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rady, čas a ochotu, ktorú mi venoval pri tvorbe tejto práce.
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Kĺıčová slova: exponenciálne riadenie, markovský reťazec, optimalizácia porfólia,
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Introduction

This master thesis concerns with optimal control of Markov decision chainsWe de-
velop iterative alghorithm for finding optimal control and later we apply this algo-
rithm to a portfolio management problem.

In first chapter we first introduce the concept of utility. We focus mainly on an
exponential utility function which plays crucial role in our perfomance criterion.
The peformance criterion is set as a long term growth rate of a certainty equiv-
alent of the chain’s payoff. The rest of the chapter is devoted to the derivation
of an iterative alghorithm for finding an optimal control. The derivation is based
on Perron-Frobenius theory concerning non-negative matrices. Resulting algorithm
works similarly to the standard policy iteration procedure. We derive the algorithm
for both discrete time and continuous time Markov decision chain.

In the second chapter we focus on the optimal portfolio allocation problem. We
consider two assets. The first one represents a bank account and the other one
represents some risky asset following a Geometric Brownian motion. Moreover pro-
portional transaction costs are paid for trading the risky asset. We analytically
derive the dynamics of the value of the portfolio consisting of these two assets. For
the resulting process we construct approximation by both discrete time and contin-
uous time Markov chain. Algorithms from the Chapter 1 is then used to numerically
find the strategy maximizing the long run performance criteria. Finally we compare
results of both algorithms with analytical solution.
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1. Exponential Control of Markov
Decision Chain

In this chapter we are interested in Markov decision chains. Initial research in this
field was done by Bellman [2]. He considered a Markov chain which pays a reward for
moving from one state to another. Decision, affecting both transition probabilities
and rewards, can by made in each state. Within this framework Howard [11] derive
iterative algorithm for finding a policy which maximizes a long time expected reward.
Our aim in this chapter is to derive an algorithm similar to that of Howard, but
under different optimality criteria. Our optimality criteria will incorporate risk-
sensitivity. To be specific, we will maximize long time expected utility from reward
represented by exponential utility function.

1.1 Exponential utility function

In this section we introduce the concept of utility function. Especially we focus on
the exponential utility function. We will show its basic properties and motivation
for its usage. For more insight about utility, see the Chapter 2 in [8].

Imagine a lottery that pays certain prizes with certain probabilities. The outcome
of the lottery is unknown, but what is known is its probability distribution. Inter-
esting question is how much one should be willing to pay for opportunity to play
such a lottery. Or, in other words, what is the fair price of a game. The first idea
that crosses our mind is to take expected value as a fair price of a game. However
according to this approach one is indifferent between lottery with a certain average
pay-off and getting this amount of money straight away. In fact the majority of
people would prefer the second alternative. We see that the answer is not so simple.
Certainly, it depends on players aversion to risk. Personal attitude to risk can be
modeled by a utility function.

Definition 1.1. Let S be an interval in R. A function u : S → R is called a utility
function if u is strictly increasing, strictly concave and continuous on S.

Note that since concavity of a function on an open set implies its continuity, conti-
nuity requirement in the above definition concerns only boundary points of S.

Denote the set of all probability measures on (S,B(S)) with finite expectation by
P . We interpret P as the set of all possible random pay-offs. In this sense every
µ ∈ P can be considered as a lottery. Denote the expected utility of the lottery µ by
U(µ). That is

U(µ) =

∫
R
u dµ.
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The expected utility defines the preference relation � on P by

µ � ν ⇔ U(µ) > U(ν).

The individual is willing to pay for the lottery with pay-off µ at most the amount
of money CE(µ) which provides him the same utility. In other words, the individual
is indifferent between lottery µ and a certain amount of money CE(µ). That means

U(µ) = U(δCE(µ)) = u(CE(µ))

must be satisfied. The number CE(µ) is called certainty equivalent. Since S is an
interval, U(µ) ∈ S and due to monotonicity of u, we can write CE(µ) = u−1(U(µ)).
So the certainty equivalent is always defined and unique.

The requirement of strict concavity in the definition of utility function incorpo-
rates kind of risk averseness. Suppose the lottery ν that pays the amount a with
probability p and the amount b with probability 1− p. If a 6= b, then by concavity

p u(a) + (1− p)u(b) < u(p a+ (1− p) b),

so U(ν) < u(E(ν)). In words, receiving the amount of money equal to expected
value of ν is preferred to playing the lottery ν.

We say that a utility function fulfils the delta property if for ∆ > 0 and µ ∈ P

CE(µ+ ∆) = CE(µ) + ∆.

If the pay-off of a lottery is increased by the constant ∆ > 0, certainty equivalent
also increases by ∆. It can be shown that the only utility function that possesses
delta property is of the form

u(x) = a− be−γx, γ < 0, (1.1)

where b > 0 and a ∈ R. A utility function of this type is called an exponential utility
function. Since any increasing affine transformation of a utility function leads to the
same preference relation on P and the same certainty equivalent, it is sufficient to
consider exponential utility function with parameters a = 0 and b = 1.

If we relax the concavity condition in the definition of an utility function, then
utility functions possessing delta property can be characterized as follows: It is either
a linear function or a function of the type (1.1) with γ ∈ R. Preferences described
by a linear utility function coincides with the approach where the fair price of a
lottery equals to its expected value.

The exponential utility function is also characterized by so called constant absolute
risk aversion.

Definition 1.2. Suppose that a utility function u is twice differentiable. Then the
number

α(x) = −u
′′(x)

u′(x)

is called the Arrow-Pratt coefficient of absolute risk aversion at the level x.
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The exponential utility function is characterized by the property α(x) = −γ > 0.
This can be easily shown by solving the respective differential equation. Due to this
property the exponential utility function is often referred to as a constant absolute
risk aversion (CARA) utility function.

The concept of expected utility can be naturally extended from lotteries to random
variables with values in S. In the following sections we will examine the expected
utility from a Markov reward chain under the exponential utility function.

1.2 Exponential utility and Markov reward chain

Prior to the introduction of formal definition of a Markov chain, let us make a note
on the definition that we will use. Throughout this thesis we will use a more general
concept of Markov chain than can be found in introductory textbooks. We define a
Markov chain not only by terms of probability distribution, but also by a filtration,
which could be different from the one generated by the process. This approach is
widely used in the general theory of Markov processes which considers continuous
time and continuous state domain. See the monograph [7] for more insight.

Fixing the filtration in the definition has such a consequence that we cannot con-
sider different process when changing initial distribution. Instead the underlying
probability measure changes and the process remains the same. With this approach
we gain, beside a more general theory, a significant simplification of notation. So
the computations will be more tractable.

Let X be a finite set. Each x ∈ X is called a state and X is called the state space.
Let P = {pxy}x,y∈X be a stochastic matrix, that is a matrix with non-negative
entries and with each row summing up to 1. The matrix P is called the transition
matrix. Denote entries of its n-th power by p

(n)
xy .

Definition 1.3. A system (Ω, {Fn}n∈N0 , X, {Px}x∈X ) is called a (homogenous) Markov
chain with the transition matrix P if

(i) Fn, n ∈ N0 are σ-fields on Ω satisfying Fm ⊂ Fn for all m ≤ n,

(ii) X = {Xn, n ∈ N0} is X -valued process defined on Ω and Xm is Fn measurable
for all m ≤ n,

(iii) for all x ∈ X , Px is a probability measure on F∞ = σ (
⋃∞
n=0Fn) satisfying for

all y ∈ X and all m,n ∈ N0, m ≤ n

Px(X0 = x) = 1 and Px(Xn = y|Fm) = p
(n−m)
Xm,y

, Px − a.s.

The property (iii) implies that the transition probability

Px(Xn = z|Xm = y) = p(n−m)
y,z Px − a.s. (1.2)
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almost surely does not depend on the initial state x. Consider a function f defined
on X and put

E(n)
x f ,

∑
y∈X

f(y) p(n)
x,y = e

T

xP
n f.

Then, using (1.2), for all x ∈ X we have

E[f(Xn)|Xm = y] =
as
∑
z∈X

f(z)Px(Xn = z|Xm = y) =
as
E(n−m)
y f.

Consequently

Ex[f(Xn)|Fm] = E
(n−m)
Xm

f, Px − a.s. for all x ∈ X . (1.3)

We see that the conditional expectation Ex[f(Xn)|Fm] is almost surely equal to
the same random variable regardless of initial distribution. Thus we will write E
instead of Ex in this case. Of course its distribution typically depends on the initial
state, since change of the initial state means change of the underlying measure. The
equation (1.3) is often referred to as the Markov property.

Our definition treats explicitly only situation when the chain starts from arbitrary
state x. However we can easily construct a probability measure that covers any
initial distribution. Consider a probability distribution µ on X . Define

Pµ(A) =
∑
x∈X

µ(x)Px(A) A ∈ F∞. (1.4)

Then Pµ is a probability measure on F∞ satisfying

Px(Xn = y|Fm) =
∑
x∈X

µ(x) p
(n−m)
Xm,y

= p
(n−m)
Xm,y

, Px − a.s.

So the Markov property holds for Pµ. Moreover (1.4) implies

Pµ(X0 = x) =
∑
y∈X

µ(y)Py(X0 = x) = µ(x).

In words, the chain has initial distribution µ under the measure Pµ.
As one expects the n-th power of P describes transition probabilities in n periods.

Indeed, for any states x and y we have

Px(Xn = y) = ExPx(Xn = y|F0) = Ex p(n)
X0,y

= p(n)
xy , Px − a.s.

We will restrict our consideration on Markov chains that have a agreeable be-
haviour described in a following couple of definitions.

Definition 1.4. We say that a state x is accessible from state y if the n-step transi-
tion probability p

(n)
xy is strictly positive for at least one n. A Markov chain is called

irreducible if all states are accessible from each other.
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Definition 1.5. Let x ∈ X and let dx be the greatest common divisor of those
n ≥ 1 for which p

(n)
x is strictly positive. If dx > 1 then the state x is called periodic.

If dx = 1 then the state x is called aperiodic. A Markov chain is called aperiodic if
all states are aperiodic.

Now we add rewards to the chain. Suppose that the transition from state x to state
y pays a reward r(x, y) ∈ R (sometimes denoted by rxy). The matrix R = {rxy}x,y∈X
is called a reward matrix and a Markov chain enriched with a reward matrix is called
Markov reward chain.

From now on we will consider an aperiodic irreducible Markov reward chain X
with the state space X = {1, . . . , N} and CARA utility function of the form

UC
γ (x) = −eγx γ < 0. (1.5)

In Section 1.1 we explained that for fixed γ exponential utility function of any form
represents the same preference order. Therefore the specific choice (1.5) does not
impose any restriction on our consideration. The aim is to compute the expected
utility of the total reward of X over the time and examine its asymptotic properties.
For a given vector b ∈ RN define

Un(b) , UC
γ

( n∑
k=1

r(Xk−1, Xk)
)
· b(Xn). (1.6)

Here the symbol b(Xn) simply means the Xn-th component of the vector b. Note
that Un , Un(1) is the total utility from reward over times 0, . . . , n. Considering
this quantity with arbitrary factor b(Xn) turns out to be useful. In order to avoid
confusion, where it is desirable, we write the dot symbol indicating multiplication.
Finally note that Un(b) can be equally expressed as

Un(b) = Un(1) · b(Xn) = Un · b(Xn). (1.7)

First look at the conditional expectation of Un(b).

E[Un(b)|Fn−1] = E

[
− exp

{
γ

n−1∑
k=1

r(Xk−1, Xk)

}
exp{γ r(Xn−1, Xn)} b(Xn)

∣∣∣Fn−1

]
= Un−1 · E[exp{γ r(Xn−1, Xn)} b(Xn)|Fn−1]

=
as
Un−1 ·

N∑
i=1

I[Xn−1=i]

N∑
j=1

pij e
γ rij b(j)

(1.8)

Define the matrix S by

S = {sij}Ni,j=1 with sij , pij e
γ rij , (1.9)

Equally we can write the definition of S in matrix notation as

S , P ∗ exp{γR}. (1.10)
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where the symbol exp represents exponential function applied entrywise and the
symbol ∗ represents entrywise product, also known as Hadamard product. Contrary
to the ordinary matrix multiplication, the Hadamard product is commutative. Now
we can rewrite the second factor of the last term in (1.8) as

E[−UC
γ (r(Xn−1, Xn)) b(Xn)|Fn−1] = e

T

Xn−1
S b = (S b)(Xn−1), (1.11)

where ek is the k-th canonical vector. Thus, using the notation (1.7), we have

E[Un(b)|Fn−1] = Un−1 · (S b)(Xn−1) = Un−1(S b). (1.12)

We make the following conclusion.

Proposition 1.6. For any given vector b ∈ RN , the variable Un(b) defined by (1.6)
and n ≥ k ≥ 0 we have

E[Un(b)|Fn−k] = Un−k(S
k b),

where the matrix S is defined by (1.10).

Proof. Using induction the result immediately follows from (1.12).

As a consequence we get the lemma which will be useful when we move to continuous
time set-up. First generalize the definition (1.6) by putting

Um,n(b) , UC
γ

( n∑
k=m+1

r(Xk−1, Xk)
)
· b(Xn) ∈ L1, (1.13)

for 0 ≤ m < n. Variable Um,n(b) is integrable because it attains only a finite number
of values. Note that U0,n(b) = Un(b) and

Un(b) = Un−k · (−Un−k,n(b)).

Lemma 1.7. For any given vector b ∈ RN , the variable Um,n(b) defined by (1.13)
and 0 < k < n we have

E[−Un−k,n(b)|Fn−k] = (Sk b)(Xn−k).

Proof. Using Proposition 1.6 and the fact that Un−k,n is integrable we get

E[Un(b)|Fn−k] = Un−k · E[−Un−k,n(b)|Fn−k] = Un−k · (Sk b)(Xn−k).

Now we can easily compute the expected utility of the reward up to time n.

Corollary 1.8. Denote un(b) = (un,1(b), . . . , un,N(b))T , where un,i(b) = Ei[Un(b)].
Then

un(b) = −Snb.
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Proof. Using Proposition 1.6 with n = k we get

Ei[Un(b)] = E[Un(b)|X0 = i] = U0(Snb) = −(Snb)(i) = −eT

iS
nb Pi − a.s.

Note that the i-th component of the vector un = un(1) is equal to the total
expected utility from reward over times 0, . . . , n when starting in state i at time
0. Corollary 1.8 says that the time development of the total expected utility is
described by the power of the matrix S defined by (1.9). Because the matrix S
has non-negative entries we can apply Perron-Frobenius theory. This theory con-
cerns the maximal eigenvalue of a non-negative matrix and consequently asymptotic
properties of its power. For here used matrix results see Appendix A.

Because we assume that X is irreducible and aperiodic, the matrix P is also
irreducible and aperiodic (see Appendix A). The matrix S is constructed from P by
multiplying each element by the positive number. Thus the matrix S also possesses
mentioned properties. By the Perron-Frobenius theorem A.3 the maximal eigenvalue
of S, that is the one with maximal Euclidean norm, is real and positive. Denote
this eigenvalue by λ > 0. Moreover the eigenvector u respective to eigenvalue λ can
be chosen, such that all its entries are positive, which we denote as u > 0. Further
by Theorem A.4 we have

lim
n→∞

λ−n un = lim
n→∞

−λ−nSn 1 = −ku, (1.14)

where u > 0 is an eigenvector respective to λ and k is a positive constant. Conse-
quently for any initial state i

lim
n→∞

un+1(i)

un(i)
= lim

n→∞
λ
λ−(n+1)un+1(i)

λ−nun(i)
= λ.

So for large times the utility is multiplied by λ each time we move to the next state.
This property holds regardless of initial state. That is the relation (1.14) can be
equivalently expressed as

un = λn(ku + o(1)) n→∞. (1.15)

Now look what the preceding limiting property (1.15) means for the certainty equiv-
alent. Denote the certainty equivalent of Un under CARA utility when starting in
state i by CECn(i). That is CECn(i) is equal to (UC

γ )−1(un(i)), where

(UC
γ )−1(x) = 1

γ
log(−x).

Then we can express a limiting relation for certainty equivalent as follows

CECn = 1
γ

log(−un)

= 1
γ
n log λ1 + 1

γ
log(−ku + o(1)), n→∞,

(1.16)

where log represents logarithm function applied entrywise. Denote z , 1
γ
log(−ku)

and
g , 1

γ
log λ. (1.17)
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We can rewrite (1.16) as

CECn = n g 1 + z + o(1), n→∞. (1.18)

The interpretation is that for large times the certainty equivalent increases by g
when the Markov chain moves to another state. The vector z is the correction
reflecting the initial state. When time is large initial state becomes less important,
which is expressed by the following limit holding for every initial state i

CECn(i)

n
→ g, n→∞. (1.19)

In the next section we will look for optimal control of a Markov chain which max-
imizes certain equivalent growth rate g. Note that due to negativity of γ, (1.17)
implies that maximization of g is equivalent to the minimization of λ. This is a bit
counter-intuitive and it is caused by the fact that our utility function attains only
negative values. Finally note that the limit to be maximized, given by (1.19), can
be equivalently expressed by previously used symbols as

g = lim
n→∞

1
γ
n−1 log(−E[Un]). (1.20)

Before we proceed let us discuss an important special case. Sometimes the reward is
not related with transition from one state to another but is paid when staying in a
particular state. In this case the reward is described by a reward vector r = {ri}i∈X
determining a reward paid in each state. This is equivalent to considering the reward
matrix R = {rij}i,j∈X , with rij = ri. Then the matrix S can be expressed as

S = P ∗ exp{γR} = exp{γ diag(r)} · P . (1.21)
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1.3 Optimal risk sensitive control of Markov de-

cision chain

We introduce the concept where a decision maker can effect the behaviour of the
chain. In each state an action can be chosen. Vector of all actions selected in each
state determines the rewards and the transition probabilities of the chain. Formally
consider a state space X and let Ax be a finite set representing a set of all admissible
actions in a state x ∈ X . Define an action space A as

A =
∏
x∈X

Ax.

Further for any policy a ∈ A let P a be a transition matrix and let Ra be a reward
matrix corresponding to this policy. That is for every policy a ∈ A we have a
Markov reward chain Xa. The whole system (Ω, {Fn}n∈N0 , {Xa}a∈A) is called a
Markov decision chain.

Consider a Markov decision chain with state space X = {1, . . . , N}, transition
matrices

P a = (p1(a1), . . . ,pN(aN))
T

and reward matrices
Ra = (r1(a1), . . . , rN(aN))

T
.

We assume that for all policies a ∈ A the transition matrix P a is aperiodic and
irreducible. For any policy a we have the variable Ua

n(·) defined like in (1.6) and the
non-negative matrix Sa defined like in (1.10). That is

Sa = (s1(a1), . . . , sN(aN))
T
, si(ai) = {sij(ai)}Nj=1,

sij(ai) = pij(ai) exp{γ rij(ai)}.

By virtue of the Perron-Frobenius theorem A.3 there exists the maximal eigenvalue
λa > 0 and respective eigenvector va > 0 of Sa.

Ma
n , (λa)−nUa

n(va) n ∈ N0, (1.22)

where the variable Ua
n(·) defined like in (1.6).

Proposition 1.9. The process Ma
n is a Fn-supermartingale if Sava ≥ λava entry-

wise. The process Ma
n is a Fn-martingale if Sava = λava.

Proof. As the Proposition concerns only one fixed policy, we will omit the upper
index a throughout the proof. Using Proposition 1.6 and the fact that Mn−1 is Fn−1

measurable we get

E[Mn −Mn−1|Fn−1] =
as

(λ)−n Un−1(Sv)− (λ)−n+1 Un−1(v)

= (λ)−n[Un−1(Sv)− λUn−1(v)]

= (λ)−n Un−1 · [(S v)(Xn−1)− (λv)(Xn−1)].
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If S v = λv the process Mn is clearly an Fn-martingal. Finally, from assump-
tion S v − λv ≥ 0 and from facts that λ is positive and Un−1 is negative follows
E[Mn|Fn−1] ≤

as
Mn−1.

Theorem 1.10. Let â ∈ A. If the inequality Savâ ≥ λâ vâ holds for every policy
a ∈ A, than â is an optimal policy in sense that gâ ≥ ga for all a ∈ A.

Proof. For all i we have ∑
j sij(ai) v

â
j

vâi
≥ λâ, vâi > 0.

Using the inequality from Theorem C.1 we get

λa ≥ min
i

∑
j sij(ai) v

â
j

vâi
≥ λâ.

Remind that according to (1.17) the growth rate of certainty equivalent g is equal
to 1

γ
log λ. Since γ is negative we have ĝ ≥ ga.

Theorem 1.11 (Policy iteration). Let a0 ∈ A be the initial policy. Define the
sequence {an} recursively by

an+1(i) , argmin
α∈Ai

si(α)
T
van . (1.23)

If the minimum is attained for more the one policy and an(i) is one of then, always
make a conservative choice an+1(i) = an(i). The resulting sequence an converges to
an optimal policy â.

Proof. Suppose that an converges to â. Then by (1.23) for all i we have

e
T

i S
a vâ ≥ e

T

i S
â vâ = λâ vâi , a ∈ A.

Thus the inequality Sa vâ ≥ λâ vâ holds for every a ∈ A and the policy â is optimal
by virtue of Theorem 1.10.

It now remains to show that an converges. Because the action space is a discrete
finite set, the sequence an converges if and only if it is eventually constant. Thus it
is sufficient to show that every time the procedure moves to a new policy it is better
than the previous one. So suppose that an 6= an+1. Denote an , a and an+1 , b.
Then by (1.23) the inequality

e
T

i S
b va = si(bi)

T
va

(1.23)

≤ si(ai)
T
va = e

T

i S
a va = λvai

holds for every i. In addition for some i the inequality must be sharp, i.e.

Sb va � λa va.

Otherwise we would have a = b due to the conservative choice.
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Here we distinguish two cases. If va is an eingenvector of Sb respective to λa, then
λbva < λava. Because va has positive entries we have λb < λa and consequently
gb > ga.

Now suppose that va is not an eingenvector of Sb respective to λa. Then for all i∑
j sij(bi) v

a
j

vai
≤ λa

with sharp inequality for some i. Using inequality from theorem C.1 we get

λb < max
i

∑
j sij(bi) v

a
j

vai
≤ λa

and consequently gb > ga. Note that the inequality is sharp, because va is not an
eingenvector of Sb.

The Theorem 1.11 gives us a method for finding the optimal policy. The algorithm
can by summarized by the following steps:

1. For every policy a construct the matrix Sa according to (1.10).

2. Choose an arbitrarily initial policy an, n = 0.

3. Having the policy an, find an eigenvector van > 0 of the matrix San corre-
sponding to its maximal eigenvalue.

4. Find the improved policy an+1 by entrywise minimization Savan over all poli-
cies a.

5. Repeat steps 3. and 4. until an = an+1. You have just find an optimal policy.

1.4 Continuous time Markov reward chain

In order to define a continuous time Markov chain we start with a transition prob-
abilities. Let X be a finite set and let {P t, t ≥ 0} with P t = {pxy(t)}x,y∈X be a
system of stochastic matrixes satisfying

(B-1) P 0 = I,

(B-2) P s+t = P sP t, s, t ≥ 0,

(B-3) limt→0+ P t = I.
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Property (B-2) is known as Chapman-Kolmogorov relation. Condition (B-1) together
with (B-3) assert that the system is right continuous at t = 0. Moreover all three
conditions together imply both sided continuity of the system {P t, t ≥ 0} in all
t ≥ 0. Right continuity follows from computation

lim
h→0+

P (t+ h) = P (t) lim
h→0+

P (h) = P (t)I = P (t). (1.24)

On the other hand, for t > h > 0 Chapman-Kolmogorov relation implies

P t = P t−hP h.

The matrix P h is near to identity matrix for h small enough and thus the inverse
P−1
h exists and also converges to identity matrix. So we have

P t = P t lim
h→0+

P−1
h = lim

h→0+

P (t− h). (1.25)

Relations (1.24) and (1.25) says that {P t, t ≥ 0} is continuous in all t ≥ 0 .
Remind that every matrix represents a linear operator and composition of linear

operators corresponds to matrix multiplication. Thus the above defined system
together with matrix multiplication constitutes a continuous semigroup of linear
operators on R|X |.

Definition 1.12. A system (Ω, {Ft}t∈R0 , X, {Px}x∈X ) is called a (homogenous) con-
tinuous time Markov chain with the transition probabilities {P t, t ≥ 0} if

(i) Ft, t ≥ 0 are σ-fields on Ω satisfying Fs ⊂ Ft for all s ≤ t,

(ii) X = {Xt, t ≥ 0} is X -valued process on Ω and Xs is Ft measurable for all
s ≤ t,

(iii) for all x ∈ X Px is a probability measure on F∞ = σ
(⋃

t≥0Ft
)

satisfying for
all y ∈ X , s, t ∈ R0, s ≤ t

Px(X0 = x) = 1 and Px(Xt = y|Fs) = pXs,y(t− s) Px − a.s.

Similarly to the discussion after Definition 1.3 we can show that the process pos-
sesses the Markov property and the matrix P (t) describes transition in time t mean-
ing that

pxy(t) = Px(Xt = y).

In discrete time the distribution of a Markov chain is fully described by initial dis-
tribution (in our case represented by underlying measure) and one step transition
matrix. In continuous time there is no smallest transition step. In order to find simi-
lar simple description in continuous time we need to examine derivative of transition
functions pxy(t), which is, loosely speaking, infinitesimal transition step. We have
already seen that these functions are continuous, but it can be shown that they have
much stronger properties. The key results are summarized in the following theorem.
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Theorem 1.13. Let X be a countable set. Assume that the system P t = {pxy(t)}x,y∈X
satisfies conditions (B-1)-(B-3) then

(i) For every x, y ∈ X the function pxy(t) is uniformly continuous in t.

(ii) For all x ∈ X the derivative

qx = −qxx = − d

dt+
pxx(t)

∣∣∣
t=0

exists and qx ∈ [0,∞].

(iii) For all x, y ∈ X , y 6= x the derivative

qxy =
d

dt+
pxy(t)

∣∣∣
t=0

exists and qxy ∈ [0,∞).

(iv) If qx < ∞ then pxy(t) is continuously differentiable in t ≥ 0 for that x and
every y ∈ X , and satisfies the Kolmogorov backward differential equation

d

dt
pxy(t) =

∑
z∈X

qxz pzy(t).

Proof. The proof can be found in [15], theorems 2.13 and 2.14.

The number qxy is called the transition rates from state x to state y. The number
qx is called the total rate out of state x. The larger the total rate is, the shorter time
period the chain remains in state x. If qx = 0, the chain remains in x permanently
and we say that the state x is absorbing. The state x with qx <∞ is called stable. If
qx =∞ the chain can not remain in x for positive amount of time and we say that
the state x is instantaneous. However instantaneous states can occur only in case of
infinite state space. In this thesis we work only with Markov chain with finite state
space, so all states are stable. In this case∑

y 6=x

qxy = qx. (1.26)

Indeed

0 =
1−

∑
y pxy(t)

t
=

1− pxx(t)−
∑

y 6=x pxy(t)

t
−→ qx −

∑
y 6=x

qxy, t −→ 0+.

The relation (1.26) justifies the name total rate.
Define the matrix Q by Q = {qxy}x,y∈X . Because all states are stable according to

Theorem 1.13 (iv) the Kolmogorov backward differential equation (1.27) must hold.

d

dt
P t = QP t (1.27)
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From the properties of matrix exponential follows that under initial condition P 0 =
I the equation (1.27) has the unique solution of the form

P t = exp{tQ}. (1.28)

So all transition probabilities can be expressed by means of the matrix Q. In this
sense Q is a continuous time counter-part of the one step probability matrix. The
matrix Q is called the infinitesimal generator or simply the generator matrix.

Now we add rewards to the process. Unlike in the case of a discrete time Markov
chain, here the chain stays in every state generally different amount of time. Thus
we need to evaluate separately staying in a particular state and transition from one
state to another. Reward for staying in a particular state will be described by vector
r, where ri is a reward paid for being in state i for one unit of time. Reward for a
transition from one state to another will be described by matrix R, meaning that
moving from state i to state j pays a reward rij. Because the transition from state i
to state i simply means staying in state i and the corresponding reward is included
in the vector r, we assume that rii = 0. A continuous time Markov chain with the
vector r and the matrix R is called a continuous time Markov reward chain.

Consider a continuous time Markov reward chain X with the state space X =
{1, . . . , N}. We try to do analogue of preceding sections in the continuous time
set-up. For a given vector b ∈ RN , similarly to (1.6) and (1.13), define

Us,t(b) = UC
γ

(∫ t

s

r(Xv) dv +
∑
s<v≤t

r(Xv−, Xv)
)
· b(Xt) (1.29)

and put U0,t(b) = Ut(b). Note that the number of v ≤ t, for which Xv− 6= Xv

is almost surely finite. Thus the sum on the right hand side is almost surely well
defined. Again Ut = Ut(1) is the total utility from the reward over the time interval
[0, t]. The aim is to derive a formula for the conditional expectation of Ut(b) similar
to the one from Proposition 1.6.

E[Ut(b)|Fs] =
as
Us · E

[
− UC

(∫ t

s

r(Xv) dv +
∑
s<v≤t

r(Xv−, Xv)
)
· b(Xt)

∣∣∣Fs]
=
as
Us · E[−Us,t(b)|Fs]

(1.30)

The idea is to approximate the continuous time Markov chain between s and t
by the discrete time process obtained by observing the original one in discrete time
instances. Such a process turns out be again a Markov chain and we can use Lemma
1.7 to express the second factor of the equation (1.30).

Denote tn,k = s+ k
n (t− s) for k = 0, . . . , n and consider the partition ∆n = {tn,k}nk=0

of the interval [s, t]. Note that the norm of the partition ∆n is equal to t−s
n . Define

the process
Xn
v = Xbvc∆n

v ∈ [s, t],

where bvc∆n means the value v rounded down with respect to the set ∆n. The
process Xn has piecewise constant trajectories with jumps in points of partition ∆n.
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Key properties of the constructed process are that the Markov property preserves
and Xn approximates well the original process X.

Lemma 1.14. (i) The process {Xtn,k
}nk=0 is a Markov chain with filtration {Ftn,k

}nk=0

and the transition matrix P t−s
n

.

(ii) Considering the processes Xn = (Xn
v , v ∈ [s, t]) and X = (Xv, v ∈ [s, t]) as

random variables with values in the metric space D[s, t] with Skorokhod metric,
Xn converges to X almost surely.

Proof. (i) All three required conditions from the Definition 1.3 follow from their
continuous-time couterparts from the Defintion 1.12. First two are obvious. The
third one is shown by following computation. For any 0 ≤ k < l ≤ n

P(Xtn,k
= j|Ftn,l

) = P
[
X(s+ k

n
(t− s)) = j|F(s+ l

n
(t− s))

]
= pXtn,l

,j(
k−l
n
t− s) = p̃ (k−l)

Xtn,l
,j,

(1.31)

where p̃ (k−l)
i,j is the entry of the (k − l)-th power of the matrix P t−s

n
on i-th row

and j-th column. Note that the probability measures P̃i can be defined by putting
P̃i(Xtn,0 = i) = 1. However the specific choice of measure does not influence the
computation (1.31).

(ii) Remind that the Skorokhod metric is given by

ρ(f, g) = inf
λ∈Λ

(
‖λ− I‖ ∨ ‖f − g ◦ λ‖

)
,

where ‖·‖ is the uniform norm on [s, t] and Λ is the set of all strictly increasing
continuous bijection on [s, t]. We want to show that ρ(Xn, X) almost surely goes to
zero.

(a) Trajectories (b) Time transformation

Figure 1.1: Reasoning for Xn(ω) ◦ λ∗ = X(ω)

For almost every ω ∈ Ω trajectory X(ω) has only finite number jumps in the
interval [s, t]. Choose one such ω. Because the state space is finite, size of each
jump is finite. For clarity we will consider a trajectory X(ω) with only one jump of
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unit size. The general case with finite number of jumps is left as an exercise for the
reader. So assume that X(ω) is of the form

X(ω, v) =

{
0 if v ∈ [s, r)

1 if v ∈ [r, t].

For every partition ∆n there exists k for which r ∈ (tn,k−1, tn,k]. As we can see from
Figure 1.1(a) the only difference between trajectories Xn(ω) and X(ω) is that Xn(ω)
is shifted right by tn,k − r. If we speed up the time appropriately on the interval [0, r],
the trajectory Xn(ω) would be equal to X(ω). Appropriate time transformation
λ∗ ∈ Λ could be piecewise linear on intervals [s, r], [r, t] satisfying λ∗(r) = tn,k. The
function is plotted on Figure 1.1(b). Then evidently Xn(ω) ◦ λ∗ = X(ω) and thus

ρ(X(ω), Xn(ω)) ≤ ‖λ∗ − I‖ ∨ ‖X(ω)−Xn(ω) ◦ λ∗‖ = ‖λ∗ − I‖ ≤ ‖∆n‖ .

The result follows from the fact that the norm of the partition ∆n goes to zero as n
goes to infinity.

Like at the end of the previous section Section 1.2, define the matrix R̃ with entries
r̃ij = ri. When we replace the process X by process the Xn in equation (1.30), we
can express the second factor on the right hand side as

E[−Un
s,t(b)|Fs] =

as E
[
− UC

γ

(∫ t

s

r(Xn
v ) dv +

∑
s<v≤t

r(Xn
v−, X

n
v )
)
· b(Xt)

∣∣∣Fs]
=
as E

[
− UC

γ

( n∑
k=1

t−s
n
r(Xtn,k−1

) +
n∑
k=1

r(Xtn,k−, Xtn,k
)
)
· b(Xt)

∣∣∣Fs]
=
as E

[
− UC

γ

( n∑
k=1

t−s
n
r̃(Xtn,k−1

, Xtn,k
) + r(Xtn,k−1

, Xtn,k
)
)
· b(Xtn,n)

∣∣∣Fs].
(1.32)

Using Lemma 1.7 we can further simplify this term.

E[−Un
s,t(b)|Fs] =

as
([

P t−s
n
∗ exp{γ t−s

n
R̃} ∗ exp{γR}

]n
b
)

(Xs)

=
([(

exp{ t−s
n
γ diag(r)} · exp{ t−s

n
Q}
)
∗ exp{γR}

]n
b
)

(Xs).

(1.33)

Using the Taylor expansion, it can be shown that last term converges to a finite
limit. In spite of the simplicity of idea behind the proof, the proof itself is quite
technical and tedious. Thus we move this computation to Appendix C. Now we can
make the following conclusion.

Proposition 1.15. Let 0 ≤ s ≤ s + h. Then for any given vector b ∈ RN and the
variable Us+h(b) defined by (1.29) we have

E[Us+h(b)|Fs] = Us(S
h b),
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where Sh has non-negative entries and is of the form

Sh = exp{hT }, h ≥ 0, (1.34)

where
T = (Q + γ diag(r)) ∗ exp{γR}. (1.35)

Proof. Define the functional f on D[s, t] by

f(y) = −UC
γ

(∫ s+h

s

r(yv) dv +
∑

s<v≤s+h

r(yv−, yv)
)
· b(yt).

Because f is continuous, according to Lemma 1.14 f(Xn) converges to the f(X)
almost surely. Moreover the sequence f(Xn) is uniformly bounded, because the
state space is finite. Thus we also have convergence in L1 which implies convergence
of conditional expectations. Now we can complete computation (1.33) by taking the
limit. The matrix R has zeros on its main diagonal. So according to the Lemma
C.2

lim
n→∞

[
exp{h

n
γ diag(r)} · exp{h

n
Q} ∗ exp{γR}

]n
= exp{(h)(Q + γdiag(r)) ∗ exp{γR}} = Sh.

The left hand side of the above term can be also expressed as

lim
n→∞

[
P h

n
∗ exp{γ h

n
R̃} ∗ exp{γR}

]n
.

So Sh, h ≥ 0 is a limit of non-negative matrices and thus it is itself non-negative.

1.5 Optimal risk sensitive control of continuous

time Markov decision chain

Similarly to the discrete time set-up, also here we add decisions to the process.
Consider an action space

A =
∏
x∈X

Ax,

with Ax representing the set of all admissible action in state x. For any policy a ∈ A
let Qa be an intensity matrix and Ra, ra be a reward matrix and a reward vector
corresponding to the policy a. That is for every policy a ∈ A we have a continuous
time Markov reward chain Xa. The whole system (Ω, {Fn}n∈N0 , {Xa}a∈A) is called
a continuous time Markov decision chain.

Consider a Markov decision chain with state space X = {1, . . . , N}, intensity
matrices

Qa = (q1(a1), . . . , qN(aN))
T
,
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reward matrices and reward vectors

Ra = (r1(a1), . . . , rN(aN))
T
, ra = (r1(a1), . . . , rN(aN))

T
.

We assume that for all policies a ∈ A the chain is aperiodic and irreducibile. For any
policy a we have the variable Ua

n(·) defined by (1.29) and the non-negative matrix
Sa = exp{T a} defined by (1.34) and (1.35). That is

T a = (t1(a1), . . . , tN(aN))
T
, ti(ai) = {tij(ai)}Nj=1,

tij(ai) = (qij(ai) + γ δij ri(ai)) e
γrij(ai),

where δij is the Kronecker delta. By virtue of the Perron-Frobenius theorem A.3
the matrix Sa has its maximal eigenvalue λa > 0 and respective eigenvector va > 0.
In addition, according to the results of Appendix B, va is also an eigenvector of T a

coressponding to its maximal eigenvalue κa , log λa.
For fixed any a ∈ A consider a process

Ma
t = (λa)−tUa

t (va) t ≥ 0. (1.36)

Proposition 1.16. The process Ma
t is a Ft-supermartingale if T a va ≥ κa va. The

process Ma
t is a Ft-martingale if T a va = κa va.

Proof. As the Proposition concerns only one fixed policy, we will omit the upper
index a throughout the proof. First we want to show that the assumption T v = κv
implies the inequality

exp{sT }v = Ss v ≥ λs v = es κ v for all s ≥ 0.

Using the fact exp{−sκ I} = e−sk I we compute

Ss v − λs v = exp{sT }v − es κ v
= es κ (e−s κ exp{sT }v − v)

= es κ (exp{s(T − κ I︸ ︷︷ ︸
,T̃

)} − I)v.

The last equality is true due to the fact that matrices T and κ I commute. Denote
T̃ , T − κ I. Then by assumption T̃ v ≥ 0. We continue with computation as
follows

Ss v − λs v = es κ (exp{sT̃ } − I)v

= es κ
(∫ s

0

d

du
exp{uT̃ }du

)
v = es κ︸︷︷︸

≥0

(∫ s

0

exp{uT̃ }du
)

(T̃ v)︸ ︷︷ ︸
≥0

.

The integrant exp{uT̃ } = e−uκ Su is also non-negative according to Proposition
1.15. Thus the whole term is nonnegative.
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We have shown that Ss v ≥ λs v, s ≥ 0. Employing the Proposition 1.15 and the
fact that Ms is Fs measurable we get

E[Ms+h −Ms|Fs] = λ−(s+h) Us(S
hv)− λ−s Us(v)

= λ−s−h[Us(S
hv)− λh Us(v)]

= λ−s−h︸ ︷︷ ︸
>0

Us︸︷︷︸
<0

·[(Sh v)(Xs)− (λs v)(Xs)].

Because λ is positive and Us is negative we have

λs v ≤ Ss v̂ =⇒ E[Ms+h|Fs] ≤as
Ms, 0 ≤ s ≤ s+ h.

Theorem 1.17. If the inequality T a vâ ≥ κâ vâ holds for every policy a ∈ A, then
â is an optimal policy.

Proof. In the proof of the Lemma 1.16 we show that the assumption implies

Sa vâ ≥ λâ vâ for all a ∈ A.

The rest is a direct analogue of the proof of the Theorem 2.4.

Theorem 1.18 (Policy iteration). Let a0 ∈ A be the initial policy. Let a0 ∈ A be
the initial policy. Define sequence {an} recursively by

an+1(i) = argmin
a∈A

tai v
an . (1.37)

If the minimum is attained for more the one policy and an is one of then, always
make conservative choice an+1(i) = an(i). Then an converges to an optimal policy
â.

Proof. Suppose that an converges to â. Then by (1.37) for all i we have

e
T

i T
a vâ ≥ e

T

i T
â vâ = κâ vâi a ∈ A

Thus the inequality T a vâ ≥ κâ vâ holds for every a ∈ A and the policy â is optimal
by virtue of Theorem 1.10. The rest is a direct analogue of the proof of the Theorem
1.11.

The Theorem 1.18 gives us a method for finding the optimal policy for continuous
time Markov Chain. The algorithm works exactly as for discrete time case, which
is described at the end of section 1.3. The only difference is that the matrix S is
replaced by the matrix T , which is given by (1.35).
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2. Optimal Investment with
Proportional Transaction Costs

The problem of optimal portfolio management of securities was first formulated
by Merton [17]. It is known as Merton’s porfolio problem or the consumption-
investment problem. It concerns a question how to allocate wealth between con-
sumption and investment in order to maximize expected utility over a time horizon.
This general problem can be considered under numerous different specific formula-
tions. For example, Merton derived analytical solution for the problem with two
assets under logarithmic utility function over both finite and infinite horizon.

In this section we consider the problem with proportional transaction costs as
formulated in [6]. We summarize the dynamics of the model and propose its ap-
proximation by Markov chain. Then we use the algorithm from the Chapter 1 to
solve the problem. The results are compared with analytical solution.

2.1 Model description

Suppose that a market consists of two assets. The first one is assumed to be riskless
and the second one is assumed to be risky. Time development of the riskless asset,
denoted by S0, is deterministic and is given by

dS0
t = r S0

t dt. (2.1)

This asset represents a bank account with constant interest rate r and with contin-
uous compounding. Starting with a certain deposit the account grows exponentially
in time with growth rate equal to r.

The second asset, denoted by S1, represents a stock or a stock index. We assume
that it’s price follows geometric Brownian motion with drift µ and volatility σ. That
is

dS1
t = µS1

t dt+ σ S1
t dWt, (2.2)

where Wt is a Brownian motion. We assume that no other assets are available.
Further we assume that both assets, the stock and the money, are infinitely divis-

ible. So the investor can possess any non-negative real volumes of these assets.
As mentioned in the introduction, the transaction costs are paid when trading the

risky asset. These transaction costs are proportional to the size of the deal. In case
of buying a (1 + c+) - multiple of the stock price is paid. On the other hand, in case
of selling, (1− c−) - multiple of the stock price is received. We consider c+ ∈ (0,∞)
and c− ∈ (0, 1).

We will consider a utility function with hyperbolic absolute risk aversion (HARA)
of the form

UH
γ (x) = 1

γ
xγ, γ < 0. (2.3)
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The aim of the investor is to maximize the growth rate of the certainty equivalent
of the value of the portfolio. That is to maximize

lim
t→∞

t−1 log(CEHγ(Vt)), CEHγ(Vt) := (UH
γ )−1 EUH

γ (Vt), (2.4)

where Vt is the value of the portfolio at time t.
There is an important relation (2.5) between HARA utility function and CARA

utility function from the first Chapter, which can be easily shown by direct compu-
tation.

CECγ(log(·)) = log(CEHγ(·)). (2.5)

According to (2.5), the criteria (2.4) can be reformulated as

lim
t→∞

t−1 log(CEHγ(Vt)) = lim
t→∞

t−1CECγ(log(Vt)). (2.6)

The relation (2.6) coverts the problem of maximizing (2.4) to the problem we con-
sidered in the chapter one. The main benefit of this conversion is that we can work
with log(Vt) instead of Vt. As we will see further, log(Vt) behaves better for purpose
of approximation.

Now we analytically derive the dynamics of the portfolio. First we look at the
dynamics of the value of the portfolio investment. Denote the number of riskless
and risky assets in the portfolio at time t by N0

t and N1
t respectively. The value of

the portfolio at time t is given by

Vt = N
T

tSt = N0
t S

0
t +N1

t S
1
t .

If the investor does not trade, number of both assets N0
t , N1

t remains constant. Then
we can write

dVt = N0
t dS0

t +N1
t dS1

t

= N0
t r S

0
t dt+N1

t (µS1
t dt+ σ N0

t r S
1
t dWt)

= r Vt
N0
t S

0
t

N T

tSt
dt+ µVt

N1
t S

1
t

N T

tSt
dt+ σ Vt

N1
t S

1
t

N T

tSt
dWt.

Defining

Gt =
N1
t S

1
t

N0
t S

0
t +N1

t S
1
t

, (2.7)

we gain
dVt
Vt

= [r + (µ− r)Gt] dt+ σ Gt dWt. (2.8)

Note that the variable Gt represents the portion of the investor’s wealth that is hold
in the risky asset. We would refer to this quantity as an investor’s position. The
process (Gt, t ≥ 0) attains only values from the interval [0, 1]. This is particularly
important, because later we would like to approximate this process by a Markov
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chain with finite state space. This would be problematic in the case of unbounded
state domain.

Using Ito’s lemma we compute dynamics of the logarithm of the value of the
portfolio. According to (2.8)

V −1
t d 〈V 〉t = σ2G2

t dt,

and we have

d log Vt =
dVt
Vt
− 〈dV 〉t

2V 2
t

= [r + (µ− r)Gt − 1
2
σ2G2

t ] dt+ σ Gt dWt. (2.9)

For technical details of the above computation see Appendix D. Denote

q0(x) = r + (µ− r)x− 1
2
σ2 x2.

Then we can write
d log Vt = q0(Gt) dt+ σ Gt dWt. (2.10)

We managed to derive the dynamics of log Vt in terms of Gt. Now we would like
to compute the dynamics of Gt. Using Ito’s formula we gain

Vt dV −1
t = −dVt

Vt
+

(dVt)
2

V 2
t

= [−r − (µ− r)Gt + σ2G2
t ] dt− σ Gt dWt.

Once again, the details of the computation can be found in Appendix D. Realizing
that Gt = N1

t S
1
t V
−1
t , we compute

dGt = N1
t V

−1
t dS1

t +N1
t S

1
t dV −1

t +N1
t (dS1

t ) (dV −1
t )

= N1
t V

−1
t (µS1

t dt+ σ S + t1dWt) +N1
t S

1
t V
−1
t [(−r(µ− r)Gt + σ2G2

t )dt

− σ2Gt dWt]−N1
t V

−1
t σ2Gt S

1
t dt

= Gt(µdt+ σdWt) +Gt[(−r − (µ− r)Gt + σ2G2
t ) dt− σ Gt dWt]− σ2G2

t dt

= Gt(µ− r − (µ− r)Gt − σ2G2
t − σ2Gt) dt+Gt (σ − σ Gt) dWt

= Gt (1−Gt)[(µ− r − σ2Gt) dt+ σ dWt].

Define functions describing drift and volatility

b(x) = x (1− x) (µ− r − σ2 x),

s(x) = σ x (1− x).

Now we can express the dynamics of Gt as

dGt = b(Gt)dt+ s(Gt)dWt. (2.11)

In order to add trading to the dynamics, denote the sum of stocks bought and
sold on the interval [0, t) by N+

t and N−t respectively. So the total number of stocks
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N1
t is equal to N+

t − N−t . Using Ito’s lemma we can compute the dynamics of Gt

and log(Vt). The technical details are similar to the computations above. Here we
only state the resulting differentials. For Gt we get

dGt = b(Gt)dt+ s(Gt)dWt + d+Gt − d−Gt, (2.12)

where

d+Gt =
(1 + c+Gt)St

Vt
dN+

t , d−Gt =
(1− c−Gt)St

Vt
dN−t .

For log(Vt) we get

d log Vt = q0(Gt) dt+ σ Gt dWt − ν+(Gt)d
+Gt − ν−(Gt)d

−Gt, (2.13)

where
ν+(x) =

c+

1 + c+ x
, ν−(x) =

c−
1 + c− x

. (2.14)

Finally we look at dynamics of the utility UH
γ (Vt), which should determine the

rewards for our approximating chain. For sake of simplicity we will consider the
dynamics without trading. First remind that

UH
γ (x) = 1

γ
xγ = γ−1 exp{γ log(Vt)}. (2.15)

Using Ito’s Lemma with f(x) = exp{γx} and (2.10) we get

dγ−1 exp{γ log(Vt)} = V γ
t d log(Vt) + 1

2
γ V γ

t d 〈log(V )〉t
= (V γ

t q0(Gt) + 1
2
γσ2G2

t )dt+ V γ
t σdWt

= V γ
t qγ(Gt)dt+ V γ

t σdWt,

(2.16)

where
qγ(x) = q0(x) + 1

2
γσ2x2.

Thus the expected utility of the value of the portfolio is

EUγ(Vt) = E
∫ t

0

V γ
s qγ(Gs)ds.

The process G is the one we would like to approximate by Markov chain. However,
in order to determine the rewards for G, we need the expected utility EUγ(Vt) to
be dependent only on Gt. The Girsanov theorem (see Appendix D) can help us to
get rid of dependence on Vt. Assume without loss of generality that V0 = 1. Than
by equation (2.10) we can express Uγ(Vt) as

Uγ(Vt) = 1
γ

exp{γ log(Vt)}

= γ−1 exp
{
γ

∫ t

0

q0(Gs)ds+ σγ

∫ t

0

GsdWs

}
= γ−1 exp

{
σγ

∫ t

0

GsdWs − 1
2
σ2γ

∫ t

0

G2
sds
}

exp
{
γ

∫ t

0

qγ(Gs)ds
}
.

27



Defining the stochastic exponential

E(X)t = exp{Xt − 1
2
〈X〉t}, Xt = σγ

∫ t

0

GsdWs,

we can write

Uγ(Vt) = γ−1 E(X)t exp
{
γ

∫ t

0

qγ(Gs)ds
}
. (2.17)

Since Gt attains only values in [0, 1], it satisfies Novikov condition,

E
[
exp

(1

2

∫ t

0

G2
s ds
)]

< e
t
2 <∞, t ≥ 0. (2.18)

Thus, we can use the Girsanov theorem D.2 which gives us existence of the measure
Qt, absolutely continuous to the underlying measure P, for which

EP Uγ(Vt) = EP E(X)t exp
{
γ

∫ t

0

qγ(Gs)ds
}

= EQt exp
{
γ

∫ t

0

qγ(Gs)ds
}
.

(2.19)

We see that by moving to the measure Qt we get rid of dependence on V . The only
thing that remains to derive is the dynamics of G under the measure Qt. According
to D.2

dWs = dW̃s + 〈W,X〉s = dW̃s + γσGtdt, (2.20)

where W̃s is a standard Brownian motion under Qt on the interval [0, t]. Putting
(2.12) and (2.20) together we get

dGt = b(Gt)dt+ s(Gt)dWt + d+Gt − d−Gt

= b(Gt)dt+ s(Gt)(dW̃t + γσGtdt) + d+Gt − d−Gt

So the dynamics of Gt under the Q is

dGt = b̃(Gt)dt+ s(Gt)dW̃t + d+Gt − d−Gt, (2.21)

where

b̃(x) = b(x) + s(x) γ σ x

= (1− γ)σ2 x (1− x) [ (µ−r)σ2

1−γ − x].
(2.22)

28



2.2 Analytical Solution

Dostál [6] derived analytical solution for the problem of maximizing (2.4). The
optimal strategy is not to trade if the position Gt is in certain interval [α, β], and to
buy or sell the stock in order to keep the position within the interval [α, β]. Dostál
shows that, considering a interval strategy [α, β], the certainty equivalent growth
rate can be computed as

lim
t→∞

t−1 log(CEH(Vt)) = σ2

2
u(α, β), (2.23)

where the function u(α, β) is defined as the unique solution to the equation

log
1/α− 1

1/β − 1
=

∫ ξ+(α)

ξ−(β)

dz

γz2 + 2ρz − u(α, β)
, (2.24)

where

ρ =
µ

σ2
− 1

2
, ξ−(x) = x

1− c−
1− c−x

, ξ+(x) = x
1 + c+

1 + c+x
.

The optimal interval strategy can be found by maximizing the function u(α, β) over
{(α, β) : α, β ∈ (0, 1), α < β}. Unfortunately, the equation 2.24 do not have a
closed-form solution, so the optimization must be carried out numerically.

2.3 Discrete Time Approximation

We will approximate the continuous time model from previous section by discrete
time Markov chain. Methods we use are based on monograph [13]. For further detail
see chapters 4 and 5 in this monograph. The key requirement for approximating
Markov chain is that it must preserve the basic characteristics of original process,
namely conditional mean and conditional variance.

As we mentioned earlier we will approximate the position process G under the
measure Q, which is given by the equation (2.21). First we look at the model
without trading. Investor’s trading decisions or, in terminology of the first chapter,
investor’s actions, will be added later. Approximation in both time and state domain
are needed. In order to do this we create a lattice on which the approximating chain
will be allowed to move. Let us start with time domain. Let 0 = t0 < t1 < t2 . . . be
the sequence with step tk − tk−1 = ∆t, which is the same for all k. The change of
characteristics of the original process in time step ∆t can be approximated according
to (2.21) as follows

E[Gtk+1 −Gtk |Gtk = g] ∼ b̃(g)∆t, (2.25)

var[Gtk+1 −Gtk |Gtk = g] ∼ E[(Gtk+1 −Gtk)2|Gtk = g] ∼ s2(g)∆t. (2.26)

In case of conditional variance we neglect the second order term

(E[(Gtk+1 −Gtk)|Gtk = g])2 ∼ (̃b(g))2 (∆t)2,
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which is acceptable for small enough ∆t.
Now we move to approximation in state domain of Gt, which is the interval [0, 1].

Let {gi}ni=1 be the equidistant partition of the interval [0, 1] with the norm equal to
δ = 1

n
. The set {gi}ni=1 will be the state space of the approximating Markov chain.

We denote this chain by Ĝ = (Ĝk, k ∈ N). Suppose the Ĝ is in state g. Denote
the probability that it moves to the state g + h by P+(g) and the probability that
it moves to the state g − h by P−(g). The probability that the chain stays in g in
the next step is denoted P0(g). We will not allow probability of moving to the other
states to be positive. Of course these probabilities must satisfy

P0(g) = 1− P+(g)− P−(g).

First we need to compute moment characteristics of the chain in term of these
probabilities. Then we can determine values P+(g), P−(g) and P0(g) by comparison
with characteristics of the original process. We obtain

E[Ĝk+1|Ĝk = g] = P−(g) (g − δ) + P0(g) g + P+(g) (g + δ)

= g − P−(g) δ + P+(g) δ.

Subtracting Ĝk = g we gain

E[Ĝk+1 − Ĝk|Ĝk = g] = δ(P+(g)− P−(g)), (2.27)

var[Ĝk+1 − Ĝk|Ĝk = g] ∼ E[(Ĝk+1 − Ĝk)
2|Ĝk = g]

∼ δ2(P+(g) + P−(g)).
(2.28)

When we compare (2.25) with (2.27) and (2.26) with (2.28) we gain the following
equations

b(g)∆t = δ(P+(g)− P−(g)),

s2(g)∆t = δ2(P+(g) + P−(g)).

(2.29)

Solving the equations (2.29) we get

P+(g) =
δ b̃(g) + s2(g)

2δ2
∆t,

P−(g) =
−δ b̃(g)t+ s2(g)

2δ2
∆t.

From (2.29) also immediately follows that

P0(g) = 1− P+(g)− P−(g) = 1− s2(g)∆t

δ2
.
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Nonnegativity of P0(g) gives us the constraint s2(g)∆t ≤ δ2. We can choose the
time step ∆t such that

∆t =
δ2

k
,

where k ≥ s2(g) holds for every state g.
Now we add actions to the chain, meaning trading decisions. We consider three

types of actions: action + means to buy stocks, action − means to sell stocks and
action 0 means to do nothing. For the states close to extreme points, not all decisions
are allowed. The set of all admissible actions depending on state Ag are as following:

• A0 = {+}, A1 = {−}: in the extreme points only one decision is allowed in
order to push back inside the interval (0, 1),

• Ah = {+, 0}, A1−h = {0,−}: only decisions that keep the position inside the
interval (0, 1) are allowed,

• Ag = {+, 0,−}, g = 2h, 3h . . . , 1− 2h: in the rest of the states all alternatives
are possible.

As we derived above, in case of action 0, the transition probabilities are following

pi,i−1 = P−(gi),

(0) : pi,i = P0(gi),

pi,i+1 = P+(gi).

In case of buying or selling, we left the small probability ε > 0 that the decision
is not realized, in order to keep the chain irreducible. So if the decision to buy is
realized the chain Ĝ is shifted up. So, the transition probabilities looks like

(1− ε)P−(gi+1) in case of transition i+ 1→ i,

(+) : i→ i+ 1 (1− ε)P0(gi+1) in case of transition i+ 1→ i+ 1,

(1− ε)P+(gi+1) in case of transition i+ 1→ i+ 2.

In case that decision to buy is not realized the transition probabilities looks like

ε P−(gi) in case of transition i→ i− 1,

(+) : i→ i ε P0(gi) in case of transition i→ i,

ε P+(gi) in case of transition i→ i+ 1.

Putting altogether, we have

pi,i−1 = ε P−(gi),

(+) : pi,i = ε P0(gi) + (1− ε)P−(gi+1),

pi,i+1 = ε P+(gi) + (1− ε)P0(gi+1),

pi,i+2 = (1− ε)P+(gi+1).
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Similarly for decision to sell we get

pi,i−2 = (1− ε)P−(gi−1),

pi,i−1 = (1− ε)P0(gi−1) + ε P−(gi),

(−) : pi,i = (1− ε)P+(gi−1) + ε P0(gi),

pi,i+1 = ε P+(gi).

For any given control we have defined Markov chain {Ĝn}∞n=0 that approximates the
original process {Gt, t ≥ 0}. Denote rewards in case of actions 0, + and − by r0, r+

and r− respectively. According to discrete time analogue of the equation (2.19), we
define rewards in case of no trading

r0(gi) = qγ(gi) ∆t = (r − (µ− r) gi + 1
2
(1− γ)σ2 g2

i ) ∆t

Trading bears a costs given by (2.14). Thus we define the rewards in case of trading
as

r+(gi) = r0(gi)− δ ν+(gi) = r0(gi)− δ c+ (1 + c+gi)
−1,

r−(gi) = r0(gi)− δ ν−(gi) = r0(gi)− δ c− (1− c−gi)−1.

2.4 Continuous Time Approximation

In this section, we approximate the model given in (2.21) by continuous time Markov
Chain. In that case time domain of the original process and the approximating chain
are the same, thus only the of approximation in the state domain is needed. Similarly
to previous section, we start with derivation of change in moment characteristics.
Due to continuity of the time domain, we focus on the infinitesimal change.

E[Gt+dt −Gt︸ ︷︷ ︸
dGt

|Gt = g] = b(g) dt (2.30)

var[dGt|Gt = g] ∼ E[dG2
t |Gt = g] = s2(g) dt. (2.31)

Here we neglect the second order term

(E[dGt|Gt = g])2 = (b(g))2 (dt)2.

Consider the same approximation of the state space [0, 1] as in previous section.
That is the partition {gi}ni=1 with the norm equal to δ. We denote the continuous

time approximating chain by G̃ = (G̃t, t ≥ 0). Further we denote the transition rate
from any state g to g+ δ by Q+ and the transition rate from state g to g− δ by Q−.
We will not allow the other rates to be positive. So, for the total rate out of state
g, denoted by Q0, the equation Q0 + Q+ + Q− = 0 holds. Note that, according to
Kolmogorov backward differential equation (1.27), for t close to zero, we have the
following differential relation between transition rates and transition probabilities

dP t = QP 0 dt = Q dt.
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Using this, the infinitesimal change in mean value of the chain G̃ can be expressed
as

E[dG̃t|G̃t = g] = dP−(g) (g − δ) + dP0(g) g + dP+(g) (g + δ)

= [Q−(g) (g − δ) +Q0(g) g +Q+(g) (g + δ)] dt

= [δ(Q−(g) +Q+(g))] dt

(2.32)

Neglecting the second order term, we can express change in variance

var[dG̃t|G̃t = g] ∼ E[(dG̃t)
2|G̃t = g]

= [Q−(g) (g − δ)2 +Q0(g) g2 +Q+(g) (g + δ)2] dt

∼ [δ2(Q+(g) +Q−(g))] dt.

(2.33)

Comparing (2.30) with (2.32), and (2.31) with (2.33) we gain the following equations

b(g) = δ(Q+(g)−Q−(g)),

s2(g) = δ2(Q+(g) +Q−(g)).

(2.34)

Solving the equations (2.34) we get

Q+(g) =
δ b(g) + s2(g)

2δ2
≥ 0,

Q−(g) =
−δ b(g) + s2(g)

2δ2
≥ 0,

From (2.34) immediately follows that

Q0(g) = −Q+(g)−Q−(g) = −s
2(g)

δ2
.

Again consider the same set of admissible actions U = {+,−, 0} as in previous
section. As we derived above, in case of non-trading (action 0), the transition rates
as follows

qi,i−1 = Q−(gi),

(0) : qi,i = Q0(gi),

qi,i+1 = Q+(gi).

In case of trading we would like the chain to move immediately from the current
state. The immediate shift would be accomplished by infinite transition rate. How-
ever, for the finite state continuous chain the infinite rates are not allowed. Thus,
we are forced to choose some large K > 0, which will represent the intensity out of
a state in case of trading. So, for a decision to buy we have

qi,i−1 = Q−(gi),

(+) : qi,i = Q0(gi)−K,
qi,i+1 = Q+(gi) +K,
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and for decision to sell we have

qi,i−1 = Q−(gi) +K,

(−) : qi,i = Q0(gi)−K,
qi,i+1 = Q+(gi).

For continuous time Markov chain we distinguish reward for staying in a state and
reward for transition from one state to another. The reward for staying in a state
gi is described by (2.19). Thus we define

r(gi) = qγ(gi) = (r − (µ− r) gi + 1
2
(1− γ)σ2 g2

i ).

This reward does not depend on decision taken in state gi. The reward for transition
from one state to another is related to a transaction cost. So these rewards occur
only in case of trading assets, that is only in case of decision + or −. According to
(2.14) we have

r+(gi) = ν+(gi) = −c+ (1 + c+gi)
−1,

r−(gi) = ν−(gi) = −c− (1− c−gi)−1.

All the other transition rewards are equal to zero.
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2.5 Numerical results

We implemented both discrete time and continuous time approximation of the
model. Using the policy iteration algorithm developed in the first chapter we de-
rive the optimal interval strategy according to the performance criteria (2.4). We
compare the results with analytical solution.

Remind that the analytical solution is not of the closed-form. It is given as the
maximum of the function u(α, β), which is defined by integral equation (2.24). We
find the maximum approximately by evaluating the function u on the discrete lattice
{(a, b) : 0 < a < b < 1, a = n δ, b = mδ} with the step δ = 0.005.

For both discrete time and continuous time approximation we choose the step in
the state domain approximation δ = 0.005. In case of discrete time approximation
we choose the step in the time space approximation ∆t = 10−4.

Table 2.1: Results comparison

(a) µ = 0.5

g interval
Cont. model 0.056373 (0.170, 0.335)
Discr. appr. 0.056364 (0.165, 0.335)
Cont. appr. 0.056375 (0.165, 0.335)

(b) µ = 0.9

g interval
Cont. model 0.193513 (0.350, 0.550)
Discr. appr. 0.193490 (0.355, 0.550)
Cont. appr. 0.193510 (0.355, 0.550)

The table 2.1 shows the results of continuous model and both of its approximations.
The certainty equivalent growth rates g and corresponding optimal interval strategies
are compared. We consider transaction costs c+ = c− = 0.02, interest rate r = 0,
volatility of the stock σ = 1 and γ = −1. The cases (a) and (b) differs by choice
drift of the stock µ. We observed a sufficient consistency of both approximations
with analytical solution.
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The figures 2.1 and 2.2 shows the iterations for discrete time approximation and
continuous time approximation respectively. The left-hand side figures show the
development of certainty equivalent growth rate. We see that each iteration improves
the strategy. The right-hand figures show the development of the strategy.

(a) Growth rate of CE, µ = 0.5. (b) Optimal strategy, µ = 0.5.

(c) Growth rate of CE, µ = 0.9. (d) Optimal strategy, µ = 0.9

Figure 2.1: Discrete time approximation, process of finding the optimal strategy.
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(a) Growth rate of CE, µ = 0.5. (b) Optimal strategy, µ = 0.5.

(c) Growth rate of CE, µ = 0.9. (d) Optimal strategy, µ = 0.9

Figure 2.2: Continuous time approximation, process of finding the optimal strategy.
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Conclusion

For both discrete time and continuous time Markov decision chains we developed
the iterative algorithm for finding a control that maximizes

lim
t→∞

1
γ
t−1 log(−E[Ut]),

where Ut is utility from reward over the time horizon [0, t]. The algorithm is numer-
ically tractable.

Both discrete time and continuous time version of algorithm were applied on a par-
ticular problem in portfolio optimization theory. It presents how a continuos time
problem of optimal stochastic control can be solved numerically via Markov chain
approximation. The method can be possibly applied for different problems. The re-
sults provide a sufficient consistency with the analytical solution, which demonstrate
that they work properly.
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A. Perron-Frobenius Theory

In this section we summarize the results of Perron-Frobenius theory about non-
negative matrices that is used throughout the thesis. Comprehensive explanation of
the topic can be found in monograph by Lancaster and Tismenetsky [14] in Chapter
15.

Let A be a square n×n matrix with non-negative entries. We denote this fact by
A ≥ 0.

Definition A.1. Let dj be the greatest common divisor of those m ≥ 1 for which
Am
jj > 0. If dj = 1 for all j = 1, . . . , n then the matrix A is called aperiodic.

Definition A.2. The square matrix A of order n is called irreducible if for every
permutation matrix R

RAR−1 6=
(

C 0
D F

)
,

where C and F are square matrices of order 2 at least.

These terms are directly related to the same terms defined for Markov chains. If X
is a Markov chain with transition matrix P , then X is aperiodic iff P is aperiodic,
and X is irreducible iff P is irreducible.

Theorem A.3 (Perron-Frobenius). Let A be a nonnegative, irreducible and ape-
riodic square matrix. Then there exists a real eigenvalue λ1 > 0 of A, such that
λ1 > |λ| for all other eigenvalues of A. Moreover, (right) eigenvector v respective
to λ1 can be chosen entrywise positive and ker(A − λI) is onedimensional. The
same holds for a left eigenvalue w, that is for a eigenvector of A

T
respective to λ1.

Theorem A.4. Let A be a nonnegative, irreducible and aperiodic square matrix.
Let λ > 0 be its maximal eigenvalue given by Perron-Frobenius theorem. Then

lim
k→∞

λ−kAk =
vwT

vT w

where v is any right eigenvector and w is any left eigenvector of A respective to λ.

Note that if v is chosen positive, then

lim
k→∞

λ−kAk 1 =

∑
iwi∑
i viwi

v = k(v,w)v,

where k(v,w) is a positive constant.

Theorem A.5. Let A be a nonnegative, ireducible square matrix. Let λ > 0 be its
maximal eigenvalue and let v be a positive vector. Then following inequality holds

min
i

∑
j aij vj

vi
≤ λ ≤ max

i

∑
j aij vj

vi
and the inequality with equality sign holds if and only if v is an eigenvector of A
respective to λ.
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B. Matrix Exponential Function

Here we summarize some facts about the matrix exponential that we used in Section
1.5. Particularlly, we are interested in its eigenvalues and eigenvectors.

Let A be a square n× n matrix. Define a matrix function on [0,∞) by

exp{uA} ,
∞∑
k=0

(uA)k

k!
. (B.1)

We will assume that A has n distinct eigenvalues λ1, . . . , λn, i.e. the Jordan canon-
ical form of A is of the form

D , diag({λi}).

This simplifying assumtion hepls us to clearly demonstrate the idea behind. How-
ever, note that all the results that will be stated hold also for general case. The
methods used for general case are similar, but considering the general Jordan canon-
ical form the notation becomes more technical. For fully rigorous treatment see [1].

Using the Jordan canonical form the matrix A can be decomposed to P DP−1

for some matrix P . Note that

A2 = P DP−1 P DP−1 = P D2 P−1.

So by induction we have Ak = P Dk P−1 for k ∈ N. Then the power series in B.1
can be expressed as

exp{uA} =
∞∑
k=0

1

k!
uk P Dk P−1

= P

(
∞∑
k=0

ukDk

k!

)
P−1

= P exp{uD}P−1,

where
exp{uD} , diag({euλi}).

This shows the existence of exp{uA}. As exp{uD} is the Jordan canonical form
of D, the eigenvalues of D are euλ1 , . . . , euλn . Moreover, if v is an eigenvector of A
corresponding to λi, then

exp{uA}v =
∞∑
k=0

ukAk v

k!
=
∞∑
k=0

uk λki v

k!
= eλi v.

Consequently, the eigenspace of A corresponding to λi is identical to the eigenspace
of exp{A} corresponding to eλi .
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C. A Matrix Result

Here is the technical Lemma that is used in the proof of the Proposition 1.15. The
idea behind the proof is just a direct use of Taylor expansion.

We start with the definition of a matrix norm that we will use.

Definition C.1. Let A be a square n×n matrix. Define the matrix operator norm
by

‖A‖ = max{‖Ax‖ : ‖x‖ ≤ 1},

where x ∈ Rn and ‖x‖ = max
i
|xi|.

For any non-zero vector x we have ‖A x
‖x‖‖ ≤ ‖A‖ and thus ‖Ax‖ ≤ ‖A‖ ‖x‖.

Employing this inequality we get

‖ABx‖ ≤ ‖A‖ ‖Bx‖ ≤ ‖A‖ ‖B‖ ‖x‖ ,

and consequently
‖AB‖ ≤ ‖A‖ ‖B‖ . (C.1)

Lemma C.2. Let A, B and C be square n × n matrices. Let entries of the main
diagonal of the matrix C be equal to 1, e.i. cii = 1. Then

lim
n→∞

[(
exp{ 1

n
A} · exp{ 1

n
B}
)
∗C

]n
= exp{(A + B) ∗C}.

Proof. 1) First we show that the exponential exp{ 1
n
A} can be well approximated

by I + 1
n
A, meaning that

exp{ 1
n
A} = I + 1

n
A +O

(
1
n2

)
, n −→∞. (C.2)

It is sufficient to show that H(t) = t−2(exp{At}− I −A t) converges to some finite
matrix as t goes to zero. Using L’ Hospital’s rule twice we get

dH(t)

d2 t
= 1

2
A2 exp{A t} −→ 1

2
A2, t −→ 0.

2) The relation (C.2) implies

exp{ 1
n
A} · exp{ 1

n
B} = I + 1

n
(A + B) +O

(
1
n2

)
, n −→∞. (C.3)

3) Because the main diagonal of the matrix C consists of ones, we have I ∗C = I.
Thus, using the relation (C.3) for n going to infinity(

exp{ 1
n
A} · exp{ 1

n
B}
)
∗C =

[
I + 1

n
(A + B) +O

(
1
n2

)]
∗C

= I + 1
n
E +O

(
1
n2

)
,

(C.4)
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where E = (A + B) ∗C.
4) Finally we show the convergence. Define sequence

Dn =
(

exp{ 1
n
A} · exp{ 1

n
B}
)
∗C − I + [ 1

n
[(A + B) ∗C]],

which is according to (C.4) O
(

1
n2

)
. Using the binomial theorem we get[(

exp{ 1
n
A} · exp{ 1

n
B}
)
∗C

]n
= [(I + 1

n
(A + B) ∗C) + Dn]n

=
[
I + 1

n
E
]n

+
n∑
k=1

(
n

k

)
Dk

n

(
I + 1

n
E
)n−k

.

We tend to show that the second term is negligible. Then using the triangle inequal-
ity and (C.1) we get∥∥∥∥∥

n∑
k=1

(
n

k

)
Dk

n

(
I + 1

n
E
)n−k∥∥∥∥∥ ≤

n∑
k=1

(
n

k

)
‖Dn‖k

(
‖I‖+ 1

n
‖E‖

)n−k
= ‖Dn‖

n−1∑
l=0

(
n− 1

l + 1

)
‖Dn‖l

(
1 + 1

n
‖E‖

)n−1−l

≤ n ‖Dn‖
n−1∑
l=0

(
n− 1

l

)
‖Dn‖l

(
1 + 1

n−1
‖E‖

)n−1−l

= (n ‖Dn‖) (1 + ‖Dn‖+ 1
n−1
‖E‖)n−1.

First factor converges to 0 as Dn is O( 1
n2 ). The second term converges to exp{‖E‖},

e.i. finite number. Thus the whole term converges to 0. We can conclude[(
exp{ 1

n
A} · exp{ 1

n
B}
)
∗C

]n
= [(I + 1

n
(A + B) ∗C)]n + o(1)

−→ exp{(A + B) ∗C}, n −→∞.
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D. Stochastic calculus

In this section we only introduce basic stochastic calculus tools that we use in Chap-
ter 2. These are Ito’s formula for computing the differential of a process and Girsanov
Theorem. The whole stochastic calculus is a complex mathematical theory while
deeper insight is out of the scope of this thesis. Readable but sufficiently rigorous
explanation of the topic can be found for instance in monograph [18].

Theorem D.1 (Ito’s Formula). Let f : R→ R be a twice continuously differentiable
function and let X = (Xt, t ≥ 0) be a real-valued continuous semimartingale. Then

f(Xt) = f(X0) +

∫ t

0

f ′(Xs)dXs +

∫ t

0

f ′′(Xs)d〈X,X〉s. (D.1)

We can reformulate the equation (D.1) using the differential notation in a following
way,

df(Xt) = f ′(Xt)dXt + f ′′(Xt)d〈X〉t. (D.2)

Here are the two applications of (D.2) that are used in the Chapter 2.

1. For f(x) = ln(x) we have f ′(x) = x−1, f ′′(x) = −x−2 and

d ln(Xt) =
dXt

Xt

− d〈X〉t
2X2

t

.

2. For f(x) = x−1 we have f ′(x) = −x−2 f ′′(x) = 2x−3 and

dX−1
t = −dXt

X2
t

+
d〈X〉t
X2
t

.

We say that the process G satisfies Novikov condition on [0, T ] if

E
[
exp

(1

2

∫ T

0

G2
s ds
)]

<∞. (D.3)

Theorem D.2 (Girsanov Theorem). Let (Ω,F , (Ft),P) be a filtrated probability
space satisfying usual conditions (UC). Let W be an (Ft)-martingale and let Gt

be an (Ft)-progressively measeruble process satisfying Novikov condition on every
interval [0, T ]. Put

X ,
∫ t

0

Gs dWs.

Define stochastic exponential E(X) by

E(X)t , exp{Xt − 1
2
〈X〉t}.
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Then for any fixed T > 0 there exist a measure QT such that

dQT

dP
|FT

= E(X)T .

Moreover
W̃t = Wt − 〈W,X〉t , 0 ≤ t ≤ T.

is a Brownian motion under the measure QT .
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