect architecture.

Listing 3.1: Script control interface (Java).

1 public interface Script {
2 void evaluateScriptText(String text) throws SOFAException;
3 void reset() throws SOFAException;
4 void setValue(String name, Object value)
5 throws SOFAException;
6 Object getValue(String name) throws SOFAException;
7 }

Component Developer Experience

To demonstrate the achieved language integration, we present a prototype implemen-
tation of a component from the CoCoMe [HKW+08] application in the SOFA 2 system.
We focus on the ReportingLogic component. Its main goal is to provide reports (us-
ing its provided interface, see Listing 3.2) which are computed from data in a shared
data storage (accessed using required component interfaces). When this component

57

Chapter 3. Domain Analysis

is being developed, its interfaces are already defined and thus it is possible to use the
proposed polyglot support for rapid-prototyping of its implementation.

Listing 3.2: Reporting interface definition (Java)

1 public interface ReportingIf {
2 ReportTO getStockReportForStore(StoreTO sTO);
3 ReportTO getStockReportForEnterprise(EnterpriseTO eTO);
4 ReportTO getMeanTimeToDeliveryReport(EnterpriseTO eTO);
5 }

Listing 3.3 we present a fragment of the ReportingLogic component prototype im-
plementation using Python which demonstrates the basic concepts of scripting lan-
guage integration in SOFA 2. In scope of component implementation, it is possible to
use Java classes using regular Python import statements (served by designated class-
loader). It is also possible to use additional Python modules and classes.

First we focus on provided interface implementation. In SOFA 2 case, the
provided interfaces of scripted components have to be implemented as global
script functions. This makes the implementation shorter than using Java (see
getStockReportForStore).

Listing 3.3: Prototype component implementation (Python).

1 from java.lang import Thread
2 from org... inventory. application . reporting import ∗
3 # Downloading additional python modules using SOFA importing API
4 SOFAPythonImporter.loadCodeBundle(
5 ’org ... application . reportinglib ’
6)
7 from org... application . reportinglib import HTMLReportPrinter
8 ...
9 def getStockReportForStore(storeTO):

10 result = ReportTO()
11 pctx = persistmanager.getPersistenceContext()
12 ...
13 store = storequery.queryStoreById(storeTO.getId(), pctx)S
14 store_name = store.getName()
15 items = storequery.queryAllStockItems(storeTO.getId(), pctx)
16 printer = HTMLReportPrinter()
17 ...
18 for si in stockitems:
19 printer .addRow(...)
20 ...
21 result .setReportText(printer .getText())
22 return result
23 ...
24 class PeriodicReportGenerator(Thread):
25 def run(self) :
26 while not stop_reporting:
27 report = getStockReportForStore(find_store())
28 periodic_publisher.publish_report(report)
29 Thread.sleep(REPORT_PERIOD)
30 ...
31 def start () :
32 thread = PeriodicReportGenerator()
33 thread. start ()

58

3.5. SOFA 2 Runtime Extension

Figure 3.12: SOFA benchmark architecture

Next we focus on required interface access. The scripted component implemen-
tation uses automatic dependency injection where variables holding the provided
interface references are created and assigned automatically during component ini-
tialization (using names in the associated component definition, see storequery,
persistmanager and periodic_publisher).

To manage internal threads, a component content in SOFA 2 has to imple-
ment the SOFALifecycle interface. This interface provides automatic notifi-
cations when the component is started or stopped. This interface also has to
be implemented using global script functions (see start function managing the
PeriodicReportGenerator thread).

To summarize, the use of scripted components is transparent, without any signif-
icant adaptation code needed. It is also generally shorter than Java implementation,
since the scripting languages are typically more expressive and there is no service code
needed for typical tasks such as implementation of provided interfaces, acquisition of
required interfaces, lifecycle management, etc. Therefore, the implemented polyglot
support is suitable for the rapid prototyping task.

Performance Evaluation

The proposed polyglot support introduces a performance overhead caused by script-
ing controller infrastructure and by execution of the script code in the scripting engine.
To asses this overhead, we have created a simple benchmark which uses a JavaScript
component to forward interface calls between two Java components (see Figure 3.12).
Because the script code is restricted to minimum, this benchmark minimizes the per-
formance slowdown caused by slower execution of scripting language code. We have
repetitively measured the execution time of 10000 forwarded interface calls (before
that, we have used 5000 calls to eliminate initialization and JIT overhead). Then we
have calculated the average execution time of one invocation for each of the 40 mea-
surements.

We have compared the results with measurements of the same scenario which uses
a standard Java component instead of the scripted one to forward the calls. For each
measurement, we computed the difference between the corresponding average exe-
cution time of script forwarder and median of all Java-only measurements. The com-
puted overhead, which is approximately 0.147 ms per one call, comprises both script-
ing engine overhead and the scripting extension infrastructure overhead. To get an
overhead approximation of the scripting controller infrastructure only, we have cre-
ated a simple regular Java application implementing the previous scenario (both Java-
only and Java/JavaScript version) using simple objects in place of components. In this
case, the measured overhead comprises only the scripting framework overhead. For

59

Chapter 3. Domain Analysis

JSA using Mozilla Rhino version 1.6 release 2 it is approximately 0.059 ms per one call.
By subtracting this value from the average component measurement we get the aver-
age overhead of the scripting controller infrastructure – approximately 0.088ms per
one call. This is 40% of the default SOFA controller overhead. To summarize, a pro-
totyped scripted component has 40% bigger overhead than regular Java components,
which is still acceptable in the development environment. The measurements were
performed on the following configuration: Intel(R) Core(TM)2 Duo P8600, 2.4GHz,
4GB DDR2 RAM, Windows 7 Professional OS 32bit, JVM 1.6.0_22-b04, SOFA 2 revi-
sion 1194.

3.5.6 Lessons Learned

The contribution of the case-study is twofold. It introduces a simple component model
(called micro-components) for modeling execution environment extensions. The im-
portant property of the used component model is its simplicity in which sense it is
similar to configuration frameworks as Spring [JHRS05] or Guice [12]. Furthermore,
the model inherently expects that a content of micro-component can have two forms
– a direct implementation or code generator producing desired implementation.

Moreover, the case-study also shows how an execution environment in a form of
an advanced container can be extended in a systematic and non-invasive way. The
presented approach is applicable not only for programming language integration but
generally for integration of distinct technologies into the container (for example, inte-
gration of different component system implementations). This is an important prop-
erty with regards to construction of tailored execution environments.

To summarize, characteristic features of the case-study are:

• Utilization of a flat component model. To preserve simplicity of the execution
environment, there is no intention to model the extensions with help of a hi-
erarchical component model. The flat model allows for expressing important
execution aspects and it is easier

• Explicit model of the execution environment. The execution environment is
explicitly modeled – it is specified by a composition of micro-component and
bindings among them. Furthermore, the environment publishes locations where
its infrastructure can be extended.

• Role of interceptors. The case-study heavily relies on call interception which
is performed by dedicated micro-components in the execution infrastructure
called interceptors. The interface interceptors are typically composed into a
chain which corresponds to a component interface. The relation and order of
interceptors inside the chain need to be well-defined to avoid unwanted mal-
function.

• Execution environment extension dependencies. It is often necessary for a ex-
ecution environment extension to use features of other already-existing exten-
sions. This requires dealing with various extension dependencies.

• Multiple content of micro-component. The case-study demonstrates impor-
tance of having different forms of micro-component content to prepare the right
execution infrastructure. In the context of the case-study, the micro-component

60

3.6. Summary

has a pre-defined implementation or its content is defined by a code generator
preparing actual micro-component implementation. The combination permits
to control reuse and adaptation of the infrastructure.

• Component system is utilized in the scope of another component system. As
in the previous case-study, the execution environment of the component system
is extended with help of another component system. The property makes both
systems dependent. In this case-study, the dependency is evident mainly dur-
ing the deployment, when the developed extension has to be injected into the
existing execution environment.

• Reflection-based versus generated interceptors. To avoid unnecessary runtime
overhead interceptors can be generated in advance. However, the generation
process increases a complexity of system deployment. On the other hand, code
reflection during runtime degrades execution performance. The right decision
between these options is driven by a target domain and its constraints.

3.6 Summary

The presented analysis of contemporary component systems and case-studies bring
several observations to be considered by the meta-component system.

Application domains. The analysis has identified four important application do-
mains which heavily utilizes component systems.

(i) enterprise applications

(ii) user interfaces

(iii) configuration frameworks

(iv) embedded systems

Each domain has its characteristic properties which have impact on component
system and its capabilities. As has been mentioned in Section 3.1.5, the most different
part of the component system are its component model, execution environment, and
support of non-functional requirements.

Execution environments. The analysis of component systems has also identified
three different forms of execution environment. They differ in their complexity as
well as in a deployment process which prepares component-based application to be
launched and executed.

To summarize, there are three kinds of the execution environment:

EE1 Ad-hoc execution environment

EE2 Execution environment as a library

EE3 Container

61

Chapter 3. Domain Analysis

Execution environment modeling and development. The case-studies have
stressed the importance of execution environment modeling and rigorous develop-
ment. The real-time connectors and SOFA 2 runtime extension case-studies have
demonstrated benefits of utilization of a component system to develop and extend an
execution environment infrastructure. In both cases a simple but well-defined com-
ponent model has been employed and it has allowed for representing environment
structure. The models have typically contained two kinds of components – regular
components encapsulating predefined logic controlling the infrastructure and inter-
ceptors participating in calls among component interfaces. The regular components
have been associated with an implementation, while the interceptors have been de-
fined by a code generator. The both case-studies have shown the importance of gener-
ators which prepare pieces of the infrastructure as well as its implementation. On the
other hand, the first case-study jPapaBench has demonstrated a demand for manual
preparation and modification of the execution infrastructure.

62

Chapter 4
Towards Meta-component System

The chapter elaborates the idea of the meta-component system in more details. It
states its structure and a process preparing a new tailored component system. From
this perspective, the chapter is a realization of the goal G1. The text of this chapter is
based on the following paper:

[BHM09] Bureš T., Hnětynka P., Malohlava M.: Using a product line for creating com-
ponent systems, In Proceedings of the 2009 ACM symposium of Applied Comput-
ing (SAC’09), Honolulu, Hawaii, USA, ACM, ISBN:978-1-60558-166-8, Mar 2009.

4.1 Introduction

This chapter aims at building a meta-component system, which shall serve as a soft-
ware product line for creating customized component systems, each addressing a par-
ticular domain or a combination of them. Our intention is to adopt ideas of the product
line engineering and generative software development (GSD) [Cza05b] while focusing
on producing families of component systems for different target application domains
rather then just for one domain. In more detail, the objectives are as follows:

1. To identify variation points which a meta-component system has to provide.
The analysis presented in Chapter 3 designates a scope which will be covered
by the proposed meta-component system as well as it specifies common vocab-
ulary (in words of generative system development, the analysis constitutes a
problem space). Based on results of the analysis component systems’ character-
istics are identified, which in turn lead to variation points that our envisioned
meta-component system has to accommodate.

2. To demonstrate how the meta-component system is to be used throughout the
whole development life-cycle and how it eases the component development.

3. To discuss how to build the meta-component system and how to achieve its
variability. In this sub-goal we focus on the last two constituents of a compo-
nent system, namely deployment tools and execution environment and tools. This

63

Chapter 4. Towards Meta-component System

choice is motivated by the fact that in these two the biggest differences in current
component systems can be found and as [LU07] states, the execution environ-
ment significantly influences component semantics. Additionally the variabil-
ity of the component model part has been at least partially addressed by existing
approaches [GMW97, DHT01, VG07, SSK+06, GV07, KTG+06, PRJ+03, RJB04,
LWWC12]. In terms of GSD we want to specify basic building elements of solu-
tion space as well as transformation process from the problem space to the solu-
tion space.

4.1.1 Structure of the Chapter

The rest of the chapter is organized as follows. Section 4.2 describes design of the
meta-component system together with its lifecycle, while Section 4.3 presents realiza-
tion of the proposed system in the scope of an existing component system.

4.2 Meta-component System

As shown in Chapter 3, there is a broad range of component systems targeting dif-
ferent domains. Although these systems differ in many aspects, they share a lot of
commonalities regardless of their particular domain. The most significant commonal-
ities include:

• All component systems have the concept of an encapsulated component that
communicates with other components only via designated interfaces.

• The communication between components is typically realized by a procedure
call or a kind of messaging. The communication is local or it is realized by a
kind of middleware.

• Components may be composed horizontally by connecting their interfaces or
vertically by the parent component—subcomponent relationship.

• Components themselves require a kind of a component container, which is an en-
tity providing them various services (such as naming, transactions, persistence,
operating system API, etc.). The container is also responsible for managing the
component lifecycle and managing connections among components.

• The container itself is controlled by a set of tools that allow configuring it, cre-
ating it, and destroying it. Also, there are often tools available for controlling
components running in the container.

• The components are typically deployed according to a deployment plan that
describes the allocation of components to the containers and concretizes the re-
sources used by components. Tools for creating the deployment plan and for
performing the actual deployment are typically utilized.

All the concepts and activities related to components are reified not only in the
component model and the execution environment, but also in tools, which cover the
whole development process and typically include an IDE for design and development,
a repository for storing and reusing components, various deployment tools and tools

64

4.2. Meta-component System

Figure 4.1: Usage scenario of the meta-component system from the point of view of
application developer.

for managing components at runtime. In fact, it is the tool support where common
component system concepts are evident even more than in the component model.

In our approach we propose taking advantage of the commonalities among com-
ponent systems and build a meta-component system (i.e., a kind of product line) for
creating custom component systems. In this section we elaborate this idea in detail
and show a typical use case of the meta-component system.

As an example, we consider development of an application for control and man-
agement of a manufacturing line. The application consists of two parts – an embedded
system part controlling the move of the line and other actuators, and an enterprise sys-
tem part providing an interface for retrieving the status of the line and history of the
production and planning for new production. Development of such an application
using the proposed meta-component system consists of the following steps:

1. Gathering and analyzing the requirements of the application. This step is the
same as in the classical CBSE. In the case of the example it means identifying
the need of transaction support, distribution, replication and monitoring in the
enterprise part and support for real-time and emphasis on a low memory and
CPU footprint in the embedded part.

2. Configuring and generating the component system. This step is new compared
to the classical CBSE. The system architect specifies the requirements of the de-
sired component system in a configuration tool of the meta-component system.
The configuration tool uses common vocabulary specified by the analysis pre-
sented in Chapter 3 and permits selection and configuration of variation points.
Based on a selected configuration the corresponding component system is gener-
ated/configured – that means the component model, execution environment(s)
as well as tools and IDE for designing, developing, deploying components and
managing components at runtime. The step of configuration and regeneration
of the component system may be performed also later during the development
process when new requirements arise. From the point of view of the generative
programming [Cza05b], the configuration tool can be seen as a transformation of a
problem space determined by the domain and application analysis to a solution
space which contains basic building elements of component systems.

In the case of the example it means specifying an application spanning the en-
terprise system and embedded system domains with the requirements as stated

65

Chapter 4. Towards Meta-component System

in the previous step. The configuration tool evaluates the requirements and cre-
ates the component system consisting of two mutually interconnected compo-
nent models (one for enterprise systems and one for embedded systems), an
IDE, an execution environment (container) for the enterprise components and
a synthesis tool for creation of the executable image out of embedded system
components. The configuration tool omits unnecessary features – e.g., it excludes
support for distribution in the embedded part to decrease memory footprint.

3. Designing and developing the application. This step is similar to the classi-
cal CBSE. The component developer uses the provided IDE and the models to
design the application by components and to implement the components. The
whole process is simplified by the fact that the developer has available only the
features requested when configuring the component system. When new require-
ments are discovered, the component system may be reconfigured to include
new features.

In the case of our example, it means designing and developing components of
the enterprise part and the embedded part. The component system contains
support for interconnecting these two parts. The enterprise part is developed in
Java, using JTA for transactions, RMI for distribution, etc. The embedded part is
developed in C. Existing domain specific tools are utilized (e.g., simulator of an
embedded device) – they are actually selected by the configuration tool.

4. Application deployment. This step is again similar to the classical CBSE, only
the tools provided by the created component system are used. In many cases
it means reusing existing tools, which were selected and pre-configured by the
configuration tool.

In the case of the example, the deployment comprises allocation of enterprise
components to containers and generating connectors for their distribution. On
the embedded side, the components are merged and a binary image is synthe-
sized. The binary image contains the RTOS, basic API for the components and
the actual components turned into tasks and processes of the RTOS. The image
is uploaded to the target device using tools provided by the created component
system. The communication between the enterprise part and the embedded part
of the application happens through CAN-bus abstracted by special generated
connectors.

5. Monitoring and managing the application at runtime. This step is again similar
to the classical CBSE. Only the management and monitoring is performed using
the tools provided by the generated component system. In the case of the ex-
ample it means using a JMX console to access the enterprise components, which
are automatically exposed by the pre-configured container via JMX. The tooling
also contains support for starting, stopping and updating components.

In summary, the proposed meta-component system inserts the step 2 (configuring
and generating the component system) into the classical CBSE process. The other steps
remain the same or similar, only they utilize the component system (i.e., models, tools
and execution environment) configured and generated at the step 2 (see Figure 4.1).
An important feature is also the ability of reconfiguring the component system at any

66

4.3. Realization of Deployment and Execution Environment

stage of the development lifecycle, when new requirements are discovered or some
existing requirements are evaluated as not needed.

The benefits of using the meta-component system lie in reducing the duplication of
functionality and providing a common approach to different component features and
application domains. Another strong benefit is the automated evaluation of appli-
cation’s requirements by the configuration tool, which guides the choice of used tech-
nologies by ruling out those which do not satisfy the requirements. The ability of
customizing the component system also reduces the footprint of the unused features,
which would be present in the component system otherwise. Finally, the fact that the
generated component system provides support only for the required features makes
design and development easier and more straightforward as the developer has avail-
able only the features required for building the application.

The production of customized component systems is also very interesting for
cross-domain applications (as shown in the example). In this respect, the meta-
component system instantiates an interrelated family of component systems (e.g., hav-
ing one model for enterprise systems and one model for embedded systems). The
tooling provided in this case supports the whole family, thus making possible to de-
sign, develop and deploy components in the same way (preferably through a single
IDE).

4.3 Realization of Deployment and Execution Environment

The previous section analyzes the commonalities of component systems, proposes the
meta-component system and demonstrates its utilization. Although the many com-
monalities, the meta-component system has to accommodate also the differences that
stem from different domain requirements. In this section we focus on the differences
and show how they can be addressed in deployment tools and the execution environ-
ment. When inspecting them closer, it is possible to identify the following areas of
variations.

• Component semantics – it is defined by the component model and comprises deci-
sions such as whether components are flat or hierarchical, what are the possible
connections and if they can be distributed, whether shared components are per-
mitted, what is the component lifecycle, etc.

• Target platform – it influences the choice of underlying technologies used by the
execution environment and it defines activities to be performed in the deploy-
ment – e.g., generation of connectors, transforming components of an embedded
application to RTOS tasks and processes.

• Services required by components – they comprise the services required for a proper
functioning of the components, such as a transaction support, a persistence, a
database access, etc.

Thus, with respect to the target domain and specified requirements, the execution
environment has to support different functionality and services. The deployment is
also influenced by the domain and requirements as it is totally dependent on the ex-
ecution environment (e.g., deployment of enterprise applications consists of dynamic

67

Chapter 4. Towards Meta-component System

uploading of code to a container, while in embedded applications the container’s func-
tionality must be merged with the application).

In our proposed approach, we achieve the necessary level of variability of the de-
ployment process and execution environment by composing them from components.
We demonstrate this on the SOFA 2 component system and in the rest of this section
we show how SOFA’s deployment and runtime environment can be extended to be-
come fully configurable.

SOFA 2 [BHP06] (shortly SOFA in the following text) is a hierarchical component
system. In addition to component model, SOFA comes with a set of deployment tools
and an elaborate runtime environment, which is responsible for component instan-
tiation, life-cycle management, distribution of a using software connectors, dynamic
update, etc. SOFA contains two concepts which are very important for the variability
and configurability of the deployment process and execution environment. Although
they do not directly implement all the envisioned variability yet, they serve as the
proof of the concept and represent a viable way of achieving the variability. These two
concepts are the connector generator and microcomponents.

The connector generator [Bur06] is responsible for creating connectors, which are
entities realizing the communication among components. The connector generator
takes on the input a declarative description of communication requirements – com-
ponent interfaces, a communication style and required non-functional properties (e.g.,
security, monitoring); and based on these it creates the requested connector.

Internally, the connector generator contains two main components – an architec-
ture resolver and a code generator. The architecture resolver uses constraint solving
techniques (based on Prolog) to derive a connector architecture that satisfies speci-
fied requirements. The connector architecture is built out of hierarchical connector
components (so called connector elements). In addition to composing and connecting
the connector elements, the architecture resolver also parametrizes each element in the
architecture (e.g., adapting an interface, setting attributes). The code generator follows
the resolved architecture and builds the connector implementation. It performs source
code level adaptations of the connector elements to reflect element parametrization,
then it compiles the connector elements and assembles them to form the connector.

From the point of view of the meta-component system, the connector generator
represents a skeleton of the configurable deployment tool. It is itself modular – the
knowledge about the particular deployment and runtime environment is introduced
in the form of available connector elements and actions, which are plug-ins that take
care of source code adaptations, compilation, generating middleware stub and skele-
tons, packaging, etc. Thus by extending the connector generator and configuring its
parts, it is possible to achieve simple packaging of components (e.g., in configura-
tion frameworks) as well as elaborate transformation of components to RTOS con-
cepts (e.g., in embedded systems). The Prolog-based constraint solver in the connector
generator additionally provides a ground for planning the transformation and opti-
mizations.

Microcomponents [MB05] are used to provide runtime variability with respect to
component semantics and services. The idea behind microcomponents is to divide an
application component into the control part and the content. While the content is the
business code written by the application developer, the control part is provided by
the component runtime. In fact the control part wraps the content and exhibits com-
ponent interfaces. In addition to business interfaces, the control part also implements

68

4.3. Realization of Deployment and Execution Environment

control interfaces (e.g., lifecycle interface, lookup interface) that allow the execution
environment to manage the component.

The innovative approach of SOFA is that the control part of a component is mod-
eled using the microcomponents, which are flat local components with a simple lifecy-
cle. Each microcomponent is responsible for a specific control functionality (e.g., look-
ing up an interface, intercepting calls, or blocking calls to a business interface when
the component is stopped).

Since a particular component feature (e.g., component lifecycle) is realized by a
number of microcomponents (e.g., one implementing the start/stop method, others
attached to business interfaces to block incoming calls when the state is “stopped”),
the microcomponents are grouped to aspects. Each aspect defines a consistent exten-
sion of the control part introducing a particular feature. Thus, the runtime component
semantics and services are configured by a selection of aspects to be applied to the
application components (or to a subset of them).

Microcomponents share a lot of commonalities with connector elements, which
makes natural and advantageous to unify them in one common concept that may be
used both during deployment and runtime. Thus, coming out from the two concepts
of the connector generator and microcomponents, we propose the configurable de-
ployment process and execution environment to be based on two main constituents –
a synthetizer and a microcomponent system (see Figure 4.2).

The synthetizer is a part of deployment tools responsible for transforming busi-
ness components to runtime artifacts. It follows the concept of SOFA connector gener-
ator and allows adapting, building and assembling microcomponents (see Figure 4.2),
which represent various parts of the execution environment, connector functionality,
and business code of application components. The output of the synthetizer is either a
microcomponent architecture (together with microcomponents) that is to be instanti-
ated, or it is a binary image to be uploaded to an embedded device and executed there.
In the former case, the microcomponent architecture produced by the synthetizer con-
tains only the business code of application components merged with control parts
and connectors. These microcomponents are to be deployed in the execution envi-
ronment, which consists of a minimalistic core of the microcomponent system and
preconfigured microcomponents providing remaining services (e.g., naming, transac-
tions, remote interface to component deployment). In the latter case the produced
binary images contain not only microcomponents for the business code, control parts
and connectors, but also the microcomponents implementing the services of the exe-
cution environment.

With regard to the current status of SOFA, we have to enhance the connector gen-
erator to use the unified concept of connector elements and microcomponents and to
handle whole application components, not just connectors. Further, we have to ad-
vance in componentizing the deployment container with the execution environment,
i.e., the container in which components are executed. Currently, SOFA provides only
a single type of container, suitable for rather large-scale applications. To follow the
meta-component system concepts, the container needs to be reimplemented also as a
set of microcomponents that can be configured together to provide a required func-
tionality. Finally, with all infrastructure prepared, it is necessary to provide a con-
figuration tool, which allows the configuration of the synthetizer and the execution
environment.

69

Chapter 4. Towards Meta-component System

Figure 4.2: Deployment and execution environment.

4.4 Conclusion

In this chapter we have presented an approach of instantiating component systems for
different domains using a common meta-component system. We have shown the us-
age of the meta-component system, which basically follows the classical CBSE process,
only inserts a component system configuration step at the beginning (after collecting
requirements). Based on identifying typical application domains of component sys-
tems and discussion of their characteristics, we have proposed how to achieve the
configurability of the deployment process and the execution environment.

70

Chapter 5
µSOFA – Model-driven Method for
Creating Configurable Execution
Environment

Since we consider the execution environment as a crucial part of every component sys-
tem, it naturally plays also a key role in the meta-component system. Chapter 4 has
introduced an approach of synthesizing an execution environment and corresponding
deployment tools. In this chapter, the approach is elaborated in more details resulting
in a model-driven method called µSOFA preparing a configurable execution environ-
ment (achieving goal G2).

5.1 Motivation

One of the meta-component system goals is to prepare a tailored execution environ-
ment which would support execution of a component-based application described in
a constructed component model and which would be able to satisfy its non-functional
requirements and utilized implementation technology. Therefore, our main objective
in this chapter is to have the execution infrastructure and its preparation well-defined
with explicitly defined variability. That includes (i) an execution infrastructure model
which would express all necessary functional and non-functional concepts, and (ii) a
rigorously defined transformation from an input component assembly (i.e., a collec-
tion of application components that together form a component application) to the
infrastructure model and further to its realization. Moreover, motivated by reflective
middleware, we would like also stress a demand on infrastructure encapsulation and
independence – the infrastructure model should include all aspects which are nec-
essary to translate it into its realization. And finally, the execution infrastructure as
well as the corresponding transformation process should not be constrained by any
particular technology.

To elaborate our motivation in more details, it is also necessary to discuss varia-
tion points of component systems as identified in Chapter 3 – (i) component model,
(ii) supported non-functional requirements (including various runtime services), and
(iii) a form of execution environment. Since the (i) component model variability can be

71

Chapter 5. µSOFA – Model-driven Method for Creating Configurable Execution Environment

solved by existing approaches, Section 3.1.5 has shown how it can be achieved. Nev-
ertheless, the component model has to be also reflected by an execution infrastructure,
because the component assembly of an application (which is described in term of the
component model) serves as an input for the realization of the whole system (as it will
be seen later in this chapter).

Non-functional requirements (NFRs) can impact any part of the resulting appli-
cation – architecture, execution environment, implementation, configuration of hard-
ware infrastructure, usability of application, etc. In the context of this chapter, the most
interesting are NFRs which have impact on the execution environment infrastructure
(e.g., reliability, monitoring, persistence support, life-cycle). However, it is impossible
to enumerate beforehand all possible NFRs which need to be considered. Therefore,
we would like to have the execution infrastructure highly configurable to be able to
capture the variety of non-functional requirements.

Moreover, according to Chapter 3 the execution environment has one of three
forms (iii). The forms differs in their complexity and in the corresponding process
which prepares them. Each form is constructed by a process transforming a compo-
nent assembly and specified NFRs into the form which can be then launched. Hence,
such process has to understand the inputs which can vary according to utilized com-
ponent model and constructed application. Furthermore, the process has to know
how to refine the inputs into an execution infrastructure and further into an executable
form built on the top of an implementation technology.

And finally, every execution environment is built on the top of an implementation
technology which also directly influences environment capabilities. The technology
can be a programming language or also another component system or configuration
framework (e.g., Google Guice [12], iPOJO [EHL07]).

To summarize our motivation, we would like to have a method which would allow
for defining the execution infrastructure of component-based applications and corre-
sponding process transforming it into one of the identified forms. The method should
be able to reflect variability in:

• the component model and particularly in the component assembly which stands
for method input

• non-functional requirements

• identified forms of execution environments

• target implementation technology

5.2 Outline of the Solution

This section presents our major ideas to achieve a proper solution. The input of the
method is a component assembly representing an application architecture, specified
non-functional requirements with a description of their impact on the execution infras-
tructure. Additionally, to prepare a target executable form of execution environment,
a particular implementation technology is specified.

The result of the method depends on the specified implementation technology and
application’s NFRs and it is one of identified execution environment forms – i.e., the
method outputs a binary which can be directly executed, or a package, configuration

72

5.2. Outline of the Solution

which can be loaded into a component container. The method thus combines creation
(or configuration) of the execution environment with packaging of the component
application to be executed within the runtime. This allows us to treat uniformly the
three principal kinds of the execution environment.

During the process of the infrastructure preparation, interpretations of individual
NFRs have to be injected into an infrastructure of the execution environment. How-
ever, the NFRs can enforce a preparation of new artifacts (e.g., interface interceptors)
or code generation (e.g., interceptors implementation, software connectors).

To denote infrastructure concepts including application components, their exe-
cution infrastructure, and execution infrastructure of underlying component plat-
form, we use a dedicated execution infrastructure model (EIM) based on micro-
components [MB05]. To avoid preserving and maintaining two models (one for de-
scribing application components and another capturing the architecture of the ex-
ecution infrastructure) during execution environment modeling, we use the micro-
components for decomposition of both the execution infrastructure and the applica-
tion components. This is however done without loosing traceability to concepts of the
application component model (i.e., application component’s interfaces, bindings). To
clarify the utilization of micro-components, we refer to Section 3.5 which has shown
the micro-components as well-defined and appropriate concepts to model execution
environment artifacts (interface interceptors, infrastructure managers).

Based on this fundamental idea, it is possible to define individual high-level stages
of the µSOFA method, their inputs, and outputs (Figure 5.1). The first stage (called
front-end) refines the given assembly of application components with the help of spec-
ified NFRs. The result of the stage is the execution infrastructure model. The second
stage (called back-end) transforms the model into an implementation. Moreover, the
first stage can demand code generation which need to be executed in the scope of the
second stage. it means the front-end configures the back-end.

Figure 5.1: The outline of the µSOFA method.

Figure 5.1 outlines the solution. To detail the µSOFA method it is necessary to
clarify:

1. Execution infrastructure model (EIM) based on the concept of micro-
components.

2. Representation of NFRs and their realization in the execution infrastructure.

3. Impact of NFRs on the generation back-end.

4. The front-end process of refining the component assembly into an execution in-
frastructure model.

73

Chapter 5. µSOFA – Model-driven Method for Creating Configurable Execution Environment

5. The back-end process of translating the execution infrastructure model into re-
alization based on a selected technology.

5.2.1 Illustrative Example

To clarify the outlined µSOFA method an illustrative example of a component-based
application is presented. The example demonstrates a simple watch control sys-
tem employing two components. The objective is to demonstrate an application
component-based architecture, its underlying execution environment infrastructure,
and the process of its realization with help of a selected target technology.

Functional requirements Figure 5.2 shows an application assembly composed of
three components. The top-level composite component Watch includes two primitive
sub-components Ticker and Display. The Ticker is an active component which
generates periodic ticks and calls the Display interface. The call on the interface
causes the Display component to update its time counter. The component Display
is responsible for visualization the current time by serving a web page with the current
time. The implementation of the component provides a J2EE servlet which needs
to be registered by a HTTP service. In this case, the behavior of both the primitive
components is not specified rigorously by any formalism due to their simplicity, but
both of them are implemented in the Java language as POJOs.7

Figure 5.2: The illustrative watch example.

Non-functional Requirements To provide a meaningful architecture, non-
functional requirements, their meaning, and impact on execution infrastructure have
to be specified.

The first non-functional requirement is stated on the top-level component and it
expresses that application life-cycle management has to be enabled. The second re-
quirement marks the component Ticker as active with periodic execution enabled
every second. The third requirement demands monitoring on the Ticker required
interface. The fourth NFR expresses a required service – the component Display re-
quires an HTTP service for correct execution – via the service the Display component
registers its provisioned servlet showing actual time.

7POJO – Plain Old Java Object

74

5.2. Outline of the Solution

Furthermore, for system execution it is also necessary to specify distribution of
components.8 In the case of the example, only a local scenario is considered and it is
expressed by the fifth non-functional requirement.

5.2.2 Front-end: From Component Assembly to Execution Infrastructure

Independently of a particular component implementation technology, it is possible
to identify an infrastructure of the example’s execution environment. Figure 5.3
shows the overall system execution infrastructure including components’ and plat-
form’s infrastructures. In this case, the overall infrastructure is composed of micro-
components and bindings among them representing communication channels. The
micro-components allow for expressing application components as well as execution
infrastructure in the same way.

Figure 5.3: Watch example execution infrastructure.

First of all, we need to clarify a relation between an application component and
its representation in EIM. Regarding a primitive component, its implementation (i.e.,
content) has to be encapsulated in the infrastructure ensuring its correct instantiation
and execution. The component content is represented as a micro-component, since it
participates in system execution. In the case of a composite component, which has no
implementation, the execution infrastructure has to adopt a strategy to represent them.
Either the hierarchical structure is “flattenized” (as in the case of the example). Or the
execution environment can preserve hierarchical components with help of dedicated
micro-components storing a notion of component hierarchy – for example, to enable
runtime introspection.

8For simplicity, a specification of an application deployment plan is omitted here and it is stated in a
form of non-functional requirement. However, in a rigorous development cycle, it should be specified
and it should describe component distribution and corresponding properties.

75

Chapter 5. µSOFA – Model-driven Method for Creating Configurable Execution Environment

Non-functional requirements inject into a component infrastructure new micro-
components and bindings among them. The example’s NFRs require life-cycle man-
agement. It is defined on the top-level component, however, if the top-level compo-
nent have to be able to manage its life-cycle, it also has to manage life-cycle of its
sub-components. Therefore, each sub-component has its own life-cycle manager, which
informs the component implementation of pending life-cycle changes (if the imple-
mentation requires being informed). Furthermore, to control the life-cycle, the calls
on the interfaces have to be blocked till the whole system is started. Hence, a concept
of an interface interceptor managing calls on interfaces is introduced. The interceptors
are controlled by the corresponding life-cycle manager.

The Ticker component is declared as an active component. Hence, it needs a peri-
odic thread which will periodically invoke the component implementation according
to the given period. The provision of a thread depends on Ticker implementation –
it can be hidden in the component implementation, or the component’s infrastructure
can provide it. Regarding separation of concerns, in this case we prefer the solution
that the component delegates the decision of using thread to its infrastructure which
can manage directly thread properties or thread reuse. Therefore, the thread manager
is incorporated in the infrastructure of the Ticker component.

Respecting the call monitoring requirement, the Ticker infrastructure contains
a monitoring interceptor on the interface which will intercept all calls and send call
information to the monitoring manager. The order of interface interceptors is important
here (as has been also mentioned in Section 3.5). Respecting the method call semantics,
the monitoring interceptor has to be put after the life-cycle interceptor in the interface
interceptor chain to ensure that it monitors only calls which are invoked only during
during system execution (not during the initialization of the system).

Finally, the component Display has to obtain a reference on an HTTP service.
This reference has to be provided by a component infrastructure and needs to be
injected into the Display implementation. There are two options how to achieve
such injection – (i) the component implementation explicitly supports the injection by
marking the location of injection by implementing a predefined interface, marking a
method or attribute via an annotation; or (ii) the component implicitly expects the de-
sired service – in this case aspect-oriented programming (AOP) [KLM+97] can be for
example utilized to weave an aspect containing the desired reference (in this case, as-
pect still needs to know at least the structure of the code). Furthermore, the injection of
a service can be static – i.e., during compile time of the infrastructure implementation,
or dynamic which ensures that the service is injected during system instantiation or
execution. Hence, the service injector encapsulating a selected service injection strategy
needs to be placed into the component infrastructure.

The introduced micro-components in the components’ infrastructures can require
platform services (e.g., HTTP service) or they may need to be managed by a platform
(e.g., life-cycle of component is directly controlled by underlying platform life-cycle).
That in fact means the injection of a micro-component into the component’s infras-
tructure can have a direct impact on a structure of the underling platform. To clarify
the platform infrastructure it is necessary to explain the elementary platform services.
The platform typically contains a concept of an entry-point (or bootstrap) – code which
enables platform initialization. The entry-point can cause a start of an application –
hence, it cooperates with a platform life-cycle manager controlling life-cycle managers
of application’s components.

76

5.2. Outline of the Solution

Regarding component requirements, the active component Ticker introduces a
dependency in the platform infrastructure in a form of a thread manager (e.g., thread
pool) controlling threads assignment to components’ thread managers. A similar man-
ager can be also required for call monitoring – for example, in a form of a global mes-
sage sink collecting output of all application monitors.

And finally, the Display’s required service has to be provisioned by the under-
lying infrastructure. That means in the case of the HTTP service, it has to employ a
library containing an HTTP server which publishes the desired HTTP service. Further-
more, the HTTP server has to be started during initialization of the platform which is
typically ensured by a bootstrap implementation.

Since the example does not introduce distribution of components, only local bind-
ings among component interfaces are considered. However, in the case of distribution,
additional micro-components composing software connectors would be necessary to
incorporate into the infrastructure model ([Bur06], [BMH08]).

It is important to mention that the example shows only a limited set of possi-
ble non-functional requirements and infrastructure properties. Nevertheless, the pre-
sented example serves to give an idea of the infrastructure refinement.

5.2.3 Back-end: From Execution Infrastructure to Its Realization

Since the execution infrastructure model contains all necessary information, it can be
transformed into its execution form. In the context of the example, let us consider that
Google Guice [12] is utilized as the target implementation platform. Guice is a simple
Java-based inversion of control library which automatically manages references and
their injection respecting annotated Java sources. Therefore, the execution environ-
ment realization will adopt the identified EE2 form – i.e., execution environment is
provided as a library.

To transform the example’s execution infrastructure model depicted on Figure 5.3,
it is necessary to associate micro-components with their implementation – i.e., to de-
cide about micro-component implementations reflecting the selected implementation
technology. There are three kinds of micro-components in the example’s infrastruc-
ture – (i) micro-components which have already an associated implementation which
fits to Guice rules (for simplicity all managers); (ii) micro-components which have al-
ready an associated implementation, but it needs adaptation to Guice (e.g., content of
functional components); and (c) micro-components whose implementations have to
be generated reflecting the actual infrastructure (interceptors, platform bootstrap).

Furthermore, in case of the example, Guice modules configuring inversion of con-
trol have to be generated. The example can adopt several strategies according to the
granularity of Guice modules – it can generate only one Guice module configuring
the whole system (including the application and platform) or multiple modules con-
figuring depicted components and platform infrastructures. The example selects the
second option and generates five Guice modules – modules for Ticker and Display
components, module for the Watch application, module for underling platform, and
overall system module gluing the other modules together.

Since the Guice is only a static library it does not introduce any concept of entry-
point. Hence, the bootstrap code needs to be prepared as well. It configures the Guice
internals and instantiates the generated system module. And finally, code compilation
and bundling is performed to deliver a binary fully realizing the system.

77

Chapter 5. µSOFA – Model-driven Method for Creating Configurable Execution Environment

Figure 5.4 shows the overall generation process realizing EIM. It depicts individual
stages including code generation, adaptation, compilation, and final bundling. Each
stage has associated a set of actions which are introduced by NFRs (code generation
of interceptors, bootstrap) or the selected implementation technology (generation of
Guice modules). Based on the example, it is necessary to stress that NFRs can modify
the generation process by introducing new activities.

Figure 5.4: Schema of generation process for watch example execution infrastructure.

5.2.4 Lessons Learned

Based on the presented example, we can refine our understanding of the solution and
state essential requirements regarding individual method’s parts stated above.

Execution Infrastructure Model

The execution infrastructure model is a corner-stone of the method. The model has to
allow for modeling all runtime concepts including representation of functional com-
ponents, NFRs, and underlying component platform. We put stress on its expressive-
ness to describe clearly and in unique way the execution infrastructure which will be
also beneficial for code generation. Therefore, the execution infrastructure model has
to meet the following properties:

• the model should allow for separation of concerns;

• the micro-components should be reusable and well-defined. They should ex-
press their requirements, provisions, and realization. They should also represent
a minimal set which is required to be modeled;

• the micro-components should be able to participate in infrastructure implemen-
tation directly (by providing an implementation) or indirectly (by providing a
code generator, code or model transformation);

• the dependencies among micro-components’ provisions and requirements
should be explicitly expressed to provide a complete infrastructure to the back-
end realization process;

78

5.2. Outline of the Solution

• the model should not support distribution – the distribution should be modeled
as non-functional property;

• the model should allow for expressing NFRs and platform services.

Non-functional Requirements Representation

The example has shown that a non-functional requirement can affect both compo-
nent and component platform infrastructure by injecting at a specified location new
micro-components and bindings among them. Hence, our demands on non-functional
requirements representation are:

• NFRs representation should be well-defined – i.e., it should have a unique inter-
pretation in the context of the execution infrastructure;

• NFRs representation should adopt the same structure entities (i.e., micro-
components) as the execution infrastructure model to allow for easy interpre-
tation of NFRs inside the execution infrastructure model;

• representation of NFRs should have an associated location in the execution in-
frastructure (and corresponding realization process) which it targets;

• representation of NFRS should allow for configuration of back-end realization
process.

Transformation from Application Assembly to System Realization

The transformation process is a crucial part which creates an execution infrastructure
by understanding component-based architecture and its non-functional requirements
and further translates it into a realization based on selected implementation technol-
ogy. Therefore, the overall transformation has to fulfill the following objectives:

• The transformation process should allow for refinement of component assembly
into an execution infrastructure model by interpreting NFRs.

• The transformation process should understand NFR representation and know
how to inject it into the execution infrastructure model.

• The transformation process should allow for refinement of the execution infras-
tructure model into a realization based on a selected implementation technology.
The process should be technology agnostic – i.e., it should not be directly con-
nected to any technology.

• The refinement of the execution infrastructure into its realization should be con-
figurable – NFRs representation should be able to reconfigure it.

• The overall transformation workflow should be well-defined with known struc-
ture and its “extension points”.

79

Chapter 5. µSOFA – Model-driven Method for Creating Configurable Execution Environment

5.3 Execution Environment Model

This section elaborates the stated requirements and proposes a suitable model for con-
structing execution infrastructure of component-based systems.

5.3.1 Micro-components

The model follows and adapts the micro-components concepts proposed in [MB05]
since it provides suitable expressiveness to describe execution infrastructure and fulfill
requirements stated in Section 5.2.4.

The micro-component as the key reusable entity is represented by the
UComponent which has defined provisions and requirements via UInterfaceable
(depicted on Figure 5.5). The UComponent has associated content which can have
two forms – a generator or a particular implementation. Both kinds distinguish be-
tween source and binary code to permit deployment process to employ code post-
processing (e.g., optimization, compilation). The micro-component UComponent rep-
resents a reusable entity, hence, to reference its instance the UComponentInstance
has to be utilized.

Figure 5.5: UComponent definition.

The requirements and provisions of UComponent are expressed via micro-
interfaces UInterface (see Figure 5.6). Each micro-interface has its role (provided
or required) and type UInterfaceType. Relations among micro-components are
modeled as bindings UBindingwhich connect end-points UBindingEndPoint. The
end-point can have different forms – e.g., it can reference micro-component interface
(UBindingInterfaceEndPoint), or it can employ select which finds target end
point micro-component (UBindingEndPointDeclarative).

However, to model an execution infrastructure, additional transient concepts are
needed (in the case of example, they are used to generate Guice configuration mod-
ules). These concepts should express high-level execution environment entities and as
a result simplify refinement of component assembly. They only delineate well-defined
areas in the execution infrastructure which are helpful during non-functional proper-
ties injection and code generation. Based on the motivation example presented in
Section 5.2.1, it is possible to identify the following high-level entities:

80

5.3. Execution Environment Model

Figure 5.6: UComponent provisions and requirements.

• Component instance – represents an instantiated component including instan-
tiated user (“business”) code and also corresponding execution infrastructure
supporting the code;

• Application – stands for a component assembly deployed into a container. The
application does not involve only the assembled component instances, but also
a corresponding part of runtime infrastructure encapsulating the assembly (e.g.,
interceptors, controllers);

• Execution platform – represents a runtime environment providing services and
corresponding support to ensure execution of deployed applications (e.g., thread
pool, transactions manager, timers manager, OS API);

• System – an abstract concept representing a set of applications deployed and
executed on the top of a specified execution platform.

From modeling perspective, these high-level entities are modeled as micro-
assemblies (UAssembly) of micro-component instances UComponentInstance and
bindings among them (UBinding). These micro-assemblies allow for separation
of execution environment concerns – component, application, platform, and sys-
tem. A component instance is represented by ComponentAssembly and stands for
the component execution infrastructure. Component instances are assembled into
UApplicationAssembly. The assembly can, except for component instances, also
contain micro-component instances and bindings among them. Such infrastructure
standing outside component instances is useful for shared functionality extracted from
selected component instances. Finally, the system modeled as SystemAssembly puts
together multiple applications and a platform (expressed with PlatformAssembly).

To denote a required and provided services the assembly UAssembly specializes
a concept of UInterfaceable which corresponds to a common base of all provided
(resp. required) services. The service is bound to a micro-interfaces of an encapsulated
micro-component instance. Thus, for example, SystemAssembly can bind applica-
tion required services to platform provisions.

81

Chapter 5. µSOFA – Model-driven Method for Creating Configurable Execution Environment

Figure 5.7: Execution infrastructure micro-assemblies.

5.4 Non-functional Requirements

General non-functional requirements with their vague semantics are hard to express
in a generic way. Owing to their broad variance, it is impossible to capture all their
difference kinds. However, in case of the execution environment, it is necessary at
least to describe the requirements which affect the execution infrastructure – i.e., ac-
cording to Section 3.1.5 only NFRs managed endogenously (only system wide) and
exogenously (per collaboration and system wide) have to be considered.

With respect to the stated requirements, a suitable representation of a non-
functional requirement is a kind of infrastructure aspect. Its motivation comes from
a domain of aspect-oriented programming (AOP) [KLM+97] and from the compo-
nent configuration approaches shown in Section 2.1. Therefore, as a regular aspect
the infrastructure aspect would be also composed of an advice and point-cut. The ad-
vice would specify an infrastructure change – which micro-components are injected
and how they are bound with the existing context. The point-cut is able to identify a
unique location in the infrastructure where the aspect advice should be weaved. To
permit point-cut to find a desired location, crucial variation points in the infrastructure
need to be determined – they are called join-points in the AOP vocabulary.

The concept of aspects perfectly suits into infrastructure building as has been al-
ready shown by the case-study presented in Section 3.5. Moreover, the concept have
been already applied in existing projects [LRS+11] to express domain-specific concerns
or as component aspects [MB05].

5.4.1 Infrastructure Aspects

A definition of the infrastructure aspect (Aspect – see Figure 5.8) is divided into an
advice (VariationPointAdvice) and select (VariationPointSelect).

The advice shares the AOP principle and it is represented as a composition of ac-
tions which manipulates the infrastructure including adding new micro-components,
bindings among them, and bindings to the rest of infrastructure, creating new join-
points, publishing a service, etc. Furthermore, every advice is parametrized by its
properties which need to be specified before aspect weaving.

The select (VariationPointSelect) shares the idea of the AOP point-cut and it
identifies a variation point in the infrastructure where the advice should be weaved.
In our context, the select is represented by an OCL query which selects the right infras-
tructure join-point. The relation between the advice and actual infrastructure is also

82

5.4. Non-functional Requirements

guaranteed by the select which query for end-points where advice’s bindings should
be connected.

System-level aspect – it serves for injection of system-wide NFRs. Typically it does
not modify SystemAssembly but it can introduce new actions into the back-
end.

Application-level aspect – it is utilized for injection of application-specific NFRs. As
in the previous case, it is typically used to modify back-end rather than the
ApplicationAssembly.

Component-level aspect – the aspect encapsulates the component implementation
with micro-components participating in component management including in-
terception on interfaces, wrapping component implementation, etc. The typical
non-functional requirements solved by the kind of aspect are life-cycle, intro-
spection, component properties injection, thread management. This kind of as-
pect can also reconfigure the transformation back-end – for example, by requir-
ing post-processing component implementation.

Platform-level aspect The kind of the aspect is tightly related to the rest of aspects
and serves to configure execution platform. Typically, weaving of a platform-
level aspect is enforced by injection of a component-level aspect. This kind
of aspect typically inject various managers, bootstrap, or configure underlying
middleware.

Figure 5.8: Infrastructure aspect.

5.4.2 Variation Points and Join-points

To identify well-defined locations in the execution infrastructure and to enable as-
pect injection, the concepts of infrastructure variation points is adopted. Two kinds of
variation points are introduced: (i) implicit and (ii) explicit (see Figure 5.10). The im-
plicit point refers entities composing a micro-component model – a micro-component,

83

Chapter 5. µSOFA – Model-driven Method for Creating Configurable Execution Environment

Figure 5.9: Advice hierarchy.

micro-binding, micro-interface, micro-assembly and conceptual entities as compo-
nent, application, system, and platform.

The explicit variation point is called a join-point and it permits to exhibit a named
location where other aspects can append their functionality. The join-point is de-
clared by its name and micro-interface (and additional properties including the join-
point priority). This kind of explicit variation point allows aspects to express their
own “extension points”. Therefore, several kinds of join-points exist. They serve to
express different extension policies – for example, the SingletonJoinPoint join-
point can bound only once, while the ChainJoinPoint join-point allows to be de-
fined multiple-times. From this perspective, the join-point can be also considered as a
way of ensuring dependencies among aspects. Here, it is important to mention, that
join-points play a key role in defining and extending deployment process. They serve
to determine a well-defined location in deployment process which can be extended by
aspects.

Figure 5.10: Variation points hierarchy.

84

5.5. Transformation Process

5.5 Transformation Process

The objective of the process is to refine a given component assembly into its realization
which can be launched. Our goal is to provide well-defined model-driven refinement
which should be target technology agnostic and self-configurable. The motivation for
an architecture of the transformation process design lies in compiler design [Muc97] –
a common compiler is typically split into a part which is target platform independent
(so called front-end) and a specific part which generates a machine code for a given
platform (called back-end). The interoperability between both parts is achieved by
a kind of inter-code which is independent on target platform and permits different
optimizations.

Therefore, a transformation process is divided as depicted on Figure 5.11 into two
parts – a front-end and back-end. The role of inter-code is played by execution infras-
tructure model which is at least partly target technology independent.

Figure 5.11: The scheme of the deployment process.

The front-end takes an assembly of components with its properties and expands it
into a basis of an execution infrastructure and a set of aspects corresponding to NFRs.
The result of aspect weaving is a model of execution infrastructure and extensions of
the transformation process’s back-end.

Realization of the EIM is the goal of the back-end. The stage processes the model
and generates, adapts, configures, and compiles included micro-components. More-
over, it prepares all necessary configurations.

As in other generation frameworks ([BMH08], [RCGT09], [LPM+09]) the deploy-
ment process has a form of a pipeline. Each stage of the pipeline has well-defined
inputs, output, and functionality. Here, it is possible to reuse micro-components to
define and extend the transformation pipeline, since they have exactly defined re-
quirements, provisions, and implementation (see Figure 5.12).

5.5.1 Front-end: From Component Assembly to Execution Infrastructure

The process translating the component assembly has to consider the complexity of the
underlying component model. The model can introduce various features including

85

Chapter 5. µSOFA – Model-driven Method for Creating Configurable Execution Environment

Figure 5.12: Deployment process meta-model.

flat/hierarchical components, exogenous/endogenous connectors, implicit/explicit
bindings, behavior specification, etc. Furthermore, the component model contains a
specification of non-functional requirements which can influence configuration of the
component implementation, configuration of underlying component platform, and
preparation of component infrastructure. The non-functional requirements can also
enforce injection of new functionality into the platform infrastructure. All these fac-
tors are considered by the front-end during transformation the system architecture
into its low-level form:

(i) The front-end transforms the assembly into a form of constructors. The construc-
tor contains a partial micro-assembly as a seed for aspect weaving that repre-
sents a basis of the demanded execution infrastructure. The partial assembly
contains a micro-components directly corresponding to component concerns –
content and interfaces. The constructor further includes a set of aspects which
require being applied. The aspects are resolved according to specified NFRs.
The front-end prepares four kinds of constructor – for each component, over-
all application, system, and platform. These constructors directly correspond to
micro-assemblies proposed in Section 5.3.1.

(ii) The next stage of the front-end, includes aspect weaving for each defined con-
structor. All constructors aspects are weaved into the defined micro-assembly.
To mitigate complexity of aspects ordering, the weaving does not connect the
injected artifacts with the rest of infrastructure. This is done after all aspects are
weaved – then the dependencies are resolved and connected. This strategy im-
plements a trade-off between usability and solving aspects constraints. During
the aspect weaving the back-end is configured.

86

5.5. Transformation Process

5.5.2 Back-end: From Execution Infrastructure to its Realization

The deployment back-end transforms the resolved execution infrastructure model into
its realization with help of a selected implementation technology. Nevertheless, the
back-end is constructed during creation of the execution infrastructure. The reason for
such scheme lies in micro-components which typically require code generation, adap-
tation, compilation, or additional post-processing expressed by NFRs (e.g., bundling).
Therefore, we have designed the back-end as a set of join-points which the front-
end can redefine. The back-end typically includes these join-points (it is important
to stress, that every aspect can introduce a new join-point):

• backend.architecture.optimization – optimization of micro-
architecture structure, e.g., merging, sharing micro-components;

• backend.architecture.fetch – reuse of micro-components which are al-
ready implemented;

• backend.code.generate – code generation;

• backend.code.optimization – optimization of generated code, e.g., code
merging to reduce memory footprint;

• backend.code.compilation – code post-processing including its compila-
tion;

• backend.code.configuration – preparation of configuration;

• backend.code.bundling – preparation of a system image which can be di-
rectly run or deployed into a target container;

Each of the defined join-points defines an extension interface containing a method
generate(SystemAssembly, Configuration) , where SystemAssembly car-
ries the resolved micro-architecture and Configuration represents additional tech-
nical details required for the back-end (e.g., directories where generated code is
stored).

The back-end itself only iterates over defined join-points according to their priority
and call their interface. The output of the back-end depends on defined join-points –
hence, it can differ from a non-structured source code to a bundle including compiled
code and configuration for deployment into a container.

The back-end transformation is also affected by the demanded form of resulting
system.

Moreover, the transformation can employ different strategies to assemble the sys-
tem with respect to a selected implementation technology. For example, it can com-
pose the platform with help of a selected configuration technology – e.g., Guice, iPOJO.
Or, it can adjust the micro-components to satisfy a given technology platform (e.g.,
OSGi) which allows for deployment into a container. The adjustment can include
modification of the micro-component content, generation of meta-information, and
configuration files. The mapping of micro-components on a selected technology plat-
form concepts corresponds to mapping Platform Independent Model (PIM) to Platform
Specific Model (PSM) in MDA [MM03].

87

Chapter 5. µSOFA – Model-driven Method for Creating Configurable Execution Environment

5.6 Discussion

The presented solution addresses the requirements stated in Section 5.2.4. However,
there are still questions which are not directly evident. In this section we discuss them
in more details.

Distribution The execution infrastructure model does not support distribution im-
plicitly per se. We argue that to keep the core functionality of the execution platform
minimal (which is among others important for embedded systems), the distribution
should be treated as a NFR. Indeed it can be easily expresses via an aspect which
injects into the execution infrastructure micro-components (typically interface inter-
ceptors) implementing distribution with help of a selected middleware. The same
aspect enables generation of injected interceptors implementations and bundling of
application parts respecting distribution boundaries.

In this respect, the aspect supplies a realization of a software connector manag-
ing communication. Regarding the software connectors, it is necessary to stress that
the aspect can be automatically resolved from the specified application assembly to
achieve the best solution reflecting the distribution and communication-related non-
functional requirements. The topic is elaborated in more details in [Bur06].

Models at Runtime Since the execution infrastructure model serves only to express
infrastructure concepts, there is a natural question how to preserve notion of applica-
tion components at runtime. This behavior is useful in case of application introspec-
tion or reconfiguration at runtime. The proposed solution for this question is to uti-
lize a dedicated aspect injecting into the infrastructure additional micro-components
preserving notion of application components. Then micro-components’ management
interface allows for querying application component-based architecture. The same
strategy is used to preserve notion of hierarchical components.

Realization of NFRs The method was designed to support wide range of non-
functional requirements supporting application execution. However, it is obvious that
it cannot support all existing NFRs including execution environment independent re-
quirements such as usability, or accessibility, as such NFRs are to be captured at the
application level rather than on the platform (or middleware) level.

Technology Independence The overall µSOFA method is designed to be implemen-
tation technology agnostic. Moreover, it does not require any particular kind of the
technology. That means that the method can support any programming language (C,
Java, C#), but also more advanced technology such as a configuration framework (e.g.,
the case of the presented example which use Google Guice) or a component system to
assemble the system realization. The method contains several locations where a target
implementation technology needs to be known:

(i) application assembly refinement – the technology can influence the selection of
aspects corresponding to application NFRs. For example, the aspect can expose
that it supports life-cycle but only in the scope of the Google Guice configuration
framework;

88

5.6. Discussion

(ii) micro-component content – the micro-component content implementation is
bound to the particular implementation technology;

(iii) micro-component content generator – the content generator itself does not need
to be based on the selected target implementation technology, but the code,
which it produces, has to be.

The fact that these locations are well identified allows us to manage the usage of
the target implementation technology and produce system implementation in a fine-
grained way.

Unanticipated Back-end Extensions The back-end structure introduced in Sec-
tion 5.5.2 has a form of a pipeline with a predefined set of join-points. However, the
presented set serves only for demonstration and can be arbitrary changed by the pre-
sented join-points mechanism. Therefore, the back-end supports unanticipated exten-
sions by allowing for declaring a new join-point which is injected into the back-end’s
transformation pipeline according to the join-point’s priority. In this way, the exten-
sion can alter the pipeline to support a new activity which other micro-components
can extend too. Furthermore, apart from pipeline-driven communication among com-
ponents, the micro-components can be also connected via regular bindings and hence
exchange additional information. Respecting these extension strategies, the back-end
transformation pipeline can be extended to more advanced transformation structures
such as a parallel transformation pipeline.

89

Chapter 5. µSOFA – Model-driven Method for Creating Configurable Execution Environment

90

Chapter 6
Models Interoperability

The chapter is motivated by preparation of implementation artifacts which has been
emphasized in the previous chapter. It clarifies a role of code generation with respect
to models describing its inputs and elaborates relations among these models in more
details to achieve thesis goal G3. The text of this chapter is based on the following
paper:

[MPBH12] Malohlava M., Plášil F., Bureš T., Hnětynka P.: Interoperable DSL Families
for Code Generation,In Software: Practice and Experience, John Wiley & Sons, Ltd,
ISSN: 1097-024X, DOI: 10.1002/spe.2118, April 2012.

6.1 Introduction

Nowadays software development takes advantage of the novel technologies which
allow code generation from models at a variety of abstraction levels. These range from
simple templates to advanced series of model transformations supporting backwards
traceability. In this chapter, we show how such methods can be employed in the area
of generating control elements of software components and connectors, focusing on
the SOFA component model ([BHP06], [BHP+07]) where code generation is to be done
both in Java and C (the chapter primarily focuses on Java). Nevertheless, the presented
method can be employed in other code generation domains as well, specifically when
several DSLs, multiple target languages, and/or optimization are to be considered.

Frequently, code generation into a target general-purpose programming language
(*-language) is parameterized by the information not known statically, but available
as late as the generation (model transformation converting a model to another model
representing the code) is actually performed. Component-based systems are not an
exception. Their development typically involves control elements which require to be
tailored at the component assembly/deployment time or even runtime (e.g., when dy-
namic architectures are supported). These elements include (i) functional units of soft-
ware connectors bridging address spaces and handling differences in communication
styles, and (ii) control elements of software components, such as interceptors handling

91

Chapter 6. Models Interoperability

Figure 6.1: Element architecture and context.

calls on component interfaces in support of component lifecycle, QoS-related adapta-
tion and monitoring. Having well-defined communication ports and despite being
of relatively simple functionality, the elements may be either primitive or composed,
forming a hierarchy.

Figure 6.1 shows a typical scenario in a component-based system consisting of two
interconnected components – a client ThinStockClient and server StockServer
– communicating by classic remote calls. Interconnection between the components is
performed via a connector generated in an automatized way. An internal architec-
ture of the connector is enforced by the desired communication method and extra-
functional properties (in this case, communication has to be encrypted and moni-
tored). The example illustrates the elements constituting this connector. The com-
ponents ThinStockClient and StockServer communicate via the Java-interface
of the type stock.IStock. To mediate communication, the connector is composed of
ClientStub and ServerSkeleton top-level elements. ClientStub contains two
primitive connector elements – Logger responsible for call logging and RMIStub, en-
capsulating the RMI middleware technology. Moreover, ServerSkeleton contains a
composed connector element SecureSkeleton reflecting the given security require-
ment by encapsulating the RMISkeleton and the SocketFactoryProvider. Ad-
ditionally, every call on both the required and provided interfaces “goes” through an
interceptor to support lifecycle.

The original SOFA implementation [BHP06] generates code of all these elements,
i.e., interceptors in components and connector elements, in an automatized way
[Bur06]; this is based on element specification in the form of:

(i) textual code template (pattern) of the element code,

(ii) description of the static element architecture (non-trivial in case of composed ele-
ments), and

(iii) description of the dynamic element context (e.g., to determine the actual Java sig-
natures of the bound interfaces in the context of the whole application).

Listing 6.1 shows an example of the textual code template for composed element

92

6.1. Introduction

(such as ClientStub and ServerSkeleton in Figure 6.1). It is clearly visible that
the template determines a skeleton of code where placeholders marked by double
percent signs (e.g., %%GENERATE_ARCHITECTURE_INITIALIZATION_METHOD%%)
are to be substituted to reflect the element context (the actual interface types of
the element) and element architecture, determining the internal, nested elements.
Thus, the semantics of placeholders is determined by the specification of ele-
ment architecture and context, which are encoded in a non-trivial, ad-hoc cre-
ated, Java placeholder interpretation class plugged into the code generator. This
way, the whole element specification is split between the textual code template and
specific internals of the code generator. For example, in Listing 6.1 the imple-
mentation of the method initializeArchitecture (hidden by the placeholder
%%GENERATE_ARCHITECTURE_INITIALIZATION_METHOD%% – line 19) traverses
the element architecture and context and generates the code for creating instances of
sub-elements and establishing bindings between them. All the code has to be encoded
in the placeholder interpretation class.

Listing 6.1: Textual template for composed element.

1 public final class %%CLASSNAME%% implements
2 org ... ElementLocalServer,
3 /∗ ... ∗/ {
4

5 /∗ Constructor ∗/
6 public %%CLASSNAME%% (
7 ConnectorUnit parentUnit,
8 boolean isTopLevel) throws ElementLinkException {
9 this .parentUnit = parentUnit;

10 this . isTopLevel = isTopLevel;
11 dcm = DockConnectorManagerHelper. getDockConnectorManager();
12

13 initializeArchitecture () ;
14 }
15

16 /∗ Implementing the initializeArchitecture method
17 ∗ Calling dedicated functionality of the code generator:
18 ∗/
19 %%GENERATE_ARCHITECTURE_INITIALIZATION_METHOD%%
20

21 /∗ Depending on the element context:
22 ∗ Calling dedicated functionality of the code generator:
23 ∗/
24 %%GENERATE_PROVIDED_PORTS_METHODS%%
25 }

To summarize, the following three constituents are to be expressed in an element
implementation specifications: Element Architecture, Context, and target code Pattern;
therefore, we denote such specification as EPAC. An EPAC specification thus deter-
mines threee crucial constituents required for proper preparation of an element. By
convention, when referring to a particular constituent, we will emphasize the corre-
sponding letter by different font (i.e., EPAC denotes specification of element’s target
code pattern, EPAC the architectural specification of an element and EPAC its context
specification).

The EPAC specification determines three crucial aspects required for proper

93

Chapter 6. Models Interoperability

preparation of the element: (i) its static structure via EPAC, (ii) the pattern of code
(EPAC) delineating the element’s implementation in a target language, and (iii) the en-
vironment (context) into which the element is to be deployed (EPAC). Moreover, each
specification has its own lifecycle driven by its role in the system development process
and has a dependency on *-language to different extent. The architecture specification
EPAC is a part of the database containing pre-defined static architectures of the con-
trol elements to be generated. The database is usually prepared at a very early stage
of system design (e.g., together with decisions on interface communication styles) and
it is not intended to be a subject to frequent changes during system development.
In general, EPAC dependency on the *-language is just minor. On the contrary, be-
ing substantially dependent on *-language, the context specification EPAC can only be
created as late as decisions of component assembly and deployment have been made.
Along similar line, the EPAC specification (element code pattern) can be created right
after EPAC specification is available. The bottom line is these three specifications are
not typically created simultaneously and an EPAC and EPAC specification can be em-
ployed with a number of different EPAC specifications. With regard to the scenario in
Figure 6.1, the EPAC specification of the RMIStub primitive element is represented
by: (i) EPAC including a definition of the element structure containing a specification
of input and output interfaces reflecting utilization of the RMI middleware; (ii) EPAC

prescribing patterns of the Java code implementing the element functionality; and (iii)
EPAC containing resolved signatures of input and output element’s interfaces implied
by the context of the whole connector.

Furthermore, the specifications have to cooperate (be interoperable) in terms of one
can refer information provided by another. For example, an EPAC specification typi-
cally refers the both EPAC and EPAC specifications to learn on element’s interfaces, and
also an EPAC tightly adheres to an EPAC. It should be emphasized that in template-
based code generation, this interoperability has to be hard-coded in a class interpreting
a placeholder.

6.1.1 Problem Statement and Goals

In general, simple template-based code generation of control elements is a process
inherently inflexible in four respects:

(i) EPAC and EPAC specifications and their processing have to be encoded as a plu-
gin of the code generator;

(ii) porting to a new *-language means not only re-writing the code template (EPAC

specification), but also modifying EPAC and EPAC specifications including their
encoding in the code generator;

(iii) any further operations upon the resulting code cannot be easily integrated within
the generation process (e.g., code optimization by merging elements);

(iv) interoperability among specifications is hard-coded in the code generator.

The problem this chapter aims to address is this inflexibility which makes it very
hard to accomplish element code generation from EPAC specification in a single
framework, especially when multiple target code languages and code optimization

94

6.2. ECOGEN Method: Overall Strategy and Related DSL Families

are to be considered. Thus a challenge is to overcome these obstacles by finding a
way of employing multiple DSLs and modern code generation techniques, prefer-
ably based on model transformations, which would allow for DSL interoperability
and easy porting to another *-language. From the perspective of code generation, the
following three model transformation techniques suitable for code production have
been identified ([CH06, MVG06]): (i) template-based, (ii) visitor-based, (iii) model-to-
model. They can be characterized as follows:

In the context of element code generation, all these techniques would employ the
EPAC and EPAC specifications similarly, but would differ in the way they make use
of EPAC (code pattern) specification. The techniques (i) and (ii) differ in controlling
code generation process. In the case of (i), the controlling process is based on travers-
ing the code pattern in a text-based template where marks (such as our placeholders)
trigger specific functionality of the code generator (Acceleo [23], JET [10], JavaServer
Pages [28], Velocity [5], Xpand [11]). On the contrary, in case of (ii), such as JAMDA [8],
the code generator would contain an encoded EPAC specification and visit the EPAC

and EPAC specifications. Both techniques would fail when multiple target languages
are to be considered, since, for each of them a dedicated code template or visitor would
have to be created. As an aside, since both techniques (i) and (ii) lack a comprehen-
sive representation of the code to be generated, code optimization would be hard to
implement.

More promising is a technique of the (iii) category, supporting step-by-step re-
finement of the artifact model resulting into code ([JK06, dJVV01], [14]). This allows
addressing multiple objectives in a sequence of transformation steps, including vari-
ous optimizations. Obviously a key challenge (and the main goal of the chapter) is to
propose an appropriate form of the model in each step and define efficient transfor-
mations reflecting the objectives adequately.

With respect to the goal, the chapter is structured as follows. Section 6.2 overviews
the Element Code Generation method (ECOGEN), while Section 6.3 focuses on DSL fam-
ilies. The next section presents details of ECOGEN-J generation framework stressing
also DSL interoperability including language assimilation yielding the target code.
Section 6.5 evaluates the presented approach, while Section 6.6 describes related work.
The last section concludes the chapter and sketches potential directions of future work.

6.2 ECOGEN Method: Overall Strategy and Related DSL Fam-
ilies

The proposed code generation method follows the general MDD strategy involving
multi-staged model transformations. It stems from the MetaBorg method [BV08] which
allows embedding of specific DSL constructs into a hosting programming language
(such as Java), and provides tools [dJVV01], [3] for assimilation (conversion) of these
constructs into the hosting language. The proposed code generation method serves to
transform an EPAC specification into the corresponding code in a selected *-language
and extends MetaBorg by the employing several DSLs simultaneously. The presented
method is generic enough to be easily applied for a new *-language.

Figure 6.2 shows the overall code generation strategy: Technically, the input is a
triple of EPAC, EPAC and EPAC specifications, each of them in a dedicated DSL (in the
same order): element pattern language EPLANG-*, architecture description language ADL-

95

Chapter 6. Models Interoperability

, and context description language CDL-. All of them are converted by a text-to-model
transformation into the form of an abstract syntax tree (AST-ADL-* , AST-CDL-* ,
AST-EPLANG-*). Intentionally, the AST representation is chosen since it is an elegant
model of a textual specification, allows further transformations, and is supported by
several well-elaborated tools such as Stratego [3], TXL [CHHP91], or DMS [BPM04].

Figure 6.2: Overall generation strategy.

In particular, the EPAC specification is formed by constructs of the domain spe-
cific language EPLang embedded into a *-language (by convention this embedding
yields the language EPLANG-*; similar convention on embedding applies to ADL-*
and CDL-*). Next, driven by the transformations defined for the EPLANG-* con-
structs, AST-EPLANG-* is traversed several times and step-by-step converted (model-
to-model transformation) into AST-* which already represents the element’s code in
the desired *-language. This way, the domain specific EPLang constructs are assimi-
lated [BV08] into the *-language. In this process, the EPAC and EPAC specifications are
taken into account by transforming and assimilating fragments of the AST-ADL-* and

96

6.3. EPLANG, CDL, and ADL Families

AST-CDL-* during the AST-EPLANG-* transformation as described in Section 6.4.
This is necessary to determine the actual types of the element”s ports from the context
specification EPAC and to determine the sub-elements from the architecture specifi-
cation EPAC. Optimizations of the generated code are done in an iterative way upon
AST*; this includes code merging [BCL+06], inlining, and call indirections removal 9.
From the resulting AST-optimized *, the last transformation produces the resulting
code in textual form (i.e., in the *-language).

Obviously, the generation process of AST-* relies on interoperability of three DSL
languages: ADL-*, CDL-*, and EPLANG-*. The key reason for having to accompany
an EPLANG-* specification with the ADL-*, and CDL-* specifications, is that, typi-
cally, the information provided by the CDL-* and ADL-* specifications is not avail-
able at the moment the EPLANG-* specification is being written. Therefore, having
different lifecycles, these specifications are provided as standalone entities and an in-
teroperability of all corresponding DSLs is required.

6.3 EPLANG, CDL, and ADL Families

6.3.1 Why Three Domain-specific Languages and Their Families

In general, designing a DSL language requires identifying the related domain concepts
and their relationships [KT08, MHS05] which are crucial for expressiveness and thus
needed to be reflected in the language constructs. For element code generation, we
identified three domain-related requirements which have to be taken into account –
each of the three DSL languages has to:

(i) reflect the domain vocabulary;

(ii) be parameterized by the desired target *-language;

(iii) reflect the fact that EPAC parts are not created simultaneously (have different
lifecycles).

While (i), domain vocabulary, is the central concept of domain-specific model-
ing [KT08, Eva03], the requirements (ii) and (iii) are specific in terms of flexible genera-
tion of element code in a *-language. The requirement (iii) is addressed by employing
three different DSL languages. This also well complies with the component model
domain conventions involving an architecture expressed in an ADL and context by
a language specifying component assembly and potentially deployment. Therefore,
it would be counterproductive for designer to break this conventions by striving to
combine all of these specifications into a single DSL. Moreover, the requirement (ii) re-
sulted in designing families of these DSL languages for each of the EPAC parts. These
are depicted in Figure 6.3, where also the desired interoperability is graphically em-
phasized. Thus, for a specific target *-language, from each family its “*” member is to
be selected (e.g., EPLANG-J, ADL-J, CDL-J when Java is selected as the *-language).
From the perspective of the final goal (code generation), this also means that such a
family member provides constructs specific to the target code in *-language.

9In general, the optimization are *-language dependent, but there is a group of independent opti-
mizations targeting the element architecture (e.g., composite element flattening), which can be employed
during early stage of generation. Details of optimizations are out of the scope of the thesis.

97

Chapter 6. Models Interoperability

Figure 6.3: DSL families and required interoperability among languages.

Central to each of the families is its core language (CDL, ADL, and EPLANG).
This concept follows the MDA approach [MM03]: A core language serves to specify
a platform independent model (PIM). A member of the family (e.g., CDL-J, ADL-J,
EPLANG-J) serves to express a platform specific model (PSM). In general, a member of
the family is created by embedding, which is achieved by both merging and restricting
the core and target *-language grammars. The result of the embedding is a grammar
of a new language. In the following subsections we focus always on the core language
and its embedding to Java (and also bytecode in the case of EPLang family).

6.3.2 EPLANG Family

In essence, the core of the family is the EPLANG language (Element Pattern Language)
– a DSL language allowing expressing, at an abstract level, the desired effect of an
EPAC specification, which results into a complete element implementation based on
the selected *-language. A primary requirement is that EPLANG constructs have to
express key element-related concepts (e.g., element ports), to query element architec-
ture and context, and to determine other details of element implementation (e.g., class
and package names). Furthermore, EPLANG has to be easily embeddable into the
*-language.

The example of the EPAC specification is illustrated by Listing 6.3. The example
shows an implementation of RMIStub from Figure 6.1 declared in EPLANG-J. Lst-
ing 6.2 demonstrates a skeleton of the same specification in pure EPLANG without
Java code (in reality, this pure EPLANG code is not explicitly used – we show it here
for illustration).

A key part of the element specification constitutes the element construct (lines
3-56), composed of a sequence of the implements port constructs (lines 14-17 and
20-55) expressing how ports become actual interfaces. Each of the implements port
constructs references an interface type either directly by a string containing its sig-
nature, or by the result of a query (e.g., $query{ports.port(name=call)}:type,
line 20), which refers to the corresponding part in an EPAC or EPAC specification.
Technically, both of these specifications are targeted by the query and the successful
response is interpreted as the result. The query always returns a result, however, it the
case of an incorrect query (e.g., referring non-existing port), the result can be empty. In
such a case, the generation process fails.

Syntactically, a query takes the form $query<NAVIGATE>:<EXTRACT>. Seman-

98

6.3. EPLANG, CDL, and ADL Families

tically, the <NAVIGATE> part of the query selects a set of sub-trees in AST-ADL-* or
AST-CDL-* , and <EXTRACT> part finds out the demanded information stored in the
sub-trees. While the <NAVIGATE> part can be evaluated in AST-ADL-* or AST-CDL-
* , just on syntactical basis, the <EXTRACT> part needs interpretation specific to each
kind of the <EXTRACT> statement.

Overall, the following kinds of <EXTRACT> statements, which are used in queries
targeting an EPAC specification, serve to obtain (i) a number and (ii) names of ele-
ment ports and eventually, in case of a composed architecture, (iii) the names of sub-
elements. In similar vein, <EXTRACT> statements used in the queries targeting an
EPAC specification provide the names of the (iv) generated class, (v) related package,
and (vi) actual element port types. Furthermore, in case of composite element, there is
a variant of <EXTRACT> which provides (vii) the names of sub-elements’ implemen-
tation types.

Implementation of the interface methods associated with a port is provided via
the method template construct (lines 21-54). It determines the code pattern to be
applied in each method of the interface the port is being turned into (recall that no
interface type is known at the time of template creation because it has to be derived
from the component interface the element is to serve); this information is to be sought
in CDL-*. Typical examples of method template utilization are simple call delegation
in an element and adaptation of two incompatible interface signatures via an element.
For that purpose, method template declaration can refer the method’s name and its pa-
rameters ($method.name) and $method.args, line 32). The latter being a list which
can be manipulated by the pop, append and count statements for removing, append-
ing and counting parameters. For manipulation with a method return parameter, the
following three statements serve: $method.declareReturnType declares a tempo-
rary variable of a method return type (line 22), $method.setReturnValue assigns
the temporary variable a given value (line 34), and finally $method.returnStm pre-
scribes creating a return statement providing the value of the declared temporary
variable (if necessary; line 52). Furthermore, the exception list stored in the variable
$method.exceptions can be manipulated in the same way as method parameters
with help of pop, append, count statements.

Variability of elements’ implementation is supported by the extend constructs,
extension points, and import statements. The extend construct provides a simple
kind of specification inheritance, consequently allowing for code sharing between ele-
ments. The extension point serves to declare the location in a parent template
which may be modified by the implementation of the inherited template (via the
extend construct). Finally, the import statement (lines 6, 7) includes a predefined
specification block.

Listing 6.2: Skeleton of EPAC specification in EPLANG for RMIStub element.

1 /∗+ +++ +∗/
2

3 element rmi_stub {
4

5 /∗+ +++ +∗/
6

7

8

9

99

Chapter 6. Models Interoperability

10 $import("ElementMethodsImpl.eplang")$
11 $import("ReconfigurableElementImpl.eplang")$
12

13

14 implements port /∗+ +++ +∗/ {
15 /∗+ +++ +∗/
16

17 }
18

19 /∗ Implementation of interface parameter ∗/
20 implements port $query{ports.port(name=call):type} {
21 method template {
22 ${method.declareReturnValue}
23

24 $set encoderNeeded=...$
25

26 $if (encoderNeeded)$
27

28 $apply (...) $
29

30 end
31

32 $append(method.args, /∗+ ++++ +∗/)$
33

34 $setReturnValue(...)$
35

36

37

38

39 /∗+ +++ +∗/
40

41

42

43

44 $if (! method.returnType.isPrimitive) $
45

46

47 /∗+ +++ +∗/
48

49

50

51 $else$
52 ${method.returnStm}
53 end
54 }
55 }
56 }

The EPLANG language defines the following types and operations: integer (+, ==,
!=), string (+ (concatenation), ==, !=), and associative dictionary of strings (indexed
also by a string). Such a dictionary represents a set of key-value pairs. These can
be manipulated by the indexing operator []. Variables are of dynamic types. The
operands in an expression can be only literals, variables, and queries. The names of
a variable can be hierarchical – this helps navigate over composed elements. These
language features are illustrated in the example of an EPLANG-J specification in List-
ing 6.3. This also includes the apply statement which applies a given expression to

100

6.3. EPLANG, CDL, and ADL Families

each of the list members satisfying a given condition (e.g., the apply statement on line
28 boxes each primitive type in the given argument list into the RMIDecoder call).

The EPLANG control statements include the foreach and rforeach (recursive
foreach) cycles, and also the if (condition) and set (assignment) statements, Obvi-
ously, the purpose of these control statements is to specify sequencing of code gener-
ating actions (in detail illustrated in [BMH08]).

To demonstrate the potential of the EPLang family, we implemented two domain-
specific languages (and corresponding generators): EPLANG-J and EPLANG-BC. The
former generates Java-based elements, the later produces bytecode of elements at run-
time to support efficiency.

Listing 6.3 shows an example of the full EPAC specification for RMIstub from Fig-
ure 6.1 in EPLANG-J. It specifies that the element implements a provided port (line
20-55). Furthermore, there is a method template for adapting and delegating an in-
coming call (lines 21-54; the actual method signature is determined from an EPAC
specification by the algorithm described in Section 6.4.2).

EPLANG-BC is another member of the EPLANG family. The motivation for choos-
ing Java bytecode as a *-language is to reduce compilation complexity when generat-
ing element code at runtime.

An EPLANG-BC specification of RMIStub is shown in Appendix C. Technically,
such a specification is pre-prepared by compiling an EPLANG-J specification with a
dedicated tool which first removes the EPLang constructs, compiles the pure Java code
and returns back the EPLang constructs into the corresponding places of the resulting
bytecode forming the EPLANG-BC specification.

Listing 6.3: EPAC specification of RMIStub element in EPLANG-J.

1 package ${package};
2

3 element rmi_stub {
4 /∗ Delegation target ∗/
5 protected $query{ports.port(name=line):type} target;
6 /∗ Constructor ∗/
7 public $query{:classname}(ConnectorUnit parentUnit) { /∗ ... ∗/ }
8

9 /∗ Import common methods for all elements ∗/
10 $import("ElementMethodsImpl.eplang")$
11 $import("ReconfigurableElementImpl.eplang")$
12

13 /∗ Implementation of a Java interface ∗/
14 implements port ElementLocalServer {
15 public Object lookupElPort(String name) {
16 /∗ ... ∗/ }
17 }
18

19 /∗ Implementation of interface parameter ∗/
20 implements port $query{ports.port(name=call):type} {
21 method template {
22 ${method.declareReturnValue}
23

24 $set encoderNeeded=count(ARG in method.args
25 where !method.args.ARG.type.isPrimitive)$
26 $if (encoderNeeded)$
27 RMIObjectEncoder rmiEncoder = new RMIObjectEncoder();
28 $apply(rmiEncoder.adaptObject(ARG) for ARG in method.args

101

Chapter 6. Models Interoperability

29 where !method.args.ARG.type.isPrimitive)$
30 end
31 try {
32 $append(method.args, SOFAThreadHelper.getCallContext())$
33 $setReturnValue this.target .${method.name}($implode(method.args)$)$
34 }
35 $if (encoderNeeded)$
36 catch (RMIObjectAdaptorException e) {
37 throw new ConnectorTransportException (e);
38 }
39 end
40 catch (RemoteException exc) {
41 throw new ConnectorTransportException (exc);
42 }
43 $if (! method.returnType.isPrimitive) $
44 try {
45 return (new RMIObjectDecoder()).adaptObject (${method.returnVar});
46 } catch (RMIObjectAdaptorException e) {
47 throw new ConnectorTransportException (e);
48 }
49 $else$
50 ${method.returnStm}
51 end
52 }
53 }
54 }

6.3.3 ADL Family

As mentioned in Section 6.2, an EPAC specification in EPLANG-* has to be comple-
mented by an element architecture specification EPAC. Given an element, it describes
its ports’ roles (provided or required); furthermore, for a composed element it specifies
its internal architecture – sub-elements and their bindings. In general, an EPAC spec-
ification is written in an ADL-* created by embedding the core ADL language into
a (subset of) selected *-language. A dedicated ADL-* language is typically required
because of the need to specify various extra-functional properties and dependencies
among them in the *-language (e.g., total memory consumption of a composite element
is specified as a sum of memory consumptions of its sub-elements). The *-language
serves here mainly as an “expression language”.

Figure 6.4: EPAC specification of the RMIStub in ADL-J.

Listing 6.4 shows an example of an ADL-J specification of the RMIStub element.
The specification is split into: (i) definition of an element type, and (ii) definition of
an internal architecture (implementing the element type). In principle, the element
type defines a black box view of RMIStub (Figure 6.4) by specifying its provided and
required ports (line 2-6). The architecture (lines 9-19) implements the given element

102

6.3. EPLANG, CDL, and ADL Families

type (line 11) by clarifying schematic relations among ports’ types (line 14, 16). Fur-
thermore, the example shows a definition of the extra-functional properties (lines 19-
24) used for computing element’s memory consumption. An example of a composed
element ADL-J specification can be found in Appendix A. In a similar vein, ADL-BC
is provided (in the same style as in the case of EPLANG-BC – see Section 6.3.2).

Listing 6.4: The EPAC specification of the RMIStub element in ADL-J.

1 <!−− Black box view of element. −−>
2 <element−type>
3 <name>stub</name>
4 <port name="call" role="provided" />
5 <port name="line" role="remote" />
6 </element−type>
7

8 <!−− Glass box view of element. −−>
9 <element−architecture>

10 <name>RMIStub</name>
11 <type>stub</type>
12

13 <architecture>
14 <port name="call" type="I" />
15 <port name="line">
16 <signature−entry ref−name="rmi" role="client" type="rmi(I)" />
17 </port>
18 </architecture>
19 <efp>
20 <efp−def>java.lang.Long memoryConsumption</efp−def>
21 <efp−def>java.lang.Long baseConsumption = 4096</efp−def>
22 <efp−def>java.lang.Long totalConsumption</efp−def>
23 <efp−value>totalConsumption = memoryConsumption + baseConsumption</efp−def>
24 </efp>
25 </element−architecture>

6.3.4 CDL Family

Given an element instance, its context specification EPAC describes the actual types of
its ports. In general, it is written in a CDL-* language created by embedding a core
CDL language into a sub-set of *-language. A dedicated CDL-* is typically required,
since the actual types of ports, values of extra-functional properties, and additional
system initialization code are to be specified in *-language.

Listing 6.5 shows an example of a CDL-J specification of the RMIStub element. It
specifies the actual types of the ports (lines 10-14), technical details needed for code
generation in Java (class name – line 7, class package – line 5), actual values of extra-
functional properties (lines 17-19), and Java code for system initialization. It should
be emphasized that a CDL-* specification refers only to the black box view of the
element defined by ADL-* – no qualification of internal port types is provided in case
of composed element.

Listing 6.5: The EPAC specification of the RMIStub element in CDL-J.

1 <element−context>
2 <!−− name of element −−>

103

Chapter 6. Models Interoperability

3 <name>RMIStub</name>
4 <!−− package for new element −−>
5 <package>T00012</package>
6 <!−− class name for generated element −−>
7 <classname>RMIStub</classname>
8 <!−− list of ports types −−>
9 <ports>

10 <port name="call">
11 <type>stock.IStock</type>
12 </port>
13 <port name="line">
14 <type>stock.IStock</type>
15 </port>
16 </ports>
17 <efp>
18 <efp−value>memoryConsumption = 3680</efp−value>
19 </efp>
20 <system−bootstrap>
21 System.setSecurityManager(new ElementSecurityManager());
22 </sytem−bootstrap>
23 </element−context>

6.4 ECOGEN-J Generation Framework

6.4.1 Overview

Figure 6.5 illustrates the ECOGEN-J generation framework (i.e., ECOGEN for Java)
which is an instance of the overall generation strategy (Figure 6.2) where the *-
language is Java. This framework is based on the Stratego/XT toolset ([dJVV01],[3])
supporting program transformation based on AST rewriting rules [Vis05]. The Strate-
go/XT represents an integrated tool for (i) defining DSL grammars and executing cor-
responding text-to-model (T2M) transformation; (ii) specifying and executing model-
to-model (M2M) transformations upon ASTs; (iii) specifying and executing model-
to-text M2T transformations. As to (i) T2M, the SDF (Syntax Definition Formalism)
format ([HHKR89]) is employed which allows specifying context-free grammars and
generation of scannerless generalized LR parsers for the languages. In principle, given
languages L1, L2 with corresponding grammars G1, G2 defined in SDF, a new lan-
guage L can by created by combining and restricting the rules of G1 and G2. Moreover,
M2M transformations (ii) are done by a manually written program in the Stratego lan-
guage expressing AST transformations (AST rewriting rules [dJVV01, Vis05]). Thus,
with the help of a single toolset, all of the generation steps from Figure 6.2 can be
implemented.

In Figure 6.5, the generation process begins by parsing each of the three parts of an
EPAC specification. This is done by the Stratego tool sglri driven by definitions of the
EPLANG-J, CDL-J, ADL-J grammars in the SDF format. The resulting parsers pro-
duce AST-ADL-J , AST-CDL-J , and AST-EPLANG-J corresponding to the respective
parts of the EPAC specification.

Further, the generation process assimilates EPLANG statements into Java while
employing the interoperability of EPLANG-J, ADL-J, and CDL-J languages. This is
achieved by a Stratego program which works in three transformation stages:

104

6.4. ECOGEN-J Generation Framework

Figure 6.5: ECOGEN-J generation framework.

1. The first stage evaluates pure EPLANG statements [BMH08] as follows: code
imports are done, then, to simplify later transformation to Java, statements are
converted into a canonical form (this includes “inlining” of control statements
whenever statically possible). This particular sequence of transformation steps
ensures that the whole process converges: composed EPLANG statements are
step-by-step simplified and finally transformed into primitive EPLANG state-
ments which are further solely converted into Java.

2. The second transformation stage evaluates queries. They are handled with a
simplification strategy similar to the on for handling composed statements. For
this purpose, a specific algorithm merging information from three ASTs was de-
signed as described in Section 6.4.2.

In general, the first and second stages are Java independent, so that they can be
reused for another choice of *-language.

3. During the last transformation stage, the Stratego program handles the Java-

105

Chapter 6. Models Interoperability

specific EPLANG-J constructs and composes the resulting AST-*.

All in all, this three-phase approach well enforces step-by-step refinement
of AST. To illustrate AST rewrite rules, Listing 6.6 shows a Stratego program
process-import serving to assimilate import statements by rewriting them to the
content of a file indicated by a parameter. Specifically, the rules on lines 5-8 parse the
file name, while the rule parse-EPLang-J on line 12 parses the content of the file
and returns it.

Listing 6.6: AST transformation rule assimilating the import statement.

1 process−import:
2 Import(Filename(X)) −> Y
3 where
4 if <is−relpath> X then
5 get−template
6 ; abspath ; dirname
7 ; <strcat> (<id>, " / ") ; <strcat> (<id>, X)
8 ; ?finput
9 else

10 where (!X => finput)
11 end
12 ; <parse−EPLang−J> FILE(finput) => Y

Again, driven by a Stratego program, the Optimizer deals with optimizing the code
represented by AST-Java. As mentioned in Section 6.2, this includes code merging,
inlining, and call indirections removal.

Finally, the code represented now by AST-optimized Java is transformed by the
Java pretty printer (pp-java – a part of the Stratego/XT toolset) into its textual form.
Naturally, the produced Java code is to be further compiled, bundled, and deployed
into a runtime environment.

For illustration, Listing 6.7 shows the code generated from the RMIstub EPAC
specification (Listings 6.3-6.5) for the interface stock.IStock containing a single
method sell with one integer parameter.

Listing 6.7: Generated Java code for RMIStub element.

1 class RMIStubImpl implements
2 stock.IStock, ElementLocalServer, ElementRemoteClient {
3 protected IStockRemote target;
4

5 public RMIStubImpl(ConnectorUnit parentUnit, ...) { /∗ ... ∗/ }
6

7 /∗ Implementation of imported common methods ∗/
8 public String getElementInfo(String indent) { /∗ ... ∗/ }
9

10 /∗ Implementation of a particular Java interface ∗/
11 public Object lookupElPort(String name) { /∗ ... ∗/ }
12

13 /∗ Implementation of interface IStock ∗/
14 void sell (int num) {
15 Object context = CallHelper.getCallContext();
16 this . target . sell (num, context);
17 }
18 }

106

6.4. ECOGEN-J Generation Framework

6.4.2 Handling Queries – Basic Idea

For brevity, in the rest of the text, the ADL-*, resp. CDL-*, language is referred to as
a side-*-language (and the corresponding AST as a side-AST).

To interpret a query, it is necessary to map the concepts in AST-EPLANG-* to the
concepts of a side-AST. In principle, it would be possible to express such mapping at
the level of EPLANG-* and side-languages grammars (e.g., by technique [JVB+10] as
discussed in Section 6.6 using intertwined grammars). However, such solution would
bring a strong dependency among languages, which is not desired. Thus, the queries
allowing expressing a loose dependency are introduced.

The actual technique of interpreting the query via AST transformations is as fol-
lows (see Figure 6.6). The target AST contains a query and its <NAVIGATE> part de-
scribes a path that determines two sub-trees in the side-AST. Further, the <EXTRACT>
part extracts the desired nodes from both sub-trees. The result is integrated into a sin-
gle tree as the outcome of the query. This tree is then assimilated back into the target
AST.

In general, all the sub-trees determined by a query have to be integrated into a
single AST sub-tree conforming to the structure of AST-EPLANG-* tree as if it was
the result of T2M transformation of its original EPLANG-* specification. When an
identified sub-tree of the side-AST is trivial, e.g., carrying just a simple value (being
a leaf associated with a string or number), it is assimilated into the EPLANG-* AST
simply by copying the corresponding node. On the contrary, a nontrivial set of sub-
trees (e.g., such as definition of all ports) is assimilated by iterative transformations
into the EPLANG-* AST as a sub-tree representing a list of values.

Figure 6.6: Handling a query – basic idea.

6.4.3 Assimilation and DSLs Interoperability

Basically, interoperability – in terms of the ability to interpret the queries issued in
an EPLANG-* AST – is required between each side-*-language and EPLANG-*. This
specifically means interoperability between EPLANG-J and CDL-J and also EPLANG-
J and ADL-J. This is visualized in Figure 6.7. More precisely, query interpretation

107

Chapter 6. Models Interoperability

is determined by applying a set of AST transformation rules the effect of which is
modeled by the following mappings:

Definition 1. Let SLAST be the set of sub-trees of all ASTs in the side-*-language and
ELAST the similar set for EPLANG-*. Also let S ∈ SLAST and T ∈ ELAST be ASTs
and Q (sub-tree of T) be a query containing <NAVIGATE> and <EXTRACT>.

Interoperability of the languages is defined based on the following mappings (trans-
formation rules):

nmap : SLAST × ELAST → 2SLAST (6.1)
emap : 2SLAST × ELAST → 2SLAST (6.2)
integrate : 2SLAST → ELAST (6.3)
replace : ELAST × ELAST × ELAST → ELAST (6.4)

such that the following holds:

nmap(S,<NAVIGATE>) = P , where S ∈ SLAST,P ∈ 2SLAST (6.5)
emap(P, <EXTRACT>) = R , where R ∈ 2SLAST (6.6)

integrate(R) = Q′, where Q′ ∈ ELAST (6.7)
replace(T,Q,Q′) = T ′ , where T ′ ∈ ELAST (6.8)

∧ T ′ is an AST

The mapping nmap transforms the Q query’s <NAVIGATE> to a corresponding set
of sub-trees P of the AST S. Then for each element of P, the mapping emap extracts its
part relevant to <EXTRACT>. This yields a set of resulting sub-tress R. Further, the set
R of sub-trees is integrated via the mapping integrate into a single AST sub-tree Q′.
Finally, the target AST T containing the query Q gets modified into T ′ by replacing Q
by Q′. The resulting T ′ has to be an AST in EPLANG-*.

Definition 2. The assimilation process of queryQ defined in AST T and targeting side
AST S is defined as a composition of mappings (6.5), (6.6), (6.7), and (6.8):

assimilation(T, S,Q) = replace(T,Q, (6.9)
integrate(

emap(
nmap(S,<NAVIGATE>),
<EXTRACT>)))

With regard to the mapping complexity, nmap relies on the representation of a
<NAVIGATE>. Obviously, interpretation of <NAVIGATE> is easy when it complies
with the hierarchical namespace of constructs in a side-language. This is relatively
simple to achieve when the side-*-language is XML-based, so that its constructs are
inherently hierarchical. Nevertheless, <NAVIGATE> is expressed by the EPLANG-*
means which do not have to comply with the side-language rules. If they do not,
the sub-trees identified by <NAVIGATE> have to be transformed by nmap into a final
form P complied with the side-language. Fortunately, the Stratego framework allows

108

6.4. ECOGEN-J Generation Framework

for very general AST restructuring. A penalty may be the complexity of the transfor-
mation rules, though.

While the mapping emap which finds and extracts from P required information
corresponding to <EXTRACT> is relatively simple, the integrate mapping is more com-
plex. Obviously, assimilation of R into T in EPLANG-* has to be based on mapping
the concepts of a side-*-language to EPLANG-*. This is specifically not simple when
the result R of emap is spread over elements of P. This requires employing non-trivial
iterative AST transformations as a part of integrate. Again, even though the Stratego
framework allows for very general AST restructuring, a penalty might be the complex-
ity of the transformation rules. Detailed specification of the nmap and emapmappings
based on denotational semantics can be found in Appendix D.

The implementation of queries processing written with the help of the Stratego
programming language is based on the strategy eval which selects the demanded AST
nodes (Listing 6.8). Its implementation directly corresponds to the denotational query
semantics. It recursively traverses (line 9) the AST from the given node and looks for
suitable nodes with help of the strategy nmap (line 4). The strategy decides whether a
node should be appended to the resulting set. It includes application of condition filter
apply−condition (line 22) which directly corresponds to the semantic definition of the
function Filter. Lines 12-14 correspond to the function Emap performing selection of
desired values from the sub-trees selected by nmap strategy.

Listing 6.8: Transformation strategies processing queries.

1 // query evaluation strategy
2 eval (| query) =
3 if <not(is−empty)> query then
4 where(!query => [head | tail])
5 ; nmap(|head)
6 ; if <not(is−last)> tail then
7 map(\ Element(_,_, val) −> val \)
8 ; concat
9 ; eval (| tail)

10 else
11 // corresponds to emap mapping
12 map(\ Element(_, _, [Text(c)]) −> Text(c) \ <+ id)
13 ; (\[Text(z)] −> Id(Text(z)) \ <+ id)
14 ; (\[Lit (l)] −> Lit(l) \ <+ id)
15 end
16 end
17 // corresponds to nmap mapping
18 nmap(|e) =
19 switch id
20 case <?IdElement(Id(name), condition, operator)> e:
21 find−query−element−byname(|name)
22 ; apply− filter (| condition)
23 case <?IdElement(Id(name), index)> e:
24 /∗ ... ∗/
25 otherwise: fail
26 end

109

Chapter 6. Models Interoperability

Figure 6.7: Interoperability among DSLs implemented by ECOGEN method.

6.5 Evaluation

In the light of the goals in Section 6.1.1, we evaluate the ECOGEN method from the
perspective of:

(i) comparing the ECOGEN method with standard template-based code generation
techniques,

(ii) DSL interoperability via MetaBorg tools and difference with classical MetaBorg
method, and

(iii) the prospects of porting the ECOGEN method to other domains.

6.5.1 Comparison with a Standard Template-based Technique

As we mentioned in Section 6.1.1, template-based approach was originally used for
specifying implementation of SOFA connector elements; however, such element gen-
eration proved to be inflexible not only in terms of modifications, but, first of all, of
extensions. From implementation perspective, the code generator processed a code
template which was composed of: (i) a “pure” textual template allowing only simple
textual substitutions and (ii) “placeholders” to be interpreted by the internals of code
generator (a hand-written placeholder interpretation class plugged into it). Overall,
the template and interpretation of placeholders was the way EPAC specification was
provided, while EPAC and EPAC specifications were available to the generator in the
form of its internal classes created by a front-end tool.

In contrast, the EPLANG-based approach allows defining the whole EPAC spec-
ification via three DSLs, synergy of them makes it possible to generate an element’s
code via a number of AST transformations starting with its EPAC specification.

To illustrate the difference between the template and EPLANG-J based approaches,
Appendix B shows the EPAC specification of the composite element in EPLANG-
J which corresponds to the textual template shown in Listing 6.1. The method
initializeArchitecture (Appendix A – lines 13-52) has similar functionality
as the placeholder %%GENERATE_ARCHITECTURE_INITIALIZATION_METHOD%% in
Listing 6.1, line 19. Obviously in the former case, the EPLANG-J constructs clearly,
with much finer abstraction granularity indicate what actions have to be done with
the EPAC and EPAC specifications to achieve architecture initialization. Furthermore,

110

6.5. Evaluation

the EPLANG-J EPAC specification determines with similar granularity the target code
for provided interfaces (Appendix A, lines 55-74); in contrast, this is in the textual tem-
plate hidden behind the placeholder %%GENERATE_PROVIDED_PORTS_METHODS%%
(Listing 6.1, line 27). Naturally, the functionality specified in EPLANG-J is hidden
inside the placeholder interpretation class which reads context information, finds an
element’s provided port type, and for each method included in the type has to gener-
ate code for call delegation to a corresponding sub-element port.

An important benefit of the ECOGEN method brought by a language definition
via grammar embedding is the syntax correctness guaranteed at the source level. It
means that the majority of syntactical errors in a code pattern can be detected directly
in EPAC specification. On contrary, in template-based approach, syntactical errors are
detected as late as code is generated and compiled.

As a case-study, consider a sub-set of connector elements for different communica-
tion styles in SOFA 2 [BHP06]. These are listed in Table 6.1, which compares the sizes
of element specifications and implementations in both template-based and EPLANG-
based approaches. For the former, two artifact sizes are indicated per each element:
the size of the textual code template and of the placeholder interpretation class (each
placeholder needs its own interpretation class, which cannot be shared among ele-
ments – see the motivation in Section 6.1.1). Here both the total class size and the size
of its part which directly produces Java code are provided. For EPLANG approach,
the size of EPAC specification and the size of Stratego transformation program (em-
ployed for all elements) are given. Along a similar line, both the total size of EPAC

specification/Stratego program and the number of lines directly producing Java code
are indicated. Here, the following should be emphasized:

(i) The actual context (EPAC specification) of an element practically does not influ-
ence any of these numbers, since it determines only the types of the interfaces/-
ports of the element.

(ii) In a similar vein, the element architecture (EPAC specification) influences signif-
icantly only the numbers related to the composite element; the figures indicated
in Table 6.1 hold for a composite element with two primitive sub-elements.

(iii) While a placeholder interpreter class has to be created for each element in the
template-based approach, the Stratego program is achieving the similar goal by
AST transformations common for all elements; a benefit is extensibility – adding
a new element requires to provide only its EPAC specification, since the Stratego
program depends only on EPLANG-J and side-languages’ grammars, thus not
being specific for an EPAC instance.

Table 6.1 also clearly illustrates that most of the complexity of the template-based
approach lays in the placeholder interpretation which heavily manipulates with the
EPAC and EPAC specifications. On the other hand, the EPLANG-J EPAC specification
contains much more Java LOC than the pure EPLANG statements.

Overall, the size of EPLang specification including AST transformations is half of
the size of textual templates and placeholder interpretation. As an aside, Table 6.1
indicates that the major part of the EPLANG-J specifications and Stratego AST trans-
formations is Java language independent (compared to template-based approach, the
ratio is (1551+496) / 7823). Specifically, in comparison to the template-based method,

111

Chapter 6. Models Interoperability

this means the ECOGEN method saves development effort, particularly in lines of
code that need to be re-implemented, during porting to a new *-language. Further,
it demonstrates that ECOGEN method separates concerns (element code pattern, its
architecture, and context) are clearly determined in standalone specification entities.

As far as porting to another *-language is concerned, porting to byte code was
very smooth – it took only to modify the Stratego program for Java AST transforma-
tions (496 LOC were replaced by 630 LOC which, however, include support for the
dedicated tool translating Java element EPAC specification into byte code EPAC). Nat-
urally, porting to e.g., C# would require in addition modifying the Java-specific EPAC

specifications (taking 1551 LOC).

Element

Template-based approach EPLANG-based approach

Resulting
size of

element
in Java

Textual
code

template

Placeholder
interpretation in
generator (LOC)

EPLANG-J EPAC
(LOC)

Stratego
program for

AST
transformation

(LOC)

Total

Directly
produc-
ing Java

code

Total

Directly
produc-
ing Java

code

Total

Directly
related
to Java

AST
trans-
forma-
tions

Composite element 151 1134 37 320 280

2000 496

322
Local stub 207 686 20 216 180 219

Local skeleton 180 664 20 204 160 192
RMI stub 204 799 32 233 200 195

RMI skeleton 168 735 39 218 184 188
Logger element 142 686 20 159 130 162

Corba stub 206 841 20 241 211 213
Corba skeleton 210 810 24 233 206 201

Java dependent
∑

1468 6355 212 N/A 1551 N/A 496∑
1468 6355 1824 2000 1692

Total 7823 3824 1692

Table 6.1: Template versus EPLANG-based method
LOC – lines of code

6.5.2 DSL Interoperability via MetaBorg Tools

The cornerstones of the ECOGEN code generation method are language embedding
and assimilation via the MetaBorg method [BV08] based on combining language
grammars and applying AST transformation rules. Using these means, the origi-
nal MetaBorg method envisions embedding a dedicated “small” DSL into a general-
purpose language. This embedding ends up by translating the DSL’s statements,

112

6.5. Evaluation

when these are to be assimilated, into a general-purpose language. However, the
ECOGEN method employs the MetaBorg means differently:

(i) For the EPLANG-* language the “embedding” and assimilation are parameter-
ized by a target general-purpose language *. This way the ECOGEN method
considers the core EPLANG language to be embedded into a set of target lan-
guages. Contrary to the MetaBorg method as applied in [BV08], [BGV05], the
ECOGEN method assumes restrictions of the target language making it “small”
during the EPLang embedding process.

(ii) For assimilation of EPLANG-* code, two additional “side DSLs” (ADL-*, CDL-
*) are to be employed.

(iii) Each side DSL has its specific language core which is to be embedded into the *-
language. Importantly, here “embedding” has a very different meaning: the side-
language is embedded into a very small subset of general-purpose language.
Thus, a “small” DSL is embedded into an even smaller language (technically, for
example, in case of CDL-J a lot of Java grammar rules are marked as forbidden).
Moreover, the assimilation of CDL-J to Java is done only indirectly via mappings
into EPLANG-J AST (as shown in Section 6.4.3).

6.5.3 Applying the EPLang Idea to Other Domains

The EPLANG idea addresses interoperability among multiple DSLs while not explic-
itly requiring these DSLs to be declarative or imperative.

As another example requiring interoperability among several declarative DSLs,
management of access control lists can be considered. In most cases such lists are writ-
ten in a declarative DSL (WebDSL [GV08], Ponder [DDLS01]) which defines groups of
users and their access rights to system artifacts. To control access, the DSL has to sys-
tematically refer other system entities which are also declared via dedicated DSLs (e.g.,
pages, actions and their parameters). And here our approach can be applied. For ex-
ample, access control for a web application specified with a dedicated DSL embedding
EPLANG could be specified in the form shown in Listing 6.9.

Listing 6.9: An example of ACL declaration based on the concept of queries.

1 $(for USER in users.user)
2 ${USER} has no access end
3 ${users.user(name="Joe")} can
4 operate ${actions.action(name="view")}
5 operate ${actions.action(name="edit")}
6 on ${pages.page(id="intro")}

Here, the concept of queries allows referencing users, pages, and actions with-
out the need to explicitly integrate the access control DSL grammar with grammars
of user/page/action languages. Hence,these DSLs would be less dependent on each
other (e.g., so far the DSL for access control contains dedicated constructs for refer-
encing pages, actions, users, which could be easily eliminated by introducing a single
concept of query where the <NAVIGATE> part would determine a cooperating DSL).

113

Chapter 6. Models Interoperability

Technically, such porting of the EPLANG idea would require designing a new ac-
cess control language embedding the EPLANG language and corresponding code gen-
erator assimilating the access rights specification into target code. Nevertheless, the
queries evaluator engine itself can be reused as it depends only on the structure of
DSLs’ ASTs. Importantly, no interlinking of the DSLs’ grammars would have to be
considered.

As an example of requiring interoperability among declarative and imperative
DSLs, the task of generating code from a textual representation of UML diagrams(e.g.,
EMFText10, TextUML toolkit11) and corresponding code patterns described via an im-
perative DSL similar to EPLANG could be considered. The example may include
use-case, class, and state diagrams with corresponding code patterns interlinked via
queries. For example, a query in class diagram code pattern could refer to a use-case
diagram, extracting its details and producing the class’s comments or constructing
class’s methods pre-/post- conditions to reflect the use-case. In a similar vein, the
class diagram code pattern could query a state diagram to produce corresponding
switch-case code reflecting transitions among states. Here, the implementation would
be similar to the previous example of managing access control lists.

6.6 Related Work

The EPLANG idea relates to research in code generation and interoperability of DSLs.
From the perspective of element code generation, its process typically involves two
crucial tasks: (i) element specification and (ii) the actual code generation. The objec-
tive of (i) is to describe, in an abstract way, the required functionality of the element.
This can include not only definition of code snippets, but also a structural and be-
havioral specification of the element. For element specification, several methods are
employed, such as template-based methods (Acceleo [23], Xpand [11]), model-driven
methods (Ecore [9], QVT [14]) based on various DSLs ([GHKV08, HV11]), and even
their combinations ([RCGT09]).

The way actual code generation (i.e., (ii)), is done, is tightly related to the form
of element specification: templates are typically processed by a program substitut-
ing placeholders and unfolding simple macros [23, 11]. In the case of model-driven
methods, textual element specification is converted to a model (T2M) which is further
processed by M2M model transformations (QVT [14], ATL [JK06], Stratego [3]) and
M2T transformations (Acceleo [23], Xpand [11]) to produce source code as the result.
The published case-studies using these technologies include e.g., JavaJava, JavaSwul,
or JavaRegex [BGV05]. The toolchain for generating software connectors [RCGT09]
is an example of combining previous two approaches; it follows model-driven ap-
proach by specifying various elements (infrastructure elements, CCM connectors)
via UML MARTE system design language [15]. Conceptually, this approach follows
the idea of the template-based method with placeholders as employed originally in
SOFA ([Bur06], [BHP06]). Here, however, the interpretation of placeholders is defined
by an UML MARTE model.

Interoperability of domain-specific languages has been identified as an emerg-
ing challenge of MDE [BCC+10, JVB+10]. Most of the existing approaches focus on

10http://www.emftext.org/
11http://sourceforge.net/apps/mediawiki/textuml/

114

http://www.emftext.org/
http://sourceforge.net/apps/mediawiki/textuml/

6.7. Conclusion

formalization of relations between domain-specific languages, including coordina-
tion of language change propagation; this is mostly done by model transformations
and aspect weaving [JVB+10]. In contrary to EPLANG idea, these approaches are
based on interlinking the corresponding DSL grammars. For example, interoperable
domain-specific languages are corner-stones of WebDSL [GHKV08] and mobl [HV11]
approaches targeting development of web, resp. mobile, applications. These two ap-
proaches are close to our method. They are also implemented on the top of Strat-
ego/XT toolset, and, furthermore, provide transparent integration into Eclipse plat-
form with the help of Spoofax []. Both approaches integrate languages for architecture,
data, access control, and user interface for producing executable applications via trans-
formations. The WebDSL and mobl provide consistency checking which heavily relies
on early error detection thanks to the statically defined interlinks among languages’
grammars. Such strategy, however, requires management of interlinks and their coor-
dination after grammar modifications. This makes the key difference to the DSL in-
teroperability proposed by the EPLANG idea, where the languages are combined only
at the level of ASTs (as the result of query evaluation). Hence, the proposed query-
based interoperability does not statically restrict relations among languages, but the
consistency of interlinks needs to be checked dynamically during queries processing.

Another key issue solved by the ECOGEN method and not considered by WebDSL
and mobl is the porting a set of interoperable DSLs (ADL-*, CDL-*, EPLANG-*) to a
new *-language (like porting from Java to C#). In such a case, the interlinks among
grammars would not be of any help since they would have to be rewritten from
scratch. Even though, porting in our case implies rewriting the AST transformations
implementing queries, the process of adjusting DSL interoperability requires less ef-
fort compared to adjusting interlinks among grammars. This is mostly because AST
provides a higher level of abstraction over the language grammars and because only
the targets of queries are to be handled in this adjustment. As an aside in case of
WebDSL and mobl, it is not clear if (and how) the generation process could be modi-
fied in order to generate code for a new platform (e.g., producing Ruby or Scala web
applications in case of WebDSL).

6.7 Conclusion

This chapter presents the ECOGEN method – a general control element generation ap-
proach based on AST transformation strategies and DSLs interoperability. The chap-
ter explains the method of employing multiple element specifications defined in sev-
eral DSL languages to generate an element implementation in a selected target lan-
guage. The presented element specification languages comply with classical specifi-
cation convections in the component-based systems and reflect element architecture,
its context and implementation pattern. Further, the languages constitute a family of
DSL languages which is parameterized by a target language. The chapter thoroughly
analyses the interoperability among the languages and explains how it is realized via
a dedicated language construct called query. The benefits of the ECOGEN method
in comparison with classical template-based code generation techniques are demon-
strated on a case study where control elements are generated in Java. The evaluation
part of the chapter shows that the method mitigates development effort when a new
element is introduced. From the perspective of future research, there is still a room

115

Chapter 6. Models Interoperability

for ECOGEN framework improvements comprising not only a new language families
but also template pre-compilation in order to speed up code preparation. This could
be achieved, e.g., by allowing bytecode fragments in the code pattern specification. As
to domain-specific languages interoperability, deeper formal analysis involving static
reasoning about queries correctness at the level of DSL grammars and AST transfor-
mation rules would be also desirable.

116

Chapter 7
Evaluation

The objective of the chapter is to evaluate the proposed µSOFA method and the no-
tion of interoperability in the context of the case-studies presented in Chapter 3. The
chapter elaborates in depth the jPapaBench case-study – outlines the µSOFA transfor-
mation process, and stresses the parts which are affected by languages interoperabil-
ity. The remaining two case-studies – RTSJ connectors and SOFA 2 runtime extension
– adopt partially the same ideas of the configurable execution environment as the
µSOFA method. Thus, for these two case-studies, the chapter brings only a discussion
of interesting aspects with respect to the µSOFA method and interoperability.

7.1 jPapaBench

The jPapaBench case-study described in Section 3.3 prepares a control system of UAV
reflecting three implementation technologies – plain Java, RTSJ, and SCJ. The case-
study utilizes a simple flat ad-hoc component model whose realization utilizes the EE1
form of the execution environment – i.e., manually written glue code which assembles
components together. The section describes main aspects of realization jPapaBench
with the help of the µSOFA method.

µSOFA Method Inputs In the context of the case-study, the input for the µSOFA
method involves:

• application assembly – the assembly is composed of two kinds of primitive appli-
cation components – static modules and active tasks. Each component has asso-
ciated implementation in the Java language. The overall assembly corresponds
to the architecture depicted on Figure 3.3 shown in Section 3.3.

• NFRs – jPapaBench specifies the following non-functional requirements:

R1 a deployment scenario says the resulting system will be launched on single
hardware unit;

R2 each task has associated timing properties including period and priority;

R3 in the case of RTSJ, memory allocation areas are specified for each tasks and
module;

117

Chapter 7. Evaluation

R4 SPI bus’s internal buffer length needs to be configured to a given value;

R5 application life-cycle management is not required;

R6 the target implementation technology (for simplicity we include a technol-
ogy among NFRs). The case-study targets three different implementation
technologies (plain Java, RTSJ, SCJ). Each technology prescribes a different
kind of (R6a) platform entry-point and (R6b) management of active com-
ponents (i.e., tasks).

• aspects – aspects corresponding to the stated NFRs are provided.

µSOFA Method Output For jPapaBench the methods produces a compiled code
bundled into a jar file. The file can be directly launched on the top of a JVM.

Resolved aspects According to the NFRs and the selected technology a set of aspect
is resolved:

A0 aspect resolves existing implementation of components (modules and tasks).

A1 aspect encapsulates all tasks into technology specific thread implementation
(e.g., RealtimeThread in case of the RTSJ).

A2 aspect injects the entry-point into a the platform infrastructure.

A3 aspect assembles the components.

A4 aspect configures the SPI bus.

A5 aspect compiles source code and bundles resulting binaries.

The relation among the aspects and non-functional requirements is shown in Ta-
ble 7.1. The table also shows the impact of individual aspects.

Aspect Corresponding NFRs Modifies infrastructure Modifies back-end

A0 implicit NO YES
A1 R2, R6b NO YES
A2 R5, R6a YES YES
A3 R6 NO YES
A4 R4 YES YES
A5 R6 NO YES

Table 7.1: Impact of aspects.

7.1.1 Back-end: From EIM to System Realization

The back-end preparing realization of the jPapaBench case-study is composed of the
following join-points:

• fetch The aspect A0 fetches the application components content.

118

7.1. jPapaBench

• adaptation The aspect A1 adapts tasks implementation to inherit from the
specified thread implementation.

• generation The aspect A2 generates entry-point which implements given
technology specific code (i.e., main method in case of plain Java, and RTSJ,
Mission in case of SCJ). The aspect A3 generates code instantiating all mod-
ules, all tasks and passing references between them according to the infrastruc-
ture model represented by the model element SystemAssembly.

• compilation The aspect A5 compiles all the code including adjusted content
of application components as well as generated entry-point and assembly code.

• bundling The aspect A5 also collects all compiled binaries and bundle them
into jar file.

7.1.2 µSOFA dvantages and Disadvantages

In comparison to original manually written implementation, the µSOFA method
mainly simplifies realization of changes in the jPapaBench architecture. If proper as-
pects are specified, the methods easily allows for changing NFRs which are automati-
cally propagated into the system realization.

On the other hand, the preparation of reusable aspects is more complex than writ-
ing ad-hoc glue code assembling the components and reflecting NFRs.

Hence, there is a trade-off between well-defined and configurable infrastructure
and system fast prototyping. If the system architecture and stated NFRs are expected
to be changed frequently then the µSOFA method will be beneficial. However, if the
system is required to be implemented from scratch without any reuse of existing as-
pects and the system is not intended to be changed, then the µSOFA method does not
help. On the other hand, if a rich repository of aspects exists, it allows for fast system
prototyping.

7.1.3 Role of Interoperability

In the context of the jPapaBench case-study, the µSOFA method incorporates code gen-
eration preparing the implementation of the (i) entry-point and (ii) glue code assem-
bling components together. Regarding generation of entry-point, its implementation
is defined by a simple template in a selected implementation technology. The tem-
plate is only completed by a name of a class which assembles components together.
Hence, with respect to Chapter 6, there is only a simple relation between code pattern
prescribing entry-point implementation and a execution infrastructure model which
stores actual names of generated classes.

The second case is more interesting. During generation code which glues all mod-
ules and tasks together, the code pattern describing the glue code has to typically
traverse the execution infrastructure model. Hence, the interoperability between a
language describing the code pattern and EIM is required. Furthermore, the code pat-
tern benefits from the parameterized language family and corresponding code gen-
eration process as has been proposed in Chapter 6. The code pattern for the glue is
parameterized by the selected implementation technology.

119

Chapter 7. Evaluation

7.2 RTSJ Connectors

µSOFA method applied The RTSJ connectors case-study follows the same strategy
as the previous section has described. However, there are two major differences: (i)
the RTSJ connectors case-study utilizes a rigorous component system (i.e., Fractal)
as the target implementation technology and (ii) the aspects build the infrastructure
of a binding according to binding’s NFRs. To reflect the first difference, the micro-
components are mapped to the Fractal components.

Role of Interoperability In the case-study, the binding is composed of a chain of
interceptors which are generated. The generation in fact adopts the same scenario
as Chapter 6 utilizes to generate software connector infrastructure. In this sense, the
case-study and the software connector infrastructure share the same notion of interop-
erability. That means the code pattern describing desired interceptor implementation
needs to cooperate with the execution infrastructure model and also with the Fractal
component model.

7.3 SOFA 2 Runtime Extension

µSOFA method applied Originally SOFA 2 extension case-study has been per-
formed to verify µSOFA concepts and ideas. Therefore, the SOFA 2 extension case-
study described in Section 3.5 directly follows the µSOFA method. The case-study
proposes two aspects corresponding to non-functional requirements – (i) support for
component content implemented in a scripted language, (ii) support for scripted con-
tent updates. The main difference lies in the way aspects are weaved. In case of the
case-study, weaving is encoded as a part of the SOFA 2 container which refines appli-
cation components into a form of execution infrastructure model, generates bytecode-
based implementation of interceptors, and directly instantiates the resulting model.
In this respect, the SOFA 2 container can be considered as a limited realization of the
µSOFA method with static back-end configuration which cannot be extended.

Role of Interoperability Since the case-study’s aspects cope only with simple in-
terceptors which only redirect calls, the interoperability is not considered in this case.
The implementations of interceptors are simply generated by the parameterized ASM-
based generators associated with the interceptors.

120

Chapter 8
Conclusion

The thesis has described and elaborated the concepts of the meta-component system
which allows for producing a component system based on a set of requirements (e.g.,
target application domain, non-functional requirements involving distribution, sup-
port of services). In this respect, the goals (G1)—(G3) stated in Chapter 1 have been
fulfilled. The thesis has analyzed existing component systems and performed three
case-studies resulting into a definition of the meta-component system, its structure,
and the corresponding process of the preparation of new component system (the goal
G1). As stated in the goals, the thesis focuses on the issues connected with deployment
and runtime aspects of the meta-component system, which come out to be centered
about two main topics: (i) relation among DSLs and their interoperability in the con-
text of code generation and (ii) specification and preparation of the execution environ-
ment. While the former topic addresses the goal (G3) and additionally describes the
parameterized family of DSL languages, the latter topic describes the µSOFA method
which enables model-driven specification and preparation of configurable execution
environment (the goal G2).

Key Achievements and Benefits While regular component systems are focused on
a particular domain, the thesis has clarified a notion of the meta-component system
and, based on the performed analysis and case-studies, it has discussed requirements
and capabilities of the system.

In the scope of meta-component system, the thesis has elaborated in depth the ex-
ecution environment as a crucial part of every component system. Here, the thesis
has proposed a configurable model of execution environment, which is a refinement
of application architecture and specified non-functional requirements. Furthermore,
the thesis has designed a self-configurable transformation process preparing the ex-
ecution environment; the structure of the process is influenced by the inputs includ-
ing application architecture, non-functional requirements, and target implementation
technology. In contrast to contemporary approaches including limited transformation
processes, the self-configurability enables powerful extensibility.

The last achievement of the thesis is tightly connected to generation and adjust-
ing of implementation elements which occur during execution environment prepara-
tion. The thesis has clarified (i) a concept of languages interoperability and (ii) a fam-
ily of interoperable domain-specific languages which is parameterized by a general-

121

Chapter 8. Conclusion

purpose language. Both these ideas are novel with respect to nowadays state-of-the-
art.

To summarize, the thesis does not bring an overall realization of meta-component
system. However, it has clarified two processes which play key roles in component-
based development and generally in software development.

Future Work and Open Issues There are several open issues which would deserve
to be elaborated in more details. The meta-component system comprises preparation
of tailored tools which are not discussed in the thesis. That represents challenging
software engineering tasks to automatically build tools, especially graphical modelers,
according to domain requirements.

With regard to the execution environment, the proposed infrastructure describes
only structural concerns. However, it neglects control, as well as data-flows. There-
fore, it would be beneficial to integrate them into the infrastructure assembling pro-
cess. Furthermore, there are still open issues connected to infrastructure development
and execution, such as on-the-fly infrastructure debugging, runtime infrastructure re-
configurations, and providing proofs considering infrastructure timing (or memory
allocation) properties.

Finally, as models interoperability is identified as a general open chal-
lenge [BCC+10, JVB+10], there are still open questions which need to be clarified. In
the context of the thesis, it would be useful to specify parameterization of the proposed
language family more formally with regard to involved language grammars. Further-
more, it would be nice to have static analysis tools which would identify queries which
have no sense respecting the referenced language grammars.

122

Bibliography

[AJ06] J.S. Anderson and E.D. Jensen. Distributed Real-Time Specification for
Java: a Status Report (digest). In Proceedings of the 4th International Work-
shop on Java Technologies for Real-Time and Embedded Systems (JTRES ’06),
pages 3–9, New York, NY, USA, 2006. ACM.

[BBS06] A. Basu, M. Bozga, and J. Sifakis. Modeling Heterogeneous Real-time
Components in BIP. In Proceedings of the Fourth IEEE International Con-
ference on Software Engineering and Formal Methods, pages 3–12, Wash-
ington, DC, USA, 2006. IEEE Computer Society.

[BCA+01] G.S. Blair, G. Coulson, A. Andersen, L. Blair, M. Clarke, F. M. Costa,
H.A. Duran-Limon, T. Fitzpatrick, L. Johnston, R.S. Moreira, N. Parla-
vantzas, and K.B. Saikoski. The design and implementation of Open
ORB 2. IEEE Distributed Systems Online, 2(6), 2001.

[BCC+08] T. Bureš, J. Carlson, I. Crnkovic, S. Sentilles, and A. Vulgarakis. Pro-
Com – the Progress Component Model Reference Manual, version 1.0.
Technical Report, Mälardalen University, June 2008.

[BCC+10] H. Brunelière, J. Cabot, C. Clasen, F. Jouault, and J. Bézivin. Towards
model driven tool interoperability: bridging eclipse and microsoft mod-
eling tools. In Proceedings of the 6th European conference on Modelling
Foundations and Applications, ECMFA’10, pages 32–47, Berlin, Heidel-
berg, 2010. Springer-Verlag.

[BCL+06] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.B. Stefani. The
Fractal Component Model and its Support in Java. Software: Practice and
Experience, 36:1257 – 1284, 2006.

[BCM03] F. Baude, D. Caromel, and M. Morel. From distributed objects to hi-
erarchical grid components. In Robert Meersman, Zahir Tari, and
Douglas Schmidt, editors, On The Move to Meaningful Internet Systems
2003: CoopIS, DOA, and ODBASE, volume 2888 of Lecture Notes in
Computer Science, pages 1226–1242. Springer Berlin / Heidelberg, 2003.
10.1007/978-3-540-39964-3_78.

123

Bibliography

[BGB+] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, and M. Turnbull.
The real-time specification for java 1.0.2. Available online: http://
www.rtsj.org/specjavadoc/book_index.html.

[BGH+06] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović,
T. VanDrunen, D. von Dincklage, and B. Wiedermann. The DaCapo
benchmarks: Java benchmarking development and analysis. In Pro-
ceedings of the ACM SIGPLAN Conference on Object-Oriented Programing,
Systems, Languages, and Applications (OOPSLA), volume 41, pages 169–
190, October 2006.

[BGV05] M. Bravenboer, R. De Groot, and E. Visser. Metaborg in action: Ex-
amples of domain-specific language embedding and assimilation using
stratego/xt. In In Participants Proceedings of the Summer School on Gener-
ative and Transformational Techniques in Software Engineering (GTTSE’05).
Springer Verlag, 2005.

[BHP06] T. Bureš, P. Hnětynka, and F. Plášil. SOFA 2.0: Balancing Advanced
Features in a Hierarchical Component Model. In Proceedings of SERA
2006, pages 40–48, Seattle, USA, August 2006.

[BHP+07] T. Bureš, P. Hnětynka, F. Plášil, J. Klesnil, O. Kmoch, T. Kohan, and
P. Kotrč. Runtime support for advanced component concepts. Soft-
ware Engineering Research, Management and Applications, ACIS Interna-
tional Conference on, 0:337–345, 2007.

[BP04] T. Bureš and F. Plášil. Communication style driven connector configura-
tions. In C. V. Ramamoorthy, Roger Lee, and Kyung Whan Lee, editors,
Software Engineering Research and Applications, volume 3026 of Lecture
Notes in Computer Science, pages 102–116. Springer Berlin / Heidelberg,
2004.

[BPM04] I.D. Baxter, C. Pidgeon, and M. Mehlich. Dms: Program transforma-
tions for practical scalable software evolution. In Proceedings of the 26th
International Conference on Software Engineering, ICSE ’04, pages 625–634,
Washington, DC, USA, 2004. IEEE Computer Society.

[BRJ05] G. Booch, J. Rumbaugh, and I. Jacobson. Unified Modeling Language
User Guide, The (2nd Edition) (Addison-Wesley Object Technology Series).
Addison-Wesley Professional, 2005.

[Bur06] T. Bureš. Generating Connectors for Homogeneous and Heterogeneous De-
ployment. PhD thesis, Department of Software Engineering, Mathemat-
ical and Physical Faculty, Charles University, Prague, 2006.

[BV08] M. Bravenboer and E. Visser. Models in software engineering. chap-
ter Designing Syntax Embeddings and Assimilations for Language Li-
braries, pages 34–46. Springer-Verlag, Berlin, Heidelberg, 2008.

124

http://www.rtsj.org/specjavadoc/book_index.html
http://www.rtsj.org/specjavadoc/book_index.html

[BVGVEA05] P. Basanta-Val, M. Garcia-Valls, and I. Estevez-Ayres. Towards the inte-
gration of scoped memory in distributed real-time java. Object-Oriented
Real-Time Distributed Computing, IEEE International Symposium on, 0:382–
389, 2005.

[BW03] A. Borg and A. Wellings. A real-time rmi framework for the rtsj. Real-
Time Systems, Euromicro Conference on, 0:238, 2003.

[CBCP01] M. Clarke, G. Blair, G. Coulson, and N. Parlavantzas. An efficient com-
ponent model for the construction of adaptive middleware. In Rachid
Guerraoui, editor, Middleware 2001, volume 2218 of Lecture Notes in
Computer Science, pages 160–178. Springer Berlin / Heidelberg, 2001.
10.1007/3-540-45518-3_9.

[CCL06] I. Crnkovic, M. Chaudron, and S. Larsson. Component-based develop-
ment process and component lifecycle. Software Engineering Advances,
International Conference on, 0:44, 2006.

[CCSV07] I. Crnkovic, M. Chaudron, S. Sentilles, and A. Vulgarakis. A classifica-
tion framework for component models. In Proceedings of the 7th Confer-
ence on Software Engineering and Practice in Sweden, October 2007.

[CE00] K. Czarnecki and U.W. Eisenecker. Generative programming - methods,
tools and applications. Addison-Wesley, 2000.

[CH04] H. Cervantes and R.S. Hall. Autonomous adaptation to dynamic avail-
ability using a service-oriented component model. Software Engineering,
International Conference on, 0:614–623, 2004.

[CH06] K. Czarnecki and S. Helsen. Feature-based survey of model transfor-
mation approaches. IBM Systems Journal, 45(3):621–645, July 2006.

[CHHP91] J.R. Cordy, C.D. Halpern-Hamu, and E. Promislow. Txl: a rapid pro-
totyping system for programming language dialects. Comput. Lang.,
16(1):97–107, January 1991.

[CK94] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented
design. IEEE Trans. Soft. Eng., 20(6), 1994.

[CL02] I. Crnkovic and M. Larsson. Building Reliable Component-Based Software
Systems. Artech House, Inc., Norwood, MA, USA, 2002.

[CN02] P. Clements and L. Northrop. Software Product Lines: Practices and Pat-
terns. SEI Series in Software Engineering. Addison-Wesley, 2002.

[CSVC11] I. Crnkovic, S. Sentilles, A. Vulgarakis, and M.R.V. Chaudron. A classi-
fication framework for software component models. Software Engineer-
ing, IEEE Transactions on, 37(5):593 –615, sept.-oct. 2011.

[Cza05a] K. Czarnecki. Mapping features to models: A template approach based
on superimposed variants. In GPCE 2005 – Generative Programming
and Component Enginering. 4th International Conference, pages 422–437.
Springer, 2005.

125

Bibliography

[Cza05b] K. Czarnecki. Overview of generative software development. In Jean-
Pierre Banâtre, Pascal Fradet, Jean-Louis Giavitto, and Olivier Michel,
editors, Unconventional Programming Paradigms, volume 3566 of Lecture
Notes in Computer Science, pages 97–97. Springer Berlin / Heidelberg,
2005. 10.1007/11527800_25.

[DDLS01] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The ponder policy
specification language. In Proceedings of the International Workshop on
Policies for Distributed Systems and Networks, POLICY ’01, pages 18–38,
London, UK, UK, 2001. Springer-Verlag.

[DHT01] E.M. Dashofy, A. Van der Hoek, and R.N. T.aylor. A highly-extensible,
xml-based architecture description language. In Proceedings of the Work-
ing IEEE/IFIP Conference on Software Architecture, WICSA ’01, pages 103–
, Washington, DC, USA, 2001. IEEE Computer Society.

[dJVV01] M. de Jonge, E. Visser, and J. Visser. Xt: A bundle of program transfor-
mation tools system description. Electronic Notes in Theoretical Computer
Science, 44(2):79 – 86, 2001.

[EHL07] C. Escoffier, R.S. Hall, and P. Lalanda. ipojo: an extensible service-
oriented component framework. In Services Computing, 2007. SCC 2007.
IEEE International Conference on, pages 474 –481, july 2007.

[Eva03] E. Evans. Domain-Driven Design: Tackling Complexity in the Heart of Soft-
ware. Addison-Wesley Professional, 2003.

[FPR00] M. Fontoura, W. Pree, and B. Rumpe. The Uml Profile for Framework
Architectures. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2000.

[FR03] M. Fleury and F. Reverbel. The JBoss extensible server. In Proceedings of
the ACM/IFIP/USENIX 2003 International Conference on Middleware, Mid-
dleware ’03, pages 344–373, New York, NY, USA, 2003. Springer-Verlag
New York, Inc.

[GCW+02] T. Genßler, A. Christoph, M. Winter, O. Nierstrasz, S. Ducasse,
R. Wuyts, G. Arévalo, B. Schönhage, P. Müller, and C. Stich. Compo-
nents for embedded software: the pecos approach. In Proceedings of the
2002 international conference on Compilers, architecture, and synthesis for
embedded systems, CASES ’02, pages 19–26, New York, NY, USA, 2002.
ACM.

[GHKV08] D.M. Groenewegen, Z. Hemel, L.C.L. Kats, and E. Visser. Webdsl: a
domain-specific language for dynamic web applications. In Companion
to the 23rd ACM SIGPLAN conference on Object-oriented programming sys-
tems languages and applications, OOPSLA Companion ’08, pages 779–780,
New York, NY, USA, 2008. ACM.

[GME07] D. Goodman, M. Morrison, and B. Eich. Javascript bible, sixth edition.
John Wiley & Sons, Inc., New York, NY, USA, 2007.

126

[GMW97] D. Garlan, R. Monroe, and D. Wile. Acme: an architecture description
interchange language. In Proceedings of the 1997 conference of the Centre
for Advanced Studies on Collaborative research, CASCON ’97, pages 7–.
IBM Press, 1997.

[GRE+01] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown. Mibench: A free, commercially representative embedded
benchmark suite. In Proceedings of the Workload Characterization, 2001.
WWC-4. 2001 IEEE International Workshop, WWC ’01, pages 3–14, Wash-
ington, DC, USA, 2001. IEEE Computer Society.

[GS03a] J. Greenfield and K. Short. Software factories: assembling applications
with patterns, models, frameworks and tools. In Companion of the 18th
annual ACM SIGPLAN conference on Object-oriented programming, sys-
tems, languages, and applications, OOPSLA ’03, pages 16–27, New York,
NY, USA, 2003. ACM.

[GS03b] J. Greenfield and K. Short. Software factories: assembling applications
with patterns, models, frameworks and tools. In Companion of the 18th
annual ACM SIGPLAN conference on Object-oriented programming, sys-
tems, languages, and applications, OOPSLA ’03, pages 16–27, New York,
NY, USA, 2003. ACM.

[GS04] J. Greenfield and K. Short. Software factories: assembling applications with
patterns, models, frameworks, and tools. Wiley Application Development
Series. Wiley Pub., 2004.

[GV07] I. Groher and M. Voelter. Xweave: models and aspects in concert. In
Proceedings of the 10th international workshop on Aspect-oriented modeling,
AOM ’07, pages 35–40, New York, NY, USA, 2007. ACM.

[GV08] D.M. Groenewegen and E. Visser. Declarative access control for
webdsl: Combining language integration and separation of concerns.
In D. Schwabe, F. Curbera, and P. Dantzig, editors, ICWE, pages 175–
188. IEEE, 2008.

[HC01] G.T. Heineman and W.T. Councill. Component-Based Software Engineer-
ing: Putting the Pieces Together. Addison Wesley Professional, 2001.

[HHKR89] J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers. The syntax def-
inition formalism sdfreference manual. SIGPLAN Not., 24(11):43–75,
November 1989.

[HHL+09] T. Henties, J.J. Hunt, D. Locke, K. Nilsen, M. Schoeberl, and J. Vitek. Java
for safety-critical applications. Electronic Notes in Theoretical Computer
Science, 2009.

[HIPW05] S. Hissam, J. Ivers, D. Plakosh, and K. C. Wallnau. Pin component tech-
nology (v1.0) and its c interface. Technical Report, CarnegieMellon Soft-
ware Engineering Institute, 2005.

127

Bibliography

[HKW+08] S. Herold, H. Klus, Y. Welsch, C. Deiters, A. Rausch, R. Reussner,
K. Krogmann, H. Koziolek, R. Mirandola, B. Hummel, M. Meisinger,
and C. Pfaller. CoCoME - The Common Component Modeling Exam-
ple. In Andreas Rausch, Ralf Reussner, Raffaela Mirandola, and Fran-
tisek Plasil, editors, The Common Component Modeling Example, volume
5153 of Lecture Notes in Computer Science, pages 16–53. Springer Berlin /
Heidelberg, 2008.

[HP00] K. Havelund and T. Pressburger. Model checking Java programs using
Java PathFinder. STTT, 2(4), 2000.

[HT99] A. Hunt and D. Thomas. The pragmatic programmer: from journeyman
to master. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1999.

[HV11] Z. Hemel and E. Visser. Declaratively programming the mobile web
with mobl. In Proceedings of the 2011 ACM international conference on
Object oriented programming systems languages and applications, OOPSLA
’11, pages 695–712, New York, NY, USA, 2011. ACM.

[JHRS05] R. Johnson, J. Hoeller, T. Risberg, and C. Sampaleanu. Professional Java
development with the Spring Framework. Programmer to programmer. Wi-
ley Pub., 2005.

[JK06] F. Jouault and I. Kurtev. Transforming models with atl. In Jean-Michel
Bruel, editor, Satellite Events at the MoDELS 2005 Conference, volume
3844 of Lecture Notes in Computer Science, pages 128–138. Springer Berlin
/ Heidelberg, 2006. 10.1007/11663430_14.

[JVB+10] F. Jouault, B. Vanhooff, H. Bruneliere, G. Doux, Y. Berbers, and
J. Bezivin. Inter-dsl coordination support by combining megamodeling
and model weaving. In Proceedings of the 2010 ACM Symposium on Ap-
plied Computing, SAC ’10, pages 2011–2018, New York, NY, USA, 2010.
ACM.

[KCH+90] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peter-
son. Feature-oriented domain analysis (foda) feasibility study. Techni-
cal report, Carnegie-Mellon University Software Engineering Institute,
November 1990.

[KHM+11] T. Kalibera, J. Hagelberg, P. Maj, F. Pizlo, B. Titzer, and J. Vitek. A family
of real-time java benchmarks. Concurrency and Computation: Practice and
Experience, 23(14):1679–1700, 2011.

[KLM+97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Lo-
ingtier, and J. Irwin. Aspect-oriented programming. In Mehmet Ak-
sit and Satoshi Matsuoka, editors, ECOOP’97 Object-Oriented Program-
ming, volume 1241 of Lecture Notes in Computer Science, pages 220–242.
Springer Berlin / Heidelberg, 1997. 10.1007/BFb0053381.

[KT08] S. Kelly and J.-P. Tolvanen. Domain-Specific Modeling: Enablink Full Code
Generation. Wiley-IEEE Computer Society Press, 2008.

128

[KTG+06] I. Krechetov, B. Tekinerdogan, A. Garcia, C. Chavez, and U. Kulesza.
Towards an Integrated Aspect-Oriented Modeling Approach for Soft-
ware Architecture Design. In Software Architecture Design. 8th Workshop
on Aspect-Oriented Modelling (AOM.06), AOSD.06, 2006.

[LQS04] M. Leclercq, V. Quéma, and J.-B. Stefani. Dream: a component frame-
work for the construction of resource-aware, reconfigurable moms. In
Proceedings of the 3rd workshop on Adaptive and reflective middleware, ARM
’04, pages 250–255, New York, NY, USA, 2004. ACM.

[LRS+11] F. Loiret, R. Rouvoy, L. Seinturier, D. Romero, K. Sénéchal, and A. Plšek.
An aspect-oriented framework for weaving domain-specific concerns
into component-based systems. Journal of Universal Computer Science,
17(5):742–776, mar 2011. http://www.jucs.org/jucs_17_5/an_
aspect_oriented_framework.

[LT09] K.-K Lau and F.M. Taweel. Domain-specific software component mod-
els. In Proceedings of the 12th International Symposium on Component-Based
Software Engineering, CBSE ’09, pages 19–35, Berlin, Heidelberg, 2009.
Springer-Verlag.

[LU07] K.-K. Lau and V. Ukis. A study of execution environments for software
components. In H.W. Schmidt, I. Crnkovic, G.T. Heineman, and J.A.
Stafford, editors, CBSE, volume 4608 of Lecture Notes in Computer Sci-
ence, pages 107–123. Springer, 2007.

[LW06] K.-K. Lau and Z. Wang. A survey of software component mod-
els. Available online: http://www.cs.man.ac.uk/cspreprints/
PrePrints/cspp38.pdf, 2006. Second edition, Pre-print CSPP-38,
School of Computer Science, The University of Manchester, May 2006.

[LW07] K.-K. Lau and Z. Wang. Software component models. IEEE Trans. Softw.
Eng., 33(10):709–724, 2007.

[LWWC12] P. Langer, K. Wieland, M. Wimmer, and J. Cabot. Emf profiles: A
lightweight extension approach for emf models. Journal of Object Tech-
nology, 11(1):1–29, April 2012.

[Maa05] H. Maaskant. A Robust Component Model For Consumer Electronic
Products. In Dynamic and Robust Streaming in and between Connected
Consumer-Electronic Devices, volume 3, pages 167–192. Springer Nether-
lands, 2005.

[MB05] V. Mencl and T. Bureš. Microcomponent-based component controllers:
A foundation for component aspects. Asia-Pacific Software Engineering
Conference, 0:729–737, 2005.

[McC76] T.J. McCabe. A complexity measure. In Proceedings of the 2nd interna-
tional conference on Software engineering, ICSE ’76, pages 407–, Los Alami-
tos, CA, USA, 1976. IEEE Computer Society Press.

129

http://www.jucs.org/jucs_17_5/an_aspect_oriented_framework
http://www.jucs.org/jucs_17_5/an_aspect_oriented_framework
http://www.cs.man.ac.uk/cspreprints/PrePrints/cspp38.pdf
http://www.cs.man.ac.uk/cspreprints/PrePrints/cspp38.pdf

Bibliography

[MDT03] N. Medvidovic, E.M. Dashofy, and R.N. Taylor. The Role of Middleware
in Architecture-Based Software Development. International Journal of
Software Engineering and Knowledge Engineering, 13(4):367–393, 2003.

[MHS05] M. Mernik, J. Heering, and A.M. Sloane. When and how to develop
domain-specific languages. ACM Comput. Surv., 37(4):316–344, Decem-
ber 2005.

[MM03] J. Miller and J. Mukerji. Mda guide version 1.0.1. Technical report,
Object Management Group (OMG), 2003.

[MMP00] N.R. Mehta, N. Medvidovic, and S. Phadke. Towards a taxonomy of
software connectors. In Proceedings of the 22nd international conference
on Software engineering, ICSE ’00, pages 178–187, New York, NY, USA,
2000. ACM.

[Muc97] S.S. Muchnick. Advanced Compiler Design and Implementation. Morgan
Kaufmann Publishers, 1997.

[MVG06] T. Mens and P. Van Gorp. A taxonomy of model transformation. Elec-
tron. Notes Theor. Comput. Sci., 152:125–142, March 2006.

[NAD+02] O. Nierstrasz, G. Arévalo, S. Ducasse, R. Wuyts, A. P. Black, P. O. Müller,
C. Zeidler, T. Genssler, and R. Born. A component model for field de-
vices. In CD ’02: Proceedings of the IFIP/ACM Working Conference on Com-
ponent Deployment, pages 200–209, London, UK, 2002. Springer-Verlag.

[NCS+06] F. Nemer, H. Cassé, P. Sainrat, J.P. Bahsoun, and M. De Michiel. Pa-
pabench: a free real-time benchmark. In Proceedings of 6th International
Workshop on Worst-Case Execution Time Analysis (WCET), 2006.

[OLKM00] R. Ommering, F. Linden, J. Kramer, and J. Magee. The Koala Com-
ponent Model for Consumer Electronics Software. Computer, 33:78–85,
March 2000.

[Par76] D.L. Parnas. On the design and development of program families. IEEE
Transactions on Software Engineering, 2:1–9, 1976.

[PBVDL05] K. Pohl, G. Böckle, and F. Van Der Linden. Software Product Line Engi-
neering: Foundations, Principles, and Techniques. Springer, 2005.

[PLMS08] A. Plšek, F. Loiret, P. Merle, and L. Seinturier. A component frame-
work for java-based real-time embedded systems. In Valérie Issarny
and Richard Schantz, editors, Middleware 2008, volume 5346 of Lecture
Notes in Computer Science, pages 124–143. Springer Berlin / Heidelberg,
2008. 10.1007/978-3-540-89856-6_7.

[Plš09] A. Plšek. SOLEIL: An Integrated Approach for Designing and Developing
Component-based Real-time Java Systems. PhD thesis, Université des Sci-
ences et Technologie de Lille – Lille I, 2009.

130

[PMS08] A. Plšek, P. Merle, and L. Seinturier. A real-time java component model.
Object-Oriented Real-Time Distributed Computing, IEEE International Sym-
posium on, 0:281–288, 2008.

[PPK+11] P. Parra, O. R. Polo, M. Knoblauch, I. Garcia, and S. Sanchez. MICOBS:
multi-platform multi-model component based software development
framework. In Proceedings of the 14th international ACM Sigsoft sympo-
sium on Component based software engineering, CBSE ’11, pages 1–10, New
York, NY, USA, 2011. ACM.

[PRJ+03] J. Perez, I. Ramos, J. Jaen, P. Letelier, and E. Navarro. Prisma: towards
quality, aspect oriented and dynamic software architectures. In Quality
Software, 2003. Proceedings. Third International Conference on, pages 59 –
66, nov. 2003.

[Puf11] W. Puffitsch. Hard real-time garbage collection for a java chip multi-
processor. In Proceedings of the 9th International Workshop on Java Tech-
nologies for Real-Time and Embedded Systems, JTRES ’11, pages 64–73,
New York, NY, USA, 2011. ACM.

[RCGT09] A. Radermacher, A. Cuccuru, S. Gerard, and F. Terrier. Generating
execution infrastructures for component-oriented specifications with a
model driven toolchain: a case study for marte’s gcm and real-time an-
notations. In Proceedings of the eighth international conference on Generative
programming and component engineering, GPCE ’09, pages 127–136, New
York, NY, USA, 2009. ACM.

[RJB04] J. Rumbaugh, I. Jacobson, and G. Booch. Unified Modeling Language Ref-
erence Manual, The (2nd Edition). Pearson Higher Education, 2004.

[RZP+05] K. Raman, Y. Zhang, M. Panahi, J.A. Colmenares, R. Klefstad, and
T. Harmon. RTZen: Highly Predictable, Real-Time Java Middleware for
Distributed and Embedded Systems. In Middleware 2005, pages 225–
248, December 2005.

[Sam97] J. Sametinger. Software Engineering With Reusable Components. Springer,
1997.

[SPDC06] L. Seinturier, N. Pessemier, L. Duchien, and T. Coupaye. A component
model engineered with components and aspects. In Ian Gorton, George
Heineman, Ivica Crnkovic, Heinz Schmidt, Judith Stafford, Clemens
Szyperski, and Kurt Wallnau, editors, Component-Based Software Engi-
neering, volume 4063 of Lecture Notes in Computer Science, pages 139–153.
Springer Berlin / Heidelberg, 2006. 10.1007/11783565_10.

[SSK+06] A. Schauerhuber, W. Schwinger, E. Kapsammer, W. Retschitzegger,
M. Wimmer, and G. Kappel. A Survey on Aspect-Oriented Modeling
Approaches. Technical report, Johannes Kepler University Linz, 2006.

[SVB+06] T. Stahl, M. Völter, J. Bettin, A. Haase, S. Helsen, and B. Von Stock-
fleth. Model-Driven Software Development: Technology, Engineering, Man-
agement. Wiley Software Patterns Series. John Wiley, 2006.

131

Bibliography

[SWR+99] B. Shirazi, L.R. Welch, B. Ravindran, C. Cavanaugh, B. Yanamula,
R. Brucks, and E. Huh. Dynbench: A dynamic benchmark suite for
distributed real-time systems. In Proceedings of the 11 IPPS/SPDP’99
Workshops Held in Conjunction with the 13th International Parallel Process-
ing Symposium and 10th Symposium on Parallel and Distributed Processing,
pages 1335–1349, London, UK, UK, 1999. Springer-Verlag.

[Szy02] C. Szyperski. Component Software: Beyond Object-Oriented Programming
(2nd Edition) (Hardcover). Addison-Wesley Professional, 2002.

[TAdM07] D. Tejera, A. Alonso, and M.A. de Miguel. RMI-HRT: Remote Method
Invocation - Hard Real Time. In Proceedings of the 5th International Work-
shop on Java Technologies for Real-Time and Embedded Systems (JTRES ’07),
pages 113–120, New York, NY, USA, 2007. ACM.

[Taw11] F.M. Taweel. An Approach to the Definition of Domain-specific Software
Component Models. PhD thesis, School of Computer Science, The Uni-
versity of Manchester, 2011.

[TMS10] A. Tiberghien, P. Merle, and L. Seinturier. Specifying self-configurable
component-based systems with fractoy. In Marc Frappier, Uwe Glässer,
Sarfraz Khurshid, Régine Laleau, and Steve Reeves, editors, Abstract
State Machines, Alloy, B and Z, volume 5977 of Lecture Notes in Computer
Science, pages 91–104. Springer Berlin / Heidelberg, 2010. 10.1007/978-
3-642-11811-1_8.

[TPNV11] D. Tang, A. Plšek, K. Nilsen, and J. Vitek. A Static Mem-
ory Safety Annotation System for Safety Critical Java. Avail-
able online: http://sss.cs.purdue.edu/projects/checker/
RTSS11-extended-version.pdf, 2011.

[VG07] M. Voelter and I. Groher. Product line implementation using aspect-
oriented and model-driven software development. In Proceedings of the
11th International Software Product Line Conference, SPLC ’07, pages 233–
242, Washington, DC, USA, 2007. IEEE Computer Society.

[Vis05] E. Visser. A survey of strategies in rule-based program transformation
systems. J. Symb. Comput., 40(1):831–873, July 2005.

[VPK05a] T. Vergnaud, L. Pautet, and F. Kordon. Using the aadl to describe dis-
tributed applications from middleware to software components. In
Ada-Europe, pages 67–78, 2005.

[VPK05b] T. Vergnaud, L. Pautet, and F. Kordon. Using the aadl to describe dis-
tributed applications from middleware to software components. In
Proceedings of the 10th Ada-Europe international conference on Reliable Soft-
ware Technologies, Ada-Europe’05, pages 67–78, Berlin, Heidelberg, 2005.
Springer-Verlag.

[WC10] D. Wampler and T. Clark. Guest editors’ introduction: Multiparadigm
programming. Software, IEEE, 27(5):20 –24, oct 2010.

132

http://sss.cs.purdue.edu/projects/checker/RTSS11-extended-version.pdf
http://sss.cs.purdue.edu/projects/checker/RTSS11-extended-version.pdf

[WCJW02] A. Wellings, R. Clark, D. Jensen, and D. Wells. A framework for in-
tegrating the real-time specification for java and java’s remote method
invocation. Object-Oriented Real-Time Distributed Computing, IEEE Inter-
national Symposium on, 0:0013, 2002.

[ZM11] C. Zimmer and F. Mueller. A fault observant real-time embedded de-
sign for network-on-chip control systems. Technical Report TR-2011-13,
North Carolina State University. Dept. of Computer Science, 2011.

133

Bibliography

134

Author’s References

[BHM09] T. Bureš, P. Hnětynka, and M. Malohlava. Using a product line for creating
component systems. In Proceedings of the 2009 ACM symposium on Applied
Computing, SAC ’09, pages 501–508, New York, NY, USA, 2009. ACM.

[BJM+11] T. Bureš, P. Ježek, M. Malohlava, T. Poch, and O. Šerý. Strengthening com-
ponent architectures by modeling fine-grained entities. In Software Engi-
neering and Advanced Applications (SEAA), 2011 37th EUROMICRO Confer-
ence on, pages 124 –128, sept. 2011.

[BMH08] T. Bureš, M. Malohlava, and P. Hnětynka. Using dsl for automatic gener-
ation of software connectors. Composition-Based Software Systems (ICCBSS
2008), International Conference on, 0:138–147, 2008.

[HPB+10] P. Hošek, T. Pop, T. Bureš, P. Hnětynka, and M. Malohlava. Compari-
son of component frameworks for real-time embedded systems. In Lars
Grunske, Ralf Reussner, and Frantisek Plasil, editors, Component-Based
Software Engineering, volume 6092 of Lecture Notes in Computer Science,
pages 21–36. Springer Berlin / Heidelberg, 2010. 10.1007/978-3-642-
13238-4_2.

[KMBH11] J. Keznikl, M. Malohlava, T. Bureš, and P. Hnětynka. Extensible polyglot
programming support in existing component frameworks. Software Engi-
neering and Advanced Applications, Euromicro Conference, 0:107–115, 2011.

[KPMS10] T. Kalibera, P. Parizek, M. Malohlava, and M. Schoeberl. Exhaustive test-
ing of safety critical java. In Proceedings of the 8th International Workshop
on Java Technologies for Real-Time and Embedded Systems, JTRES ’10, pages
164–174, New York, NY, USA, 2010. ACM.

[LPM+09] F. Loiret, A. Plšek, P. Merle, L. Seinturier, and M. Malohlava. Construct-
ing domain-specific component frameworks through architecture refine-
ment. Software Engineering and Advanced Applications, Euromicro Conference,
0:375–382, 2009.

[Mal12] M. Malohlava. jPapaBench – a realtime benchmark. Technical Report
2012/1, Charles University in Prague, Department of Distributed and De-
pendable Systems, 2012.

135

Author’s References

[MB08] M. Malohlava and T. Bureš. Language for reconfiguring runtime infras-
tructure of component-based systems. In Proceedings of MEMICS 2008,
November 2008.

[MHB] M. Malohlava, P. Hnětynka, and T. Bureš. Sofa 2 component framework
and its ecosystem. Extended abstract of the tutorial – accepted for publi-
cation in Proceedings of the 9th International Workshop on Formal Engineering
approaches to Software Components and Architectures (FESCA), 2012.

[MPBH12] M. Malohlava, F. Plášil, T. Bureš, and P. Hnětynka. Interoperable domain-
specific languages families for code generation. Software: Practice and Ex-
perience, 2012.

[MPL+08] M. Malohlava, A. Plšek, F. Loiret, P. Merle, and L. Seinturier. Introduc-
ing Distribution into a RTSJ-based Component Framework. In 2nd Junior
Researcher Workshop on Real-Time Computing (JRWRTC 2008), pages 1–4,
Rennes, France, 2008.

[PKH+11] T. Pop, J. Keznikl, P. Hosek, M. Malohlava, T. Bures, and P. Hnetynka.
Introducing support for embedded and real-time devices into existing hi-
erarchical component system: Lessons learned. In Software Engineering
Research, Management and Applications (SERA), 2011 9th International Con-
ference on, pages 3 –11, aug. 2011.

[PLM12] A. Plšek, F. Loiret, and M. Malohlava. Component-oriented development
for real-time java. In M. Teresa Higuera-Toledano and Andy J. Wellings,
editors, Distributed, Embedded and Real-time Java Systems, pages 265–292.
Springer US, 2012. 10.1007/978-1-4419-8158-5_11.

[PPO+12] T. Pop, F. Plášil, M. Outlý, M. Malohlava, and T. Bureš. Property networks
allowing oracle-based mode-change propagation in hierarchical compo-
nents. In Proceedings of the 15th international ACM Sigsoft symposium on
Component based software engineering, CBSE ’12, New York, NY, USA, 2012.
ACM. Accepted for publication.

136

Web References

[1] Paparazzi: The free autopilot. http://paparazzi.enac.fr/, 2010.

[2] Sonar. Available online: http://www.sonarsource.org/, 2011.

[3] Stratego/XT transformation language and toolset. Available online: http://
www.strategoxt.org/, 2012.

[4] OSGi Alliance. OSGi service platform core specification, release 4. Available
online: http://www.osgi.org/Specifications/HomePage„ 2012.

[5] Apache Software Foundation. The apache velocity project. Available online:
http://velocity.apache.org/, 2012.

[6] ASM, Java bytecode manipulation library, v. 3.1. Available online: http://asm.
ow2.org/.

[7] AUTOSAR GbR. Autosar-technical overview. Technical Report, AUTOSAR GbR,
2005.

[8] Paul Boocock. JAMDA: Java Model Driven Architecture. Available online: http:
//sourceforge.net/projects/jamda, 2012.

[9] Eclipse Foundation. EMF Ecore. Available online: http://www.eclipse.
org/modeling/emf/, 2012.

[10] Eclipse Foundation. JET – Java Emitter Templates. Available online: http://
www.eclipse.org/emft/jet/, 2012.

[11] Eclipse Foundation. Xpand. Available online: http://wiki.eclipse.org/
Xpand, 2012.

[12] Google. Google Guice. Available online: http://code.google.com/p/
google-guice/.

[13] Object Management Group. Corba Component Model v4.0. Available online:
http://www.omg.org/spec/CCM/, 2012.

[14] Object Management Group. Meta Object Facility (MOF) 2.0 Query/View/Trans-
formation (QVT) v1.1. Available online: http://www.omg.org/spec/QVT/,
2012.

137

http://paparazzi.enac.fr/
http://www.sonarsource.org/
http://www.strategoxt.org/
http://www.strategoxt.org/
http://www.osgi.org/Specifications/HomePage
http://velocity.apache.org/
http://asm.ow2.org/
http://asm.ow2.org/
http://sourceforge.net/projects/jamda
http://sourceforge.net/projects/jamda
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/emft/jet/
http://www.eclipse.org/emft/jet/
http://wiki.eclipse.org/Xpand
http://wiki.eclipse.org/Xpand
http://code.google.com/p/google-guice/
http://code.google.com/p/google-guice/
http://www.omg.org/spec/CCM/
http://www.omg.org/spec/QVT/

Web References

[15] Object Management Group. UML Profile for MARTE: Modeling and Analysis of
Real-time Embedded Systems v1.1. Available online: http://www.omg.org/
spec/MARTE/, 2012.

[16] Iron Python. Available online: http://ironpython.net/.

[17] Java Expert Group. Java specification request JSR 302: Safety critical java tech-
nology. Available online: http://jcp.org/en/jsr/detail?id=302.

[18] The Jython Project. Available online: http://www.jython.org/.

[19] T. Künneth. Making scripting languages JSR-223-aware. Available
online: http://today.java.net/pub/a/today/2006/09/21/
making-scripting-languages-jsr-223-aware.html, September
2006.

[20] Archi Lab. Snu real-time benchmark suite. Available online: http://www.
cprover.org/goto-cc/examples/snu.html.

[21] Microsoft. Component Object Model Technologies. Available online: http://
www.microsoft.com/com/.

[22] NASA. Java Path Finder. Available online: http://babelfish.arc.nasa.
gov/trac/jpf/, 2010.

[23] Obeo. Acceleo project. Available online: http://www.acceleo.org/, 2012.

[24] Oracle. Java Scripting API. Available online: http://java.sun.com/
javase/6/docs/technotes/guides/scripting/.

[25] Oracle. Java Language Specification Java SE 5.0 / SE 6.0. Available online: http:
//docs.oracle.com/javase/specs/, 2012.

[26] Oracle. JavaBeans Specification,. Available online: http://www.oracle.com/
technetwork/java/javase/documentation/spec-136004.html, 2012.

[27] Oracle. JSR 220: Enterprise JavaBeansT M v3.0,. Available online: http://jcp.
org/en/jsr/detail?id=220, 2012.

[28] Oracle. JSR 245: JavaServer Pages 2.1. Available online: http://jcp.org/en/
jsr/detail?id=245, 2012.

[29] Oracle. JSR 314: JavaServer Faces 2.0. Available online: http://www.jcp.org/
en/jsr/detail?id=314, 2012.

[30] D. D. Spinellis. ckjm – A Tool for Calculating Chidamber and Kemerer Java Met-
rics. http://www.spinellis.gr/sw/ckjm/, 2010.

[31] SpringSource. Spring Framework. Available online: http://www.
springsource.org/.

[32] D. Wampler. Polyglot Programming. Available online: http://www.
polyglotprogramming.com/.

138

http://www.omg.org/spec/MARTE/
http://www.omg.org/spec/MARTE/
http://ironpython.net/
http://jcp.org/en/jsr/detail?id=302
http://www.jython.org/
http://today.java.net/pub/a/today/2006/09/21/making-scripting-languages-jsr-223-aware.html
http://today.java.net/pub/a/today/2006/09/21/making-scripting-languages-jsr-223-aware.html
http://www.cprover.org/goto-cc/examples/snu.html
http://www.cprover.org/goto-cc/examples/snu.html
http://www.microsoft.com/com/
http://www.microsoft.com/com/
http://babelfish.arc.nasa.gov/trac/jpf/
http://babelfish.arc.nasa.gov/trac/jpf/
http://www.acceleo.org/
http://java.sun.com/javase/6/docs/technotes/guides/scripting/
http://java.sun.com/javase/6/docs/technotes/guides/scripting/
http://docs.oracle.com/javase/specs/
http://docs.oracle.com/javase/specs/
http://www.oracle.com/technetwork/java/javase/documentation/spec-136004.html
http://www.oracle.com/technetwork/java/javase/documentation/spec-136004.html
http://jcp.org/en/jsr/detail?id=220
http://jcp.org/en/jsr/detail?id=220
http://jcp.org/en/jsr/detail?id=245
http://jcp.org/en/jsr/detail?id=245
http://www.jcp.org/en/jsr/detail?id=314
http://www.jcp.org/en/jsr/detail?id=314
http://www.spinellis.gr/sw/ckjm/
http://www.springsource.org/
http://www.springsource.org/
http://www.polyglotprogramming.com/
http://www.polyglotprogramming.com/

Appendices

Appendix A
Example of EPAC for Composite
Element

Listing A.1: The EPAC specification of the composite element in ADL-J.

1 <!−− Black−box view of the element −−>
2 <element−type>
3 <name>rpc−client−unit</name>
4 <port name="call" role="provided" />
5 <port name="line" role="remote" />
6 </element−type>
7 <element−type>
8 <name>logger</name>
9 <port name="in" role="provided" />

10 <port name="out" role="required" />
11 </element−type>
12 <element−type>
13 <name>stub</name>
14 <port name="call" role="provided" />
15 <port name="line" role="remote" />
16 </element−type>
17

18 <!−− Glass−box view of the element −−>
19 <element−architecture>
20 <name>LoggedClientUnit</name>
21 <type>rpc−client−unit</type>
22

23 <inst name="logger" type="logger"/>
24 <inst name="stub" type="stub"/>
25

26 <binding port1="call" element2="logger" port2="in"/>
27 <binding element1="logger" port1="out" element2="stub" port2="call"/>
28 <binding element1="stub" port1="line" port2="line"/>
29

30 </element−architecture>

141

Appendix B
Example of EPAC for Composite
Element

Listing B.1: EPAC specification of a composite element in EPLANG-J.

1 element composite_default {
2 /∗ Constructor ∗/
3 public $query{:classname}(ConnectorUnit parentUnit, boolean isTopLevel)
4 throws ElementLinkException {
5 this .parentUnit = parentUnit;
6 this . isTopLevel = isTopLevel;
7 dcm = DockConnectorManagerHelper.getDockConnectorManager ();
8

9 initializeArchitecture () ;
10 }
11

12 /∗ Composite element’s methods ∗/
13 void initializeArchitecture () throws ElementLinkException {
14 subElements = new Element[$query{elements:element#count}];
15

16 try {
17 /∗ create sub−elements ∗/
18 $set i = 0$
19 $foreach(ELEMENT in $query{elements:element})$
20 subElements[${i}] =
21 new ${ELEMENT.class as

(org.objectweb.dsrg.connector.ConnectorUnit,boolean)}(parentUnit, false);
22 /∗ remember ELEMENT index in a dictionary ∗/
23 $set el [ELEMENT.name] = i$
24 $set i = i + 1$
25 end
26

27 /∗ create bindings ∗/
28 $foreach(BINDING in $query{bindings:binding})$
29 $if (BINDING.type == "BINDING") $
30 ((ElementLocalClient) subElements[${el[BINDING.from.element.name]}])
31 .bindElPort("${BINDING.from.port}",
32 ((ElementLocalServer) subElements[${el[BINDING.to.element.name]}])
33 . lookupElPort("${BINDING.to.port}")
34) ;
35 end

143

36 end
37 } catch (Exception e) {
38 throw new ElementLinkException(e);
39 }
40

41 /∗ boundings to remote references ∗/
42 remoteTargetRefs = new RemoteRefBundle[$query{ports:port(type=REMOTE)#count}];
43

44 $set i = 0$
45 $foreach(REMOTE_PORT in $query{ports:port(type=REMOTE)})$
46 remoteTargetRefs[${i}] = null ;
47 $set ref [REMOTE_PORT.name] = i$
48 $set i = i + 1$
49 end
50

51 distributeReconfigurationHandler() ;
52 }
53

54 // implements provided port as delegation
55 $foreach(PORT in $query{ports:port(type=PROVIDED)})$
56 implements interface ${PORT.type} {
57 method template {
58 // get an interface
59 Object target = ((ElementLocalServer)

subElements[${el[PORT.boundedTo.element.name]}])
.lookupElPort("${PORT.boundedTo.port}");

60

61 // call the method
62 ${method.declareReturnValue}
63 Object context = CallHelper.getCallContext();
64 $append(method.parameters, context)
65

66 $if (${method.returnVar})
67 ${method.returnVar} =
68 ({$PORT.type}) target.${method.name}($implode(method.parameters));
69 $else$
70 ({$PORT.type}) target.${method.name}($implode(method.parameters));
71 end
72 }
73 }
74 end
75 }

Appendix C
EPLang-BC Example

Listing C.1: The EPAC specification of RMIStub element in EPLANG-BC.

1 element rmi_stub {
2 // delegation target
3 protected $query{ports.port(name=line):type} target;
4

5 // input interface
6 implements port $query{ports.port(name=call):type} {
7 method template {
8 ${method.declareReturnValue}
9 Object context = CallHelper.getCallContext();

10

11 $if (${method.returnVar})
12 LABEL(0);
13 NEW("java.lang.StringBuilder");
14 DUP();
15 INVOKESPECIAL("java.lang.StringBuilder", "<init>", "void()") ;
16 ASTORE(1);
17 LABEL(1);
18 ALOAD(1);
19 LDC(S("${INFO}"));
20 INVOKEVIRTUAL("java.lang.StringBuilder",
21 "append",
22 "java.lang.StringBuilder (java.lang.String)"
23) ;
24 POP();
25 LABEL(2);
26 ALOAD(1);
27 INVOKEVIRTUAL("java.lang.StringBuilder",
28 " toString" ,
29 "java.lang.String () ") ;
30 ARETURN();
31 $else$
32 LABEL(0);
33 NEW("java.lang.StringBuilder");
34 DUP();
35 INVOKESPECIAL("java.lang.StringBuilder", "<init>", "void()") ;
36 ASTORE(1);
37 /∗ ... ∗/
38 end

145

39 }
40 }
41 }

Appendix D
Denotational Semantics of Queries

The definition of query semantics consists of a definition of query abstract syntax and
its interpretation in the context of AST. The abstract syntax of a query is defined as
follows:

QUERY := ⊥ | NAV IGATE ” : ” EXTRACT
NAV IGATE := LNAV IGATE | LNAV IGATE ”.” NAV IGATE
LNAV IGATE := ID | ID”(”CONDITION”)”
CONDITION := ID ” = ” ID
EXTRACT := ”name” | ”type” | ”port”|”binding”| . . .
ID := [: alphanum :]+

The following functions denotes interpretation of a query in the context of an AST
node x:

Eval : QUERY → noderoot → Set(noderoot) (D.1)
Eval[⊥, x] = ∅ (D.2)

Eval[n : e, x] = {x2|x1 ∈ Nmap[n, x] ∧ x2 ∈ Emap[e, x1]} (D.3)

Emap : EXTRACT → noderoot → Set(noderoot) (D.4)
Emap[e, x] = {y|x→ y ∧ TypeOf(y) = e} (D.5)

Nmap : NAV IGATE → noderoot → Set(noderoot) (D.6)

Nmap[id, x] =
{
{x} ⇔ TypeOf(x) = id

∅
(D.7)

Nmap[id(c), x] =
{
{x} ⇔ TypeOf(x) = id ∧ Filter[c, x]
∅

(D.8)

Nmap[id.tail, x] = {y|TypeOf(x) = id ∧ y ∈
⋃

x→d

Nmap[tail, d]} (D.9)

Nmap[id(c).tail, x] = {y|Filter[c, x] ∧ y ∈ Nmap[id.tail, x]} (D.10)

147

Filter : CONDITION → node→ Boolean (D.11)
Filter[attr = val, x] = attr ∈ Attr(x) ∧ V al(attr)x = val (D.12)

Attr(x) = attributes of node x (D.13)
V al(attr, x) = value of attribute attr in node x (D.14)
TypeOf(x) = type of node x (D.15)

The equations (1)-(15) define interpretation of the query abstract syntax rules. In
principle, a query refers to the part of side-AST, where the required information is
stored. As its signature (1) indicates, the interpretation function Eval operates upon
the query and the side-AST determined by its root given as another Eval argument.
The result of Eval is a set of AST sub-trees with the roots reachable from the root. Ob-
viously, for an empty query, Eval returns empty set (2). The equation (3) determines
that to process a query with a navigate n and extract e, a combination of functions
Nmap and Emap is utilized. First, the function Nmap is applied (as specified by (6)-(10))
to navigate along n part of the query starting from the root x; to the resulting sub-
trees determined by their roots, Emap is applied with argument extract e. The result
of Emap is a set of AST sub-trees determined by their roots. In (5), the function Emap
evaluates the required e and returns the set of direct children of root xwhich are of the
type e (with help of function TypeOf – 14). For Nmap, equations (7)-(10) determine
semantics with respect to the hierarchical structure of navigation part. If the navigate
part contains a condition ((8), (10)), then the Filter function (11) is applied to de-
cide whether a node satisfies a given condition. Currently, only conditions regarding
values of AST node attributes are considered (12)-(14).

	Preface
	Acknowledgment
	Czech Abstract
	English Abstract

	Table of Contents
	Chapter 1 Introduction
	1.1 System Development and Reuse
	1.2 Component-based Software Engineering
	1.3 Problem Statement
	1.4 Research Goals
	1.5 Overview of Contribution
	1.6 Publications
	1.7 Thesis Roadmap
	1.7.1 Notes on Conventions

	Chapter 2 State of the Art
	2.1 Configurable Components
	2.2 Reflective Middleware
	2.3 Software Product Lines and Factories
	2.4 Component Systems and Their Execution Platforms
	2.5 Lessons Learned

	Chapter 3 Domain Analysis
	3.1 Component Model Domains
	3.1.1 Enterprise Application Domain
	3.1.2 User Interface Application Domain
	3.1.3 Configuration Frameworks
	3.1.4 Embedded Systems Domain
	3.1.5 Lessons Learned

	3.2 Case-studies
	3.3 jPapaBench
	3.3.1 Motivation
	3.3.2 PapaBench Overview
	3.3.3 jPapaBench Design
	3.3.4 Technology Mapping
	3.3.5 Environment Simulator
	3.3.6 Workload
	3.3.7 jPapaBench Code Characteristics
	3.3.8 Lessons Learned

	3.4 Real-time Java Connectors for Fractal Component System
	3.4.1 Introduction
	3.4.2 Challenges of Distributed RTSJ-based Designing and Programming
	3.4.3 Supporting Distribution in Real-time Java
	3.4.4 Lessons Learned

	3.5 SOFA 2 Runtime Extension
	3.5.1 Introduction
	3.5.2 Prerequisites and Definitions
	3.5.3 Analysis and Solution Design
	3.5.4 Overall Design
	3.5.5 Evaluation
	3.5.6 Lessons Learned

	3.6 Summary

	Chapter 4 Towards Meta-component System
	4.1 Introduction
	4.1.1 Structure of the Chapter

	4.2 Meta-component System
	4.3 Realization of Deployment and Execution Environment
	4.4 Conclusion

	Chapter 5 uSOFA – Model-driven Method for Creating Configurable Execution Environment
	5.1 Motivation
	5.2 Outline of the Solution
	5.2.1 Illustrative Example
	5.2.2 Front-end: From Component Assembly to Execution Infrastructure
	5.2.3 Back-end: From Execution Infrastructure to Its Realization
	5.2.4 Lessons Learned

	5.3 Execution Environment Model
	5.3.1 Micro-components

	5.4 Non-functional Requirements
	5.4.1 Infrastructure Aspects
	5.4.2 Variation Points and Join-points

	5.5 Transformation Process
	5.5.1 Front-end: From Component Assembly to Execution Infrastructure
	5.5.2 Back-end: From Execution Infrastructure to its Realization

	5.6 Discussion

	Chapter 6 Models Interoperability
	6.1 Introduction
	6.1.1 Problem Statement and Goals

	6.2 ECoGen Method: Overall Strategy and Related DSL Families
	6.3 EPLang, CDL, and ADL Families
	6.3.1 Why Three Domain-specific Languages and Their Families
	6.3.2 EPLang Family
	6.3.3 ADL Family
	6.3.4 CDL Family

	6.4 ECoGen-J Generation Framework
	6.4.1 Overview
	6.4.2 Handling Queries – Basic Idea
	6.4.3 Assimilation and DSLs Interoperability

	6.5 Evaluation
	6.5.1 Comparison with a Standard Template-based Technique
	6.5.2 DSL Interoperability via MetaBorg Tools
	6.5.3 Applying the EPLang Idea to Other Domains

	6.6 Related Work
	6.7 Conclusion

	Chapter 7 Evaluation
	7.1 jPapaBench
	7.1.1 Back-end: From EIM to System Realization
	7.1.2 Advantages and Disadvantages
	7.1.3 Role of Interoperability

	7.2 RTSJ Connectors
	7.3 SOFA 2 Runtime Extension

	Chapter 8 Conclusion
	Bibliography
	Author's References
	Web References
	Appendices
	Appendix A Example of epAc for Composite Element
	Appendix B Example of ePac for Composite Element
	Appendix C EPLang-BC Example
	Appendix D Denotational Semantics of Queries

