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metodybody-fitted curvilinear coordinatesa spektrálnı́ metody. Zajı́mavé chovánı́ je
očekáváno v rozı́ch výpočetnı́ oblasti, kde jsou obvykle lokalizovány tlakové singu-
larity. Numerické výsledky však odhalujı́ základnı́ nedostatky použitého fyzikálnı́ho
modelu, přičemž jeho možné vylepšenı́ je diskutováno v závěru práce.
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Nomenclature

Symbol Meaning

α pressure-viscosity coefficient
γ surface tension
ǫ̇ compression rate(ǫ̇ = Ḣ/H = ḣ/h)
µ0 reference viscosity
ξ sample radius
π0 ambient pressure
̺ sample density
Σ free surface
τ tangent vector on free surface
Ω physical domain occupied by fluid
A0 initial contact area(A0 = πR2

0)
Ca Capillary numberD symmetric part of velocity gradient
f external forces
F normal force exerted on platesF deformation gradient
H plate separation(H = 2h)
H0 initial plate separation(H0 = 2h0)I unit tensor
L characteristic length scaleL velocity gradient
n normal vector on free surfaceN set of natural numbers
p pressure (mean normal stress)
R0 initial sample radius
Rp radius of platesR set of real numbers
Re Reynolds number
t timeT Cauchy stress tensor
v velocity field
V characteristic velocity
Vcl constant closure speed (positive)
x position vector in current frame
X position vector in reference frame
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1. Introduction
The problem studied in the present thesis is that of the isothermal axisymmetric squeeze
flow of homogeneous, incompressible fluids-like materials whose material moduli de-
pend on the pressure. In order to describe those fluids, advanced material models have
to be considered. We shall deal with a model which is used to describe an incom-
pressible fluid with pressure-dependent viscosity primarily. We shall examine whether
behaviour of such a model in the squeeze flow geometry can provide some interesting
departures from solutions obtained for the classical Navier-Stokes fluid.

Figure 1: Illustration of an axisymmetric squeeze flow with constant mass of sample
between plates.

By the termsqueeze flowwe shall understand the flow in which a constant mass
of a material is compressed (squeezed) between two parallelplates approaching each
other. Exactly this situation is sketched in Figure 1. To be more precise, we should call
it an axisymmetric squeeze flow. During this compression process the sample of a ma-
terial expands biaxially and shrinks along preferred axis.From this point of view one
can meet frequently used synonyms for squeeze flows such asuniaxial compressionor
biaxial extension.

The squeeze flow phenomenon is found in many engineering, biology and also
rheometry domains. In fact, it is one of the few deformationswhich has applications
for a wide class of materials. Concerning the engineering domain, squeeze flows are
involved in various technological issues such ascompression mouldingprocesses of
metals and polymers, some types ofdampersor bearings. On the other hand, com-
pression with irregular and not exactly parallel plates poses similar but undoubtedly
more complex problem, and sochewingbetween teeth ordiathrodial joints– for ex-
ample knee – are found to be relevant examples involving squeeze flows in biology
and bioengineering respectively.

The situation described and depicted above provides an important technique in
rheology, where it is used for examining rheological properties of materials that create
difficulties in standard rheometers. Particularly, materials with extremely high vis-
cosity and fluids with apparent yield stress belong into the mentioned category. The
methodology is closely related to food processing, since various foodstuffs (cheese,
wheat flour dough, mustard, tomato paste, mayonnaise, etc.)has been examined using
several types of squeeze flow tests. Basically it is possibleto carry out experiments
with constant plate speed, constant load or constant strainrate. Recent research in this
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field covers those and similar tests for personal care products and biomaterials.
Characterization of various materials is often associatedwith the development

of solutions for specific models. Plenty of material models,including many non-
Newtonian fluids, has been examined using the squeeze flow geometry. At this point
the reader is referred to the nice review article by Engmann et al. (2005). However,
the problem has not been solved, to our best knowledge, for fluids-like materials with
pressure-dependent material moduli.

The influence of pressure on material properties was systematically investigated by
Bridgman. In his pioneering work Bridgman (1926) showed that the viscosity (of many
organic fluids) can dramatically increase with the applied pressure while the density is
almost constant. It implies that it is reasonable to consider models for incompressible
fluids with pressure-dependent viscosity. Later, pressuredependent material moduli
were identified even for viscoelastic models, see the discussion by Ferry (1980) for
instance, and they have their special place concerning material properties of polymers.
For example Sedláček et al. (2004) fitted experimental data for several polymers using
the modified White-Metzner model.

Although the fact that the material moduli can depend on the pressure is relatively
well known, and the exact form of the functional dependence has been identified for
various fluids, it is almost ignored in many applications1. For instance in polymer en-
gineering materials are subjected to an extensive range of pressures and the mentioned
property could play an important role.

Similar situation arises in the case of squeeze flows. Natureof the squeeze flow
problem is substantially influenced by the choice of boundary condition at the sample-
plate interfaces. It becomes the most interesting when theno-slipboundary condition is
assumed there. As we shall see later, in such a case, pressurevariation in the squeezed
specimen is significant. Particularly, for an incompressible fluid with constant vis-
cosity – classical Navier-Stokes fluid – we expect complex solution behaviour in the
corners of the computational domain, with a possibility that the stress singularities will
be located there. Hence, behaviour of fluids with pressure-dependent viscosity can be
expected to be markedly different in such a case.

To close this introductory section let us remark that one canalso meet a situation in
which the space between plates is completely filled with a material. It is subsequently
squeezed out from that region, while the contact area between the sample and plates
remains constant. Some authors has also analysed conceptually simpler planar squeeze
flow alongside the axisymmetric case. We shall not consider these variations here.

1Some exceptions can be found in elastohydrodynamics and hydrodynamic lubrication, see for ex-
ample Gwynllyw et al. (1996), Rajagopal and Szeri (2003), Lanzendörfer (2011).
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2. Specification of the problem
In this chapter we shall specify the problem we want to solve.In the first part we shall
formulate governing equations for the creeping flow of an incompressible fluid-like
material with pressure-dependent material moduli, in the second part we shall provide
a detailed description of the problem geometry and we shall point out all the simplifi-
cations involved in the physical model.

2.1 Governing equations

In the present thesis we are interested in squeeze flows of fluids-like materials that are
idealized as incompressible and homogeneous with constantdensity̺0. Influence of
the temperature on material properties is neglected in the sense we consider an isother-
mal process.

2.1.1 Kinematic considerations and balance equations

Let us mention a brief discussion about kinematics at this point. More information
can be found for example in Ogden (1984), Gurtin (1981). Fromthe viewpoint of
continuum physics, a sample of a material forms a bodyB consisting of continuously
distributed matter. Formally, bodyB is a set of material points which occupy some
region in a three dimensional Euclidian spaceE .

We define a configuration ofB to be one-to-one mappingκ ∶ B → E which takes the
material points ofB to the places they occupy inE . By a motion ofB we mean a one
parameter family of configurationsκt ∶ B → E , where the subscript identifies the time
t as parameter. We shall refer toκ0(B) as to the reference configuration ofB at time
t = 0, whereasκt(B) denotes the current configuration ofB at any particular instant
t ∈ R. It follows that all the material pointsP ∈ B can be uniquely identified with the
points in the reference configuration throughout

X = κ0(P ), P = κ−10 (X),
and consequently a motion ofB can be identified with a one-to-one mapping

χ ∶ κ0(B) ×RÐ→ κt(B).
We write

x = χ(X, t), X = χ−1(x, t). (2.1)

We shall suppose thatχ together with its inverse are sufficiently smooth1 to render
the operations defined on it meaningful. As it is usual in continuum mechanics, we
admit standard Lagrangian and Eulerian description of quantities – scalars, vectors
and tensors – associated with bodyB.

For an arbitrary pointX ∈ κ0(B), the set of points

{χ(X , t)∣ t ∈R} (2.2)

1It should be enough for our purposes to assume thatχ is aC2-diffeomorphism.
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is called the trajectory (pathline) ofX. The velocity fieldv is then defined through

v(X, t) = ∂χ
∂t
(X , t). (2.3)

In Eulerian description we have

v(x, t) = ∂χ
∂t
(X , t)∣

X=χ−1(x,t)
. (2.4)

As we have mentioned earlier, we are interested in modellingof fluids-like materials
primarily, and thus the determination of the velocity field,as a part of the solution
that is sought-after, will be the crucial issue for us. Another important quantity is the
velocity gradient L = gradv ≡ ∂v

∂x
, Lij = ∂vi

∂xj
, (2.5)

and especially its symmetric partD = 1
2
(L + L⊺) , Dij = 1

2
( ∂vi
∂xj
+ ∂vj
∂xi
) . (2.6)

The deformation gradientF is defined throughF = Gradχ ≡ ∂χ
∂X

, Fij = ∂χi

∂Xj

. (2.7)

An incompressible body naturally undergoes an isochoric flow. It means we have

detF = 1 (2.8)

and consequently2

divv = 0. (2.9)

Let us remark that the latter constraint is sometimes calledtheincompressibility condi-
tion and it can be equivalently expressed in terms of the tensorial quantityD, through

trD = 0, (2.10)

wheretr denotes the trace of a tensor.
The concept of balance of mass in its local form (from the “Eulerian perspective”)

leads to the partial differential equation, also known as continuity equation,

∂̺

∂t
+ v ⋅ grad̺ + ̺div v = 0. (2.11a)

For an incompressible flow it immediately follows, with the use of (2.9), that

d̺

dt
= 0, (2.11b)

where d

dt
denotes the material time derivative. Since the material issupposed to be

homogeneous with constant density̺0 in the reference configuration, previous relation

2For details see the references stated at the beginning of this paragraph or any other textbook on
continuum mechanics.
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implies that̺ ≡ ̺0 remains constant. Similarly, balance of linear momentum inits local
form leads to the equation

∂(̺v)
∂t

+ div (̺v ⊗ v) = ̺f + divT, (2.12a)

whereT denotes the Cauchy stress tensor (see the next paragraph) and f represents
external forces (e.g. the gravitation force). Using the continuity equation one can write
previous relation in the form

̺
dv

dt
= ̺f + divT. (2.12b)

In what follows we putf equal to zero3. One can suppose the absence of internal
couples for our purposes, so that balance of angular momentum implies the symmetry
of the Cauchy stress tensor.

Under above considerations, the system of governing equations for the flow of an
incompressible, homogeneous fluid reads

divv = 0, (2.13a)

̺
dv

dt
= divT, (2.13b)T = T⊺. (2.13c)

In order to close this system, we need to provide a constitutive equation for the Cauchy
stressT.

2.1.2 Constitutive equation for the Cauchy stress

In the main scope of the thesis we study behaviour of an incompressible fluid that can
be described using the simple modelT = −pI + 2µ(p)D. (2.14)

It is obvious thatT satisfying the latter relation immediately satisfies (2.13c). More-
over, taking (2.10) into account it follows that the Lagrange multiplier p in (2.14)
fulfills

p = −1
3
trT, (2.15)

thus it represents the mean normal stress which is simply called the pressure. Now it
should be clear that the viscosity is, in fact, a function of the mean normal stress and so
(2.14) provides an implicit relationship betweenT andD. From the theoretical point of
view, the material model just presented belongs to the category of implicit constitutive
relations satisfying

g(T,D) = 0, (2.16)

whereg denotes an appropriate tensor function, and it fits into the thermodynamical
framework developed by Rajagopal and Srinivasa (2008).

3We will generally assume that proportions of the sample in question are small enough (perhaps
a few centimeters) to safely neglect the gravitation force.

6



It remains to determine a specific form of the functionµ(p). Some simple flows
of fluids satisfying above relations were studied by Hron et al. (2001), when they as-
sumed different formulas relating the viscosity and the pressure. Here we shall use the
exponential dependence

µ(p) = µ0e
αp, (2.17)

whereµ0 should be understood as the reference viscosity atp = 0 (the reference pres-
sure), whileα is a material constant usually interpreted as thepressure-viscosity co-
efficient. Such kind of functional dependence is often called the Barus law. As one
would expect, and it is confirmed by experimental studies, the viscosityµ increases
with increasing pressure, and thus we assume thatα is positive.

Some particular values ofµ0 andα for specific materials can be found in Table 1
which was taken from Průša et al. (2012) with permission. Another fluids obeying
the above relation are some food products, see for example Schaschke et al. (2006),
or various polymeric liquids and polymer solutions, see forexample Liang (2001),
Harris and Bair (2007).

Note that forα = 0 one obtains, from (2.14), the classical constitutive equation for
an incompressible Navier-Stokes fluidT = −pI + 2µ0D. (2.18)

Fluid µ0 [Pa ⋅ s] α [1/GPa]

Octamethyltrisiloxanea 0.12×10−3 13

Vegetable biodieselb 7.5×10−3 12

Diisodecyl phthalatec 123×10−3 26

Paraffinic oilsd 810×10−3 34

PαMSANe 1.08×103 35

a Data taken from King et al. (1992). (Our fit of original tabulated data.)
b Data taken from Paton and Schaschke (2009). Controlled temperature of
20 °C.

c Data taken from Harris and Bair (2007), sample B at 20 °C.
The authors have fitted the data fit for the formulaµ = ea0+a1p+a2p

2+a3p
3

.
Here we have calculatedµ0 andα from a0 anda1.

d Data taken from Neale (1973). (Generic cylinder paraffinic oil, temperature
30 °C.)

e Data taken from Cardinaels et al. (2007). (Our fit of originaldata in Figure 8,
temperature 210 °C, shear stress level 270 kPa.)

Table 1: Parameter values for some fluids with pressure dependent
viscosity, fit of formula (2.17). Reprinted from Průša et al. (2012)
with permision.

2.1.3 Governing equations in dimensionless variables

Now we derive a dimensionless version of governing equations (2.13) and (2.14). Let
L be a characteristic length,V a characteristic velocity andµ0 the reference viscosity
as stated above. Using these characteristic quantities we define dimensionless counter-
parts (denoted by asterisk) oft,x,v,D andT as follows,

t∗ = V
L
t, x∗ = x

L
, v∗ = v

V
, D∗ = L

V
D, T∗ = L

µ0V
T.
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Let us remark that dimensionless pressurep∗ is naturally defined in the same way as
the dimensionless Cauchy stress, i.e.p∗ = L

µ0V
p, see (2.15). Dimensionless version of

governing equations then reads

div∗v∗ = 0, (2.19a)

Re
dv∗

dt∗
= div∗T∗, (2.19b)T∗ = −p∗I + 2eα̂p∗D∗, (2.19c)

where the dimensionless Reynolds number is given asRe = ̺LV
µ0

(the ratio of inertial
and viscous forces). Another dimensionless parameter corresponding to the pressure-
viscosity coefficient appears in (2.19c) and is given through

α̂ = µ0V

L
α. (2.20)

Further, we shall follow the situation stated in the articleby Engmann et al. (2005):
“In many practical applications one is dealing with very viscous fluids and/or slow
plate movements so that the Reynolds number is small enough to safely neglect the left
hand side of the equations.”In fact, we are neglecting inertia in this way and equation
(2.19b) is reduced to

div∗T∗ = 0. (2.21)

Substituting (2.19c) to (2.21) we get the system of dimensionless equations4

div∗v∗ = 0, (2.22a)

−grad∗p∗ + eα̂p∗ (∆∗v∗ + 2α̂D∗grad∗p∗) = 0. (2.22b)

We would like to solve these equations for the axisymmetric squeeze flow setting de-
scribed further.

2.1.4 Discussion on suitable material parameters

It is worth emphasizing that in order to stay consistent withall the assumptions made
so far, one has to ensure the dimensionless parameterα̂ to be greater in magnitude
than the Reynolds number (at least about one order). Otherwise, we should probably
neglect also the terms appearing withα̂. If we did it, equations (2.22) would reduce
to become the well-known Stokes system5. Nevertheless, it is possible to meet the
requirement as stated above, when parameters of the experiment are chosen carefully.

Let us have a look at the ratio ofα̂ and the Reynolds number, which is

α̂

Re
= αµ2

0

̺L2
.

Although materials mentioned in Table 1 do not represent ideal exemplars to fit our
assumptions (they were selected in the context of measurements with falling cylinder

4D∗ gradp∗ is a vector obtained simply by application of the tensorD∗ on the vectorgradp∗, thus
its i-th component in Cartesian coordinates is given by∑3

j=1 D
∗
ij

∂p∗

∂x∗
j

.
5In fact, it is open to debate whether to neglect those terms ornot. In comparison with the inertial

effects, the pressure and pressure gradients themselves could be quite large (especially in a corner). The
pressure-dependent viscosity, although withα̂ being small, still can play an important role in such cases.
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viscometer), the reader can get the idea that the pressure-viscosity coefficientα takes
the values of order about10−7 –10−81/Pa for a wide class of materials. It should be clear
that the requirementα̂

Re
≫ 1 can be satisfied for those materials with relatively high

reference viscosity and/or small density, when the characteristic length scale is small
enough. For instance, taking into account materials with the reference viscosity of
order105Pa ⋅ s and the density about103 kg/m3 (e.g. some polymer melts), it is suitable
to squeeze specimens with an initial height of several centimeters.

2.2 Axisymmetric squeeze flow

Once we have governing equations we need to specify a domain in which they have to
be solved. At the same time we need to know boundary conditions that are expected
to be satisfied on boundaries of the domain in question.

2.2.1 Geometry

A sketch of an axisymmetric squeeze flow problem is shown in Figure 1. According
to geometry of the problem it is convenient to work within a cylindrical coordinate
system{r, θ, z}6. Indeed, given axial symmetry causes that all quantities describing the
problem are independent of the angular coordinateθ. In other words, the description
of the problem does not depend upon the chosen angle and it suffices to restrict our
observations to the plane{r, z}7.

We claimed above that the effect of external forces, including the gravitation force,
is not considered here (the specimen between plates is quitesmall). Hence, one can
also use the symmetry along the central plane parallel to both plates.

An appropriate coordinate system for this case is introduced in Figure 2. We shall
describe the deformation process – the flow – during the time interval[0, tend]. Then
H(t) denotes the distance between plates at some particular timeinstant, whileh(t) =
1
2
H(t) is the distance between the upper plate and the central plane8. For initial values

we use the notationH0, h0 respectively. Let us suppose that both plates are identical,
their radiusRp is constant and much larger than the initial radius of the sample,R0.

Since we consider the sample of an incompressible material to be compressed, it
has to expand in radial direction during the compression itself. Therefore the sample
radiusξ evolves in time and simultaneously it is a function ofz (except the case when
the perfect-slip boundary condition is prescribed, as we shall see later). Further it is
assumed that the sample forms an ideal cylinder at the beginning of our observation,
thus we have

ξ(z,0) = R0, ∀z ∈ [−h0, h0]. (2.23)

Now it should be clear that it is not necessary to consider whole inherently transient
domain occupied by the fluid, but it suffices to restrict our attention to the upper-right

6See Appendix A for detailed information about cylindrical coordinates.
7More precisely we should probably say the plane{r,0, z} ∪ {r, π, z}, ∀r ∈ [0,∞),∀z ∈ R. For

simplicity, let us introduce the notation

{−r, z} ≡ {r, π, z}, ∀r ∈ (0,∞),∀z ∈R.

8Of course we supposeH(t) > 0 for all t ∈ [0, tend].
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Figure 2: Coordinate system for an axisymmetric squeeze flow with basic labels.

quadrant in the coordinate system just given. We denote

Ωt = {(r, z) ∶ z ∈ [0, h(t)], r ∈ [0, ξ(z, t)]} (2.24)

the mentioned part of the physical domain at timet. With the knowledge of a solu-
tion which pertains toΩt, the complete solution can be simply reconstructed due to
symmetries.

Velocity of the upper plate is given as the time derivativeḣ of the functionh, and
quantity called compression rate,

ǫ̇ = ḣ
h
, (2.25)

is introduced quite commonly. Various settings are available in order to examine ma-
terial properties in the squeeze flow rheometry. One possibility is to use a constant
load and observe, for instance, how much the sample shrinks its height. Another com-
monly used test requires a constant closure speed (it means that the velocity of plates
is constant) and measures, besides other things, the force exerted by the sample on the
plate against the direction of plate motion. Last but not least, it is possible to consider
experiments with a constant compression rateǫ̇.

In the present paper we are limiting ourselves to the case with constant closure
speedḢ = −Vcl, Vcl > 0, and we putV = 1

2
Vcl to be the characteristic velocity discussed

in Section 2.1.3. Motion of the upper plate is then given through

h(t) = h0 − V t, ḣ(t) = −V. (2.26)

In order to avoid an abrupt (discontinuous) activation of the motion, which implies an
inconsistency of initial conditions, it is more convenientto allow a smooth start-up, let
us say during the time interval[0, t0] with 0 < t0 < tend. One possible choice is

h(t) =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
h0 + V ( t

t0
)3 (1

2
t − t0) , t ∈ [0, t0],

h0 + V (1
2
t0 − t) , t ∈ (t0, tend],

(2.27a)
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ḣ(t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
V ( t

t0
)2 (2t

t0
− 3) , t ∈ [0, t0],

−V, t ∈ (t0, tend].
(2.27b)

It is important that for allt ∈ [0, tend] we know the exact value ofh andḣ respectively.

2.2.2 Boundary conditions

LetΩt is the domain given in (2.24). Its boundary∂Ωt consists of three different parts,
see Figure 3. It is the sample-plate interface, the artificial boundaries along both axes
of symmetry and the free surfaceΣt. Quantitiesvr, vθ, vz are used to denote physical
components of vectorv in cylindrical coordinates and similarlyTrr,Trθ,Trz, etc., rep-
resent physical components of the second order symmetric tensorT (see Appendix A
for detailed information). Let us consider squeeze flow without superimposed rotation.
It means that there is no velocity component inθ-direction (vθ = 0 everywhere in the
physical domain occupied by the fluid, and consequently the shear stressesTrθ, Tzθ

are also zero).

Figure 3: Specification of the boundary∂Ωt.

Conditions enforcing symmetry of the solution have to be prescribed along each of
both axes. We put

vz ∣z=0 = 0, Trz ∣z=0 = 0, vr∣r=0 = 0, Trz ∣r=0 = 0. (2.28)

On the free surface one has to prescribe two different kinds of boundary conditions.
The dynamic boundary condition is usually given in the formTn = −π0n + γ (1

ξ
+ 1

ψ
)n, (2.29)

wheren is the outward unit vector normal to the free surface,π0 is the ambient pres-
sure,γ is the surface tension andξ,ψ are the principal radii of curvature of the free
surface. The ambient pressure is usually set to zero and it isused as the reference value
for the pressure scale9.The dynamic condition rewritten in dimensionless variables then
reads T∗n = 1

Ca
( 1
ξ∗
+ 1

ψ∗
)n,

9It can be understood that we redefine the Cauchy stress to beT̃ = T + π0I.
11



with ξ∗ = 1
L
ξ, ψ∗ = 1

L
ψ and Capillary numberCa = µ0V γ−1 (the ratio of viscous and

surface tension forces). Since we are dealing with very viscous fluid,Ca is typically
very large10 and the latter condition is reduced tono tractionconditionT∗n = 0. (2.30)

Before we formulate another condition (this time a kinematic one), which has to be
satisfied on the moving free surface, we definef(r, z, t) =def r−ξ(z, t) to be a function
that enables to describe the free surface at timet implicitly as a set of points

Σt = {(r, z) ∶ f(r, z, t) = 0}. (2.31)

The free surface naturally creates a material surface at anytime instant, thus it has to
satisfy the condition

(∂f
∂t
+ v ⋅ grad f) ∣

Σt

= 0. (2.32)

It means that the material derivative off has to be zero on the free surface. This
statement is also known asLagrange criterionand it is proved for example in the book
of Maršı́k (1999), pages 83-85. In our case the kinematic condition reads

(−∂ξ
∂t
+ vr − vz ∂ξ

∂z
) ∣

r=ξ

= 0. (2.33)

At the sample-plate interfaces boundary conditions play animportant role concern-
ing the nature of the flow. At first, we assume that no fluid can penetrate into the plate,
thus in the vertical direction we set

vz ∣z=h = ḣ. (2.34)

If the sample is able to move freely without friction at the interface in question, we
useperfect-slipin the form

Trz ∣z=h = 0. (2.35a)

As we shall see later, there is no curvature of the free boundary during the compression
and solution of the problem can be obtained in a quite straightforward manner. How-
ever, it is very complicated (even almost impossible) to ensure such type of condition
in practice. Chatraei et al. (1981) introduced a “lubricated squeeze flow” technique to
obtain a nearly pure biaxial extension.

On the other hand, one can considerno-slipboundary condition with the sample
being fixed at the sample-plate interfaces. It means that no motion along radial axis is
allowed there and

vr∣z=h = 0. (2.35b)

Curvature of the free surface of the specimen between platesis observed in this case
and one needs to solve afree boundary problem. The fact that the outward unit normal
n is unknown makes it cumbersome to use the condition (2.30) insearch for an exact
solution of the problem. As we shall see later, there is a way how to use the dynamic
condition in a numerical treatment of the problem, however,for analytical computa-
tions an assumption about the pressure or normal stress at the edge of the plates is
usually made (see the following section).

10It means that surface tension effects are negligible.
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Presence of the well-known phenomenon of moving contact line further compli-
cates the situation, see for example Huh and Scriven (1971),Bonn et al. (2009). Ap-
parent motion of the contact line11 is observed due to “barrelling” of the sample along
plates and it has been nicely illustrated experimentally and numerically for example by
Mavridis et al. (1992). This phenomenon is discussed again in Section 5.2.1.

Finally, there are several possibilities how to employpartial-slip at the interfaces
(see the discussion by Engmann et al. (2005) together with references therein). One
possible option, known asNavier slip boundary condition, is obtained as a combination
of the two extreme cases mentioned above and it reads

−λTrz ∣z=h + (1 − λ) vr∣z=h = 0, λ ∈ (0,1). (2.35c)

The same condition is sometime used in the form

vr∣z=h = β Trz ∣z=h,
whereβ = λ

1−λ is the “slip coefficient” with values from(0,∞). It is worth noting that
limiting behaviour forλ → 0+ andλ → 1− (alternativelyβ → 0+, β →∞) recovers the
no-slip and the perfect-slip respectively.

2.2.3 Dimensionless variables

At this point we need to specify characteristic quantities introduced in Section 2.1.3.
Scaling lengths withL = h0, velocities withV = 1

2
Vcl and time withL

V
, we put

Ω∗t = {(r∗, z∗) ∶ z∗ ∈ [0, h∗ (t∗)], r∗ ∈ [0, ξ∗ (z∗, t∗)]} (2.36)

to be the corresponding dimensionless version of the domainΩt where governing equa-
tions (2.22) have to be solved. For initial radius we haveξ∗(z∗,0) = R̂0 with

R̂0 = R0

L
= R0

h0
. (2.37)

Relations (2.26) and (2.27) in their dimensionless form read12

h∗(t∗) = 1 − t∗, ḣ∗(t∗) = −1, (2.38)

and

h∗(t∗) =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1 + (t∗

t∗0
)3 (1

2
t∗ − t∗0) , t∗ ∈ [0, t∗0],

1 + 1

2
t∗0 − t∗, t∗ ∈ (t∗0 , t∗end],

(2.39a)

ḣ∗(t∗) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(t∗
t∗0
)2 (2t∗

t∗0
− 3) , t∗ ∈ [0, t∗0],

−1, t∗ ∈ (t∗0 , t∗end].
(2.39b)

The above functions are depicted in Figure 4 together with the dimensionless compres-
sion rate

ǫ̇∗ = ḣ∗
h∗
. (2.40)

11By contact line we mean the intersection of fluid, plate and surrounding medium.
12The superimposed dot this time denotes the time derivative with respect tot∗.
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(a) Positionh∗ of the plate.
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(b) Velocity ḣ∗ of the plate.
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(c) Compression ratėǫ∗.

Figure 4: Motion of the upper plate in agreement with (2.38) and (2.39)for t∗0 = 0.2,
t∗end = 0.6.

2.2.4 Summary of simplifying assumptions

For clarity, before we formulate the dimensionless problemin cylindrical coordinates,
let us summarize all the simplifying assumptions introduced throughout this section.

∎ K INEMATICS:

● Problem is axisymmetric, therefore all quantities are independent of coor-
dinateθ.

● There is no superimposed rotation of the sample between plates, hence
vθ = 0.

∎ DYNAMICS :

● External forces are neglected (hence symmetry along the central plane is
considered).

● Inertial effects are neglected (we deal with the creeping flow).

● Surface tension on the free surface is not considered.
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2.2.5 Dimensionless problem in cylindrical coordinates

From now on we will use only dimensionless variables and hence we will omit asterisk
denoting dimensionless variables in the equations above. Governing equations (2.22)
in cylindrical coordinates read

0 = ∂vr
∂r
+ vr
r
+ ∂vz
∂z

, (2.41a)

∂p

∂r
= eα̂p [∂2vr

∂r2
+ 1

r

∂vr

∂r
+ ∂

2vr

∂z2
− vr
r2
+ 2α̂∂p

∂r

∂vr

∂r
+ α̂∂p

∂z
(∂vr
∂z
+ ∂vz
∂r
)] , (2.41b)

∂p

∂z
= eα̂p [∂2vz

∂r2
+ 1

r

∂vz

∂r
+ ∂

2vz

∂z2
+ α̂∂p

∂r
(∂vr
∂z
+ ∂vz
∂r
) + 2α̂∂p

∂z

∂vz

∂z
] . (2.41c)

The remaining equation in (2.22b), corresponding toθ-direction, is identically satis-
fied. System (2.41) is supplemented with boundary conditions discussed in Section
2.2.2. These conditions, when they are rewritten using dimensionless variables, are of
the same form as above. At this point, the set of boundary conditions is presented in a
well arranged way and in the rest of the thesis we shall often reference ourselves to the
following list.

• At the sample-plate interface (z = h) we consider either a couple of boundary
conditions for the perfect-slip, it means

vz ∣z=h = ḣ, Trz ∣z=h = 0, (2.42a)

or for the no-slip, which is

vz ∣z=h = ḣ, vr∣z=h = 0. (2.42b)

• On the axes of symmetry (r = 0, z = 0) we have symmetry conditions

vr∣r=0 = 0, Trz ∣r=0 = 0, (2.43)

vz ∣z=0 = 0, Trz ∣z=0 = 0. (2.44)

• No traction condition (2.30) on the free surface (r = ξ) provides two equations

(Trr − ∂ξ
∂z

Trz) ∣
r=ξ

= 0, (Trz − ∂ξ
∂z

Tzz) ∣
r=ξ

= 0, (2.45)

since the outward unit normaln satisfies

n(ξ(z), z) = (1 + (∂ξ
∂z
)2)−

1

2

⎡⎢⎢⎢⎢⎢⎣
1

0

−∂ξ
∂z

⎤⎥⎥⎥⎥⎥⎦
, z ∈ [0, h].

• The kinematic condition reads

(−∂ξ
∂t
+ vr − vz ∂ξ

∂z
) ∣

r=ξ

= 0. (2.46)
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3. Analytical solutions
At the beginning of this section let us emphasize that we do not seek an exact solution
of the problem discussed above. Even worse, in the case with no-slip boundary condi-
tion we solve a slightly different problem obtained from theoriginal one considering
another simplifying assumptions. However, main purpose ofthis section is to provide
some analytical results that can reveal in what way the pressure-dependent viscosity
influences solution behaviour1, and moreover, later we will use the results obtained
here to propose a benchmark problem for the numerical simulation (see Section 4.3).

Solutions will be obtained using theperturbation methodwith respect to parameter
α̂, see for example Bush (1992). The method is based on the fact that we seek velocity
v and pressurep of the form

vr = vr,0 + vr,1α̂ + vr,2α̂2 + . . . ,
vz = vz,0 + vz,1α̂ + vz,2α̂2 + . . . ,
p = p0 + p1α̂ + p2α̂2 + . . . ,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(3.1)

which is usually called theperturbation expansion. Substitution of (3.1) into (2.41)
and subsequent expansion of the exponential term,

eα̂p = 1 + pα̂ + 1

2
p2α̂2 +O(α̂3) = 1 + p0α̂ + (p1 + 1

2
p20) α̂2 +O(α̂3) , (3.2)

provide straightforward decomposition of the system of equations. Indeed, subsystem
of orderk (for k = 0,1,2, . . . ) is obtained comparing the terms that appear together
with α̂k.

Of course, to each subsystem we add corresponding terms fromthe perturbation
expansion of boundary conditions (then we talk about subproblems instead of subsys-
tems). For example, the first condition in (2.42a) satisfies

(vz,0 + vz,1α̂ + . . .) ∣z=h = ḣ + 0α̂ + . . . ,
and similarly the first condition in (2.45) reads

(Trr,0 − ∂ξ0
∂z

Trz,0 + (Trr,1 − ∂ξ0
∂z

Trz,1 − ∂ξ1
∂z

Trz,0) α̂ + . . .) ∣
r=ξ

= 0 + 0α̂ + . . . .
To be more precise, let us do some remarks on notation used in the latter expression.
According to (2.19c), for therz-component of the stress tensor we have

Trz = eα̂p (∂vr
∂z
+ ∂vz
∂r
) =

= ∂vr,0
∂z
+ ∂vz,0

∂r
+ (p0 (∂vr,0

∂z
+ ∂vz,0

∂r
) + ∂vr,1

∂z
+ ∂vz,1

∂r
) α̂ +O(α̂2) ,

thus

Trz,0 = ∂vr,0
∂z
+ ∂vz,0

∂r
, (3.3a)

Trz,1 = ∂vr,1
∂z
+ ∂vz,1

∂r
+ p0 (∂vr,0

∂z
+ ∂vz,0

∂r
) . (3.3b)

1In comparison to the case with an incompressible Navier-Stokes fluid.
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In the same way we deduce

Trr,0 = −p0 + 2∂vr,0
∂r

, (3.4a)

Trr,1 = −p1 + 2∂vr,1
∂r
+ 2p0∂vr,0

∂r
. (3.4b)

In what follows we deal only with subproblems of orders zero and one. We shall
solve these subproblems step-by-step for the perfect-slipsetting and then for the no-
slip setting. Particular equations are listed below.

• Subsystem of order zero(or “zeroth-order subsystem”):

0 = ∂vr,0
∂r
+ vr,0

r
+ ∂vz,0

∂z
, (3.5a)

∂p0

∂r
= ∂2vr,0

∂r2
+ 1
r

∂vr,0

∂r
+ ∂

2vr,0

∂z2
− vr,0
r2
, (3.5b)

∂p0

∂z
= ∂2vz,0

∂r2
+ 1

r

∂vz,0

∂r
+ ∂

2vz,0

∂z2
. (3.5c)

• Subsystem of order one(or “first-order subsystem”)2:

0 = ∂vr,1
∂r
+ vr,1

r
+ ∂vz,1

∂z
, (3.6a)

∂p1

∂r
= ∆vr,1 − vr,1

r2
+ 2∂p0

∂r

∂vr,0

∂r
+

+ ∂p0
∂z
(∂vr,0
∂z
+ ∂vz,0

∂r
) + p0 (∆vr,0 − vr,0

r2
) , (3.6b)

∂p1

∂z
= ∆vz,1 + ∂p0

∂r
(∂vr,0
∂z
+ ∂vz,0

∂r
) + 2∂p0

∂z

∂vz,0

∂z
+ p0 ∆vz,0. (3.6c)

It is worth emphasizing that the zeroth-order subproblem corresponds to axisymmetric
squeeze flow of an incompressible fluid with constant viscosity. Hence, its solution is
nothing but solution for the Navier-Stokes fluid. Higher order subproblems then repre-
sent some perturbation which has to be added to this solution, and the most significant
contribution is naturally provided by the first-order subproblem.

3.1 Perfect-slip at the sample-plate interface

Let us remind that in this paragraph we would like to solve governing equations in
(2.41) together with the set of boundary conditions (2.42a), (2.43) – (2.46). Perfect-slip
ensures that the sample moves freely without friction alongsample-plate interfaces,
therefore its deformation in this case corresponds to homogeneous biaxial extension
with the velocity field given by

v =
⎡⎢⎢⎢⎢⎢⎣
vr
vθ
vz

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣
vr,0
0

vz,0

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣
−1

2
ǫ̇r

0

ǫ̇z

⎤⎥⎥⎥⎥⎥⎦ . (3.7)

2For the definition of Laplace operator in cylindrical coordinates see Appendix A.
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Compression ratėǫ is defined in (2.40) (see also Figure 4c).
It is obvious that the velocity field of the form (3.7) automatically satisfies the

incompressibility condition (2.41a). Moreover, sincevr does not depend onz, free
surface remains vertical and∂ξ

∂z
≡ 0. Kinematic condition (2.46) then reads

vr ∣r=ξ = ∂ξ∂t , (3.8)

which really means that radial velocity of material points lying on the free surface
coincides with the velocity of the free surface. Relation (3.8) provides the ordinary
differential equation

−ǫ̇ξ = 2ξ̇,
which is easily solved using the initial conditionξ(0) = R̂0, and results in radius

ξ(t) = R̂0

√
1

h(t) . (3.9)

Once we know the velocity field, we can writeD = ⎡⎢⎢⎢⎢⎢⎣−1
2
ǫ̇ 0 0

0 −1
2
ǫ̇ 0

0 0 ǫ̇

⎤⎥⎥⎥⎥⎥⎦
(3.10)

and according to (2.19c) we haveT = −pI + 2eα̂p ⎡⎢⎢⎢⎢⎢⎣−1
2
ǫ̇ 0 0

0 −1
2
ǫ̇ 0

0 0 ǫ̇

⎤⎥⎥⎥⎥⎥⎦
. (3.11)

The latter relation reveals that the shear stressTrz vanishes throughout the sample.
Now it is clear that our choice of the velocity field (3.7) under above considerations

naturally satisfies all the conditions (2.42a), (2.43), (2.44), and also the relation on the
right hand side in (2.45). On top of that, we can express governing equations (2.41b)
and (2.41c) in the form

∂p

∂r
= −ǫ̇α̂∂p

∂r
eα̂p, (3.12)

∂p

∂z
= 2ǫ̇α̂∂p

∂z
eα̂p. (3.13)

It is obvious thatp has to be homogeneously distributed throughout the sample (it can-
not depend on spatial variablesr andz), nevertheless, it changes with time. Boundary
condition in (2.45) on the left is usually used to determine pressure values. Unfortu-
nately, in our case we have

Trr = −p − ǫ̇eα̂p = 0. (3.14)

It means thatp is defined implicitly by the relationg(t, p) = 0, where

g(t, p) =def −p − ǫ̇(t)eα̂p (3.15)

is continuously differentiable on an open setS1 × S2 ⊂ R2, with [0, tend] ⊂ S1
3. Let

p⋆ ∈ S2 satisfies

g(0, p⋆) = 0, and
∂g

∂p
(0, p⋆) ≠ 0. (3.16)

3To avoid discontinuity oḟǫ we suppose thatsupS1 < tcl, wheretcl is the time needed to close the
gap between plates.
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Then, according to well-knownimplicit function theorem4, there is a neighborhood
U of t = 0 in R on which is defined a unique continuously differentiable function
p ∶UÐ→ R such thatp(0) = p⋆, andg(t, p(t)) = 0, t ∈U. Moreover,

ṗ(t) = − ǫ̈(t)
1 + α̂ǫ̇(t)eα̂p(t) eα̂p(t), t ∈U. (3.17)

In what follows we shall verify conditions in (3.16) for two different settings de-
pending on the choice ofh, see (2.38) and (2.39).

• Considering the case with constant closure speed, and so with h defined by
(2.38), we havėǫ(0) = −1 and we seekp satisfying

−p + eα̂p = 0.
Sinceα̂ > 0, the latter equation can be satisfied only for somep > 1.

Let us suppose that̂α ∈ (0, e−1). We consider a functionw ∶ (0,∞) Ð→ (0,∞)
given byw(x) = x−1 lnx, which is monotonically increasing on the interval(1, e) and maps this interval onto(0, e−1). It means that for eacĥα ∈ (0, e−1)
there existsp⋆ ∈ (1, e) such that

α̂ = w(p⋆) = lnp⋆

p⋆
.

The latter relationship between̂α andp⋆ at the same time implieseα̂p⋆ = eln p⋆ =
p⋆, thus

g(0, p⋆) = 0
and

∂g

∂p
(0, p⋆) = −1 + α̂eα̂p⋆ = −1 + lnp⋆ ≠ 0.

Using (3.17) we see that

ṗ(0) = p⋆

1 − ln p⋆ > 1.
It is worth noting that for an incompressible Navier-Stokesfluid one getsp(t) =
−ǫ̇(t), which givesp(0) = ṗ(0) = 1. It follows that for the fluid with pressure-
dependent viscosity the initial pressure value together with the corresponding
rate of change are larger.

• Now let ǫ̇ is defined usingh given by (2.39). Then we havėǫ(0) = 0 and condi-
tions in (3.16) hold forp⋆ = 0. Unfortunately, in this case with smooth start-up
we havep(0) = ṗ(0) = 0, which coincides with values of the solution for the
Navier-Stokes fluid. Therefore, the observation similar tothat in the previous
case is not explicitly available this time.

In order to expressp as a function oft at least approximately, we shall use the pertur-
bation method as described above.

4See for example Rudin (1976) or any other book on mathematical analysis.
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As we have already mentioned, normal force exerted on platesby the sample is
usually measured in experiments with prescribed compression. The force exerted on
the upper plate is defined as

F (t) = −2π∫ ξ(h,t)

0
rTzz(r, h, t) dr. (3.18)

Actual radiusξ was computed in (3.9). Supposing thatp is an exact solution satisfying
(3.14), we have

F = −2π∫ ξ

0
(−p + 2ǫ̇eα̂p) r dr = 3p

h
Â0, (3.19)

with Â0 = πR̂2
0 denoting the dimensionless form of initial contact area.

3.1.1 Zeroth-order subproblem

We solve the system of equations (3.5) with boundary conditions

vz,0∣z=h = ḣ, vr,0∣r=0 = 0, vz,0∣z=0 = 0,
Trz,0∣z=h = 0, Trz,0∣r=0 = 0, Trz,0∣z=0 = 0.

Supposing that the free surface remains vertical during thecompression, we seek a
solution which further satisfies

Trr,0∣r=ξ = 0, Trz,0∣r=ξ = 0.
Using velocity components

vr,0 = −1
2
ǫ̇r, vz,0 = ǫ̇z (3.20)

in equations (3.5b) and (3.5c) we can see that

∂p0

∂r
= ∂p0
∂z
= 0.

According to (3.4a) we haveTrr,0 = −p0 − ǫ̇. Thus, the corresponding boundary condi-
tion on the free surface provides

p0 = −ǫ̇. (3.21)

Finally, relation (3.19) yields

F0 = −3ǫ̇
h
Â0. (3.22)

3.1.2 First-order subproblem

In the sense of previous discussion we shall seek a solution of the system (3.6) satisfy-
ing boundary conditions

vz,1∣z=h = 0, vr,1∣r=0 = 0, vz,1∣z=0 = 0,
Trz,1∣z=h = 0, Trz,1∣r=0 = 0, Trz,1∣z=0 = 0,
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and

Trr,1∣r=ξ = 0, Trz,1∣r=ξ = 0.
Our choice of the velocity field (3.7) implies

vr,1 = 0, vz,1 = 0. (3.23)

Substituting these velocity components, together with (3.20) and (3.21), into equations
(3.6b) and (3.6c) one obtains

∂p1

∂r
= ∂p1
∂z
= 0.

An analogy of previous relations is obviously true also for higher order subproblems,
hence our statement that pressure is homogeneously distributed throughout the sample
seems to be confirmed also in this way. Pressurep1 is simply determined using the
boundary condition

Trr,1∣r=ξ = −p1 − p0ǫ̇ = 0,
which yields

p1 = ǫ̇ 2. (3.24)

3.1.3 Results and discussion

In the sense of (3.1) we see that

p ≈ p0 + p1α̂ = ḣ
h
(α̂ ḣ

h
− 1) (3.25)

is a rough estimate of pressure values. Substituting the latter result into (3.19), we
obtain an estimate for the normal force

F ≈ 3ḣ
h2
(α̂ ḣ

h
− 1) Â0. (3.26)

Our calculations were based on the assumption that the velocity field (3.7), corre-
sponding to homogeneous biaxial extension, is the same as for the Navier-Stokes fluid
(see Figure 5). This seems to be reasonable as we have perfect-slip at the interface, ma-
terials in question are incompressible and the compressionis prescribed. It follows that

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1

−0.5

0
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Figure 5: Dimensionless velocity field (3.7) for squeeze flow with perfect-slip at
t = 0.3. Computed forh(t) = 1 − t, R̂0 = 1.5. Vectors are scaled by a factor of 0.15.
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(a) p0 given by (3.21);p given by (3.25).
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(b) F0 given by (3.22);F given by (3.26).

Figure 6: Dimensionless pressure and force in perfect-slip squeeze flow, computed for
α̂ = 0.06, t0 = 0.05, R̂0 = 1.5, tend = 0.6. Black lines are solutions for constant closure
speed, see (2.38), blue lines correspond to smooth start-up(2.39).

a current shape of the sample cannot be influenced by the pressure-dependent viscos-
ity, which is in accordance with the fact that the pressure, and hence also the viscosity,
is homogeneously distributed throughout the sample (as we shall see, this is not true in
the case with no-slip anymore). On the other hand, the viscosity increasing with pres-
sure causes that the specimen becomes somehow more stiff, and force exerted by the
fluid on the plate has to dominate over the same force computedfor the Navier-Stokes
fluid. Results are mutually compared in Figure 6.

3.2 No-slip at the sample-plate interface

A common approach used in order to get some analytical solutions of the no-slip
squeeze flow is based on the postulate which says thatplanes initially normal to the
direction of loading remain plane in the deformed state. Of course, this additional re-
quirement is followed by the fact that instead of the original problem, given by (2.41),
(2.42b) and (2.43) – (2.46), we shall solve kind of its approximation, which is justi-
fiable particularly at the very beginning of the experiment (supposing the flow starts
from the rest) and/or in the case in which the sample radius ismuch larger than its
initial height.

By virtue of the mentioned postulate, velocity componentvz cannot depend onr
and so we shall assume

vz(z, t) = ḣ(t)φ(z, t).
Using the incompressibility condition (2.41a) together with the first condition in (2.43),
one obtains corresponding radial velocity component as a solution of the boundary
value problem

∂

∂r
(rvr) = −ḣrφ′, vr∣r=0 = 0,

where the differentiation ofφ with respect toz is denoted by prime. This yields

vr(r, z, t) = −1
2
ḣ(t)rφ′(z, t).
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In the previous paragraph we have seen that the perturbationmethod can provide
satisfactory results using the expansion up to the first order. Under above considera-
tions we shall suppose the velocity field of the form

v =
⎡⎢⎢⎢⎢⎢⎣
−1

2
ḣrφ′

0

ḣφ

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣
−1

2
ḣr (φ′0 + φ′1α̂) +O(α̂2)

0

ḣφ0 + ḣφ1α̂ +O(α̂2)
⎤⎥⎥⎥⎥⎥⎦
. (3.27)

Let us remark that the velocity field (3.7) for the perfect-slip squeeze flow simply
corresponds to the choiceφ(z, t) = z

h(t) .

3.2.1 Zeroth-order subproblem

At this point we shall forget boundary conditions in (2.45) for a moment and we shall
seek a solution of the system (3.5) satisfying

vz,0∣z=h = ḣ, vr,0∣r=0 = 0, vz,0∣z=0 = 0,
vr,0∣z=h = 0, Trz,0∣r=0 = 0, Trz,0∣z=0 = 0.

According to (3.27) we considervr,0 = −1
2
ḣrφ′0, vz,0 = ḣφ0 with the corresponding

symmetric part of the velocity gradientD0 = ḣ
2

⎡⎢⎢⎢⎢⎢⎣
−φ′0 0 −1

2
rφ′′0

0 −φ′0 0

−1
2
rφ′′0 0 2φ′0

⎤⎥⎥⎥⎥⎥⎦
. (3.28)

Governing equations (3.5b) and (3.5c) yield

∂p0

∂r
= −1

2
ḣrφ′′′0 , (3.29)

∂p0

∂z
= ḣφ′′0 . (3.30)

Let us suppose thatt ∈ [0, tend] is fixed for a moment. Through the compatibility of
mixed (second order) derivatives ofp0 one gets the ordinary differential equation

φ
(4)
0 (z, t) = 0. (3.31)

An appropriate set of boundary conditions for the latter equation is obtained from the
velocity boundary conditions at the sample-plate interface and central plane. It reads

φ0∣z=h = ḣ, φ′0∣z=h = 0, (3.32)

φ0∣z=0 = 0, φ′′0 ∣z=0 = 0. (3.33)

It remains to carry out some basic calculus in order to get thesolution

φ0 = z

2h
(3 − z2

h2
) , (3.34)

which is time dependent throughh(t). The latter relation results in velocity compo-
nents

vr,0 = 3r

4h
(z2
h2
− 1) ḣ, vz,0 = z

2h
(3 − z2

h2
) ḣ. (3.35)
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Figure 7: Dimensionless velocity field (3.35) mapped into the reference coordinate
system{R,Z} for the no-slip squeeze flow att = 0.3. Computed forh(t) = 1 − t,
R̂0 = 2. Vectors are scaled by a factor of 0.1.

In contrast to the perfect-slip setting, one can see that theshear rateDrz,0 in (3.28) is no
longer zero and distribution of the shear stressTrz,0 throughout the sample is depicted
in Figure 9c. Further, integration of equations (3.29) and (3.30) yields

p0 = 3ḣ
4h
( r2
h2
− 2z2

h2
) +C0, (3.36)

where constant of integrationC0 is generally time-dependent and has to be determined
using an appropriate boundary condition on the free surface(see the discussion below).
Normal force defined by (3.18) is given through

F0 = 3ḣ
2h
( R̂2

0

4h2
− 1) Â0 +C0Â0. (3.37)

3.2.2 First-order subproblem

Following the established procedure, we shall solve the system of equations (3.6) with
boundary conditions

vz,1∣z=h = 0, vr,1∣r=0 = 0, vz,1∣z=0 = 0,
vr,1∣z=h = 0, Trz,1∣r=0 = 0, Trz,1∣z=0 = 0.

As in the previous case, mixed second order derivatives ofp1 can be obtained from
(3.6b) and (3.6c), this time in the form

∂2p1

∂z∂r
= −1

2
ḣrφ

(4)
1 − 9rz ḣ2

h6
, (3.38)

∂2p1

∂r∂z
= 0. (3.39)

Through compatibility of these derivatives, we get the ordinary differential equation

φ
(4)
1 (z, t) = −18 ḣ(t)zh(t)6 , (3.40)
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again witht fixed for a moment. One can integrate the latter equation using boundary
conditions

φ1∣z=h = 0, φ1∣z=0 = 0, (3.41)

φ′1∣z=h = 0, φ′′1 ∣z=0 = 0. (3.42)

Corresponding solution reads

φ1 = − 3z

20h2
((z
h
)4 − 2(z

h
)2 + 1) ḣ. (3.43)

This further yields velocity components

vr,1 = 3r

40h2
(5(z

h
)4 − 6(z

h
)2 + 1) ḣ2, vz,1 = − 3z

20h2
((z
h
)4 − 2(z

h
)2 + 1) ḣ2,

(3.44)

and pressure contributionp1 is calculated to be

p1 = 3ḣ2

32h6
(3r4 + 28z4) − 9ḣ2

40h4
(7r2 + 16z2) + 3ḣ

4h3
(r2 − 2z2)C0 +C1, (3.45)

with C0 andC1 being time-dependent. First-order contributionF1 to the normal force
F = F0 + F1α̂ +O(α̂2) is determined using the definition (3.18), which yields

F1 = 3ḣR̂2
0

8h3
( ḣR̂2

0

4h3
− 7ḣ

10h
+C0) Â0 − 3ḣ

2h
(13ḣ
20h
+C0) Â0 +C1Â0. (3.46)

3.2.3 Results and discussion

Velocity components obtained using the perturbation expansion up to the first order are

vr ≈ 3r

4h
((z
h
)2 − 1) ḣ + 3r

40h2
(5(z

h
)4 − 6(z

h
)2 + 1) α̂ḣ2, (3.47a)

vz ≈ z

2h
(3 − (z

h
)2) ḣ − 3z

20h2
((z
h
)4 − 2(z

h
)2 + 1) α̂ḣ2. (3.47b)

Let us examine first order contributions to the velocity components given in (3.44).
There are some polynomial functions in one variablex = z

h
, which extends from zero

to one. These polynomials are shown in Figure 8a and 8b. It is clear thatvr in (3.47a)
is faster (compared tovr,0) near the central plane, and on the contrary slower in the
upper half within the region of our interest. Similarly,vz in (3.47b) is a little bit
faster mainly in the middle of the computational domain (compared tovz,0). These
subtle differences captured on the free surface are shown inFigure 8c (parameter̂α
was chosen quite large to make the differences visible).

Pressure valuesp ≈ p0 + p1α̂ are determined except for constants of integrationC0

andC1, see (3.36), (3.45). In our calculation we have omitted boundary conditions
in (2.45) which are inappropriate to be used with the assumedform of the solution.
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Figure 8: Polynomial functions in one variablex = z
h

appearing on right-hand sides
of expressions in (3.44), and free surface profiles obtainedfor the fluid with pressure-
dependent viscosity and the classical Navier-Stokes fluid respectively.

We shall need another assumption for the pressure boundary condition in order to
determine mentioned constants. Usually, thez-averaged pressure at the free surface,

<p> = 1

h(t) ∫
h(t)

0
p(ξ(z, t), z, t) dz,

is required to be equal to the ambient pressure at every time instantt. Another possi-
bility is to fix the pressure value at some particular point onthe free surface. Here we
have used5

p(ξ(0, t),0, t) = 0. (3.48)

It is necessary to bear in mind that we may introduce an additional error to the solution
in this case.

5More precisely, for the classical Navier-Stokes solution (equivalent to solution for the zeroth-order
subproblem), one has to use (3.48) withp = p0 andξ satisfyingξ̇(0, t) = vr,0(ξ(0, t),0, t). This yields

C0 = −
3ḣ

4h
9

2

R̂2
0.

Similarly, for the perturbed solution one has to use the samecondition withp = p0+α̂p1 andξ satisfying
ξ̇(0, t) = vr(ξ(0, t),0, t), for vr given by (3.47a). In this case we have

C0 = −
3ḣξ2

4h3
, C1 =

1

2
C2

0 −
21ḣ

10h
C0.

Remark: ξ in the latter relation can be obtained explicitly for the setting with constant closure speed,
see (2.38), and it reads

ξ = R̂0h
− 3

4 e
3α̂
40
( 1

h
−1).
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(a) Pressure, Navier-Stokes (p0).
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(b) Pressure,p ≈ p0 + α̂p1.
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(c) Shear stress, Navier-Stokes (Trz,0).
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(d) Shear stress,Trz ≈ Trz,0 + α̂Trz,1.

Figure 9: Dimensionless pressure field and shear stress distributionin no-slip squeeze
flow at t = 0.3, computed forh(t) = 1− t, R̂0 = 2, α̂ = 0.05. Everything is mapped into
the reference coordinate system{R,Z}.

Pressure fields for the classical Navier-Stokes solution and for the perturbed solu-
tion are compared in Figure 9, as well as the distribution of the shear stress throughout
the sample. As one would expect, the sample becomes “locally” more stiff, which
seems to be promising for the numerical simulation. One can notice significant differ-
ences between pressure values (located in the center of the plate) and corresponding
normal forces in Figure 10.
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(a) p0 given by (3.36);p ≈ p0 + p1α̂ with p1
from (3.45).
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from (3.46).

Figure 10: Dimensionless pressure in the center of the plate and corresponding normal
force, both in no-slip squeeze flow, computed forα̂ = 0.05, t0 = 0.05, R̂0 = 2, tend = 0.3.
Black lines are solutions for constant closure speed, see (2.38), blue lines correspond
to smooth start-up (2.39).
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4. Numerical simulation for the no-slip
squeeze flow
In this chapter we would like to solve the no-slip squeeze flowproblem in its full ver-
sion as stated in Section 2.2.5. We forget the postulate about non-deforming horizontal
planes and we want to employ no traction (2.45) on the free surface as well as the
kinematic condition (2.46).

As we have already seen, in the no-slip squeeze flow a certain part of the boundary
of the domain is not known in advance and has to be determined as a part of the
solution. There are several techniques for solving free boundary problems, see for
example Crank (1987). We shall describe a numerical method based on the application
of body-fitted curvilinear coordinates, which conceptually belongs to the family of so
called “front-fixing methods”, and on the application of aspectral collocation method.

4.1 Reformulation of the problem

Let Ωt denotes the dimensionless version of the domain occupied bythe sample in the
rz-plane using the coordinate system introduced in Section 2.2.1. It means1

Ωt = {(r, z) ∶ z ∈ [−h(t), h(t)], r ∈ [−ξ(z, t), ξ(z, t)]}. (4.1)

Free boundary is simply described asr = ± ξ(z, t). Supposing we know its shape at
any fixedt, we can construct abivariate blending function2 U ∶ Ω̄ Ð→ Ωt which maps
the fixed domain̄Ω, corresponding to image of rectangle[−1,1] × [−1,1], ontoΩt in
physical space, see Figure 11. We defineU andU−1 to be

U ∶
⎡⎢⎢⎢⎢⎣
r̄

z̄

⎤⎥⎥⎥⎥⎦z→
⎡⎢⎢⎢⎢⎣
r

z

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
r̄ξ̄(z̄, t)
z̄h(t)

⎤⎥⎥⎥⎥⎦ , U−1 ∶
⎡⎢⎢⎢⎢⎣
r

z

⎤⎥⎥⎥⎥⎦z→
⎡⎢⎢⎢⎢⎣
r̄

z̄

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

r
ξ(z,t)

z
h(t)

⎤⎥⎥⎥⎥⎦ , (4.2)

with ξ̄(z̄, t) =def ξ(z̄h(t), t). The mapping is constructed in such a way that it main-
tains both axes of symmetry (r̄ = 0 andz̄ = 0 are mapped ontor = 0, z = 0 respectively).

The attraction of this method consists in the possibility ofworking in a fixed simple
domain which corresponds to the moving region for all the time. In fact, transformation
(4.2) provides suitable choice of new space coordinates(r̄, z̄) which are commonly
calledbody-fittedcoordinates. Moving free surfacer = ±ξ(z, t) is now fixed atr = ±1.

Apparent simplification of the problem is presently offset to some extent by the
increased complexity of the transformed system of partial differential equations and
boundary conditions. For an arbitrary functionω defined onΩt we shall use the nota-
tion

ω(r, z, t) = ω(r̄ξ̄(z̄, t), z̄h(t), t) =def ω̄(r̄, z̄, t) = ω̄ (rξ(z, t)−1, zh(t)−1, t) . (4.3)

1See (2.24) for comparison.
2For more information see Gordon and Hall (1973).

28



The system of governing equations (2.41) is then transformed3 as follows,

0 = ∂v̄r̄
∂r̄
+ v̄r̄
r̄
+ ξ̄
h

∂v̄z̄

∂z̄
− r̄
h

∂ξ̄

∂z̄

∂v̄z̄

∂r̄
, (4.4a)

ξ̄
∂p̄

∂r̄
= eα̂p̄

⎡⎢⎢⎢⎢⎣
⎛⎝1 + ( r̄h ∂ξ̄∂z̄)

2⎞⎠ ∂
2v̄r̄

∂r̄2
− 2r̄ξ̄

h2
∂ξ̄

∂z̄

∂2v̄r̄

∂r̄∂z̄
+ ξ̄

2

h2
∂2v̄r̄

∂z̄2
+

+ ⎛⎝1r̄ − r̄ξ̄h2 ∂
2ξ̄

∂z̄2
+ 2r̄

h2
(∂ξ̄
∂z̄
)2⎞⎠ ∂v̄r̄∂r̄ − v̄r̄r̄2 + 2α̂∂p̄∂r̄ ∂v̄r̄∂r̄ +

+ α̂(− r̄
h

∂ξ̄

∂z̄

∂p̄

∂r̄
+ ξ̄
h

∂p̄

∂z̄
)(− r̄

h

∂ξ̄

∂z̄

∂v̄r̄

∂r̄
+ ξ̄
h

∂v̄r̄

∂z̄
+ ∂v̄z̄
∂r̄
)] , (4.4b)

ξ̄

h
(ξ̄ ∂p̄
∂z̄
− r̄ ∂ξ̄

∂z̄

∂p̄

∂r̄
) = eα̂p̄ ⎡⎢⎢⎢⎢⎣

⎛⎝1 + ( r̄h ∂ξ̄∂z̄)
2⎞⎠ ∂

2v̄z̄

∂r̄2
− 2r̄ξ̄
h2

∂ξ̄

∂z̄

∂2v̄z̄

∂r̄∂z̄
+

+ ξ̄
2

h2
∂2v̄z̄

∂z̄2
+ ⎛⎝1r̄ − r̄ξ̄h2 ∂

2ξ̄

∂z̄2
+ 2r̄
h2
(∂ξ̄
∂z̄
)2⎞⎠ ∂v̄z̄∂r̄ +

+ α̂∂p̄
∂r̄
(− r̄
h

∂ξ̄

∂z̄

∂v̄r̄

∂r̄
+ ξ̄
h

∂v̄r̄

∂z̄
+ ∂v̄z̄
∂r̄
) +

+ 2α̂(− r̄
h

∂ξ̄

∂z̄

∂p̄

∂r̄
+ ξ̄
h

∂p̄

∂z̄
)(− r̄

h

∂ξ̄

∂z̄

∂v̄z̄

∂r̄
+ ξ̄
h

∂v̄z̄

∂z̄
)] . (4.4c)

For further use let us denote

v = [ vr
vz
] = [u

v
] , (4.5)

and

ā = 1

r̄
, b̄ = ξ̄

h
, c̄ = − r̄

h

∂ξ̄

∂z̄
, ḡ = − r̄

h

∂2ξ̄

∂z̄2
, q̄ = 2r̄

h2
(∂ξ̄
∂z̄
)2 . (4.6)

Equations (4.4) then can be rewritten in the compact form

0 = ∂ū
∂r̄
+ āū + b̄∂v̄

∂z̄
+ c̄∂v̄

∂r̄
, (4.7a)

hb̄
∂p̄

∂r̄
= eα̂p̄ [(1 + c̄2) ∂2ū

∂r̄2
+ 2b̄c̄ ∂

2ū

∂r̄∂z̄
+ b̄2∂

2ū

∂z̄2
+

+ (ā + ḡ + q̄) ∂ū
∂r̄
− ā2ū + 2α̂∂p̄

∂r̄

∂ū

∂r̄
+

+ α̂(c̄∂p̄
∂r̄
+ b̄∂p̄

∂z̄
)(c̄∂ū

∂r̄
+ b̄∂ū

∂z̄
+ ∂v̄
∂r̄
)] , (4.7b)

hb̄(b̄∂p̄
∂z̄
+ c̄∂p̄

∂r̄
) = eα̂p̄ [(1 + c̄2) ∂2v̄

∂r̄2
+ 2b̄c̄ ∂

2v̄

∂r̄∂z̄
+ b̄2∂

2v̄

∂z̄2
+

+ (ā + ḡ + q̄) ∂v̄
∂r̄
+ α̂∂p̄

∂r̄
(c̄∂ū
∂r̄
+ b̄∂ū

∂z̄
+ ∂v̄
∂r̄
) +

+ 2α̂(c̄∂p̄
∂r̄
+ b̄∂p̄

∂z̄
)(c̄∂v̄

∂r̄
+ b̄∂v̄

∂z̄
)] . (4.7c)

3See Appendix B for detailed information on transformation rules.
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Boundary condition in (2.42b) now has to be prescribed at both sample-plate inter-
faces. One can write them down in the form

v̄∣
z̄=±1
= ±ḣ, ū∣

z̄=±1
= 0. (4.8a)

Similarly, dynamic boundary condition (2.45) has to be prescribed not only on the
right-hand side of the domain but also on the opposite side. Its transformation yields

⎡⎢⎢⎢⎢⎣−ξ̄p̄ + e
α̂p̄
⎛⎝2∂ū∂r̄ − ξ̄

h2
∂ξ̄

∂z̄

∂ū

∂z̄
+ r̄

h2
(∂ξ̄
∂z̄
)2 ∂ū
∂r̄
− 1

h

∂ξ̄

∂z̄

∂v̄

∂r̄

⎞⎠
⎤⎥⎥⎥⎥⎦r̄=1 = 0, (4.8b)

[ ξ̄
h

∂ξ̄

∂z̄
p̄ + eα̂p̄ ( ξ̄

h

∂ū

∂z̄
− r̄
h

∂ξ̄

∂z̄

∂ū

∂r̄
+ ∂v̄
∂r̄
−

− 2ξ̄
h2
∂ξ̄

∂z̄

∂v̄

∂z̄
+ 2r̄
h2
(∂ξ̄
∂z̄
)2 ∂v̄
∂r̄

⎞⎠
⎤⎥⎥⎥⎥⎦r̄=1 = 0, (4.8c)

⎡⎢⎢⎢⎢⎣ξ̄p̄ + e
α̂p̄
⎛⎝−2∂ū∂r̄ − ξ̄

h2
∂ξ̄

∂z̄

∂ū

∂z̄
+ r̄

h2
(∂ξ̄
∂z̄
)2 ∂ū
∂r̄
− 1

h

∂ξ̄

∂z̄

∂v̄

∂r̄

⎞⎠
⎤⎥⎥⎥⎥⎦r̄=−1 = 0, (4.8d)

[ ξ̄
h

∂ξ̄

∂z̄
p̄ + eα̂p̄ (− ξ̄

h

∂ū

∂z̄
+ r̄
h

∂ξ̄

∂z̄

∂ū

∂r̄
− ∂v̄
∂r̄
−

− 2ξ̄

h2
∂ξ̄

∂z̄

∂v̄

∂z̄
+ 2r̄
h2
(∂ξ̄
∂z̄
)2 ∂v̄
∂r̄

⎞⎠
⎤⎥⎥⎥⎥⎦r̄=−1 = 0. (4.8e)

Finally, kinematic condition (2.46) transformed in the same manner reads

(−∂ξ̄
∂t
+ ū + 1

h
(z̄ḣ − v̄) ∂ξ̄

∂z̄
) ∣

r̄=1

= 0. (4.8f)

Let us remark that once the latter condition is satisfied, itsanalogy is automatically
fulfilled on the opposite side of the domain boundary due to assumed symmetry of the
solution.

4.2 Discretization of governing equations

We will seek a solution(ū, v̄, p̄, ξ̄) satisfying (4.7), (4.8) at discrete time levels and
properly chosen discrete points in the domainΩ̄. The space discretization itself leads to
the system ofdifferential algebraic equationsobtained from (4.7a) – (4.7c) and (4.8f).
The time discretization is added in an effort to decouple thesystem in the sense that one
gets the time update on̄ξ at first, using the discrete version of (4.8f), and after thatit is
possible to solve the discrete versions of equations in (4.7) to obtain relevant updates
on v̄ andp̄ respectively. This procedure gives rise to plenty of numerical schemes. One
possibility is described below.
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(a) Computational grid. (b) Grid in the physical space.

Figure 11: Computational grid and its mapping into the physical space.

4.2.1 Space discretization

General remarks

Let us suppose that̄ξ is known for a moment. The system of equations (4.7) subjected
to boundary conditions (4.8a) – (4.8e) will be solved in the computational domain
using a spectral collocation method. Computational grid inFigure 11a consists of
Chebyshev collocation points

ri = cos((i − 1)π
N − 1 ) , i = 1, . . . ,N, (4.9a)

zj = cos((j − 1)π
M − 1 ) , j = 1, . . . ,M. (4.9b)

To these points we shall refer as to thevelocity collocation pointsand sometimes we
shall talk about thevelocity grid. In fact, the points in (4.9) are extreme points of the
Chebyshev polynomialsTN−1 (r̄), of degreeN − 1, andTM−1 (z̄), of degreeM − 1.
For detailed information about spectral methods see for example Trefethen (2000),
Canuto et al. (2006).

To follow the notation used by Canuto et al. (2007), a staggeredQN−QN−2 method
is adopted here. It means that pressure values are considered on a coarser grid withKL
collocation points (K = N − 2, L =M − 2)

r∗i = cos((i − 1)πK − 1 ) , i = 1, . . . ,K, (4.10a)

z∗j = cos((j − 1)πL − 1 ) , j = 1, . . . ,L. (4.10b)

In other words, the pressure will be approximated by polynomials of degree two or-
ders lower (in each direction) than in the case of polynomials used to approximate the
velocity. This time we talk about thepressure collocation pointsand thepressure grid.

In what follows we will use a shorthand notationωi,j = ω̄(ri, zj), i = 1, . . . ,N, j =
1, . . .M , andω∗i,j = ω̄(r∗i , z∗j ), i = 1, . . . ,K, j = 1, . . . L, for values of functionω at the
given grid point. Using theQN−QN−2 method ensures that it is enough to enforce the
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divergence equation and the balance of linear momentum at all inner velocity colloca-
tion points. From this reason we will need to interpolate pressure values, as well as val-
ues of the pressure gradient, from the coarser grid to the finer grid. For differentiation
we will use spectral differentiation matrices in the form given by Weideman and Reddy
(2000).

Let Dr̄, k;N×N denotes the Chebyshev spectral differentiation matrix corresponding
to differentiation of orderk ∈Nwith respect tōr, and letDr̄, k;N×N

i,j denotes its elements
for i = 1, . . . ,N, j = 1, . . .M . Using the matrices one can easy find derivatives, indeed,

∂ω̄

∂r̄
(ri, zj) = N

∑
k=1

D
r̄,1;N×N
i,k ωk,j, (4.11a)

∂2ω̄

∂r̄2
(ri, zj) = N

∑
k=1

D
r̄,2;N×N
i,k ωk,j. (4.11b)

Similarly, for differentiation with respect tōz we useDz̄,1;M×M ,Dz̄,2;M×M and we have

∂ω̄

∂z̄
(ri, zj) = M

∑
k=1

Dz̄,1;M×M
j,k

ωi,k, (4.12a)

∂2ω̄

∂z̄2
(ri, zj) = M

∑
k=1

D
z̄,2;M×M
j,k ωi,k. (4.12b)

Now we can introduce the interpolation matrixJNM×KL (componentsJNM×KL
i,j ,

with i = 1, . . . ,NM, j = 1, . . . ,KL), which interpolates function values from the
pressure grid to the velocity grid. In what follows we will appreciate the notation

Pall =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1,1
p2,1
⋮

pN,1

p1,2
p2,2
⋮

pN,2

⋮
p1,M
p2,M
⋮

pN,M

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p2,2
p3,2
⋮

pN−1,2
p2,3
p3,3
⋮

pN−1,3
⋮

p2,M−1
p3,M−1
⋮

pN−1,M−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, P∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p∗1,1
p∗2,1
⋮

p∗K,1

p∗1,2
p∗2,2
⋮

p∗K,2

⋮
p∗1,L
p∗2,L
⋮

p∗K,L

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p∗1
p∗2⋮
p∗K
p∗K+1
p∗K+2⋮
p∗2K
⋮

p∗
K(L−1)+1

p∗
K(L−1)+2

⋮
p∗KL

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.13)

Clearly,JNM×KL transformsP∗ to Pall, thus

Pall = JNM×KLP∗, (4.14a)

or in the component form

pi,j = KL

∑
k=1

JNM×KL
i+(j−1)N,k p

∗
k, i = 1, . . . ,N, j = 1, . . . ,M. (4.14b)

In order to determine particular values of the pressure gradient at velocity colloca-
tion points one has the following two possibilities:
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A) First differentiate the pressure on the coarse grid and subsequently interpolate
the derivatives to the velocity grid.

B) First interpolate the pressure values from the coarse grid and subsequently dif-
ferentiate the “new” values on the velocity grid.

Let Gr̄,1;NM×KL
A denotes the reinterpolated differentiation matrix corresponding to dif-

ferentiation with respect tōr, which was obtained using the former approach. Simi-
larly, Gr̄,1;NM×KL

B denotes the same matrix obtained using the second option. Inour
code we combine the two approaches in effort to compensate aninfluence of the com-
puter arithmetics. Therefore we use the reinterpolated differentiation matrix in the
form (symmetrization trick)Gr̄,1;NM×KL = 1

2
(Gr̄,1;NM×KL

A +Gr̄,1;NM×KL
B

) . (4.15)

The notationGr̄,1;NM×KL
i,j , wherei = 1, . . . ,NM, j = 1, . . . ,KL, is used for the com-

ponents of the matrix, and relation

(∂p
∂r̄
)
i,j

= ∂p̄
∂r̄
(ri, zj) = KL

∑
k=1

G
r̄,1;NM×KL

i+(j−1)N,k
p∗k (4.16a)

holds for everyi = 1, . . . ,N, j = 1, . . . ,M . Of course, in the same manner we introduceGz̄,1;NM×KL corresponding to differentiation with respect toz̄ and we have

(∂p
∂z̄
)
i,j

= ∂p̄
∂z̄
(ri, zj) = KL

∑
k=1

G
z̄,1;NM×KL

i+(j−1)N,k
p∗k. (4.16b)

Getting the system of algebraic equations

Before we proceed with deriving the discrete version of the differential operator repre-
senting the problem, let us remind the values of the coefficients from (4.6) at particular
collocation points (4.9). The assumption from the beginning of this paragraph, saying
that ξ̄ as a function of̄z is known, should be specified in the sense that we know its
valuesξj at zj for j = 1, . . . ,M . This notation leads us to the expressions4

ai,j = 1

ri
, (4.17a)

bi,j = ξj
h
, (4.17b)

ci,j = −ri
h

M

∑
k=1

Dz̄,1;M×M
j,k ξk, (4.17c)

gi,j = −ri
h

M

∑
k=1

D
z̄,2;M×M
j,k ξk, (4.17d)

qi,j = 2ri

h2
(M

∑
k=1

D
z̄,1;M×M
j,k ξk)2 . (4.17e)

Enforcing the divergence equation (4.7a) at all inner velocity collocation points
(thus at points(ri, zj), wherei = 2, . . . ,N − 1 andj = 2, . . . ,M − 1) gives

0 = N

∑
k=1

D
r̄,1;N×N
i,k uk,j + ai,jui,j + bi,j

M

∑
k=1

D
z̄,1;M×M
j,k vi,k + ci,j

N

∑
k=1

D
r̄,1;N×N
i,k vk,j. (4.18a)

4From (4.17a) it follows thatN in (4.9a) must be even to avoid division by zero.
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Usingpi,j given by (4.14b) and(∂p
∂r̄
)
i,j

, (∂p
∂z̄
)
i,j

from (4.16), the balance of linear mo-
mentum (4.7b), (4.7c) enforced at all inner velocity collocation points gives

hbi,j (∂p
∂r̄
)
i,j

= eα̂pi,j [(1 + c2i,j) N

∑
k=1

D
r̄,2;N×N
i,k uk,j +

+ 2bi,jci,j
N

∑
k=1

D
r̄,1;N×N
i,k (M

∑
l=1

D
z̄,1;M×M
j,l uk,l) + b2i,j M

∑
k=1

D
z̄,2;M×M
j,k ui,k − a2i,jui,j +

+ (ai,j + gi,j + qi,j) N

∑
k=1

D
r̄,1;N×N
i,k uk,j + 2α̂(∂p

∂r̄
)
i,j

N

∑
k=1

D
r̄,1;N×N
i,k uk,j + α̂(ci,j (∂p

∂r̄
)
i,j

+

+ bi,j (∂p
∂z̄
)
i,j

)(ci,j N

∑
k=1

D
r̄,1;N×N
i,k uk,j + bi,j

M

∑
k=1

D
z̄,1;M×M
j,k ui,k +

N

∑
k=1

D
r̄,1;N×N
i,k vk,j)] ,

(4.18b)

for r̄ component of the balance of linear momentum,

hbi,j (bi,j (∂p
∂z̄
)
i,j

+ ci,j (∂p
∂r̄
)
i,j

) =
= eα̂pi,j [(1 + c2i,j) N

∑
k=1

D
r̄,2;N×N
i,k vk,j + 2bi,jci,j

N

∑
k=1

D
r̄,1;N×N
i,k (M

∑
l=1

D
z̄,1;M×M
j,l vk,l) +

+ b2i,j
M

∑
k=1

D
z̄,2;M×M
j,k vi,k + (ai,j + gi,j + qi,j) N

∑
k=1

D
r̄,1;N×N
i,k vk,j +

+ α̂(∂p
∂r̄
)
i,j

(ci,j N

∑
k=1

D
r̄,1;N×N
i,k uk,j + bi,j

M

∑
k=1

D
z̄,1;M×M
j,k ui,k +

N

∑
k=1

D
r̄,1;N×N
i,k vk,j) +

+ 2α̂(ci,j (∂p
∂r̄
)
i,j

+ bi,j (∂p
∂z̄
)
i,j

)(ci,j N

∑
k=1

Dr̄,1;N×N
i,k

vk,j + bi,j
M

∑
k=1

Dz̄,1;M×M
j,k

vi,k)] ,
(4.18c)

for z̄ component of the balance of linear momentum.
The no-slip condition (4.8a) gives us the values ofv̄ at the velocity collocation

points at the sample-plate interfaces. Indeed, fori = 1, . . . ,N we have

vi,1 = vtop = ḣ, vi,M = vbottom= −ḣ, ui,1 = ui,M = 0. (4.19)

Substituting (4.19) to (4.18) we get a final version of the discretized equations. At this
point we have(3N − 2)(M − 2) unknowns5. Unfortunately, so far we have found only
3(N−2)(M−2) equations presented in (4.18). In order to close the system of algebraic
equations, it remains to introduce a discrete version of boundary conditions (4.8b) –
(4.8e). Forj = 1, . . . ,M let us denote

ξ′j = M

∑
k=1

D
z̄,1;M×M
j,k ξk. (4.20)

5KL = (N − 2)(M − 2) unknown values forp at all pressure collocation points, and2 ∗N(M − 2)
unknown values foru andv at all velocity collocation points except those situated onthe boundaries
corresponding to the sample-plate interfaces.

34



Enforcing the boundary conditions at appropriate collocation points (it means(r1, zj),(rN , zj), for j = 2, . . . ,M − 1) we get another4(M − 2) equations in the form

− ξjp1,j + eα̂p1,j ⎛⎝⎛⎝2 + (
ξ′j

h
)2⎞⎠

N

∑
k=1

Dr̄,1;N×N
1,k uk,j −

− ξjξ
′
j

h2

M

∑
k=1

Dz̄,1;M×M
j,k u1,k −

ξ′j

h

N

∑
k=1

Dr̄,1;N×N
1,k vk,j) = 0, (4.21a)

ξjξ
′
j

h
p1,j + eα̂p1,j (ξj

h

M

∑
k=1

Dz̄,1;M×M
j,k u1,k −

ξ′j

h

N

∑
k=1

Dr̄,1;N×N
1,k uk,j +

+ ⎛⎝1 + 2(
ξ′j

h
)2⎞⎠

N

∑
k=1

D
r̄,1;N×N
1,k vk,j −

2ξjξ
′
j

h2

M

∑
k=1

D
z̄,1;M×M
j,k v1,k

⎞⎠ = 0, (4.21b)

ξjpN,j + eα̂pN,j
⎛⎝−⎛⎝2 + (

ξ′j

h
)2⎞⎠

N

∑
k=1

D
r̄,1;N×N
N,k uk,j −

− ξjξ
′
j

h2

M

∑
k=1

D
z̄,1;M×M
j,k uN,k −

ξ′j

h

N

∑
k=1

D
r̄,1;N×N
N,k vk,j) = 0, (4.21c)

ξjξ
′
j

h
pN,j + eα̂pN,j (−ξj

h

M

∑
k=1

D
z̄,1;M×M
j,k uN,k −

ξ′j

h

N

∑
k=1

D
r̄,1;N×N
N,k uk,j −

− ⎛⎝1 + 2(
ξ′j

h
)2⎞⎠

N

∑
k=1

D
r̄,1;N×N
N,k vk,j −

2ξjξ
′
j

h2

M

∑
k=1

D
z̄,1;M×M
j,k vN,k

⎞⎠ = 0. (4.21d)

Notation

At first let us introduce some extra notation for various “subselections” from the dif-
ferentiation matrixDr̄,1;N×N (of course, at the same time we introduce a parallel no-
tation also for other matricesDr̄,2;N×N , Dz̄,1;M×M andDz̄,2;M×M ). Using the following
schematic drawings,Dr̄,1;N×N =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

D
r̄,1;N×N
1,1 . . . D

r̄,1;N×N
1,N

⋮ D̃r̄,1;(N−2)×(N−2) ⋮
D

r̄,1;N×N
N,1 . . . D

r̄,1;N×N
N,N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.22a)

Dr̄,1;N×N =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Dr̄,1;N×N
1,1 . . . Dr̄,1;N×N

1,ND̂r̄,1;(N−2)×N

D
r̄,1;N×N
N,1 . . . D

r̄,1;N×N
N,N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.22b)

it should be clear that̃Dr̄,1;(N−2)×(N−2) is nothing butDr̄,1;N×N with removed first and
last row and column, whereaŝDr̄,1;(N−2)×N isDr̄,1;N×N with removed first and last row
only. SymbolsDz̄,1;1, Dz̄,1;M andDz̄,2;1, Dz̄,2;M are used for vectors consisting of the
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first or last column of matrix̂Dz̄,1;(N−2)×N andD̂z̄,2;(N−2)×N respectively. It means

Dz̄,1;1 =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

D
z̄,1;M×M
2,1

D
z̄,1;M×M
3,1

⋮
D

z̄,1;M×M
M−1,1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Dz̄,1;M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

D
z̄,1;M×M
2,M

D
z̄,1;M×M
3,M

⋮
D

z̄,1;M×M
M−1,M

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.23)

and similarly for the other matrix. On the other side, symbolsDr̄,1
1 , Dr̄,1

N are reserved
for the first and last rows of matrixDr̄,1;N×N ,

D
r̄,1
1 = [Dr̄,1;N×N

1,1 ,D
r̄,1;N×N
1,2 , . . . ,D

r̄,1;N×N
1,N ] , (4.24a)

D
r̄,1
N = [Dr̄,1;N×N

N,1 ,D
r̄,1;N×N
N,2 , . . . ,D

r̄,1;N×N
N,N ] . (4.24b)

Further, for any fixedn ∈N let us define the following operators:M1 ∶RNM×n
Ð→RNL×n which removes first and lastN rows in an arbitrary matrix fromRNM×n, andM2 ∶ RKM×n

Ð→ RKL×n which takes a matrix fromRNL×n and removes its rows
with indices1 + (k − 1)N, kN for k = 1, . . . ,L. UsingM =M2 ○M1 we introduce
modified interpolation matrixJ̃KL×KL =M (JNM×KL) , (4.25)

which gives the transformation rule (see (4.14a) for comparison)

P = J̃KL×KLP∗. (4.26)

Similarly, we introduce modified reinterpolated differentiation matrices (see (4.16))G̃r̄,1;KL×KL =M (Gr̄,1;NM×KL) , G̃z̄,1;KL×KL =M (Gz̄,1;NM×KL) , (4.27)

which are used to get values of the pressure gradient at innervelocity collocation
points. Another two operatorsJR, JL ∶ RNM×KL

Ð→ R(M−2)×KL are defined in
such a way that matricesJ(M−2)×KL

right = JR (JNM×KL) , J(M−2)×KL

left = JL (JNM×KL) (4.28)

consist of rows of matrixJNM×KL with indices1+kN and(k+1)N respectively (both
for k = 1, . . . ,M − 2)6.

In (4.13) we introducedP∗ to be a vector of unknown pressure values. At this point
we add vectors of unknowns of sizeN(M − 2) for velocity values

U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1,2
u2,2
⋮

uN,2

u1,3
u2,3
⋮

uN,3

⋮
u1,M−1
u2,M−1
⋮

uN,M−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1,2
v2,2
⋮

vN,2

v1,3
v2,3
⋮

vN,3

⋮
v1,M−1
v2,M−1
⋮

vN,M−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.29)

6Application of the matrices onP∗ returns pressure values at corresponding collocation points on
the right and left boundary of the velocity grid.
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For vectors of values of coefficients̄a, b̄ – see (4.17) – we write

Â =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1,2
a2,2
⋮

aN,2

a1,3
a2,3
⋮

aN,3

⋮
a1,M−1
a2,M−1
⋮

aN,M−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a2,2
a3,2
⋮

aN−1,2
a2,3
a3,3
⋮

aN−1,3
⋮

a2,M−1
a3,M−1
⋮

aN−1,M−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1,2
b2,2
⋮

bN,2

b1,3
b2,3
⋮

bN,3

⋮
b1,M−1
b2,M−1
⋮

bN,M−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b2,2
b3,2
⋮

bN−1,2
b2,3
b3,3
⋮

bN−1,3
⋮

b2,M−1
b3,M−1
⋮

bN−1,M−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.30)

In the same manner we usêC, C, Ĝ, G, Q̂, Q for values ofc̄, ḡ, q̄ respectively.
Further, letξ̄′ =def ∂ξ̄

∂z̄
in compliance with (4.20). Then for values ofξ̄ andξ̄′ at relevant

grid points we have

Ξall =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ1
ξ2
ξ3
⋮

ξM−2
ξM−1
ξM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Ξ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ2
ξ3
⋮

ξM−2
ξM−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Ξ′all =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ′1
ξ′2
ξ′3⋮
ξ′M−2
ξ′M−1
ξ′M

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Ξ′ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ′2
ξ′3⋮
ξ′M−2
ξ′M−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.31a)

Clearly, according to (4.20) one can write

Ξ′all = Dz̄,1;M×M Ξall, Ξ′ = D̂z̄,1;(M−2)×M Ξall. (4.31b)

Last but not least, we will need to use identity matrices and some of their modifica-
tions. ByIn×n we denote the identity matrix of sizen×n. One convenient modification
of I(N−2)×(N−2) is defined by the following schematic drawingĪ(N−2)×N = ⎡⎢⎢⎢⎢⎢⎢⎣ 0 0

⋮ I(N−2)×(N−2) ⋮
0 0

⎤⎥⎥⎥⎥⎥⎥⎦
. (4.32)

SymbolsI1, IN are used to denote row vectors of sizeN in the form

I1 = [1,0, . . . ,0,0] , IN = [0,0, . . . ,0,1] . (4.33)

Finally, symbol1n×1 denotes a column vector of sizen whose every component is
equal to 1. 1n×1 = ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 11⋮11

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
n ∈N. (4.34)
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System matrix for the classical Stokes problem

As we have already discussed in Section (2.1), our problem isreduced to the classical
Stokes problem when we put̂α = 0. Hence, puttinĝα = 0 in (4.18) and (4.21) we
get the discrete version of the classical Stokes problem. Using the notation introduced
above, it can be rewritten in the following compact form

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1,U A1,V A1,PA2,U A2,V A2,PA3,U A3,V A3,PA4,U A4,V A4,PA5,U A5,V A5,PA6,U A6,V A6,PA7,U A7,V A7,P

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
U

V

P∗

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1

F2

F3

F4

F5

F6

F7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.35)

where (bold symbol0 is commonly used for zero matrices of different sizes)A1,U = I(M−2)×(M−2) ⊗ D̂r̄,1;(N−2)×N +M2 (diag Â) , (4.36a)A1,V = (diagB) (D̃z̄,1;(M−2)×(M−2) ⊗ Ī(N−2)×N) +
+ (diagC) (I(M−2)×(M−2) ⊗ D̂r̄,1;(N−2)×N) , (4.36b)A1,P = 0, (4.36c)A2,U = (IKL×KL + diag (C ∗C)) (I(M−2)×(M−2) ⊗ D̂r̄,2;(N−2)×N) +
+ 2 (diag (B ∗C)) (I(M−2)×(M−2) ⊗ D̂r̄,1;(N−2)×N) (D̃z̄,1;(M−2)×(M−2) ⊗ IN×N) +
+ (diag (B ∗B)) (D̃z̄,2;(M−2)×(M−2) ⊗ Ī(N−2)×N) −M2 (diag (Â ∗ Â)) +
+ (diag (A +G +Q)) (I(M−2)×(M−2) ⊗ D̂r̄,1;(N−2)×N) , (4.36d)A2,V = 0, (4.36e)A2,P = −h (diagB) G̃r̄,1;KL×KL, (4.36f)A3,U = 0, (4.36g)A3,V = A2,U +M2 (diag (Â ∗ Â)) , (4.36h)A3,P = −h (diagB) ((diagB) G̃z̄,1;KL×KL + (diagC) G̃r̄,1;KL×KL) , (4.36i)A4,U = (2I(M−2)×(M−2) + 1

h2
(diag (Ξ′ ∗Ξ′))) (I(M−2)×(M−2) ⊗D

r̄,1
1 ) −

− 1

h2
(diag (Ξ ∗Ξ′)) (D̃z̄,1;(M−2)×(M−2) ⊗ I1) , (4.36j)A4,V = −1

h
(diagΞ′) (I(M−2)×(M−2) ⊗D

r̄,1
1 ) , (4.36k)A4,P = − (diagΞ)J(M−2)×KL

right , (4.36l)A5,U = 1

h
(diagΞ) (D̃z̄,1;(M−2)×(M−2) ⊗ I1) −
− 1

h
(diagΞ′) (I(M−2)×(M−2) ⊗D

r̄,1
1 ) , (4.36m)A5,V = (I(M−2)×(M−2) + 2

h2
(diag (Ξ′ ∗Ξ′)))(I(M−2)×(M−2) ⊗D

r̄,1
1 ) −

− 2

h2
(diag (Ξ ∗Ξ′)) (D̃z̄,1;(M−2)×(M−2) ⊗ I1) , (4.36n)A5,P = 1

h
(diag (Ξ ∗Ξ′))J(M−2)×KL

right , (4.36o)
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A6,U = −(2I(M−2)×(M−2) + 1

h2
(diag (Ξ′ ∗Ξ′))) (I(M−2)×(M−2) ⊗Dr̄,1

N
) −

− 1

h2
(diag (Ξ ∗Ξ′)) (D̃z̄,1;(M−2)×(M−2) ⊗ IN) , (4.36p)A6,V = −1

h
(diagΞ′) (I(M−2)×(M−2) ⊗D

r̄,1
N ) , (4.36q)A6,P = (diagΞ)J(M−2)×KL

left , (4.36r)A7,U = −1
h
(diagΞ) (D̃z̄,1;(M−2)×(M−2) ⊗ IN) −

− 1

h
(diagΞ′) (I(M−2)×(M−2) ⊗D

r̄,1
N ) , (4.36s)A7,V = −(I(M−2)×(M−2) + 2

h2
(diag (Ξ′ ∗Ξ′)))(I(M−2)×(M−2) ⊗D

r̄,1
N
) −

− 2

h2
(diag (Ξ ∗Ξ′)) (D̃z̄,1;(M−2)×(M−2) ⊗ IN) , (4.36t)A7,P = 1

h
(diag (Ξ ∗Ξ′))J(M−2)×KL

left , (4.36u)

and vectors on the right hand side are given by formulae7

F1 = −B ∗ ((vtopD
z̄,1;1 + vbottomD

z̄,1;M)⊗ 1(N−2)×1) , (4.37a)

F2 = 0, (4.37b)

F3 = −B ∗B ∗ ((vtopD
z̄,2;1 + vbottomD

z̄,2;M)⊗ 1(N−2)×1) , (4.37c)

F4 = 0, (4.37d)

F5 = 2

h2
(Ξ ∗Ξ′ ∗ (vtopD

z̄,1;1 + vbottomD
z̄,1;M)) , (4.37e)

F6 = 0, (4.37f)

F7 = F5. (4.37g)

In (4.36) and (4.37) we denoteA ⊗ B ∈ Rrp × qs the Kronecker product of matricesA ∈ Rp × q andB ∈ Rr × s, anddiag denotes the operator that creates, from a given
vectorA ∈ Rn, a diagonal matrix of sizen × n whose diagonal elements are given by
the vectorA,A⊗ B = ⎡⎢⎢⎢⎢⎢⎢⎢⎣ a1,1B a1,2B ⋯ a1,qB

a2,1B a2,2B ⋯ a2,qB
⋮ ⋮ ⋱ ⋮

ap,1B ap,2B ⋯ ap,qB ⎤⎥⎥⎥⎥⎥⎥⎥⎦ , diagA = diag
⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1
a2
⋮
an

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1 0 ⋯ 0

0 a2 ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ an

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (4.38)

Further we denoteA∗B ∈Rk the element-by-element multiplication of vectorsA ∈ Rk

andB ∈Rk,

A ∗B =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1
a2
⋮
ak

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∗
⎡⎢⎢⎢⎢⎢⎢⎢⎣

b1
b2
⋮
bk

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1b1
a2b2
⋮

akbk

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (4.39)

7When deriving (4.37c), we mutely use the fact that the term∑N
k=1D

r̄,1;N×N
i,k

vanishes for anyi =
1, . . . ,N since derivative of a constant is zero even at the discrete level.
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System matrix for the full problem

Equations (4.18) and (4.21) witĥα > 0 are clearly non-linear. To get rid of the non-
linearities we will use the pressure values from the previous time level (for these values
we use the notationP∗old). Let us introduce the notation

Eα̂ = exp (α̂P̄old), (4.40)

whereP̄old denotes the following column vector of size(3N − 2)(M − 2),

P̄old =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0J̃KL×KLJ̃KL×KLJ(M−2)×KL

rightJ(M−2)×KL

rightJ(M−2)×KL

leftJ(M−2)×KL

left

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

P∗old, (4.41)

andexp is the matrix function that provides, for a given matrixA ∈ Rn×m, a matrix
of the same size whose elements areeai,j (for i = 1, . . . , n, j = 1, . . . ,m). Now it is
possible to rewrite the problem in the compact form8

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 A2,P

0 0 A3,P

0 0 A4,P

0 0 A5,P

0 0 A6,P

0 0 A7,P

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
U

V

P∗

⎤⎥⎥⎥⎥⎥⎦ + (diagEα̂)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1,U A1,V A1,PA2,U A2,V 0A3,U A3,V 0A4,U A4,V 0A5,U A5,V 0A6,U A6,V 0A7,U A7,V 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
U

V

P∗

⎤⎥⎥⎥⎥⎥⎦ +

+ α̂ (diagEα̂)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0B2,U B2,V 0B3,U B3,V 0

0 0 0

0 0 0

0 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
U

V

P∗

⎤⎥⎥⎥⎥⎥⎦
= Eα̂ ∗

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1

F2 + α̂FB
2

F3 + α̂FB
3

F4

F5

F6

F7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.42)

At this point it is necessary to realize that the mentioned non-linearity is present
also in newly introduced termsB2,U , B2,V , B3,U , B3,V andFB

2 , FB
3 . Let us denote

Γ1 = G̃r̄,1;KL×KLP∗old, (4.43a)

Γ2 = (diagC) G̃r̄,1;KL×KLP∗old + (diagB) G̃z̄,1;KL×KLP∗old, (4.43b)

then we writeB2,U = 2 (diagΓ1) (I(M−2)×(M−2) ⊗ D̂r̄,1;(N−2)×N) +
8It is worth noting that for̂α = 0 we havediagEα̂ = I(3N−2)(M−2)×(3N−2)(M−2) and (4.42) is simply

reduced to (4.35).
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+ (diagΓ2) [(diagC) (I(M−2)×(M−2) ⊗ D̂r̄,1;(N−2)×N) +
+ (diagB) (D̃z̄,1;(M−2)×(M−2) ⊗ Ī(N−2)×N)] , (4.44a)B2,V = (diagΓ2) (I(M−2)×(M−2) ⊗ D̂r̄,1;(N−2)×N) , (4.44b)B3,U = (diagΓ1) [(diagC) (I(M−2)×(M−2) ⊗ D̂r̄,1;(N−2)×N) +
+ (diagB) (D̃z̄,1;(M−2)×(M−2) ⊗ Ī(N−2)×N)] , (4.44c)B3,V = (diagΓ1) (I(M−2)×(M−2) ⊗ D̂r̄,1;(N−2)×N) +
+ 2 (diagΓ2) [(diagC) (I(M−2)×(M−2) ⊗ D̂r̄,1;(N−2)×N) +
+ (diagB) (D̃z̄,1;(M−2)×(M−2) ⊗ Ī(N−2)×N)] , (4.44d)

and new vectors on the right hand side read

FB
2 = 0, (4.45a)

FB
3 = −2B ∗Γ2 ∗ ((vtopD

z̄,2;1 + vbottomD
z̄,2;M)⊗ 1(N−2)×1) . (4.45b)

This simple approach using the pressure values from the previous time level can be
later improved using some sophisticated method for solvingthe system of non-linear
equations, for example Newton-Raphson method.

(a) α̂ = 0 (b) α̂ > 0

Figure 12: Matrices assembled for systems of linear equations (4.35),(4.42). Values
N = 12, M = 13 were chosen for better resolution.

4.2.2 Time discretization

The time interval[0, tend] is divided using a small time step∆t = 1
n
tend for any fixed

n ∈N. We shall write
t(k) = k∆t, k = 0,1, . . . , n, (4.46)

and solutions at particular time levels will be denoted byv̄(k), p̄(k), ξ̄
(k)

.

4.2.3 Numerical scheme

Following the discussion stated at the beginning of this section, we shall seek a solution
of the given problem on consecutive time levels using the predictor-corrector scheme
stated below. For better understanding the scheme is described using the equations
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in their original form (2.22), (2.46) in physical space. Of course, subsequent com-
putations has to be carried out with the equations being transformed in the previous
sense.

In every cycle of the following scheme we seek the valuesξ(k+1), v(k+1) andp(k+1)

on a new time level using their valuesξ(k), v(k), p(k) on the current level. The initial
conditions used to start the scheme read

v(0) = 0, p(0) = 0, ξ(0) = R̂0. (4.47)

PREDICTOR-CORRECTOR SCHEME:

1. An update onξ is obtained from

−ξ
(k+1) − ξ(k)

∆t
+ vr(k)∣r=ξ(k) − ∂ξ(k)∂z

vz
(k)∣

r=ξ(k)
= 0. (4.48)

2. Using the new geometry withξ(k+1) we solve

divv(k+1) = 0, (4.49a)

−grad p(k+1) + eα̂p(k) (∆v(k+1) + 2α̂D(k+1) grad p(k)) = 0, (4.49b)

for v(k+1), p(k+1) subjected to corresponding boundary conditions.

3. Finally, it is possible to improveξ(k+1) obtained from (4.48) using

−ξ
(k+1)
new − ξ(k)

∆t
+ vr(k+1)∣r=ξ(k+1) − ∂ξ

(k+1)
new

∂z
vz
(k+1)∣

r=ξ(k+1)
= 0. (4.50)

After that, we can go back to the first step withξ(k) ∶= ξ(k+1)new , v(k) ∶= v(k+1), and
p(k) ∶= p(k+1).

At this point let us make an important observation in advance. Using the scheme
directly in the form just presented, one obtains quite unsatisfactory results due to the
presence of spurious oscillations apparent on the free surface – see Figure 17a and
related discussion in Section 5.2.1. In order to smooth these oscillations we add the
regularization term

ε∆ξ = ε∂2ξ
∂z2

, (4.51)

to our numerical scheme (ε is typically a small number). It means that instead of (4.48)
and (4.50) we shall consider

−ξ
(k+1) − ξ(k)

∆t
+ vr(k)∣r=ξ(k) − ∂ξ(k)∂z

vz
(k)∣

r=ξ(k)
= −ε∂2ξ(k)

∂z2
, (4.52)

−ξ
(k+1)
new − ξ(k)

∆t
+ vr(k+1)∣r=ξ(k+1) − ∂ξ

(k+1)
new

∂z
vz
(k+1)∣

r=ξ(k+1)
= −ε∂2ξ(k+1)new

∂z2
. (4.53)
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4.3 Benchmark problem

Once we have designed the numerical method, we need to provide some error esti-
mates or any other relevant information concerning the convergence of the method.
For this purpose we shall construct a benchmark problem using the method of manu-
factured solutions (MMS), see for example Roache (2002). Our manufactured solution
will be based on the analytical results obtained in Section 3.2. In fact, we will modify
the classical Stokes problem in the sense we add some additional terms to the equa-
tions. In the following chapter we shall compare numerical results (obtained with
corresponding modifications in the discrete problem) to theexact analytical solution.

Velocity components (3.35) rewritten into the computational domain using (4.2)
read9

v̄r̄ = 3r̄ξ̄

4h
(z̄2 − 1) ḣ, v̄z̄ = z̄

2
(3 − z̄2) ḣ. (4.54)

Similarly, for the pressure (3.36) we write

p̄ = 3ḣ
4h
( r̄2ξ̄2
h2
− 2z̄2) +C0, (4.55a)

where (see the discussion in Section 3.2.3)

C0 = − 3ḣ

4h
9

2

R̂2
0. (4.55b)

Clearly, since (3.35) and (3.36) were found to satisfy (3.5), their counterparts (4.54),
(4.55) must satisfy – independently onξ̄ – transformed equations (see (4.4) for com-
parison)

0 = ∂v̄r̄
∂r̄
+ v̄r̄
r̄
+ ξ̄
h

∂v̄z̄

∂z̄
− r̄
h

∂ξ̄

∂z̄

∂v̄z̄

∂r̄
, (4.56a)

ξ̄
∂p̄

∂r̄
= ⎛⎝1 + ( r̄h ∂ξ̄∂z̄)

2⎞⎠ ∂
2v̄r̄

∂r̄2
− 2r̄ξ̄

h2
∂ξ̄

∂z̄

∂2v̄r̄

∂r̄∂z̄
+ ξ̄

2

h2
∂2v̄r̄

∂z̄2
+

+ ⎛⎝1r̄ − r̄ξ̄h2 ∂
2ξ̄

∂z̄2
+ 2r̄

h2
(∂ξ̄
∂z̄
)2⎞⎠ ∂v̄r̄∂r̄ − v̄r̄r̄2 , (4.56b)

ξ̄

h
(ξ̄ ∂p̄
∂z̄
− r̄ ∂ξ̄

∂z̄

∂p̄

∂r̄
) = ⎛⎝1 + ( r̄h ∂ξ̄∂z̄)

2⎞⎠ ∂
2v̄z̄

∂r̄2
− 2r̄ξ̄

h2
∂ξ̄

∂z̄

∂2v̄z̄

∂r̄∂z̄
+

+ ξ̄
2

h2
∂2v̄z̄

∂z̄2
+ ⎛⎝1r̄ − r̄ξ̄h2 ∂

2ξ̄

∂z̄2
+ 2r̄
h2
(∂ξ̄
∂z̄
)2⎞⎠ ∂v̄z̄∂r̄ . (4.56c)

Since we would like to include an analogy of the no traction condition to our prob-
lem, we need to know an exact form of the functionξ̄, which determines profile of
the free surface. Sample radius at the central planeξ(0, t) is computed using the ordi-
nary differential equatioṅξ(0, t) = vr(ξ(0, t),0, t), together with the initial condition
ξ(0,0) = R̂0. This yields

ξ(0, t) = ξ̄(0, t) = R̂0h(t)− 3

4 . (4.57)

9We intentionally omit the lower index0 which was used to denote the zeroth-order subproblem
equivalent to the classical Stokes problem.
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Let us suppose a parabolic description of the free surfaceξ̄ = az̄2 + bz̄ + c, where
a, b, c are time-dependent constants. Using the known values ofξ̄ at the sample-plate
interface and central plane,

ξ̄∣
z̄=±1
= R̂0, ξ̄∣

z̄=0
= R̂0h

− 3

4 (4.58)

we get profile of the form

ξ̄ = ((1 − h− 3

4) z̄2 + h− 3

4 ) R̂0. (4.59)

The no-slip boundary condition at the sample-plate interfaces remains untouched,
it means

v̄z̄ ∣z̄=±1 = ±ḣ, v̄r̄∣z̄=±1 = 0. (4.60a)

Modified dynamic boundary condition (originally no traction), obtained using the tem-
plates (4.54), (4.55) and (4.59) in the equations (4.8b) – (4.8e) withα̂ = 0, reads⎡⎢⎢⎢⎢⎣−ξ̄p̄ + 2

∂v̄r̄

∂r̄
− ξ̄

h2
∂ξ̄

∂z̄

∂v̄r̄

∂z̄
+ r̄

h2
(∂ξ̄
∂z̄
)2 ∂v̄r̄

∂r̄
− 1

h

∂ξ̄

∂z̄

∂v̄z̄

∂r̄

⎤⎥⎥⎥⎥⎦r̄=1 = ḡ1, (4.60b)

⎡⎢⎢⎢⎢⎣
ξ̄

h

∂ξ̄

∂z̄
p̄ + ξ̄

h

∂v̄r̄

∂z̄
− r̄
h

∂ξ̄

∂z̄

∂v̄r̄

∂r̄
+ ∂v̄z̄
∂r̄
− 2ξ̄

h2
∂ξ̄

∂z̄

∂v̄z̄

∂z̄
+ 2r̄

h2
(∂ξ̄
∂z̄
)2 ∂v̄z̄

∂r̄

⎤⎥⎥⎥⎥⎦r̄=1 = ḡ2, (4.60c)

⎡⎢⎢⎢⎢⎣ξ̄p̄ − 2
∂v̄r̄

∂r̄
− ξ̄

h2
∂ξ̄

∂z̄

∂v̄r̄

∂z̄
+ r̄

h2
(∂ξ̄
∂z̄
)2 ∂v̄r̄

∂r̄
− 1

h

∂ξ̄

∂z̄

∂v̄z̄

∂r̄

⎤⎥⎥⎥⎥⎦r̄=−1 = −ḡ1, (4.60d)

⎡⎢⎢⎢⎢⎣
ξ̄

h

∂ξ̄

∂z̄
p̄ − ξ̄

h

∂v̄r̄

∂z̄
+ r̄
h

∂ξ̄

∂z̄

∂v̄r̄

∂r̄
− ∂v̄z̄
∂r̄
− 2ξ̄

h2
∂ξ̄

∂z̄

∂v̄z̄

∂z̄
+ 2r̄

h2
(∂ξ̄
∂z̄
)2 ∂v̄z̄

∂r̄

⎤⎥⎥⎥⎥⎦r̄=−1 = ḡ2, (4.60e)

where the terms on right hand sides are given by

ḡ1 = −3R̂0 (z̄2h 3

4 − z̄2 + 1) ḣ
4h

21

4

(5R̂2
0z̄

4h
3

2 + 2R̂2
0 (3 − 5z̄2) z̄2h 3

4 +
+ (2 − 4z̄2)h 7

2 + R̂2
0 (5z̄2 − 6) z̄2) , (4.60f)

and

ḡ2 = 3R̂
2
0z̄ (z̄2h 3

4 − z̄2 + 1) ḣ
2h7

(R̂2
0z̄

4h
9

4 + R̂2
0z̄

2 (2 − 3z̄2)h 3

2 +
+ R̂2

0z̄
2 (3z̄2 − 4)h 3

4 + (3z̄2 − 4)h 17

4 + (5 − 3z̄2)h 7

2 − R̂2
0z̄

2 (z̄2 − 2)) . (4.60g)

Finally, substituting (4.59) into the kinematic condition(4.8f) we obtain modified
transport equation

−∂ξ̄
∂t
+ v̄r̄∣r̄=1 + 1

h
(z̄ḣ − v̄z̄) ∂ξ̄

∂z̄
= ḡ3, (4.60h)

where

ḡ3 = 7R̂0z̄2

4h
7

4

(z̄2 − 1)(h 3

4 − 1) ḣ. (4.60i)

The quartet(v̄r̄, v̄z̄, p̄, ξ̄) satisfying (4.54), (4.55) and (4.59) is called the exact solu-
tion of the benchmark problem (4.56) – (4.60).
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5. Results
The numerical method was implemented in MATLAB and numerical results were ob-
tained for several combinations of parameter values. In what follows, we mainly report
results for a particular setting specified by the parameterssummarized in Table 2. Note
that we considerh given by (2.39). The choice of the time data corresponds to the
situation where the sample is compressed approximately up to four fifths of its initial
height, which seems to be more than enough in order to get somebasic knowledge
about the behaviour of the material in the squeeze flow geometry.

At first we shall briefly investigate questions concerning the convergence of the
numerical method using the benchmark problem described in the previous chapter.
Numerical solutions obtained for the classical Navier-Stokes fluid will help us to reveal
some fundamental drawbacks related to the physical model and we shall point out the
role of the parabolic regularization introduced at the end of Section 4.2.3. Finally, the
pressure-viscosity coefficient̂α will be varied in order to determine the influence of
the pressure-dependent viscosity on the solution1.

Parameter R̂0 tend t0 ε

Value 2 0.2 0.05 0 to 0.01

Table 2: Parameter values used in computations.

5.1 Convergence of the numerical method

In order to verify whether the numerical method provides plausible results, we carry
out some simple tests comparing the numerical solution of the benchmark problem
(4.56), (4.60) to the quartet(ūex, v̄ex, p̄ex, ξ̄ex) that represents the exact solution of
the same problem2. We need to measure the difference between the two solutions
appropriately. For this purpose we introduce the notation

∣ ω̄ ∣ t;N,M = max
i=1,...,N,j=1,...,M

∣ ω̄(ri, zj , t) ∣ , (5.1a)

∣ ω̄ ∣∗t;K,L = max
i=1,...,K,j=1,...,L

∣ ω̄(r∗i , z∗j , t) ∣ , (5.1b)

whereω̄ is an arbitrary function on the computational domainΩ̄ and collocation points(ri, zj), (r∗i , z∗j ) are defined in (4.9), (4.10) respectively. Sinceξ̄ does not depend on
r̄, we modify the previous notation and further we will also use

∣ ξ̄ ∣
t;M
= max

j=1,...,M
∣ ξ̄(zj , t) ∣ , (5.1c)

1Let us remind that when reporting results for the pressurep, we in fact report results concerning the
difference ofp from a reference levelp0.

2Numerical solution of the problem is obtained by adding the discrete version of̄g1, ḡ2 into (4.37d),
(4.37g), according to (4.60b) – (4.60e), and it is also necessary to adjust the discrete version of the trans-
port equation in the first and last step of our predictor-corrector scheme, this time according to (4.60h).
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Now it is possible to define functions

δu(t;N,M) = ∣ ūex ∣−1t;N,M ∣ ū − ūex ∣ t;N,M , (5.2a)

δv(t;N,M) = ∣ v̄ex ∣−1t;N,M ∣ v̄ − v̄ex ∣ t;N,M , (5.2b)

δp(t;K,L) = (∣ p̄ex ∣∗t;K,L)−1 ∣ p̄ − p̄ex ∣∗t;K,L , (5.2c)

δξ(t;M) = ∣ ξ̄ex ∣−1t;M ∣ ξ̄ − ξ̄ex ∣ t;M , (5.2d)

which provide an information about relative errors for the solution(ū, v̄, p̄, ξ̄).
In Figure 13 we have plotted the relative errors (5.2) fort = 0.1 andN = M .

One can see that for∆t = 10−3, andN sufficiently large, solutions̄u, v̄ approximate
ūex and v̄ex with the relative error of order10−3, p̄ approximates̄pex with the relative
error of order10−2, andξ̄ approximates̄ξex with the relative error of order10−4. It is
worth noting that an improvement of the order of approximation is reached easily using
smaller time steps. This seems to be more efficient than incessant increase of the
number of collocation points with∆t being fixed.
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Figure 13: Relative errors att = 0.1. Individual curves express the dependence of
relative errors (5.2) on the number of velocity collocationpointsN =M .

For further computations we use the time step∆t = 10−3 and velocity grid of the
sizeN ×M = 20×25 (we use more collocation points in the vertical direction since we
want to capture the curvature of the free surface as well as possible). In Figure 14a one
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Figure 14: Values of the relative errorδξ(t;M) given by (5.2d). The error was com-
puted on the velocity gridN ×M = 20 × 25, using∆t = 10−3.
can see the time dependent relative errorδξ(t;M) computed on the mentioned grid,
while Figure 14b illustrates also the spatial distributionof the error.

The results obtained in this section show that the numericalscheme for solution of
the Stokes-type problem with moving boundary has been implemented without coding
errors.

The analysis of the relative error between the exact solution of the benchmark prob-
lem and the numerical solution provides us with a heuristic guideline how to choose
computational parameters(N,M,∆t) in order to obtain reasonably accurate numeri-
cal results in the benchmark problem and, more importantly,in the full problem. Using
the results concerning the relative error we can also make a qualified guess on the error
in the numerical calculations for the full problem.

5.2 Numerical solution for the classical Stokes problem

First, we consider the classical Navier-Stokes fluid model and its behaviour in the
simulation. The system of linear algebraic equations givenby (4.35) is solved in the
second step of every cycle in our predictor-corrector scheme.

5.2.1 Behaviour in corners

For the Navier-Stokes fluid solution we expect presence of the pressure singularities lo-
cated in the corners of the computational domain. Distribution of the pressure through-
out the sample at different time instants is captured in Figure 15. One can observe that
the pressure is increasing in the corners at first but after some time it starts to descend
very rapidly. Consequently, there are pressure singularities in the negative direction
which is quite strange, and it possibly indicates breakdownof the numerical solution
in this time interval.

As it is shown in Figure 16a, it seems that pressure values start to descend when
the velocity of the plates becomes constant. On the other side, Figure 16b illustrates
that pressure values localized in the center of the plate behave in an expected way (see
Figures 10a and 25b for comparison).
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Figure 15: Pressure distribution for the Navier-Stokes fluid at different time instants.
Computed withε = 0. Results were reinterpolated from the pressure grid at a finer grid
using the Chebyshev interpolation implemented in Weidemanand Reddy (2000).
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(b) Pressure values in the center of the plate.

Figure 16: Pressure localized in particular places of the computationaldomain. Com-
puted for the Navier-Stokes fluid withε = 0 and various settings of the plate motion.

Another interesting feature that possibly indicates the collapse of the numerical
solution for large times arises on the free surface. The oscillations apparent near
the sample-plate interface in Figure 17a confirm that the solution in the corners is
ill-behaved.

Using the velocity field computed in corresponding collocation points, it is possi-
ble to reconstruct the motion of individual particles. In Figure 17b we have plotted the
trajectories of particles that in the reference configuration occupy the position of col-
location points on the free surface (black squares). Looking at their current position at
t = 0.15 (white squares), it seems that the free surface should be smooth non-oscillating
curve. At this point we would guess that the velocity field does not suffer from the se-
rious drawbacks.

Of course, this is not the case as it is clear from the nature ofthe problem. Experi-
mental tests have shown that by increasing the number of collocation points in vertical
direction, thus increasing their density in the corners, the oscillations of the free sur-
face become stronger. As a consequence, the velocity field suffers from some abrupt
changes as it is captured in Figure 18. Further increase in the number of collocation
points even damages symmetry of the solution.

We believe that the inconsistencies described above are closely connected to the
physically incorrect choice of the boundary condition at the sample plate interface
near the corners of the domain. When the no-slip condition isapplied, one should
consider an apparent motion of the contact line over the plate surface, see for example
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Figure 17: Motion of the free surface for the Navier-Stokes fluid. Computed with
ε = 0. Note that in figure (b) we have usedz̄ coordinate on the vertical axis, see (4.2),
in order to see the motion of the particles relatively to the sample height.
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Figure 18: Velocity field in the computational domain withN×M = 20×28 collocation
points. Computed for the Navier-Stokes fluid withε = 0. Figures (a), (c) show abrupt
unexpected changes of the velocity field. Vectors are scaledby the factor 0.1.
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Figure 19: Contact line motion over a solid surface. Reprinted from Mavridis (1988).

Mavridis (1988), when the free surface of the material gradually sticks to the plate, see
Figure 19. Presence of this phenomenon in our case seems to beconfirmed follow-
ing trajectories of the particles in the close proximity of the sample-plate interface in
Figure 17b.

In order to fix the solution behaviour in the corners, the numerical simulation
should be improved according to the scheme depicted in Figure 19. Unfortunately,
this requires some extensive changes in our code which are out of scope of the thesis
(especially because of the time reasons).

5.2.2 Results obtained using parabolic regularization

As we have already mentioned at the end of Section 4.2.3, another way how to improve
the numerical scheme is to use the regularization term (4.51). Really, in Figure 20a one
can see the smooth boundary computed withε = 0.01.

Concerning the velocity field, there are no abrupt changes inits values anymore
and trajectories of the individual particles are depicted in Figure 20b. Note that the
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(a) Free surface att = 0.15. Values were
reinterpolated at a finer grid (white cir-
cles show the current position of the ve-
locity collocation points).
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t = 0, white squares att = 0.15).

Figure 20: Motion of the free surface for the Navier-Stokes fluid. Computed with
ε = 0.01. Red line in figure (a) is used to denote the profile from Figure17a.
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current position of the particles located near the sample-plate interface does not exactly
coincide with the position of the free surface. Clearly, this is caused by the artificial
regularization term in the governing equations. However, the situation on the rest of
the free boundary is more than promising.

An influence of the regularization term on the pressure is captured in Figures 21,
22. Unfortunately, one can observe that the decreasing tendency of the pressure values
in the corners is not influenced by this technique, see Figure22a.
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Figure 21: Pressure distribution for the Navier-Stokes fluid at different time instants.
Computed withε = 0.01. See Figure 15 for comparison.
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(a) Pressure values in the corner.
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(b) Pressure values in the center of the plate.

Figure 22: Pressure localized in particular places of the computational domain. Com-
puted for the Navier-Stokes fluid with various strength of the regularization term.

5.2.3 Direct comparison to the analytical solution

In Section 3.2 we have introduced anapproximationof the no-slip squeeze flow prob-
lem based on the assumption that planes initially normal to the direction of loading
remain plane in the deformed state. We have argued that such an assumption is justifi-
able only at the very beginning of the experiment.

At this point we can verify the latter hypothesis by comparing the analytical so-
lution of the approximate problem corresponding to Navier-Stokes fluid, see (3.35) –
(3.36), with the numerical solution obtained in the previous paragraph for the full reg-
ularized problem. This comparison also provides us with a qualified guess whether the
numerical solution can be regarded as plausible.

In Figure 23 we compare free surfaces at different time instants. Note that the
centre part of the free surface computed using the numericalsimulation moves slower
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Figure 23: Motion of the free surface corresponding to numerical solution (——) and
analytical solution (– – –). Both profiles were computed for the Navier-Stokes fluid.

than in the case of analytical solution. This is caused by thefact that particles near
the free surface move towards the plates as it was shown in Figure 20b. Deformation
patterns studied by Mavridis et al. (1992) reveal that in a real situation the planes ini-
tially normal to the direction of loading are indeed deformed during the compression,
see Figure 24, which contradicts the assumption made for theapproximate problem.
In order to see this explicitly, the numerical tracking of individual particles inside the
sample should be additionally involved in our code.

Previous statement comparing the velocities of individualprofiles is confirmed in
Figure 25a. Radial velocity components were compared at thetips of the correspond-
ing free surfaces and one can notice that both solutions coincide only at the beginning
of the time interval.

Finally, in Figure 25b one can see the pressure located in thecenter of the upper
plate. As we have already mentioned in Section 3.2.3, it is necessary to bear in mind
that the analytical solution is influenced by the choice of boundary condition (3.48).
However, at this point it is possible to improve the result doing some “post-processing”.
We add the pressure value at the tip of the free surface, obtained from the numerical
solution, to the analytical solution which was originally fixed to zero at the same point.

Figure 24: Deformation of planes initially normal to the direction of loading.
Reprinted from Mavridis et al. (1992).
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Figure 25: Comparison of the numerical and analytical solutions for the velocities and
pressure values at specific points in the computational domain.

5.3 Role of pressure-dependent viscosity

At this point we finally come to the main topic of the thesis. Wewant to solve the full
problem for an incompressible fluid with pressure-dependent viscosity. Hence, in the
second step of every cycle in our numerical scheme we solve the system of equations
(4.42) withα̂ > 0.

Originally, we have expected that the effect of the pressure-dependent viscosity
will be important especially in the corners of the domain. Wewere wondering if it
is somehow capable to resolve drawbacks discussed above, thus if it yields solutions
markedly different from those obtained in the previous paragraph. Unfortunately, due
to the presence of the moving boundary, singular-like behaviour of the pressure in the
corners persists also in this case. As a consequence, we can guess that the effect of
the pressure-dependent viscosity will be reduced to the same level as in the case of
analytical solution.

Numerical experiments confirm that solutions obtained without the regularization
term (4.51) suffer from the drawbacks already discussed in Section 5.2.1. Hence, we
shall present only results obtained using the regularization term withε = 0.01.

Let ξ̄ denotes the sample radius computed forα̂ = 0, which corresponds to the
Navier-Stokes fluid, and similarly let̄ξα̂ is computed for̂α = 0.01. In Figure 26 we
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Figure 26: Space and time distribution of the difference defined by (5.3).
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have plotted the difference

ξ̄ (z̄j , t) − ξ̄α̂ (z̄j , t) , j = 1, . . . ,M, (5.3)

at velocity collocation points on the free surface. Although the difference is really
small, it is worth emphasizing that its distribution on the free surface corresponds to
the behaviour captured in Figure 8c. It means that the solution for Navier-Stokes fluid
lags behind the other solution in the middle of the free surface, while it is faster in the
upper and lower quarter of the free surface.

As in the case of analytical solution, most significant changes are observable con-
cerning the pressure. Distribution of the pressure throughout the computational domain
is captured in Figure 27, including the comparison of pressure values at selected points.

The results obtained here lead us to the conclusion that the pressure-dependent
viscosity is probably not a tool to resolve the issue with physically incorrect choice of
boundary condition in the corner. On the other hand, we should realize that the chosen
geometry is too complex in order to make some premature conclusions about the real
influence of the pressure-dependent viscosity on the solution. In fact, there are at least
two possibilities how to proceed with our studies. We can do the side step and repeat
the computations in an appropriate geometry without movingboundary3, the other
possibility is to improve the code in the sense discussed at the end of Section 5.2.1.
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(a) Pressure distribution in the computational
domain att = 0.2. Computed for̂α = 0.01.
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(b) Pressure values in the corner.

0 0.05 0.1 0.15 0.2
0

1

2

3

4

5

6

7

t

p

 

 

α̂ = 0
α̂ = 0.001
α̂ = 0.01

(c) Pressure values in the center of the plate.

Figure 27: Pressure computed for the Navier-Stokes fluid (α̂ = 0) and for the incom-
pressible fluid with pressure-dependent viscosity.

3One can think about “lid-driven cavity” problem for example.
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6. Conclusion

6.1 Summary

The axisymmetric squeeze flow problem was solved for an incompressible material
that can be described using the constitutive equationT = −pI + 2µ(p)D, (6.1)

where the pressure-dependent viscosity obeys the Barus law

µ(p) = µ0e
αp. (6.2)

Solutions were sought in two different settings depending on the choice of boundary
condition at the sample-plate interfaces.

Perfect-slip

In the perfect-slip squeeze flow the velocity field corresponds to the homogeneous bi-
axial extension. It was found that pressure remains homogeneously distributed through-
out the sample and its values are given implicitly by the relation (3.14). An approx-
imate solution for the pressure was obtained using the perturbation method. It was
shown that the material in question becomes more stiff in comparison to the classical
Navier-Stokes fluid.

No-slip

The no-slip squeeze flow problem was solved using two different approaches.
Analytical solution was found using the perturbation method, supposing that planes

initially normal to the direction of loading are not deformed during the compression.
In this case, the pressure distribution is no longer homogeneous throughout the sam-
ple and material characteristics are changed locally in comparison to the Navier-Stokes
fluid. The analytical solution was further used to derive thebenchmark problem impor-
tant from the point of view of numerical computations. It wasused for code verification
later in the thesis.

The numerical simulation poses second approach used to solve the no-slip squeeze
flow which has to be treated as a free boundary problem. The method of body-fitted
curvilinear coordinates was used to transform the governing equations into the fixed
computational domain, whose spatial discretization was achieved using the spectral
collocation method. The no traction condition derived in Section 2.2.2 was involved in
the numerical simulation as well as the kinematic condition(2.33) which determines
the motion of the free surface. Solutions at different time levels were obtained using
the predictor-corrector scheme. Non-linear terms, appearing in the equations through
(6.2), were linearized using the pressure values known fromthe previous time level.

Results and drawbacks

The numerical simulation was used to solve the problem for the classical Navier-Stokes
fluid at first. Obtained results revealed some fundamental drawbacks in the form of os-
cillations of the free surface and singular-like behaviourof the pressure in the corners.
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These inconsistencies are attributed to the choice of the no-slip boundary condition in
the corners which is not a good one and leads to an ill-posed physical problem.

Apparently spurious oscillations were eliminated using the parabolic regularization
(4.51) in the equation of transport (kinematic condition).This technique helped to
suppress the oscillations of the free surface. The numerical solution was subsequently
compared to the analytical one in order to see that the simplifying assumption about
non-deforming horizontal planes is justifiable only at the very beginning of squeezing.

Numerical experiments, which were carried out for the full problem, revealed that
the pressure-dependent viscosity is probably not a tool to resolve the issue with incor-
rect choice of the boundary condition (the problems observed in the case with Navier-
Stokes fluid persisted also in the case with pressure-dependent viscosity). Some ac-
ceptable results were obtained, as in the previous case, using the regularization term.
It was shown that departures from the solution for Navier-Stokes fluid are approxi-
mately on the same level as in the case of analytical solution.

6.2 Outlook

One of the main outputs of the present thesis is the numericalsimulation which is ready
to be modified in different ways. The simulation was implemented in MATLAB and
its code is contained within the filesqueeze-flow-simulation.zipwhich can be found
attached to the electronic version of the thesis.

As it is clear from Summary, we need a better boundary condition near the cor-
ners of the computational domain. In this situation severalpossibilities are available.
For example partial-slip at the sample-plate interface canbe easily included into the
code, as well as the dynamic condition in its original form (2.29) instead of the no trac-
tion condition. Finally, moving contact line poses indisputably the biggest challenge
of how to improve our numerical simulation. All of these improvements should be suc-
cessively implemented in order to make the effect of the pressure-dependent viscosity
on the solution more transparent.
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Hron, J., J. Málek, and K. R. Rajagopal (2001). Simple flows of fluids with pressure-
dependent viscosities.Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 457(2011),
1603–1622.

57



Huh, C. and L. Scriven (1971). Hydrodynamic model of steady movement of a
solid/liquid/fluid contact line.Journal of Colloid and Interface Science 35(1), 85
– 101.

King, H. E., E. Herbolzheimer, and R. L. Cook (1992). The diamond-anvil cell as a
high-pressure viscometer.J. Appl. Phys. 71(5), 2071–2081.

Lanzendörfer, M. (2011).Flows of incompressible fluids with pressure-dependent vis-
cosity (and their application to modelling the flow in journal bearing). Ph. D. thesis,
Mathematical Institute of Charles University, Czech Republic.

Liang, J. Z. (2001). Pressure effect of viscosity for polymer fluids in die flow. Poly-
mer 42(8), 3709–3712.
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Appendix A
Cylindrical coordinates
Let us consider a three-dimensional Euclidean space together with aCartesian coor-
dinate systemconsisting of an orthonormal basis{ei} = {e1,e2,e3} and a pointO
called anorigin. Any point in this space can be identified with itsCartesian coordi-
natesxi (i = 1,2,3) with respect to the established basis.

Due to the geometry of the problem considered in the main scope of this paper we
introducecylindrical coordinatesin the classical way. We use the notation

ξ1 ≡ r , ξ2 ≡ θ , ξ3 ≡ z ,
whereas relations

x1 = r cos θ ,
x2 = r sin θ ,
x3 = z

hold for r ∈ [0,∞), θ ∈ [0,2π), z ∈R.
Covariant basis

At each point(r, θ, z) we introduce acovariant basisin the form

gi = ∂xj∂ξi
ej, (A.1)

it means

g1 ≡ gr =
⎡⎢⎢⎢⎢⎢⎣
cos θ

sin θ

0

⎤⎥⎥⎥⎥⎥⎦
, g2 ≡ gθ =

⎡⎢⎢⎢⎢⎢⎣
−r sin θ
r cos θ

0

⎤⎥⎥⎥⎥⎥⎦
, g3 ≡ gz =

⎡⎢⎢⎢⎢⎢⎣
0

0

1

⎤⎥⎥⎥⎥⎥⎦
.

In an analogous way we can refer to acontravariant basisgiven by

gi = ∂ξi
∂xj

ej, (A.2)

It is not necessary to emphasize this regarding the fact thatfurther we use so called
physical coordinatesintroduced with respect to normed bases (see below).

Metric tensor g = [gij] = ⎡⎢⎢⎢⎢⎢⎣ 1 0 0

0 r2 0

0 0 1

⎤⎥⎥⎥⎥⎥⎦
, J = det g = r2 .

Since cylindrical coordinates are orthogonal, the relation gij = 1/gij holds.
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Physical coordinates

Normed basis is obtained as

ĝi = gi∣gi∣ =
gi(gi ⋅ gi)1/2 =

gi√
gii

, (A.3)

ĝ1 ≡ ĝr =
⎡⎢⎢⎢⎢⎢⎣
cos θ

sin θ

0

⎤⎥⎥⎥⎥⎥⎦
, ĝ2 ≡ ĝθ =

⎡⎢⎢⎢⎢⎢⎣
− sin θ
cos θ

0

⎤⎥⎥⎥⎥⎥⎦
, ĝ3 ≡ ĝz =

⎡⎢⎢⎢⎢⎢⎣
0

0

1

⎤⎥⎥⎥⎥⎥⎦
.

Now, for a vectorv one can write

v = vi gi = vi√gii gi√
gii
= vi√gii ĝi , (A.4)

v = vi gi = vi√gii gi√
gii
= vi√

gii
ĝi . (A.5)

Due to orthogonality of cylindrical coordinates (used in the3rd equation in the follow-
ing relation), the physical coordinates of a vectorv are given as

v̂i = vi√gii = gijvj √gii = giivi√gii = vi

gii
√
gii = vi√

gii
. (A.6)

(no sum overi)

Covariant derivative

Derivative of a vector fieldv with respect toxi in a Cartesian coordinate system is

∂v

∂xi
= ∂(vjej)

∂xi
= ∂vj
∂xi

ej .

On the other hand, derivative of the same vector field with respect toξi in a curvilinear
coordinate system is

∂v

∂ξi
= ∂(vjgj)

∂ξi
= ∂vj
∂ξi

gj + vj ∂

∂ξi
(∂xm
∂ξj

em) = ∂vk
∂ξi

gk + vj ∂2xm

∂ξi∂ξj
em.

At the same time the relation (A.1) yields

em = ∂ξk
∂xm

gk ,

thus
∂v

∂ξi
= (∂vk

∂ξi
+ vj Γk

ij)gk , whereΓk
ij = ∂2xm

∂ξi∂ξj
∂ξk

∂xm
.

Moreover, Christoffel symbols of the second kindΓk
ij can be calculated1 as

Γk
ij = 1

2
gkl (∂gil

∂ξj
+ ∂glj
∂ξi
− ∂gij
∂ξl
) .

1For further information see e. g. Brdička et al. (2000).
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Considering cylindrical coordinates as above, we can writethese symbols in a sym-
bolic notation

Γr =
⎡⎢⎢⎢⎢⎢⎣
0 0 0

0 −r 0

0 0 0

⎤⎥⎥⎥⎥⎥⎦
, Γθ =

⎡⎢⎢⎢⎢⎢⎣
0 1

r
0

1
r
0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎦
, Γz =

⎡⎢⎢⎢⎢⎢⎣
0 0 0

0 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎦
.

The term

vk∣i = ∂vk∂ξi
+ Γk

ij v
j

is called covariant derivative ofvk with rescpect toξi . Then we write

∂v

∂ξi
= vk∣i gk .

Similarly it is possible to deduce that

vk∣i = ∂vk∂ξi
− Γj

ki vj ,

and for second order tensors

∂S
∂ξi
= Sjk∣i gj ⊗ gk = Sjk∣i gj ⊗ gk,

where

Sjk∣i = ∂Sjk

∂ξi
+ Γj

im Smk + Γk
in S

jn ,

Sjk∣i = ∂Sjk

∂ξi
− Γm

ij Smk − Γn
ik Sjn .

We can clearly introduce physical components of covariant derivative with recpect to
the normed basis (A.3) through

v̂j ∣i = vj ∣i√
gii

√
gjj = vj ∣i√

gjj gii
, (no sum)

Ŝjk∣i = Sjk∣i√
gii

√
gjj gkk = Sjk∣i√

gjj gkk gii
. (no sum)

It should be obvious after reading the section about gradient below. According to (A.6)
we have

v̂r = vr, v̂θ = vθ
r
, v̂z = vz,

and using previous results one gets

vr∣r = ∂vr∂r , v̂r∣r = ∂v̂r∂r ,
vr∣θ = ∂vr∂θ − vθr , v̂r∣θ = 1

r

∂v̂r

∂θ
− v̂θ
r
,

vr∣z = ∂vr∂z , v̂r∣z = ∂v̂r∂z ,
vθ∣r = ∂vθ∂r − vθr , v̂θ∣r = ∂v̂θ∂r ,
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vθ∣θ = ∂vθ∂θ + rvr, v̂θ ∣θ = 1

r

∂v̂θ

∂θ
+ v̂r
r
,

vθ∣z = ∂vθ∂z , v̂θ∣z = ∂v̂θ∂z ,
vz ∣r = ∂vz∂r , v̂z ∣r = ∂v̂z∂r ,
vz ∣θ = ∂vz∂θ , v̂z ∣θ = 1

r

∂v̂z

∂θ
,

vz ∣z = ∂vz∂z , v̂z ∣z = ∂v̂z∂z .

Gradient

In the Cartesian coordinate system we define an operator nabla

∇ = ∂

∂xi
ei,

while in the curvilinear coordinate system we have

∇ = ∂

∂ξi
gi.

Throughout the following we use the notationφ for a scalar field,v for a vector field
andS for a second order tensor field. Gradient of these particularquantities is given by

gradφ ≡ ∇φ = ∂φ
∂ξi

gi = 1√
gii

∂φ

∂ξi
ĝi,

gradv ≡ ∇v = ∂v
∂ξi
⊗ gi = vj ∣i gj ⊗ gi = v̂j ∣i ĝj ⊗ ĝi,

gradS ≡ ∇S = ∂S
∂ξi
⊗ gi = Sjk∣i gj ⊗ gk ⊗ gi = Ŝjk∣i ĝj ⊗ ĝk ⊗ ĝi.

First two relations may be rewritten in a matrix form with convenience. We shall omit
the hat above particular components, however we must keep inmind that they are still
related to the basis (A.3). In this sense the gradient in the cylindrical coordinate system
reads

gradφ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂φ

∂r

1
r
∂φ
∂θ

∂φ

∂z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, gradv =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂vr
∂r

1
r
(∂vr

∂θ
− vθ) ∂vr

∂z

∂vθ
∂r

1
r
(∂vθ

∂θ
+ vr) ∂vθ

∂z

∂vz
∂r

1
r
∂vz
∂θ

∂vz
∂z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A.7)

Divergence

Differential operator divergence can be applied either to avector field, so that

divv = 1
r

∂(r vr)
∂r

+ 1

r

∂vθ

∂θ
+ ∂vz
∂z

, (A.8)
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or to a tensor field and then

divS = ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
∂Srr
∂r
+ 1

r
(∂Srθ

∂θ
+ Srr − Sθθ) + ∂Srz

∂z

∂Sθr
∂r
+ 1

r
(∂Sθθ

∂θ
+ Srθ + Sθr) + ∂Sθz

∂z

∂Szr
∂r
+ 1

r
(∂Szθ

∂θ
+ Szr) + ∂Szz

∂z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A.9)

Laplace

Laplace operator of a scalar field reads

∆φ = ∂2φ
∂r2
+ 1
r

∂φ

∂r
+ 1

r2
∂2φ

∂θ2
+ ∂

2φ

∂z2
. (A.10)

In the case of a vector field we have

∆v =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆vr − 2
r2

∂vθ
∂θ
− vr

r2

∆vθ + 2
r2

∂vr
∂θ
− vθ

r2

∆vz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A.11)

This short appendix should be understood to provide a brief satisfactory overview
of the topic. Some profound information can be found for example in Ogden (1984),
Brdička et al. (2000), but also in many other books dedicated to the tensorial calculus.
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Appendix B
Transformation rules
Here we shall provide some detailed information concerningthe reformulation of the
problem as it was done in Section 4.1. LetΩ̄ = [−1,1] × [−1,1] is the fixed computa-
tional domain andΩt, U , U−1 are given by (4.1), (4.2) respectively.

The objective is to rewrite (2.41) – (2.46) in terms ofv̄r̄, v̄z̄ , p̄ and ξ̄, which are
functions defined on̄Ω. Let us remind that for an arbitrary functionω onΩt we have
defined its counterpart̄ω in (4.3),

ω(r, z, t) = ω(r̄ξ̄(z̄, t), z̄h(t), t) =def ω̄(r̄, z̄, t) = ω̄ (rξ(z, t)−1, zh(t)−1, t) .
Jacobian matrix of the inverse mappingU−1 reads

J(r, z, t) = ⎡⎢⎢⎢⎢⎣
∂r̄
∂r

∂r̄
∂z

∂z̄
∂r

∂z̄
∂z

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

1
ξ
− r

ξ2
∂ξ

∂z

0 1
h

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

1

ξ̄
− r̄

hξ̄

∂ξ̄
∂z̄

0 1
h

⎤⎥⎥⎥⎥⎦ = J̄(r̄, z̄, t). (B.1)

Clearly, using the above notation one can write

gradr,z ω(r, z, t) = J̄(r̄, z̄, t)⊺ gradr̄,z̄ ω̄(r̄, z̄, t), (B.2)

or equivalently

∂ω

∂r
= 1
ξ̄

∂ω̄

∂r̄
, (B.3)

∂ω

∂z
= 1

h

∂ω̄

∂z̄
− r̄

hξ̄

∂ξ̄

∂z̄

∂ω̄

∂r̄
. (B.4)

Second derivatives ofω can be obtained using the chain rule. We have

∂2ω

∂r2
= 1

ξ̄2
∂2ω̄

∂r̄2
, (B.5)

∂2ω

∂z2
= ( r̄

hξ̄

∂ξ̄

∂z̄
)2 ∂2ω̄

∂r̄2
− 2r̄

h2ξ̄

∂ξ̄

∂z̄

∂2ω̄

∂r̄∂z̄
+ 1

h2
∂2ω̄

∂z̄2
+ r̄

h2ξ̄2

⎛⎝2(∂ξ̄∂z̄)
2

− ξ̄ ∂
2ξ̄

∂z̄2
⎞⎠ ∂ω̄∂r̄ ,

(B.6)

Finally, for the time derivative we write

∂ω

∂t
= ∂ω̄
∂t
+ ∂ω̄
∂r̄

∂r̄

∂t
+ ∂ω̄
∂z̄

∂z̄

∂t
= ∂ω̄
∂t
+ z̄
h
( r̄
ξ̄

∂ξ̄

∂z̄

∂ω̄

∂r̄
− ∂ω̄
∂z̄
) dh
dt
− r̄
ξ̄

∂ξ̄

∂t

∂ω̄

∂r̄
. (B.7)

Transformed equations (4.4), (4.8) now can be simply obtained using the above rules.
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