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Preface
In my Master’s Thesis I will focus on the problem of effective arithmetics on el-
liptic curves. What might seem negligible when computing with small numbers,
becomes an almost unsuperable setback when taking big numbers into account.
In practise, considering recent cryptographic elliptic curve standards built over
GF (p) with p a few hundred bits long, even a slight theoretical increase in comput-
ing efficiency might result in a great improvement in practical implementations.
However, like in many other fields, there is no universally applicable best solution
and one must carefully choose the one that fits best.

The history of elliptic curves began in 18th century, when Leonhard Euler
showed that it is possible to integrate algebraically the following equation

dx√
α+ βx+ γx2 + δx3 + ϵx4

+
dy√

α+ βy + γy2 + δy3 + ϵy4
= 0.

Followed by Abel, who himself added a vast amount of theory, Weierstrass and
other famous mathematicians, elliptic curves1 started to reveal themselves. Prob-
ably the single most famous exploit using elliptic curves was Wiles’ proof of Fer-
mat’s Last Theorem, in its final correct form published in October 1994 [34, 35].2
Nevertheless, from a recent cryptographer’s point of view, the most attention is
focused on curves’ group structure providing good background for various public-
key cryptosystems. Other important practical uses include primality proving [2]
and integer factorization [25], for instance.

In 1976, Diffie and Hellman [10] first introduced public-key cryptography.
A decade later, in 1985, ElGamal [14] described how to take advantage of the
discrete logarithm problem while constructing a public-key signature scheme.
His approach was in a slightly different way implemented in Digital Signature
Algorithm, part of the US Digital Signature Standard [27].

At about the same time as ElGamal, Koblitz [24] and Miller [26] indepen-
dently proposed taking advantage of discrete logarithm problem in the group of
points of an elliptic curve defined over a finite field. The first step towards what
we nowadays know as Elliptic Curve Digital Signature Algorithm (ECDSA) was
taken in 1992 by S. Vanstone [33] in a public comment on NIST’s DSA proposal.
Nevertheless, it had taken several more years before it became a standard: it
was accepted as ISO 14888-3 in 1998, as ANSI X9.62 in 1999 and both IEEE
1363-2000 and FIPS 186-2 in 2000 [20].

The primary advantage of ECDSA over DSA is the absence of a subexponential-
time algorithm that would find discrete logarithms in groups on elliptic curves.
Therefore, to maintain the same level of security, it is possible to use smaller
key lenghts, which saves bandwidth and renders implementations more effective.
These features particularly appeal in cases when the environment is limited in
memory or computing power, such as smart cards, PC cards or wireless devices.

To be more precise, security level of 80 bits (meaning that the potential at-
tacker would have to make at least 280 signature generations to find the secret

1In the early era referred to rather as elliptic functions.
2For a brief look at the astonishing history of solving this well-known mathematical problem,

see e.g. [22].
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key) requires a DSA public key to be at least 1024 bits long, whereas ECDSA
public key comprises only 160 bits.

These apparent advantages of ECSDA over DSA are balanced with a rela-
tively more strenuous implementation, which might be the reason why DSA still
prevails. To construct an elliptic curve cryptosystem, one must take some basic
steps:

(i) select an underlying field Fq,

(ii) select a representation of elements of Fq,

(iii) implement arithmetics in Fq,

(iv) select a suitable elliptic curve E over Fq and

(v) implement the elliptic curve operations in E.

This thesis is focused solely on the fifth point, which indeed might be a good
indication of how much theory there is. For instance, as of March, 2012, the
Explicit-Formulas Database [5] contains 581 explicit formulas!
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1. Elliptic curves in general
The first goal must be to establish a well-based definition of elliptic curves. To
achieve this, we must take a number of steps.

1.1 Affine and projective varieties
By K we will always mean a perfect field, i.e. a field, in which Frobenius endo-
morphism is an automorphism. Its algebraic closure will be denoted as K̄ and
field of constants as K̃ (i.e. K̃ = {x ∈ K : x is algebraic overK}).

Definition 1.1.1. The affine n-space over a field K is An = An(K̄) = K̄n ={
(x1, . . . , xn) : xi ∈ K̄ for all 1 ≤ i ≤ n

}
. The set of K-rational points of An is

An(K) = {(x1, . . . , xn) : xi ∈ K for all 1 ≤ i ≤ n}.

Definition 1.1.2. Let K̄[X] = K̄[X1, . . . , Xn] be a polynomial ring in n vari-
ables and let I ⊂ K̄[X] be an ideal. An (affine) algebraic set is any set of the
form V (I) = {P ∈ An : f(P ) = 0 for all f ∈ I}. If V is an algebraic set, the ideal
of V is given by I(V ) =

{
f ∈ K̄[X] : f(P ) = 0 for all P ∈ V

}
.

An algebraic set V is defined over K (we denote this by V/K), if its ideal
I(V ) can be generated by polynomials in K[X].

Finally, an algebraic set V is called an (affine) algebraic variety if I(V ) is a
prime ideal in K̄[X].

The next thing to do is to define the dimension of V .

Definition 1.1.3. Let V be a variety, then the affine coordinate ring of V is
defined by

K̄[V ] =
K̄[X]

I(V )
.

Its quotient field, denoted K̄(V ), is called the function field of V and its tran-
scendence degree over K̄ is called the dimension of V .

Remark 1.1.4. For our purposes we need to investigate only a limited number of
cases. In general, if V ⊂ An is given by a single non-constant irreducible poly-
nomial equation f(X1, . . . , Xn) = 0, then dim(V ) = n − 1. The proof is simple:
in order to V be a variety, I(V ) must be a prime ideal, which in (multivariate)
polynomial rings is equivalent to f(X1, . . . , Xn) being irreducible. At the same
time, it constitutes an equation of n variables and 0, therefore the transcendence
degree over K̄ is n− 1.

We now switch from affine varieties to projective ones, so that we can finalize
the definition of a curve.

Definition 1.1.5. The projective n-space over K (denoted Pn or Pn(K̄)) is the
set of all (n + 1)-tuples (x0, . . . , xn) ∈ An+1, such that not all xi = 0, modulo
the equivalence relation given by (x0, . . . , xn) ∼ (y0, . . . , yn) ⇔ ∃λ ∈ K̄∗ such
that xi = λyi for all 0 ≤ i ≤ n. An equivalence class {(λx0, . . . , λxn)} is de-
noted by [x0 : . . . : xn] and x0, . . . , xn are called homogeneous coordinates for
the corresponding point in Pn. The set of K-rational points in Pn is the set
Pn(K) = {[x0, . . . , xn] ∈ Pn : all xi ∈ K}.
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Definition 1.1.6. A polynomial f ∈ K̄[X] = K̄[X0, . . . , Xn] is homogeneous of
degree d, if

f(λX0, . . . , λXn) = λdf(X0, . . . , Xn)

for all λ ∈ K̄. An ideal I ⊂ K̄[X] is homogeneous if it is generated by homoge-
neous polynomials.

Although it is not well-defined to evaluate a general homogeneous polynomial
f at any point P ∈ Pn (this would be possible if and only if d = 0), it does make
sense to ask whether f vanishes at a certain projective point. From this question
a definition similar to affine algebraic variety arises.

Definition 1.1.7 (Projective Variety). Let I ⊂ K̄[X0, . . . , Xn] be a homogene-
nous ideal. A (projective) algebraic set is any set of the form

V (I) = {P ∈ Pn : f(P ) = 0 for all homogeneous f ∈ I} .

If V is a projective algebraic set, the (homogeneous) ideal of V , denoted I(V ), is
the ideal in K̄[X] generated by{

f ∈ K̄[X] : f is homogeneous and f(P ) = 0 for all P ∈ V
}
.

Such a V is defined over K, denoted by V/K, if its ideal I(V ) can be generated by
homogeneous polynomials in K[X]. Finally, a projective algebraic set V is called
a (projective) variety if its homogeneous ideal I(V ) is a prime ideal in K̄[X].

Remark 1.1.8. We shall connect affine and projective varieties somehow, so that
we are able to define important properties on projective varieties by their affine
counterparts. To do so, we must at first explain the behaviour of projective
points. Let

ϕi : An → Pn

(y1, . . . , yn)→ (y1, . . . , yi−1, 1, yy+1, . . . , yn)

and let Ui = {[x0 : . . . : xn] ∈ Pn : xi ̸= 0}, then (since xi ̸= 0, all quantities xj/xi

are well-defined) there is a natural bijection

ϕ−1
i : Ui → An

[x0 : . . . : xn]→
(
x0

xi

,
x1

xi

, · · · , xi−1

xi

,
xi+1

xi

, · · · , xn

xi

)
.

Let V be a projective algebraic set with a homogeneous ideal I(V ) ⊂ K̄[X].
The sets U0, . . . , Un cover all Pn, so V ∩U0, . . . , V ∩Un cover the whole V . At the
same time, fix i and let V ∩An = ϕ−1

i (V ∩Ui), then V ∩An is an affine algebraic
set with ideal I(V ∩ An) ⊂ K̄[Y ] given by

I(V ∩ An) = {f(Y1, . . . , Yi−1, 1, Yi, . . . , Yn) : f(X0, . . . , Xn) ∈ I(V )} .

It follows that any subset V ∩ U0, . . . , V ∩ Un is via the appropriate ϕ−1
i an

affine variety. The replacement of f(X0, . . . , Xn) by f(Y0, . . . , Yi−1, 1, Yi, . . . , Yn)
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is called the dehomogenization with respect to Xi. Of course, a backward process
exists as well: for any f(Y ) ∈ K̄[Y ] let

f ∗(X0, . . . , Xn) = Xd
i · f

(
X0

Xi

,
X1

Xi

, · · · , Xi−1

Xi

,
Xi+1

Xi

, · · · , Xn

Xi

)
,

where d = deg f is the smallest integer for which f ∗ is a polynomial. We call f ∗

the homogenization of f with respect to Xi.

Definition 1.1.9. Let V be an affine algebraic set with ideal I(V ). The projective
closure of V , denoted V̄ , is generated by {f ∗(X) : f ∈ I(V )}.

Now we have all the tools necessary to state and prove the relationship between
both affine and projective varieties.

Proposition 1.1.10. (i) Let V be an affine variety. Then V̄ is a projective
variety and V = V̄ ∩ An.

(ii) Let V be a projective variety. Then V ∩ An is an affine variety and either
V ∩ An = ∅ or V = V ∩ An.

(iii) If an affine (or projective, respectively) variety V is defined over K, then
K̄ (or V ∩ An, respectively) is also defined over K.

Proof. The third point is clear from the definitions of projective closure and affine
(respectively, projective) algebraic sets. The first two points follow from [16, I.2.3,
p. 11]: V is covered by open sets V ∩ Ui, 0 ≤ i ≤ n, which are homeomorphic to
affine varieties via the homogenization of f with respect to Xi (which is exactly
the process how to get the projective closure of an affine variety).

With proposition 1.1.10 in hand, we are able to define the crucial properties
of projective varieties in terms of the affine subvariety V ∩ An. Recall that we
identify An with Ui ⊂ Pn via ϕ−1

i .

Definition 1.1.11. Let V/K be a projective variety and choose An ⊂ Pn so that
V ∩ An ̸= ∅. The dimension of V is the dimension of V ∩ An. The function field
of V , denoted K(V ), is the function field of V ∩ An and similarly for the K̄(V ).

To finish this section, we present a definition which will cast some light on
future terms.

Definition 1.1.12. A curve is a projective variety of dimension one.

It is important to notice that proposition 1.1.10 can be interpreted as follows:
any affine variety can be identified with a unique projective variety. Therefore it
is possible to abuse notation a little bit and write affine or homogeneous equations
as desired. For example, saying “let V be a projective variety” and providing some
non-homogeneous equations only means that V is the projective closure of the
indicated affine variety W . All points of V \W are called the points at infinity
on V .

6



1.2 Algebraic function field
The goal of this section would be to establish Weierstrass equation as a defining
equation of algebraic function fields. We present the reader with a couple of the
most important definitions of which we will later take advantage.

Definition 1.2.1. Let K ⊆ F be two fields such that ∃x ∈ F , x transcendental
over K and [F : K(x)] < ∞. Then (K,F ) is called an algebraic function field.
Instead of (K,F ) we usually write F/K or F alone.

Definition 1.2.2. A place P is any set, for which there exists a valuation ring
O ∈ F/K such that P = O \O∗. The corresponding O is denoted by OP and the
set of all places in F/K by P = PF/K .

Definition 1.2.3. Let F/K be an algebraic function field such that every x ∈
F \K is transcendent over K (i.e. K = K̃). Let P = PF/K be the basis of a free
abelian group. Then this group is denoted by Div(F/K), its elements are called
divisors and are of the form

∑
P∈P aPP , aP ∈ Z and aP ̸= 0 only in finitely many

cases.

Any sum of the form
∑

P∈P vP (x)P , x ∈ F ∗, is a divisor (vP (x) ̸= 0 only for
finitely many P ∈ P, cf. [16, II.6.1, p. 131]). This divisor is called principle and
denoted by (x).

Definition 1.2.4. Let A ∈ Div(F/K). The Riemann-Roch space L(A) is defined
as {x ∈ F ∗ : (x) ≥ A} ∪ {0}. Its dimension is denoted by l(A).

By Riemann theorem we know that there exists γ > 0 such that ∀A ∈
Div(F/K): deg(A) − l(A) < γ. This is the basis for a definition crucial for
elliptic curves:

Definition 1.2.5. The smallest γ ≥ 0 fulfilling deg(A) − l(A) < γ for all A ∈
Div(F/K) is called the genus and denoted by g.

Proposition 1.2.6 (Riemann-Roch corollary). Let F/K be an algebraic function
field of genus g and let K = K̃. If for any A ∈ Div(F/K): l(A) ≥ 2g − 1, then
l(A) = deg(A) + g − 1.

The following definition brings us at last close to definition of elliptic curves.

Definition 1.2.7. Let K be a field. The long Weierstrass equation is an equation
of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where ai ∈ K, 1 ≤ i ≤ 6, i ̸= 5.

Remark 1.2.8. Notice that, by defining g(x, y) = y2 + a1xy + a3y and f(x) =
x3 + a2x

2 + a4x + a6 the Weierstrass equation can be rewritten as w(x, y) =
g(x, y)− f(x). Henceforward, we shall only use w(x, y) as an abbreviation for an
arbitrary Weierstrass equation.

Our goal is to prove that (under certain circumstances) this is an equation
defining an elliptic curve. To do so, we must prove that for any function field
F/K there exists a Weierstrass equation and vice versa.
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Figure 1.1: A gallery of Weierstrass curves. Left: y2 = x3 − x, center: y2 =
x3 − x+ 1, right: y2 = x3. Note that in the last case the curve is not smooth at
(0, 0), making a cusp. See section 1.3 for further explanation.

Proposition 1.2.9. Let F/K be an algebraic function field, let K = K̃ and
P = PF/K. Let g = 1 and P ∈ P, deg(P ) = 1. Then there exist x, y ∈ F such
that F = K(x, y), x ∈ L(2P ) \ L(P ), y ∈ L(3P ) \ L(2P ), [F : K(x)] = 2, [F :
K(y)] = 3. Moreover, there exist ai ∈ K, i ∈ {1, 2, 3, 4, 6}, ai being coefficents of
the long Weierstrass equation.

Proof. As follows from Riemann-Roch corollary, L(0) = K, therefore l(0) = 1.
On the other hand, for k ≥ 1: l(kP ) ≥ 1 = 2g − 1 and again by Riemann-Roch
corollary we get that l(kP ) = deg (kP ) = k. Hence, it is possible to choose
arbitrarily some x ∈ L(2P ) \ L(P ) and y ∈ L(3P ) \ L(2P ). Moreover, the
condition x ∈ L(2P ) \ L(P ) means that (x)− = 2P (and similarly (y)− = 3P ).
We have vP (x) = −2, vP (y) = −3, vP (x2) = −4, vP (xy) = −5 and vP (x

3) =
vP (y

2) = −6.
Let Z = {1, x, y, x2, xy, x3, y2}, then for any divisor Q ̸= P : vQ(z) ≥ 0 for

any z ∈ Z. In other words, Z ⊆ L(6P ). As has already been proven, l(6P ) = 6,
therefore there exist u1, u2, u3 ∈ K and v1, v2, v3, v4 ∈ K such that

u1y
2 + u2xy + u3y = v1x

3 + v2x
2 + v3x+ v4 (1.1)

with at least some ui or vi non-zero. Both Z \ {x3} and Z \ {y2} are basis of
L(6P ) (there is always exactly one element of L(iP ) \ L((i − 1)P ), 1 ≤ i ≤ 6).
It follows that both u1 ̸= 0 and v1 ̸= 0. Multiplying (1.1) by u3

1v
2
1 yields

u4
1v

2
1y

2 + u3
1v

2
1u2xy + u3

1v
2
1u3y = u3

1v
3
1x

3 + u3
1v

2
1v2x

2 + u3
1v

2
1v3x+ u3

1v
2
1v4.

Substitution y′ = u−2
1 v−1

1 y and x′ = u−1
1 v−1

1 x leads to

(y′)2 + u2x
′y′ + u1v1u3y

′ = (x′)3 + u1v2(x
′)2 + u2

1v1v3x
′ + u3

1v
2
1v4,

which clearly shows how to define ai.
The last thing to do is to prove F = K(x, y). At first, since [F : K(z)] =

n · deg(P ) whenever (z)− = nP , we have that [F : K(x)] = 2 and [F : K(y)] = 3.
Now 2 = [F : K(x)] = [F : K(x, y)][K(x, y) : K(x)], so [F : K(x, y)] divides
2. Similarly for y, [F : K(x, y)] divides 3. The only possible option is that
[F : K(x, y)] = 1 and F = K(x, y) as desired.

To reverse the whole situation and see whether any Weierstrass equation de-
fines an algebraic function field, we present the reader with the following propo-
sition.
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Proposition 1.2.10. Let F/K be a field extension such that F = K(x, y), x and
y transcendent over K and Weierstrass equation holds: w(x, y) = 0. Then F/K
is an algebraic function field with K̃ = K, [F : K(x)] = 2, [F : K(y)] = 3. Any
polynomial u ∈ K[x1, x2] such that u(x, y) = 0 is a multiple of w.

Proof. w(x, y) = 0 provides an alternative approach to F : it says that x ∈ F is
algebraic over K(y) and therefore it is possible to rewrite F as K(x, y) = K(y)[x].
Minimal polynomial of x over K(y) must divide w(x, y), so degmx|K(y) = [F :
K(y)] divides degx w(x, y) = 3. Similarly we show that [F : K(x)] divides 2. To
prove that they are equal, we must elliminate the cases F = K(x) and F = K(y).

Let F = K(x) and let v = v∞ be a valuation defined by v(a/b) = deg b−deg a
for a, b ∈ K[x] non-zero.1 We have g(x, y) = f(x) and v(f(x)) = −3. Let
v(y) ≥ −1, then v(g(x, y)) ≥ −2; in case v(y) ≤ −2, v(g(x, y)) ≤ −4. Both
assumptions contradict v(f(x)) = −3, therefore F ̸= K(x) and [F : K(x)] = 2.

We apply the same process on the case F = K(y). Again we take v = v∞, this
time with y being the variable (i.e. v(y) = −1). If v(x) ≥ 0, then v(f(x)) ≥ 0,
but v(g(x, y)) = −2. Therefore v(x) ≤ −1 and v(f(x)) = 3v(x). At the same
time, v(g(x, y)) ≥ −1 + v(x). But since −3r < −1 − r for any r ≥ 1, both
conditions cannot be satisfied simultaneously and again [F : K(y)] = 3.

Now let K̃ = {x ∈ F : x algebraic overK}. Then x, y ∈ F are transcendent
over K̃, hence F = K̃(x, y) and by the first part of this proof [F : K̃(x)] = 2,
[F : K̃(y)] = 3. Take e.g. [F : K(x)], it equals 2 = [F : K(x)] = [F :
K̃(x)][K̃(x) : K(x)] = [F : K̃(x)][K̃ : K] (algebraic and transcendent extensions
have the same degree) and because F ̸= K̃(x), it follows that K̃ = K.

Let u(x, y) = 0 for some u ∈ K[x1, x2]. Then u can be expressed as u = aw+t,
where degy(t) ≤ 1 (every occurence of y in power greater than 2 can be “hidden”
in aw) and t(x, y) = 0. If degy(t) = 0, t(x) = 0 and x would be algebraic over K,
which is a contradiction. Therefore degy(t) = 1, say t(x, y) = t1(x)y + t0(x). If
t1(x) = 0, again x would be algebraic over K. So t1(x) ̸= 0 and y = −t0(x)/t1(x),
y ∈ K(x) and F = K(x), which is a contradiction. It follows that t = 0 and u is
a multiple of w.

To connect this section with the previous one, we shall prove that w(x, y) is
irreducible as a bivariate polynomial.

Proposition 1.2.11. Let F/K be a field extension, F = K(x, y), x, y transcen-
dent over K and w(x, y) = 0. Then w(x1, x2) ∈ K[x1, x2] is irreducible.

Proof. We denote K[x, y] ⊆ F the subring of F and K[x1, x2] the ring of bivariate
polynomials with coefficients in K. Moreover, let K[f ] = K[x1, x2]/(f) for some
f ∈ K[x1, x2]. If f is irreducible, the quotient field of K[f ] is called a function
field and denoted by K(f). Let

φ : K[x1, x2]→ K[x, y]

x1 → x

x2 → y

∀s ∈ K : s→ s

1This is the valuation of algebraic function field F/K of genus 0, connected to P∞.
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be a ring homomorphism, which is clearly surjective. For any u ∈ K[x1, x2],
φ(u) = 0 if and only if u(x, y) = 0 in F. By proposition 1.2.10 u(x, y) = 0 if
and only if u is a multiple of w, or in other words, u ∈ (w). It follows that φ is
injective as well and indeed an isomorphism.

Hence K[w] ∼= K[x, y]. The quotient field of K[x, y] is K(x, y) = F , therefore
K(w) ∼= F . To complete the proof, it suffices to notice that K[x1, x2]/(w) ∼=
K[x, y] ⊆ F is an integral domain and that factorization by ideals renders an
integral domain if and only if the ideal is prime, which in case of polynomials
occurs of and only if the polynomial (here w) is irreducible.

Remark 1.2.12. Let C be the set of solutions of w(x, y) = 0 in A2. We would like
to prove that C is a curve. Firstly, as we have just seen, w(x, y) is irreducible,
hence the ideal I(C) is prime and C is by definition an affine variety. In view of
remark 1.1.4, w(x, y) = 0 ensures that dimC = 1. Proposition 1.1.10 (i) states
that dimensions of the corresponding affine and projective varieties are the same.
To sum up, with a slight abuse of notation (see above), C fulfills the conditions
of definition 1.1.12 and is a curve. We call it a Weierstrass curve.

1.3 Singularity of Weierstrass curves
We now know that every algebraic function field of genus one2 might be obtained
as a set of solutions of a Weierstrass equation w(x, y) = 0. Conversely, every
Weierstrass equation w(x, y) provides an algebraic function field. Unfortunately,
some cases are not favourable and do not generate function field of genus one. On
the other hand, the genus is not an arbitrary one, it is very limited. But before
we prove this limitation, we shall need a lemma.

Lemma 1.3.1. Let F = K(x, y), x, y transcendental over K and w(x, y) = 0.
Then for every Q ∈ PF/K either vQ(x) ≥ 0 and vQ(y) ≥ 0, or vQ(x) < 0 and
vQ(y) < 0. Such a place P = P∞ ∈ PF/K exists only one, deg(P ) = 1, (x)− = 2P ,
(y)− = 3P .

Proof. As in remark 1.2.8 we express w(x, y) as g(x, y)− f(x). Let g = g(x, y) ∈
F and f = f(x) ∈ F . For Q ∈ PF/K let vQ(x) ≥ 0 and vQ(y) < 0. Then
vQ(f) ≥ 0 > 2vQ(y) = vQ(g). If vQ(x) < 0 and vQ(y) ≥ 0, v(f) = 3vQ(x) <
vQ(x) ≤ vQ(g). Both assumptions lead to a contradiction, hence both valuations
must be either negative or non-negative at the same time. Let P denote the place
for which vP (x) < 0 and vP (y) < 0. If vP (x) ≤ vP (y), then vP (f) = 3vP (x) <
vP (x) + vP (y) ≤ vP (g). We get that vP (x) > vP (y).

Moreover, vP (f) = 3vP (x) = 2vP (y) = vP (g), so vP (x) is a multiple of 2 and
vP (y) a multiple of 3. We know that 2 = [F : K(x)] = deg((x)−), where (x)− =∑

Q∈PF/K
aQQ. If aP ̸= 0, then aP = −vP (x) < 0 and 3vP (x) = 2vP (y) and aP is

even. This is only possible if aQ = 0 for every Q ̸= P (2 =
∑

aQ deg(Q)). As a
consequence we get deg(P ) = 1 and (x)− = 2P . Similarly we get (y)− = 3P and
the proof is complete.

Proposition 1.3.2. Let F = K(x, y), x, y transcendental over K and w(x, y) =
0. Then F/K is an algebraic function field of genus 0 or 1.

2I.e. an elliptic function field, see later.
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Proof. Every k ≥ 2 can be expressed as k = 2i + 3j, i, j ≥ 0. Therefore, with
help of the previous lemma (xiyj)− = i(x)− + j(y)− = kP . This means that
L(kP ) \ L((k − 1)P ) ̸= ∅ for every k ≥ 2, hence l(kP ) ≥ k. By Riemann-Roch
corollary (1.2.6) g − 1 = deg(kP ) − l(kP ) ≤ 0 for k sufficiently big. It follows
that g ≤ 1 (and g ≥ 0 by its definition).

Definition 1.3.3. Let F/K be an algebraic function field given by a Weierstrass
equation. We say F/K is singular if and only if g = 0.

So far we have been working with general Weierstrass equation. It is however
possible to alter coefficients and still maintain the function field F/K.

Proposition 1.3.4. Let F/K be given by w(x, y) = 0. Let u ∈ F ∗ and s, t ∈
K such that x = u2x̄ + r and y = u3ȳ + u2sx̄ + t for some x̄, ȳ. Then there
exists a Weierstrass equation w̄ such that w̄(x̄, ȳ) = 0 gives F/K as well and its
coefficients fulfill:

uā1 = a1 + 2s,

u2ā2 = a2 − a1s− s2 + 3r,

u3ā3 = a3 + a1r + 2t,

u4ā4 = a4 − a3s+ 2a2r − a1rs− a1t− 2st+ 3r2,

u6ā6 = a6 + a4r + a2r
2 + r3 − a3t− a1rt− t2.

Proof. The place P = P∞(w) is uniquely determined by w(x, y) = 0 (lemma
1.3.1). Let P = P∞(w̄) for w̄(x̄, ȳ) = 0. Again by lemma 1.3.1, x, x̄ ∈ L(2P ) \
L(P ) and y, ȳ ∈ L(3P ) \ L(2P ). These are precisely the conditions in which
we proved existence of Weierstrass equation in the first place. Therefore such w̄
exists, let āi be its coefficients, 1 ≤ i ≤ 6, i ̸= 5.

Basis of L(2P ) is {1, x̄} and of L(3P ) correspondingly {1, x̄, ȳ}. Hence, x =
ux̄ + r and y = vȳ + sx̄ + t for some r, s, t ∈ K and u, v ∈ K∗. Substitution
into w(x, y) = 0 yields w(ux̄ + r, vȳ + sx̄ + t) = 0. It must be a multiple of w̄
and because their degrees equal, the multiplication coefficient must be linear and
both u3 and v2. Set γ = v/u, then since u3 = v2, γ2 = u and γ3 = v. Let ū = γ
and s̄ = sγ−2, we get that x = ū2x̄ + r and y = ū3ȳ + ū2s̄x̄ + t. Uniqueness of
such a transformation follows from the uniqueness of expression of x and y to a
basis of L(2P ) and L(3P ).

We have proven that w̄(x̄, ȳ) = u−6w(u2x̄+ r, u3ȳ + u2sx̄+ t) and the rest of
proof is only a straightforward calculation.

It is easy to that if w̄ can be obtained from w, the process works the other way
round as well. Therefore we call two Weierstrass equations w and w̄ equivalent,
if one can be obtained from the other. The transformation itself is called an
admissible change of variables. Before we use it to transform long Weierstrass
equation into simpler forms, we define a couple of quantities.

11



Definition 1.3.5. Let w(x, y) = 0 be a Weierstrass equation. Define

b2 = a21 + 4a2,

b4 = 2a4 + a1a3,

b6 = a23 + 4a6,

b8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24,

∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6,

c4 = b22 − 24b4,

c6 = −b32 + 36b2b4 − 216b6,

j =
c34
∆
.

Furthermore, ∆ is called the discriminant and j the j-invariant.

Remark 1.3.6. It does not require much work to verify the following equations:

4b8 = b2b6 − b24 and 123∆ = c34 − c26.

What is more important, is the calculation of these quantities after an admissible
change of variables. It is not difficult at all, it is rather tedious substitution of
ai’s by āi’s according to proposition 1.3.4. We shall only state the results:

u2b̄2 = b2 + 12r,

u4b̄4 = b4 + rb2 + 6r2,

u6b̄6 = b6 + 2rb4 + r2b2 + 4r3,

u8b̄8 = b8 + 3rb6 + 3r2b4 + r3b2 + 3r4,

u4c̄4 = c4,

u6c̄6 = c6,

u12∆̄ = ∆,

j̄ = j.

As we can see, j-invariant fully deserves its name: two equivalent Weierstrass
equations have the same j-invariant. Moreover, over K̄ even the converse is true
[30, III.1.4 (b)].

Using admissible change of variables it is possible to transform long Weier-
strass equation into shorter ones depending on the field characteristics. We omit
the case char(K) = 3.

Proposition 1.3.7. Let C/K be a curve given by a long Weierstrass equation.
Then there exist u ∈ K∗ and r, s, t ∈ K that the substitution

x = u2x̄+ r y = u3ȳ + u2sx̄+ t

leads to a so-called short Weierstrass equation of the form:

(i) y2 = x3 + a4x+ a6 if char(K) ̸= 2, 3,

(ii) y2 + a1xy = x3 + a2x
2 + a6 or y2 + a3y = x3 + a4x+ a6 if char(K) = 2.

12



Proof. Let char(K) ̸= 2, 3. At first set

x = x̄ y = ȳ − (a1/s)x̄− a3/2,

that ensures ā1 = ā3 = 0 and transforms Weierstrass equation into ȳ2 = x̄3 +
ā2x̄

2 + x̄4x̄+ ā6. Now set

x̂ = x̄− ā2/3 ŷ = ȳ,

then we obtain â2 = 0 as desired.
When char(K) = 2 and a1 ̸= 0, the substitution

x = a21x̄+ a3/a1 y = a31ȳ + (a21a4 + a23)/a
3
1.

leads to the form y2 + xy = x3 + a2x
2 + a6. On the other hand, if a1 = 0, then

the form y2 + a3y = x3 + a4x+ a6 can be achieved by setting

x = x̄+ a2 y = ȳ.

Remark 1.3.8. For further use, it is practical to express ∆ in terms of every short
Weierstrass equation: again straightforward calculations lead to

• y2 = x3 + a4x+ a6 implies ∆ = −16(4a34 + 27a26),

• y2 + xy = x3 + a2x
2 + a6 implies ∆ = a6,

• y2 + a3y = x3 + a4x+ a6 implies ∆ = a43.

Our goal will now be to prove that two equivalent Weierstrass equations define
the same F/K, establish the notion of singularity on a curve and connect it with
genus.

Definition 1.3.9. Let C be a plain algebraic curve defined by the polynomial
equation h(x, y) = 0. Then P = (x0, y0) ∈ C is a singular point of C if and only
if

∂h

∂x
(x0, y0) = 0 and

∂h

∂y
(x0, y0) = 0.

C is non-singular (smooth) if and only if it has no singular points.

The following proposition offers much more user-friendly tool to determine
whether a curve is singular or not.

Proposition 1.3.10. [30, III.1.4 (a)] Let C be a curve given by a Weierstrass
equation w(x, y) = 0. Then C is non-singular if and only if ∆ ̸= 0.

Proof. At first we show that the point at infinity is never singular. To achieve
this, we look at the curve in P2 with homogeneous equation

W (X,Y, Z) = Y 2Z + a1XY Z + a3Y Z2 −X3 − a2X
2Z − a4XZ2 − a6Z

3 = 0
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and at the point O = [0, 1, 0]. Since ∂W/∂Z(O) = 1 ̸= 0, by definition is O not
a singular point of C. Next suppose that C is singular at P0 = (x0, y0). The
substitution

x = x̄+ x0 y = ȳ + y0

leaves both ∆ and c4 invariant (u = 1, hence u−4c4 = c4 and u−12∆ = ∆), so we
may assume that C is singular at (0, 0). Then

a6 = w(0, 0) = 0 a4 = (∂w/∂x)(0, 0) = 0 a3 = (∂w/∂y)(0, 0) = 0,

so C can be expressed as

C : w(x, y) = y2 + a1xy − a2x
2 − x3 = 0.

A straightforward computation of ∆ brings the desired result: b2 = a21 + 4a2,
b4 = 0, b6 = 0, b8 = 0, i.e. ∆ = 0.

Conversely, we shall prove that if C is smooth, then ∆ ̸= 0. At first we assume
that char(K) ̸= 2. Then we have a Weierstrass equation

C : y2 = 4x3 + b2x
2 + 2b4x+ b6,

(the substitution being ȳ = 1/2(y − a1x − a3)), hence, C is singular if and only
if there is a point (x0, y0) ∈ C satisfying

2y0 = 12x2
0 + 2b2x0 + 2b4 = 0.

We see that any such point must be of the form (x0, 0). Substituting it into the
Weierstrass equation we get that x0 must be a double root of 4x3+ b2x

2+2b4x+
b6 = 0. This cubic polynomial has a double root if and only if its discriminant
(which is equal to 16∆) vanishes, which completes the proof.

Now let char(K) = 2. We want to prove that if ∆ = 0, the curve is singular.
By proposition 1.3.7, the equation can be transformed into one of the two simpler
forms. At first, let us assume w(x, y) = y2 + xy + x3 + a2x

2 + a6. From remark
1.3.8 we know that in this case ∆ = a6. By assumption, ∆ = 0, hence a6 = 0.
Partial derivation yields

∂w

∂y
(x, y) = x

∂w

∂x
(x, y) = y + x2

so for both partial derivations to be zero the point (0, 0) must be on the curve.
But since a6 = 0, (0, 0) ∈ C and C is singular. The second short Weierstrass
equation y2 + a3y = x3 + a4x + a6 implies ∆ = a43, therefore our goal is to show
that if a3 = 0, the curve is singular. Again we compute

∂w

∂y
(x, y) = a3

∂w

∂x
(x, y) = x2 + a4

and since a3 = 0, the x-coordinate of a potential singular point (x0, y0) shall
satisfy x2

0 = a4. Let it be this way, then y20 = x3
0 + x2

0x0 + a6 = a6, which has
a solution as well. We have proved that (x0, y0) is a singular point on C and
therefore C is singular.

To restate all the aforementioned, we present this corollary.
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Corollary 1.3.11. Let C be a curve given by a Weierstrass equation, char(K) ̸=
3. Then C is equivalent to one of the following equations:

• if char(K) ̸= 2, then C is equivalent to C̄ given by y2 = x3 + a4x + a6. C̄
is singular if and only if 4a34 + 27a26 = 0,

• if char(K) = 2 and a1 ̸= 0, C is equivalent to C̄ given by y2 + xy =
x3 + a2x

2 + a6. C̄ is singular if and only if a6 = 0.

• if char(K) = 2 and a1 = 0, C is equivalent to C̄ given by y2 + a3y =
x3 + a4x+ a6. C̄ is singular if and only if a3 = 0.

Notions of singularity of a curve and singularity of an algebraic function field
are closely related, or in better words, are the same.

Proposition 1.3.12. Let C be the curve given by a Weierstrass equation w(x, y) =
0. Let F/K be the algebraic function field given by the same w(x, y) = 0 (i.e.
F ∼= K(w)) with genus g. Then C is singular if and only if g = 0.

Proof. According to [30, Section III] or [11], the conditions in corollary 1.3.11 are
exactly those for which g = 0.

The previous proposition at last allows for a well-based definition of an elliptic
curve.

Definition 1.3.13 (Elliptic Curve). An elliptic curve E is a smooth algebraic
curve of genus one, on which there is a specified point O.

From the definition we immediately see that every elliptic curve can be ex-
pressed as a non-singular plane cubic; conversely, every smooth Weierstrass plane
cubic curve is an elliptic curve. Also it is possible to say that E defines an alge-
braic function field of genus one, we call it an elliptic function field and denote it
by E/K.

1.4 Group Law
In this section, the ultimate target is to define group structure on an elliptic curve.
We will prove that such a group exists and is unique. Moreover, we will state
exact algorithms to perform group operations and present a graphical explanation
of the whole process.

There are two approaches to this problem. The first one brings the definition
out of blue and then requires to perform a vast number of formula validation to
prove correctness. The other one takes yet another detour to mathematical back-
ground, but then without tedious calculations allows for a well-based definition
as well as deep insight into the matter. This is the one we choose.

We shall start by the following lemma.

Lemma 1.4.1. Let F/K be an algebraic function field, P ∈ PF/K and let E ⊆ F
be fields such that F is an algebraic extension of E. Then E ⊆ OP can not be
true.
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Proof. To achieve a contradiction, let us suppose that the statement is true.
Therefore vP (c) ≥ 0 for any c ∈ E. Let z ∈ F be such that vP (z) < 0. Then
vP (cz

i) ≥ ivP (z) for any c ∈ E and i ≥ 0. Since z is algebraic over E, zn =∑
0≤i<n ciz

i for some n ≥ 2 and ci ∈ E. For every i < n, vP (cizi) ≥ (n−1)vP (z) >
nvP (z) = vP (z

n), which is a contradiction.

Proposition 1.4.2. Let P ∈ PF/K and x ∈ F be transcendental over K. If
vP (x) ≥ 0, there exist a unique monic irreducible polynomial a ∈ K[x] such that
(a) = P ∩K[x]. If deg(a) > 1, then deg(P ) > 1.

Proof. Since vP (x) ≥ 0, it follows that vP (b) ≥ 0 for every b ∈ K[x]. Moreover,
P ∩K[x] is a prime ideal in K[x] (P is a prime ideal in OP ). If P ∩K[x] = 0, then
vP (b) = 0 for every non-zero b ∈ K[x] and hence vP (c) = 0 for every c ∈ K∗(x).
This is only possible if K(x) ⊆ OP , but this is forbidden by the previous lemma.
We have proven that P ∩K[x] = (a) for some irreducible a ∈ K[x].

Let us remind the definition deg(P ) = [OP/P : (K + P )/P ]. Therefore deg(P ) =
1 if and only if K + P = OP . By this assumption, OP ∋ x = t + α, t ∈ P and
α ∈ K. Then t = x− α ∈ P ∩K[x] is a multiple of a.

These two preparatory statements have brought us nearer to our goal, which
is the following theorem.

Theorem 1.4.3. Let F/K be an algebraic function field such that F = K(x, y), x,
y transcendental over K. Let f ∈ K[x1, x2] be an irreducible polynomial giving the
isomorphism F ∼= K(f). Let vP (x) ≥ 0 and vP (y) ≥ 0. Then there exist unique
monic irreducible polynomials p ∈ K[x] and q ∈ K[y], such that P ∩K[x] = (p),
P ∩ K[y] = (q). If deg(P ) = 1, then p = x − α, q = y − β for some α, β ∈ K
such that f(α, β) = 0.

Conversely, if f(α, β) = 0 for α, β ∈ K and f is not singular in (α, β),
there exists unique P ∈ PF/K, denoted by P(α,β), such that x − α ∈ P(α,β) and
y − β ∈ P(α,β). Moreover, deg

(
P(α,β)

)
= 1.

Proof. Proposition 1.4.2 secures both existence and uniqueness of p and q. If
deg(P ) = 1, by the same proposition p = x − α and q = y − β. It remains to
prove f(α, β) = 0. We express f(x, y) =

∑
i,j≥0 fij(x−α)i(y−β)j, which implies

f00 = f(α, β). Since f(x, y) = 0 and every term fij(x − α)i(y − β)j ∈ P for
(i, j) ̸= (0, 0), we get that f00 = f(α, β) ∈ P . But P ∩ O∗

P = ∅, so f(α, β) /∈ K∗

and f(α, β) = 0 as desired.
What is left is to prove that if the converse assumptions hold, then P is unique

and deg(P ) = 1. As in the first part, we express u ∈ K[x1, x2] as
∑

i,j≥0 uij(x−
α)i(y − β)j. We have u ∈ OP and u − u00 ∈ P . Therefore, if u00 = u(α, β) ̸= 0,
then u ∈ O∗

P . We have proved that OP contains every u(x,y)
v(x,y)

, u, v ∈ K[x1, x2]

and v(α, β) ̸= 0. We know that in F/K such a valuation ring exists and consists
exactly of these elements. It is the image of O(α,β) ⊆ K[f ], P is the image of its
maximal ideal M(α,β). For φ ∈ O(α,β), φ − φ(α,β) ∈ K, so O(α,β) =M(α,β) +K
andM(α,β) is of degree 1. Uniqueness of P is clear.

Corollary 1.4.4. Let F = K(x, y) be an elliptic function field given by w(x, y) =

0. Let P(1)
F/K = {P ∈ PF/K : deg(P ) = 1}. Then P(1)

F/K = {P∞} ∪ {P(α,β) :

w(α, β) = 0 and α, β ∈ K}.
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Proof. According to theorem 1.4.3, P(1)
F/K is the set of all P ∈ PF/K , such that

vP (x) ≥ 0 and vP (y) ≥ 0. At the same time, proposition 1.3.1 ensures that the
only place dissatisfying this condition is P∞, which is of degree 1.

This corollary shows the path which we shall take to get to the target. Every
point on an elliptic curve corresponds to a place, which is of degree 1. The
converse is true over K̄ = K: then exist α, β ∈ K such that x − α, y − β ∈ P
according to 1.4.2. But with respect to 1.4.3, such P = P(α,β).

We can therefore switch our attention from points on elliptic curve to places
of degree 1. Neither they have a natural group structure available, that is why
we take advantage of an isomorphism to Pic(F/K). To do so, we must state a
few facts.

At first, for an arbitrary algebraic function field, we look at the following
groups: Princ(F/K), deg−1(0) and Div(F/K). The fist two are clearly sub-
groups of Div(F/K), but since deg((x)) = 0 for every principal divisor (x),
even Princ(F/K) ≤ deg−1(0). For A,B ∈ Div(F/K), A ∼ B means A − B ∈
Princ(F/K).

Definition 1.4.5. Let F/K be an algebraic function field. The group
deg−1(0)/Princ(F/K) is called the Picard group and denoted by Pic(F/K).

Proposition 1.4.6. Let F/K be an elliptic function field and let A ∈ Div(F/K).

(i) If deg(A) ≥ 1, then l(A) = deg(A).

(ii) If deg(A) = 1, then there exists unique P ∈ PF/K, deg(P ) = 1, such that
A ∼ P .

(iii) If deg(A) = 0, P ∈ PF/K, deg(P ) = 1, then there exists unique Q ∈ PF/K,
deg(Q) = 1, such that A ∼ Q− P .

Proof. The first item follows immediately from Riemann-Roch corollary (l(A) =
deg(A) + g− 1 and g = 1). From basic properties of divisors we know that there
exist A′ ∼ A, such that A′ ≥ 0. Moreover, it satisfies deg(A′) = deg(A) = 1, so
A′ = P for some P ∈ PF/K , deg(P ) = 1. If P1 and P2 were two such possible
choices, P1 − P2 would be principal, ergo P1 − P2 = (t) and P1 = (t)+ for some
t ∈ F . This would imply [F : K(t)] = 1, F = K(t) and g = 0. That is why P
is unique. At last, if deg(A) = 0 and deg(P ) = 1, then deg(P + A) = 1 and by
the second part there exists Q ∈ PF/K , deg(Q) = 1, such that P + A ∼ Q and
therefore A ∼ Q− P .

Corollary 1.4.7. Let F/K be an elliptic function field and let P(1) = {Q ∈ PF/K :
deg(Q) = 1}. Then for any P ∈ P(1) the mapping Q → Q − P is a bijection of
P(1) and Pic(F/K).

This corollary at last explains where to get the desired group structure. In
other words, elements of Picard group of F/K correspond to places of degree 1,
which in turn correspond to points on elliptic curve. Thus we have a group, a set
and a bijection, which can easily transfer the group structure. In this case, for
every P ∈ P(1), Q1�Q2 = Q3 ⇔ [Q1−P ]+[Q2−P ] = [Q3−P ], or Q1�Q2 = Q3

if and only if Q3 ∈ P(1) fulfills Q3 ∼ Q1 +Q2 − P .
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Let E/K be an elliptic function field defined by a non-singular Weierstrass
equation w(x, y) = 0. To uniquely determine the bijection between Pic(E/K)

and P(1)
E/K , we fix P∞ as the neutral element. It is the natural choice for it is the

only point at infinity of E/K3. The newly acquired operation ⊕ thus satisfies
(P ⊕Q) + P∞ ∼ P +Q in Pic(E/K).

Definition 1.4.8. The whole just defined group is called an elliptic group, denot-
ed by E(K) and formally equal to ({P∞} ∪ {Pα : α ∈ V (w) ∩ A2(K)},⊕, P∞).

From the definition and the one-to-one correspondence between Pα and α ∈
V (w) ∩A2(K) it is clear that we can easily switch from adding “places of degree
one” to adding “points on curve” and back. The latter case (Pα identified with
α ∈ V (w)∩A2(K) and P∞ with 0, in this case normally denoted by O) is usually
denoted by w(K). Normally, w(K) and E(K) are identified with each other,
there is no reasonable argument to distinguish between them. When performing
the group operation in E(K), two cases can occur.

Proposition 1.4.9. Let P,Q,R ∈ E(K). Then

(i) P ⊕Q = P∞ ⇔ P +Q− 2P∞ ∈ Princ(E/K) and

(ii) P ⊕Q⊕R = P∞ ⇔ P +Q+R− 3P∞ ∈ Princ(E/K).

Proof. As for the first case, by definition P⊕Q = P∞ if and only if 2P∞ ∼ P +Q,
which is the desired condition. Additionaly, P ⊕ (Q⊕R) +P∞ ∼ P + (Q⊕R) ∼
P − P∞ +Q+ R. Therefore (P ⊕Q⊕ R) + 2P∞ ∼ P +Q+ R and the proof is
complete.

As we shall shortly hereafter learn, the first case describes adding two points
with the same x-coordinate (or in other words, finding an inverse), whereas the
latter one handles with adding two arbitrary points (other than in the former
case). To deduce exact formulas, we shall use a few new terms and facts.

Definition 1.4.10. Let E/K be an elliptic function field given by w(x, y) = 0.
A line is every l ∈ E, such that there exist (0, 0) ̸= (λ1, λ2) ∈ K2 and λ3 ∈ K:
l = λ1x + λ2y + λ3. A point (α1, α2) is on l if and only if l(α1, α2) = 0. For
α ∈ V (w) and l going through α, l is a tangent to w in α if and only if ∃γ ∈ K∗

such that λj = γ
(

∂w
∂xj

)
for both j ∈ {1, 2}.

In the following three statements, we make use of l in a little more imaginable
form: l = y − λx − µ. The background of all three lemmas is that E/K is an
elliptic function field given by a non-singular w(x, y) = 0. The goal is to present
tools which will help us to determine more concretely the mechanism of addition
in E(K).

Lemma 1.4.11. Let α ∈ V (w) ∩ A2(K) and let vα denote the valuation at Pα.
Then for every line l ∈ E exactly one of the following options is true:

(i) vα = 0 and l is not going through α;

(ii) vα = 1 and l is not a tangent to w in α;
3See the end of section 1.1.
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(iii) vα ≥ 2 and l is a tangent to w in α.

Lemma 1.4.12. Let l ∈ E be a line going through α = (γ, λγ + µ) ∈ V (w),
γ, λ, µ ∈ K and let ∂w/∂y(α) ̸= 0. Then γ is a root of τ(x) = w(x, λx + µ) and
its multiplicity equals vα(y − λx− µ).

Lemma 1.4.13. Let all the conditions of the previous lemma be satisfied. Then
the line l = y − λx− µ is a tangent to w in α if and only if γ is a multiple root
of τ(x) = w(x, λx+ µ).

To describe the two possible cases in adding non-zero elements of E(K), we
must add a proposition associated to each of them. The first one shall serve to
clarify the situation when the sum of two places equals P∞.

Proposition 1.4.14. Let α = (α1, α2) ∈ V (w) ∩ A2(K). Set ρ(y) = w(α1, y).
Then there exists a unique β2 ∈ K such that ρ(y) = (y − α2)(y − β2), β =
(α1, β2) ∈ V (w) ∩ A2(K) and Pα ⊕ Pβ = P∞. The case α = β occurs if and only
if x = α1 is a tangent to w in α. Moreover, {α, β} = V (x− α1, w).

Proof. Let l = x− α1. Then vQ(l) ≥ 0 for every Q ̸= P∞ (lemma 1.3.1). At the
same time, v∞(l) = v∞(x) = −2, so deg ((l)+) = 2. Since l(α) = α1 − α1 = 0,
with respect to lemma 1.4.11, vα(l) ≥ 1. Therefore (l)+ = Pα + Pβ for some
β = (β1, β2) ∈ V (w)∩A2(K), deg(Pα) = deg(Pβ) = 1 and vβ(l) ≥ 1. This means
that l goes through β, hence β1 = α1. Additionaly, both α2 and β2 must be roots
of ρ(y) = w(α1, y) = 0. Should α2 = β2, then vα(l) = 2 and α2 will be a double
root of ρ(y) by 1.4.12. It follows that in either case, ρ(y) = (y − α2)(y − β2).

To sum up, l intersects w in exactly two points, α and β, with α = β if and
only if l is a tangent to w in α. At last, (l) = Pα +Pβ − 2P∞, which according to
proposition 1.4.9 means nothing but Pα ⊕ Pβ = P∞.

In other words, this proposition gives us the tool to determine β such that
α ⊕ β = O in w(K). This equation can be restated as α = ⊖β, which lays
down an algorithm to find an inverse. Addition of two general points is described
hereafter.

Proposition 1.4.15. Let α, β ∈ V (w) ∩ A2(K), α = (α1, α2) and β = (β1, β2).
Let Pα ⊕ Pβ ̸= P∞. If α ̸= β, there exist unique λ, µ ∈ K, λ = β2−α2

β1−α1
, such that

l = y − λx− µ goes through both α and β. Else (i.e. α = β), there exist unique
λ, µ ∈ K such that l = y − λx− µ is a tangent to w in α.

Let τ(x) = −w(x, λx + µ). Then there exists a unique γ1 ∈ K, such that
τ(x) = (x − α1)(x − β1)(x − γ1). The point γ = (γ1, λγ1 + µ) ∈ V (w) ∩ A2(K),
Pα ⊕ Pβ ⊕ Pγ = P∞ and {α, β, γ} = V (w, l).

Proof. To exclude unfavourable cases, suppose that α ̸= β, but α1 = β1. This is
described by the previous proposition (Pα + Pβ = P∞) and does not concern us
here. We can therefore assume α1 ̸= β1 and find l in an appropriate form. Next,
let α = β. Should x− α1 be a tangent to w in α, we will again find ourselves in
the situation of the previous proposition. It follows that the tangent (which must
exist according to lemma 1.4.13) has another form, namely that stated here.

Always v∞(l) = v∞(y) = −3 and vQ(l) ≥ 0 for any Q ̸= P∞. Moreover, either
vα(l) ≥ 1 and vβ(l) ≥ 1 (when α ̸= β), or vα(l) ≥ 2 (when α = β). Anyway,
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Pα + Pβ ≤ (l)+ and deg ((l)+) = 3. Therefore there exists unique Q such that
Pα+Pβ +Q = (l)+. Its degree must equal 1 and since Q ̸= P∞, Q = Pγ for some
γ ∈ V (w) ∩ A2(K). Thus we have obtained a point γ = (γ1, λγ1 + µ) for some
uniquely determined γ1 ∈ K.

It is now clear that α1, β1, γ1 are roots of τ(x) = −w(x, λx + µ) = 0, every
one’s multiplicity being equal to valuation of l in the respective place. That
is why it is possible to write τ(x) = (x − α1)(x − β1)(x − γ1). If there was
δ = (δ1, δ2) ∈ V (w, l), δ1 would have to be a root of τ(x) and {α, β, γ} = V (w, l).

The last statement yet to be proved, that Pα ⊕ Pβ ⊕ Pγ = P∞, follows imme-
diately from Pα + Pβ + Pγ − 3P∞ = (l) and proposition 1.4.9.

This situation is that α⊕β⊕γ = O or α⊕β = ⊖γ. The algorithm to perform
addition α⊕ β, 0 /∈ {α, β} would thus be:

(i) determine whether α = ⊖β. If so, α⊕ β = O;

(ii) else, find γ such that α⊕ β ⊕ γ = O;

(iii) find ⊖γ.

Figure 1.2: All cases that might occur when adding points on an elliptic curve.

Although this casts much light on arithmetics on elliptic curves, it still does
not provide us with anything to actually perform computations. To revert this
setback, we shall derive them from the long Weierstrass equation and propositions
1.4.14 and 1.4.15.
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Let E/K be an elliptic function field defined by a non-singular long Weier-
strass equation w(x, y) = y2 + a1xy + a3y − x3 − a2x

2 − a4x − a6 and let α =
(α1, α2) ∈ w(K) \ {O}. As in 1.4.14, ρ(y) = w(α1, y) = y2 + (a1α1 + a3)y+ . . . =
(y − α2)(y − β2). But such β2 must fulfill α2 + β2 = −a1α1 − a3. The formula to
compute inverse is thus

⊖(α1, α2) = (α1,−α2 − a1α1 − a3) for any (α1, α2) ∈ w(K). (1.2)

As a corollary we see that α ⊕ β = O if and only if α1 = β1 and β2 = −α2 −
a1α1 − a3.

Now let α = (α1, α2) and β = (β1, β2) be elements of w(K) \ {O} such that
α ⊕ β ̸= 0. If α ̸= β, let λ = β2−α2

β1−α1
(this is imminent from the fact that λ is the

tangent of l). Otherwise, l is a tangent to w in α and from the derivations

∂w

∂y
= 2y + a1x+ a3,

∂w

∂x
= a1y − 3x2 − 2a2x− a4,

follows that
λ =

3α2
1 + 2a2α1 + a4 − a1α2

2α2 + a1α1 + a3
.

At last, from the definition of l, µ = α2 − λα1. We have thus obtained all the
coefficients necessary to compute γ = (γ1, γ2). Since

τ(x) = −w(x, λx+ µ) =

= x3 + (a2 − λ2 − a1λ)x
2 + (a4 − 2λµ− a3λ− a1µ) + a6 − µ2 − a3µ

and α1, β1, γ1 are its roots, α1 + β1 + γ1 = λ2 + a1λ− a2. Therefore

γ1 = λ2 + a1λ− a2 − α1 − β1,

γ2 = λγ1 + µ = λγ1 + α2 − λα1.

To compute ⊖γ, by equation 1.2 it suffices to replace γ2 by −γ2 − a1γ1 − a3 =
−λγ1 − α2 + λα1 − a1γ1 − a3 = λ(α1 − γ1)− α2 − a1γ1 − a3.

These derived formulas deserve their own theorem.

Theorem 1.4.16 (General group law). Let α, β ∈ w(K) \ {O}, α = (α1, α2),
β = (β1, β2). Let γ = α⊕ β. Then

(i) γ = O if and only if α1 = β1 and β2 + α2 + a1α1 + a3 = 0 or

(ii) O ̸= γ = (γ1, γ2), where

γ1 = λ2 + a1λ− a2 − α1 − β1,

γ2 = λ(α1 − γ1)− α2 − a1γ1 − a3,

λ =

{
β2−α2

β1−α1
for α1 ̸= β1,

3α2
1+2a2α1+a4−a1α2

2α2+a1α1+a3
for α1 = β1.
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Naturally, since this is a general case functioning for long Weierstrass equa-
tions in arbitrary characteristics, we can adjust the formulas for short Weierstrass
equations in char(K) = 2 and char(K) = p > 3.

Let us begin with the latter case. According to proposition 1.3.7, w(x, y) = 0
is equivalent to y2 = x3 + a4x+ a6 for some a4, a6 ∈ K satisfying 4a34 +27a26 ̸= 0.
It follows that a1 = a2 = a3 = 0 and the formula can be significantly simplified.

Proposition 1.4.17 (Group law in char > 3). Let conditions of theorem 1.4.16
be satisfied and let γ denote the sum α⊕β. Moreover, let char(K) = p > 3. Then

(i) γ = O if and only if α1 = β1 and α2 = −β2 or

(ii) O ̸= γ = (γ1, γ2), where

γ1 = λ2 − α1 − β1,

γ2 = λ(α1 − γ1)− α2,

λ =

{
β2−α2

β1−α1
for α1 ̸= β1,

3α2
1+a4
2α2

for α1 = β1.

These formulas are so simple that there can not be any obstacles implementing
them, so the only commentary we add here is the time consumption. In case we
add two same points (i.e. we perform point doubling), the total cost is 1I+2M +
2S, otherwise (point addition) 1I+2M+1S. What do these symbols mean? Since
we work only on elliptic curves and have not said anything about the underlying
field, the most effective (and fair) method to compare different algorithms is to
compute their cost in operations in the underlying field, whatever this might be.
I will denote field inversion, M field multiplication and S field squaring.

In characteristics 2, according to proposition 1.3.7, we have two different equa-
tions defining an elliptic curve:

y2 + xy = x3 + a2x
2 + a6, a6 ̸= 0;

y2 + a3 = x3 + a4x+ a6, a3 ̸= 0.

The latter one however suffers from a crucial cryptographic weakness: it is super-
singular and hence highly susceptible to the so-called MOV attack [7, Chapter
V]. Therefore for cryptographic purposes it is useless and we shall turn our atten-
tion to the former one, which will constitute the “only” form of an elliptic curve
over field of characteristics 2. Naturally, the group law works over supersingu-
lar elliptic curves as well and the formulas could be easily derived, but for the
sake of brevity (and significance) we shall omit them. Consequently, proposition
analogous to 1.4.17 is as follows.

Proposition 1.4.18 (Group law in char = 2). Let conditions of theorem 1.4.16
be satisfied and let γ denote the sum α⊕ β. Moreover, let char(K) = 2. Then

(i) γ = O if and only if α1 = β1 and α2 = −β2 or

(ii) O ̸= γ = (γ1, γ2), where

γ1 = λ2 + λ+ α1 + β1 + a2,

γ2 = λ(α1 + γ1) + α2 + γ1,

λ =

{ β2+α2

β1+α1
for α1 ̸= β1,

α2

α1
+ α1 for α1 = β1.
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Again the time analysis is very simple, each case costs 1I + 2M + 1S.
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2. Redundant point representations
As we have seen at the end of the previous chapter, point addition in affine
coordinates requires inverting elements of the underlying field, which is a costly
operation. Accordingly, our effort now turns to avoidance of field inversions. The
most natural way to achieve it is to leave affine coordinates and take a look at
the projective ones. In section 1.1 we have established one-to-one correspondence
of affine and projective varieties as well as tools to switch between them, so our
task is only to apply this knowledge to the group law.

To start with, we shall homogenize the Weierstrass equation with respect to
a new variable Z (note that the standard notation is (x, y) for affine points and
[X : Y : Z] for projective ones). We can do the whole process for char(K) > 3
and then turn back and briefly introduce the case char(K) = 2 as well. According
to remark 1.1.8 and proposition 1.3.7,

w∗(X,Y, Z) = Z3w

(
X

Z
,
Y

Z

)
= Y 2Z −X3 − a4XZ2 − a6Z

3.

Let P = (x, y) ∈ V (w) ∩ A2(K) be an affine point. To obtain its projec-
tive coordinates [X : Y : Z], we simply apply ϕ3 defined in remark 1.1.8, i.e.
ϕ3((x, y)) = (x, y, 1). This injection naturally does not cost any expensive field
operation and its time consumption may hence be neglected. However, the back-
ward process is a different story. If [X : Y : Z] is an arbitrary projective point,
to transform it into an affine one we apply ϕ−1

3 on it: ϕ−1
3 ((X, Y, Z)) =

(
X
Z
, Y
Z

)
.

This means to find Z−1 and multiply both X and Y by it. This costs 1I + 2M ,
but on the plus side, it has to be performed only once per whole computation.

At this place, it is convenient to explain special cases. If Z = 0, then
w∗(X, Y, Z) implies also X = 0 and Y ∈ K \ {0}. Since projective points can
be scaled arbitrarily, this point is denoted by [0 : 1 : 0]. Transforming it back to
affine coordinates, it becomes the point at infinity O. It follows that O is exactly
the only point for which Z = 0.

2.1 Standard projective coordinates
This all having said, we can turn our attention to an effective way how to mod-
ify the group law to accomodate new coordinates. At first, have a look at the
doubling formulas. We have seen that

x′ =

(
3x2 + a4

2y

)2

− 2x,

y′ =

(
3x2 + a4

2y

)
(x− x′)− y.
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If we substitute x = X/Z, y = Y/Z, x′ = X ′/Z ′ and y′ = Y ′/Z ′, we get that

X ′

Z ′ =

(
3 (X/Z)2 + a4

2Y/Z

)2

− 2X/Z =
W 2

Z4

4Y 2

Z2

− 2X

Z
=

W 2

4Y 2Z2
− 2X

Z
,

Y ′

Z ′ =

(
W
Z2

2Y
Z

)(
X

Z
− X ′

Z ′

)
− Y

Z
=

W

2Y Z

(
X

Z
− X ′

Z ′

)
− Y

Z
,

where W = 3X2 + a4Z
2. If we substitute X ′/Z ′ in the second equation by the

formula in the first one, we immediately see that the largest denominator we can
get from expanding the parenthesis is equal to 8Y 3Z3. This is nothing but our
Z ′. Therefore,

Z ′ = 8Y 3Z3,

X ′ = 2W 2Y Z − 16XY 3Z2,

Y ′ = 4XY 2ZW −W 3 + 8XY 2Z,

which can be efficiently implemented as in algorithm 1. The cost of such doubling
is 8M + 5S or 8M + 3S, the latter case being for a4 = −3.

Algorithm 1 Standard projective coordinates: point doubling in char(K) > 3

Input: P = (X, Y, Z) a projective point on E
Output: P ′ = (X ′, Y ′, Z ′) : P ′ = 2P

if Y = 0 or Z = 0 then
return O

end if
if a4 = −3 then
W = 3 · (X + Z) · (X − Z) 1M

else
W = a4 · Z2 + 3 ·X2 1M + 2S

end if
S = Y · Z 1M
B = X · Y · S 2M
H = W 2 − 8 ·B 1S
X ′ = 2 ·H · S 1M
Y ′ = W · (4 ·B −H)− 8 · Y 2 · S2 2M + 2S
Z ′ = 8 · S3 1M
return (X ′, Y ′, Z ′) total: 8M + 3S

or 8M + 5S
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General point addition requires similar analysis. We shall shorten it and state
only the results:

X3

Z3

=

(
Y2Z1 − Y1Z2

X2Z1 −X1Z2

)2

− X1

Z1

− X2

Z2

,

Y3

Z3

=

(
Y2Z1 − Y1Z2

X2Z1 −X1Z2

)(
X1

Z1

− X3

Z3

)
− Y1

Z1

.

Again substituting X3/Z3 into the second equation shows that Z3 = (X2Z1 −
X1Z2)

3Z1Z2 yields the desired result, as shown in algorithm 2. Its cost is 12M +
2S.

Algorithm 2 Standard projective coordinates: point addition in char(K) > 3

Input: P1 = (X1, Y1, Z1), P2 = (X2, Y2, Z2) projective points on E
Output: P3 = (X3, Y3, Z3) : P3 = P1 ⊕ P2

if Z1 = 0 then
return P2

else if Z2 = 0 then
return P1

end if
U1 = Y2 · Z1 1M
U2 = Y1 · Z2 1M
V1 = X2 · Z1 1M
V2 = X1 · Z2 1M
if V1 = V2 then

if U1 ̸= U2 then
return O

else
return POINT_DOUBLE(X1, Y1, Z1) (8M + 5S)

end if
end if
U = U1 − U2

V = V1 − V2

W = Z1 · Z2 1M
A = U2 ·W − V 3 − 2 · V 2 · V2 3M + 2S
X3 = V · A 1M
Y3 = U · (V 2 · V2 − A)− V 3 · U2 2M
Z3 = V 3 ·W 1M
return (X3, Y3, Z3) total: 12M + 2S
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The same procedure applies to the case char(K) = 2 as well. For sake of
brevity, we do not repeat it in its whole extent. The resultant formulas are:

• (point doubling)

Z ′ = (XZ)3,

X ′ = XZ(X2 + Y Z)2 +X2Z2(X2 + Y Z) + a2X
3Z3,

Y ′ = X3Z(X2 + Y Z) + (X2 + Y Z)3 +XZ(X3 + Y Z)2+

a2X
2Z2(X2 + Y Z) +X3Y Z2 +X4Z2,

which can be algorithmized as follows:
A = X2 B = A+ Y · Z C = X · Z
D = B + C E = C2 F = B ·D + a2 · E
X ′ = C · F Y ′ = D · F + A2 · C Z ′ = C · E

at the cost 8M + 3S.

• (point addition)

A = Y2Z1 + Y1Z2,

B = X2Z1 +X1Z2,

Z3 = B3Z1Z2,

X3 = ABZ1Z2(A+B) +B3(B + a2Z1Z2),

Y3 = A3Z1Z2 +X2AB
2Z1 + AB2Z1Z2(a2 + 1) + V 3Z1(X2 + Y2)+

+ a2V
3Z1Z2,

which can be implemented in the following way:

A1 = Y1 · Z2; B1 = X1 · Z2; A = A1 + Y2 · Z1; B = B1 +X2 · Z1;

C = A+B; D = B2; E = Z1 · Z2; F = B ·D;

G = (A · C + a2 ·D) · E + F ; X3 = B ·G;

Y3 = D · (A ·B1 +B · A1) + C ·G; Z3 = E · F ;

costing 15M + 1S.

It seems that this would be the end of this section, but the converse is true.
One interesting case still waits to be resolved. Consider, for example, that we
have the task to add two affine points. As we have stated at the beginning of
this chapter, transformation from affine to projective coordinates simply requires
setting Z = 1. But what does this step do with the formulas? How many
multiplications render themselves trivial? It follows that fixing Z = 1 in the
doubling formulas or Z1 = 1 in the addition (or even Z1 = Z2 = 1) lead to much
faster formulas. Of course, we can not use them more than once, for the new
Z-coordinate does not stay equal to 1, but it truly is a speed-up.

A comprehensive table containing time consumptions for all the aforemen-
tioned cases is given in table 2.1.
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operation char(K) > 3 char(K) = 2
doubling 8M + 5S 8M + 3S
doubling, Z = 1 3M + 5S 6M + 3S
addition 12M + 2S 15M + 1S
addition, Z1 = 1 9M + 2S 12M + 1S
addition, Z1 = Z2 = 1 5M + 2S 8M + 1S

Table 2.1: Operations in projective coordinates

operation char(K) > 3 char(K) = 2
doubling 1M + 8S 5M + 5S
doubling, Z = 1 1M + 5S 2M + 2S
addition 8M + 6S 15M + 5S
addition, Z1 = 1 7M + 4S 11M + 3S
addition, Z1 = Z2 = 1 4M + 2S n/a

Table 2.2: Operations in Jacobian coordinates

2.2 Jacobian coordinates
Standard projective coordinates elliminate the need to invert field elements, how-
ever speedups can be more significant. It makes sense to exploit [X : Y : Z] in
a different way: by setting x = X/Z2 and y = Y/Z3 (so-called weighed projective
coordinates or more commonly Jacobian coordinates) we get that

Y 2 = X3 + a4XZ4 + a6Z
6.

This means that the point at infinity, previously at [0 : 1 : 0] now becomes
[1 : 1 : 0]. More precisely, it should be (γ2, γ3, 0) for some γ ∈ K∗, but since we
never actually operate on these coordinates, any triplet with Z = 0 (especially
[1 : 1 : 0]) would do. Conversion from affine to Jacobian coordinates is trivial,
the other way round requires 1I + 3M + 1S:

A = 1/Z1 B = A2

X3 = B ·X1 Y3 = A ·B · Y1 Z3 = 1

Again, the whole method of deriving formulas is nothing but expressing X ′/Z ′

and Y ′/Z ′ in terms of input variables and then algorithmizing the resultant poly-
nomial. For sake of brevity, we shall only state the appropriate results. To do so,
a table (2.2) seems to be the best method.

Note that n/a does not mean that it is not possible to compute a sum of
two points with both Z-coordinates equal to zero, but that there is no algorithm
specifically adapted for such an option.

2.3 Chudnovsky coordinates
In 1986, Chudnovsky brothers [9] noticed that in Jacobian coordinates one can
save some operation in a particular case. Take for example that one performs an
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addition of two points (X1 : Y1 : Z1) + (X2 : Y2 : Z2). During the run of the
algorithm, the values Z2

2 and Z3
2 are computed, requiring 1M +1S. Consider the

case that one wants to perform an addition (X2 : Y2 : Z2) + (X3 : Y3 : Z3) for
some (X3 : Y3 : Z3). By caching Z2

2 and Z3
2 from the previous computation, one

can naturally subtract 1M + 1S from the operation cost.
There are two basic approaches to this solution. The first one is which the

Chudnovsky brothers pursued, namely adding redundancy. The new so-called
Chudnovsky coordinates therefore are quintuples (X, Y, Z, Z2, Z3). It follows that
the speedup by 1M+1S is balanced by two more coordinates. Unfortunately, the
speedup is only during addition of two distinct points. In point doubling, there is
no need to compute Z3

2 and 1M required is wholly unjustified. It therefore seems
reasonable to determine Z2

2 and Z3
2 only when necessary and mix Chudnovsky

coordinates with Jacobian otherwise.
This option can be however described more clearly. Instead of using new

coordinate system (which itself is not preferable in all cases), we shall rather
introduce a notion of readdition. It comprises the situation just explained and its
solution is different only in philosophic terms. More concretely, readdition means
that we “somewhere” cache the appropriate values only when needed.

Algorithm 3 Chudnovsky Coordinates: Point Doubling
Input: P = (X, Y, Z, Z2, Z3)
Output: 2P = (X ′, Y ′, Z ′, Z ′2, Z ′3)

if Y = 0 then
return O

else
S ← 4 ·X · Y 2 1M + 1S
if a ̸= −3 then
M ← 3X2 + a · (Z2)2 1M + 3S

else
M ← 3(X + Z2) · (X − Z2) 1M + 1S

end if
X ′ ←M2 − 2S 1S
Y ′ ←M(S −X ′)− 8Y 4 1M + 1S
Z ′ ← 2Y Z 1M
(Z ′)2 ← (Z ′)2 1S
(Z ′)3 ← (Z ′)2 · Z ′ 1S
return (X ′, Y ′, Z ′, Z ′2, Z ′3) total: 5M + 6S

end if or 5M + 4S
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Algorithm 4 Chudnovsky Coordinates: Point Addition
Input: P1 = (X1, Y1, Z1, Z

2
1 , Z

3
1), P2 = (X2, Y2, Z2, Z

2
2 , Z

3
2)

Output: P1 ⊕ P2 = P3 = (X3, Y3, Z3, Z
2
3 , Z

3
3)

if Z1 = 0 or Z2 = 0 then
return O

end if
U1 ← X1 · Z2

2 1M
U2 ← X2 · Z2

1 1M
S1 ← Y1 · Z3

2 1M
S2 ← Y2 · Z3

1 1M
if U1 = U2 then

if S1 ̸= S2 then
return O

else
return POINT_DOUBLE(X1, Y1, Z1, Z

2
1 , Z

3
1)

end if
end if
H ← U2 − U1

R← S2 − S1

X3 ← R2 −H3 − 2 · U1 ·H2 2M + 2S
Y3 ← R · (U1 ·H2 −X3)− S1 ·H3 2M
Z3 ← H · Z1 · Z2 2M
Z2

3 ← Z2
3 1S

Z3
3 ← Z2

3 · Z3 1M
return (X3, Y3, Z3, Z

2
3 , Z

3
3 ) total: 11M + 3S
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3. Edwards Curves

3.1 Definition and transformation from Weierstrass
form

Throughout the 19th and 20th century, several new forms of elliptic curves such
as Hessian, Montgomery or Jacobi forms emerged. These more or less pushed the
speed performance forward, however the most significant breakthrough happened
at the very beginning of 2007 [12] when a new curve form emerged and was named
after its author – prof. Harold M. Edwards. Within a few months after its original
publications, Edwards curves gained the leading position among elliptic curves
over both binary and large-p fields.

Definition 3.1.1 (Edwards Form). An Edwards form of an elliptic curve is the
equation

x2 + y2 = a2(1 + x2y2),

where a5 ̸= a.

At this place, it is convenient to explain why such an equation defines an
elliptic curve, along with the condition a5 ̸= a. To prove this, we shall need to
state a helping proposition.

Proposition 3.1.2. Let y2 = f(x) define a plain algebraic curve. Then its genus
is 1 if and only if f(x) is of degree 3 or 4 with distinct roots.

Proof. For a complete proof, see e.g. [13, Section 3.4].

Using this proposition, we can prove that under certain circumstances the
Edwards Curve is indeed an elliptic curve.

Proposition 3.1.3. An Edwards curve x2+y2 = a2(1+x2y2) is an elliptic curve
if and only if a5 ̸= a.

Proof. We can assume a ̸= 0, for otherwise the equation would not be a curve.
Let z = y(1 − a2x2), hence x2 + y2 = a2 + a2x2y2 transforms into z2 = (a2 −
x2)(1 − a2x2). Since a ̸= 0, the right side is a polynomial of degree 4 (namely:
a2x4 − (a4 + 1)x2 + a2). With respect to the previous proposition, we need that
polynomial to have distinct roots, which happens if and only if its discriminant
equal to (a4+1)2− 4a4 = (a4− 1)2 is nonzero. In other words, a5 ̸= a if and only
if x2 + y2 = a2(1 + x2y2) is an elliptic curve.

Our goal is to prove that every Weierstrass curve can be transformed into
Edwards curve. For algebraic number fields, this is wholly true as we will see.
To be able to prove it, we must introduce a few new terms. At first, since the
underlying field’s characteristics is 0, we can safely assume the equation to be
y2 = f(x), the constrains on f(x) being the same as in 3.1.2. In this case the
field of rational functions is simplified to elements of the form u(x) + v(x)y,
u(x), v(x) ∈ K(x). Indeed, it is the appropriate elliptic function field.
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Definition 3.1.4. Let E1/K1 and E2/K2 be two elliptic function fields defined
by y21 = f1(x1) and y22 = f2(x2). Then the curves E1 and E2 are birationally
equivalent, if their fields of rational functions are isomorphic, i.e. when E1/K1

∼=
E2/K2. Moreover, we say that elliptic function fields E1/K1 and E2/K2 are
equivalent if there exists a field K ′, such that K ′ is an algebraic extension of both
K1 and K2 and E1/K

′ ∼= E2/K
′.

The notion of elliptic function field equivalence is neccesary because of the
following fact. In the definition of elliptic function field, we demand that K̃ = K,
but adjoining new constants (extending K) affects the whole function field and
does not allow for birational equivalence, although the field of functions still
corresponds to the same curve. This notion will be the main tool to prove that
all elliptic curves over number fields can be transformed into Edwards curves.

Theorem 3.1.5. An elliptic function field is equivalent to the field of rational
functions on x2 + y2 = a2(1 + x2y2) for some a.

Proof. Let K be an algebraic number field and let f(x) ∈ K[x] be a polynomial
of degree 4 with distinct roots. If necessary, adjoin constants to K so that f(x)
splits into linear factors, i.e. f(x) = c(x−α1)(x−α2)(x−α3)(x−α4), and perhaps
even

√
c so that y2 = f(x) transforms into v2 = (x−α1)(x−α2)(x−α3)(x−α4)

for v = y/
√
c. It follows that we may without loss of generality assume that

f(x) = (x− α1)(x− α2)(x− α3)(x− α4) for some distinct α1, α2, α3, α4 ∈ K.
Let us have two thusly defined elliptic function fields, say by z2 = (x−α1)(x−

α2)(x − α3)(x − α4) and v2 = (u − β1)(u − β2)(u − β3)(u − β4). Then they are
equivalent if there is a linear transformation x → Ax+B

Cx+D
(A,B,C,D ∈ K and

AD ̸= BC), which carries αi to βi for all i ∈ {1, 2, 3, 4}. Denote u = Ax+B
Cx+D

,
then u − βi =

(AD−BC)(x−αi)
(Cx+D)(Cαi+D)

for each i. Multiplying all four these subtractions

yields (u− β1)(u− β2)(u− β3)(u− β4) = c (x−α1)(x−α2)(x−α3)(x−α4)
(Cx+D)4

= c
(

z
(Cx+D)2

)2
for some c ∈ K constant. It follows that (perhaps after adjoining

√
c) there is a

birational change of variables from (z, x) to (v, u), under which z2 = (x−α1)(x−
α2)(x− α3)(x− α4) corresponds to v2 = (u− β1)(u− β2)(u− β3)(u− β4).

Consider the transformation

x→ (α4 − α2)(x− α3)

(α2 + α4)(x+ α3)− 2α3x− 2α2α4

which maps α2 → −1, α3 → 0 and α4 → 1. Therefore y2 = (x− α1)(x− α2)(x−
α3)(x−α4) and v2 = (u− ϕ) · (u+1) · u · (u− 1) define the same function field if

ϕ =
(α4 − α2)(α1 − α3)

(α2 + α4)(α1 + α3)− 2α3α1 − 2α2α4

=
α1α4 + α2α3 − α1α2 − α2α3

α1α2 + α1α4 + α2α3 + α3α4 +−2α1α3 − 2α2α4

.

Rewrite x2 + y2 = a2(1 + x2y2) as
(
y
a

)2
= (x− a)(x− 1

a
)(x+ a)(x+ 1

a
), then

its function field is equivalent to that of v2 = (u − ϕ) · (u + 1) · u · (u − 1) when
ϕ = −1−1−1−1

1−1+1−1+2a2+2a−2 = − 2
a2+a−2 , i.e. a is a solution of a4 + 2

ϕ
a2 +1 = 0. In other

words, starting from z2 = (x − α1)(x − α2)(x − α3)(x − α4), we can transform
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this equation into v2 = (u − ϕ) · (u + 1) · u · (u − 1), which is in turn equivalent
to that of x2 + y2 = a2(1 + x2y2) with a as before. The proof is for deg(f) = 4
complete.

If f(x) has distinct roots and deg(f) = 3, we can assume its constant term
is nonzero. Otherwise, we replace f(x) by f(x + c). Dividing z2 = f(x) by x4

yields
(

z
x2

)2
= f1

(
1
x

)
, where f1 is a polynomial of degree 4, which is an already

known situation.

Note that this proof was built over number fields. Our attention is, however,
focused on finite fields. In non-binary finite fields, it clearly holds as well, but one
must be aware of one important aspect, namely that the major part of elliptic
curves isomorphism classes might need a field extension to perform the trans-
formation1. That is not very useful in limited environments such as smartcards,
therefore other ways to extend the number of isomorphism classes available were
pursued.

Not more than six months after the original appearance of Edwards curves
their generalization was publicised.

Definition 3.1.6 (Generalised Edwards curves.). A generalised Edwards curve
is of the form

x2 + y2 = c2(1 + dx2y2),

where cd(1− c4d) ̸= 0.

Remark 3.1.7. Because this definition allows for a wider class of elliptic curves
not requiring a field extension, we henceforwards identify Edwards curves with
generalized Edward curves (the original ones being with d = 1 and a = c).

The proof that this equation is an elliptic curve is similar, this time the sub-
stitution being z = y(1 − c2dx2), the resultant polynomial f(x) = c2dx4 − (1 +
c4d)x4 + c2, whose discriminant equals (1 + c4d)2 − 4c4d = (1 − c4d)2. The con-
ditions c ̸= 0 ̸= d are clear.

Definition 3.1.8. Let E be an elliptic curve over K. Let 0 ̸= d ∈ K, then the
quadratic twist of E, denoted by Ed, is defined by equation dy2 = x3 + ax+ b.

Remark 3.1.9. Note that the curves E and Ed are isomorphic over K(
√
d). Hence

they are birationally equivalent over K if and only if d is a square.

Theorem 3.1.10. Let K be a finite field, char(K) ̸= 2. Let E be an elliptic curve
over K such that the group E(K) has an element of order 4 and a unique element
of order 2. Then there exists a non-square d ∈ K such that x2 + y2 = 1 + dx2y2

is birationally equivalent to E over K.

Proof. Let us start from the long Weierstrass form s2 + a1rs+ a3s = r3 + a2r
2 +

a4r + a6. Since char(K) ̸= 2, we may assume a1 = a3 = 0 (otherwise, set
s̄ = s + (a1r + a3)/2). Let P denote a point of order 4 and 2P = (r2, s2). If
(r2, s2) ̸= (0, 0), set r̄ = r − r2 to remedy this situation. It follows that a6 = 0.
We have transformed E into s2 = r3 + a2r

2 + a4r.
1According to Bernstein and Lange in [6], more than one quarter of all isomorphism classes

of elliptic curves can be transformed to Edwards curves over the same field.
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Write P as (r1, s1) and note that s1 ̸= 0, for otherwise P has order 2. As a
consequence, r1 ̸= 0 as well. From the derivation of Group Law it is clear that
2P = (0, 0) is equivalent to the fact that the tangent line to E at P goes through
(0, 0). In other words, s1 − 0 = (r1 − 0)λ, where λ = (3r21 + 2a2r1 + a4)/2s1.
Therefore, 3r31 +2a2r

2
1 + a4r1 = 2s21 = 2r31 +2a2r

2
1 +2a4r1, the second equivalence

being derived from the fact that P is on E. Thus r31 = a4r1, i.e. r21 = a4.
Substituting this back to the equation s21 = r31+a2r

2
1+a4r1 yields a2 = s21/r

2
1−2r1.

Putting d = 1− 4r31/s
2
1 we obtain a2 = 2r1((1 + d)/(1− d)).

Note that since r1 ̸= 0, d ̸= 1. Also d ̸= 0, for otherwise the right side of E’s
equation would be r3 + a2r

2 + a4r = r3 + 2r1r
2 + r21r = r(r + r1)

2 and E would
not be an elliptic curve. If d is a square, then apart from (0, 0), there is another
point of order 2, namely (r1(

√
d+ 1)/(

√
d− 1), 0).

Let E ′ and E ′′ be two quadratic twists of E defined by respectively (r1/(1−
d))s2 = r3 + a2r

2 + a4 and (dr1/(1 − d))s2 = r3 + a2r
2 + a4r. Since K is finite

and d is a non-square, either r1/(1 − d) or dr1/(1− d) is a square in K, so E is
isomorphic to either E ′ or E ′′. Substitute u = r/r1 and v = s/r1 to see that E ′ is
isomorphic to (1/(1− d))v2 = u3 + s((1+ d)/(1− d))u2 + u and E ′′ is isomorphic
to (d(1 + d)/(1− d))v2 = u3 + 2((1 + d)/(1− d))u2 + u.

Our effort is now to show that x2+y2 = 1+dx2y2 is birationally equivalent to
(1/(1−d))v2 = u3+s((1+d)/(1−d))u2+u and therefore to E ′. The rational map
(u, v)→ (x, y) is defined by x = 2u/v and y = (u−1)/(u+1). Only finitely many
exceptional points satisfy v(u+ 1) = 0. The inverse rational map (x, y)→ (u, v)
is defined by u = (1 + y)(1 − y) and v = 2(1 + y)/(1 − y)x, again only finitely
many exceptions with (1− y)x = 0 may occur. By a tedious, yet straightforward
calculation one can show that the inverse rational map produces (u, v) satisfying
(1/(1− d))v2 = u3 + s((1 + d)/(1− d))u2 + u.

Substitute 1/d for d and −u for u to see that x2 + y2 = 1 + (1/d)x2y2 is
birationally equivalent to (1/(1−1/d))v2 = (−u)3+2((1+1/d)/(1−1/d))(−u)2+
(−u), i.e. to (d(1+d)/(1−d))v2 = u3+2((1+d)/(1−d))u2+u and consequently
to E ′′. The proof is complete.

Remark 3.1.11. Theorem 3.1.5 established a possibility of transforming every
elliptic curve to an Edwards one, but gave no advice on which are birationally
equivalent. Clear criteria are only available due to theorem 3.1.10, which also
provides a lower bound on the amount of such elliptic curves. To transform
x2 + y2 = 1 + dx2y2 to x̄2 + ȳ2 = c̄2(1 + d̄x̄2ȳ2), simply set x̄ = c̄x and ȳ = c̄y
for some d = d̄c̄4. Since K is finite, at least 1/4 of its nonzero elements are 4th

powers, so d/d̄ is a 4th power for at least 1/4 of d̄ ∈ K \ {0, 1}.

3.2 Addition law on Edwards curves
We have already defined Edwards curves and proved at least one quarter of el-
liptic curves over a non-binary finite field K are birationally equivalent to an
appropriate Edwards curve over K. What is left is to establish an addition law
and prove that it preserves the group structure introduced in section 1.4.

Definition 3.2.1. Let K be a finite field, char(K) ̸= 2. Let c, d ∈ K satisfy
cd(1 − cd4) ̸= 0 (i.e. E : x2 + y2 = c2(1 + dx2y2) is an Edwards curve over K).
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By an Edwards addition law we mean the map

(x1, y1), (x2, y2) 7−→
(

x1y2 + y1x2

c(1 + dx1x2y1y2)
,

y1y2 − x1x2

c(1− dx1x2y1y2)

)
. (3.1)

Remark 3.2.2. By a straightforward calculation, it is easy to verify that for any
P = (x1, y1) on the curve, P = P + (0, c), therefore (0, c) is a neutral element of
the addition law. Moreover, it is unique. Additionally, −P = (−x1, y1):

(x1, y1), (−x1, y1) 7−→
(
x1y1 + y1(−x1)

c(1− dx2
1y

2
1)

,
y21 + x2

1

c(1 + dx2
1y

2
1)

)
=

(
0

c(1− dx2
1y

2
1)
,
c2(1 + dx2

1y
2
1)

c(1 + dx2
1y

2
1)

)
= (0, c).

To finish classification of points on Edwards curves, note that (0,−c) has order 2
and (c, 0) and (−c, 0) have order 4. This is essentialy the reason why we demand
that a point of order 4 exists on an elliptic curve before transforming it in theorem
3.1.10. If such a point does not exists on E, we have to construct a field extension
K ′ such that E(K ′) has an element of order 4 and then apply theorem 3.1.10 to
E over K ′.

At first it is appropriate to prove that the map is well-defined, i.e. that the
denominators never vanish. This is the core of the following proposition.

Proposition 3.2.3. Let K be a field, char(K) ̸= 2. Let c, d, e ∈ K be nonzero
elements with e = 1− cd4. Assume d is not a square in K. Let x1, y1, x2, y1 ∈ K
satisfy x2

1 + y21 = c2(1 + dx2
1y

2
1) and x2

2 + y22 = c2(1 + dx2
2y

2
2). Then dx1x2y1y2 /∈

{−1, 1}.

Proof. Write ϵ = dx1x2y1y2 and suppose that ϵ ∈ {−1, 1}. Then x1, x2, y1, y2 ̸= 0.
Additionaly, dx2

1y
2
1(x

2
2 + y22) = dx2

1y
2
1[c

2(1 + dx2
2y

2
2)] = c2(dx2

1y
2
1 + d2x2

1y
2
1x

2
2y

2
2) =

c2(dx2
1y

2
1 + ϵ2) = c2(1 + dx2

1y
2
1) = x2

1 + y21. So

(x1 + ϵy1)
2 = x2

1 + y21 + 2ϵx1y1 = dx2
1y

2
1(x

2
2 + y22) + 2x1y1dx1x2y1y2

= dx2
1y

2
1(x

2
2 + 2x2y2 + y22) = dx2

1y
2
1(x2 + y2)

2.

If x2 + y2 ̸= 0 then d = ((x1 + ϵy1)/x1y1(x2 + y2))
2 and d is a square in K,

contradiction. Also when x2 − y − 2 ̸= 0, then d = ((x1 − ϵy1)/x1y1(x2 − y2))
2,

so d is a square, again a contradiction. Therefore both x2 + y2 and x2− y2 are 0,
but this is possible only when x2 = y2 = 0, contradiction.

We have proved that the map is defined in all cases, but it is not natural that
the image is on E as well.

Theorem 3.2.4. Let K be a field, char(K) ̸= 2, let c, d ∈ be nonzero with cd4 ̸= 1.
Let x1, x2, y1, y2 ∈ K satisfy x2

1 + y21 = c2(1 + dx2
1y

2
1) and x2

2 + y22 = c2(1 + dx2
2y

2
2).

Define x3, y3 as in (3.1). Then x2
3 + y23 = c2(1 + dx2

3y
2
3).

Proof. Define T = (x1y2+y1x2)
2(1−dx1x2y1y2)

2+(y1y2−x1x2)
2(1+dx1x2y1y2)

2,
by a long series of equations it is possible to verify that T = (x2

1 + y21 − (x2
2 +

y22)dx
2
1y

2
1)(x

2
2 + y22 − (x2

1 + y21)dx
2
2y

2
2).
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As the next step, subtract (x2
2+y22)dx

2
1y

2
1 = c2(1+dx2

2y
2
2)dx

2
1y

2
1 from x2

1+y21 =
c2(1+dx2

1y
2
1) to see that x2

1+y21− (x2
2+y22)dx

2
1y

2
1 = c2(1−d2x2

1x
2
2y

2
1y

2
2). Switching

the role of both equations yields x2
2 + y22 − (x2

1 + y21)dx
2
2y

2
2 = c2(1− d2x2

1x
2
2y

2
1y

2
2).

It follows that T = c4(1− d2x2
1x

2
2y

2
1y

2
2)

2.
It remains to substitute into the Edwards addition law. We have

x2
3 + y23 − c2dx2

3y
2
3 =

(x1y2 + y1x2)
2

c2(1 + dx1x2y1y2)2
+

(y1y2 − x1x2)
2

c2(1− dx1x2y1y2)2

− c2d(x1y2 + y1x2)
2(y1y2 − x1x2)

2

c4(1 + dx1x2y1y2)2(1− dx1x2y1y2)2
=

T

c2(1 + dx1x2y1y2)2(1− dx1x2y1y2)2

=
T

c2(1− d2x2
1x

2
2y

2
1y

2
2)

= c2,

which proves that x2
3 + y23 = c2(1 + dx2

3y
2
3) as desired.

Therefore, we have proved that the total of two points is again a point on the
curve. To complete the construction, we need that this addition law corresponds
to one on the birationally equivalent curve.

Theorem 3.2.5. Let conditions of theorem 3.2.4 be satisfied. Let e = 1−cd4 and
let E be the elliptic curve (1/e)v2 = u3 + (4/e− 2)u2 + u. For each i ∈ {1, 2, 3}
define Pi as follows: Pi =∞ if (xi, yi) = (0, c); Pi = (0, 0) if (xi, yi) = (0,−c) and
Pi = (ui, vi) if xi ̸= 0, where ui = (c+ yi)/(c− yi) and vi = 2c(c+ yi)/(c− yi)xi.
Then Pi ∈ E(K) and P1 + P2 = P3.

Proof. The first task is to show that Pi ∈ E(K). If (xi, yi) = (0, c), then Pi =
∞ ∈ E(K). If (xi, yi) = (0,−c), then Pi = (0, 0) ∈ E(K). Otherwise, Pi =
(ui, vi) ∈ E(K) by theorem 3.1.10.

To prove that also P1 + P2 = P3, we must split the proof into several parts.
If (x1, y1) = (0, c) then readily (x2, y2) = (x3, y3). P1 is the point at infinity and
P2 = P3, so P1 + P2 = ∞ + P2 = P2 = P3; similarly when (x2, y2) = (0, c).
Onwards we will assume that (x1, y1) ̸= (0, c) ̸= (x2, y2). If (x3, y3) = (0, c),
then (x2, y2) = (−x1, y1). If (x1, y1) = (0,−c) then also (x2, y2) = (0,−c) and
P1 = P2 = (0, 0); otherwise x1, x2 are nonzero. Thus u1 = (c+ y1)/(c− y1) = u2

and v1 = 2cu1/x1 = −2cu2/x2 = −v2, so P1 = −P2. We have dealt with all
situations when one of the three points is (0, c).

If (x1, y1) = (0,−c) then (x3, y3) = (−x2,−y2). Now (x2, y2) ̸= (0, c) and
(x2, y2) ̸= (0,−c) (in that case (x3, y3) = (0, c), contradiction), so x2 ̸= 0. Thus
P1 = (0, 0) and P2 = (u2, v2) where u2 = (c + y2)/(c − y2) and v2 = 2cu2/x2.
By the standard addition (0, 0) + (u2, v2) = (r3, s3) for r3 = (1/e)(v2/u2)

2 −
(4/e − 2) − u3 = 1/u2 and s3 = (u2/v2)(−r3) = −v2/u2

2. At the same time,
P3 = (u3, v3) where u3 = (c + y3)/(c − y3) = (c − y2)/(c + y2) = 1/u2 = r3 and
v3 = 2cu3/x3 = −2c/u2x2 = −v2/u2

2 = s3. Consequently, P1 + P2 = P3 – similar
process is available when (x2, y2) = (0,−c).

Assume for the rest of the proof that x1 ̸= 0 ̸= x2. If (x3, y3) = (0,−c)
then (x1, y1) = (x2,−y2) so u1 = (c + y1)/(c − y1) = (c − y2)/(c + y2) = 1/u2

and v1 = 2cu1/x1 = v2/u
2
2. Moreover, P3 = (0, 0), so the addition law says

that −P3 + P2 = (0, 0) + P2 = (1/u2,−v2/u2
2) = (u1,−v1) = −P1, i.e. that

P1 + P2 = P3. We can now assume that also x3 ̸= 0, hence P3 = (u3, v3) with
u3 = (c+ y3)/(c− y3) and v3 = 2cu3/x3.
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If P1 = −P2, then u1 = u2 and v2 = −v1, so x2 = −x1 and y2 = c(u2 −
1)/(u2 + 1) = c(u1 − 1)/(u1 + 1) = y1, so (x3, y3) = (0, c) which has already
been discussed. Assume that P1 ̸= −P2. The two last remaining cases, namely
(1) u1 = u2 and v1 ̸= −v2 and (2) u1 ̸= u2, are possible to verify through a
straightforward calculation.

We have proved that P1+P2 = P3 in any case, whatever the input points are.
This property is called completeness of the addition formulas. It is particularly
important, since the algorithms for Weierstrass curves required testing for point
doubling or addition or special cases (one of the points being the point at infinity
or the equation P1 = −P2). All this can be omitted and the implementor can only
use just this one formula. We don’t have to emphasize the effect Edwards addition
law has on the sensitive side-channel attacks, since all computations (additions
and doublings) might be performed by the same algorithm at the same cost of
time and memory.

However, a dedicated algorithm for point doubling is both available and faster.
When (x1, y1) = (x2, y2), the first denominator becomes c(1 + dx2

1y
2
1), which can

be rewritten as (x2
1 + y21)/c. The second one can be expressed as c(1− dx2

1y
2
1) =

c(1 + dx2
1y

2
1) − 2cdx2

1y
2
1 = (x2

1 + y21)/c − 2c − 2(x2
1 + y21)/c = (2c2 − (x2

1 + y21))/c.
Therefore,

2(x1, y1) =

(
2x1y1

c(1 + dx2
1y

2
1)
,

y21 − x2
1

c(1− dx2
1y

2
1)

)
=

(
2x1y1c

x2
1 + y21

,
(y21 − x2

1)c

2c2 − (x2
1 − y21)

)
. (3.2)

Even more speed can be gained by rewriting 2x1y1 as (x1 + y1)
2 − x2

1 − y21.

Affine coordinates. Points are represented by a double (x, y), the point at
infinity is (0, c), −(x, y) = (−x, y).

• addition: 2I + 6M + 2c+ 1d

A = x1 · x2; B = y1 · y2; C = A−B;

D = (x1 + y1) · (x2 + y2)− A−B; E = d · A ·B; F = c · (1 + E);

G = c · (1− E); H = 1/F ; I = 1/G;

x3 = D ·H; y3 = C · I.

• doubling: 2I + 2M + 4S + 1c

A = x2
1; B = y21; C = (x1 + y1)

2; D = A+B; E = 2c2 −D;

F = 1/D; G = 1/E; H = C −D; I = c(B − A);

x3 = H · F ; y3 = I ·G.

Projective coordinates. Points are represented by a triple (X : Y : Z), if
Z ̸= 0, they correspond to the affine point (X/Z, Y/Z). The neutral element is
(0 : c : 1) and inverse to (X : Y : Z) is (−X : Y : Z).

• addition: 10M + 1S + 1c+ 1d

A = Z1 · Z2; B = A2; C = X1 ·X2; D = Y1 · Y2; E = d · C ·D;

F = B − E; G = B + E; X3 = A · F · ((X1 + Y1) · (X2 + Y2)− C −D);

Y3 = A ·G · (D − C); Z3 = c · F ·G.
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• addition (alternative): 7M + 5S + 1c + 1d. Looking at the algorithm used
for computing point addition, it is possible to trade some multiplications
for squarings. More precisely, A(B − E), A(B + E) and (B − E)(B + E)
can be obtained from A2 (= B), B2, E2, (A+B)2 and (A+E)2. Therefore
3M is replaced by 4S, which is advantageous if S/M < 0.752.

• mixed addition: this is the case when Z2 = 1, i.e. the calculation A = Z1 ·Z2

can be omitted, saving 1M .

• doubling: 3M + 4S + 3c

B = (X1 + Y1)
2; C = X2

1 ; D = Y 2
1 ; E = C +D; H = (c · Z1)

2;

J = E − 2H; X3 = c · (B − E) · J ; Y3 = c · E · (C −D); Z3 = E · J.

• readdition: there are no calculations depending on only one point’s coordi-
nates, hence it is not possible to save time by caching them.

3.3 Binary Edwards Curves
Since the very beginning of this chapter, we have assumed that char(K) ̸= 2
(otherwise a general elliptic curve would not have the shape y2 = f(x) for some
f ∈ K[x] of degree 3 or 4). But the advantages of Edwards curves are so promi-
nent that their analogue over a binary field would be desirable. This effort was
not surprisingly taken by D. Bernstein and T. Lange in cooperation with R.
Farashahi within a year of appearance of the original Edwards Curves.

Definition 3.3.1. Let K be a field with char(K) = 2. Let d1, d2 ∈ K such that
d1 ̸= 0 and d2 ̸= d21 + d1. The binary Edwards curve with coefficients d1 and d2 is
the affine curve

EB,d1,d2 : d1(x+ y) + d2(x
2 + y2) = xy + xy(x+ y) + x2y2.

Remark 3.3.2. One can immediately notice that this curve is symmetric in x and
y, i.e. if (x1, y1) is a point on the curve, then (y1, x1) lies on it as well.

Theorem 3.3.3. Every binary Edwards curve is nonsingular.

Proof. As follows from the definition, d1 ̸= 0 and d2 ̸= d21 + d1. The partial
derivations of the curve equation are ∂E/∂x = d1 + y + y2 and ∂E/∂y = d1 +
x+ x2. By definition, a singular point (x1, y1) must satisfy d1 + x1 + x2

1 = 0 and
d1+ y1+ y21 = 0. Hence, x1+ y1 = x2

1+ y21 = (x1+ y1)
2, so x1 = y1 or x1 = y1+1.

In the former case, substituting x1 = y1 into the curve equation yields 0 =
x2
1 + x4

1. But since d1 + x1 + x2
1 = 0, d21 = x2

1 + x4
1 = 0, contradiction. The

latter case implies d1 + d2 = y21 + y41 and again using the partial derivation,
d21 = y21 + y41 = d1 + d2, contradicting d2 ̸= d1 + d21.

2For example, according to [8], the S/M ratio in NIST prime fields is about 0.8. This
assumption is in general justifiable for random primes. However, for some special primes the
modular reduction can be rendered negligible, allowing for the S/M ratio of about 0.6 (this is
the case of Mersenne primes, for instance). For example, the Curve25519 has S/M ≈ 0.67, see
[4].
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Recall that the trasformation of elliptic curves to Edwards curves over non-
binary fields was only possible if their fields of rational functions were birationally
equivalent (generally, they were all so over an extension of the underlying field).
We would like to know which binary elliptic curves might be transformed to
binary Edwards curves as well. Since we do not consider supersingular curves
here, an ordinary binary elliptic curve can be written as v2 +uv = u3 + a2u

2 + a6
where a6 ̸= 0. Consider the map (x, y) 7→ (u, v) defined by

u =
d1(d

2
1 + d1 + d2)(x+ y)

(xy + d1(x+ y))
,

v = d1(d
2
1 + d1 + d2)

(
x

xy + d1(x+ y)
+ d1 + 1

)
,

it constitutes a birational equivalence from EB,d1,d2 to the elliptic curve

v2 + uv = u3 + (d21 + d2)u
2 + d41(d

4
1 + d21 + d22).

An inverse map is as follows:

x =
d1(u+ d21 + d1 + d2)

u+ v + (d21 + d1)(d21 + d1 + d2)
,

y =
d1(u+ d21 + d1 + d2)

v + (d21 + d1)(d21 + d1 + d2)
.

The rational map (x, y) 7→ (u, v) has only one exceptional case: (0, 0). Let φ be an
extension of this map and define φ(0, 0) = P∞. Then φ is a function on all affine
points of EB,d1,d2 . (If xy + d1(x+ y) = 0, i.e. xy = d1(x+ y), then d2(x

2 + y2) =
xy(x+y)+x2y2 = d1(x+y)2+d21(x+y)2, therefore (d2+d21+d1)(x

2+y2) = 0, so
x2 + y2 = 0 and x = y. But substituting back to xy = d1(x+ y) leads to xy = 0,
so x2 = 0 and (x, y) = (0, 0).)

Thus binary Edwards curves are birationally equivalent to ordinary binary
Weierstrass curves, which is what we set on to prove.

Definition 3.3.4. Let EB,d1,d2 be a binary Edwards curve. Let (x1, x2) and
(x2, y2) be points on that curve. Define (x3, y3) = (x1, y1) + (x2 + y2) where

x3 =
d1(x1 + x2) + d2(x1 + y1)(x2 + y2) + (x1 + x2

1)(x2(y1 + y2 + 1) + y1y2)

d1 + (x1 + x2
1)(x2 + y2)

,

y3 =
d1(y1 + y2) + d2(x1 + y1)(x2 + y2) + (y1 + y21)(y2(x1 + x2 + 1) + x1x2)

d1 + (y1 + y21)(x2 + y2)
.

The proof that this addition law is indeed a group law and the resultant
group is isomorphic to the group on Weierstrass curve (by the map φ defined
above) is rather technical and does not involve deep mathematics. We shall turn
our attention to special aspects of binary Edwards curves, namely their class
allowing again for complete addition law.

Theorem 3.3.5. Let K be a field, char(K) = 2. Let d1, d2 ∈ K, d1 ̸= 0. Suppose
that t2 + t + d2 ̸= 0 for all t ∈ K. Then the addition law on the binary Edwards
curve EB,d1,d2 is complete.
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Proof. We must show that the denominators d1+(x1+x2
1)(x2+y2) and d1+(y1+

y21)(x2 + y2) are nonzero for all (x1, y1), (x2, y2) ∈ EB,d1,d2(K). Should x2 = y2,
both denominators become d1, which is nonzero by assumption. From now on,
suppose that x2 ̸= y2 and d1 + (x1 + x2

1)(x2 + y2) = 0, i.e. d1/(x2 + y2) = x1 + x2
1.

From the curve equation it follows that

d1
x2 + y2

=
d1(x2 + y2)

x2
2 + y22

=
d2(x

2
2 + y22) + x2y2 + x2y2(x2 + y2) + x2

2 + y22
x2 + y2

= d2 +
x2y2 + x2y2(x2 + y2) + y22

x2
2 + y22

+
y22 + x2

2y
2
2

x2
2 + y22

= d2 +
y2 + x2y2
x2 + y2

+
y22 + x2

2y
2
2

x2
2 + y22

(= x1 + x2
1).

Consequently, for t = x1+(y2+x2y2)/(x2+y2) ∈ K, t2+t+d2 = 0, contradiction.
Therefore d1 + (x1 + x2

1)(x2 + y2) ̸= 0. The second case is similar.

This theorem gives a clear clue which binary Edwards curves are favourable
and motivates the following definition.

Definition 3.3.6 (Complete binary Edwards curve). Let K be a field, char(K) =
2. Let d1, d2 ∈ K such that d1 ̸= 0. Assume that t2 + t + d2 ̸= 0 for all t ∈ K.
The complete binary Edwards curve with coefficients d1 and d2 is the affine curve

EB,d1,d2 : d1(x+ y) + d2(x
2 + y2) = xy + xy(x+ y) + x2y2.

Remark 3.3.7. Note that this is nothing else but a constraint on the previous
definition. Instead of requiring d21 + d1 + d2 ̸= 0, we insist that this condition
holds for all t ∈ K, not just d1. Over F2n it is equivalent to TrF2n/F2(d2) = 1.

To prove that complete binary Edwards curves are still general enough, we
need the following theorem.

Theorem 3.3.8. Let n be an integer, n ≥ 3. Each ordinary elliptic curve over
F2n is birationally equivalent over F2n to a complete binary Edwards curve.

Proof. At first we use the knowledge from chapter 1 to say that every ordinary
elliptic curve over F2n is isomorphic to v2+uv = u3+a2u

2+a6 for some a2 ∈ F2n

and a6 ∈ F∗
2n . Note that if Tr(a2) = Tr(a′2), then there exists b ∈ F2n such that

a′2 = a2 + b+ b2 and v 7→ v+ bu is an isomorphism from v2 + uv = u3 + a2u
2 + a6

to v2 + uv = u3 + (a2 + b+ b2)u2 + a6. Fix a2 and a6 for the rest of the proof.
Define

Dδ,ϵ = {d1 ∈ F∗
2n : Tr(d1) = δ, Tr(

√
a6/d

2
1) = ϵ}

for every δ, ϵ ∈ F2. If d1 ∈ DTr(a2)+1,1, then the pair (d1, d2) (where d2 = d21+d1+√
a6/d

2
1) fulfils Tr(d2) = Tr(

√
a6/d

2
1) = 1 and hence defines a complete binary

Edwards curve EB,d1,d2 . Moreover, since d41(d
4
1+ d21+ d22) = a6 from the definition

of d2, this curve is birationally equivalent to v2 + uv = u3 + (d21 + d2)u
2 + a6 and

therefore to v2 + uv = u3 + a2u
2 + a6 as well, for Tr(d21 + d2) = Tr(d1) +Tr(d2) =

Tr(a2) + 1 + 1 = Tr(a2).
We must show that DTr(a2)+1,1 is nonempty, which can be achieved by counting

elements of D01 and D11. At first, #D00 +#D01 is the number of d1 ∈ F∗
2n such

that Tr(d1) = 0, which implies #D00 +#D01 = 2n−1 − 1. Next, #D01 +#D11 =
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2n−1, since as d1 runs through F∗
2n , so does

√
a6/d

2
1, so its trace equals 1 exactly

2n−1 times.
Now consider d1 ∈ F∗

2n such that Tr(d1 +
√
a6/d

2
1) = 0. #D00 +#D11 clearly

denotes number of such d1s and for every one there exist exactly two s ∈ F2n

such that s2 + s = d1 +
√
a6/d

2
1, constituting two points (U1, V1) = (d1, d1s) on

the elliptic curve V 2 + UV = U3 +
√
a6. By Hasse’s theorem, this curve has

2n + 1 + t points for some t ∈ [−2
√
2n, 2
√
2n]. With the exception of the point

at infinity and (0, 0), every other point can be uniquely derived as described, so
#D00 +#D11 = 2n−1 + (t− 1)/2.

Substituting back to the two already established equations, 2#D01 = (#D00+
#D01)+ (#D01+#D11)− (#D00+#D11) = 2n−1−1+2n−1−2n−1− (t−1)/2 =
2n−1 − (t− 1)/2 and 2#D11 = 2n − 2#D01 = 2n−1 + (t + 1)/2. We can suppose
n ≥ 3, hence (

√
2n − 1)2 ≥ (

√
8 − 1)2 > 2. Therefore, 2n > 2

√
2n + 1 ≥ |t| + 1

and both D01 and D11 are nonempty.

Remark 3.3.9. The construction thus goes as follows: given an ordinary binary
Weierstrass curve with coefficients a2 and a6, we choose an arbitrary d1 satisfying
Tr(d1) = Tr(a2)+1 and Tr(

√
a6/d

2
1) = 1. If so, we compute d2 = d21+d1+

√
a6/d

2
1.

We finish having a complete binary Edwards curve EB,d1,d2 birationally equivalent
to the original curve. The theorem says that we can do this procedure for at least
one d1, but much stronger proposition is at hand: in fact, about fifty per cent of
d1 with Tr(d1) = Tr(a2)+ 1 are eligible, giving the implementors a wide choice of
appropriate d1 allowing for very fast multiplications.

Affine coordinates.

• addition: 2I + 8M + 2S + 3d

w1 = x1 + y1; w2 = x2 + y2; A = x2
1 + x1; B = y21 + y1;

C = d2w1 · w2; D = x2 · y2;
x3 = y1 + (C + d1(w1 + x2) + A · (D + x2))/(d1 + A · w2);

y3 = x1 + (C + d1(w1 + y2) +B · (D + y2))/(d1 +B · w2).

Note that according to theorem 3.3.5 the denominators can not be zero when
the curve is complete, hence the addition law is complete. Additionally,
when I/M > 3 it might be favourable to take advantage of the Montgomery
inversion trick (see e.g. [21]) and trade 2I for 1I + 3M .

• doubling: 1I + 2M + 4S + 2d

x3 = 1 +
d1 + d2(x

2
1 + y21) + y21 + y41

d1 + x2
1 + y21 + (d2/d1)(x4

1 + y41)
,

y3 = 1 +
d1 + d2(x

2
1 + y21) + x2

1 + x4
1

d1 + x2
1 + y21 + (d2/d1)(x4

1 + y41)
.

When d1 = d2, we can save one multiplication:

A = x2
1; B = A2; C = y21; E = A+ C;

F = 1/(d1 + E +B +D); x3 = (d1E + A+B) · F ; y3 = x3 + 1 + d1F.

This requires only 1I + 1M + 4S + 2d.
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Projective coordinates.

• addition: 18M + 2S + 7d

Since in binary fields the cost of field squaring is significantly lower than
multiplications3 and we can choose the parameters d1 and d2 to allow for
very fast multiplications, the most efficient algorithm is as follows:

A = X1 ·X2; B = Y1 · Y2; C = Z1 · Z2; D = d1C; E = C2;

F = d21E; G = (X1 + Z1) · (X2 + Z2); H = (Y1 + Z1) · (Y2 + Z2);

I = A+G; J = B +H; K = (X1 + Y1) · (X2 + Y2);

U = C · (F + d1K · (K + I + J + C));

V = U +D · F +K · (d2(d1E +G ·H + A ·B) + (d2 + d1)I · J);
X3 = V +D · (A+D) · (G+D); Y3 = V +D · (B +D) · (H +D);

Z3 = U.

• doubling: 2M + 6S + 3d

A = X2
1 ; B = A2; C = Y 2

1 ; D = C2; E = Z2
1 ; F = d1E

2;

G = (d2/d1)(B +D); H = A · E; I = C · E; J = H + I; K = G+ d2J ;

X3 = K +H +D; Y3 = K + I +B; Z3 = F + J +G.

• readdition: the aforementioned formulas do not feature computations that
could be cached for further use, so adding one point with several other ones
can not be sped up.

3The M/S ratio can be made up to 35, see [1] or [31].
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Conclusion
In previous chapters we have introduced elliptic curves, their arithmetics and
presented two different forms. Of course, as has been mentioned, Weierstrass
and Edwards forms are not the only ones, but it would be purposeless to name,
define and derive all of them. It suffices to refer to [32] for Hessian curves, [18]
for Jacobi Quartic curves and [23] for Koblitz curves.

Our attention to the former two has good mathematical and practical back-
ground. Firstly, Weierstrass curves present for historical reasons a very good
shape helping to understand the topic, especially in case of the group law’s graph-
ical expression. Moreover, every elliptic curve can be expressed in Weierstrass
form, so proofs done for that form apply to the whole environment. Weierstrass
curves were also the first ones on which some speedups were being looked for and
where the initial tricks emerged.

However, although other forms offered some improvements in terms of time
consumption, they did not overwhelmingly exceeded Weierstrass curves. More-
over, they possessed the same setbacks – namely the necessity to distinguish
between various cases and consequently the need to implement a whole algo-
rithm, not just formula. That is naturally ideal for side-channel attacks revealing
the secret key, a phenomenon of the last fifteen years. The effort of researchers
then focused on finding such formulas that would incorporate all cases and hence
both simplify the algorithm and prevent side-channel attacks. Unfortunately, it
has never been completed – nearest to their goal were strongly unified formulas
(without the need to distinguish between general addition and doubling), but
they still had some expceptional cases which had to be dealt with.

Together with their speed, this is the reason why Edwards curves have been
awarded such place here. Only they possess the ideal property: completeness,
i.e. one formula works for every pair of input, no matter what its elements are.
Of course, there are dedicated algorithms for point doubling faster than general
addition, but there is no neccessity in using them. If the implementor does not
seek to maximize speed and rather seeks to minimize side-channel information
leaks, he can feel free to use one formula in the whole application. Attacks like
power, timing or electromagnetic analysis are rendered infeasible – for free. As a
bonus, Edwards curves are the most efficient in terms of speed, as the following
tables illustrate. To sort the table, column ECDSA-384 (i.e. an average signing
operation in ECDSA with key length of 384 bits) was used.

However, for an implementor a serious concern arises when the applications
needs to reflect standards. Since ECSDA dates more than ten years back, it could
not have contained Edwards curves. Instead, it presents Weierstrass curves (with
a4 = −3 in large-p characteristics as this choice is more effective) over both bi-
nary and large-prime fields and Koblitz curves as a special case of binary curves
optimized for higher speed. Edwards curves are not yet included in any stan-
dardization documents, so whereas they might be used to factor large numbers
or in private proprietary solutions without much concern, their troublefree use
in public sphere is still doubtful. One can only hope that the standardization
process catches up with the latest technological progress soon to further favour
ECDSA.
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algorithm addition doubling ECDSA-384
Edwards projective 11.2M 7.3M 4953.6M
Edwards projective 2 12.2M 7.3M 5145.6M
Weierstrass Jacobian 14M 9.1M 6182.4M
Weierstrass projective, a4 = −3 14M 11M 6912M
Weierstrass projective, a4 ̸= −3 14M 12.1M 7334.4M
Weierstrass affine 23M 24M 13632M
Edwards affine + Montgomery trick 21.9M 29.1M 15379.2M
Edwards affine 46.4M 46.1M 26611.2M

Table 3.1: char(K) > 3: operations count assuming I = 20M , S = 1M and
a = c = d = 0.1M .

algorithm addition doubling ECDSA-384
Edwards projective 11M 6.5M 4608M
Edwards projective 2 11.2M 6.5M 4646.4M
Weierstrass Jacobian 12.8M 7.5M 5337.6M
Weierstrass projective, a4 = −3 13.6M 10.4M 6604.8M
Weierstrass projective, a4 ̸= −3 13.6M 11.1M 6873.6M
Weierstrass affine 22.8M 23.6M 13440M
Edwards affine + Montgomery trick 21.9M 28.3M 15072M
Edwards affine 46.4M 45.3M 26304M

Table 3.2: char(K) > 3: operations count assuming I = 20M , S = 0.8M and
a = c = d = 0.1M .

algorithm addition doubling ECDSA-384
Edwards projective 2 10.55M 5.98M 4321.92M
Edwards projective 10.87M 5.98M 4383.36M
Weierstrass Jacobian 12.02M 6.46M 4788.48M
Weierstrass projective, a4 = −3 13.34M 10.01M 6405.12M
Weierstrass projective, a4 ̸= −3 13.34M 10.45M 6574.08M
Weierstrass affine 12.67M 13.34M 7555.2M
Edwards affine + Montgomery trick 11.9M 17.78M 9112.32M
Edwards affine 26.4M 24.78M 14584.32M

Table 3.3: char(K) > 3: operations count assuming I = 20M , S = 0.67M and
a = c = d = 0.1M .

44



algorithm addition doubling ECDSA-384
Edwards projective 18M 2M 4224M
Weierstrass Jacobian 14M 4M 4224M
Weierstrass projective 14M 7M 5376M
Weierstrass affine 12M 12M 6912M
Edwards affine + Montgomery + d1 = d2 21M 11M 8256M
Edwards affine + Montgomery trick 21M 12M 8640M
Edwards affine 28M 12M 9984M

Table 3.4: char(K) = 2: operations count assuming I = 10M , S = 0M and
a = c = d = 0M .

algorithm addition doubling ECDSA-384
Edwards projective 18.4M 3.2M 4761.6M
Weierstrass Jacobian 15M 5M 4800M
Weierstrass projective 14.2M 7.6M 5644.8M
Weierstrass affine 12.2M 12.2M 7027.2M
Edwards affine + Montgomery + d1 = d2 21.4M 11.8M 8640M
Edwards affine + Montgomery trick 21.4M 12.8M 9024M
Edwards affine 28.4M 12.8M 10368M

Table 3.5: char(K) = 2: operations count assuming I = 10M , S = 0.2M and
a = c = d = 0M .

It is indeed interesting that with such advantages over DSA the spread of
ECDSA is not wider. A good example at the national level are biometric pass-
ports. The general outlines allow for RSA, DSA and ECDSA, but elliptic curves
are the case only in Switzerland and Germany. The vast majority of other coun-
tries (USA or EU members) still prefer older (and better known) alternative.

Through the whole thesis, we have been separating the case Fp and F2n . A
very natural question arises: which underlying field is better? The answer is
what one might expect: it depends on the situation. Binary fields allow for
carry-less and thus very fast addition (it is indeed just XOR). Also, the number
of representations of such a finite field is richer: it can be a polynomial base,
i.e. vector of polynomial coefficients (1, α, α2, . . . , αn−1) (then the field is iden-
tified with F2n [x]/(f(x)), where (f(x)) is the principal ideal generated by some
irreducible polynomial f(x) of degree n and α is its root). Additionaly, one can
favour normal base, which is a vector (α, α2, α22 . . . , α2n−1

) for some α ∈ F2n .
This is preferable in hardware applications, since squaring is nothing but a cyclic
shift.

On the other hand, large numbers in Fp must be dealt with otherwise. In
computers, the “human-readable” decimal basis is higly inefficient, so one ends
up with binary representation of large numbers anyway. In practise, the base is
usually half-size of the processor word (so 216 for 32-bit processors and 232 for
64-bit processors, for instance). Large fields favour sotfware implementations,
because the reductions needed are rather multi-line algorithms.

Elliptic curves arithmetics are a similar case – there is no formula being the
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most effective in all cases. It therefore depends on the circumstances varying
from the underlying field through the device to the purpose for which the whole
computation is performed. In the end there must be someone to collect all these
pieces of information, weigh them against each other and decide which path to
follow. Typically though, when one has a freedom of choice, one picks Edwards
curves over both binary and large-prime fields. We must hope that this option
reaches public standards soon and does not stay a mathematicians’ toy for a long
time.
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