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Meaning

pressure-viscosity coefficient
surface tension

compression raté = H/H = h/h)
reference viscosity

sample radius

ambient pressure

sample density

free surface

tangent vector on free surface
physical domain occupied by fluid
initial contact ared Ay = TR?)
Capillary number
symmetric part of velocity gradien
external forces

normal force exerted on plates
deformation gradient

plate separatioQH = 2h)

initial plate separatioH, = 2hg)
unit tensor

characteristic length scale
velocity gradient

normal vector on free surface
set of natural numbers

pressure (mean normal stress)
initial sample radius

radius of plates

set of real numbers

Reynolds number

time

Cauchy stress tensor

velocity field

characteristic velocity

constant closure speed (positive)
position vector in current frame

position vector in reference frame
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1. Introduction

The problem studied in the present thesis is that of theésothl axisymmetric squeeze
flow of homogeneous, incompressible fluids-like materigi®se material moduli de-
pend on the pressure. In order to describe those fluids, adganaterial models have
to be considered. We shall deal with a model which is used sard®e an incom-
pressible fluid with pressure-dependent viscosity prima¥e shall examine whether
behaviour of such a model in the squeeze flow geometry candasome interesting
departures from solutions obtained for the classical Nastekes fluid.

Figure 1: lllustration of an axisymmetric squeeze flow with constaasmof sample
between plates.

By the termsqueeze flowe shall understand the flow in which a constant mass
of a material is compressed (squeezed) between two pgpédlels approaching each
other. Exactly this situation is sketched in Figure 1. To lmeeprecise, we should call
it an axisymmetric squeeze flow. During this compressiorgse the sample of a ma-
terial expands biaxially and shrinks along preferred akiem this point of view one
can meet frequently used synonyms for squeeze flows suahiasal compressioor
biaxial extension

The squeeze flow phenomenon is found in many engineeringpdyi@nd also
rheometry domains. In fact, it is one of the few deformatiatgch has applications
for a wide class of materials. Concerning the engineeringain, squeeze flows are
involved in various technological issues suchcampression mouldingrocesses of
metals and polymers, some typesdampersor bearings On the other hand, com-
pression with irregular and not exactly parallel platesgsosimilar but undoubtedly
more complex problem, and stiewingbetween teeth adiathrodial joints— for ex-
ample knee — are found to be relevant examples involvingesspiélows in biology
and bioengineering respectively.

The situation described and depicted above provides anrtargotechnique in
rheology, where it is used for examining rheological preipsrof materials that create
difficulties in standard rheometers. Particularly, materwith extremely high vis-
cosity and fluids with apparent yield stress belong into tlemtioned category. The
methodology is closely related to food processing, sinaewua foodstuffs (cheese,
wheat flour dough, mustard, tomato paste, mayonnaise hets heen examined using
several types of squeeze flow tests. Basically it is possthbtarry out experiments
with constant plate speed, constant load or constant sa@nRecent research in this
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field covers those and similar tests for personal care ptedua biomaterials.

Characterization of various materials is often associatgd the development
of solutions for specific models. Plenty of material modéhgluding many non-
Newtonian fluids, has been examined using the squeeze flom At this point
the reader is referred to the nice review article_ by Engmaraih ). However,
the problem has not been solved, to our best knowledge, fdsflike materials with
pressure-dependent material moduli.

The influence of pressure on material properties was sysiatiainvestigated by
Bridgman. In his pioneering Wol:k_B_l:Ldngd.n_(w%) showed tha viscosity (of many
organic fluids) can dramatically increase with the appliegspure while the density is
almost constant. It implies that it is reasonable to consigadels for incompressible
fluids with pressure-dependent viscosity. Later, presdepgendent material moduli
were identified even for viscoelastic models, see the da'ssiscusby O) for
instance, and they have their special place concerningialgteoperties of polymers.
For example Sedlacek et al. (2004) fitted experimental ftatseveral polymers using
the modified White-Metzner model.

Although the fact that the material moduli can depend on thsegure is relatively
well known, and the exact form of the functional dependera lbeen identified for
various fluids, it is almost ignored in many applicatﬂ)riéor instance in polymer en-
gineering materials are subjected to an extensive rangees$pres and the mentioned
property could play an important role.

Similar situation arises in the case of squeeze flows. Natlitke squeeze flow
problem is substantially influenced by the choice of boupdandition at the sample-
plate interfaces. It becomes the most interesting whendhslipboundary condition is
assumed there. As we shall see later, in such a case, prgasiaten in the squeezed
specimen is significant. Particularly, for an incomprelesituid with constant vis-
cosity — classical Navier-Stokes fluid — we expect compldutam behaviour in the
corners of the computational domain, with a possibilityt tha stress singularities will
be located there. Hence, behaviour of fluids with pressepeddent viscosity can be
expected to be markedly different in such a case.

To close this introductory section let us remark that oneatsm meet a situation in
which the space between plates is completely filled with senedt It is subsequently
squeezed out from that region, while the contact area bettreesample and plates
remains constant. Some authors has also analysed conbegpimpler planar squeeze
flow alongside the axisymmetric case. We shall not consluesd variations here.

1Some exceptions can be found in elastohydrodynamics anaydamic lubrication, see for ex-

ample_ Gwynllyw et al.[(1996), Rajagopal and Szeri (2003naendorfer (2011).
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2. Specification of the problem

In this chapter we shall specify the problem we want to sdivéhe first part we shall
formulate governing equations for the creeping flow of arompressible fluid-like
material with pressure-dependent material moduli, in #e®ed part we shall provide
a detailed description of the problem geometry and we sloafitput all the simplifi-
cations involved in the physical model.

2.1 Governing equations

In the present thesis we are interested in squeeze flows a$flikie materials that are
idealized as incompressible and homogeneous with condégsity o,. Influence of
the temperature on material properties is neglected inghgeswe consider an isother-
mal process.

2.1.1 Kinematic considerations and balance equations

Let us mention a brief discussion about kinematics at thiatpdviore information
can be found for example in Ogden (1984), Gurtin (1981). Ftbenviewpoint of
continuum physics, a sample of a material forms a bBaynsisting of continuously
distributed matter. Formally, bod§ is a set of material points which occupy some
region in a three dimensional Euclidian spdce

We define a configuration @ to be one-to-one mapping: 5 - £ which takes the
material points of3 to the places they occupy & By a motion of 3 we mean a one
parameter family of configurations : B — £, where the subscript identifies the time
t as parameter. We shall refer tg(53) as to the reference configuration Bfat time
t = 0, whereass:,;(B) denotes the current configuration Bfat any particular instant
t € R. It follows that all the material point® € B can be uniquely identified with the
points in the reference configuration throughout

X =ro(P), P=r"(X),
and consequently a motion Bfcan be identified with a one-to-one mapping
X : ko(B) x R — ky(B).
We write
x=x(X,t), X=xYa,t). (2.1)

We shall suppose tha¢ together with its inverse are sufficiently smdbtb render
the operations defined on it meaningful. As it is usual in cantm mechanics, we
admit standard Lagrangian and Eulerian description of tjies — scalars, vectors
and tensors — associated with basly

For an arbitrary poiniX € xy(B), the set of points

{x(X,t)|teR} (2.2)

LIt should be enough for our purposes to assumeytriataC2-diffeomorphism.



is called the trajectory (pathline) &. The velocity fieldv is then defined through
v(X,t) = a—X(X,t). (2.3)
ot
In Eulerian description we have

v(z,t) = %(X,t)| (2.4)

X=x"!(@t)
As we have mentioned earlier, we are interested in modetifritpids-like materials
primarily, and thus the determination of the velocity fieéd a part of the solution
that is sought-after, will be the crucial issue for us. Amstimportant quantity is the
velocity gradient

ov ov;
[L=gradv=— L= — 2.5
gra‘ v aw7 () axj7 ( )
and especially its symmetric part
_ 1 T _ 1 61)2‘ 8’Uj

|D-2(I]_+|]_), D”_Q(ﬁijrﬁxi)' (2.6)

The deformation gradierft is defined through
F=Grady = 2X - 9% (2.7)

ox' [T X,
An incompressible body naturally undergoes an isochone. flomeans we have
detF =1 (2.8)

and consequenﬁy
divo = 0. (2.9)

Let us remark that the latter constraint is sometimes céfleshcompressibility condi-
tion and it can be equivalently expressed in terms of the terisprantity D, through

trD =0, (2.10)

wheretr denotes the trace of a tensor.
The concept of balance of mass in its local form (from the #&ain perspective”)
leads to the partial differential equation, also known agtioolity equation,

%+v-gradg+gdivvzo. (2.11a)
For an incompressible flow it immediately follows, with theeuwof [2.9), that

do _

- =0 (2.11b)

Where% denotes the material time derivative. Since the materialjgosed to be
homogeneous with constant densityin the reference configuration, previous relation

2For details see the references stated at the beginningsop#itagraph or any other textbook on
continuum mechanics.



implies thato = o, remains constant. Similarly, balance of linear momentuitsitocal
form leads to the equation

0

%+div(gv®v)=gf+div?, (2.12a)
whereT denotes the Cauchy stress tensor (see the next paragraplf) r@presents
external forces (e.g. the gravitation force). Using theticaiity equation one can write

previous relation in the form
d
Qd—’t’ - of +divT. (2.12b)
In what follows we putf equal to zed One can suppose the absence of internal
couples for our purposes, so that balance of angular mommeimplies the symmetry
of the Cauchy stress tensor.
Under above considerations, the system of governing empsator the flow of an

incompressible, homogeneous fluid reads

dive = 0, (2.13a)
Q% =divT, (2.13b)
T=T" (2.13c)

In order to close this system, we need to provide a constgeijuation for the Cauchy
stressl.

2.1.2 Constitutive equation for the Cauchy stress

In the main scope of the thesis we study behaviour of an incessgble fluid that can
be described using the simple model

T =-pl+2u(p)D. (2.14)

It is obvious thafl satisfying the latter relation immediately satisfies (#)13Viore-
over, taking [(2.100) into account it follows that the Lagramgultiplier p in (2.14)
fulfills

1
P=-3 trT, (2.15)

thus it represents the mean normal stress which is simpligcctie pressure. Now it
should be clear that the viscosity is, in fact, a functiornef tnean normal stress and so
(Z2.13) provides an implicit relationship betweEandD. From the theoretical point of
view, the material model just presented belongs to the oayexf implicit constitutive
relations satisfying

g(T,D) =0, (2.16)

whereg denotes an appropriate tensor function, and it fits into hieenhodynamical

framework developed by Rajagopal and Srinivasa (2008).

3We will generally assume that proportions of the sample iastjon are small enough (perhaps
a few centimeters) to safely neglect the gravitation force.




It remains to determine a specific form of the functjofp). Some simple flows
of fluids satisfying above relations were studied by Hron.22001), when they as-
sumed different formulas relating the viscosity and thespuee. Here we shall use the
exponential dependence

1(p) = poe, (2.17)
whereyy should be understood as the reference viscosity=alb (the reference pres-
sure), whilea is a material constant usually interpreted asphessure-viscosity co-
efficient Such kind of functional dependence is often called the 8&aw. As one
would expect, and it is confirmed by experimental studies,vilscosity;, increases
with increasing pressure, and thus we assumecilgpositive.

Some particular values ¢f, anda for specific materials can be found in Table 1
which was taken from Prii$a et al. (2012) with permissiomother fluids obeying

the above relation are some food products, see for exdmﬂasﬁhke&lﬁl%@,
1),

or various polymeric liquids and polymer solutions, seeémampldﬂg
Harris and Bairl(2007).

Note that fora. = 0 one obtains, fron(2.14), the classical constitutive eigudor
an incompressible Navier-Stokes fluid

T =—pl +2p,D. (2.18)

Fluid to [Pa-s]  a[Yaral
Octamethyltrisiloxane 0.12x 1073 13

Vegetable biodiesel 7.5%x1073 12

Diisodecyl phthalate 123 x 1073 26

Paraffinic oil§ 810x 1073 34

PaMSANE® 1.08 x 103 35

2 Data taken fror King et all (1992). (Our fit of original tabigld data.)

b Data taken from_Paton a haschke (2009). Controlled @enpe of

20°C.

¢ Data taken from Harris and Balr (2007), sample B at 20 °C. ‘
The authors have fitted the data fit for the formpla gao+arprazp’rasp’
Here we have calculated, anda from ag anda;.

d Data taken from Nedl 73). (Generic cylinder paraffinictemperature
30°C))

¢ Data taken from Cardinaels et al. (2007). (Our fit of origithaila in Figure 8,

temperature 210 °C, shear stress level 270kPa.)

Table 1: Parameter values for some fluids with pressure dependent
viscosity, fit of formula [2Z217). Reprinted from Prii$a Et(2012)

with permision.

2.1.3 Governing equations in dimensionless variables

Now we derive a dimensionless version of governing equat{@i3) and(2.14). Let
L be a characteristic length, a characteristic velocity ang, the reference viscosity
as stated above. Using these characteristic quantitiegfireedlimensionless counter-
parts (denoted by asterisk) ©tr, v, D andT as follows,

\%4 x v L L

g . =¥ proZp, Tre—T
b=zt =7 vy v



Let us remark that dimensionless pressurés naturally defined in the same way as
the dimensionless Cauchy stress, pe= HOLVp, see[(2.Ib). Dimensionless version of
governing equations then reads

div*v* =0, (2.19a)
Re((ij:; = div*T*, (2.19b)
T* = —p*1 + 2e%P" D*, (2.19¢)

where the dimensionless Reynolds number is giveRas Qj—ov (the ratio of inertial
and viscous forces). Another dimensionless parameteesjponding to the pressure-
viscosity coefficient appears in(2.19c) and is given thtoug

Mova
%

Further, we shall follow the situation stated in the artlsyeEngmann et al, (2005):

“In many practical applications one is dealing with very emus fluids and/or slow
plate movements so that the Reynolds number is small enowsglfiely neglect the left
hand side of the equationdh fact, we are neglecting inertia in this way and equation

(2.19D) is reduced to

o=

(2.20)

div*T* = 0. (2.21)
Substituting[(2.19c¢) td (2.21) we get the system of dimemsks equatioﬂs

diviv* = 0, (2.22a)
—grad*p* + e (A*v* + 24D*grad*p*) = 0. (2.22b)

We would like to solve these equations for the axisymmetyiegze flow setting de-
scribed further.

2.1.4 Discussion on suitable material parameters

It is worth emphasizing that in order to stay consistent witlihe assumptions made

so far, one has to ensure the dimensionless parameterme greater in magnitude

than the Reynolds number (at least about one order). Otberwie should probably

neglect also the terms appearing with If we did it, equations[(2.22) would reduce

to become the well-known Stokes sys&nNevertheless, it is possible to meet the

requirement as stated above, when parameters of the exgerare chosen carefully.
Let us have a look at the ratio afand the Reynolds number, which is

A

o aug

Re oL?
Although materials mentioned in Talllé 1 do not represerdlidgemplars to fit our
assumptions (they were selected in the context of measuatemth falling cylinder

“D* grad p* is a vector obtained simply by application of the tenBéron the vectograd p*, thus
its i-th component in Cartesian coordinates is giverﬂjy1 D} %.

J

SIn fact, it is open to debate whether to neglect those ternmobrin comparison with the inertial
effects, the pressure and pressure gradients themselvielsheoquite large (especially in a corner). The

pressure-dependent viscosity, although witheing small, still can play an important role in such cases.
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viscometer), the reader can get the idea that the presgoesity coefficienty takes
the values of order abou®-7 —10-31/pa for a wide class of materials. It should be clear
that the requiremeng- > 1 can be satisfied for those materials with relatively high
reference viscosity and/or small density, when the charstic length scale is small
enough. For instance, taking into account materials withrtéference viscosity of
order10° Pa - s and the density abouf? k¢/m* (e.g. some polymer melts), it is suitable
to squeeze specimens with an initial height of several sertérs.

2.2 Axisymmetric squeeze flow

Once we have governing equations we need to specify a domaihich they have to
be solved. At the same time we need to know boundary conditioat are expected
to be satisfied on boundaries of the domain in question.

2.2.1 Geometry

A sketch of an axisymmetric squeeze flow problem is shown guife{1. According
to geometry of the problem it is convenient to work within dirgrical coordinate
system{r, 0, z}@ Indeed, given axial symmetry causes that all quantitissrilgng the
problem are independent of the angular coordifaten other words, the description
of the problem does not depend upon the chosen angle andigesuto restrict our
observations to the plare, z}EI.

We claimed above that the effect of external forces, inclgdine gravitation force,
is not considered here (the specimen between plates issua#). Hence, one can
also use the symmetry along the central plane parallel fo jplates.

An appropriate coordinate system for this case is introducé€igure 2. We shall
describe the deformation process — the flow — during the titezval [0, t.,q]. Then
H(t) denotes the distance between plates at some particulamtstaat, whileh(t) =
%H(t) is the distance between the upper plate and the centraﬁalﬁoeinitial values
we use the notatiofl,, h respectively. Let us suppose that both plates are identical
their radiusk,, is constant and much larger than the initial radius of thedey®,.

Since we consider the sample of an incompressible materia¢ ttompressed, it
has to expand in radial direction during the compressiaifit3 herefore the sample
radius¢ evolves in time and simultaneously it is a functionzdexcept the case when
the perfect-slip boundary condition is prescribed, as wal siee later). Further it is
assumed that the sample forms an ideal cylinder at the begimh our observation,
thus we have

£(2,0) = Ry, Vz € [-hg, ho]. (2.23)

Now it should be clear that it is not necessary to considedeimberently transient
domain occupied by the fluid, but it suffices to restrict oteration to the upper-right

6See AppendikA for detailed information about cylindricabedinates.
"More precisely we should probably say the plgne0, z} u {r, 7,2}, Vr € [0,00),V2z € R. For
simplicity, let us introduce the notation

{-r, 2} ={r,7 2}, Vre(0,00),Vz eR.

80f course we supposi () > 0 for all ¢ € [0, tena].
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Figure 2: Coordinate system for an axisymmetric squeeze flow withcdabiels.

guadrant in the coordinate system just given. We denote

Q={(r,2):2 €[0,h(t)], r€[0,&(2,1)]} (2.24)

the mentioned part of the physical domain at timéwith the knowledge of a solu-
tion which pertains td2;, the complete solution can be simply reconstructed due to
symmetries.

Velocity of the upper plate is given as the time derivafivef the function’, and
guantity called compression rate,

€= (2.25)

is introduced quite commonly. Various settings are avé&laiborder to examine ma-
terial properties in the squeeze flow rheometry. One pdigiis to use a constant
load and observe, for instance, how much the sample shtimkgight. Another com-
monly used test requires a constant closure speed (it meanthe velocity of plates
is constant) and measures, besides other things, the foeceeé by the sample on the
plate against the direction of plate motion. Last but nasigihis possible to consider
experiments with a constant compression fate

In the present paper we are limiting ourselves to the cade eahstant closure
speedH = -V, Va>0,and we pul/ = %Vd to be the characteristic velocity discussed
in Sectior 2.1.3. Motion of the upper plate is then given tigio

h(t)=ho-Vt,  h(t)=-V. (2.26)

In order to avoid an abrupt (discontinuous) activation @ftimotion, which implies an
inconsistency of initial conditions, it is more conveni@mallow a smooth start-up, let
us say during the time intervfl, ¢, ] with 0 < ¢y < t.,q. One possible choice is

t\’ (1
h0+V(t—) (§t—t0), tE[O,to],

h(t) = 10 (2.27a)
h0+V(§t0—t), tE(tQ,tend],

10



iy = 1" (%)2 (i_j ) 3) - tel0n) (2.27b)

_‘/7 e (t07tend]-

It is important that for alt € [0, t.,q | we know the exact value @f andh respectively.

2.2.2 Boundary conditions

Let Q, is the domain given i (2.24). Its bounda¥§2; consists of three different parts,
see Figur&l3. It is the sample-plate interface, the artifimandaries along both axes
of symmetry and the free surfagg. Quantities,, vy, v, are used to denote physical
components of vectar in cylindrical coordinates and similarly,.,., T4, T.., etc., rep-
resent physical components of the second order symmetsoté (see Appendik’A
for detailed information). Let us consider squeeze flow autrsuperimposed rotation.
It means that there is no velocity componenbidirection @y = 0 everywhere in the
physical domain occupied by the fluid, and consequently tleaisstresses, 4, T,y
are also zero).

P sample-plate interface
/

artificial boundaries

Figure 3. Specification of the boundar;.

Conditions enforcing symmetry of the solution have to bespribed along each of
both axes. We put

Uz‘ = 07 Trz‘

z=0 z=0 - 0’ U’"‘T:(] = 07 TTZ‘TZO =0. (228)
Onthe free surface one has to prescribe two different kihdswndary conditions.

The dynamic boundary condition is usually given in the form
1 1
Tn:—ﬂ0n+fy(—+—)n, (2.29)
& v
wheren is the outward unit vector normal to the free surfacgis the ambient pres-
sure,~ is the surface tension arid+ are the principal radii of curvature of the free

surface. The ambient pressure is usually set to zero andseis as the reference value
for the pressure scélahe dynamic condition rewritten in dimensionless va®gatihen

reads
Tne L (i . i) n
Ca 5* w* )

%It can be understood that we redefine the Cauchy stressTo-be+ 7ol.
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with £* = £&, ¢* = 19 and Capillary numbe€a = 110V~ (the ratio of viscous and
surface tension forces). Since we are dealing with veryousdluid, Ca is typically
very Iarg@ and the latter condition is reducedrto tractioncondition

T*n = 0. (2.30)

Before we formulate another condition (this time a kinematie), which has to be
satisfied on the moving free surface, we deffiie, z, t) =q4.¢ 7—&(2,t) to be a function
that enables to describe the free surface at timeplicitly as a set of points

Se=A(r,2): f(r,z,t) =0}, (2.31)

The free surface naturally creates a material surface atiayinstant, thus it has to
satisfy the condition

0
(—f + v - grad f)
ot .
t
It means that the material derivative ¢fhas to be zero on the free surface. This
statement is also known &sagrange criteriorand it is proved for example in the book

of Margik @b), pages 83-85. In our case the kinematicditmn reads
(i +o-r5:)

e

ot B

= 0. (2.32)

= 0. (2.33)
r=¢

At the sample-plate interfaces boundary conditions playrgortant role concern-
ing the nature of the flow. At first, we assume that no fluid camep@te into the plate,
thus in the vertical direction we set
h. (2.34)

,Uz‘z:h -

If the sample is able to move freely without friction at theeiriace in question, we
useperfect-slipin the form

T, =0. (2.35a)

As we shall see later, there is no curvature of the free bayrdiaing the compression
and solution of the problem can be obtained in a quite sttigkard manner. How-
ever, it is very complicated (even almost impossible) taiemsuch type of condition
in practice. Chatraei et al. (1981) introduced a “lubridagqueeze flow” technique to
obtain a nearly pure biaxial extension.

On the other hand, one can consigerslip boundary condition with the sample
being fixed at the sample-plate interfaces. It means thatgt@mmalong radial axis is
allowed there and

vl =0 (2.35b)

Curvature of the free surface of the specimen between pktasserved in this case
and one needs to solvdrae boundary problemrhe fact that the outward unit normal
n is unknown makes it cumbersome to use the condifion2.38¢amch for an exact
solution of the problem. As we shall see later, there is a way to use the dynamic
condition in a numerical treatment of the problem, howefaranalytical computa-

tions an assumption about the pressure or normal stresg &tie of the plates is
usually made (see the following section).

101t means that surface tension effects are negligible.
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Presence of the well-known phenomenon of moving contaetfiimther compli-
cates the situation, see for example Huh and Scriven (18¢H)n et al. [(2009). Ap-
parent motion of the contact likis observed due to * ‘barrelling” of the sample along
plates and it has been nicely illustrated experimentald/raumerically for example by
IMavridis et al. (1992). This phenomenon is discussed age@ectiod 5.2]1.

Finally, there are several possibilities how to empbaytial-slip at the interfaces
(see the discussion sz Engmann ét[al._(ijOS) together wignereces therein). One
possible option, known dsavier slip boundary conditigns obtained as a combination
of the two extreme cases mentioned above and it reads

AT, +(L-N)w ], =0, Xe(0,1). (2.35¢)
The same condition is sometime used in the form
,Ur‘z:h = 6 Trz‘zzh,

wheref = 2 is the “slip coefficient” with values fronf0, oo). It is worth noting that
limiting behawour for\ — 0, and\ — 1_ (alternativelys — 0,,  — oo) recovers the
no-slip and the perfect-slip respectively.

2.2.3 Dimensionless variables

At this point we need to specify characteristic quantiti@saduced in Section 2.1.3.
Scaling lengths with. = h, velocities withV = 1V, and time withZ, we put

={(r*,z*): 2" € [0,h* (t*)], r* €[0,&* (z*,t")]} (2.36)
to be the corresponding dimensionless version of the dofjaihere governing equa-
tions (2.22) have to be solved. For initial radius we hgue*,0) = Ry with

5 _Ro Ry
Ry = . 2.37
0= (2.37)
Relations[(2.26) and(2.27) in their dimensionless forndtea
() =1-t*,  h(t*) =-1, (2.38)
and
3
* 1
1+ (t—*) (575* —tg) , t*e€ [O,tS],
B () = to (2.392)
1+%t5—t*, te (t5,tr 4],
2
t* 2t*
: — -3], tre[0,8],
(™) =1\t \ % (2.39h)
-1, [AS (tg,t;nd]

The above functions are depicted in Figure 4 together weldtmensionless compres-

sion rate )
hx—

= —, 2.40

= (2.40)

1By contact line we mean the intersection of fluid, plate andesinding medium.
12The superimposed dot this time denotes the time derivatitreraspect ta*.
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Figure 4: Motion of the upper plate in agreement with (3.38) dnd (288Y; = 0.2,
t* . =0.6.

end

2.2.4 Summary of simplifying assumptions

For clarity, before we formulate the dimensionless probiewylindrical coordinates,
let us summarize all the simplifying assumptions introdLiteoughout this section.

m KINEMATICS:

e Problem is axisymmetric, therefore all quantities are peaent of coor-
dinated.

e There is no superimposed rotation of the sample betweeessplaence
Vg = 0.

m DYNAMICS:

e External forces are neglected (hence symmetry along thieatgrtane is
considered).

e Inertial effects are neglected (we deal with the creeping)flo

e Surface tension on the free surface is not considered.

14



2.2.5 Dimensionless problem in cylindrical coordinates

From now on we will use only dimensionless variables and éevewill omit asterisk

denoting dimensionless variables in the equations aboeee@ing equations (2.22)
in cylindrical coordinates read

ov, v, Ov,

0= 5 + ~ + 5, (2.41a)
Op o [82% 10v, 0%v, w, _Opov, . Op (8% Ov, )]
9P _ o - LA P o 2.41
or ¢ or? +T or " 022  r? i a(’?r or +a62 0z i or 3 b)

2 2
9p _ ap[5“z+18“2 Ov, A@((%’“ ‘%Z)+2A@8“Z]. (2.41¢)

N or2 r or " 022 +a8r 0z i or a@z 0z

0z
The remaining equation if (Z.22b), corresponding-irection, is identically satis-
fied. System[(Z.41) is supplemented with boundary condititiscussed in Section
[2.2.2. These conditions, when they are rewritten using dgiealess variables, are of
the same form as above. At this point, the set of boundaryitiond is presented in a

well arranged way and in the rest of the thesis we shall of#&Tence ourselves to the
following list.

« At the sample-plate interface & h) we consider either a couple of boundary
conditions for the perfect-slip, it means

vl _, =h T,.| , =0, (2.42a)
or for the no-slip, which is
vl _, =h, v, =0. (2.42b)

* On the axes of symmetry € 0, z = 0) we have symmetry conditions

=0, T..| =0, (2.43)
=0, T,.|_,=0. (2.44)

* No traction condition[(2.30) on the free surface=(£) provides two equations

(7. - %Tm) -0, (7. - %Tm)

= 2.45
0z 0z 0, ( )

r=¢

r=¢

since the outward unit normal satisfies

n(f(z),z)=(1+(%)2)% é%, 20, h].

0z

* The kinematic condition reads

= 0. (2.46)
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3. Analytical solutions

At the beginning of this section let us emphasize that we de@ek an exact solution
of the problem discussed above. Even worse, in the case wvagiimboundary condi-
tion we solve a slightly different problem obtained from thréginal one considering
another simplifying assumptions. However, main purposiisfsection is to provide
some analytical results that can reveal in what way the pressependent viscosity
influences solution behavi(ﬂ,lrand moreover, later we will use the results obtained
here to propose a benchmark problem for the numerical stinolésee Sectioh 4.3).
Solutions will be obtained using thperturbation methodvith respect to parameter
&, see for exampl92). The method is based on théhttave seek velocity
v and pressurg of the form

Up = Uy + Up 1+ U 2G2 + ...
Uy = Upp+ U1+ 0,002 + .., (3.1)
p :p0+p1(3[+p2(3[2+... ,
which is usually called th@erturbation expansianSubstitution of [(311) into{2.41)
and subsequent expansion of the exponential term,
. 1 1
e? =1+ pa+ §p2d2 +0(6%) =1+ poa + (p1 + §p3) a’+0(a%), (3.2)

provide straightforward decomposition of the system ofagiquns. Indeed, subsystem
of orderk (for £ = 0,1,2,...) is obtained comparing the terms that appear together
with a*.

Of course, to each subsystem we add corresponding termstifr@merturbation
expansion of boundary conditions (then we talk about suidpros instead of subsys-
tems). For example, the first condition [n_(2.42a) satisfies

(vso+vead+.. )|, =h+0a+...

and similarly the first condition il _(Z.45) reads

(TrrO_%TrzO"'(Trrl_%Trzl_%TrzO)&"'---) =0+0a+....
T 0z 7 T 0z 7 0z 7 re

To be more precise, let us do some remarks on notation uséeé iatter expression.
According to[2.19c), for thez-component of the stress tensor we have

- (Ov, Ov
T, = | 22 ) =
=6 (82 " (91")
v . v N ( (8%70 . 8vz70) . Ovy1 . 8vz,1) i +0(a?)
0z or P\"oz or 0z ar ) “
thus
_ avr,o 3%,0
TT‘Z,O_ az + ar , (338.)
3 avr,l avz,l aUT,O aUz,O
Trz,l_ 82 + 87" +p0( &z + 87" ) (33b)

In comparison to the case with an incompressible Navieketfiuid.
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In the same way we deduce

vy
Tyro = —po + 2222, (3.42)
or
ov, ov,
Trrl = —-p1+ 2 v 1 + 2p0 Y .0 (34b)
’ or or

In what follows we deal only with subproblems of orders zemd ane. We shall
solve these subproblems step-by-step for the perfecssting and then for the no-
slip setting. Particular equations are listed below.

» Subsystem of order zerdor “zeroth-order subsystem”):

avr,O Ur0 61}2,0
= + +

0= or r 0z’ (3.52)
e
A AT @0
e Subsystem of order ongor “first-order subsystenﬁ)
0 Xnt, tra Ot (3.62)
+ % (a;;‘) + 8(;;,0) + o (Avr,o - %) , (3.6b)
% = Av.y+ % (6(;;0 N 8(;;’0) + 2%8;’0 tpoAv,.  (3.60)

It is worth emphasizing that the zeroth-order subproblemesponds to axisymmetric
squeeze flow of an incompressible fluid with constant vidgoslence, its solution is
nothing but solution for the Navier-Stokes fluid. Highererdubproblems then repre-
sent some perturbation which has to be added to this sojat@hthe most significant
contribution is naturally provided by the first-order sutigem.

3.1 Perfect-slip at the sample-plate interface

Let us remind that in this paragraph we would like to solveeyoing equations in

(2.41) together with the set of boundary conditidns (2.4@a¥3) — (2.46). Perfect-slip
ensures that the sample moves freely without friction alsagnple-plate interfaces,

therefore its deformation in this case corresponds to hemegus biaxial extension
with the velocity field given by

Uy U0 - % €r
v=|v|=| 0 [=] 0 [. (3.7)
v, V0 €z

2For the definition of Laplace operator in cylindrical coaralies see AppendiXA.
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Compression ratéis defined in[(2.40) (see also Figlré 4c).

It is obvious that the velocity field of the formi_(3.7) automatly satisfies the
incompressibility condition[(2.41a). Moreover, singedoes not depend on, free
surface remains vertical arg@ = (. Kinematic condition[(2.46) then reads

CS

UT‘?“:{ - Eu

which really means that radial velocity of material poing;g on the free surface

coincides with the velocity of the free surface. Relatior8)f3rovides the ordinary
differential equation

(3.8)

—¢é€ = 2,
which is easily solved using the initial conditig(0) = Ry, and results in radius
- 1
t)=Ro\| —=- 3.9
£(t) = Ro 0] (3.9)
Once we know the velocity field, we can write
-3¢ 0 0
D=| 0 -1¢0 (3.10)
0 0 ¢
and according td (2.19c) we have
-1 0 0
T=-pl+2e| 0 -1e¢0]. (3.11)
0 0 ¢

The latter relation reveals that the shear stiigssvanishes throughout the sample.
Now it is clear that our choice of the velocity field (B.7) undbove considerations

naturally satisfies all the conditioris (2.424), (2.43¥4R. and also the relation on the

right hand side in[{Z.45). On top of that, we can express gungrequationd (2.41b)

and [2.41k) in the form

Op .. 0D &
o - eaare , (3.12)
op .. 0p 4,
2 26&826 : (3.13)

It is obvious thap has to be homogeneously distributed throughout the sarnplen¢
not depend on spatial variablesindz), nevertheless, it changes with time. Boundary
condition in [2.45) on the left is usually used to determinespure values. Unfortu-
nately, in our case we have

T, =—p—ée? =0. (3.14)
It means thap is defined implicitly by the relatiog(t, p) = 0, where
9(t,p) =aer —p — €(t)e” (3.15)

is continuously differentiable on an open $gtx S, ¢ R2, with [0, te.q] © Slﬁ. Let
p. € S, satisfies

g9(0,p,) =0, and g—i(o,p*) # 0. (3.16)

3To avoid discontinuity of we suppose thatip Sy < t.;, wheret,, is the time needed to close the
gap between plates.
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Then, according to well-knowmnplicit function theorelf) there is a neighborhood
U of t = 0in R on which is defined a unique continuously differentiablection
p: U — R such thap(0) = p., andg(¢,p(t)) =0, t € U. Moreover,

o O,
p(t) = —We , tel. (3.17)

In what follows we shall verify conditions in_(3.1L6) for twafiérent settings de-
pending on the choice df, see[(2.38) and (2.89).

« Considering the case with constant closure speed, and thohwdefined by
(2.38), we havé(0) = -1 and we seek satisfying

—p+eé“p =0.

Sincea > 0, the latter equation can be satisfied only for sqmel.

Let us suppose that € (0,e~!). We consider a functiomw : (0,00) — (0, 00)
given by w(z) = z~'Inz, which is monotonically increasing on the interval
(1,e) and maps this interval ont@®, e~!). It means that for each € (0,e7!)
there existy, € (1,¢) such that

. Inp,
a=w(p.) =~
Dx
The latter relationship betweeénandp, at the same time implias?+ = elnp+ =
P, thus
g(Oap*) = 0
and

g—i(o,p*) =-1+@&e® =-1+1Inp, #0.

Using (3.17) we see that
P
p(0) =

> 1.
1-Inp,

It is worth noting that for an incompressible Navier-StoRe&l one get(t) =
—¢é(t), which givesp(0) = p(0) = 1. It follows that for the fluid with pressure-
dependent viscosity the initial pressure value togethéhn tine corresponding
rate of change are larger.

* Now let¢ is defined using: given by [2.3P). Then we hav&0) = 0 and condi-
tions in (3.16) hold fop, = 0. Unfortunately, in this case with smooth start-up
we havep(0) = p(0) = 0, which coincides with values of the solution for the
Navier-Stokes fluid. Therefore, the observation similathat in the previous
case is not explicitly available this time.

In order to expresg as a function of at least approximately, we shall use the pertur-
bation method as described above.

“See for example Rudin (1976) or any other book on mathenaticaysis.
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As we have already mentioned, normal force exerted on platdbe sample is
usually measured in experiments with prescribed compmesdihe force exerted on
the upper plate is defined as

E(ht)
F(t) = 21 f P To.(r by t) dr. (3.18)
0

Actual radiust was computed if(319). Supposing thas an exact solution satisfying
(3.12), we have
13 A 3p -+
F=-2r f (—p + QEGQP) rdr=—=A, (3.19)
0 h

with A, = 7 R2 denoting the dimensionless form of initial contact area.

3.1.1 Zeroth-order subproblem
We solve the system of equatiofis (3.5) with boundary comiti

,UZ’O‘Z:/'L = h7 UT,O‘rzo = 07 UZ,OL:O = 07
Trz,O‘Z:h =0, Trz,O‘rzo =0, Trz,O‘Z =0.

Supposing that the free surface remains vertical duringctmpression, we seek a
solution which further satisfies

Trr,O‘rzg = 07 Trz,O‘ng =0.

Using velocity components

1
Upo = —§ér, Vs = €2 (3.20)

in equations[(3.83b) an@ (3]5c) we can see that
9o _ 9po _
or 0z
According to [3.4k) we havé,, o = —-p, — é. Thus, the corresponding boundary condi-

tion on the free surface provides
Po = —€. (321)

Finally, relation[[3.1P) yields
Fy=-—2A,. (3.22)

3.1.2 First-order subproblem

In the sense of previous discussion we shall seek a solutiine system[(316) satisfy-
ing boundary conditions

Uz,l‘z:h =0, U’“J‘r:o =0, Uz,1‘2:0 =0,

Trz,l‘zzh =0, Trz,l‘TZO =0, Trz,l‘zzo =0,
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and
Trra, ¢ =0, Tpzal,_ = 0.
Our choice of the velocity field (3.7) implies
U1 =0, U1 =0. (3.23)

Substituting these velocity components, together WitRqBand [(3.211), into equations

(3.6D) and[(3.6¢c) one obtains

or 0z
An analogy of previous relations is obviously true also fyher order subproblems,
hence our statement that pressure is homogeneously distlithroughout the sample
seems to be confirmed also in this way. Presguyres simply determined using the
boundary condition

Trr,l‘rzg =—p1 —po€ =0,

which yields
pL=¢€’. (3.24)

3.1.3 Results and discussion
In the sense of (311) we see that

b, h
P& py+pLQ = ﬁ(aﬁ_l) (3.25)

is a rough estimate of pressure values. Substituting ther legsult into [(3.19), we
obtain an estimate for the normal force

3h( . h .

Our calculations were based on the assumption that theityefamdd (3.7), corre-
sponding to homogeneous biaxial extension, is the same #sefdNavier-Stokes fluid
(see Figurels). This seems to be reasonable as we have p&iffeaitthe interface, ma-
terials in question are incompressible and the compressmescribed. It follows that

o
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Figure 5: Dimensionless velocity field_(3.7) for squeeze flow with petislip at
t =0.3. Computed forh(t) =1 -t, Ry = 1.5. Vectors are scaled by a factor of 0.15.
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a =0.06, ty = 0.05, Ry = 1.5, teng = 0.6. Black lines are solutions for constant closure
speed, se¢ (2.88), blue lines correspond to smooth st{&-88).

a current shape of the sample cannot be influenced by theupeedspendent viscos-
ity, which is in accordance with the fact that the pressund,f@nce also the viscosity,
is homogeneously distributed throughout the sample (aswakksee, this is not true in
the case with no-slip anymore). On the other hand, the vigcosreasing with pres-

sure causes that the specimen becomes somehow more stiffjrae exerted by the
fluid on the plate has to dominate over the same force comportede Navier-Stokes

fluid. Results are mutually compared in Figlte 6.

3.2 No-slip at the sample-plate interface

A common approach used in order to get some analytical solsitof the no-slip
squeeze flow is based on the postulate which sayspthaes initially normal to the
direction of loading remain plane in the deformed stadd course, this additional re-
quirement is followed by the fact that instead of the origprablem, given by[(Z.41),
(2.42b) and[(2.43) 1 (2.46), we shall solve kind of its appration, which is justi-
fiable particularly at the very beginning of the experimentpposing the flow starts
from the rest) and/or in the case in which the sample radiusuesh larger than its
initial height.

By virtue of the mentioned postulate, velocity componentannot depend on
and so we shall assume

v.(z,t) = h(t)gb(z, t).

Using the incompressibility condition (2.41a) togethethihe first condition in[(2.43),
one obtains corresponding radial velocity component asl#iso of the boundary
value problem

0 y
E(TUT) =-hre', UT‘T:O =0,

where the differentiation ob with respect to: is denoted by prime. This yields

o2 1) = —%h(t)rgb’(z,t).
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In the previous paragraph we have seen that the perturbadmod can provide
satisfactory results using the expansion up to the firstrordader above considera-
tions we shall suppose the velocity field of the form

~shre! 1 [—3hr (8 + $1a) + 0(6?)
- 0 | 0 (3.27)
h¢ ho + héra + O(a2)

Let us remark that the velocity field (3.7) for the perfedp-dqueeze flow simply

corresponds to the choigg z, t) = oL

3.2.1 Zeroth-order subproblem

At this point we shall forget boundary conditions [n (2.46) & moment and we shall
seek a solution of the system (18.5) satisfying

'Uz,OL:h = h? UTvO‘T:O - 0’ UZ’O‘Z:O - 0’

vrol,_, =0, Tre0| =0, Ty0l,_, = 0.

According to [[3.2I7) we consider, = —%imb(), v.0 = he¢o with the corresponding
symmetric part of the velocity gradient

6, 0 -hrog
Do=5| 0 -¢ 0 | (3.28)
e 0 20
Governing equation$ (3.bb) arld (3.5c¢) yield

6pO _ L "
E = 2h7”¢0 s (329)
%o _ jgy. (3.30)
0z 0

Let us suppose thate [0, .,q] is fixed for a moment. Through the compatibility of
mixed (second order) derivatives af one gets the ordinary differential equation

oM (2,1) = 0. (3.31)

An appropriate set of boundary conditions for the latteratigun is obtained from the
velocity boundary conditions at the sample-plate intexfad central plane. It reads

dol_, = I, ., =0, (3.32)
bol,_, =0, 6., =0 (3.33)
It remains to carry out some basic calculus in order to gesthation
2z 22
=—(3-= 34
0= (3-3): (3:34)

which is time dependent through(¢). The latter relation results in velocity compo-
nents

3r (22 . 2 22\ .
Uro = Zh(ﬁ_l)h, Vz0 = %(3_ﬁ)h (335)
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Figure 7: Dimensionless velocity field (3.85) mapped into the refeesooordinate
system{R, Z} for the no-slip squeeze flow at= 0.3. Computed fora(t) = 1 -,
Ry = 2. Vectors are scaled by a factor of 0.1.

In contrast to the perfect-slip setting, one can see thatttbar rat®,.. o in (3.28) is no
longer zero and distribution of the shear stréss, throughout the sample is depicted
in Figure[9¢. Further, integration of equatiohs (3.29) &dQ) yields

3h (7’2 222

= E —) +C(), (336)

Po ﬁ_ 2

where constant of integratiary, is generally time-dependent and has to be determined
using an appropriate boundary condition on the free su(fsa®the discussion below).
Normal force defined by (3.18) is given through

_3h(1%g

0= ﬁ m-l)z‘io-FC(]Ao. (337)

3.2.2 First-order subproblem

Following the established procedure, we shall solve thiesysf equationd (316) with
boundary conditions

Uz,l‘zzh = 07 v7"71‘7«:0 = 07 Uz,l‘zzo = 07

Ur,l‘zzh =0, TTZJL«:Q =0, Trz,l‘zzo =0.

As in the previous case, mixed second order derivatives alan be obtained from
(3.60) and[(3.G¢), this time in the form

Ppr 1.y 9Irz h?
020r _thbl SRS (3.38)
0%p

= 0. 3.39
oroz ( )

Through compatibility of these derivatives, we get the oady differential equation

h(t)z

(4)
t) =-18

(3.40)
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again witht fixed for a moment. One can integrate the latter equatiorgusinindary
conditions

d)l‘z:h = 07 (bl‘z:O = 07 (341)
¢, =0, 7. =0 (3.42)
Corresponding solution reads
3z z\* 2\? .
=- =] -2+ 1]h. 3.43
h 20h2((h) (h) " ) (3.43)

This further yields velocity components
3r 2\ 2\? . 3z 2\ 2\? .
a2 (G(E) o (E) )i a2 ((2) -2(2) )i
ol 40h2((h) (h)+)  Val 20h2(h n) )"
(3.44)
and pressure contributign is calculated to be

302, , 9h?
- 2824) -
s (B + 287) ~

(7r? +1622) + 3h (r*-22%)Co+C1,  (3.45)

4! e

with Cy andC; being time-dependent. First-order contributionto the normal force
F = Fy + Fia + O(&?) is determined using the definition (3118), which yields

3hIR2 (hR%  Th - 3h(13h ; ;
T (4h3 “1on T o35 | o5, Co ) Ao+ Cio. (3.46)

3.2.3 Results and discussion

Velocity components obtained using the perturbation esjerup to the first order are

2 4 2
Umi—;((%) —1)h+4§22 (5(%) —6(%) +1)ah2, (3.47a)
Z 2\2\ . 3z 2\* 2\? A0

”Z”%(g_(ﬁ) )h_20h2 ((E) _2(%) H)ah' (3.47b)
Let us examine first order contributions to the velocity comgnts given in[(3.44).
There are some polynomial functions in one variable 7, which extends from zero
to one. These polynomials are shown in Fidure 8aland 8b. le# thatv, in (3.474)
is faster (compared to, ) near the central plane, and on the contrary slower in the
upper half within the region of our interest. Similarly, in (3.47D) is a little bit
faster mainly in the middle of the computational domain (paned tov, ;). These
subtle differences captured on the free surface are showigime[8¢ (parametei
was chosen quite large to make the differences visible).

Pressure valugs~ p, + p;& are determined except for constants of integrafign

and (', see[(3.36),[(3.45). In our calculation we have omitted loauy conditions
in (2.48) which are inappropriate to be used with the assufmed of the solution.
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mensionless variables;= 0.3, Ry = 2, & =
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(b) Contribution tov. .

Figure 8: Polynomial functions in one variable = 7 appearing on right-hand sides
of expressions i (3.44), and free surface profiles obtdioethe fluid with pressure-
dependent viscosity and the classical Navier-Stokes faggectively.

We shall need another assumption for the pressure boundadition in order to
determine mentioned constants. Usually, tkeveraged pressure at the free surface,

h(t)
<p>:%f0 p(&(z,t),2,t) dz,

is required to be equal to the ambient pressure at every tistant:. Another possi-
bility is to fix the pressure value at some particular pointlomfree surface. Here we
have us

p(£(0,t),0,t) = 0. (3.48)

It is necessary to bear in mind that we may introduce an atditierror to the solution
in this case.

SMore precisely, for the classical Navier-Stokes solutieguivalent to solution for the zeroth-order
subproblem), one has to uge (3.48) with p, and¢ satisfyingé(0,t) = v,.0(£(0,t),0,t). This yields
3h -,
-— Rp.
4n8 "
Similarly, for the perturbed solution one has to use the seonelition withp = po + &ap; andg satisfying
£(0,t) = v,(£(0,1),0,t), for v, given by [3.47R). In this case we have

Co =

sie? 21
4p3"’ 10A

Remark: ¢ in the latter relation can be obtained explicitly for thetisgt with constant closure speed,
see[(2.3B), and it reads

1
Co = 01:505— 0-

é‘: Rohige% }1171).
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Figure 9: Dimensionless pressure field and shear stress distribtiootslip squeeze
flow at¢ = 0.3, computed foru(t) = 1 - ¢, Ry = 2, & = 0.05. Everything is mapped into
the reference coordinate systéifi, 2 }.

Pressure fields for the classical Navier-Stokes soluti@hfanthe perturbed solu-
tion are compared in Figuté 9, as well as the distributiomefghear stress throughout
the sample. As one would expect, the sample becomes “Idaaltye stiff, which
seems to be promising for the numerical simulation. One cgicasignificant differ-
ences between pressure values (located in the center ofated and corresponding
normal forces in Figure10.
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(@) po given by [3.3B);p ~ po + p1& with p; (D) Fy given by [B.3V);F ~ Fy + F1a with F)
from (3.45). from (3.46).

Figure 10: Dimensionless pressure in the center of the plate and gamesng normal
force, both in no-slip squeeze flow, computeddot 0.05, o = 0.05, Ry = 2, tena = 0.3.
Black lines are solutions for constant closure speed,[s8&8)2lue lines correspond
to smooth start-up_(2.39).
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4. Numerical simulation for the no-slip
sgqueeze flow

In this chapter we would like to solve the no-slip squeeze fioablem in its full ver-
sion as stated in Sectién 2.2.5. We forget the postulatetaimoudeforming horizontal
planes and we want to employ no traction (2.45) on the fretasairas well as the
kinematic condition(2.46).

As we have already seen, in the no-slip squeeze flow a ceatimfthe boundary
of the domain is not known in advance and has to be determiseal @art of the
solution. There are several techniques for solving freendaty problems, see for
exampl@?). We shall describe a numerical methsddon the application
of body-fitted curvilinear coordinatesvhich conceptually belongs to the family of so
called “front-fixing methods”, and on the application a@ectral collocation method

4.1 Reformulation of the problem

Let €2, denotes the dimensionless version of the domain occupi¢adosample in the
rz-plane using the coordinate system introduced in Seti®dd2lt mea

Q= {(r2) 12 € [h(t),h(8)],r € [-€(2,0),6(2, )]}, (4.)

Free boundary is simply describedas + £(z,t). Supposing we know its shape at
any fixedt, we can construct hivariate blending functichU : O — , which maps
the fixed domair, corresponding to image of rectanglel, 1] x [-1,1], onto(, in
physical space, see Figurd 11. We defihandU-! to be

I LM -
z zZh(t) z z 6]

with £(2,t) =qer £(2h(t),t). The mapping is constructed in such a way that it main-
tains both axes of symmetry € 0 andz = 0 are mapped onto= 0, z = 0 respectively).

The attraction of this method consists in the possibilitwofking in a fixed simple
domain which corresponds to the moving region for all theetin fact, transformation
(4.2) provides suitable choice of new space coordinétes) which are commonly
calledbody-fittedcoordinates. Moving free surface- +£(z,t) is now fixed atr = +1.

Apparent simplification of the problem is presently offsetsome extent by the
increased complexity of the transformed system of pariiémntial equations and
boundary conditions. For an arbitrary functiordefined or(2; we shall use the nota-
tion

/'7

U :

z

w(r, z,t) = w(r€(z,1), Zh(t), 1) =aet @(7, 2,t) = w0 (r€(z,t) ", zh(t) 1 t) . (4.3)

1See[(Z.21) for comparison.
2For more information see Gordon and Hall (1973).
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The system of governing equations (2.41) is then transfdirae follows,
005 ovs T 0 0vus (4.42)

i __ =
or 7

. €
h 0z hoz or’

D e FOEN\ 020 27 O 0?0 €2 0%
£ _ La 1+1== T _Z5 >
Sor = ¢ [( +(h82) ) o2 W2 9z 070z W2 o=

2 N2\ 95 s
i r£8§+ %3 %_?+2 8p81}r
T h? or 87’

h? 0z? 0z or 712
r@f@p §8p)( f@f@vr §8vr+8vz)] (4.4b)

hoz or hoz O

T hozoF hoz

+

h oz EE

rag 0205 27E O 0?5
[(“ ) o2 B2 0z 0107
2 925 2 97 (a2 o
f@vz+(1 7€ 02€ z_r(g))avj+

F n2ez ' n?
Aap( f8586,+§8@r+817z)+

"oz \F oz oz) | or

“or\"nozor Thoz " or
2A( T@E@p f(’?p) _f%@vz f@vz)] (4.4¢)

hozor hoz hoz Or h O

For further use let us denote i
v = ”T]_l“ (4.5)

and
F O reE 2_(@) )

a=

S
(]

I
[y
@]

I
|
|
Q|
I
|
=>|

%

S]]

[\
>
[\

Equations[(4}4) then can be rewritten in the compact form

0= % +au+b% +cgv (4.7a)
—0p Ap[ o\ 0?1 Pu -, 0%
1 —+2 —
hb@ ( +C)8r2+ bc@r@z+b6z2+
+(&+g+q)%—62u+2a%%+
(_Op 8p)(8u ou 82})]
b b— + — 4.7b
+O‘(ar 0z)\“or "0z "o )| (4.70)
_(-0p _Op o 020 0%V 0%v
)_ep[(1+c)_+2b68r62+b28z2+

0z oOr or?
+(a+g+ )@+a@(c%+5@+@)+
IV " Yor \“or "oz T or

op 3p)(8v B@)] (4.7¢)

+ 24 (CE + b@ o 57

3See AppendikB for detailed information on transformatioles
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Boundary condition in[(Z.42b) now has to be prescribed &t bample-plate inter-
faces. One can write them down in the form

ol ==h, al._. =0 (4.8a)

z=+1 Z=+1

Similarly, dynamic boundary condition (Z}45) has to be prieed not only on the
right-hand side of the domain but also on the opposite stderdnsformation yields

_ . f.ou Eotou ¥ (0&\ 0u 100w
_ ap 2 _ S Ss7r S) 2o sE —
[ pre (28f W20z 0z  h? (az) or hozor)| 0, (4.80)

=1

____+__

hoz hozor Or
— — _ _ 72 _
@6_2_(@) 8_)] 0. 480
r=1

[éagmedp(g@ FOEOT Db
h

h?0z0z h?\0z

_ ou £ofou F(0E\ 0u 10€0v
ap | _ _ - —
[&He ( 2 r 20z (az) or hozor . 0, (4.8d)

“hoz hozor or

— - _ 72 _

_%%@ﬂr(@) 8”)] -0. (4.8e)
F=—1

lfaf_ edp( fou roLou O

h2dz oz h2\oz) or
Finally, kinematic condition(2.46) transformed in the samanner reads

(—%+ﬂ+l(,§h—@)%)

= . =] =0 (4.8f)

=1

Let us remark that once the latter condition is satisfiedantslogy is automatically
fulfilled on the opposite side of the domain boundary due suasd symmetry of the
solution.

4.2 Discretization of governing equations

We will seek a solutior{u, v, p, &) satisfying [4.7),[(418) at discrete time levels and
properly chosen discrete points in the donfirThe space discretization itself leads to
the system oflifferential algebraic equationgbtained from[(4.7a) £{4.l7c) arld (4.8f).
The time discretization is added in an effort to decouplesgistem in the sense that one
gets the time update @nat first, using the discrete version bf (4.8f), and after thiat
possible to solve the discrete versions of equationis i) (4.@btain relevant updates
onwv andp respectively. This procedure gives rise to plenty of nuoaschemes. One
possibility is described below.
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(a) Computational grid. (b) Grid in the physical space.

Figure 11: Computational grid and its mapping into the physical space.

4.2.1 Space discretization
General remarks

Let us suppose thatis known for a moment. The system of equatidns](4.7) sulgjecte
to boundary conditiond_(4.Ba) £ (418e) will be solved in tleenputational domain
using a spectral collocation method. Computational gridFigure[I11a consists of
Chebyshev collocation points

o (i—l)ﬂ) .

TZ—COS( N1 ) 1=1,..., N, (4.9a)
(j-Dm .

2j = 008(7_1), j=1,..., M. (4.9b)

To these points we shall refer as to teocity collocation pointeind sometimes we
shall talk about theelocity grid In fact, the points in[(4]9) are extreme points of the
Chebyshev polynomial$y_; (7), of degreeN -1, andT),;_; (z), of degreeM - 1.
For detailed information about spectral methods see fompiﬁalleielndnL(;OﬁO),
ICanuto et al. (2006).

To follow the notation used H;LQaMQ_ei él._(2b07), a stag®nv—-Qn_» method
is adopted here. It means that pressure values are cortswesecoarser grid withk L
collocation pointsK = N -2, L =M -2)

rr = cos((ZK__l)lﬁ), i=1,... K, (4.10a)
-1
z; = COS(%), j=1,...,L. (4.10b)

In other words, the pressure will be approximated by polyiasrof degree two or-
ders lower (in each direction) than in the case of polynosnigked to approximate the
velocity. This time we talk about tharessure collocation poin@nd thepressure grid

In what follows we will use a shorthand notatien; = w(r;,2;),i=1,...,N, j =
L,...M,andw;; =w(rf,2;),i=1,...,K, j=1,... L, for values of functionw at the
given grid point. Using thé) y —Q y_» method ensures that it is enough to enforce the
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divergence equation and the balance of linear momentunhiahal velocity colloca-
tion points. From this reason we will need to interpolatespuee values, as well as val-
ues of the pressure gradient, from the coarser grid to thedi For differentiation
we will use spectral differentiation matrices in the formegi by Weideman and Reddy
(2000).

Let D™ kN<N denotes the Chebyshev spectral differentiation matriresponding
to differentiation of ordek ¢ N with respect tar, and letD"*"** denotes its elements
fori=1,...,N, j=1,... M. Using the matrices one can easy find derivatives, indeed,

0w al 7, 1;Nx N
— (rz,z]) = Z Dy Wk, j» (4.11a)
k=1
0w J 7,2, NxN
972 — (14,2 ) = I;le W, - (4.11b)

Similarly, for differentiation with respect towe useD*1LMxM [Dz2M=xM gnd we have

5
8—§(ri,zj ZD“M*M%,C, (4.12a)
foun Mo

55 (roz) = 2 DM (4.12b)

k=1

Now we can introduce the interpolation mati®**%L (components/;****,
with: =1,...,NM, j = 1,...,KL), which interpolates function values from the
pressure grid to the velocity grid. In what follows we will@pciate the notation

[ D11 ] [ P22 ] [ pin ] [ p ]
D21 D32 Paa D
DPN,1 DPN-1,2 P Pk
P12 D23 20 Pl i1
D22 D3,3 D52 P2

Pa=| : |, P-= : oPr=| |- 5 . (4.13)

PN2 PN-13 Px o Pk
P1,M D2,M-1 2 Pr(1-1y+1
P2,m P3,.m-1 pE’L p;((L_l)+2

L PN, M L PN-1,M-1 ] [ Pl L Prr

Clearly, JNM*KL transformaP* to Py, thus

Py = JYMKLp* (4.14a)
or in the component form
KL
Di ZJJX(@“Jfﬁkpk, i=1,...,N, j=1,..., M. (4.14b)

In order to determine particular values of the pressureignaat velocity colloca-
tion points one has the following two possibilities:
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A) First differentiate the pressure on the coarse grid armeguently interpolate
the derivatives to the velocity grid.

B) First interpolate the pressure values from the coarskayd subsequently dif-
ferentiate the “new” values on the velocity grid.

Let G7V % denotes the reinterpolated differentiation matrix cqueegling to dif-
ferentiation with respect te, which was obtained using the former approach. Simi-
larly, G7;"""**" denotes the same matrix obtained using the second optioourin
code we combine the two approaches in effort to compensatdlaence of the com-
puter arithmetics. Therefore we use the reinterpolatei@réifitiation matrix in the
form (symmetrization trick)

GF,l;N]MxKL — 1 (Gz,l;NMxKL " Ggl;N]MxKL) ) (415)

The notationG %, wherei = 1,... . NM, j=1,..., KL, is used for the com-
ponents of the matrix, and relation

op P NMxKL o
(E)” 172?]) ZGZ+1(] DNk Pk (4.16a)

holdsforevery =1,...,N, j=1,..., M. Of course, in the same manner we introduce
G=»LNMxKL corresponding to differentiation with respectztand we have
dp

= 615 — ZILNMxKL
(%)m = 9: (%) ‘;sz DNk Die (4.16b)

Getting the system of algebraic equations

Before we proceed with deriving the discrete version of tiffer@ntial operator repre-
senting the problem, let us remind the values of the coeffisitTom [4.6) at particular
collocation points[(4]9). The assumption from the begigrahthis paragraph, saying
that¢ as a function of is known, should be specified in the sense that we know its
valuesg; atz; for j = 1,..., M. This notation leads us to the expressﬂ)ns

1
a4 = —, (4.17a)
-
b, _& (4.17b)
i, h .
Z DZ MM ¢ (4.17c)
Z DZ 2 (4.17d)
27% z, 1 M><M ’
i Z D : (4.17€)

Enforcing the divergence equatldE(ZI.Ya) at all inner vigfooollocation points
(thus at pointgr;, z;), wherei=2,... . N -1landj =2,..., M - 1) gives

N
7,1; N><N zZ,L;,MxM o 7 1;NxN )
0= ZD @i+ b ZDM Vik + Cij ZDz’,k vgj. (4.18a)

k=1 k=1

“From [4.17h) it follows thaiV in (Z.92) must be even to avoid division by zero.
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Using p; ; given by [2.14b) ang 22 ) ( Z) ., from (@.18), the balance of linear mo-
mentum [[4.7b) [(4.7c) enforced at all inner velocity cadttien points gives

B 8}9 R o DRZENXN
o7) O (*Cz‘,j)l; ik Ukg

N M M

7 1;NxN Z,1;MxM 2 Z;MxM_ 2 o

+ 2()1'7]'0@'7]' Z Di,k (Z Dj,l uhl) + bi,j Z Dj,lc Uj o — Ay Ui j +
=1

7 1;NxN Op N 71 NxN A Op
+(a”+g”+q”)ZD” U +20‘( ) ZDzk Ug,j + & Civj(_) +

or)ijia or /i
a r,1;Nx z,1: M x r X
+ bi,j (6—]:) ) (Cz‘,j Z DZ-:;’N Nuk,j + bi,j Z Dj:;’M Mul Et Z D ’LN N )] ,
2% k=1 k=1
(4.18b)

for ¥ component of the balance of linear momentum,

op op
i (b” (E) A (ar)- ) i
Y} 2Y)

N M
_ 6 2 PANXN, o 7, 1;NxN 2,1;MxM
e [(1+Ci,j)ZD kg 201 5¢ E:Dzk E:D]’,l Ukt )+

=1

+62 ZDZQMXMvZkJr(a”Jrg”+qH)ZDT’1’NXN Uk j +
k=1

dp

+d(__) (Ci7jZD:7;;NXN +b7j2 1M><Mqu+Z 1N><N )+
)i k=1
+2d C; (@) +bl (@) C; ‘ZDf’I;NXN +bz ZDZ,I,MXM ) :
5J af Z,J »J 82 17] »J kzl 17]{; ]
(4.18c)

for z component of the balance of linear momentum.
The no-slip condition[(4.8a) gives us the valuesvoét the velocity collocation
points at the sample-plate interfaces. Indeed; fot, ..., N we have

Vi, 1 = Vtop = h, Vi,M = Ubottom = ~h, U1 = Ui M= 0. (4-19)

Substituting[(4.19) td (4.18) we get a final version of theditized equations. At this
point we haveg3N —2)(M -2) unknownE. Unfortunately, so far we have found only
3(N-2)(M-2) equations presented in(4118). In order to close the systatgebraic
equations, it remains to introduce a discrete version ohaty conditions[(4.8b) —
(4.8é). Forj = 1,..., M let us denote

¢ = Z Dy MM ¢ (4.20)

SKL = (N -2)(M - 2) unknown values fop at all pressure collocation points, ade N (M - 2)
unknown values for, andwv at all velocity collocation points except those situatedtosm boundaries
corresponding to the sample-plate interfaces.
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Enforcing the boundary conditions at appropriate colliocepoints (it meangr;, z;),
(rn,z;),forj=2,..., M - 1) we get anothet(M - 2) equations in the form

. AN LN«
=&,y + e ((2 * ( I Z Df,ilc’N Ny, j -
k=1

f] i 21'M><J\J ] rl N><N
h2 Dj,7k7 Z ] =0, (4.214a)
fyf'pl 4 o1 ( i lexM ] ZDrleN
7]

AR R
(1+2( ) )ZDrleN ) zl]MxM ,k) _ 0’ (421b)

¢ i gl ’ 7,1; N x
§7de + eapN’J ( (2 + ( h kZ:l D]\}T;CN Nuk,j -

6] 21~M><M rleN
Tz 2 Dj;k’ ZD v, | =0, (4.21c)

gjgl M lexJ\J ] r1N><N

hp +e“pN7— Z . ZD”

g\ -
(1 +2(h) )ZD;@,;NW 2 ZDZJ’M*M k) = 0. (4.21d)
k=1
Notation

At first let us introduce some extra notation for various “seiections” from the dif-
ferentiation matrixD™5V*N (of course, at the same time we introduce a parallel no-
tation also for other matriceg™2 V<N D= LMxM gndDz2MxM) - Using the following
schematic drawings,

'Dm;NxN DFLN<N
FLNxN _ N7 (N - -
D = D7 1(N=-2)x(N-2) , (4.22a)
7 1;NxN LNxN
D . Dy y
[ 71NN 71NN
Dt Dyy
DFLN*N DA L(N-2)xN , (4.22b)
7 1;NxN 7, 1;NxN
D . Dy

it should be clear thab™1:(N-2x(N-2) js nothing butD™1V*N with removed first and
last row and column, where&g:1i(N-2)xN js DmLN=N with removed first and last row
only. SymbolsD#1t, DM andD?#21, D#%M are used for vectors consisting of the
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first or last column of matri=(N-2xN andD=2(N-2)xN respectively. It means

zZ,1;MxM zZ, ;M xM
D2,1 DQ,M
z,1; M x Z,1; M x
D 1;MxM D 1;MxM
Dz,l;l — 3,1 7 Dz,l;M = 37M , (423)
Z,1;MxM 2,1;.M><M
DJMfl,l DM—l,M

and similarly for the other matrix. On the other side, symstio[', D', are reserved
for the first and last rows of matrir”™ V<V,

A 7L NxN 7 1;NxN 7,1;NxN
D! = [DYy Y, DY L DY (4.24a)
A 71 NxN 7 1;NxN 7,1;NxN
Dy = [Dy Y, DY, DY T (4.24Db)

Further, for any fixed € N let us define the following operatorg«; : RNVMxn —s
RN which removes first and lagt rows in an arbitrary matrix fronR V4> and
My : REMxn — RELxn which takes a matrix frolRN2*" and removes its rows
with indicesl + (k- 1)N, kN fork =1,..., L. UsingM = M, o M; we introduce
modified interpolation matrix

:DKLXKL:./\/l(J]NMxKL)7 (425)
which gives the transformation rule (s€e (4]14a) for cornspa)
P = JKLELp~, (4.26)

Similarly, we introduce modified reinterpolated differiatibn matrices (se€ (4.116))
@F,l;KLxKL =M (GF,l;NJ\JxKL) @Z,I;KLXKL =M (GZ,I;NMXKL) (427)

which are used to get values of the pressure gradient at welecity collocation
points. Another two operator§i, Jr : RVM*KL — R(M-2)=xKL gre defined in
such a way that matrices

J]Eig{.lt_Q)XKL _ jR (JNJ\JXKL) ’ \J]|(e]f\t4_2)XKL _ jL (\DNJ\JXKL) (428)

)

consist of rows of matrixNM>KL with indicesl + kN and(k+1) N respectively (both
forkzl,...,M—Qﬁ.

In (4.13) we introduced* to be a vector of unknown pressure values. At this point
we add vectors of unknowns of si2&( M - 2) for velocity values

Uy 2 ] [ V1,2
U292 V2,2
UN2 UN,2
U1,3 V1,3
U233 V2.3
U-= : ) V= : (4.29)

UN,3 UN,3

U1, M-1 V1,M-1

U2 M1 Vo, M -1

| UN,M-1 ] | UN,M-1 ]

SApplication of the matrices ofP* returns pressure values at corresponding collocatiortoim
the right and left boundary of the velocity grid.
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For vectors of values of coefficienisb — see[(4.17) — we write

a2 | [ a2 ] [ b2 ] [ bao ]
2.2 a3,2 bz,2 b3,2
an 2 AN-12 bN,Q bN—1,2
1,3 2.3 b1,3 b2,3
R a2 3 as 3 ) b2,3 53,3
A= : , A= : , B= : , B= : , (4.30)
an3 aN-1,3 bN,3 bN—1,3
ay p-1 Az p-1 b1,M—1 b2,M—1
A M-1 a3, M-1 b2,M—1 b3,M—1
| AN, M-1 ] | AN-1,M-1 ] | bN,M—l § | bN—l,M—l j

In the same manner we usg C, G, G, Q, Q for values ofz, g, g respectively.
Further, le€’ =4 25 in compliance with[{Z.20). Then for values©&nd¢’ at relevant
grid points we have

[ & ] [ &
&2 &2 &5 2
&3 &3 3! 5
Ba=| |, E= |, Eu=| |, E=[ : [ (4.31a)
Ear-a Ear-a Ehi o M2
gM—l gM—l 51,\/[_1 531_1
| S | | S

Clearly, according td (4.20) one can write

=/ _ |D2,1;]\/1><M —_

)
—all — —all,

= _ @2,1;(M—2)x]\/f e

. (4.31b)

Last but not least, we will need to use identity matrices amdesof their modifica-
tions. Byl™” we denote the identity matrix of sizexn. One convenient modification
of IIN-2)x(N-2) js defined by the following schematic drawing

0 0
V-2V _ | | (V-2)x(N-2) | ;|| (4.32)

0 0
Symbolsl,, Iy are used to denote row vectors of si¥an the form
I, =[1,0,...,0,0], Iy =10,0,...,0,1]. (4.33)

Finally, symbol1™<! denotes a column vector of sizewhose every component is
equal to 1.

—_ =

1= | neN. (4.34)

—_ =
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System matrix for the classical Stokes problem

As we have already discussed in Section](2.1), our probleedisced to the classical
Stokes problem when we pdt = 0. Hence, puttingy = 0 in (4.18) and[(4.21) we
get the discrete version of the classical Stokes problermgddke notation introduced
above, it can be rewritten in the following compact form

[ Ay Ay Arp ] [ Fy ]
Aoy Poy Ao p F,
A3y Asy Asp || U F;
Ay Pay Aap || V [=]|Fal, (4.35)
Asu bsy Asp || P* F;
Aeu Aev Ae.p Fg
| Ay Ary Az p ] | F7 |

where (bold symbad is commonly used for zero matrices of different sizes)

By y = I-25002) g DREN-DAN |\, (diag A) (4.362)
Ary = (diagB) (D#HM-2x(M-2) g (V-2 4

+ (diag C) (1M-2x(M-2) g [yr1(N-2=V) (4.36b)
Arp =0, (4.36¢)

Aoy = (UKLXKL +diag (C = C)) (|](M*2)X(M*2) ® HADF,2;(N—2)><N) N
+2(diag (B * C)) (”(M*Q)X(M*Q) ® njm;(Nﬂ)xN) (@2,1;(]%—2)><(M—2) ® |]N><N) i
+ (diag (B + B)) (®272;(M72)X(M72) ®E(N72)XN) - My (diag (A * A)) +

+ (diag (A + G + Q)) (1M=2x(M=2) @ Prb(N=2xN) | (4.36d)
Asyv =0, (4.36€)
hop = —h (diag B) GHHHLKL (4.36f)
A3 =0, (4.369)
Asy = Aoy + My (diag (A + A)), (4.36h)
As.p = —h (diag B) ((diag B) G>1K KL 4 (diag C) GPEKEKL) (4.36i)

—2)X - 1 4 —_ [} -2)x - T
Ru = (20 4 (dig (2 27)) (1090 o DY) -

- % (diag (B » E)) (D>1EM-2x(M=2) @ 1,) | (4.36))
Ay = —% (diag E") (122 @ DY), (4.36K)
Ay p = —(diag E) J]Sigﬁf)XKLa (4.361)
AB,U — % (diagE) ([DZ,l;(M—Q)X(M—Q) ® Il) _

1 ,
- 7 (diag &) (101=2x(M=2) @ DT, (4.36m)

-2)x - 2 3 =/ =/ —2)x - T,
Asy = (I](M 2)x(M 2)+ﬁ(d1ag(: * = )))(I](M 2)x(M 2)®D11)—

2 . — [=nld ~NZ,1; -2)x —
- 77 (diag (B + &) (DAHM=2x(M2) @ 1) | (4.36n)
1 o)
bs.p = 5 (diag (2% &) Jige, ", (4.360)
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A&U = (2|](M 2)x(M-2) + (dlag(~ = ))) (H(M—Q)X(M—Q) ®ij&1) B

(dlag(-' =) (IDE’L(M’Q)X(M’Q) ® IN) , (4.36p)
AG,V — _z (dlagE') (l](]\/172)><(]\/172) ® D?\’fl) : (436q)
Ae.p = (diag=Z) JG 2K (4.36r)

L o (AL
A7,U = —z (dlag:) (|D 71=(M 2) (M 2) ®IN) _
1 _
- 7 (diag &) (U(M‘Q)X(M‘Q) ®Dy'). (4.365)
Ary = (|](M 2)x(M~-2) + (dlag(-' = )))( [(M-2)x(M~2) ®DF]\,71) _

2 _
~ 1 (diag (2 » E’)) (D> EM=2x(M=2) @ 1) (4.36t1)

1, .. x
hrp = o (diag (B ) Sy " (4.36u)

and vectors on the right hand side are given by forniulae

Fi = =B x ((vopD™"! + tpotiomD ™1 ) @ 1 2x1) (4.37a)
F, =0, (4.37b)
Fs3 = -B * B * ((v1opD™*" + tpotomD > ) @ 1(V-271) | (4.37c)
F, =0, (4.37d)
F; = 52 (B * 2 * (vpD™"! + vporomD ™)) , (4.37¢)
Fe =0, (4.37f)
F; = F:. (4.379)

In (4.36) and[(4.37) we denote® B € R?* 45 the Kronecker product of matrices
A € RP*2 andB € R"*¢, anddiag denotes the operator that creates, from a given
vectorA € R”, a diagonal matrix of size x n whose diagonal elements are given by
the vectorA,

0,171[8 a,LQ[B a’l,q[B aq aq 0 - 0
Ao B = CL2,:1[B CL2,:2[B az,zq[B . diag A = diag CL:2 _ 0 a:2 0 . (4.38)
ap1Blay2B| - |a, B an 0 0 - a,

Further we denotd B ¢ R* the element-by-element multiplication of vectds: R*
andB ¢ R¥,

aq b1 a1b1
AxB=|"]x bf - az:bz , (4.39)
Qe bk akbk

"When deriving[[4:31c), we mutely use the fact that the g, D]>/**" vanishes for any =
1,..., N since derivative of a constant is zero even at the discree. le
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System matrix for the full problem

Equations[(4.18) and (4.21) with > 0 are clearly non-linear. To get rid of the non-
linearities we will use the pressure values from the prevtoue level (for these values
we use the notatioR? ). Let us introduce the notation

E; = exp (4Pouq), (4.40)

whereP,4 denotes the following column vector of sig&N - 2)(M - 2),

0
:DKLXKL

:DKLXKL

Pold = \Dsig/r[]t_Q)XKL ;Idv
J Eigﬁt—Q)xKL
J I(ez\ffa)xKL

| i " ]

(4.41)

andexp is the matrix function that provides, for a given mattix R™, a matrix
of the same size whose elements are (fori =1,...,n,j=1,...,m). Now itis
possible to rewrite the problem in the compact férm

(00 0 ] [ Ao Ay Arp ]
00 A p Aoy Aoy O
00 A37p U A37U Ag,v 0 U
00 A47p V |+ (dlag E&) A47U A4’V 0 V |+
00A;p || P* Aspy bsy O P
00 Agp As Ay O
[ 00 A7 p | | Ay Az O
[ 0 0 O] [ F, ]
IB2,U [B27V 0 F2 + @FzB
IB3,U [BB,V 0 U F3 + @Ff
ra(diagE)| 0 0 o|| V|=E.x| F | (442
0 0 o] P F;
0 0 0 Fg
0 0 0 R

At this point it is necessary to realize that the mentioned-lmearity is present
also in newly introduced ternts, ;;, By v, Bs 7, B v andFZP, FZ. Let us denote

Iy = GrikbKipy, (4.43a)
I, = (diag C) GPHEXELP:  + (diag B) GHLHEXELPY, (4.43b)

then we write

[BQ,U -9 (dlagI‘l) (l](1\472)><(]\/172) ® HA)F,l;(N72)><N) i

81t is worth noting that for = 0 we haveliag E, = [(3V-2)(M=2)x(3N=2)(M=2) gand [Z4P) is simply
reduced to[(4.35).
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+ (diag T) [(diag C) (101-Dx(-2) @ PHris(N-2=V)

+ (dlagB) ([Df,l;(M—Q)X(M—Q) ®E(N—2)><N):| ’ (444a)
Boy = (diag Ty) (IM-2x(M-2) @ PRLN-2xN) (4.44b)
Bsy = (diagTy) [(diag C) (1M-2*(M=2) @ DrliN=2)xN)

+ (dlagB) ([Df,l;(M—Q)X(M—Q) ®E(N—2)><N):| ’ (4440)

Bsv = (diagI‘l) ([|(M—2)x(M—2) ® [Dm(N-z)xN) +
+2(diagT) [(diag C) (|](M—2)X(M72) ® @F,l;(N—Q)xN) N
+ (diag B) (D= H(-2X(M=2) @ [N-2)V) | (4.44d)

and new vectors on the right hand side read

F5 =0, (4.45a)
F# = 2B« Ty # ((viopD**" + totomD**™) @ 1V-2X1) - (4.45b)
This simple approach using the pressure values from thequetime level can be

later improved using some sophisticated method for solthegsystem of non-linear
equations, for example Newton-Raphson method.

A
i

NN
AN
Y
WY
N
N
NN

N

N

0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
nz = 63536 nz = 67276
@a=0 (b) a>0

Figure 12: Matrices assembled for systems of linear equatiobns](4@5)2). Values
N =12, M =13 were chosen for better resolution.

4.2.2 Time discretization

The time interval0, t.,,q] is divided using a small time stefyt = %tcnd for any fixed
n € N. We shall write
t*) = | At, k=0,1,...,n, (4.46)

and solutions at particular time levels will be denotedity, p(¥), E(k).

4.2.3 Numerical scheme

Following the discussion stated at the beginning of thiseecwe shall seek a solution
of the given problem on consecutive time levels using théipter-corrector scheme
stated below. For better understanding the scheme is Hedcusing the equations
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in their original form [2.2R),[(2.46) in physical space. Q@ifucse, subsequent com-
putations has to be carried out with the equations beingfibamed in the previous
sense.

In every cycle of the following scheme we seek the valgiés), v(*+1) andp(++1)
on a new time level using their valu¢8), v*), p(¥) on the current level. The initial
conditions used to start the scheme read

v =0, p@ =0, €0 = Ry, (4.47)

PREDICTOR-CORRECTOR SCHEME
1. Anupdate ort is obtained from

£0e+1) _ (k)
At

e k)

k
r=®) T T v (]

+,0)| 0. (4.48)

r=g(®) =

2. Using the new geometry witt(*+1) we solve

divo®™1 =0, (4.49a)
—grad p**) + edr™ (Av(k”) + 24D+ gradp(k)) =0, (4.49b)

for v(k+1) | p(k+1) subjected to corresponding boundary conditions.

3. Finally, itis possible to improve(s+1) obtained from[(4.48) using

(k+1) _ g(k)

new

At

Dbien
74:£(Ic+1) - 82

n UT(lﬁ—l)‘ Uz(k+1)‘

0. (4.50)

rzg(lﬁl) =

After that, we can go back to the first step with) := £{550 ) »®) = p(k+1) | and
p(k) = p(kﬁLl)_

At this point let us make an important observation in advard¢ging the scheme
directly in the form just presented, one obtains quite ustattory results due to the
presence of spurious oscillations apparent on the freacirf see Figurie_Il7a and
related discussion in Section 5.2.1. In order to smoothetlossillations we add the
regularization term

eA¢ = 5% (4.51)
022’ '
to our numerical scheme {s typically a small number). It means that instead of (4.48)
and [4.50) we shall consider

(k1) _ g (k) . oe®) §2¢ ()
_T + UT( )‘r=§(k) — W,UZ( )‘ng(k> = —EW’ (452)
k+1 k+1 k+1
_ ﬁevt/ ) _f(k) iy (kJrl)‘ _ aﬁge\; )’U (kJrl)‘ _ —682 ﬁevt/ ) (4 53)
At T b g, e TR g '
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4.3 Benchmark problem

Once we have designed the numerical method, we need to prewvitie error esti-
mates or any other relevant information concerning the emence of the method.
For this purpose we shall construct a benchmark problenguki; method of manu-
factured solutions (MMS), see for exam 002).naanufactured solution
will be based on the analytical results obtained in Se¢fi@h B fact, we will modify
the classical Stokes problem in the sense we add some awditeyms to the equa-
tions. In the following chapter we shall compare numeriedutts (obtained with
corresponding modifications in the discrete problem) toetkeect analytical solution.

Velocity componentd(3.35) rewritten into the computagiodomain using[{412)
rea

_ N . _ z . .
U= (22—1)h, Uz = 5(3—22)h. (4.54)
Similarly, for the pressuré (3.B6) we write
_ 3h (e
p= E (?—222)4-00, (455a)
where (see the discussion in Sec{ion 3.2.3)
3h
Cy=-——R2 4.55b
0 4h% 0 ( )

Clearly, sincel(3.35) and (3.36) were found to satibfy|(3t3¢ir counterparts (4.54),
(4.58) must satisfy — independently 6r- transformed equations (sée_(4.4) for com-

parison)
_8@;+
COF 7 hdz hozOF’

= =9\ 925 9FE AE 2n. £2 927
_0p (1+(r6§))8vr 27E 0 Pvr € 0P |

o, £0v. T OE00:

0 (4.56a)

or hoz) | or2  h? 0z0r0z  h2 072
1 FERE 27 (9€\\ O, o,
S ) ey U 4,
! (r 2oz h2 (62 or 7 (4.56b)

o2~ 12 970707
2 9255 =926 9m (9£\°\ 95
i@ UZ+(1—E%+2—T(%) )8112 (4.56¢)

E(z0p__06ap\ _ |, (rog)"| s _2rE0g 0%,
n\*oz "ozor) 77

" h? 0z2 ¥ h20z2 h2\O0z or

Since we would like to include an analogy of the no tractiondition to our prob-
lem, we need to know an exact form of the functigrwhich determines profile of
the free surface. Sample radius at the central p{éfg) is computed using the ordi-
nary differential equatioq(0,¢) = v,(£(0,¢),0,t), together with the initial condition
£(0,0) = Ry. This yields

€(0,1) = £(0,t) = Roh(t)"1. (4.57)

We intentionally omit the lower indef which was used to denote the zeroth-order subproblem
equivalent to the classical Stokes problem.
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Let us suppose a parabolic description of the free surzfaee_az2 + bz + ¢, where
a, b, c are time-dependent constants. Using the known valu¢sabthe sample-plate
interface and central plane,

él._,, = R, €., = Roh1 (4.58)

we get profile of the form
£ = ((1—h-%)22+h-%)fz0. (4.59)

The no-slip boundary condition at the sample-plate inta$aremains untouched,
it means

T}g‘, = :th, T}f‘

z=+1

=0. (4.60a)

zZ=+1
Modified dynamic boundary condition (originally no tragtjpobtained using the tem-

plates[[4.51) [{4.855) an@ (4]59) in the equatidns (4.80)8e)witha = 0, reads

where the terms on right hand sides are given by

3Ry(22hi -2 +1)h , . .
Gi=- o e ) (573" + 2R3 (3-52%) 221 +

+(2-42%) b3 + B3 (522~ 6) ), (4.60f)
and
3R2z(22hT -22+1)h , . .
G2 = OZ(Z Sh7 ° ) (R324h%+R322 (2—322)h%+
+R32 (322 - 4) b+ (322 —4) T+ (5-32%) hE - R322 (22 -2)). (4.600)

Finally, substituting[(4.39) into the kinematic conditi¢h.8f) we obtain modified
transport equation

o 1, . 08
—a + Uf‘le + E (Zh - Ug) % =03, (460h)
where R
_ TRyZ? 3 . _
§s= 7 (2-1)(nt-1)h. (4.60i)

The quarte(v;, vz, p, &) satisfying (4.54%),[(4.55) an@ (459) is called the exaatsol
tion of the benchmark problern (4]56)[=(4.60).
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5. Results

The numerical method was implemented imMAB and numerical results were ob-
tained for several combinations of parameter values. Irt Walaws, we mainly report
results for a particular setting specified by the parametarsmarized in Tablg 2. Note
that we consideh given by [2.39). The choice of the time data correspondseo th
situation where the sample is compressed approximatelyg tqut fifths of its initial
height, which seems to be more than enough in order to get dasie knowledge
about the behaviour of the material in the squeeze flow gagmet

At first we shall briefly investigate questions concerning tonvergence of the
numerical method using the benchmark problem describetia@rptevious chapter.
Numerical solutions obtained for the classical Navierk8safluid will help us to reveal
some fundamental drawbacks related to the physical modelarshall point out the
role of the parabolic regularization introduced at the eh8extion4.Z.B. Finally, the
pressure-viscosity coefficieadt will be varied in order to determine the influence of
the pressure-dependent viscosity on the sollition

A

Parameter Ry tend to €
Value 2 0.2 0.05 010 0.01

Table 2: Parameter values used in computations.

5.1 Convergence of the numerical method

In order to verify whether the numerical method providesupible results, we carry
out some simple tests comparing the numerical solution efbgnchmark problem
(4.58), [4.60) to the quartdlic,, Tex, Doy, ex) that represents the exact solution of
the same proble@n We need to measure the difference between the two solutions
appropriately. For this purpose we introduce the notation

| v = i1 NG | @i 2,1) ], (5.1a)
|@ |:?K=L - i=1,...,r}l<%=1,...,L ‘ w(ri,2j,1)

, (5.1b)

wherew is an arbitrary function on the computational domﬁiqnd collocation points
(ri,25), (r7,2;) are defined in[(419)[(4.10) respectively. Sirfcdoes not depend on
7, we modify the previous notation and further we will also use

, (5.1c)

€] 0 = e [€Cz500)

!Let us remind that when reporting results for the pressuvee in fact report results concerning the
difference ofp from a reference level,.

2Numerical solution of the problem is obtained by adding tiserte version of;, g» into (£.37dl),
(4.373), according t¢ (4.6Db) E(4.80e), and it is also neamgsto adjust the discrete version of the trans-
port equation in the first and last step of our predictor-ector scheme, this time accordingffo (4J60h).
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Now it is possible to define functions

8u(t; N, M) = | tex |1y g | = x| v 0 (5.2a)
6o (t; N, M) = | Dex |;1NM |0 - @eX|t;N,M ) (5.2b)
00t K, L) = (| Pexrren) 1P~ Pex s (5.2¢)
0 (t; M) = | x| 11 1€ = x| s (5.2d)

which provide an information about relative errors for totusion (, o, p, €).

In Figure[1IB we have plotted the relative errdrs|(5.2) for 0.1 and N = M.
One can see that fakt = 103, and N sufficiently large, solutions, v approximate
uex aNdvey With the relative error of ordet0-3, p approximate%,, with the relative
error of orderl0-2, and¢ approximates,, with the relative error of order0-2. It is
worth noting that an improvement of the order of approximrts reached easily using
smaller time steps. This seems to be more efficient than sacésncrease of the
number of collocation points with¢ being fixed.

O — 10 ————
—At=10"3 —At=10"3
---At=10"* " ---At=10"* "
1.6X10 2.0X10
-1
10 14 10° 15 |
b 12p ] =
S [ : 100 el
i 10° L0} f T
\Og 0'810 12 14 16 18 20 e:/, -2 0'510 12 14 16 18 20
S R < 10 f 1
T I
o o
4 6 8 10 12 14 16 18 20 22 24 4 6 8 10 12 14 16 18 20 22 24
N N
(@) velocity component: (b) velocity component
10° ‘
—At=10" s
---At=10"* 4410
188 X107
< 4.2
| 1.86
i . 1.84 a0 s
110 1.82 asl ]
Z p 10 12 14 16 18 20
= 1800 12 14 16 18 20 \
< -4 \
s 10 +
‘\_ _______________________
10° ol
4 6 8 10 12 14 16 18 20 22 24 4 6 8 10 12 14 16 18 20 22 24
N N
(C) pressurey (d) free surface

Figure 13: Relative errors at = 0.1. Individual curves express the dependence of
relative errors[(5]2) on the number of velocity collocatpmints N = M.

For further computations we use the time step= 10-2 and velocity grid of the

size N x M =20 x 25 (we use more collocation points in the vertical directiarcsiwe
want to capture the curvature of the free surface as well ssilpie). In Figuré 14a one
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Figure 14: Values of the relative errof:(¢; M) given by [5.24). The error was com-
puted on the velocity gridv x M =20 x 25, usingAt = 1073.

can see the time dependent relative etigt; /) computed on the mentioned grid,
while Figure[14b illustrates also the spatial distributodrthe error.

The results obtained in this section show that the numesid@me for solution of
the Stokes-type problem with moving boundary has been im@feed without coding
errors.

The analysis of the relative error between the exact solwiohe benchmark prob-
lem and the numerical solution provides us with a heuristiclgline how to choose
computational paramete(sv, M, At) in order to obtain reasonably accurate numeri-
cal results in the benchmark problem and, more importainttie full problem. Using
the results concerning the relative error we can also makabifigd guess on the error
in the numerical calculations for the full problem.

5.2 Numerical solution for the classical Stokes problem

First, we consider the classical Navier-Stokes fluid moadhel #&s behaviour in the
simulation. The system of linear algebraic equations ghweifd.35) is solved in the
second step of every cycle in our predictor-corrector seéhem

5.2.1 Behaviour in corners

For the Navier-Stokes fluid solution we expect presenceepthssure singularities lo-
cated in the corners of the computational domain. Distitloubf the pressure through-
out the sample at different time instants is captured infeéd®. One can observe that
the pressure is increasing in the corners at first but afteedane it starts to descend
very rapidly. Consequently, there are pressure singidarih the negative direction
which is quite strange, and it possibly indicates breakdoftihe numerical solution
in this time interval.

As it is shown in Figuré_16a, it seems that pressure valuestetdescend when
the velocity of the plates becomes constant. On the other Bigure 16b illustrates
that pressure values localized in the center of the plataveeim an expected way (see
Figured10a and 25b for comparison).
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Figure 15: Pressure distribution for the Navier-Stokes fluid at défdrtime instants.
Computed withe = 0. Results were reinterpolated from the pressure grid at adime
using the Chebyshev interpolation implemented in WeideamshReddy! (2000).
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(a) Pressure values in the corner. (b) Pressure values in the center of the plate.

Figure 16: Pressure localized in particular places of the computatdmmain. Com-
puted for the Navier-Stokes fluid with= 0 and various settings of the plate motion.

Another interesting feature that possibly indicates thikapee of the numerical
solution for large times arises on the free surface. ThellaBons apparent near
the sample-plate interface in Figure lLl7a confirm that that®wl in the corners is
ill-behaved.

Using the velocity field computed in corresponding collamapoints, it is possi-
ble to reconstruct the motion of individual particles. lig&ie 17b we have plotted the
trajectories of particles that in the reference configorabccupy the position of col-
location points on the free surface (black squares). Lapkirtheir current position at
t = 0.15 (white squares), it seems that the free surface should betemon-oscillating
curve. At this point we would guess that the velocity field sloet suffer from the se-
rious drawbacks.

Of course, this is not the case as it is clear from the natutieeoproblem. Experi-
mental tests have shown that by increasing the number afaailbn points in vertical
direction, thus increasing their density in the corners,dhcillations of the free sur-
face become stronger. As a consequence, the velocity fiffietstrom some abrupt
changes as it is captured in Figlird 18. Further increasesimtimber of collocation
points even damages symmetry of the solution.

We believe that the inconsistencies described above aselglaonnected to the
physicallyincorrect choice of the boundary condition at the sampléepiaterface
near the corners of the domain. When the no-slip conditicepjglied, one should
consider an apparent motion of the contact line over the glatface, see for example
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locity collocation points).

Figure 17: Motion of the free surface for the Navier-Stokes fluid. Comaguwith
¢ = 0. Note that in figure (b) we have usedoordinate on the vertical axis, s¢e {4.2),
in order to see the motion of the particles relatively to theple height.
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Figure 18: Velocity field in the computational domain witkix M/ = 20x28 collocation
points. Computed for the Navier-Stokes fluid with: 0. Figures (a), (c) show abrupt
unexpected changes of the velocity field. Vectors are sdajele factor 0.1.
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Contact Line
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Contact Angle

Figure 19: Contact line motion over a solid surface. Reprinted from Ntis (1988).

Mavridis (19_&8), when the free surface of the material gadighsticks to the plate, see
Figure[19. Presence of this phenomenon in our case seemsctifiamed follow-
ing trajectories of the particles in the close proximity loé tsample-plate interface in
Figure17b.

In order to fix the solution behaviour in the corners, the nuoca¢ simulation
should be improved according to the scheme depicted in €[@Ar Unfortunately,
this requires some extensive changes in our code which amef saope of the thesis
(especially because of the time reasons).

5.2.2 Results obtained using parabolic regularization

As we have already mentioned at the end of Se¢fion]4.2.3hanaty how to improve
the numerical scheme is to use the regularization term)(4Bdally, in Figuré 20a one
can see the smooth boundary computed wit0.01.

Concerning the velocity field, there are no abrupt changets imalues anymore
and trajectories of the individual particles are depictedrigure[20b. Note that the
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(a) Free surface at = 0.15. Values were (b) Trajectories of individual particles on the free
reinterpolated at a finer grid (white cir- surface (black squares show the position at
cles show the current position of the ve- t = 0, white squares at=0.15).

locity collocation points).

Figure 20: Motion of the free surface for the Navier-Stokes fluid. Comepluwith
¢ =0.01. Red line in figure (a) is used to denote the profile from Fifufa.
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current position of the particles located near the samfateinterface does not exactly
coincide with the position of the free surface. Clearlystisi caused by the artificial
regularization term in the governing equations. Howeves, dituation on the rest of
the free boundary is more than promising.

An influence of the regularization term on the pressure isured in Figure$ 21,
[22. Unfortunately, one can observe that the decreasingeydf the pressure values
in the corners is not influenced by this technique, see F[@Rde

1 -1

t=0.04

(a)
Figure 21: Pressure distribution for the Navier-Stokes fluid at défdrtime instants.
Computed withe = 0.01. See Figuré15 for comparison.
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Figure 22: Pressure localized in particular places of the computatidomain. Com-
puted for the Navier-Stokes fluid with various strength @ tegularization term.

5.2.3 Direct comparison to the analytical solution

In Sectior 3.2 we have introduced approximationof the no-slip squeeze flow prob-
lem based on the assumption that planes initially normah#odirection of loading
remain plane in the deformed state. We have argued that sugssamption is justifi-
able only at the very beginning of the experiment.

At this point we can verify the latter hypothesis by compgrihe analytical so-
lution of the approximate problem corresponding to NaBaskes fluid, sed (3.85) —
(3.38), with the numerical solution obtained in the pregiparagraph for the full reg-
ularized problem. This comparison also provides us withaified guess whether the
numerical solution can be regarded as plausible.

In Figure[23 we compare free surfaces at different time mistaNote that the
centre part of the free surface computed using the numesiicallation moves slower
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Figure 23: Motion of the free surface corresponding to numerical soflu¢——) and
analytical solution (——-). Both profiles were computed fer Navier-Stokes fluid.

than in the case of analytical solution. This is caused byfdbethat particles near
the free surface move towards the plates as it was shown indfg0b. Deformation
patterns studied by Mavridis et/al. (1992) reveal that ina séuation the planes ini-
tially normal to the direction of loading are indeed defodhaleiring the compression,
see Figuré 24, which contradicts the assumption made foappeoximate problem.
In order to see this explicitly, the numerical tracking adlividual particles inside the
sample should be additionally involved in our code.

Previous statement comparing the velocities of indiviguafiles is confirmed in
Figure[25A. Radial velocity components were compared dtgbef the correspond-
ing free surfaces and one can notice that both solutiongic@ronly at the beginning
of the time interval.

Finally, in Figure[25b one can see the pressure located ioghter of the upper
plate. As we have already mentioned in Secfion 8.2.3, itées®ary to bear in mind
that the analytical solution is influenced by the choice dafifary condition[(3.48).
However, at this pointitis possible to improve the resulbhdsome “post-processing”.
We add the pressure value at the tip of the free surface,rmatdrom the numerical
solution, to the analytical solution which was originallyefd to zero at the same point.

Figure 24: Deformation of planes initially normal to the direction adading.

Reprinted from Mavridis et al. (1992).
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Figure 25: Comparison of the numerical and analytical solutions fentélocities and
pressure values at specific points in the computational doma

5.3 Role of pressure-dependent viscosity

At this point we finally come to the main topic of the thesis. Wént to solve the full
problem for an incompressible fluid with pressure-dependisgosity. Hence, in the
second step of every cycle in our numerical scheme we soévsytstem of equations
(4.42) witha > 0.

Originally, we have expected that the effect of the presslefendent viscosity
will be important especially in the corners of the domain. W&re wondering if it
is somehow capable to resolve drawbacks discussed abongeif hyields solutions
markedly different from those obtained in the previous geaph. Unfortunately, due
to the presence of the moving boundary, singular-like behawf the pressure in the
corners persists also in this case. As a consequence, weueasn that the effect of
the pressure-dependent viscosity will be reduced to theedawel as in the case of
analytical solution.

Numerical experiments confirm that solutions obtained eutrthe regularization
term [4.51) suffer from the drawbacks already discussedoti®@[5.2.]l. Hence, we
shall present only results obtained using the regulagmagrm withe = 0.01.

Let ¢ denotes the sample radius computeddoe 0, which corresponds to the
Navier-Stokes fluid, and similarly I&t, is computed foi = 0.01. In Figure[26 we

x107*
10

0 0.05 Oil 0.15 =

Figure 26: Space and time distribution of the difference definedhy)(5.3
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have plotted the difference

E(zj,t) =& (Zt), j=1,...,M, (5.3)

at velocity collocation points on the free surface. Althbube difference is really
small, it is worth emphasizing that its distribution on theef surface corresponds to
the behaviour captured in Figure] 8c. It means that the swiditir Navier-Stokes fluid
lags behind the other solution in the middle of the free s favhile it is faster in the
upper and lower quarter of the free surface.

As in the case of analytical solution, most significant cleangre observable con-
cerning the pressure. Distribution of the pressure througtihhe computational domain
is captured in Figurie 27, including the comparison of presgalues at selected points.

The results obtained here lead us to the conclusion that réesyre-dependent
viscosity is probably not a tool to resolve the issue withgbglly incorrect choice of
boundary condition in the corner. On the other hand, we shi@allize that the chosen
geometry is too complex in order to make some premature gsiaels about the real
influence of the pressure-dependent viscosity on the solulin fact, there are at least
two possibilities how to proceed with our studies. We cantaodide step and repeat
the computations in an appropriate geometry without moh’ngndarﬁ, the other
possibility is to improve the code in the sense discussedueatnd of Section 5.2.1.

1

0.5

-1 -0.5 0 0.5 1

2
(a) Pressure distribution in the computational
domain at = 0.2. Computed fory = 0.01.
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(b) Pressure values in the corner. (c) Pressure values in the center of the plate.

o
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5 0.2

Figure 27: Pressure computed for the Navier-Stokes fldid-(0) and for the incom-
pressible fluid with pressure-dependent viscosity.

30ne can think about “lid-driven cavity” problem for example
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6. Conclusion

6.1 Summary

The axisymmetric squeeze flow problem was solved for an ipcessible material
that can be described using the constitutive equation

T =—pl+2u(p)D, (6.1)
where the pressure-dependent viscosity obeys the Barus law
1(p) = poe™. (6.2)

Solutions were sought in two different settings dependingh@ choice of boundary
condition at the sample-plate interfaces.

Perfect-slip

In the perfect-slip squeeze flow the velocity field corresisoto the homogeneous bi-
axial extension. It was found that pressure remains honexgesiy distributed through-
out the sample and its values are given implicitly by thetreta(3.14). An approx-
imate solution for the pressure was obtained using the fition method. It was
shown that the material in question becomes more stiff inpamson to the classical
Navier-Stokes fluid.

No-slip

The no-slip squeeze flow problem was solved using two diffeapproaches.

Analytical solution was found using the perturbation metlsupposing that planes
initially normal to the direction of loading are not deforchduring the compression.
In this case, the pressure distribution is no longer homeges throughout the sam-
ple and material characteristics are changed locally ingaoieon to the Navier-Stokes
fluid. The analytical solution was further used to derivelieachmark problem impor-
tant from the point of view of numerical computations. It waed for code verification
later in the thesis.

The numerical simulation poses second approach used te t@wno-slip squeeze
flow which has to be treated as a free boundary problem. Thbadeif body-fitted
curvilinear coordinates was used to transform the govgreguations into the fixed
computational domain, whose spatial discretization wédseaed using the spectral
collocation method. The no traction condition derived ict®m[2.2.2 was involved in
the numerical simulation as well as the kinematic condif@83) which determines
the motion of the free surface. Solutions at different timnels were obtained using
the predictor-corrector scheme. Non-linear terms, appgan the equations through
(6.2), were linearized using the pressure values known frenprevious time level.

Results and drawbacks

The numerical simulation was used to solve the problem foctassical Navier-Stokes
fluid at first. Obtained results revealed some fundamengablacks in the form of os-
cillations of the free surface and singular-like behaviolthe pressure in the corners.
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These inconsistencies are attributed to the choice of th&ip®oundary condition in
the corners which is not a good one and leads to an ill-posgsigdi problem.

Apparently spurious oscillations were eliminated usirgpharabolic regularization
(4.51) in the equation of transport (kinematic conditiofhis technique helped to
suppress the oscillations of the free surface. The numeadation was subsequently
compared to the analytical one in order to see that the siymui assumption about
non-deforming horizontal planes is justifiable only at tleepbeginning of squeezing.

Numerical experiments, which were carried out for the fudligem, revealed that
the pressure-dependent viscosity is probably not a to@dolve the issue with incor-
rect choice of the boundary condition (the problems obgenmvéhe case with Navier-
Stokes fluid persisted also in the case with pressure-depéngscosity). Some ac-
ceptable results were obtained, as in the previous casgy tie regularization term.
It was shown that departures from the solution for Naviek8s fluid are approxi-
mately on the same level as in the case of analytical solution

6.2 Outlook

One of the main outputs of the present thesis is the numesiicallation which is ready
to be modified in different ways. The simulation was impleiteerin MATLAB and
its code is contained within the filequeeze-flow-simulation.zighich can be found
attached to the electronic version of the thesis.

As it is clear from Summary, we need a better boundary canditiear the cor-
ners of the computational domain. In this situation seveoakibilities are available.
For example partial-slip at the sample-plate interfacelmaeasily included into the
code, as well as the dynamic condition in its original fofn2@ instead of the no trac-
tion condition. Finally, moving contact line poses indigghly the biggest challenge
of how to improve our numerical simulation. All of these impements should be suc-
cessively implemented in order to make the effect of thequesdependent viscosity
on the solution more transparent.

56



Bibliography

Bonn, D., J. Eggers, J. Indekeu, J. Meunier, and E. Rolle§g20Netting and spread-
ing. Rev. Mod. Phys. 8§1739-805.

BrdiCka, M., L. Samek, and B. Sopko (2000jechanika kontinuaPraha: Academia.

Bridgman, P. W. (1926). The effect of pressure on the visgadiforty-three pure
liquids. Proc. Am. Acad. Art. Sci. §3), 57-99.

Bush, A. W. (1992).Perturbation methods for engineers and scienti@eca Raton:
CRC Press.

Canuto, C., M. Y. Hussaini, A. Quarteroni, and T. A. Zang @0®pectral methods:
Fundamentals in single domainScientific Computation. Berlin: Springer-Verlag.

Canuto, C., M. Y. Hussaini, A. Quarteroni, and T. A. Zang (2P0Spectral meth-
ods: Evolution to complex geometries and applications id fiynamics Scientific
Computation. Berlin: Springer.

Cardinaels, R., P. Van Puyvelde, and P. Moldenaers (200@ju&tion and comparison
of routes to obtain pressure coefficients from high-preseapillary rheometry data.
Rheol. Acta 46495-505.

Chatrael, S., C. W. Macosko, and H. H. Winter (1981). Luliedssqueezing flow: a
new biaxial extensional rheometdr.Rheol. 2%4), 433—-443.

Crank, J. (1987)Free and Moving Boundary Problem®xford Science Publications.
Clarendon Press.

Engmann, J., C. Servais, and A. S. Burbidge (2005). Squemzetfeory and applica-
tions to rheometry: A reviewd. Non-Newton. Fluid Mech. 18p-3), 1-27.

Ferry, J. D. (1980).Viscoelastic properties of polyme(3rd ed.). New York: John
Wiley & Sons.

Gordon, W. J. and C. A. Hall (1973). Construction of cunaiam co-ordinate systems
and applications to mesh generatiomt. J. Numer. Methods Eng(4), 461-477.

Gurtin, M. E. (1981).An introduction to continuum mechaniddew York: Academic
Press.

Gwynllyw, D. R., A. R. Davies, and T. N. Phillips (1996, NOVHTZ). On the effects
of a piezoviscous lubricant on the dynamics of a journal ingarJ. Rheol. 4(6),
1239-1266.

Harris, K. R. and S. Bair (2007). Temperature and pressyrertence of the viscosity
of diisodecyl phthalate at temperatures between (0 and XD@nd at pressures to
1 GPa.J. Chem. Eng. Data §2), 272-278.

Hron, J., J. Malek, and K. R. Rajagopal (2001). Simple flowBuds with pressure-
dependent viscositie®roc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci(2671),
1603-1622.

57



Huh, C. and L. Scriven (1971). Hydrodynamic model of steadyement of a
solid/liquid/fluid contact line.Journal of Colloid and Interface Science (3%, 85
—101.

King, H. E., E. Herbolzheimer, and R. L. Cook (1992). The diaahanvil cell as a
high-pressure viscometel. Appl. Phys. 7(6), 2071-2081.

Lanzendorfer, M. (2011)Flows of incompressible fluids with pressure-dependent vis
cosity (and their application to modelling the flow in joutt@aring). Ph. D. thesis,
Mathematical Institute of Charles University, Czech Rdpub

Liang, J. Z. (2001). Pressure effect of viscosity for polyrfieids in die flow. Poly-
mer 428), 3709-3712.

Marsik, F. (1999).Termodynamika kontinud@raha: Academia.

Mavridis, H. (1988). Finite element studies in injection mold filling?h. D. thesis,
Department of Chemical Engineering, McMaster Universiignada.

Mauvridis, H., G. D. Bruce, G. J. Vancso, G. C. Weatherly, anddchopoulos (1992).
Deformation patterns in the compression of polypropyleis&sd Experiments and
simulation.J. Rheol. 361), 27-43.

Neale, M. J. (Ed.) (1973)Tribology handbookNew York: John Wiley & Sons, Inc.
Ogden, R. W. (1984)Nonlinear elastic deformation€hichester: Ellis Horwood Ltd.

Paton, J. M. and C. J. Schaschke (2009). Viscosity measutavhbiodiesel at high
pressure with a falling sinker viscomet@&@hem. Eng. Res. Des. @2), 1520-1526.

Prii$a, V., S. Srinivasan, and K. Rajagopal (2012). Ropeegsure dependent viscosity
in measurements with falling cylinder viscometdnternational Journal of Non-
Linear Mechanics 4{7), 743 — 750.

Rajagopal, K. and A. Szeri (2003). On an inconsistency irdérévation of the equa-
tions of elastohydrodynamic lubricatiorProc. R. Soc. Lond., Ser. A, Math. Phys.
Eng. Sci. 45@2039), 2771-2786.

Rajagopal, K. R. and A. R. Srinivasa (2008). On the thermadyins of fluids defined
by implicit constitutive relationsZ. angew. Math. Phys. $49), 715-729.

Roache, P. J. (2002). Code Verification by the Method of Mactwired Solutions.
Journal of Fluids Engineering 124), 4-10.

Rudin, W. (1976).Principles of Mathematical Analysidnternational Series in Pure
and Applied Mathematics. New York: McGraw-Hill, Inc.

Schaschke, C., S. Allio, and E. Holmberg (2006). Viscosigasurement of vegetable
oil at high pressuref-ood Bioprod. Process. §38), 173—-178.

Sedlacek, T., M. Zatloukal, P. Filip, A. Boldizar, and RHa (2004). On the effect
of pressure on the shear and elongational viscosities gfipei melts.Polym. Eng.
Sci. 447), 1328-1337.

58



Trefethen, L. (2000).Spectral Methods in Matlab Software, Environments, Tools.
Society for Industrial and Applied Mathematics.

Weideman, J. A. and S. C. Reddy (2000). A MATLAB differentiat matrix suite.
ACM Trans. Math. Softw. 28), 465-519.

59



Appendix A
Cylindrical coordinates

Let us consider a three-dimensional Euclidean space tegetith aCartesian coor-
dinate systentonsisting of an orthonormal basfge;} = {e;, ez, e3} and a pointO
called anorigin. Any point in this space can be identified with @artesian coordi-
natesz; (i = 1,2, 3) with respect to the established basis.

Due to the geometry of the problem considered in the mainesobghis paper we
introducecylindrical coordinatesn the classical way. We use the notation

g=r, €29, &=z,

whereas relations

r1 =rcosf,
To = rsind,
T3 = 2

hold forr € [0,00), 6 € [0,27), z € R.

Covariant basis

At each point(r, 6, z) we introduce aovariant basisn the form

or;
g; = a—gz e;, (A.1)
it means
cos 6 —rsin @ 0
91=9,=|sinb |, gy=gy=| rcosf |, g5=g.=]|0
0 0 1
In an analogous way we can refer ta@travariant basigiven by
gt
= —e; A.2

It is not necessary to emphasize this regarding the factftintéter we use so called
physical coordinatesitroduced with respect to normed bases (see below).

Metric tensor

100
g=[g;]1=[0r20]|, J=detg=r*.
001

Since cylindrical coordinates are orthogonal, the refadio = 1/g;; holds.
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Physical coordinates

Normed basis is obtained as

R g; g; g,
,= 2k = é = 2L (A.3)
9l (9:-9)Y* /G

cos @ —sind 0

glzgr: S1n9 9 QQEQQZ COSG 9 g3:gz: 0

0 0 1

Now, for a vectory one can write
i i 9i i -
v =0 g, = V' \/Gii =V \/9%i9;, (A-4)
\/ 9ii

v=v;g"=v\/g = = g;- (A.5)
gll

NN

Due to orthogonality of cylindrical coordinates (used ir 3 equation in the follow-
ing relation), the physical coordinates of a vectare given as
Ui (A.6)

- i ij ii %
0; ="' \/9i = 970; /91 = g vi@:ﬁ\/@?/g—‘

(no sum over)

Covariant derivative
Derivative of a vector field> with respect tar; in a Cartesian coordinate system is

ov  0(vje;) o
8:61- - 8.’172 - 8:& I

On the other hand, derivative of the same vector field witheestos? in a curvilinear
coordinate system is

i 0*x,,

“og Y agag

€em.

v O(vig,) oui ;0 (axm ) vk
- = == ——@g.+v | —e,, | =
agz agz agz J agz 85]

At the same time the relation (A.1) yields

ock
€m = 81’ gk )
thus 5 oot 5 -
v [Ov — e Ty OE
oei (88’ + v’ Pij)gk, wherel';; = DEDE o

Moreover, Christoffel symbols of the second kmg can be calculatéhs

1 1l lj ij
Tk = = dgu 9915 _ 99i;

1For further information see e. g. Brdi¢ka et al. (2000).
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Considering cylindrical coordinates as above, we can whiése symbols in a sym-
bolic notation

000 010 000
I"=l0-ro0f, I’=|100|, I*=[000
000 000 000
The term Bk
k| _ oV k
vt = 8_52 Iy v?
is called covariant derivative af° with rescpect tg* . Then we write
ov
agz k| gk‘
Similarly it is possible to deduce that
Ovg
Ugl; = T FJ Vs

and for second order tensors

0S . _
o = S]k|i g;,®9;, = Sikl: g’ ® g~
where
. Jk )
S]k|l- = %ng‘ r gmk 4 an S,
oS
Sjkli = ﬁ = I Smk = Ll Sjn -

We can clearly introduce physical components of covarianivdtive with recpect to
the normed basi$ (Al.3) through

Kan v5l;
vj); = 1/ S = . (no sum)
V9 \/ Y5j ii
Sjkli = SJk' = /93 9k = ~ Sk (no sum)
o \V Yi & \/9jj 9kk YGii

It should be obvious after reading the section about gratielow. According tol(A.B)
we have

N N Vo N
v U, Vg = —, Uy = Uz,
T
and using previous results one gets
ov, ) 00,
UT|7~ = o Ur|r o
| ov, g o 100, g
Urlg = -— Uplg = — -—
90 00
ov, . 00,
UT|Z = 8 ’ UT'Z = 82’ )
Vgl, = = — — Vg|, = =
"oor "oor’
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8119 R 161)9 f)r
vg|9=—&9 + T, U9|0—T89 —
Ovg N 0ty
U@|Z_ 8z’ ng_ 827

ov, . 00,

UZ|7" 6T ) UZ r = a?" 9
v ov, o, = 1862
00907 000”7

8vz ~ a@z

UZ|Z = 62 9 UZ|Z = _62 .

Gradient

In the Cartesian coordinate system we define an operatoa nabl

while in the curvilinear coordinate system we have

V=8€ig.

Throughout the following we use the notatigrfor a scalar fieldp for a vector field
andS for a second order tensor field. Gradient of these partiguantities is given by

0o . 1 0¢ .
gradgp = Vop=—g'= - g,

¢ Vi O
gradv—Vv—8£ Z:Uj|igj®gi:@j|igj®gi7

68 j k i & ~ ~ ~
gradS = VS_8§ =Sk g’ ®g"®g' =S 9,09, ® ;.

First two relations may be rewritten in a matrix form with genience. We shall omit
the hat above particular components, however we must kemjmieh that they are still
related to the basis (A.3). In this sense the gradient inyhedrical coordinate system
reads

[ 8_¢ ] [ Ov, 1 ovy _ Ovy ]
ar or T ( 90 ”9) 02
- | 19¢ —| Qva 1 (38v Ovg
grado =| <55 |, gradv=| 52 ( 5+ vr) e (A.7)
99 vz 1 0v: vz
L 0z L Or r 00 0z
Divergence

Differential operator divergence can be applied eithertedor field, so that

divw = 1 9(rv,) +1% Ov;

r Oor r 00 " 0z’ (A.8)

63



or to a tensor field and then

- 980 . 1 (9S.0 B 9S,. T
Ses + L (95" + Ser = Son) + B

: _ 0Sg, 1 0Spe 0Sg.
divS=| &=+ 1 (Do 4G+ G, )+ B0z

8qu~ l 8Sz6 8Szz
| 8r+r(89 +SZT)+ 0z

Laplace

Laplace operator of a scalar field reads

0% 106 1 0% 0%
A¢_8r2+r87“ T2892+82’2.

In the case of a vector field we have

Av = Av9+lavr—v—§

(A.9)

(A.10)

(A.11)

This short appendix should be understood to provide a baiggfactory overview

of the topic. Some profound information can be found for epknmn

(1984),

Brdicka et al.|(2000), but also in many other books dedité&tethe tensorial calculus.
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Appendix B
Transformation rules

Here we shall provide some detailed information concertivegreformulation of the
problem as it was done in Sectibn#.1. et [-1,1] x [-1,1] is the fixed computa-
tional domain andy;, U, U~! are given by[(4]1)[(4]12) respectively.

The objective is to rewrited (2.41) £(2]46) in termswofv:,p and £, which are
functions defined of2. Let us remind that for an arbitrary functianon €2, we have
defined its counterpadi in (4.3),

w(r, z,t) = w(r€(z,t), Zh(t), 1) =aet (7, 2,t) = 0 (r€(z,t) 1, zh(t) 71 1) .

Jacobian matrix of the inverse mappitig' reads

or or 1 _rog 1_ 7o
J(r,z,t)=[ar 8Z]=[£ ¢ 8Z]=[5 h5az]=J(r,z,t) (B.1)
9z 0z o 1L 0 1L
or 0z h h
Clearly, using the above notation one can write
gradmw(r, th) = j(fv gat)T gradf,iaj(f’ E,t), (BZ)
or equivalently
Ow 10w
e B.3
or or’ (8:3)
Ow 10w 7 0¢ 0w
—_— e B.4
0z hoz hEOzZOr (B4)
Second derivatives of can be obtained using the chain rule. We have
Pw 1 0Pw
e 7% B.5
or? &2 972’ (85)
vw (106 00 2w os Avw 1 (06) 0%) 0w
022 \heéodz)] 02 nh2€0z0r0z h%0z2  h2E2 0z 0z2 | oF’
(B.6)
Finally, for the time derivative we write
v 0o 000r 000: 00 :(rofoe 0o\dh_rTol0n oo
ot Ot Orot 0z ot Ot h\£ozor 0z)dt £otor '

Transformed equations (4.4)), (4.8) now can be simply obthirsing the above rules.
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