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1 Introduction

A speech recognizer is a machine which automatically translates input speech sounds
into a written output. First serious attempts to build such a machine date to 1960s
[52, 9]. At that time, the approach to speech recognition was mainly rule-based1,
under the influence of general artificial intelligence of that time. As the rules were
mostly human-written and language dependent, they required tremendous amount of
linguists’ work to be fully specified. Moreover, it turned out that linguistic theories
did not cover language phenomena evenly, regarding to their occurrence. This led to
poor performance because frequent non-grammatical constructs (like the same word
repeated twice, sudden stop followed by complete change of the subject, etc.) confused
the system awaiting the idealized language. Another cause of the low performance was
naive acoustic front end. High quality microphones in quiet environment were required.
In 1970s, a group of IBM researchers led by Fred Jelínek came up with a revolu-

tionary idea2 of treating the problem from the standpoint of information theory. When
compared to previous ‘hierarchical rule-based approach’, they employed relatively sim-
ple, yet powerful, idea of speech production — so called noisy channel model. Under
plausible assumptions on the nature of probabilities involved, this can lead to hidden
Markov models (HMMs) for which there exist effective decoding algorithms. Better
than that, there also exist ‘learning’ algorithms, freeing linguists and phoneticians from
creative but extremely laborious work of designing the rules. All that is needed, is long
enough training sound and its transcription. Some systems require the text to be time
aligned with the sound, and/or to be a phonetic instead of orthographic transcription,
but these are implementation details. The learning also theoretically makes the system
language independent, in the sense that the recognizer only needs to be retrained on
new training data to acquire a new language3.
In the meantime, special purpose small-vocabulary systems were developed. These

systems used different approach, based on pattern matching via dynamic time warp-
ing (DTW). They were speaker dependent and originally could not process continuous
speech, just separated words. Nevertheless, in tasks like digit and simple command
dictation4, they outperformed HMMs of that time [39]. When used on isolated words,
they needed less memory and computational power, what made them favorable for
cheap or portable devices. However, it was never fully solved how to adopt the method

1 And sometimes highly hierarchical as in the case of HEARSAY-II system [25] which had separate
levels for phonemes, syllables, words, syntax and semantics, all communicating via so called blackboard
data structure.
2 Every time I fire a linguist, the performance of our speech recognition system goes up.

— Fred Jelínek [7]
3 Unfortunately, in the real world, it is not that easy because, for instance, languages with rich
inflections like Czech, tend to have too many word forms (for which the original language modeling
is unfeasible because of data sparsity problem). More sophisticated language modeling capability is
needed in this case. Other languages, Chinese for instance, have distinct phonemes differing only by
their F0-trajectory. These would require different acoustic front end, retaining the F0 information.
4 For instance, in the late 1990s, there were cell phones capable to dial a number according to spoken
callee’s name. The number and the sound had to be already stored in the phonebook and the algorithm
selecting the right entry was based on the DTW.
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for large vocabulary continuous speech and it is essentially abandoned today — consid-
ering computational power of today’s CPUs it has already lost its attractiveness even
in cell-phone and toy market. Therefore, I will not treat it in this work at all.
For sake of completeness, it should be mentioned that there were also ‘alternative’

attempts, mainly by people from artificial neural networks community. The most no-
table person is Teuvo Kohonen who built what he called the ‘Phonetic Typewriter’ to
demonstrate learning capabilities of his neural network, nowadays known as Kohonen’s
map.

Unfortunately, according to the papers I have read, I can’t help myself from feeling
that these people were uninformed about the state-of-the-art in speech recognition area.
They were using inferior acoustic front ends, poor or no adaptation and usually no
language model (sometimes they put weird devices instead of it, like rewriting systems
correcting phoneme errors according to rules [24]). Moreover, they mostly did testing on
their own data, sometimes very short data, which disabled any meaningful comparison
with mainstream systems. Sometimes, their conception of how the testing and training
should look alike is also noteworthy. In the 1991 Kohonen’s paper [24] we can read:
Extensive experiments were performed for three male Finnish speakers in the
speaker-dependent mode. For each speaker, four repetitions of a set of 311
words were used. Each set contained 1737 phonemes. Three of the repetitions
were used for training, and the remaining one for testing.

Although this is certainly better than using exactly the same data both for training
and testing, it is quite close to it. It would, for example, alleviate co-articulation effects
because these would be nearly same as in the training data, it would hide ‘out-of-
vocabulary word problem’ and many others. Also, the data set is too small to support
any definite conclusion. In this light, the word error rate (WER) of 6% seems more
meaningless than amazing.
However, even in these papers, interesting ideas appear time after time. Only

their implementation suffers from carelessness of their authors. But things are getting
better, as we can see in a more recent paper [63], where they even used a standard
(albeit quite small) corpus for evaluation and compared the results with standardly
designed recognizer.
Some of these ideas were finally adopted by speech recognition community and

experimental systems were built where neural networks are employed. They usually
find their place in the front end of the recognizer [31], sometimes they are used in
the language model [66]. The performance of these systems is at least comparable to
the standard approach. But it has to be emphasized, that the heart of these systems
still relies on HMMs or Graphical Models (GM) which can be regarded as HMMs’
generalizations. So, after all, they are still within the probabilistic (noisy channel)
framework.
There are several typical problems one has to struggle with, when writing a speech

recognizer. In the probabilistic approach, the most notable problem is the problem of
sparse training data. For the method to work well, we have to know the probabilities
of events like ‘the occurrence of a given triple of adjacent words at random place in
the text’. The problem is that there are too many different triples. For English,
vocabularies of 50000 words are considered adequate for recognition of common speech,
so there are 500003 = 125·1012 different triples. Even if we look aside from the difficulty
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of storing so many numbers in computer’s memory (which is in order of 109 numbers
today) we have a problem how to acquire those numbers in the first place. We simply
cannot hope to have long enough training data to estimate them by naive occurrence
counting. Naive counting would lead to many triples receiving zero probability, which
is certainly wrong. The main art here is thus in estimating the probability of events
which were never encountered during the training5. It is called smoothing and has been
in focus of researchers since the IBM-group times. Today, several powerful methods
exist but, still, there is a certain room for improvement.
Another challenge is the acoustic front end. Reverberations in the room, back-

ground noise, different speakers with different voices all pose serious problem for the
recognizer. Over the time, various methods (like cepstral mean subtraction and vocal
tract length normalization) were developed to alleviate the influence of these effects.
Nevertheless, I feel that we have more room for improvement here than in language
modeling. Majority of current front ends are rather simplistic in comparison to the
sophistication of other parts of the recognizer. For instance, they do not use segmen-
tation (which has been common in image processing for years) therefore the speaker’s
voice is not separated from the background sounds, that can subsequently disrupt the
recognition process. I will explain why I think it worths starting with improving front
end in section 6.1. . 176

Today, more than 30 years after its introduction, all commercial speech recognizers
I am aware of, are based on the probabilistic method. They differ mainly in implemen-
tation details and in the way they tackle the above mentioned problems. The recognizer
I am about to describe is not an exception. Novelty of my approach, lies in the way I
deal with uncertain information. Most of current systems do not pay any attention to
varying quality of the acoustic evidence from which they deduce what has been said.
However, it is intuitively clear that if, for example, the door-bell rings in the middle of
the word we should not give these sounds too high importance, and rather use context
to recover the information about the words said.

1.1 Properties of the Recognizer

An automatic speech recognizer (ASR) can have various properties which characterize
its abilities. Let us list them here. Each property can be either present or missing (or
poorly implemented in which case it is not really missing but useless). Some of them
are mutually dependent so there is actually less than 2N kinds of speech recognizers.
Note that this classification is only tentative and unofficial and is given here so we could
fully appreciate broadness of the speech recognition problem.
(1) Channel independence. Early systems were channel dependent, requiring to
use the same microphone and audio chain (that is amplifier and digitizer) for both
training and testing. Often, recording in the same room was also needed to keep
the reverberation patterns similar. All today’s systems are channel independent
to some extent, as they perform cepstral mean subtraction (introduced in section
5.1.1) or similar deconvolving process, which dereverberates the sound. Robustness . 152

5 In another words, we want to make judgments on things we have never seen based on those few
we have seen. In broader sense, this could be regarded as one of many abilities the collection of we call
the intelligence.
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against (changing) background noise is also needed for good channel independence
(especially in automotive applications). Note however, that other types of distor-
tion are usually not treated at all. For instance it is known [53] that in telephone
speech there is great distinction between electret and carbon microphones, the
second one being slightly non-linear and, as such, causing harmonic distortion. In
subtle applications, like speaker’s voice verification, this must be accounted for.
As for speech recognition, the HMMs are sufficiently robust not to be disturbed
by that. Current research in this field focuses on background noise robustness and
better dereverberation algorithms.

(2) Speaker independence. Speaker dependent systems are optimized for speech
transcription of a single user. They tend to be more precise, provided there is
enough training data6. On the other hand, they are less versatile. Vocal tract size
differences among speakers cause that characteristic frequencies of phonemes vary
among speakers. Fortunately, this can be nearly undone by technique called vocal
tract length normalization (VTLN). Current systems are mostly speaker indepen-
dent which is accomplished by VTLN (or a similar technique, like Mellin transform)
and by acoustic model adaptation which copes with differences in pronunciation.

(3) Continuous speech recognition capability. By continuous speech I mean
fluent spontaneous or read speech. Simple systems can only recognize isolated
words, which means that the text has to be dictated word by word with sufficient
pauses between them. Continuous speech systems are more complicated since they
have to find proper splitting into words7 and must cope with coarticulation effects.
Pauses in a continuous speech occur as a part of plosive sounds8 not between the
words, unless the speaker makes them intentionally.

(4) Large vocabulary. Although no definite threshold exists, the system is said to be
large vocabulary if it can recognize more than, say, 10000 words. Large vocabulary
systems are usually continuous speech as well.

(5) Domain independence. Usually, even large vocabulary systems are not com-
pletely universal. A system for transcribing medical reports will undoubtedly work
better if trained on real medical report dictations, than on fairytales. So every
system today is domain dependent to some extent. However, there is theoretical
possibility to have a system trained in many different domains with means en-
abling automatic selection of the right domain. There also exist systems for very
restricted domains, such as voice control of car’s accessories (like radio, navigation
and windows), or systems for ticket reservations over the phone. These lack the
ability to transcribe any speech. Instead, they follow a grammar (prepared by
human experts) which can only generate domain relevant sentences. This makes
the system more robust to noise (because there are fewer sentences among which
the system has to select). The grammar is also used to reveal meaning of the
commands.

(6) Adaptability. Adaptability refers to the system’s ability to adjust itself to new
conditions. Either it can be adapted on demand, for example, when a new user

6 Which usually is only in case of politicians, actors and other people who unintentionally generate
amounts of training data due to their jobs.
7 Example taken from [9]: ‘I scream’ ≈ ‘ice cream’
8 p,t,k,b,d,g in English
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is enrolled, generic acoustic models are shifted towards his style of pronunciation
(after he reads certain amount of training text), or more sophisticated systems
can be adapting themselves continually to fit speaker’s actual speaking habits as
closely as possible. Note however, that this spontaneous adaptation can cause more
harm than good, as it can gradually destroy good models. Hence it is nontrivial
to implement it right. The ability to add new words to the dictionary can also be
understood as a kind of adaptation.

(7) Real time processing ability. Systems able to transcribe a speech at the speed
it is dictated (hopefully with a small delay, too) are called real time. This is
somewhat relative category as CPU speeds are still increasing. Most of today’s
systems can run in real time mode at the expense of higher error rates.

(8) Awareness of errors. Original ASR systems were unaware of their own errors.
Although this is still common, there are methods now which can highlight suspi-
cious words in the recognizer’s output.

(9) Command recognition ability. One of often overlooked problems of ASR dic-
tation programs is the fact that users not only want to dictate the text. They also
want to edit it. It is not trivial, however, to recognize what has to be transcribed
and what is meant as a command for the editor. This is comprehensively illus-
trated in [10]. Also, good dictation system should be able to delete unintentionally
repeated words and be able to learn particular speaker’s voice cues (which may
indicate unpronounced commands).

(10) Attention control. A system without any attention control just tries to tran-
script everything it hears. Simple attention control usually has two control phrases,
one of them turning the recognition system on (such as ‘wake up’) and the other
turning it off (‘go to sleep’). This is common today. More advanced attention con-
trol would include speaker’s voice recognition so that it would ignore other people’s
voices. Also, the on/off phrases could be more flexible (so it would be also possible
to use a sentence such as ‘computer, let us return to the dictation’) and more
precise so that the system would not react to the user saying ‘You better wake
up, Joe.’ to his friend. At this level of sophistication, the attention control has to
face similar problems as the command recognition. In fact, it can be implemented
using already present command recognition module enriched by a speaker’s voice
recognizer. The ultimate attention system should be able to follow the dialog to
the extent so that it would be aware whom the speaker is probably talking to,
reacting to his voice only if the message was addressed to the computer.

(11) Dialog capability. Should the recognizer be a part of a larger system leading a
spoken dialog with the user, other requirements arise on it. First of all, it has to be
connected with the speech synthesizer to the extent it could detect its voice which
must be ‘subtracted’ from the input sound so that the recognizer would ignore it.
Secondly, there should be a subsystem for acknowledging and/or questioning the
user during the time the ASR is listening. An appropriate questioning can be used
to resolve misrecognized words, and acknowledging is important from psychological
reasons, because users tend to get surprised and confused when the computer is
listening to their monologue without interrupting them and without single breath
for more than 2 minutes. Thirdly, there should be an appropriate attention control
subsystem, especially good speaker tracking, so that the system would not react
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to the voices of bystanders. Last but not least, the system should have low overall
latency9 so that the dialog could be naturally fluent.

1.2 Outline

This thesis is organized such that it reflects the signal travel inside the recognizer. So,
after the necessary introduction into probabilistic speech recognition, which gives the
reader general notion about the problems to be solved, chapters about front end, acous-
tic model and language model follow. Any theory needed along the way is introduced
prior its first use in dedicated chapters (there is a chapter about signal processing and
another one which introduces parts of probability theory we will need). Then, the com-
ponents of the recognizer will be worked out, and the recognizer itself will be introduced
in special chapter. Finally, tests, experiments and word error rates attained, will be
presented.
I tried not to forward reference, except in cases where it is an informal note and the

matter will be explained rigorously later. So, I hope that the book would be readable
from the beginning to the end without much seeking, even for laymen. The mathemati-
cal knowledge required to understand this text roughly matches that of the second year
of university (elementary calculus, basics of the set theory, intuitive understanding of
the probability theory and general notion about computer programming).
However, the organization of the book I have chosen causes that my own results

are intermixed with other ideas. For this reason, I clearly state what is mine in the
beginning or at the end of each chapter.

9 Normal latency of humans’ speech recognition chain is being estimated to be about 170 ms, ac-
cording to [16]. It can be higher, though, if we need longer context to decode the message.
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2 Probabilistic Approach to
Speech Recognition

In this chapter, classical probabilistic approach will be summarized. See [39] for excel-
lent introduction. The beauty of the this approach is in the fact that it naturally leads
to decomposition of the problem into acoustic and language model parts, under very
general assumptions.

2.1 Noisy Channel Model

Let the input sound be encoded as finite sequence of symbols A = 〈a0 . . . an〉 from a
discrete1, possibly very large, alphabet. For the moment, let us imagine that the ais
are directly the instantaneous amplitudes of the waveform as they are stored in the WAV
file. In this case each ai would be an integer from -32768 to 32767. Later on, more
practical encoding will be introduced by insertion of the acoustic front end. But in the
general setup, any encoding can be theoretically used at the price that less clever choice
complicates estimation of the probabilities involved. The output from the recognizer
will be finite sequence W = 〈w0 . . . wm〉 of ASCII codes making up the output text.
Now, one possible formulation of the recognition problem would be to find W

maximizing Pr (W |A), which is the probability2 ofW being the correct transcription of
the sound, provided that the sound was A. It is meant that we estimate this probability
from the training data. Note that it inherently admits several possible transcriptions
of the same sound to be present in the training set3. To make the estimation of the
probability computationally feasible we rewrite it using the Bayes’ rule, getting:

Ŵ = argmax
W
Pr (W |A) = argmax

W

Pr (A|W ) Pr (W )
Pr (A)

= argmax
W
Pr (A|W ) Pr (W ) (1)

This way, we obtained a decomposition into the language model Pr (W ) and the acoustic
model Pr (A|W ). This not only splits the original problem into two easier ones, but
also allows to train the language model on text-only data, enabling us to use much
longer data for more precise probability estimation.

This decomposition also leads to the diagram shown in figure 1, so called noisy . 15

channel model of speech processing. First, the speaker (on the left) generates what

1 This is completely general as the recognizer will in fact be a program running on a digital computer,
inside which everything has to be quantized anyway.
2 I will use axiomatic approach [38] to probability throughout this work. Nevertheless, frequencist
viewpoint works in this case as well, if we assume m < n (that is, the number of decoded letters to be
less than the number of samples in the waveform, which is obviously unrestrictive, in the real world).
Under this assumption, there is only finite number of possible W -sequences for the given observation
A, and, in principle, they could be counted to give out the probability estimate. Practically, though,
this is impossible, because huge amount of training data would be required to do so. I’d rather leave
to philosophers weather this probability ‘exists’ or has any sense at all, when it cannot be practically
measured. Axiomatic approach does not depend on it.
3 Practically, there will hardly ever appear the same sound twice, however.
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he intends to say. At the level of abstraction we are now, let us suppose that whole
W is generated at once in the beginning, so we could speak of its probability, then it
is transformed by the speaker to the movement of his articulation organs and finally
it is radiated into space as a sound wave S1. The hypothetical channel starts inside
the speaker’s head, because the noise4 N1 affects how W will be transformed into S1.
Then, another noise N2 (this includes noise from the environment, reverberations, noise
of the microphone and amplifier and dynamic range of A/D converter) affects how the
sound wave changes into the (digital) electrical signal S2. Finally, the acoustic front
end usually discards5 some information, which has the same effect as yet another noise
N3, changing S2 to A — the channel’s output. However complicated the channel may
be, we are not interested in these details because we can fully describe its operation
by conditional probability distribution Pr (A|W ), where W is the message on its input
and A is what the computer gets from its output. This A is then sent to the decoder
which, according to (1), selects the most probable channel’s input Ŵ , which could have
caused the observed A. If we knew true distributions Pr (W ) and Pr (A|W ) exactly,
this setup would minimize the probability of recognition error as I will show later. Also,
the speaker and channel independence (with noise robustness) would be automatically
included. This is because the ideal probabilities must account for every single utterance
as if it appeared under all possible N2-noise conditions (taking into account probability
of occurrence of the particular noise condition, too).

Fig. 1. Noisy channel model. Those fainting at the idea that something as nasty as channel could be
extending into someone’s head should picture a text-to-speech synthesizer in place of the poor wretch.

However, in a practical situation, we don’t have the probabilities Pr (A|W ) and
Pr (W ). All we can hope for, is their estimate based on the training data. To make
this possible, however, the number of free parameters involved has to be substantially
reduced. Until now, I took these probabilities as being described by their distributions,
which could, in principle, be estimated from the respective histograms. Unfortunately,
already Pr (W ) leads to astronomical number of free parameters, when interpreted this
way. For outputs of length 80 (which is one line on a typical computer terminal) we

4 This noise ‘simulates’ various speaking styles and pronunciations. The noisy channel model orig-
inally came from Claude Shannon’s theory of communication, which is mathematically describing
communication of machines, like modems and such. In this theory, in place of N1, there would be a
modulator, proper selection of could counteract the effects of noise in the channel so that it would be
possible to recover original W with arbitrarily high probability in the receiver. In speech recognition,
we are in a situation where the modulator is already given to us, we do not know exactly how it works
and also different people modulate W in different ways, so I decided to call it noise here.
5 Note that we still consider no acoustic front end, therefore A = S2.
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would have 2640 ≈ 4.5 · 10192 different strings, each demanding its probability to be
assigned to it. The situation with Pr (A|W ) gets even worse.
To overcome this, we have to make an educated guess on processes generating these

distributions. With smart selection, we can hope that the number of free parameters
will be small enough to make their estimation from the training data possible, yet
allowig the model to approximate true distributions sufficiently well to be usable in the
decoder. This is called acoustic and language modeling and will be treated in sections
2.4 and 2.3. . 20

. 17
However, when approximating the true distributions, we may expect that we will

lose something, too. For instance, optimality of the method (minimum probability of
an error) presupposes exact distributions. It would also be naive to think that our
model of Pr (A|W ) would be able to incorporate all possible distortions of S2 due to
noises N2. Even if it could, there would be another trouble with its training — we
would have to artificially generate all possible reverberations and noise conditions out
of our training data, which would prolong the training by several orders of magnitude.
To overcome this, the acoustic processor is inserted into the recognition chain at

the place shown in figure 1. Its purpose is a reduction of dimensionality of S2 in a clever
way, which enhances those features useful for a speech recognition and attenuates the
unwanted ones, such as noise. Another appreciated property would be the reduction of
the variability of A provided that the same W is being sent over the channel multiple
times, spoken by different speakers (N1) and under different conditions (N2).
Although some information about S2 is irreversibly lost, this stage is necessary

in any practical system, if we want to estimate Pr (A|W ) from attainable amount of
training data. In the next section, simple front end will be sketched to give the reader
an initial idea. More complicated front ends will be discussed later in depth because
the front end’s quality is crucial for overall performance — what information is lost
there is lost forever (as follows from theorem 3.2.31). . 55

2.2 Simple Front End

In the early days of speech recognition, the speech recognizer consisted of digital com-
puter connected to an ‘acoustic processor’. This was special analog device6 consisting
of an input amplifier and a bank of about 20 bandpass filters spanning the speech fre-
quencies of 300 Hz to 3 kHz. The output of each individual filter was rectified to yield
an estimate of the amplitude envelope of the given band. These envelope estimates were
then sampled hundred times a second and converted into (digitally encoded) numbers
by the A/D converter (see fig. 2). These numbers were then sent to the computer. . 17

So, every 10 ms, we had 20, say, 10-bit numbers (which were treated as real-valued in
theory, allowing us not to think about resolution of the A/D — the limited precision
could be simulated as noise, if needed). Each 20-tuple is called a frame. The sequence
of these frames then constitutes A — the output from the acoustic processor, as it is
depicted in fig. 1.
Sometimes, instead of plain amplitudes in the frame vector, their logarithm was

used to match human perception of the sound intensity more closely. Sometimes, not

6 Today, computers are fast enough to do all this signal processing digitally — the only material
part of the acoustic processor which survived till now is the A/D converter located in the sound chip.
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only the current output of the filter bank but also its difference from the previous one
was used (so there would be 40 numbers instead of 20). Sometimes the vector was
normalized and the energy of the frame was stored as another number sideways, etc.
But these are details that used to vary from system to system (and all of them could
be easily implemented in software using the hardware from fig. 2).

Fig. 2. Rudimentary front end

To make the input data A even more compact, there is a possibility, often used in
the early times, when computers were not fast enough to do the decoding with full frame
vectors. It is a vector quantization. If we looked at the 20 (or 40) dimensional space
while being filled with points coming out of the front end processing the real speech,
we would see that these points have a tendency to gather in clusters instead of being
scattered uniformly. Often, the cluster would approximately correspond to certain
characteristic sound. By use of a standard algorithm, such as K-means clustering7 we
can identify these clusters, eventually subdividing the larger ones, too. Usually, it is
sufficient to partition the space into 200 to 300 regions using points obtained from 5 to
10 minutes of speech. Then, each frame of A would be just the label of the region into
which the feature vector belongs. More elaborate clustering algorithms like Kohonen’s
maps or generative topographic mappings [48] may lead to better results.
The clustering leads to a very small acoustic alphabet and therefore to easier mod-

eling of Pr (A|W ). Its disadvantage is information loss, causing inferior performance.
However, it has been demonstrated [54, 35, 27] that with careful selection of clusters,
the performance competitive with unclustered systems is attainable. Nevertheless, this
approach was finally abandoned.

2.3 Language Model

First, we need more realistic encoding to be used forW . From now on, I will regard wis
to be whole words, not just single letters. This means that we have to limit ourselves
to a finite lexicon of words. Let it be represented by a set of words V . So, shall the
systems hear a word which is not in it, a recognition error will occur. An advanced

7 Using Euclidean distance as its metric is acceptable.
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system may be able to detect this condition, allowing the user to add this new word
into the system’s dictionary manually, by providing its correct spelling.
Second, with this encoding we may write the probability of the given word string

W := ~w = 〈w0 . . . wm〉 to be

Pr (〈w0 . . . wm〉) = Pr (w0)
m∏

i=1

Pr (wi | wi−1, . . . , w0) (2)

which comes directly from the Bayes’ formula. There are many equivalent factorizations
differing by the order in which wis are taken. This one has an advantage of obeying the
natural order of the words. It enables the decoder to start its work before the whole
utterance has been recorded.
Strictly speaking, formula (2) only assigns the probability to the word sequences

of fixed length m+1 and, as such, it should be written as a conditional probability
Pr (w0, . . . , wm | m+1). Consequently, we cannot directly compare the probability of
strings of different lengths, unless we knew Pr (m+1), the probability distribution of
these lengths. This omission is often overlooked in the area of speech recognition. It
can be usually tolerated because the acoustic model Pr (A|W ) assigns high probability
only to those W -strings whose length is similar to what has been said. Too long and
too short strings simply don’t match the acoustic signal A. It is also natural to expect
that Pr (m+1) will be roughly equal for all values of m close to m0, the average length
of the hypothesis W . Thus, setting Pr (W ) := Pr (w0, . . . , wm | m+1) instead of the
correct Pr (W ) = Pr (w0, . . . , wm | m+1)Pr (m+1) does not make much difference in
(1), unless for very short utterances. But note that Pr (W ) does not sum to 1 then. . 14

If we desired to have correct expression for Pr (W ) we could construct the following
probability space8 with the help of string terminating symbol �.

Ω := {〈w0 . . . wm〉 | ∀ i < m : wi∈V & wm = �}

PrΩ(〈w0 . . . wm〉) :=
m∏

i=0

Pr (wi | wi−1, . . . , w0)
(3)

where Pr (w0 | w−1, . . . , w0) := Pr (w0). Ω can be imagined as an infinite tree with
finite branching, each node representing the word history 〈w0 . . . wi〉. Unless wi = �,
the node has #V +1 continuations (� /∈ V ). The probability of strings from Ω is defined
by means of conditional distributions Pr (wi+1 | wi, . . . , w0) — every finite path ending
with a terminal leaf � corresponds to a string from Ω and vice versa. It is an easy
exercise to prove that

∑
ω∈Ω PrΩ(ω) = 1.

But let us return to our language modeling effort using the original formula (2).
Now, we still don’t have a model. Apart from the fact that we cannot represent lexically
incorrect strings in W anymore, (2) is still fully general, and still requires too many
parameters. But, realizing that the given word is less dependent on words which are
farther from it in the history we could assume that Pr (wi | wi−1, . . . , wi−K) would be
a good approximation to Pr (wi | wi−1, . . . , w0), for moderate values of K like 2 or 3.

8 Probability space will be rigorously defined in 3.1.1. Until then, we get by with our intuition. . 39
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The most common choice here is 2, for which we get so called trigram model assigning
the probability of ~w to be

Pr (~w) = Pr (〈w0 . . . wm〉) := Pr (w0) Pr (w1 | w0)
m∏

i=2

Pr (wi | wi−1, wi−2) (4)

Immediate generalization of this would be to come up with a partitioning function
Φ : V ∗ → N, which takes an arbitrary string ~w as an argument, returning the class
number this string belongs to. Then the model would look the following way

Pr (~w) := Pr (w0)
m∏

i=1

Pr (wi | Φ(〈w0 . . . wi−1〉)) (5)

This model is really a generalization of the trigram model, which can be demonstrated
by defining Φ(〈. . . , b, a〉) := a + #V · b and Φ(〈a〉) = a, where #V is a size of the
vocabulary and the words are identified with their ordinal numbers in the vocabulary
V (numbering starts by 0), so we would be able to do computations with them. Both
models yield to identical Pr (~w) under this choice of Φ, hence the class-based one can
simulate the trigram one and is therefore its generalization.
The partitioning function Φ can be very complicated (for instance, there could

be whole parser hidden in it [20]). It can be either given by a linguist expert, or it
can even be generated automatically as I will show in chapter 8. But let us return207 /

back to the trigram model, which is surprisingly successful despite its simplicity. Even
very complicated selections of Φ usually do not outperform it significantly. When it is
accounted for memory and CPU demands of the respective models, the trigram model
often comes out as a winner and that is why it is still in use in many commercial
systems.

Now, for the trigram model, we have to justify how do we determine values of
Pr (w0), Pr (w0 | w1), and Pr (w0 | w1, w2) for all possible triples 〈w0, w1, w2〉∈V 3.
Obviously, we want to estimate them from the training data. The simpliest way of doing
that, would be to use frequetists’ notion of probability. Let the sequence T = 〈t0 . . . tN 〉,
ti∈V be the training text. Then, let

c(v1, . . . , vn) := #
{
k | ∃ a1 . . . ak, b1 . . . bl : 〈a1, . . . , ak, v1, . . . , vn, b1, . . . , bl〉= T

}
(6)

that is the number of times the n-tuple appeared in the training data. Using it, we can
set9

Pr (w0 | w1, w2) := f(w0 | w1, w2) = c(w2, w1, w0)/c(w2, w1, •) (7)

where f is called the frequency of occurrence (of an event in the data T ). Analogical
definition would be used for Pr (w0) and Pr (w0 | w1). Although it seems fairly sound,
it is incorrect. The flaw is hidden in the fact that many possible triples will never
appear in the training data. Note that for #V = 50000 we have 125 · 1012 triples. So,
unless the training text is longer than that, at least one triple is always uncovered by
the training data. This is a problem because it can well happen that the uncovered

9 c(y, •) stands for ∑x c(y, x), where x goes over the whole range in question.
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triple later appears at the input of the system. But our model states that it has zero
probability. As the recognition is governed by formula (1), we can easily see that the . 14

system would never be able to output correct transcription in this case.
The remedy of this situation is called smoothing. It works by taking some amount

of probability from the observed triples, redistributing it to the unobserved ones. The
most simple solution would be to define

Pr (w0 | w1, w2) := αf(w0 | w1, w2) + (1− α)/#V (8)

for suitable α∈ (0, 1). But we can do better than that. Observing that for two proba-
bility distributions P1 and P2, αP1(w)+ (1−α)P2(w) is also a probability distribution
(obviously, it is non-negative as P1 and P2 were, and it sums to 1 as well), we can use
the fact that if 〈w0, w1, w2〉 was not in the training data, then perhaps 〈w0, w1〉 was.
This line of thought brought us so called linear smoothing, given by

Pr (w0 | w1, w2) := αf(w0 | w1, w2)+(1−α)
(
βf(w0 | w1)+(1−β)γf(w0)+

1− γ

#V

)
(9)

The only trouble now, is how to set the coefficients α, β, γ. Any values in (0, 1)
will lead to valid distribution, but obviously we want to select those leading to the
best performance. However, this would be too complicated in general, because the
performance of the whole ASR depends on acoustics as well. Instead of it, we will try
to set α, β, γ so as to maximize the probability of the data. But this has to be done
carefully. Would the data over which we maximize the probability (9) be T , the optimal
α would be α = 1, that is no smoothing at all (this is because we would not encounter
missing triple in T and therefore the best estimate of the probability would be the most
detailed one). So we need extra data H, on which we would maximize α, β, γ, while
keeping the underlying frequencies trained on T fixed. Once having it, we can merge T
with H and reestimate the frequencies to obtain better precision. Alternatively, we can
split the data several times to different (T,H) pairs and obtain different estimates of
α, β, γ. These would then be averaged to get final α, β, γ (so the random glitches due
to unfortunate splits should be averaged out to some extent). Although this smoothing
model works acceptably, more sophisticated methods will be presented later, as it was
empirically observed that the quality of smoothing often played the most important
role in the whole system.

2.4 Acoustic Model

Acoustic modeling tries to assume something plausible about the probability P (A|W )
so that the number of its free parameters would become so small that it could be
estimated from obtainable amount of training data.
We will express this plausible assumption in a form of non-deterministic generative

model. This model, given a word transcriptW , will generate possible acoustic sequence
A with probability P (A|W ). It may be regarded as a primitive physical model of speech
production which does not take actual mechanisms of pronunciation into account. But
even though it does not describe speech production exactly, it can still provide suffi-
ciently good fit, provided that it will have several times more parameters than an ideal
physical model would require.
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Fig. 3. Phoneme HMM

Let us first consider models of single phonemes and words
sequenced from these phonemes. Commonly, they are
based on so called Hidden Markov Models (HMM). HMM
can be intuitively described as a directed graph with nodes
called states and arrows labeled by transition probabilities
and output distributions. HMM generates its output by
performing a random walk along these arrows, starting
from certain initial state. In each state, it randomly se-
lects the next arrow to go along, in accordance with its transition probability (among
all arrows leaving that state). On each traversal of the arrow, it emits single letter
a∈A by randomly drawing it from an output probability distribution. Each arrow has
its own output distribution. Parallel to normal arrows, there may also be special null
arrows which do not emit any letter and only change the state. For technical reasons
they are not allowed to form a (directed) cycle. Normal arrows can form a cycle and
there may be even loops (which means that the arrow may point to its own starting
node). Look at fig. 3 for a typical model of single phoneme. Note that there are two
paths — the short one and the long one — which can capture normal and abnormal
pronunciations. Also notice loops and null transitions, which can prolong or shorten
the duration of a phoneme, thereby simulating different speaking rates. Note that fig. 3
does not specify any values of transition and output probabilities. These are supposed
to be obtained by training.

This phoneme model serves as a building block from which we can compose HMM
models of words by simple concatenation, as in fig. 4. Only the structure is repeated —
probability tables remain shared among different instances of the same phoneme. Hence
they require constant amount of parameters regardless of richness of the vocabulary.
Typically, stressed and unstressed phones are distinguished, which leads to a phonetic
alphabet of size around 100, in case of English [39]. So we have 100 phonetic models,
each consisting of nine output arrows, each of them capable of emitting one of about
250 distinct characters of the acoustic alphabet A. This yields less than 230 thousand
parameters that have to be estimated by training. This number may be further reduced
by so called tying. For instance, we can notice that plosive phonemes have similar
beginning (that is a silence) so we can decide that we make them share the output
distribution of their first arrow.

Fig. 4. Hidden Markov Model for a word made up from three phonemes ϕ1 ϕ2 ϕ3. The only entry
point is A, the only exit is B. The respective phoneme models have identical structure but (in general)
different transition and emission probabilities. The phoneme models are connected via null arrows to
form a word.

Although the probabilities can be learned from training data, the structure is given
in advance and does not change by learning. Before proceeding, let us write formal
definition of HMM, so that we could use this formalism in description of decoding and
learning.
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2.4.1 Definition (Discrete) Hidden Markov Model (HMM)

HMM is
〈
A, S, s0, p : (S × S)→ R, q : (S × S × (A ∪ {ε}))→ R

〉
, where A is a finite

output alphabet, S is a finite set of states, p(x|y) specifies probability of selecting
state x when we stand in state y and q(a | y→x) is a probability of emitting letter
a∈A ∪ {ε} while going along the arrow from y to x. The special value ε means ‘no
output’ and there must not exist any sequence of states s1, . . . , sn−1, sn = s1 such that
q(ε | sk→sk+1) > 0, which means that ε-capable arrows must not form a cycle. Finally,
s0∈S is the starting state.
2.4.2 Note Equivalently, we could have defined HMM on a multigraph10 with prob-
ability of going from y to x along the edge labeled by a being

r(a, x | y) := p(x | y) q(a | y→x) (10)

It is also convenient to assign names e1, e2, . . . , eT to all arrows and define functions
A(e) := a, L(e) := y, R(e) := x and P (e) := r(A(e), R(e) | L(e)) for all e = y

a→x.
The set of all arrows in the HMM will be denoted by E. I will use this notation when
appropriate.

2.4.3 Note Discrete HMM can be generalized to continuous HMM, whose output
alphabet A is a subset of RK . The letters of A are real-valued frame vectors as supplied
by the front end and q(a | y → x) is probability density instead of distribution. It is
usually modeled as linear combination of several multidimensional Gaussians, whose
parameters and weights have to be obtained by training. Some parameters can be
tied, for instance we may share covariance matrices among all Gaussians in a phoneme.
As my system uses discrete alphabet I will not go into continuous HMMs any deeper.
Consult [39], if interested.

2.4.4 The Trellis

Let us draw all states of an HMM as a column of vertices, sorted such that null-arrows
can only point downwards and let’s draw these arrows, too. Then, copy this column N -
times, obtaining #S by N grid of vertices xti, where i∈S and t∈{0, . . . , N−1}, indexing
the time. Finally, connect adjacent columns by arrows such that xti will be connected
with xt+1j by an arrow labeled with a and r if and only if r := r(a, xj | xi) > 0. This
unrolled representation of HMM is called the trellis.

Fig. 5. Simple HMM generating strings over the alphabet {0, 1}, its trellis for 3 output symbols
and, on the right, there is its trellis punned according to the output string 0101. Probabilities of
individual arrows are not explicitly depicted to keep the drawing readable.

10 Graph, where multiple arrows between two nodes are allowed.
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It allows to simulate any N -step computation of the HMM simply by following
the arrows and emitting their associated symbols along the way, starting in the initial
state x0s0 . More importantly, it can be used to compute a probability that a given
observation a0, . . . , aN−1 was generated by the HMM. For this, we first need to prune
the trellis such that the only remaining arrows will be null-arrows and those that emit
symbol at between the states xti and x

t+1
j for all i, j and t. See fig. 5 for a simple HMM

and its pruned trellis. Then, we will define T (~a), the set of all edge-paths thru the
trellis, pruned by acoustic observation ~a. That is, each element of T (~a) is a sequence
~e = 〈e0 . . . e#~e−1〉 such that R(ei) = L(ei+1) and A(ei) is either ε or ak, the later iff ei
was k-th output producing arrow. For technical reasons which will become clear later,
the last arrow in each path thru the trellis must be output-producing. This is also
depicted in fig. 5 as missing null arrows in its last column. As the trellis is finite and
we demanded that ε-arrows cannot form a cycle the set T (~a) will also be finite. If we
allowed cycles, T (~a) would become infinite11.
2.4.5 Definition

T z
s (~a) will stand for the set of all ~a-compatible paths from x0s to x

#~a
z . If z is omitted,

the final state is unconstrained.

Ts(~a) := {~e∈T (~a) | L(e0) = s}
T z
s (~a) := {~e∈T (~a) | L(e0) = s & R(e#~e−1) = z}

(11)

The probability that the HMM will follow a specific path ~e∈T , provided that it has
started in state L(e0), is

∏#~e−1
k=0 P (ek). Now we can derive the probability that the

string ~a was generated by an HMM starting from s0 and ending in state k, such that the
last arrow taken (if any) has been output producing. Let us designate this probability
by P (a0 . . . at−1, k | s0) or shortly as πt(k), where t = #~a. Clearly, π0(k) = 1 just for
k = s0. Because individual paths thru the trellis are disjoint events, the probability of
taking any of them is sum of individual probabilities and we can write

π#~a(k) =
∑

~e∈T k
s0
(~a)

#~e−1∏

i=0

P (ei) (12)

For each path ~e, the last outputting arrow and its immediately preceding null arrows
can be factored out, yielding to

πt(k) =
∑

n∈S


 ∑

~e∈T n
s0
(〈a0...at−2〉)

#~e−1∏

i=0

P (ei) ·
∑

~f∈T k
n (〈at−1〉)

#~f−1∏

j=0

P (fj)


 (13)

Recognizing πt−1(n) in the above sum we obtain

πt(k) =
∑

n∈S

πt−1(n)
∑

~f∈T k
n (〈at−1〉)

r(at−1, k | f#~f−1)
#~f−2∏

j=0

P (fj) (14)

11 There is no fundamental obstacle to develop a theory even for cyclic null-arrows. However, without
them, the formulas come out shorter and as we do not need cycles in our speech related HMMs, it is
better to forbid them altogether.
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which can be rewritten as

πt(k) =
∑

n∈S

πt−1(n) ř(at−1, k | n) (15)

where ř(at−1, k | n) is a probability of taking any number of null steps, starting in state
n, followed by output producing step into the state k. For HMM without null arrows
ř(at−1, k | n) = r(at−1, k | n). For general case, we need the following notation for the
set of all null-paths that can be prolonged by an outputting arrow:

Nm
n := {〈e0 . . . ek−1〉 | ∃ ek∈E : A(ek) 6= ε & 〈e0 . . . ek〉∈T m

n (〈A(ek)〉)} (16)

According to (14), general ř(at, k | n) can be computed as follows:

ř(at, k | n) =
∑

m∈S

r(at, k | m)
∑

~e∈Nm
n

#~e−1∏

i=0

P (ei)

︸ ︷︷ ︸
η(m | n)

(17)

Note that η(m|n) is not a probability because it may sum to more than 1. The correct
probability is formed only after this is multiplied by r(at, k |m). Note that (17) does not
require null arrows to be acyclic, but if they are not, we have to sum over (countably)
infinitely many paths. Recurrence (15) can be rewritten as follows:

πt(k) =
∑

n

πt−1(n)
∑

m

r(at−1, k | m) η(m | n)

=
∑

m

r(at−1, k | m)
∑

n

πt−1(n)η(m | n)
︸ ︷︷ ︸

αt−1(m)

=
∑

m

r(at−1, k | m)αt−1(m) (18)

To treat the acyclic case, let us define an ordering < on the set of states S, such that
a < b iff there is a null-path from a to b. This condition only enforces partial ordering,
so we <-bind other elements of S make it a linear ordering. This is the same ordering
that is used to draw trellis, with <-higher elements of S drawn lower on the page. In
acyclic case, η can be easily determined using the following recurrence, which follows
from (17):

η(n | n) := 1
η(m | n) :=

∑

n<k≤m

η(m | k) r(ε, k | n) =
∑

n≤k<m

r(ε,m | k) η(k | n) (19)

Notice that η(a|b) = 0 for a < b. Substituting this into (18) we get:

αt(m) =
∑

n≤m

πt(n) η(m | n) = πt(m) +
∑

n<m

πt(n) η(m | n)

=πt(m) +
∑

n<m

πt(n)
∑

n≤k<m

r(ε,m | k) η(k | n)

=πt(m) +
∑

k<m

r(ε,m | k)
∑

n≤k

πt(n) η(k | n)

(20)
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Comparing the last formula with the first one we arrive to the following recurrence:

αt−1(m) :=πt−1(m) +
∑

k<m

r(ε,m | k)αt−1(k)

πt(k) :=
∑

m

r(at−1, k | m)αt−1(m)
(21)

where π0(s0) := 1, and 0 for all other states, and α(m) is self-initializing as it is
evaluated from topmost to bottommost states m. Note that although π is probability
distribution, α is not.
Total probability that N -tuple a0, . . . , aN−1 was generated is then

∑
k∈S πN (k).

2.5 Decoding

The decoding is simply a search for the most probable path thru the trellis that could
have generated the observed data a0, . . . , aN−1, that is

~̂s := argmax
~s

P (~s | s0, a0, . . . , aN−1) = argmax
~s

P (~s & a0, . . . , aN−1 | s0) (22)

where s0 is the initial state, ~s = s1, . . . , sK is a state sequence and K ≥ N . For a
sequence without null transitions we have K = N and

P (s1 . . . sN & a0 . . . aN−1 | s0) =
N−1∏

k=0

p(sk+1|sk) q(ak|sk→sk+1)︸ ︷︷ ︸
r(ak, sk+1|sk)

(23)

as follows from the definition of HMM. The same idea applies even if null transitions
are present, only the closed formula is not so simple as indexes of states and outputs
fall out of sync. It is then easier to formulate it on a trellis, pruned according to an
output a0, . . . , aN−1. Let e0, . . . , eK−1 be a path thru that trellis starting in x0s and
ending in xNk for some k∈S. Then its probability is

P (~a & ~e | s0) =
K−1∏

k=0

r(A(ek), R(ek) | L(ek)) (24)

Among all those paths we want to find the one with the highest probability. Taking
minus logarithm of quantity (24) we obtain

∑K
k=1 δ(ek), where δ(ek) := − log(r(A(ek),

R(ek) | L(ek))) can be regarded as a ‘length’ of the arrow. The most probable path will
be the shortest one. We can use Dijkstra’s algorithm (invented 1959) to find it because
δ(e) ≥ 0 for any arrow e from the trellis.
I will present its special case here, called a Viterbi algorithm, which exploits special

topology of the trellis graph to avoid the heap of visited vertices. As a trade-off,
it requires null transitions to be acyclic, whereas the general Dijkstra has no such
restriction. But this restriction is almost always fulfilled because null arrows are mainly
used to connect phonemes into words and words into a language model. Moreover, any
HMM with null transitions can be transformed into an equivalent HMM without them.
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2.5.1 The Viterbi Algorithm

Let us have a pruned trellis with arrows labeled by δ(e). Let us define an array of real
valued variables γ so that for each trellis node xtk we have γ

t
k, holding a length of the

shortest path found so far from x0s to x
t
k. Algorithm proceeds as follows:

(0) Initialize all elements of γ to +∞ except γ0s := 0; set t:=0.
(1) Walk thru states n∈S in t-th trellis column, starting at its top. Note that the
states in trellis columns are sorted such that null arrows can only point downwards.
For each state n∈S and each trellis arrow e such that L(e) = n and R(e) = m,
perform the following operation

γt+1m := min(γt+1m , γtn + δ(e)) (25)

(2) If t < N , then t := t+ 1 and go to (1).
(3) Else the last column contains lengths of shortest paths ending in the respective
HMM states. By finding a state having this value minimal and by backtracking
towards the origin of the trellis, we can recover the sequence of states which most
probably caused the observed output.

Because the correctness of Dijkstra’s algorithm is treated extensively elsewhere [33] and
the Viterbi algorithm is just a special case of it12, I will omit a proof here.

2.5.2 Simple Recognizer

Consider word models connected by null-arrows as shown in fig. 6. The probability . 27

of going from word wi to word wj is set in accordance with bigram language model
P (wj |wi). All other probabilities in this composed HMM are determined by acoustic
training which will be described in section 2.6. According to (1), the most probable . 29

. 14
sequence of words can be determined as follows:

~̂w := argmax
~w

∑

~s∈S(~w)

P (~a,~s | ~w)P (~w) (27)

12 The order in which the Viterbi algorithm processes nodes of the trellis can be exactly achieved
by Dijkstra’s algorithm if we redefine lengths of non-null arrows as δ1(e) := δ(e) + NK, where K :=
N
∑

e δ(e), keeping δ1(e) := δ(e) for null arrows. As all paths ending in a given column of the trellis
use the same number of non-null arrows, it does not change the result (up to the known constant,
which can be subtracted afterwards), while at the same time we have enforced that the next column
will be processed only after the current one has been finished because K is greater than any possible
path thru the trellis. To enforce the right order within each column we can use the very same trick,
defining

δ2(x
t
a → xpb) := δ1(x

t
a → xpb) +K(ν(a)− ν(b)) (26)

where ν : S → N maps each state to the number of its row in the trellis (for the topmost state st we
have ν(st) = 0).
Besides the order, the update equation (25) is the same in both algorithms. As we have shown that

the Viterbi order is achievable by Dijkstra’s algorithm and that order does not change the result (up
to the known constants) we can drop Dijkstra’s heap machinery because actual values of δ(e) have no
influence on the processing order. Hence, the correctness of Dijkstra’s algorithm implies the correctness
of the Viterbi algorithm.
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where S(~w) is a set of all state sequences, each of which going inside HMM models of
the word sequence ~w. In trellis, (27) translates into13

~̂w := argmax
~w

∑

~e∈T (~a) and
〈L(e0),...,L(e#~e−1),R(e#~e−1)〉∈S(~w)

#~e−1∏

k=0

r(A(ek), R(ek) | L(ek)) (28)

where T (~a) is a set of all arrow paths in a trellis pruned by an acoustic evidence vector
~a. Note that the language model term P (~w) = P (w0)

∏
i P (wi|wi−1) is hidden in the

null arrows connecting word HMMs, and P (w0) are those null arrows going from the
initial state to every word in fig. 6.

Unfortunately, formula (28) is too complicated to be practically usable. For this
reason we will approximate it by changing the sum into a maximum operator. Since
the sequence ~e uniquely determines the sequence ~w, we can write the modified (28) as

~̂e := arg max
~e∈T (~a)

#~e−1∏

k=0

r(A(ek), R(ek) | L(ek)) (29)

Fig. 6. Bigram HMM constructed from
word models W1 . . .WN , model of op-
tional silence SIL and model for non-
speech sounds NOISE. All these mod-
els are connected by null arrows which
form complete bipartite graph denoted
as LM with probabilities set according
to the language model. SIL is also used
to model long silence in which case it
is followed by single output producing
arrow to keep null-arrows acyclic. Note
that HMM states in the LM part are su-
perfluous and are drawn only to increase
readability.

translating the best transition sequence ~̂e into a
word sequence ~̂w afterwards. Noticing that (29)
is exactly what the Viterbi search does, we can
say that we already have basic off-line14 recognizer
based on bigram language model.

When we have decided to change sum into
maximum while going from (28) to (29), we have
tactically assumed that alternative state sequences
of any given word sequence ~̂w would contribute to
the total probability in a uniform way so that the
best word sequence in formula (28) would likely be
the best one in case of formula (29), too.

This would hold exactly if we had only one
path thru each word and the instants of word be-
ginnings and word endings would be correctly given
to us in advance. This is certainly not the case but
we can still hope that alternative paths with non-
negligible probabilities will have their total prob-
ability mass somewhat proportional to the proba-
bility of the best path. In that case both methods
would be likely to find the same winning word se-
quence, especially if the acoustic front would pro-
vide features allowing for high confidence discrim-
ination between the phonemes.

13 #~s denotes the number of elements of vector ~s.
14 Whole sound ~a must be known before the recognition could begin.
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The Viterbi algorithm cannot be used with trigram language model directly. Hav-
ing a two-word history represented by an HMM state would force us to make copies of
all word models for each word. This would roughly square the number of HMM states,
making the model practically useless.
Nevertheless, the trigram model and even more sophisticated models can be ap-

proximated to some extent. When the Viterbi algorithm tries to extend the path from
a trellis node xtk using a formula (25) the distance γ

t
k has already achieved its final

value and, as such, it contains the length of the shortest path from x0s to x
t
k. This path

will not be changed by future computations and can be traced back to obtain the list
of its words. Now, all we have to do is to mark interword arrows as dynamic ones and
modify the Viterbi search in such a way that each time it encounters a dynamic arrow,
it extracts words of its history and uses them, in whatever language model we like, to
compute the transition probability of that arrow. Besides that, it proceeds the same
way as the original Viterbi search.
Unfortunately, it may happen that the correct word sequence remains undiscovered

by this algorithm. Let us see why this is so. What we would like to achieve by
incorporation of the general language model into the Viterbi search (29), is the following
optimization15:

~̂w := argmax
~w
max
~s∈S(~w)

P (~a,~s | ~w)P (~w) (30)

where P (~a,~s | ~w) is a probability of walking thru the trellis along the path ~s while
generating output sequence ~a, where only the contributions from intra-word arrows are
counted. The probability mass of inter-word arrows is subsequently managed globally
by a language model P (~w). In the case of the bigram language model, the Viterbi
algorithm applied on HMM graph from fig. 6 finds as probable solution as (30) with
bigram model P (~w) would return.
By use of dynamic arrows, we can account for arbitrarily long histories in P (~w)

but once we leave trellis node xtk, the winning state path from x0s to x
t
k becomes fixed

for that node and so becomes its associated word sequence. Hence, if there are two
different word sequences passing thru this node, such that the first one seems more
promising by the time we process the node xtk but the second one is a prefix of the
actual optimal path, the Viterbi algorithm with dynamic arrows will not discover it
because there is no way to revert its decision after the node xtk has been left. Note
that this situation can really arise. For example, consider two utterances ‘I scream
is a sentence’ and ‘Ice cream is cold’. Assume that both ‘I scream’ and ‘Ice cream’
are roughly equally probable, given the acoustic data. But the language model favors
the trigram ‘Ice cream is’. If the input utterance was the first one, recognized words
might be ‘Ice cream is a sentence’ or the last words might also be misrecognized, if the
language model assigned too low probability to ‘Ice cream is a sentence’. In either case,
the output would start by incorrect ‘Ice cream is’.

2.5.3 Computational Demands

For real world recognition tasks, even the approximation (29) is too demanding, should
it be computed directly by the Viterbi algorithm. For a vocabulary of 100k words, a
word being 4 phonemes long on average, we would need roughly 2.9M HMM states for

15 Which can be also obtained from (27) by turning the sum into the maximum.
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the model from fig. 6 where phonemes are modeled as 7 state HMMs of fig. 3. When the21 /

trellis is pruned according to an observation ~a, each state fans-out about two arrows on
average, except word-connecting states, each of which is fanning-out 100k null-arrows.
As there are averagely 7 · 4 = 28 inner states per every connecting state, we have about
3450 outgoing arrows per state, on average. For a standard front end with 100 Hz frame
rate, this would amount to 100 · 2.9 ·106 · 3450 = 1012 evaluations of (25) per second.26 /

Even if this would take only 10 CPU clocks, which is a very optimistic estimate, we
would need 10 000 GHz CPU to keep up with the real time. It is clear that we have to
do something radical to cut the computational cost down.

2.5.4 The Beam Search

This radical modification is known as the beam search and it works by abandoning
poor paths before investing too much effort into them. Specifically, during processing
of operation (25) we keep track of minimal γt+1m among those nodes we have modified.
Let us call it µt+1. Then, in the next step t1 = t + 1, we perform (25) only at those
trellis nodes xt1m for which γ

t1
m < Kµt1 , where K is a suitable constant. The effect of

excluding unpromising trellis nodes from computation (25) is the same as setting their
γ back to +∞.
Of course, if we do this too aggressively we may throw away the path we are looking

for. The aggressiveness can be controlled by constant K, which has to be tuned for
each specific application. K = 5 may be a good starting guess.
Note that in each step we have to walk thru all active states when selecting the

minimum and then again in the next step, when locating states below the threshold.
The speedup comes from two effects. First, by omitting certain nodes we don’t need
to examine their arrows, which can already save a lot of work as there can be many
arrows emanating from certain nodes. Secondly, by not examining these arrows we don’t
even reach unpromising nodes they point to, which effectively stops the avalanche of
uninteresting nodes, keeping the number of active nodes low.

2.6 Training

The language model can be trained independently from the acoustic model as was
already described in section 2.3. This section explains how to train the acoustic model17 /

from the sound recording and its phonetic transcription.
Standardly, the acoustics is trained usingMaximum Likelihood Estimation (MLE).

That is, having a time-aligned training data ~w and ~a and fixed HMM structure (such as
the one in fig. 6), we want to set the parameters of the model16 such that the probability
of the training data will be maximal. Formally, if we store all our model’s parameters in
vector ~λ, defining P~λ(~w & ~a) to be the probability the model assigns to the occurrence

of specific word string ~w and its acoustic representation ~a, we want to find ~λ which
would maximize this probability on our training data:

~λ := argmax
~λ

P~λ(~w & ~a) = argmax~λ
P~λ(~a | ~w)P (~w) = argmax

~λ

∏

k

P~λ(~ak | ~wk) (31)

16 That is transition probabilities r(a, x | y) in our case.
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The term P (~w) can be missing in the last formula because we consider the language
model as already trained, hence independent of parameters ~λ. Known time alignment is
denoted by subvectors ~ak and ~wk which make up original vectors ~a and ~w, respectively.
For instance, we might have the training data chunked (and therefore aligned) by
sentences or even by words. Although the training process can, in principle, find the
correspondence between words and acoustics it is better to guide it by this kind of
alignment. It makes training faster and less ambiguous, leading to slightly better
performance of the recognizer.

P~λ(~ak | ~wk) is a probability that the HMM in which we have visited the words
as specified in ~wk generates the output ~ak. Following the training text ~wk, we can
unroll the HMM model from fig. 6 into the model of fig. 7. Then, P~λ(~ak | ~wk) can be
computed simply as a probability that this new unrolled HMM generates the acoustics
~ak. Note that the parameters ~λ are shared among many arrows in the model. At
least every occurrence of a given phoneme uses the same set of parameters and there
may be even other shared parameters of some arrows, induced by explicit parameter
tying. This situation is particularly welcome in training because it makes estimation
of probabilities possible. For each parameter that has to be estimated, we (hopefully)
have several of its arrows in the unrolled HMM.
In principle, ~λ can be found by numerical search, such as conjugate gradients or

Monte-Carlo method. Moreover, there is much faster way for finding local maximum,
called Baum-Welsh algorithm. It works iteratively, starting with random parameters,
increasing probability of the data in each iteration. Usually 3 or 4 iterations are suf-
ficient. It is advisable to repeat the whole procedure from different starting points
to prevent us from stranding in poor local maximum. Alternatively, the Baum-Welsh
could be used as a local optimization subroutine in more involved Monte-Carlo method.
Baum-Welsh algorithm is a special case of so called expectation maximization (EM)

algorithm which can be proved not to decrease already achieved probability of the data.
For each and every arrow in the trellis of HMM from fig. 7, we compute how

many times on average it has been taken when ~a was generated. This is averaged
over all possible paths thru that trellis (starting in s0, ending in s1), according to
probabilities dictated by initial parameters ~λ and over all occurrences of each arrow in
the trellis (which happens due to tying). Then, new arrow probabilities ~ω are made to
be proportional to these averages.

Fig. 7. Hidden Markov Model for training text w1w2w3 composed of the respective word models
strung between boundary states s0 and s1. SIL model captures optional silence between the words.

2.6.1 Baum-Welsh Algorithm

Let E ⊆ S2 be the set of all arrows present in the HMM model from fig. 7, except those
that are used to connect words or phonemes — these have the probability of 1 since
there is only one way across the words in the training HMM. Functions A, L, R, and
P have the meaning defined in note 2.4.2. For each arrow e∈E, its tuft will be defined . 22

as a set of all arrows emanating from L(e), that is Y (e) := {x∈E | L(x) = L(e)}. This
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notation will be useful upon summing over all arrows in the tuft (which will be done
to ensure that the total probability sums to 1).
To tie parameters, we define the transition probabilities as P (e) := λM(e). The

mapping M : E → N from arrows to indexes specifies which arrows share their param-
eters by putting all arrows with the same index into single group. To be consistent, M
must satisfy the following property:

∀a, b∈E : M(a) =M(b) =⇒
∃ϕ : Y (a)→ Y (b) s.t. ϕ is bijective and ∀x∈Y (a) :M(x) =M(ϕ(x))

(32)

which means that once two arrows a and b are tied, then their tufts must be tied in the
same way. This ensures that

∑
e∈E:L(e)=L(x) P (e) =

∑
e∈Y (x) P (e) =

∑
e∈Y (x) λM (e) =

1 for all17 x∈M−1[{k}] once it holds for one such x∈M−1[{k}]. Note that it is allowed
to tie arrows e1 and e2 for which L(e1) = L(e2) and R(e1) = R(e2). This may be used
to tie acoustically similar arrows to artificially reduce effective number of symbols in
the acoustic alphabet for some phonemes.
After the algorithm gathers pseudo-counts ĉk in a way that will be explained later

on this page, new parameters ~ω will be finally assigned as

ωk :=
ĉk∑

e∈Y (m(k)) ĉM(e)
(33)

wherem : Rng(M)→ E is arbitrary function such thatM(m(k)) = k for ∀k∈ Rng(M).
Each pseudo-count ck has to contain how many times, on average, we traversed an

arrow belonging into k-th group if we used HMM to generate string ~a = 〈a0 . . . aN−1〉.
Formally:

ĉk :=
∑

e∈M−1[{k}]

N−1∑

t=0

P (e was taken to exit trellis node xtL(e) | ~a,~λ) (34)

It will be easier to compute P (e was taken to exit trellis node xtL(e),~a | ~λ). It differs
only in the multiplicative factor P (~a | ~λ) which is constant and cancels in (33) anyway.
Note that both null and non-null arrows are considered. These two cases have to be
worked out separately. Let us begin with a non-null arrow e = x

at→y. The probability
P (e,~a, t | λ) is

∑

~e∈Ts0
(〈a0...at−1〉)

(∏

i

P (ei)

)
η(x | R(e#~e−1)) r(at, y | x)

∑

~f∈T
s1

y (〈at+1...aN−1〉)

∏

j

P (fj) (35)

where the first sum is considered 1 when t = 0 and the last sum is considered 1 for
t = N − 1 iff y = s1. Otherwise it is treated as 0 for t = N − 1. Rewriting the first sum

17 M−1[A] is a preimage of set A, defined in 3.1.540 /
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according to (11) we get: . 23

∑

z

∑

~e∈T z
s0
(〈a0...at−1〉)

(∏

i

P (ei)

)
η(x | z) r(at, y | x)

∑

~f∈T
s1

y (〈at+1...aN−1〉)

∏

j

P (fj)

︸ ︷︷ ︸
βt+1(y)

(36)

Recalling (12) and (18), we have . 23
. 24

P (e,~a, t | λ) =
∑

z

πt(z) η(x | z) r(at, y | x)βt+1(y) = αt(x) r(at, y | x)βt+1(y) (37)

For a null arrow x→ y we can write P (e,~a, t | λ) as follows:

∑

w

∑

~e∈T w
s0
(〈a0...at−1〉)

(∏

i

P (ei)

)
η(x | w) r(ε, y | x)

∑

~f∈T
s1

y (〈at...aN−1〉)

∏

j

P (fj) (38)

where empty sums are treated as before. This boils down to:

P (e,~a, t | λ) = αt(x) r(ε, y | x)βt(y) (39)

All we need now is a recurrence for β. We have

βt(y) =
∑

~f∈T
s1

y (〈at...aN−1〉)

∏

j

P (fj) =
∑

z,w

η(z|y) r(at, w|z)
∑

~f∈T
s1

w (〈at+1...aN−1〉)

∏

j

P (fj) (40)

Empty sum gives βN (s1) = 1 and βN (x) = 0 for all other x. From (40) we have

βt(y) =
∑

z

η(z|y)
∑

w

r(at, w|z)βt+1(w) (41)

In an acyclic case, we can expand η(z | y) according to (19): . 24

βt(y) =
∑

w

r(at, w|y)βt+1(w) +
∑

z>y

∑

y<k≤z

η(z|k) r(ε, k|y)
∑

w

r(at, w|z)βt+1(w)

=
∑

w

r(at, w|y)βt+1(w) +
∑

k>y

r(ε, k|y)
∑

z>y

η(z|k)
∑

w

r(at, w|z)βt+1
︸ ︷︷ ︸

βt(k)

(42)

Now we have all that is needed for the algorithm. Let us state it here.
(1) Forward Pass: Compute αt(k) for each trellis node xtk, k∈S, t∈ [0, N − 1],
starting with α0(s0) := 1 and α0(z) := 0 for all z < s0.

α0(m) :=
∑

k<m

r(ε,m | k)α0(k)

αt(m) :=
∑

k

r(at−1,m | k)αt−1(k) +
∑

k<m

r(ε,m | k)αt(k)
(43)
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(2) Backward Pass: Compute βt(k) for each node xtk, k∈S, t∈ [0, N ], starting with
βN (s1) := 1 and βN (m) := 0 for all other m∈S.

βt(y) :=
∑

w

r(at, w|y)βt+1(w) +
∑

k>y

r(ε, k|y)βt(k) (44)

(3) Pseudocount Formation:

ck :=
∑

e∈M−1[{k}]

N−1∑

t=0

αt(L(e)) P (e) βZ(e,t)(R(e)) (45)

where Z(e,t)=t for null arrow e, and Z(e,t)=t+1 otherwise. For multiple time
aligned utterances (~a1, ~w1,~a2, ~w2, . . .) we have to construct the trellis and perform
steps (1) and (2) for each of them, then computing pseudocounts such that (45)
would add contribution from all respective trellises, perhaps weighting them some-
how to account for their varying acoustic relevance.

(4) Parameter Update: Compute new parameters from the pseudocounts as fol-
lows:

ωk :=
ck∑

e∈Y (m(k)) cM(e)
(46)

Finally, assign ~λ := ~ω and go to (1) until convergence.

2.6.2 Note During computation, the probabilities involved in α and β usually be-
come so small that they cannot be represented by standard floating point numbers.
Fortunately, αt and βt are linear in αt−1 and βt+1, respectively, hence we can normal-
ize whole column αt such that it could be represented with sufficient precision. This
can be done by obtaining the binary exponent wt of

∑
s αt(s) using standard C function

frexp() followed by multiplication of αt(s) with 2−wt with the ldexp() function for
each s∈S. Let us call this new normalized value α?t . As this is performed in every iter-
ation of (43) and we have α?t = αt

∏t
i=0 2

−wi as a result. Defining β?t = βt
∏N
i=t 2

−wi ,
we have α?tβ

?
t+1 = αtβt+1

∏N
i=0 2

−wi where the very small quantity
∏N
i=0 2

−wi cancels
in (46) so we can omit it altogether in (45), obtaining:

ck :=
∑

e∈M−1[{k}]

N−1∑

t=0

α?t (L(e)) P (e) B(t, e) (47)

where B(t, e) is 2wtβ?t (R(e)) iff e was a null arrow and β
?
t+1(R(e)) otherwise.

2.7 Word Error Rate (WER)

Now as we have trained our recognizer we want to know how good it really is. We may
play with it to get a general feeling but we will soon find out we need something that
could be automated, that would condense the performance into a single number. This
would allow us to quickly compare different recognizers (or different versions of single
recognizer), provided that we use the same training and testing data. This number
is called word error rate, or shortly WER, and it is based on so called Levenshtein
distance.
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2.7.1 Definition Levenshtein Distance

For two strings A and B, their Levenshtein distance is defined as minimal number of
single-character deletions, insertions and substitutions, which transform A into B.

Proof Let us proof that it is really a metric. It is obviously non-negative and sym-
metric (since we can read insertion backwards as deletions and vice versa) and once we
know the distance (thus the editing steps) from A to B and from B to C, we imme-
diately obtain an upper bound for a distance from A to C just by concatenating the
editing commands. Hence the triangle inequality also holds. Q.E.D.

2.7.2 Definition Word Error Rate

Given the recognizer’s output and true (human) transcript of the audio recording, we
define WER using the Levenshtein distance between output and true transcript applied
on words the following way:

WERα :=
S + αI + αD

N
(48)

where N is the length of the transcribed text, I is the number of inserted words, D the
number of deleted words and S is the number of substituted words. The purpose of
the parameter α is to balance costs of different kinds of errors18. Normally α = 1, but
α = 1/2 is also used.
The WER metric is quite coarse, completely ignoring severity of errors. This can

be partially alleviated. For instance, we might want a misrecognition of certain words
to be more costly. By computing S such that we will count σ(Ai, Bi) for each error
instead of 1, where σ is a symmetric (σ(a, b) = σ(b, a)) cost, we obtain the modified
Levenshtein distance (owing to the symmetry it is still a metric), which does the job.
This can be useful when we need WER to be more benevolent upon errors such as a
recognition of ‘cannot’ for ‘can’t’ and the like. It is especially helpful in case of Czech
language, where most words have several pronunciation variants19.
Non-symmetric σ would be also meaningful — imagine that the computer erro-

neously recognizes the command ‘edit the file’ as ‘delete that file’. Intuitively we feel
that this is worse error than if it was the other way round. But then, WER could not
be symmetric anymore and consequently N ·WER would not be a metric.
These extensions to WER are rarely used due to their arbitrariness and application

specificity. For these reasons, WER1 remains standard when comparing performance
of different systems.

2.8 Limitations of the Noisy Channel Setup

In this section, I present a list of various limitations I encountered. Some of them are
fundamental, stemming from the noisy channel model guided by formula (1), others are . 14

rather implementation-related — for example, by imposing HMM structure on P (A|W )
18 It cannot be generalized by introducing different coefficient β for deletions without losing symmetry.
19 For instance, the word ‘cautious’ can be uttered as ‘opatrný’, ‘vopatrný’, ‘vopatrnej’ or ‘opatrnej’,
where only the first form is considered proper for writing but very few people actually speak that way,
unless when reading what was previously written.
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we lose the ability to adequately model slowly changing long range dependencies in A
such as those present in prosody. However, it was our choice to use the HMM, the
formula (1) does not prescribe that, therefore this limitation is not fundamental.14 /

2.8.1 Too Coarse Notion of the Recognition Error

It can be proved that (1) minimizes the probability of an error, if the distributions
Pr (W ) and Pr (A|W ) are exactly known. However, an error is a situation when the
decoder returned Ŵ different from the true transcript W . It does not distinguish
severity of an error, not even the number of misrecognized words.
Therefore, we may feel that more detailed formula should be used which would

allow us to minimize WER directly, optionally allowing us to specify which words, or
even which word phrases, are the most costly to be interchanged (something like σ that
we have considered in section 2.7 for fine-grained WER).
This approach was tried in work [62]. Their goal function was so called Minimum

Bayes Risk Classifier :

δ(A) := Ŵ = argmin
W ′

∑

W

σ(W,W ′)P (W |A) (49)

which can be proved to minimize the expectation of the error cost function σ:

EP (A,W )
(
σ(W, δ(A))

)
(50)

provided that the distribution P (A,W ) (which is invoked in E) was known exactly.
Note that this is a generalization of the original objective (1) as it can be simulated by
(49) with20 σ(W,W ′) := (W=W ′) ? 0 : 1.
However, (49) is quite hard to implement and it was found in [62] that it brings

only 1.6% relative improvement on WER, when used with σ = WER1. So it seems
that it does not pay-off after all. The rationale for this behavior is that shortcuts used
in evaluation of (49) might have outweighed its benefits. Another explanation might
be that ordinary recognizers in fact do not use (1) precisely the way it is stated. They
do not run Viterbi algorithm over the entire audio file. Instead, it is run only locally
on a sentence or two, hence it can be thought of to minimize the probability of an error
in that sentence which is somewhat close to what (49) does with σ = WER1, especially
when the error rate is low.

2.8.2 Rigidity of the Language Model

Another fundamental limitation is that we assume P (W ) to be constant. But this
is not quite true in the real world. First of all, if we model it using N -grams, we
can hardly capture that the distribution is globally different for different people and
different topics so it will appear to us as changing on each topic change. By using
constant P (W ) whose N -gram model was averaged across all topics and speakers we
would lose performance. But this is merely an implementation issue and methods exist
to cope with it, namely the Latent Semantics Analysis [34] which combines trigrams
with overall distributions trying to capture topic related words and phrases.

20 Notation a ? b : c is borrowed from the C language and means b iff a was true; else it means c.
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The fundamental issue is that the language evolves. New words are being invented,
new phrases come in and out of fashion, etc. Hence P (W ) really depends on time.
It therefore seems that the ultimate speech recognition engine should be constantly
learning up-to-date distribution P (W ) from what it hears, departing from the original
formula (1) which assumed constant P (W ).
A small step in that direction is so called Cache Language Model. It accumulates

trigram counts from the text dictated so far into so called cache and interpolates
between the cache and big (general purpose) language model. It is based on observation
that an improbable word, once said, considerably raises its own probability to be said
again within certain time-window. This may be justified by imagining this word to be
a technical term, say a bearing. If we talk about something related to engines we might
use this word several times within a while, although it is quite improbable on average.
Nevertheless, this technique has to be implemented very carefully so that misrecognized
words would not enter the cache at all. Otherwise they could trigger an avalanche of
recognition errors later, as they spoil the combined language model.

2.8.3 Ignorance of Noise Fluctuations

Typical non-fundamental limitation of traditional ASR systems is that they assume
the noise in the channel to be constant, for which reason sudden non-speech sounds
usually confuse the recognizer which in turn makes an error which is then propagated
due to the language model, possibly leading to yet other errors. However, this can be
overcome within the noisy channel framework as will be explained in subsection 3.3.15. . 69

It is just not commonly used today.

2.8.4 Practical Suboptimality of the Decoder

Although (1) can be proved to minimize the probability of returning word transcript
containing an error, this holds only if we knew true distributions Pr (A|W ) and Pr (W )
exactly. As this is almost never the case,21 (1) is likely to be suboptimal classifier.
There are two practical workarounds addressing this problem (the two can even be
combined together). The first method works in recognition time, using slightly modified
version of classifier (1), while the second one, so called Maximum Mutual Information
Estimation (MMIE), is used during training to estimate P (A|W ) from the training data
in a way which typically improves performance of the recognizer over the MLE training
method of section 2.6. The two methods will be briefly described in the following two . 29

subsections.

2.8.5 Fudge Factor

It was found that the recognizer actually works better if it performs decoding governed
by the following formula

Ŵ := argmax
W

P (A|W )αP (W )1−α (51)

21 There are two reasons for this: First, from finite training data we cannot derive possibly infinite
information present in the distribution and secondly, by imposing model structure on the distribu-
tion, such as trigrams or HMMs, we deliberately reject details present in the training data that are
incompatible with assumptions of our model.
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instead of formula (1), where the fudge factor α is determined by a grid search, which14 /

involves training and testing whole recognizer for many values of α∈ (0, 1) with reason-
ably small step. The parameter α was about 1/17 during eighties in the IBM group22.
This can be interpreted such that the decoder prefers decisions from the language model
over the information the machine actually hears.

2.8.6 MMIE Training

Traditional MLE training tries to maximize P~λ(A|W ) on the training data by proper
selection of ~λ. However, in recognition time we are selectingW with maximal P~λ(W |A)
as the winning hypothesis. This brings an idea that it might be worthwhile to estimate
P~λ(A|W ) by maximizing P~λ(W |A) on the training data, instead23. Formally:

~λ := argmax
~λ

P~λ(W |A) = argmax
~λ

∏

k

P~λ(~wk | ~ak) = argmax
~λ

∏

k

P~λ(~wk &~ak)

P~λ(~ak)
(52)

where ~ak and ~wk are segmented training utterances. As the language model is trained
separately and does not depend on ~λ we can also write:

~λ := argmax
~λ

∑

k

log2
P~λ(~wk &~ak)

P~λ(~ak)P (~wk)
(53)

Formally, this is a cross mutual information (see 3.2.19), hence the name of the method.54 /

Rewriting it once more we get the following expression.

~λ := argmax
~λ

∏

k

P~λ(~ak|~wk)P (~wk)∑
v P~λ(~ak|~v)P (~v)

(54)

As we try to maximize it, we are in fact making the nominator high and denominator
low, on average over all training utterances. Since the nominator and each term of
the denominator is a quantity that guides the decoder (1), we can interpret (54) as
a discriminative training rule which tries to find ~λ to make the training text ~wk eas-
ily recognizable by (1) from the training sound ~ak, while penalizing other texts ~v as
transcriptions or ~ak. This should lower the probability of error if we assume that the
testing data will behave similarly in this respect. Note that ~v goes over all word-strings,
including ~wk. This makes the fraction ≤ 1. Perhaps the formula

~λ := argmax
~λ

∏

k

P~λ(~ak|~wk)P (~wk)∑
v 6=wk

P~λ(~ak|~v)P (~v) + βP~λ(~ak|~wk)P (~wk)
(55)

could work even better as the parameter β>0 could be tuned on the heldout data. Also
notice presence of the language model (which is supposed to be trained in advance) in

22 Personal communication with Fred Jelínek.
23 Note that the two cases are different. On recognition we maximize overW with ~λ fixed, while during
training it is the other way round. Optimal ~λ0 then does not guarantee that ∀T : P~λ0 (W |A) ≥ P~λ0

(T |A)
even on the training data. Nevertheless, it makes the inequality more ‘probable’ since λ0 can be
understood as a result of discriminative training.
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(54). It allows acoustics to be trained so that its free parameters would not be wasted
on sounds for which the context makes the next word almost determined.
This can be appreciated from yet another point of view. MLE training tries to

fit P (~ak|~wk) but what happens with P (~ak|~v) for v 6= wk is far less clear (due to the
limited amount of training data). MMIE, on the other hand, does not insist on ‘precise’
shape of P (A|W ) distribution and cares about classification boundaries instead. It is
believed that these boundaries are more immune to statistical mismatch between the
training and testing data. This can be somewhat justified by observing that a single
system of boundaries can be generated by infinitely many distributions P (W |A). In
regions where MLE training would end up with too flat P (W |A), leading to unreliable
estimate of the boundary, MMIE tracks the boundary by using actual word errors and
makes P (W |A) artificially steeper where confusable words occur.
Major problem of MMIE is the amount of computation it requires. First of all,

the sum in the denominator over all word-strings is prohibitive. Usually, it is replaced
by calculation (21) of probability of generating acoustic output A by a fully connected . 25

HMM — either unigram or bigram such as the one in fig. 6. However, this is still . 27

too hard and other optimizations must take place. For instance we can first train
the system by MLE, then let it recognize some held-out data in order to create word-
confusion lists and then use those list in MMIE training by building a lattice from
confusable words and the training text W . The lattice would represent all important
(probable) misrecognitions of A in a compact way (note that it must also include the
correct transcript W ). The word-lattice would then be transformed into an HMM by
replacing the words with their HMMmodels. Finally we would run (21) on the resulting
lattice-HMM to obtain an approximation of the denominator.
Second implementation problem is that there is no known analog of the EM-

algorithm 2.6.1. In [67] they use gradient descent search to find ~λ. They developed . 30

gradient formula which reuses Baum-Welsh pseudocounts (45) in the following way . 33

∂ P~λ(W |A)
∂ λp

= λ−1p

K∑

k=1

(
cp(~ak, ~wk)− cp (~ak,L(~wk))

)
(56)

where cp(~ak, ~wk) is a pseudocount of p-th parameter computed by (45) on the k-th
training segment, while the pseudocount cp (~ak,L(~wk)) uses the lattice-HMM described
above, instead of transcript-HMM of fig. 7. This gradient is then used to update ~λ in . 30

the following way
~λn+1 := ~λn + ρ∇P~λ(W |A) (57)

The step size ρ has to be selected empirically. For too small steps, the convergence is
slow, for large ones it might not converge at all. The search is started from ~λ1 obtained
by MLE training which is also used to initialize word confusion lists. These lists have
to be recreated once in a while as the training proceeds, using current P~λn

(A|W ).
According to [46], the relative WER improvement of the MMIE training over the

same system trained with MLE rule was about 18%. They also report substantial in-
crease of P (W |A) — the probability the model assigns to the training data W given
their acoustic evidence A — from about 10−190 for MLE trained system to about 0.07
observed in MMIE system. The system from [67] shows 30% relative WER improve-
ment. Both systems were small vocabulary ones, though.



3 Probability and Information
Theory

This chapter summarizes basic notions of information theory, mainly the entropy and
mutual information and some properties of noisy channels. Those familiar with the
subject are invited to skip it entirely.

3.1 Probability

To base the probability on solid ground I will list axioms which are assumed in this
book. They are equivalent to the Kolmogorov axioms restricted to countable domains.
This is also closely related to approach taken by Cox and Jaynes [38], who showed
how similar axioms can be derived from natural conditions we expect from a rational
reasoning that has to base its decisions on incomplete input information.

3.1.1 Definition Probability

Let Ω be countable set of basic events and1 let PrΩ : P(Ω)→ R be a function with the
following properties:

normalization Pr Ω(Ω) = 1
non-negativity ∀a ⊆ Ω : Pr Ω(a) ≥ 0

additivity ∀A ⊆ P(Ω), (∀a, b∈A, a 6= b : a ∩ b = ∅) :
PrΩ (

⋃
A) =

∑
a∈A PrΩ(a)

(58)

Then we call 〈Ω,Pr Ω〉 a probability space with the probability distribution Pr Ω on a
carrier set (or domain) Ω. Usually, we only write Pr instead of Pr Ω, if there is no
danger of confusion.

3.1.2 Definition Conditional Probability

For a probability space 〈Ω,Pr Ω〉 and sets A,B ⊆ Ω such that Pr Ω(B) > 0 we define the
conditional probability Pr Ω : P(Ω)×P(Ω)→ R as Pr Ω(A|B) := Pr Ω(A∩B)/PrΩ(B).
For fixed B, the pair 〈B,PrB〉, where PrB(A) := Pr Ω(A|B) for A ⊆ B, is also a
probability space according to definition 3.1.1. Often, we omit index Ω in Pr Ω(A|B).
3.1.3 Note The above definition tells us what is the probability of intersection. It is
PrΩ(A∩B) = Pr Ω(A|B) PrΩ(B), when Pr Ω(B) 6= 0, otherwise it is 0, since A∩B = ∅.
We can also use it to determine probability of a union of countably many events ai ⊆
Ω. All we have to do is to define bk := ak ∩

(
Ω \⋃k−1j=0 aj

)
getting Pr

(⋃∞
j=0 ak

)
=

∑∞
k=0 Pr (bk). This follows from additivity axiom as bks are disjoint. Probability of

intersection is then Pr
(⋂∞

j=0 ak

)
= Pr

(
Ω \⋃∞

j=0(Ω \ ak)
)
= 1− Pr

(⋃∞
j=0(Ω \ ak)

)
.

Now what does it mean practically. We consider Ω to be a space for the model of
the world we are interested in. For instance, if we wanted to talk about noisy channels,

1 ⋃A := {x | ∃X ∈A : x∈X} and P(X) stands for all subsets of X, that is P(X) := {A | A ⊆ X}.
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it would consist of all pairs of all finite strings over some fixed finite alphabet V —
formally Ω = V +×V +, where V + is a set of all non-empty strings over alphabet V , that
is V + =

⋃∞
k=1 V

k, where V 1 = V , V 2 = V × V , etc. Pr Ω({〈a, b〉}) would then mean
a probability that the input string a gets transformed into string b by the channel.
Once we have Pr Ω given, we can ask what is the probability of generating certain
output b0. That is, we are interested in all events containing b0 regardless of a. This
event corresponds to a set S = {x | ∃a : x = 〈a, b0〉 & a is a string over V }, and its
probability is therefore Pr Ω(S). Unfortunately, the set theoretic notation gets tedious
as we try to talk about more complicated things. For this reason, casual notation is
commonly used — instead of a set, we write formula ϕ(ω) into the parentheses of Pr .
The meaning of Pr (“ϕ(ω)”) is then Pr Ω({ω∈Ω | ϕ(ω)}). Our noisy channel example
would be written as Pr (“∃a : ω = 〈a, b0〉 & a is a string over V ”). In this new notation,
conjunctions and disjunctions correspond to intersections and unions, respectively. The
following definition makes even more compact notation possible.

3.1.4 Definition Random Variable

Let us be given a probability space Ω. Then the function X : Ω→ X is called a random
variable over the set X.

Often, the domain of probability space can be written as a Cartesian product, such
as Ω = X1 ×X2 × · · · ×Xn. The notable random variables Xi : Ω→ Xi are projections
from Ω to Xi. In our example, where Ω = V +×V +, we have projections A(〈a, b〉) := a
and B(〈a, b〉) := b. This allows us to write Pr Ω({x | ∃a : x = 〈a, b0〉 & a∈V +}) as
PrΩ(“B(ω) = b0”), or even more shortly as Pr (B = b0), which is the standard notation.
In this section, I will stay with the rich notation using quotation marks and ω to avoid
confusion. But in the rest of the book I will use standard notation in its full power.
Random variables are especially useful when we want to describe more involved

properties of sets. For example let l : V + → N be a function returning the length of
the string. Simply by writing Pr (“l(B(ω)) < l(A(ω))”) we mean a probability that the
output string will be shorter than the input one.

3.1.5 Definition Image and Preimage of a Set, Rng, Dom

For sets A and B and function F : A → B, F [A] stands for an image of a set A ⊆ A,
being defined as F [A] := {F (a) | a∈A} and F−1[B] for a preimage of B ⊆ B, which
is defined as F−1[B] := {a∈A | F (a)∈B}. Also, I shall write Rng(F ) for F [A] and
Dom(F ) for A.

3.1.6 Observation Let us have a probability space 〈Ω,Pr Ω〉 and a random variable
X : Ω→ X, s.t. Rng(X) = X. Let us define Pr X : P(X)→ R in the following way:

Pr X(M) := Pr Ω ({ω∈Ω | ∃m∈M : X(ω) = m}) = Pr Ω
(
X−1[M ]

)
(59)

Then the pair 〈X,Pr X〉 is a probability space, too.

Proof Evident. Q.E.D.

3.1.7 Note The space 〈X,Pr X〉 will be denoted as 〈X[Ω],PrX[Ω]〉.
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3.1.8 Note It should be explained what is meant by the notation Pr (w0 | w1, w2)
used in (4). Intuitively, it means the probability of encountering w0 preceded by w1, w219 /

for a randomly selected trigram from the text. So, casually written2 it should be

Pr∆(“∃y, z : Tk(ω) = 〈w0, y, z〉 & k∈{0, . . . , l(ω)− 3}” |
“∃x : Tk(ω) = 〈x,w1, w2〉 & k∈{0, . . . , l(ω)− 3}”)

(60)

where ∆ = V +, l(s) maps the string s to its length and Tk(s) is a random variable
extracting k-th trigram from s. Unfortunately, this is not quite correct. The problem
is that k is left unquantified in the formula. Simply adding ∃ quantifier does not lead
to the correct result because it does not account for multiple occurrences of a trigram
in a string.
To illustrate the heart of the problem let us consider the following probability

space: Γ = {〈0, 0〉, 〈0, 1〉, 〈1, 0〉, 〈1, 1〉} with Pr Γ({γ}) = 0.25 for ∀γ∈Γ. Obviously, the
probability of getting 0 after we randomly select an element of Γ followed by a random
selection of the position within it is 0.5. But computing it as Pr Γ(“∃k : Ck(γ) = 0”),
where Ck selects k-th component of γ, gives 0.75. This is because the selection of k is
also a random event but Γ is too coarse to represent it. A remedy would be to define
new probability space 〈Γ1,Pr Γ1〉 as Γ1 := Γ× {0, 1} and Pr Γ1({γ}) := 0.5Pr Γ(G(γ)),
where G is a random variable extracting the first part from elements of Γ1. Then the
probability we are after could be written as Pr Γ1(“CS(γ)(G(γ)) = 0”), where S is a
random variable extracting second part from γ∈Γ1.
Using this trick we can define ∆1 := ∆ × N, distributing the original probability

among possible selections uniformly: Pr∆1({〈ω, k〉}) := Pr∆(ω)/l(ω) for k < l(ω) and
0 otherwise. Then, let us define trigram-extracting random variable T : ∆1 → V 3

as T ({〈ω, k〉}) := 〈Uk(ω), Uk−1(ω), Uk−2(ω)〉, where Uk(s) extracts k-th letter from
the string (being defined arbitrarily for k < 0). The probability we were originally
interested in is then

Pr∆1(“S(ω) ≥ 2 & ∃y, z : T (〈G(ω), S(ω)〉) = 〈w0, y, z〉” |
“S(ω) ≥ 2 & ∃x : T (〈G(ω), S(ω)〉) = 〈x,w1, w2〉”)

(61)

We can easily return from the new space to the old one via a random variable G if we
use 3.1.6, obtaining 〈∆,Pr∆〉 = 〈G[∆1],PrG[∆1]〉.
Alternatively, we could enrich the alphabet V by ‘·’-character to build a probability

space 〈∆2,Pr∆2〉, where ∆2 := (V ∪{·})+, and Pr∆2(ω) := Pr∆(δ)/l(δ), for δ∈∆ and
all ω generated from δ by placing dot at every possible position in the string except the
last one3. Pr∆2(ω) := 0 for all other ω. The probability Pr (w0, w1, w2) then means

Pr∆2(“∃k : Tk(ω) = 〈w0, ·, w1, w2〉”) (62)

where the random variable Tk : ∆2 → (V ∪ {·})4 extracts 4 characters from a string
at the offset k, returning · for characters which would lie outside the string. Using
a random variable G which removes the dot from the string we could go back to the
original space ∆ by 3.1.6 as before.

2 Pr Ω(“ϕ(ω)” | “ψ(ω)”) stands for Pr Ω({ω∈Ω | ϕ(ω)} | {ω∈Ω | ψ(ω)}).
3 For instance, in case of space Γ we would assign non-zero probability only to strings: ·00, 0·0, ·01,
0·1, ·10, 1·0, ·11 and 1·1.
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3.1.9 Definition (Conditional) Expectation Value

For a probability space 〈Ω,Pr Ω〉, an event E ⊆ Ω such that Pr Ω(E) > 0 and random
variable X : Ω→ R ∪ {∞,−∞} we define the conditional expectation value as

EΩ(X|E) :=
∑

x∈Rng(X)

xPrΩ(“X(ω) = x” | E) (63)

where we take ∞ · 0 as 0, if it appears in the sum. The sum is meant to be defined
only if it converges to the same number, regardless of reordering (i.e. if it is absolutely
convergent). If it diverges (regardless of reordering) it is considered as +∞ or −∞.
Otherwise it is undefined. For E = Ω, we write EΩ(X), calling it the expectation value.
We can write E(X) when Ω is clear from the context. We can also colloquially write
EP (ω)(X(ω)) instead of EΩ(X), as it was used in (50). . 35

3.1.10 Observation Expectation could have been defined the following way as well.

EΩ(X|E) =
∑

ω∈Ω

X(ω) PrΩ({ω} | E) (64)

where again ∞ · 0 := 0.
Proof PrΩ(“X(ω) = x” | E) = Pr Ω({ω|X(ω) = x}|E) =

∑
ω∈Ω,X(ω)=x PrΩ({ω}|E).

Plugging this into (63), we get (64). Q.E.D.

3.1.11 Note E is linear (E(X + αY ) = E(X) + αE(Y )), monotonic (X < Y implies
E(X) < E(Y )) and satisfies triangle inequality (|E(X)| ≤ E(|X|) for any X). Generally,
however, E(X ·Y ) 6= E(X)E(Y ). If the equality holds, we call X and Y uncorrelated.
3.1.12 Definition Expectation Conditioned by Random Variable

Let us be given a probability domain Ω and random variables X,Y : Ω→ R∪{∞,−∞},
such that Pr (“Y (ω) = y”) > 0 for all y∈ Rng(Y ). Then, the partial function EΩ(X|Y ) :
Rng(Y )→ R ∪ {∞,−∞} is defined in the following way4:

EΩ(X|Y ) := λy.EΩ(X | “Y (ω) = y”) (65)

3.1.13 Note According to 3.1.6, EΩ(X|Y ) is a random variable in probability space
〈Rng(Y ),PrRng(Y )〉, if the expectation converges for each y∈ Rng(Y ). It is an easy
exercise to check that ERng(Y ) (EΩ(X|Y )) = EΩ(X) then.
3.1.14 Definition Convex Function

A function f : D → R, D ⊆ R, is said to be convex over an interval J ⊆ D iff for any
a, b∈J s.t. a 6= b and λ∈ (0, 1) the following holds:

f(λa+ (1−λ)b) ≤ λf(a) + (1−λ)f(b) (66)

That is, if the function plot always lies below any chord. Function f is called convex
iff it is convex on Dom(f) = D which must be an interval then. The function is called
strictly convex iff it is convex and an equality never occurs in (66). Function f is
concave iff −f is convex.
4 λx.T , where T is a term with free variable x, denotes so called lambda abstraction that is an
anonymous function x 7→ T (x). This comes from the lambda calculus but here it will be used merely
as a notation shortcut. So, instead of writing “let X(ω) := 1+ l(ω), consider E(X)” we can use
more compact “consider E(λω.(1+ l(ω)))”. Note that the lambda is lexical part of the construct and
should not be confused with other occurrences of lambda designating a variable. For instance, the term
λ+λλ.(λ+1) is valid and equivalent to λ+λx.(x+1), where the first occurrence of lambda is a variable.
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3.1.15 Lemma Convex function f on an open interval J is continuous.

Fig. 8.

Proof Assume for contradiction that we have x0∈J and ε0>0
such that ∀δ>0 : ∃c∈J, |x0 − c| < δ : |f(x0)− f(c)| ≥ ε0. Take
a, b∈J s.t. a < x0 < b and select δ0 such that α < x0 − δ0 and
x0 + δ0 < β, where α is an intersection of the line-segment going
from point a to x0 with y = f(x0)− ε0 and β is analogical point
for segment from x0 to b (see fig. 8). By an assumption, there is
a point c in a δ-belt which lies off the ε-belt.

Now it is a matter of tedious but simple checking that all
12 possible configurations5 lead to the situation where we can
identify f(c) or f(x0) to be lying above a chord whose endpoints
were suitably chosen from the set {a, b, x0, c}, which would be in
contradiction with convexity. Hence the function must have been continuous.

Q.E.D.

3.1.16 Note A convex function on a closed interval may fail to be continuous in its
endpoints.

3.1.17 Observation Function f : J → R whose ∂ 2f/∂ x2 exists, being positive on
interval J , is strictly convex on J .

Proof Take g(λ) := f
(
λa+ (1−λ)b

)
− λf(a)− (1−λ)f(b) for a, b∈J s.t. a<b. Then

g′′(λ)>0 for λ∈ (0, 1) and all we have to prove is that g(λ)<0. From Rolle’s theorem
there is λ0∈ (0, 1) such that g′(λ0) = 0. Moreover, g′ is increasing on J since g′′ > 0.
By integrating and back-integrating g′′ from λ0 we obtain g′(0)<0 and g′(1)>0. This
makes g(λ)< 0 on (0, η) ∪ (1 − η, 1) for small enough η > 0. If there was λ1 for which
g(λ1)> 0, there would also be 0< λ2 < λ1 such that g(λ2) = 0 because g would be a
continuous function of changing sign and it would have to intersect zero as such. But
once g would get above zero it could not get back to g(1) = 0 (note that λ0 <λ2 and
g′(λ2)>0 as g is decreasing on (0, λ0) and increasing on (λ0, 1)). Thus g is negative on
whole (0, 1). Q.E.D.

3.1.18 Theorem (Jensen’s Inequality) For a probability space 〈Ω,Pr Ω〉, an in-
terval D ⊆ R ∪ {−∞,∞}, random variable X : Ω → D and convex function f : D →
R∪{−∞,∞} the following holds6, provided that both EΩ(X) and EΩ(f ◦X) are defined
(finite or infinite) and that f is continuous in the endpoints of D if there are any.

EΩ(f ◦X) ≥ f(EΩ(X)) (67)

Proof For more compact notation, let us write xk instead of X(ωk) and λk for
PrΩ({ωk}), where Ω = {ωk | k∈N, k ≤K}. Note that K=∞ for infinite space Ω.
Obviously λ• = 1 and we have to prove that for each K ∈N ∪ {∞}:

∀xk∈R, λk∈R s.t. λ• = 1 and λk ≥ 0 :
K∑

k=0

λkf(xk) ≥ f

(
K∑

k=0

λkxk

)
(68)

5 a and b above and below the ε-belt make up 3 cases (for which f could be convex), while c
above/below the ε-belt and on the left/on the right of x0 makes another 4 cases.
6 ◦ stands for function composition, defined as (A ◦ B)(x) := A(B(x)). Nevertheless, colloquial
notation EΩ(“f(X)”) instead of logical EΩ(f ◦X) is more common.
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For finite K, it can be proved by induction. For K = 1 this obviously holds, for K = 2
this in fact says that f is convex, which it is. Let the theorem hold for K − 1 ≥ 1 and
let ωk be sorted such that λ0 6= 0. Defining σ :=

∑K−1
k=0 λk = 1− λK we have

K∑

k=0

λkf(xk) = λKf(xK)+(1−λK)
K−1∑

k=0

λk
σ
f(xk) ≥ λKf(xK)+(1−λK)f

(
K−1∑

k=0

λk
σ
xk

)

(69)
Where the induction hypothesis could be used thanks to

∑K−1
k=0 λk/σ = 1. Now, using

convexity and canceling σ with 1− λK , we obtain (68). Note that σ 6= 0 since λ0 6= 0
due to sorting.
For infinite Ω, we have to note that limN→∞

∑N
n=0 λn = 1. Consequently

lim
N→∞

N∑

k=0

λkf(xk) = lim
N→∞

N∑

k=0

λk∑N
n=0 λn

f(xk) (70)

Now we can use finite version of the theorem to bound (70) from below by

lim
N→∞

f

(
N∑

k=0

λk∑N
n=0 λn

xk

)
= f

(
lim
N→∞

N∑

k=0

λk∑N
n=0 λn

xk

)
= f

(
∞∑

k=0

λkxk

)
(71)

where f ’s continuousness due to 3.1.15 allowed the limit to be moved inside f .
Q.E.D.

3.1.19 Definition (Conditional) Independence

For probability space 〈Ω,Pr Ω〉 and random variables A1, . . . , An, s.t. Ai : Ω→ Ai, we
say that variables Ai are conditionally (mutually) independent given an event E ⊆ Ω,
writing ⊥⊥(A1, . . . , An | E), iff for any a1∈A1, . . . , an∈An

PrΩ(“A1(ω) = a1 & · · ·& An(ω) = an” | E) =
n∏

k=1

PrΩ(“Ak(ω) = ak” | E) (72)

Note that (72) in fact means Pr Ω
(⋂n

k=1A
−1
k [{ak}] | E

)
=
∏n
k=1 PrΩ

(
A−1
k [{ak}] | E

)
.

For E = Ω, we just say that they are independent and write ⊥⊥(A1, . . . , An). In case
of n = 2 we can write A1⊥⊥A2 as well. We call variables Ai conditionally (mutually)
independent given random variable C : Ω → C and write ⊥⊥(A1, . . . , An | C) iff they
are independent given all events C−1[c] = {ω∈Ω | C(ω) = c} with non-zero probability
PrΩ(C−1[c]), where c∈C[Ω].
3.1.20 Note A⊥⊥B | C means that for each c∈C, random variables A and B become
independent of each other when restricted to those events ω for which ω∈C−1[c].

3.1.21 Note It can easily happen that A⊥⊥B | E holds but A⊥⊥B | Ω \E does not.
3.1.22 Note Mutual independence implies pairwise independence (that is Ai⊥⊥Aj
for ∀ i 6= j) but not vice versa (consider space Ω = {001, 010, 100, 111} with uniform
distribution and three random variables Ak each extracting k-th letter of the string).

3.1.22 Note Independence implies uncorrelatedness but uncorrelatedness does not
imply independence, in general.
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3.1.24 Observation Let us be given a probability space 〈Ω,Pr Ω〉 and random vari-
ables A1, . . . , An, s.t. Ai : Ω→ Ai, and an event E ⊆ Ω. Then ⊥⊥(A1, . . . , An|E) iff for
any A1 ⊆ A1, . . . ,An ⊆ An :

PrΩ(“ ∀k : Ak(ω)∈Ak” | E) =
n∏

k=1

PrΩ(“Ak(ω)∈Ak” | E) (73)

Proof “(73)⇒ (72)” is trivial. Let us assume (72). We can write the probability p :=
PrΩ(“ ∀k : Ak(ω)∈Ak” | E) as PrΩ(M |E), where M = ⋂nk=1

⋃
a∈Ak

{ω∈Ω | Ak(ω) =
a} = ⋃~a∈ ~AW (~a), where W (~a) = {ω∈Ω | ∀k : Ak(ω) = ak}. Since W (~a) ∩W (~b) = ∅
whenever ~a 6= ~b, we can use additivity axiom, getting p =

∑
~a∈ ~A Pr (“∀k : Ak(ω) =

ak” | E). Now, using assumption (72), we get p =
∑
~a∈ ~A

∏n
k=1 Pr (“Ak(ω) = ak” | E) =∏n

k=1

∑
ak∈Ak

Pr (“Ak(ω) = ak” | E) =
∏n
k=1 PrΩ(“Ak(ω)∈Ak” | E). Q.E.D.

True values of probability distribution Pr are usually unreachable to us7. There
are at least two practical methods to deal with this. Both postulate that certain
random variables definable in a probability space are independent (or conditionally
independent). This is inevitable — otherwise the training data would be too sparse
to say anything useful about Pr Ω : P(Ω) → R. We have already encountered this in
section 2.3, where N -gram models were introduced.17 /

The first method which is mainly followed in this book goes along the lines of
‘frequencist approach’, as it tries to estimate Pr Ω from the training data. Although
there are many methods achieving that, starting with maximum likelihood equipped
with various smoothing algorithms and ending with maximum entropy methods, they

7 Except in cases where Ω would represent outputs of deterministic machine which generates ob-
servable output x∈Ω, based on a hidden N -bit number, according to the rules that are known to us.
Each time the machine is used, it also changes its hidden input number such that it will appear again
only after all other numbers have been used. So, if we come to the machine in an unknown state, not
knowing its previous output, we can expect specific result x with probability Pr Ω({x}), for if we had
2N such machines each one being started in different state, we would observe that exactly 2N Pr Ω({x})
machines returned x. This is also general (albeit slow) method how the function Pr could be exactly
determined from the machine’s description.
The above example can be reformulated on probability space Γ = {0, 1}N ×Ω, where the first part

represents the input number y. The probability Pr Γ({x}|{y}) would be 1 only for x computed by a
machine from the input y∈{0, 1}N and 0 for otherwise. The observable probability would then be

Pr Ω({x}) =
∑

y∈{0,1}N

Pr Γ({x}|{y}) Pr Γ({y}) (74)

where Pr Γ({y}) was uniform in the above example.
Note that once we have computed Pr Ω, we do not need to know internal structure of that machine

anymore. In fact, different machines can lead to identical Pr Ω. They can differ not only in the way
exactly how they compute x from y but even the results of their computation can differ, as long as
value of (74) does not change. This allows us to abstract from detailed properties of the machine,
treating many of them at the same time.
Note that there are only countably many machines, while there are uncountably many possible

functions Pr , therefore majority of probability spaces are really unreachable for us. But they can be
approximated to arbitrary precision if Ω was finite.
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all have one thing in common. They compute their estimates from frequencies of
occurrence of certain events in the training data8.
The other method is ‘Bayesian’ in its nature. It assumes that Pr itself is random,

meaning that both training and testing data were drawn from some fixed distribution
Pr , which was randomly selected from distribution of Pr -distributions before. As the
set of all probability distributions is uncountable, our simple probability axioms cannot
be used here and we should work in full Kolmogorov system9. This method elegantly
side-steps the need for smoothing and, theoretically, it also allows to incorporate general
prior knowledge about the distribution, such as the Zipf’s law22. Nevertheless, it has . 64

its own problems, too. First of all it leads to more complicated formulas requiring
substantially larger computational power, and secondly it is more sensitive to Pr ’s
violation of postulated independencies. It is explored to some extent in my previous
work [42, 43].

3.2 Entropy and Information

Let us begin with formal definitions, followed by an explanation 3.2.12 of its meaning . 49

in the real world.

3.2.1 Definition Entropy

For a probability space 〈Ω,Pr Ω〉 we define its entropy as follows.

H〈Ω,PrΩ〉 :=
∑

ω∈Ω

PrΩ({ω}) log2
1

PrΩ({ω})
= EΩ(− log2 ◦P ) (75)

where random variable10 P (ω) := Pr Ω({ω}) and we treat 0·log2(0) as 0, in accordance
with 3.1.9. It is often useful to speak about the entropy of random variable. For random . 42

variable X : Ω→ X it is defined as an entropy of subspace 〈X[Ω],PrX[Ω]〉, which leads
to the following formula, by applying 3.1.6 in (75). . 40

HΩ(X) := H〈X[Ω],PrX[Ω]〉 = −
∑

x∈Rng(X)

PrΩ
(
X−1[{x}]

)
log2

(
PrΩ

(
X−1[{x}]

))
(76)

For X={x1 . . . xn}, we can write H(X) as H(p1, . . . , pn−1), where pi := Pr (“X=xi”).
3.2.2 Note The entropy is measured in units called bits. Bit stands for BInary digiT
and it also denotes single place in computer memory, capable of holding 0 or 1. As such,
it is used as a unit of memory capacity. Theorem 3.2.13 will reveal close connection . 50

between these two meanings.

8 To avoid confusion with true probability Pr Ω, I will write P for the frequency-based estimate.
〈Ω, P 〉 is also a probability space, hopefully only slightly differing in values of P from 〈Ω,Pr Ω〉.
9 I will not go into it here, to save space. See [38] for its axioms. In our countable system we can
at least make arbitrarily close approximation of it by representing the distribution of distributions by
sufficiently dense countable grid of points in the space of all possible distributions Pr .
10 That it depends on Pr Ω should not confuse us. Definition 3.1.4 does not forbid that. . 40
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3.2.3 Definition Joint Entropy

Entropy HΩ(X,Y ) of a pair of random variables is defined as an entropy HΩ(X × Y )
of random variable X × Y : Ω→ X × Y, where (X × Y )(ω) := 〈X(ω), Y (ω)〉.

3.2.4 Definition Conditional Entropy

Entropy of random variable X conditioned by an event E 6=∅, E ⊆ Ω is:

HΩ(X|E) := −
∑

x∈X[Ω]

PrΩ(“X=x” | E) log2 PrΩ(“X=x” | E) (77)

Entropy conditioned by a random variable Y : Ω→ Y is defined the following way.

HΩ(X|Y ) :=
∑

y∈Y [Ω]

PrΩ(“Y =y”)HΩ(X | “Y =y”)

=−
∑

x∈X[Ω]
y ∈Y [Ω]

PrΩ(“X=x & Y =y”) log2 PrΩ(“X=x” | “Y =y”)
(78)

where the sum ranges only over those y for which Pr Ω(“Y =y”) > 0.

3.2.5 Lemma (Chain Rule) HΩ(X,Y ) = HΩ(X|Y ) +HΩ(Y ).

Proof Expanding HΩ(X|Y ) +HΩ(Y ) we get:

−
∑

x∈X[Ω]
y ∈Y [Ω]

PrΩ(“X=x & Y =y”) log2 PrΩ(“X=x” | “Y =y”)

−
∑

x∈X[Ω]
y ∈Y [Ω]

PrΩ(“X=x & Y =y”) log2 PrΩ(“Y =y”)

=−
∑

x∈X[Ω]
y ∈Y [Ω]

PrΩ(“X=x & Y =y”) log2 PrΩ(“X=x & Y =y”) = H(X,Y )

(79)

Q.E.D.

3.2.6 Note Last lemma can be generalized into H(X,Y |Z) = H(X|Y, Z)+H(Y |Z).

3.2.7 Note For random variables s.t. ⊥⊥(X1, X2 . . . Xn) we have

HΩ(X1, X2 . . . Xn) =
n∑

k=1

H(Xi) (80)

which follows from 3.2.5, since HΩ(X|Y ) = HΩ(X) for X⊥⊥Y .

3.2.8 Observation H(f(A)) ≤ H(A) for any deterministic function f : A → B.

Proof Knowing A, f(A) does not bring any new information, hence 0 = H(f(A)|A) =
H(f(A), A)−H(A) ≥ H(f(A))−H(A), therefore H(A) ≥ H(f(A)). Q.E.D.
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3.2.9 Note The entropy H〈Ω,PrΩ〉 of a distribution with finite carrier set Ω is always
bounded from above by log2#Ω. This follows from Jensen’s inequality used on a
concave function (in which case the inequality is reverse than in 3.1.18). Taking a . 43

random variable P coming from definition 3.2.1 and concave function log2 we obtain:

H〈Ω,PrΩ〉 = EΩ
(
λω. log2

1
P (ω)

)
≤ log2 EΩ

(
1
P

)
= log2

∑

ω ∈Ω
P (ω)6=0

P (ω)
P (ω)

= log2N (81)

where N is the number of basic events ω∈Ω with non-zero probability. This upper
bound is achieved by a uniform distribution.
For infinite Ω, the entropy may be infinite. An example distribution can be con-

structed by first dividing the [0, 1]-interval into infinitely many pieces of probability
mass qn := 6π−2n−2 (note that q• = 1), followed by subdividing each segment to 2n

equal parts. This leads to the following distribution

pm,n := 2−nqn = 6π−2n−22−n (82)

where — formally — Ω would consist of all integer pairs 〈m,n〉, such that n > 0 and
0 < m ≤ 2n. The entropy is then

−
∑

n

2n∑

m=1

6
π2
n−22−n log2

(
6π−2n−22−n

)
=
∑

n

6
π2
2nn−22−n

(
n+ 2 log2 n− c

)
(83)

Up to a constant, this boils down to
∑
n n

−2(n + 2 log2 n − c) where already the first
term in the parenthesis causes the series to diverge, a fate which the constant c cannot
save us from. On the contrary, the following observation shows that the entropy can
be finite even for infinite distributions.

3.2.10 Observation The entropy is finite for probability space 〈Ω,Pr Ω〉 for which
there exists an ordering of basic events ωn such that there are constants α > 0 and
c > 0 s.t. for all n∈N \{0} we have

PrΩ(ωn) ≤ c n−1−α (84)

Proof Obviously −x log2 x < 1 for x∈ (0, 1]. Then also −xβ log2 xβ < 1 for any
β > 0, which leads to − log2 x < β−1x−β . Writing pn for PrΩ(ωn), the entropy is

−
∑

n

pn log2 pn ≤ β−1
∑

n

pnp
−β
n ≤ β−1c

∑

n

n−(1+α)(1−β)c1−β (85)

where the sum is finite whenever (1 + α)(1 − β) > 1, which could have been achieved
by choosing sufficiently small β in the beginning. Q.E.D.
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3.2.11 Lemma For random variable N : Ω→ N\{0} on a space 〈Ω,Pr Ω〉 which has
a finite entropy and expectation, we have:

HΩ(N) < 1 + 2 log2 EΩ(N) (86)

Proof Let pk denote Pr Ω
(
N−1[{k}]

)
. Letm := {k∈N\{0} | pk > 0}. Using Jensen’s

inequality on convex function − log2 we get:

∑

k∈m

pk(− log2)
k−2

2pk
≥ − log2

∑

k∈m

k−2pk
2pk

≥ log2
1∑∞

k=1
1
2k

−2
> log2

2

1 +
∫∞

1
x−2dx

(87)

The denominator is 2. Hence (87) ≥ 0, leading to−∑∞
k=1 pk log2 2pk <

∑∞
k=1 pk log2 k

2.
From Jensen’s inequality (used reversely on concave function log2) we finally obtain
HΩ(N) < 1 + 2

∑∞
k=1 pk log2 k ≤ 1 + 2 log2 EΩ(N). Q.E.D.

3.2.12 Relationship Between Entropy and Coding

Let us have an information source transmitting messages of Ω in accordance with a fixed
probability distribution Pr Ω. Let’s assume that recipients know the distribution Pr Ω
and that there is a different recipient for each message, so they cannot take advantage
of statistical dependence of consecutive messages. For this reason we can as well assume
the messages to be independent.
Now, the question is how to encode these messages in a binary alphabet, such that

the source would use the least possible number of bits in the long run of messages (or
in the limit, which frees us from definition of what we mean by long).

Fig. 9. Arithmetic Coding. Dots denote
possible codewords. The left point of the
bottom interval is the code of message B.

One possible solution is the arithmetic cod-
ing: Let us represent the messages as intervals on
a [0, 1) line, the length of each interval being equal
to the probability of the respective message to be
transmitted, as depicted in fig. 9. This picture is
known both to the sender and to the receiver.
The selected message is then represented by

an N -bit binary number x, which lies in its inter-
val. As x is less than 1, only the bits after the point are transmitted and counted in N .
Moreover, we want the whole interval [x, x+ 2−N ) to reside in the message’s interval.
This would ensure that the decoder will be able to detect the end of bitstream even if
there would be some extra bits after the encoded message.
So, the encoder has to find the shortest x, being N bits long, such that [x, x+2−N )

would fit inside the interval associated with the message we want to send. The decoder
then reads x bit by bit, incrementing its N for each read bit and updating its interval
to [xN , xN+2−N ), where xN is the value of x read so far. Once this fits into an interval
of certain message, the decoder knows that it has decoded entire message and which
message it was.
Let us now count how many bits per message will the sender need on average,

that is EΩ(N), where N : Ω → N is random variable assigning to each message ω∈Ω
the length of its codeword. Each N -bit codeword occupies an interval of length 2−N .
On one hand, it must fit into the message’s interval, that is 2−N(ω) ≤ PrΩ({ω}). On
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the other hand, we don’t want to waste bits by making 2−N unnecessarily tiny. By
setting N(ω) := d− log2 12 PrΩ({ω})e there will always be N -bit number xN such that
[xN , xN +2−N ) fits into message’s interval. As it implies11 N(ω) < − log2 14 PrΩ({ω}),
we have:

log2
PrΩ({ω})
4

< −N(ω) ≤ log2 PrΩ({ω})

− log2 PrΩ({ω}) ≤ N(ω) < 2− log2 PrΩ({ω})
(88)

Now, taking expectation and using its monotonicity, we obtain

H〈Ω,PrΩ〉 ≤ EΩ(N) < H〈Ω,PrΩ〉 + 2 (89)

which means that the length of the arithmetic code will closely match the entropy. In
the following theorem there will be shown that there is no code which would achieve
EΩ(N) shorter than HPrΩ . These findings would justify the definition of entropy as a
measure of average number of bits needed to describe messages coming out of a random
source with known and fixed probability distribution.

3.2.13 Theorem (Source Coding Theorem — Shannon) Let us have the best
possible, uniquely decodable mapping C : Ω → {0, 1}+ for a source of messages ω∈Ω
with distribution Pr Ω. The code C must be self-delimiting — it must be possible to
determine the end of the codeword from the codeword alone, even if it is followed by
arbitrary extra bits. By ‘best’ it is meant that EΩ(N), the expected length of the output
codeword, is minimal, where N(ω) := l(C(ω)) is the length of the code of message ω.
Then

H〈Ω,PrΩ〉 ≤ EΩ(N) < H〈Ω,PrΩ〉 + 2 (90)

Proof To prove EΩ(N) < H〈Ω,PrΩ〉 + 2, just consider C to be an arithmetic coding.
The lower bound can be proved by contradiction. Let us assume that for certain fixed
〈Ω,PrΩ〉 we would have a code C : Ω→ {0, 1}+ for which EΩ(N) = H〈Ω,PrΩ〉−ε, where
ε > 0. Since random variable C is one-to-one mapping we have HΩ(C) = H〈Ω,PrΩ〉.
Let us define space 〈Γ,Pr Γ〉, for suitable n (which will be determined later) such that
Γ := Ωn and

Pr Γ
(
{〈ω1 . . . ωn〉}

)
:=

n∏

k=1

PrΩ
(
{ωi}

)
(91)

This can be thought of as using the code n times to send n randomly and independently
selected messages from Ω. As C leads to self-delimiting messages, this is possible by
simple concatenation of the respective bit-strings. The resulting code can be described
by random variable D = C1 × · · · × Cn, where Ci is code C acting on i-th component
of the message γ∈Γ:

D(〈ω1 . . . ωn〉) = C(ω1) · · ·C(ωn) (92)

Let M(γ) := l(D(γ)) =
∑
k l(C(ωk)) be a random variable assigning length of code

D(γ) to the event γ. Due to the concatenation and linearity of expectation we have
EΓ(M) = n EΩ(N). From (80) it follows that HΓ(D) = nHΓ(C1) = nHΩ(C) =

11 Since dxe < x+ 1.
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n EΩ(N) + nε. On the other hand HΓ(D) = HΓ(D,M) = HΓ(M) + HΓ(D|M), as
follows from 3.2.5. Using 3.2.9, we can upper-bound HΓ(D | “M = m”) by m, as47 /48 /

there are at most 2m distinct m-bit strings. This implies the following upper-bound on
HΓ(D | M).

∑

m

Pr Γ(“M=m”)HΓ(D | “M=m”) ≤
∑

m

mPr Γ(“M=m”) = EΓ(M) (93)

Combining these together we get

n EΩ(N) + nε = HΓ(D) ≤ HΓ(M) + EΓ(M) = HΓ(M) + n EΩ(N) (94)

which leads to nε ≤ HΓ(M). From 3.2.11 we have HΓ(M) ≤ 1 + 2 log2 EΓ(M) =
1 + 2 log2 n EΩ(N), thus nε ≤ c+ 2 log2 n, where c is constant. Taking n large enough,
we obtain a contradiction. Q.E.D.

3.2.13 Note It is even possible to prove that EΩ(N) < HPrΩ+1, using more sophis-
ticated coding technique [39, 19].

Fig. 10. Arithmetic coding run twice.
Interval embedding is drawn just for pairs
starting by A to improve readability.

Since code strings are self-delimiting, the arith-
metic coding can be used repeatedly for encod-
ing consecutive messages that may be even drawn
from different distributions, provided that both
communication ends agreed on when to use which
distribution. The obvious method of code con-
catenation, used in the proof of 3.2.13 is not the best one, however. It is causes a
2-bit overhead, the arithmetic code has over the entropy — with each message up to 2
bits could be wasted. Fortunately, there is a better way. Instead of using the encoder
separately for each message we could prepare joint distribution by embedding intervals
of the second message in all intervals of the first one, as shown in fig. 10 for case of
Ω := {A,B,C}. Obviously, possible third message would be embedded in all intervals
of the second one, and so on. Then, we would use our encoder just once, obtaining
codeword for a sequence of N messages with overhead of just 2N bits per message.

Arithmetic coding, as it has been presented so far, transforms whole messages at
the time. This is highly impractical, especially if we consider sending series of messages
— sometimes we cannot afford to wait until the last message is formulated. Fortunately,
arithmetic coding can be implemented to work incrementally, outputting the leading
bits of the codeword as soon as their value becomes fixed. This may be accomplished
by tracking the lower (l) and upper (u) point of the message interval.
With each input message these points would be updated to reflect nesting of mes-

sage intervals. Then, l and u−2−n, where n is taken to be higher than the bit-precision
of numbers representing interval lengths, would be expressed as binary numbers. Lead-
ing bits that would be identical in these two numbers cannot change later, since new
message intervals always fall inside the old ones. Therefore, this leading segment can
be safely sent to the output. Note that the bits which were emitted as a result of
processing the message may not suffice to recover it completely. Only the bits of orders
2−1 to 2−p+1, where p is the smallest integer such that ∃k∈N : l < k2−p < u, could
be emitted by the encoder after it has processed the first message. For instance, in
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case of l = 0.49 and u = 0.51 this means that p = 1 and no bit can be emitted before
following messages allow the encoder to decide whether the resulting codeword should
begin with binary one or zero. Unfortunately, there is no limit on the number of input
messages that would be possibly needed to get out of this dead-point.
As this is unacceptable, practical implementations try to side-step this problem

by various ways. For instance, it is possible to count the number of retained messages,
dynamically changing problematic interval in — say — the fourth message after the one
being blocked. The encoder would simply shrink the interval the way it would begin
or end at k2−p. This, in fact, would also shrink intervals of the following messages
for which reason it has to be accounted for in the decoder. This might be done by
simulating what the encoder would do with the messages just decoded, accordingly
correcting intervals the decoder expected, when the interval change should occur.
As the reader might have already guessed, practical implementations of the arith-

metic coding do not work with messages from infinite space Ω directly. Instead, the
space is described by means of strings over certain finite alphabet A. Employing the
chain rule (3), we can compute the probability of any element of Ω as if it was a �- . 18

terminated string over A. Then we are able to encode it incrementally, letter by letter.
Note that nothing is lost in comparision with theoretical ‘single-shot’ approach because
the final intervals exactly correspond to the intervals of Pr Ω({ωi}), after the intervals
of all the letters have been embedded. Therefore the resulting code will be of the same
length, if we neglect little overhead caused by the dead-point problem resolution. Also
note that when no other message from Ω is being awaited, the codeword should be
‘closed’ by shrinking the last interval to the closest power of 2 (the way we did in
fig. 9), which causes the final 2 bit overhead. Otherwise, u and l may remain open,
but the first message would be fully decodable only after the next message entered the
encoder and enough12 of its symbols have been processed.
The finite alphabet also makes possible to use fixed precision arithmetics — if we

would represent probabilities of intervals as, say, 20-bit numbers (which is harmless
as we can hardly hope for any better estimate based on real data), we could perform
all the calculations within 64-bit register, provided that we defined suitable dead-point
resolution rule. Matching high bits of l and u−2−64 can be shifted to the output, while
at the same time, shifting l and u to the left, effectively expands the interval, so that
intervals of the next letter can be embedded into it without noticeable loss of precision.
A special case of binary alphabet A= {0, 1} is interesting as it does not need to

perform multiplication. It gets by with addition and shifting, which may be faster on
some CPUs. The disadvantage is that for encoding a single ASCII character we have to
invoke the encoder 8 times, so it may not pay-off after all. Also, we cannot directly use
� as the alphabet would become ternary. The messages have to be ended by an agreed-
on sequence (which would be allowed to appear only at the end of the string) instead.
The only requirement is that (3) would result in a correct probability distribution.
For instance we might use ‘8 consecutive zeroes, beginning on position divisible by 8’
instead of � symbol (this is exactly what the C language uses to terminate strings).
Finally, as all the conditional probabilities involved in (3) are typically unknown,

N -gram model (4) is used to approximate the distribution of the next letter. The . 19

12 Exact number depends on probability distribution and on dead-point resolution details.
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bigram case (N = 2, that is a conditioning on previous letter) reveals an interesting
connection with conditional entropy 3.2.4. Let X represent the current letter and Y47 /

the previous one. Using P (X = x | Y = y) to determine intervals in the arithmetical
coder leads to letter-codewords approximately log2 P (X = x | Y = y) bits long. Total
length of the resulting bit string is thus:

#~t−1∑

n=1

log2 P (X= tn | Y = tn−1) + α =
∑

x,y∈A

c(x, y) log2 P (X=x | Y =y) + α (95)

where α∈ [0, 2). Due to the large number theorem, the value of (#~t−1)P (X=x, Y =y)
goes to c(x, y). Therefore the average code length per letter converges to H(X|Y ).

More broadly (returning to the ‘single-shot’ encoding of long messages X and Y
for a while), H(X|Y ) may be interpreted as an average number of bits we need to add
to H(Y )-many bits we already spent for buying message Y , in order to discover text of
the message X, provided that we used optimal encoding. Note that after discovering
X we still know Y so it comes at no surprise that H(X,Y ) = H(Y ) +H(X|Y ). This
informally explains the chain rule 3.2.5 as well as the fact that incremental arithmetic47 /

coding yields the same efficiency as its single-shot version.

3.2.15 Relative Entropy and Mutual Information

A question of how many bits will be needed on average to encode the message, when the
encoder uses imprecise probability distribution Q(ω) instead of the correct one P (ω)
leads to the notion of cross entropy. As the codeword for ω will be of length − log2Q(ω)
but will appear with probability P (ω), the following definition gives the answer.

3.2.16 Definition Cross Entropy

For a space 〈Ω,Pr Ω〉, P (ω) := Pr Ω({ω}), and Q : Ω→ R s.t. Q(ω) ≥ 0 and Q(•) = 1
the cross entropy is defined as follows.

HΩ(P ||Q) := −
∑

ω∈Ω

P (ω) log2Q(ω) (96)

3.2.17 Definition Relative Entropy

Let P (ω) := Pr Ω({ω}) for space 〈Ω,Pr Ω〉 and Q : Ω → R be s.t. Q(ω) ≥ 0 and
Q(•) = 1. The relative entropy or Kullback-Leibner divergence is closely related to
the cross entropy, meaning the number of bits wasted in the encoder that is using an
imperfect distribution Q instead of the correct one P .

DΩ(P ||Q) :=
∑

ω∈Ω

P (ω) log2
P (ω)
Q(ω)

= HΩ(P ||Q)−HΩ(P ||P )︸ ︷︷ ︸
H〈Ω,PrΩ〉

(97)

3.2.18 Observation D(P ||Q) ≥ 0.
Proof Using 3.1.18 we have (in accordance with “0 · ∞=0”-rule we skip those ωi for43 /

which P (ωi) = 0, in E):

D(P ||Q) = E
(
− log2 ◦

Q

P

)
≥ − log2 E

(
Q

P

)
= − log2Q(•) = 0 (98)

Q.E.D.
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3.2.19 Definition (Conditional) Mutual Information

Mutual information between random variables X and Y is defined the following way.

IΩ(X;Y ) := HΩ(X) +HΩ(Y )−HΩ(X,Y ) = HΩ(X)−HΩ(X|Y )

=
∑

x,y

PrΩ(“X=x & Y =y”) log2
PrΩ(“X=x & Y =y”)

PrΩ(“X=x”)PrΩ(“Y =y”)

= DX×Y

(
PrΩ

(
(X×Y )−1[{〈x, y〉}]

) ∣∣∣∣ PrΩ
(
X−1[{x}]

)
PrΩ

(
Y −1[{y}]

))
(99)

When optionally conditioned by a random variable Z, it becomes:

IΩ(X;Y |Z) := HΩ(X|Z) +HΩ(Y |Z)−HΩ(X,Y |Z) =
∑

z∈Z[Ω]

PrΩ(

Z︷ ︸︸ ︷
Z−1[z])·

DX×Y

(
PrΩ

(
(X×Y )−1[{〈x, y〉}]

∣∣Z
) ∣∣∣
∣∣∣ PrΩ

(
X−1[{x}]

∣∣Z
)
PrΩ

(
Y −1[{y}]

∣∣Z
))
(100)

Mutual information intuitively means the number of bits that can be spared in the
process of encoding message X by employing our knowledge of Y which we assume
is available to the decoder, too. Interestingly, it is symmetric (because its definition
formula is symmetric), so we spare exactly the same amount if we used Y to help
encoding X or if it was the other way round. From the definition it is clear that
I(X;Y |Z) = 0 iff X⊥⊥Y |Z and from 3.2.18 it follows that I(X;Y |Z) ≥ 0. Hence we
can understand mutual information to be a measure of dependence between two random
variables, having maximum H(X) = I(X;Y ) for X = Y . For this reason the entropy
is sometimes called the self-information.

3.2.20 Note From I(X;Y |Z) = H(X|Z)−H(X|Y, Z) it follows that H(X|Y, Z) ≤
H(X|Z) which means that additional information Y can only decrease our uncertainty
about X. This inequality also implies that the right side of (80) constitutes an upper . 47

bound on joint entropy even if the variables are not independent.

3.2.21 Observation Mutual information satisfies the following chain rule:

I(X,Y ;Z | W ) = I(X;Z | W ) + I(Y ;Z | X,W ) (101)

Proof I(X,Y ;Z | W ) = H(X,Y |W ) − H(X,Y |Z,W ) = H(X|W ) + H(Y |X,W ) −
H(X|Z,W )−H(Y |X,Z,W ) = H(X|W )−H(X|Z,W )+H(Y |X,W )−H(Y |X,Z,W ) =
I(X;Z | W ) + I(Y ;Z | X,W ) Q.E.D.

3.2.22 Note Some authors call log2
P (x,y)
P (x)P (y) the point-wise information. Note how-

ever that this formula lacks properties of mutual information, such as non-negativity.
Nevertheless, when averaged over data sample ~x, ~y, we obtain

1
#x

#x−1∑

k=0

log2
P (xk, yk)
P (xk)P (yk)

(102)

which is equal to IΩ(X;Y ), provided that distribution Pr Ω
(
(X × Y )−1[{〈x, y〉}]

)
=

P (x, y) was obtained from the data ~x, ~y by raw counting. In case we used probability
smoothing in its estimation, or if it was estimated from different data set than the
one over which we evaluate (102), we would obtain so called cross mutual information
which again is not true mutual information as it may become negative, in extreme case.
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3.2.23 Note Mutual information is non-negative, symmetric, but in general it does
not satisfy the triangle inequality. So it is not a distance.

3.2.24 Summary The following diagram taken from [21] may be used as a reminder
of basic properties of entropy and mutual information.

H(X,Y )

H(X | Y ) H(Y )

H(X) H(Y | X)
I(X ;Y )

3.2.25 Data Processing Inequality

This subsection treats fundamental theoretical limitation on the amount of information
that can be obtained from measurement as well as how it might be seemingly overcome
in practice. It may be regarded as a generalization of 3.2.8.47 /

3.2.26 Definition Markov Chain

Random variables X, Y and Z over 〈Ω,Pr Ω〉 are said to form the Markov chain (de-
noted by X→Y →Z) iff for all x∈X[Ω], y∈Y [Ω] and z∈Z[Ω], s.t. p(y) > 0:

p(x, y, z) = p(z|y)p(y, x) (103)

where p(x) denotes Pr Ω(“X = x”) for sake of brevity — analogically for y and z.
Alternatively, (103) can be written as p(z|x, y) = p(z|y) for all x, y, z s.t. p(x, y) > 0.
3.2.27 Note For x satisfying p(x)> 0 we can write (103) as p(z|y)p(y|x)p(x). The
‘chain’ from x to z is clearly apparent in this form.

3.2.28 Observation X→Y →Z iff X⊥⊥Z | Y .
Proof X→ Y →Z iff p(x, y, z) = p(z|y)p(y, x) for all x, y, z except y s.t. p(y) = 0.
Dividing both sides by p(y) we get equivalent formula p(x, z|y) = p(z|y)p(x|y) which is
the definition of X⊥⊥Z | Y . Q.E.D.

3.2.29 Note Since X⊥⊥Z | Y iff Z⊥⊥X | Y , the chain is always formed in both
directions for which reason it is sometimes denoted as X↔Y ↔Z.

3.2.30 Note Whenever Z = f(Y ) where f : Y → Z is a deterministic function,
the variables Y and Z form Markov chain X→ Y → Z with any X. This is because
p(z|y, x) = Pr (“f(Y )=z”|“Y =y,X=x”) = (z = f(y))?1 : 0 does not depend20 on X.35 /

3.2.31 Theorem (Data Processing Inequality) If the following random variables
form a Markov chain A→B→C, then I(A ;B) ≥ I(A ;C).

Proof The chain rule 3.2.21 can be applied in two different ways, giving:

I(C ;A) + I(B ;A|C) = I(C,B ;A) = I(B ;A) + I(C ;A|B) (104)

Since A→B→C, we have A⊥⊥C | B which implies I(A ;C|B) = 0. As I(B;A|C) ≥ 0
we obtain the desired I(C ;A) ≤ I(B ;A). Q.E.D.
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3.2.32 Consequence I(f(B) ;A) ≤ I(B ;A) for any f : B → C.

Data processing inequality states that no matter how clever information processing
we invent (deterministic or random) we never obtain more information about A — the
actual object of our interest (an image of a far galaxy, let’s say) — than is already
contained in raw data B received from telescope’s camera. Any computer program,
although it can increase entropy of B while converting it into C, can only decrease
information that C will contain about A.
But what about all those ‘image restoration’ programs? Does it mean they should

not work? Not necessarily. These programs work by combining many measurements
Bi of A into single output image C. Therefore, the data processing inequality applies
to B := B1 × · · · × Bn. And although it may happen that I(A ;Bi) < I(A ;C), the
information that C carries about A is still bounded by I(A ;B) from above.
To be precise, the measurements Bi reflect different states Ai of our object but we

assume that it changes slowly so that we can practically regard all Ais as equal. This
can be true even if individual Bis are very different of one another. Imagine that they
represent a movie of passing-by car and that A we are interested in is a text on its
numberplate. Then, although Bi change due to geometric projection sweep, A remains
constant.
Another situation which seemingly overcomes 3.2.31 is when we would obtain

higher resolution image from a page of text by using our knowledge of font outline
curves. Let the whole page be printed in single font. Then, as long as the resolution
of B is sufficient to recognize individual letters we are seemingly getting additional
information about A from our knowledge of font shapes. But this is not so. As we have
forbidden other fonts and generally other non-textual images to appear in A we caused
that font shape could not be used to carry information. In another words, as font shape
could not be used to convey information in this setup, it would not be counted in H(A).
If, on the other hand, different fonts were possible in A but the resolution would be so
poor that they would be indistinguishable, then our program would sometimes fail to
determine the font correctly, just to make 3.2.31 true.

3.2.33 Theorem If A→B→C, then I(A ;B|C) ≤ I(A ;B)

Proof In the proof of 3.2.31 we can just as well point out that I(C ;A) ≥ 0, picking
up I(B ;A|C). Q.E.D.

3.2.34 Note This shows that conditioning by a ‘downstream’ variable in the Markov
chain can only decrease dependence of A and B. Note that reverse inequality is possible
if random variables do not form a Markov chain.

3.2.35 Note Markov chain can defined more generally, allowing arbitrarily long
chains A1 → A2 → · · · → An by requiring

p(a1, a2, . . . , an) = p(a1)
n∏

k=2

p(ak | ak−1) (105)

This can be shown to be equivalent with the requirement p(ak | ak−1, . . . , a1) =
p(ak | ak−1) for all k, which in turn is equivalent13 with Ak⊥⊥A1 . . . Ak−2 | Ak−1.
13 Because A⊥⊥C|B iff p(a|b, c) = p(a|b) for all a, b, c s.t. p(b, c)>0.
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Data processing inequality holds here, too — information can only decrease each time
we traverse the arrow. Formally, for x ≤ k < l ≤ y : I(Ax ;Ay) ≤ I(Ak ;Al).

3.3 Noisy Channel

Fig. 11. Binary channel

Imagine we have a channel which can be used for sending binary digits with only
limited probability of success. Namely, if 0 was sent then it can be changed into 1
during transmission with probability p. Likewise 1 can become
0 with probability q. Apart from that, we will assume that digits
cannot be lost, only misrecognized, and that subsequent uses of
the channel are well separated so that digits sent in different
times don’t get confused and that probabilities p and q do not
depend on past or future digits. Action of such a channel is
symbolically drawn in fig. 11. From now on, let us assume that
p = q. This special case is called memoryless symmetric binary channel.
If we would like to send single binary digit with less probability of error than the

channel provides, we could send it 2n+1-times, regarding n+1 or more received ones
as 1. As this method cannot correct more than n channel errors, probability of bit
transmission error is:

pe =
2n+1∑

k=n+1

(
2n+ 1
k

)
pk(1− p)2n+1−k = p2n+1

n∑

k=0

(
2n+ 1
k

)(
1− p

p

)k
(106)

Obviously, the probability of first n+1 bits being wrong (ignoring the rest of them),
which is pn+1, is a lower bound on pe. Noting that

∑2n+1
k=0

(
2n+1
k

)
= 22n+1 and using

its symmetry to obtain
∑n
k=0

(
2n+1
k

)
= 4n we get the following bounds on pe.

pn+1max (1, 4npn) ≤ pe ≤ p2n+14n
(
1− p

p

)n
= pn+14n(1− p)n (107)

As can be seen from the last formula, in order to push pe close to zero we have to grow
the number of repetitions indefinitely. Specifically limpe→0 n(pe) =∞, therefore as we
strive for more reliable codes, the transfer rate falls to zero.
Before Shannon’s breakthrough paper [19], it was generally believed that it must

always be so. In case of one bit messages we have been sending so far it is even true14.
Shannon’s unexpected result however showed that if we took long enough block of
bits to be encoded together, we could communicate with arbitrarily low probability of
error at transfer rate being arbitrarily close to certain constant C — so called channel
capacity, which depends only on properties of the channel (only on p in our elementary
case). To many, this sounded counter-intuitively at that time. Remember that it was
in 1948 and people were not yet so widely used to get something for no price at all. It
was hence expected that better reliability must be paid by a sacrificed transfer rate.

14 No matter how we would represent 1 and 0, if 2n+1 channel bits have to be used for it, up to 2n+1
errors could always make 0 from 1. As we want both symbols to be equally protected we again end up
with at most n errors turning 0 to something the decoder will still take as zero. Therefore there is no
better code than the repetition code, if it comes to sending of individual source bits.
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Nevertheless, Shannon proved that for any channel there is a constant C≥0 such
that for any ε > 0 there is a block length N and invertible coding rule transforming
N -bit input x into M -bit channel code y, such that the rate of the code R := M/N
is higher than C−ε, while at the same time the probability of channel output z being
decoded to erroneous x̂ 6=x is less than ε, given any x.
This may be intuitively justified by the following geometric argument: Imagine

we group every k bits to represent single input bit by the repetition code. Then, N
input bits transform into M = Nk channel bits. Codewords of this channel encoding
occupy 2N points in {0, 1}M space. The protection is achieved by their distance — two
codewords are at least k bit-flips apart15. Inefficiency of this encoding stems from the
fact that there are unnecessarily long distances (up to Nk) in diagonal directions. By
encoding N bits at a time we are allowed to use whole Nk-dimensional space freely,
and therefore more efficiently. We may tessellate it in such a way that each cell would
contain inner point at least d k2 e bits apart from its boundary. These inner points would
serve as our codewords. Shannon’s theorem in fact claims that by making M large
enough it is possible to tessellate {0, 1}M into so many codewords that the rate of the
channel can be kept constant for any probability of error chosen beforehand.
Dependence of M on the probability of error was clarified by Gallager in 1968

[21]. He showed that the probability of block error depends on the block length M
exponentially, namely that if we fix desired code rate R to certain number, less than
the capacity C, then there exists a code with block lengthM , such that the probability
of its block error pB is

e−MEs ≤ pB ≤ e−MEr leading to M ≈ 1
E
log
1
pB

(108)

where Es and Er are constants depending only on the channel and selected rate R. As
R approaches C, both constants go to zero, which makes it necessary to take M larger
and larger to keep the probability of error constant. Moreover, for fixed channel, both
Es and Er are decreasing, positive convex functions of code’s rate R for R∈ [0, C) and
Er(C)=0. This result shows that, in agreement with commonsense wisdom concerning
‘get something for free’-offers, we have to pay for reliability after all. Only not with a
transmission speed but with a transmission delay (packet length).

3.3.1 Definition Discrete Channel

Discrete channel is a triple 〈X, p(y|x), Y〉, where X and Y are finite sets and conditional
probability p(y|x) is non-negative function X × Y → R such that p(•|x) = 1 for each
x∈X. It can be instantiated in probability space 〈Ω,Pr Ω〉 by two random variables
X : Ω → X and Y : Ω → Y which satisfy Pr Ω(“Y =y” | “X=x”) = p(y|x) for all x, y
for which Pr Ω(“X=x”) 6= 0. X represents input and Y represents output.
3.3.2 Definition n-th Memoryless Extension of Discrete Channel

For channel 〈X, p(y|x), Y〉, its n-th memoryless extension is channel 〈Xn, q(~y |~x), Yn〉,
where q is defined as follows.

q(~y | ~x) :=
n−1∏

k=0

p(yk | xk) (109)

15 Minimal number of bit-flips by which one codeword can be transformed into another is called the
Hamming distance of the two codewords.
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It represents n independent uses of the original channel. Often the original channel is
said to be memoryless if we consider only its memoryless extensions16.

3.3.3 Notation The previous definition gives rise to n copies of same random vari-
able X : Ω→ X. The new variables X1, . . . , Xn act on Ωn and are defined in an obvious
way such that Xk is a copy of X on k-th Ω-coordinate of Ωn. These variables occur
quite frequently in statistics under a name independent identically distributed (i.i.d.)
random variables. There is a common misuse of notation in this case. By Xn we do not
mean set theoretical (Ω×X)n not even a function returning X(X(· · ·X(ω))) for ω∈Ω
but a function Ωn → Xn such that Xn(〈ω1 . . . ωn〉) := 〈X1(ω1), . . . Xn(ωn)〉. Also, if
there is a set Z having a one-to-one correspondence with Xn we sometimes identify
their elements without prior notice — this was used in (92). These formal lapses are50 /

common and in fact welcome as they help to keep the text readable, if used wisely.

3.3.4 Definition Capacity of the Channel

The capacity of 〈X, p(y|x), Y〉 channel is defined the following way:

C := max
PrΩ(X)

IΩ(X;Y ) (110)

Where Ω := X×Y and random variables X, Y are projections to their respective ranges
X, Y. The maximization is meant to search thru any distribution Pr Ω which instantiates
the channel in 〈Ω,Pr Ω〉. This is equivalent with searching over all input distributions
p(x), keeping p(x, y) = p(y|x)p(x). Since all distributions on finite alphabet X form a
high-dimensional simplex (that is a bounded and closed set) and mutual information is
continuous function of p(x, y), the maximum indeed exists (but may not be unique).

3.3.5 Note We can think about (110) as of shaping the source distribution such that
it would have maximal influence on channel’s output (this is somewhat similar with
impedance matching commonly used in electronics, where the impedance of source and
load have to be equal to deliver maximal power to the load).

3.3.6 Note For a channel with capacity C, its n-th memoryless extension will have a
capacity of nC, because no memory means that individual uses are independent, hence
I(Xn;Y n) = nI(X;Y ).

3.3.7 Definition Block Code, its Errors and its Rate

For discrete memoryless channel 〈X, p(y|x),Y〉 we define a block code of type (Q,M)
as a mapping C : {1, 2, . . . , Q} → XM and associated decoding function D : YM →
{1, 2, . . . , Q}, which estimates what was sent thru the channel. The set Rng(C) is called
a codebook. Only these sequences can be actually sent into the channel. So called block
error occurs whenever D(~y) 6= ~x, where ~x was sent and ~y received. Probability of block
error on input ~x, in a probability space that instantiates the channel is:

pB(~x) := Pr Ω(“D(Y n) 6=~x ” | “Xn=~x ”) (111)

16 This can be done if physics of the channel guarantees that consecutive symbols remain separated
in time during transmission, that is if the channel has only negligible echoes, wave dispersion, etc.
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We are more interested in maximal probability of block error, defined as follows.

pB := max
~x∈Rng(C)

pB(~x) (112)

The rate of the code is defined as R :=M−1 log2Q. Note that it might not be integer,
whereas Q is always an integer. It measures how many input bits (on average) are
conveyed by single channel symbol.

3.3.8 Theorem (Channel Coding Theorem: Reliable Communication — Shannon)
For discrete memoryless channel with capacity C and for any ε>0 and any R∈ (0, C)
there exist block sizeM and appropriate (Q,M) block code with rate R and probability
of block error pB ≤ ε.

Proof Only an idea will be sketched here. Lookup real proof in [59] or [21]. As
it is very hard to construct a code satisfying the theorem, in fact for most channels,
explicit code is unknown, the proof calculates average error over all possible codebooks,
showing that it is small. Then, there must exist at least one codebook for which the
error is also small.
First, we fix p(x). We can do this because for long enough block lengths M , it is

under our control. That is because we can design a codebook ~x1, ~x2 . . . ~xQ, whose codes
would mimic chosen distribution. We can do it by selecting codes’ components xij ∈X

randomly, in agreement with distribution p(x). The encoder C works by selecting ap-
propriate codeword from this codebook, that is C(a) := ~xa, for which reason I will not
make distinction between the encoder and the codebook in the sequel. As the code-
words were generated by independent random tosses, each codeword has a probability:
PrΩ(~xk) =

∏M−1
l=0 p(xkl) and the probability of using particular encoder is:

Pr (C) =
Q∏

k=1

M−1∏

l=0

p(xkl) (113)

Now it is possible to develop a decoding strategy D based on so called jointly typical
sequences. I will skip this step, only using its results — see [59] for technical details.
So we have an input number a, which the encoder changes into ~x that gets randomly
transformed by the channel into ~y from which the decoder estimates what was sent (â).
This can be symbolically depicted in the following diagram.

a
C−→ ~x

p(y|x)
−−−−→ ~y

D−→ â (114)

We can compute probability of error for randomly selected codebook C and (uniformly)
randomly selected message a to be

πB :=
∑

C

Q∑

a=1

Pr (â 6= a | C, a)Pr (C)
Q

=
∑

C

Pr (C) Pr (â 6= 1 | C, 1) (115)

Where the last equality comes from symmetry caused by averaging over all codebooks.
Analyzing the decoder D based on jointly typical set decoding rule, it is possible to
show that for any δ>0 there exists M0 s.t. for any M ≥M0:

πB < δ +Q 2−MI(X;Y )+3δM = δ + 2−M(I(X;Y )−R−3δ)
︸ ︷︷ ︸

?

(116)
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We can control R by choosing Q. Hence, for R < I(X;Y )− 3δ we can always make M
large enough to bound ? by δ, thus getting πB < 2δ. As πB is a weighted average of
average unreliability of the respective codebooks, there must17 be at least one codebook
C0 whose average error rate is at most πB . By tampering with p(x) it is possible to
maximize I(X;Y ), obtaining C instead of it. Now, we still have a code whose maximal
probability of error may be enormous. But since

∑Q
a=1 Pr (â 6= a | C0, a) < 2δQ, at

least half of the codewords are already good, having probability of error less than 4δ —
if it was not so, the sum would exceed 2δQ. By sieving-out bad codewords we obtain
codebook with slightly worse rate (namely R− 1/M), whose worst probability of block
error pB is less than ε := 4δ. Q.E.D.

The above theorem justifies mutual information as a limit on signaling rate by
showing that reliable communication is possible up to this limit. Unfortunately it does
not provide practical way to construct the codebook. The enumeration method used in
the proof is practically infeasible due to enormous spaces involved. Even the resulting
codebook would be too large (exponential in M) to be of any use. Therefore, we need
the code not only close to the channel capacity but also simple, namely we would like
the encoder and decoder to be short and fast (preferably O(M)) algorithms. It was only
recently (1993) when practical codes (so called Turbo Codes) approaching the channel
capacity for variety of channels were discovered [21].

3.3.9 Example Let us calculate capacity of symmetric binary channel (of fig. 11).57 /

Having p(0|1)=p(1|0)=p=q and p(0|0)=p(1|1)=1−p, mutual information I(X;Y ) is

H(X)−H(X|Y ) = H(X)−
∑

y

p(y)H(X|Y =y) = H(X)− p(•)H(X|Y =0)︸ ︷︷ ︸
H(p)

(117)

Where the last equality follows from symmetry. By setting p(x) = 1/2 we obtain
C = 1−H(p).

3.3.10 Example For general binary channel with p 6= q it is possible to obtain the
following formula for its capacity, after modest calculus exercise:

C = H(p)
q− 1

1+2−α

1− p− q
+H(q)

p− 1
1+2α

1− p− q
+H

(
1

1 + 2α

)
where α =

H(q)−H(p)
1− p− q

(118)

As can be seen, the capacity seems to be rather complicated18 even for this elementary
channel. In fact, this is typical and exact analytic formula is known only for very few
channels. As (118) is quite long it is often more practical to use the following lower
bound:

CL = 1−H

(
p+ q
2

)
(119)

17 This argument works even for weighted average: For λi ≥ 0 and λ• = 1 there is always k s.t.
xk ≤ ∑

i xiλi. If it was not so we would have xk >
∑

i xiλi for all k and could average it one more
time, getting

∑
k xkλk > λ•

∑
i xiλi, which would be a contradiction.

18 Yes, it is indeed symmetric in p and q since 1
1+2−α +

1
1+2α

= 1.
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Fig. 12. Capacity of non-symmetric binary channel C(p, q) (solid line), drawn with
its upper and lower bounds CU and CL (dotted lines) for fixed probability p = 0.3.

This lower bound can be justified by operating the channel in a way which makes it
effectively symmetric. To the original channel X → Y with crossover probabilities
p(y|x), there would be connected a scrambler (performing19 X := A⊕Z) and unscram-
bler doing B := Y ⊕Z, where Z : Ω→ {0, 1} would be random variable independent of
input A (i.e. Z⊥⊥A) such that Pr Ω(Z=0) = 1/2. Also, Z must not interfere with the
working of the channel, that is (Y ×X)⊥⊥Z. This way, we would obtain new channel
A→ B with crossover probabilities

r(b | a) =
∑

x,y,z

Pr (X=x, Y =y, Z=z,B=b | A=a) =

∑

z

Pr (Y =b⊕ z | X=a⊕ z, Z=z,A=a) Pr (Z= z) =
1
2

∑

z

p(b⊕ z | a⊕ z)
(120)

whose capacity is CL of (119), which follows from 3.3.9, since 12 (p + q) = r(1|0) =
r(0|1). It remains to show what seems intuitively clear — that we cannot push more
information thru the pipeline than the capacity of its middle section allows, that is
I(A;B) ≤ I(X;Y ). Realizing that (Y×X)⊥⊥Z implies A⊥⊥B | Y , we have Markov chain
A → Y → B and the data processing inequality gives I(A;B) ≤ I(A;Y ). Similarly
we have A⊥⊥Y | X, i.e. A → X → Y , leading to I(A;Y ) ≤ I(X;Y ). Therefore
CL = maxPr (A) I(A;B) ≤ maxPr (X) I(X;Y ) = C. Q.E.D.

The capacity is shown in fig. 12 along with its lower and upper bound. However,
the upper bound computed according to the following formula is only my conjecture.

CU = 1−H
(
(p+ q < 1) ?

√
pq :

√
1− p

√
1− q

)
(121)

19 ⊕ denotes the xor operation (addition modulo 2).



63 3 Probability and Information Theory

I have no proof for it although I have checked it numerically on a grid with step size
of 10−5. Perhaps AM-GM inequality20 might be helpful in the proof, as it implies that
CU ≥ CL.

3.3.11 Theorem (Fano’s Inequality) Let random variables A → B
D→ Â form a

Markov chain, where D is a decoding function (deterministic or random) which tries to
recover value of A from the observation B. Moreover, let A := Rng(A) be finite. Let
Pe denote the probability of recognition error, that is, Pe := PrΩ(A 6= D(B)). Then

Pe ≥
H(A)− I(A ;B)−H(Pe)

log2#A
≥ H(A | B)− 1

log2#A
(123)

Proof Let us define random variable C : Ω→ A∪{⊥} which would correct the errors
made by the decoder in the following way (new symbol ⊥ /∈ A means ‘no correction’).

C(ω) :=
{
⊥ iff Â(ω) = A(ω)
A(w) else

(124)

Another random variable E : Ω→ {0, 1} would serve as an error indicator. Obviously
E(ω) = (C(ω)=⊥) ? 0 : 1. Note that Pe = PrΩ(“E = 1”). As C allows for perfect
recovery of A from Â we have that H(Â, A) = H(Â, C). It follows from 3.2.20 that54 /

H(Â, C) ≤ H(Â)+H(C), hence H(A|Â) ≤ H(C). From data processing inequality we
have that H(A)− I(A;B) = H(A|B) ≤ H(A|Â) = H(A)− I(A; Â), hence

H(A|B) ≤ H(C) (125)

This is not surprising as it means that in order to correct Â, we have to add at least
the information about A that was missing in B. H(C) = H(C,E) since all information
about E is already in C. Now, H(C,E) = H(E)+H(C|E) = H(E)+H(C|“E=1”)Pe+
H(C|“E = 0”)(1 − Pe). Moreover, H(C|“E = 0”) = 0 and H(C|“E = 1”) < log2#A
which leads to H(A|B) ≤ H(E) + Pe log2#A ≤ 1 + Pe log2#A. Q.E.D.

3.3.12 Theorem (Channel Coding Theorem: Unreliable Communication)
It is possible to communicate at rate

R(pb) =
C

1−H(pb)
=

C

1 + pb log2 pb + (1− pb) log2(1− pb)
(126)

thru discrete memoryless channel with probability of bit error21 less than pb+ε for any
ε > 0, which determines the block length M .

Proof See [21] or try yourself. All required machinery dwells in the theorems proved
so far. Q.E.D.

20 So called AM-GM inequality states that for αi ≥ 0 and S := α• the following holds.

1

S

∑

i

αixi ≥
(∏

i

x
αi
i

)1/S
(122)

It follows from log
∑

i(αi/S)xi ≥
∑

i(αi/S) log xi, which is an instance of Jensen’s inequality 3.1.18.43 /
21 The input number a is treated as if it was written in binary representation and pb is probability
that its randomly selected bit will not be decoded correctly. In case of communication below channel’s
capacity 3.3.8 we have pB ≤ pb ≤MpB .60 /
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3.3.13 Theorem (Channel Coding Theorem: Impossible Communication)
For any pb≥0 communication at rate higher than C/(1−H(pb)) is not possible.
Proof The encoder, channel and the decoder form a Markov chain (114). From data . 60

processing inequality 3.2.31, we have (M is code’s block length): . 55

MC ≥ I(XM ;YM ) ≥ I(A ;YM ) ≥ I(A ; Â) (127)

On the other hand, being able to send data at rate R with probability of bit error
pb means that MR(1 − H(pb)) ≤ MRCB ≤ I(A ; Â) because we could equivalently
send MR bits thru a noise-less channel and then send each received bit thru a binary
channel with crossover probabilities p and q such that p+ q = 2pb. According to (119)
the capacity of this thought binary channel CB is bounded by 1 −H(pb) from below.
Therefore, at leastMR(1−H(pb)) bits get thru. It may be more for correlated bit errors.
Anyway, MR(1−H(pb)) constitutes a lower bound on I(A ; Â). As R > C/(1−H(pb))
we have I(A ; Â) > MC, which is in contradiction with (127). Q.E.D.

Channel coding theorems can be further generalized, especially, the channel may
have memory and it may be continuous valued (with noise, making its capacity finite).
In all these cases we can communicate arbitrarily reliably up to a certain rate. Moreover,
the codewords tend to look as noise, which stems from their random construction.
When transmitting data that came from a source of entropy lower than maximal

we can first compress them (by arithmetic coding, for instance), which can be done
regardless of properties of the channel and then send them to the other side using our
best channel code, which in turn does not depend on probability distribution of the
source. Famous source/channel separation theorem states that this procedure is optimal
in a sense that any encoder (including those that would be optimized specifically for
this source/channel pair) would not work any better (than by arbitrarily small ε>0).
This theorem is a real blessing for engineers who like to develop highly optimized black-
boxes, connecting them together later.
How different all of this is from human language, which by no means looks as

random noise! It obeys Zipf’s law at many levels22 and its complicated multilevel
redundancy protects it against transmission errors. Some might suspect that we, the
humans, are inferior in this respect but there may be a good reason why we do not
communicate by noise bursts — the learning. From noise-like signals which hardly ever
repeat exactly (owing to the source compression), showing no apparent inner structure,
it would be quite hard to learn the language without prior knowledge of the code. On
the other hand, we can start learning natural language before we can fully decode (and
understand) its messages. As it is open at so many levels we can start with statistical
properties of syllables then combine them to words, use words to discover even larger
structures, etc.

22 So called Mandelbrot-Zipf’s law states that words in a lexicon, sorted according to their probability
of occurrence in the text obey the following probability distribution

Pr (wk) = a(b+ k)−c (128)

where a > 0, b≥ 0, c > 1 are suitable constants and k is rank of the word (starting by 1). This law
holds on different scales simultaneously — for instance, syllables or longer phrases obey it too. This
contrasts with compressed communication which tends to uniform distribution.
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3.3.14 Viterbi Codes

The Viterbi Algorithm was originally developed in 1967, as a decoding strategy for
convolutional error correcting codes [15]. It worths saying a few words about them so
that we could better understand the background we are using for speech recognition.
The idea will be demonstrated on the code that was actually used to send data from
the Voyager space probes23 down to the Earth.
The computer of the spacecraft emits messages encoded in binary alphabet. Let’s

assume that these have been already compressed and so the probability of 0 and 1 is
close to 0.5 and adjacent zeroes and ones are nearly uncorrelated. The individual bits
will be denoted as xn. The encoder computes1962 /

an := 1⊕
6⊕

k=0

αkxn−k and bn :=
6⊕

k=0

βkxn−k (129)

where the sequences α and β are defined as follows, according to [11].

α := 〈1, 0, 1, 1, 0, 1, 1〉 and β := 〈1, 1, 1, 1, 0, 0, 1〉 (130)

Fig. 13. (2, 1/2)-code HMM. The outline
circles on the right side should be consid-
ered to be identical with the filled circles
on the left (imagine it drawn on a cylin-
der). Also note that null-arrows are su-
perfluous as they could be composed with
regular arrows. It would halve the number
of states. Even though it is preferable in
implementation it would hide the princi-
ple so I decided for more readable variant.

The output stream 〈a0, b0, a1, b1, . . .〉 is obtained
by interleaving streams a and b. Hence for each
input bit there will be two output bits. The op-
eration (129) is called a convolution, hence the
name convolutional codes. Formula (129) can be
easily implemented in hardware, using a 7 bit
shift register and several xor gates. The code
is obviously redundant and it is this redundancy
what allows to correct bit flipping errors occa-
sionally occurring in radio transmission. This
code is referred to as (7, 1/2)-code, where the first
number means number of state bits in the encoder
(so in our case the encoder has 27 distinct states)
and the second number is rate of the code.
The encoder can also be represented by a

graph of fig. 13. For sake of simplicity it is drawn
for (2, 1/2)-code with α = 〈1, 0〉 and β = 〈1, 1〉.
By walking along the arrows, writing out the la-
bels above the solid arrows and using the labels
above the dashed arrows to navigate, we obtain
output that the Viterbi encoder would produce.
This strongly resembles HMM and it comes at no
surprise that the trellis of this graph can be used
for decoding. We just have to modify the graph a little bit. First we have to delete
labels above null arrows because these labels only designate the input which we treat

23 Launched in 1977 and still operational at time of this writing — Voyager 1 being about 15.34
light-hours from the Earth, Voyager 2 being 12.44 light-hours away from us [8].
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as random anyway. We set the probability of the two null arrows emanating from each
state to 0.5 as we consider the input to be already compressed.
If we tried to use our HMM for decoding as it is now, it would fail to decode

messages with corrupted bits. This is because the solid-line arrows do not yet permit
incorrect outputs, therefore the sequence passing thru correct HMM states might not
exist for noise-corrupted bit strings. This is somewhat akin to the reasons why we
needed to smooth probabilities in the language model. But here, the reason comes
from the noise in the channel not from the fact that any word sequence is possible in
principle, as was the case in human language24. So we have to introduce a noise model
into the HMM.
It is educational to describe the Viterbi encoder in terms of fig. 1. There, P (W ) . 15

would assign probability of 0.5 to individual bits of the input stream treating them as
independent and P (A | W ) would correspond to the HMM of fig. 13 composed with
a model of noise introduced by the channel. In the most simple case this would be
a memoryless discrete channel of fig. 11. Since in the radio transmission which uses . 57

phase modulation there is no fundamental difference between transmitting 0 and 1 we
may regard it as symmetric channel with probability of bit flipping being equal to p.
Then, it is easy to modify the HMM by adding parallel solid-line arrows for all other
combinations the two output bits, setting their probability to (1 − p)2 for the correct
symbol, to p(1− p) in case of one bit error and to p2 for symbols with two flipped bits.
If we set probability p to match that of the channel25, we would obtain optimal26

decoder by running a Viterbi algorithm on this modified HMM. Note that the leading
bits of the message can be output only after the Viterbi has finished, which can happen
only after the entire message (or at least a packet if we send the file divided into packets)
has been received. This is because the winning path may change in the last stage of
the trellis.
So we have an optimal decoder for a discrete channel. But we can go beyond this.

The radio channel is in fact analogue and we may want to take advantage of it. Real
noise can be closely approximated by a Gaussian distribution — sending the bits across
this channel changes the mean value of the noise signal, leaving its variance unaffected.
Probability density of receiving voltages 〈x, y〉∈R2 of the two signal samples, given
that digital signal 〈a, b〉∈{0, 1}2 has been sent is then:

pab(x, y) =
1
πσ2
exp

(
− (x− a)2 + (y − b)2

2σ2

)
(131)

The Viterbi algorithm would use − log pab(x, y) as a cost of traversing that arrow,
otherwise it would be unmodified.
This method of decoding really improves performance. According to [11], we can

afford 2 dB worse signal to noise ratio to achieve same number of uncorrected bit errors

24 Those idealists who think that certain word sequences are impossible due to language structure
should consider that we would like our ASR to have a chance to succeed even when they utter their
words of wisdom: “Sequence ‘all your base are belong to us’ can never appear in an English sentence.”.
25 This can be measured quite precisely, provided that it does not change in time.
26 In the sense that it would minimize the probability of receiving a corrupted message. It does not,
however, take the number of corrupted bits into an account so it might not be optimal if we would like
minimize E(“the number of bad bits remaining in the decoded message”) = pbM .
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as the Viterbi code with discrete channel model would have achieved. Moreover if
we are satisfied with only 1.5 dB improvement, we can attain that even with discrete
channel if we quantize each input bit into 8 (suitably chosen) levels. Note that there
would be 64 arrows per code state in the graph of fig. 13 instead of 4 but this is of no
concern because only one remains after the trellis has been pruned. Even storing this
number of arrows is not a problem as they can be represented by a formula. The only
thing that needs to be stored are 8 numbers representing the probability distribution
(16 if the channel was not symmetric).
Another possible improvement concerns time varying noise. Imagine that we are

using radio transmission during a thunderstorm. Each nearby discharge renders the bits
just received useless. If only few bits were damaged the code will work as expected.
But we could improve its performance by telling it which bits have been corrupted
so that they would be more or less ignored during trellis decoding. This would stop
diffusion of erroneous information down the trellis, thus improving the performance. In
case of Gaussian noise model (131), this could be achieved by temporarily boosting the
variance σ during the discharge. In fact this is what (1) demands to attain minimal14 /

probability of incorrectly decoded message. It demands that the probability distribution
of the channel should match the reality. If the reality has time dependent σ so should
have our model. Strictly speaking, during the discharge the distribution may lose its
Gaussianity and even symmetry due to possible saturation of input circuits. So it is
quite possible to receive all zeroes during the discharge, but these are implementation
issues, going well beyond the scope of this book.
The only trouble left is that we need to know precise instants of discharges. But this

is not very complicated because they cause wideband radiofrequency noise, which can
be detected by listening on several silent bands which are not used for communication.
If we observe sudden increase of power in all these bands we almost surely have an
interference in the data band as well, and should increase σ. The amount of how much
we should do it could be calculated from the power we observed in auxiliary bands
and calibration table we measured before, which would tells us how this power relates
with noise power observed in the data band. It should be mentioned that rising σ
longer than for 7 channel bit periods (in case of Voyager code) is ineffective because
the code state, which makes the error correction possible, becomes lost. Of course, the
interference may last for more than 7 bits if it is weaker in terms of σ because the state
would be destroyed only partially in such a case.
I am not aware if this trick is actually being used in radio communications. As

far as I know, it is not a standard technique. Also I am not sure if anything similar
has ever been tried in speech recognition area. There are noise robust systems but
those I have encountered were trained on a speech corrupted by (an automobile) noise
of various intensity. During recognition, the actual model was interpolated from the
trained models to match the noise intensity estimated from the signal. Although it is a
step in a right direction it should be noted that noises are not so simple in case of speech
recognition. First the ‘noise’ added by a channel involves not only background sounds
but also reverberations. Secondly there are many types of background sounds, most of
them being transient. While the aforementioned recognizer can work well in a car with
steadily humming motor, it is likely to experience problems with non-stationary noises
like door slams.
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Before finishing this subsection let us return to the Voyager, for sake of complete-
ness. Not all choices of α and β lead to equal protection against errors. It is hard to
tell analytically how good certain code will be. In case of the Voyager program, the
code length 7 was chosen so that the computers of that time would be able to decode
it in reasonable time and α and β were found by an exhaustive search over all 214

possible choices by simulating performance of the respective codes over the (simulated)
Gaussian channel and selecting α and β achieving best performance.
The Viterbi code was not the only code used in the Voyager space probe. In fact

it was the last code before the data were passed to the modulator and antenna. The
Viterbi encoder was fed with the data that already passed thru the Solomon Reed
encoder. The Solomon-Reed Code is designed to correct burst of errors27. It is there to
correct the errors that the Viterbi decoder leaves uncorrected, as these tend to appear
in clusters28.
The final problem of receiving Voyager signals is proper synchronization. Fortu-

nately, the bit rate is quite regular (and known to the receiver) so we only have to
find middles of bits then determine which one is an and which one is bn. This can
be done by running 6 Viterbi decoders each one being shifted by 1/3 of bit duration
from the preceding decoder. The one with the right position will experience highest
probability of the winning path. This is done only at the signal beginning and it may
be even enhanced by specially designed codewords sent as a signal’s header. Once the
correct synchronization is found it can be easily maintained by computing correlation
with idealized two level signal (obtained from so far decoded bits) with the received
noisy analogue signal. Position of the highest peak in the correlation function would
then be used to adjust timing of the next sampling point, so that slow changes of the
bit rate would be followed.
Unfortunately, the speech signal is far from being synchronously timed. Different

people use different speaking rates and rate changes are commonly used to emotionally
emphasize certain words, etc. It is remarkable that good codes (and decoding strategies)
for channels which introduce timing errors in addition to ordinary signal noise are still
an open research problem [21]. It turns out that using Viterbi decoding is suboptimal,
regarding the timing. Note that a loop in an HMM can only describe exponential
distribution of dwelling in that state. This causes a problem if we for instance need to
model steady state of a vowel by a single state with a loop. Exponential distribution
gives highest probability to the shortest realization of that vowel. But we intuitively
feel that this is wrong as there would be certain ‘typical’ duration and shorter and
longer vowels should be less probable than that.

Although it would be possible to model more complicated distributions using more
states and more arrows (having dedicated paths instead of loops to model the distri-
bution as we prescribed it) some of the advanced ASR systems took another direction,
using explicit modeling of probability distributions of the time it takes to traverse the
outputting transition.

27 For which reason it is also used on compact discs, since scratches lead to error bursts.
28 After the Viterbi decoder loses its state it is likely to output errors until it collects enough data to
reduce entropy about the state in which the encoder might have been when it transmitted the current
symbol. That is why the uncorrected errors stick together.
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3.3.15 Other Uses of Viterbi Decoding

Interesting application of Viterbi Decoding is used in modern hard disk drives, known
as PRML (Partial Response – Maximum Likelihood). Spatial density of bits is so
high that individual bits influence each other’s readout signal because the reading head
slightly reacts to the magnetic field of the nearby bits, too.

This means that the analogue signal y as seen by the reading head can be written
as a convolution of some weighting coefficients ak (determined by head geometry) with
magnetically recorded bits x0, x1, x2, . . ., where xn∈{−1, 1}, in the following way:

yn = εn +
N∑

k=−N

akxn−k (132)

where εn is additional thermal noise. This strongly resembles (129), only the operation65 /

are carried out in R instead of Z2. But this is only a minor difference which still allows
us to use the same decoding technique. Figure 13 is still valid HMM for the decoder65 /

if used with 22N+1 code states and emission probabilities precomputed according to
(132) with Gaussian noise ε. Although continuous model similar to that of fig. (131)66 /

could be used in theory, the practical implementation will rather use discrete channel
with multiple quantization levels29

In fact, not all 2N+1-bit combinations are allowed on the disk because of physical
limitations on maximal number of consecutive bits of same polarity and requirement
of approximately zero DC level. To satisfy these needs and also to provide necessary
synchronization bits, the data bits are intermixed with auxiliary bits. Usually 8 to
10 code is used for that purpose, mapping each byte to a 10 bit sequence. This code
is taken into account in the Viterbi decoder as it limits number of states and it also
restricts transitions (most states have unequal probabilities of 0 and 1 arrows, some of
them even having single output arrow). These restrictions actually help the decoder as
they limit the number of high probable competing paths.

It should be noted that formula (132) could also describe propagation of sound
in a reverberant environment (see 4.3.1). If xn were bits transmitted by an ideal83 /

loudspeaker in a room, then yn would be what we would measure with perfectly linear
microphone, provided that the room would not change its shape, nothing would move
inside it (including the speaker and microphone) and the samples yn would be perfectly
synchronized with xn. So, in principle, we could use the Viterbi decoder to invert
(132). Although it requires exact synchronization and assumes that nothing moves, it
is reasonable to expect that it will work to some extent even if these assumptions would
be partially violated. This would explain why current ASR systems work acceptably
even in somewhat reverberant environment, such as a room, despite the fact that typical
front end conceals only very short echos (10 ms) via the CMS (see 5.1.1).152 /

If the room stays invariant during training then the acoustic model will simply
learn it together with phonemes. Later, when the room would be different on testing,

29 There has to be an A/D converter anyway, so in the end, we have nothing like real-valued voltage.
Additionally, the number of quantization levels will likely be small in this case because the bit speed
of modern discs is enormous and finer quantization would be cost-prohibitive. Finally, as noted in
[11], 8 quantization levels are equivalent to 1.5 dB SNR improvement over 2 quantization levels, while
whatever detailed quantization can only give additional 0.5 dB over these 8 quantization levels.
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the performance of the system might drop considerably. If the training takes place in
variety of rooms, a mixture of reverberant characteristics would be learned. It is then
reasonable to expect that the recognition will work in nearly any room to some extent.
Unfortunately, the HMM for words of fig. 4, will be quite reluctant to learn any . 21

echo-related features because the echo-relevant HMM state is lost on phone boundaries.
That is why standard ASR systems (practically all commercial ones) use more compli-
cated form of HMM than the one described in section 2.4. It is called triphone model . 20

and is described throughly in [39]. The idea is that for each phoneme we maintain
many of its variants conditioned on context (the preceding and following phoneme).
The HMM of the phoneme is the same as we had before (fig. 3), only the tying is . 21

changed and word beginnings and ends has to be split accordingly, so that the ap-
propriate triphone could be used, based on the last phoneme of the preceding word.
Needless to say, main problem with training such a beast is data sparseness. However it
could be overcome with clever methods of clustering and smoothing. Current IBM rec-
ognizer (ViaVoice) is already using septaphones, which means that each phoneme has
a context made of 3 preceding and 3 succeeding phonemes. Triphones were originally
introduced to cope with coarticulation30. The fact that septaphone system outper-
forms a triphone one, such that it worths to use it in commercial recognizer despite the
complications it brings, suggest that it perhaps captures echo as well as coarticulation.

3.4 My Contribution

My contribution consists of the idea of tracking instantaneous SNR during Viterbi de-
coding as described in 3.3.14, and of my suspicion that septaphones partially counteract . 65

the echo, as stated in 3.3.15.

30 An effect when adjacent phonemes influence each others’ sound, as explained in chapter 5. . 147
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In this chapter, I summarize some well known facts about digital signal processing. It
does not contain many original results, although the way how I present the theory is
original. Experts are strongly advised to skip this chapter entirely, and use it solely as
reference of the notation.
Also, this chapter should not be expected to cover all the topics treated in standard

textbooks on signal processing. Mostly just the things that will be needed in the
sequel are included. Specifically, continuous-time signal theory will not be presented
at all. Although the statements of its theorems are rather similar to their discrete-
time counterparts, they are not exactly same, and more importantly they need more
advanced calculus to be proven. Even to define what we mean by the continuous-
time signal the theory of distributions would be needed. But, unfortunately, it is
rather abstract and lengthy and, for our purposes, it definitely would not pay-off since
we would need it only to describe continuous-time wave before it was sampled into
the computer. To side-step continuous-time theory I will treat this single case by
approximating continuous signal with discrete-time signal of very high (say 1050 Hz)
sampling frequency. This should not make much physical difference because the air
pressure is, after all, generated by the molecules impacting microphone’s membrane,
which is a discrete process, provided that the sampling frequency is so high, that it
will not miss molecule impacts between consecutive measurements. Either there will
be a hit (possibly from several molecules at once), or there will be nothing at all within
whole sampling period1. This does not mean that the continuous-time description is
useless. It is very convenient for analysis of networks of elements described by integral
or differential equations, such as capacitors or inductors, in which case discrete-time
method would be cumbersome. But as we neglect these elements in the analog path
and the description of reverberation we gets by with delays and sums, inclusion of this
theory would be an overkill.
Main topics studied here will be how to sample the physical signal at reasonably

slow rate such that it would be possible to reconstruct the original signal with good
enough precision, how the signal changes if it is passed thru a linear system (such as a
room causing a reverb) and what is signal’s spectrum and why it is important. Also,
several special topics such as the Hilbert transform will be discussed, as they will be
used in the front end.

4.1 Discrete Periodic Signals

Before we define general signal, let us first explore easier case of periodic signals. As
they are periodic and discrete we only need finitely many values to represent them
— one period is enough to specify whole signal going from minus infinity to infinity

1 According to quantum physics, time intervals shorter than Planck’s time (≈ 5.391 ·10−44 s) should
be indistinguishable. If the molecule could bounce off the membrane in shorter time it would violate
this principle (by passing thru two distinguishable places in space during Planck’s time we would be
able to distinguish even shorter time interval, which is considered impossible).
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in time. Therefore we can treat them as N -dimensional vectors over C, where N is
determined by the signal’s period. To avoid confusion with later defined signals, I will
refer to discrete periodic signals as to vectors, from now on.
The reason why C was chosen instead of R as the field over which we develop the

theory is rather practical. Many useful operations with signals turn out easier to state
in C. Nevertheless, the input signal will be real valued in most applications of the
theory.
Elements of the vector will be indexed from 0 to N−1, where N is the vector’s

dimension. Matrices will also be indexed starting by 0. The vectors are understood as
column vectors and formally behave as 1 × N matrices. So when I write Ax, I mean
the matrix A multiplied by a column vector x. Identity matrix will be denoted by I
(sometimes by IN to explicitly state that it is N ×N matrix), all-zero matrix will be
denoted by O. The complex conjugate of matrix A will be written as A. Transposition
as AT and Hermite conjugate as AH = A

T
. As I treat vectors as special case of matrices,

the same symbolics holds for them, too. Using this notation, the (complex) dot product
of x and y would be written as xHy. Vector norm will be written as ||x||, being defined
this way: ||x|| :=

√
xHx. Individual matrix elements are denoted using indices, for

instance Aij refers to the element in i-th row and j-th column of A.

4.1.1 Definition Discrete Fourier Transform

For N -dimensional vector a, its discrete Fourier transform is defined as FN · a, where
N ×N matrix FN is defined as follows:

(FN )yx :=
1√
N
e−

2πiyx
N (133)

If there is no danger of confusion we will write just F instead of FN , when referring to
that matrix.

4.1.2 Observation FN is unitary matrix

Proof We have to show that FNFHN = I = FHNFN . Expanding the first product, we
get

1
N

N−1∑

p=0

e−
2πiyp

N e
2πipx

N =
1
N

N−1∑

p=0

e
2πip

N
(x−y) (134)

Now, if x − y = kN for integer k the argument of the exponential will be 0 therefore
the sum will be N and the result will be 1. Because x and y are both ≥ 0 and less
than N , this only happens for x = y. In other cases it is easy to show (geometric sum)
that the sum is zero. So we have that FNFHN = I. The other product follows from the
first one and the fact that FN is symmetric (FN = FTN ). So the first product is in fact

I = FNFN . And the second one is I = I = FNFN = FNFN . Q.E.D.

4.1.3 Consequence (Parseval’s equality) ||x||2 = ||FNx||2

Proof ||FNx||2 = (FNx)H(FNx) = xHFHNFNx = xHx = ||x||2 Q.E.D.
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4.1.4 Lemma (Cyclic Correlation Lemma)

N−1∑

k=0

akb(n+k)%N =
1
N

N−1∑

f=0

(
N−1∑

k=0

ake
− 2πifk

N

N−1∑

k=0

bke
2πifk

N

)
e−

2πifn
N (135)

Proof

cn =
N−1∑

k=0

akb(k+n)%N (136)

N−1∑

n=0

cne
2πifn

N =
N−1∑

n=0

N−1∑

k=0

akb(k+n)%Ne
− 2πifk

N e
2πif(k+n)

N =
N−1∑

k=0

ake
− 2πifk

N

N−1∑

k=0

bke
2πifk

N

︸ ︷︷ ︸
hf

(137)
Now, applying Fourier transform to both sides and using observation 4.1.2 we get:

√
Ncp =

1√
N

N−1∑

f=0

hfe
− 2πi

N
fp (138)

Q.E.D.

4.1.5 Definition Cyclic Convolution

For N -dimensional vectors a and b, the cyclic convolution a ∗ b (which is also N -
dimensional vector) is defined as follows2:

(a ∗ b)n :=
N−1∑

k=0

a(n−k)%Nbk (139)

4.1.6 Lemma (Cyclic Convolution Lemma)

N−1∑

k=0

akb(n−k)%N =
1
N

N−1∑

f=0

(
N−1∑

k=0

ake
2πifk

N

N−1∑

k=0

bke
2πifk

N

)
e−

2πifn
N (140)

Proof

cn =
N−1∑

k=0

akb(n−k)%N (141)

N−1∑

n=0

cne
2πifn

N =
N−1∑

n=0

N−1∑

k=0

akb(n−k)%Ne
2πif(n−k)

N e
2πifk

N =
N−1∑

k=0

ake
2πifk

N

N−1∑

k=0

bke
2πifk

N

The rest follows by use of the discrete Fourier transform. Q.E.D.

2 % stands for the modulo operation defined as follows: a%b := a− b · ba/bc.
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4.1.7 Note It follows from the above lemma that cyclic convolution is commutative,
associative and distributive. This is because the lemma translates convolution into
point wise multiplication which has these properties. For sake of clarity, I will show
it for associativity. The above lemma states that a ∗ b =

√
NF (FHa � FHb), where

� denotes element-by-element multiplication of the vectors3. Now, let us have three
N -dimensional vectors, a, b and c. Then

a∗(b∗c) =
√
N ·F (FHa�FH(

√
N ·F (FHb�FHc))) = N ·F (FHa�(FHb�FHc)) (142)

Because of linearity of F and distributivity of �-multiplication, we get
a∗ (b∗ c) = N ·F ((FHa�FHb)�FHc) = N ·F (FH(F (FHa�FHb))�FHc) = (a∗ b)∗ c

(143)
Q.E.D.

Often, we want to compute ‘acyclic convolution’, and the following lemma tells us how
much zero padding is needed so that we could harness our cyclic convolution machinery.

4.1.8 Lemma (Convolution Lemma) Let ak be zero for k /∈ [0,Ma] and bk be zero
for k /∈ [0,Mb]. Then for any N > Ma +Mb:

n∑

k=0

akbn−k =
1
N

N−1∑

f=0

(
N−1∑

k=0

ake
2πifk

N

N−1∑

k=0

bke
2πifk

N

)
e−

2πifn
N (144)

Proof Since N > Ma+Mb, we have
∑n
k=0 akbn−k =

∑N−1
k=0 akb(n−k)%N , and the rest

follows directly from the cyclic convolution lemma. Q.E.D.

4.1.9 Fast Fourier Transform (FFT)

The above lemma can be used to rapidly compute convolution using the Fast Fourier
Transform, which is a fast algorithm for computing the discrete Fourier transform. It
can be concisely written as appropriate factorization of the FN matrix. Let N be power
of 2, and let the N ×N matrix P and N

2 × N
2 matrix Q be defined as follows:

P :=




1 0
1 0

1 0
. . .

0 1
0 1

0 1
. . .




, Q :=




1
e−2

πi
N

e−4
πi
N

e−6
πi
N

. . .



(145)

Px permutes input vector x such that its odd and even indexed elements become
grouped together. It is obvious that P−1 = PT. Now,

FN = FN · PT · P = 1√
N

((
e−

2πi
N
y2x
)
yx

(
e−

2πi
N
y(2x+1)

)
yx

)
P = (146)

3 In the following, � will be considered to have lower priority than matrix multiplication and higher
priority than addition. So a+ b� C · d should be read as a+ (b� (C · d))
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=
1√
N



√

N
2 FN

2

√
N
2 QFN

2√
N
2 FN

2
−
√

N
2 QFN

2


P = 1√

2

(
I I
I −I

)(
I

Q

)(
FN
2

FN
2

)
P (147)

so we have expressed FN by means of two invocations of FN
2
, N/2 complex multiplica-

tions, N complex additions and some data reordering. We can continue recursively and
use (147) on FN

2
, FN

4
until we reach F1 = I1. This way we get rid of F s in the formula

and only multiplications by Q and additions survive. As there were log2N recursion
steps, the overall complexity is O(N log2N), which is great improvement over O(N 2)
operations required by general multiplication by matrix FN . Moreover, the product
of permutation matrices P can be precomputed, and interestingly, it comes out as a
permutation which sends index i to an index obtained from its binary representation
by writing it in reversed order. This can be observed from the fact that P swaps the
least and the most significant bits of the index. The recursively invoked P s do the same
thing with the remaining bits.

Formula (147) is sometimes called ‘decimation in time’-FFT. There also exist ‘dec-
imation in frequency’-FFT, which can be obtained from (147) in the following way:

FN = FTN =
((

I I
I −I

)(
I

Q

)(
FN
2

FN
2

)
P√
2

)T

=
1√
2
PT
(
FN
2

FN
2

)(
I

Q

)(
I I
I −I

) (148)

The two ‘decimations’ are useful for convolution computation, because they allow not
to perform multiplication by P at all4. In (144) we first have to do an inverse transform
on a and b (by multiplying it by FN from the left), then multiply the results point-
by-point. Finally we have to perform forward transform and

√
N -scaling to obtain

the result. As the point-by-point multiplication of the spectra does not depend on the
ordering in which the points are stored, we can omit permutations altogether, provided
that the forward transform will be able to read data in that order. This is exactly what
decimation in frequency followed by a decimation in time does, since PP T = I.

The FFT, as it has been described, only works for vectors whose dimension is
power of two. Similar decomposition can be carried out for other powers of primes and
in case of compound numbers, these can be mixed. Practically it only pays-off for small
numbers, like 3 and 5. To compute FFT of a vector of length of some larger prime
number, the following trick can be done:

√
Ncf =

N−1∑

n=0

xne
− 2πi

N
nf =

N−1∑

n=0

xne
πi
N ((f−n)2−f2−n2)

= e−
πi
N
f2

N−1∑

n=0

(
xne

−πi
N
n2
)

︸ ︷︷ ︸
yn

e
πi
N
(f−n)2

︸ ︷︷ ︸
af−n

(149)

The last formula is clearly a convolution, where the index n goes from 0 to N − 1
and the index f − n from −N + 1 to N − 1. Let us take M ≥ 2N − 1 and define y
4 Today’s CPUs are not particularly fast in wild data reordering, so this can really improve speed.
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and a to be M -dimensional vectors, zero padded outside the above mentioned ranges
(negative indices in case of a has to be wrapped over M , such that −i would be stored
at M − i for i > 0). Now, we can compute (149) using cyclic convolution lemma, with
the Fourier transforms implemented as FFT if we tookM := 2m. This way it is possible
to compute the Fourier transform of any M -dimensional vector in time O(N log2N)
at the expense of invoking power-of-two FFT two times5 on vectors at most twice as
long. Note that the precision also slightly suffers by longer computation but this is not
a concern for majority of practical applications.

4.2 Fourier Series

The previous periodic approach becomes cumbersome once we want to work with signals
of different periods simultaneously as we must take the period large enough to be
divisible by periods of all the signals involved. Moreover, there are natural phenomena
which cannot be described even in this manner. For instance, voltage measured on a
discharging capacitor goes to zero like e−t, so it will never really reach zero and the
signal would therefore be infinite in time6. For this reason, we would like to have
infinite aperiodic signals with analogical operations (addition, �-multiplication and
convolution) as in the periodic case. It is obvious that not every Z → C function
can be considered as a signal in this sense. For instance, constant 1 convolved7 with
itself would lead to a divergent sum. That is why we will require the signals to fall
to zero as time goes to plus or minus infinity. In fact, we will need more than that
to assure convergence. The exact condition will emerge from this section, where the
discrete Fourier transform will be generalized such that it could ‘process’ certain infinite
sequences. Particularly, these will include all finite sequences (zero padded to infinity).
To get initial felling of what this section is all about, let us imagine that we have a
vector and we will zero-pad it to length N , watching its discrete Fourier transform,
while going with N towards infinity. To allow the spectrum to stabilize, we will watch√
NFNx instead of plain FNx. Also, imagine the resulting vector to be plotted onto the
interval [0, 1). As N goes to infinity, it is reasonable to expect that the shape stabilizes
and in the limit it becomes continuous [0, 1)→ C function. This section formulates this
idea precisely and more generally as the signal x will be allowed to be truly infinite,
not just zero-padded.
I will extensively use complex numbers, especially integral from complex function

of a real variable. It is understood formally as follows.
∫
f(x) + ig(x) dx :=

∫
f(x) dx+ i

∫
g(x) dx (150)

Derivative of R → C functions will be treated similarly. Note that it is different from
true complex derivative, which operates on C → C functions. Before really beginning,
let us remind some definitions.

5 It is assumed that FFT of a has been precomputed as it is constant for any given N .
6 In the real world this signal falls below the level of thermal noise quite soon, so it becomes prac-
tically indistinguishable from its finite portion (noise-padded to infinity). But we want to work with
ideal unquantized and noise free signals, at this level of abstraction. It is easier to first introduce ideal
noise-free signals and add the noise afterwards.
7 Convolution of infinite signals will be defined in 4.3.1 . 83
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4.2.1 Definition Piecewise Continuous Function

f : [a, b] → C will be called piecewise continuous on [a, b] iff it is continuous on [a, b]
except for finite number of points in which finite one-sided limits exist (both limits have
to exist in inner points, the relevant one is enough in a and b).

4.2.2 Definition Rectified Function

For function f : R → C the following symbols will be used (if the limit is defined)

f+(x) := lim
t→x+

f(t) f−(x) := lim
t→x−

f(t) f±(x) := lim
t→x

f(t) (151)

4.2.3 Observation Any piecewise continuous function f : [a, b]→ C is bounded.

Proof Let us have all its discontinuity points a = x1 < x2 < · · · < xn−1 < xn =
b. Then, since the one-sided limits must exist in them, we know that8 the function
(f�[xi, xi+1])± is continuous on compact set [xi, xi+1], therefore it is bounded there
and that is why f itself is bounded on (xi, xi+1). Finally, the values of f(xi) do not
spoil the boundedness, since there are only finitely many of them. Q.E.D.

4.2.4 Lemma Let the function g be piecewise continuous on [a, b]. Then

lim
y→∞

b∫

a

g(x) sin(yx) dx = 0 (152)

Proof g is bounded by 4.2.3, so
∫ b
a
=
∑
i

∫ xi+1

xi
, where the function we integrate is

continuous inside each interval, and it has the limits at its endpoints. As the value
of such an integral does not depend on the value of g in the endpoints themselves, we
can assume that g was continuous. Moreover it is enough to analyze what happens
in one such interval, so without the loss of generality we will only examine continuous
function g on interval [0, 1]. Because [0, 1] is compact, g is also uniformly continuous.
This implies that for any ε > 0 there is large enough n such that ∀k∈{0, . . . , n− 1} :
∀x∈

[
k
n ,

k+1
n

]
:
∣∣g(x)− g

(
k
n

)∣∣ < ε. Now, let us take large enough y, such that

y >
1
ε

n−1∑

i=0

∣∣∣∣g
(
k

n

)∣∣∣∣
︸ ︷︷ ︸

S

(153)

We have ∣∣∣∣∣∣

1∫

0

g(x) sin(yx) dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

n−1∑

k=0

(k+1)/n∫

k/n

g(x) sin(yx) dx

∣∣∣∣∣∣∣
= (154)

=

∣∣∣∣∣∣∣

n−1∑

k=0



(k+1)/n∫

k/n

(
g(x)− g

(
k

n

))
sin(yx) dx+ g

(
k

n

)
·
(k+1)/n∫

k/n

sin(yx) dx




∣∣∣∣∣∣∣
≤

8 f�A denotes function restricted to domain A, that is f �A :=
{
〈x, y〉∈f | x∈A

}
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≤
n−1∑

k=0

(k+1)/n∫

k/n

ε dx+
n−1∑

k=0

∣∣g(k/n)
∣∣·

∣∣∣∣∣∣∣

(k+1)/n∫

k/n

sin(yx) dx

∣∣∣∣∣∣∣
≤ (155)

ε+
n−1∑

k=0

∣∣g(k/n)
∣∣ ·
∣∣∣∣
cos(yk/n)− cos(y(k + 1)/n)

y

∣∣∣∣ ≤ ε+
n−1∑

k=0

∣∣g(k/n)
∣∣ · 2
y
≤ ε+

2S
y

≤ 3ε

Hence the limit is 0. Q.E.D.

4.2.5 Definition Piecewise Differentiable Function

f : [a, b]→ C will be called piecewise differentiable on [a, b] iff it is piecewise continuous
and it has first derivative on [a, b] except for finite number of points. In these points,
finite derivatives from the left and from the right of f−(x) and f+(x), respectively,
have to exist (in a from the right and in b from the left is enough).

4.2.6 Definition Periodic Function

An R → C function f will be called T -periodic iff p(x) = p(x+ T ).

4.2.7 Theorem (Fourier Series) Let C be 1-periodic piecewise differentiable func-
tion. Let us define

ck :=

1/2∫

−1/2

C(f) e2πifk df and Cn(x) :=
n∑

k=−n

cke
−2πikx (156)

Then
C+(x) + C−(x)

2
= lim
n→∞

Cn(x) (157)

and the limit on the right side exists for all x∈R.

Proof

Cn(x) =
n∑

k=−n

1/2∫

−1/2

C(f)e2πik(f−x) df =

1/2∫

−1/2

C(f)
n∑

k=−n

e2πik(f−x)

︸ ︷︷ ︸
Dn(f − x)

df (158)

Function Dn is continuous (because it is a finite sum of continuous functions) and
Dn(0) = 2n+ 1. For x 6= 0 we have the following geometric sum:

Dn(x) =
n∑

k=−n

(
e2πix

)k
= e−2πixn ·

2n∑

k=0

(
e2πix

)k
=
e2πix(n+1) − e−2πixn

e2πix − 1 · e
−πix

e−πix
=

=
e2πix(n+

1
2 ) − e−2πix(n−

1
2 )

eπix − e−πix
=
sin(2πx(n+ 1

2 ))

sin(πx)
(159)
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As C and D are periodic (with period 1), they can be shifted

Cn(x) =

1/2∫

−1/2

C(f)Dn(f − x) df =

1/2∫

−1/2

C(f + x)Dn(f) df = (160)

=

1/2∫

0

C(f + x)Dn(f) df +

0∫

−1/2

C(f + x)Dn(f) df

By substituting g = −f , using the fact that Dn(f) = Dn(−f) and by swapping the
integration limits we obtain

Cn(x) =

1/2∫

0

C(x+f)Dn(f) df+

1/2∫

0

C(x−f)Dn(f) df =

1/2∫

0

(
C(x+f)+C(x−f)

)
Dn(f) df

(161)
We will evaluate the limit now.

lim
n→∞

Cn(x) = lim
n→∞

1/2∫

0

(
C(x+ f) + C(x− f)

)
Dn(f) df =

lim
n→∞

1/2∫

0

(
C(x+ f)− C+(x) + C(x− f)− C−(x) + C+(x) + C−(x)

)
Dn(f) df =

lim
n→∞



1/2∫

0

(
C(x+ f)− C+(x) + C(x− f)− C−(x)

)
Dn(f) df +

+
(
C+(x) + C−(x)

)
·
1/2∫

0

Dn(f) df


 (162)

Now, for4 C=λf.1 we have ck=0 except for c0, which is 1 by (156). So, for C=λf.142 /

we have Cn(x)=1 for all n∈N and from (161) we see, that
∫ 1/2
0

Dn(x) dx = 1/2. Hence

lim
n→∞

Cn(x) =
1
2

(
C+(x) + C−(x)

)
+ (163)

lim
n→∞

1/2∫

0

(
C(x+ f)− C+(x)

f
+
C(x− f)− C−(x)

f

)
f

sin(πf)︸ ︷︷ ︸
g(f)

sin
(
2πf

(
n+
1
2

))
df

To prove that the last limit goes to zero we have to show that g(f) is piecewise con-
tinuous, which enables us to use lemma 4.2.4. The only difficult point is 0, but there,

f/ sin(πf) has finite limit and C(x+f)−C+(x)
f goes to the derivative from the right of

C in x, while C(x−f)−C−(x)
f goes to the derivative from the left of −C in x. Both are

defined and finite because C was piecewise differentiable. Q.E.D.
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4.2.8 Theorem (Uniqueness of the Fourier coefficients) Let us have ck such that

C(x) := lim
n→∞

n∑

k=−n

cke
−2πikx (164)

converges everywhere and is a piecewise differentiable function. Then

cp =

1/2∫

−1/2

C(x) e2πifp dx (165)

Proof Since C(x) is bounded (as it is piecewise differentiable), we can swap the limit
with the integral and get

1/2∫

−1/2

(
lim
n→∞

n∑

k=−n

cke
−2πikx

)
e2πifp dx = lim

n→∞

n∑

k=−n

ck

1/2∫

−1/2

e2πi(p−k)x dx (166)

where the integral is 1 iff p = k, and 0 otherwise. So we obtain cp as a result. Q.E.D.

4.2.9 Note The above two theorems can be stated for general period p by simple
change of variables as follows.

ck :=
1
p

p/2∫

−p/2

C(f) e2πifk/p df then
C+(x) + C−(x)

2
=

∞∑

k=−∞

cke
−2πikx/p (167)

where C is p-periodic piecewise differentiable function and the coefficients ck are deter-
mined uniquely for the C given.

4.2.10 Lemma For a 1-periodic piecewise differentiable function C, the following
holds (and the limit exists):

C+(x) + C−(x)
2

= lim
n→∞

1/2∫

−1/2

C(f)Dn(f − x) df (168)

Proof Contained in proof of 4.2.7, starting by equation (160). Q.E.D.

4.2.11 Definition Signal, σ, σF

Let us have a function c : Z → C and let us define C(f) := limn→∞
∑n
k=−n cke

−2πikf .
Then, c will be called a signal iff C(f) converges ∀f and is piecewise differentiable.
The set of all signals will be denoted as σ. Let σF ⊂ σ stand for the set of all finite
signals, that is signals with only finitely many non-zero elements ck.
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4.2.12 Note According to 4.2.7, any sequence obtained from 1-periodic piecewise78 /

differentiable function by integral (156) is a signal.78 /

4.2.13 Definition F , Spectrum, S
For signal a∈σ, A(f) :=∑∞

k=−∞ ake
−2πikf will be called its spectrum and abbreviated

as F(a). In fact, F may be understood as a mapping from σ to the set of piecewise
differentiable 1-periodic functions. Let the set of all spectra {F(s) | s∈σ} be denoted
by S.
4.2.14 Note S is a subset of the set of all 1-periodic piecewise differentiable function.
By 4.2.7 we know that ∀s∈σ : F(s) = F(s)++F(s)−

2 . Therefore,

S = {C | C is 1-periodic piecewise differentiable function s.t. 2C = C+ + C−} (169)

The reason to constrain ourselves to S is to have unique spectrum for a given signal.
4.2.15 Observation σ and S are infinite-dimensional vector spaces, and F is a
linear mapping σ → S.
Proof Defining (a + b)k = ak + bk and (αa)k = αak for a, b∈σ and (A + B)(f) =
A(f)+B(f) and (αA)(f) = αA(f) for A,B∈S we see that all vector space axioms hold,
provided that the results are also from σ and S, respectively. To show this, let us begin
by realizing that scaling by α is clear in both cases. The sum of two functions from S
is also from S because it is piecewise differentiable and the property (169) holds, too.
Having a, b∈σ we know that A = lim s(a)n and B = lim s(b)n exist. Then, lim s(c)n
also exists (for c = a+b), being equal to A+B. Hence c∈σ. As for F , we have to show
that F(a+αb) = F(a)+αF(b). As we now know that a+αb is also ∈σ (which means
that the limit in F(a + αb) converges) the equality follows straightforwardly from the
fact that lim(xn + yn) = limxn + lim yn. Q.E.D.

4.2.16 Definition Zero and Unit-Impulse Signals

Let the signal z such that ∀k : zk = 0 be denoted by ~0. Let the signal u such that
u0 = 1 and ∀k 6= 0 : uk = 0 be denoted by ~1.
4.2.17 Note F(~0) = 0 and F(~1) = 1.
4.2.18 Lemma F is one-to-one mapping — ∀a, b∈σ, a 6= b : F(a) 6= F(b).
Proof Let us have a, b∈σ such that F(a) = F(b). Using linearity of F , we have that
F(a− b) = 0. Using uniqueness 4.2.8 we know that a− b = ~0, hence a = b. Q.E.D.

4.2.19 Definition F−1

Now it is valid to define inverse F−1 : S → σ in the following way:

F−1(A) := λk.

1/2∫

−1/2

A(f) e2πifk df (170)
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4.2.20 Theorem (Parseval’s equality) Let c∈σ and F(c) = C. Then

lim
n→∞

n∑

k=−n

||ck||2 =
1/2∫

−1/2

||C(f)||2 df (171)

Proof
∞∑

k=−∞

ckck =
∞∑

k=−∞

1/2∫

−1/2

C(f)e2πikf df

1/2∫

−1/2

C(f)e−2πikf df

= lim
n→∞

n∑

k=−n

1/2∫

−1/2

C(f)

1/2∫

−1/2

C(g)e2πik(f−g) dg df (172)

The sum is finite so it can be propagated inside the formula and because the function
inside the outer integral is bounded, the limit can be moved inside.

1/2∫

−1/2

C(f) lim
n→∞

1/2∫

−1/2

C(g)
n∑

k=−n

e2πik(f−g) dg df =

1/2∫

−1/2

C(f) lim
n→∞

1/2∫

−1/2

C(g)Dn(f − g) dg df

(173)
By lemma 4.2.10 we have

∞∑

k=−∞

ckck =

1/2∫

−1/2

C(f)C(f)df (174)

Q.E.D.

4.2.21 Note Parseval’s equality ensures that ||s||2 = limn→∞
∑n
k=−nsksk converges

for every s∈σ. Note that the converse is not true. For instance sn := 1
|n|+1 has ||s||2

finite but F(s)(0) = ∞, hence s /∈ σ. The physical meaning of ||s||2 is total energy
of the signal. To justify this, let us imagine that sk is the input voltage at time point
k. To maintain this voltage, signal source has to provide power Pk = s2k/Rin, where
Rin is the input resistance of preamplifier. So, during each sampling period9 T , work
PkT has to be carried out. Therefore, ||s||2 is proportional to the signal’s energy (by
factor T/Rin). Parseval’s equality states that the energy of the signal is conserved by
F transformation (if we also change ∑ to

∫
in the formula for energy).

4.2.22 Historical Remark Fourier series predate discrete Fourier transform, and
they were originally formulated in real numbers. In this formulation the function C :
R → R meant continuous-time 1-periodic signal. Its spectrum consisted of ak and bk,
where in our notation, ak + ibk = ck. Note that for real C we have c−k = ck, thus it
is enough to specify ak and bk for k ≥ 0 only. The series can than be considered as a
way of expressing function C as an infinite sum of suitably weighted sines and cosines

C+(t) + C−(t)
2

= a0 + 2
∞∑

n=1

(ak cos(2πnt) + bk sin(2πnt)) (175)

9 Imagine that we still work with extremely high sampling frequency
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or if we use the identity

An sin(2πnt+ ϕn) = An cosϕn︸ ︷︷ ︸
2bn

sin(2πnt) +An sinϕn︸ ︷︷ ︸
2an

cos(2πnt) (176)

it may be understood as a decomposition of C into shifted and scaled sines, so called
harmonic components. Note that we are using the series the other way round. We have
discrete time and continuous frequencies. So, what used to be considered as spectrum
we understand as a signal today, and vice-versa. Also, note that even if all cks of our
signal were real, C could still be complex (and C(f) = C(−f) would hold).

4.3 Signals and Operations with them

Let us remind that σ denotes the set of all signals (4.2.11), S denotes the set of all80 /

spectra and F stands for one-to-one correspondence between the two sets. Sequences
not in σ will not be considered as signals. From the practical point of view this is not a
restriction because σ includes all finite-duration signals (zero padded to infinity), that
is all physically meaningful signals. We have already seen that it also makes definition
of total energy of any signal correct (and finite). In this section operation with signals
will be introduced and shown to be well defined. Their basic properties will be proved,
too.
In 4.2.15 we have seen that σ and S are vector spaces. Hence we have addition and

scaling operations already. Definitions of other operations together with their effect in
S-space will follow. For the rest of this section, let us have a, b∈σ, A = F(a) and
B = F(b).
4.3.1 Definition Convolution

(a ∗ b)n := lim
n→∞

n∑

k=−n

an−k · bk (177)

Proof To demonstrate correctness of the above definition, we have to show that
c := a ∗ b ∈ σ. To do this, we will show that F(a ∗ b) converges to C∈S. Let us have
C = F(a) · F(b). Clearly C∈S. Using 4.2.7 and 4.2.8 we can reconstruct c in the78 /

80 /
following way

cp =

1/2∫

−1/2

A(f)B(f)e2πifp df =

1/2∫

−1/2

lim
n→∞

(
n∑

k=−n

ake
−2πifk

)(
n∑

k=−n

bke
−2πifk

)
e2πifp df

(178)
Since A(f)B(f) is bounded, we can swap the limit with the integral to obtain10

lim
n→∞

n∑

k=−n

n∑

l=−n

akbl

1/2∫

−1/2

e−2πif(k+l−p) df = lim
n→∞

n∑

k=−n

n∑

l=−n

akblδk+l−p =

10 δ is Kronecker’s delta. That is δx = 0 except for δ0 = 1.
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= lim
n→∞

n∑

l=−n

ap−lbl (179)

Now, from 4.2.7 we see that c is well defined. Moreover, F(a ∗ b) = F(a)F(b) which
implies that the convolution is commutative, associative (recall (142)) and because of . 74

linearity of F it is also distributive with addition. Q.E.D.

4.3.2 Definition Spectral Convolution

For A,B∈S, A ∗B will be defined as follows

A ∗B := λf.
1/2∫

−1/2

A(x)B(f − x) dx (180)

Proof It is straightforward that A ∗ B ∈ S, since the integration cannot spoil piece-
wise differentiability (integration smooths out discontinuities hence (169) automatically
holds). Q.E.D.

4.3.3 Definition Multiplication

(a� b)n := an · bn (181)

Proof To show the correctness, we will show that F(a � b) = A ∗ B. We know that
A∗B∈S, from previous paragraph. Therefore it is in Rng(F) and it is valid to compute
its inverse.

F−1(A ∗B)n =
1/2∫

−1/2

(A ∗B)(f)e2πifn df =
1/2∫

−1/2

1/2∫

−1/2

A(x)B(f − x) dx e2πifn df (182)

Now, we exchange the integrals using Fubini’s theorem, which is valid since A ∗ B is
piecewise continuous.

1/2∫

−1/2

1/2∫

−1/2

A(x)B(f − x︸ ︷︷ ︸
y

)e2πifn df dx =

1/2∫

−1/2

1/2−x∫

−1/2−x

A(x)B(y)e2πi(x+y)n dy dx (183)

Using periodicity and uniqueness 4.2.8, we obtain

1/2∫

−1/2

1/2∫

−1/2

A(x)e2πixnB(y)e2πiyn dy dx =

1/2∫

−1/2

A(x)e2πixn dx ·
1/2∫

−1/2

B(y)e2πiyn dy = an · bn

(184)
Therefore the definition is valid and F(a� b) = F(a) ∗ F(b). Q.E.D.



85 4 Signal Processing Theory

4.3.4 Definition Time Shift

Time-shifted signal a[k] is a signal a advanced11 by k sampling periods, or

a[k]n := ak+n (185)

Proof ~1[k]∈σ for any k, since it is a finite signal and we already know that σ contains
all finite signals. For general a we have a[k] = a ∗ (~1[k]), thus the definition is valid.
Note that F(a[k]) = e2πifkF(a). Q.E.D.

4.3.5 Definition Time Reversal

The symbol ρa stands for a ‘played’ backwards, that is

(ρa)n := a−n (186)

Proof It is obvious that time reversal cannot make the limit of F diverge. Therefore,
ρ is well defined. But for sake of completeness, I will show how it manifests in the
spectrum.

F(ρa)(f) =
∞∑

n=−∞

a−ne
−2πinf =

∞∑

n=−∞

ane
2πinf = F(a)(−f) (187)

So, defining (ρA)(x) := A(−x), we can write F(ρa) = ρF(a). Q.E.D.

4.3.6 Definition Complex Conjugate

(a)n := an (188)

Proof It is clear that a∈σ. For its spectrum, we have

F(a)(f) =
∞∑

n=−∞

ane
−2πinf =

∞∑

n=−∞

ane2πinf = F(a)(−f) (189)

So F(a) = ρF(a), or equivalently, F(a) = F(ρa). Q.E.D.

4.3.7 Definition Function Application

For a polynomial f : C → C such that f(0) = 0 we define

(f(a))n := f(an) (190)

Proof For (f(a))n =
∑N
k=1 αka

k
n, we have

F(f(a)) =
N∑

k=1

αk (F(a) ∗ · · · ∗ F(a))︸ ︷︷ ︸
k − times

(191)

therefore the signal f(a) is in σ. Q.E.D.

11 Shifted to the left
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4.3.8 Note Non-linear function applied on a band limited signal spreads its spec-
trum, as can be seen from (191). Each spectral convolution broadens the resulting band
by the bandwidth of the input signal. High enough sampling rate (or narrow enough
band of the input signal) has to be used, to avoid wrap-around aliasing (4.10.1). . 115

4.3.9 Definition Inverse, σI

For a such that ∀f ∈R : F(a)(f) 6= 0, we define its inverse as

a−1 := F−1(1/F(a)) (192)

The set of all invertible signals will be denoted as σI .

Proof To prove the correctness we have to show that 1/F(a)∈S. Having F(a) non-
zero we get |F(a)| ≥ ε0 > 0 owing to its uniform continuity. Hence 1/F(a) is bounded
and its derivative is also well defined. Thus it is a piecewise differentiable function and
the property (169) also holds. Q.E.D. . 81

4.3.10 Observation For a∈σI we have a−1 ∗a = ~1 and ∀b∈σ : (b∗a = ~1 implies
b = a−1)

Proof a−1 ∗ a = F−1F(a−1 ∗ a) = F−1
(
F(a−1)F(a)

)
= F−1 ((1/F(a))F(a)) =

F−1(1) = ~1. Let us have b such that b ∗ a = ~1. Then by distributivity we get (b −
a−1) ∗ a = ~0, that is F(b − a−1)F(a) = 0. Since F(a) is non-zero, F(b − a−1) must
be zero everywhere, therefore by uniqueness 4.2.8 we know that b − a−1 = ~0, hence . 80

b = a−1. Q.E.D.

4.3.11 Note It is clear that periodic signals are not in σ because the sum inside F
would be non-convergent. This means that it is not easy to analyze a system involving
both aperiodic and periodic signals because these two have incompatible formalizations.
Fortunately, we will not need it because every practical signal is finite, after all. Periodic
signals may be approximated by their long enough finite portion, zero-padded to infinity.

4.4 Linear Time-Invariant (LTI) Systems

Many physical phenomena concerning sound may be approximated by integral and
differential equations. In our discrete model, the derivatives could be approximated
as differences — in the most primitive way by xn − xn−1. More advanced methods
could use multipoint approximations, which are more resistant to noise. Higher order
differentiations are also possible, for instance 2nd derivative can be approximated by
xn−1 − 2xn + xn+1. System integrating its input could be modeled using the following
recursive formula

yn = xn + αyn−1 (193)

where x∈σ is the input and y is the output. For example, this could be a model of a
voltage on a capacitor being fed by a current x. Generalizing the above examples we
get so called digital filter [28].

yn =
N∑

k=0

ckxn−k −
M∑

k=1

dkyn−k (194)
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The above formula could be used to model all the RLC networks and amplifiers con-
tained in the analog path (provided that they are linear), it could be used to model
sound reverberations in the room and it could be even (mis)used12 to describe speech
production.
Any linear model is necessarily an approximation, however. Even the sound propa-

gation thru the air is a non-linear process (fortunately, this effect is practically negligible
at non-harmful loudness levels). More importantly, there can be non-linearity in the
channel (such as the non-linearity of low cost microphones) and usually there is some
kind of non-linearity in the sound source itself. On the other hand, the non-linearity can
often be separated so that the system could be described by an LTI model (194) whose
output is subsequently processed by a non-linear function. According to (191), the
result is complicatedly inter-modulated version of signal coming out of the LTI model.
If the non-linearity was weak, the LTI’s output would dominate the spectrum, leav-
ing quadratic, cubic and higher order components of spectral convolution (191) small
and spread over whole spectrum. It is often practical to use linear model to describe
such non-linear system. As the intermodulation components will be small, hopefully
comparable to noise, this may even lead to better behavior than that of more precise
non-linear model, which would be prone to fit the noise as if it were intermodulation
components of some signal. Besides, linearity and time invariance leads to relatively
simple mathematics and that is why LTI systems are so widely used.
Nevertheless, it should be noted that when there is strong enough non-linearity in

the feedback of otherwise linear system, very complicated behavior can occur, including
the onset of chaos. Once this happens, the following theory is of little use.

4.4.1 Definition Linear Time-Invariant System

LTI system can be formally defined as a mapping A : σ → σ, such that for all x, y∈σ,
α∈C and k∈Z the following properties hold:

linearity A(x+ αy) = A(x) + αA(y)
time invariance A(x[k]) = A(x)[k]
boundedness ∃KA∈R : ∀x∈σ : ||A(x)|| ≤ KA||x||

(195)

where ||x|| is the 2-norm introduced in 4.2.21.82 /

4.4.2 Theorem Any LTI system A can be written as a convolution. Formally, for
all x∈σ : A(x) = A(~1) ∗ x. We call the A(~1) an impulse response.
Proof Let x∈σF , then for suitable N

A(x) = A
(

N∑

k=−N

xk~1[−k]
)
=

N∑

k=−N

xkA(~1)[−k] = x ∗ A(~1) (196)

12 Our vocal cords generate impulse trains (for voiced sounds) or noise (for unvoiced sounds). This
sound then propagates up, thru our vocal tract, being partially reflected back and forth. All these paths
finally add up, forming the output sound. These reflections and delays could be directly captured by
formula (194), provided that they were time invariant. Unfortunately, this is not true in case of the
vocal tract, changing its shape during articulation. But as the rate of this change is relatively slow
(when compared with the speed of sound), the coefficients ck and dk can be understood as ‘locally
nearly constant’. As such, they can by updated once every 20 ms, for instance. This is used in LPC
analysis/synthesis method, which is in use in GSM telephony and in some front ends (see 5.2).153 /
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Now we want to prove that for general y∈σ and every n∈Z

A(y)n = lim
N→∞

N∑

k=−N

ykA(~1)n−k (197)

Let us be given an ε > 0. Let us write y as x + z, where x∈σF and z∈σ such that z
is zero in the interval [−N,N ] and let’s take N such that ||z||2 < ε2/K2A.

∣∣∣∣∣A(y)n −
N∑

k=−N

ykA(~1)n−k
∣∣∣∣∣ =

∣∣∣∣∣A(y)n −
N∑

k=−N

xkA(~1)n−k
∣∣∣∣∣ = |A(z)n| (198)

Using boundedness, we get

|A(z)n|2 ≤ ||A(z)||2 ≤ K2A||z||2 < ε2 (199)

Hence |A(z)n| < ε, which implies that A(y)n = (y ∗ A(~1))n. Q.E.D.

4.4.3 Consequence Composition of LTI systems is commutative and associative.

4.4.4 Example (Brick-Wall Low Pass Filter) LTI system which removes all fre-
quencies above f0 < 1/2 from the signal, while leaving everything below f0 intact, has
the following impulse response for k 6=0 (thanks to 4.3.1 and 4.4.2): . 83

hk =

1/2∫

−1/2

H(f)e2πifkdf =

f0∫

−f0

e2πifkdf =
e2πif0k − e−2πif0k

2πik
=
sin(2πf0k)

πk
(200)

where h0 = 2f0. Note that brick-wall filter is not a filter according to definition (194)
because summation over hk is infinite. Also note that although

∑
k hk converges it does

not converge absolutely.

4.4.5 Generalized Digital Filter and its Solution

Let us analyze how the digital filter (194) transforms x to y. Before doing that, we’ll
generalize it even more into the following equation (x∈σ is input, y is output).

N∑

k=M

dky[−k] =
Q∑

k=P

ckx[−k] (201)

Practical disadvantage of this formula is that it no longer specifies how to compute new
yn from the old values, as formula (194) did. Whole input signal must be known in
advance and (201) solved to obtain y. It turns out that this solution is unique, if we
are interested in y∈σ only. By zero padding dk and ck to infinity, we obtain signals d
and c, so we can write (201) as

d ∗ y = c ∗ x (202)



89 4 Signal Processing Theory

The convolution on the left side is used correctly because as we are searching for a
signal solution, we already treat y as certain, yet, unknown element of σ. Now, from
4.3.10 we see that86 /

y = (d−1 ∗ c) ∗ x = F−1

(F(c)
F(d)

)
∗ x (203)

and that the solution is unique, provided that d∈σI . In case of d∈σF \ σI , the solu-
tion may or may not exist and in case it exists it may be non-unique. As this is an
uninteresting case from the practical point of view, let us only consider d∈σI ∩ σF
henceforth.

Note that y∈σ does not follow from x∈σ automatically. This means, that there
may be other (non-signal) solutions y of (201) for a given input signal x. This can hap-
pen even in case of the original ‘algorithmic’ formulation (194) as will be demonstrated86 /

now. Let us have c = ~1 and d = ~1− 2 ·~1[−1], leading to recurrence

yn = xn + 2yn−1 or yn−1 =
yn − xn
2

(204)

Feeding it with x = ~1, we could obtain two solutions depending on the evaluation
direction. For left-to-right direction, we get yn = 2n for n ≥ 0 and zero otherwise,
for right-to-left, the outcome is yn = −2n for n < 0 and zero otherwise. The second
solution is from σ, while the first was not13. So it seems from this example that the
direction in which the filter is being evaluated is crucial for the result to be in σ.
However, for more complicated filters (having more dks non-zero) it can happen that
their direct evaluation in any direction would lead to exponentially growing results.
Nevertheless, from (203) we know that solution in σ exists and it is possible to use this
formula to compute any point of it, provided that x∈σF . More practical method will
be developed now. Let us write (203) in frequency domain in the following way.

F(y)(f) =
(F(c)(f)
F(d)(f)

)
· F(x)(f) = H(f) · F(x)(f) (205)

Then, substituting14 z := e2πif into it, we obtain (assuming dM 6=0, since d∈σI):

H(f) :=
(F(y)
F(x)

)
(f) =

(F(c)
F(d)

)
(f) =

∑Q
k=P ckz

R−k

∑N
k=M dkzR−k

=

∑R−P
k=R−Q c(R−k)z

k

∑R−M
k=R−N d(R−k)zk

(206)

where R = max(Q,N). Using the fundamental theorem of algebra, we can factor the
polynomials and get

H(f) =

∑R−P
k=0 c(R−k)z

k

∑R−M
k=0 d(R−k)zk

=
cP
dM

·
∏R−P
k=1 (z − zk)∏R−M
k=1 (z − pk)

=
cP
dM

·
∏R−P
k=1 (e

2πif − zk)∏R−M
k=1 (e

2πif − pk)
(207)

13 There are other non-σ solution — any affine combination of the above solutions is also a solution.
14 Herein, I assume this substitution to be only formal. But it is possible to treat formulas with z
as C → C functions (in variable z) and it is even possible to substitute z into F this way, which is
then called the z-transform and, in fact, it is a mapping between sequences and complex functions
expressed as Laurent’s series. Due to the lack of space and because we would not need it after all, I
will not go into any details, here. Variable z should be considered only as a lexical shortcut for e2πif .
In figures, z−1 will be used as a symbol for delaying the signal by one sampling period, because this is
what e−2πif does with the signal, when multiplied with its spectrum.
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where z1 . . . zR−P and p1 . . . pR−M are roots of the polynomials in nominator and de-
nominator, respectively. In accordance with complex analysis, zis are called zeroes and
pis are called poles. Hence we see, that filter (201) is fully described by its poles, zeroes
and the amplification factor cP /dM . This description is more convenient than original
coefficients ck and dk because it leads to decomposition (208), which is closely related
to implementation. Using the fact that the convolution is commutative and associative
and that it manifests itself in spectral domain as multiplication of the spectra, we can
write h := F−1(H) as a convolution of individual zero/pole terms, that is

h =
cP
dM

F−1 (z − z1)∗· · ·∗F−1
(
z − z(R−P )

)
∗F−1

(
1

z − p1

)
∗· · ·∗F−1

(
1

z − p(R−M)

)

(208)
which can be read either as a formula for obtaining h or as an algorithm of filtering the
input signal x, if we use associativity in h ∗ x. This way, it is possible to first convolve
x · cP /dM with F−1 (z − z1) then, convolve the result with F−1 (z − z2) and so on. We
may think of it as of a serial connection of single pole or single zero filters. Moreover, the
order in which they are connected is irrelevant because the convolution is commutative
and associative. This allows us to first convolve x with all F−1 (z − zi) then continue
with those F−1

(
(z − pi)−1

)
that can be evaluated from the left to the right and finally

finish with those F−1
(
(z − pi)−1

)
which lead to a signal solution only when evaluated

from the right to the left. This will be worked out in the next subsection. Let’s finish
this one with few definitions.

4.4.6 Definition ZP-Canceled Digital Filter

Zero/pole specification of a digital filter (207) will be called zp-canceled iff ∀ i, j : zi 6= pj
and ∀ i : zi 6= 0 and ∀ i : pi 6= 0.
The first condition asserts that there are no redundant zero/pole pairs, while the second
one forbids uninteresting poles or zeroes which would only shift the impulse response
to the left or to the right. Such delaying or advancing is better to be excluded from the
filter itself because it simplifies algebra. It is still fully general, provided that the input
signal has been shifted accordingly, before it was fed into the filter. Therefore, the
generalization (201) does not bring anything new over the original formulation (194),
except for the insight gained from more symmetric formula. A filter

yn =
N∑

k=0

ckxn−k+N−M −
M∑

k=1

dkyn−k (209)

is described by

H(f) = zN−M

∑N
k=0 ckz

−k

∑M
k=0 dkz

−k
=

∑N
k=0 cN−kz

k

∑M
k=0 dM−kzk

= c0

∏N
k=1(e

2πif − zk)∏M
k=1(e

2πif − pk)
(210)

in frequency domain and it reads data only from xn−M to xn+N−M when computing
value of yn. Notice that the meaning of M and N is that of eq. (194), not (201). Also
note that c0 6=0 and d0=1 correspond to the highest powers of the polynomials, while
cN and dM are their constant terms. These are both non-zero for a zp-canceled filter.
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4.4.7 Definition One-Way and Causal Filters

A filter is said to be one-way iff it can be evaluated from left to right, which happens
iff all of its poles lie inside the unit circle (that is ∀ i : |pi| < 1). Moreover, if its impulse
response hk is zero for k < 0, it is called causal. This means that it does not need to
know future inputs to be able to work. Clearly, any causal filter is one-way and any
one-way filter can be suitably shifted to become causal. For instance, for h being an
impulse response of (209), h[M−N ] would be causal, provided that h was one way.
4.4.8 Definition FIR and IIR Filters

Filter with impulse response h∈σF will be called a Finite Impulse Response or FIR.
It will be called an Infinite Impulse Response or IIR otherwise. Note that zp-canceled
filter is FIR iff it does not have any poles.

4.5 Practical Digital Filtering

Let’s work out how to convolve x with F−1 (z − z0) and F−1
(

1
z−p0

)
. Filter with

frequency response H(f) = z − z0 can be evaluated as15

yn = −z0 · xn + xn+1 (211)

while filter with H(f) = (z − p0)−1 leads to16

−p0 · yn + yn+1 = xn (212)

Thus, if |p0| < 1, it should be evaluated from left to the right:

yn = xn−1 + p0 · yn−1 (213)

while for |p0| > 1, it should be evaluated from right to the left17:

yn =
1
p0

· (−xn + yn+1) (214)

These directions of evaluation assure that y will be from σ if x was18. Let us now
assume that x was a finite signal. To be specific, let us have xn = 0 for all n∈Z\ [0, L].
If all poles were inside the unit circle the filter is one-way. First, we can run (213) for
all (z−pi)−1 terms, followed by (211) for all z−zi terms. As xn = 0 for ∀n < 0, we can
start (213) at n = 1 with initial condition y0 = 0 to obtain correct solution, consistent
with (203). This is the most common case of digital filtering. It has an advantage over

15 Which follows from yn =
∑

k ckxn−k and H(f) =
∑

k cke
−2πifk = e−2πif(−1) − z0 = z − z0.

16 Because
∑

k dkyn−k = xn and 1/H(f) =
∑

k dke
−2πifk = e−2πif(−1) − p0 = z − p0.

17 Note that |p0| cannot be 1 since F(d)(f) 6= 0 because d∈σI .
18 This is apparent from the fact that the impulse response of recurrence (212) falls exponentially
towards zero if evaluated in correct direction, hence F is convergent on it and so the impulse response
is in σ. Running (212) on a signal is equivalent to convolving it with its impulse response. As both
operands of ∗ are in σ so must be result.
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(203) that we are able to start outputting yns before we have read whole input x. In
fact xns can be translated into yns with just some fixed delay, as can be easily seen
from above equations.

4.5.1 Two-Way Filters

Nonetheless, were there poles outside the unit circle19, we would have to use backward
pass (214) for them. Such filters are called two-way filters in [28] as they also need
forward pass if there are poles inside the unit circle, which is typical. Unfortunately,
there is a problem with initial conditions for backward passes as these cannot be zero
anymore. To illustrate the problem, let us have x, the input signal already filtered
by all non-recursive passes (211) and multiplied by amplification factor c0. As the
input was finite in time, so will be x. Suppose we first run the forward passes (213)
on x for all poles inside the unit circle, producing intermediate result w∈σ. Then,
we would like to run backward passes (214) on w to obtain y, the desired output of
the filter. However, as w extends indefinitely to the future time, there is a trouble in
finding suitable starting point for (214). Note that zero initial conditions, although
also leading to a signal from σ, would not give the true solution (203). To make this
clear, let’s imagine that a filter with only a single pole p1 outside the unit circle is run
backwardly in the following way, starting at n = N .

yn = p
−1
1 · (−wn + yn+1) (215)

It is clear that yN+1 must already agree with the general solution (203) once we want
to use it as an initial condition in (215) to determine yN consistent with (203). The
formula (215), however, does not specify it in any way. Theoretical solution to this
problem would be to compute this single value using slow but general equation (203).
Then we could start (215) to do the rest. Would there be more out-of-unit-circle
poles (p1, . . . , pL), the very same method could be used in several steps. First, we
would compute signal y1 using only the first pole, with initial condition y1N+1 set to(
x ∗ F−1

((∏L
k=2

(
e2πif − pk

))
/F(d)

))
N+1
. Then, y1 would be used as the input w

of (215) to produce y2, using
(
x ∗ F−1

((∏L
k=3

(
e2πif − pk

))
/F(d)

))
N+1

as an initial

condition y2N+1. Continuing along these lines, we would finally end up with correct
output y, after L steps.
Another, more practical, method of two-way filtering gives up on precise result

and only computes an approximation of it. It will be shown that the numerical error
could be affordably kept close to machine precision. Hence, the difference between
precise and approximative solution would be practically indistinguishable. To compute
this approximation, we would start backward recurrence (215) farther in time, say at
n = N+K, with initial condition yN+K+1 = 0. Because of linearity, the obtained result
y could be understood as a sum y = ŷ + y̌, where ŷ is the output of (215) fed with w,
started at N + K with initial condition ŷN+K+1 set in accordance with (203), and y̌
would represent the error-term, being an output of (215) processing ~1[−N−K]ŷN+K+1
19 For instance, if we would like to construct an inverse to general FIR filter we would need poles
both outside and inside the unit circle. This is because zeroes of the original filter were unrestricted
and the inverse filter has to be constructed by making poles from zeroes, according to 4.3.10. . 86
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as its input, with initial condition y̌N+K+1 = 0. It is easy to check that the sum of these
two filters yields to y. The second filter essentially outputs its own impulse response
(shifted by N +K and magnified by ŷN+K+1), which falls exponentially towards zero.
Hence, for affordable values of K, this error signal can be kept negligible. For filters
with more poles outside the unit circle, this method can be easily generalized at the
expense of slightly larger values of K.
Note that the approximative solution allows us to start processing the signal x

before it is known it in its totality. Only K samples ahead of current position are
needed once we can upper-bound the output |yn| (which we usually can). However,
for acceptable effectiveness at least 2K samples ahead of current position would be
reasonable. Using this method both ways, it is possible to compute approximation of
(203) even for infinite x, which is otherwise impossible to be done exactly in general,89 /

because of infinite summation involved in (203).

4.5.2 Time Reversed Filter

Two-Way filters are closely related with time reversal. Namely, the backward pass can
be viewed as a forward pass on a time reversed signal using a time reversed impulse
response, or formally

x ∗ h = ρ(ρx ∗ ρh) (216)

Here, I will make clear what happens with zeroes and poles of a zp-canceled filter with
impulse response h, when reversed into ρh. We have

ρh = ρF−1(H(f)) = F−1(H(−f)) (217)

As the filter can be shifted by increasing M or N we can always describe it by (210):90 /

H(−f) =
∑N
k=0 cN−ke

−2πifk

∑M
k=0 dM−ke−2πifk

= c0 ·
∏N
k=1(e

−2πif − zk)∏M
k=1(e

−2πif − pk)
(218)

Rewriting e−2πif − zk as (e−2πifzk)(z
−1
k − e2πif ) we get

H(−f) =
(
c0 · (−1)(N−M) ·

∏N
k=1 zk∏M
k=1 pk

)
·
∏N
k=1(e

2πif − 1/zk)∏M
k=1(e

2πif − 1/pk)
· e2πif(M−N) (219)

Hence, the time reversal changes poles and zeroes of the filter to their respective recip-
rocal values (that is zk = Zkeiζk changes into Z−1

k eiζk). The amplification factor of the
filter is changed, too. The last factor performs time shift by M −N samples.

4.6 Transfer Function and Group Delay

Any digital filter is fully specified by its impulse response h. Practically, however, it is
more instructive to think about its frequency response H(f) = F(h)(f), also known as
its transfer function. As H is an R → C function it worths to rewrite it using amplitude
and phase, to gain further insight:

H(f) = |H(f)| · H(f)|H(f)|︸ ︷︷ ︸
Φ(f)

= |H(f)| · Φ(f)︸ ︷︷ ︸
eiϕ(f)

= |H(f)| · eiϕ(f) (220)
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Let us see now how it relates to the impulse response. Let us take (non-signal) sequence
xn = e2πifn and let us convolve it with h to get y = h ∗ x. Then

yp = lim
n→∞

n∑

k=−n

hke
2πif(p−k) = e2πifp lim

n→∞

n∑

k=−n

hke
−2πifk = (F(h)(f))e2πifp (221)

from which we see that y = H(f)x. This means that the exponential x acts as an
eigenvector of linear operator A(x) = h ∗ x, where H(f) is the respective eigenvalue.
Using (220) we can write the output as |H(f)|eiϕ(f)e2πifn = |H(f)|e2πifn+iϕ(f), which
can be interpreted as if x was amplified by |H(f)| and than phase shifted by ϕ(f). Due
to linearity, this happens separately to every single frequency f which is eventually
present in the input signal20. To clarify it further, let us explore this phenomenon in
usual case of real valued signals convolved with real valued impulse responses. In this
case, we are only interested in the real part of e2πifn, that is in x̂n = cos(2πfn). As h
is real, the convolution itself would not mix real and imaginary parts, therefore we can
just take Re(h ∗ x) to the determine h ∗ x̂ we are after — these two are equal. Hence
Re
(
|H(f)|e2πifn+iϕ(f)

)
= |H(f)| cos(2πfn+ϕ(f)). Again, the signal was amplified by

|H(f)| and phase-shifted by ϕ(f).
Electrical engineers found out that it is a good idea to plot |H(f)| on a log-log

paper as depicted in the upper panel of fig. 26. Although the rationale for doing so is . 150

more applicable in continuous time case, we will use it here, too. The log-log plot21

means that as we linearly move along the paper, frequency changes exponentially and
so does the amplitude. In fig. 26 the amplitude axis seems to be of linear scale, but this
is because |H(f)| is plotted in decibels, which means that instead of |H(f)|, we plot:

HdB(f) = 20 log10 |H(f)| (222)

HdB(f) is often referred to as the magnitude response, while ϕ(f) is called the phase
response. The magnitude response tells us how the signal’s energy will be amplified or
attenuated (that is filtered) at different frequencies. The phase response, unfortunately,
does not have as vivid interpretation, apart from telling us how much will a pure sine
be shifted would it appear on the filter’s input. To get deeper understanding of it, it is
useful to define so called group delay and a similar notion of wave delay.

4.6.1 Definition Group Delay

For a piecewise differentiable transfer function (220), the group delay at frequency f is
defined as

δ(f) := − 1
2π

· ϕ′(f)
[
rad
2πHz

= s
]

(223)

where ϕ is meant to be as smooth as possible by jumping among neighboring branches
of complex logarithm in ϕ(f) = −i log(H(f)/|H(f)|). Or, in another words, if we
would like to compute ϕ(f) using atg

(
Im(H(f))
Re(H(f))

)
, we would have to add or subtract π2

at certain points, when moving along f , to maintain continuity. The group delay is to
be measured in units of seconds.

20 This is mostly an informal explanation, the real reason why F(h ∗ x) = |H|ΦF(x) is (179). . 84
21 Often called the Bode Plot after its inventor Hendrik Wade Bode.
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4.6.2 Note δ(f) may remain undefined for finitely many points for general H(f)
even if proper branches of logarithm were taken. This is because H(f) itself can be
discontinuous in finitely many points. Fortunately, for digital filter (202), H(f) is88 /

smooth (because c∈σF and d∈σF ∩ σI), which implies smoothness of ϕ′. For that
reason, it can be computed the following way

ϕ′(f) = lim
g→f

(
∂

∂ g
atg
(
Im(H(g))
Re(H(g))

))
(224)

in this case. Note that it does not matter that Im(H(g))Re(H(g)) is undefined in finitely many
points (due to division by zero). As long as we know that true ϕ′ will be smooth anyway
(and therefore continuous), the limit will recover the correct value.
The above definition is useful in theory. For numerical computation, however, it

turns out to be cumbersome, owing to the continuity problems. The following theorem
states an equivalent formula, better suited for numerical evaluation.

4.6.3 Lemma For transfer function (220) the following holds

δ(f) = − Φ′(f)
2πiΦ(f)

(225)

Proof We have Φ′(f) = ∂
∂ f e

iϕ(f) = iϕ′(f)eiϕ(f) = iϕ′(f)Φ(f), where ϕ was as

smooth as possible. Hence ϕ′(f) = Φ′(f)
iΦ(f) , therefore δ(f) = − Φ′(f)

2πiΦ(f) . Q.E.D.

Sometimes it is more convenient to plot group delay using number of delayed waves
as a unit, instead of seconds. This comes in handy when we want to plot group delay of
two resonators, one being physically scaled version of the other, onto a single paper. As
the larger one can have group delay orders of magnitude longer, it might get challenging
to fit both of them on a single sheet. On the other hand, the number of delayed waves
is often invariant to physical scaling, which makes it suitable for this purpose.

4.6.4 Definition Wave Delay

For a piecewise differentiable transfer function (220), the wave delay at frequency
f ∈ [−fs/2, fs/2) is

w(f) := δ(f) · |f | (226)

To intuitively grasp the notion of group delay, let us imagine a filter with transfer
function H(f) = exp(iϕ(α, β, f0, f)), where ϕ(α, β, f0, f) = −2π(βf − (β − α)f0).
Clearly, δ(f) = β. Let fs be the sampling frequency22 and let us investigate what

22 Until now, we thought of it as being very high, while at the same time we essentially used fs = 1
in formulas (this is called a normalized frequency scale). It is preferable in theory as it leads to shorter
formulas. It is meant that the user will imagine numbers on an x-axis in a transfer function plot as if
they were multiplied with fs of his choice.
However, for demonstration that units of δ(f) are indeed seconds, it is better to work with concrete

value of fs at the expense of longer formalism. In that case, F must be adapted to account for general
fs, according to (167). The spectrum is then fs-periodic, where in the time domain, samples sn of the80 /
signal s are to be taken every 1/fs seconds (but we still use n∈Z to index them).
In the sequel, I will use F freely in both senses. It will be apparent from the context which one I

mean. Usually, I will stay with normalized frequency approach in theory, using true fs mainly in plots.
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happens with signal s = F−1(S), when filtered by H(f). The output signal z will be

zn = f−1s

fs/2∫

−fs/2

S(f)H(f)e2πifn/fsdf = f−1s

fs/2∫

−fs/2

S(f)e2πi(fn/fs−βf+(β−α)f0)df

=
e2πi(β−α)f0

fs

fs/2∫

−fs/2

S(f)e2πif(n/fs−β)df

(227)

For β being an integer multiple of sampling period Ts = 1/fs, the integral becomes a
variant of F−1, delayed (see 4.3.4) by β/Ts samples, that is by β seconds. For general . 85

β, the integral can be taken as a definition of non-integer time shift, as will be shown
in section 4.10. . 115

If we imagine the signal as a three-dimensional object (two dimensions for real and
imaginary part, one for the time — see fig. 19) we could see that it has been delayed . 125

by β seconds and rotated by an angle 2πi(β − α)f0 along the time-axis, due to the
factor e2πi(β−α)f0 . Another interpretation of this factor can be revealed by considering
a narrow-band signal w∈σ (having W (f) :=F(w)(f)=0 for ∀f ∈ [f1, fs)) modulated
by a carrier cn = e2πinf0/fs , that is s := w� c. Note that although c /∈ σ, we have s∈σ
and S(f) =W (f − f0). Using (227) and periodicity of S(f), we obtain

zn =
e2πi(β−α)f0

fs

fs/2∫

−fs/2

S(f)e2πif(
n
fs

−β)df =
e2πi(β−α)f0

fs

fs/2∫

−fs/2

W (f − f0︸ ︷︷ ︸
g

)e2πif(
n
fs

−β)df

=
e2πi(β−α)f0

fs

fs/2∫

−fs/2

W (g)e2πi(g+f0)(
n
fs

−β)dg =
e2πif0(

n
fs

−α)

fs

fs/2∫

−fs/2

W (f)e2πif(
n
fs

−β)df

(228)
So, for α and β being a multiple of sampling period, the result is z = w[−βfs]�c[−αfs].
This means that the narrow band signal has been delayed by β seconds, while the carrier
wave by α seconds. As the carrier was periodic, α only caused its phase shift, for which
reason it is sometimes called a phase delay.
General filter H(f) can be expressed as A(f)eiϕ(f), according to (220). The phase

response ϕ(f) can then be approximated by a segmented line, using ϕ(αk, βk, fk, f)
with appropriate values of αk, βk and fk for each segment. Finally the input signal can
be understood as a sum of narrow band signals each spanning frequencies from fk to
fk+1. Due to linearity of filtering, we can process each group of frequencies [fk, fk+1)
separately summing the results afterwards. As the groups were constructed such that
fks in the signals match fks of the filter, the filtering obeys (227). Therefore, in each
band, the signal would be delayed by βk seconds, while its carrier would be delayed by
αk seconds. Usually, we are more interested in group delay than in phase delay because
the phase delay only refers to the carrier wave, which does not convey any information.
The group delay can be roughly understood as a time by which the information encoded
in a particular band has been delayed by the filter.
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The above analysis has been carried out for complex numbers but it also applies
to a real-valued case. Let’s see how. We’ll start with a narrow band real-valued signal
w and its spectrum W (f). For a real-valued signal w and real-valued filter h we have
W (f) = W (−f) and H(f) = H(−f). The signal is considered to be band-limited
from −f1 to f1. We will modulate that signal by dn := 2 cos(2πfnf0/fs) = cn + cn,
obtaining w � d, which is a signal actually entering the filter H. Because modulation
by c effectively shifts spectrum by f0 to the right and we assume that f1 < f0 the
spectrum of w � c will not interfere with spectrum of w � c. In fact the first one is
non-zero only for positive frequencies while the second one only for negative ones. Now,
we reuse complex-valued formula (228) by defining

H(f) :=
{
exp(iϕ(α, β, f0 − f1

2 , f)) for f > 0
exp(−iϕ(α, β, f0 − f1

2 ,−f)) for f < 0
(229)

where f ∈ [−fs/2, fs/2). Note that H(f) = H(−f) and if we defined H1(f) to be the
first case of (229) and zero otherwise we could have written H(f) as H1(f) +H1(−f)
or in the time domain as h = h1 + h1 according to (189), leading to85 /

z = h ∗ s = h ∗ (w � d) = h ∗ (w � (c+ c)) = h1 ∗ (w � c) + h1 ∗ (w � c) (230)

By (228), it implies that

z = w[−βfs]� c[−αfs] + w[−βfs]� c[−αfs] = w[−βfs]� d[−αfs] (231)

Again, the information content of the signal was delayed by β seconds while the car-
rier wave was delayed by α seconds. In ‘3D representation’ of the signal we have to
imagine the real signal to be a sum of two mutually conjugated complex signals, each
of which being delayed and rotated counter the other one by the filter, which maintains
cancellation of the imaginary components.

4.6.5 Negative Group Delay

Now, as we might think we understood group delay, let us look at the following filter:

yn = xn − 0.95xn−1 (232)

whose transfer function and group delay are shown in fig. 26. Evidently, there is a150 /

region with small negative group delay. It makes more than 1 ms below 60 Hz. In
principle, this delay can be made arbitrarily large by cascading the filter (232) and
amplifying the result to compensate for the 26 dB attenuation at low frequencies. Does
it mean that the output information concerning low frequency signals arrives before the
input has entered the filter? Obviously not. This can be seen from the formula (232)
which only uses data from the past.
But if we perform numerical simulation shown in fig. 14, we might get an impression

that we are really sending information from the present to the past. Employing optical
phenomenon called anomalous dispersion, it is even possible to build real device (as
they did in [45]) which seems to be able to send light pulses at superluminal velocities
or even to the past — if light detectors are mounted at the input and at the output of
that device and accordingly band-limited pulse is sent into it, the input detector peaks
after the output detector has peaked.
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However, our joy of having invented a time-machine quickly vanishes if we consider
what is happening with information here. First of all, the material which exhibits
anomalous dispersion can be sliced into many sections each of which can be modeled as
an LTI system followed by a delay the light would need to travel that section’s length in
the vacuum. This is acceptable approximation for sufficiently small amplitudes which
do not yet invoke non-linear phenomena in the material. Hence the material can be
viewed as a complicated digital filter. Negative group delay at certain frequencies comes
as direct consequence of anomalous dispersion, then. So it makes sense to concentrate
on much simpler filter (232) to understand what is really happening here.
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Fig. 14. On the first panel, there is an input
impulse sampled at 16 kHz. Below, there is the
same impulse low-pass filtered by a brick-wall fil-
ter so that only frequencies up to 60 Hz remained.
The last panel shows the middle signal after it has
passed thru 12 stages of (232), what advanced it
in time by about 14 ms. Notice slight deforma-
tion of the impulse shape which is caused by non-
constant gain and group delay in low 60 Hz range.
The noise is due to round-off errors which are mag-
nified by cascade’s gain which is about 12×26 =
312 dB at high frequencies. In fact, 12 stages were
the maximum I was able to achieve with 80-bit
floating point numbers before the noise took over
the signal completely.

The brick-wall filter used in fig. 14 re-
moves everything above 60 Hz, leaving ev-
erything below intact. It has infinite im-
pulse response and requires the input sig-
nal to be entirely known before the filter-
ing could begin. As a result the original
sharp impulse becomes smeared, with rip-
ples coming towards infinity and minus in-
finity. It turns out that the ripples already
contain enough information from which we
can recover the signal advanced (or de-
layed) in time. In our example, the cas-
cade of N filters (232) only needs samples
from t−N to t in order to create t-th out-
put sample. Each section in the cascade
advances the signal by about 1 ms and
there is no theoretical limit on the number
of stages as long as we used brick-wall filter
— practically we are limited by round-off
noise, though.
So we have to conclude that it was the

low pass filtering which made future infor-
mation available in the past. In this light
it comes at no surprise that the brick-wall
filter needed to know entire input before
it could begin its work.
As for the superluminal device descri-

bed in [45], we cannot hope to have brick
wall filter but as we want to advance pulses only by limited amount of time, much
simpler low pass filter can be used. It is enough to attenuate unwanted frequencies such
that they remain negligible after the light passes thru the machine. In case of fig. 14,
this would mean that the low pass filter with 400 dB attenuation in the stop-band is
already good enough to be used with 12 stage filter (232). The low pass filter can be
shifted such that it would use samples from the past only — as a result, the pulse in the
middle panel of fig. 14 moves to the right and so does the output pulse. Naturally, the
last pulse could only be advanced to the level of the unfiltered input impulse because the
impulse response of the low pass filter convolved with impulse response of the cascade
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still uses data from the past only. So there is no communication to the past, since
the output always appears after the unfiltered input. Only the middle signal has been
delayed and fig. 14 just demonstrates that the delay can be compensated at the expense
of noise and slight distortion of the signal’s shape.
After all, there is nothing magical about causal digital filter exhibiting negative

group delay at some frequencies. We will see in section 4.7 that for each minimum101 /

phase filter that does not have zeroes on the unit circle there exist its inverse which is
also minimum phase. As the original filter had regions with positive group delay, the
inverse one must have negative group delay there, so that the respective phase shifts
would cancel out if the signal is filtered by a cascade which consists of a filter and its
own inverse.

4.6.6 Numerical Estimation of the Group Delay

Often, the transfer function is given to us only as a table of values for different frequen-
cies, or as a black-box procedure which returns H(f) for a given f . To estimate the
group delay we have to discretize the derivative in (225). Let h > 0 be small number.95 /

From Taylor’s expansion of Φ(f ± h), we get

A :=
Φ(f + h)− Φ(f)

h
= Φ′(f) +

Φ′′(f)h
2

+
Φ′′′(f)h2

6
+O(h3)

B :=
Φ(f − h)− Φ(f)

−h = Φ′(f)− Φ
′′(f)h
2

+
Φ′′′(f)h2

6
−O(h3)

A+B
2

=
Φ(f + h)− Φ(f − h)

2h
= Φ′(f) +O(h2)

(233)

Which leads to

δ(f) ≈ Re
(
Φ(f − h)− Φ(f + h)

4hπiΦ(f)

)
(234)

Most of the group (or wave) delay plots in this book were generated using this formula.

4.6.7 Note on Decibels

Since decibels are prone to be misunderstood, they deserve explanation. First, decibel
is not a unit per-se, it is merely a way of expressing ratios. In this respect, it is similar
to percent. To express how P > 0 compares to P0 > 0 percentually, we compute
100P/P0. In case of decibels the formula is

PdB = 10 log10

(
P

P0

)
(235)

There is one important difference, thought. The definition of decibel depends on phys-
ical meaning of P . To be used correctly, it requires P to represent power or energy.
Amplitude-like quantities A and A0, such as voltage or air pressure, can be also

expressed in decibels, provided that they have been converted to energy units first. As
P = kA2, with k being suitable physical constant (such as conductivity in case of A
being a voltage) we obtain the following formula for amplitudes

AdB = 10 log10

(
kA2

kA20

)
= 20 log10

(
A

A0

)
(236)
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which is similar to (235), except for the factor 20 instead of 10. This is probably
the main cause of confusion with decibels — correct formula depends on what was
measured. But once we have the number, we can forget whether it was computed from
power or amplitude, because both ways lead to identical answer.
In the basic case, the number P refers to the whole signal, representing its average

power (although it would be possible to compute decibels even from instantaneous
power Pn at time n, it rarely makes sense). For a finite signal of length T the average
power is P = T−1

∑T−1
n=0Pn. As discussed earlier, the instantaneous power relates to

instantaneous amplitude as Pn = kA2n, dictating value of A in (236) to be

A =
√
P/k =

√√√√ 1
kT

T−1∑

n=0

kA2n =

√√√√ 1
T

T−1∑

n=0

A2n (237)

This is called RMS (Root Mean Square) value of signal An. For a sine wave An :=
AP sin 2πktT , we have A = Arms = AP /

√
2.

Most often, decibels are used in spectral and transfer function plots. Informally,
we can imagine that we have filtered the signal into many narrow frequency-bands and
determined decibel value for each of them, plotting the results. We have already used
HdB plot (222) where H0 was 1, assuring transfer of 0 dB for filter doing nothing. . 94

There are two ways of plotting dB-spectrum of the signal. Either we can plot
energy spectrum, that is, for a signal s, we plot

EdB(f) = 10 log10
(
|F(s)(f)|2 /E0

)
= 20 log10

(
|F(s)(f)| /

√
E0

)
(238)

Or we can plot power spectrum, averaged over time T :

PdB(f) = 10 log10

(
|F(s)(f)|2

TP0

)
(239)

where the signal s has been zeroed outside [0, T − 1] interval, in the last formula. The
energy spectrum allows us to see HdB from a different angle. Provided that s was such
that ∀f : F(s)(f) 6= 0, we can compare the filter’s output h ∗ s with its input s as
follows

10 log10

( |F(h ∗ s)(f)|2
|F(s)(f)|2

)
= 20 log10

( |F(h)(f)| · |F(s)(f)|
|F(s)(f)|

)
= 20 log10 |H(f)| (240)

So we obtained HdB consistent with (222) as expected. Note that s was the reference
signal, therefore |F(s)(f)|2 played the role of E0(f) in the above formula. Due to
properties of logarithm HdB(f) can also be computed as EdB(h ∗ s)(f)− EdB(s)(f).
Another trouble with decibels is with the 0 dB reference level P0. As we have

just seen, we can use decibels either to compare two signals or to compare single signal
with a fixed standard level. The first use is dimensionless, while the second one is
dimensional, in which case the unit should be written after dB, as as in case of dBmW,
meaning that P0 = 1 mW.
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Unfortunately this is often violated if decibels are used to measure ‘volume’ of the
sound, as majority of authors just write dB without proper unit and 0 dB level. Note
that there are at least two quantities that could be understood as a volume. Either we
can measure dynamic pressure (that is the fluctuations of absolute pressure around its
mean value), or we can measure power density of the wave, also known as the intensity,
which is the energy of the wave escaping thru a unit area perpendicular to the wave’s
travel direction.

In case of dynamic pressure, we use dBSPL, which compares sound’s pressure
with standard pressure level p0 of 20 µPa (rms). For power density, we use dBSIL,
comparing sound’s intensity to I0 = 1 pWm

−2. Note that (236) and (237) should be
used for dBSPL and (235) for dBSIL. These two quantities are connected by so called
specific acoustic impedance ζ in the following way.

p2 = Iζ (241)

For the air at 20◦C, we have ζ = 413 Pa·s/m, which gives p0 =
√
ζI0 =

√
413 · 10−12 =

20.32µPa (rms). So both definitions lead to similar (but not exactly same, as ζ depends
on temperature) numbers. Clearly, p0 and I0 were selected to match each other (under
usual conditions) as well as the threshold of human hearing (for a 1 kHz wave).

In a free space, far enough from the source, the sound propagates as a spherical
wave (possibly spanning only a sector of sphere if the source was directional). Energy
conservation causes the intensity to fall like r−2 and so the pressure falls as r−1, where
r is the distance from the source. This means that the dB-volume at the distance r
is κ + 10 log10(I) − 20 log10(r), where κ is a constant, dependent on I0 and units in
which we measure the distance r. In reality, the volume goes-off faster because the
temperature gradient23 causes the sound to be refracted upwards.

4.7 Minimum Phase Filters

4.7.1 Definition Linear Phase LTI System

LTI system with ϕ(f) = 2πβf , for β∈R will be called linear phase.

4.7.2 Definition Minimum Phase Filter

A zp-canceled filter with all its zeroes and poles inside the unit circle will be called a
minimum phase filter . This is essentially a misnomer. Correct name should be least
group delay filter because the group delay is minimized, as will be apparent from the
theorems below. Note that the definition disallows anything to lie at the unit circle.

4.7.3 Note Accordingly, maximum phase filter is defined to have all its poles and
zeroes outside the unit circle. Sometimes, the phrase mixed phase filter is used to refer
to the filter which is neither minimum nor maximum phase, having its zeroes and poles
anywhere. Note that minimum as well as maximum phase filters are invertible.

In this section we will ask how many different phase responses a zp-canceled filter
can have for a fixed magnitude response. We will find that there is only finitely many

23 Normally, the temperature falls with the height and so does the speed of sound.
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of them. It will also be shown that if the filter was minimum phase, its group delay
will be least possible for a given magnitude response. As a byproduct, one-to-one
correspondence between magnitude response shape and group delay will be established.
In the following, let us consider a zp-canceled filter with N zeroes zk = Zke

iζk and M
poles pk = Pkeiλk , where Zk, Pk∈R+. Note that its H(f) is a smooth function because
M and N are finite and there is no Pk = 1.

4.7.4 Observation For the above zp-canceled filter, a quantity proportional to its
magnitude can be written in a following way

log(10)
10

HdB(f) = log |H(f)|2 = 2 log |c0| +

+
N∑

k=1

log(1 + Z2k − 2Zk cos(2πf − ζk))−
M∑

k=1

log(1 + P 2k − 2Pk cos(2πf − λk))
(242)

where c0 is the amplification factor appearing in (210). . 90

Proof It follows from (207), if we consider individual factors in this way . 89

|e2πif − zk|2 = (e2πif −Zke
iζk)(e2πif − Zkeiζk) = (1 +Z2k − 2Zk cos(2πf − ζk)) (243)

Q.E.D.
It is possible to get rid of the amplification factor by differentiating log |H(f)|2. The
differentiated function will then represent the shape of magnitude response in the sense
that all filters with the same shape of |H(f)| but possibly different amplification will
be assigned an identical representing function.

4.7.5 Lemma The following function represents the shape of |H(f)| invariantly to
amplification:

∂

∂ f
log |H(f)|2 =

N∑

k=1

2π sin(2πf − ζk)
1
2

(
Z−1
k + Zk

)
− cos(2πf − ζk)

−
M∑

k=1

2π sin(2πf − λk)
1
2

(
P−1
k + Pk

)
− cos(2πf − λk)

(244)

Proof Differentiating log(1 + Z2k − 2Zk cos(2πf − ζk)) we get
1

1 + Z2k − 2Zk cos(2πf − ζk)
2Zk sin(2πf − ζk)2π (245)

which directly leads to terms of (244), since Zk 6= 0. Q.E.D.

4.7.6 Note For an invertible filter, 12
(
Z−1
k + Zk

)
> 1 because Zk 6=1 as the zeroes

cannot appear on the unit circle. Hence, the denominators of (244) are always positive.
It follows from (244), that the magnitude’s shape does not change when a pole

or a zero is swapped around the unit circle. In other words (244) is invariant upon
changing Zk 7→ 1/Zk (which translates into zk 7→ 1/zk — compare it with time reversal
(219)). Using this switching, it is possible to generate up to 2N+M different zero/pole . 93

arrangements, depending on multiplicity of poles and zeroes24. It will be shown in the
sequel, that there are no other sets of zeroes and poles (even if more zeroes and poles
would be used) leading to identical shape of |H(f)|.
24 Multiplicity is to be counted when everything was switched inside the circle.
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4.7.7 Lemma The group delay of invertible zp-canceled filter with N zeroes and M
poles can be expressed the following way

δ(f) = − ∂

∂ f

Arg (H(f))
2π

=

N∑

k=1

1
2 (cos(2πf − ζk)− Z−1

k )
1
2

(
Z−1
k + Zk

)
− cos(2πf − ζk)

−
M∑

k=1

1
2 (cos(2πf − λk)− P−1

k )
1
2

(
P−1
k + Pk

)
− cos(2πf − λk)

(246)

Proof Rewriting factors of (207) as e2πif − zk = zk
(
e2πifz−1k − 1

)
we get89 /

− 2πδ(f) = (Arg(H(f)))′ =

∂

∂ f

(
Arg

(
c0

∏
zk∏
pk

)
+

N∑

k=1

Arg
(
e2πifz−1k − 1

)
−

M∑

k=1

Arg
(
e2πifp−1k − 1

)
)

(247)

Where each occurrence of Arg is meant to be a continuous function of f . Differentiating
Arg

(
e2πifz−10 − 1

)
we obtain:

∂

∂ f
Arg

(
e2πif−iζ0Z−1

0 − 1
)
=
(
atg

sin(2πf − ζ0)
cos(2πf − ζ0)− Z0

)′

=

1

1 +
(

sin(2πf−ζ0)
cos(2πf−ζ0)−Z0

)2 ·
cos2(2πf − ζ0)− Z0 cos(2πf − ζ0) + sin

2(2πf − ζ0)

(cos(2πf − ζ0)− Z0)
2 · 2π

=
2π(1− Z0 cos(2πf − ζ0))

sin2(2πf − ζ0) + (cos(2πf − ζ0)− Z0)
2 =

2π(1− Z0 cos(2πf − ζ0))
1 + Z20 − 2Z0 cos(2πf − ζ0)

=
−π
(
cos(2πf − ζ0)− Z−1

0

)
1
2

(
Z−1
0 + Z0

)
− cos(2πf − ζ0)

(248)

As H(f) was smooth we could have ignored undefined points of atg’s argument, still
getting the correct answer, as discussed in 4.6.2, Note that the limit used at 4.6.295 /

disappeared because the last formula is defined and smooth everywhere. Q.E.D.

4.7.8 Definition For Q := 1
2

(
Z−1 + Z

)
> 1, let’s define the following ‘signals’.

ib := F−1

(
sin(2πf)

Q− cos(2πf)

)
a := F−1

(
cos(2πf)

Q− cos(2πf)

)

c := F−1

(
1

Q− cos(2πf)

) (249)

As F−1 of an even or odd function will only contain the cosine or sine terms, respec-
tively, we can write p-th element of the above signals as

bp =

1/2∫

−1/2

sin(2πf) sin(2πpf)
Q− cos(2πf) df ap =

1/2∫

−1/2

cos(2πf) cos(2πpf)
Q− cos(2πf) df

cp =

1/2∫

−1/2

cos(2πpf)
Q− cos(2πf)df

(250)
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Due to trigonometrical identity cos(α± β) = cos(α) cos(β)∓ sin(α) sin(β) we have

ap + bp =

1/2∫

−1/2

cos(2πpf − 2πf)
Q− cos(2πf) df = cp−1

ap − bp =

1/2∫

−1/2

cos(2πpf + 2πf)
Q− cos(2πf) df = cp+1

(251)

Hence
ap =

cp−1 + cp+1
2

bp =
cp−1 − cp+1

2
(252)

Recovering the complex exponential in the integral for cp, we can see that

cp =

1/2∫

−1/2

e2πifp

Q− cos(2πf)df =
1/2∫

−1/2

e2πifp

Q− e2πif

2 − e−2πif

2

df (253)

Using z as an abbreviation for e2πif we can write

cp = 2

1/2∫

−1/2

zp

2Q− z − z−1
df = 2

1/2∫

−1/2

zp+1

2Qz − z2 − 1df (254)

which could subsequently be expressed using complex path integral25 in a following
way:

cp = − 1
πi

∫

t∈[0,1)

z=e2πit

zp

z2 − 2Qz + 1dz (256)

The denominator can be written as (z − zA)(z − zB), where zA = Q −
√
Q2 − 1 and

zB = Q +
√
Q2 − 1 > 1. It is an easy exercise to show that zA < 1 whenever Q > 1.

So zB is outside the encircled area, while zA is inside. Employing Cauchy’s integration
formula for p ≥ 0, we get

cp = −2 1
2πi

∫

t∈[0,1)

z=e2πit

zp/(z − zB)
z − zA

dz = −2 zpA
zA − zB

=

(
Q−

√
Q2 − 1

)p
√
Q2 − 1

(257)

25 Recall that for ϕ : [a, b]→ C being a representation of oriented curve C, the complex path integral
is defined the following way. ∫

C
f(z) dz :=

∫ b

a
f(ϕ(t)) · ϕ′(t) dt (255)

Note that its value does not depend on particular choice of ϕ, as long as it represents the same curve C.
In our case, C is a unit circle around the origin, that is ϕ(t) = e2πit = z, hence ϕ′(t) = 2πie2πit = 2πiz.
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For p < 0, we have cp = c−p because cps are Fourier coefficients of even function. Using
abbreviation µQ := zA = Q−

√
Q2 − 1 = min(Z,Z−1) < 1, we get for p > 0

ap =
cp−1 + cp+1

2
=

µp−1Q

2
√
Q2 − 1

(
1 +Q2 +Q2 − 1− 2Q

√
Q2 − 1

)

bp =
cp−1 − cp+1

2
=

µp−1Q

2
√
Q2 − 1

(
1−Q2 −Q2 + 1 + 2Q

√
Q2 − 1

) (258)

Hence for p > 0, the following holds:

ap =
µp−1Q√
Q2 − 1

Q
(
Q−

√
Q2 − 1

)
=

QµpQ√
Q2 − 1

cp =
µpQ√
Q2 − 1

bp =
µp−1Q√
Q2 − 1

(
1−Q2 +Q

√
Q2 − 1

)
=
(
−
√
Q2 − 1 +Q

)
µp−1Q = µpQ

(259)

Due to symmetry/antisymmetry we have ap = a−p, a0 = c1 = Q/
√
Q2 − 1 − 1 and

bp = −b−p. Now, we can determine F−1 of the terms appearing in formula (244). Let102 /

U

(
f − ζk
2π

)
:=

2π sin(2πf − ζk)
1
2

(
Z−1
k + Zk

)
− cos(2πf − ζk)

(260)

and let us temporarily assign 12
(
Z−1
k + Zk

)
to Q appearing in cp, referring to it as to

Qk in the following formula, keeping in mind that µQk
= min(Zk, Z

−1
k ).

y(k)p :=F−1

(
2π sin(2πf − ζk)

1
2

(
Z−1
k + Zk

)
− cos(2πf − ζk)

)

p

=

1/2∫

−1/2

U

(
f − ζk
2π

)
e2πifpdf

= eipζk

1/2∫

−1/2

U(f)e2πifpdf = 2πeipζk ibp = 2πi sgn(p)
(
eiζk sgn(p)µQk

)|p|
(261)

In a similar way, we can compute F−1 of terms of (246) for p 6= 0, getting:

x(k)p :=F−1

(
1
2

(
cos(2πf − ζk)− Z−1

k

)
1
2

(
Z−1
k + Zk

)
− cos(2πf − ζk)

)

p

=
1
2
eipζk

(
ap − Z−1

k cp
)

=
1
2
eipζk

(
Qkµ

|p|
Qk√

Q2k − 1
−

Z−1
k µ

|p|
Qk√

Q2k − 1

)
=
1
4
Zk − Z−1

k√
Q2k − 1

eipζkµ
|p|
Qk

=
1
2

Zk − Z−1
k√

Z2k + Z
−2
k + 2− 4

eipζkµ
|p|
Qk
=
1
2

Zk − Z−1
k√(

Zk − Z−1
k

)2 e
ipζkµ

|p|
Qk

=
1
2
Zk − Z−1

k

|Zk − Z−1
k |e

ipζkµ
|p|
Qk
=
sgn(Zk − 1)

2

(
eiζk sgn(p)µQk

)|p|

(262)

where for p = 0 we obtain x(k)0 = 1
2

(
a0 − Z−1

k c0
)
=
1
2

(
Qk√
Q2

k
−1

− 1− Z−1
k√
Q2

k
−1

)
=

1
2

(
sgn(Zk − 1)− 1

)
. Now we have a technology to prove main results of this section.
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4.7.9 Theorem (Uniqueness of Shape Parameters) For a fixed magnitude re-
sponse shape (244) of a zp-canceled filter there exists at most one pair of parameter mul-
tisets (Qk, ζk) and (Wk, λk) such that these parameters generate the given shape. Here,
Qk := 1

2

(
Z−1
k + Zk

)
and Wk := 1

2

(
P−1
k + Pk

)
for a filter with poles pk = Pk exp(iλk)

and zeroes zk = Zk exp(iζk), s.t. Pk, Zk > 0 and Pk 6=1.
Proof First, let us consider zeroes on the unit circle. Clearly, neither poles nor zeroes
off the circle can make |H(f)| zero for some f . Moreover, {f ∈R | |H(f)|=0} is unique
to the shape, too. Finally, the multiplicity of these roots can be decoded from |H(f)|
in their closest neighborhood. Therefore the zeroes on the unit circle are unique to the
shape and we can disregard them, considering only invertible filters herefrom.
Let us suppose, that there exist a shape (of an invertible filter) which could be

generated by two different multiset pairs 〈(Qk, ζk), (Wl, λl)〉 and 〈(Q̂k, ζ̂k), (Ŵl, λ̂l)〉.
From all such counter-examples, select one with the smallest size of (Q̂k, ζ̂k) plus size
of (Ŵl, λ̂l). Hence for any shape with smaller description, the theorem would already
hold. Note that the selected shape’s description is non-empty, since empty multiset
describes frequency response4 H = λf.1, for which it is unique. . 42

I will show that the pairs constituting the smallest counter-example must always
contain common element, which would be a contradiction because this element could
be removed from both descriptions, leading to even smaller counter-example. Hence
the theorem would hold, after demonstrating the existence of the common element. To
do this, let us apply F−1 on (244). From (261) we have the following for p>0:

F−1
((
log |H(f)|2

)′)
p
= 2πi

(
N∑

k=1

(
eiζkµQk

)p −
M∑

k=1

(
eiλkµWk

)p
)

(263)

For two possible shape’s descriptions ((Qk, ζk), (Wl, λl)) and ((Q̂k, ζ̂k), (Ŵl, λ̂l)) the
following must hold

N̂∑

k=1

(
eiζ̂kµ

Q̂k

)p
−

M̂∑

k=1

(
eiλ̂kµ

Ŵk

)p

︸ ︷︷ ︸
r̂p

=
N∑

k=1

(
eiζkµQk

)p −
M∑

k=1

(
eiλkµWk

)p

︸ ︷︷ ︸
rp

(264)

for any p>0 because both sides of the equation describe identical shape. Without the
loss of generality, let us assume that

µQ1 ≥ max(max
k
(µQk

, µ
Q̂k
),max

k
(µWk

, µ
Ŵk
)) (265)

Note that µQ1<1 because Q1>1. Then we can explore the following expression:

Y (r) := lim
n→∞

1
n

n∑

p=1

(
eiζ1µQ1

)−p
rp =

N∑

k=1

lim
n→∞

1
n

n∑

p=1

(
eiζk−iζ1

µQk

µQ1

)p
−

M∑

k=1

lim
n→∞

1
n

n∑

p=1

(
eiλk−iζ1

µWk

µQ1

)p (266)
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Note that the absolute value of the number being powered to p is ≤ 1 in all cases.
When µx < µQ1 we have a falling exponential and the limit is 0, due to 1/n factor.
For µx = µQ1 , the result depends on phase angles. For λk − ζ1 = 0 mod 2π, we sum
all ones, getting n for the sum and 1 for the limit. Otherwise we get rotating complex
number, giving a bounded sum, which goes to 0 in the limit, due to the 1/n factor.

To summarize the previous paragraph, we can say that Y (r̂) is 1 iff the formula r̂p
of (264) contained (Q1, ζ1) pair, and 0 otherwise. As r̂p = rp for all p and Y (r) = 1,
Y (r̂) must also be 1, which means that the second multiset of parameters must have
contained (Q1, ζ1) as some (Q̂i, ζ̂i). Q.E.D.

4.7.10 Consequence All the responses H(f) of the same magnitude shape can be
generated using Zk 7→ 1/Zk and Pk 7→ 1/Pk switching, in case of zp-canceled filter.
Proof From previous theorem we know that for a fixed magnitude shape H ′

dB(f),
there is uniquely determined multiset of parameters. The theorem follows from the
fact that Q = 1

2

(
Z−1 + Z

)
has only two solutions Z1,2 = Q±

√
Q2 − 1, Z1 = Z−1

2 .
Q.E.D.

4.7.11 Consequence Invertible minimum-phase zp-canceled filter has the least pos-
sible group delay (at all frequencies) among all invertible one-way zp-canceled filters of
the same HdB(f) shape.

Proof Minimum phase filter has all its poles already inside the unit circle. Therefore,
we can only switch its zeroes to generate all possible phase responses belonging to
the given magnitude response, in accordance with 4.7.10. From (246) we can see that103 /

Z−1
k >1 gives lower δ(f) than Z−1

k <1, independently of other Zks. Therefore, switching
all of them inside, we get smallest possible δ(f). Q.E.D.

According to the paragraph after (262), an average group delay δAVG :=
∫ 1
0
δ(f) df

of a zp-canceled filter is equal to F−1(δ)0 =
∑
k xZ(k)0 −

∑
k xP (k)0, which reads as

follows, when expanded.

δAVG =
N∑

k=1

sgn(Zk − 1)− 1
2

−
M∑

k=1

sgn(Pk − 1)− 1
2

(267)

For linear phase filter, we have δ(f) = δAVG. From (267) it is then clear that δ(f) =
const ∈ Z ∩ [−N,M ]. Therefore, it is not possible to delay the signal (at all of its
frequencies) by a fraction of sampling period, using a digital filter. This strongly
contrasts with general LTI systems with impulse response h∈σ, where any δ∈S is
attainable (consider h := F−1(λf.e−2πiδ(f))). Unfortunately, these LTI systems cannot
be expressed as digital filters with finite N and M as (267) shows. This does not mean
that they are completely unrealizable, though. For instance for a finite input x we
would only need finite portion of h when evaluating the convolution x ∗ h, but the
work required to obtain one output sample would depend on the length of x making
such approach impractical. For this reason we are usually forced to get by with an
approximation by a digital filter, fitting the linear phase in the frequency range which
we are interested in, letting it free elsewhere. Technically, this approximation is not a
linear phase filter but practically it behaves close to it.

4.7 Minimum Phase Filters 108

Note that a zp-canceled minimum phase filter has δAVG = M −N . On the other
hand, δAVG of a linear phase filter is an index around which its impulse response is
symmetric, i.e. hδAVG−k = hδAVG+k. Often we encounter filters with peak value of
|h| near δAVG as practical filters tend to be well localized in time. These observations
justify the following definition.

4.7.12 Definition Centered Digital Filter

A filter obtainable from invertible zp-canceled filter by shifting its impulse response by
δAVG to the left will be called a centered filter. Note that the centered filter’s δAVG is
zero then. We regard the number of its poles M and the number of its zeroes N to be
the same as of the original zp-canceled filter. That means, we do not count the extra
poles or zeroes (lying in 0∈C) that only shift the impulse response in time.

It follows from (209) and (267) that for the amplification factor c0 and the list of . 90

poles pk = Pke
iλk and zeroes zk = Zke

iζk translated into c and d, such that c0zN +
c1z

N−1+· · ·+cN = c0
∏N
k=1(z−zk) and zM+d1zM−1+· · ·+dM−1z+dM =

∏M
k=1(z−pk),

the following equality holds for the centered filter (and in case of one-way filter it can
be directly used as a recurrence which implements it).

yn =
N∑

k=0

ckxn−k+S −
M∑

k=1

dkyn−k (268)

where S = N − M +
∑N
k=1

sgn(Zk−1)−1
2 −∑M

k=1
sgn(Pk−1)−1

2 =
∑N
k=1

1+sgn(Zk−1)
2 −∑M

k=1
1+sgn(Pk−1)

2 . Since Zk 6=1, it equals to #{k | Zk > 1}−#{k | Pk > 1}. According
to (244), (246) and (267), the magnitude and the group delay of this filter satisfies the . 102

following relations, where HM is conveniently scaled version of HdB .

∂

∂ f
HM (f) :=

∂

∂ f

log(10)
40π

HdB(f) =
∂

∂ f

(
1
4π
log |H(f)|2

)
=

N∑

k=1

1
2 sin(2πf − ζk)

1
2

(
Z−1
k + Zk

)
− cos(2πf − ζk)

−
M∑

k=1

1
2 sin(2πf − λk)

1
2

(
P−1
k + Pk

)
− cos(2πf − λk)

(269)

δ(f) =
N∑

k=1

1
2

(
cos(2πf − ζk)−min(Zk, Z−1

k )
)

1
2

(
Z−1
k + Zk

)
− cos(2πf − ζk)

sgn(Zk − 1)

−
M∑

k=1

1
2

(
cos(2πf − λk)−min(Pk, P−1

k )
)

1
2

(
P−1
k + Pk

)
− cos(2πf − λk)

sgn(Pk − 1)
(270)

The advantage of centering the filter can be clearly seen now. Although slightly longer
than (244) and (246) the above formulas are more symmetric, namely the terms of (270)
are either positive or negative, depending on whether the Zk lied outside or inside the
unit circle. Similarity of (269) and (270) suggests that there might be a connection
between the magnitude and group delay. The following theorem shows that this is
really the case.
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4.7.13 Theorem (Relationship of Group Delay and Magnitude) For a centered
minimum-phase filter, the magnitude’s shape ∂HM (f) / ∂f is in the following one-to-
one correspondence with group delay δ(f).

H ′
M =

log(10)
40π

H ′
dB = F

(
−i sgn�F−1(δ)

)
(271)

or the other way round
δ = F

(
i sgn�F−1(H ′

M )
)

(272)

Proof Fourier coefficients of individual terms of δ(f) of eq. (270) and
(
log |H(f)|2

)′
of

eq. (269) were determined as x(k)p in (262) and y(k)p in (261), respectively. Summing105 /
105 /

them together, we get F−1(δ) and F−1(H ′
M ) as follows, where µQk

:= min(Zk, Z
−1
k )

and µWk
:= min(Pk, P

−1
k ).

F−1(δ)p =
N∑

k=1

sgn(Zk−1)
2

eiζkpµ
|p|
Qk

−
M∑

k=1

sgn(Pk−1)
2

eiλkpµ
|p|
Wk

F−1(H ′
M )p =

i sgn(p)
2

(
N∑

k=1

eiζkpµ
|p|
Qk

−
M∑

k=1

eiλkpµ
|p|
Wk

) (273)

Note that F−1(δ)0=0 because of centering, therefore the first equation of (273) applies
only to p 6= 0, whereas the second one holds for any p∈Z. As the filter is minimum-
phase we have sgn(Zk − 1) = −1, which implies that F−1(δ)p = iF−1(H ′

M )p sgn(p) for
any p∈Z. Q.E.D.

4.7.14 Note The theorem could be formulated for the maximum phase as well. It
would come out as δ = F

(
−i sgn�F−1(H ′

M )
)
.

4.7.15 Lemma For C∈S and c := F−1(C) such that ck is absolutely convergent
(i.e.

∑∞
k=−∞ |ck| converges) and c0 = 0, the integral D(x) :=

∫ x
0
C(f) df equals to

F(d)(x), where

dk :=

{∑∞
n=1

1
2πin (cn − c−n) for k=0

−1
2πik ck else

(274)

Proof Expanding D(x) using 4.2.7, we get78 /

∫ x

0

C(f) df =
∫ x

0

lim
N→∞

N∑

k=−N

cke
−2πikf df (275)

As ck is absolutely convergent, the partial sums converge uniformly towards the limit,
thus we can swap the integral with the limit, getting

∞∑

k=−∞

ck

∫ x

0

e−2πikf df =
∞∑

k=−∞
k 6=0

ck
e−2πikx − e0

−2πik =
∞∑

k=−∞
k 6=0

−ck
2πik

e−2πikx +
∞∑

k=1

ck − c−k
2πik

(276)

where we also used that c0 = 0. The claim follows from 4.2.8. Q.E.D.80 /
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4.7.16 Corollary Centered minimum-phase filter satisfies the following relation.

sgn2�F−1(ϕ̃) = −i sgn�F−1(HL) where ϕ̃(f) := −2π
∫ f

0

δ(g) dg (277)

and HL(f) := 2πHM (f) = log |H(f)|.
Proof From (273) we can see that both F−1(δ)k and F−1(H ′

M )k are composed of N+
M falling exponentials (since µQ < 1), therefore being absolutely convergent. Since it is
additionally true that

∫ 1
0
δ(f) df=0 (because the filter is centered) and

∫ 1
0
H ′
M (f) df =

HM (1)−HM (0)=0 (because HM is 1-periodic), we can apply 4.7.15 to justify that the
following holds for k 6=0.

F−1(δ)k = ikF−1(ϕ̃)k and F−1(H ′
M )k = −ikF−1

(
λf.

∫ f

0

H ′
L(g) dg

)
k

(278)

Up to a constant the lambda term is equal to HL. The constant would appear as
F(HL)0 but we don’t need to care about it because sgn(0)= 0. Using (278) in 4.7.13
we get what had to be proved. Q.E.D.

4.7.17 Note It is not necessarily true that HL = F
(
i sgn�F−1(ϕ)

)
or even ϕ =

F
(
−i sgn�F−1(HL)

)
holds because the average level of HL as well as of ϕ might not

be zero. Both can be controlled by the ‘gain’ parameter c0 of (210), where |c0| controls . 90

the overall gain, i.e. the average level of HL, whereas Arg(c0) controls the phase delay,
i.e. the average level of ϕ, where ϕ(f) := ArgC(H)(f) is smooth in f . The average
level of ϕ̃, on the other hand, remains fixed (though generally non-zero in case of filters
with complex hk) because its definition in 4.7.16 requires ϕ̃(0)=0.
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Fig. 15. Magnitude (upper panels) and group delay (lower panels) of single zero or pole of a centered
filter, plotted on normalized frequency scale, using formulas (279) and (270). From the left to the right . 111
there is a response of a zero lying inside the unit circle, followed by a response of the zero outside the
circle, followed by the pole inside the circle, finally followed by the pole outside the circle. Each panel
contains two plots, one for Z or P being 0.6 (black line), the other for 0.3 (grey line, actually a dashed
one, for the hawk-eyed) or the reciprocal values thereof, for cases outside the circle. The resonant
frequency ζ or λ is zero (nonzero values would only shift the plot sideways in a 1-periodic way). Notice
that the group delay plot is slightly “narrower” than the magnitude plot that corresponds to it.
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Returning back to (242), we can see that102 /

HL =
1
2

N∑

k=1

log
(
1
2 (Zk + Z

−1
k )− cos(2πf − ζk)

)

− 1
2

M∑

k=1

log
(
1
2 (Pk + P

−1
k )− cos(2πf − λk)

)

+ log |c0|+
1
2

N∑

k=1

logZk −
1
2

M∑

k=1

logPk

(279)

This formula, together with (270) allows us to think about responses of centered filters108 /

as of sums of the basic shapes plotted in fig. 15 (each shape corresponding to the zero
or pole).

4.7.18 Note Centered linear phase filters have zero group delay, which implies that
F(δ)p = 0 for all p. This means that the terms of (273) must cancel each other. From
the proof of uniqueness 4.7.9, we know that only exactly matching parameters Qk and106 /

ζk can cancel each other for all p. Moreover Qk will not have a chance to cancel with
Wk, as the filter was already zp-canceled before it has been centered. Hence, what
remains is a zero Zeiζ phase-canceling with another zero eiζ/Z or a pole Peiλ phase-
canceling with another pole eiλ/P . Therefore, any linear phase filter with non-constant
H(f) must be a mixed-phase filter.

4.8 Inverse of Minimum Phase Filter

Here, I will briefly mention practical way of computing inverse of digital filter without
using F (which the definition (192) suggests). Let the response h be minimum phase86 /

and causal and let h0 6= 0. Let the filter with such a response be determined by c and
d such that:

yn =
N∑

k=0

ckxn−k −
M∑

k=1

dkyn−k =
∞∑

k=0

hkxn−k (280)

Note that c0 6= 0 because h0 6= 0 and that we treat d0 as 1. Rearranging it, we obtain

d0yn +
M∑

k=1

dkyn−k = c0

(
xn +

N∑

k=1

ck
c0
xn−k

)
(281)

which gives (y is input and x output here)

xn =
M∑

k=0

dk
c0
yn−k −

N∑

k=1

ck
c0
xn−k (282)

So, for causal, minimum phase h = c ∗ d−1 s.t. h0 6= 0 the inverse is w = (d/c0) ∗
(c/c0)−1 = d ∗ c−1, which is not surprising. Note that w is also causal, minimum phase
and w0 6= 0.
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Noting that h[A]∗w[B] = (h∗w)[A+B] we immediately se that h[−R] (for R∈N)
is inverse to w[R], which solves the case of causal minimum phase ĥ with zero ĥ0. Note
that ŵ = w[R] is no longer causal then.

Now what if we only knew h. Could we still find a simple way of computing w? It
turns out that is it possible if we also knew N and M . h can be obtained by feeding
x = ~1 into (280). Noting that the FIR becomes zero for n > N we get the following set
of equations.

−hn =
M∑

k=1

dkhn−k for n > N (283)

Taking first M equations and solving them, we obtain d, whereas c = h ∗ d, provided
that we defined d0 := 1. Note that cks for k > N should come out as zeroes. Now we
can get w = c−1 ∗ d as before.
Unfortunately, I often found this method unstable for values of M above 50. Pre-

sumably, this is caused by inherent instability of direct implementation of the IIR part
of the response. In 4.13.2, I will show IIR implementation that does not suffer from . 140

this. Nevertheless, it cannot be easily applied to this case.

4.9 Response Decomposition Theorem

In the last section we learned how to decompose one-way filter into its zero and pole
parts. Unfortunately, that would not work in general, as the IIR part might be two
way (4.5.1). . 92

This section addresses this problem theoretically, by providing a formula that,
given an impulse response of invertible digital filter h returns impulse responses hI and
hO corresponding to the poles and zeroes inside and outside the unit circle, respectively.
So, hI is one-way, ρhO too and we could use the previous section the separate poles
from zeroes.
The decomposition will be formulated using filter’s frequency response H :=F(h).

Let us start by defining a pair of transformations that switch poles and zeroes inside the
unit circle in two different ways. Henceforth, SD ⊆ S will denote the set of responses
achievable by a digital filter, that is {(λf.R(e2πif ))∈S | R is C → C rational function}.
Accordingly, we define σD := F−1[SD].
4.9.1 Definition I : SD → SD — Direct Phase-Minimizing Conversion
Let H ∈SD. Due to the definition of SD, it can be written as

H(f) = c0

∏N
k=1

(
e2πikf − zk

)
∏M
k=1 (e

2πikf − pk)
(284)

The direct phase-minimizing mapping I converts this H into minimum phase response
by switching the poles and zeroes inside. Formally

I(H) := λf. c0
∏N
k=1

(
e2πikf −min(Zk, Z−1

k )e
iζk
)

∏M
k=1

(
e2πikf −min(Pk, P−1

k )e
iλk

) (285)

where zk = Zkeiζk , pk = Pkeiλk s.t. Zk∈ [0,∞) and Pk∈ [0,∞)\{1}. The mapping can
be naturally extended to σD → σD by defining I(h) := F−1(I(F(h))).
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4.9.2 Definition X : SD → SD — Crossed Phase-Minimizing Conversion
Using notation of the previous definition the crossed phase-minimizing mapping X
convertsH by swapping the outside poles with zeroes, switching them inside afterwards.
Formally (note that Pk 6=1; you might also like to refresh the definition 4.2.2):77 /

X (H) := λf. c0
∏N
k=1

(
e2πikf −min(Zk, Z−1

k )e
iζk
) 1
2 sgn

+(1−Zk)

∏M
k=1

(
e2πikf −min(Pk, P−1

k )e
iλk

) 1
2 sgn(1−Pk)

(286)

Again, we can extend the mapping to σD.

The idea of computing I and X without identifying individual zeroes and poles
comes from the theorem 4.7.16 and fig. 15. We can notice in the figure that if we used110 /110 /

only the magnitude information, reconstructing the phase as if all the poles and zeroes
were inside, we would get a minimum phase filter with identical |H(f)|. This action is
equivalent to switching the outer poles and zeroes inside the circle.
Analogically, if we retained only the the group delay and reconstructed the mag-

nitude, we would obtain the behavior of X since forgetting the phase makes zero inside
the circle indistinguishable from the pole outside of it (and vice versa). It therefore
effectively cross-switches poles and zeroes inside.
As 4.7.16 requires a centered filter we have to adjust H before actually using it,

taking the adjustments back after the 4.7.16 has been applied. Also, to make things
easier, let us only consider invertible filter h now. The formula for computing I(H) for
H ∈SD ∩ SI is the following26.

I(H) := λf. |H(f)| exp
(
i(ϕ̂(f) + ϕ0 + ψ0f)

)
where

ϕ̂ := F
(
−i sgn�F−1(λf. log |H(f)|)

)
and

ϕ(f) := ArgC(H(f)) ϕ0 :=

1/2∫

−1/2

ϕ(f) df ψ0 :=

1/2∫

−1/2

ϕ′(f) df = ϕ( 12 )− ϕ(− 12 )
(287)

The adjustment first removed mean value of ϕ, calling it ϕ0. Then it removed group
delay (calling the quantity proportional to it ψ0). Note that ϕ was smooth since we
assumed no zeroes on the unit circle. Then, 4.7.16 was applied, giving out ϕ̂. In fact it
could have been applied on an unadjusted H(f) as well, since it only uses its magnitude
which remains unaffected by phase adjustments. Note that the resulting ϕ̂ has zero
mean and it represents centered filter (therefore ϕ(1/2) = ϕ(−1/2)).
So far we have divided the original filter into multiplication by eiϕ0 (involves no

poles nor zeroes) followed by a delay of − 1
2πψ0 (involves poles or zeros in 0∈C) followed

by a centered filter (whose outer poles and zeroes are to be switched inside by 4.7.16).
The adjustments effectively multiplied the original H(f) by e−(iϕ0+iψ0f). Hence the
result has to be multiplied by eiϕ0+iψ0f to undo these. As eiϕ0+iψ0f did not contain
any poles or zeroes from outside of the circle we can see that (287) did what it was

26 The function ArgC(H) turns H into ϕ (formally ArgC : (R → C) → (R → R)), making ϕ as
continuous as possible (so in case of H ∈SD ∩ SI , ϕ will be continuous everywhere).
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supposed to do — switched the outer poles and zeroes inside, leaving the inner poles
and zeroes intact.
Similarly, X (H) for H ∈SD ∩ SI can be computed as follows.

X (H) := λf. exp
(
ĤL(f) +H0

) H(f)
|H(f)| where

ĤL := F
(
i sgn�F−1(λf. (ϕ(f)− ψ0f))

)
and

H0 :=

1/2∫

−1/2

log |H(f)| df ϕ(f) := ArgC(H(f)) ψ0 := ϕ( 12 )− ϕ(− 12 )

(288)

First, H is adjusted by removing mean phase ϕ0 and mean group delay − 1
2πψ0. Then,

H0 is computed, the average level of |H(f)|, which carries information about |c0| of
(210). After that, 4.7.16 is applied on the adjusted (centered) phase. As sgn(0) = 0, . 90

the subtraction of ϕ0 from ϕ(f) may be omitted, when centering the phase. Since the
computed ĤL is of zero mean we have to recover |c0|. This can be done by adding H0
to it because when H0 =

∫
log |H(f)| df =

∫
HL(f) df is expanded using (279) the only

terms that change by cross-switching are those
∫
logPk and

∫
logZk that correspond

to the outer Pks and Zks. The way they are switched inside changes Pk into 1/Pk but
at the same time the new value is treated like a zero which changes the sign before the
logarithm, which is why its contribution does not change at all. Analogically for Zk.
Therefore, H0 is invariant under cross-switching and has to be added to zero-mean ĤL

to recover proper cross-switched response.

4.9.3 Theorem (Response Decomposition Theorem) Up to the amplification fac-
tor, H ∈SD ∩ SI can be uniquely decomposed into I ∈SD ∩ SI and O∈SD ∩ SI such
that I ·O = H and I has poles and zeroes only inside the unit circle and O only outside.
The decomposition can be carried out by the following formulae.

I :=
√
I(H) · X (H)

O := H · I−1
(289)

where the complex square root is meant to be continuous, that is
√
z :=

√
|z|e i

2ArgC(z).

Proof Considering that we are given H = c0I0O0, where c0 is the amplification
factor, I0 represents inner poles and zeroes (with unit amplification) and O0 represents
the outer ones, we have

I(H) = c0I0I(O0) X (H) = c0I0(I(O0))−1 (290)

Hence, I(H)X (H) = c20I20 . Note that c0 gets embedded into I, whereas the O’s ampli-
fication factor will equal to 1. Q.E.D.



115 4 Signal Processing Theory

4.10 Sampling Theorem

So far, we have considered signals of very high (1050 Hz) sampling frequency as a way of
representing analog (continuous-time) signals. At the same time we developed theory
independent of actual sampling frequency. In any practical application the sampling
frequency must be many orders of magnitude smaller. For instance by taking only every
1045th value and forming a new signal from these values we would obtain signal with
100 kHz sampling rate, which is easily attainable with today’s hardware. This process
is called a decimation. Of course, the above procedure is meant only theoretically —
we do not actually have 1050 samples per second which we could decimate. But we
can imagine that all the physical processes in analog circuits before the A/D converter
could be well described by LTI systems running at this high sampling frequency. This
not only allows us to talk about sampling and reconstruction of analog signal but, more
importantly, it makes possible to judge distortion caused by combined action of analog
circuits and converters, once we work out all the details. The central question answered
in this section is under what conditions we can reconstruct (at least theoretically) the
original signal from its decimated version.

4.10.1 Aliasing

Decimation does not in general allow for reconstruction of the original signal because
some information is lost. The mechanism of this loss is quite interesting when observed
in the spectral domain. Suppose we have a sequence an := exp(2πifAn) and we are
taking its every K-th sample to obtain bn := aKn = exp(2πifAKn) = exp(2πifBn),
where fB := KfA. Due to periodicity of complex exponential the relationship between
normalized frequencies of a and b can as well be written as fB = KfA − bKfA + 0.5c,
as shown in fig. 16.
This effect can be seen in movies with scene of accelerating spoked-wheel carriage.

For a wheel with s spokes and small speeds, such that the wheel revolves by less than
π/s radians per a film frame we can observe its true rotation. As the speed increases
it eventually exceeds π/s radians per frame, and it seems to start rotating backwards
(because π/s corresponds to 1/2 normalized frequency and we can see from fig. 16 that
the frequency fB became negative after reaching 1/2). If the wheel accelerates even
more it seems to slow down until its true speed reaches 2π/s per frame at which speed
the wheel seems to be standing still. For even higher speeds it seems to accelerate
again, and the whole process repeats in accordance with fig. 16.
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Fig. 16. Frequency folding of D5 decimation.
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4.10.2 Definition Decimation Mapping Dn : σ → σ defined the following way

Dn(x)k := xnk (291)

will be called a decimation. Often we drop index n if it follows from context and we
also extend Dn to S → S in the following way.

Dn(X) := F
(
Dn
(
F−1(X)

))
(292)

Note that decimation is linear operation (but not time invariant).

4.10.3 Observation (on Folding) For A∈S and B = DK(A) we have B∈S and

B(f) =
1
K

K−1∑

k=0

A

(
k + f
K

)
(293)

Proof Although (293) is apparent from fig. 16, linearity of D and conservation of
amplitude during decimation, I will provide formal proof for sake of completeness.
From (292) we have

B(g) =
∞∑

n=−∞

1/2∫

−1/2

A(f)e2πifnK dfe−2πign = lim
N→∞

1∫

0

A(f)
N∑

n=−N

e2πin(Kf−g) df (294)

Using the change of variables, we obtain

B(g) = lim
N→∞

1
K

K∫

0

A
( u
K

)
DN (u− g) du (295)

where DN is defined by (159). Defining 1-periodic functions Âk(u) := A
(
k+u
K

)
for . 78

u∈ (0, 1) and Âk(0) := 1
2

(
A+( kK ) +A

−(k+1K )
)
we can write

B(g) =
1
K

K−1∑

k=0

lim
N

∫ 1

0

Âk(u)DN (g − u) du =
K−1∑

k=0

A+
(
k+g
K

)
+A−

(
k+g
K

)

2K
(296)

where the last equality comes from 4.2.10. For g∈ (0, 1) it gives (293), since A∈S. For . 80

g = 0 we also obtain (293) because 1K
∑K−1
k=0 Âk(0) =

1
K

∑K−1
k=0 A(

k
K ). The obtained B

is from S since S is closed on shifting and addition. Q.E.D.

Obviously, signal a can be recovered from the decimated signal b := DK(a) iff its
spectrum can be reconstructed. This in turn happens if and only if the frequencies fA
at which the source signal had non-zero power do not collide27 after being mapped to fB

27 In fact there can be collisions if the set of points they form has a zero measure — such collisions
cannot change integral inside F−1. Note that signals from σ are meant here, not everlasting sinusoids.
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in accordance with fig. 16. The then sum (293) contains at most one non-zero number
at each frequency, and as a result, no information is loss there (if we manage to assign
correct alias band (of the K possibilities) for every frequency during reconstruction,
which is easy in the usual case of contiguous frequency band of the original signal).

Most often, only the (normalized) frequencies in the interval
[
− 1
2K ,

1
2K

)
are allowed

to be of non-zero power (but in radar, sonar or oscilloscope applications we may want
to process the high frequency band instead). A signal with such a spectrum is said to
be band-limited. Typically, the signal we measure is not band-limited and we have to
constrain it by filtering, ideally using a brick-wall filter (200). This filter or its practical88 /

approximation is often called an antialiasing filter. The reconstruction then concerns
only the band in question — anything outside

[
− 1
2K ,

1
2K

)
that could have been present

in the original signal will be lost. This kind of filtering followed by decimation is called
a downsampling.

Reconstruction from a K-times downsampled signal b goes as follows. First we
assemble the signal c from b by interleaving its samples with blocks of K − 1 zeroes:

cn :=
{
bn/K for n%K = 0
0 else

(297)

Its spectrum C(f) = F(c)(f) = ∑
n bne

−2πinKf = B(fK) is K-times compressed
and periodically repeated copy of b’s spectrum. Equation (293) expresses the rela-
tionship between B and A — the spectrum of original signal. As we assume that A
was antialiased before the decimation took place, the eq. (293) actually reduces to
1
KA(

f
K ) = B(f) from which we have C(f) =

1
KA(f) for f ∈

[
− 1
2K ,

1
2K

]
. So, to recover

the original signal a from signal b, we have to multiply b’s interleaved version c by con-
stant K and filter the result with a brick-wall filter28 which removes superfluous copies
of A from C. This process is known as upsampling. These findings are formalized in
the following theorem.

4.10.4 Definition Sinc Function

Function sinc : R → R is defined as follows. Note that sinc(0) = 1.

sinc(x) := lim
y→x

sin y
y

(298)

4.10.5 Theorem (Shannon’s Sampling Theorem) The signal a, whose spectrum
A is band-limited to the interval

[
− 1
2K ,

1
2K

]
in a normalized frequency scale, can be

exactly reconstructed from b := DK(a), i.e. from its every K-th sample, in the following
way.

a = c ∗ λn. sinc πn
K

where cn :=
{
bn/K for n%K = 0
0 else

(299)

Proof The theorem has been essentially proven in the foregoing discussion. All that
remains is to determine the impulse response of the interpolating brick-wall filter but
this, again, was done in 4.4.4. Note that the multiplication factor K has been incorpo-88 /

rated into the filter’s response, causing it to be equal to 1 at n=0. Q.E.D.

28 Identical to antialiasing filter but now called an interpolating filter from obvious reasons.
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4.10.6 Band-Limited Signals

The sampling theorem requires the signal a to be band-limited. Unfortunately, it turns
out that any band-limited signal cannot be finite, as will be shown in the following the-
orems. This makes the above method of downsampling and subsequent reconstruction
impractical as it would have to cope with infinite-duration signal even if the original
signal was finite.

4.10.7 Observation Any non-zero band-limited signal x cannot be from σF .

Proof Let us assume we have x∈σF . Then X(f) =
∑M
k=−M xke

−2πikf for certainM .

Defining w := 1/z = e−2πif we can write X(f) = zM
∑2M
k=0 xk−Mw

k. But according to
the fundamental theorem of algebra, this (non-zero) polynomial may have at most 2M
zeroes. Hence the signal could not be band-limited as this would require X(f) = 0 for
a whole interval of frequencies. Q.E.D.

As there is no fundamental difference between a signal and an LTI system having
that signal as its impulse response, the observation also implies that a brick-wall filter
cannot have finite impulse response. Actually, more than that — it does not matter
what shape the filter has in the pass band (it may be even smooth). What counts is
that H(f) is zero in certain interval. For the same reason we cannot have non-constant
filter with H(f) = 1 on an interval — just consider Ĥ(f) := 1−H(f).
So far we know that perfectly attenuating filter has infinite impulse response or,

equivalently, that a non-zero band-limited signal cannot be finite. So, if we wanted
to filter the signal before the decimation, we would need to know all its samples be-
forehand. This is highly impractical and we might ask if there is another LTI system
with perfect attenuation which would use only the past samples at the cost of having
non-linear phase response. The following theorem states that this is impossible, too.
Therefore the best we can hope for is an approximation of the brick-wall filter with

sufficient attenuation in the stop band and small enough distortion in the pass-band.

4.10.8 Theorem Any signal a∈σ such that an = 0 for n < 0 and a0 6= 0 cannot be
band limited.

Proof Let us assume for contradiction that we have such signal a whose spectrum
A(f) is zero at frequencies |f | > f0 and an=0 for n < 0. We can assume that f0 < 1/8.
If it was higher we could have taken Â(f) := A(f)A(f − α)A(f + α) instead. For
suitable value of α > 0 this would extend zero interval of the transfer function (we
might need to perform this trick several times before getting spectrum with f0 below
1/8). It is easy to check that Â(f) corresponds to â = a ∗ (a � m) ∗ (a � m) where
m := λn. exp(2πiαn) and that â0 = a30 6= 0 and ân = 0 for n < 0.
Now, assuming that A is already zero on

[
− 12 , 12

]
\
[
− 18 , 18

]
, let us look at spectral

convolution B := A ∗A. Since f0 < 1/8 there is f1 < 1/4 for which B(f1) = 0. On the
other hand F−1(B) = ρa�a = ||a0||2 ·~1, according to 4.3.3 and (189). But F(~1)(f) = 1 . 84

. 85
for any f , which is in contradiction with B(f1) = 0. Q.E.D.

4.10.9 Note This theorem can be informally justified by yet another way: If there
would be a brick-wall low-pass LTI system only using the past samples, we could run
it on signal composed of impulses ~1[nk] spaced such that their original position would
be still apparent after filtering. Then by filtering the result with long enough cascade
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of (232), using its negative group delay at low frequencies, we should be able to decode97 /

future position of those impulses. But this is impossible because we only used samples
from the past which have no information about positions of future impulses, in general.
Nevertheless, to make this idea a proof, we would need to quantify shape distortion
introduced by (232), which would be likely more complicated than direct proof of 4.10.8.

4.10.10 Universal Resampling

So far we can downsample or upsample the signal by an integer factor. As we do not
want to assume anything about the input signal we need to filter it before decimating
it. This leads to the following downsampling formula, which downsamples the signal
D-times.

yn :=
∑

k

z(nD−k)
sinc(πk/D)

D
(300)

On the other hand, the upsampler, making the sampling frequency U -times higher, is
given by the following formula, according to (299).

zn :=
∑

k

xk sincπ
( n
U

− k
)

(301)

By stacking the downsampler after the upsampler we can also resample the signal by
any rational number r := U/D. Special case of D = U seems to be useless but only
before we consider the possibility of delaying the intermediate signal y by P sampling
periods. It turns out that this corresponds to constant group delay of s := P/U between
y and x, an effect that cannot be achieved by any digital filter, as we already know
from (267).107 /

By plugging (301) delayed by P samples into (300), we receive the following.

yn =
1
D

∑

p

∑

k

xk sincπ
nD − Uk − P − p

U
sincπ

p

D

= U
∑

k

xk
∑

p

1
U
sinc

(
π
(nD − Uk − P )− p

U

)
1
D
sincπ

p

D

(302)

The last sum may be understood as a convolution evaluated at sample nD−Uk−P . Ac-
cording to 4.3.1, its spectrum is then a product of spectra of the two λn.2f0 sinc(2πf0n)83 /

signals. As these are in fact brick-wall filters 4.4.4, their product is also a brick-wall88 /

filter with cut-off frequency f0 being a minimum of these two. Hence we obtain univer-
sal resampler, which changes the sampling rate by arbitrary rational factor r = U/D,
applying rational delay s = P/U , which is measured in the time units of the original
signal.

yn =
U

max(U,D)

∑

k

xk sincπ
nD − P − Uk

max(U,D)

= min(r, 1)
∑

k

xk sincπ
(
nmin(r−1, 1)− (k + s)min(r, 1)

) (303)

Note that the last formula embeds (300) and (301) in itself and it also justifies notion of
non-integer group delay, as promised in the paragraph after equation (227). Moreover,96 /

it can be used to define resampling by a real factor r∈R and time shift s∈R.
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4.10.11 Practical Resampling

The above resampling formula, although being conceptually simple, is quite trouble-
some when it comes to its implementation. First, it cannot be implemented by a digital
filter (not even IIR) because its frequency response is exactly zero on an interval and
digital filters only allow for finite set of zeores. Second, the entire signal must be known
in advance before the processing could begin. Third, the impulse response falls off very
slowly (only as 1/|n|) and it is not absolutely convergent. Consequently, peaks of arbi-
trary height can appear in the resampled signal even if the input signal was amplitude
limited. Some of those peaks can be very far from the portion of the signal that caused
them (cf. 4.6.5). . 97

While the first two objections are implementation related, the third one disputes
the very principle of resampling. Intuitively, we feel that information about the signal’s
shape should not be spread too much in time by resampling. But the brick-wall filter
makes future information available anywhere in the past, at least theoretically (whereas
practically this is limited by precision of the arithmetics).
For these reasons, instead of brick-wall filter, practical resamplers use only an ap-

proximation thereof. These approximative filters have finite steepness of the transition
region between the pass-band and stop-band, and the attenuation in the stop band is
not perfect albeit still high enough to keep aliasing artifacts well below quantization
(or noise) level of the original signal.
As already hinted, the design objective of these resampling filters is not solely a

computationally efficient approximation of the brick-wall filter but rather a trade-off
between good shape of the frequency response29 and suppression of the time domain
artifacts of which the most profound is so called ringing, also known as the Gibbs’
phenomenon. It exhibits itself as wavelets around discontinuous or sharp changes in
the signal. It is visible in the middle panel of fig. 14, where the original impulse got . 98

transformed into the ringing wave. Gibbs’ phenomenon is especially annoying in image
processing30 because it introduces false edges into the image. In audio processing it
is usually not a big concern, firstly because the amplitude of high frequency signals
is usually small31 and, secondly, our brain is not very good at detecting that extra
signal if it lasts less than, say, 1 ms (which is attainable with transition band of about
2 kHz). That is why there would be no problem unless the resampling filter is too
steep and input’s sampling frequency too small (such as in case of upsampling from
8kHz to 48 kHz). In audio systems intended for human listeners, the ringing artifacts
can be further mitigated by making the resampling filter minimum phase. While it
has the same amplitude response as the original linear phase design, its output peaks
much sooner after the first wavelets associated with the same input have appeared.
Even though the minimum phase filter has longer ringing tail than its linear phase
counterpart, the resulting artifact is less audible, owing to ear’s temporal masking
5.8.7. Minimum phase resampling filter is also welcome for its low latency, which might . 171

be advantageous in telephony applications.

29 High attenuation in the stop band, flat passband and narrow transition band.
30 The signal theory can be extended to higher dimensions. Images are two-dimensional signals then.
31 In case of fs≥48 kHz the ringing carrier will be beyond the frequency range of most people anyway.
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A price paid for this trick is non-constant group delay that distorts time-domain
shape of the signal. This is of no concern in audio playback, as the human ear is rather
insensitive to phase but in precision measurement applications (like the recording of an
ECG signal), temporally undistorting linear phase filter is preferable.

4.10.12 Note on D/A Conversion
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Fig. 17. Distortion UK(f/K)
drawn for K=2 (upper curve),
K=3 (the middle one) and for
K → ∞ (lower curve).

Physical conversion of binary numbers representing the
samples into a continuous electric signal takes place in a
device called Digital to Analog Converter, or shortly the
D/A converter or DAC. The converter is followed by ana-
log low pass filter (made of resistors, capacitors and induc-
tors) which acts as the interpolating filter. But unlike the
theoretical upsampler (301), DAC does not create the sig-
nal from spiky impulses. Instead, it makes it from steps,
holding the output voltage constant until the next sample
arrives. As a consequence the mirrored higher spectra that
have to be removed by the interpolating filter are weaker
than the main spectrum, which further simplifies filtering
circuits.

However, the stepped upsampling has its problems, too. Feeding the interpolator
(299) with ĉ = λn.K−1bbn/Kc to simulate the steps, we get the following formula for117 /

its spectrum.

Ĉ(f) = F(ĉ)(f) =
K−1∑

k=0

∞∑

n=−∞

bn
K
e−2πi(nK+k)f =

∞∑

n=−∞

bn
K
e−2πinKf

K−1∑

k=0

e−2πikf

= B(Kf)
sin(πKf)
K sin(πf)︸ ︷︷ ︸
UK(f)

e−πi(K−1)f

︸ ︷︷ ︸
?

(304)

A perfect upsampler would then multiply Ĉ with a brick-wall response, retaining only
the frequencies from

[
− 1
2K ,

1
2K

]
. However, instead of getting the correct B(Kf), there

are two extra factors in (304). UK(f) causes amplitude distortion of the spectrum,
while ? is only a consequence of asymmetric creation of the steps — it would disappear
had we defined the steps centered around the original spikes. Distortion factor UK is
shown in fig. 17 for various values of K in common frequency scale so that the plots
could be compared. Hence, to obtain correct reconstruction the digitized signal b should
be filtered with the following correction response, before being sent to the converter.

V (f) =
1

UK(f/K)
=
K sin(πf/K)
sin(πf)

−−−−→
K→∞

πf

sinπf
(305)

Though F−1(V ) cannot be realized by a digital filter (as it has discontinuous derivative
in f = 1/2) it can be closely approximated. Truly Hi-Fi system would additionally
include other imperfections of the analog path into the correcting filter.
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However, such corrections are rarely implemented in commodity computer hard-
ware. Moreover, this analysis assumed traditional DAC (such as the R-2R ladder
circuit) that holds constant voltage between consecutive samples. Nowadays, common
D/A converters work on different principle which is similar to the dithering of halftone
images on monochromatic displays. Such a converter may be of only 1-bit resolution
but much higher sampling rate — say, 512-times higher than fs, the sampling rate
of the feeding digital signal. It turns its output on and off very rapidly so that the
mean value over the original sampling period would correspond to the intended ana-
log output, whilst shaping the spectrum in a way that makes majority of quantization
noise to occur above fs/2. This high-frequency noise is then attenuated by cheap RC-
filter connected to the output of the DAC. Hence, there are no apparent boundaries
between individual samples, therefore no need to do the compensation (the distortion
is still present but since 1 of the normalized frequency corresponds to 512fs, the useful
spectrum lies only in (−2−10, 2−10) interval of fig. 17 where the distortion is negligible).
The distortion UK(f) also affects displays, as these have non-zero pixel size. Nor-

mally, it is not very visible (perhaps it is compensated for in the camera). But if one
tries to shrink the image by true downsampling (303) the resulting image would not
look as sharp as it ought to. This can be corrected by filtering rows and columns with
V (f), which ‘sharpens’ the image. However, note that the downsampling was correct
and this compensation should be carried out only for viewing purposes — should the
shrunken image undergo another processing in the future, its uncompensated version
would have to be used.
Also note that resizing an image by true downsampling is a bad idea. It is slow and,

as noted earlier, it leads to ringing on the edges. Better resampler would use antialiasing
filter with localized impulse response with only negligible ringing. Nevertheless, the
problem of UK(f) distortion would apply to it, too. Moreover, there is another problem
typical for images, described in the next subsection. As it does not apply to sound (with
fs>44 kHz) you might want skip to 4.10.14 if interested in speech processing only. . 123

4.10.13 Kell Factor

Sometimes the signal reconstruction cannot easily incorporate the interpolating filter.
Notable examples are LCD and plasma displays32. Here, the higher mirrored spectra
exist in the reconstructed signal33 (for pure colors (red, greed and blue) these higher
spectra are more profound then we would expect from stepped reconstruction formula
(304) because the reconstruction of purely red image is closer to the spiked reconstruc-
tion of (301) since neighboring red and green subpixels are turned off, that is zero).
The existence of these higher spectra can be directly observed by naked eye in an

image whose all scan lines are of brightness 1+cos(2πfx), where f <1/2. Note that the
image is antialiased as it contains only single frequency34 less than 1/2. Neglecting all
higher spectral copies except the first one, our eyes would see scan line of brightness
1 + cos(2πfx) + α cos(2π(1−f)x) = 1 + (1−α) cos(2πfx) + 2α cos(πn) cos(π(1−2f)n).
So, the true image is attenuated by 1−α while the error term superimposes a moire on

32 For (monochromatic) CRT displays this applies only to individual columns. Rows are filtered
electronically. Even the columns may be sort-of filtered by letting the scan lines partially overlap.
33 To stay within a realm of one-dimensional signals, imagine a single line of the display as a signal.
34 Assuming very long display so that the spectral line width and off-band energy can be neglected.
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it. Moreover, for f close to 1/2 the number 1−2f is small, causing the last factor to
vary slowly with x, which produces visible beating in intensity of the artifact. It might
look like an aliasing but it is of different origin.

Fig. 18. The Kell artifact. The upper stripe represents discrete display showing a pattern 1+cos(πkx)
for k = 0.98, where x∈N is the number of a pixel in a row. To emphasize the effect by reducing
attenuation of the UK(f) distortion, the pixels are interleaved with a white space of twice their width
(this corresponds to real LCD, displaying red color with blue and green subpixels turned off). Three
‘beats’ of the artifact pattern can be seen there. The period of the error term’s factor cos(π(1−k)x) is
2
1−k = 2/0.02 = 100. There are two visible beats per period due to the factor cos(πx) = (−1)x. As the
display is 146 pixels wide, it gives 3 beats. The stripe below contains thrice as many pixels placed next
to each other without gaps, showing the same signal. The Kell artifact is hardly visible there. The
upper stripe would look similarly had it been filtered by proper interpolating filter. Due to nonlinear
dependence of blackness (which is hard to be completely compensated by a gamma correction, owing
to paper and ink aging) there is also an aliasing artifact present. The aliased third harmonic has
a period of 2.13 pixels (of the upper display), while for the second one it is 50 pixels, the same as
the beating period. However, the aliasing leads to purely sine waves without the (−1)x modulation
factor that is clearly visible in the figure, which shows that we really see the Kell effect. Even higher
harmonics are of negligible amplitude in comparison to α≈1 of the error term.

How to suppress this artifact to visually acceptable levels was proposed by Ray-
mond D. Kell, television researcher working for RCA Corporation, in 1934. The method
effectively reduces sharpness by filtering the image data so as to remove all (normalized)
frequencies above 0.7/2. This makes the number 1−2f always larger than 0.3, thereby
disabling visually most annoying long waves in the beating pattern. The number 0.7
is called the Kell factor. It is usually taken in range of 0.64 to 0.9, depending on the
display and digital filter used to remove higher frequencies. Note that the filter must
not be too steep either, or the ringing on edges would appear, as discussed earlier.

There are other complications with images, though. I will only mention one for
illustration, before returning to sound: Constantly bright area displayed on LCD in fact
contains high frequency components caused by a thin black frame around each pixel.
The amplitude of these components depends on the area’s brightness — for black area
it is zero, whereas for a shiniest white it is maximal. As a result, properly antialiased
image (imagine a white page of black text) looks inappropriately when displayed as a
negative even if it has been correctly compensated for gamma correction. It may be
understood as a consequence of black pixels being slightly larger than the white ones.

4.10.14 Effect of Resampling on Digital Filter Coefficients

Suppose we consider all parasitic effects of the analog path35 to be modeled by a digital
filter running at very high (≈ 1050 Hz) sampling rate. Surely this is an approximation
as it disregards nonlinear effects which are also present. Nevertheless, let us neglect
them now, for sake of simplicity. Then we have the input sound x transformed into y,
the electric signal entering the A/D converter, in the following way.

y = d−1 ∗ c ∗ x where c, d∈σF (306)

Now we could still invert the distortion by convolving y with c−1 ∗ d, provided that c
was invertible. But in the converter the y gets heavily downsampled to reasonably slow-
rate signal ỹ := DK(y ∗ hK), where hK is a brick wall filter removing any normalized
35 Reverb of the room and uneven sensitivity of the microphone and amplifier at different frequencies.
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frequency |f | > (2K)−1. The question arises whether it is possible to reconstruct x̃, the
downsampled version of x, from ỹ with a digital filter. To answer it, let us investigate
properties of the downsampling operation λs.s̃.

4.10.15 Observation For x, y∈σ and z∈σI we have: x̃ ∗ y = x̃ ∗ ỹ and z̃−1 = z̃−1.
Proof The left side of the first equation is DK(x∗y∗hK) or, in the frequency domain,
DK(XYHK). Since HK is brick-wall filter we have HK=HK ·HK and HK(f)=0 for
|f | > (2K)−1. From (293) it then follows that DK(XYHK) = DK((XHK)(Y HK)) = . 116

DK(XHK)DK(Y HK) which equals x̃ ∗ ỹ when translated back to the time domain.
The second equation follows from the first one, since ~̃1 = z̃ ∗ z−1= z̃ ∗ z̃−1. Multiplying
both sides by z̃−1 and noting that ~̃1 = ~1, we get z̃−1 = z̃−1. That z̃ was invertible is
clear from its spectrum. Q.E.D.

The observation implies that ỹ = d̃−1 ∗ c̃ ∗ x̃. Unfortunately, as c̃ and d̃ got
band-limited by downsampling, they cannot live in σF any longer, due to 4.10.7. Even . 118

though these fall towards zero, it is a slow process, owing to a sinc shape of hk. With
already discussed effect of ringing, this is another reason against exact downsampling

(apart from its prohibitive computational complexity). Notice that although ~̃1 is finite,
~̃1[1] is not. This is a problem especially for video where it is responsible for motion
artifacts. A thin vertical line moving from left to right would change its apparent width
in the downsampled movie. But it is a problem for sound, too because the information
that leaks to the surrounding samples during downsampling depends on exact timing,
which, intuitively, should not happen.

4.11 Hilbert Transform and Analytic Signal

Negative frequencies in the spectrum of a real valued signal are superfluous because the
spectrum satisfies X(−f) = X(f). This observation leads to the following definition.
4.11.1 Definition Analytic Signal

Signal a is analytic to signal x iff xn∈R for all n∈Z and the following holds for its
spectrum A := F(a).

A(f) =





2X(f) for f > 0
X+(0) for f = 0
0 for f < 0
X−(f) for f = −1/2

(307)

where X := F(x) and f ∈ [−1/2, 1/2). We call the signal analytic iff it is analytic to
some signal, which it is iff A(f) = 0 for f ∈ (−1/2, 0). The operator that makes A
from X using eq. (307) will be denoted by Q and called the quadrature filter. It can be
extended to time domain by defining Q(x) := F−1(Q(F(x))). So if x was real-valued,
then Q(x) would represent the signal which is analytic to it.
As only counterclockwise rotating exponentials remain in a spectrum of analytic

signal, the signal seems to rotate in that direction, especially if it is narrow-band so
that the exponentials present are all about the same frequency. This effect can be seen
in figure 19. . 125
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Fig. 19. Analytic signal zn :=
(
sin(2πβt)
2πβt

)4
e2πit, where β := 0.11 and t := n/1000 (the

sampling frequency is 1000 Hz here). Also drawn are its real and imaginary projections
which are related thru the Hilbert transform in the following way: Im(z) = H(Re(z)).
Finally, there is an amplitude envelope ||z|| drawn above the Im(z) projection.

4.11.2 Definition Hilbert Transform

The Hilbert transform is σ → σ function defined as follows36

H(x) := F−1(−i sgnS ·F(x)) (308)

We extend it to S → S as H(X) := F(H(F−1(X))) = −i sgnS ·X.
4.11.3 Note This means that the spectrum X(f) is multiplied by −i for f > 0 and
by i for f < 0, which introduces π/2 phase delay to x, according to (228). Even this96 /

effect is visible in fig. 19 when looking carefully — the ripples in the imaginary projection
lag 1/4 second behind the ripples in the real projection. As the ripple wavelength is 1
second, it amounts to a π/2 phase delay.

4.11.4 Observation Q(x) = x+ iH(x)
Proof Clearly, Q(X) = X + iH(X) for f ∈

[
− 12 , 12

)
\ {0,− 12}. But those two points

at which the spectrum may differ cannot change value of the integral in F−1, hence
Q(x) = F−1(Q(F(x))) = F−1(F(x) + iH(F(x))) = x+ iH(x). Q.E.D.

4.11.5 Lemma H(x) = h ∗ x, where

hk =
{
0 for k = 2n, n∈Z
2
πk else

(309)

Consequently Q(x) = (~1 + ih) ∗ x.
Proof h = H(~1) = F−1(H(1)) according to 4.4.2. Hence87 /

hk =

1/2∫

−1/2

−i sgnS(f)e2πifk df = −i
1/2∫

0

e2πifk df + i

1∫

1/2

e2πifk df (310)

36 The sgnS(f) is 1-periodic function being equal to sgn(f) on f ∈
(
− 1
2
, 1
2

)
such that sgnS ∈S.
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Integrating it, we get

hk = −i e
πik − 1
2πik

+ i
1− eπik

2πik
=
1− (−1)k

πk
(311)

Q.E.D.

Under certain conditions, the quadrature filtering can be used for decoding am-
plitude and phase modulated signals. Suppose the modulated signal is s := a � c,
where ak ≥ 0 is the amplitude envelope and ck := Re(dk) = cos(2πfck + ϕk) is phase
modulated carrier wave, where dk := exp(2πifck + iϕk) is its complex-valued version.
For ϕk such that its corresponding dk is band-limited37 to [fc − f∆, fc + f∆] and

ak being band-limited to [−fa, fa] the product a � d is band-limited to [fc − f∆ −
fa, fc + f∆ + fa], since product in the time domain corresponds to a convolution in
spectral domain. When additionally 0 ≤ fc − f∆ − fa and fc + f∆ + fa ≤ 1/2 hold,
the signal z := a� d is analytic to s = Re(z) and can be exactly reconstructed from s
as z = Q(s). It is then possible to recover its envelope an = ||zn|| as well as its phase
ϕn = Arg(zn)− 2πfcn. This process is called the demodulation.
Note that exact demodulation relied on z’s zero power at negative frequencies which

allowed the quadrature filter to be used for recovering z from the measured signal s.
This would not quite work if a or ϕ were spoiling z’s analyticity in some way. For that
reason the amplitude envelope in fig. 19 was carefully selected to be band-limited onto
the interval [−4β, 4β], where β = 0.11 Hz. The monochromatic carrier wave of 1 Hz
shifts this up to [0.66, 1.44], making the signal analytic.
Unfortunately, this happens rarely in the real world. As it was demonstrated in

4.10.7, any time-limited signal cannot be band-limited. But any practical (measured) . 118

signal is finite-duration. For long enough signals, this could be neglected as the power
at negative frequencies would be relatively small in comparison with the power at the
positive ones. What is worse, however, is that the band-limitedness of ϕ does not imply
band-limitedness of d. Even the simple case of ϕn :=cos(2πfn) produces wide-band d.
Practical solution, routinely used in radio communication, is to ‘remove’ (attenu-

ate) negative frequencies from z before it is converted to s := Re(z) and transmitted.
This, however, changes z such that it will correspond to a slightly different signals a and
ϕ. Often, it is more convenient to remove off-band frequencies directly from 2s = z+z,
which frees us from knowing z. This, however, costs even greater distortion — in case
of filtered z the distortion came solely from the missing sidebands of z, whereas the
distortion of filtered s has additional component caused by the aliasing of sideband of z
into the main-band of z. Nevertheless, this is of little concern in practical applications
because the power of the sidebands is typically quite small.

4.11.6 Bandwidth of the Demodulated Components

As we usually demodulate narrow band-signals a question arises how many sample
points do we need to uniquely represent the resulting envelope and phase if z’s spectrum

37 Technically, d is not a signal since d /∈σ and we cannot speak of its spectrum and use spectral
convolution 4.3.3 for it. But a is from σ and, as such, it is going towards zero at its tails. So we can . 84
take long enough finite segment of d such that the energy of the discarded portion of a� d would be
negligible. By growing this segment indefinitely, we would obtain the result in the limit. This is how
d-related formulas in this section should be read. In fact this is the place where theory of distributions
that I decided to side-step would allow us to write it directly.
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was non-zero only on interval [fA, fB ]. According to 4.10 we need sampling frequency115 /

to be at least fB−fA to represent z. Accordingly, twice as many sampling points would
be needed to represent s, as its negative frequencies must also be encoded. Nonetheless
it leads to the same amount of data in both cases because s is real, whereas z was
complex. As outlined above, phase ϕn and envelope an can be directly recovered from
zn, so these can be sampled with frequency fB − fA, too. Notice that the resampling
must be performed already on the analytic signal z. Only after that we can convert z
to phase and envelope. If we extracted an and ϕn before resampling, these would have
unnecessarily wide spectra due to nonlinear nature of this extraction and (191).85 /

4.11.7 Note Hilbert transform usually finds its application as a demodulator of
narrow band signals. However, it sometimes unexpectedly emerges from deep theory.
For instance, we have met its dual, that is a Hilbert transform acting on spectra as if
they were continuous signals, in formula (271).109 /

4.12 Quantization and the Information Carried by the Signal

A single signal as it has been considered so far could be used to encode infinite in-
formation, even in its single non-zero sample. This is because our definition allowed
the signal to take real numbers as its values. Realistic signals, on the other hand, do
not allow anything close to this. Their values are either limited into finite number of
discrete levels or (in case of analogue signals) there is a ubiquitous noise that impedes
any attempts to store information below certain amplitude level. This second case can
be approximated by the first one — with the quantization hidden deeply below the
noise level, the distinction would be negligible. Thus, in this section we shall work
with integer-valued signals. This way, each sample would be able to carry only finite
information. Integer-valued signals are equivalent to signals quantized to equidistant
levels. We just leave the decision about actual size of the step to implementation (in
this respect it is similar to the normalized frequency scale).
Let us first investigate how much information can be stored in a single sample

of a signal (i.e. in a single number) in presence of unknown noise. We will need the
following definitions for that.

4.12.1 Definition Variance and Standard Deviation

For random variable X : Ω→ R ∪ {∞,−∞} we call

VarΩ(X) := EΩ
(
(X − EΩ(X))2

)
= EΩ(X2)− (EΩ(X))2 (312)

its variance and σ(X) :=
√
VarΩ(X) its standard deviation. We can write σ for σ(X)

if there is no danger of confusion with σ(Y ) or with the set of all signals σ.

4.12.2 Note The equality in (312) holds because E
(
(X−E(X))2

)
= E(X2)+(E(X))2

− 2E(XE(X)) = E(X2)− 2 E(X)E(X) + (E(X))2 = E(X2)− (E(X))2. Also note that
the standard deviation scales linearly, i.e. σ(αX) = ασ(X) for α∈R.
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4.12.3 Note Additionally, Var(X+Y ) = Var(X)+Var(Y ) for uncorrelated X and Y
because Var(X+Y ) = E

(
(X+Y − E(X+Y ))2

)
= E

(
(X−E(X))2

)
+ E

(
(Y −E(Y ))2

)
−

2E((X−E(X))(Y−E(Y ))), where the last term is zero, owing to uncorrelatedness 3.1.11 . 42

of X and Y . This observation can be generalized for mutually uncorrelated random
variables Xk as Var

(∑
k αkXk

)
=
∑
k α
2
k Var(Xk). This simple result has important

practical consequence for N uncorrelated identically distributed random variables Xk

and αk := 1/N , giving σ( 1N
∑
kXk) = σ(X1)/

√
N . This means that averaging N re-

alizations of a signal, each of which being corrupted by random noise of known σ(X1)
makes standard deviation of the result only

√
N -times smaller than σ(X1). Thus, rel-

ative effectiveness of noise suppression diminishes with the number of measurements
we average. Moreover, in practical application we can never be completely sure about
uncorrelatedness of the noise (for instance, when averaging sound from several micro-
phones, the electrical noises of amplifiers are likely to be uncorrelated but that cannot
be said about the environmental noise being picked by the microphones). Averaging
would introduces systematic error in such a case.

4.12.4 Note Standard deviation can be thought of as a measure of interval within
which the value of the random variable dwells most of the time. For instance, the value
X(ω) of X having a Gaussian distribution38 falls into (E(X)−3σ(X), E(X)+3σ(X))
with probability greater than than 99.7%. It is remarkable that similar statement holds
even if nothing is assumed about the distribution of X, at the price of somewhat larger
interval. This is the subject of the following lemma.

4.12.5 Lemma (Chebyshev Inequality) For any random variable X : Ω → R

with finite E(X) and Var(X) and any α > 0, the following holds.

PrΩ
(
“ |X − EΩ(X)| ≥ α”

)
≤ VarΩ(X)

α2
(313)

Proof For sake of simplicity, let us shift the distribution so that E(X)=0 and consider
total probability mass of the tails, that is Pr (“|X| ≥ α”) =

∑
x∈M p(x) where M :=

{x∈ Rng(X)
∣∣ |x| ≥ α} and p(x) := Pr Ω(X−1[x]). Now

α2 PrΩ(“|X| ≥ α”) =
∑

x∈M

α2p(x) ≤
∑

x∈M

x2p(x) ≤ VarΩ(X) (314)

Q.E.D.

4.12.6 Relationship Between Variance and Entropy

Let us find probability distribution that has the maximal entropy of all the distributions
that share a fixed variance σ2. Let us do it on finite domain D :=Z ∩ [−B,B], where
B∈N \{0}, to avoid advanced math of Banach spaces. After all, we can always take
B so high that even a single encounter with a value of such magnitude would destroy
our instrumentation apparatus anyway, as well as most of the nearby buildings. That
is why finite B would not lessen practical relevance of the result.

38 Approximated on dense enough discrete domain Ω⊂R to avoid the need of Kolmogorov axioms.
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Let us first consider related problem of finding the most entropic distribution on
D when both its variance σ2 and its expectation µ are given, provided that µ allows a
distribution to exist39. Finding the solution involves maximizing He :=−∑k pk log pk
over the following constraint set.

C := {p∈R#D | p•=1, pk ≥ 0, ∑k∈D kpk=µ,
∑
k∈D(k−µ)2pk=σ2 } (315)

As an intersection of hyperplanes and half-spaces it is obviously convex 40. Additionally,
it is compact, being an intersection of compact sets. Since the entropy is continuous
function of p∈C and a continuous function attains both the minimum and maximum
on a compact set we know that the distribution of maximal entropy with given σ and
µ really exist, ruling out the possibility of sequence of distributions of ever increasing
entropy with no limit in C.
The maximum can be located by Lagrange multipliers41 applied on a domain X =

(0, 1)#D with constraints g1(p)=p•−1, g2(p)=
∑
k kpk−µ and g3(p)=

∑
k k
2pk−µ2−σ2.

Noting that He and gk have continuous partial derivatives and ∇g1 = 〈. . . , 1, 1, 1, . . .〉,
∇g2 = 〈. . . ,−1, 0, 1, . . .〉 and ∇g3 = 〈. . . , 1, 0, 1, . . .〉 are linearly independent we obtain
the following system.

∂ He

∂ pk
+ λ1 + λ2k + λ3k2 = − log pk − 1 + λ1 + λ2k + λ3k2 = 0 for k∈D

∑
k∈D pk = 1

∑
k∈D kpk = µ

∑
k∈D k

2pk − µ2 = σ2

(318)

39 Probability distribution on Z with σ < 1/2 cannot have arbitrary µ. Consider µ∈ [−1/2, 1/2].
Chebyshev inequality used with α= |µ| gives 1=Pr (|X − µ| ≥ |µ|) ≤ σ2/µ2, that is σ ≥ |µ|. No such
restriction exist for σ ≥ 1/2 on Z. On Z ∩ [−B,B], |µ| ≤ B, of course.
40 The set X⊆ Rk is called convex iff for every x, y ∈X, the line segment connecting x with y is also
in X, formally ∀α∈ [0, 1] : αx+ (1−α)y ∈X.
41 Let me shortly remind the method of Lagrange multipliers, summarizing it in the following theorem.

4.12.7 Theorem Let the functions f, g1, . . . , gk : X → R have continuous partial derivatives on an
open set X ⊆ RN and let the vectors ∇g1(x), . . . ,∇gk(x) be linearly independent for all x∈A, where
A := {x∈X | g1(x)=0, . . . , gk(x)=0} is a set of admissible points. Note that for k=1, this means that
∇g1[A] 63 ~0. Then, if f has a maximum on A, it will be among the points x that solve the following
system for some λ1, . . . , λk.

∇x
(
f(x) +

∑k

i=1
λigi(x)

)
= ~0 and x∈A (316)

Or, in another words, stationary points (i.e. those points with zero gradient) of (316) on A are in one-
to-one correspondence with stationary points of so called Lagrangian, a function defined as follows.

L(x1, . . . , xN , λ1, . . . , λk) := f(〈x1 . . . xN 〉) +
∑k

i=1
λigi(〈x1 . . . xN 〉) (317)

That the gradient of (317) gives (316) is immediate — the gradient’s derivatives along xj give the
first part, while partial derivatives along λi give the condition of x being in A. Also note that the
maximum of f on A may actually correspond to the saddle point of L or even to the saddle point of
f(x) +

∑k
i=1 λigi(x), understood in space X.
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Note that it only concerns those points p in which ∇He is continuous, i.e. the points
where pk>0 for all k∈D (this is because −∂ (x log x)/∂ x goes to infinity for x → 0).
Another reason for that was the requirement of X being an open set. As a result,
Lagrange method can detect maximum only on A := C ∩X = {p∈C | ∀k : pk > 0}.

Thus, we have to rule out maximum on C \ A by different means. Fortunately,
this is easy. Take a∈C \ A and b∈A. Due to convexity of C, the whole line lies in
C. Let us calculate entropy at x(ε) = a+ε(b−a), for some small ε> 0. Writing h(ε)
for He(x(ε)) while using the mean value theorem, we obtain the following increase of
entropy when going from distribution a to distribution x(ε).

h(ε)−h(0) = h′(γ)ε = ε
∑

k∈D

(
∂ He

∂ xk

∂ xk
∂ ε

)
(γ) = −ε

∑

k∈D

(log xk(γ) + 1) (bk−ak) (319)

This holds for certain γ∈ (0, ε) whose exact value depends on function h. For those k
s.t. ak = 0, we can choose ε so small that − log xk(γ) = − log(γbk) > 0 becomes so
large that it overpowers the contribution of other (possibly negative) terms. Therefore
h(ε) > h(0) and we proved that maximum cannot lie in C \A, provided that A 6= ∅.
Taking a, b ∈A, let us compute h′′(ε).

h′′(ε) =
∂

∂ ε

(
∂ He

∂ xk

∂ xk
∂ ε

)
=
∑

k∈D

(log xk(ε)+1)
′ · (ak−bk) =

∑

k∈D

−(bk−ak)2
ak+ε(bk−ak)

(320)

Obviously, h′′(ε) < 0 for any ε∈ [0, 1]. By 3.1.17, h′′ is a strictly concave function. This . 43

holds for any a, b ∈A, implying that there cannot be minima nor saddle points there
(a saddle point is concave along certain directions and convex along the others).
It also means that the maximum is unique. Imagine that it was not. Then there

would be at least two local maxima a and b. Taking the entropy along the line segment
{a + α(b−a) | α∈ [0, 1]} as a function of α, we would get strictly concave function of
single variable with two maxima, which would be in contradiction with the following.

4.12.8 Observation Strictly concave function f : J → R on interval J ⊆ R has at
most one maximum.

Proof Maximum is a point x∈J such that for small ε > 0 and for any γ∈ (0, ε) :
f(x + γ) < f(x). Having two maxima x and y, assume that f(x) ≤ f(y). As f is
concave it lies above the chord going from x to y. But already that chord is ≥ f(x),
which contradicts the condition for maximum in x. Q.E.D.

So we have proved that the entropy achieves unique maximum42 (if it exists39),
having no saddle points nor minima on A. Therefore, (318) has a single solution,
representing the maximum. The first line of (318) may be rewritten as follows.

pk = exp
(
λ1 − 1 + λ2k + λ3k2

)
= eλ1−1−βγ

2+2βγk−βk2 = αe−β(k−γ)
2

(321)

42 In fact we have proved pretty general theorem that can be appreciated once we extend the notion
of convexity/concavity to functions of multiple variables as it is done in the following definition. It was
demonstrated in (320) that the entropy is strictly concave in the sense of this definition.

4.12.9 Definition The function f : X → R is called strictly concave iff X ⊆ RN is a convex set
and the functions λα∈ [0, 1].f(x+ α(y − x)) are strictly concave for all choices of x, y∈X.
4.12.10 Theorem Strictly concave f : X → R achieves at most one maximum on convex set X.

4.12.11 Theorem Entropy H : P → R, where H(p) = −∑D
k=1 pk log2 pk and P = {p∈ [0, 1]D | p• =

1} is strictly concave function.
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where β := −λ3, γ := λ2/(2β) and α := exp(λ1−1−βγ2). For positive β, sampled
version of Gaussian distribution can be recognized in this result. Note, however, that β
can be zero or even negative if σ2 was too big for a given B and the only way to achieve
such a variance was uniform or even U-shaped distribution, respectively. Plugging (321)
back to (318) we obtain the following system of equations parametrized by σ and µ,
the solution of which yields to α, β and γ.

∑

k∈D

αe−β(k−γ)
2

= 1
∑

k∈D

αke−β(k−γ)
2

= µ
∑

k∈D

αk2e−β(k−γ)
2

= σ2+µ2 (322)

Unfortunately, I was unable to solve it analytically as I failed to evaluate the sums
involved. Nevertheless it is possible to find an upper bound on the entropy, at least.
Let us do it for µ = 0. This is easier as it implies43 γ = 0. It also solves the original
question of the most entropic distribution when only σ is specified — this follows from
the following lemma44.

4.12.12 Lemma A probability distribution p defined by (321) on a set D := Z ∩
[−B,B] having a variance σ2(p) and mean µ(p) 6= 0 can be modified into a distribution
q such that H(q) > H(p), |µ(q)| < |µ(p)| and σ(q) = σ(p).
Proof We can assume µ(p) > 0 since the case of negative µ would analogical. Then
there are two cases there. Either the β of (321) is negative or it is positive (it cannot
be zero as it would imply µ(p)=0).
For β < 0, we define qk := pk, except qB and q−B that will be set to (p−B+pB)/2.

Then µ(q) = µ(p) − B(pB − p−B), which makes the mean smaller because pB > p−B ,
which in turn is a consequence of having µ(p) > 0. Moreover, |µ(q)| < |µ(p)| because
µ(p) = Σ +B(pB − p−B), where Σ ≥ 0. The entropy has increased by

−p−B log2 p−B − pB log2 pB + (p−B + pB) log2
p−B + pB
2

> 0 (323)

where the inequality comes from λx. −x log2 x being a concave function (cf. (66)).42 /

Finally, the variance has increased too because σ2(q) =
∑
k k
2qk − µ2(q) =

∑
k k
2pk −

µ2(q) = σ2(p) + µ2(p) − µ2(q) and µ(q) < µ(p). But this increase can be corrected
by smoothing q with a uniform distribution that would make the new variance equal
to σ2(p), as desired. The smoothing would increase the entropy even more (because
the uniform distribution has maximal entropy on Z∩ [−B,B]) while pushing the mean
closer to zero, so these two properties would not be spoiled by the operation.

Proof H is concave on every line from a to b for a, b∈P ∩ (0, 1)D as was shown in (320). For a, b∈P ,
we can first discard dimensions for which ak = bk = 0 as these do not contribute the entropy. In the
reduced dimension, a and b still may have some of their coordinates zero. But a minute movement
along the line that is joining them brings us into the interior of the simplex where we already know
the theorem holds. Due to continuity of H, it holds even on its border. Q.E.D.

43 It is a simple exercise to check that for µ = γ = 0 there exist α and β solving (322) for any σ > 0.
Due to already proven uniqueness of the maximum and absence of other stationary points on A, there
cannot be any other triple 〈α, β, γ〉 that would solve (322), hence γ must be 0 once µ is.
44 To simplify notation, let us write σ(p) for σ(X) where p is a probability distribution on interval
of Z and X is a random variable such that Pr (X=k)=pk. We already use this notation for entropy.
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As for β > 0, let us first prove it for µ∈ (0, 1]. Let the displacement vector v be
defined by setting v0 := 3, v1 := −2, v−1 := −1 and zero otherwise. For small t > 0,
the vector p+ vt is still a probability distribution because v• = 0 and thanks to (321)
which assures that pk > 0. Let us show that He(p + vt) > He(p), µ(p + vt) < µ(p)
and σ2(p+ vt) < σ2(p) for small enough t > 0. The proof would be finished by taking
qk := (1−α)(pk+vkt)+α, where α∈ (0, 1) is a smoothing factor making σ2(q) = σ2(p).
From the mean value theorem we have ζ ∈ (0, 1) such that

He(p+ vt)−He(p) = (∇He(p+ ζtv))Tvt = (∇He(p))Tvt+ εt (324)

Where the last equality follows from continuousness of ∇He for pk > 0, where ε is
roughly proportional to t. For small t it is therefore negligible and it is enough to prove
that (∇He(p))Tv > 0 to show the entropy increase. So we get

(∇He(p))Tv = 3 log p0 − 2 log p1 − log p−1 = −2 log p1
p0

− log p−1
p0

= 2β((1− γ)2 − γ2) + β((1 + γ)2 − γ2) = 3β − 2γβ ≥ β > 0
(325)

where β and γ came from (321) and the inequality followed from γ ≤ 1 and β > 0.
Applying this kind of argument to µ and σ2 as well, we get

(∇µ(p))Tv = v1 − v−1 = −2− (−1) = −1 < 0
(∇σ2(p))Tv = v1 + v−1 − 2µ(v1−v−1) = −3 + 2µ ≤ −1 < 0

(326)

where the last inequality used the fact that µ ≤ 1.
For µ > 1, define rk := pk + 1 except for rB , for which rB := p−B has to be

used. Obviously, the entropy is unaffected by this, as it is invariant to reordering.
It is straightforward to check that µ(r) = µ(p) + (2B + 1)p−B − 1. Since β > 1
and µ > 1 the p−B conforming to (321) is strictly lower than other pk’s. Therefore,
(2B + 1)p−B < 1. If it was not so, p• would exceed 1. So we managed to decrease
the mean. Let us look at variance now. Expanding the sum

∑
k k
2rk we get σ2(r) +

µ2(r) = σ2(p) + µ2(p) − 2µ(p) − (2B+1)p−B + 1. This can be further rewritten into
σ2(r) = σ2(p)− (2B+1)(2µ(p)−1)p−B − (2B+1)2p2−B , hence σ(r) < σ(p). By taking
q := (1−α)r + α for certain small α > 0, we get the final distribution. Q.E.D.

Therefore, if µ 6= 0, the lemma assures that it can be made smaller, while increasing
the entropy and without changing the variance. That would mean that the distribution
in question did not have maximal entropy in the set of all distributions of the given
variance. That is why the maximizing distribution must be of µ = 0.
Knowing this, let us express the entropy now (note that He = H log(2)).

He(B, σ) = −
∑

k∈D

pk log
(
αe−βk

2
)
= − logα +

B∑

k=−B

pkk
2β = σ2β − logα (327)

Note that it depends on two numbers, B and σ — these determine α and β via the
following equations that were derived from (322).

α =
( B∑

k=−B

e−βk
2

)−1 B∑

k=−B

(k2−σ2)e−βk2 = 0 (328)
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4.12.13 Observation The entropy of solutions of equations (321) and (328) for B130 /

and B+1 satisfies H(B+1, σ) > H(B, σ).

Proof Suppose H(B + 1, σ) < H(B, σ). Taking the distribution p of the right side
with additional pB+1 := p−B−1 := 0 gives a distribution on [−B−1, B+1] ∩ Z with
higher entropy than the supposed maximum H(B+1, σ). That is why this case cannot
happen.

If H(B + 1, σ) = H(B, σ) was the case, then we would have two different distri-
butions achieving maximal entropy H(B + 1, σ) on [−B−1, B+1] ∩ Z. The first one
prescribing pB+1 > 0 according to (321) and the second one being a zero padded version
of the distribution corresponding to the right side. But this is impossible as we proved
earlier that the solution is unique for fixed B and σ and µ :=0. That is why the third
possibility of H(B+1, σ) > H(B, σ) holds. Q.E.D.

The uniqueness of the most entropic distribution on [−B,B]∩Z assures uniqueness
of the solution 〈αB , βB〉 of (328) for every single choice of σ and B. Specially, it means
that the second equation (which only contains βB) has a unique solution for every
B∈N\{0}. I will show in the following that the numbers βB have a limit β for B → ∞
and that this limit also solves (328), thereby leading to a distribution p on Z with a
variance of σ2. The entropy of this distribution will then be used to define a meaning
of H(∞, σ). Then, after showing that limB→∞H(B, σ) = H(∞, σ) it will be clear from
4.12.13 that p is the distribution on Z whose entropy forms an upper bound on entropy
of any finite distribution with a given variance45.

Let us show that the limit β := limB→∞ βB exists and that it solves the second
equation of (328) for B = ∞. First, note that fn(β) :=

∑n
k=−n(k

2−σ2)e−βk2 is a
continuous function for any n∈N. Let fn be regarded as fn : [a, b] → R, where
a, b > 0 will be determined later. The sequence of functions fn converges absolutely
and uniformly46 because for any x∈ [a, b] : |fn(x) − fn−1(x)| < cn := 2(σ2 + n2)e−n

2a

and cn is convergent. Let the limit, which we now know is itself continuous, be denoted
by f . As everything happens on compact space [a, b], we also have f and fn uniformly
continuous. Moreover, as the derivatives f ′

n are continuous and |f ′
n(x)−f ′

n−1(x)| can be
upper-bounded by 2n2(σ2+n2)e−an

2

, which is convergent, we obtain that the sequence
f ′n has a limit g and that this limit equals to f

′ (when considering that f = limn fn). It
also implies that that f is differentiable and that f ′ is continuous (uniformly on [a, b]).

The numbers a and b are to be selected as follows. It is easy to see that there is
a positive solution of fn0(a) = 0 for sufficiently large n0. This defines the value of a.
Note that the root of fn for n>n0 is no less than a. On the other hand, b has to be
taken so high that fn(b)<0 for all n. This is possible because high b makes the gaussian
packed closely around 0 so that only the zeroth term of the sum remains relevant. This

45 Note, however, that this argument does not yet prove that p is the most entropic distribution of
given variance on Z — all that it states is that p is an upper-bound on any finite distribution.
46 The sequence of functions fn : X → R is said to converge uniformly towards a function f iff

∀ε>0 : ∃n0 : ∀n>n0 : ∀x∈X : |fn(x)− f(x)| < ε (329)

It is a stronger condition than ordinary pointwise convergence (∀x∈X : f(x) = limn→∞ fn(x)), making
f continuous if all fns were continuous (contrary to the pointwise case). It can be easily proved that fn
converge uniformly if there are numbers bn s.t.

∑
bn converges and ∀n∀x∈X : |fn+1(x)− fn(x)| < bn.
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way, we have the root of each fn bracketed between a and b for any n > n0 because
fn(a+ ε) > 0 > fn(b− ε) for small ε>0. It gives f(a+ ε) ≥ 0 ≥ f(b− ε) in the limit,
hence f has at least one root on (a, b).
The set of f ’s roots is discrete because f is holomorphic on C \ {0} when regarded

as a complex function (if there was an interval on which it would be zero it would have
to be zero everywhere). So there must be at least one β∈ (a, b) s.t. f(β)=0 and δ0>0
s.t. ∀δ∈ (0, δ0) : f(β − δ) > 0 > f(β + δ). Using uniform convergence we can find n0
s.t. |fn(x)− f(x)| < ε := 1

2 min(|f(β − δ)|, |f(β + δ)|) for x∈ [β − δ, β + δ] and n > n0.
In another words, all fn’s for n > n0 stay inside ε-belt around f in the δ-neighborhood
of β. As this belt crosses the zero line, every root βn of fn lies inside (β− δ, β+ δ). As
δ was arbitrarily small, we see that the limit limn βn exists and that it converges to one
of the roots of f . There is only single root of f which crosses the zero line because each
fn has a unique root. However, we did not excluded the possibility of having roots of
f that would only touch the zero-line from above or from below. Nevertheless, these
hypothetic cases are not important here as we only needed the limit.
All that remains to be shown is that limnHe(n, σ) = He(∞, σ). The left side

rewrites into σ2βn + log
∑n
k=−n e

−βnk
2

, where the fisrt term has a limit of σ2β. The

second term can be written as sn := 1 + 2
∑n
k=1 e

−βnk
2

. Now

dn :=
∣∣∣sn − 1− 2∑∞

k=1 e
−βk2

∣∣∣ ≤ 2
∣∣∣
∑∞
k=n+1 e

−βk2
∣∣∣+ 2

∑n
k=1

∣∣∣e−βnk
2 − e−βk

2
∣∣∣ (330)

As the exponential falls towards zero, we can take n so high that the first absolute value
would be less than ε/4. The second one can be bounded from above by n

∣∣e−βn − e−β
∣∣

which, again, can be made smaller than ε/4 because of continuousness of the exponential
and limn βn = β. Hence dn < ε for large enough n and the limit is therefore equal to
σ2β + log

∑∞
k=−∞ e−βk

2

= He(∞, σ).
So we have proved that on Z there really exists a distribution with variance σ2

and entropy H(∞, σ) s.t. H(∞, σ) > H(B, σ) for any finite B. As such, it constitutes
an upper bound on any finite distribution. Let us estimate it for σ being much larger
than 1. That would make β much smaller than 1, allowing the following integral
approximation. Using

∑∞
k=−∞ e−βk

2 ≈
∫∞

−∞ e−βx
2

dx =
√
π/β in (328) gives β ≈

(2σ2)−1, which leads to the following entropy estimate (G stands for Gaussian).

H(G) =
σ2β

log(2)
+ log2

∞∑

k=−∞

e−βk
2 ≈ log2(e) + log2

√
π

β
= log2

√
2πeσ2 ≈ log2(4.133σ)

(331)
Analogically we can find maximal entropy distribution among those that have

pk = 0 for k < 0 and fixed mean µ :=
∑
kpk. Let us do it only informally, without

proper treatment of infinite spaces involved, as this would be analogical to the just
demonstrated case of Gaussian distribution.
Lagrange multiplier method (informally used on N) gives

− log pk − 1 + λ1 + λ2k = 0 for k∈N
∑

k∈N
pk = 1

∑
k∈N

kpk = µ

(332)
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This leads to exponential distribution pk = αe−βk, where α and β come from the last
two equations in the following way.

p• =
∑

k∈N
α
(
e−β

)k
= α(1− e−β)−1 = 1

µ =
∑

k∈N
kαe−βk =

1− e−β
(
eβ/2 − e−β/2

)2 =
1

eβ − 1
(333)

So we have β = log(1 + 1/µ) and α = (1 + µ)−1. This implies that the exponential
distribution (designated by E) and its variance are given as follows47.

pk =
1
1 + µ

e−k log(1+1/µ) Var(E) =
eβ

(eβ − 1)2
= µ2 + µ (335)

This leads to the following entropy.

H(E) = − log2
1
1 + µ

+
∑

k∈N

pk
k

log 2
log
(
1 +
1
µ

)
= log2 ((1 + µ)(1 + 1/µ)

µ) (336)

Noting that µ = −1/2 +
√
1/4 + Var(E), we can express the entropy in terms of

σ =
√
Var(E) so that it could be compared with (331). Let us do it for large µ.

H(E) ≈ log2(e(1 + µ)) = log2
(e
2
+ e
√
1/4 + σ2

)
≈ log2(2.7183σ) (337)

Since the exponential distribution is the most entropic one on N, it can be used to
improve the upper bound of lemma 3.2.11, as follows.49 /

H ≤ H(E) = log2 ((1 + µ)(1 + 1/µ)
µ) < log2 (e (1 + µ)) = log2 (eE(N)) (338)

Note that E(N) = µ+1 because the variable N has beed defined to take values starting
from 1 in 3.2.11 instead of 0.
Finally, let us investigate the entropy of the uniform distribution of given variance.

Uniform distribution on [−N,N ]∩Z has an entropy of log2(2N + 1) and the following
variance.

Var(U) =
N∑

k=−N

k2

2N + 1
=
N(N + 1)
3

(339)

Wherefore we get N =
√
1/4 + 3σ2 − 1/2 and consequently H(U) = log2

√
1 + 12σ2

which is about log2(3.464σ) for large σ(U). This is less than (331), as expected.
Nevertheless, H(U) is maximal among distributions with zero pk for k∈Z \ [−N,N ].
It seems from these results that the entropy of any distribution on Z comes out

close to log2(Kσ) for large σ, where the constant K depends on the distribution. It is
indeed true and I will demonstrate it for zero-mean distributions.

47 The following sums come in handy during calculation of the variance.

∑

k∈N

k2e−βk =
1 + e−β

(
1− e−β

)2 (
1− eβ

)
∑

k∈N

ke−βk =
1(

1− e−β
) (
eβ − 1

) (334)
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4.12.14 Theorem Consider bounded non-negative piecewise continuous function f :
R → R such that:

∫

R

f(x) dx = 1
∫

R

xf(x) dx = 0
∫

R

x2f(x) dx = 1
∫

R

f(x) log f(x) dx = log
1
K
(340)

This would serve as a template from which the distribution is to be derived as follows,
using constant α to control the width.

pk :=
f(αk)∑
n∈Z

f(αn)
(341)

Then the entropy of that distribution is H ≈ log2(Kσ), for large variance σ2.
Proof Obviously, for large width (i.e. small α), we have

∑

n∈Z

f(αn) ≈
∫

R

f(αx) dx =
1
α
and σ =

√∑

n∈Z

n2
f(αn)∑
k∈Z

f(αk)
≈ 1
α

(342)

because
∑
n∈Z

n2f(αn) ≈
∫

R
x2f(αx) dx = α−3. Now

H =−
∑

k

f(αk)∑
n f(αn)

log2
f(αk)∑
n f(αn)

=
−1∑
n f(αn)

(∑

k

f(αk) log2 f(αk)

+
∑

k

f(αk) log2
1∑

n f(αn)

)
≈ − 1

σ

∫

R

f(αx) log2 f(αx) dx− log2 σ

=− 1
ασ

∫

R

f(x) log2 f(x) dx+ log2 σ = − log2
1
K
+ log2 σ = log2(Kσ)

(343)

Q.E.D.

Practical importance of this result stems from easier estimation of variance than
entropy from the data. Knowing the underlining distribution’s constant K, it is enough
to estimate its σ from several hundreds of its samples to obtain estimate on the number
of bits each sample carries.
Sometimes, we don’t even need to known the constant K. For instance, assuming

that f(x) represents a distribution of instant amplitudes of an electric signal coming
from a microphone, it is possible to compute how many bits of information will be lost by
positioning the microphone farther from the sound source — such a withdrawal changes
the variance from the nearer σ21 one to the farther σ

2
2 one, leaving the distribution type

represented the template function f intact48. Hence the constant K does not change
and we get the amout of lost information to be

log2Kσ1 − log2Kσ2 = log2
σ1
σ2

(344)

48 Assuming we can neglect echo, possible intersample correlations and thermal noise.



137 4 Signal Processing Theory

Note that this assymptotic result of theorem 4.12.14 requires both Kσ1 and Kσ2 to be
much higher than 1. Unfortunately, K may be anywhere near to zero49. Nevertheless,
distributions whose template function satisfies

∫
f2(x) dx ≤ 1 behave well, having K ≥

1. Because Gaussian distribution achieves maximum entropy for a fixed variance, K ≤
4.333. To conclude the introductory part of this section, let us summarize its results in
the following table.

Condition Distribution Entropy

Maximum entropy, given fixed σ Gaussian H(G) ≈ log2(4.333σ)

Maximum entropy on finite contigu-
ous subset of Z

Uniform
H(U) = log2

√
1 + 12σ2

≈ log2(3.464σ)

Maximum entropy of one-sided dis-
tribution with fixed variance

Exponential

H(E) =
(
β +
1
2

)
log2

(
β +
1
2

)

−
(
β − 1
2

)
log2

(
β − 1
2

)

where β =
√
1/4 + σ2

≈ log2(2.718σ)
General distribution shaped after
f(x) satisfying (340) and Kσ>1

Sampled f(x) H ≈ log2(Kσ)

Now we can move to the main part of this section.

4.12.15 Information in Quantized Signal

We cannot talk about information of any definite signal, just as it does not have much
sense to ask how much information there is in the letter A, or in certain fixed sentence.
The entropy (and mutual infromation) becomes defined only after this sentence or
signal can be considered as an alternative to other signals from an ensemble, which
would allow definition of probabilities.

4.12.16 Definition The set σQ(B)

The set of B-bounded integer signals σQ(B) is defined as {s∈σ | ∀n : sn∈Z∩[−B,B)}.
We shall drop the actual bound B when it follows from the context, writing just σQ.

4.12.17 Note Note that σQ(B) ⊂ σF because for every x∈σQ the energy ||x||2 must
be defined and finite, according to 4.2.21. But with xk∈Z, it would not be possible82 /

with infinitely many xk 6=0. Thus x∈σF .

49 Consider for example f(x) equal to

f(x) =
1√

12− 3a2 − 3a
for x∈

(
a

2
−
√
3− 3
4
a2,−a

)
∪
(
a,

√
3− 3
4
a2 − a

2

)
(345)

and zero otherwise. This makes the last formula of (340) negative for a close to 1. In fact its limit
is −∞ for a → 1, which translates as zero limit for K. There even exist unimodal distributions with
negative logK.
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As a consequence of 4.12.17, the set σQ(B) is countable50 so it lends itself to be
used as domain Ω for a probability space on which we could define probabilities of
the respective signals and then compute entropy of this distribution according to (75). . 46

This entropy is the lower bound on the average number of bits that would be needed to
encode signals drawn from this distribution or — when viewed from the communication
perspective — it is the upper bound on the average number of bits that could be sent
in one signal along the lossless channel, provided that the source generates the signals
according to the aforementioned distribution.
Unfortunately, this is of little practical benefit as it is not clear where to get so

many probabilities. For this reason we shall only consider small blocks of samples,
assuming that the probabilistic model of complete signal could be glued from these
blocks similarly to the way we built the models of words from models of phonemes in
2.4. In general, the blocks could be of different probability distribution in different . 20

places of the signal they make up. We will start with the simplest case of single sample
blocks, making them longer later. To make various block lengths comparable, the
entropy per single sample will be calculated in all cases. The signals that we consider
possible (i.e. with non-zero probability, before probability smoothing) are of distict
beginning and end between which the signal will be of rather similar power. Simply
speaking the signals we are interested in look more like an audio recording of a song
than, say, a quantized version of λn.108 · sinc(n/10). This allows us to use single or few
probabilistic models of the block throughout the entire signal.
Another problem we have to cope with is the noise. To make things practically

manageable, let us assume that the noise is always additive, i.e. that the random
variable X representing the signal block gets corrupted by the noise N as Y := X+N ,
which is the variable we measure. For single-sample blocks (that is for simple numbers)
we have the following observation.

4.12.18 Observation For random variables X : Ω → Z, N : Ω → Z, the following
holds for the probability of their sum Y := X +N .

PrΩ(“Y =y”) =
∑

x∈Z

PrΩ(“X=z & N=y−x”) (346)

For independent N and X we additionally have

λy.PrΩ(“Y =y”) = x ∗ n (347)

where the probability distributions are treated like signals so x := λx.Pr (“X = x”)
and n := λn.Pr (“N =n”). In another words, the distribution of sum of independent
variables equals to the convolution of distributions of the addends.

Proof The propositionX+N=y is equivalent to ∃x∈Z : X=x & N=y−x, which cor-
responds to the set My :=

⋃
x∈Z

Sxy, where Sxy := {ω∈Ω | X(ω)=x & N(ω)=y−x}.
As Sxy are pairwise disjoint we can apply additivity axiom (58) to get Pr Ω(My) = . 39∑
z∈Z
PrΩ(Sk), which proves the first part. For independent X and Y we have

PrΩ(“X = z & N = y−x”) = Pr Ω(“X = z”)Pr Ω(“N = y−x”) which transforms
(346) into a convolution. Q.E.D.

50 Even
⋃∞
b=0 σQ(b) is still countable.
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According to 3.2.24, the amount of information about X that can be recovered55 /

from X+N is given by

I(X+N ;X) = H(X) +H(X+N)−
H(X,N)

︷ ︸︸ ︷
H(X+N,X) = H(X+N)−H(N |X) (348)

which reduces to I(X+N ;X) = H(X+N)−H(N) in case of independent X and N . For
general (dependent or independent) X and N , it leads to the following lower bound.

I(X+N ;X) = H(X+N)−H(N |X) ≥ H(X+N)−H(N) (349)

Note that (349) also holds for blocks of samples and even for entire signals as it did
not assume anything special about X and Y except that 〈X+N,X〉 is in a one-to-one
correspondence with 〈N,X〉. From above, I(X+N ;X) is bounded by51

H(X) +H(N)−H(N |X) = H(X)− I(X;N) (350)

4.13 Implementing Digital Filters

In this section I will address practically important case of real valued filter, processing
real valued signal. Let the impulse response of the filter in question be denoted by h.
Short FIR filters can be implemented directly. In common special case of h = ρh or
h = −ρh we can save half of the multiplications by collecting hk in hkxn−k ± hkxn+k,
obtaining hk(xn−k±xn+k). For longer FIR filters, however, faster FFT method is more
appropriate.

4.13.1 FFT Method for FIR Filters

Using the convolution lemma 4.1.8 we are able to evaluate FIR filter with impulse74 /

response h of length Mh + 1 in time O(log(Mh)) operations per sample, whereas the
direct implementation would take O(Mh) operations per one processed sample.

First, we have to chunk the input signal into pieces ofMs+1 samples, zero-padding
them to up the length N =Mh +Ms + 1, which has to be a power of two. After that,
4.1.8 could be applied to each chunk, leading to correctly computed convolution at
indices 0 to Ms, followed by a wrap-around area, that has to be discarded. By doing so
and by pasting all the blocks together afterwards, we obtain the desired output. Note
that hn was considered non-zero only for n∈ [0,Mh]. For best speed, N := 2n should
be selected to minimize average work per output sample, that is N log(N)

N−Mh
. Note that

actual formula to be minimized could be more complicated if the effect of caches would
be accounted for.

Depending on CPU used, this method typically outperforms direct implementation
for, say,Mh > 100. Apart from great advantage of speed, it however has a disadvantage
of block processing, which introduces artificial delay. This may be an issue in low-
latency applications.

51 Using H(f(A,B)) ≤ H(A) +H(B), which follows from 3.2.8 and 3.2.20.
47 /
54 /

4.13 Implementing Digital Filters 140

4.13.2 Implementing Recursive Filters

We have to be more careful when implementing recursive filters because of the limited
precision of computer’s arithmetics, which causes that the filter does not behave exactly
as the theory would predict. This can lead to imprecise (noisy) results or even to
instability, in some cases. This is because the output of the filter is fed back to its
input, which can lead to resonant amplification of the error.
There are two sources of precision loss. First, the filter’s coefficients d are stored

only up to the machine’s precision. Usually, we design the filter using zero/pole repre-
sentation, transforming it into c and d afterwards. Round-off errors of this transforma-
tion can move poles past the unit circle, creating an unstable filter.

Fig. 20. Block diagram of (352)

The second source of errors is due to limited pre-
cision of arithmetical operations used at the runtime.
Namely, multiplication generates twice as many signif-
icant digits each of its operand had. The extra digits
are rounded-off, and may be regarded as a noise sig-
nal, which, when added to the rounded output would
give the theoretical value. This noise creeps into the
feedback of the filter where it could be amplified to an
observable amplitude.
These two problems make original formula (194) . 86

practically unusable even for moderate values of M . Fortunately, decomposing the
filter into serial connection of single-pole and single-zero filters as in (208) solves the . 90

problem. In this case the transformation from poles to d is trivial and feedbacks are
short and local, therefore more predictable. The only disadvantage is that it uses
complex numbers, even if we only need to process reals. But this can be corrected. As
h was real, we know that the associated z-polynomials of (207) had real coefficients, . 89

which implies that the poles appear in complex conjugated pairs except in case of a
pole laying on a real axis. The conjugated pair lead to a filter with two real coefficients
d1 and d2, which is still easily realizable. The big filter can then be built from these
small sections, serially connected in agreement with (208).
It is often practical to have as many poles as zeroes. Let’s constrain ourselves to

this kind of filters only, in the rest of this subsection. Let us also suppose that the filter
is zp-canceled and that all its zeroes and poles have non-zero imaginary part. This
way, we would only need two-coefficient sections as our building blocks. Additionally,
these could be grouped such that each group will contain exactly one zero-section and
one pole-section. These groups will be our universal (for this class of filters) building
blocks, and I will refer to them as to blocks. A block belonging to a zero z0 (or more
precisely to a zero pair z0 and z0) and pole p0 has the following transfer function.

H(f) =
(z − z0)(z − z0)
(z − p0)(z − p0)

=
z2 − 2Re(z0)z + |z0|2
z2 − 2Re(p0)z + |p0|2

(351)

Comparing it with (207) we can reconstruct c and d, getting c0 = 1, c1 = −2Re(z0),
c2 = |z0|2 and d0 = 1, d1 = −2Re(p0), d2 = |p0|2, which leads to the following filter:

yn = xn − 2Re(z0)xn−1 + |z0|2xn−2 + 2Re(p0)yn−1 − |p0|2yn−2 (352)
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Engineers like to draw this kind of equations using wires and boxes so they would
feel safe in their world of circuit diagrams. Our equation would be represented by the
drawing in fig. 20. It is understood that the circuit works in steps. In each step, data
move along the arrows being multiplied by the respective constants and summed in ⊕-
nodes. z−1-boxes delay the signal by one step, which means that in each step they emit
the number from their memory to their output, then wait until the new information
has been propagated along all the arrows and sums, memorizing their input after that.
Before the filter is started, memory of the boxes has to be set up properly to agree with
initial conditions we want to conform to.
We can see that (352) uses four delay boxes. There exist a better way of expressing

this filter, which only needs two delay boxes. It is called the second canonical form and
is shown in fig. 22 and described by the following equation:

un = xn + 2Re(p0)un−1 − |p0|2un−2
yn = un − 2Re(z0)un−1 + |z0|2un−2

(353)

Note that we only need memory boxes for un−1 and un−2. Equivalence with (352) is
apparent from the fact that the placement of IIR and FIR sections can be swapped
because of commutativity of convolution. But this is not enough, we also need to show
how to transform initial conditions when going from (353) to (352) and vice versa.
When going from (353) to (352) we use the first line of (353) to compute un−3 from
numbers we already know.

un−3 :=
xn−1 + 2Re(p0)un−2 − un−1

|p0|2
(354)

By shifting (354) one period backwards, we also get un−4. Then we can use the second
line to determine yn−1 and yn−2, the initial conditions of (352). Note that xn−1 and
xn−2 will also be needed, but we don’t have to compute them as they are part of the
input (being usually zero). The direction from (352) to (353) can be done by solving
the equation which we used to determine yn−1 and yn−2 from un−1 and un−2. I will
happily leave this to the interested reader, as a boring exercise.
There is also the first canonical form, depicted in fig. 21, working as follows.

yn = xn + vn−1

vn = −2Re(z0)xn + 2Re(p0)yn + wn−1
wn = |z0|2xn − |p0|2yn

(355)

By substituting last equation into the middle one and the result to the first one, we
obtain (352). Initial conditions can be translated this way:

yn−1 =
wn−1 − |z0|2xn−1

−|p0|2

yn−2 =
(vn−1 + 2Re(z0)xn−1 − 2Re(p0)yn−1)− |z0|2xn−2

−|p0|2
(356)

For translation in the opposite direction, the above equations can be easily inverted.
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4.13.3 Note The fact that we limited ourselves to a special class of filters having
as many poles as zeroes appearing in complex-conjugated pairs was not important. It
only made the text shorter as we did not need to treat special cases. Generally, any
real-valued filter could be described using similar decomposition, if we allowed some of
the arrows in the blocks to be missing (that is zero — this would allow us to have FIR
only or IIR only block, or a block with single real-valued pole or a zero). Although I
only talked about one-way filters here, (355) and (353) can be used in two way case,
too, just by reversing the direction of evaluation, as described in 4.5.1. . 92

Fig. 21. First canonical form; formula (355) Fig. 22. Second canonical form; formula (353)

4.13.4 Computer Representation of Numbers

Numbers used at filter’s runtime can be encoded either in fixed point or in floating
point representation. Fixed point numbers are in fact integers with thought decimal
(well, binary) point somewhere inside the number. Addition is identical with addition
on integers, while multiplication must be done into the double precision (for example
32 bit × 32 bit→ 64 bit). Note that the two operands does not necessarily need to have
same number of decimal bits52. For 32 bit operands with m and n decimal bits we get
64 bit result with m + n decimal bits. This has to be normalized down to 32 bits so
that it could enter following 32 bit computations. Normalization is done first by adding
2m+n−1 followed by shifting the result arithmetically to the right by m+ n bits. Note
that for m + n ≥ 32 the result never overflows 32 bit range. The addition of 2m+n−1
makes the result rounded to the nearest representable number (just the shifting would
round it to the nearest lower number (assuming 2’s complement for negative numbers)).
Floating point numbers (or floats) automatize the above ideas, freeing program-

mers from deciding how many bits after the point are needed. Floats are represented
as a mantissa and exponent pair, where the former is a fix-point number with the dot
placed right after its highest non-zero bit53, and the later specifies by how many bits
the dot has to be shifted so as the mantissa would become the number the float has
to represent. Contrary to fix-point numbers which use 2’s complement to represent
negative values, the sign bit is usually separated from mantissa in floats. Usual imple-
mentations also do not store the first bit, as it is always 1 for non-zero numbers. This
is called a hidden bit and it improves precision by 1 bit at the cost of more complicated
representation of zero (usually, certain value of exponent is reserved for it).
Upon addition, the numbers are shifted to match their exponents, mantissas are

added and, should it overflow, the result is optionally shifted to the right (with simulta-
neous counteracting update of exponent). Multiplication is easier — it just multiplies

52 For instance, in case of invertible minimum phase filter all the coefficients of filter blocks (355) will
be less than 2. This means that we can have 30 bits after the point, where for 16 bit signals we take,
say, 10 bits after the point.
53 Therefore, the mantissa represents a number from

[
1
2
, 1
)
.
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mantissas (with recovered hidden bit), taking the higher bits as new mantissa. The
exponents are simply added then. Note that some information about the result may
be lost when the result is forced to fit into the fixed-sized mantissa before the opera-
tion is completed. This is where the errors creep into the computation. The following
definition helps to quantify how quickly this happens.

4.13.5 Definition Machine Epsilon

For selected precision of floating point numbers we call the machine epsilon the largest
number ε > 0 such that 1 + ε = 1, where the addition is meant to be a function on
floats, as described above.
Until mid 80’s when majority of computer manufactures accepted IEEE-754 stan-

dard, the above ideas were implemented differently in different computers. This made
programming harder as programmers were given fewer properties to rely on54. Specif-
ically, it was not standardized what kind of rounding after each operation should be
performed. The one I described above is called truncation or rounding towards zero
as it just discards the extra bits. Unfortunately, it does not behave very well in long
computations because the results are biased towards zero. By adding 2−b−1 (where
b is the number of mantissa bits (including the hidden bit)) before the truncation we
obtain rounding towards the nearest number. This is what we are taught in elementary
school — below 0.5 to zero, above and equal to 0.5 towards one, when rounding to
integers. This method is however still slightly biased because at 0.5 we always decide
to go down. Although it may seem that single point (zero measure on R line) will not
harm, it is not the case. In computer we cannot represent all the numbers of R, so the
probability of encountering 0.5 in a given computation will be non-zero, causing a bias.
IEEE-754 tries to fight this by adding so called banker’s tie breaking rule, also known
as round half to even rule, which says that the number with two nearest integers will
be rounded to the even one. Of course the FPU rounds to multiples of 2−b — talking
about integers just makes it easier to express — it can be formally written in C as
follows:

double round(double x)
{
if(x-0.5 != floor(x)) return floor(x+0.5);
else if(((long long int)(x-0.5))&1) return x+0.5;

else return x-0.5;
}

Although the execution time overhead of this kind of rounding is small when imple-
mented in hardware, the ifs make software implementation rather slow. That is why
banker’s tie breaking is rarely used in fix-point arithmetics on general CPUs.
Banker’s tie breaking rule is based on belief that usual calculation contains roughly

as many odd as even numbers, which consequently leads to zero rounding bias. If the
round-off errors could be treated as random and independent, the standard deviation
of the error would be ε

√
n after n additions and the mean would be zero, provided that

all processed numbers were of comparable magnitude. In this case, we can expect true

54 Infamous historical example of weird FPU implementation is the Cray-1 computer with its non-
commutative multiplication [12].
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result to be ±5ε√n around the calculated value most of the time. This is a significant
improvement over worst-case error which is εn. Note that in case of truncation rounding
we have maximal error of 2εn since the machine epsilon of arithmetics with truncation
rounding is twice as large as ε of arithmetics with rounding to the nearest. Its average
error is about εn due to bias. This makes truncation rounding arithmetics less suitable
for practical purposes55

The advantage of fix-point over the floating point is in its hardware simplicity
(more adders and multipliers fit on the same area of silicon) and in the fact that fixed
point addition of numbers with same number of fraction bits does not introduce noise
into the result (while the floating point addition generally does). When working with
32 bit numbers, fixed points use all 32 bit for mantissa while floats offer only 25 bits
for it56. Another great advantage is that fixed points are ‘cross platform’ in the sense
that the results will be exactly same on all computers, which may be important in data
compression algorithms, for instance. This is not true for floating point numbers, as
different compilers can arrange operations differently, and different CPUs can compute
slightly differently57 even if processing equivalent sequence of instructions.
Main disadvantage of fix-points is that the program has to be carefully designed so

that all the numbers involved would receive sufficient number of places after the point,
while at the same time they would not overflow58.

4.13.6 Round-off Noise

Not all permutations of basic sections in (208) are equivalent with respect to round-off . 90

errors and overflow. This is because the desired shape of the magnitude response is
attained by poles modeling the passband, and zeroes modeling the stop band. As we
usually want the transition between passband and stop band to be as steep as possible,
we end up with poles creating sharp resonance peaks with zeroes correcting them to the
target shape. Although the resulting |H(f)| might be well less than 1, the intermediate
results after the pole sections can be very high for some frequencies (say, about 1000).
This must be accounted for in case of fixpoint implementation by allocating higher
dynamic range for the output of the pole section, to prevent overflow59.
This is a problem even for floating point representation, since in the feedback we

have to mix the amplified signal returning from filter’s output with the low level input
signal. In case of 1000-fold (60 dB) amplification at the resonant frequency, we would

55 Despite of this and despite of the fact that IEEE-754 requires compliant hardware to have round-
to-nearest/half-to-even rounding mode it is not uncommon to meet CPU that lack it. For instance
the version of IBM Cell processor used in PlayStation 3 supports only truncation rounding for single
precision operations. Double precision numbers are rounded correctly, but their processing is 7 times
slower because the their unit is not pipelined.
56 In IEEE-754 single precision float, there are 23 physical bits holding the mantissa, one hidden bit
and one sign bit, giving 25 bits in total.
57 For instance on IA-32 architecture, all operations in registers are performed in 80 bit precision
being rounded to float/double precision only when spilled to memory.
58 Saturation arithmetics found in the MMX instruction set conceals the problem by staying at the
largest or the lowest representable value instead of overflowing. This is appreciable behavior for the
output of the filter. But should this happen in the feedback, very complicated behavior could occur.
Note that in this case the output of the filter can well be inside the representable range making this
bug hard to be tracked down.
59 It is understood that the input signal has a limited amplitude, usually from -32768 to 32767 in
case of 16 bit samples.



145 4 Signal Processing Theory

need 10 more bits to those 16 we needed for the input signal, thus overrunning 24
bit mantissa of single precision numbers. The problem appears even for lower resonant
amplifications because, in fact, we won’t get by with just 16 bits to represent the signal.
We need some bits to represent numbers between 0 and 1, so that the contributions from
smaller filter’s coefficients would not get lost — imagine that after the pole-section, there
is a zero-section (as in (353)) with 2Re(z0) = 1/8. As we want it to process correctly141 /

even small signals with amplitude 1, we need at least 3 more bits to represent value
of 1/8. Now, imagine that the pole section has transfer of about 1 nearly everywhere
except in vicinity of resonant peak, where it reaches 128. For input signal consisting
of two sine waves one at the resonant frequency with amplitude 32768 and the other
one far from it with amplitude 1 we would need to be able to simultaneously represent
values as small as 1/8 and as large as 4194304, for which we would need mantissa with
25 bits.
To alleviate this problem we can either compute everything in double precision

(which is far from being elegant, but it is good for debugging and precision testing) or
we can try to group zero and pole sections into blocks such that after each section the
response will be as flat as possible or — more precisely — free of peaks and trenches
which would be undone the following blocks. This could be reasonably achieved by
forming blocks from poles and zeroes being close to each other. This way, the numerical
problem would concentrate mainly in the blocks and would not be worsened by cascaded
amplification of unbalanced resonant peaks.
But we still need to address it in the block itself. From the previous paragraph

we see, that the second canonical form has a problem with precision loss and resonant
amplification (which is an issue in integer implementation). The original formula (352)140 /

is no better, just reversed, so there would be similar precision loss due to anti-resonant
attenuation. On the other hand the first canonical form uses output signal in the
feedback, and at the same time the input is distributed to various places in the filter
not apparently creating any zero-filtered signal with anti-resonances.
Let us make clear what precision would be needed for the entire filter composed

of the blocks. Let us do it for fixed point arithmetics. First let us suppose that the
filter will have |H(f)| ≤ 1, so it can attenuate some frequencies but cannot amplify.
This is plausible since we want to have same dynamic ranges on both the input and
the output and don’t want an overflow to occur. Recall that the amplification factor
(α = cP

dM
from (207)) is applied after all the blocks have done their job. α is likely to89 /

be different from one to fulfill the condition |H(f)| ≤ 1.
Ideally we would like to have the output of the filter to be a value obtained by

rounding the value computed in an arbitrary precision arithmetics to the nearest integer.
This would be highly impractical (although not completely impossible), so we have to
get by with working in certain finite precision, finally rounding the result to the integer.
This way, it is impossible to obtain precise agreement because, due to the feedbacks, the
arbitrary precision implementation would steadily grow in the number of the decimal
places used. Therefore no finite precision arithmetics could completely capture it — it
is enough to be 2ε off the right value of n + 0.5 − ε and we get wrong rounded value
of n+ 1 instead of correct n∈Z, which would be obtained using an arbitrary precision
numbers.
So we could only hope to be ±1 around the true value after rounding. But still,
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we can keep the probability of this error occurring as small as desired, by using long
enough numbers.
In a fixed point arithmetics, the imprecisions originate solely in multiplications. Let

us suppose that the round-off errors act as a noise sources, which are independent both
in time and among one another, each being uniformly distributed on [−2−b−1, 2−b−1],
where b is the number of bits after the point. This is certainly not true but it is a good
approximation to start with.
Let us have h = α b1 ∗ · · · ∗ bn, the impulse response of entire filter composed out

of the blocks bk. Let us also suppose that the errors from multiplications used in the
first canonical form (355) will combine into the overall error signal εk such that the . 141

numerical output of k-th block will be bk ∗ x + εk instead of theoretical bk ∗ x. This
gives the overall output of the filter as follows.

α ((b1 ∗ x+ ε1) ∗ b2 + · · ·+ εn) = α
(
b1 ∗ · · · ∗ bn ∗ x+

n∑

k=1

bk+1 ∗ · · · ∗ bn ∗ εk
)
(357)

instead of theoretical h ∗ x, so the error is ∑n
k=1 αbk+1 ∗ · · · ∗ bn ∗ εk and we need the

arithmetics precise enough to keep it well below 1/2.
Anyway, the problem of round-off errors is quite complicated to be solved purely

analytically (well, except until recently in [18]). For this reason it is advisable to test
the filter on synthetic data before using it.
Finally, I should mention one phenomenon concerning IIR filters, called the limit

cycling. Due to rounding it may happen that the IIR section does not eventually falls
off to zero but keeps oscillating around the machine precision, creating pseudo-random
noise pattern. As long as we rounded the result to the nearest integer this is of no
concern as we get zero result. But rounding towards the lower integer is a problem as
it amplifies the clutter the filter makes while oscillating around zero.
The interesting thing is that if the FPU uses truncation rounding (i.e. rounding

towards zero) the limit cycle will not develop at all.

4.14 My contribution

Although this chapter contained mostly just the well known facts, it presented
them without using advanced math (but still rigorously), potentially making signal
processing accessible to a broader audience.
Moreover, the section 4.9 contains an original result which — to my best knowledge . 112

— has not been published elsewhere. However, there is still a lot of work to be done
to make this result of any practical use. Namely it has to be resolved how to treat
R → C functions that appear there as intermediate results. As a starting point, one
might consider taking dense samples of these and use method from chapter ‘Computing
Fourier Integrals Using the FFT’ of [65] to compute approximation of F−1. Figuring
out how densely the functions should be sampled and what precision is required might
not be trivial, though.
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Before briefly introducing standard front ends, let us quickly mention what traits we
are looking for in the waveform. According to phonology, the smallest unit of sound
that distinguishes meaning is called a phoneme. So called allophones are pronuncia-
tion variants of a given phoneme which can be acoustically distinguished by human
and are unrelated to particular speaker’s voice. For instance, the phoneme /p/ can be
pronounced aspired, as in the word pin or unaspired, as in the word spin. Frequently,
this happens within so called complementary distribution, which means that each al-
lophone has its own context in which it appears1, the contexts of different allophones
do not intersect and union of contexts of all the allophones form the set of all possible
contexts. To give an English example [5], aspired allophone /p/ always occurs when it
is a syllable onset followed by a stressed vowel. In all other cases, unaspired /p/ occurs.
Sometimes, it happens that allophones of one language appear as distinct phonemes in
another language, which confirms that they really exist, being more than a theoretical
construction.

Similar effect, related to allophones, is called co-articulation. In fluent spontaneous
speech, we often do not move our vocal tract to its final position, ideal for uttering given
phoneme. Instead of it, we start to glide towards configuration of the next phoneme,
before reaching the current one. So, only a gesture in the desired direction is made.
Also, turning the nasalization and vocalization on and off may be slightly out of sync
with the rest of the vocal tract. As a result, the real sound corresponding to a phoneme
is influenced by preceding and following phonemes. This influence can extend even
across the words, which makes the problem hard — pronunciation dictionary would
not be powerful enough to capture it. Some occurrences of distinct allophones could be
probably explained by co-articulation. Others are owing to the historical reasons and
habits.

Another similar phenomenon is called an assimilation. Whereas the coarticulation
is considered mainly a mechanical phenomenon beyond speaker’s control, assimilation
can be understood as lazy pronunciation which substitutes groups of uneasy to vocalize
phonemes with similar sounds which come out with less effort, while not changing the
meaning (at least in a given semantical context). For example, ‘don’t be silly’ can be
lazily pronounced as ‘dombe silly’. The distinction against coarticulation, as I under-
stand it, is that the assimilation can be voluntarily suppressed whereas coarticulation
cannot (except by speaking very slowly). Usually we don’t pay any attention to these
effects but we are able to hear the difference, when listening for it. For a computer,
however, this poses a problem because it ‘hears’ the difference every time.
Phonemes can be classified into two main categories, vowels and consonants. Vow-

els are the sounds pronounced with open mouth so that there is no build-up of air pres-
sure anywhere above the glottis. Consonants lead to partial or complete constriction
of the upper vocal tract at some instant of their pronunciation. As a sound, vowels
can be pronounced indefinitely in time (before we run out of breath) because they lead

1 Most of the time — in linguistics no ‘rule’ should be understood absolutely. We have seen in 2.317 /
that assigning zero probability to an event causes recognition error if that event occurs after all.
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to steady configuration of the vocal tract. On the other hand, most consonants are
transient sounds, except fricatives (/s/, /z/ etc.) where the constriction is only partial,
leading to a turbulent air flow, which manifests itself as noise and trills (/r/ in Spanish
word ‘arriba’, for example) where the articulators return to their initial configuration
after generating the transient sound so that the sound can be instantly repeated if the
air flow is maintained. Although we may feel that we are able to articulate other conso-
nants, such as /p/ and /l/, for arbitrary long time, it should not be counted because the
characteristic sound appears only at the beginning, followed by indefinite prolonging
sound which carries little information about the phoneme that was articulated. This
contrasts with vowels, fricatives and trills, where the character of the sound does not
change over the time (provided that they are pronounced in isolation). Phonemes may
be voiced or unvoiced. Base frequency of voicing, so called pitch is often denoted as F0.
In some cases, voicing can distinguish a phoneme (/s/ from /z/, for example). Never-
theless, voicing does not convey much informations about what has been said because
whispered speech is still quite comprehensible. More important role of voicing will be
revealed in chapter 6. . 176

Fig. 23. Spectrogram of Czech vowels /a/, /e/, /i/, /o/, /u/ and /au/, as generated by the EPOS
speech synthesizer.

Fig. 24. Spectrogram of Czech consonant-vowel syllables /pa/, /ta/, /ka/, /pi/, /ti/, /ki/ generated
by EPOS.

In fig. 23 we can see raw spectrogram2 of Czech vowels. We can notice bands of
higher intensity there. The lower ones that appear to come close together as we look to
higher frequencies are the higher harmonics of the F0 frequency, which corresponds to
the lowest line in the spectrum. More interesting bands are located higher. These are
called formants and usually denoted by F1, F2, F3. In fact they are the resonances of the
vocal tract and their resonant frequency changes as the speaker moves his articulators.
Note that F1 often lives in the area of visible F0 harmonics and is therefore horizontally-
banded, wheres the higher formants live above and get vertically banded (by the pulses
with period 1/F0).
Ther relative position of the first three formants characterize the vowel well, as

can be seen from fig. 23. Higher formant frequencies F4, F5, etc. exist but they do not
carry additional information about the phoneme and are often too high to fit into a
telephone bandwidth.
Moreover, it turns out that the vowel following or being followed by a consonant

is affected by it in a specific way. As the vocal tract reconfigures from the consonant to

2 It will be defined later, informally it can be thought of as of a visualization of signal’s energy
distribution over the frequency and time.
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the vowel, the articulation already takes place. This causes formants to glide towards
ideal vowel configuration with fast transient at the beginning. By extrapolating formant
movements backward in time, down to the consonant instant, we obtain F1, F2, F3, so
called locus frequencies, which are characteristic for that consonant (see fig. 24). For
most consonants, locus frequencies have little dependence on the vowel itself. On the
other hand, the dependence of the vowel on the consonant might be stronger, because
the vowel might not have enough time to stabilize in fast speech. Look at the following
spectrogram to appreciate variety of shapes present in real continuous speech.

Fig. 25. Spectrogram of the Czech sentence: “Von se vám ten Ferdinand nevyplatí. . .” [37].

So, although the coarticulation causes some troubles, it allows to identify short
consonants which are often too silent to be easily distinguished from the ambient back-
ground noise. Nevertheless, locus frequencies are not commonly used in today’s ASR
systems. Partly this is because traditional front ends lack the needed time resolution
and partly this is because triphone modeling of phonemes does similar thing implicitly
(to the extent permitted by resolution of the front-end).

From the above text, it may seem, that the formant frequencies are perfect can-
didates for features coming out of the acoustic front end. Unfortunately, they are ex-
tremely difficult to extract, because it often happens that closely neighboring formants
appear as a single formant, in some voices, strong F0 peak may be misclassified as
formant, and environmental noise and echo both make formant detection even harder.
The problem is that while small errors in frequency localization would be acceptable,
the errors made by current formant trackers occasionally shoot-off far from correct for-
mant position. So, instead of extracting F1, F2 and F3, most front ends just work with
whole vertical slices of the spectrogram in one way or another. Doing so, they avoid
the problem of misclassification at the expense of introduction of irrelevant (therefore
confusing) information into the recognition chain.

It should be noted that there are also other sources of information in the speech
signal, running at larger time scales than phonemes do. Mostly they fall under the
prosody, which is a collective name for pitch contours, rhythm and stress (which can
be understood as sudden change in pitch, loudness and timing) and similar effects.
Prosody carries semantic and emotional cues. In English, for instance, the syllable
stress is usually expressed on a focused or accented words. For humans, it is unpleasant
and tiring to listen to the voice having the prosody removed. So it seems reasonable
that this kind of information would be helpful in speech recognizer, too. Nevertheless,
in today’s systems it is rarely used. This is partly due to the F0 being removed by most
front ends and partly because it is difficult to combine this information with phonemes
in a useful way, because of different time scales.
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5.1 MFCC

The acronym stands for Mel-Frequency Cepstral Coefficients. The method works as
follows:
The signal is first preemphasized, that is filtered with H(f) = 1 − βz−1, where

β = 0.95 in case of 16 kHz sampling frequency. This roughly equalizes the power of
formants. Without it, the first formant would dominate, which would be undesirable
for the later processing. See fig. 26 for transfer function H(f). Then, the signal is
windowed using 25 ms long Hamming window being applied every 10 ms. This means
that every 10 ms, a 25 ms chunk of samples is taken out of the signal into the N -
dimensional vector xn which is called a (time)-frame. Note that n indexes frames in
time (incrementing by 1) and that the frames xn and xn+1 overlap by more than a half
of their samples. The application of the window is point-wise multiplication of xn with
the vector w. So called Hamming window is defined as follows.

wn := 0.53836− 0.46164 cos
(
2πn
N − 1

)
(358)

After that, the amplitude spectrum is computed as Xn := |FN (xn�w)|. The purpose of
windowing was to damp edges of the frame vector xn in order to minimize discontinuity
between the last and the zeroth element of the feature vector xn. It is necessary because
the Fourier transform FN treats its input as an N -periodic signal and sudden jump at
the edge would create lots of phantom frequencies which were not present in the original
signal.
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phasis used in MFCC front end.
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It follows from 4.3.3 that windowing leads to convolution of signal’s spectrum with84 /

window’s spectrum in the frequency domain. Spectral components of the signal are
smeared due to the window. This is called a spectral leakage. To reduce leakage we
try to make window’s spectrum concentrated around 0 and small elsewhere. There is a
tradeoff between width of the main peak and stop-band attenuation. Hamming window
leads to attenuation between 40 to 60 dB and 2 times worse resolution, than that of a
rectangular window which is equivalent to no windowing at all.
Then, each N -dimensional vector Xn is mapped onto a 24-dimensional vector M

such that (Mn)k := log(ε+ THk Xn), where vectors Tk are triangular windows, centered
approximately around exponentially (in k) rising frequencies3 (see fig. 27) made such
that the adjacent triangles are half-overlapping. ε > 0 is a small constant which makes
the formula finite even in case of zero input signal.
Finally, the discrete cosine transform4 is taken, producing the resulting feature

vector
mn := C24Mn (360)

Usually, the feature vector going out of the acoustic processor also contains ∆n :=
mn −mn−1 and ∇n := ∆n −∆n−1.
It was found experimentally, that components of Mn vectors have approximately

Gaussian distribution and that the cosine transform roughly behaves as principal com-
ponent decomposition, making the components of the resulting MFCC vectors mn

nearly uncorrelated, which is desirable property for the following statistical processing.

3 This is called a Mel-frequency scale. In fact, below 1 kHz it is usually linear, but different authors
use different definitions. There is also similar scale called a Bark scale. Both scales try to emphasize
lower frequencies while compressing the higher ones.
4 The cosine transform of N -dimensional vector x is defined as CNx, where the matrix CN is

CN :=
1

2

(
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)
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(359)

Note that unlike FN , CN is a real valued matrix.
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Fig. 28. The same plot on a log-log paper. Note that in reality, the overall off-band rejection will not
be better than -60 dB due to channel leakage caused by FFT window. This effect is not drawn here.

5.1.1 Cepstral Mean Subtraction (CMS)

Almost always, mn −mA is used instead of plain mn, where mA is mn averaged over
whole recording. This makes recognition less sensitive to systematical mismatch be-
tween testing and training. It can also be understood as a sort of deconvolution of
short echo. Note that due to linearity of cosine transform, it is irrelevant whether we
average Mn or mn. If we forget about the triangular windowing we can informally see
that

Mn ≈ log |F (xn � w)| ≈ log |Fxn| = log |F (yn ∗ r)| (361)

where yn represents n-th chunk taken from the ideal (undistorted) signal, while r is
the impulse response of the room (and the recording channel). Note that the effect
of Hamming windowing has been neglected, too. Furthermore, we assume, that r is
sufficiently local, such that yn ∗ r would be a good approximation to (y ∗ r)n – the n-th
chunk taken from convolution of r with the ideal signal y. Then

Mn ≈ log |F (yn)� F (r)| = log |F (yn)|+ log |F (r)| (362)

We can see from the formula above that the averaging estimates log |F (r)|, provided
that the time average of log |F (yn)| is close to zero. Also, we can see that ∆n needs no
averaging because log |F (r)| terms cancel each other. On the other hand, it is only very
rude approximation which obviously does not work for realistically long reverberation.
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The most we can hope for, is that it will be able to undo the effect of frequency equalizer
which might have been present in the electrical part of the channel.
The problems come from the fact that we are working with finite-length Hamming-

windowed chunks using cyclic convolution (within each chunk) to model reverberation,
whereas the real reverberation mixes information from different chunks. Another prob-
lem is that the logarithm is applied after we added informations from different fre-
quency bins. Theoretically it would be more correct to first take the logarithm and do
the binning after that. But it would require more evaluations of the logarithm, which
is expensive and it is not sure how much it would improve recognition accuracy, after
all.

Despite of these facts, the method is widely used. Often, mA is not computed from
the entire sound file, but as a moving average or even more complicatedly in which case
the whole thing is called RASTA filtering.

5.2 LPC

LPC stands for Linear Predictive Coefficients and it is described in [50] in detail. It is
based on belief that short (say 15 ms) segments of speech can be adequately modeled
using all-pole5 digital filter being fed by an excitation signal y which is either a white
noise or impulses corresponding to glottal closures. So the output of the vocal tract
would be:

x̂n = yn −
M∑

k=1

dkx̂n−k (363)

This formula is relevant for sound generation. In case of analysis we are given the
recorded signal x (let’s have it preemphasized already), and we are after y and d, which
would minimize

N−1∑

k=M

|x− x̂n|2 (364)

where M is the order of LP approximation (usually around 20), and N is the window
length. Note that the segments should overlap so that we could reuse last segment’s
values of x̂0 to x̂M−1 as initial conditions for the recurrence (363).
Unfortunately, this optimization problem is too complex to be solved in real time.

Instead of (364) we will search just for d, which minimizes the energy of y := d ∗ x,
where d0 := 1. The y obtained this way will not be optimal in sense of (364) but will
still be reasonable in many cases. It leads to the following linear system, which has to
be solved in the sense of least mean squares:




x1 x2 . . . xM
x2 x3 . . . xM+1
...

...
xN−M xN−M+1 . . . xN−1


 ·




d1
d2
...
dM


 ≈ −




x0
x1
...

xN−M−1


 (365)

5 That is a filter with c = ~1.
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In principle, this can be solved by Moore-Penrose pseudo inversion using singular value
decomposition of the matrix. But much faster methods exist, see [65] for reference.
Once we have the coefficients we can either use them directly, or convert them

into poles (which is impractical as it leads to root-searching of a polynomial) or we
can compute the magnitude response of the obtained filter, from which it is possible to
derive cepstral coefficients in the very same way we did in case of the MFCC. This is
the most common choice and the resulting coefficients are called LPCC, then. Again,
direct methods exist (see [50]) so there is no need to actually compute the magnitude
response, to get the results.
Moreover, as the residual signal y resembles expected excitation signal it can be

used to determine F0 of voiced sounds.

5.3 PLP

Even clearly recorded speech signal still contains a lot of information which is irrelevant
to its phonetic contents. This irrelevant information makes statistical training more
difficult because, in principle, we need to observe all combinations of relevant and
irrelevant information, to properly estimate the probabilities involved in the acoustic
model. A good front end should therefore try to minimize influence of this excessive
information.

PLP (Perceptual Linear Prediction) tries to do that, based on an assumption that
the sounds which cannot be heard by a human listener can hardly be used to decode
the phonetic message. Possible ‘explanation’ could be that our language evolved such
that we mainly produce sounds we are able to hear and don’t waste our energy with
those we cannot. Moreover, even if we produced sounds that we cannot hear, we would
not be able to learn how to control them independently of those we can hear, due to
the lack of feedback. So these should carry only a duplicate or unrelated information.
Whether this assumption is true or not, it is by all means practical, because com-

mon sound compression formats (such as ogg or mp3) already exploit limits of human
hearing, by encoding the waveform with fewer quantization levels, such that the quanti-
zation noise stays below current threshold of hearing. Hence, having a front end which
can ignore this additional noise is advantageous.
PLP algorithm goes in several steps (see [30]) as follows:

(1) Chop the input signal into overlapping blocks xn, same way as we did for MFCC.
(2) Compute spectrum Xn := |F (xn � w)|, where w is the Hamming window.
(3) Warp the amplitude spectrum, getting Yn as (Yn)bα log(1+f)c :≈ (Xn)f , for f ∈N,
where α∈R+ is a suitable constant controlling how many frequency bins there
will be in Yn. Note that this is only a conceptual formula. To be fully specified
we would have to say how to map possibly multiple values f on a single value of
bα log(1 + f)c. One way to do that could be via triangular windows we have met
in MFCC. Also, instead of plain logarithm, Mel or Bark frequency scale could be
used.

(4) Zn := Yn ∗ S. This tries to approximate frequency masking, by smoothing the
amplitude spectrum Yn with a critical band masking curve S (masking will be
explained in 5.8). . 161
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(5) Qn := Zn � E. This performs loudness equalization. Human ear’s sensitivity and
loudness perception changes with frequency whereas computer’s stays nearly con-
stant (up to about ±3 dB or better). This formula tries to simulate imperfections
of our ear by attenuating frequencies we hear badly. Vector E can be obtained
experimentally by setting amplitudes Ag of pure sine tones at frequencies corre-
sponding to the bins numbered by g such that human subject will perceive all
the tones to be equally loud. This can be accomplished by pairwise comparison
followed by modification of the amplitudes. Then, Eg := 1/Ag. Obviously this
should be repeated with many persons and averaged.

(6) (Hn)g := (Hn)(2L−g) := ((Qn)g)0.6, where L is a dimension of vector Qn and
(Hn)0 := 0. This step tries to estimate perceived loudness according to (slightly
controversial [6]) Stevens’ power law.

(7) Restore periodic signal, which would represent the time frame n, as hn := F−1(Hn)
and perform LPC analysis on it. In [30], Heřmanský recommends LPC orderM = 5
for 8 kHz sampling frequency. Note that this can properly capture only the first
two formants. These LPC or LPCC coefficients form final output of the PLP front
end.

5.4 VTLN extension

VTLN stands for Vocal Tract Length Normalization. As the name suggests it tries to
compensate for frequency effects of different vocal tract lengths. If the vocal tract was
physically magnified α-times in all directions, we would obtain α-times lower resonant
frequencies because the sound would have to travel α-times longer distances before
it would be reflected off the inner surface of the tract. Let us approximate any stiff
configuration of the vocal tract with an LTI system having a transfer function H(f).
Then, the α-times larger copy of it would be described by a transfer function R(f) =
H(αf) for |f | ≤ 1

2 min(1, α
−1)fs. For |f | > 1

2 min(1, α
−1)fs the shape of R is not

specified by H because this information was filtered out from H when the sound of the
impulse response was sampled into the computer. Likewise, for α < 1 we lose higher
frequencies of H because these cannot be represented using the given sampling period.
Let us suppose that our sampling frequency fs is so high that all meaningful vocal
tracts will have negligible transfer at frequencies which may be lost or added, so we
would not need to worry about it.

VTLN technique can be embedded into most front-ends. Its place is just after
the computation of the frame’s spectrum (X̂n := |F (xn � w)| in case of MFCC). It
compresses/expands the frequency axis as (Xα

n )f := (X̂n)bαfc. By properly chosen
speaker dependent parameter α the method makes the front-end’s output vectors Aαn
invariant to vocal tract magnification, thus enhancing recognition accuracy in speaker
independent systems. This is because the acoustic model does not need to capture
voice differences. Instead it can use VTL-normalized data to train a more robust
model. Note, however, that various speaking styles still persist in these data.

The parameter α has to be selected during recognition, such that it would normalize
the input sound. ASR system reestimates α on each utterance, thereby achieving
continual adaptation to the user’s voice. First, the utterance is recognized using simple
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non-VTLN acoustic model λ and simple language model l, giving us the first guess Ŵ

Ŵ := argmax
W
Pr λ(A | W ) Pr l(W ) (366)

Then, we can use VTLN acoustic model Λ and VTLN feature vectors Aα to estimate
α in the following way:

α := argmax
α
Pr Λ(Aα | Ŵ ) (367)

That is, we have chosen α such that the acoustic vectors generated from the approxi-
mative transcription would be maximally probable. Finally, the utterance is recognized
using VTLN features, previously determined α and full language model L.

W := argmax
W
Pr Λ(Aα | W ) Pr L(W ) (368)

In principle, the last two steps could be iterated but the first iteration is usually good
enough already.
Note that if we plotted the spectrograms on a logarithmic frequency axis then logα

would be a horizontal shift of the plot. By its proper selection VTLN moves spectra into
their ‘normal’ position, which simplifies their recognition. In principle, this can be done
directly in the time domain by resampling the signal to different sampling frequency
because this is exactly what the shift in the log-frequency domain does. Hence there is
no need for FFT in the front end to use VTLN. By time domain resampling the method
could theoretically be used even with LPC front-end.
VTLN, as described so far, is based on an assumption that the only difference

among speakers is in their size, meaning that the scale-normalized shape of their vocal
tracts should always be same. This is obviously false. Let us take phoneme /s/, for
example. It originates as an aerodynamic noise created by tongue-constricted air-flow.
Center frequency of the noise band is determined by dimensions of a resonance cavity
delimited by tongue tip, teeth and lips. As we can control its volume by tongue’s
position to large extent, phoneme /s/ does not change much among speakers6. Also,
other cavities we use for articulation may scale at different rate than vocal tract length.
To compensate for this, VTLN with multiple warping parameters, each corresponding
to its preferred phoneme class, can be used. For two parameters α1 and α2 this works
such that the frame feature vector is a pair (Aα1n , Aα2n ), whose components are computed
from single acoustic frame using α1 and α2. Emission probabilities of HMM specify
only Aα1n -part or only A

α2
n -part, depending on phoneme class the respective transition

is part of. During decoding, the Viterbi algorithm only uses that half of the feature
vector, which is specified in the transition.
Note that this description of VTLN was only introductory and ignores many practi-

cal problems, such as the training. See [56] for implementation details and experimental
results.

6 This can be heard by playing a recording of someone’s voice using lower sampling frequency than
at which it was recorded. Although vowels sound as if they were pronounced by a physically bigger
speaker, fricatives sound unnaturally dull, namely /s/ sounds more like /š/.
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5.5 Pitch Synchronous Processing

If more pitch periods of voiced speech signal fit into the 25 ms analysis window, they
manifest in the spectral domain as closely spaced peaks (so called harmonic frequen-
cies) that sample the spectral envelope (see fig. 29) which corresponds to the amplitude
spectrum of the phoneme whispered. This happens because the voicing can be under-
stood such that the vocal folds generate impulses s =

∑N
k=−N

~1[kT ] which are then
filtered thru the vocal tract with impulse response h = F−1(H). The FFT in the front
end estimates |F(h ∗ s)| which is

|F(h ∗ s)|(f) =
∣∣∣∣∣H �

N∑

k=−N

F(~1[kT ])
∣∣∣∣∣ (f) =

∣∣∣∣∣H(f)
N∑

k=−N

e2πifkT

∣∣∣∣∣ (369)

leading to (see 4.2.7):78 /

|F(h ∗ s)|(f) = |H(f)DN (fT )| = |H(f)| ·
∣∣∣∣
sin(2πfT (N + 1))
sin(πfT )

∣∣∣∣ (370)

where DN (fT ) is 1/T -periodic in f and it has high peak at 0, while it is close to zero
elsewhere (except, of course, at f = k/T due to periodicity). It therefore destroys
information about H(f) between the peaks of DN (fT ) because the resulting small
amplitudes will be hidden below environmental noise.
This is of no concern for men’s voices because the triangular windows in MFCC

are wider than F0 = 1/T . Hence the peaks will be averaged out. But in case of
high pitched women’s voices, it can happen that the 1/T becomes larger than MFCC
triangular window span, causing spurious peaks in triangular-windowed spectrogram
Mn (see 5.1). Moreover, high F0 means that the peaks of DN (fT ) become so widely150 /

spaced that they can miss true maxima of the formants. This is a real problem (even
for LPC features) because it creates false positions of formants.
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Fig. 29. Simulated vowel-like amplitude spectrum for F0 =
245 Hz and 25 ms segment. The upper spectral envelope H(f)
corresponds to the impulse response of the vocal tract, while
the peaks which we actually measure are caused by voicing.
In reality they would decline from the envelope since the glot-
tal pulses have more complex shape than ~1[kT ] used in this
simulation. Ignoring this fact when computing the spectral
envelope, we in fact recover (H · P )(f), where P is speaker
dependent spectrum of single glottal pulse. However, CMS in
the later stage of the front end is likely to minimize its impact.

Pitch synchronous process-
ing tries to avoid it by analyzing
voiced sounds in variable win-
dow, whose length is set to the
current pitch period. Hamming
window is not needed here, be-
cause the wrap-around disconti-
nuity is small (and can be fur-
ther suppressed by subtracting
trend-line from the samples in
the block). As a result, the spec-
trogram has slightly higher fre-
quency resolution.
This method works well on

a clean signal. However, in case
of real-world noisy sounds, pitch
period estimation is far from be-
ing reliable. Even small errors
can undermine principles upon which the method stands.
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Fig. 30. Approximated Bark-scale.

PMVDR-BISN (Perceptual Minimum Variance
Distortion-less Response – Built-In Speaker Nor-
malization) tries to address the same problem as
pitch synchronous processing, while avoiding its
reliance on exact F0 estimate.

It is rather involved method and, to my best
knowledge, it is currently the most powerful one,
working well even in noisy conditions. I will only
sketch the algorithm here. For explanation and
details, see [61] and [68]. Informally, MVDR is a
power spectrum estimation method which can be
used to estimate the upper spectral envelope of
power spectrum affected by harmonic peaks, as
the one in fig. 29. MVDR starts by LPC analysis.
It then employs magical formula which uses these LPC coefficients and the variance of
prediction error to obtain all-pole model for the smoothed spectrum. If there were L
harmonic peaks in the spectrum and M = 2L− 1 then MVDR using M -th order LPC
would be just able to fit all the peaks with no more freedom left. Therefore it would not
be able to fit valleys between the peaks, which is why the output will be good estimate
of the upper spectral envelope.
PMVDR front end has two parameters, LPC order M and perceptual warping

parameter α (something like α we used in VTLN, but here, the warping will be non-
linear). It works the following way:
(1) Preemphasize the input signal and chop it into overlapping segments xn.
(2) Apply Hamming window and compute power spectrum: X := |F (xn � w)|2.
(3) Warp the spectrum according to ‘perceptual deformation’

w(f, α) :=
1
2π
atg2

(
(1− α2) sin(2πf), (1 + α2) cos(2πf)− 2α

)
(371)

obtaining perceptual power spectrum Y in the following way

Ybw(f/N,α)%Nc :≈ Xf for f ∈ [0, N − 1] (372)

where N is dimension of X and Y vectors. The :≈-mapping is done by simple
linear interpolation of neighboring values. For α = 0 we get no distortion at all,
for α = 0.42 get an approximation of Mel scale, while for α = 0.55 we get an
approximation of the Bark scale (fig. 30). These values of α were for sampling
frequency of 16 kHz.

(4) Compute ‘perceptual autocorrelation’ signal z := F−1Y .
(5) Compute M -th order LPC fit to the N -periodic signal z, obtaining coefficients

d1 . . . dM . Note that the prediction error signal is r = d ∗ z, if we put d0 := 1.
(6) Use magical MVDR formula to obtain upper spectral envelope H(f) as follows:

H(f) :=
1

∑M
k=−M µke−2πifk

(373)
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where µk can be obtained from d and prediction error variance V := Var(r) in the
following way [61]:

µk :=
{
µ(−k) for k ∈ {−M, . . . ,−1}
1
V

∑M−k
i=0 (M + 1− k − 2i)didi+k for k ∈ {0, 1 . . .M} (374)

(7) a := F−1(log(H(f))) is a theoretical cepstrum corresponding to H(f). It can be
approximatively computed from µk using FFT. By taking first 12 elements of a
(excluding the 0-th one) we form the resulting PMVDR cepstral coefficients mn.

(8) ∆n and ∇n temporal differences can be computed from mn, if required.
(9) Usually, vectors mn are also subject to cepstral mean subtraction.

BISN extension is in fact VTLN adapted for PMVDR. It continually adjusts α,
trying to achieve best possible performance. Unlike VTLN, it does not work in two steps
(search for optimal α, followed by recognition phase using this α). Instead, it continually
refines α in a feedback, optimizing it against high quality transcription produced by
the recognizer using feature vectors generated with the old value of α. Although we get
optimal α for already processed utterance, it does not matter much because α changes
slowly most of the time. Moreover, the update formula has additional inertia term, so
that the α could not shoot-off just because of single misrecognized utterance.
All the optimization is build into the front end, making it independent from the

rest of the recognizer. The only thing that is required is time-aligned phoneme (or
state) transcription fed back from the recognizer’s output into the front end. There
must also be separately trained acoustic model of Pr (Aα | V ) inside the front end,
which is used for α optimization. Using golden section search it is possible to find best
α in less than 10 evaluations of Pr (Aα | V ). See [68] for details.

5.7 Experimental Front End: TRAPS

All the front ends described so far share one common property. They work locally,
looking only at a short piece of sound at a time. In real-world environment, however,
reverberation or even simple non-constant group delay longer than 10 ms will cause
information leakage among nearby frames returned from such a front end. This is a
problem because it introduces extra variability to the acoustic stream that is not related
to the spoken words. As a result, HMM must be trained under various environmental
conditions, to obtain reasonable robustness. This not only makes HMM bigger but also
leads to more demanding decoding because the transition probabilities get equalized.
Hence more paths in the trellis seems to be promising and the decoder has more work
to explore them all.
On the other hand, psychoacoustic experiments suggest that human auditory sys-

tem uses context (or window) of at least 200 ms, according to [29]7. Presumably, this
integration time has something to do with echo compensation because room reverber-
ation must be about 300 to 500 ms long before one is even aware of it and must reach
several seconds before it affects comprehensibility [14].

7 One can ‘feel’ this effect by listening to 0.2 to 0.3 s long excerpts from his favorite tunes, trying
to guess which one it was. When I tried this, I was not able to identify the tune correctly, finding the
sound strange and sometimes even novel, hardly similar to anything present in the original music.
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Another annoying thing with the above front ends is that they treat the spectral
vector as a unit. So, if for instance half of it is missing (being attenuated or masked by
noise) the feature vector will be wildly different from what the decoder expects. It will
then probably completely fail, while human listener finds the sound still comprehensible.
It is suggested in [14], that according to experiments performed by Fletcher in 1920’

for AT&T, human auditory system seems to work in about 20 independent frequency
bands, running ‘local phoneme recognizer’ in each of them, fusing their results after-
wards. Namely, Fletcher discovered that subjects performing phoneme recognition8

task on band-pass filtered speech, make errors with probability

eB =
∏

k∈B

e{k} (375)

where we suppose that the frequency axis has been divided into non-overlapping bands,
indexed by k, and that eX is a probability of the subject making a phoneme recognition
error when listening to the signal where only bands listed in the set X remained after
filtering. In this notation e{k} = eX , where X = {k}. If we interpret eB — the
probability that the subject fails on sound filtered by B = {b1, . . . , bn} — as

eB = Pr (subject fails on sound filtered by {b1} &
he also fails on the same sound filtered by B \ {b1})

(376)

we see from 5.8.9 that the events ‘subject fails on sound filtered by {bp}’ are indepen- . 174

dent. This suggests that the fusion of partial recognizers’ results will be a non-trivial
process since it essentially finds the correct recognizer even in when all but one are
wrong. Since its discovery, formula 5.8.9 has been verified many times, using different
bandwidths, noise conditions and different subjects.
These observations led to the development of TRAPS (TempoRAl PatternS ) — an

experimental system working in time domain in several independent frequency channels,
trying to detect phonetic cues directly in each channel.
There are 15 channels, each emitting its signal’s average energy every 10 ms.

TRAPS then look at these energy tracks using 1 second long analysis window. Each
TRAP is in fact a neural network (multi-layer perceptron) being trained to assign one
of 29 phonetic classes to its output. This class corresponds to a phoneme being pro-
nounced in the middle of that 1 second window. For technical reasons, the signal in the
window is first mean-removed, variance-normalized and then Hamming-windowed and
only after that fed into the network. So we have 15 networks each emitting possibly
different answer and we have to select the best one. For this task, we train another
multi-layer perceptron which takes all these TRAP outputs fusing them into final 29
phonetic classes. These are then used as an acoustic evidence by conventional HMM
model.
This front end was meant mainly as a proof-of-the-concept and although it was

simple, not containing explicit echo compensation and detection of noisy or unreliable
bands, it could measure well with traditional approaches. See [31] for implementation
details.

8 To neutralize influence of human ‘language model’, Fletcher used CVC (consonant-vowel-conso-
nant) triples drawn independently and uniformly from the set of all such triples, as his testing data.
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5.8 Natural Front End: Cochlea and Auditory Pathways

I will skip anatomical description of the outer and middle ear as it can be found in
standard physiological textbooks, only noting that the outer ear behaves like a lin-
ear filter (which is however direction dependent owing to the pinna) and that the
inner ear’s lever mechanism is essentially an impedance transformer, transforming air-
induced vibrations of the eardrum from high-amplitude/low-pressure mode into a low-
amplitude/high-pressure mode so that the sound could enter the liquid environment
in the cochlea without being reflected back too much. The lever mechanism also con-
tains muscles (stapedius and tensor tympani) which control damping — when these are
engaged, the transformer attenuates energy. They are controlled reflexively to protect
cochlea from loud sounds9 and they are also used to attenuate speaker’s own voice. The
muscles are well perfused and accordingly ‘overdesigned’ so that their tremor would be
minimized. Otherwise, it could be heard as a noise. It has been suggested in [26] that
the lever mechanism introduces slight nonlinear distortion to the transfered sound.

5.8.1 Inner Ear

Fig. 31. Functional schema of our hearing system. On the left, there is an outer ear, an inner ear
and unwound cochlea with a wave traveling along its basilar membrane. It takes it 4 ms to travel from
cochlea’s base to its apex. Below, there is a scale showing where on the membrane the traveling wave
of a particular frequency will reach its maximal amplitude. The cross-section A-A on the right shows
the structure of the membrane. The Reissner’s membrane can be neglected from the wave-mechanical
point of view. Its main purpose is to separate the V-shaped duct from the rest of the cochlea so that it
could maintain different ionic potential, which is essential for proper function of the hair cells located
in the organ of Corti, the actual mechanical/electrical transducer, located roughly along the centerline
of basilar membrane. The needed ions are generated by cells of stria vasicularis wall.

The inner ear – or the cochlea – is mechanical/electrical transducer combined with
frequency analyzer, which transforms the input sound into neural firing patterns that

9 The attenuation is about 20 to 30 dB and is only effective for low frequencies up to 2 kHz. For
higher frequencies and for very low frequencies (which are conducted by bone) the effectiveness is lower.
The reflex is activated by sounds louder than 70 dB-SPL or when a vocalization starts. It has a delay
of 30 to 180 ms, louder sounds leading to shorter delays. Therefore, it does not protect against sudden
loud sounds, unless one screams upon anticipating them, thereby activating the reflex in advance by the
vocalization mechanism. It seems that the brain compensates for this attenuation because perceived
loudness of the sound remains unaffected.
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enter the brain. It is a helically shaped duct filled with a water-like liquid separated by a
V-shaped membranes along its axis. Basilar membrane supports the actual transducer
– the organ of Corti. If we abstract from helical shape, which is irrelevant10 to the
function, we can imagine the cochlea as a rigid11 tube longitudinally divided by a
membrane, as depicted in fig. 31. The sound enters the upper compartment from
the left, propagating in the liquid to the right, coupling with elastic basilar membrane,
creating a traveling wave on it. Stiffness of the membrane decreases as we move towards
the cochlea’s apex, which causes characteristic shape of these waves: as the wave travels,
its amplitude rises as the stiffness decreases until it reaches maximum. Then it vanishes
quickly. Position of the maximum depends on the wave’s frequency (see fig. 32), being
approximatively logarithmic12. Because of approximative linearity of the process, more
complex sounds are decomposed into their spectral frequencies this way. Therefore,
the successive places along the basilar membrane can be regarded as outputs of a filter
bank processing the input sound. This is what Békésy stated in his theory of traveling
waves for which he received Nobel price for physiology in 1961. He demonstrated it on
magnified mechanical models and, to some extent, on dissected animal cochleas [64].

Fig. 32. Envelopes (thick curves)
of Békésy’s waves (thin) of vari-
ous frequencies, with actual trav-
eling wave drawn for f = 10 kHz.

Fig. 33. Envelope of actively
tuned wave rising from Békésy-
wave envelope. See [1].

Fig. 34. Outer hair cell
(OHC)

To fully appreciate his contribution, consider that the displacement of basilar mem-
brane is about 10 to 20 nm even for loud sounds, so it could be hardly observed directly
using methods of his time (displacement of the oval window is 200 nm for a 120 dB
sound). Instead, he was observing wave-induced transport of micro-particles he de-
posited onto the basilar membrane13.

10 Birds have it straight, for instance.
11 Because the real cochlea is buried in the bone.
12 But this is not a physical necessity. For example, mustached bat’s cochlea is highly non-uniform in
this respect. About 25% of it – so called SI-zone – is dedicated for analysis of frequencies between 61
and 72 kHz (which is less than 0.24 octave) and about half of the cochlea is tuned exactly to 61 kHz (so
called CF2-zone). In the CF2-zone, the waves are not attenuated at all. Due to this property and due
to reflection from the apex, a standing wave can build up in this area. If the frequency is slightly out of
tune, the standing wave will be slowly sliding sideways. Using this mechanism, the bat can detect very
subtle Doppler shifts induced by flapping wing of its insect prey [32]. However, it has to continually
adjust the frequency of its sonar calls so that the Doppler-shifted echo would hit the CF2-zone as a
61 kHz signal. The SI-zone can be used for this task as a source of feedback information. Note that
the filters involved are very sharp, commonly with slopes of 4000 dB/oct and higher, whereas humans
have less than 300 dB/oct.
13 This way, he also demonstrated that waves can only propagate from the base to the apex and not
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Before Békésy, theory of Helmholtz was widely accepted. It states that the basilar
membrane behaves like a collection of chords each of them being strung between the
walls of the cochlear duct (that is perpendicularly to the wave travel). Their stiffness
decreases towards the apex so that each audible frequency has its own ‘tuned’ chord.
The pressure wave propagates in the liquid and thru the couplings of adjacent chords
(the membrane is contiguous so we have to model it as mechanically coupled chords)
and gradually builds up oscillations of those chords whose resonant frequency is present
in the sound. Vibrating chords represent the sound, then.
Békésy’s and Helmholtz’s theories are compatible in a sense that with appropriate

selection of stiffness and damping of the membrane, behavior of each of them is possible.
Békésy measured membrane’s stiffness on real cochleas and according to physics he
concluded that there are traveling waves in the human cochlea, which he later confirmed
by a particle transport experiment.
Interestingly, actual measurements on neural fibers indicated much steeper filters

than those predicted by Békésy’s theory. Békésy himself was well aware of rather flat
filters in his model and proposed that probably lateral inhibition between neighboring
neural fibers makes frequency response steeper. However, this ‘second filter’ has never
been found in the actual neural tissue. It was not until 1983 that it was discovered by
measurements on living cochleas that the tuning was as good on the membrane as at
the neural output. Moreover, in 1978, it was discovered that the inner ear produces
sound after it receives a click sound. The extra sound is quieter and delayed by several
milliseconds but still strong enough that it can be measured by a microphone inserted
into the ear duct. This phenomenon was named oto-acoustic emissions and is nowadays
used as a diagnostic method of deafness in newborns. Finally it was found that so called
outer hair cells are responsible for these emissions and that they in fact vibrate the
basilar membrane14, fine tuning it as shown in fig. 33. We can see that the maximum
frequency is about half octave below the maximum of Békésy’s wave and that the peak
is 50 dB above the Békésy’s. So the outer cells also work as amplifiers. When damaged,
the threshold of hearing shifts 50 dB upwards and frequency discrimination deteriorates
since only flat Békésy’s waves remain. Outer hair cells are unique to mammals making
their audition superior to that of other species in frequency range and in resolution. For
instance birds, which presumably rely on passive waves15, only hear up to 11 kHz (most
of them only up to 5 kHz), whereas bats hear up to 100 kHz and whales up to 200 kHz.
Nevertheless, the birds have roughly similar threshold of hearing as mammals. This
suggests that the lack of amplification by OHCs can somehow be overcome passively
(by different geometry, say) or by a different, yet unknown active mechanism.
Remarkably, already in 1948, there was a theory by T. Gold, who proposed that

there should be an active amplification in the inner ear. He essentially took Helmholtz’s
theory and observed that damping caused by liquid environment would make it difficult,
if not impossible, for the resonances to build up. For example, a piano would not play
very well immersed in water because of friction between the strings and the water.

in the opposite direction (this is caused by decreasing stiffness of the membrane and does not hold for
the CF2-zone of bat’s cochlea where waves travel in both directions, creating a standing wave).
14 The emitted waves then travel towards the base mainly thru the liquid since basilar membrane
rapidly attenuates backwardly traveling waves.
15 At least they lack prestin motor protein, so if there is any active mechanism it has to be different.
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However, we could make it play again by mounting a sensor, amplifier and an actuator
to its every string to counteract that friction. Gold thought that the cochlea is similar
to this piano [58]. He even predicted oto-acoustic emissions (as he knew how easy it is
to turn amplifier into an oscillator), but failed to detect them using microphones of his
time and so the theory was abandoned.
Today’s theory of hearing assumes that Békésy wave initiates OHCs activity which

then counteract the friction so that a resonant vibrations could build up as in the
Helmholtz’s theory. It might take some time after the onset of sound before membrane’s
amplitude gets 50 dB above the Békésy wave. This could explain why we perceive short
sounds as quieter — they simply do not have a time to fully resonate.

Fig. 35. Organ of Corti. The longest hairs of the outer hair cells (OHC)
are fixed into the tectorial membrane, while the hairs of IHCs are not. Rel-
ative shearing motion of the tectorial membrane is bending hairs, causing
depolarization of the respective hair cells. On depolarization, IHCs just
send spikes over the attached neural fibers, while OHCs also change their
length (vibrating synchronously with the sound) by the action of motor
protein prestin. These vibrations are passively transfered into the basilar
membrane by Deiters’ cells, creating highly tuned local spot.

Fig. 36. Inner hair cell
(IHC) depicted with neu-
ral fibers. There are 10
output fibers per cell, on
average.

Let us take a closer look at the organ of Corti, shown in fig. 35. We can notice 3
rows of outer hair cells and one row of inner hair cells. Short segments of 4th or even
5th row of OHCs are common in human cochlea. There are about 3500 inner cells and
about 13000 to 18000 outer cells. Once destroyed (by a loud noise or due to poisoning),
they cannot be replaced as they cannot reproduce. Outer hair cells have part of their
membrane coated with motor protein prestin, which can rapidly change cell’s length
keeping up with the sound (that is up to 20 kHz in human). Watch [41] video for
clarity. OHC vibrations are then passively transfered into the basilar membrane by
Deiters’ cells, creating peak of maximum oscillations. This in turn generates more
intense relative shearing motion of the tectorial membrane, which is then detected by
inner hair cells, the actual sensor. The length of outer hair cells is ‘tuned’ to their
working frequency, so that the highest frequency cells (which are closest to cochlea’s
base) are short (25 µm in human) and firmly attached to the tectorial membrane by
their longest hairs, while the lowest frequency ones are tall (70 µm in human), and only
loosely attached to the membrane. Taller cells also have longer hairs, which causes
the gap between the tectorial membrane and hair-cell plane to widen towards lower
frequencies. The active mechanism is stronger at higher frequencies and weaker at the
lower ones, where Békésy waves become important. At the very low frequencies the
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outer hair cells are even used as detectors, while everywhere else, these only amplify
and tune the sound, leaving the transduction work solely to inner hair cells.

5.8.2 Auditory Nerve

Fig. 37. Cochlea’s neural interface

There are four kinds of fibers in the auditory nerve
(fig. 37). There are 30000 IHC-out myelinated fibers
which form main output from the cochlea. Each in-
ner hair cell connects to 10 IHC-out fibers on average
and each IHC-out fiber goes to only one cell. Then
there are about 3000 IHC-in fibers which synapse
with IHC-out fibers changing their threshold (see
fig. 36). Then there are 8000 OHC-in fibers branch-
ing to 40000 fibers in the cochlea. These connect
to outer hair cells controlling their threshold. Each
fiber of OHC-in channel controls about 20 adjacent
OHCs. Finally there are 1500 OHC-out non-mye-
linated fibers which form an output from the outer
hair cells. Their function is unknown to me. They
might be part of a feedback loop controlling thresh-
olds of OHCs. As low frequency OHCs also receive the sound, maybe some of these
fibers encode it, too (but these OHCs could as well be connected to IHC-out channel16).
Each OHC-out fiber collects data from many outer hair cells. IHC-out and OHC-out
fibers have neurons located in so called spiral ganglion. But these are bipolar neurons,17

which only provide the fibers with chemical energy, not altering the information passed
thru them. They are therefore unimportant from our point of view.

Fig. 38. Typical threshold of high
(lower) and low (upper) spontaneous-
rate fibers for various frequencies. So
called quality factor Q10 = f0/H is
about 5 to 10 in human and 100 to 400
in SI-zone of mustached bat’s cochlea.

Sending analog signals over nerve fibers is chal-
lenging because any single fiber is not able to trans-
mit more than about a thousand spikes per second
and cannot express amplitude directly as each spike
is voltage-normalized (as a digital signal). To over-
come this, each inner hair cell is connected to about
10 IHC-out fibers of different activation thresholds.
IHC-out fibers tend to fire at particular phase of
the stimulating mechanical vibration. So the inter-
spike intervals tend to occur at integer multiples of
the period of the tone. This phenomenon is called
a phase locking. At the lowest amplitude, only the
fibers with the low threshold respond. They how-
ever do not fire at every period of a sound wave.
As the intensity increases, the fiber is more likely
to fire within a phase-locked time window. With
further increase of amplitude it eventually becomes saturated, firing at almost every

16 This would be consistent with the finding that during prenatal development, OHCs are connected
both to OHC-in and IHC-out channels, according to [1]. IHC-out synapses are later withdrawn but
perhaps the useful ones could survive.
17 Bipolar neurons have one input and one output axon and no dendrites.
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opportunity. Before reaching this limit, another set of fibers with higher threshold
becomes operational, so that the brain still receives meaningful information about in-
tensity. The fibers with low threshold are called high-spontaneous-rate fibers because
they spontaneously transmit random spikes due to thermal noise, even in silence18.
Low-spontaneous-rate fibers are those less numerous but still important fibers which
encode high amplitudes.
Phase locking works reliably only up to 2 or 3 kHz. Above it, firing becomes

more and more random but its probability still remains a nondecreasing function of the
sound’s amplitude. In fig. 38 there is a plot of intensity of a sound wave of particular
frequency which is needed to excite the fiber above its spontaneous level. On frequencies
for which the phase locking works, its base period corresponds to that of the driving
frequency. The plot closely corresponds with shape of the active wave (fig. 33) — . 162

by measuring mechanical amplitude at a fixed place on the basilar membrane, while
sweeping the frequency of the sound, we would get a similar plot (only upside-down
reversed). Imagining this, we can see that the flat part of the curve is caused by
a Békésy-tail of low frequency waves which are just transiting thru our measuring
spot. With a raising amplitude, steepness of the curve deteriorates as can be seen
from the upper curve which applies to low-spontaneous fibers. This is because the
active mechanism becomes saturated and cannot keep up with higher amplitudes of
the basilar membrane, making Békésy-waves more apparent. As a result, our hearing
is less precise at very high intensities.
Using OHC-in fibers, brain can control blocks of adjacent outer hair cells, thereby

setting amplitude of the active peak and, as we have seen in fig. 38, also its steepness.
Its center frequency will probably be slightly affected, too. It is known that a narrow-
band noise introduced into one ear affects activity of same-frequency OHC-in fibers in
the other ear as well.
Finally, it should be noted that basilar membrane moves non-linearly. This non-

linearity is stronger than the one introduced by lever mechanism in the middle-ear. It
is most likely caused by an activity of OHCs because the membrane’s motions become
linear when these cells are destroyed. It is supposed that as OHCs become saturated
they push and pull basilar membrane with less force then would be required for linear
operation. This not only gives rise to a flattened filter’s shape at high amplitudes
(fig. 38), but also makes closely located peaks to influence one another in a complex way.
This leads to more aggressive masking than the necessary one dictated by an uncertainty
principle. It can even generate tones which did not exist in the original signal. For
instance, so called cubic tone of frequency 2f2−f1 becomes audible when f1 and f2 are
close enough (such that their active peaks touch). This tone really exists as a membrane
vibration, which can be proved by measuring it as an oto-acoustic emission. Besides
these adverse effects, non-linearity simplifies intensity encoding because the vibration
of basilar membrane becomes amplitude-compressed, thus requiring less range.

18 Their threshold is controlled by IHC-in fibers to some extent. When these are cut, spontaneous
activity decreases together with attainable dynamic range. This might be a mechanism responsible
for the typical reaction of IHC-out fiber to an onset of constantly loud sound — first, the firing rate
is high but after 10–20 ms of constant fall it settles at about half of the original rate. This is called
adaptation and probably works by lowering activity of IHC-in after the brain detects the sound onset.
Note however, that this is only my speculation and there might by other explanations, mainly that the
adaptation is innate to the OHC-out synapse itself and does not require IHC-out–brain–IHC-in-loop.
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5.8.3 Auditory Pathways

Fig. 39. Simplified block diagram of
auditory pathways. Dashed lines in-
dicate non-myelinated fibers, arrows
mean data flow direction. Due to
left-to-right symmetry only the left
side is drawn. The →⊗→-symbol de-
notes fibers crossing to the other side.
Key: C = Cochlea, CN = Cochlear
Nucleus, SO = Superior Olive, IC =
Inferior Colliculus, MGN = Medial
Geniculate Nucleus, AC = Auditory
Cortex, WA = Wernicke’s Area, BA
= Broca’s Area, RF = Reticular For-
mation, NST = Non-Specific Thala-
mus, PSC = Poly-Sensory Cortex, LS
= Limbic System, M = Medial, L =
Lateral, D = Dorsal, AV = Anterior
Ventral, PV = Posterior Ventral, PO
= Periolivary Nuclei, MNTB = Me-
dial Nucleus of Trapezoid Body, CN
= Central Nucleus of.

Little is known about actual audio-processing in hu-
man brain, especially when compared to what is cur-
rently known about its video-processing. Here follows
what I have been able to reconstruct from the litera-
ture (see fig. 39).
The cochlea (C) sends its output to the CN unit

which is said to decode the duration and intensity of
the sound. Specifically in PV-CN subunit there are
so called octopus cells which detect onsets of sound
on individual fibers. These neurons are very fast, able
to respond to click trains at a rate of 800 Hz. In PV-
CN there are also chopper cells which, when excited,
tend to fire periodically within certain narrow range
of frequencies. Their probability of firing is driven
by collective activity of the set of neighboring fibers.
When the channel they represent is amplitude mod-
ulated by a frequency that the chopper cell is tuned
to, the cell tends to phase-lock on it, firing at instants
of maximum spike density (i.e. at envelope peaks of
the underlining sound). Otherwise the cell fires less
frequently and more randomly. By having several
of these cells connected into a coincidence detector
(which is suspected to be located in IC), the brain
can detect amplitude modulation of certain modulat-
ing frequency range for a given cochlear band. The
circuit is repeated for many combinations of cochlear
bands and modulating frequencies, thus making a 2D
map of modulation intensity given carrier frequency
and modulation frequency. See [2] for details. Note
that amplitude modulation by frequency F0 naturally
arises in voiced phonemes. Moreover, with sophis-
ticated mutual inhibition of chopper cells tuned to
different modulating frequencies but belonging to a
single cochlear channel, it might be possible to track
multiple modulations simultaneously (even in single
channel). This could be used for rudimentary source
separation and segmentation.
The AV-CN subunit contains so called bushy cells

acting as coincidence detectors of signals in several
neighboring fibers (possibly even spanning few neigh-
boring IHCs). That means that they fire only when
representative portion of their inputs receive spike at
the same time. By this mechanism, they remove noise
from high spontaneous rate fibers. It is obvious that this can only work for phase-locked
low frequency sounds. AV-CN sends its phased-locked low-frequency output to M-SO
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on both sides of brain, whereas the high frequency channels are sent to both L-SOs. In
addition to that, the paths to the contralateral L-SO go thru the MNTB unit.
The D-CN subunit is different. It resembles cerebellum by its architecture and

wiring19, getting some of the inputs — in fact a feedback — from higher levels of
auditory pathways, including neocortex. Its neurons react very sensitively to notches
in spectral envelope at frequencies above 8 kHz. It is believed that these cells in fact
help to decode elevation of the sound source. The reflections off the complex shape of
pinna result in different time-lags for the direct path and the reflected paths. As such,
pinna acts like a direction dependent filter introducing zeroes in higher frequencies
where the direct path sound and the reflected one tend to cancel each other. Elevation
can be estimated, knowing these zeroes and azimuth information. This is happens in
the IC unit. Whole CN unit contains about 8800 neurons.
Otherwise, each subunit of CN is organized such that the ordering of fiber’s center

frequencies remains same as in the auditory nerve, which in turn follows frequency
ordering of IHCs in the cochlea. This ordering is preserved all the way up to the
auditory cortex.
The output from CN goes to SO and IC units at the opposite side of brain, with the

exception of fibers leaving AV-CN subunit which sends two channels of fibers, one going
to the opposite side, the other staying at its original side. The channel which stays,
divides into low-frequency fibers which enter M-SO and high-frequency ones which enter
L-SO.

In M-SO, there are 15 500 neurons acting as delay lines and time-of-arrival com-
parators, comparing ear-to-ear phase of the sound, trying to laterally localize its source.
For sounds located maximally sideways the delay is about 700 µs, but humans can de-
tect delays as short as 10 µs. M-SO relies on phase locking which is why only low
frequency fibers (up to 1.5 kHz) are used for it. The L-SO subunit also tries to perform
lateral localization. It uses high frequency fibers, comparing intensities from left and
right ear. At frequencies above 6 kHz, the head-cast acoustic shadow can make the
difference as large as 20 dB. Recall that the elevation information is not available in
SO, since the positions of the zeroes are being sent from D-CN directly to CN-IC.
In IC, the spatial localization of source is probably finished as all required infor-

mation is available there (note that left and right ICs are directly connected). It is
also known, that IC is involved in reflex which turns our head towards a source of
sudden loud sound. It is hypothesized that IC is also involved in pitch detection. IC is
composed of 392 000 neurons.
From the IC, the signal goes to MGN (composed of 570 000 neurons), which is a

part of thalamus. It is composed of number of subunits which are not drawn in the
diagram and their purpose is not fully understood yet.
In general, MGN relays the information to the auditory cortex (AC) which consists

of concentrically shaped units A1, A2 and A3. Little is known about their function
except that A1 is involved in detection of temporal patterns and that it is important
for recognizing a rising pitch from the falling one. A2 is said to recognize learned
patterns, assigning learned significance to them. It is known that for the right-handed,
the right AC concerns more with melody and fine frequency localization, whereas the

19 Consult [23] for early theory of cerebellar cortex.
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left one does sequencing and phonetic processing. The ACs are connected via the corpus
callosum. Together they are made of 108 neurons.

Wernicke’s area (WA) is located close to the AC and it is involved in semantical
decoding of spoken message. The left one does phonetic and semantic processing while
the right one decodes prosody and emotional tone of speech. It is also active when
we are singing or listening to a song. Left and right WAs are connected via corpus
callosum channel. Subjects with damaged WA do not understand meaning of spoken
language albeit they can fluently speak grammatically correct nonsensical sentences.
Those who recovered, reported they found speech of others completely unintelligible
and although they were aware that they are speaking, they could neither stop it nor
understand their own words. Less severe damages to WA influence ability to find right
names for semantical concepts. Sufferers often recall a word which sounds similarly
and fits grammatically into the sentence (for instance, they can confuse television with
telephone). This suggests that WA might be involved in word-to-meaning mapping.
Broca’s area (BA) is responsible for speech production. It gets its input directly

from WA as well as from many other parts of neocortex. In the right-handed, only
the left BA is considered to be important for the language. It has variety of functions
concerning language, namely assembling a sentence according to grammar rules before
it is vocalized. Also, it is using grammatical information to decode the meaning of
more complex sentences (such as those in passive voice). It is hypothesized that it
also plays some role in decoding speech-related arm gestures. When damaged, patients
know what they want to say but cannot get it out. They are able to understand simple
sentences, but cannot speak fluently and grammatically. They also have a difficulty in
word finding, articulation and comprehension of grammatically complex sentences both
verbally and in writing.
When the link between BA and WA is damaged, patient loses ability to exactly

repeat what was said to him. Other functions are nearly unaffected, except for the
tendency to swapping or dropping phonemes or syllables, probably owing to lack of the
fast feedback. The subject is able to hear the errors, often hopelessly trying to correct
them.

As WA is closer to AC than BA, it is tempting to assume that during recogni-
tion, instead of ASR-like language model, semantics is used first, followed by syntactic
disambiguation performed by BA. This is also supported by the fact that a damage
to BA does not impact practical use of the language as much as a damage to WA.
Nevertheless, the truth will probably be much more complicated.
This was a description of primary auditory pathway. There is also a secondary

pathway, which goes from CN to reticular formation (RF) via slow non-myelinated
fibers, continuing to non-specific thalamus (NST) ending in poly-sensory cortex (PSC)
and limbic system (LS). In RF the signals are mixed from multiple sensors. This
pathway affects attention by assigning priority to auditory, visual, tactile and other
sensory information.

5.8.4 How it Might Work

It is clear from the number of feedback loops in fig. 39 that the hearing is an active
process. This is somewhat similar to vision where we need feedback loops which keep
our eyes aimed and focused on target. Only in case of sound it is not quite clear what
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else than volume should be controlled. Anything written in slanted font in the rest of
this section are my speculations.
It is likely that some of the loops are present only to compensate for parasitic effects

caused by ear’s construction — for instance it is plausible to assume that simultaneously
with contraction of muscles in the middle ear, the activity of low frequency OHC-in
and IHC-in fibers increases, jointly compensating for reduced transfer function of the
middle ear. This would explain why we do not perceive attenuating effects of these
muscles. Using this mechanism, the brain could also compensate for uneven equalization
caused by reverberant environment. This would be somewhat similar to cepstral mean
subtraction used in computer front ends.
Spiking rate of each fiber could be regarded as an output of a band-pass filter.

Its frequency response is less steep towards lower frequencies (fig. 38) because the low . 165

frequency waves must travel across the high frequency regions of the basilar membrane
causing some response there too.
This may be a problem in environment with very loud low frequency sound, which

might overpower quiet high frequency sounds even after filtering. To compensate for it,
brain could turn the muscles on, which would reduce an amplitude of the disturbing low
frequency wave that travels all the way along the cochlea. As the attenuation by the
middle ear muscles is more effective at lower than higher frequencies, it would improve
SNR.

As a signal in OHC-in gets weaker, the OHCs are less likely to depolarize and
so the active peak gets smaller. At the same time its slopes get flatter, widening the
filter’s band. The center frequency may also change a little. Filter with wider band can
be made with shorter impulse response. So, by decreasing activity of OHC-in fibers
while at the same time increasing that of IHC-in (which is to compensate for the loss
of amplification) the brain could tradeoff time and frequency resolution according to
signal it listens to. Note however that IHC-caused bandwidth changes cannot be too
dramatic owing to the loss of amplification. For this reason I think it is not very likely
that brain really uses something like this.

5.8.5 Binaural Beats

When we are listening to two sine waves of very close frequencies, we actually hear
beats in amplitude of a single tone instead of two distinct steady tones. This is not
surprising because cos(2πft) + cos(2πgt) = 2 cos(π(f + g)t) cos(π(f − g)t). Here, the
cos(π(f − g)t) represents the beating envelope of the tone. Note the the perceived
frequency is |f−g| not its half-value as the formula suggests. This is because the we
cannot distinguish when the cosine is negative or positive. So the envelope we actually
perceive is |cos(π(f−g)t)| which repeats with frequency |f−g|.
The beating occurs even if the two sines are of different amplitudes. Recalling 4.11 . 124

it is easy to derive, that

A cos(2πft)+B cos(2πgt) ≈ cos(2πmax(f, g)t)
√
A2+B2+2AB cos(2π(f−g)t) (377)

where the envelope (which is the square root part) is exact (in fact it is the Hilbert
envelope of the signal) whereas the real carrier wave is slightly phase modulated version
of the presented one. The discrepancy becomes negligible for A > 2B and so I stayed
with easier formula. Fig. 40 gives an example of possible envelope shape. . 171
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What is interesting about this, is that we hear beats even if the left ear listens only
to f , while — at the same time — the right one listens only to g. It should be noted
that binaural beats only occur at low frequencies (up to about 1 kHz). Therefore M-SO
is probably responsible for the effect. The effect is not perfect though, as the binaural
beats are not perceived as sharp as monaural, at least by me. I arranged an experiment
with f = 500 Hz, g = 507 Hz and the binaural beats with A = B = 1 sounded more
like monaural with A = 1 and B = 0.32 to me.
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Fig. 40. A beat for A=1, B=1.2, f =
21, g=22 with the envelope (bold line).

Nevertheless, this means that the spiked rep-
resentations of the sound in the auditory nerves
can be combined — at least to some extent — as if
it was a real sound, namely that the spike density
can be ‘subtracted’ so that the waves could (de-
structively) interfere with each other. In my opin-
ion, this is used to increase quality of the sound
from a desired direction by ‘adding’ the left and
properly delayed right channel. The delay lines
from M-SO could be used for this. However, for
proper function, brain should probably also com-
pensate for non-linearity of cochlea so that the ad-
dition would simulate interference precisely. An
elegant way of achieving this would be using an
IHC-in signal (and perhaps even OHC-in to some
extent) to set left-right balance so that the loud-

ness (as encoded on acoustic nerves) would be equal for the sound source being tracked.
Imprecision in setting these levels or inability to subtract waves in spiked representation
well enough might explain why we perceive beating of signals with A = B as if A 6= B.
5.8.6 Haas Effect

The Haas effect or the law of the first wavefront is a binaural effect revealing how we
locate sound source in enclosed reverberant environment, such as a cave or room. The
effect occurs when the same sound arrives after 2 to 100 ms after the wavefront. Then
the direction of the sound source is evaluated by the IC unit only from the first arriving
sound. This way, it reduces the possibility that the sound location would get confused
by the clutter of late reflections. The gating time is sound and room dependent, being
up to 50 ms for speech and 100 ms for music. Moreover, the later waves are still used
for hearing as they often provide better SNR than the direct one. Hass found that the
effect takes place even if the late waves are 10 dB above the wavefront. In this case,
however, the effect is reduced to delays of only 10 to 30 ms. For longer lags, two sounds
are heard.

The Hass effect is exploited in movie-theater sound systems. The surround sound
is delayed by 30 ms so that the spectators could determine the position of the sound
source from wave generated by the front speakers while the surround speakers mounted
on the walls provide the ambient feel and improve SNR.

5.8.7 Masking

Let’s imagine for a while the cochlea as a bank of fixed linear filters. Then, its output
fibers would ideally separate sine components of the sound into different channels. We
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have already seen that two close pure tones lead to beating. This happens if they fall
into a single channel. Because of uncertainty principle the frequency selectivity of each
cochlear channel must be limited if we want to preserve time features as well. In fact,
the filters (whose magnitude response looks as upside-down reverted plot of fig. 38) . 165

are very closely spaced (there are 3500 of them), overlapping considerably. That is
why the beating appears even if the respective tones hit different fibers, whose filters
overlap sufficiently. The tone belonging to a different fiber is attenuated, so it does not
influence the result much. But when its amplitude is high it might be comparable to
the tone best fitting to that particular fiber and the beating occurs.

When the foreign frequency gets even louder, the beating envelope gets shallower
(as in fig. 40). As the auditory nerve conveys amplitude information logarithmically
encoded it may easily happen that these shallow variations in amplitude fall below
the fiber’s noise and become indistinguishable from signal caused by the louder tone
alone. We say that the quieter tone has been masked by a the louder one, often called
a masker.
So the masking manifests itself as local elevation of the threshold of hearing in

vicinity of strong peaks in short-time frequency spectrum. It is more profound in case
of narrow-band noises than pure tones because the noises do not lead to beating, which
the brain uses to discover partially masked quiet tones.
The real cochlea performs more aggressive masking than the one just described.

My explanation is that the basilar membrane is non-linear and it seems that the OHCs
in vicinity of a loud peak are likely to help with its amplification, thus being ineffective
for weaker sounds on frequency at which they would normally respond. As a result,
the amplification is reduced at the peak flanks leading to masking there.
At the same time, the brain tries to circumvent masking as much as it can. For

instance, if the masker arrives from different direction than the target signal, that is
each ear receives the masker in different time relatively to the target, the brain selects
clear parts from each ear, thus reducing the masking effect.
Similar effect exists in time domain, too. It is called temporal or non-simultaneous

masking and it causes elevation of the hearing threshold of a given cochlear channel for
about 30 ms before the sound’s onset and about 100 – 200 ms after its end. It seems that
this mechanism tries to gate the clearest parts of the sound so that their subsequent
processing would not get confused by reverb. It is similar to the Haas effect except that
we want the loudest (best SNR) wavelet here, not necessarily the wavefront.
It is likely that many levels of auditory pathways are involved in the temporal

masking. Nevertheless, its rudimentary form is present already at the cochlea’s output.
Recall18 that the OHC-out fibers fire rapidly at the onset of the sound, then adapting to . 166

a lower rate. Also, after the sound ends, there is a recovery period of elevated threshold
(the fibers even lose their spontaneous activity for a while). Brain does not interpret
this as a volume change, because it was him who sent the command over IHC-in fibers
to do so. From his point of view it was only a change in a dynamic range, so that the
anticipated reverberations would fall below the noise level, therefore being masked20.

20 This conjecture predicts that the adaptation time and level will differ according to reverberant
characteristics of the environment, which are believed to be estimated by the brain from, say, last
10 seconds of (binaural) sound. Namely, in non-reverberant environment the adaptation should be
weaker than in highly reverberant environment. By not observing this phenomenon, the conjecture



173 5 Traditional Front Ends

Higher levels of processing could make the masking sharper, depending on context.
The masking is employed in sound compression formats such as the mp3 which does

not encode the information we cannot hear. Note however that some information we
do not hear can still influence our judgment on source location owing to Haas effect.
For this reason the mp3 is considered inappropriate for binaural audio.

5.8.8 Off-Frequency Listening

Off-frequency listening is another tool our brain uses to reduce frequency masking. It
improves signal to noise ratio (SNR) by listening from different fiber than the most
active one (it is probably also used to bridge damaged regions of cochlea). From fig. 41
it is clear that if we listened using a filter centered at frequency S, we would get SNR1,
whereas with off-frequency listening at S + ∆f we’d obtain better SNR2. Note that
this is limited by thermal noise and depends on the fact that there are no other signals
in the passband of the filter we listened with.

Fig. 41. Simple off-frequency listening
to a sine signal S, being disturbed by
equally loud noise N.

Fig. 42. More realistic model of sig-
nals under idealized triangular filter.

Concave shape of the filter’s magnitude response in fig. 41 was important for the method
to work. If the shape was linear (on a log-log paper) there would be no improvement at
all. This is clear for pure sine signals. But it also holds for band-limited signals depicted
in fig. 42. For sake simplicity, let us assume that N and S signals have rectangular
power spectrum of unit height. The power of N filtered by the left flank of idealized
triangular filter is

P (n1, n2) =

n2∫

n1

10
1
10

(
α10 log10(f/f0)+β̂

)
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n2∫

n1

(
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)

(α+ 1)fα0
(378)

where α > 0 and β = 10β̂/10 control the shape of left flank of the filter and f0 selects
its center frequency. When considering S to be of the same type as N , we get SNR as
follows.

SNR =
P (s1, s2)
P (n1, n2)

=
sα+12 − sα+11

nα+12 − nα+11

(379)

could be falsified. Note that IHC-in fibers could either directly quench the activity of OHC-out fibers
at each onset of sound, or they could only somehow influence intrinsic adaptation constant of OHC-out
synapses, in case the adaptation would be built into the synapse itself.
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In another words, it does not depend on f0 at all, hence it does not pay-off to listen
from off-frequency fiber in this case. This also justifies importance of the curved shape
of fig. 41. Fortunately it is easier to achieve this with digital filters than to approximate
perfectly straight filter of fig. 42.

5.8.9 Recognition Performance of Humans

In Fletcher’s experiments (one of which was already mentioned in 5.7) it was discov- . 159

ered that the probability of correct recognition of uniformly randomly selected CVC
(consonant-vowel-consonant) syllable is c2v, where c is a probability of correct recog-
nition of a consonant, while v is a probability of correct recognition of a vowel [14]. At
the same time, the probability of correct identification of random CV or VC syllable is
cv. This formula holds regardless of the speaker and quality of the speech signal. Of
course, the actual values of c and v change according to conditions, but the syllable
error rate also changes such that the formula holds.
As correct recognition of a syllable means correct recognition of all its phonemes,

this formula says that the probability of phoneme error is independent of recognition
errors in its neighborhood. This is interesting because the phoneme realizations depend
on one another due to coarticulation. Fletcher’s result is interpreted such that our brain
somehow resolves coarticulation in early stages of auditory chain (before employing
language or phonetic model). This should give us subjective sensation of phonemes as
being a basic units of speech.

Fig. 43. Word Error Rate (WER) of nor-
mal (N) and impaired (I) persons accord-
ing to [1]. The impaired ones had their
inner hair cells damaged, thereby relying
on Békésy waves only.

When vowel and consonant errors are both
counted, we obtain phone error rate. Humans can
achieve phone error rate of about 1.5 % for nonsen-
sical CVC syllables, under best recording condi-
tions. This contrasts with today’s most advanced
phoneme recognizers which can barely achieve 20
% error rate [49].
In [1] there is a summary of a remarkable

study, comparing subjects with destroyed outer
hair cells with normal people in the task of word
recognition under various intensities of the sound.
Subjects had to repeat single words (which were
picked at random) which were played to them at different volumes. The experiment re-
sulted in a plot shown in fig. 43. The loss of 50 dB amplification performed by OHCs is
clearly apparent. Although the elevated threshold of hearing could be compensated by
a hearing-aid, these people never reach perfect recognition as the normal ones, topping
around 20 % WER, regardless of the volume. This is because their spectral resolution
is limited as they perform spectral analysis by Békésy-waves only.
Coincidentally, todays best ASR systems have WER around 20 % in realistic

speaker independent conditions such as in MALACH project. It should be stressed
that this is pure coincidence, firstly because the tasks on which the error rates were
obtained are very different (MALACH being a continuous speech recognition, while
the impaired people were tested on single words without any context) and secondly
because in ASR there are other problems that hurt performance, such as the out of
vocabulary words, processing of strangely accented or non-grammatical speech none of
which appeared in the human test.
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It is nevertheless interesting to note that the Q10 factor (defined in fig. 38) which is165 /

almost 5 to 10 (increasing with frequency of the fiber) in healthy human, is worse than
2 to 6.5 in MFCC-HTK-FB24 frontend and about 3 to 1 (decreasing with frequency)
for cochlea with destroyed outer hair cells.

5.8.10 Human Performance in Isolated Tasks

It was found that the human auditory system suppresses echoes of up to 30 ms (this
corresponds to 10 m of path difference). These are not perceived, whereas the longer
ones are heard as reverb.
As for frequency discrimination, it takes 15–20 ms of steady tone before we could

fully determine its frequency. We can then discriminate two consecutive tones being 2
or 3 Hz apart as long as their frequencies lie below 3 kHz (probably we are exploiting
synchronized spiking of OHC-in fibers for that). This precision is nearly independent
of the frequency below 3 kHz, deteriorating considerably above.

5.8.11 Disclaimer

This physiological detour should not be treated as being very precise or up to date.
In fact, some claims might be quite incorrect. It is based on what I remembered from
lectures I attended, on literature [36, 26, 1, 32, 64, 6, 14, 2, 4, 3] and consultations with
our leading neurophysiologists.
As there are contradictory claims in the literature and different authors sometimes

use slightly different names for same things I tried to resolve these conflicts using
common sense to get a unified picture of the subject. By this process, however, I might
have introduced some errors. Especially any numbers (counts of neural fibers, slopes
of the filters, etc.) should be treated with reasonable suspiciousness.
From the same reason, the plots are drawn by hand so that they would not evoke

false feeling of precision. They are meant as an illustration of principle, only. I have
no means how to verify them and the fact that the measurements vary greatly21 from
work to work forced me to either average them (if the difference was mild) or to chose
the more plausible one (if they were far apart).
As this section was meant as an inspiration only, I hope it would not matter after

all. Main contribution of this section should be seen in gathering available information
at one place, concentrating on function instead of anatomy and presenting the matter
in technical terms.
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21 Partly, this is probably because some works still consider Békésy’s waves only, hence getting much
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22 http://www.iem.cas.cz/institute/
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6 NUFIBA Front End

In this chapter, I will describe the front end used in my recognizer. In comparison with
traditional front ends it will be more complicated and will require more calculations
when being run but still it will be an artificial construction. I don’t think it has a
sense to simulate biological hearing system other than for the purpose of designing
better hearing aids or brain research. As we have seen in the previous chapter, the
cochlea has its own construction problems1 and many of its complicated features are
only counteracting them in some way. It would be wasting of computational power to
simulate for example the way how the amplitude gets encoded in auditory nerve fibers
when the same information can be stored in single 32 bit number.
Nevertheless, I took into account overall properties of cochlea and early auditory

pathways, when designing the front end.

6.1 Why Front End?

In this section I will lay down the reasons why I think it worths to invest an effort
to development of better front end. I will also summarize properties I think it should
have, according to the lessons learned from the previous chapters, using physiological
data and performance of former ASR implementations as a guide of the new design.
(1) Although the error rate of contemporary recognizers is already quite acceptable, it
rises rapidly when echo of the room changes to the one which was not in the training
data or in a presence of noise, especially non-uniform and non-stationary. Current
front ends do little about it, leaving most work to the acoustic model. Consequently
this must be trained with many combination of possible voices, noises and echoes
to work reliably, which is difficult to achieve. On the other hand, humans don’t
need to learn the language from scratch when they enter a new environment. Only
short adaptation is required. This suggest that we don’t need to update our ‘speech
models’ at all. Instead, we only have to figure out how to translate distorted sounds
into something we understand.

(2) Fletcher’s experiments (5.7 and 5.8.9) suggest that humans outperform today’s . 159

machines in phoneme recognition by an order of magnitude. Also it seems that
brain can resolve coarticulation before assembling phonemes into words, that is
before using any context [14]. Having such a front end would greatly simplified the
acoustic model.

(3) Experiments [22] conducted with STRAIGHT vocoder suggest, that we perceive
physical size of the sound source directly and don’t need to perform VTLN (as
described in 5.4) by adaptively changing the warping factor (which represents the . 155

size), based on previous utterance. Instead, it seems that somehow, our auditory
system decodes both the sound type (size-normalized) and its size at once. Even

1 Some receptors may malfunction or even die, yet the system as a whole must remain reasonably
functional. When programming a computer, on the other hand, we may assume that the hardware is
perfect because the redundancy can be solved at a different design level.
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very short sounds (like single phonemes) are still comprehensible even if resynthe-
sized with vocal tract lengths no human could physically have.

(4) Performance of subjects with damaged outer hair cells shows (see 5.8.9) that even174 /

our own ‘mighty language model’ cannot correct errors caused by reduced frequency
resolution. In other words, inadequate front end cannot be salvaged by a language
model of whatever quality.

(5) Those, who can read spectrograms, use features as short as 3 ms. Standard front
ends smear everything shorter than 10 ms, thereby losing important information
about consonants.

(6) It was found that the recognizer actually works better if it performs decoding
governed by

Ŵ := argmax
W

P (A|W )αP (W )1−α (380)

instead of formula (1) and the fudge factor α is about 1/17 (see 2.8.5). It can14 /
36 /

be interpreted that we prefer information from the language model over the infor-
mation we actually hear. In spite of that, we obtain performance improvement,
which means that language model was more useful than acoustic model. Therefore
it would be natural to improve the acoustic model so that we could get closer to
theoretically optimal α = 1/2.

(7) According to empirical study in [55], the word error rate of the speech recognizer
examined on testing data depends linearly on cross entropy (i.e. logarithm of
perplexity) of its language model on that testing data. For their recognizer, they
found the following dependence

WER(H) ≈ 34− 5.4 · (7−H)
[
%
]

(381)

fitted from several points with H between 7 and 10 (each point obtained using a
different language model), where H is a cross entropy in bits per word. Note that
for all-knowing language model having H=0 it predicts WER = −3.8 % which is
reasonably close to zero. This suggests that the linear dependence holds even for
H<7. Bounds on H of human language model can be estimated by letting people
play so called Shannon game (described in [39]). Shannon found out (and it was
confirmed later by others) that the English language has an entropy somewhere
between 0.6 and 1.3 bits per letter. With average word length (of a word randomly
picked from text in an English book) being 5.1 characters this gives entropy of 3.1
to 6.6 bits per word. Now, in spite of using the optimistic value of 3 bit/word, the
formula still predicts WER of 12.4 %.

So, even if we used the best language model we could ever hope for, the recognizer
would still perform much worse than humans. This is my last argument why not to
spend much effort on improving language models.

6.2 Design Objectives

From what was said until now, most objectives of the front end will come out as natural.
As this is an experimental system, I will not attempt to sacrifice quality for speed. The
optimizations could be tried later, once it will be clear whether this approach works.

6.2 Design Objectives 178

So, for instance, the sampling frequency will be fixed at 48 kHz (running an external
upsampler on files in different format) and the number of filter bank channels will be
considerably high.
On the other hand, I will only address monaural inputs in order to save time for

more important things. Even though multichannel processing can achieve blind source
separation (provided we have more microphones than sources), which is tempting, a
good single channel engine would be more practical because of telephony applications.
Also the human performance does not drop considerably on monaural sound. Therefore,
the search for the ultimate front end should be directed along the single channel route,
adding more inputs later.
As pointed out in (4) and (5), high resolution in both the frequency and the time

is important. Time events as short as 3 ms must be distinguishable. For this reason,
the front end will not use fixed data chunking. Instead, it will be implemented as time-
domain linear filterbank2. Of course, the 3 ms resolution would be attainable only for
frequencies well above 300 Hz.
According to 5.8.9, the Q10 factor of each filter of the filterbank should be at least

6 and according to 5.8.8 the frequency response should be of concave shape to make . 173

off-frequency listening possible.
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Fig. 44. PMVDR frequency warping fun-
ction (the same as in fig. 30) drawn on . 158
a logarithmic frequency axis for values of
α being 0.55, 0.42, 0.32 and -0.32 for the
curves considered from the left to the right
respectively. Note that α = 0.32 shifts
the spectrum one octave upwards and for
16 kHz sampling frequency the normalized
frequency of 0.2 corresponds to 3.2 kHz.

In the real world, short-time features get smeared by the reverb. To make these of
any use, the front end has to cope with echo somehow. This will be addressed in section
6.5. It will try to deconvolve the signal before it is . 190

fed into the filterbank. By deconvolution I mean
filtering the signal with an approximation of the
inverse of the filter that caused the reverb. Un-
fortunately, it is nearly impossible to obtain this
filter just from the smeared signal alone without
any prior information, so we would have to get by
with an approximation that might fail.
Should it happen, there has to be a fall-back

strategy (using longer-lasting features) that will
be used instead. In fact, this strategy will be just
a special case of general system of reliability es-
timates based on SNR estimation which will run
independently for each filterbank output channel.
These reliability estimates will be passed to the
acoustic model along with the features so that
the decoding would not get distracted by inter-
fering noises or missing information, as outlines
in 3.3.14. . 65

It should be stressed that the noise is not
just the stationary humming of computer fans. It
covers all non-speech sounds (or ideally all sounds except the speaker being tracked).
Therefore the front end should be able to guess when two events in filterbank’s output

2 I’m not going to simulate frequency masking caused by nonlinear motion of the basilar membrane.
Section 3.2.31 justifies this decision mathematically. Also in 5.8.7 we witnessed that the brain tries to . 55

. 171escape frequency masking whenever possible (contrary to temporal masking).
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spectrogram came from a single source. As we only have a single channel, it cannot
be solved exactly. Nevertheless there are features such as slight fast changes in voice
modulation which are very source-specific and may help in tagging the spectrogram by
sound source numbers. Another possibility lies in a side-effect of deconvolution — as the
target speaker is focused, other sound sources (with different reverb impulse responses,
as they are located elsewhere in the room) are likely to get defocused. Hence, sharp
pulses would be likely from our speaker (once it has been focused).
Finally, traditional psychological theories [16] could be also tried. According to

them, spectrogram events with high level of similarity, proximity, common-fate or
good continuation tend to come from a single source. Unfortunately these theories are
only qualitative and do not state how much of proximity and common fate is required
for such a judgment nor how to measure ‘similarity’ and other features. Nevertheless, it
could be parametrized somehow and trained from real data, at least in principle. The
good news is that we could simulate the room, mix different clean recordings in many
different ways, generating vast amount of training data, outwitting the data sparsity
problem.

As in any modern front end, we have to tackle the problem of different vocal
tract lengths. In accordance with (3), the features should provide two complementary
informations — the size of the sound source and its timbre. As pointed out in 5.4, α155 /

times smaller resonator leads to α times higher resonant frequencies.
If we constructed the filterbank so that the channel center frequency would depend

on the channel number exponentially, then the change in size would lead to simple trans-
lation (on the channel-number axis). Thus, the easiest way of providing complementary
size/timber information would be to compute the barycenter (which would indicate the
size – the higher the number the smaller the sound source), shifting the spectrogram
such that its new barycenter would be constant, then using that new spectrogram as a
feature vector for subsequent processing.
As explained in 5.4, real people of different sizes are not just scaled copies of one

another. Therefore, not all the phones get transposed by the same amount. Especially
fricatives like /s/ and /š/ seem to be nearly speaker independent. So — after all —
simple barycentric normalization might not be the best that could be done, but still
might serve as a good starting point.
It is instructive to see how this is solved in PMVDR front end of 5.6. The warping158 /

function is bended (see fig. 44) but it is fairly linear in formant-dominated region of
spectrum so it can transpose it by more than two octaves when going form α = 0 to
α = 0.55. At the same time, the higher frequencies where the fricatives live, are affected
only mildly. Nevertheless, this trick seems rather ad-hoc to me, so I decided not to use
it at all.
As described so far, the front end produces two-dimensional images called spec-

trograms, such as those in fig. 25. Note that the low frequency bands tend to change149 /

more slowly than the high frequency ones. This comes from the fact that not only
the center frequency of the bands are placed uniformly on the logarithmic frequency
scale but that the whole transfer function of the filter remains constant under transla-
tion (transposition in musical terms) on the logarithmic scale. As a consequence the
bandwidth to center frequency ratio is constant and so the bandwidth has to decrease
when going towards lower frequencies. It follows from the sampling theorem 4.10 that115 /
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the narrowband signal could be reconstructed from fewer samples and therefore cannot
change so wildly as the wideband one.
Also note that the glottal frequency and its several first harmonics are clearly

visible in the spectrogram, even for low-pitched voices. This is the downside of high
Q10 factor, which prevents F0 and 2F0 from occupying a single band, thus preventing
creation of pulses known from FFT based spectrograms. The pulses are visible only in
high bands where more integer multiples of F0 fall into filter’s passband and the pulses
get created by interference.
The problem is that the first formant lies in the region of visible harmonics and

has to be specially recovered from these F0 harmonics tracks. On the other hand, high-
pitched voices look the very same way, including pulsed nature of higher formants. This
is an advantage over the block-based front ends that have to face the problem of voices
of different pitch looking differently (c.f. 5.6).
Originally it was planned that the front end would also provide long timescale

features (prosody), namely the prominent syllable detector [60] which could be helpful
in inferring word boundaries in some languages (including Czech). Unfortunately, the
work in this direction was suspended due to the lack of time.
Finally, I decided that the front end’s output will be discrete. There are several

reasons that led me to this decision, namely the research [54, 35, 27] showing that
it is possible to match the performance of continuous probability density functions,
also supported by the fact that PRML decoding (see (131) and 3.3.15) uses only 8 . 66

. 69
quantization levels as it was found that the improvement obeys the law of diminishing
returns. The last reason is practical. The proposed front-end is likely to be power
demanding. By making its output discrete, we can save some CPU cycles in the decoder,
thus hiding the impact of the front end.
Having discrete outputs has a consequence that most of the online speaker adap-

tation will take place inside the frontend and the labels coming out of it would more
or less represent fragments of phones rather then general sounds as is usual.
The question remains how to choose the mapping from spectrograms to the labels.

First, let’s assume that the effect of F0 frequency (harmonics over the first formant
and pulsed structure of higher formants) has been removed by interpolation between
neighbors. The side-effect of this process — the measured value of F0—will be retained.
Secondly, as the filterbank’s highest channels run at the original sampling rate of 48
kHz, the spectrogram should be downsampled to, say, 600 Hz frame rate. It is still high
enough to preserve 3 ms features. Then, each frame will be power-normalized, setting
the power value aside for later use.
Finally a window of say 24 frames will be fed into the vector quantizer that will

transform it into a single natural number. Then the window will move by 12 samples
to generate the next output.
On top of that, there will be a mechanism of reliability estimation, working in

intimate connection with the quantizer and the acoustic model, as explained later.

6.3 NUFIBA Architecture

The NUFIBA acronym stands for Non-Uniform Filter Bank, which means that the
filters in question are not spaced regularly as in the FFT but their center frequencies
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are spaced exponentially instead. So the filters are in fact regular (being a translated
copies of one another) when drawn on a log-log paper and so the acronym may also
mean Naturally-Uniform Filter Bank. But I like the first reading better as it permits
possible future extension into truly non-uniform filters. These might have a sense as a
way of optimization, trading-off between CPU demands and recognizer’s performance,
as it is common in the nature (non-uniform sensitivity of our cochlea, fovea of our eyes,
and so on). However, for the time being let the filter spacing be naturally uniform in
order to make things simple.

It soon became evident that for real world applications the filterbank has to be
equipped with other accessories to make it work under harsh conditions. For this reason,
the filterbank will be called the NUFIBA-core whereas NUFIBA refers to the front-end
as a whole.

6.4 NUFIBA Core

Let us begin with description of the central part of the front end. It consists of the
filterbank followed by Hilbert transforms whose output is then divided into amplitude
and frequency components.

6.4.1 The Filterbank

This implementation of filterbank was inspired by [17]. Each channel is realized as a
combination of low-pass and high-pass filters. The trick is that the low-pass filters can
share each others resources, namely, that the bank of low pass filters can be implemented
as a tapped cascade of low-pass sections fed from the side of the highest-frequency filter.

Moreover, whenever the normalized frequencies above 0.25 get attenuated below
the noise-floor, the signal gets decimated by 2. This saves a lot of computations3 and
it also makes the filter design easier4.

Fig. 45. NUFIBA filterbank architecture. The left side explains how the section (S) gets assembled
out of the blocks (B). On the right side, there are two NUFIBA stages. The data gets decimated after
leaving the second stage to be fed into the identical copy of that stage (indicated by a dashed line).
There it produces OUT7–10 and the leftover output gets decimated again to feed the next stage.

Then at each tap, there would be connected a high-pass filter that would finish the
job. The overall architecture is depicted in fig. 45. The filters belonging to each output
are called a section, while the sections belonging to a single octave are called the stage.
Actually, due to decimation, there are only two physical stages, the lead-in stage and

3 Actually only up to twice as many operations as it took to compute the first octave will be required
to compute all the octaves that follow.
4 Because the filters do not need to be so steep (on linear frequency scale) as would otherwise be
required for the lowest frequencies.
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the recursive stage that follows. After the recursive stage, the signal is decimated by 2
and fed back into the copy of the recursive stage (with its own state memory but shared
filter’s coefficients, which allows for implementation via a cycle making the program
code small thus reducing cache pressure). The last filter of the lead-in stage must be
carefully designed so that its response after decimation would match the last filter of
the recursive stage as closely as possible.
Each section is implemented as a cascade of blocks in the first canonical form

(fig. 21), where for the low pass filter there are two of them and for the high-pass filter . 142

there are four blocks.
Entire filterbank is designed as a minimum phase filter (see 4.7) to ensure stability . 101

and earliest possible reaction (see 4.7.11). In the experimental system this is never- . 107

theless unused as the outputs from the high-frequency channels are delayed5 so that
their peak response would line up with the low-frequency ones (consequently the filter
is no longer ZP-canceled (see 4.4.6), after this delay has been applied). This measure . 90

simplifies development of the system because the instantaneous spectrum is then simply
a column taken from the spectrogram. On the other hand, should we be designing a
real-time system it might be advantageous to begin processing of the high frequency
channels as soon as possible, using the low frequency ones only to disambiguate hard
cases. The delay is not negligible. For NUFIBA configuration described below it is
303 ms at the lowest frequency channel (33 Hz). Generally, the delay halves by every
octave so it is about 10 ms at 1 kHz. A filterbank with lower Q10 would have the delay
shorter at the expense of worsened frequency resolution. Additionally, there is a delay
caused by subsequent Hilbert transform, making up the total delay to be 329 ms. For
off-line experimental system this is of no concern, though.

The transfer function Hk of the k-th channel must satisfy the following relation:

Hk(f) = Hk+1

(
f · 2−1/CPO

)
∀f ∈ [0, 1/2] (382)

where CPO is the number of channels per octave and the channels are numbered from
the highest frequency one, starting by zero. Naturally, the exact equality would be
most likely impossible to achieve so we get satisfied with an approximation here. The
formula (382) ensures that the same sound transposed by 1/CPO octave generates
identical but translated image of the original sound.
For the first tryout, I have chosen 12 channels per octave (so that each channel

would correspond to a half-tone in the tempered musical scale). The shape of the
filter was chosen to approximate a Gaussian (on linear frequency scale). This choice
maximizes the product of time and frequency resolutions. Formally, the shape is given
by the following formula

Hk(f) ≈ exp
(
−1
2

(
f − fk
σfk

)2)
where fk = 2

−(1+k)/CPO

2
(383)

where σ controls the trade-off between the time and frequency resolution and con-
sequently determines the Q10 factor. The chosen value of σ = 0.05 translates to

5 The required delays were computed from the group delay (225) at the center of each filter. . 95
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Q10 = 6.52 which leads to bandwidth at 10 dB attenuation to be B10 = 0.222 oc-
tave, while at the -80 dB it is B80 = 0.63 octave.
To allow the digital filter some freedom in approximating the target shape, we

don’t insist on exact shape below -80 dB as long as the transfer function stays below
and goes below -96 dB at the right side so that the aliasing noise would stay under the
noise floor of 16 bit numbers.
It follows from 4.7.16 that the phase response of a minimum phase filter is com-110 /

pletely determined by its magnitude response (up to a constant phase shift). The
question is what happens when we squeeze the response according to (382). Ideally, we
would like to see that the phase response has been squeezed the same way. Theorem
4.7.16 states that the following holds for the original magnitude and phase response
HL and ϕ:

sgn2�F−1(ϕ) = −i sgn�F−1(HL) (384)

Now, squeezing the responses according to (382) and padding the gap with something
close to zero, so that the resulting response would be in SD, we get ĤL and ϕ̂. Obviously,
the signal F−1(ϕ̂) is somehow upsampled version of F−1(ϕ) and likewise for ĤL.
Now observe that the equality no longer holds exactly because the values of neigh-

boring samples were mixed by convolution with an interpolating filter, a digital filter
approximation of (301), during upsampling. The exact span of the interpolator de-119 /

pends on how we did the padding. In combination with the change of sign introduced
by multiplication with the sgn sequence, this creates discrepancy near zero indexes.
On the other hand, it suggests that if we did less radical padding the effect of

convolution and consequent mixing around zero could be limited and the equality would
hold at least approximatively.
In any case, this means that if the squeezing preserves the shape of H exactly, it

inevitably introduces an error into the phase. This is a second reason why the response
shape is left free below 80 dB — it creates a room for phase correction. Otherwise, the
phase would be completely determined by (384).

6.4.2 Searching for the Filterbank

The NUFIBA filterbank is fully described by the list of poles and zeroes in its respective
blocks. Each block is characterized by a pair of complex conjugated poles and a pair of
complex conjugated zeroes. This comprises two complex numbers of absolute value less
than 1 (a minimum phase property). Those numbers are kept in polar representation
for each block.
To obtain the filter, I specified the cost function that measures how far the current

the configuration of zeroes and poles is from the desired shape (383) and used modi-
fied6 Brent’s method [51] for multidimensional search to find a minimum. The Brent’s
method performs a search similar to conjugate gradients but it does not need derivative
of the cost function, which makes it easier to use.
The cost function first computes complex frequency response of entire filterbank

on a grid of ‘measuring frequencies’. Then, for each band, it calculates the distance
(in decibels) from the desired shape (383) weighted so as to neglect differences from it
under -80 dB as described above.

6 My modification of Brent’s method allowed to constrain the search onto an interval in each di-
mension. This was used to ensure that zeros and poles stay within the unit circle.
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Fig. 46. NUFIBA amplitude response, wave delay and phase response. Five darker lines on the right
comprise the lead-in stage, while the lighter ones constitute the recursive stage.

Fig. 47. All NUFIBA channels for 9 recursive octaves. Compare with fig. 28. . 152
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Fig. 48. The channels of fig. 46 drawn over one another so that the departure from the target shape
would become visible.

Fig. 49. Difference from the target shape and from the average shape (light lines).
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Fig. 50. NUFIBA decay test. On the horizontal axis there is time measured in samples (so 48 k
corresponds to 1 second) whereas on vertical axis there is log2(|Ak(t)|), where Ak denotes k-th NUFIBA
output channel. We can see that the slowest channel decays below 2−20 in less than a second.

Fig. 51. Color lines represent individual filters, while the black dots represent measured noise floor.
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This is added to similar distance from the right half of (383), which is used to182 /

constraint the shape of low-pass filter taps.
Finally, neighboring filter shapes are moved (on a log scale) to lie on each other and

a distance of the complex responses is calculated for each measuring frequency. The
result is added to the total cost. This has to force phase responses to try to approximate
one another, as discussed above. A similar technique is used to match the last filter of
the recursive stage with the last filter of the lead-in stage.

The number of channels in the lead in stage was chosen to be 5. With CPO = 12
this makes 17 segments each made of 2 low-pass and 4 high-pass blocks. This leads to
17·6·4 = 408 dimensional search. Fortunately, many dimensions are nearly independent,
so it is possible to run local searches along these to quickly obtain initial guess for the
final global search. The optimization took about a day and the resulting filters can be
seen in figures 46–49.184 /

6.4.3 Testing the Filterbank

As pointed out in 4.13.6, the roundoff errors can be tricky in IIR filters, so it is a144 /

good practice to test the filter prior to actually using it. The testing program feeds the
filterbank with the unit impulse signal ~1. The outputs of all channels are then plotted
as a logarithms of their absolute value. This is shown in fig. 50. This plot can be used
to judge evenness of the channel’s decay rate as well as the filter’s floor level, where the
limit cycling takes place. For our purpose the filterbank passes this test.

The second test feeds the filterbank with a sine signal of specified frequency and
measures its output (after waiting some time for the transient response to vanish). It
plots the frequency response of the bank (which should be the same as in fig. 47) and184 /

the level of non-sine signal find in the output caused by roundoff errors. It can be seen
from fig. 51 that it is well below the quantization noise.

6.4.4 Hilbert Transforms

Each output channel of the filterbank is connected to the quadrature filter which recov-
ers analytic signal from it. The reason for this is twofold. First, it is used to compute
an envelope of each channel. Second, the phase information can be used on its own
to further refine the spectrogram or to measure frequency of steady tones beyond the
precision of NUFIBA channel spacing.

Each channel’s quadrature filter is implemented by the Hilbert transform (as ex-
plained in 4.11). However, as the channels are already narrowband, we do not need true124 /

Hilbert filter (309) which would be problematic because of its slow convergence. Equiv-125 /

alent function can be achieved with something that only approximates the Hilbert filter
well over the channel’s passband. This technique can reduce the number of filter taps
from several hundreds that would be needed for true Hilbert to just 11. The downside
is that each channel must have its own (different) filter centered over its passband. But
this is a little price to pay considering that it even does not affect the running time.

So how do we find the Hilbert filter? By a brute force search again. Now we
are going to search for a FIR filter with odd impulse response (so that its spectral
response would be purely imaginary). The 11-tap filter needs just 5 parameters to be
determined (the middle tap is always 0), which is pretty easy. Note that we do not
insist on even taps to be zero as it is in (309). The rationale is that we in fact search
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for (309) convolved with some band-pass filter and the convolution smears the (309)’s
response, making even taps possibly non-zero.
The cost function being minimized first evaluates the Hilbert filter response on a

grid in the desired interval of frequencies and measures maximum positive and negative
error in decibels. These two are squared and summed to form the basic cost. This is
further penalized if there are too large ripples (not only in the band of interest) or if
the response goes negative.
To help the optimizer from getting lost when it is far from the optimum, the

penalty is multiplied with mean quadratic error of the filter’s amplitude response from
the desired shape (i.e. 0 dB) in the desired frequency range — this guides the search
when the penalties are high.
The result of the search is summarized in the following program’s output. Note

that the filters in the lead-in stage receive rather inaccurate filters. Fortunately, the
recursive stage is acceptable. Also note that this is a maximum error, often found at
the edges of the interval (where the signal gets weak anyway), so the filters are not as
unusable as they look at the first sight. There is response of one of them in fig. 52, to . 189

illustrate the matter.

22653.0Hz: maximum error in 17750.4Hz..23326.5Hz is 34.508dB=5213.9766%
21381.6Hz: maximum error in 16754.1Hz..22690.8Hz is 2.564dB= 34.3403%
20181.5Hz: maximum error in 15813.8Hz..22090.8Hz is 1.674dB= 21.2515%
19048.8Hz: maximum error in 14926.2Hz..21524.4Hz is 1.198dB= 14.7913%
17979.7Hz: maximum error in 14088.5Hz..20989.8Hz is 0.815dB= 9.8369%

16970.6Hz: maximum error in 13297.8Hz..20485.3Hz is 0.723dB= 8.6748%
16018.1Hz: maximum error in 12551.4Hz..19544.2Hz is 0.335dB= 3.9358%
15119.1Hz: maximum error in 11847.0Hz..18447.2Hz is 0.125dB= 1.4468%
14270.5Hz: maximum error in 11182.0Hz..17411.9Hz is 0.027dB= 0.3162%
13469.5Hz: maximum error in 10554.4Hz..16434.6Hz is 0.006dB= 0.0680%
12713.6Hz: maximum error in 9962.1Hz..15512.2Hz is 0.002dB= 0.0223%
12000.0Hz: maximum error in 9402.9Hz..14641.6Hz is 0.000dB= 0.0029%
11326.5Hz: maximum error in 8875.2Hz..13819.8Hz is 0.001dB= 0.0116%
10690.8Hz: maximum error in 8377.1Hz..13044.2Hz is 0.001dB= 0.0164%
10090.8Hz: maximum error in 7906.9Hz..12312.1Hz is 0.002dB= 0.0202%
9524.4Hz: maximum error in 7463.1Hz..11621.0Hz is 0.008dB= 0.0958%
8989.8Hz: maximum error in 7044.2Hz..10968.8Hz is 0.014dB= 0.1606%

6.4.5 Running the NUFIBA-core

The NUFIBA-core consists of the nufiba filter followed by the Hilbert filters, produc-
ing complex-valued analytic signals. The samples of the analytic signal cn are then
recomputed into log-amplitudes an and normalized log-frequencies bn as follows.

an = 10 log10(1 + |cn|2)

bn = log2

(
Arg(cn+1/cn)

π 2
−(1+k)/CPO

) (385)

where n represents discrete time and k is the NUFIBA channel number (0 corresponding
to the highest one). In the spectrograms so far, an was drawn. The quantity bn measures
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how far off the channel’s center frequency the signal is. This is expressed in octaves,
so 0 means exactly the channel’s frequency, +1 one octave higher, -1 one octave lower.
Due to narrowband nature of NUFIBA, useful range of bn is about (−0.3, 0.3). Beyond
this the attenuation is too high for the output to be reliable (because of noise).
The advantage of the relative scale is that if the F0 has certain frequency mod-

ulation, its m-th harmonics is going to vary in frequency m-times as much but when
expressed by means of bn, the same sequence of numbers appears7.

Fig. 52. Amplitude response of Hilbert filter attached to NUFIBA channel number 6, the one with
center frequency 16018.1Hz. The blue lines indicate the width of the Gaussian shaped NUFIBA filter,
the short lines are offset from the center by the NUFIBA channel spacing, thus denoting centers of the
closest channels. The phase response is −π/2 everywhere.
Before passing the data to the subsequent processing, the spectrogram gets down-

sampled by 64 (for the highest channels) so that the resulting frame rate would be 750
Hz. Note that for the lowest channels this does not mean downsampling at all because
their sampling frequency is even lower than that (their samples just get repeated so
that the entire spectrogram would be of a single timescale).

Fig. 53. Example of amplitude (an) and frequency (bn) NUFIBA outputs.

The downsampling works by selecting the highest value in the interval in question
for an signals (to retain high SNR), and by LMS fitting of line segment thru the bn
samples. The average value of bn’s is used as the downsampled output, but only when
their mean square difference from the fitted line is below 1.5/CPO (which is 0.125 in

7 Apart from minor complication that the signal gets downsampled every octave and this must be
accounted for.
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our case). If it is above, artificially high value (say 1) is used, which leads to rejection
of the value as noise in later processing.
In figure 53 there is a frequency spectrogram (the lower one) together with its

amplitude counterpart. See how the formants that cannot be easily distinguished from
each other in the amplitude spectrum get separated in the frequency spectrum. Also
note that low intensity formants are clearly visible in the frequency spectrum too.
Unfortunately, there is also much noise there and so the frequency spectrum cannot be
used directly.

6.4.6 Notes on Future Filterbank Designs

Using higher Q10 would be possible but firstly, I did not want to stretch filter design
to the limits (steeper filters either require more zeros and poles or cannot capture the
required shape precisely) and secondly, the problem of visible harmonics of F0 would
be even worse, perhaps interfering even with F2 formant.
On one hand we need wide filters so that F1 would be directly readable but on

the other hand we need high Q10 to be able to separate close higher formants. The
question arises whether it would not pay off to use 2 filterbanks, one with high Q10 and
the other with low. Then, after finding F0 we could choose the resolution that best
suits the channel we are about to extract.
This is what I had in mind in section 5.8.4 when I was speculating about the role . 169

of OHC-in signals. If these could manipulate Q10 of the filters involved, the listener
could tune his filters to the speaker so that the formants would be optimally visible
just before the bands of F0 harmonics would appear. In any case, human filterbank
has lower Q10 at lower frequencies, thereby mitigating the problem of F0 harmonics on
average.
Future NUFIBA implementations may use several filterbanks with different Q10

filters, or these could be really non-uniform as in the real cochlea, or we could just try
to combine raw outputs from the neighboring channels to obtain wider bands when
these are needed. The mixing coefficients would be variable, serving the (theorized)
purpose of OHC-in fibers.
The last remark concerns the implementation. The future filterbank might try to

use differences of the neighboring low pass filter taps to obtain initial high-pass filtering
for free. The idea is that it would need fewer high-pass blocks then. However, the search
for the filterbank’s parameters will be more demanding (actually I have already tried
this but have not succeeded).

6.5 Blind Focusing

This section concerns with detailed description of how the echo suppression works. First
we need a little more math.

6.5.1 Definition Circulant Matrix

Circulant C is defined as an N×N matrix such that Cij = c(i−j)%N , where the vector
c is its zeroth column. We write circ(c) for such a circulant generated from c. Let
circM (c) denote N×M stripe made from first M columns of circ(c). It is also referred
to as a circulant despite not being a square matrix.
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6.5.2 Definition Toeplitz Matrix

An N×N matrix T such that Tij = ti−j+N−1, where t is its upper-left circumferential
vector of length 2N−1 is called the Toeplitz matrix. In another words, Toeplitz matrices
have constant diagonals whose values are determined by the vector t. For such a T we
write toep(t). We also write toepM (t), to denote N ×M Toeplitz stripe toepM (t) :=
ti−j+M−1. In this case, t would have only M +N − 1 elements.
6.5.3 Example Every circulant is also a Toeplitz matrix but not the contrary.

circ (〈1, 2, 3〉) =



1 3 2
2 1 3
3 2 1


 toep (〈1, 2, 3, 4, 5〉) =



3 2 1
4 3 2
5 4 3


 (386)

6.5.4 Notation Let us use diag(d) for a diagonal matrix D s.t. Dii = di.

The reason why we get so interested in circulant and Toeplitz matrices is that
they allow elegant formulation of convolution. For vectors x and y, the matrix product
circ(x)y is equal to circ(y)x = x∗y, where ∗ denotes cyclic convolution defined in 4.1.5.73 /

Moreover, for an N -tap FIR filter h and M + N − 1 long vector x being an excerpt
from a signal x̂, the M -element vector toepN (x)h in fact represents those samples of
signal x̂ ∗h, whose value does not depend on values of ~x beyond the excerpt (i.e. those
for which h remained inside x while computing convolution).

6.5.5 Theorem Circulant gets diagonalized by the discrete Fourier transform. For-
mally, for any vector c∈CN the following holds.

circ(c) = FN diag(d)FN where d =
√
NFNc (387)

Proof See 4.1.6, which is an equivalent proposition, already proven. Q.E.D.73 /

6.5.6 Note The last theorem shows that multiplying the vector by a circulant can
be done quickly via the FFT. The same holds for its inversion (if it exists): circ−1(c) =
FN diag

−1(d)FN . Although general Toeplitz matrix cannot be diagonalized the way
circulants can, we can still multiply Toeplitz times vector quickly by realizing that

circ



0
c1
γ
c2


 =




toep



c2
0
c1


 toep



c1
γ
c2




toep



c1
γ
c2


 toep



c2
0
c1







(388)

where c1 and c2 are N−1 dimensional vectors, γ is a number and the whole matrix
is 2N × 2N circulant. Therefore 6.5.5 can be used to carry-out multiplication with
N -dimensional vector of our interest, padded by N trailing zeroes, tossing away the
part of the result we are not interested in.
Sometimes it also comes in handy to approximate Toeplitz matrix T by circulant

C of the same dimensions, such that the quantity
∑
ij |Cij −Tij |2 would be as small as

possible. In fact, any matrix can be approximated by circulant in this manner and the
optimum is remarkable: The best approximating circulant can be obtained from the
source matrix A by averaging along its (circulant) diagonals. Formally:
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6.5.7 Theorem For any matrix A∈RN×N we have

argmin

~c

∑

ij

∣∣ circ(~c)ij −Aij
∣∣2


p

=
1
N

∑

i

Ai,(i−p)%N (389)

Proof Differentiating by cp and setting the result to zero, we get

∂

∂ cp

∑

ij

∣∣c(i−j)%N −Aij
∣∣2 =

∑

ij

2(c(i−j)%N −Aij) · I
(
(i− j)%N = p

)
(390)

where I(P ) := P ? 1 : 0 is the indicator function. This immediately gives the following.

Ncp =
∑

(i−j)%N=p

Aij (391)

Q.E.D.

6.5.8 Noise Canceling

Now we are far enough to reveal where we are heading to. First we are about to in-
vestigate noise canceling. This is not a blind technique but the rationale is to develop
technology that will be used in blind focusing later. The noise canceling is even worth-
while by itself in free-microphone dialog systems where it can suppress the computer’s
voice, so that the computer would not hear itself.
Consider the following situation. We have a real-valued signal a being transmitted

thru the loudspeaker to the room, where it gets recorded by a microphone as y. Let us
suppose that the recorded signal consists of external sounds z and reverberated copy of
a, here modeled as x∗a, where x is FIR approximation of the room’s impulse response8.
Therefore y = x ∗ a + z. Here, the a is the noise that we want to cancel in order to
learn about z. We don’t know x but, fortunately, we know the original a. We are going
to find x̂ such that x̂ ∗ a best approximates y in the least squares sense.

x̂ = argmin
x

∣∣∣∣ toepN (a)x− y
∣∣∣∣2 (392)

The noise canceled signal ẑ will then be y − toepN (a)x̂. Let us first develop how to
solve argminx || circN (a)x− y ||2, which is easier. It can be even the method of choice
if we knew that a is close to zero near its ends and so the wraparound would not cause
harm.

6.5.9 Solving Tall Circulant Systems of Equations

Let A := circN (a) be M ×N circulant matrix. Then ||Ax − y||2 = xTATAx + yTy −
2xTATy. Setting the gradient by ~x to zero, we get:

~0 = ∇x||Ax− y||2 = 2ATAx− 2ATy (393)

So for finding minimum we have to solve the following system of linear equations.

ATAx = ATy (394)

Note that the multiplications by vector and even the product ATA can be performed
quickly because A is circulant. The latter follows from the following observation.

8 Think of x being about 2 seconds long but still much shorter than the duration of signal a.
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6.5.10 Observation Let a∈RM . Then for N ≤M the N ×N matrix

(circN (a))T circN (a) (395)

is a Toeplitz matrix.

Proof Using the fact that

circN (a) = circ(a)
(

IN
O(M−N)×N

)
(396)

we get

circN (a)T circN (a) = ( IN O ) circ(a ∗ a)
(
IN
O

)
(397)

which means that the product is the upper left corner of certain circulant matrix, that
is obviously a Toeplitz matrix. Q.E.D.

Now we see that the ATA matrix is Toeplitz and we need to solve that system of
equations. If it was circulant, we could use its inversion right away, but this is not
usually applicable to Toeplitz.

6.5.11 Positive Semidefinite Toeplitz Solver

For this reason, I fell back to general method of conjugate gradients (consult [40] for
painless introduction into the topic). However, ATA is often ill conditioned a so the
method needs to be preconditioned, otherwise it would be too slow. Fortunately, cir-
culant approximation 6.5.7 suits this purpose well. Writing B for ATA and C for its
circulant approximation according to 6.5.7 the algorithm that converges to x, a solution
of (394) can be stated as follows.

r := y −Bx

d := C−1r

repeat until convergence:

α :=
rTC−1r

dTBd

x := x+ αd

w := r − αBd

β :=
wTC−1w

rTC−1r

d := C−1w + βd

r := w

(398)

Note that C−1 is also a circulant and that it can be quickly precomputed. However,
the Untransformed Preconditioned Conjugate Gradient Method (398) needs C to be
symmetric and positive definite as explained in [40]. So in fact we take Ĉ−1 instead of
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C−1 in (398), where Ĉ is obtained from C = F diag(h)F by by setting zero hk’s to 1
and non zero ones to |hk|. We don’t need to worry about the symmetry because ATA
is already symmetric, which is preserved by the approximation 6.5.7.
Also note that we need two matrix multiplications per iteration. The first one is

Bd (where B is Toeplitz) and the second (circulant) one is C−1w. The third, C−1r,
is in fact C−1w from the previous iteration. So only two multiplications have to be
performed (the first one taking 4N log2(2N) operations, whereas the second one only
2N log2N).

The recurrence should stop when rTC−1r falls below ε2r̂TC−1r̂, where ε is required
precision of the outcome and r̂ is the initial value of r. The result will then be stored
in x. Note that it does not make much sense using ε <

√
εm, where εm is the machine

epsilon introduced in 4.13.5. . 143

Empirically, it takes tens to several hundreds iterations of (398) before x converges
to 6 significant digits (starting from ~0), depending on the condition number of ATA.

6.5.12 Solving Tall Toeplitz Systems of Equations

Let us return to our original problem of solving

toepN (a)x ≈ y (399)

in the least square sense (392), where a∈RM+N−1 and y∈RM . The method works by
extending Toeplitz stripe on its top to the circulant stripe and extending the right hand
side as well, so we would have

circN (a)x =
(
z
y

)
where z∈RN−1 (400)

If z was already set to (IN−1O) circN (a) multiplied by the solution x, then the solution
of (400) computed by (394) would give the correct answer to the original Toeplitz
problem.

Of course we don’t have such z but we can obtain it in an iterative way, starting
from initial guess x and q := x, using the following iteration:

z := (IN−1 O) circN (a)
(
x+ β(x− q)

)

w := argmin
x

∣∣∣∣
∣∣∣∣circN (a)x−

(
z
y

)∣∣∣∣
∣∣∣∣ solved as (394) by (398)

q := x

x := w
yT toepN (a)w
|| toepN (a)w||2

(401)

The parameter β∈ [0, 1) controls so called Richardson Extrapolation, that accelerates
the convergence. I ramp it from 0.4 to 0.93 in first few iteration, letting it 0.93 for the
rest. The method usually converges in 10 to 20 iterations but note that each iteration
of (401) involves possibly hundreds of iterations of (398). The last line of (401) scales
the vector w to x = αw so that ||toepN (a)x− y|| would get as small as possible.



195 6 NUFIBA Front End

6.5.13 Blind Focusing

The previous method can be used to remove known computer’s voice from the recording
and it actually works quite well suppressing it by 50 to 70 dB, depending on quality of
the loudspeakers. But it does not help in removing echo from the recordings because
it does not know the impulse response of the room.
With a single microphone the situation is helpless in this respect. On the other

hand, the reverb is a real problem as it smears fine formant movements as can be seen
in fig. 59, making phonemes look similar to one another.203 /

So, as we know that the exact solution is impossible, we might be grateful for
an approximative one. Similar problems in computer vision led to the development of
so called blind deconvolution techniques. These try to estimate the repairing impulse
response from general knowledge of the distortion mechanism and general knowledge
of the class of clean signals. The method of Blind Focusing works similarly, belonging
among blind deconvolution techniques.
The idea is that even if we cannot know true impulse response we still know that

the restored signal should be a voiced phoneme from time to time and voiced phonemes
tend to be of pulsed nature. Provided that we knew true positions of glottal pulses we
might want to find an impulse response that, when convolved with the smeared signal,
reflows the energy towards these pulses.
Of course we would not know exact positions of these pulses, but we can first

guess them from F0 (that can be measured with some success even in highly damaged
recording), focus the signal somewhat and repeat the whole process. In later stages we
may even use NUFIBA output to further improve these positions.
Let a∈RM+N−1 represent the measured signal, x∈RN−1 the reconstruction im-

pulse response and w∈ [0, 1]M the weighing vector of desired glottal pulse positions.
Then the method will maximize the following

x̂ := argmax
x

∣∣∣∣w � (toepN (a) · x)
∣∣∣∣2 with respect to

∣∣∣∣ circN (a) · x
∣∣∣∣2 = ||a||2

(402)
The first part favors those vectors x that move the signal a∗x towards regions of high wn
values (note that wn∈ [0, 1]). The second part then ensures the conservation of energy
(the first part would diverge without it). The reason for using circulant matrix for that
is that Toeplitz matrix could hide up to N − 1 samples depending on particular value
of x, which would be incompatible with ||a||2 that uses entire a for energy calculation.
Circulant also leads to faster algorithm.
The downside of using circulant is that it mixes data from the opposite ends of

vector a. But this can be avoided by defining the first N−1 places in a as zeroes. Then
the wrap-around would not harm. This measure does not affect the first formula at
all because the corresponding wns will be also set to 0 so that this part of a would
be ignored. Moreover, the Toeplitz matrix in the first formula can also be superseded
by circulant, which only makes the vector w longer by N−1 elements. These have
to be placed before the original w and set to 0. So, the new w has 2N − 2 zeroes at
the beginning. Having this in mind, we can rewrite (402) into the following equivalent
form.

x̂ := argmax
x

xTATWAx with respect to xTATAx = aTa (403)
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where A = circN (a) and W = diag(w) and w∈RM+N−1 with first 2N − 2 places set to
0, and first N − 1 places of a being zeroes.
Now we use the method of Lagrange multipliers41 to locate the maximum. In . 129

accordance with (316), there is a single constraint function g1(x) = xTATAx − aTa, . 129

hence the set of allowed solutions is A = {x∈RN | xTATAx = aTa}. For the method to
work we need to know that ∇g1[A] 63 ~0. If the set ∇g1[A] = {2ATAx | xTATAx = aTa}
contained ~0 then xTATAx = ||a||2 = ~0, which means that we can use the method
only on non-zero input signals a. For those the Lagrange multipliers give the following
system of equations (in x and λ) as a solution.

ATWAx = λATAx xTATAx = aTa (404)

Any solution of (404) represents a stationary point of the original constrained problem,
which includes both its minimum and the maximum. Also note that the value of λ is
bounded between 0 and 1, which can be seen from multiplying (404) by xT from the
left.

xTATWAx = λxTATAx = λaTa (405)

Writing b for Ax, this gives

λ =
bTWb

bTb
=
bTWb

aTa
(406)

Since W =diag(w) and wk∈ [0, 1], we can see from the first equality that λ∈ [0, 1]. The
second equality provides interpretation of λ as a ratio of energy of the focused signal
multiplied by the weight to the original signal. By (402) we want the solution with
highest possible λ.
The equation (404) is known as the Generalized Eigenproblem, described in [65].

For regular ATA it can be reduced to the following equivalent ordinary eigenproblem.

(
ATA

)−1
ATWAx = λx (407)

6.5.14 Theorem (Power Iteration) For symmetric positive semidefinite matrixM ,
the iteration

~vn+1 :=
M~vn

||M~vn||
(408)

converges towards the eigenvector belonging to the highest eigenvalue for any starting
vector ~v0 that is not perpendicular to that highest eigenvalue eigenvector.

Proof Due to symmetry of M , its eigenvectors fill the whole space and can be chosen
to be mutually orthogonal. Let us have them stored as columns in orthonormal matrix
V . Then Λ := V TMV is diagonal matrix diag(λ) of M ’s eigenvalues. Due to M being
positive semidefinite all λk ≥ 0. The recurrence can then be rewritten into

~wn :=Mn~v0 = V ΛnV T~v0

~vn :=
~wn

||~wn||
(409)
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It is obvious now, that the highest eigenvalue dominates the Λn very soon (actual rate
depends on its ratio with the second highest eigenvalue). Then, if V Tv0 has a non-
zero component for the highest eigenvalue eigenvector, it would be selected by V Λn in
V ΛnV Tv0. Q.E.D.

Although both ATA and ATWA are symmetric and positive semidefinite their
product might not be symmetric. Nevertheless we can, at least theoretically, factor
ATA as V diag(λ)V T, where λk ≥ 0. As we assumed in the beginning that ATA is
regular we even have λk > 0. Now, defining4 regular matrix R := V diag(λn.

√
λn), we42 /

can write ATA as RRT. Multiplying (407) from the left by RT and defining y := RTx
we obtain

R−1ATWAR−T y = λy (410)

which is an ordinary eigenproblem with symmetric matrix M := R−1ATWAR−T. The
symmetry implies that all its eigenvalues are real9. Moreover they are all in the interval
[0, 1] because (410) is equivalent with (404) for which it was shown. Therefore M is
positive semidefinite and we can use 6.5.14 to find the solution. n-th iteration (before
normalization) reads as

~xn = R−TMnRT~x0 = R−TR−1ATWAR−TMn−1RT~x0

= (ATA)−1ATWA
(
R−TMn−1RT~x0

)
=
(
(ATA)−1ATWA

)n
~x0

(411)

This shows that even the direct iteration (that does not need R) is convergent. In fact,
all that complications with R were done only to prove that it is so. One more nuisance
must be dealt with. Often ATA is singular and the above theory would fail. The
remedy is in taking ATA+ δI, where δ > 0 is small number, instead of it. As ATA was
symmetric positive semidefinite, adding a small diagonal to it makes it positive definite
and therefore regular10. It even speeds up the convergence of computing (ATA)−1 by
(398). However, it must not be exaggerated – too large δ leads to wrong solution193 /

(usually the focusing filter comes out as very narrowband, turning the restored signal
into incomprehensible whistling). Note that the presence of δ changed the energy
conservation condition into

|| circN (a)x||2 + δ||x||2 = ||a||2 (412)

Values of up to about 2% of (ATA)00 seem to work well on real sound signals.

6.5.15 Blind Focusing Algorithm

Let me summarize the blind focusing algorithm here. Its inputs are a∈RM — the
signal, w∈ [0, 1]M — the weighing vector, N < M — the size of the output, α > 0 —
the relative regularization factor (value of 0.02 works well), β∈ [0, 1] — the Richardson
extrapolation strength (0.4 seems to work fine) and x∈RN , x 6= ~0 — the initial guess.

9 For matrix A = AH, we have λ = λ for its every eigenvalue because xHxλ = xHAx = xHAHx =
(Ax)H x = (λx)Hx = λxHx. Therefore every λ is real.
10 Symmetric positive semidefinite matrix M can be written as V diag(λ)V T, where V are or-
thonormal matrices of its eigenvectors and λk ≥ 0. Obviously M + δI = V diag(λ)V T + δV V T =
V (diag(λ) + δI)V T, which makes all its eigenvalues positive, thus M + δI is regular.
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It produces output x∈RN such that circN (a)x would represent the focused signal. The
first N−1 places of w should be always zero, so that not yet fully started convolution
a ∗ x would not bias the results. For the same reason, the initial N−1 samples long
segment of the focused signal circN (a)x should be discarded because of wrap-around.
The algorithm proceeds as follows.

A := circN

(
O(N−1)×1

a

)

W := diag
(
O(N−1)×1

w

)

B :=ATA

δ :=αB00

y :=x

repeat until convergence:

? get z by solving (B + δI)z = ATWA
(
x+ β(x− y)

)
using (398)

y := x

x :=
z

||z||

(413)

6.5.16 Note The method depends on the fact that all eigenvalues lie in [0, 1]. By
taking B + δI instead of B these may change and we have to check the impact of this.
Writing (404) with δ-regularization, multiplied by xT from the left, we get

xTATWAx = λxTATAx+ λδxTx (414)

Which implies

λ =
xTATWAx

xTATAx+ δxTx
(415)

The denominator is even larger than in (406), which means that λ∈ [0, 1]. Thus it is
safe to use δ-regularization in (413).

6.5.17 Dual Blind Focusing

As already mentioned, the Lagrange multiplier method captures the maximum as well
as minimum of (402). It means that we can tackle the focusing task from the opposite
end as well. Instead of marking regions in time whereto the energy of a∗x should flow,
we mark the regions that we want to avoid. This can be achieved by searching for the
eigenvector belonging to the least eigenvalue.
All eigenvalues ofM := (B+δI)−1ATWA are between 0 and 1 by (415). So are all

eigenvalues of I−M with the distinction that the least eigenvalue ofM got transformed
into the greatest eigenvalue of I −M , which enables us to adopt the algorithm (413)
for finding the least eigenvalue eigenvector. All that has to be done is inserting the
following line right after the ?-labeled line.

z :=
(
x+ β(x− y)

)
− z (416)
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This make z equal to (I−M)
(
x+ β(x− y)

)
=
(
I − (B + δI)−1ATWA

)(
x+ β(x− y)

)
,

which guides (413) towards the least eigenvalue eigenvector.
Note that the dual approach for δ = 0 is formally equivalent to the original method

used with I −W because

(
ATA

)−1
AT(I −W )A =

(
ATA

)−1
ATA−

(
ATA

)−1
ATWA = I −

(
ATA

)−1
ATWA
(417)

But as W is required to have its first 2N − 2 places zero, the two methods are in fact
different.
Practically, the dual method seems promising as it does not need exact positions

of glottal peaks in W , getting by with marked regions of silence. These are easier to
extract from the reverberated sound. Unfortunately, I found that the method converged
much more slowly than the primal algorithm 6.5.15 – probably the eigenvalues of (404)196 /

are gathered near 0, slowing down convergence. So will be subject of future research,
namely if there is a meaningful way of combining primal and dual methods. The current
system uses primal method only.

6.5.18 Limitations

Both the noise canceling and focusing assumes linearity (which usually holds in case of
rooms and modern recording equipment), constant sampling frequency (noise canceling
additionally requires input to be sampled synchronously with the output11) and that
the impulse response does not change over time. The last requirement is the most
problematic. If anything moves in the room the impulse response changes. Slight
changes may be tolerated but as these accumulate over time we cannot use very long
input signals a. The input has to be cut in segments of reasonably constant reverb.
But this effectively limits the length of reconstruction response x as this has to be at
least 10 times shorter that signal a.
In fact, I witnessed noticeable overtraining of noise canceling even if the response

was 20 times shorter than the signal. The impulse response x̂ sort of learned how to
create not only a ∗x but also an approximation of y thru interference with a. So in the
result y− a ∗ x̂, a part of the y signal was missing. I could tell that by listening to a ∗ x̂
in which traits of y could be heard from time to time.
Another limiting factor is that many sounds do not come directly from the mi-

crophone but from audio files, such as mp3. Due to compression, these damage fine
structure of reverberations by non-linear and time-variant distortion, which further
limits effectiveness of the method.
All these factors limit practical length12 of x to about 0.1–1 s, depending on sound

quality. For longer reverberations different method, such as time masking, has to be
used. Nonetheless even the masking profits from partial sharpening that the blind
focusing is able to provide.

11 For that reason, noise canceling would fail if the input was recorded with physically distinct sound
card than the output was generated. Each of the cards has its own oscillator and these are likely not
to run at precisely same frequency.
12 Note that x is a FIR filter, and therefore it undoes IIR smearing, which can have much longer
effect the the length of the FIR, depending on closeness of its poles to the unit circle. Also note that
this IIR is causal minimum phase filter (section 4.7).101 /
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6.6 Driving the Focuser

This section answers wherefrom we obtain the weighing vector w.

6.6.1 Pulse Shape

Suppose we knew instants of glottal closures. How should we shape w so that the blind
focusing would concentrate the energy of the signal around these instants? Obviously,
w should be composed of pulses, each having its maximum at the instant of glottal
closure.

But as we can expect that the there will always be errors in determining exact
closure instants we also need sufficiently forgiving pulse shape for which these small
errors would not lead to a dramatic change of the outcome.
I will provide heuristic argument, why the shape of the pulse should be a falling

exponential, by investigating what happens with two glottal pulses when weighing
function w gets shifted for the second one by small ∆t (shifting w as a whole does
not harm at all — as long as x is long enough it just shifts is in the same direction
to compensate). As (402) in fact maximizes (406) we can define the following cost . 195

. 196
function

ϕ(x,∆t) :=
||(a ∗ x)� w(∆t)||2

||a ∗ x||2 (418)

where w(∆t) := s+ s[−T0−∆t] is a sum of two instances of the shape s we are looking
for. The first one is centered at zero, while the second at T0 with the ability to move
by ∆t. Now we want a shape that preserves the following property

ϕ(x, 0) < ϕ(z, 0) ⇒ ϕ(x,∆t) < ϕ(z,∆t) (419)

for every reasonably small value of ∆t. This would ensure that the best x remains
stable despite small perturbations. Let us require even more, namely

ϕ(x, 0)
ϕ(z, 0)

=
ϕ(x,∆t)
ϕ(z,∆t)

(420)

Expanding the right side, writing α for the left side, we get

α||(a ∗ z)� (s+ s[−T0 −∆t])||2 = ||(a ∗ x)� (s+ s[−T0 −∆t])||2 (421)

Rearranging and assuming that the two copies of s do not interfere (being zero every-
where except close vicinity of the glottal pulse), we get

α||(a∗z)�s||2+α||(a∗z)�s[−T0−∆t]||2 = ||(a∗x)�s||2+||(a∗x)�s[−T0−∆t]||2 (422)

Now assuming that sn = β−n for a short interval after zero, being zero elsewhere and
that x and z are already so close to the solution that the signals a ∗ x and a ∗ z are
practically zero except certain interval after the glottal pulse we can write (a ∗ z) �
s[−T0 −∆t] as (a ∗ z)� s[−T0]β∆t. Using the following definition

A1 := ||(a ∗ x)� s||2 A2 := ||(a ∗ x)� s[−T0]||2
B1 := ||(a ∗ z)� s||2 B2 := ||(a ∗ z)� s[−T0]||2 (423)
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(422) leads into
αB1 + αB2β2∆t = A1 +A2β2∆t (424)

or

αB2

(
B1
B2
+ β2∆t

)
= A2

(
A1
A2
+ β2∆t

)
(425)

The last formula holds for ∆t = 0 as it is equivalent to (420), under the assumption of
locality of s, a ∗ x and a ∗ z. Moreover let us assume that the first pulse a ∗ x is very
similar to the second one (a ∗ x)[−T0], and likewise for z. Then A1/A2 ≈ B1/B2 and
both sides of (425) could be approximately canceled regardless of value of ∆t, provided
that it was reasonably small. This finishes heuristic argument why I use decaying
exponentials in the weighing vector w.
Few practical things remain to be said. Firstly, the focusing performance was

found to be nearly independent of the rate of fall β. It is currently set to decay to 1/32
of the starting value after 10 ms. Moreover the whole w is delayed by 1 ms. This is
to accommodate for errors in glottal pulse timing. As the response x is finite it has
xn = 0 for all n < 0. If there would be systematic error in glottal pulse tracking it
could mean that the optimal solution would like to use negative indices in x. Shifting
w by 1 ms creates 1 ms safety margin at the beginning of x for that.

6.6.2 Finding the Pulses

The pulses are found by the following procedure. First, the simplified implementation
of the YIN pitch tracker [13] is run on the input to assign estimated F0 frequency to
every 10ms block of the signal. These blocks are then examined to remove values based
on too weak or too loud (clipped) signal. These block will be marked as unvoiced. This
is also done with the consecutive blocks whose F0 changes only by ±1 when expressed
as a period in number of samples (at 48 kHz sampling rate). No human is able to
produce such stable F0 but it can ‘appear’ in the signal due to strong resonant echo. If
it was used to create w it would baffle the focuser completely — that is why it has to be
removed. Then, the outliers are removed by interpolation with their neighbors. After
that, blocks with F0 > 640Hz are marked as unvoiced. Finally, contiguous regions are
identified and shortened by 10 ms on both ends because it is believed that upon the
start and at the end the signal to noise ratio is worse than in the middle.
The estimated glottal periods are then used in selection where to place glottal

closure instants as follows. First the signal is preemphasized by (232). Then the97 /

absolute value is taken of its samples and it is processed by a floating thresholding that
works the following way. If the current threshold tn is greater than current signal xn it
falls exponentially as tn+1 := αtn, where α is set to decay to 1/2 over the period time
supplied by the pitch tracker. Whenever xn > tn, the tn is set to xn and output spike
is produced as zn := xn (at other instants the output zn is zero). At the same time all
outputs zm for m < n that lie below a line that crosses a zero at 40 % of the period
duration (but at least 1 ms) are reset to 0. This removes initial oscillation retaining
only the main peak.
Then a checking phase is run that searches for glottal periods with more then one

non-zero zk. If such a period is found the it gets square-rooted. As the analyzing
window slides by 10 ms steps, it may mean for long periods that a single value of zk
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gets square-rooted several times in a row. This measure has to limit the impact of
errors in F0 tracking.
In the next step, non-zero values of z get changed to their logarithms, so that the

pulses with less amplitude (and hence worse SNR) would be taken proportionally to
their information content.
Finally the exponential decays are added after the non-zero zk’s to create w, as

described in previous section and whole w is delayed by 1 ms.
As can be seen, this method is rather ugly and should be replaced by something

theoretically grounded. Certainly, there is a room for improvement and further research.
For the time being it should be regarded as a baseline procedure which nevertheless
works as will be demonstrated in the following section.

6.6.3 Demonstration

Usually, the initial estimate of glottal closures tends to be very unreliable. Conse-
quently, the improvement is often hardly visible at first. To overcome this, the focusing
has to be performed in several stages using the result from the preceding stage for
creating better w to perform new focusing on the original signal (i.e. not the one from
the previous stage — this is only used for better estimate of glottal closures). After
repeating this 5 or 6 times, the improvement can be clearly seen (and heard).

Fig. 54. Original signal. It is actually longer than what fits in here, lasting almost 30 seconds. These
30 seconds are used in the focusing as a single block without any further subdivision.

Fig. 55. The same signal artificially distorted by simulated echo and additive Gaussian noise with
σ = 120 (the samples are regarded as 16 bit signed integers). Formant movements became unclear.

Fig. 56. Focused with N = 4096, α = 10−6 and β = 0.4 by 4 stages, totally using 352 iteration of
(413) each using about 300 iterations of (398) on average.

. 198
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Fig. 57. Upper bound on performance of the focuser. The glottal pulse positions were obtained from
the clean signal. It took 35 iterations of (413), each involving about 245 iterations of (398) with
regularization factor α = 0.02, Richardson extrapolation factor β = 0.4 and the length of the filter
N = 16384 samples.
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Fig. 58. Absolute limit on performance of any linear method that minimizes mean square error. The
original signal was used as y in (392) to plot a ∗ x. For N = 16384, it took 29 iterations of (401), each

192 /
194 /

using 420 iterations of (398) on average.193 /

Fig. 59. This is how the sound re-recored with omnidirectional microphone looks like. The reverb and
noise completely took over the formant structure.

Fig. 60. Focused by 6 stages, N=16384.

Fig. 61. Upper bound on performance of the focuser, N = 16384, α = 10−6, β = 0.4.

Fig. 62. Absolute limit on any mean square error method. For N = 16384 it took 28 iterations of
(401), each requiring 200 iterations of (398) on average.

The following spectrograms show the original clean recording, artificially distorted
version thereof and finally the same recording aired to the room and recorded again
together with heavy reverb and background hum of the computer.

It can be seen that the method improves readability of quick formant glides,
whereas the quality of fricatives seems to get worsened. Probably there should be
different mode of w-shaping when dealing with fricatives. Unfortunately, this (apart
from low speed) currently limits practical usefulness of this method.

6.7 Noise Following

Since learning of all possible combinations of all noises and all reverberations and all
utterances is intractable, we need a way to treat missing information when only separate
learning of signals and channel distortions would be used. Ideally the channel distortion
should be learned during the recognition phase so that it would quickly adapt to any
channel.

Current solution is still far from this ideal. It just tracks minimum of each NUFIBA
channel 800 ms to the past and anytime the signal comes closer than 3 dB to this limit,
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it is marked as noise. This is usually only effective against constant periodic noises,
such as 50 Hz mains buzz.

6.8 Smoothing

Before the spectrogram can be used, we have to remove effects of F0 from the it first.
This is achieved by tracking F0 and running cosine window along each channel, tuned
according to current F0 such that the it would act as a notch filter for F0. Moreover
the averaging is being done before the logarithm is taken from the NUFIBA output.
For that reason it works as if it performed soft-max function in dB scale, effectively
removing glottal pulses from higher formants. Towards lower frequencies the method
also tracks F0 harmonics, linearly interpolating the space between them, down to the
second harmonics (the first one is discarded).
This procedure transforms the original pulsed spectrogram into smooth image

of moving formants. Note that F0 value is retained sideways as it is needed to tell
voiced/unvoiced phones apart and in tonal languages its value even determines the
phone.

6.9 MMI Criterion of the Output Alphabet

Let W
CA−→ A

DΛ−→ Ŵ be a Markov chain of random variables (see (103) and 3.2.35 to . 55
. 56

refresh what the Markov chain is). The chain represents the channel over which the
words are being sent (for sake of simplicity we are assuming these to be independent).
The random variableW represents the source of the words. The first arrow indicates the
channel, which involves not only the propagation of sound in the air and its recording
but also entire action of the NUFIBA front end. That is why the channel is parametrized
by the NUFIBA output alphabet A. Random variable A represents the sequence of
symbols from A that was generated by the given input word. The channel DΛ is the
speech recognizer which translates A into Ŵ .
Now we want to make a selection of A such that the probability of error would be

minimal. From Fano’s inequality 3.3.11 we get that the probability of the word error . 63

is bounded from below by

Pe ≥
H(W )−H(Pe)− I(W ;A)

log2#W
≥ H(W )− 1− I(W ;A)

log2#W
(426)

Therefore, it seems reasonable to choose the alphabet A so as to maximize I(W ;A). Of
course it does not say anything about the maximum probability that the error occurs.
It does not guarantee better performance, it merely removes obstacles for it.

6.9.1 Vector Quantizer

Due to the lack of time, the MMI criterion was not used and ordinary K-means vector
quantizer was used instead.
The letters of the acoustic alphabet are created by clustering the vectors made of

20 consecutive slices of the spectrogram. The windows moves by 10 slices in runtime.
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This leads to 75 acoustic letters per second. Each output letter of A is generated by
standard k-means clustering with Euclidean distance:

ρ(A,B) =
∑

ij

|Aij −Bij |2 (427)

where A and B are slabs of 20 consecutive frames. The pitch information that was kept
aside is added as an extra coordinate after that.

6.10 My Contribution

The things presented in this chapter are my work, this chapter being central to this
thesis. Although the filterbank approach is not really a new idea, its combination with
Hilbert transforms, echo suppression, noise floor tracking and discrete output alphabet
creates a genuine combination that has not been tried yet, as far as I know.
Moreover the method of blind focusing via generalized eigenvectors is all my in-

vention, probably new to signal processing.
Finally, although the MMI criterion for acoustic alphabet selection has been al-

ready published in [54], it was derived there by low level analysis of neural network
they used as a classifier and it depended on certain plausible assumptions.
My explanation, which uses Fano’s inequality is fully general, independent of the

classifier type and other special assumptions.
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7 Acoustic Model

The acoustic model is based on a believe that more important things in speech happen
when the sound is changing than when it is steady. That change, being sort of a
gesture of our articulation organs. And gestures needs movement, even if we just wave
our hand. For this reason, I do not model individual phonemes but rather transitions
from one phoneme to another. I call these transitions diphones. So, each model in fig. 63
represents one such transition. The steady parts of phonemes are mainly captured by
the first loop of each model and for that reason, that loop may be shared among those
that transit from the same phone. This loop is intended to correspond to the middle
a phone. The other four states model the transition itself. Each diphone model’s end
is connected to every diphone beginning by a null arrow. These represent “language
model”, which is equivalent to 4-gram (4-phone) model.

Fig. 63. Diphone acoustic model. Filled circles repre-
sent states, each outline circle represent the correspond-
ing state on the left (as if it was drawn on a cylinder).
Each transition from one phoneme to another (includ-
ing silence) has its own HMM. HMMs whose beginning
belongs to identical phone are grouped together, shar-
ing the loop in the first state by tying. Each solid arrow
represents all symbols of the acoustic alphabet, each of
them having attached the probability of traversing that
arrow and emitting that symbol. Dashed arrows repre-
sent null transitions (with assigned probability of this
happening). The sum of the probabilities of all letters
on all arrows emanating from a single state plus the
sum of probabilities of null arrows emanating from this
state is one.



8 MMI Clustering and Class-
Based Language Model

This chapter closesly follows my article [44]. This is also the only part of my thesis
that has been implemented so cleanly that I dared to release1 it under the GPL licence
as a language processing tool.

8.1 MMI Classes

Now a classical method of data clustering, called Maximum Mutual Information Clus-
tering was introduced in [47] in a context of language modeling. The original article
contained some cues concerning its implementation. These are carried out in detail
here, together with some new tricks. The results of the test run on 110M words long
Czech National Corpus are briefly described then.
The background idea of Maximum Mutual Information Clustering is in an intuition

that a given word is more ‘interchangeable’ with some words than with the others.
Therefore it should be possible to define word classes, lumping together the words
which often appear in similar contexts. Then, we could work with these classes instead
of words in estimation of n-gram probabilities. As there will be fewer classes than
words, we can expect the probability estimates to be more reliable than those that are
using words directly. Recall formula (5).19 /

8.1.1 The Model

More formally, let us assume, that we are given the set V of possible words, together
with a joint probability P0(vk, vk−1), meaning how probable it is to encounter a fixed
pair of consecutive words (vk, vk−1) in typical input text 〈v0 . . . vM 〉. Then, for sake of
simplicity, we define probability P (w0 . . . wN ) of a word sequence 〈w0 . . . wN 〉 to be

P (w0) · P (w1, . . . , wN |w0) := P (w0) ·
N∏

k=1

P1(wk|C(wk)) · P2(C(wk)|C(wk−1)) (428)

where C is the class function C : V → P(V ) satisfying C(x) ∩ C(y) = ∅ for any x, y
such that C(x) 6= C(y), and ⋃x∈V C(x) = V . Probabilities concerning the set of words
are defined as one would expect:

Pc(A,B) :=
∑

a∈A, b∈B

P0(a, b) for sets A,B ⊆ V

P1(x | C(x)) := Pc({x}, V )
Pc(C(x), V )

P2(C(x) | C(y)) :=
Pc(C(x), C(y))
Pc(V,C(y))

(429)

1 http://ufal.mff.cuni.cz/tools.html/mmi.html
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Our goal is to select function C so as to maximize P (w0 . . . wN ) for some heldout data
〈w0 . . . wN 〉. This is equivalent with maximizing logarithm of P (w1 . . . wN | w0), which
leads to

L(C) :=
N∑

k=1

(
log2 P1(wk | C(wk)) + log2 P2(C(wk) | C(wk−1))

)
=

= −
(

−
N∑

k=1

log2 Pc({wk}, V )
)
+

N∑

k=1

log2
Pc(C(wk), C(wk−1))

Pc(C(wk), V ) · Pc(V,C(wk−1))

= N ·
(
I
(
C(w0), . . . , C(wN−1) ; C(w1), . . . , C(wN )

)
−H

(
w1, . . . , wN

))

(430)

where

I
(
C(w0) . . . C(wN−1);C(w1) . . . C(wN )

)
=
1
N

N∑

k=1

log2
Pc(C(wk), C(wk−1))

Pc(C(wk), V ) · Pc(V,C(wk−1))
(431)

is cross mutual information and H
(
w1 . . . wN

)
= − 1

N

∑N
k=1 log2 Pc({wk}, V ) is cross

entropy. Now it can be clearly seen where the name for the method came from. All we
have to do is to find the mapping C maximizing mutual information of some training
data (where we have estimated P0) versus some (different) heldout data, and the result
will be one that maximizes probability of heldout data in the framework of our model.
But, unfortunately, I am not aware of any reasonably fast algorithm, achieving

this. It is clear that we have to back slightly off the optimality requirement for sake of
practical feasibility. The next section explains how this can be done.

8.2 MMI clustering method

The MMI clustering method was introduced in [47] and is also described in [39] The
key idea is to use the same data for P0 estimation as well as C selection. This greatly
simplifies algebra and also alleviates the need for probability smoothing required by
the original formulation (which was needed there so that we would not get log2(0)
somewhere on the heldout data). On the other hand it is not very natural solution
and has to be commented, at least: Working on the single data set means that the
optimal classes become the singleton classes, one for each word. But this is not what
we want. Here, the second idea takes place: Instead of maximizing L(C) on the heldout
data, we will try to keep L(C) as high as possible for the preselected number of classes,
putting aside the question of how do we discover the right number of them. Still it
is too difficult to be done on a computer except for very small input. So we back-off
from the optimality even more and instead of trying to find the right classes, we will
use eager solution working in a bottom-up way, building a forest of classes (eventually
ending with one big classification tree).
Suppose we have the input text ~w = 〈w0 . . . wN 〉 and define co-occurrence matrix

cyx in the following way:

cyx := #{k∈ [1, N ] ∩ N | wk = y, wk−1 = x} (432)
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Then we assign P0(y, x) to be cyx/N . For a fixed input text ~w and fixed class map-
ping C : V → P(V ) we define I to be N -times the mutual information, i.e. N ·
I
(
C(w0) . . . C(wN−1) ;C(w1) . . . C(wN )

)
, which can be expanded as follows.

I := N · I(. . . ; . . .) =
∑

X,Y ∈Rng(C)

(∑

x∈X
y∈Y

cyx

)
log2

Pc(Y,X)
Pc(Y, V ) · Pc(V,X)

(433)

Note that we treat 0 log2 0 as 0 here, to make (433) equivalent to the original cross-
entropy formulation (with P0 estimated on the same data). We will only need special
case of (433), for C that maps each word to its singleton class, i.e. C(v) = {v}. This
gives the following formula.

I :=
∑

x,y∈V

cyx log2
N · cyx
cy• · c•x

(434)

8.2.1 Basic algorithm

The following pseudocode describes how a simple clustering can be done. Its input is
considered to be the matrix cyx set up by (432) and indexed by words w ∈ V . For sake
of simplicity we treat the words as numbers from 1 to2 A (the resulting classes will
then have numbers from A+ 1 on). Function I(c) is defined by formula (434).
Note that not all the words are being classified. This is because rarely appearing

words (less than T-times, T being around 10) are too sparse to be classified reliably.
Nevertheless, they are still in cyx matrix to help the classification of other words. For
sake of brevity, the algorithm does not build the tree, it only prints the history of
merges as the tree can be easily reconstructed from it.

set(int) active={ y | (sum a : (c[y,a]+c[a,y])) >= 2*T }
for(n=A+1; #active>1; n++){
{l,r}=argmax {y,x}, x in active, y in active : I(merge(c,y,x,n))
c=merge(c,l,r,n); active \= {l,r}; active U= {n}
output("merging %d and %d into %d", l,r,n)

}

where merge() is

merge([M,M]int c, int k, int l, int n):[M,M]int
{
for x in M \ {k,l} {
c[n,x]=c[k,x]+c[l,x] /* set M is assumed to be large enough */
c[x,n]=c[x,k]+c[x,l] /* to hold all the new classes */

}
c[n,n]=sum (a,b) in {k,l}*{k,l} : c[a,b]
for a in M { c[k,a]=c[l,a]=c[a,k]=c[a,l]=0 }
return c

}

2 Unlike in the rest of this book, this matrix does not get indexed from 0. It stems from the imple-
mentation which uses zero index for special purposes. Although it could be easily reindexed here I did
not want to introduce formal discrepancy between the algorithm and its implementation as this that
could possibly lead to erros later, when someone would try to change the program.
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8.3 Optimizations

The above algorithm has a complexity of Ω(C5) where C = #active is the number
of words being classified. Optimizations are therefore necessary. The first step is to
minimize the loss of I() occurring after the merge instead of maximizing total I().
Although it seems to be a minor modification at the first sight, it turns out that the
Iloss() can be precomputed into an array and only slightly changed upon each merge,
leading to a considerable speedup.

Iloss(c, l, r) := I(c)− I(merge(c, l, r, n)) =
∑

x,y∈V

cyx log2
N · cyx
cy• · c•x

−
( ∑

x∈V \{r,l}
y∈V \{r,l}

cyx log2
N · cyx
cy• · c•x

+
∑

x∈V \{r,l}

(clx + crx) log2
N(clx + crx)
(cl• + cr•) · c•x

+

+
∑

y∈V \{r,l}

(cyl + cyr) log2
N(cyl + cyr)
cy• · (c•l + c•r)

+

+ (cll + clr + crl + crr) log2
N · (cll + clr + crl + crr)
(cl• + cr•) · (c•l + c•r)

)

(435)

After rather technical manipulations this can be simplified into

Q(cl•, cr•) +Q(c•l, c•r) +Q(cll, clr) +Q(crl, crr)−Q(cll + crl, clr + crr)

−
∑

y∈JY

Q(cyl, cyr)−
∑

x∈JX

Q(clx, crx)
(436)

where Q(a, b) := R(a+ b)−R(a)−R(b) and R(x) := x log2(x) for x > 0 and R(0) := 0.
The sets JY and JX can be any supersets of {y | cyl · cyr 6= 0} and {x | clx · crx 6=
0}, respectively3. Note that once we precompute c•x and cy• into suitable arrays
all the terms in the formula except the last two, can be evaluated in constant time.
This already has a complexity of O(A) for one evaluation of Iloss (where the naive
implementation tookO(A2)). Moreover, the sets JX and JY over which we are summing
usually have much lower cardinality then A, leading to yet more improvement.
The algorithm can now precompute Iloss into an array for all C(C−1)/2 pairs using

formula (436) (this amounts to O(AC2) operations), and then it can start iterations
as before but instead of recomputing I every time, it would simply select the pair
with minimal Iloss. Let this pair be (l, r). Then it would merge(c, l, r, n) and compute
Iloss of the new class n with all other classes (search for minimal Iloss takes O(C2),
merging takes O(A), and all new Iloss values require O(AC) — doing it C times leads
to complexity of O(AC2)).
Last thing that must be done is the correction of all other Iloss values. It must be

done since as l and r classes no longer exist (they were merged into a new class n), the
value of Iloss(c, a, b) might have changed. Let the result of merge(c, l, r, n) be denoted

3 This freedom is caused by the fact that Q(0, x) = 0 and Q(x, y) = Q(y, x)
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by ĉ. Now we are about to compute what correction to Iloss(c, a, b) has to be added to
make it Iloss(ĉ, a, b):

Icorrection(c, l, r, a, b) := Iloss(ĉ, a, b)− Iloss(c, a, b) =

Q(ĉa•, ĉb•) +Q(ĉ•a, ĉ•b) +Q(ĉaa, ĉab) +Q(ĉba, ĉbb)−Q(ĉaa + ĉba, ĉab + ĉbb)

−
∑

y∈V ∪{n}

Q(ĉya, ĉyb)−
∑

x∈V ∪{n}

Q(ĉax, ĉbx)−
(
Q(ca•, cb•) +Q(c•a, c•b) +Q(caa, cab)

+Q(cba, cbb)−Q(caa + cba, cab + cbb)−
∑

y∈V

Q(cya, cyb)−
∑

x∈V

Q(cax, cbx)
)

(437)

Since {a, b}∩{l, r} = ∅, many terms cancel out (see the definition of merge()), leading
to

Icorrection(c, l, r, a, b) =
∑

y∈V

Q(cya, cyb) +
∑

x∈V

Q(cax, cbx)−
∑

y∈V ∪{n}

Q(ĉya, ĉyb)

−
∑

x∈V ∪{n}

Q(ĉax, ĉbx) = Q(cla, clb) +Q(cra, crb) +Q(cal, cbl) +Q(car, cbr)

−Q(ĉna, ĉnb)−Q(ĉan, ĉbn) = Q(cla, clb) +Q(cra, crb) +Q(cal, cbl)+

+Q(car, cbr)−Q(cla + cra, clb + crb)−Q(cal + car, cbl + cbr)

= U(cla, cra, clb, crb) + U(cal, car, cbl, cbr)

(438)

where
U(a, b, c, d) := Q(a, c) +Q(b, d)−Q(a+ b, c+ d) (439)

Icorrection(c, l, r, a, b) has to be added to every pair of Iloss[a, b] array (a, b such that
{a, b}∩{l, r} = ∅) just before merging l with r. This amounts to O(C2) operations per
iteration. Combining it with complexity estimates already done we have that the total
complexity of the algorithm just sketched is O(AC2).

8.4 Implementation tricks

To further cut down the execution time (although the worst case complexity measured
by means of A and C stays the same4) certain tricks are needed. As already hinted, the
input data is preprocessed such that numbers are substituted for words. The second
idea concerns the matrix cyx. It is typically quite sparse, so it worths to implement it
via a hash table.

8.4.1 Hash table

Note that it has to be a special table, since we need to be able to walk thru columns
and rows as well as to delete elements no longer needed after the merge. Memory

4 In fact, it will even be worse than that, if we consider that the worst case behavior of hashing
is worse than O(1). In the following I will simply ignore that possibility since it is very unlikely to
happen, thus not affecting the average performance.
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demands also impose some constraints on the form the hashing table should have. For
instance, implementing the row/column walking ability via a linked list would be quite
expensive, considering that on a 64 bit machine each pointer occupies 8 bytes and we
would probably need two of them. The solution, I’ve chosen, is using an array (indexed
by y) of hashing tables indexed by x. So for each line of the matrix we have an extra
hash table. Their entries contain only the key x (32 bit integer) and the counter (32
bit integer) holding the value of cyx. Collisions are resolved by double hashing. Thus,
each bigram theoretically occupies 8 bytes of the memory. In practice it is more, since
for the hashing to be fast we have keep say 60% of the table unused5. According to test
runs, this leads to an average collision rate of less than 2 collisions per access6 which is
acceptable. Note that construction of such a table is a three phase process. In the first
phase we read all the input data and count unigram frequencies. These frequencies are
used as upper bounds for row sizes of the table. In the second phase, we allocate such
a table and fill it with bigrams. The only purpose of this table is to count the true
number of bigrams appearing in the respective rows. Finally this table is deleted and
the right-sized table is build which has its row sizes selected such that they will be filled
at 40%, unless they have less than two elements — in such cases7 they are allocated
tight, since there would be no speedup from an empty space, anyway.

8.4.2 Loss Computation and Merging

For Iloss computation as well as for merging we need to walk thru rows and columns.
Walking along the row is done simply by reading valid entries of the hash table (60%
items read are unused but it is acceptable). To walk thru a column, we need special
array, one for each column holding y-indexes of entries in that column. The walk is
then performed by look-up of y-indexes followed by search in the y-th hash for the key
x. Therefore, it is slower than a row-walk.
For Iloss, it would be nice to walk only over the intersection of sets of indexes of

non-zero entries of the respective rows/columns. But keeping track of the all O(C2)
intersections would be very expensive. Therefore we only keep the track of number of
non-zero items stored in a given row/column and select the shorter one for walking.
While it is walked the corresponding data from the other column are being looked-up
in the hash.
Merging l with r (where l < r) is done such that it reuses index l for the new class

(instead of introducing new index n as in the basic algorithm). As we still want the
new index in the output, we need to maintain a translation array. Note that on each
merge, the number of items in rows and columns may decrease, so after the number
of items stored in any given hash table falls below say 1/5 of the original filling, the
whole table is rehashed to be smaller (this makes row-walks faster and it is also taking
the advantage of CPU’s caches, so the extra work pays off). Note that when merging

5 I know that it is not very good performance and that hashing functions exist, behaving well down
to 30% of unused slots of the table. But those are more complicated, one method for instance requires
size of the table to be a prime twin. Definitely there is a room for improvement. But there are other
things to improve that would result in much noticeable speedup, so this does not worth to be changed,
now.
6 This means that to store/retrieve single item to/from the hash, the array (representing the hash)
has to be accessed less than 3 times on average.
7 These typically occupy half of the rows of the table due to the Zipf’s Law.
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the rows, the number of entries of the resulting row l can generally increase. It is
implemented such that a new (optimal sized) hash is created and the source hashes are
unallocated after the data has been moved.

8.4.3 Loss-Correction Computation

Symmetries of U() can be used to spare some evaluations of it. It is easy to see, that

U(a, b, c, d) = U(c, d, a, b) = U(b, a, d, c) = U(d, b, c, a) = U(a, c, b, d) = U(b, c, d, a)

U(0, b, c, d) = Q(b, d)−Q(b, c+ d) = R(c+ d) +R(b+ d)−R(d)−R(b+ c+ d)

U(0, 0, c, d) = 0

U(0, b, c, 0) = −Q(b, c)
(440)

Corrections from U(cla, cra, clb, crb) are processed separately from U(cal, car, cbl, cbr)
since the first traverses rows while the other columns of cyx (a and b is changing, l, r
will be merged). To make it fast, we first gather for x ∈ active those pairs (clx, crx)
having at least one of their member non-zero; we can also precompute Q(clx, crx). This
way we get the set X containing those x-es appearing in the non-zero pairs. Then we
compute the value of U() for each a < b, a∈X, b∈X. We are using identities (440) to
suppress evaluation of U() in cases when

(cla = 0 and clb = 0) or (cra = 0 and crb = 0) (441)

In cases where cla = 0 or cra = 0 simplified formula is used.
This trick proved itself to be crucial for the speed. The same program without

it can run 4 days while it can only take 30 minutes with it (observed on part (1M
words) of the Czech National Corpus (number of unigrams A = 120187, number of
bigrams B = 592188, and the number of words being classified was C = 10612)). This
optimization was not mentioned in [47] nor in [39].

8.4.4 Miscellaneous

There are also some auxiliary arrays there. As already noted, we have an array of
arrays used to walk thru columns of the main table. We also have an array of lengths
of those arrays. Then, there are mapping arrays translating internal numbering (which
originates due to index re-usage) into external numbering and another one which trans-
lates it into numbering used by triangular Iloss matrix. Used by Iloss computations,
there are arrays of row and column sums cy•, c•x as well as R(cy•), R(c•x) which saves
some evaluations of the log2 function. Also note that all of the column-walking-arrays
may need an update when merging two rows. As this would be too expensive, lazy
implementation is used which require some bookkeeping (I will not describe it here
since it is marginal and quite lengthy).

8.5 Tests

These early experiments were only meant to test the performance of the program.
First, 1.2M words of collected Shakespeare’s work were processed in 6 minutes (on 2.4
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GHz machine, using single CPU), using less than 200 MB of RAM, yielding to 2.8k
words classified. Next, larger input of 120M words of the Czech National Corpus were
processed. It took 14 hours and 2 GB of RAM (on the same machine) to classify 10k
most common words. Below, some selected parts of the tree are presented:

především +-------+-/ nic -+-------+--/ účetnictví ---+/ přičemž ++----+/
zejména +-/ | něco / | bankovnictví +/ avšak --/| |
hlavně -/ | vůbec ------+/ plavání -----/ byť ----+/ |
nejen -----------+/ nikdy -----+/ nicméně / |
buď -----------++/ nikdo ----+/ zvýšit ----++ nýbrž -+-----+/
jedině -------+/| nijak ---+/ snížit ---+/| ba ---+/ |
přinejmenším +/ | nikoho -+/ zvyšovat +/ | jakož / |
nejenom -----/ | nikomu +/ snižovat / | případně ---+/
převážně ---+---/ nikde -/ omezit --++-/ respektive +/
výhradně --+’ rozšířit /| popřípadě +/
speciálně +/ dvakrát ----+-+/ zlepšit +-/ natož ----/
výlučně --/ třikrát ---+/ | posílit /

čtyřikrát +/ | pivo -+---+/
by ---------+--/ pětkrát --/ | dobré --------+ čaj -+/ |
jsem ------+/ dávno -------+/ běžné -----+-+/ kávu / |
jsme -----+/ několikrát -+/ přirozené +/ | alkohol ++/
bych ---++/ tradičně --+/ obvyklé --/ | sex --+-/|
bychom +/| navždy ---+/ nebezpečné ++/ chléb / |
byste +/ | mnohokrát / časté -+---/| nábytek +/
bys --/ | vzácné / | odpad --/
jste -+--/ Martin --+ drahé --+---/
jsi -+/ David --+/ prosté +/ šance -++
ses +/ Marek -+/ levné -/ naděje /|
sis / Daniel / naději +/

pozor -/

At the first sight they look quite convincing, but occasionally we can see weird classes
(like naději/pozor or bankovnictví/plavání). I suppose that this is caused by classes
which have very small (maybe even empty) sets JX and JY in formula (436). Then, . 210

especially for rarely occurring words, Iloss becomes very small although the words being
eventually merged have little in common. As the loss is very small such pairs are likely
to be formed early as the program runs. They may form misleading classes which
further spoil classification of other words.
This effect, hugely amplified, can be observed on a short data (having, say, 20k

words of length) where we set T to be 1. Although for T high enough (such that there
are few words to classify, say C = 70) the classes are acceptable, if we try to classify all
the words, the result looks completely arbitrary. Even the words that were classified
sufficiently well when C was 70 are wrong now with respect to one another.

8.6 My Contribution

In this section I described how the MMI method can be efficiently implemented. Most of
the tricks were already mentioned in [47]. However, slightly different and more compact
formulas were found — symmetric formula (436) for Iloss and formulation of Icorrection
using U -function (439). Their impact is twofold. At first, analysis of symmetries (440)
leads to further savings in computation time, since it turns out that many results are
zero (what was not directly visible in the formulas of the original paper). Secondly, they
yield to deeper insight into the numbers according to which the classes are selected. It
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was noticed that from (436) it follows that the criterion which eliminates rarely used210 /

words from classification should take the size of sets JX and JY into the account, not
only the total number of occurrences of a given word.
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9 Experiments

Due to the lack of time I resorted to carry out only the basic experiment. It tries
to estimate the performance of the phoneme recognizer on the Switchboard-1 corpus.
Note that this simple recognizer does not benefit from the MMI class language model
as its ‘language model’ concerns histories of individual phonemes.

9.1 Switchboard-1 Corpus

Despite being outdated, I chose this corpus as I was well familiar with it and it had a
force-aligned phoneme stream suitable for training. I am well aware that relatively clean
but band limited telephone speech will not enable the NUFIBA to show its strengths.
But time waits for nobody.
The Switchboard-1 telephone corpus consists of 2438 spontaneous telephone con-

versations between two speakers. For each conversation, two speakers were carefully
selected from a group of them such that the selection would maintain ‘uniform’ dis-
tribution of different types of voices across the corpus as well as speakers’ gender.
The conversations take from 50 seconds to 10 minutes, being 6 minutes 22 seconds on
average.
Audio files are presented in so called Sphere files (having .sph extension) which

compose of an ASCII header with various information about the speakers, file size, file
compression format and so on, followed by a binary data usually in µ-law non-uniform
quantization sampled at 8 kHz. Each side of the conversation has its own channel, so
that it can be resolved what they said even if talking over each other, which nevertheless
was quite rare. Unfortunately, the separation is not complete and there is an audible
cross-talk from the other channel. It differs from recording to recording and perhaps
even within single recording because adaptive canceling of section 6.5 turned out to . 190

be ineffective to suppress it (but it may as well be caused by non-linear quantization
effects or by a combination of both).
In its totality the corpus represents 259 hours1 of speech during which 3 008 999

words2 were uttered out of the vocabulary of 26 357.
Together with the raw audio data, there is a ‘true transcript’ available, made by

human annotators. On top of that, these transcripts were force-aligned3 with the audio
as words and even as phonemes (so that if there are several possible pronunciation of
some word, the force alignment gives us the most likely one on each occurrence of that
word in the corpus).

1 Or 518 hours of audio but as one speaker usually listens to the other, half of the files is actually a
silence.
2 In fact, some files were damaged and/or not transcribed at all, therefore the true number of words
might be slightly higher.
3 Force-alignment means that the recognizer is run in a special mode in which it is given the correct
answer. Its only task is to find most likely path thru the models, thereby giving us times where each
word (or even phoneme) have most likely occurred. This could be done by connecting all the HMMs
of the correct words one after the other and running the Viterbi search. Consult [39] for more details.
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Apart from force aligned true transcripts, there is also an output of the recognizer
(unfortunately the documentation does not indicate what was used as a training data for
it). Comparing these two transcripts, we obtain the following tables by running HTK
HResults program which computes WER1 error rate. Note that each conversation side
was taken as a ‘sentence’ here, and that is why the sentence error rate is so high. The
other reason is that the data come from year 2002. Todays state of the art recognizer
would surely do better.

,-------------------------------------------------------------.
| HTK Results Analysis at Tue Jul 10 00:03:45 2012 |
| Ref: swb1_true.mlf |
| Rec: swb1_asr.mlf |
|=============================================================|
| # Snt | Corr Sub Del Ins Err S. Err |
|-------------------------------------------------------------|
| Sum/Avg | 4856 | 78.45 14.75 6.79 6.25 27.80 100.00 |
‘-------------------------------------------------------------’

So the WER is nearly 28% and the phoneme error rate is the following:

,-------------------------------------------------------------.
| HTK Results Analysis at Tue Jul 10 00:17:07 2012 |
| Ref: swb1p_true.mlf |
| Rec: swb1p_asr.mlf |
|=============================================================|
| # Snt | Corr Sub Del Ins Err S. Err |
|-------------------------------------------------------------|
| Sum/Avg | 4856 | 85.95 7.40 6.66 6.30 20.35 100.00 |
‘-------------------------------------------------------------’

It is interesting that the error rate of ASR phoneme recognition (performed via a
force-alignment to the words recognized) is about 20%, which is close to the current
performance of phoneme recognizers [49] working directly. As it is likely that these make
different kinds of errors, the actual phone error rate achievable with current technology
would be even lower, provided that these two were combined.

9.2 Experimental Setup

The experiment involves training and testing phoneme recognizer with NUFIBA front
end and acoustic model of fig. 63. Originally it ran full NUFIBA including its blind206 /

focuser but as it soon become clear that it is too slow to meet the deadline, the focuser
was disabled and the experiment rerun from the beginning. The impact of this should
not be too high as most Switchboard recordings suffer little echo.
The corpus was randomly split into two halves, one intended for training, the other

for testing. The split was performed on coversations not on conversation halves, which
means that both communication directions of a single recording go either to the training
part or to the testing part.
Due to problems with the crosstalk, the data from the other conversation side is

used to identify true silence. Whenever there is no speech in both channels at the
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same time, it is considered a silence. This prevents the model for silence to be trained
with attenuated speech4 due to crosstalk, which would reducing the performance of the
resulting engine. There may be noise or even non-speech sounds there during the silence
— this is an intended behavior as the model for silence has to capture all non-speech
sounds. Only then it will be helpful in separating speech and non-speech. Note that
due to the way the corpus was split, using the data from the other conversation side
does not lead to mixing of training data with the test data.

9.2.1 Training

First the acoustic alphabet is created by k-means clustering, as described earlier.
Then the initial training is performed using the Baum-Welsh algorithm, diphone

by diphone taken from force aligned human transcripts. This procedure only trains
the diphone models but not the null arrows that form a “language model”. These are
estimated separately from the transcripts, using Kneser-Ney smoothing.
Then the second phase of training procceds as follows. The data is chunked into

consecutive word pairs5 and for each of them the sequence of phonemes from the tran-
script is laid down as a sequence of diphones, their HMMs get connected by the null
arrows (analogically to fig. 7) and, again, the Baum-Welsh is used to train the rec- . 30

ognizer on these chunks. Note that the silence is trained on selected regions free of
crosstalk, as explained earlier.

9.2.2 Model Size and Memory Requirements

There are 46 phones in the Switchboard corpus, including 3 different types types of
silence. Making all pairs this yields 2116 diphone HMMs. Real count is smaller because
only the HMMs corresponding to diphones actually occuring in the training data were
retained.

Each diphone HMM consists of 4 states with totally 6 outputting transitions out
of which 1 is shared among a group of diphones starting by the same phone. Each
outputting transition should be thought of as a bundle of #A outputting arrows, one
for each letter of the acoustic alphabet A. This requires #A·46·(1+46·5) = 10626·#A
parameters.

Then, there is a bigram language model comprised of 21162 = 4477456 null tran-
sitions. Additionally there are two null transition per diphone HMM, making up for a
total of 4481688 null transitions.
For #A = 500 it gives 5313000 + 4481688 = 9794688 parameters, which is 37.3

MB if float numbers are used to represent these values.

9.2.3 Testing

Unfortunately, the training is still running as of now. That is why I cannot provide
any results, yet. As soon as these will be avaiable I am going to publish them at
http://195.113.26.193/~klusacek/asr.html.

4 Though sometimes clearly visible in spectrograms.
5 The two-word window moves by one word each step.
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I feel the most embarrassed that I did not manage to finish this work in time, despite
the effort. For this reason, the thesis cannot be ended by any clearcut conclusions. At
least not before the experiment, which is still running, finishes.

Anyway, even in the absence of happy end, the thesis has its bright moments.
Namely:
(a) It explains why it worth to invest an effort to the development of better front
end instead of a language model. See discussion in section 6.1. Naturally, the176 /

credibility of these arguments depends on the result of the experiment.
(b) There are two theoretical results there. The first is called response decomposition
theorem 4.9 and it is a formula that allows to separate zeroes and poles inside the112 /

unit circle from those that lie outside, without the need of root finding. There still
nevertheless remains a lot of work to be done before it could be used numerically.
The second theoretical result concerns blind focusing 6.5, which is a novel blind190 /

deconvolution technique intended to make fast formant glides visible even in rever-
berated recordings. This method is already usable but should be further optimized
as it is very slow. It has been even finally excluded from current experiment, for
its low speed (nevertheless, it was not enough or happened too late to meet the
deadline).

(c) There is one practical result, the language processing tool for MMI clustering,
released under GPL. See chapter 8.207 /

(d) In section 5.8 there is a summary of what is currently known about the human161 /

hearing system. Unlike most physiological literature, it is written in technical
terms, having speech recognition in mind.

(e) Finally I tried to make this book self-contained preffereably using only elementary
mathematics so that it could be used as an introductory text into speech recognition
or basic signal processing.

For me, the lesson learned from this endeavor is that building the speech recognizer
from scratch is more demanding, then I imagined at the beginning. I would incline to
say it may be even hard but perhaps I am just getting old or fed up with the subject.
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12 List of Symbols

Herein follows the list of symbols that are considered more or less global in this book.
It is intended as a quick reference for the reader wanting to refresh the definition of a
particular symbol.

V Usually a set of words. The vocabulary.
V k The k-tuple of words from V (or items from general set V ).
ε The empty string, {ε} = V 0.

V ∗ The set of all strings over V , that is
⋃∞
k=1 V

k.
V + The set of all non-empty strings over V , i.e. V + = V ∗ \ {ε}.
#V Cardinality (the number of elements) of set V .

~x or x Finite-dimensional vector x over C indexed from 0, understood as
1×N column matrix. The arrow above x gets usually dropped in
cases where there is no danger of confusion. xn denotes the n-th
element of ~x, whereas ~xn is the n-th vector in the list. See 4.1.71 /

#~x Dimension of vector ~x, see footnote13.27 /

〈a0, a1, . . .〉 Column vector or infinite sequence made of the elements in the list.
x or A Complex conjugation of number or vector x or matrix A.

AT Transpose of matrix A, see section 4.1.
AH Hermite conjugate of matrix A, AH := A

T
. See 4.1.

xHy Scalar product of complex column vectors x and y, see 4.1.
||x|| 2-norm of vector x defined as ||x|| :=

√
xHx, see 4.1.

I or IN Identity matrix (N ×N).
O or ON All-zero matrix (N ×N).
diag(~v) Diagonal matrix constructor, see 6.5.4.191 /

circ(~v) Circulant matrix constructor, see 6.5.1.190 /

toep(~v) Toeplitz matrix constructor, see 6.5.2.191 /

P(A) The set of all subsets of the set A. See footnote2.41 / ⋃
A Union of all elements (taken as sets) of the set A. See footnote2.

f [A] Image of set A, see 3.1.5.40 /

f−1[A] Preimage of set A, see 3.1.5.
Rng(f) Range of function f , see 3.1.5.
Dom(f) Domain of function f , see 3.1.5.

λx.T Lambda abstraction, discussed in footnote4.42 /

a ? b : c See footnote20.35 /

N or N0 The set of all natural numbers, including 0.
N1 Natural numbers starting by 1 (i.e. 0 /∈ N1).
Nk The set of all k-tuples of natural numbers.
Z The set of all integers.

Zk The set of integers modulo k∈N1, i.e. Zk = {0, 1, . . . , k − 1}.
⊕ Exclusive or, as a function Z2 × Z2 → Z2.
R Real numbers.
C Complex numbers, i denotes the imaginary unit.

bxc For x∈R, the bxc is the highest integer less than or equal to x.
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a% b Modulo operation2: a% b := a− b · ba/bc for any a∈Z, b∈N1. . 73

◦ Function composition A ◦B := λx.A(B(x)). See footnote6. . 43

• Einstein’s summing notation. For a vector v the expression v• is a
shortcut for

∑#v−1
i=0 vi. Likewise, for a matrix A the Ai• stands for

the sum of the i-th row. See footnote9 and section 8.2.
. 19
. 208

O(g) f ∈O(g) iff ∃x0, c∈N1 : ∀x>x0 : f(x) ≤ cg(x)
Ω(g) f ∈Ω(g) iff ∃x0, c∈N1 : ∀x>x0 : f(x) ≥ cg(x)
Arg(c) Angular part of the complex number, Arg(Aeiϕ) = ϕ for ϕ∈ (−π, π].
ArgC See footnote26. . 113

sinc(x) See 4.10.4. . 117

sgn(x) Sign function. sgn(x) := (x > 0 ? 1 : (x < 0 ?− 1 : 0)).
sgnS(x) Modified (1-periodic) sign function, see footnote36. . 125

atg(x) Arctangent, atg : R → (−π/2, π/2).
atg2(y, x) Arctangent of two variables, atg2 : R×R → (−π, π]. It is defined as

follows: atg2(y, x) := Arg(x+ iy).
T z
s (~a) The set of all paths in the trellis compatible with the observation ~a.

See formula (11). . 23

PrΩ Probability distribution on probability space Ω, as defined in 3.1.1. . 39

E(A) Expectation of random variable A, see 3.1.9. . 42

Var(A) Variance of random variable A, see 4.12.1. . 127

σ(A) Standard deviation of A, see 4.12.1.
⊥⊥ Conditional independence relation (72). . 44

HΩ(X) Entropy of random variable X, defined in 3.2.1. . 46

H(P ||Q) Cross Entropy, see 3.2.16. . 53

D(P ||Q) Relative Entropy also known as the Divergence, see 3.2.17. . 53

I(X;Y ) Mutual information, see 3.2.19. . 54

X → Y → Z Markov chain, see (103). . 55

F or FN N ×N matrix of discrete Fourier transform, see 4.1.1. . 72

f+, f−, f± Rectified function f : R → C, see 4.2.2. . 77

σ The set of all signals, σ ⊂ (Z → C). See 4.2.11. . 80

σF The set of all finite signals σF ⊂ σ.
σI The set of all invertible signals σI ⊂ σ. See 4.3.9. . 86

σD Set of impulse responses achievable by a digital filter. See 4.9. . 112

S, SF , SI , SD Sets of spectra of signals living in sets σ, σF , σI and σD, respectively.
F Fourier series F : σ → S. See 4.2.15. . 81

~0 Zero signal ~0 := λn.0 or all zero vector. See 4.2.16. . 81

~1 Unit impulse signal ~1 := λn.(n = 0 ? 1 : 0). See 4.2.16.
∗ Convolution, see 4.3.1 and (180) for its spectral counterpart. . 83

. 84� Pointwise multiplication, see 4.3.3 and also 4.1.7. . 84

. 74
a[n] Time shift a[k]n = ak+n, see 4.3.4. . 85

ρa Time reversal of signal a, see 4.3.5 . 85

a Complex conjugate of signal a, see 4.3.6 . 85

I, X Direct and crossed phase-minimizing conversion. See 4.9.
Dk Decimation operator Dk : σ → σ, where k∈N1, see 4.10.2. . 116

Q Quadrature filter Q : σ → σ, see 4.11. . 124

H Hilbert transform H : σ → σ, see (309). . 125
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