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Introduction

The kaon decays have historically played a very important role in helping us
understand the world of particle physics. Their investigation led to discovery of
third flavor, parity and CP violations, quark mixing and the GIM mechanism.
Today, kaon decays remain very important as useful tools which aid us in search
for the origin of CP violation and as important probes of physics beyond the
Standard Model. For a comprehensive review see [1] and [2].

Theoretical understanding of these decays is hindered by the fact that these
decays are goverend by the Quantum Chromodynamics (QCD), which is nonper-
turbative in the low-energy region; nonperturbative effects include quark confine-
ment and spontaneous breaking of the chiral symmetry. One possible way how to
overcome nonperturbative nature of QCD at low energies is to investigate the low-
energy hadron physics in the framework of Chiral Perturbation Theory (χPT),
which is a systematic expansion of decay amplitudes in terms of momenta and
light quark masses [3], [4] (review). It parametrizes the dynamics of low-energy
hadrons in terms of a number of parameters called low-energy constants, which
are related to the order parameters of the chiral symmetry breaking. Precise
knowledge of these low-energy constants is crucial for successful theoretical pre-
dictions of χPT.

Because of the specific value of the s-quark mass, pattern of chiral symmetry
breaking can be different in the limit of QCD with two and three massless quarks
due to vacuum fluctuations of ss pairs [5]. This could lead to a suppression of
order parameters of the spontaneous symmetry breakdown of the chiral symmetry
— especially chiral condensate and Goldstone boson decay constant — in the
three flavor χPT which could induce instabilities in the chiral series. If this
scenario is realized in the Nature and the suppression of order parameters really
occurs, then standard formulation of χPT is built on invalid assumptions. Almost
ten years ago, Resummed Chiral Perturbation theory (RχPT) was introduced [5].
This approach to χPT is based on careful selection of ”good” observables and
cautious manipulation with the chiral series and is capable of correct description
of the low-energy hadronic dynamics even in the scenario with strong suppression
of the order parameters.

Semileptonic kaon Kl4 decays hold a substantial position from the point of
view of χPT. Their dynamics depends strongly on low energy constants L1 – L3

of the χPT Lagrangian and investigation of these semileptonic decays represents
a very convenient way how to determine these constants [6]. Moreover, under-
standing of semileptonic kaon decays enables us to understand π − π decay at
low energies which provides a welcomed consistency check of the theory. Recent-
ly, precise experimental data about Kl4 decays were published by E865 [7] and
NA48/2 [8] collaborations.
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The main aim of this thesis is to calculate the formfactors F , G of the semilep-
tonic kaon decay K+ → π+π−l+νl in the isospin limit to next-to-leading order
in RχPT and use the result to obtain values of low-energy constants L1 – L3

from the experimental data. Values of these low-energy constants were already
determined within the standard treatment of χPT, however the latest fit of the
low-energy constants brought controversial results which are incompatible with
expectations based on Zweig rule [9]. If this rule is violated, then the low energy
constants L4, L6 and combination 2L1 − L2 are not suppressed and treatment of
the chiral series should be done in the formalism of RχPT, where all aspects of
alternative spontaneous symmetry breaking scenario can be taken into account.
Within RχPT the semileptonic kaon decays were not investigated so far and this
thesis should fill the gap.

The thesis is organized as follows. In Sect. 1 – 3 we give introduction on
effective field theories, Chiral Perturbation Theory and its resummed variant
RχPT and phenomenology of semileptonic kaon decays. In Sect. 4 we present
our method of calculations and give results on the formfactors F and G of the
Kl4 decays. In Sect. 5 we at first use this result in reparametrization of L1 – L3

in terms of physical observables and parameters of the chiral symmetry breaking.
From the resulting expressions we then calculate values of low-energy constants
L1 – L3 and estimate the theoretical error arising from higher orders not included
in our calculation. In the end we discuss unsatisfactory convergence of the result
for higher energies and suggest possible cure.

4



Chapter 1

Effective Field Theories

When we investigate a problem, it is always convenient to focus only on phenom-
ena that are important for the problem at hand. In many cases it is theoretically
possible to include full multitude of interactions that affect the solution in only
the tiniest but this approach is not very practical and usually does not brings
about much to understand the problem. Effective field theories are one of the
manifestations of this doctrine in the world of particle physics and we are going
to give a brief overview of them in this chapter.

Effective field theory is always a simplification of some more complete —
fundamental — theory. In some cases we know this theory, as in the case of
Fermi theory of weak interactions, in others we do not. Among this second group
we may count the Standard Model, which we believe would turn out to be part of
some ”Theory of Everything”, which should be able to describe all four currently
known interactions. This second group of theories will not be treated in this
thesis.

Each fundamental theory contains a set of particles which differ in their rest
masses. Often the differences in the masses are significant, as we can see from
Table 1 where we listed masses of the six quarks of the Standard Model [10].

quark mass [MeV]

down 2.3 ± 0.7
up 4.8 ± 0.7

strange 95 ± 5
charm 1275 ± 25
bottom 4180 ± 30

top 173500 ± 1400

Table 1: Quark masses

The basic idea that stands behind transformation from the fundamental the-
ory to an effective theory is that of an energy scale Λ1, which naturally sorts all
particles into light and heavy,

ml � Λ < Mh . (1.1)

For the effective theory to be any good, we need a significant mass gap separating
masses of heavy particles from investigated energy scale E < Λ, because then we

1Or equivalently the distance scale.
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are able to consider the light particles as the only dynamical degrees of freedom
and treat presence of heavy particles effectively:

As there is not enough energy for the heavy particles to go on-shell, they
can manifest themselves only as virtual exchange particles in the interaction.
Corresponding propagator

∆(p) ∼ i

p2 − M2
h

(1.2)

may then be for p2 < Λ2 expanded as

∆(p) ∼ − i

M2
h

(

1 + O

(

p2

M2
h

))

. (1.3)

We see that exchange of heavy particles is really suppressed — by the factor
M−2

h — and we can also read off Mh as radius of convergence of the momentum
expansion2. If there were no gap separating mass Mh from the investigated energy
scale E, we could not expect to obtain a well behaving convergence of the result
and heavy particles would have to be included explicitly as dynamical degrees of
freedom.

In full theory, we cope with fields of heavier excitations by ”integrating them
out” from the action3. As a result, nonlocal interactions of light particles appear
in our theory which are in the low energy region4 reproduced by an infinite tower
of local interactions of light particles in the effective theory. These interactions
can be organized as an expansion in E

Λ
, where E stands for the typical energy of

the process in question. Coupling constants of the effective low energy Lagrangian
then reflect properties of the heavy particles. Because we are interested in the
energy region where E � Λ < Mh, we expect that Lagrangian terms scaling with
higher powers of energy are suppressed in comparison with the terms scaling with
lower powers of energy.

The same reasoning may be applied to the whole Feynman diagrams con-
structed from the effective Lagrangian, which leads to organization of diagrams
with respect to their importance for the investigated process.

Expansion in the powers of energy gives us means of performing rough es-
timates on which terms in the Lagrangian are relevant to our calculation if we
demand relative accuracy ε. By setting

(

E

Λ

)k

≈ ε (1.4)

we see that for demanded precision we have to include at least terms with

k ≈ log(1/ε)

log(Λ/E)
. (1.5)

Similarly to performing perturbative expansion in inverse masses of the heavy
particles, analogous treatment is possible to carry out for very light particles with

2In case that respective couplings do not depend on Mh.
3The theoretical basis for this procedure is so-called Appelquist-Carazzone theorem [11],

which is however not valid for all Quantum Field Theories. Spontaneously broken gauge theories
serve as an example of such a theory [12].

4Under the threshold of heavy particles production.
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masses ml � Λ. Because their masses are much smaller than other energies in
the problem, in the first approximation we can set ml = 0. Inclusion of nonzero
ml can then be executed as a perturbation in ml/Λ.

Regarding the particle content two more things has to be said before going
further:

• There may be light particles we do not consider relevant for the investigated
problem. In such case, we do not include corresponding degrees of freedom
into the theory.

• In asymptotically free theories with confinement low energy degrees of free-
dom (bound states) may be different from the degrees of freedom of the
fundamental theory (which are confined and not directly accessible).

Simply deciding which particles are integrated out, ignored or included into
the effective theory does not suffice. Problem is that at any given order, effective
Lagrangian would in general contain a very large number of terms which can
be constructed from the chosen fields. This setting would have only very little
predictive power and we thus need something that would restrict the variety of
possible Lagrangian terms. The guiding principle turns out to be the symmetries
of the underlying fundamental theory, which we want to reproduce with our
effective theory. This assertion lies on a famous conjecture by Weinberg [13]:

”. . . if one writes down the most general possible Lagrangian, includ-
ing all terms consistent with assumed symmetry principles, and then
calculates matrix elements with this Lagrangian to any given order
of perturbation theory, the result will simply be the most general
possible S-matrix consistent with analyticity, perturbative unitarity,
cluster decomposition and the assumed symmetry principles.” ,

which restricts possible terms only to those which comply with the symmetry
principles of the underlying theory.

To our knowledge, this theorem has never been proven, despite being used
in lying groundworks to a couple of physical theories, such as Chiral Perturba-
tion Theory (χPT) or String Theory. However, we are not aware of any doubts
concerning its validity, with Weinberg himself claiming ”which I cannot imagine
could be wrong.” If we hence include into the Lagrangian all terms that com-
ply with the symmetries of the fundamental theory, we expect that our effective
theory will be able to reproduce the fundamental theory by a correct choice of
constants of the effective Lagrangian, because the fundamental theory is a theory
satisfying criteria of the Weinberg’s conjecture.

There is a cost to the transition from fundamental to effective theory, which is
closely connected to the limited validity of the effective theory — effective theory
is by its construction not power-counting renormalizable. Fortunately this is not
an issue, because the theory can be renormalized order-by-order [14]. For example
in the case of χPT if we use a renormalization scheme that preserves symmetries
of the effective theory, renormalization of the one-loop graphs calculated from
the leading order (LO) vertices produces counterterms which are of a next to
leading order (NLO). Because of the preserved symmetries, each counterterm
must have its counterpart in the next-to-leading Lagrangian, because into the

7



Lagrangian we included all terms of the given symmetry. The one loop divergences
can then be absorbed into the next to leading order Lagrangian by shift in the
corresponding low energy constants. At higher levels and number of loops, the
argument proceeds analogously and may be used to prove the order-by-order
renormalizability.
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Chapter 2

Chiral Perturbation Theory

2.1 QCD with massless quarks

Chiral perturbation theory is an low energy effective theory to the QCD. Before
we get to the construction of χPT, we first summarize basics of the underlying
theory. For a more complete review see [10], [15], [16].

Constituents of QCD are six massive Fermionic fields with spin 1
2

called
quarks, usually organized into a vector

q =
(

u, d, s, c, t, b
)T

, (2.1)

and non-Abelian spin 1 gauge fields called gluons. The gauge group of the theory
is SU(3); apart from flavor index, each quark carries additional quantum number
called color. With these constituents we may write Lagrangian of the theory

LQCD = q (i6D − MQCD) q − 1

4
Gα

µνG
αµν , (2.2)

where as usual 6D is covariant derivative (in the color space), MQCD is a matrix
in the flavor space encompassing quark masses and Gα

µν are gulon field strengths.
Quantum Chromodynamics is an asymptotically free theory. The coupling

constant of QCD grows with decreasing energy, which makes a thorough analysis
of QCD dynamics in the low energy limit an arduous task1. To understand the
hadronic physics below the energy scale

ΛH ≈ 1 GeV (2.3)

it is more instructive to employ the machinery of effective field theories and
investigate only the ”important”. The first step in the way from QCD to an
χPT is integrating out three heaviest quarks — charm, bottom and top — from
the theory. From Table 1 we see that their masses are well above the chosen
energy scale ΛH and we expect that the error introduced by this is of an order
≈ (E/1300 MeV)2. After this, we switch to the chiral limit, where the masses of
the three lightest quarks are set to zero. As the light quark masses are small in
comparison with ΛH , we expect that these masses could be introduced into the
theory in a perturbative way. In the next section we show how this can be done.

1The coupling constant reaches infinite value at energy scale ΛQCD ≈ 250 MeV [17].
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After the two steps described above, we get a Lagrangian

L0
QCD = qi6Dq − 1

4
Gα

µνG
αµν , (2.4)

where we have only three (massless) quarks

q =





u
d
s



 . (2.5)

These may be decomposed into right and left handed components

qR,L =
1

2
(1 ± γ5)q , (2.6)

which may be used to rewrite the Lagrangian to

L0
QCD = qLi6DqL + qRi6DqR − 1

4
Gα

µνG
αµν . (2.7)

This Lagrangian has a global symmetry [18]

SU(3)L × SU(3)R × U(1)V × U(1)A . (2.8)

The U(1)A symmetry

qR → exp(iα)qR

qL → exp(−iα)qL (2.9)

is not conserved at a quantum level due to the Abelian anomaly (for pedagogical
introduction see [18]). The U(1)V symmetry

qR → exp(iα)qR

qL → exp(iα)qL (2.10)

corresponds to the baryon number and is manifested trivially in the meson sector,
as mesons are combinations of a quark and antiquark [16]. The remaining group
— chiral group G = SU(3)L × SU(3)R — is the symmetry of the Lagrangian
(2.7) that we want to reproduce with our effective theory.

If we parametrize operations from this group

G = (gR, gL), gR,L ∈ SU(3) , (2.11)

then transformations from G act on quarks as

qR → gR qR

qL → gL qL . (2.12)

Group G has an important subgroup SU(3)V , which consists of the symmetry
operations

H = (g, g), g ∈ SU(3) . (2.13)

The Noether currents of the chiral group are [4]

Jaµ
A = qAγµ λa

2
qA (A = L, R; a = 1, ..., 8) (2.14)
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and correspodning Noether charges

Qa
A =

∫

d3x Ja0
A . (2.15)

As was shown by Vafa and Witten [19], the state of the lowest energy in the
chiral limit is necessarily invariant under the charges of the vector current

Jaµ
V = Jaµ

L + Jaµ
R = qγµλa

2
q . (2.16)

Regarding the charges of the axial current

Jaµ
A = Jaµ

L − Jaµ
R = qγµγ5 λa

2
q , (2.17)

there are two distinct possibilities [4]:

• Wigner-Weyl realization of the chiral group with symmetric ground state.
In this case, spectrum contains degenerate multiplets of G.

• Nambu-Goldstone realization of the chiral group. In this case the ground
state is asymmetric and spectrum contains degenerate multiplets of only
SU(3)V ∈ G.

By a single look at the physically observed spectrum [10] we can rule out the
first possibility, as the lightest parity counterpart to the lightest meson π(140) can
be a0(980) with much higher energy. We are hence left with Nambu-Goldstone
realization of the chiral group corresponding to the pattern

G = SU(3)L × SU(3)R → H = SU(3)V . (2.18)

There are also theoretical arguments giving evidence for this possibility [20]. Be-
cause the vacuum breaks the invariance of the Lagrangian down to SU(3)V , eight
massless Goldstone bosons are expected to appear in the theory [21]. They must
be spinless, have negative parity and form an SU(3)V octet. These are precisely
the properties of the eight lightest particles in the spectrum — octet of pseu-
doscalar mesons (π, K, η) — and this suggests that we should identificate these
mesons with the Goldstone bosons of the QCD with massless quarks. The fact
that these mesons are not massless in the real world does not constitute a prob-
lem because inclusion of quark masses to the Lagrangian breaks chiral symmetry
explicitly. Later we will show that meson masses squared are proportional to the
masses of the three lightest quarks and hence Goldstone bosons masses really
vanish in the limit mu,d,s → 0. Because in reality quark masses are relatively
small in comparison to ΛH , pseudoscalar mesons constitute the lightest particles
in the theory, Mπ,K,η � ΛH ∼ 1 GeV and are separated from other hadrons by a
mass gap.

As a next step we introduce external hermitian matrix fields vµ(x), aµ(x), s(x)
and p(x), couple them to quark fields

L = L0
QCD + qγµ(vµ + aµγ5)q − q(s − ipγ5)q (2.19)

and promote the chiral symmetry from global to local.
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The Lagrangian (2.19) gives rise to the generating functional Z defined as

exp(iZ) = 〈0out|0in〉v,a,s,p

=

∫

DqDqDGµ exp

(

i

∫

d4xL
)

, (2.20)

where 〈0out|0in〉 is vacuum-to-vacuum transition amplitude in the presence of
external fields. If we knew the generating functional explicitly, we would be
able to simply generate Green functions of the Noether currents by performing
functional derivatives at v = a = p = s = 0. Because we are not able to do it,
we must conform to the formalism of effective field theories and reproduce the
functional order by order.

As shown by Leutwyler [22], invariance of the generating functional under a
local transformation of the external fields is equivalent to the Ward identities
obeyed by the Green functions of the theory. This hold only in the absence of
anomalies, which must be taken care of specially.

To simplify notation it is customary to introduce linear combinations of axial
and vector fields

rµ =
vµ + aµ

2

lµ =
vµ − aµ

2
. (2.21)

which under the action of the group G (2.11) have to transform as

rµ → gR rµ g−1
R + igR ∂µg−1

R

lµ → gL lµ g−1
L + igL ∂µg−1

L

s + ip → gR(s + ip)g−1
L (2.22)

to conserve invariance under local transformations from G.
External fields enable us to easily incorporate quark masses into our calcula-

tions. Instead of taking derivative at s = 0, we have to expand s around matrix
containing quark masses,

M =





mu 0 0
0 md 0
0 0 ms



 , (2.23)

by setting
s = M + . . . . (2.24)

Weak interactions can be similarly introduced through expanding2 ([4])

lµ = − g√
2
(W †

µT+ + h.c.) + . . . . (2.25)

Here matrix T+ contains Cabibbo-Kobayashi-Maskawa factors

T+ =





0 Vud Vus

0 0 0
0 0 0



 . (2.26)

2We did not consider interactions from Quantum Electrodynamics (QED), so we expand rµ

around zero.
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2.2 Effective theory

In the region below ΛH hadronic spectrum contains first of all octet of pseu-
doscalar mesons π, K and η which are identified with the pseudo-Goldstone
bosons of the QCD with three light quarks. Interactions among these mesons
can be easily understood based on symmetry arguments as we show in the fol-
lowing paragraphs. Apart from them, below scale ΛH we can find vector mesons
together with controversial wide resonances f0(500) and K∗(800) [10]. They can
be potentially included into the theory, however they are not explicit degrees of
freedom of the χPT. Their possible inclusion is also based on symmetry argu-
ments and a specific example — inclusion of the resonance f0(500) — will be
discussed later in the text.

It is possible to arrange pseudo-Goldstone bosons into a single matrix with
simple transformation properties. The derivation starts with realization that
Goldstone bosons ”live” on the coset G/H , because the subgroup H is associated
with the generators of whole G which leave the ground state invariant. We
can then denote coordinates of the Goldstone fields in the coset space G/H as
φa (a = 1, . . . , 8). To remove the ambiguity, we choose a coset representative [14]
ξ(φ) ≡ (ξL(φ), ξR(φ)) ∈ G. The chiral transformation g = (gL, gR) ∈ G changes
Goldstone fields to

ξL(φ) → gLξL(φ)h†, ξR(φ) → gRξR(φ)h† . (2.27)

Here we introduced compensating transformation (h, h) ∈ H , which brings the
result back to the chosen coset representative. Knowing that we may introduce

U(φ) = ξR(φ)ξ†L(φ) , (2.28)

which transforms as

U(φ) → gRUg†
L. (2.29)

It is then customary to take the canonical choice of coset representative with
ξR(φ) = ξ†L(φ) ≡ u(φ). The Goldstone fields can then parametrized by 3 × 3
unitary matrix

U(φ) = u(φ)2 = exp(i
√

2Φ/F0) (2.30)

with the field [3]

Φ(x) =







π0
√

2
+ η√

6
π+ K+

π− − π0
√

2
+ η√

6
K0

K− K0 − 2η√
6






. (2.31)

As U has convenient transformation properties with respect to G (2.29), it is one
of the building blocks of the χPT Lagrangian.

With respect to local invariance, the gauge fields vµ, aµ can enter the theory
only through covariant derivatives of U [3],

DµU = ∂µU − irµU + iUlµ
= ∂µU − i{aµ, U} + i[U, vµ] (2.32)

13



or the field strength tensors

F L
µν = ∂µlν − ∂ν lµ − i[lµ, lν ]

F R
µν = ∂µrν − ∂νrµ − i[rµ, rν ] . (2.33)

Finally we rescale the scalar sources by an unconstrained constant to define

χ = 2B0(s + ip), (2.34)

which transforms in a known way under chiral group.
Now we have all parts which can be used to construct the Lagrangian and we

know their transformation properties with respect to the chiral group. The only
remaining question is which order to assign to distinct terms in the Lagrangian
and how to assess the importance of various Feynman diagrams.

The Lagrangian terms are organized according to the increasing number of
derivatives and quark masses,

Leff = L2 + L4 + L6 + . . . , (2.35)

where subscript gives number of derivatives and where each quark mass is counted
as a derivative of the second order. This expansion is in fact expansion in the
powers of energy we mentioned in the first chapter, because each derivative brings
down a power of four-momentum3. The counting rule which counts quark mass
as two powers of momentum is based on the identity p2 = M2 and leading order
formulae for meson masses (given further), which state that to this order squared
mass of any pseudo-Goldstone boson is proportional to the first power of quark
masses, M2

π,K,η ∼ mq. In expansion (2.35) there are no terms odd in momentum,
because of the Lorentz invariance and the counting rule for quark masses.

For brevity we say that a variable is of an order O(pk) if in our scheme it is
counted as k powers of momentum. Specifically momentum is of an order O(p)
and mass has order O(p2). In the next paragraph we take a look at the remaining
quantities.

Field U contains no derivative or quark mass, thus we count it as a quantity
of order O(1). As noted before, space derivative of a field φ is of an order O(p).
Because of this, derivative ∂µU is also of an order O(p). If we want all terms in
the definition of the covariant derivative (2.32) to be of the same order, we must
define left and right external fields rµ, lµ to be qualities of order O(p) and then
naturally the covariant derivative itself must be of this order. Field strengths —
which contain two powers of O(p) fields lµ, rµ — must be O(p2). Finally, χ is
counted in the same way as s, which is the external field that is expanded around
the matrix of the quark masses. Therefore for consistency we must postulate χ
to be of an order O(p2). Table 2 summarizes our counting rules.

Element Power of momentum

U O(1)
DµU O(p)
F L,R

µν O(p2)
χ O(p2)

Table 2: Power counting convention

3This can be best seen in the momentum representation where taking space derivative is
equal to multiplication of momentum times imaginary unit.
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To sort Feynman diagrams we investigate behavior of their amplitudes under
rescaling of all momenta (of both real and virtual particles), quark and physical
masses according to

p → t p
mq → t2 mq

Mi → tMi , (2.36)

where we introduced a shorthanded notation q = u, d, s.
Under this rescaling amplitude of any given diagram is a homogenous function

of t,

A(t pi, t Mi, t
2 mq) = tDA(pi, Mi, mq) . (2.37)

Smaller value of D suggests larger importance of the diagram in the low energy
region E � ΛH .

By analyzing the diagram we find that dependence on t appears in one of
three ways — from a vertex, from an internal propagator or from integration over
the loop momenta. If we recall that energy scales as E ∼ t, contribution from
vertices has just been discussed. Scaling of the propagators is trivial and depends
on the kind of the particle; for scalar particles propagators behave as ∼ t−2.
Finally, integration over the unconstrained loop momenta scales as fourth power
of momentum, thus we get contribution ∼ t4. Putting all these contributions
together we get4

D =
∑

k

2k · Nk − 2NI + 4NL . (2.38)

Here we denoted NI number of internal lines, NL number of loops and Nk number
of vertices with Lagrangian interaction from L2k, which scale as E2k. Employing
the well-known formula for the number of loops in the graph

NL = NI −
∑

k

Nk + 1 (2.39)

we get final result

D = 2 +
∑

k

2(k − 1) · Nk + 2NL , (2.40)

usually called Weinberg’s power counting scheme [4]. It may be used to find out,
which Feynman diagrams — containing which vertices and how many loops —
are necessary to calculate if we want to achieve given precision expressed through
coefficient D and related to ε in a manner analogous to (1.4).

Now we know all pieces which may be used to construct the Lagrangian, their
transformation properties and orders O(pk). Theorem quoted in Chapter 1 states
that to completely describe the dynamics of pseudo-Goldstone bosons we should
write the most general Lagrangian consistent with the chiral symmetry.

The lowest order at which we are able to set up a contribution is O(p2). To
this order the χPT Lagrangian is uniquely given by [3]

L2 =
F 2

0

4
〈∂µU †∂µU + χU † + U †χ〉 , (2.41)

4Here we assume only scalar particles can propagate as virtual particles, generalization to
other fields is trivial.
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with 〈.〉 denoting trace of a matrix. At the lowest order the Lagrangian of the χPT
contains two constants unconstrained by the symmetry — F0 and B0. These are
related to the most important order parameters of the chiral symmetry breaking:

The F0 is the Goldstone boson decay constant and corresponds to the leading
order contribution to the pion decay constant. As a rough estimate, we thus
expect [10]

F0 ≈ Fπ = 92.2 MeV . (2.42)

The constant B0 is related to the so-called chiral condensate 〈0|uu|0〉0 by the
formula

B0 = −〈0|uu|0〉0
F 2

0

. (2.43)

The nonzero value of the chiral condensate generates meson masses in the leading
order — by expanding the Lagrangian (2.41) using parametrization (2.30) we can
read off coefficients standing at the quadratic terms in the fields, which leads to
the LO contribution of the masses in the isospin limit

◦
M

2

π = 2m̂B0

◦
M

2

K = (m̂ + ms)B0

◦
M

2

η =
2

3
(m̂ + 2ms)B0 , (2.44)

where we introduced m̂ = 1
2
(mu + md).

Leading order masses satisfy the Gell-Mann Okubo relation

4
◦

M
2

K = 3
◦

M
2

η +
◦

M
2

π , (2.45)

which is very well satisfied by the experimental data [3].
Relations (2.44) are not sufficient to obtain values of the quark masses and B0,

because scaling

B0 → xB0

mu,d,s → mu,d,s/x (2.46)

leaves masses (2.44) invariant. However, we are able to use the leading order
results for an estimate of the ratio of the quark masses, because

◦
M

2

K

◦
M

2

π

=
m̂ + ms

2m̂
→ ms

m̂
≈ 25.9 . (2.47)

2.3 Next to leading order

At next to leading order O(p4) Weinberg’s power counting formula (2.40) indicates
that at this order computation of the generating functional contains two distinct
contributions:

• Tree level graphs with one vertex from the most general effective chiral
Lagrangian L4 of order O(p4) and arbitrary number of vertices from L2
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• One-loop graphs associated with the lowest order Lagrangian L2

Moreover, as the anomaly is of this order, we have to add a functional ZWZ which
reproduces the anomalous behavior of the QCD generating functional under the
chiral gauge transformation.

The most general effective Lagrangian of the order O(p4) with desired sym-
metry is [3]

L4 = L1〈DµU †DµU〉2 + L2〈DµU
†DνU〉〈DµU †DνU〉 +

+ L3〈DµU †DµUDνU
†DνU〉 + L4〈DµU †DµU〉〈U †χ + χ†U〉 +

+ L5〈DµU †DµU(U †χ + χ†U)〉 + L6〈U †χ + χ†U〉2 +

+ L7〈U †χ − χ†U〉2 + L8〈χ†Uχ†U + U †χU †χ〉 −
− iL9〈F µν

R DµUDνU
† + F µν

L DµU †DνU〉 + L10〈U †F µν
R UFLµν〉 +

+ H1〈FRµνF
µν
R + FLµνF

µν
L 〉 + H2〈χ†χ〉 . (2.48)

As we see, constants H1,2 do not contribute to the dynamics of pseudoscalar
mesons and are not directly measureable. They are included to serve as countert-
erms in the renormalization of one-loop graphs. Lagrangian L4 then contains ten
additional low energy constants L1 – L10, which parametrize our ignorance of the
precise QCD dynamics. Values of low energy constants Li should in principle be
obtainable from analytic solutions to QCD, however due to lack of these solutions
up to now, we are forced to obtain values of Li by comparing theoretical calcu-
lations with experimental data or by some approximate methods. In the next
section we provide a basic introduction into fitting the low energy constants.

The functional that reproduces the anomaly was constructed by Wess and
Zumino [23] and Witten [24]. Because its explicit form is important for theoretical
soundness of χPT but not for our calculations, we do not give full explicit form
here. It may be found for example in [25]. We give here only the term that is
relevant for Kl4 decays,

LWZ = −εµναβ

12π2
〈U∂µU †∂νU∂αU †lβ〉 . (2.49)

Finally, we have to include contribution from one loop graphs with vertices
from L2. This may be done in the standard way by the method of evaluating
Feynman diagrams with vertices from L2 or alternatively by using expansion of U
around the solution to the classical equations of motion, as did authors of [3]. In
this latter approach, Lagrangian terms with third and higher power of quantum
fields5 are neglected, which enables Gaussian integration over the quantum fields.
Details may be found in the original article or in the chapter describing our
calculations.

As usual, one loop graphs in the dimensional regularization scheme give us
infinite contributions which have to be taken care of. In the first chapter we
sketched the general approach in effective field theories, here we give a specific
example. Using Gaussian integration over pseudo-Goldstone boson fields, we are
able to obtain an explicit result for the one-loop contribution to the generating
functional Zloop up to order O(p4).

5Difference between a field and the respective solution to the equations of motion.
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If we use dimensional regularization in d dimensions, we get a result that can
be written schematically as

Zloop =

∫

d4x
R

d − 4
+ regular part , (2.50)

where regular part contains no singularity in the limit d → 4. Because dimen-
sional regularization preserves chiral symmetry and one-loop results start at an
order O(p4) (2.40), the expression R defined in (2.50) has the general form of the
O(p4) Lagrangian L4. Infinities at the one-loop level can be hence absorbed by a
renormalization of the low energy constants Li,

Li = Lr
i (µ) + Γiλ∞ . (2.51)

Constants Γi may be found in [3], variable λ∞ contains the singularity

λ∞ =
µd−4

(4π)2

(

1

d − 4
− 1

2
(log(4π) + Γ′(1) + 1)

)

. (2.52)

As the renormalization scale we in this text use consistently

µ = 770 MeV . (2.53)

From now on, whenever we write Li we mean the renormalized value of the low
energy constant, Lr

i (µ), renormalized at scale µ given above.
To summarize - if we want to calculate contribution to the generating func-

tional up to the order O(p4), we must include tree graphs with all vertices from L2;
tree graphs with one vertex from L4 or LWZ and remaining vertices from L2 and
finally one-loop graphs with vertices from L2.

2.4 Low energy constants

The variation of the loop contribution under a rescaling of µ provides a natural
order-of-magnitude estimate of chiral symmetry breaking scale

Λχ ∼ 4πFπ ∼ 1.2 GeV . (2.54)

If we recall that we perform an expansion in

p2

Λ2
H

∼ p2

Λ2
χ

=
p2

(4πFπ)2
(2.55)

and compare typical term ∼ F 2
π

4
p2 in L2 with a typical term ∼ Lip

4 in L4, we
obtain a crude estimate [14]

Li ∼
1

4(4π)2
= 1.6 · 10−3 (2.56)

of what should be typical magnitude of the low energy constants Li. Rough esti-
mates of the magnitude of the leading order constants F0 and B0 were discussed
in the previous sections.
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All these constants parametrize unknown dynamics in the nonperturbative
regime. Their values can be obtained using QCD-inspired models [26], meson-
resonance saturation [27] and lattice QCD [28]. However, by far the most typical
is some usage of experimental input and fitting it to next to leading order calcu-
lations.

In this section we describe experimental determination of values of Li in the
standard χPT, where it is assumed that next to leading order corrections are much
smaller than leading order results and that the same relation holds between next
to leading and next to next to leading corrections (NNLO)6.

First, before the next to next to leading formulae were available, theorists
relied on a number of observables that depend on values of Li.

To obtain values of L4, L5 and F0, NLO results for the decay constants of
pions, kaons and eta were used [3]:

Fπ = F0

(

1 − 2µπ − µK +
4M2

π

F 2
π

L5 +
8M2

K + 4M2
π

F 2
π

L4

)

FK = F0

(

1 − 3

4
µπ − 3

2
µK − 3

4
µη +

4M2
K

F 2
π

L5 +
8M2

K + 4M2
π

F 2
π

L4

)

Fη = F0

(

1 − 3µK +
4M2

η

F 2
π

L5 +
8M2

K + 4M2
π

F 2
π

L4

)

, (2.57)

where

µP =
M2

P

32π2F 2
π

log

(

M2
P

µ2

)

. (2.58)

We have three equations with three unknown parameters and we can easily
solve the system of equations to get F0, L4,5. In reality, the η decay constant is
not known very precisely, which would introduce large uncertainty into the result
if we used Fη in our determination. Therefore it is a standard procedure to use
only Fπ and ratio FK/Fπ (which depends solely on L5) and obtain the value of L4

from another source. In the older fits [3], [29] arguments based on Zweig rule were
used, leading to conclusion L4 ≈ 0. These arguments lead also to L6 ≈ 0.

To obtain value of L9, pion’s electromagnetic formfactor is used. This form-
factor depends on momentum transfer in the way

F π±

V (q2) = 1 +
1

6
〈r2〉π±

V q2 + . . . , (2.59)

where at NLO electromagnetic radius reads [4]

〈r2〉π±

V =
12L9

F 2
0

− 1

32π2F 2
0

(

2 log

(

M2
π

µ2

)

+ log

(

M2
K

µ2

)

+ 3

)

. (2.60)

From the known experimental value of the radius we are able to obtain the value
of L9.

The low energy constant L10 can be pinned down through investigation of
semileptonic tau decays [9]. Another possibility is to analyse π → e+νγ [3],
which depends on combination L9 + L10. From known value of L9 we are then
able to calculate the value of L10.

6Description of the position of Li in the Resummed Chiral Perturbation Theory will be
explained in the next chapter.

19



To get values of L1 – L3 it is usual to use formfactors of semileptonic kaon
decays, which are discussed in detail in the next chapter. Alternative possibility
is to use data about ππ scattering lengths [9].

Finally the constants L7, L8 are determined from relations between meson
masses. At NLO, we have [3]

4M2
K − M2

π − 3M2
η

M2
η − M2

π

= −2 · 4M2
KµK − M2

πµπ − 3Mηµη

M2
η − M2

π

− 6

F 2
0

(M2
η − M2

π)(12L7 + 6L8 − L5) (2.61)

and

M2
K

M2
π

=
ms + m̂

2m̂

(

1 − µπ + µη +
8

F 2
0

(M2
K − M2

π)(2L8 − L5)

)

. (2.62)

Because we already know L5, the only remaining ingredient we must provide
to obtain L7 and L8 is the ratio of quark masses ms/m̂. This ratio can not be
obtained from χPT calculations (at O(p4)) because of an accidental symmetry7

of L2 + L4 under the change

M → αM + β(M†)−1 detM
B0 → B0/α
L6 → L6 − ξ
L7 → L7 − ξ
L8 → L8 + 2ξ , (2.63)

where we used

ξ =
βF 2

0

32αB0
. (2.64)

Above α and β are arbitrary constants. By various choices of β, we are able to
nontrivially change quark mass matrix M and thus the ratio of the quark masses.
This ratio must then be provided from other source, such as calculations on a
lattice. After we specify the ratio ms/m̂, we are able to extract values of Li in
the suggested way.

So far we discussed original attempts which were focused on determination
of Li using physically accessible observables from NLO expressions. Now we
restrict our attention to the newest fit [9], which presents some improvements.
First of all, the fit includes a larger number of observables. Instead of the smallest
number of observables necessary to obtain values of Li constants, the authors
of [9] decided to include larger set of following observables which they want to
reproduce with the χPT calculations:

• masses and decay constants of pseudoscalar mesons

• ratio FK/Fπ

• quark mass ratio ms/m̂

7Called Kaplan-Manohar ambiguity, [30].
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• Kl4 formfactors

• ππ scattering lengths and slopes

• πK scattering lengths and slopes

• pion scalar formfactor

The quark mass ratio deserves a short note — it is calculated as either

ms

m̂

∣

∣

∣

1
=

2m2
0K − m2

0π

m2
0π

(2.65)

or
ms

m̂

∣

∣

∣

2
=

3m2
0η − m2

0π

2m2
0π

, (2.66)

where m0φ stands for physical mass of the φ meson minus NLO and NNLO
corrections. Because of course no direct experimental data on this ratio exist,
results of calculations on the lattice are used instead.

Second difference from the original approach is that article [9] uses NNLO
formulae. The basic idea behind the fit is to generate various sets of low energy
constants and compare how well each set reproduces the experimental data. As
variable sorting the sets of low energy constants,

χ2 =
∑

(

xi(meas) − xi(calc)

∆xi

)2

(2.67)

is used. Here xi(meas) means experimental value of variable xi, xi(calc) stands for
this variable calculated using given set of low energy constants. Finally, ∆xi are
errors of the experimental values. The set minimizing χ2 — best reproducing the
experimental data — is used as the final set of low-energy constants.

This approach should in principle be more precise than simple NLO results,
however it presents a major shortcoming. The most general χPT Lagrangian at
NNLO level contains 94 additional low energy constants Ci which enter xi(calc)

and which are probably impossible to obtain from purely experimental input.
The authors of [9] used three distinct ways to obtain these low energy constants

• the resonance saturation model [27]

• study based on first principles of QCD [31]

• random choice of Ci

In the first two approaches the Ci were fixed and only LO and NLO low energy
constants were altered to find the best possible χ2. In the last approach, Ci were
given freedom to carry out a random walk and combination leading to smallest χ2

was searched for using a Monte Carlo type algorithm.
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Constant Value

103L1 0.88 ± 0.09
103L2 0.61 ± 0.20
103L3 −3.04 ± 0.43
103L4 0.75 ± 0.75
103L5 0.58 ± 0.13
103L6 0.29 ± 0.85
103L7 −0.11 ± 0.15
103L8 0.18 ± 0.18

Table 3: Values of low energy constants Li

Various assumption lead to various sets of low energy constants, the main
new result of the article [9] is the set of low energy constants summarized in the
Table 3.

2.5 Convergence problems and Resummed χPT

As presented in the previous chapter, χPT with massive quarks is an expansion
in masses of the quarks around the χPT in the chiral limit. Because masses of
down and up quarks are small in comparison with ΛH and even masses of the
pseudoscalar mesons, we expect a very good convergence of calculated observables
in the two-flavor χPT. By two flavor χPT we understand effective theory to QCD,
where we perform an expansion in quark masses around the SU(2)×SU(2) chiral
limit with massless up and down quark while we keep ms at its physical value.
Direct calculations in the two-flavor χPT confirm these expectations about good
convergence [32].

Position of the strange quark is somewhat different. Its mass is small enough
in comparison to ΛH to be used as an expansion parameter in three flavor χPT,
where we perform an expansion around the SU(3) × SU(3) chiral limit with
massless up, down and strange quarks. By comparing ΛH with the kaon mass
we expect convergence given by the ratio M2

K/Λ2
H ∼ 0.3. However, mass of

the strange quark is of order ΛQCD which means s quark is not heavy enough
to suppress loop effects of massive ss vacuum pairs. This can have interesting
consequences in the different chiral dynamics of two- and three-flavor χPT [5].

The difference could lie in a possible relative enhancement of chiral order
parameters of two-flavor χPT

Σ(2) = − lim
mu,md→0

〈uu〉
∣

∣

∣

ms=physical

F (2)2 = − lim
mu,md→0

F 2
π

∣

∣

∣

ms=physical
(2.68)

with respect to chiral order parameters

Σ(3) = lim
ms→0

Σ(2)

F (3)2 = lim
ms→0

F (2)2 (2.69)

in the three-flavor χPT.
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These variables should satisfy paramagnetic inequalities

Σ(2) > Σ(3)
F (3)2 > F (2)2 , (2.70)

with the difference proportional to the mass of the strange quark [5],

Σ(2) = Σ(3) + ms · lim
ms→0

∫

d4x〈uu(x)ss(0)〉c (2.71)

and analogously for F . If the hypothesis about substantial vacuum fluctuations
is true, then the three flavor condensate Σ(3) could be numerically considerably
smaller than the two flavor condensate and similarly for F (3). This suppression
of SU(3) × SU(3) order parameters could lead to a particular instability of the
three-flavor χPT as order parameters are connected to the parameters of the LO
three-flavor χPT Lagrangian

F (3) = F0

Σ(3) = B0F
2
0 . (2.72)

For a long time analyses were based on an explicit assumption that the effect
of vacuum fluctuations of the ss pairs on order parameters is small and it was
assumed that the order parameters are such that F0 ≈ Fπ and 2m̂Σ(3) ≈ M2

πF 2
π .

In such case, corrections due to nonzero ms can be considered to be small per-
turbations.

Based on this assumption, standard χPT calculations consisted of two steps.
First, the calculated quantity was written as an expansion in the masses of the
light quarks

A =
∑

i,j,k

mi
um

j
dm

k
sAijk(mu, md, ms; B0, F0, Li, . . .) . (2.73)

The right hand side of (2.73) is called ”strict chiral expansion”. The dots repre-
sent higher order low energy constants, explicit dependence of Aijk on masses of
the quarks was introduced to cover the chiral logarithms which arise from Gold-
stone boson masses in the loops. The second step consists in inversion of the
expressions [3] for the pion mass

M2
π = 2m̂B0

(

1 + µπ − 1

3
µη +

16m̂B0

F 2
0

(2L8 − L5) +

+ (2m̂ + ms)
16B0

F 2
0

(2L6 − L4) + . . .

)

, (2.74)

pion decay constant

Fπ = F0

(

1 − 2µπ − µK +
8m̂B0

F 2
0

L5 +
8(2m̂ + ms)B0

F 2
0

L4 + . . .

)

(2.75)

and ratio of kaon and pion masses

M2
K

M2
π

=
ms + m̂

2m̂

(

1 − µπ + µη +
8

F 2
0

(ms − m̂)B0(2L8 − L5) + . . .

)

. (2.76)
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Because usually it was assumed that the LO contribution is decisive and vacuum
fluctuations of the strange quark pairs are small, variables in the parentheses were
supposed to be very close to one. It was then possible to obtain inversions that
were to NLO linear in Li, for example

2m̂B0 = M2
π

(

1 − µπ +
1

3
µη −

8M2
π

F 2
π

(2L8 − L5) −

− 8M2
π + 16M2

K

F 2
π

(2L6 − L4) − . . .

)

. (2.77)

Using these inversions, quantities other than M2
π , M2

K and F 2
π which were used

in the determination can be expressed8 as an expansion in powers of physical
masses M2

P and logarithms log(M2
P ), with coefficients depending on the low energy

constants of NLO and higher orders. Because the resulting relations are linear in
the low energy constants9, we are able to obtain their values from a sufficiently
large number of experimental variables. As we saw, this agenda is crucially
dependent on the assumption that NLO corrections are small in comparison to
the LO contribution; if this assumption does not hold and the leading and next to
leading contributions are of a similar size, ALO ∼ ANLO, the standard treatment
of the chiral series does not work.

To investigate how much the vacuum fluctuations of ss pairs affect the ex-
pansions we define quantities

X =
2m̂B0F

2
0

M2
πF 2

π

Z =
F 2

0

F 2
π

, (2.78)

which incorporates information about the convergence of the expansions of F 2
π

and F 2
πM2

π . It is customary to introduce one more quantity,

Y =
X

Z
=

2m̂B0

M2
π

, (2.79)

which tells us about the convergence of the expression for the pion mass.
In the standard treatment it was assumed that the leading order saturates the

series and thus it was expected that

X, Z ∼ 1 . (2.80)

Recent results limit ranges for these quantities as ([33], [34])

Source PACS - CS Subset RBC/UKQCD Subset Descotes - Genon
Type Lattice calculations Lattice calculations RχPT

X (0.59 ± 0.21) (0.20 ± 0.14) X ≤ 0.83
Y (0.90 ± 0.22) (0.43 ± 0.30) Y ≤ 1.1
Z (0.66 ± 0.09) (0.46 ± 0.04) 0.18 ≤ Z ≤ 1

Table 4: Recent values of X, Y, Z

8In the usually considered isospin limit.
9Again — only to next-to-leading order; in NNLO we get contributions from tree graphs

with two vertices from L4, which depend on Li quadratically. In such case, we may use for
example the least squares method to obtain values of Li [9].
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From these values we see that the assumption (2.80) might not be valid and
thus the standard treatment could be based on invalid assumptions.

To cope with the shortcoming of the standard treatment, Resummed χPT
was introduced [5].

It assumes that chiral series of observables that are linearly related to the
low energy correlation functions in the domain of their analyticity far away from
singularities have satisfactory convergence properties. These are for example F 2

π ,
F 2

πM2
π or decay amplitudes of processes with pseudo-Goldstone bosons, multiplied

by appropriate powers of pseudo-Goldstone boson decay constants. Apart from
these, observables which are obtainable from the generating functional Z[v, a, p, s]
by linear operations are also considered as convergent in a satisfactory manner.
We will call all these observables ”good”, to distinguish them from other observ-
ables which we will call ”dangerous”. Each observable can be written as a sum
of leading order, next to leading order contributions and the residual term

A = ALO + ANLO + AδA , (2.81)

the residual term contains contributions from the higher orders. In RχPT, we
assume that ”good” observables fulfill condition

|δA| � 1 (2.82)

which means that NNLO and higher contributions are small. We call observables
fulfilling condition (2.82) ”globally convergent”.

On general grounds we expect that for ”good observables”,

δA ∼ M4
K

Λ4
H

= 0.1 . (2.83)

However, magnitudes of remainders for certain quantities10 are constrained by the
SU(2) × SU(2) low energy theorems to be of order O(M2

πM2
K) or even O(M4

π).
In such cases, we expect even better convergence than 10%. On the other hand,
certain quantities start their expansions in NLO. In such case, our expectations
on the reminder are worse as the NLO and NNLO expansions can differ in only
a single power of ms. Our estimate on δA in such case is

δA ∼ M2
K

Λ2
H

= 0.3 . (2.84)

With defined NNLO reminder, we can show that observables depending non-
linearly on the generating functional could exhibit poor convergence. As an ex-
ample we take ratio of two ”good” observables, which can be formally expanded
in the form

A

B
=

ALO

BLO
+

ALO

BLO

(

ANLO

ALO
− BLO

BNLO

)

+
A

B
δA/B (2.85)

with

δA/B =
(1 − XB)(XA − XB)

X2
B

+
δA

XB
− XAδB

X2
B

, (2.86)

10Such as certain remainders in the low energy ππ scattering [5].
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where we introduced

XA =
ALO

A
. (2.87)

We see that if XB � 1, the size of the reminder can be numerically large even
for δA, δB ≈ 0. This proves that performing nonlinear operations with ”good
observables” can produce observables which are not globally convergent. Using
such observables leads to problems with precision, as higher order remainders δA

are always present in the final expressions in RχPT. Very large higher order
remainders δA then lead to imprecise results of calculations. When we operate
in the space of observables expressible from generating functional linearly, we are
able to control the remainders and keep their magnitudes at reasonable values.

To provide a specific example of a ”dangerous” observable which may not be
globally convergent we can mention square of the pion mass, which can be written
as a ratio of two good observables

M2
π =

F 2
πM2

π

F 2
π

. (2.88)

It is customary to include one modification of the ”strict chiral expansion”
(2.73). Instead of writing O(p2) masses as arguments of loop functions11, we will
replace these by the physical values of the masses [5], [35]. This is motivated
by correct position of branching points of scattering amplitudes and can be cir-
cumvented by performing a dispersive analysis. From the point of view of the
convergence of the series for variable A, this replacement results in redefinition
of the higher order reminder δA. It is the series

A = ALO + A′
NLO + Aδ′A , (2.89)

where arguments of loop functions in ANLO were replaced by physical values,
which is assumed to be globally convergent. From now on we will assume that this
replacement was performed in all expansions and will not write the apostrophes
explicitly12. We will label resulting series as ”bare”, to distinguish them from the
unaltered ”strict” chiral expansions.

The inversion of chiral series for pion mass and decay constant and ratio of
kaon and pion masses which is crucial in the standard treatment is not allowed
from the point of view of RχPT, because it relies on inverting variables which is
considered ”dangerous”.

In RχPT variables X, Z and quark masses ratio

r =
ms

m̂
(2.90)

are used as a free parameters which determine the LO low energy constants
directly,

F 2
0 = F 2

πZ
2m̂B0 = M2

πY
2msB0 = rM2

πY . (2.91)

11Functions Jr and J , see Appendix B.
12ALO contains no loop functions and apostrophe is hence not needed there.

26



This way, we have three more parameters to pin down, however advantage of this
approach is that we avoid performing the ”dangerous” inversions and are able to
deal even with observables with XA � 1.

In general, all potentially ”dangerous” observables should be kept in the ”re-
summed” form where replacement according to (2.91) was performed but no
perturbative expansion was done. All maniuplations of these observables and
their respective series must be purely algebraic, which enables us to control the
error introduced into our calculations by (in principle unknown) remainders.

To summarize the method of Resummed Chiral Perturbation Theory [35]:

• Confine to the space of ”good” observables and observables obtainable from
them using linear operations. Do not perform perturbative expansion of
”dangerous” observables and keep them in the resummed form.

• Carefully define the bare expansion

• Instead of inverting formulae for physical parameters, use X, Z and r to
reexpress leading order Lagrangian parameters F0, m̂B0 and msB0.

• All operations with the series should be purely algebraic.

If we stick to these rules, we can work even with quantities with XA � 1.
To obtain values of the low energy constants Li, bare expansions of vari-

ous ”good” observables are calculated and LO low energy constants are replaced
according to (2.91). If we now set the resulting resummed series equal to the ex-
perimental values of the observables, we are able to algebraically solve the system
of equations for values of Li. The solution in general depends on experimental
values of the observables — especially meson masses and decay constants — val-
ues of X, Z, r and the remainders δ parametrizing our ignorance of the higher
order contributions. The solutions for the constants L4 − L8 and L9 were calcu-
lated before [5], [33], [35] and the resulting formulae are given in the Appendix C.
This work fills the gap by reparametrizing the low energy constants L1 − L3 in
terms of the experimental data.
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Chapter 3

Phenomenology of Kl4 Decays

3.1 Basics

Semileptonic kaon decays have been in extensive detail covered in [36]. This
section summarizes the relevant pieces of the Kl4 phenomenology from the men-
tioned article. Immense importance of these processes for χPT lies in a fact that
formfactors of Kl4 decays strongly depend on low energy constants L1 − L3 and
represent a very convenient way for their experimental determination.

There exist three semileptonic decays, which differ in kinds of kaons and pions
involved. These are

K+(k) → π+(p1) π−(p2) l+(pl) νl(pν) ,
K+(k) → π0(p1) π0(p2) l+(pl) νl(pν) ,
K0(k) → π0(p1) π−(p2) l+(pl) νl(pν) ; l = e, µ . (3.1)

The matrix element for Kβ → πaπbl+νl is defined as [15]

out〈πaπbl+νl|Kβ〉in = (2π)4δ4(k − p1 − p2 − pl − pν) · iT (Kβ → πaπbl+νl) (3.2)

and is related to the decay rate of the process through

dΓ =
1

2MK(2π)8

∑

spins

|T |2δ4(k − p1 − p2 − pl − pν)
d3p1

2p0
1

d3p2

2p0
2

d3pl

2p0
l

d3pν

2p0
ν

. (3.3)

In the low energy region we are interested in, the W boson can be integrated
out and the interaction Lagrangian reduces to a current-current interaction [37]

LW =
GF√

2
Jµ

W J†
Wµ , (3.4)

where weak current comprises of leptonic and hadronic currents,

Jµ
W = Jµ

l + Jµ
h . (3.5)

The matrix element for a Kl4 decay can be then factorized as

T =
GF√

2
〈l+(pl)νl(pν)|Jµ

l |0〉 · 〈πa(p1)π
b(p2)|Jhµ|Kβ(k)〉 . (3.6)
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l+

ν

K+

π+

π−

l+

ν

W+

K+

π+

π−

Figure 1: Integrating out exchange of W+ boson.

Leptonic current is known to be

〈l+(pl)νl(pν)|Jµ
l |0〉 = u(pν)γµ(1 − γ5)ν(pl) , (3.7)

hadronic current gets vector and axial contributions

〈πa(p1)π
b(p2)|Jh

µ |Kβ(k)〉 = V ∗
us(Vµ − Aµ) , (3.8)

where we introduced

Iµ = 〈πa(p1)π
b(p2)|I4−i5

µ (0)|Kβ(k)〉 ; I = V, A (3.9)

and where V ∗
su is the corresponding element of the Cabibbo-Kobayashi-Maskawa

matrix.
Superscript on the operators V, A refers to the Gell-Mann matrices,

λ4−i5 =
1√
2
(λ4 − iλ5) . (3.10)

Explicitly

V 4−i5
µ =

1√
2

sγµu

A4−i5
µ =

1√
2

sγµγ
5u . (3.11)

Putting all this together, we get T matrix element

T =
GF√

2
V ∗

usu(pν)γµ(1 − γ5)v(pl)(V
µ − Aµ) . (3.12)

Matrix element Vµ is governed by the Wess-Zumino term (2.49) and does not
have any connection to the low energy constants L1 – L3 we are trying to pin
down [3]. We will thus fully focus our attention on the axial current. WZ term
does not contribute to the matrix element of the axial current and we will thus
not mention it from now on.

All our calculations were done in the isospin limit, where masses of down and
up quarks are set equal. At the same time we turned off Quantum Electrody-
namics by setting αQED = 0. Now we show that in the isospin limit, it suffices to
know the dynamics of the first decay in (3.1) to describe all three semileptonic
kaon decays. To show it, we introduce isospin doublets

Aα
µ =

(

A4−i5
µ

A6−i7
µ

)

=
1√
2

(

sγµγ
5u

sγµγ5d

)
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Kβ =

(

|K+〉
|K0〉

)

. (3.13)

With these we can introduce general object

Ma,b;α,β
µ (pa, pb, k) =

1√
2
〈πa(pa)π

b(pb)|Aα
µ(0)|Kβ(k)〉 , (3.14)

where a, b = 1, 2, 3 are cartesian indexes of pion triplet and α, β are spinor indexes
of isospin doublets.

In the limit of conserved isospin, Ma,b;αβ is an invariant object:

√
2Ma,b;α,β

µ (pa, pb, k) = 〈πa(pa)π
b(pb)|Aα

µ(0)|Kβ(k)〉
= 〈πa(pa)π

b(pb)|U †UAα
µ(0)U †U |Kβ(k)〉

= Ra
c (U)Rb

d(U)Uβ
γ 〈πc(pa)π

d(pb)|UAα
µ(0)U †|Kγ(k)〉

=
√

2Ra
c (U)Rb

d(U)Uβ
γ (U∗)α

δ M c,d;δ,γ
µ (pa, pb, k) . (3.15)

Here U was arbitrary transformation from the (isospin) SU(2) group; Ra
c (U)

and Uβ
γ are representations of the transformation on the space of the pion triplet

and kaon doublet.
Because of the invariance, we can write the structure of M as

Ma,b;α,β
µ = Aµ(pa, pb, k)δabδαβ + Bµ(pa, pb, k)εabcσc,αβ , (3.16)

where σ are Pauli spin matrices.
As pions are bosons, Bose symmetry forces

Aµ(pa, pb, k) = Aµ(pb, pa, k)
Bµ(pa, pb, k) = −Bµ(pb, pa, k) . (3.17)

Then

M00
µ (pa, pb, k) = Aµ(pa, pb, k) = M00

µ (pb, pa, k)

M0−
µ (pa, pb, k) = −i

√
2Bµ(pa, pb, k) = −M0−

µ (pb, pa, k)

M+−
µ (pa, pb, k) = −Aµ(pa, pb, k) − iBµ(pa, pb, k) = −M0−

µ (pb, pa, k)

= −M00
µ (pa, pb, k) +

1√
2
M0−

µ (pa, pb, k) . (3.18)

Using the symmetry properties of Aµ and Bµ, we can write

M00
µ (pa, pb, k) = −1

2

(

M+−
µ (pa, pb, k) + M+−

µ (pb, pa, k)
)

M0−
µ (pa, pb, k) =

1√
2

(

M+−
µ (pa, pb, k) − M+−

µ (pb, pa, k)
)

. (3.19)

This confirms our assertion that we can infer matrix elements and therefore com-
plete dynamics of all Kl4 processes from the decay of K+ to two charged pions.

Before we proceed further, we label combinations of vectors

P = p1 + p2

Q = p1 − p2

q = pl + pν (3.20)
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and

s = (p1 + p2)
2 = (k − q)2

t = (p2 + q)2 = (k − p1)
2

u = (p1 + q)2 = (k − p2)
2 . (3.21)

The variable s represents invariant mass squared of the dipion system, q2 stands
for the invariant mass squared of the dilepton system. The kinematical variables
are constrained by an identity1

s + t + u = M2
K + 2M2

π + q2 (3.22)

and are subject to inequalities

M2
e ≤ q2 ≤ (MK − 2Mπ)2

4M2
π ≤ s ≤ (MK −

√

q2)2

tmin(s) ≤ t ≤ tmax(s)
umin(s) ≤ u ≤ umax(s) (3.23)

with

tmax,min(s) =
1

2

(

M2
K + 2M2

π + q2 − s ± λ1/2(s, M2
K , q2)σ(s)

)

umin,max(s) = tmin,max(s) . (3.24)

Here we defined

σ(s) =

√

1 − 4M2
π

s
λ(a, b, c) = a2 + b2 + c2 − 2ab − 2ac − 2bc . (3.25)

The full kinematics of the decay requires five variables, which may be divided
in two groups. We need three kinematical variables to describe the matrix ele-
ment 〈πa(p1)π

b(p2)|Jh
µ |Kα(k)〉 and two kinematical variables to unambiguously

determine directions of flight of the created leptons. As the three variables de-
scribing hadronic matrix element we can take s, t, q2. Instead of t, we may take
cos θ, angle between the momentum of π+ and the dipion line of flight in the kaon
rest system.

From u and t, we can calculate cos θ as

cos θ =
u − t

σ(s)λ1/2(s, M2
K , q2)

. (3.26)

The constraint (3.22) then gives relations

t =
1

2

(

M2
K + 2M2

π + q2 − s + σ(s)λ1/2(s, M2
K , q2) cos θ

)

u =
1

2

(

M2
K + 2M2

π + q2 − s − σ(s)λ1/2(s, M2
K , q2) cos θ

)

. (3.27)

Variable cos θ is of a big practical importance, because experimental data are
usually expressed in partial waves expansion in cos θ.

As the two kinematical variables describing leptonic current, we may choose

1Under the assumptions we used — isospin limit and no QED effects — all pions have a
common mass and the same holds for kaons. We will denote them Mπ and MK .
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• θl — the angle of the l+ in center of mass system of l+ν with respect to the
dilepton line of flight in rest mass of the kaon

• φ — the angle between the plane formed by the pions in rest mass of the
kaon and the corresponding plane formed by the dileptons.

Taking into account the vectors we have at our disposal, we can introduce
three distinct formfactors of the axial current by writing2

Aµ = − i

MK

(

PµF (s, t, u; q2) + QµG(s, t, u; q2) + qµR(s, t, u; q2)
)

Vµ = −H(s, t, u; q2)

M3
K

ελµρσqνP ρQσ . (3.28)

As we see directly from (3.28), contribution from the formfactor R is proportional
to qµ. In decays with electrons, the influence of R on the matrix element it then
suppressed by the small mass of electron and is negligible. It then has no practical
value in obtaining values of constants L1 – L3 from experimental data on decays
into electrons.

Finally, each formfactor can be expanded in powers of energy as

I =
MK

Fπ

(

I(0) + I(2) + I(4) + . . .
)

; I = F, G, R , (3.29)

where I(k) is a quantity of order O(pk). When we calculate in the framework of
χPT, the orders of this energy expansion are related to the order of the χPT to
which we must calculate Feynman diagrams — to calculate I(0) taking only L2

suffices; to get I(2) we must add L4 and so forth.

3.2 Previous theoretical calculations of Kl4 de-

cays

The leading order values of formfactors F, G, R were obtained by Weinberg even
before χPT was first introduced in 1984 by Gasser and Leutwyler. Using method
of current algebra, i.e. the commutation relations of the Noether Currents and
the hypothesis of a partially conserved axial-vector current, he derived [38]

F = G =
MK√
2Fπ

R =
MK

2
√

2

(

s + t − u

q2 − M2
K

+ 1

)

. (3.30)

Twenty-five years after Weinberg’s original derivation, Bijnens [6] and inde-
pendently Riggenbach et al. [39] calculated formfactors F, G of Kl4 decays in
χPT to next-to-leading order. They found a very strong dependence of the result
on low energy constants L1 – L3 and rather small dependence on L4 and L9.
With respect to previously used D-wave scattering lengths of ππ scattering, us-
age of semileptonic kaon decays enabled improved determination of the values of

2For further reference we give also definition of the formfactor H of the vector current.
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L1 – L3. The original O(p4) calculation of formfactors was improved in [36] by
investigating importance of higher order terms using dispersive analysis.

The NNLO result on the Kl4 formfactors was published in the article [29].
Using hypothesis of resonance saturation and assuming that arguments based
on large Nc hold, authors were able to improve determination of the low energy
constants L1, L2, L3, L5, L7 and L8. The derived formulae were used also in the
most current fit of low energy constants Li [9].

The last contribution to the problematics of semileptonic kaon decays is ar-
ticle [40]. Unlike the previously mentioned articles which all work in the isospin
limit, this article calculates formfactors with explicitly disentangled isospin break-
ing part. However, the results are incomplete and must be supplemented by a
full treatment of the radiative decay Kl4γ .

3.3 Parametrization of the experimental data

In experiments we measure value of |T 2| and are then not capable of measuring
formfactors F, G, R, H directly. It is useful to write the theoretical predictions on
decay probability in terms of specific combinations of formfactors Fi, i = 1, . . . 4,
which have a simple partial wave expansion. These formfactors are connected
with the previously defined ones through identities [41]

F1 = M2
K (γF + αG cos θ)

F2 = M2
K (βG)

F3 = M2
K (βγH)

F4 = M2
K

(

− α

σ(s)
F − q2

M2
K

R − σ(s)γG cos θ

)

. (3.31)

Above,

α = σ(s)
M2

K − s − q2

2M2
K

β = σ(s)

√

sq2

M2
K

γ =
λ1/2(M2

K , s, q2)

2M2
K

. (3.32)

Symbols σ(s) and λ(a, b, c) were introduced before (3.25).
In terms of the newly introduced formfactors, |T |2 is some function

|T |2 = f(Fi, s, q
2, cos θ, cos θl, φ) . (3.33)

The formfactor F4 in this formula is always multiplied by the mass of the lepton.
In the reasonable limit of massless electron then F4 drops from the formula for
decay rate of kaonic decay into electron.

Expanding the remaining F1, F2 and F3 into a partial wave expansion with
respect to angular momentum of the dipion system, we obtain expansion into a
series of Legendre functions Pl(cos θ) and their derivatives P ′

l (cos θ) [41]

F1 = M2
K

∞
∑

l=0

Pl(cos θ)F1,l exp(iδl)
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F2(3) = M2
K

∞
∑

l=0

P ′
l (cos θ)F2(3),l exp(iδl) . (3.34)

Through investigation of the dependence of decay probability (3.3) on variables
θl, φ we are able to get enough information to extract values of combinations
F1, F2, F3 and their relative phases.

Under the assumption of T-invariance, the Watson theorem [42] asserts that
a partial wave amplitude of definite angular momentum l and isospin I must
have the phase of δI

l , corresponding to the amplitude of ππ scattering. When
we reconstruct experimental values of formfactors we can thus use experimental
data on phase shifts of ππ scattering.

Combining (3.31) and (3.34), we may write expansions of formfactors F and
G as

F = Fs exp(iδfs
) + Fp exp(iδfp

) cos θ + D − wave + . . .
G = Gp exp(iδgp

) + D − wave + . . . . (3.35)

Here Fs, Fp, . . . are purely real functions of s, q2, phases are according to the
Watson theorem the ππ phase shifts evaluated at s. Assuming that the phase of
the p-waves are the same, δfp

= δgp
, and that the D-wave can be neglected, the

results depend only on the single phase difference δ = δfs
− δfp

.
The dependence of the functions Fs and Gp on s and q2 is further parametrized

as

Fs(s, q
2) = fs + f ′

s

(

s

4M2
π

− 1

)

+ f ′′
s

(

s

4M2
π

− 1

)2

+ f ′
e

q2

4M2
π

Gp(s) = gp + g′
p

(

s

4M2
π

− 1

)

, (3.36)

which well describes presently available experimental data [41].
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Chapter 4

Formfactor Calculations

4.1 Amplitude from the generating functional

In the previous chapter we explained how to build generating functional in χPT,
this section is dedicated to the method of obtaining matrix element

〈πa(pa)π
b(pb)|Aα

µ(0)|Kβ(k)〉 (4.1)

from the generating functional.

We work in a physical basis φi = (π±, π3, K±, K0, K
0
, η) which is very conve-

nient as certain variables are in this basis represented by diagonal matrices. To
distinguish axial current in momentum and space representations, we write Ã for
momentum representation and A for the space representation.

In our derivation, we use the fact that pseudo-Goldstone bosons are generated
from the vacuum by axial currents [3],

〈0|Ai
µ(0)|φi〉 = iFipµ , (4.2)

where Fi is decay constant of given pseudo-Goldstone boson φi.
Our matrix element can then be obtained from a four point function of four

axial currents

〈0|TÃa
µa

(pa)Ã
b
µb

(pb)A
α
µ(0)Ãβ†

µβ
(k)|0〉 =

=

∫

dxa dxb dxβeipa·xa+ipb·xb−ik·xβ × 〈0|TAa
µa

(xa)A
b
µb

(xb)A
α
µ(0)Aβ†

µβ
(xk)|0〉

(4.3)

through Lehmann-Symanzik-Zimmerman (LSZ) reduction formula1

〈0|TÃa
µa

(pa)Ã
b
µb

(pb)A
α
µ(0)Ãβ†

µβ
(k)|0〉 =

=

(

∏

i=a,b,β

i〈0|Ãi
µi
|φi〉

p2
i − M2

i

)

〈πa(pa)π
b(pb)|Aα

µ(0)|Kβ(k)〉 + reg.

=

(

∏

i=a,b,β

i · iFipµi

p2
i − M2

i

)

〈πa(pa)π
b(pb)|Aα

µ(0)|Kβ(k)〉 + reg. . (4.4)

1For derivation, see [15].
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Here ”reg.” stands for terms which are regular around the investigated pole
p2

i → M2
i , where Mi are the physical masses of the pseudo-Goldstone bosons.

To get the four point function in the space representation, we use generating
functional Z (2.20)

〈0|TAa
µa

(xa)A
b
µb

(xb)A
α
µ(0)Aβ†

µβ
(xk)|0〉 =

=
1

i3
δ4Z[a]

δaa
µa

(xa)δab
µb

(xb)δaα
µ(0)δaβ†

µβ(xβ)

∣

∣

∣

a=0
. (4.5)

For brevity we introduced notation

Z[a] ≡ Z[v, a, p, s]|v,s,p=0 . (4.6)

By v, s, p = 0 we understand that only the background field part in (2.24) (repre-
sented by dots) is set to zero, so we retain masses of the quarks in our calculations.

To evaluate this functional derivative, we expand the generating functional
into the powers of ”classical fields” φcl — solutions to the classical O(p2) equations
of motion:

Z =
∑

n

1

n!

∫

d4x1 . . . d4xnZi1i2...in [v, a, p, s](x1, . . . , xn) ×

× φi1
cl [v, a, p, s](x1) . . . φin

cl [v, a, p, s](xn) . (4.7)

Coefficients Zi1...ln can be decomposed into contributions from various orders
O(pk) in an obvious way. To order O(p4) we can write

Z[a] =
1

2

∫

d4x
[

Zij(∂φi
cl[a] − aiF0)(∂φj

cl[a] − ajF0) −

−Mijφ
i
cl[a]φj

cl[a]
]

+ O(φ3
cl) + O(p6) ,

(4.8)

where Zij and Mij contain contributions up to order O(p4). In physical basis
these matrices are diagonal2,

Zij = Ziδij

Mij = Miδij . (4.9)

To be able to evaluate functional derivative (4.5), we need variation of the
classical field with respect to the field a. One way to reach it is to employ the
equations of motion. From (4.8) we can write equations of motion (resummed to
the order O(p4))

δZ[a]

δφcl

= 0 (4.10)

explicitly as
Zi∂

2φi
cl[a] + Miφ

i
cl[a] = F0Zi∂ · ai + . . . . (4.11)

2In the isospin limit.
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From here we obtain a variation

δφi
cl[a](x)

δaµ
j (y)

=
F0∂µ

∂2 + Mi/Zi
δijδ(x − y) + . . . . (4.12)

This can be used to gain correlator

〈0|TAi
µ(x)Aj

ν(y)|0〉 =
1

i

δ2Z[a]

δaµ
i (x)δaν

j (y)

∣

∣

∣

a=0
(4.13)

from the expansion (4.8) explicitly as

〈0|TAi
µ(x)Aj

ν(y)|0〉 =
iδijZiF

2
0

∂2 + Mi/Zi
∂x,µ∂y,νδ(x − y) + reg. . (4.14)

In momentum representation this reads

〈0|TÃi
µ(p)Ãj

ν(0)|0〉 =
iZiF

2
0 δijpµpν

p2 −Mi/Zi

+ reg. . (4.15)

By comparison with what we expect from the LSZ formula

〈0|TÃi
µ(p)Ãj

ν(0)|0〉 =
iδijF

2
i pµpν

p2 − M2
i

+ reg. (4.16)

we can relate constants from the generating functional to physical observables

F 2
i = ZiF

2
0

F 2
i M2

i = F 2
0Mi (4.17)

and plug this into the field variation (4.12) to get

δφi
cl[a](x)

δaµ
j (y)

=
F0∂µ

∂2 + M2
i

δijδ(x − y) + reg. . (4.18)

Knowing this variation, we can proceed to functional derivative of the gen-
erating functional. The functional derivatives in (4.5) act either on coefficients
Zi1...in or on the classical fields φcl in the expansion (4.7). To get the desired
pole structure from (4.4), at least three derivatives must act on classical fields,
because coefficient functions do not contain singularities from (4.4). Effectively
we thus can write

δ4Z[a]

δaa
µa

(xa)δab
µb

(xb)δaα
µ(0)δaβ†

µβ(xβ)
=

=

(

∏

i=a,b,β

F0∂µi

∂2 + M2
i

)

δ

δaα
µ(0)

Zabβ† [a](xa, xb, xβ)
∣

∣

∣

a=0
+

+

(

∏

i=a,b,α,β

F0∂µi

∂2 + M2
i

)

Zabαβ† [0](xa, xb, xβ , 0) . (4.19)

Combining (4.4) with (4.19) we obtain

〈πa(pa)π
b(pb)|Aα

µ(0)|Kβ(k)〉 =
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=
1

i

(

∏

i=a,b,β

F0

Fi

)

∫

d4xa d4xb d4xβeipa·xa+ipb·xb−ik·xβ ×

×
[

δ

δaα
µ(0)

Zabβ† [a](xa, xb, xβ)
∣

∣

∣

a=0
+

+
iF0qµ

q2 − M2
α

Zabαβ† [0](xa, xb, xβ, 0)

]

(4.20)

which may be rewritten to

〈πa(pa)π
b(pb)|Aα

µ(0)|Kβ(k)〉 =

=
1

i

∫

d4xa d4xb d4xβeipa·xa+ipb·xb−ik·xβ ×

×
[(

∏

i=a,b,β

F0

Fi

)

δ

δaα
µ(0)

Zabβ† [a](xa, xb, xβ)
∣

∣

∣

a=0
+

+
iFαqµ

q2 − M2
α

(

∏

i=a,b,β,α

F0

Fi

)

Zabαβ† [0](xa, xb, xβ, 0)

]

. (4.21)

This last equality constitutes basis of our calculations, it is therefore worth-
while to summarize our procedure so far:

• Expand the generating functional into the series in φcl.

• Find the part of the coefficient Zabβ linear in aµ and aµ-independent part
of Zabβα.

• Take the linear combination (4.21) and Fourier transform the result.

We see that we received two contributions to the calculated matrix element.
The second one is proportional to qµ and thus contributes only to the R formfac-
tor; the first term contributes to all F, G and R.

So far our method of calculating the matrix element

〈πa(pa)π
b(pb)|Aα

µ(0)|Kβ(k)〉 (4.22)

is ”safe” in the perspective of the RχPT, because we started with the generating
functional Z and performed only linear operations.

4.2 One loop corrections

In the previous section we explained how to extract value of the matrix element
〈πa(pa)π

b(pb)|Aα
µ(0)|Kβ(k)〉 from coefficients Zabβ and Zabβα, in this section we

show how to obtain values of these coefficients.
As already explained, the generating functional of χPT to the order O(p4)

is given by an integral of the most general Lagrangian which complies with the
assumed symmetry properties3 to this order

Leff = L2 + L4 . (4.23)

3Plus terms reproducing anomalous behavior. In our calculations we do not need Wess-
Zumino term, therefore we do not include it into Leff .
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We may then write

exp(iZ) =

∫

DU exp (iSeff)

=

∫

DU exp

(

i

∫

d4x(L2 + L4)

)

. (4.24)

In our calculation we employed the background field method in concordance
with authors of [3]. Denoting the solution to the classical O(p2) equations of
motion U and its square root u,

U = u2 , (4.25)

we can write expansion around U in a form

U = u exp

(

i
√

2φin

F0

)

u (4.26)

with φin(x) a field of traceless hermitian matrices. Used parametrization has the
advantage that if we postulate transformation properties of φin

φin → h†φinh , (4.27)

where h was defined right after (2.27), then U remains invariant under the chiral
group.

Similarly to what we have done, we can define quantum fields by prescription

φin(x) =









π0
in√
2

+ ηin√
6

π+
in K+

in

π−
in −π0

in√
2

+ ηin√
6

K0
in

K−
in K0

in −2ηin√
6









(4.28)

and ”classical” fields

u = exp









i√
2F0









π0
cl√
2

+ ηcl√
6

π+
cl K+

cl

π−
cl −π0

cl√
2

+ ηcl√
6

K0
cl

K−
cl K0

cl −2ηcl√
6

















. (4.29)

We stress out that these ”classical” fields are the ones that are used as expansion
parameters in (4.7), which enables easy determination of Zabβ and Zabβα.

In the effective action we may separate contributions coming from the solu-
tions to the classical equations of motion and the rest by writing

Seff =

∫

d4x(L2 + L4) +

∫

d4x(L2 − L2) +

∫

d4x(L4 − L4) . (4.30)

In barred quantities we substituted fields U by U . The last term in (4.30) gen-
erates contributions of an order O(p6) and can hence be dropped. The first term
corresponds to the contribution of the tree diagrams [3] and is expressed precisely
in the form we need to read off the coefficients from (4.7). Finally, the second
term corresponds to the loop corrections with L2 vertices and according to the
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Weinberg’s counting rules must be retained at our NLO calculations. We now
focus our attention to the contribution of the second term.

One way to proceed is to expand the exponentials in (4.24) into a second order
in quantum fields φin and calculate contribution of the one-loop graphs to the
generating functional by Gaussian integration over these quantum fields. This
was the approach taken by the authors of [3].

We decided to take a technically different approach and calculate one-loop
contributions directly by evaluating Feynman diagrams [43]4.

The classical fields have a specific position given by the (4.21) — we are
searching for contributions to Z with the correct powers of ”classical fields”. As
an easy book-keeping, we can picture the ”classical” fields as external lines of
the diagram. This way, only graphs with the correct set of the external lines can
contribute to the coefficients Zabβ(α). This is very utile, as in our case we need
to calculate only graphs with the external lines corresponding to the ”classical”
incoming K+ and outcoming π+, π− for Zabβ; for Zabβα we have to add also
K−5. To simplify further steps, each axial current in a Lagrangian term was also
pictured as an external particle coming out of the corresponding vertex. When
we are interested in the first derivative of some Zi1,...,in with respect to an axial
current as in (4.21), it suffices to calculate amplitude of a graph with a single
additional external leg corresponding to the axial current. For obvious reasons
we labeled particles represented by these lines as W±

µ .
The quantum fields are dynamical degrees of freedom (see the change of the

integration variable in the footnote) and must be integrated out before we are able
to write the final effective functional. In our method this corresponds to placing
quantum fields φin on internal lines of loop diagrams and performing the one loop
integrations. The ”quantum” fields must have the same Lorentz structure as the
described pseudo-Goldstone boson fields and are thus scalars, which uniqely sets
the form of their propagators.

When we expand the effective Lagrangian Leff we get sum of terms with
various powers of the fields φcl and φin; each term in the Lagrangian corresponds
to a certain vertex rule. From (4.30) we know that the vertex rules for quantum
fields φin are dictated by the Lagrangian L2 − L2. By plugging the expansion
(4.26) into the expression for the O(p2) Lagrangian (2.41) we explicitly get

Lloop = L2 −L2

=
F 2

0

4

〈

(DµŨ)† · DµŨ − 1

2

(

DµU
)† · Dµ ˜̃U − 1

2
DµU ·

(

Dµ ˜̃U
)†

− 1

2
φ2

cl

(

u · χ† · u + u† · χ · u†)
〉

+ O(φ3
in) , (4.32)

4In the end our results are identical with the results that would be obtained by the former
approach. The most important step in proving this is the change of the variable of integration
from φ to quantum fields φin

∫

Dφ exp(iSeff ) =

∫

Dφin exp(iSeff ) , (4.31)

where we used the defining relations (4.26) and (4.29). The equivalence of Feynman rules
calculation with the Gaussian integration over fields is then shown in a standard way [15].

5We are searching for the coefficient with α = 4 − i5 (compare (3.9) and (3.28)). In our
notation (4.29) it corresponds to K−.
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where6

DµŨ = ∂µ (u · φin · u) − iu · φin · u · aµ − iaµ · u · φin · u
Dµ

˜̃U = ∂µ

(

u · φ2
in · u

)

− iu · φ2
in · u · aµ − iaµ · u · φ2

in · u . (4.33)

We are interested exclusively in the matrix element of current A4−i5
µ . Therefore,

we can effectively take matrix aµ as

aµ =





0 0 0
0 0 0

a4−i5
µ 0 0



 . (4.34)

Dropping other fields from aµ speeds up calculations notably.
In the loop Lagrangian there is no contribution linear in quantum fields, be-

cause such terms are proportional to variation of the LO action

S2 =

∫

d4xL2 (4.35)

with respect to φcl and this proportionality factor is equal to zero because we
chose φcl as solutions to the classical O(p2) equations of motion. The terms with
third and higher power of the quantum fields give rise to two- and higher order
loop diagrams, which are beyond our NLO precision.

From (4.32) we are also able to read off ”masses” of the quantum fields φin. If
we expand Lloop (4.32) and examine mass terms of ”quantum” fields, we find out
that φin have — to the investigated order — the same masses as pseudo-Goldstone
bosons, namely

◦
M

2

πin
= 2m̂B0

◦
M

2

Kin
= (m̂ + ms)B0

◦
M

2

ηin
=

2

3
(m̂ + 2ms)B0 . (4.36)

These are the masses that must be plugged into the internal propagators of φin.
We have now all the ingredients to calculate loop graphs and it remains to

specify calculation of the graphs without φin — tree graphs with vertices from
L2 and L4. At the investigated order these graphs can have only a single vertex,
because the ”classical” fields do not enter internal propagators; external lines are
determined as in the loop case. The Feynman rules are obtained by substituting
U in L2 and L4 by the classical solution U . After that, we may perform an
expansion to order sufficient for reading off desired coefficients Zabβ(α).

4.3 Calculations with Wolfram Mathematica

In the previous section we introduced division of fields into ”classical” and ”quan-
tum” and explained their positions in the calculations. We argued that each graph
must contain correct set of external lines corresponding to the ”classical” fields

6We remind that we are interested in a matrix element of an axial current. In the following
expressions we thus set vµ = 0.
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taking part in the decay (K+, π+, π− and either K− or W−). In this section
we introduce a Wolfram Mathematica [44] notebook we wrote to calculate the
amplitudes of the Feynman diagrams introduced in the previous section7. This
notebook is an attachment of the thesis.

The central part of our notebook is a function GraphContribution, which
takes information about a graph and returns the calculated amplitude.

To describe a graph, we must first provide a number N of vertices in it; each
vertex is given a number from one to N8. In addition to this, we must provide
information about which Lagrangian from L2,L4,Lloop to use in which vertex.

Finally, we must specify lines in the graph. Each line is uniquely given by

• Number of the initial and final vertex of the line9. If the particle is external
incoming / outgoing, then the number of initial / final vertex of the line is
set to zero.

• Type of particle on the line (π0
cl, K

+
in, W

+, . . .)

• Its momentum

• Its Lorentz index (for particles W±
µ of the axial current) .

To calculate the amplitude of the given diagram, we must combine contribu-
tions from each vertex and line. In some cases we must also divide the provisional
result by the symmetry factor of the graph.

When calculating contribution of a given vertex, the function GraphCon-
tribution first goes through all the lines going to / from the vertex and chooses
the lines that begin or end here. To simplify further calculations, all lines are
reoriented to contain only incoming particles with respect to the vertex. If there
is a line containing outcoming particle φ with momentum p, it is ”reoriented”
by replacing the particle with its antiparticle and by reversing its momentum
to −p10. Then we go through all lines of the vertex and extract and store in-
formation about momentum for each type of particle — eight ”classical”, eight
”quantum” and two W± — and for W± also Lorentz indices of these particles.
For example if there are two π0

cl incoming to the vertex with momenta q1, q2,
we store both these momenta in a corresponding array. This book-keeping is
important because of the derivatives present in the Lagrangian, as we will see
shortly. We also compute number of particles of each type so we can later easily
distinguish Lagrangian terms which are relevant.

After processing information about particles interacting in the vertex, we
build matrices u (according to (4.29)) and exp(i

√
2φin/F0). From before we

know how many particles are interacting in the vertex, which gives the highest
order to which we must expand the exponential. We also know which particles
are not interacting in the vertex, which enables us to drop them from the very
beginning to save some computation time. After the expansion we are able to
build the relevant Lagrangian and keep only the terms with the correct numbers
of particles.

7Interested reader may consult also Appendix B, where sample calculation is performed with
somewhat more detail.

8To describe external lines, we introduced a special vertex numbered zero — see further.
9All lines are oriented according to the direction of momentum.

10Correctness of this procedure relies on an assumption of validity of CPT theorem.
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There are three special things that must be taken care of — derivatives in the
Lagrangian, vector index of W± and identical particles.

Because we reoriented all particles to be incoming, in the momentum rep-
resentation which we are using each derivative is in the corresponding Feynman
rule represented by a mere multiplication by momentum with the same factor −i,

∂xφ → −ipx,φφ . (4.37)

If we did not reorient the particles we would have to take special care of the
incoming / outcoming particles. At the vertex there may be more fields of the
same type but with different momenta — typically two π0

in or two ηin. In such
case we must take care of what combination of momenta we take. In assessing
the correct combination we use the Wick theorem [15] which tells us to take all
”contractions” among the fields. If we have vertex with N identical particles φ
with momenta p1, . . . , pN and the corresponding Lagrangian term contains m
derivatives of these fields ∂µ1 , . . . , ∂µm then according to the theorem we must
sum all possible combinations of m derivatives on N momenta. In the result the
corresponding Feynman rule is proportional to

(−i)m
∑

i1 6=i2 6=...6=im

pµ1

i1
pµ2

i2
. . . pµm

im . (4.38)

This sum is then easily constructed from the previously created array which stores
separately list of momenta for each type of particle.

This rule is somewhat more complicated for W±, because derivatives of these
particles effectively carry two Lorentz indices — one from the derivative and one
from the axial current. In such case we must be careful during the ”contraction”
of such a particle, because we must match also the Lorentz index of the axial
current and the matching of momenta and this Lorentz index must agree. We
clarify this on an example: If in the Lagrangian we have term with ∂µW+

ν and
on an external line there is an incoming W+ with momentum p and Lorentz
index α, then we multiply the constructed Feynman rule by −ipµδαν instead of
simple −ipµ. In our Mathematica notebook we took care of this situation.

Finally the last complication in building the Feynman rule arises when there
are some indistinguishable particles left even after we ”contract” fields with
derivatives. For example if the Lagrangian contained term ηη ∂µη then after
we ”contract” the term with derivative we are left with two indistinguishable
particles ηη. There are two ways how to contract this, therefore we must multi-
ply the Feynman rule by additional factor of 2. In general, if after contracting
the terms with derivatives there are N indistinguishable particles left, we must
add factor of N ! to the constructed Feynman rule. This concludes our discussion
of the contributions from the vertices.

For each internal propagator of a quantum particle we earlier gave reasons for
the use of a scalar propagator

∆(p) =
i

p2 − m2
φin

, (4.39)

with masses (4.36). The external lines which represent powers of ”classical” fields,
correspond to coefficients in the expansion of the generating functional (4.7) and
as such do not contribute to the constructed Feynman rule.
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Finally in our case of semileptonic kaon decays we had to take care of two
situations where we had to employ symmetry factors — tadpole graphs with ex-
change of electrically neutral particle and bubble graphs with exchange of two
identical particles. In such cases we had to divide obtained amplitude by the sym-
metry factor two [15]. Because more complicated symmetries were not employed
in our calculations, we did not check on presence of general symmetry factors but
only searched for the two situations mentioned above.

To process one loop graphs, we employed external library FeynCalc [45]. When
diagrams are inputed in a convention employed by FeynCalc, it is capable of
giving results of one loop graphs expressed in terms of loop functions A0(M

2)
and B0(s, M

2
1 , M2

2 ) which are defined in the Appendix B. The calculations with
FeynCalc proceed in two steps — first, amplitude of the diagram is calculated
in terms of general Passarino-Veltman coefficient functions. In the next step the
final expression is reduced using function PaVeReduce of FeynCalc to contain
only A0 and B0.

The Passarino-Veltman reduction is the last step in calculating the ampli-
tudes of diagrams, which are now expressed in terms of momenta p1, p2, q of the
outcoming pions and dilepton; low energy constants from the χPT Lagrangian
F0, B0mq, Li and loop functions A0, B0.

4.4 Formfactors

In previous sections we introduced the technique of calculating coefficients Zi1...in

in the expansion (4.7) using Feynman diagrams. Then we explained how we im-
plemented this technique into our Mathematica notebook which calculates ampli-
tudes of respective Feynman diagrams of one-loop RχPT. In this section we put
all this together and give theoretical formulae for the formfactors of semileptonic
kaon decay.

Above we used Weinberg’s formula and discussed that to NLO we must include
tree graphs where one of the vertices may be from L4 and remaining vertices must
come from L2 and one-loop graphs with vertices from Lloop. Diagrams that at
given order contribute to formfactors F, G, R are schematically pictured in the
Figures 2 (contributions to Zabβ linear in aµ) and 3 (contributions to Zabβα).

For calculations of the diagrams we used the Mathematica notebook intro-
duced in the previous section.

To arrive at the correct NLO expression for the matrix element

〈πa(p1)π
b(p2)|Jh

µ |Kβ(k)〉 (4.40)

in χPT, amplitudes of the one particle irreducible diagrams must be multiplied
by

1

i

∏

i=a,b,β

F0

Fi
(4.41)

and amplitudes of the pole diagrams must be multiplied by

Fαqµ

q2 − M2
α

∏

i=a,b,β,α

F0

Fi

, (4.42)
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Figure 2: Feynman diagrams which contribute to coefficient Zabβ (4.7) and
are linear in aµ (contain single W+). Diamond vertex corresponds to L2, boxed
vertex corresponds to L4 and circles stand for vertices from Lloop. ”Classical”
particles are drawn with solid lines, ”quantum” particles with dashed lines.

as indicated in (4.21). Finally, the employed convention (3.28) states that to get
theoretical predictions on the formfactors, we must multiply the derived result
for investigated matrix element by a factor iMK and take coefficients standing in
front of vectors P µ, Qµ and qµ. This completes our calculations of the formfactors.
However, we introduced some modifications before quoting the final result.

The formfactors may be rewritten to a more legible form by using mass shell
conditions

p2
1 = p2

2 = M2
π

(p1 + p2 + q)2 = M2
K , (4.43)

which together with definitions (3.21) and constraint (3.22) enable us to express

p1 · p2 =
s

2
− M2

π

p1 · q =
u − M2

π − q2

2

p2 · q =
t − M2

π − q2

2
. (4.44)
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Figure 3: Feynman diagrams which contribute to coefficient Zabβα. Diamond
vertex corresponds to L2, boxed vertex corresponds to L4 and circles stand for
vertices from Lloop. ”Classical” particles are drawn with solid lines, ”quantum”
particles with dashed lines.

Further we may use (2.44) and replace B0mq by O(p2) masses of pion and
kaon

B0m̂ =

◦
M

2

π

2

B0ms =
◦

M
2

K −
◦

M
2

π

2
. (4.45)

Our final change is rewriting the one loop functions A0 and B0 to scalar bubble
Jr

PQ(s) (defined in the Appendix B) and derived functions. Using formulae given
in the Appendix B, we may write

A0(s) → s(1 + B0(0, s, s))

B0(s,
◦

M
2

P ,
◦

M
2

Q) → 16π2Jr
◦
MP ,

◦
MQ

(s) . (4.46)

In accord with our previous discussion on RχPT, to get correct positions of

branching points we then substitute LO masses
◦

MP in arguments of Jr with
their physical counterparts MP . This replacement constitute our transition from
the ”strict” chiral expansion to ”bare” chiral expansion.
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Then we replace11

Jr
PQ(s)

s2
=

Jr
PQ(0) + sJr′

PQ(0) + JPQ(s)

s2
, (4.47)

which simplifies some of the fractions in the result. Finally, to separate constant
part of Jr from the unitary part that depends on kinematical variables we use

Jr
PQ(s) = Jr

PQ(0) + JPQ(s) . (4.48)

After performing all steps mentioned above, we arrive at the following results
for formfactors F and G:

Formfactor F may be at NLO written as

FNLO(s, t; u; q2) =
MK√
2Fπ

(

Fπ

FK

)[

Z +
1

F 2
π

(

PF (s, t; u; q2) + UF (s, t; u)
)

]

,

(4.49)
where the contribution UF (s, t; u) denotes the unitary correction generated by
the one loop graphs which appear at order E4 in the low energy expansion and
PF (s, t; u; q2) stands for polynomial in s, t, u and q2 and contains contributions
from tree graphs in the order O(p4) and constant part of the one loop graphs.
They are explicitly

UF (s, t; u) =

(

3

2

◦
M

2

π − 2M2
π + s

)

Jππ(s) +
3

4

(

s − 2M2
π + 2

◦
M

2

π

)

JKK(s) +

+
1

2

◦
M

2

πJηη(s) −
1

36
∆Kπ

◦
∆

2

Kπ

(

JKη(t)

t2
+ 9

JKπ(t)

t2

)

+

+

(

1

8

◦
ΣηKM2

K +
1

12
M2

π

(

2
◦

M
2

π − 5
◦

M
2

K

)

+
1

8

◦
∆ηK

◦
M

2

K

)

JKη(t)

t
+

+

(

1

8

◦
ΣKπM

2
K +

1

4
M2

π

(

2
◦

M
2

π − 3
◦

M
2

K

)

+
3

8

◦
∆Kπ

◦
M

2

K

)

JKπ(t)

t
+

+
1

8

(

M2
K + 2M2

π − 7
◦

M
2

K

)

JKη(t) +

+
1

8

(

5M2
K + 6M2

π − 3
◦

M
2

K − 8
◦

M
2

π − 4t

)

JKπ(t) +

+
1

2

(

M2
K + M2

π − u
)

JKπ(u) (4.50)

and

PF (s, t; u; q2) = 32L1

(

s − 2M2
π

)

+ 8L2

(

s − q2 + M2
K

)

+
+ 4L3

(

M2
K − 3M2

π + 2s − t
)

+

+ 8L4

(

5
◦

M
2

π + 2
◦

M
2

K

)

+ 4L5

(

2
◦

M
2

π +
◦

M
2

K

)

+ 2L9q
2 +

+ s

(

3

4
Jr

KK(0) +
1

2
Jr

Kπ(0) + Jr
ππ(0)− 1

128π2

)

+

+
1

128π2
(t − u) + q2

(

−1

2
Jr

Kπ(0) +
1

128π2

)

+

11The introduced shortened notation Jr
PQ, JPQ and JPQ represents functions with (physical)

masses MP and MQ in place of arguments mP and mQ.
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+
1

4
M2

π

(

Jr
Kη(0) − 6Jr

KK(0) + Jr
Kπ(0) − 8Jr

ππ(0)+
1

12π2

)

+

+
1

8
M2

K

(

Jr
Kη(0) + 5Jr

Kπ(0) +
1

48π2

)

+

+
1

4

◦
M

2

π

(

Jr
ηη(0) + 6Jr

KK(0) − 4Jr
Kπ(0) + 13Jr

ππ(0) +
5

16π2

)

+

+
1

8

◦
M

2

K

(

8Jr
ηη(0) − 7Jr

Kη(0) + 16Jr
KK(0) − 3Jr

Kπ(0) +
7

8π2

)

.

(4.51)

Here we introduced for brevity

∆PQ = M2
P − M2

Q

ΣPQ = M2
P + M2

Q
◦
∆PQ =

◦
M

2

P −
◦

M
2

Q
◦
ΣPQ =

◦
M

2

P +
◦

M
2

Q (4.52)

and earlier we defined

Z =
F 2

0

F 2
π

. (4.53)

Similar division of the result is possible for the G formfactor. Namely,

GNLO(s, t; u; q2) =
MK√
2Fπ

(

Fπ

FK

)[

Z +
1

F 2
π

(

PG(s, t; u; q2) + UG(s, t; u)
)

]

(4.54)

with unitary corrections

UG(s, t; u) =
1

12

(

s − 4
◦

M
2

K

)

JK,K(s) +
1

6

(

s − 4
◦

M
2

π

)

Jπ,π(s) +

+
1

36
∆Kπ

◦
∆

2
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(

JKη(t)
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+ 9

JKπ(t)

t2
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+

+

(
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8
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ΣηKM2
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π

(
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◦

M
2

K − 2
◦
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2

π
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24

◦
∆ηK

(

◦
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2

K + 2
◦

M
2

π
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JK,η(t)

t
+

+

(

−1

8

◦
ΣKπM
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1

4
M2

π

(

3
◦

M
2

K − 2
◦

M
2

π
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− 1
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∆Kπ
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◦
M

2

K + 2
◦

M
2

π

))

JK,π(t)
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+

+
1

24

(

−7
◦
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2

K − 3M2
K + 4

◦
M

2

π − 6M2
π + 6t

)

JK,η(t) +

+
1

8

(

−
◦

M
2

K − 5M2
K + 4

◦
M

2

π − 6M2
π + 6t

)

JK,π(t) +

+
1

2

(

M2
K + M2

π − u
)

JK,π(u) (4.55)

and polynomial part

PG(s, t; u; q2) = 8L2(t − u) + 4L3(t − M2
K − M2

π) +

+ 8L4

(

2
◦

M
2

K +
◦

M
2

π

)

+ 4L5

(

◦
M

2

K + 2
◦

M
2

π

)

+ 2L9q
2 +
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+ s

(
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8
Jr

K,η(0) − 1

8
Jr

K,π(0) +
1

12
Jr

K,K(0) +
1

6
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π,π(0) +
1

128π2
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8
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384π2
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8
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384π2
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K
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+

+
◦
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(

1
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24
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K,η(0) +
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Jr

K,K(0) +
1

8
Jr

K,π(0) +
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)

+

+
◦

M
2

π

(

− 1

12
Jr

η,η(0) +
1

12
Jr

K,η(0) +
1

4
Jr

K,π(0) +
7

4
Jr

π,π(0) +
19

192π2

)

.

(4.56)

We checked we arrive at the result obtained by the standard χPT [36] after
we substitute LO parameters by inversions of (2.74), (2.75) and (2.76) and keep
only terms to NLO.

As another check we investigated explicit scale invariance of the result by
changing µ — we changed value of the Li’s according to12

Lr
i (µ1) = Lr

i (µ2) +
Γi

16π2
log

µ1

µ2
, (4.57)

and Jr
PQ(0) according to formulae given in the Appendix B and checked that all

contributions cancel.

12The logarithmic running is implied by (2.51), constants Γi were derived in [3].
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Chapter 5

Obtaining the L1 – L3

5.1 Resummed result

Everything so far is correct from the point of view of RχPT, as we started with
generating functional Z and used only linear operations to get theoretical pre-
dictions on formfactors FNLO and GNLO. To get the final predictions on the
theoretical values of these formfactors we must perform three more operations.

In the ”bare” expansion from previous chapter we must express remaining LO
masses and LO pion decay constant F0 in terms of physical values and X, Z, r
(see (2.91))

F 2
0 = ZF 2

π
◦

M
2

π = Y M2
π

◦
M

2

K =
r + 1

2
Y M2

π

◦
M

2

η =
2r + 1

3
Y M2

π . (5.1)

At the same time we must reexpress low energy constants L4, L5 and L9 in
terms of masses and decay constants according to Appendix C. Finally, we must
parametrize our ignorance of higher order contributions by introducing higher
order remainders. After all these steps, our theoretical predictions on the values
of formfactors read schematically

Fth = FNLO(X, Z, r, δFπ
, δFK

, L1, L2, L3) + Fth δF

Gth = GNLO(X, Z, r, δFπ
, δFK

, L1, L2, L3) + Gth δG . (5.2)

Now we have theoretical expressions for formfactors F and G formulated in
terms of physical constants; X, Z, r; higher order remainders and three unknown
constants L1 – L3. By comparison of our theoretical predictions with experimental
values of formfactors we are able to determine the values of these low energy
constants in terms of the remaining quantities, as we show in the following section.

5.2 Isolating L1 – L3

While formfactor F depends on all three low-energy constants L1 – L3, formfactor
G depends only on L2 and L3. The situation gets even simpler if we investigate
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formfactors at the point cos θ = 0. Then we have (3.27)

u = t =
1

2

(

M2
K + 2M2

π + q2 − s
)

(5.3)

and L2 dependence of the G formfactor vanishes. In such case G is function of
only L3 and comparison of theoretical prediction on G with the experimental
values can be used to isolate L3.

For further simplification we extrapolated the experimental data to the point
q2 = 0 where formfactors are functions of single kinematical parameter s1. In the
considered limit this kinematical parameter is bounded by inequalities (3.23)

4M2
π ≤ s ≤ M2

K . (5.4)

Our theoretical prediction on formfactor G can be split into part which de-
pends on L3 explicitly and the part which is independent of L3

Gth = GNLO + K3L3 + GthδG , (5.5)

where from (4.54) and (4.56) we can read off2

K3 = −
√

2MK

F 2
πFK

· (s + M2
K) (5.6)

and we defined
GNLO = GNLO

∣

∣

∣

L3=0
, (5.7)

which is independent of low energy constant L3.
If we now set our theoretical prediction on G equal to experimentally measured

value Gexp by setting
Gexp = Gth (5.8)

at some value sG of kinematical variable s and then substitute this to (5.5), we
obtain

L3 =
Gexp(1 − δG) − GNLO

K3
. (5.9)

All quantities at (5.9) are evaluated at s = sG.
Plugging in from definition of K3 we get

L3 =
F 2

πFK√
2MK(sG + M2

K)

(

GNLO − Gexp(1 − δG)
)

. (5.10)

Everything on the right hand side can be expressed using only experimentally
measureable data, X, Z, r and higher order remainders and (5.10) thus constitutes
our final result on reparametrization of L3.

With this result, we can replace each L3 by the expression (5.10) as we did
in case of L4 – L9. Specifically we can do this in our theoretical result for F
formfactor, which then depends only on two unknown constants L1 and L2.

1Just to remind — the formfactors depend in general on three parameters. Two of these we
constrained, so we are left with one degree of freedom.

2This holds only for cos θ = 0.
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Because formfactors are in general complex numbers and the same holds for
our theoretical predictions, formula (5.10) gives us in general complex L3. If this
were true then our Lagrangian (2.48) would not be Hermitian. The simplest way
how to resolve this is to compare only real parts of theoretical predictions and
experimental values which is the way we used — in the rest of this thesis, we work
exclusively with real parts of complex expressions. Especially, we plug in only
real parts of expressions Aexp and ANLO to final formulae for low energy constants
L1 – L3, such as (5.10). We do not do anything wrong from the perspective of
the RχPT as taking real part is a linear operation.

Situation with L1 and L2 is a little more complicated. One way we could pin
down the L2 would be to relax the constraint cos θ = 0 and use again comparison
of theoretical prediction with experimental value of G formfactor for some nonzero
value of cos θ. However, the change in values of G induced by relaxing constraint
cos θ = 0 are expected to be small and we would introduce a large error into
our calculations. We decided to take another way instead and reexpress the L1

and L2 solely from the values of formfactor F .
Because we are reexpressing two low energy constants, we need two pieces of

experimental data. We have basically two possibilities:

• Compare theoretical prediction of the formfactor F with its experimental
value at two distinct s (sA, sB).

• Compare value of the formfactor at sF and the slope of the formfactor dF
ds

at (possibly different) point sS.

Now we derive formulae for L1 and L2 in both ways.

5.2.1 First strategy to reexpress L1 and L2

In this way we use theoretical prediction on experimental values of F at two
distinct points sA and sB. As we did in the case of G formfactor, we can split
the theoretical predictions into the part independent of L1 and L2 and the rest,

FA,th = FA,NLO + KA1L1 + KA2L2 + FA,th δA

FB,th = FB,NLO + KB1L1 + KB2L2 + FB,th δB . (5.11)

Above we introduced following quantities: FA(B),th are our final theoretical results
on values of F at sA(B) and δA(B) are corresponding higher order remainders.
Values of constants KA1, KA2, KB1 and KB2 may be read off from (4.49) and
(4.51) as

KA1 =

√
2MK

F 2
πFK

· 16(sA − 2M2
π)

KA2 =

√
2MK

F 2
πFK

· 4(sA + M2
K)

KB1 =

√
2MK

F 2
πFK

· 16(sB − 2M2
π)

KB2 =

√
2MK

F 2
πFK

· 4(sB + M2
K) . (5.12)
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Finally,

FA,NLO = FNLO

∣

∣

∣

L1=L2=0

FB,NLO = FNLO

∣

∣

∣

L1=L2=0
, (5.13)

where FNLO is evaluated at sA on the first line and at sB at the second line.
Setting theoretical predictions equal to their respective experimental values

FA(B),th = FA(B),exp (5.14)

we can use (5.11) and solve the system of two linear equations to get

L1 =
KA2(FB,NLO − FB,exp(1 − δB)) − KB2(FA,NLO − FA,exp(1 − δA))

KA1KB2 − KA2KB1

L2 =
KB1(FA,NLO − FA,exp(1 − δA)) − KA1(FB,NLO − FB,exp(1 − δB))

KA1KB2 − KA2KB1

.

(5.15)

Using definitions (5.12) we get the final result

L1 =
FKF 2

π

16
√

2MK

(sA + M2
K)(FB,NLO − FB,exp) − (sB + M2

K)(FA,NLO − FA,exp)

(sA − sB)(M2
K + 2M2

π)

+
FKF 2

π

16
√

2MK

(sA + M2
K)FB,exp δB − (sB + M2

K)FA,exp δA

(sA − sB)(M2
K + 2M2

π)

L2 =
FKF 2

π

4
√

2MK

(sB − 2M2
π)(FA,NLO − FA,exp) − (sA − 2M2

π)(FB,NLO − FB,exp)

(sA − sB)(M2
K + 2M2

π)

+
FKF 2

π

4
√

2MK

(sB − 2M2
π)FA,exp δA − (sA − 2M2

π)FB,exp δB

(sA − sB)(M2
K + 2M2

π)
.(5.16)

As before for L3, we again arrived at a result that is expressed only through
experimentally obtainable constants, X, Z, r and higher order remainders δW

3.
Here and in what follows we under the shorthand notation δW understand the
set of δA, δB, δF , δG, δS, δFπ

, δK (δF and δS are introduced in the next section).

5.2.2 Second strategy to reexpress L1 and L2

The second way to isolate L1 and L2 is to use value of the formfactor at sF and
the slope of the formfactor S = dF

ds
at point sS. Because we are working in the

limit of zero cos θ and q2, F depends on a single variable and the derivative has
a uniquely defined sense.

Before proceeding further, we must specify our theoretical prediction on dF
ds

.
From (4.49) we see that this derivative can be to NLO split into two parts,

SNLO(s) =
dF

ds

∣

∣

∣

s
=

MK√
2F 2

πFK

(

dUF (s, tF ; uF )

ds
+

dPF (s, tF , uF )

ds

)

, (5.17)

3We once again stress out that the L3 in (5.10) has been reparametrized and as such drops
from all formulae, therefore also from formulae for FA(B),NLO.
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where we plugged in expressions for t and u in the used approximation (5.3)

tF = uF =
1

2

(

M2
K + 2M2

π − s
)

. (5.18)

Unitary part was defined in (4.50) and explicit form of its derivative is not
interesting in our case. Here we quote only derivative of the polynomial part of
the F formfactors as this is the one containing the low energy constants:

dPF (s, tF , uF )

ds
=

3

4
Jr

KK(0) +
1

2
Jr

Kπ(0) + Jr
ππ(0) + 32L1 + 8L2 + 10L3 −

1

128π2
.

(5.19)

As in the previous case we in our theoretical predictions of the formfactor and
its derivative isolate dependence on low-energy constants L1, L2 which we want
to reparametrize,

Fth = FNLO + KF1L1 + KF2L2 + Fth δF

Sth = SNLO + KS1L1 + KS2L2 + Sth δS . (5.20)

Similarly to the previous case, Fth and Sth are our final theoretical results on
values of F (sF ) and S(sS) and δF , δS are corresponding higher order remainders.
Values of constants KF1, KF2, KS1 and KS2 may be read off from (4.49), (4.51),
(5.17) and (5.19) as

KF1 =

√
2MK

F 2
πFK

· 16(sF − 2M2
π)

KF2 =

√
2MK

F 2
πFK

· 4(sF + M2
K)

KS1 =

√
2MK

F 2
πFK

· 16

KS2 =

√
2MK

F 2
πFK

· 4 (5.21)

and parts independent on L1,2 are

FNLO = FNLO

∣

∣

∣

L1=L2=0

SNLO = SNLO

∣

∣

∣

L1=L2=0
, (5.22)

where FNLO is evaluated at sF and SNLO is evaluated at sS.
Knowledge of experimental values Fexp, Sexp enables us to reduce L1 and L2

from (5.20) as

L1 =
KF2(SNLO − Sexp(1 − δS)) − KS2(FNLO − Fexp(1 − δF ))

KF1KS2 − KF2KS1

L2 =
KS1(FNLO − Fexp(1 − δF )) − KF1(SNLO − Sexp(1 − δS))

KF1KS2 − KF2KS1

,

(5.23)

which simplifies to

L1 =
FKF 2

π

16
√

2MK

FNLO − Fexp(1 − δF ) − (sF + M2
K)(SNLO − Sexp(1 − δS))

(M2
K + 2M2

π)
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L2 =
FKF 2

π

4
√

2MK

(sF − 2M2
π)(SNLO − Sexp(1 − δS)) − (FNLO − Fexp(1 − δF ))

(M2
K + 2M2

π)
.

(5.24)

This last result constitutes a second possibility how to parametrize L1 and L2 in
terms of physical observables, X, Z, r and higher order remainders.

5.3 Values of low energy constants

Goal of this section is to present results on values of the low energy constants;
their values are obtained from formulae (5.10), (5.16) and (5.24). In this section
we do not investigate influence of the higher order remainders δW on the result
therefore we now for a while set all higher order remainders equal to zero. With
this choice, L1 – L3 depend only on experimental input and values of X, Z, r.

The experimental values we used in place of Fexp, Gexp, Sexp were already partly
discussed in the third chapter. There we expanded the formfactors into partial
waves (3.35) and parametrized partial waves in the expansion as a series (3.36).

Numerical values of the coefficients in (3.36) are taken from the measurements
of the experiment NA48/2 on decays K± → π+π−e±ν [8]:

Coefficient Value

fs 5.705 ± 0.035
f ′

s 0.867 ± 0.050
f ′′

s −0.416 ± 0.053
f ′

e 0.388 ± 0.053
gp 4.952 ± 0.086
g′

p 0.508 ± 0.122

Table 5: Coefficient parametrizing the formfactors

Experimental values of phase shifts we used come from the E865 measurement
[32]. More specific details about the parametrization can be found in Appendix E.
Figure 4 on the next page displays s-dependence of real parts of F and G for
cos θ = q2 = 0.

When we specified experimental values of formfactors and neglected remain-
ders, the low energy constants L1 – L3 depend through (5.10), (5.16) and (5.24)
on only three parameters X, Z, r . Following table summarizes some represen-
tative values we found in the literature. For easier further reference we labeled
each set of X, Z, r; labels D and E stand for respective central values.

Label Source X Z r

A Standard O(p2) χPT 1 1 25.9
B From O(p4) Li [35] 0.902 0.865 25.2
C From O(p6) Li [35] 0.726 0.734 25.9
D Lattice calculations [33] 0.59 ± 0.21 0.66 ± 0.09 26.5 ± 2.3

(PACS - CS)
E Lattice calculations [33] 0.20 ± 0.14 0.46 ± 0.04 23.2 ± 1.5

(RBC/UKQCD)

Table 6: Representative values of X, Z, r from the literature
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Figure 4: Real parts of experimental values of formfactors F , G for cos θ = 0,
q2 = 0. The formfactors are parametrized according to (3.35) and (3.36). Values
of used coefficients of the partial wave expansion are listed in Table 5; values of
phase shifts are taken from [32]. Dashed lines represent the experimental error.

The standard O(p2) χPT gives X, Z = 1; for ratio of quark masses we used
LO expression (2.47). Values from the article [35] were obtained by inversions of
formulae from Appendix C - instead of reparametrization of low energy constants
Li in terms of X, Z, r it is possible to start with values of Li fitted in the framework
of the standard χPT and calculate X, Z, r from these as a first approximation.
Authors of [35] used two experimental sets of low energy constants (one obtained
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from O(p4) fit and one obtained from O(p6) fit), therefore we quote two values
from a single article. Finally the last two values come from lattice simulations of
QCD4.

If we now take these values and plug them into (5.10) and (5.16), we get
for the choice sA = 4M2

π , sB = M2
K

5, sG = 4M2
π following values of low energy

constants6

Set of X, Z, r 103 L1 103 L2 103 L3

A 0.16 2.56 -4.37
B 0.19 2.48 -4.38
C 0.19 2.41 -4.35
D 0.18 2.37 -4.28
E 0.06 2.12 -3.75

Table 7: Values of L1 – L3 obtained using the first strategy (with no
remainders)

As the experimental input we took corresponding central values. Values of masses
and decay constants we used are summarized in Appendix D.

Similarly in the second strategy for obtaining low energy constants (5.16), we
for the choice sF = sS = sG = 4M2

π get

Set of X, Z, r 103 L1 103 L2 103 L3

A 1.04 2.14 -4.37
B 1.07 2.06 -4.38
C 1.07 2.00 -4.35
D 1.05 1.96 -4.28
E 0.89 1.73 -3.75

Table 8: Values of L1 – L3 obtained using the second strategy (with no
remainders)

In both cases we see that the results on the low energy constants within each
table are not very different except for the last set of X, Z, r where we can see
some deviations caused by the small values of X, Z. By comparing the two tables
we see that each gives rather different prediction on L1, L2. As we show in the
next section, the difference can be explained in a satisfactory manner after taking
into account the presence of the higher order remainders δW .

We will draw dependence of L1 – L3 on X, Z and r in the following section
after we present an estimate on the theoretical error caused by the presence of
higher order remainders δW .

5.4 Theoretical error from δW

As a first guess on the size of the remainders of quantities calculated at NLO we
expect (2.83)

δW ∼ 0.1 . (5.25)

4These values were already mentioned in the section on RχPT.
5There are indications ([9]) that the chiral series does not converge well for large values of s.

More on this can be found in following sections.
6To remind - we took real parts of experimental values and theoretical predictions.
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However, the derivative of the F formfactor dF/ds is at LO equal to zero and
starts its chiral expansion at NLO7. Therefore for this quantity we expect remain-
der δS of higher value

δS ∼ M2
K

Λ2
H

∼ 0.3 . (5.26)

To get an estimate on errors of L1 – L3 we can treat the remainders as normal-
distributed random numbers with standard deviation equal to 0.3 for dF/ds and
to 0.1 in other cases. In all cases the distributions must be centered at zero as
we have no hint about the sign of the remainders. Because we have no particular
information about the remainders, we consider them to be mutually independent.

The errors on L1 – L3 can be then obtained by purely algebraic combination
of errors introduced by various remainders8 added in quadrature. An alternative
way is to use Monte Carlo method. In this case we generate random values of the
remainders and plug these into the formulae (5.10) and (5.16) or (5.24). With this
approach we generate large number of sets of L1 – L3, corresponding to various
values of the remainders. The sought-after estimate on the error of L1 can be
then calculated as a standard deviation of the set of generated values of L1; the
other two low energy constants can be taken care of in the same way.

Because of the resummed approach, the low energy constants L1 – L3 depend
on the remainders linearly. The proportionality constants depend on r but are
independent of X and Z. As the r-dependence of the error of the low energy
constants ∆Li caused by the existence of remainders is very weak, we quote here
the values of this error for standard LO value r = 25.9 for both strategies how to
obtain low energy constants.

Way how to obtain L1 – L3 103∆L1 103∆L2 103∆L3

First strategy ((5.16)) 0.80 1.18 2.38
Second strategy ((5.24)) 0.64 1.08 2.38

Table 9: Errors of Li

These errors change by less then 0.5% when we calculate them for r = 22
instead of r = 25.9; r-dependence of the errors ∆Li is therefore really negligible.

High values of errors on low energy constants L1 – L3 confirm our previous
assertion that data in Tables 7 and 8 are compatible within the margin of error.
Because the second strategy of determining L1 and L2 seems to be less affected
by the error from the remainders and because of the aforementioned potential
problems with χPT at high values of s, in the rest of the text we use exclusively
the second strategy of obtaining L1 – L2.

So far we did not discuss experimental errors and we do it now. From Table 5
we can read off that the errors of the experimental values of the formfactor F
and its derivative at threshold are roughly 1% and 6%. We may consider these
values as additional sources of uncertainties expressed through the remainders
δF and δS. If we add the experimental errors in quadrature with our previous
estimates 10% and 30%, we arrive at values 10.05% and 30.6%. This increase
is rather small; therefore we will stick to our previous estimates of 10 and 30%.

7To LO is F constant, see (3.30).
8In our case there are in total five remainders — δFπ

, δFK
, δG and either δA, δB or δF , δS .
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When we calculate relative error on experimental value of F at M2
K (FB), we

find out that the relative experimental uncertainty is about 6%. This value
increases our estimate on δB to 12%, after adding the two errors in quadrature.
This constitutes another argument on why we should be using second strategy to
obtain values of L1 and L2.

When we now have an estimate on errors, we can plot dependence of the low
energy constants on unknown values of X, Z and r — the results are displayed
in Figures 5, 6 and 7. As the ”standard” combination we took values obtained
from PACS - CS lattice calculations [33]

Xstd = 0.59, Zstd = 0.66, rstd = 26.5 (5.27)

and each graph draws dependence on one of the parameters. The investigated
ranges are

0 ≤ X ≤ 1
0.2 ≤ Z ≤ 1.2
14 ≤ r ≤ 35 . (5.28)

The solid line on each graph shows theoretical prediction on the value of the
low energy constant with zero higher order remainders; dotted lines represent
boundaries of errors arising from direct and indirect remainders.

We see that dependence on X, Z, r is noticeable, however it is smaller than
error caused by the unknown higher order remainders (except for very low values
of Z). To get a better feeling for how much each component contributes to the
final error, we successively set all remainders but one equal to zero and calculated
error coming from the only nonzero remainder9. Moreover, to find out influence
of unknown values of X, Z, r we investigated how much values of Li change if we
replace the standard values Xstd, Zstd, rstd one after another with Xnew = 0.8,
Znew = 0.75 or rnew = 28.810. These are values of X, Z, r at the endpoints of the
intervals suggested for X, Z, r by the article [33] (see Table 6). In this latter case
we took as an error on the low energy constant

∣

∣Li(X
new, Zstd, rstd) − Li(X

std, Zstd, rstd)
∣

∣ (5.29)

and so on. Our findings are summarized in the Table 10 and graphically depicted
in the Figure 8.

Situation 103 ∆L1 103 ∆L2 103 ∆L3

δFπ
= 0.1 0.19 0.54 1.03

δFK
= 0.1 0.09 0.38 0.61

δF = 0.1 0.17 0.67 0.00
δG = 0.1 0.52 0.52 2.07
δS = 0.3 0.27 0.13 0.00
Xnew = 0.8 0.14 0.02 0.34
Znew = 0.75 0.06 0.04 0.11
rnew = 28.8 0.02 0.04 0.10

Table 10: Sources of ∆Li

9The standard deviations of the nonzero remainders were kept at value 0.1 or 0.3, depending
on which remainder it was.

10Each time we change only one of X, Z, r.
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Figure 5: Dependence of L1 – L3 on unknown value of X. Constants L1 –
L3 were determined from the experimental data by means of the formulae (5.10)
and (5.24). Each graph is plotted for Z = 0.66 and r = 26.5. Dotted lines
represent errors of L1 – L3 arising from higher order remainders. The remainder
δS was assumed to be 30% and all other remainders δF , δG, δFπ

, δFK
were assumed

to be 10%. The errors induced by the remainders were added in quadrature.
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Figure 6: Dependence of L1 – L3 on unknown value of Z. Constants L1 –
L3 were determined from the experimental data by means of the formulae (5.10)
and (5.24). Each graph is plotted for X = 0.59 and r = 26.5. Dotted lines
represent errors of L1 – L3 arising from higher order remainders. The remainder
δS was assumed to be 30% and all other remainders δF , δG, δFπ

, δFK
were assumed

to be 10%. The errors induced by the remainders were added in quadrature.
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Figure 7: Dependence of L1 – L3 on unknown value of r. Constants L1 –
L3 were determined from the experimental data by means of the formulae (5.10)
and (5.24). Each graph is plotted for X = 0.59 and Z = 0.66. Dotted lines
represent errors of L1 – L3 arising from higher order remainders. The remainder
δS was assumed to be 30% and all other remainders δF , δG, δFπ

, δFK
were assumed

to be 10%. The errors induced by the remainders were added in quadrature.
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Figure 8: Graphical depiction of how much direct and indirect remainders
and unknown values of X, Z, r contribute to theoretical error on low energy con-
stants L1 – L3 obtained from (5.10) and (5.16). To calculate uncertainties of the
remainders, we took successively δS equal to 0.3 / other remainders equal to 0.1
and surveyed how values of L1 – L3 change under effect of each of the remainders.
To probe effect of various X, Z, r we started with X = 0.59, Z = 0.66, r = 26.5
and changed in turn X to 0.8, Z to 0.75 and r to 28.8 and again noted induced
change in L1 – L3.
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On the basis of values given in the Table 10 we can claim that dependence of
the low energy constants L1 – L3 on X, Z and r is indeed very small11. This on
one side shows that knowledge of precise values of X, Z, r is not very important
to obtain values of these low energy constants; on the other hand it is caused by
the fact that error introduced by the remainders is rather big.

5.5 Quadratic remainders

In this section we want to compare our full theoretical prediction on the formfac-
tors with the experimental values and decide if we come to similar conclusions as
authors of [29] which observed unsatisfactory convergence for large s.

We took Xstd, Zstd, rstd corresponding to set D and fixed their values through-
out this comparison. Then we parametrized the direct higher order remainders
as polynomials12

∆F (s) = Fth(s) δF (s) = c0 + c1(s − 4M2
π) + c2(s − 4M2

π)2

∆G(s) = Gth(s) δG(s) = d0 + d1(s − 4M2
π) + d2(s − 4M2

π)2 , (5.30)

where magnitudes of the parameters ci, di can be estimated by the dimensional
analysis as

c0, d0 ∼ MK√
2Fπ

M4
K

Λ4
H

= 0.23

c1, d1 ∼ MK√
2Fπ

M2
K

Λ4
H

= 9.3 · 10−7 MeV−2

c2, d2 ∼ MK√
2Fπ

1

Λ4
H

= 3.8 · 10−12 MeV−4 . (5.31)

In these formulae we estimated Fth, Gth by theoretical values of the formfactors
F, G to LO within the standard χPT (3.30). We neglected remainders of orders
higher than quadratic in s, which turns out to be a reliable description as exper-
imental data are described by a quadratic function (3.36) and our NLO results
are for any values of low energy constants also very well described by a quadratic
polynomial.

These parameters are related to the indirect remainders δF , δG, δS used before
through relations

c0 = Fexp

∣

∣

∣

s=4M2
π

δF

d0 = Gexp

∣

∣

∣

s=4M2
π

δG

c1 = Sexp

∣

∣

∣

s=4M2
π

δS . (5.32)

11We checked that decreasing values of X, Z, r in the range set by the set D from Table 6
instead of increasing them leads to similar conclusions.

12We found this idea in [34]. It should not surprise the reader that the remainders depend
on s as their size is affected by the value of s at which we compare NLO calculations with the
experiment.
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In all these relations real parts of experimental values are taken, as argued above.
Because of relations (5.32) our full theoretical predictions

Fth(s) = FNLO(s) + ∆F (s)

Gth(s) = GNLO(s) + ∆G(s) (5.33)

depend only on two remainders δFπ
, δFK

and six constants c0, c1, c2, d0, d1 and d2
13.

It can be easily checked explicitly that the full theoretical prediction on form-
factor F depends only on value of c2, which follows directly from the technique
we used in reparametrizing L1 and L2. With this in mind we can now plot the
full theoretical prediction on F and compare it with the experimental data; the
result is plotted in the Figure 9. The solid line corresponds to c2 = 0, gray area
is bounded by theoretical predictions for c2 = ±3.8 · 10−12 MeV−4 which is the
value suggested by the dimensional analysis (5.31).
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Figure 9: Comparison of our full theoretical prediction of real part of the
formfactor F with experimental values for cos θ = q2 = 0. Theoretical prediction
is calculated as NLO contribution plus higher order remainders14 (5.33). We
took X = 0.59, Z = 0.66 and r = 26.5 and reparametrized values of low energy
constants L1 – L3 (5.10), (5.24). Higher order remainders were rewritten using
(5.32) (see text for further information). The full line corresponds to c2 = 0,
gray strip is bounded by theoretical predictions for c2 = ±3.8 · 10−12 MeV−4.
The experimental values are parametrized according to (3.35) and (3.36). Values
of used coefficients of the partial wave expansion are listed in Table 5; values
of phase shifts are taken from [32]. Dashed lines represent experimental data,
dotted lines their errors.

13It is understood that in (5.33) all L1 – L3 were replaced according to formulae (5.10)
and (5.24)

14We stress out that this picture includes higher order remainders and thus says nothing
about the overall convergence of our NLO predictions.
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Full formfactor Gth (5.33) depends on five variables δFπ
, δFK

, d0, d1, d2. To plot
error of our theoretical prediction, we estimated sizes of δFπ

and δFK
as 10% and

took values of di from (5.31). We added all these effects in quadrature and we
got the result drawn of Figure 10.
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Figure 10: Comparison of our theoretical prediction of real part of the form-
factor G with experimental values for cos θ = q2 = 0. Theoretical prediction
is calculated as NLO contribution plus higher order remainders15 (5.33). We
took X = 0.59, Z = 0.66 and r = 26.5 and reparametrized values of low energy
constants L1 – L3 (5.10), (5.24). Higher order remainders were rewritten using
(5.32). The full line corresponds to δFπ

= δFK
= d0 = d1 = d2 = 0, gray strip

is bounded by theoretical predictions with δFπ
= δFK

= 0.1 and di according to
(5.31) added in quadrature. The experimental values are parametrized according
to (3.35) and (3.36). Values of used coefficients of the partial wave expansion
are listed in Table 5; values of phase shifts are taken from [32]. Dashed lines
represent experimental data, dotted lines their errors.

We see that our prediction on formfactor G agrees with the experimental
data rather well. For the F formfactor, the situation is different. Because of
our technique of reparametrization of L1 and L2, the prediction fits experimental
data around the threshold. However, for growing s we can see ever increasing
discrepancy which for the largest values of s reaches 30%. From this chapter
we know that this discrepancy can be soothed only by quadratic term16 in the
expansion of the higher order remainder (5.30).

From the experimental data we are able to ”determine” the value of c2. It

15We stress out that this picture includes higher order remainders and thus says nothing
about the overall convergence of our NLO predictions.

16Or possibly higher terms which we assume small.
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suffices to take the function
Fexp − FNLO (5.34)

which corresponds to Fexp δF and fit it with the quadratic function (5.30). The
result after resummation of L1 – L3 does not depend on c0, c1, δFπ

, δFK
because

these contribute only to constant terms and the terms linear in s. For values
X = 0.59, Z = 0.66, r = 26.5 we get c2 = 6.05 · 10−11 MeV−4, for other sets from
Table 6 we get values of c2 within three percent of this result. If we include error
on the experimental data, we get an estimate

1011c2 ∈ (5.2, 7.0) MeV−4 . (5.35)

Clearly, our estimate based on dimensional analysis was far from being correct.
With respect to overall size of the higher order remainders (Fexp δF ) there are two
possible scenarios. It is possible that large contribution of the quadratic part of
the remainder c2(s− 4M2

π)2 is compensated by contributions of the constant and
linear part in (5.30) to give a small overall value of δF in accordance with our
expectations. For example for c0 = −0.2, c1 = −7 · 10−6 MeV−2 we get relative
error δF smaller than seven percent in the whole allowed kinematical range.

However, we incline to believe that the problem of unsatisfactory matching
between theory and experiment is caused by poor convergence of the chiral series
for large s.

One of the arguments for this assertion is based on the standard O(p6) calcu-
lations of the formfactor F . If we take NNLO expressions for the formfactor [29]
and use values of the low energy constants Li from the newest fit [9], we obtain
theoretical result which is compared to experimental values on Figure 11.

We see that NNLO expression has similar problems to describe the F form-
factor truthfully, despite we would expect errors further suppressed by another
factor of M2

K/Λ2
H ∼ 0.3. If we used low energy constants Li corresponding to17

X = 0.59, Z = 0.66 and r = 26.5, the discrepancy between (standard) χPT with
our values of low energy constants and the experiment is even larger. Because
the higher order remainder is not saturated even at NNLO it thus seems likely
that the chiral series of the RχPT does not converge well around s = M2

K .
Second argument suggesting poor convergence of the chiral series is the prob-

lems with explaining large curvature of the experimental data. Instead of per-
forming fit of Fexp − FNLO with quadratic polynomial it is equally possible to
expand our theoretical prediction into the Legendre polynomials on the allowed
kinematical range (4M2

π , M2
K)

Fth(s) = α0,thP0

(

s − s1

s2

)

+ α1,thP1

(

s − s1

s2

)

+ α2,thP2

(

s − s1

s2

)

(5.36)

with

s1 =
M2

K + 4M2
π

2

s2 =
M2

K − 4M2
π

2
. (5.37)

17Constants L1 – L3 are determined through calculations above, L4 – L9 using formulae from
Appendix C.
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Figure 11: Comparison of NNLO theoretical prediction [29] of real part of
the formfactor F with experimental values. The curve of theoretical prediction
was plotted for the values of the low energy constants Li according to [9]; we set
cos θ = q2 = 0. The experimental values are parametrized according to (3.35)
and (3.36). Values of used coefficients of the partial wave expansion are listed
in Table 5; values of phase shifts are taken from [32]. Dashed lines represent
experimental values, dotted lines error of the experimental data.

In the expansion above we neglected higher terms as both experimental data
and our NLO theoretical predictions are well described by quadratic polynomials
for any values of low energy constants. Each of the constants αi,th can be in an
obvious way written as a sum of contributions from LO αLO

i,th, NLO αNLO
i,th and

similarly for higher orders. The coefficients αi,th can be obtained from F through
linear operation (projection on Pi) and we thus expect their good convergence in
RχPT.

When we calculate contributions to α2,th from leading and next-to-leading
order by projections of respective theoretical formulae on P2 we get18

αLO
i,th = 0

αNLO
2,th = −8.84 . (5.38)

We performed calculations for X = 0.59, Z = 0.66, r = 26.5; value of αNLO
2,th does

not depend on precise values of X, Z, r much and precise values of X, Z, r are
therefore irrelevant for our purpose.

In comparison, value of the coefficient β2,exp of the respective expansion of the

18Because values of Li affect only terms that are linear and constant in s, the value of αNLO
2,th

is independent of Li.
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experimental result

Fexp(s) = β0,expP0

(

s − s1

s2

)

+ β1,expP1

(

s − s1

s2

)

+ β2,expP2

(

s − s1

s2

)

(5.39)

can be obtained from experimental data as

β2,exp = −63.04 . (5.40)

We can see that our assumption about good convergence is very severely
violated, as our theoretical prediction αNLO

2,th is far away from the corresponding
experimental value β2,exp.

These convergence problems seem to have natural explanation in the presence
of the Sigma resonance (f0(500)) with mass19 [46]

Mσ = ((441 ± 4) − i(272 ± 6)) MeV (5.41)

close to the mass of the kaon. Because of this, Kl4 decays with large s can have
nontrivial contribution from processes with exchange of the σ, which could lead
to significant contributions to F and G.

Recently, Soto, Talavera and Tarrús [47] came with an improvement of two-
flavor χPT which includes σ as a dynamical degree of freedom. The improvement
— called χPTS — lies in representing σ by a singlet field S. It is counted as a
quantity of order O(p) and its mass is also considered Mσ ∼ O(p). This counting
is introduced to indicate that processes with an exchange of sigma are suppressed.
Because of this counting, no loop graphs with sigma contribute to the calculated
formfactors at NLO.

The symmetry of χPT then at NLO allows four additional Lagrangian terms
containing sigma,

Lσ =
(

F0c1dS + c2dS
2
)

〈DµUDµU †〉 +
(

F0c1mS + c2mS2
)

〈χ†U + χU †〉 . (5.42)

The generalization of the approach to the case of SU(3)× SU(3) χPT is still
missing in the literature and it would be beyond the scope of this thesis to do so
here. Instead we simply mimic the method of [47] which necessarily brings about
errors. Despite it we believe this procedure can shed some light on our problem
of badly converging Kl4 formfactors.

Following [47] we add an SU(3) × SU(3) singlet field20 S into our theory
and count it as a quantity of order O(p). Its interactions with pseudo-Goldstone
bosons of χPT are governed by the Lagrangian (5.42). This allows one additional
Feynman diagram contribute to the Kl4 decays, displayed in Figure 12.

This diagram then constitutes additional contribution to the coefficient Zabβ

and thus to the values of formfactors (4.21). The calculation of the diagram is
straightforward with the resulting contribution to the formfactor reading

Fσ =
16
√

2F 2
0 MK

F 2
πFK

1

s − M2
σ

(

c2
1d

(

M2
π − s

2

)

− c1dc1m

◦
M

2

π

)

. (5.43)

19Value of
√

s at the pole.
20In the full treatment, σ would be probably included as a member of an octet.
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Figure 12: An extra Feynman diagram that contributes to formfactors F ,
G in the NLO calculations. This graph appears after addition of σ as an explicit
degree of freedom into RχPT. Because in χPTS each σ is counted as O(p), only
tree graphs with single sigma exchange can contribute in NLO.

For values of coupling constants c1m,1d we turn once again to the article [47].
There authors showed that chiral symmetry constraints value of c1m at tree level
to zero,

c1m = 0 . (5.44)

We will therefore neglect it which simplifies our result to

Fσ =
16
√

2F 2
0 MK

F 2
πFK

c2
1d

s − M2
σ

(

M2
π − s

2

)

. (5.45)

Through relating value of c1d to the sigma decay width it is in the SU(2) ×
SU(2) χPTS possible to show [47] that

c2
1d = 0.457

F 2
0

F 2
π

= 0.457 Z . (5.46)

Because we have no better estimate in hand, we use value of c1d from (5.46).

K+
cl

W +

π+
cl

π−
cl

σσ

Figure 13: Taking Mσ as complex number — full experimental value on
√

s
at the pole — instead of only the real part corresponds to evaluating resummed
Feynman diagram drawn on this figure instead of the diagram from Figure 12.

Before evaluating (5.45) we must specify also the value of Mσ we plugged in.
We decided to take the full complex value (5.41), which physically corresponds
to evaluating diagram in Figure 13 instead of the diagram from Figure 12. This
assures that we do not encounter a singularity for any real s in the kinematic
region under consideration, which would happen if we took only the real part
of Mσ.

In this settings, we may add contribution Fσ to our previous result21 FNLO

21Note that in the full treatment including σ would lead to different values of constants Li

as can be seen for example from the misfit between theory and experiment on the threshold.
Here we try to show that we are able to reproduce large curvature of F and thus neglect this
effect.
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and compare how well the sum agrees with experimental data. In Figure 14 we
plot resulting comparisons for X = 0.59, r = 26.5 and Z = 0.4, 0.5 and 0.6.

From the figures we can nicely see that adding σ as an explicit degree of
freedom enables us — for certain values of parameters — to find better agreement
between theoretical investigations of Kl4 decays and the relevant experiments.
Specifically we are able to describe large curvature of F formfactor which seems
to contradict predictions of the standard χPT or its resummed form. However,
we must keep in mind that we did not perform an thorough investigation of
the χPTS. We included σ as a singlet, approximated c1d,1m by their respective
SU(2) × SU(2) χPTS values and used only LO calculations with σ. Therefore,
caution is in place and more investigations are necessary.
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Figure 14: Comparison of theoretical predictions on real part of formfactor
F with experimental values for cos θ = q2 = 0. Theoretical predictions are calcu-
lated as sum of contribution of sigma exchange (5.43) and (4.49). Constants for
sigma interactions were taken from SU(2)×SU(2) χPTS (5.44), (5.46). Theoret-
ical curves are drawn for X = 0.59, r = 26.5 and Z = 0.6 (upper figure), Z = 0.5
(middle figure) and Z = 0.4 (lower figure); as low energy constants we plugged
in L1 = 1.05 · 10−3, L2 = 1.96 · 10−3, L3 = −4.28 · 10−3. Dashed lines represent
experimental values, dotted lines error of the experimental data.
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Conclusion

In the first part of the thesis we introduced the reader into the problematic of
effective field theories, Chiral Perturbation theory and semileptonic Kl4 decays.
Specific attention was given to emphasizing possibility of a scenario with sup-
pressed chiral order parameters Σ, F and the Resummed Chiral Perturbation
Theory — resummed formulation of χPT capable of correct manipulations with
chiral series in this scenario — was discussed in detail.

Our first original result is the derivation of expressions for formfactors F , G
of semileptonic kaon decay K+ → π+π−l+νl in the RχPT. Our calculations were
performed to order O(p4) and in the isospin limit. We employed so called back-
ground field method and reformulated it into a language of Feynman diagrams
with explicitly distinguished ”classical” and ”quantum” fields, corresponding to
external particles and quantum fluctuations. The method was for convenience
rewritten into a form of a Mathematica notebook which can be used to calculate
various tree and one-loop processes within RχPT. Explicit formulae for formfac-
tors F , G are given and correctness of our calculation is checked by comparison
with results of the standard χPT.

After that we present two strategies how to reparametrize low energy constants
L1 – L3, which concludes the efforts to reparametrize all low energy constants Li

of RχPT in terms of physical observables, parameters X, Z, r and higher order
remainders22. Several arguments lead us to favor second of the strategies, which
uses value and derivative of F at threshold instead of value of F at two distinct
points. With help of recent experimental data values of low energy constants are
obtained for several sets of X, Z, r.

Starting with dimensional analysis, higher order remainders are estimated to
be 30% for slope of the formfactor and 10% for other remainders. The errors on Li

induced by these remainders do not depend on X and Z and their r-dependence
is only very small. Our final result on low energy constants L1 – L3 for used
values of X, Z, r read23

Set of X, Z, r 103 L1 103 L2 103 L3

A 1.04 ± 0.64 2.14 ± 1.08 −4.37 ± 2.38
B 1.07 ± 0.64 2.06 ± 1.08 −4.38 ± 2.38
C 1.07 ± 0.64 2.00 ± 1.08 −4.35 ± 2.38
D 1.05 ± 0.64 1.96 ± 1.08 −4.28 ± 2.38
E 0.89 ± 0.64 1.73 ± 1.08 −3.75 ± 2.38

Table 11: Final values of L1 – L3

22Other low energy constants were reparametrized before, see Appendix C
23The sets of X, Z, r are defined in Table 6.
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Unfortunately, the results are too imprecise to decide whether value of 2L1−L2

is suppressed according to Zweig rule or attains large nonzero value as authors
of [9] found. We are however able to compare our findings with values from this
article, which are

103L1 = 0.88 ± 0.09
103L2 = 0.61 ± 0.20
103L3 = −3.04 ± 0.43 . (5.47)

We see that these L1 and L3 agree with our values within the margin of error,
however the agreement for L2 is not very good. One possible explanation of
this is that higher order remainders are larger than expected; other eventuality
is that scenario with suppressed order parameters of the spontaneous symmetry
breakdown of the symmetry is valid and the standard treatment of χPT is in-
appropriate. Unfortunately, the error on our calculations is too large to make a
final conclusion.

We also investigated how much L1 – L3 depend on values of X, Z, r and plotted
their respective dependencies; the dependencies are rather small in comparison
with error brought about by higher order remainders.

In the end we focused on convergence of chiral series of F formfactor for large
values of s and in accordance with previous investigations in standard χPT we
found large discrepancy between theory and experiment caused by inability of
NLO RχPT to generate sufficient curvature of the formfactor. It is possible that
despite the discrepancy in describing the curvature of the formfactor the overall
theoretical error of our NLO calculations is small. However, we are inclined to
believe that the correct explanation of this phenomenon lies in a poor convergence
of the chiral series for values of s close to the kaon mass. On a very simplified
model which includes sigma resonance as an explicit degree of freedom we show
that for certain configurations of parameters the Feynman graphs with exchange
of σ can generate contributions which supply the missing curvature; full inclusion
of the σ could thus vastly improve the theoretical predictions.

Further research should contain calculation of formfactors to NNLO in RχPT,
which would significantly decrease the error introduced by higher order remain-
ders and largely improved the predictive capability about values of the low-energy
constants L1 – L3. On the other hand it must be kept in mind that NNLO results
contain large number of O(p6) low energy constants Ci [9], which must be provid-
ed in some way. Second possible improvement lies in including isospin breaking
effects and electromagnetic corrections, which were both neglected in this work.
Finally, it is desirable to further investigate the possibility of improving the χPT
by an explicit inclusion of σ, which could dramatically improve matching between
theory and experiment for larger s.
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Appendix A

The scalar bubble

The scalar bubble is a function that arises in the amplitudes of loop graphs. It
is defned as [35]

JmP ,mQ
(q2) = −i

∫

ddk

(2π)d

1

(k2 − m2
P + i0)((k − q)2 − m2

Q + i0)

= −2λ∞ + Jr
mP ,mQ

(q2) . (A.1)

After the indicated split, function Jr
mP ,mQ

(q2) contains no singularity in the limit
d → 4. The singular part

λ∞ =
µd−4

(4π)2

(

1

d − 4
− 1

2
(log(4π) + Γ′(1) + 1)

)

. (A.2)

appears in the renormalization of the low energy constants Li (2.51). At this
place we can thus see explicitly, how infinities which must be renormalized enter
our calculations.

The scalar bubble differs from the function B0 used by the FeynCalc by a
simple rescaling

B0(q
2, m2

P , m2
Q) = 16π2JmP ,mQ

(q2) . (A.3)

From FeynCalc manual [45] we can read off a relation

A0(m
2
P ) = m2

P (1 + B0(0, m
2
P , m2

P )) . (A.4)

It is customary to separate Jr into constant part and the Chew-Mandelstam
function JPQ

Jr
mP ,mQ

(s) = Jr
mP ,mQ

(0) + JmP ,mQ
(s) . (A.5)

The constant part can be calculated as a limit for s → 0 and reads

Jr
mP ,mQ

(0) = − 1

16π2

m2
P log(m2

P /µ2) − m2
Q log(m2

Q/µ2)

m2
P − m2

Q

(A.6)

or in the case of the same masses

Jr
mP ,mP

(0) = − 1

16π2

(

log
m2

P

µ2
+ 1

)

. (A.7)

Here we remind that our calculations were performed at µ = 770 MeV.
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The Chew-Mendelstam function is given by an integral

JmP ,mQ
(s) =

s

16π2

∫ ∞

(mP +mQ)2

dx

x

λ1/2(x, m2
P , m2

Q)

x

1

x − s
(A.8)

with λ function defined in (3.25). This integral may be calculated explicitly as

JmP ,mQ
(s) =

1

32π2

(

2 +
∆PQ

s
log

m2
Q

m2
P

− ΣPQ

∆PQ
log

m2
Q

m2
P

+

+ 2
(s − (mP − mQ))2

s
σPQ(s) log

σPQ(s) − 1

σPQ(s) + 1

)

.(A.9)

In the limit mP → mQ we get

JmP ,mP
(s) =

1

16π2

(

2 + σPP (s) log
σPP (s) − 1

σPP (s) + 1

)

. (A.10)

In the previous expressions

∆PQ = m2
P − m2

Q

ΣPQ = m2
P + m2

Q

σPQ(s) =

√

s − (mP + mQ)2

s + (mP + mQ)2
. (A.11)

The Chew-Mandelstam function is special in that ratio JmP ,mQ
(s)/s is finite in

the limit s → 0.
Similarly we can define J as

JmP ,mQ
(s) = Jr

mP ,mQ
(s) − Jr

mP ,mQ
(0) − sJr′

mP ,mQ
(0) ; (A.12)

in the limit s → 0 we then have finite ratio JPQ(s)/s2.
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Appendix B

Sample Mathematica input and
processing of a graph

In this appendix we show the process of evaluating a Feynman diagram using our
Mathematica notebook. As a sample diagram we take diagram from Figure 15.
On the diagram we marked momenta given to each particle in brackets — particles
on external legs have momenta according to our convention (3.1) after taking in
mind that W+ decays into the two leptons with total momentum q. Momenta
of ”quantum” particles are constrained by only conservation of momentum. For
better orientation we write with each vertex a number given to it in our notebook.

π−
cl(p2)

W+
α (q)

K+
in(k)

π−
in(q + p2 − k)

π+
cl(p1)

K+

cl
(q + p1 + p2)

1 2

Figure 15: Sample Feynman diagram on which we show the use of the
Mathematica notebook we wrote for evaluation of RχPT graphs to one loop
order. Direction of arrows indicates flow of momentum

Description of the diagram would begin with description of the lines1

Line1 = {1, 0, π−
cl , p2, , 0};

Line2 = {1, 0, W+, q, α, 0};

Line3 = {2, 1, K+
in, k, , 1};

Line4 = {2, 1, π−
in, p2 + q − k, , 1};

Line5 = {0, 2, K+
cl , p1 + p2 + q, , 0};

Line6 = {2, 0, π+
cl , p1, , 0};

Lines = {Line1, Line2, Line3, Line4, eLine5, eLine6};

1Boldface text represents Mathematica input/output. Particle types and momenta were in
these extracts written in the way they appear in this thesis instead of their symbolic represen-
tations used in the notebook (for example K+ ∼ KPlus).
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The first two numbers in each line stand for the vertices from and to which
the line goes. If one of the vertices is zero, it means the particle is external.
Next two items label the type of particle on the line and its momentum in the
given orientation. Fifth item stands for the Lorentz index carried by the vector
particles; for scalar particles it does not play any role. Finally the last 0 or 1
decide if the line is external or internal.

After this we finish specification of the graph by writing

Graph = {2, Lines, {3, 3}, k};

The number two tells us how many vertices the graph has. Then follows
specification of the lines we discussed above. Next item describes which La-
grangian should be used in each vertex; specification goes from vertex one. The
Lagrangians are numbered as

• 1 corresponds to L2

• 2 corresponds to L4

• 3 corresponds to Lloop

In the specified graph we thus have two vertices from Lloop. The last item on the
List specifies loop momenta for FeynCalc.

With this specification we can run the calculation with command

GraphContribution[Graph];

The function GraphContribution starts with evaluating contributions from
both vertices.

We start with the vertex number 1, which is displayed on the left part of
the Figure 16. First we select lines that start or end in this vertex and reorient
all outcoming lines into incoming. This reorientation is performed by switching
numbers of initial and final vertex, inversing momenta and replacing particle with
an antiparticle. Result of such switch is on the right side of the Figure 16.

π−
cl(p2)

W+
α (q)

K+
in(k)

π−
in(q + p2 − k)

⇔

π+
cl(−p2)

W−
α (−q)

K+
in(k)

π−
in(q + p2 − k)

Figure 16: Preparations for calculations of contribution of the first vertex of
the investigated diagram. On the left we have original form of the vertex; on the
right the same vertex after orienting all lines as incoming.

As a next step we go through these lines and create a table of interacting
particles, their momenta and possibly vector indexes. Because of the contraction
procedure we must keep information about momenta and vector indexes together.
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Particle type Momentum / (Momentum, Lorentz index)

π+
cl −p2

W− (−q, α)
K+

in k
π−

in q + p2 − k

Table 12: Information about particles interacting in the vertex 1

Now we can start to build the relevant Lagrangian. From the definition of the
graph we know that at this vertex we must use Lloop. There are four interacting
particles, therefore we can expand exponentials in definitions of u (4.25) into
fourth order and plug them into Lloop

2 (4.32). In the resulting expansion we
substitute each field derivative according to

∂µφ → −ipφ,µ φ . (B.1)

This deserves further comment: Motivation of this replacement lies in isolating
the field φ from the more complex structure because then we are able to find
relevant Lagrangian terms simply by calling Mathematica function Coefficient.
For example in our case we would call schematically3

Coefficient[ ExpandedLagrangian, π+
clW

−K+
inπ

−
in ];

Here, ExpandedLagrangian stands for Lloop with expanded exponentials and
with derivatives substituted with respective momenta and Coefficient is stan-
dard Mathematica function for isolating coefficients of a polynomial.

The substitution (B.1) is sound, because we oriented all particles as incoming.
Had we not done it, we would have to decide about sign in (B.1) each time because
we would not know if the particle is annihilated or created in the vertex.

Finally, to be able to use function Coefficient, we must separate information
about Lorentz structure also for the W± fields in the Lagrangian. This is done
by subsitutions which may be for W+ schematically written

W+
µ → W+ WPlusIndex[µ]

∂αW+
µ → −iW+ WPlusDerivative[µ, α] . (B.2)

Analogous substitutions are performed for W−. By these substitutions we again
achieved separation of information about the particle content W± of the given
Lagrangian term from its Lorentz structure, which enables us to select relevant
Lagrangian terms by mere Coefficient in the way indicated above.

The contribution of the first vertex after performing all indicated steps reads4

−iWMinusIndex[µ1]

2
√

2F0

(

pK+

in,µ1
− pπ−

in,µ1
+ 2pπ+

in,µ1

)

(B.3)

which in the standard notation corresponds to Lagrangian term

W−
µ1

2
√

2F0

(

π+
clπ

−
in∂

µ1K+
in − π+

clK
+
in∂

µ1π−
in + 2K+

inπ
−
in∂

µ1π+
in

)

. (B.4)

2Vector particles W±
µ are symbolically written as WPlus[µ], WMinus[µ]

3More on a position of W± in a moment.
4We had to distinguish between Lorentz indices of Lagrangian terms in distinct vertices. We

did this by writing number of respective vertex as a subscript to corresponding Lorentz indices.
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To evaluate the given vertex, we must now match momenta of the ”classical”
and ”quantum” particles from Table 12 with momenta terms from the Lagrangian
(B.3). In this case the result is simple and reads

iWMinusIndex[µ1]

2
√

2F0

(2k − q + p2)µ1
. (B.5)

If there were more identical particles, we would have to use combination (4.38)
instead.

The calculation is finalized by contracting vector particles. In this case it is
simple and consists in replacing µ1 in all expressions with α (for α, see Table 12)
to yield final vertex rule

i

2
√

2F0

(2k − q + p2)α . (B.6)

If any of the Lagrangian terms contained WMinusDerivative[µ1, ν1], we would
have to replace µ1 with α and in addition multiply the result for the processed
term by (−q)ν1

, which is momentum of the only W− in the interaction.
Because there are no uncontracted identical particles left5, we are finished

with the first vertex.
The same procedure is done for the vertex number two (Figure 17).

π+
cl(p1)

K+

cl
(q + p1 + p2)

K+
in(k)

π−
in(q + p2 − k)

⇔

π−
cl(−p1)

K+

cl
(q + p1 + p2)

K−
in(−k)

π+
in(k − q − p2)

Figure 17: Preparations for calculations of contribution of the second vertex
of the investigated diagram. On the left we have original form of the vertex; on
the right the same vertex after orienting all lines as incoming.

Again we reorient the relevant lines, extract information about particles going
to the vertex, find the relevant Lagrangian term and then match the momenta
(derivatives) from the Lagrangian to the interacting particles. This evaluation
contains no novelties and we thus do not go thrugh it in detail again and only
quote the final vertex rule

B0ms + 3B0m̂ + 2k · (2p1 + p2 + q) − 4p1 · (p2 + q) − 2p2 · q − 2p2
1 − p2

2 − q2

4F 2
0

.

(B.7)
External lines contribute nothig; both internal lines are in the loop and their

contribution is set proportional to

FeynAmpDenominator [PD [k, B0(ms + m̂)]] (B.8)

5This would happen if the Lagrangian contained terms like π0π0, ηη∂η, . . .
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and
FeynAmpDenominator [PD [q + p2 − k, 2B0m̂]] . (B.9)

This form of the propagator is forced by the FeynCalc package. We plug in
O(p2) masses of the ”quantum” particles which corresponds to calculating ”strict”
chiral series; the transformation of the result to ”bare” chiral series is performed
later as mentioned in the main text.

After the program checks that there are no tadpoles or bubbles which would
give a symmetry factor, it combines (B.8), (B.9), (B.6) and (B.7) together and
multiplies it with a phase (i)4 — one factor i for each vertex and each internal
line.

The result Result is plugged into the FeynCalc through command

PaVeReduce[OneLoop[k, Result],A0ToB0 → True] .

Here k indicates the loop momenta we specified in the definition of the graph;
the option A0ToB0 means that all loop functions in the output are expressed
in terms of A0(m1) and B0(s, m1, m2) from the Appendix A. To arrive at the
physical result we then have to divide the result by 16π2 due to conventions used
by FeynCalc.

After all these steps, we obtain (rather long) expression which contains only
momenta p1,2 and q, Lagrangian constants F0, B0ms, B0m̂ and Li and loop func-
tions A0(m1), B0(s, m1, m2) and can be further simplified through steps described
in the main text.

This concludes this Appendix, we hope that after reading it the reader has
now much better picture of how our Mathematica notebook works.
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Appendix C

Resummed low energy constants
L4 – L9

Resummation of the low energy constants L4 – L9 was done before, here we quote
the final formulae.

Resummed expressions for L4 – L8 were first given in the article [5], here we
quote formulae from [35]. The resummation of L4 and L5 was obtained from the
expansions of ”good” variables F 2

K and F 2
π . The result reads1

4
◦

M
2

πL4 =
1

2
(1 − Z − η(r))

F 2
π

r + 2
+

2F 2
KδFK

− (r + 1)F 2
πδFπ

2(r + 2)(r − 1)
−

− M2
π

4(r + 2)(r − 1)

X

Z

[

(4r + 1)Jr
ππ(0) + (r − 2)(r + 1)Jr

KK(0) −

− (2r + 1)Jr
ηη(0) +

(r + 2)(r − 1)

16π2

]

,

4
◦

M
2

πL5 =
1

2
F 2

πη(r) − F 2
KδFK

− F 2
πδFπ

(r − 1)
+

+
M2

π

4(r − 1)

X

Z
[5Jr

ππ(0) − (r + 1)Jr
KK(0) − (2r + 1)Jr

ηη(0) − 3(r − 1)

16π2
] .

(C.1)

Newly introduced quantities are defined as

r∗2 = 2
F 2

KM2
K

F 2
πM2

π

− 1

ε(r) = 2
r∗2 − r

r2 − 1

η(r) =
2

r − 1

(

F 2
K

F 2
π

− 1

)

∆GMO =
3F 2

η M2
η + F 2

πM2
π − 4F 2

KM2
K

F 2
πM2

π

. (C.2)

1For brevity we wrote δA instead of δA2 , i. e. under δFπ
we understand δF 2

π
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From the ”good” observables F 2
P M2

P we can resum another three low energy
constants

4
◦

M
4

πL6 =
1

4

F 2
πM2

π

r + 2
(1 − X − ε(r))

− M4
π

72(r − 1)(r + 2)

(

X

Z

)2

[27rJr
ππ(0) + 9(r + 1)(r − 2)Jr

KK(0)

+(2r + 1)(r − 4)Jr
ηη(0) +

11(r − 1)(r + 2)

16π2
]

−F 2
πM2

πδFπMπ
[(r + 1)2] − 4F 2

KM2
KδFKMK

4(r2 − 1)(r + 2)

4
◦

M
4

πL7 = −1

8
F 2

πM2
π

(

ε(r) − ∆GMO

(r − 1)2

)

−
3(1 + r)F 2

η M2
η δFηMη

+ (2r2 + r − 1)F 2
πM2

πδFπMπ
− 8rF 2

KM2
KδFKMK

8(r − 1)2(r + 1)

4
◦

M
4

πL8 =
1

4
F 2

πM2
πε(r)

+
M4

π

24(r − 1)

(

X

Z

)2

[9Jr
ππ(0) − 3(r + 1)Jr

KK(0) − (2r + 1)Jr
ηη(0) − 5(r − 1)

16π2
]

−2F 2
KM2

KδFKMK
− (r + 1)F 2

πM2
πδFπMπ

2(r2 − 1)
. (C.3)

Resummation of L9 was performed in [33] with the result

L9 =
1

32π2





1

6
log

◦
M

2

π

µ2
+

1

12
log

◦
M

2

K

µ2



+
F 2

π

12
〈r2〉πV (1 − eπ

V ) +

+
1

32π2

[

1

12
+

1

9
Y +

M2
π

36M2
K

(r + 1)Y

]

, (C.4)

where 〈r2〉πV is pion electromagnetic radius and eπ
V is corresponding higher order

remainder.
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Appendix D

Physical constants for
resummation

Here we quote physical values of masses and decay constants of pseudoscalar
mesons we used in our calculations. Because we worked in the isospin limit and
neglected QED effects all pions have the same mass and decay constant and the
same is true for kaons. As common pion and kaon masses we used arithmetic
average of masses of charged and neutral particles.

Values we used are [10]

Mπ = 137.3 MeV
MK = 495.6 MeV
Mη = 547.9 MeV
Fπ = 92.2 MeV
FK = 110.4 MeV . (D.1)

For resummed low energy constant we need also experimental value of the
pion electromagnetic radius [33]

〈r2〉πV = 0.451 ± 0.031 fm2 . (D.2)
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Appendix E

Phase shifts of ππ scattering

In the elastic region of ππ scattering, partial wave amplitudes of isospin ampli-
tudes T I depend on the square of center of mass energy of the pions s as [48]

T I
l (s) =

1

2i

√

s

s − 4M2
π

(

exp(2iδI
l (s)) − 1

)

. (E.1)

Here, δI
l are phase shifts.

Partial wave amplitudes and phase shift have following properties [48]:

• At the treshold we can write partial wave amplitudes as a series

Re
(

T I
l (s)

)

= q2l
(

aI
l + b

I

l q
2 + . . .

)

, (E.2)

where
q2 =

s

4M2
π

− 1 . (E.3)

• The phase shifts δ0
0 and δ1

1 reach π/2 at known values mσ, mρ,

δ0
0(
√

s = mσ) = δ1
1(
√

s = mρ) =
π

2
. (E.4)

• Below s ≈ 1 GeV2 is

a1
1(s) =

√

s

s − 4M2
π

q−2
s − m2

ρ

4M2
π − m2

ρ

tan δ1
1(s) (E.5)

very smooth and the same — with less accuracy — holds for a0
2.

Schenk [48] found a simple parametrization of ππ scattering phase shifts that
satisfies these three conditions, namely

tan δI
l (s) =

√

1 − 4M2
π

s
q2l
(

aI
l + bI

l q
2 + cI

l q
4 + dI

l q
6
) 4M2

π − sI
l

s − sI
l

. (E.6)

The ππ scattering phase shifts satisfy so-called Roy equations [49]. Solutions
to these dispersive equations depend on four parameters a0

0, a
2
0, θ0, θ1 — two S-

wave scattering lengths and two phases at conveniently chosen matching point s0.
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In [32] authors related Schenk parameters aI
l , b

I
l , c

I
l , d

I
l to four parameters describ-

ing solutions of the Roy equation through (X = a, b, c, d)

XI
l = z1 + z2u + z3v + z4u

2 + z5v
2 + z6uv + z7u

3 + z8u
2v + z9uv2 + z10v

3 , (E.7)

where

u =
a0

0

p0
, v =

a2
0

p2
− 1, p0 = 0.225, p2 = −0.03706 . (E.8)

Values of coefficients zi were obtained from numerical solutions to Roy equations
and can be found in the Appendix B of the article [32].

Finally the values of s0
0 and s1

1 are fixed by the boundary conditions

δ0
0(s0) = θ0, δ1

1(s0) = θ1 . (E.9)
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