
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Vladimı́r Kudelas

Adapting Service Interfaces when
Business Processes Evolve

Department of Software Engineering

Supervisor of the master thesis: Mgr. Martin Nečaský, Ph.D.

Study programme: Informatics

Specialization: Software systems

Prague 2012

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In Prague on July 31, 2012 Vladimı́r Kudelas

Název práce: Adaptácia Rozhrańı Služieb pri Evolúcii Business Procesov

Autor: Vladimı́r Kudelas

Katedra: Katedra Softwarového Inženýrstv́ı

Vedoućı diplomové práce: Mgr. Martin Nečaský, Ph.D.

E-mail vedoućıho: necasky@ksi.mff.cuni.cz

Abstrakt: V prezentovanej práci študujeme odvodenie optimálnych komuni-
kačných XML schém pre daný konceptuálny model business procesu, doplnený o
konceptuálny model vymieňaných dát a vplyv zmeny už́ıvatel’ských požiadaviek na
odvodenú XML schému. Práca obsahuje prehl’ad dôležitých problémov spojených
s touto témou. Taktiež popisuje už existujúce pŕıstupy k týmto problémom. Práca
detailneǰsie rozoberá konkrétne odvodenie optimálnej XML schémy. Pŕıstup pred-
stavený v tejto práci ukazuje možnost’ modelovania vymieňaných dát spolu s kon-
ceptuálnym modelom business procesu. Práca d’alej popisuje, ako automaticky
odvodit’ konkrétnu XML schému z daného konceptuálneho modelu vymieňaných
dát. V neposlednom rade, práca obsahuje prototypovú implementáciu uvedeného
riešenia.

Kĺıčová slova: BPMN, dátový artefakt, konceptuálny model, PIM, business pra-
vidlo

Title: Adapting Service Interfaces when Business Processes Evolve

Author: Vladimı́r Kudelas

Department: Department of Software Engineering

Supervisor: Mgr. Martin Nečaský, Ph.D.

Supervisor’s e-mail address: necasky@ksi.mff.cuni.cz

Abstract: In the presented work, we study a derivation of an optimal commu-
nication XML schemas for a given conceptual model of a business process, com-
plemented with a conceptual model of exchanged data and influence of a change
in user requirements on derived XML schema. The work contains a review of
important problems related to the topic. It also describes existing approaches of
these problems. The work analyses a derivation of an optimal XML schema in
detail. The approach presented in this thesis shows an ability to model exchanged
data with a conceptual model of a business process. The thesis describes a solu-
tion, how to derive a concrete XML schema automaticly from a given conceptual
model of exchanged data. Finally, the work contains a prototype implementation
of the presented solution.

Keywords: BPMN, data artefact, conceptual model, PIM, business rule

Contents

1 Introduction 4
1.1 Motivation . 4
1.2 Aim of the Thesis . 5
1.3 Organization of the Thesis . 6

2 Business Process Model and Notation 7
2.1 Business Process Model and Notation 7

2.1.1 Flow Objects . 8
2.1.2 Connection Objects . 9
2.1.3 Swimlanes . 9
2.1.4 Artifacts and Data . 9

2.2 Unified Markup Language . 9
2.2.1 Class Diagram . 10
2.2.2 PIM and PIM-View Class Diagrams 10

2.3 Object Constraint Language . 11

3 Model Driven Architecture 12
3.1 Model Driven Architecture . 12

3.1.1 Computation Independent Model 12
3.1.2 Platform Independent Model 12
3.1.3 Platform Specific Model 13
3.1.4 Model Transformation . 13

4 Related Works 14
4.1 UML and XML Schema . 14

4.1.1 Three Level Design Approach 14
4.1.2 Conceptual to Logical Level Mapping 15
4.1.3 Discussion . 16

4.2 XSEM - A Conceptual Model for XML 16
4.2.1 XSEM-H . 17
4.2.2 Discussion . 17

4.3 An Extension of Business Process Model for XML Schema Modeling 18
4.3.1 Metrics . 18
4.3.2 Discussion . 18

4.4 Related Commercial Software Solutions 19
4.4.1 Altova UModel . 19
4.4.2 Enterprise Architect . 19

4.5 Comparison of the Related Works 20

1

5 Architecture 21
5.1 Architecture . 21

5.1.1 Architecture Example . 22
5.2 PIM-View Model . 24

5.2.1 Elements . 24

6 Models of the System 26
6.1 PIM Model . 26
6.2 PIM-View Model . 28
6.3 PSM Model . 30
6.4 Interpretation . 33
6.5 Bussiness Rules (OCL) . 34
6.6 PIM Process Model . 36

7 Derivation of the Optimal Communication XML Schema 38
7.1 Limitations . 38
7.2 Derivation of the First PSM Schemas 39

7.2.1 Nesting of Classes . 40
7.2.2 Transformation of Association Classes 44
7.2.3 Algorithms . 45

7.3 Derivation of Other PSM Schemas 59
7.3.1 Conditions . 60
7.3.2 Algorithms . 62

7.4 Metrics . 65
7.4.1 Redundancy Metric . 66
7.4.2 Context Metric . 68
7.4.3 Path Metric . 69
7.4.4 Final Metric Formula . 71

7.5 The Optimal XML Schema . 72

8 Evolution of a Data Artefact 73
8.1 Analyse of User’s Changes . 73
8.2 Changes of Business Rules . 74

8.2.1 Statistic Information . 74
8.2.2 Example . 75

9 Implementation and Experiments 76
9.1 DaemonX . 76
9.2 Implementation . 76

9.2.1 Extensions . 77
9.3 Experiments . 79

10 Conclusion 83
10.1 Main Contribution . 84
10.2 Open Problem . 84

10.2.1 Changes in Business Process Model 84
10.3 Future Work . 84

10.3.1 Richer Derivation Process 84
10.3.2 Optimalization of Derivation Process 84

2

A CD Contents 85

Bibliography 86

List of figures 88

3

Chapter 1

Introduction

1.1 Motivation

Nowadays, there are very popular different notations of business process mod-
elling, e.g. BPMN [13], for a software analysis. The modelling of business pro-
cesses at the conceptual level allows domain experts to cooperate in the analysis
and to design the software. There is a common language for domain experts,
software architects and analysts.

Business processes are modelled like units of business processes and com-
munications between them. Units are usually modelled as simple tasks or sub-
processes. They are composed of other units and communications. Communica-
tions are usually modeled as sequence flows. One sequence flow represents one
communication (data object) from one task to another. This data object repre-
sents data transferred between two tasks. Business process modelling notations
are usually extended with some conceptual data modelling language, e.g. Unified
Markup Language (UML) [20]. It is used to support the modelling of these data
objects. It is also common that different business rules are connected to tasks
and sequence flows. Mostly, there are conditions and restrictions on exchanged
data. More exactly they are conditions and restrictions on data objects.

A whole business process model can be later translated to web services and
to executable BPEL [14] scripts, which orchestrates all parts together. Besides
this automatization, it is necessary to define structure of each data object in the
business model. Web services usually communicate by exchanging XML doc-
uments [15]. Therefore, a software architect has to define an XML schema of
XML documents by some XML schema language, e.g. XML Schema [16]. There
are common requirements on structure of the XML schema used in web services.
Structure should be readable and complex from the view of business rules. It
should not contain redundant data.

Since most of current applications are dynamic, sooner or later business pro-
cesses and created web services need to be changed. Related issues like XML
schemas of data objects also have to be changed. We speak about the evolution
and adaptability of applications.

The adaptation of business processes covers many related issues:

• The evolution of a software
Business processes evolve very often. It is necessary to adapt the whole

4

software to this evolution very quickly. We can understand the evolution
as a change of conceptual data models of some data objects or a change of
constraints of data objects.

• Integration with other softwares
As a company is getting bigger or the scope of the business is adapting to
new requirements, it is necessary to integrate different software tools and
functionalities. It is very common that a new task or a sub-process has to
be integrated into an existing business process model. It includes adding or
removing sequence flows, tasks and business rules.

All of these changes can cause several problems:

• Change of a conceptual data model of a data object
It can cause a malfunction of the whole system. It is necessary to change
an XML schema of the data object.

• Change of business rules of a data object
It can cause an inadequate behaviour and response of the system. A pre-
vious XML schema of the data object was designed for previous business
rules.

• Adding or removing sequence flows and tasks
It can cause a malfunction of the whole system. It is necessary to change
an XML schema of the data object reconnected to new or different tasks.
The XML schema was defined for a sequence flow, which leads to a different
task before change. Therefore, it can represent an XML schema of totally
different data.

All these presented possibilities lead to an incorrect or inadequate function-
ality of the system. Therefore, XML schemas of data objects have to be hand-
designed by a software architect. Assume that for one sequence flow Order , which
transfers data about user’s order, a data object was designed. This data object
uses a conceptual data model of the whole system. The business of a company was
extended and it is necessary to have more information about the user. Therefore,
the conceptual model of the system was extended with two more information
about the user, e.g. phone and email. This information has to be transferred
everywhere with the user’s information. That is why the sequence flow Order
and all others, which contain user’s information, have to be updated.
The first problem is to identify all XML schemas working with the user’s infor-
mation. The second problem is to define a change for each found XML schema
from the first phase.

1.2 Aim of the Thesis

The aim of this thesis is a research on possibilities and limitations of deriving and
adapting optimal communication XML schemas for a given conceptual schema of
a business process, complemented with a conceptual schema of exchanged data.
The thesis analyses related issues in general and discusses their key problems
and solutions. The core of the work is a proposal and implementation of own

5

approach dealing with selected disadvantages and open issues. The purpose of
the thesis is:

• to propose an algorithm to derive an optimal communication XML schema
for a given conceptual schema of a business process, complemented with a
conceptual schema of exchanged data

• to analyse an influence of user’s changes on the derived optimal communi-
cation XML schema

• to propose algorithms for updating of the derived XML schema with the
user’s cooperation according to user’s changes

1.3 Organization of the Thesis

The rest of this thesis is organized as follows. Chapter 2 briefly describes the
Business Process Model and Notation [13], selected parts of the Unified Markup
Language [20] and selected parts of the Object Constraint Language [22] related
to the aim of this thesis. Chapter 3 presents a short introduction to the Model
Driven Architecture.

In Chapter 4, there are discussed related works dealing with a generation of
an optimal XML schema and related topics to this thesis. Chapter 5 describes the
architecture of the work presented in this thesis. Chapter 6 describes theoretical
models used in this work.

Chapter 7 contains a main part of this thesis. It proposes an algorithm for
derivation of an optimal communication XML schema. In Chapter 8, there is
analysed an evolution of the data object. It contains proposed solutions. Chap-
ter 9 briefly presents an experimental implementation of the presented solution
and describes experiments with real-word examples. Finally, Chapter 10 con-
cludes and provides future research directions of this approach.

6

Chapter 2

Business Process Model and
Notation

This chapter describes the most popular business process modelling notation -
Business Process Model and Notation, [13]. Then, it describes selected parts of
the UML language and the Object Constraint Language (OCL) [22] related to
the aim of this thesis.

2.1 Business Process Model and Notation

The Business Process Model and Notation (BPMN) is a public standard main-
tained by Object Management Group (OMG). It describes a graphical notation
that business process analysts and users can use to model and to define business
processes. It is also used as a support for process interactions and a documenta-
tion of a system.

A business process diagram is a simple diagram consisted of five primary
elements:

• Flow Objects
They represent core elements of the diagram. The BPMN specification
defines three flow object groups: activities , events and gateways.

• Connection Objects
They are used to connect flow objects. The BPMN specification defines two
connection objects: sequence flow and message flow.

• Swimlanes
These are elements used to organize processes and responsibilities in the
diagram. The BPMN specification defines two swimlanes: lane and pool.

• Artifacts
These are mechanisms used to extend a basic BPMN. The BPMN ver-
sion 2.0 [13] defines three artifacts: Associations , Groups and Text Anno-
tations.

• Data
In the previous version 1.2, Data Object was also a part of artifacts. In
this version 2.0, it is defined as a part of Data primary elements. Except

7

Data Object , it also contains Data Input , Data Output , Data Store, etc.
For simplicity, we write about Data Object as about an artifact.

2.1.1 Flow Objects

Activities

An activity is any work that is done in a process. This work can be done by a
computer or by a human interaction. The specification defines three activities:
Task , Sub-Process and Call Activity. For the purpose of this thesis, it is important
only how these activities can be connected with connection objects.

All types of activities can be a source or a target of connection objects. If
there are more outgoing connection objects, then it means that a parallel path is
created for each connection object.

Events

Event is something that occurs during the running of a process. These events
affect a flow of a whole process. Events can be divided into three types: start
events , end events and intermediate events. Start events indicate the beginning of
the process and end events indicate the end of the process. Intermediate events
indicate something between the start and the end of this process. Beside this
categorization, some events can be categorized as separate elements or they can
be on the boundary of the activities.

Events can have different types, e.g. message, timer, conditional, etc. All of
them have some special functionality used in the designing of the whole process.
According to their type, they can catch the flow or they can throw the flow. To
catch the flow means, that it requires some input. It can stop the flow for some
time or until something is happened, e.g. arrival of a message. To throw the flow
means, that it produces some output. It can stop the flow for some time or until
something is happened, e.g. send a message or a signal.

Events placed on boundaries of activities can be only catch events. All of the
events only take a look at the flow of the process. They can change a direction
of the process. However, they do not change data, which are a part of the flow.

Start and end events are not important for the purpose of this thesis. A con-
nection of connection objects and intermediate events is important. Event must
be a target and a source of sequence flows. Events can have multiple incoming
and outgoing sequence flows. There is only one exception from this connection
rule. Event of type Link Intermediate Event must not be both a target and a
source of a sequence flow.

Message flow can be used only with the event of the typeMessage Intermediate
Event. The Message Intermediate Event may have incoming or outgoing message
flows, but not both.

To simplify the rest of this thesis, we do not work with Link Intermediate
Event and with events placed on boundaries of activities.

Gateways

Gateways are used to control the flow of an execution semantics of a given business
process. They are capable to consum and to generate and additional control

8

tokens. Single gateway can have multiple input and output connection objects.
Gateways do not represent a work done in a process.

The specification defines five types of gateways: Exclusive, Event-Based , In-
clusive, Parallel adn Complex. Event-Based gateway controls the flow of an
execution. This control is based on events that occur at that point of the pro-
cess. A parallel gateway is used to create parallel paths performed at the same
time. It can be used to synchronize these paths too. All other types of gateways
use some conditions to control and navigate the flow.

2.1.2 Connection Objects

A sequence flow is used to show the flow of an execution of a business process.
It has only one source and only one target. It can contain a condition. The flow
can use this sequence flow, only if it satisfies this condition.

A message flow is used to show the flow of messages between two flow objects.
It must connect separate pools. It can be connected to the pool’s boundary or to
flow objects in the pool.

To simplify the solution of this thesis, we do not work with message flows
connected to the boundary of the pool.

2.1.3 Swimlanes

A pool is a graphical representation of a Participant (Actor) in a process. It
is used to separate participant’s activities. A lane is a sub-partition within a
process, sometimes within a pool. It is used to organise activities.

2.1.4 Artifacts and Data

The Group is a graphical element, which separates some acitivities in a diagram
visually. It does not have any influence on the flow of an execution.

The Text Annotation is only a mechanism for designers to write additional
information or notes.

The Annotation is used to connect artifacts with other BPMN graphical ob-
jects.

This Data primary elements do not solve the topic of this thesis. It is more
complicated than it was in the previous version 1.2 of the specification. These
elements are designed to describe data structure. They are used in other eleme-
nents to describe data inputs and outputs. They are not general enough for the
purpose of this thesis. Therefore, we have created a new artifact Data Artefact
(see 9.2.1).

2.2 Unified Markup Language

The Unified Markup Language (UML) specification contains a lot of different
types of diagrams. A class diagram is the most important for the purpose of this
thesis. An explanation of the class diagram is out of the scope of this thesis. We
mention only basics. The full explanation can be found in [20].

9

We use this class diagram to create a conceptual model of data objects trans-
ferred between activities in a business process model.

2.2.1 Class Diagram

A class diagram describes static structure of the system. It divides the system
into classes with different connections and relationships. This type of a diagram
can be used on different levels of an abstraction. For our purpose, it is needed a
conceptual class diagram, that represents concepts of the problem domain.

A Class is a specification of one object structure and its behaviour. It contains
attributes. They represent object’s structure and operations, which show the
behaviour. The class can be in relations to other classes. We mention only
relation types, which are important for this thesis:

• Association
It represents a simple association between two classes. It has some prop-
erties, which you can find in a detail explanation in [20]. A general class
diagram supports n-ary associations. In this thesis, we work only with
binary relations.

• Aggregation
It is a special type of the association. It is more specific and it defines a
part-whole or part-of relationship.

• Composition
It is a stronger variant of the aggregation and also a special type of the
association. It has a strong lifecycle dependency between instances of a
container class and a contained class. If the container class is destroyed,
then all contained classes are destroyed too.

• Generalization
It is a special kind of relation, which relates a general and a specific class.
Each instance of the specific class is also an instance of the general class
and it contains all features (attributes, operations, relations) of its general
class.

An Association class is a special type of the class. It is connected to an
association (aggregation or composition). It defines an additional information of
the connected association. In a general class diagram, it has all features of a
normal class. But for simplicity of this thesis, we do not allow any relations with
association classes. In all other ways, it acts as a normal class.

2.2.2 PIM and PIM-View Class Diagrams

We use two types of diagrams that are founded on principles of the class diagram.
One of them, Platform Independent Model (PIM), uses almost all capabilities of
the class diagram. All functionalities are described in the documentation of a
project DaemonX [23].

The second one, Platform Independent Model View (PIM-View), is based on
PIM. It uses only a part of PIM capabilities:

10

• Class element

• Attributes of the class element

• Association element

• Generalization element

• Aggregation element

• Composition element

• Association class element

• Attributes of an association class element

The Class element and the Association class element are extended with one
property Count. It defines a maximal count of instances of the class, where
Count ∈ (N ∪ {∗}).

2.3 Object Constraint Language

The Object Constraint Language (OCL) is a formal language used to describe
expressions on UML models, especially on class diagrams. These expressions
usually define invariants and conditions over objects described in the model. They
do not have any side effects. It is a very strong tool to define invariants of the
system in a modelling phase or to create queries over the model, or to define
operations and actions. The whole explanation of OCL can be found in [22]. In
the next paragraphs, there are briefly explained only basics needed to show the
usage of OCL in this thesis.

We use OCL to create business rules. These rules are connected to data
objects or different parts of the business process model.

Usually, each OCL expression has a context. It can be defined directly in
expressions. If expression has a graphical representation, it can be also connected
to its context. The context is an instance of a class from the class diagram. This
context is a beginning of each path in the expression.

Expressions consist of paths and functions from a standard OCL library. Paths
are in the meaning of paths through the class diagram.

The OCL expression can work with operations. It can create pre-conditions
and post-conditions. This will not be needed, because our diagrams do not con-
tain operations. The next difference from the classic OCL is in a navigation.
OCL uses association end descriptions for the navigation. In our diagrams, we do
not have any association end descriptions. Therefore, we use class names as as-
sociation end descriptions. In these diagrams, it is not allowed to have duplicate
names of classes. Therefore, there are no possibilities to construct an expression
with an ambiguous path.

11

Chapter 3

Model Driven Architecture

In this chapter, we briefly explain model driven architecture. It is an approach to
a system development.

3.1 Model Driven Architecture

The Model driven architecture (MDA) [21], is a software design approach to a
system development. One of the main aims is to separate a design from an
architecture. It shifts a development process from a code-centric to model-centric
approach. MDA separates the business logic from platform specifics.

Instead of writing lines of a code, architects model systems according to busi-
ness processes. They generate a Platform Independent Model (PIM). Then, using
tools, they can generate a Platform Specific Model (PSM), that is targeted to a
specific platform, e.g. C++, .NET, etc.

MDA uses more levels of an abstraction. It uses three levels of models and
viewpoints. A viewpoint on a system is an abstraction. It uses a selected set of
architectural concepts and structuring rules, in order to focus on specific concerns
within that system. The abstraction is used as an action of suppressing specific
details to establish a simpler model.

Using models and some additional information, like mapping and marking,
it is possible to make a transformation from PIM to PSM. Nowadays, this ar-
chitecture is used in several places. You can see it in automatic generation of a
platform specific code from UML models.

3.1.1 Computation Independent Model

A computation independent model (CIM) focuses on the environment of a system
and on requirements. It is a model of business rules of the system. It has no
detail specification of computer implementation. It is transformed to PIM, but
not to PSM.

3.1.2 Platform Independent Model

A platform independent model (PIM) focuses on an operation of the system while
hiding details necessary for a particular platform. It is a maximal part of the
system specification that does not change from one platform to another.

12

Models at this level of an abstraction should be closer to the client’s point of
view. Clients and other domain experts should be able to recognize objects in
the model.

Nowadays, the most common general modelling language for PIM is UML.
But it is also possible to use another language, which is more specific for the
area, where the system will be used.

3.1.3 Platform Specific Model

A platform specific model (PSM) focuses on details of the use of a specific platform
by the system. It takes PIM and add all platform specific details.

3.1.4 Model Transformation

A model transformation is the most important part of this architecture. With an
additional information, like mappings from PIM to PSM for specific platforms, it
is possible to generate PSM models or concrete PSM instances of PSM models.
This is the main advantage of MDA. It makes models portable and reusable.

13

Chapter 4

Related Works

In this chapter, papers related to a generation of an XML schema from other
model and commercial tools, are discussed.

The chapter contains three parts. The first one is focused on the generation of
the XML schema from another model. The second one is focused on commercial
tools for UML and BPMN modelling. The last part of this chapter gives a
summarizing comparison of all discussed works and briefly introduces the main
issue of this work.

4.1 UML and XML Schema

Paper [1] describes an approach for mapping between the UML class diagram
and the XML Schema using a three level design approach. The main aims of the
paper are:

• To define the three level design approach.

• To introduce a logical level of the design.

• To propose a general algorithm for a transformation from a conceptual level
to a logical level.

4.1.1 Three Level Design Approach

The paper introduces the three level design approach. It is depicted in Figure 4.1.

Figure 4.1: Three level design approach

14

The conceptual level is a UML class diagram with some non-standard annota-
tions, such as a primary identification of a class. The logical level uses a defined
UML profile for an XML Schema. It uses mainly stereotypes of classes to define
XML Schema concepts in the UML profile. A detail description of this UML
profile can be found in section 3 of paper [1]. The physical level defines data
structures by using the implementation language - in this case the XML Schema.
It is a concrete XML Schema generated from the logical level model. There is a
direct bidirectional mapping from the logical to the physical level and vice versa.

4.1.2 Conceptual to Logical Level Mapping

An XML schema is hierarchical structure from the nature. The generating of a
logical level model from a conceptual one requires to choose one or more con-
ceptual classes to begin the tree-hierarchy. An approach in this paper aims to
minimize redundancy and to maximize a connectivity of XML data structures.
The approach used in this paper is directly based on [2]. There are differences in
the algorithm because of differences between an Object Role Modeling (ORM) [3]
and UML. One of the main differences is that the concept of Anchors used in [2]
to identify the direction of the nesting, was not used in this paper. Instead of
this, they use the navigation and cardinalities on a relation.

The mapping consists of four steps:

• Generate Type Definitions
It creates type definitions for each attribute and class in the conceptual
diagram. It means, the creation of complex types and primitive types with
restrictions.

• Determine Class Groupings
It determines, how to group and to nest conceptual classes based on rela-
tions between them. It uses simple rules based on the navigation of relations
and their cardinalities. These rules try to reduce redundancy of the created
XML schema and to maximize the connectivity.

Example of the rule:
If exactly one association end has a cardinality of ⟨1, 1⟩, then we nest the
class at the another relation end towards it. Both nesting possibilities are
depicted in Figure 4.2.

If we do not use the rule above, we create a redundancy mapping. It is de-
picted in the part b) in Figure 4.2. Because Employee can be a head lecturer
of more Subjects than one. Therefore, the information about Employee will
be repeated for all Subjects, where it is a head lecturer.

• Build the Complex Type Nestings
After identifying of nesting directions from the previous step, it is necessary
to perform the complex type nesting. This is done in this step. It creates
hierarchical structure.

• Create a Root Element
At the end, it is necessary to define the root element of the created XML
schema.

15

Figure 4.2: Rule example

4.1.3 Discussion

The paper presents an interesting approach to the automatic generation of the
XML schema from the UML model. It uses the three level design, which is
similar to MDA. From the user’s point of view, this method is useful in reducing
redundancy and in maximizing the connectivity in the created XML schema.

Beside advantages of this paper, it has some limitations also mentioned in
the paper. It needs some additional constructs in UML. OCL cannot express all
constraints, which can be expressed in XML schema regular expressions. In the
solution presented in this paper, it is also not possible to define a mixed content
in the XML schema.

As a big advantage of the paper can be found an introducing the generation
method, which minimizes redundancy and maximizes connectivity of the created
XML schema.

4.2 XSEM - A Conceptual Model for XML

Paper [4] describes an approach for a conceptual modelling of XML data. It
presents a two layer design. The first layer, XSEM-ER represents an overall
conceptual layer. It uses an extension of the Entity-relationship (ER) model [6].
The second layer, XSEM-H represents hierarchical organization of structures from
the first layer. It introduces the transformation from XSEM-ER to XSEM-H by
Operators. It is possible to create more than one XSEM-H model from one XSEM-
ER model. It is also possible to use only a part of XSEM-ER in the transformed
XSEM-H model.

During the transformation of XSEM-ER to XSEM-H, an interconnection be-
tween two models is created. Thanks to this, it is possible to support evolution
operations, which were described in [5]. The evolution is based on a propagation
of changes from the XSEM-ER model to the connected XSEM-H model. Changes
on XSEM-ER are made by atomic operations, which have their counterparts on
XSEM-H.

A visualization of the XSEM-H model is the most important part of this
paper for the purpose of this thesis. This model and the visualization with a

16

small extension are used for the modelling of XML schema results. Therefore,
this part of the paper is described bellow.

4.2.1 XSEM-H

It is an extension of the UML class diagram. It takes part of class diagram
components. It adds some new components and a profile named XSEM. There is a
bidirectional mapping between XSEM-H and the XML schema. This functionality
of the mapping was implemented in the XCase tool [12].

The visualization of XSEM-H was implemented in [23] as a modelling plugin.
This software was used for an implementation part of this thesis.

Components of XSEM-H:

• Class
It represents a class from the XSEM-ER model. Each class has a name, a
label and it contains attributes. It can be connected with other classes by
associations.

• Attribute
It represents an attribute from the XSEM-ER model. It can exists only as
a part of the class. It can represent zero or one attribute from the XSEM-
ER model. Each attribute has a name, a data type, a cardinality and a
position.

• Association
It represents a connection between two XSEM-H classes in the relation
parent-child. It can represent a whole set of XSEM-ER associations.

• Content Choice
It represents choice element of the XML schema.

• Content Sequence
It represents sequence element of the XML schema.

• Content Set
It represents all element of the XML schema.

4.2.2 Discussion

The paper presents a detailed approach for conceptual modelling. Authors con-
tinue with this issue. They present the approach for the evolution between two
conceptual layers.

There is introduced a complex conceptual model for XML data. In related
paper [5], the evolution in this conceptual model is described .

The paper is presented as a transformation from an extended ER model. It
can be also used as a transformation from the restricted UML class diagram, as
it was presented in [12] and [23].

17

4.3 An Extension of Business Process Model for

XML Schema Modeling

Paper [7] describes an approach for deriving optimal communication XML formats
for a given conceptual schema of a business process with a conceptual schema of
exchanged data. Authors use the approach of MDA. They introduce PIM and
PSM models for a conceptual model of exchanged data. They extend it with
OCL constraints over the PIM model.

4.3.1 Metrics

An optimal XML format is defined by two metrics computed on the PSM model.
The paper shows a detail description of two metrics and the explanation of their
using. To choose the optimal PSM model, it is necessary to create all possible
PSM models from the given PIM model. This approach has an exponential
complexity in all cases.

This paper is important, because of presented metrics:

• Redundancy Metric
It defines functions, which compute a positive number for each class of the
PSM model. The value of the metric is a sum of computed class values.

• Business Rules Metric
For each OCL expression defined over a PIM model, it creates paths of
classes from the PIM model. For each path, it finds a subpath in a PSM
model. Classes from the PSM model are connected to classes from the PIM
model. This connection was created during the derivation of all possible
PSM models from the PIM model. For each path, there is computed a
positive number based on subpaths in the PSM model. The value of the
metric is a sum of computed path values.

For each PSM model, there are computed these two metrics. According to
user’s preferences, which metric is more important, the final value for one PSM
model is computed. The optimal PSM model has the lowest value.

4.3.2 Discussion

The paper presents the novel approach to the generation of the conceptual model
of exchanged data in the business process modelling. It defines two metrics used to
choose the optimal XML schema for exchanged data. These metrics try to choose
a conceptual model with minimal redundancy and a maximal connectivity.

It uses a restricted UML class diagram as a PIM model. Because of that,
it is not usable in larger systems. In larger system, there are required more
complicated concepts of the UML class diagram to create a conceptual model of
exchanged data.

18

4.4 Related Commercial Software Solutions

There is a lot of commercial tools for UML and BPMN modelling. We choose
two of them and we discuss their functionalities in a connection to the topic of
this thesis.

4.4.1 Altova UModel

The commercial tool Altova UModel [11] supports all fourteen UML 2.3 diagram
types. It supports also the XML Schema modelling by a special UML profile.
There are two options how to create the XML Schema model. The first one is to
create a diagram with a UML profile for XML Schema manually. The second one
is to use a model transformation, which is one of functionalities of this software.

It uses an approach of MDA to support model transformations. A definition
of the transformation requires the mapping between types of models. After defi-
nition, a new model transformation is created. But you cannot update the result
easily. The transformation is stored as a separate package.

UModel also supports BPMN. It is posible to create a business process model
and to define data objects. However, you cannot connect data objects with other
diagrams defining the conceptual model of data.

This tool supports different diagram types and levels of modelling. It is a use-
ful tool to create models of the system. Though, it does not support connections
between different models (diagrams).

4.4.2 Enterprise Architect

The commercial tool Enterprise Architect [10] supports all fourteen UML 2.4.1
diagram types. It also supports the modelling of an XML schema by a special
UML profile. Again, you can manually create the XML Schema model or you can
use a generation. In compare to the first tool, it is possible to generate the XML
Schema model directly from a UML class diagram and there is no transformation
stored. It stores only a new model. The new model does not have hierarchical
structure. It is a normal UML class diagram with a special UML profile. User
has to create the tree design of the model manually.

It is also possible to generate an XSD file from the XML Schema model directly
and vice versa. The generation process of the XSD file (from the XML Schema
model) and the XML Schema (from the UML class diagram) does not care about
redundancy or the connectivity. It creates a valid XSD file, but it is up to the
user to define or to repair the XML Schema model.

The tool also supports BPMN and BPEL. It is possible to create a business
process model and define a data object. But you cannot connect data objects
with other diagrams directly. There is a possibility to connect this data object
with one type from other models.

This tool supports a lot of diagram types and levels of modelling. It is useful
tool to create models and a specification for large systems.

19

4.5 Comparison of the Related Works

All presented works study problems related to a conceptual modelling of an XML
schema. Each of them focuses on the problem from a different point of view.

Paper [1] describes an approach to the conceptual modelling and to the gen-
eration of a logical level by using UML and the UML profile. It uses a set of rules
to define nesting and hierarchical structure.

Paper [4] describes an approach to the conceptual modelling and to the gen-
eration of the PSM model. It defines an extended ER model for conceptual
modelling. It uses own PSM model XSEM-H. It introduces a transformation,
which allows more PSM models for one PIM model. Authors continue with the
work and introduce methods for a propagation of evolution operations.

Paper [7] describes an approach to the conceptual modelling and to the gen-
eration of the PSM model by defining own PIM and PSM model. It uses metrics
to choose an optimal PSM model from the set of all possible PSM models.

Commercial tools [11] and [10] support general functionalities of UML diagram
types and BPMN. These tools are useful for modelling. They are determined for
a general purpose. They are not focused on redundancy or the connectivity of
the generated XML schema and they are not focused on the evolution in business
process models.

In this thesis, we focus on the problem of the derivation an optimal XML
schema for business process models and on the influence of changes in the business
process model on generated XML schemas. We focus especially on following
problems:

• to identify metrics for choosing the optimal XML schema for the business
process.

• to propose an algorithm for creating PSM models from the given PIM mod-
el.

• to analyse changes in the business process model and their influence on the
generated XML schema.

• to propose algorithms to update the derived XML format, with user’s co-
operation, according to changes made in the business process model.

20

Chapter 5

Architecture

In this chapter, we introduce the architecture of the work presented in this thesis
and extensions made in the software DaemonX [23]. The work uses an approach
of a Model Driven Architecture. Especially, it uses an idea of a Platform Indepen-
dent Model and a Platform Specific Model. The software tool DaemonX is used
for the purpose of this thesis. Therefore, it also uses the architecture presented
in this software.

5.1 Architecture

The purpose of this thesis is to propose a method to derive an optimal com-
munication XML format for a given conceptual schema of a business process,
complemented with a conceptual schema of exchanged data. Therefore, it is nec-
essary to use BPMN model and some conceptual model for exchanged data. The
idea behind this thesis is, that there are conceptual models of the whole problem
domain of the system. Exchanged data are always associated only with a small
part of this problem domain. We introduce two conceptual models for exchanged
data. The first one models the whole problem domain and the second one serves
as a view on a part of the first model. This approach of the one conceptual model
for the problem domain and other related models was also mentioned in [8].

We use PIM as the first model for the whole domain. It was implemented in
DaemonX. It is a restricted UML Class Diagram. We use a new model PIM-View ,
as the second model, for the view on the part of the PIM. This new conceptual
model is more explained in section 5.2.

The resulting optimal XML schema (format) is stored as a conceptual model,
which was briefly described in subsection 4.2.1. This model was also implemented
in DaemonX and its name is PSM XML. For the purpose of this thesis, it was
necessary to extend this model (see 9.2.1).

For the BPMN model, we choose a model, which was implemented in Dae-
monX. Its name is a PIM process model. We extended this model with one new
artifact named Data Artefact (see 9.2.1).

As it was mentioned in section 2.3, we use OCL to express business rules

21

over a conceptual model of exchanged data. We use the master thesis [9], which
implements Universal Constraint Language (UCL) and OCL in the DaemonX
tool. We created a simple UCL model for the PIM-View model based on the
implementation of OCL over the UML class diagram in [9].

Figure 5.1 depicts the architecture with connections between models. The
figure shows the Schema and Physical level, which are not implemented in this
thesis. It is depicted to show the idea behind the introduced solution.

Figure 5.1: Application architecture

It is possible to generate a concrete XML Schema or Schematron [17] from the
created conceptual model of the XML schema. According to these XML schemas
we can have XML documents.

5.1.1 Architecture Example

In this subsection, we present a complex example of all used models and connec-
tions between them. It is depicted in Figure 5.2.

The PIM diagram contains the conceptual model of the whole problem do-
main. The PIM-View diagram is based on the PIM diagram. Connections be-
tween elements of diagrams are created by evolution references (see [23]). These
connections are depicted by blue lines. Both of diagrams have to be created by a
domain expert (user).

OCL constraints have to be created over the PIM-View diagram. They have
to be connected to elements from the PIM process (BPMN) diagram. This is
done by choosing correct values in drop-down lists. Connections between OCL
constraints, the source PIM-View diagram and PIM process (BPMN) elements
are depicted by yellow lines.

22

Figure 5.2: Architecture example

The PIM process (BPMN) diagram has to be created by the domain expert
too. The Data Artefact has to be connected to the created PIM-View diagram.
This connection is depicted in figure by a green line.

23

One of purposes of this thesis is to propose an algorithm to derive an optimal
XML schema for exchanged data in the business process model. Therefore, a
Platform Specific Model represented by a PSM XML diagram is created by the
proposed algorithm. Connections between elements of the PIM-View diagram
and the PSM XML diagram are created by evolution references. They are de-
picted by red lines. After the creation of the PSM XML diagram, the connection
between Data Artefact and the created diagram is made. This connection is
depicted in figure by a green line.

5.2 PIM-View Model

A PIM-View model is a Platform Independent Model that shows only a part of
PIM models. The main sense of this model is described in the section above. It
is a restricted UML Class Diagram. One diagram of the PIM-View model can
reference elements from different diagrams of the PIM model.

There is one feature, which is applied to one diagram of the PIM-View model.
The diagram cannot contain two classes with the same name. This restriction is
added to simplify the creation of OCL expressions.

5.2.1 Elements

Class

It represents a class from a PIM model. The name of the class is taken from the
referenced class in the PIM model. It can be connected with relations and it can
contain attributes.

Association class

It represents an association class from a PIM model. The name of the class is
taken from the referenced class in the PIM model. It can be connected only with
one association (aggregation or composition). This connection is visualized as
a dashed line. It can contain attributes. This association class is restricted in
compare to the general UML Class Diagram. It is restricted in the similar way
as in the PIM model. The association class in the general class diagram can be
connected with other relations. It means, that it can be in a relation with other
classes. This restriction is made to simplify the problem studied in this thesis.

Attribute

It represents one property of the class. There are two types of attributes in this
model:

• Reference attributes
They represent a PIM attribute from the PIM class referenced by the PIM-
View class. This PIM-View class contains reference attributes. The name
and the type of the attribute is taken from the referenced attribute in the
PIM model.

24

• Normal attributes
They are normal attributes like in the PIM model. Sometimes, there is a
computed or an aggregated value in exchanged data. Therefore, there are
these normal attributes.

Both of attributes have one additional feature. They can be marked as optional.
Attributes in the PIM model do not have a cardinality, so it is not possible to
define their occurence.

Relations

A PIM-View model supports four kind of relations like a PIM model. It is asso-
ciation, aggregation, composition and generalization. All of them only reference
equivalent relations in the PIM model. In the time of the creation, they take
cardinalities from referenced relations. There is also a possibility to create own
cardinalities. Ends of the new relation and the direction have to be the same as
in the referenced relation from the PIM model.

25

Chapter 6

Models of the System

In this chapter, we describe theoretical models used in this thesis. These models
are used in next chapters to present the solution of this work. Most of the
definitions also have an example to explain the definition properly.

6.1 PIM Model

Definition 6.1. (PIM schema). A platform independent model schema is a
15-tuple S = (C, CA, A, R, RG, RA, TR, name, class, ends, aends, type, rtype,
orient, rcard).

• C, CA, A and R denote the set of classes, association classes, attributes and
relations in S, respectively.

• RG denote the set of generalizations. It is a special type of a relation.

• RA denote the set of association-class relations.

• TR denote the set of relation types {association, aggregation,
composition}.

• Function name : C ∪ CA ∪A → L assigns a name to each class, association
class or attribute. L denote the set of all names.

• Function class : A → C ∪ CA assigns a class or an association class to each
attribute.

• Function ends : R ∪RG → C × C assigns a pair of classes to each relation
or generalization. Then, for a given relation R ∈ R, where ends(R) = (C1,
C2), we say that C1 and C2 participate in R. The ordering of both classes in
ends(R) is not important, i.e. ends(R) = (C1, C2) ⇔ ends(R) = (C2, C1).
Similarly for the generalization.

• Function aends : RA → CA ×R assigns a pair of an association class and
a relation to each association-class relation. Then, for a given association-
class-relation RA ∈ RA, where aends(RA) = (CA1 , R1), we say that CA1 and
R1 participate in RA. The ordering of an association class and a relation in
aends(RA) is not important, i.e. aends(RA) = (CA1 , R1) ⇔ aends(RA) =
(R1, CA1).

26

• Function type : A → γ assigns a data type to each attribute. γ denote the
set of all types.

• Function rtype : R→ TR assigns a relation type TR to each relation.

• Function orient : R → {∅} ∪ C;RG → C, where C ∈ rng(ends). It defines
an orientation of a relation or generalization. This function returns the
class, which the relation or generalization is oriented to. This class has to
be one of ends of the relation or generalization. The generalization is always
oriented to some class. The relation does not have to be oriented to any
class, in this case the function returns ∅. Then, for a given relation R ∈ R,
where ends(R) = (C1, C2) and orient(R) = C1, we say that R is oriented to
the class C1. Similarly for the generalization. The relation or generalization
can be oriented only to one class from rng(ends), i.e. orient(R) = C1 ∧
orient(R) = C2 is not possible. For each relation or generalization orient
returns only one class from rng(ends) or for the relation it can return ∅.

• Function rcard : C×R → ⟨N0×(N∪{∗})⟩ assigns a cardinality to each pair
of a class and relation, s.t. the class participates the relation. A cardinality
is a pair ⟨min,max⟩, s.t. min ≥ 0 ∧max > 0 ∧min < max or max = ∗.

We also use auxiliary functions:

• Function assocrel : CA →RA returns an association-class relation connected
to a defined association class by the function aends.

• Function aendsrel : RA → R returns a relation connected to adefined
association-class relation by the function aends.

• Function firstrel : R → C returns the first class from a pair returned by
the function ends for a defined relation.

• Function secondrel : R → C returns the second class from a pair returned
by the function ends for a defined relation.

Example

The definition of the PIM schema represents one diagram of the PIM model
mentioned in section 5.1. As it was mentioned, it is a restricted UML class
diagram. Figure 6.1 depicts a visualization of a PIM model diagram. Because
not all PIM schema elements have a name, the diagram is extended with auxiliary
names used only for this explanation. These names are depicted by a red colour.

• The set of classes C = {Address, Person, Professor, Student, Faculty}

• The set of association classes CA = {DurationOfAddress}

• The set of attributes A = {city, street, psc, name, phone, salary, average-
Mark, from, to}

• The set of relations R = {Rel1, Rel2}

• The set of generalizations RG = {Gen1, Gen2}

27

AssocRel1

Rel1

Gen1 Gen2

Rel2

Figure 6.1: Platform independent model schema visualization example

• The set of association-class relations RA = {AssocRel1}

• Some examples of the function class: class(from) = DurationOfAddress,
class(phone) = Person

• Some examples of the function ends: ends(Rel1) = (Address, Person),
ends(Gen1) = (Person, Professor)

• An example of the function aends:
aends(AssocRel1) = (DurationOfAddress, Rel1)

• An example of the function type: type(from) = date

• An example of the function rtype: rtype(Rel1) = association

• Some examples of the function orient: orient(Rel1) = ∅,
orient(Gen1) = Person

• An example of the function rcard: rcard(Address, Rel1) = ⟨0, ∗⟩

6.2 PIM-View Model

Definition 6.2. (PIM-View schema). A platform independent model view sche-
ma on a PIM S = (C, CA, A, R, RG, RA, TR, name, class, ends, aends, type,
rtype, orient, rcard) is a 16-tuple Sv = (Cv, CAv, Av, Rv, RGv, RAv, TR, namev,
classv, endsv, aendsv, typev, rtypev, orientv, rcardv, count) such that Cv ⊆ C,
CAv ⊆ CA,Rv ⊆ R,RGv ⊆ RG,RAv ⊆ RA. Functions endsv, aendsv, rtypev,
orientv, rcardv are restrictions of their counter parts in S to Sv. The function
rcardv may change cardinalities assigned by the function rcard.

• Set Av: a part of the set is a subset of A and a part contains new attributes.

28

• Function namev: for classes and association classes from C and CA, it is a
restriction of the function counter part in S to Sv. For attributes from A, it
is a restriction of the function counter part in S to Sv. For new attributes,
it assigns a new name.

• Function classv: for attributes from A, it is a restriction of the function
counter part in S to Sv. For new attributes, it assigns a class or association
class to each new attribute.

• Function typev: for attributes from A, it is a restriction of the function
counter part in S to Sv. For new attributes, it assigns a data type to each
new attribute.

• Function count : Cv ∪ CAv → (N ∪ {∗}) assigns a number to each class
or association class in the PIM-View schema. This number is a maximal
number of instances of Cv ∈ Cv or CAv ∈ CAv in the PIM-View schema. It
is assigned by a domain expert.

In this thesis, we also use an extended PIM-View schema Sve , which contains
one new function nestve : Rv → Cv. It defines a nesting class for the relation.

AssocRel1

Rel1

Gen1 Gen2

Rel2

Figure 6.2: Platform independent model view schema visualization example

Example

A platform independent model schema models a whole problem domain relat-
ed to a business processe(s). One data object of the business process model is
modelled by the platform independent model view schema. Figure 6.2 depicts a
visualization of the PIM-View schema as a UML class diagram. Because not all
PIM-View schema elements have a name, the diagram is extended with auxiliary
names used only for this explanation. These names are depicted by a red colour.

We describe only some parts of the diagram, which are different in compare
to an example of the PIM schema.

29

• The set of attributes Av = {city, street, from, to} ∪ {title}

• Some examples of the function classv: classv(from) = DurationOfAddress,
classv(title) = Professor

• An example of the function typev: typev(from) = date,
typev(title) = string

• An example of the function count: count(Address) = *,
count(Faculty) = 1

• An example of a changed value of the cardinality:
rcard(Person, Rel1) = ⟨0, ∗⟩

Definition 6.3. (PIM path). A PIM path P is a sequence (R1, . . . Rn) of rela-
tions or generalizations from R∪RG, where (∀i ∈ {1, n})(ends(Ri) = (Ci−1, Ci)).
C0 and Cn are called the start and the end of P . Functions start and end return
for P the start and end of P , respectively. P denotes the set of all PIM paths
in S. This definition can be applied to the PIM-View schema similarly with
restricted sets and functions.

A PIM path represents a path through classes of a concrete PIM schema. It
is used with business rules expressed as OCL constraints.

6.3 PSM Model

Definition 6.4. (PSM schema). A platform specific model schema is a 14-tuple
S ′ = (C ′, K′, A′, R′, R′

K, R′
S , C ′S , name′, type′, class′, ends′, rcard′, kends′,

class′key).

• C ′, K′, A′, R′ denote the set of classes, keys, attributes and relations in S ′,
respectively.

• R′
K denote the set of key-relations in S ′.

• R′
S denote the set of specializations in S ′. It is a special type of the relation.

• C ′S ∈ C ′ is a class called schema class of S ′.

• Function name′ : C ′ ∪ K′ ∪ A′ → L assigns a name to each class, key and
attribute. L denote the set of all names.

• Function type′ : A′ → γ assigns a data type to each attribute. γ denote the
set of all types.

• Function class′ : A′ → C ′ assigns a class to each attribute.

• Function ends′ : R′ ∪R′
S → C ′×C ′ assigns a pair of classes to each relation

or specialization. Then, for a given relation R′ ∈ R′, where ends(R′) = (C ′
1,

C ′
2), we call C ′

1 and C ′
2 a parent and a child of R′, respectively. Therefore,

the ordering in ends(R′) is important in contrast to PIM relations. We also
say that C ′

1 is a parent of C ′
2 and that C ′

2 is a child of C ′
1. Similarly for the

specialization.

30

• Function rcard′ : (C ′ ∪ K′) × (R′ ∪ R′
K) → ⟨N0 × (N ∪ {∗})⟩ assigns a

cardinality to each pair of a relation and class or to each pair of a key-
relation and class, or to each pair of a key-relation and key, s.t. the class
or key participates in the relation or key-relation.

• Function kends′ : R′
K → C ′ × K′ assigns a pair of a class and key to each

key-relation. The ordering in kends′(R′
K) is important. Similarly as for the

function ends′. For a given key-relation R′
k ∈ R′

K, where kends(R
′
k) = (C ′,

K ′), we call C ′ and K ′ a parent and a child of R′
K , respectively.

• Function class′key : K′ → C ′ assigns a class to each key.

The graph (C ′∪K′,R′∪R′
K ∪R′

S) has to be a directed tree rooted in the schema
class C ′S . We call each class C ′, which is a child of C ′S , a root class.

KRel1´

Rel1´

KRel2´

Spec1
Spec2

KRel3´ KRel4´

Figure 6.3: Platform specific model schema visualization example

Keys represent a key-ref construct from an XML Schema. In our model, it
is a leaf of a directed tree. We use key-relations to represent it. Each key is
referencing some PSM schema class defined by the function class′key. It does not
have any attributes, because it is only a reference to some PSM schema class.

In our derivation process bellow, we create keys from PIM-View schema class-
es. We create them only in specific cases, which are described in the next chapter.

Example

A platform specific model schema models one data object of a business process
model for a concrete platform. In this case, it is Extensible markup language
(XML). Figure 6.3 depicts the PSM schema in a graphical representation similar
to a UML class diagram. Because not all PSM schema elements have a name, the
diagram is extended with auxiliary names used only for this explanation. These
names are depicted by a red colour.

• The set of classes C ′ = {Address, Faculty, Person, Professor, Student,
DurationOfAddress}

• The set of keys K′ = {Key-DurationOfAddress, Key-DurationOfAddress,
Key-Person, Key-Address}

31

• The set of attributes A′ = {city, street, from, to, title}

• The set of relations R′ = {Rel1’}

• The set of key-relations R′
K = {KRel1’, KRel2’, KRel3’, KRel4’}

• The set of specializations R′
S = {Spec1, Spec2}

• The schema class C ′S is not depicted in the figure. It would be a parent class
of Address, Faculty and DurationOfAddress.

• An example of the function type′: type′(title) = string

• Some examples of the function class′: class′(title) = Professor,
class′(from) = DurationOfAddress

• Some examples of the function ends′: ends′(Rel1’) = (Faculty, Person),
ends′(Spec1) = (Person, Professor)

• Some examples of the function rcard′: rcard′(Rel1’, Faculty) = ⟨1, ∗⟩,
rcard′(KRel1’, Address) = ⟨0, ∗⟩

• An example of the function kends′:
kends′(KRel1’) = (Address, Key-DurationOfAddress)

• An example of the function class′key: class
′
key(Key-Person) = (Person)

Definition 6.5. (PSM schema Forest). A platform specific model schema forest
is a pair F ′ = (S ′, R′

R).

• S ′ denote the PSM schema.

• R′
R denote the list of root classes from S ′

A conversion between the PSM schema and the PSM schema Forest is straight-
forward. We need only the PSM schema to get the list of root classes and a given
PSM schema Forest contains the PSM schema.

Definition 6.6. (PSM root-path PPSM
r) A PSM root-path PPSM

r for PSM class
C ′ ∈ C ′ is a sequence (R′

1, ..., R
′
n) of relations, key-relations and specializations

from R′, R′
K and R′

S , where (∀i ∈ {1..n})(parent′(R′
i) = Ci−1 ∧ child′(R′

i) = Ci)
and C0 is a root class, and Cn = C ′.

A PSM root-path represents a path from a class to a root class by using
relations, key-relations and specializations.

Example

We use the PSM schema depicted in Figure 6.3 in this example.

PPSM
r (Key −DurationOfAddress) = {KRel’2, Rel’1}

32

6.4 Interpretation

Definition 6.7. (Interpretation Ipimv) An interpretation Ipimv of the PSM sche-
ma S ′ against the PIM-View schema Sv is a partial function. Ipimv maps:

• C ′ ∪ K′ → Cv ∪ {ca1 , ca2 , ..., cak} :

(∀i ∈ {1..k})cai ∈ CAv, k ≥ 1

∧
i ̸= j ⇒ cai ̸= caj

∧
(∃!R′ ∈ R′)((∀i ∈ {1..k})aendsrel(assocrel(cai)) = R′)

• A′ → Av

• R′ ∪R′
K →Rv

• R′
S →RGv

from S ′ to Sv. Only the relation R′ ∈ R′ such that parent(R′) ̸= C ′S , may have a
defined interpretation. Moreover, following conditions must be satisfied:

• (∀A′ ∈ A′)(classv(Ipimv(A
′)) = Ipimv(class

′(A′)))

• (∀R′
S ∈ R′

S)(endsv(Ipimv(R
′
S)) = {Ipimv(parent

′(R′
S)), Ipimv(child

′(R′
S))})

• (∀R′ ∈ R′ ∧ ∀R′ ∈ R′
K):

– if Ipimv(parent
′(R′)) ∈ Cv ∧ Ipimv(child

′(R′)) ∈ Cv then holds:
endsv(Ipimv(R

′)) = {Ipimv(parent
′(R′)), Ipimv(child

′(R′))}
– if Ipimv(parent

′(R′)) = {ca1 , ca2 , ..., cak} then

firstrel(endsv(Ipimv(R
′))) = Ipimv(child

′(R′))

∨
secondrel(endsv(Ipimv(R

′))) = Ipimv(child
′(R′))

– if Ipimv(child
′(R′)) = {ca1 , ca2 , ..., cak} then

firstrel(endsv(Ipimv(R
′))) = Ipimv(parent

′(R′))

∨
secondrel(endsv(Ipimv(R

′))) = Ipimv(parent
′(R′))

Interpretation Ipimv represents a mapping from a PSM schema to a PIM-View
schema. Conditions, which must be satisfied, represent rules of this mapping. The
first two conditions are simple. The last condition is more complex, because of
PIM-View schema association classes. The first part of the last condition says,
that if a parent and a child of the PSM schema relation are mapped on PIM-View
schema classes, then values of functions endsv and ends′ have to be mapped on
each other respectively. The next two parts of the last condition say, that if a
parent or a child is mapped on association classes, then the first or the second
value of functions endsv and ends′ has to be mapped on each other.

In this thesis, we also use an inverse interpretation I−1
pimv

, which is defined like
an inversion of a partial function Ipimv .

33

Example

Figure 6.3 depicts the PSM schema, which has an interpretation against the
PIM-View schema depicted in Figure 6.2. The interpretation Ipimv is following:

• classes, association classes and keys:
Ipimv(Address) = Address
Ipimv(Person-Key)=Person
Ipimv(DurationOfAddress) = DurationOfAddress
...

• attributes:
Ipimv(name) = name
Ipimv(salary) = salary
...

• relations and key-relations:
Ipimv(KRel1’) = Rel1
Ipimv(KRel4’) = Rel1
Ipimv(Rel1’) = Rel2
...

• specializations:
Ipimv(Spec1’) = Gen1
Ipimv(Spec2’) = Gen2

6.5 Bussiness Rules (OCL)

Definition 6.8. (Function genparents) The function genparents: Cv → {Cv} returns
for a given PIM-View schema class all parents of this class from generalizations
until root classes of generalization trees.

Example

We use an example depicted in Figure 6.2. Let LazyStudent be one more PIM-
View schema class connected by the generalization Gen3 to the class Student.
This new class LazyStudent is a child of this generalization Gen3. The function
genparents returns for the PIM-View schema class LazyStudent a set of PIM-View
schema classes: {Student, Person}.

Definition 6.9. (Simple business rule) A simple business rule is a sequence of
PIM-View classes (Cv1 , Cv2 , . . . , Cvn), where n > 1 ∧ (∀i ∈ {1, . . . , n})Cvi ∈ Cv,
s.t. (∀j ∈ {2, . . . , n}) holds (a) ∨ (b):

(a) (∃Rk ∈ Rv)endsv(Rk) = (Cvj−1
, Cvj)

(b) genparents(Cvj−1
) ̸= ∅ ∧ ∃Cg ∈ genparents(Cvj−1

), where
(∃Rk ∈ Rv)endsv(Rk) = (Cg, Cvj)

34

Definition 6.10. (Business rule) A business rule is a pair BR = (CO,RU),
where

• CO ∈ Cv is a context class. It is a beginning of each simple business rule
from RU

• RU denote the set of simple business rules. The first class in each simple
business rule is a context class of this business rule.

The second condition represents a semantics of generalizations from a UML
class diagram. Child classes of generalizations can be replaced by parent classes
in OCL expressions.

OCL expressions can contain different functions, e.g. sum. These functions
make a definition of OCL expressions complicated. Therefore, we use this simple
definition. In example bellow, we explain a conversion from an OCL epxression
to this definition of a business rule. It is a straightforward conversion. Therefore,
we use only an example to describe it.

Example

We use the PIM-View schema depicted in Figure 6.2 for this example. OCL
expressions:
Context Address

inv: self.city <> "Praha"

Context Person

inv: self->Address:collect(a|a.city = "Praha"):size() < 10

Context Faculty

inv: self->Person:collect(p | p->Address:collect(a |

a.city = "Praha"):size() > 10):size() > 0

The first OCL expression cannot be converted to our business rule. It does
not contain a sequence of PIM-View schema classes longer than one. It uses
attributes of the context class directly.

The second OCL expression can be converted to our business rule. It con-
tains two collection functions: collect and size. The condition in functions are
converted to our business rule as new simple business rules. This OCL expression
is converted as:

• CO = Person

• RU = {(Person, Address)}
It has only one simple business rule, because the sequence of PIM-View schema
classes in the condition has only one PIM-View schema class.

The third OCL expression can be also converted to our business rule.

• CO = Faculty

• RU = {(Faculty, Person), (Person, Address)}
It has two simple business rules, because the sequence in the condtion has two
PIM-View schema classes.

35

6.6 PIM Process Model

Definition 6.11. (BPM schema) A business process model schema is a 7-tuple
B = (T , O, F , name, endsb, model, rules) where

• T ,F ,O denote the set of tasks, flows (sequence and message flows), events
and gateways in B, respectively.

• Function name : T ∪O → L assigns a name to each task, event and gateway.
L denote the set of all names.

• Function endsb : F → (T ∪ O) × (T ∪ O) assigns ends to a flow. The
ordering of ends is important. It defines the beginning and end of the flow
respectively. Then, for the given flow F ∈ F , where endsb(F) = (T1, T2),
we call T1 and T2 the beginning and end respectively. We also use auxiliary
functions beginb(F) = T1 and endb(F) = T2.

• Function model assigns a PIM-View diagram to a flow in F . PIM-View
schemas assigned to all flows in F must be over the common PIM schema.
Only the flow F ∈ F , which has beginb(F) = T , where T ∈ T , can have an
assigned PIM-View schema.

• Function rules assigns a set of business rules to each task or event, or
gateway in T or O. The set may be empty.

This definition of a business process is more general than the specification of
BPMN. In this thesis, we do not update a model of the business process. This
definition is only used for an analysis of changes in the business process model.

F1 F2 F3

F4F5

F7 F6

Figure 6.4: Business process model schema visualization example

36

We allow to assign business rules to events and gateways, because they work
with exchanged data. They evaluate some conditions over this data. These
conditions can be expressed by OCL expressions.

Example

A business process model schema models one concrete business process. Fig-
ure 6.4 depicts a visualization of the BPM schema as a BPMN diagram. Because
not all BPM schema elements have a name, the diagram is extended with aux-
iliary names used only for this explanation. These names are depicted by a red
colour.

• The set of tasks T = {A, B, C}

• The set of events and gateways O = {S, G, F, E}

• The set of flows F = {F1, F2, F3, F4, F5, F6, F7}

• Some examples of the function endsb: endsb(F1) = {S, A},
endsb(F3) = {G, F}

• An example of the function model: model(F2) = Diagram2 (name of the
PIM-View schema)

• An example of the function rules:
rules(G) = {Context DurationOfAddress
inv: self.from = ”asd”}

37

Chapter 7

Derivation of the Optimal
Communication XML Schema

We use the approach of paper [7] to define features of an optimal communication
XML schema for a given conceptual schema of a business process, complemented
with a conceptual schema of exchanged data. Especially, we use metrics and we
add one new metric to find the optimal communication XML schema.

Paper [7] solves the problem of the XML schema’s generation from a given
conceptual model of exchanged data by generating all possible XML schemas.
It does not work with cardinalities of relations. It can lead to a lose of some
information for cardinalities with lower value equal to zero. This thesis proposes
another method for generating XML schemas. We use the idea presented in
paper [1]. We use a navigation and cardinalities of relations in the conceptual
model of exchanged data.

As first, we generate XML schemas, then we apply given metrics and choose
the optimal XML schema.

7.1 Limitations

The method proposed in this thesis does not solve all problems related to the
derivation of the optimal communication XML schema. There are some limita-
tions of the proposed solution:

• An acyclic conceptual model of exchanged data
The conceptual model of exchanged data can contain cyclic relations. This
is a difficult problem to solve in a derivation of hierarchical structure. For
simplicity, we work with the acyclic conceptual model.

It is up to a domain expert to define the conceptual model of exchanged
data, which does not contain cyclic relations between classes. This func-
tionality is supported by a creation of another Platform Independent Mod-
el called PIM-View model. Therefore, the domain expert does not have
to change the conceptual model of the problem domain. He or she has to
change the conceptual model of the view on the part of the problem domain.

• An association class without relations
In a general UML class diagram, an association class can contain relations

38

to another classes of the diagram. This functionality is not used very often
in conceptual models of applications. It brings a few problems in deriving
of hierarchical structure. We do not solve this concrete problem in the
presented solution.

The permission of these relations often makes cycles between classes. The
second problem ism how it should be derived to hierarchical structure. An
association class contains some additional information about the association
(aggregation or composition), which it is connected to. This information has
to be derived to hierarchical structure in a close connection to the connected
association (aggregation or composition). This can be a problem, if the
association class is connected with another relations to another classes.

• A derivation of attributes
Attributes in a general UML class diagram and in a used PIM model and
PIM-View model can have different data types. XML schemas, as [16], have
a strong support for data types. Therefore, it would be very beneficial, if
there was some mechanism, which supports deriving data types from the
conceptual model to the derived XML schema.

The work presented in this thesis does not support any special mechanism
for deriving data types of attributes and their constraints. But if the domain
expert uses only basic data types for attributes and more complex data
types are modelled by classes and relations, then the presented solution
derives the optimal XML schema with correct data types.

The derivation or transformation of constraints from the conceptual model
to the XML schema is mentioned in papers [1] and [9].

• An ordering of children in generated XML schema
A XML schema has hierarchical structure. An ordering of children is im-
portant in this hierachy. It can be used to store some information. Position
can be imporant in some XML documents.

As we derives an XML schema from the conceptual model, which does not
have hierarchical structure, it can have some position information stored
only in normal elements, e.g. a class or an attribute. Therefore, positions
of children are not important in our proposed algorithm and we do not work
with it.

• Multiple inheritance
UML supports multiple inheritance. The most common XML schema lan-
guage the XML Schema does not support multiple inheritance. Therefore,
we do not solve this problem in a derivation of an optimal XML schema.

The conceptual model of exchanged data cannot contain classes with more
than one supertype.

7.2 Derivation of the First PSM Schemas

The first step in the deriving of an optimal XML schema is to derive a few PSM
schemas by given rules.

39

7.2.1 Nesting of Classes

As it was mentioned above, we use the approach described in paper [1] to define
nesting classes in generated hierarchical structure of a PSM schema. In this sub-
section, we analyse a possible nesting according to relation types and relation
cardinalities.

Relation types are more important, because of their semantic information.
Therefore, we discuss relation types as first.

Relation Types

Relation types of a PIM-View model are equivalent in semantics to relation types
of a UML class diagram. According to this semantics, we discuss possibilities to
create general rules for nesting, which make a compact and less data redundant
PSM schema.

• association - is a general relationship between two classes.

Because of it, we cannot use this information to reduce data redundancy
by specifying the nesting of classes.

• aggregation - is a specialization of the association. It specifies a whole-part
relationship between two classes. In basic aggregation relationships, the
lifecycle of a part class is independent from the whole class’s lifecycle.

According to this semantics, we cannot use this type of the relation to
specify the nesting of classes. A part class can exist without a whole class.
We cannot create a general rule for nesting to reduce data redundancy.

• composition - is a stronger form of the aggregation, where the whole and
parts have coincident lifetimes.

We can use this type of a relation to specify the nesting of classes. Because
one class of this relation is always a part of the other class of the relation.
If we do not nest the part class into the whole class, we have to use keys to
refer to this part class.

Figure 7.1: Composition example

Figure 7.1 depicts an example of the composition. The class Department,
which is a part class, will be always a part of the class Company. It cannot
exist without the Company.

Because of this semantics, we always nest classes according to the direction
of the composition. In this concrete example, we nest the class Department
into the class Company, which is depicted in Figure 7.2.

40

Figure 7.2: Nesting of composition example

Relation Cardinalities

Cardinalities are one of the main indicators for the nesting of classes. They define
a number of objects, which participate in the relation.

A domain specialist can change cardinalities in a PIM-View schema. It does
not have to be the same, as in a PIM schema.

For this work only few types of cardinalities are importnat: ⟨0, 1⟩, ⟨0,m⟩,
⟨0, ∗⟩, ⟨1, 1⟩, ⟨1,m⟩, ⟨1, ∗⟩, ⟨m,n⟩, ⟨m, ∗⟩, where m,n ∈ N0 and m,n > 1 and
m,n ̸= ∗.

We divide cardinality pairs in a few groups. They are discussed bellow.

(a) Figure 7.3 depicts cardinality pairs. Each of them has the cardinality ⟨1, 1⟩
on one side of the relation.

Figure 7.3: Relations with ⟨1, 1⟩ cardinality on one side

In all seven cases, the class A participate in the relation with the cardinality
⟨1, 1⟩. It means, that the class A is related to exactly one class B. In the first
three cases, the lower value of the cardinality of the class B is zero. If we nest
the class B into the class A, it leads to data redundancy and to acreation of
a separate root class for the class B in the PSM schema.

Figure 7.4 depicts an example of this nesting. There are several problems with
this nesting. The first one is data redundancy created by repeating Employee
details with each Subject occurrence. This happens, because Employee can
be a head lecturer of more than one Subject. The next issue is, that not
all Employees are assigned as a head lecturer of some Subject. Therefore, a
separate root class has to be created for the class Employee.

41

In the next four cases, the nesting of the class B into the class A leads to
data redundancy. An example is similar as above.

According to our discussion, we nest the class A into the class B.

Figure 7.4: Example of nesting ⟨0, x⟩ cardinality into ⟨1, 1⟩ cardinality

(b) Figure 7.5 depicts cardinality pairs. Each of them has a cardinality ⟨0, x⟩,
where x ∈ {1,m, ∗}. On the other side of the relation, there are cardinalities
with a lower value ≥ 1.

Figure 7.5: Relations with one ⟨0, x⟩ cardinality

If we nest the class B into the class A, we get the same problem as in the
previous set of cardinality pairs. If we nest the class A into the class B, we
create data redundancy, but there is no need to create a separate global class.
We try to generate a compact and less data redundant PSM schema. One
PSM schema class is more compact than one class and one key of the PSM
schema. We do not try to generate a totally redundancy-free PSM schema.

Therefore, we nest the class A into the class B.

42

(c) Figure 7.6 depicts cardinality pairs. Each of them has one cardinality ⟨x, ∗⟩,
where x ≥ 1 and the second cardinality ⟨x, y⟩, where x ≥ 1 and y ̸= ∗.

Figure 7.6: Relations with lower values of cardinalities ≥ 1 and one upper value
= ∗

If we nest the class B into the class A, we get data redundancy. In the worst
case, it is the upper value of the cardinality of the class B. In all cases, it is
the biggest possible number ∗. If we nest the class A into the class B, the
size of data redundancy is the upper value of the cardinality of the class A,
what is m (m ̸= ∗).
According to this discussion we nest the class A into the class B.

(d) Figure 7.7 depicts cardinality pairs. Both of them have an upper value of the
cardinality > 1 and ̸= ∗ and a lower value of the cardinality ≥ 1.

Figure 7.7: Relations with lower values of cardinalities ≥ 1 and upper values ̸= ∗

In this case, we try to reduce data redundancy by nesting a class with smaller
upper cardinality into a class with bigger upper cardinality. If m < n, we
nest the class B into the class A. If m ≥ n, we nest the class A into the
class B.

(e) Figure 7.8 depicts cardinality pairs. Each of the cardinality has an upper
value = ∗.

Figure 7.8: Relations with both upper values of cardinalities = ∗

In this cases, we cannot reduce data redundancy by using a cardinality. Here,
we can use only an orientation, if it is defined. If the orientation is defined, the

43

function orientv returns one of the classes, which participate in the relation.
We nest the second class (not returned by the function orientv) returned
by the function endsv into the class returned by the function orientv, e.g.
ends(R) = (c1, c2) and orient(R) = c2, then we nest the class c1 into the
class c2.

If the orientation is not defined, we do not nest these classes. We mark the
relation as processed and we create two keys. One will be the child of the
class A and it will point on the class B by the function class′key, the other
one vice versa.

(f) Figure 7.9 depicts cardinality pairs. Each of the cardinality has a lower value
= 0.

Figure 7.9: Relations with a lower value of cardinality = 0 on both sides

In this cases, we cannot nest classes. If we nest classes in any direction, we
have to create a global class to be able to model whole data information from
the PIM-View schema. Therefore, we create two keys. One will be the child
of the class A and it will point on the class B by the function orientv, the
other one vice versa.

(g) Figure 7.10 depicts the relation, which has both cardinalities equal to ⟨1, 1⟩.

Figure 7.10: Relation with ⟨1, 1⟩ cardinality on both sides

In this case, we do not use cardinalities or directions to define nesting. If
all other relations have defined a nesting class, we process these relations by
Algorithm 7.4.

7.2.2 Transformation of Association Classes

In our PIM-View schema, we allow to have more association classes connected to
one relation. We allow this possibility to support user’s comfort in the modelling
of a conceptual model. But in a PSM schema, which represents exchanged data,
it is not important to have more association classes for one relation. Therefore,
we merge this association classes into one association class for one relation.

44

Figure 7.11: Example of an association class transformation

The next problem with association classes is, how we include them in hier-
archical structure of a PSM schema. We try to maximize connectivity in the
created PSM schema. Therefore, this association class has to be placed near
classes, which participate in the connected relation. According to this discussion,
we have two possibilities where to place the association class. Both are depicted
in Figure 7.11.

The last thing, which has to be done, is to modify cardinalities in created hier-
archical structure according to cardinalities in the PIM-View schema. Figure 7.11
depicts how cardinalities are modified.

7.2.3 Algorithms

In this subsection, we describe algorithms used in the process of a derivation of
the first PSM schemas from a given conceptual model of exchanged data. This
conceptual model is modelled by a PIM-View schema.

Check Circles

As it was mentioned in section 7.1, the proposed algorithm works only with the
acyclic PIM-View schema. Therefore, the first Algorithm 7.1 searches for a cycles.
If there is some cycle, it informs a user and it will not continue.

This algorithm uses a graph created from a PIM-View schema. Vertices are
created from classes and association classes, edges are created from relations,
generalizations and association-class relations.

45

Algorithm 7.1 CheckCircles

Input: PIM-View schema graph GSv

Output: true - found circle, false otherwise
1: create queue Qv of vertices
2: create list Le of edges
3: enqueue random not marked vertex v as visited from GSv into Qv

4: mark v as visited
5: while Qv is not empty do
6: t← Qv.dequeue
7: for all edges e which contains vertex t in GSv and are not in Le do
8: o← GSv .opposite(e, t)
9: Le.add(e)
10: if o is marked as visited then
11: return true
12: else
13: mark o as visited
14: Qv.enqueue(o)
15: end if
16: end for
17: end while
18: u← any not marked vertex as visited in GSv

19: if u is not empty then
20: result← CheckCircles(GSv)
21: end if
22: return false

Hide Generalizations

Algorithm 7.2 hide generalizations from the PIM-View schema. It creates one
vertex from vertices connected by generalizations. All relations connected to these
classes are reconnected to the new created vertex. Attributes are also moved to
the new created vertex. The whole process of hiding is depicted in Figure 7.12.

Algorithm 7.2 HideGeneralizations

Input: PIM-View model graph GSv

Output: PIM-View schema with hidden generalizations GSvHG
.

1: copy GSv to G
2: for all generalizations g in G do
3: create new class cg
4: add new class to G
5: (c1, c2) ← ends(g)
6: remove g from G
7: reconnect all relations and generalizations from c1 and c2 to cg
8: reconnect all attributes from c1 and c2 to cg
9: store information about this hiding of c1 and c2 into cg
10: remove c1 and c2 from G
11: end for
12: return G

46

This operation is necessary to simplify the creation of hierarchical structure.
When we hide generalizations, we can work with the PIM-View schema as with
a graph. Therefore, during the finding of nesting classes, we work with the PIM-
View schema, which has hidden generalizations.

An additional information about connections between hidden classes, and re-
lations has to be stored in this new vertex. We need it to recreate generalizations.

Some of the next algorithms work with this modified PIM-View schema.

Figure 7.12: Hiding of generalizations in a PIM-View schema

Nesting of Classes

These algorithms define nesting classes for most of the relations. They use con-
clusions from subsection 7.2.1 about relation types and cardinalities. We use the
extended PIM-View schema Sve with hidden generalizations.

First Algorithm 7.3 defines nesting classes according to the discussion about
relation types and cardinalities from a) to e).

Next two Algorithms 7.4 and 7.5 define nesting classes for the relation with
cardinalities of type g). This kind of the relation represents equivalence. If both
or none of the involved classes is a nesting class in some other relation, we look
on created subtrees of both involved classes. This step is done as the last one.
Therefore, all nesting classes are already defined or the relation is splitted to keys.
We can measure the depth of subtrees of both involved classes. According to this
depth, we can define the nesting class. If only one of involved classes is a nesting
class in some other relation, we can nest the other class.

Last Algorithm 7.6 uses all three algorithms together in the right order. At
the beginning, it calls Algorithm 7.3 to find nesting classes. After that, it goes

47

through all relations of type g) and it calls Algorithm 7.4. At this state, all
discussed cases of relations have the nesting class defined.

Algorithm 7.3 FindNestingClasses

Input: Extended PIM-View schema Sve with hidden generalizations
Output: Extended PIM-View schema Sve with hidden generalizations
1: for all relation r ∈ Rv,Rv ∈ Sve do
2: (cv1 , cv2)← endsv(r)
3: if rtypev(r) = composition then
4: if orientv(r) = cv1 then
5: nestve(r)← cv2
6: else
7: nestve(r)← cv1
8: end if
9: else if r has cardinalities pair of type a) from discussion then
10: if rcardv(cv1 , r) = ⟨1, 1⟩ then
11: nestve(r)← cv1
12: else
13: nestve(r)← cv2
14: end if
15: else if r has cardinalities pair of type b) from discussion then
16: if rcardv(cv1 , r) = ⟨0, x⟩, where x ∈ {1,m, ∗} and m > 1 ∧m ̸= ∗ then
17: nestve(r)← cv2
18: else
19: nestve(r)← cv1
20: end if
21: else if r has cardinalities pair of type c) from discussion then
22: if rcardv(cv1 , r) = ⟨x,m⟩, where m ̸= ∗ ∧m > 1 and x ≥ 1 then
23: nestve(r)← cv1
24: else
25: nestve(r)← cv2
26: end if
27: else if r has cardinalities pair of type d) from discussion then
28: ⟨x,m⟩ ← rcardv(cv1 , r)
29: ⟨y, n⟩ ← rcardv(cv2 , r)
30: if m < n then
31: nestve(r)← cv1
32: else
33: nestve(r)← cv2
34: end if
35: else if r has cardinalities pair of type e) from discussion then
36: if orientv(r) = cv1 then
37: nestve(r)← cv2
38: else if orientv(r) = cv2 then
39: nestve(r)← cv1
40: end if
41: end if
42: end for

48

Algorithm 7.4 GetNestingClassFor1..1Relation

Input: Relation r with both cardinalties ⟨1, 1⟩, extended PIM-View schema Sve
with hidden generalizations, list of processed relations PL

Output: Nesting class c
1: (c1, c2) ← endsv(r)
2: if (c1∧ c2 are nesting classes in some other relation) ∨ (c1∧ c2 are not nesting

classes in any other relation) then
3: PL.add(r)
4: d← GetDepthOfSubtreeInExtendedPIM − V iew(c1, PL)
5: e← GetDepthOfSubtreeInExtendedPIM − V iew(c2, PL)
6: PL.remove(r)
7: if d < e then
8: return c1
9: else
10: return c2
11: end if
12: else
13: if c1 is nesting class in some other relation then
14: return c2
15: else
16: return c1
17: end if
18: end if

Algorithm 7.5 GetDepthOfSubtreeInExtendedPIM-View

Input: Class c, Extended PIM-View schema Sve with hidden generalizations, list
of processed relations PL

Output: Depth of subtree rooted in class c
1: maxDepth← 0
2: for all relations r, where c ∈ endsv(r) do
3: if nestve = null ∧ rtypev(r) ̸= composition∧ r is of type e) ∧r /∈ PL then
4: PL.add(r)
5: nestve(r)← GetNestingClassFor1..1Relation(r, PL)
6: PL.remove(r)
7: end if
8: if nestve ̸= null ∧ nestve ̸= c then
9: (c1, c2)← endsv(r)
10: if c = c1 then
11: cn = c2
12: else
13: cn = c1
14: end if
15: m← GetDepthOfSubtreeInExtendedPIM − V iew(cn,Sve , PL)
16: maxDepth← max(maxDepth,m)
17: end if
18: end for
19: return maxDepth+ 1

49

Algorithm 7.6 SetNestingClasses

Input: PIM-View schema Sv with hidden generalizations
Output: Extended PIM-View schema Sve with hidden generalizations
1: Sve ← create Extended PIM-View schema from Sv

2: S1ve ← FindNestingClasses(Sve)
3: for all relation r ∈ Rv,Rv ∈ S1ve do
4: if nestve(r) = null ∧ r is of type e) ∧ rtypev ̸= composition then
5: create list of relations PL

6: nestve(r)← GetNestingClassFor1..1Relation(r, PL)
7: end if
8: end for
9: return S1ve

Derivation of a First Partial PSM Schema

These algorithms create a first partial PSM schema. They do not solve general-
izations and association classes.

The process of the derivation includes a few auxiliary functions. These func-
tions are not described in detail and they are divided into two groups. Functions
in the first group have three common parameters. They use a PIM-View sche-
ma, a PSM schema, an Ipimv interpretation and an I−1

pimv
inverse interpretation.

These parameters are used to store mapping (interpretation) from a PIM-View
schema to a PSM schema and vice versa. They are also used to store new created
elements of the PSM schema. Because they are common parameters, they are
not listed in the description.

• CreatePSMClass(c - PIM-View schema class)
At first, it tries to find an interpretation of c in I−1

pimv
. If the interpretation

exists, it returns the PSM schema class from this interpretation. If it does
not exist, the function creates a new PSM schema class from c and its
attributes. Mapping is stored into interpretations. The new PSM schema
class with all its features is stored into the PSM schema. All features, it
means all values of functions in the PSM schema.

• CreatePSMClass(Lac - list of PIM-View schema association classes)
It creates a new PSM schema class from Lac. As it was mentioned in 7.2.2,
association classes can be merged into one association class in the PSM
schema. Mappings are stored into interpretations. The new PSM schema
class with all its features is stored into the PSM schema.

• CreatePSMKey(c - PIM-View schema class, c′ - PSM schema class)
It creates a new PSM schema key from c and the value of the function
class′key is set to c′. Mapping is stored into interpretations. The new PSM
schema key with all its features is stored into the PSM schema.

• CreatePSMRelation(r - PIM-View schema relation, c′p - PSM schema
parent class, c′c - PSM schema child class, cardp - parent cardinality, cardc
- child cardinality)
It creates a new PSM schema relation with a defined parent c′p and child c′c.

50

It also sets values of the function rcard′ to cardp and cardc, respectively.
Mapping is stored into interpretations. The new PSM schema relation with
all its features is stored into the PSM schema.

• CreatePSMKeyRelation(r - PIM-View schema relation, c′p - PSM schema
parent class, k′c - PSM schema child key, cardp - parent cardinality, cardc -
child cardinality)
It creates a new PSM schema key-relation with a defined PSM schema class
c′p and PSM schema key k′c. It also sets values of the function rcard′ to
cardp and cardc, respectively. Mapping is stored into interpretations. The
new PSM schema key-relation with all its features is stored into the PSM
schema.

• ReplaceWithKeys(c′ PSM schema class)
It is used to replace the defined PSM schema class c′ by a key. It finds
all PSM schema relations, where c′ is a child. For each of these relations,
it creates a PSM schema key pointed on c′ and another key pointed on a
parent of this relation. Then, it adds two key-relations and the previous
relation is removed. One of the key-relation has the child key pointed on c′

and has the same parent as the relation. The second key-relation has the
child key pointed on the parent of the relation and its parent is c′.

A function in the second group is used to get some information from a PIM-
View schema. It is so simple, that we only give a short description of this function.

• IsNestingClass(c - Extended PIM-View schema class, PIM-View schema)
It is used to check, if a given class c is used in the function nestve .

Algorithm 7.7 CreatePSMSchema

Input: Extended PIM-View schema Sve with hidden generalizations
Output: PSM schema S ′, interpretation Ipimv , inverse interpretation I−1

pimv

1: create empty PSM model S ′

2: create empty interpretation Ipimv

3: create empty inverse interpretation I−1
pimv

4: create list of used PSM schema classes UC

5: create list of duplicate PSM schema classes DC

6: create list of visited PIM-View schema relations VR
7: GetRootClasses(Sve ,S ′, Ipimv , I

−1
pimv

)
8: create list of PSM schema classes LC

9: LC ← C ′
10: for all root classes cr ∈ LC do
11: CreateSubTree(cr, UC , DC , VR,Sve ,S ′, Ipimv , I

−1
pimv

)
12: end for
13: ProcessDuplicitUse(DC ,Sve ,S ′, Ipimv , I

−1
pimv

)

14: ProcessLastRelations(Sve ,S ′, Ipimv , I
−1
pimv

)

15: return S ′, Ipimv , I
−1
pimv

As first, we describe main Algorithm 7.7 and the process of this part. We find
classes, which can be root classes of the PSM schema. Then, we create trees for

51

these root classes according to found nesting classes. During the creation of trees,
we store information about the duplicate use of PSM schema classes. The PSM
schema class can be used in more trees. After that, we process these duplicate
classes by creating PSM schema keys. At the end, we process associations, which
do not have a nesting class in a similar way as duplicate classes, by creating PSM
schema keys.

Algorithm 7.8 is used to find PIM-View schema classes, which can be used as
root classes of the PSM schema. We apply algorithms for finding nesting classes
before this part. Therefore, we can take PIM-View schema classes, which are not
used as a nesting class in any relation.

Algorithm 7.8 GetRootClasses

Input: Extended PIM-View schema Sve with hidden generalizations, PSM sche-
ma S ′, interpretation Ipimv , inverse interpretation I−1

pimv

1: for all classes c ∈ Cv do
2: if IsNestingClass(c) = false then
3: CreatePSMClass(c,Sve ,S ′, Ipimv , I

−1
pimv

)
4: end if
5: end for

Algorithm 7.9 CreateSubTree

Input: PSM schema class c′, list of used PIM-View schema classes UC , list of
duplicit PIM-View schema classes DC , list of visited relations VR, Extended
PIM-View schema Sve with hidden generalizations, PSM schema S ′, inter-
pretation Ipimv , inverse interpretation I−1

pimv

1: if UC .contains(c
′) then

2: if Not DC .contains(c
′) then

3: DC .add(c
′)

4: end if
5: else
6: UC .add(c

′)
7: end if
8: cpv ← mapping for c′ from Ipimv

9: for all relations r where cpv ∈ endsv(r) do
10: if nestve(r) ̸= null ∧ nestve(r) ̸= cpv ∧ Not VR.contains(r) then
11: VR.add(r)
12: c′c ← CreatePSMClass(nestve(r),Sve ,S ′, Ipimv , I

−1
pimv

)

13: CreateSubTree(c′c, UC , DC , VR,Sve ,S ′, Ipimv , I
−1
pimv

)
14: ccpv ← mapping for c′c from Ipimv

15: cardp ← rcardv(cpv, r)
16: cardc ← rcardv(ccpv, r)
17: CreatePSMRelation(r, c′, c′c, cardp, cardc,Sve ,S ′, Ipimv , I

−1
pimv

)
18: end if
19: end for

Algorithm 7.9 is used to create a PSM schema according to defined nesting
classes. It is also storing information about the duplicate use of PSM schema

52

classes. It also maintains information about visited PIM-View schema relations,
to avoid of processing some relation twice.

Algorithm 7.10 processes PSM schema classes, which are used more than once
in Algorithm 7.9. It is a simple action, which replaces these classes with PSM
schema keys.

It works with an inverse interpretation. In general, this interpretation can
return more PSM schema classes for one PIM-View schema class. But at this
point of processing, it is not possible. The function CreatePSMClass tries
to find an existing interpretation of the given PIM-View schema class, at first.
Therefore, there cannot be two interpretations of any PIM-View schema class at
this point of processing.

Algorithm 7.10 ProcessDuplicitUse

Input: List of duplicate PIM-View schema classes DC , Extended PIM-View
schema Sve with hidden generalizations, PSM schema S ′, interpretation Ipimv ,
inverse interpretation I−1

pimv

1: for all classes c in DC do
2: c′ ← mapping for c from I−1

pimv

3: ReplaceWithKeys(c′,Sve ,S ′, Ipimv , I
−1
pimv

)
4: end for

Algorithm 7.11 ProcessLastRelations

Input: Extended PIM-View schema Sve with hidden generalizations, PSM sche-
ma S ′, interpretation Ipimv , inverse interpretation I−1

pimv

1: for all relations r ∈ Rv, where nestve(r) = null do
2: (c1, c2)← endsv(r)
3: if Not exists mapping for c1 in I−1

pimv
then

4: CreatePSMClass(c1)
5: end if
6: if Not exists mapping for c2 in I−1

pimv
then

7: CreatePSMClass(c2)
8: end if
9: c′1 ← mapping for c1 from I−1

pimv

10: c′2 ← mapping for c2 from I−1
pimv

11: ReplaceWithKeys(c′1,Sve ,S ′, Ipimv , I
−1
pimv

)

12: ReplaceWithKeys(c′2,Sve ,S ′, Ipimv , I
−1
pimv

)
13:

14: cardc1 ← rcardv(c1, r)
15: cardc2 ← rcardv(c2, r)
16:

17: k′1 ← CreatePSMKey(c1,Sve ,S ′, Ipimv , I
−1
pimv

)

18: CreatePSMKeyRelation(r, c′2, k
′
1, cardc2, cardc1,Sve ,S ′, Ipimv , I

−1
pimv

)

19: k′2 ← CreatePSMKey(c2,Sve ,S ′, Ipimv , I
−1
pimv

)

20: CreatePSMKeyRelation(r, c′1, k
′
2, cardc1, cardc2,Sve ,S ′, Ipimv , I

−1
pimv

)
21: end for

53

Algorithm 7.11 processes relations of the PIM-View schema, which do not
have nesting class defined. The discussion, mentioned in subsection 7.2.1, shows
cases, where PSM schema keys are necessary. This algorithm solves these con-
crete cases. It uses the function ReplaceWithKeys to repair already done work.
Then, it creates PSM schema keys, which are pointing on each other.

Unhide Generalizations

As it was mentioned in subsection 7.2.3, we hide generalizations to work with a
simplified PIM-View schema. In this part we unhide generalizations.

This algorithm contains a few actions, which have to be done. Because, it is
mostly a technical work with a PIM-View schema and PSM schema, we describe
in detail only two parts of the algorithm.

At the beginning, we have to find all PSM schema classes, which represent hid-
den generalizations. Each of these classes has to be processed by Algorithm 7.12.

The function CreatePSMClassesForHiddenPIMV iewClasses creates
a new PSM schema class for each hidden PIM-View schema class by the function
CreatePSMClass.

The function CreatePSMSpecsForHiddenGeneralizations creates a new
PSM schema specialization for each hidden PIM-View schema generalization.

The functionReconnectPSMRelationsAndFixPSMKeys reconnects the ex-
isting PSM schema relations from class c′ to new created classes. It also changes
PSM schema keys, which points on the class c′ to new classes. This process is
depicted in Figure 7.13.

The function RemoveBadPSMRelations is described in detail by Algorithm
7.13. In the first partial PSM schema, which was created by algorithms from the
previous part, can be the situation, where a child class of a new specialization
can also be a child class of some other relation. This situation is depicted in
Figure 7.13. Therefore, it is necessary to replace these relations with PSM schema
keys.

The function RemovePSMClass removes the PSM schema class and all its
features from the PSM schema. It also removes interpretations from Ipimv and
I−1
pimv

for the defined PSM schema class.
The function RemovePSMRelation removes the PSM schema relation and

all its features from the PSM schema. It also removes interpretations from Ipimv

and I−1
pimv

for the defined PSM schema relation.

Algorithm 7.12 UnhideGeneralizations

Input: PSM schema class c′, Extended PIM-View schema Sve with hidden gener-
alizations, PSM schema S ′, interpretation Ipimv , inverse interpretation I−1

pimv

1: ch ← mapping for c′ from Ipimv

2: CreatePSMClassesForHiddenPIMV iewClasses(ch,Sve ,S ′, Ipimv , I
−1
pimv

)

3: CreatePSMSpecsForHiddenGeneralizations(ch,Sve ,S ′, Ipimv , I
−1
pimv

)

4: ReconnectPSMRelationsAndFixPSMKeys(c′, ch,Sve ,S ′, Ipimv , I
−1
pimv

)

5: RemoveBadPSMRelations(ch,Sve ,S ′, Ipimv , I
−1
pimv

)

6: RemovePSMClass(c′,Sve ,S ′, Ipimv , I
−1
pimv

)

54

The function GetPSMClassesWithBadRelations finds PSM schema classes,
which are a child in some specialization and also in some PSM schema relation.

The function GetPSMRelationsWhereIsChild finds PSM schema relations,
which have a PSM schema class defined as a child.

Algorithm 7.13 RemoveBadPSMRelations

Input: PIM-View schema class ch, Extended PIM-View schema Sve with hidden
generalizations, PSM schema S ′, interpretation Ipimv , inverse interpretation
I−1
pimv

1: LR ← GetPSMClassesWithBadRelations(ch,Sve ,S ′, Ipimv , I
−1
pimv

)
2: for all PSM schema class c′ ∈ LR do
3: LCR ← GetPSMRelationsWhereIsChild(c′,S ′)
4: for all PSM schema relation r′ ∈ LCR do
5: c′p ← parent′(r′)
6: cp ← mapping for c′p from Ipimv

7: c′c ← child′(r′)
8: cc ← mapping for c′c from Ipimv

9: r ← mapping for r′ from Ipimv

10: RemovePSMRelation(r′,S ′, Ipimv , I
−1
pimv

)
11:

12: card1 ← rcardv(cc)
13: card2 ← rcardv(cp)
14: k′1 ← CreatePSMKey(cp, c

′
p,Sve ,S ′, Ipimv , I

−1
pimv

)

15: CreatePSMKeyRelation(r, c′c, k
′
1, card1, card2,Sve ,S ′, Ipimv , I

−1
pimv

)

16: k′2 ← CreatePSMKey(cc, c
′
c,Sve ,S ′, Ipimv , I

−1
pimv

)

17: CreatePSMKeyRelation(r, c′p, k
′
2, card2, card1,Sve ,S ′, Ipimv , I

−1
pimv

)
18: end for
19: end for

Processing of Association Classes

In subsection 7.2.2, we discuss possibilities of deriving association classes to hi-
erarchical structure of a PSM schema. In this part, we describe, how these
possibilities are incorporated into the whole derivation process.

There are two possibilities, how a PIM-View schema relation can be trans-
formed into a PSM schema in this derivation process. They are both depicted in
Figure 7.14. The first one is a transformation to a normal PSM schema relation,
the second one is a transformation to two key-relations and two keys.

If the PIM-View schema relation, connected to an association class, is tran-
formed to the normal PSM schema relation, we can apply both possibilities from
the discussion about association classes. If it is transformed to the key-relation,
we cannot apply the second possibility from the discussion. That is, beacuse
key-relations are processed by a different transformation, which is similar to this
second possibility.

55

Figure 7.13: Unhiding of generalizations in a PSM schema

56

Figure 7.14: Transformations of a PIM-View schema relation into a PSM schema

There is also one special case associated with this second possibility of the
transformation. If a parent class of the PSM schema relation is a child in some
specialization, we cannot transform this relation by the second possibility of the
transformation. The information about a specialization is more important than
the transformation of association classes. If we transformed the relation by the
second possibility, we would change the information about the generalization from
the PIM-View schema. This problem is depicted in Figure 7.16.

All association class transformations used in the derivation process are de-
picted in Figure 7.15.

Figure 7.15: Example of an association class transformation in a derivation pro-
cess

According to the discussion above, there are two possibilities of the association
class’s transformation in some cases. Therefore, an algorithm in this part takes
one PSM schema and according to association classes in a PIM-View schema, it
can create more instances of the PSM schema.

Algorithm 7.14 takes all PIM-View schema relations with connected associa-
tion class(es). For each of this relation, it takes already created PSM schemas and
calls Algorithm 7.15. This second algorithm applies discussed transformations.
If it is necessary, it creates a copy of the PSM schema, which is updated.

57

Figure 7.16: Problem with specializations during a transformation of association
classes

Algorithm 7.14 ProcessAssociationClasses

Input: Extended PIM-View schema Sve , PSM schema S ′, interpretation Ipimv ,
inverse interpretation I−1

pimv

Output: list of PSM schemas
1: create empty list of PSM schemas LS′

sch

2: LS′
sch

.add(S ′)
3: LR ← GetPIMV iewRelationsWithAssocClass(Sve)
4:

5: for all PIM-View schema relation r ∈ LR do
6: create list of PSM schemas LS′

p
(LS′

sch
)

7: LS′
sch

.clear()
8: for all PSM schema S1′ ∈ LS′

p
do

9: LS′1 ← ProcessOneAssociationClass(r, S1′,Sve , Ipimv , I
−1
pimv

)
10: LS′

sch
.addRange(LS′1)

11: end for
12: end for
13: return LS′

sch

58

Algorithm 7.15 ProcessOneAssociationClass

Input: PIM-View schema relation r, PSM schema S ′, Extended PIM-View sche-
ma Sve , interpretation Ipimv , inverse interpretation I−1

pimv

Output: list of PSM schemas
1: create empty list of PSM schemas LS′

sch

2: S ′1← ProcessAssociationClassA(r,S ′,Sve , Ipimv , I
−1
pimv

)
3: LS′

sch
.add(S ′1)

4: S ′2← ProcessAssociationClassB(r,S ′,Sve , Ipimv , I
−1
pimv

)
5: if S ′2 ̸= null then
6: LS′

sch
.add(S ′2)

7: end if
8: return LS′

sch

Main Algorithm

This main Algorithm 7.16 uses all previous parts and it calls them in the correct
order. At the beginning, it creates a copy and a graph from a given PIM-View
schema. It checks circles and if there are some, it informs user. If there are not
circles, it hides generalizations. After that, it sets nesting classes and it creates the
first partial PSM schema. Then, it calls the algorithm UnhideGeneralizationsAll.
This algorithm represents the whole process described in the part Unhide gener-
alizations. It uses Algorithm 7.12. At the end, it processes association classes.

Algorithm 7.16 DerivatePSMSchemas

Input: Extended PIM-View schema Sve
Output: list of PSM schemas, interpretation Ipimv , inverse interpretation I

−1
pimv

1: create S1ve - copy of Sve
2: create PIM-View schema graph GSv from S1ve
3: if CheckCircles(GSv) = true then
4: inform user
5: return null
6: end if
7:

8: GSvHG
← HideGeneralizations(GSv)

9: create S2ve - PIM-View schema with hidden generalizations from GSvHG

10: S3ve ← SetNestingClasses(S2ve)
11: {S ′, Ipimv , I

−1
pimv
} ← CreatePSMSchema(S3ve)

12: UnhideGeneralizationsAll(S3ve ,S ′, Ipimv , I
−1
pimv

)

13: LS′ ← ProcessAssociationClasses(S1ve ,S ′, Ipimv , I
−1
pimv

)

14: return LS′ , Ipimv , I
−1
pimv

7.3 Derivation of Other PSM Schemas

In the previous section, we propose an algorithm, which derives first PSM .
These schemas contain keys and key-relations, which can be replaced by normal
relations. This replacement leads to a more redundant PSM schema, but it is

59

more compact and for some metrics it can have better results. Figure 7.17 depicts
examples of reducing keys and key-relations.

Figure 7.17: Examples of reducing keys in a PSM schema

7.3.1 Conditions

To be able to replace these keys and key-relations, we have to find conditions,
under which it is possible. In the process of replacing, it is necessary to switch a
parent, a child and cardinalities of some relations. Only cardinalities of relations
and specializations can have a problem with this replacement.

• Specializations
We cannot switch a parent and a child of a specialization. This replacement
changes a stored information derived from PIM-View schema generaliza-
tions.

60

• Cardinalities
There is a problem only with cardinalities, which have the lower value equal
to zero. Replacement of these cardinalities do not solve the problem of keys
and key-relations. Because we do not want to lose any information, we need
to create new keys and key-relations to preserve this information.

We use the operation ReplaceKeyWithForest to replace a key and key-
relation by a referenced PSM schema class. This operation is depicted in Fig-
ure 7.18. We do not describe this operation in detail, because it is mainly a
technical work with the PSM schema. The main part of the operation is to re-
verse some relations in the tree, s.t. one concrete class is a new root class of the
tree.

Figure 7.18: Examples of ReplaceKeyWithForest operation

As it was mentioned above, this operation can be done only on keys, which
satisfy conditions bellow.

Condition 7.1. (Key-relation) Let R′
k be a key-relation, where kends

′(R′
k) = (c′,

k′) for a defined key k′. For R′
k has to be satisfied:

• R′
k is mapped to a relation R in the PIM-View schema. Let c1 be a PIM-

View schema class, which c′ was created from and let c2 be a PIM-View
schema class, which k′ was created from. Then, for R there has to be
satisfied (I) ∨ (II):

(I) both cardinalities of R has lower values greater than zero

(II) rcardv(c1, R) = ⟨0, x⟩ ∧ rcardv(c2, R) = ⟨z, x⟩, where x ∈ (N ∪ {∗}),
z ≥ 1

Condition 7.2. (Reverse PPSM
r) Let c′r be a class referenced by a defined key

k′ (class′key(k
′) = c′r). Then we have the PSM root-path PPSM

r = (R′
1, ..., R

′
n),

where C ′
n = c′r and C

′
0 is a root class. For each R′

i, where i ∈ {1..n} there has to
be satisfied (a) ∧ (b):

(a) R′
i is not a specialization

(b) R′
i is mapped to a PIM-View schema relation Rpv and both cardinalities of

Rpv have lower values greater than zero

61

Let CanBeKeyReplaced be a function returns the true, if both conditions 7.1
and 7.2 are satisfied for the specified key and the false otherwise.

First condition 7.1 checks cardinalities of the PIM-View schema relation,
which the key-relation was derived from. Second condition 7.2 checks relations,
key-relations and specializations in the whole PSM root-path. Both conditions
checks cardinalities, but with different strictness. The first condition checks the
key-relation, which is not going to be reversed. Therefore, it allows zero for the
lower value of the parent cardinality. The second condition checks relations, key-
relations and specializations, which are going to be reversed. Therefore, it does
not allow any zero for lower values of both cardinalities and it also does not allow
any specializations.

7.3.2 Algorithms

In this subsection, we describe algorithms used in the process of a derivation of
other PSM schemas. As it was shown above, there is a possibility to make more
compact PSM schemas.

In these algorithms, we work with trees (a PSM schema Forest) created from
a PSM schema. We need to identify these trees by some unique identifier. The
creation of these trees is simple. It is necessary to find root classes. We use the
function GetPSMForest to create the PSM schema Forest. A tree represents
the part of the PSM schema. We assume, that they are already identified by
some unique identifier.

As first, we describe main Algorithm 7.17. For each PSM schema, it creates
a forest of trees, an empty forest and a list of used trees. After that, it calls
Algorithm 7.18. It returns all created PSM schemas.

Algorithm 7.17 DeriveAllPSMSchemas

Input: Extended PIM-View schema Sve , list of PSM schemas L′, interpretation
Ipimv , inverse interpretation I−1

pimv

Output: list of PSM schemas
1: create empty list of PSM schemas LS′

sch

2: for all PSM schema S ′ ∈ L′ do
3: create empty PSM schema S ′

e

4: F ′
e ← GetPSMForest(S ′

e)
5: create empty list of tree identifiers LTi

6: F ′ ← GetPSMForest(S ′)
7: L← ProcessForest(F ′, F ′

e, LTi
,Sve , Ipimv , I

−1
pimv

)
8: LS′

sch
.addRange(L)

9: end for
10: return LS′

sch

Algorithm 7.18 is the most important part of this process. It uses a recursion
to derivate PSM schemas. As input parameters, it takes the totally first PSM
schema Forest F ′, the PSM schema Forest , which is now in progress F ′

n, the list
of used trees LTi

from F ′ and other known parameters. It finds all trees, which
have not been processed yet. For each of these trees, it creates a copy of F ′

n

62

and LTi
and it calls Algorithm 7.19 to process one tree. This processed tree is

stored into the copy of F ′
n and information about the processing is stored into

the copy of LTi
. If there is an unprocessed tree in this copy, it calls the recursion.

If all trees are processed in this copy, it adds copied forest into the result of this
algorithm.

The main idea is, that the order of processing of each PSM schema key is
very important. For example, we have three keys k′1, k

′
2 and k′3, each of them is

referencing to some tree. The order of processing k′1, k
′
2, k

′
3 can lead to a different

PSM schema than the order of processing k′2, k
′
3, k

′
1. This feature is also depicted

in Figure 7.17.
It uses one auxiliary function GetNotUsedTrees. It compares identifiers of

trees in two PSM schema Forests. It returns trees from the first PSM schema
Forest , which are not in the second PSM schema Forest.

It also uses PSM schema Forest ’s auxiliary function addTree. This function
adds a root class into the R′

R of F ′ and it adds each element of the tree into the
PSM schema S ′, the interpretation Ipimv and the inverse interpretation I−1

pimv
.

Algorithm 7.18 ProcessForest

Input: PSM schema Forest F ′, new PSM schema Forest F ′
n, list of used trees

LTi
, Extended PIM-View schema Sve , interpretation Ipimv , inverse interpreta-

tion I−1
pimv

Output: list of Forests
1: Lnu ← GetNotUsedTrees(F ′, LTi

)
2: create empty list of Forests Lrf

3: for all tree tnu ∈ Lnu do
4: create LCTi

copy of LTi

5: create F ′
cn copy of F ′

n

6:

7: t← ProcessTree(F ′, F ′
cn, tnu, LCTi

, null,Sve , Ipimv , I
−1
pimv

)

8: F ′
cn.addTree(t, Ipimv , I

−1
pimv

)
9: if Not LCTi

.contains(t) then
10: LCTi

.add(t)
11: end if
12:

13: Ll ← GetNotUsedTrees(F ′, LCTi
)

14: if Ll is empty then
15: Lrf .add(F

′
cn)

16: else
17: Lof ← ProcessForest(F ′, F ′

cn, LCTi
,Sve , Ipimv , I

−1
pimv

)
18: Lrf .addRange(Lof)
19: end if
20: end for
21: return Lrf

Algorithm 7.19 checks conditions discussed in subsection 7.3.1. It applies the
operation ReplaceKeyWithForest. It uses the recursion to process keys in the
tree.

63

It uses some auxiliary functions:

• GetKeys(F ′
n, tc, c

′)
It finds all PSM schema keys in the given tree tc except key k′, which
satisfies the condition class′key(k

′) = c′.

• IsInForest(F ′
n, c

′)
It checks, if the given PSM schema class c′ is in the given PSM schema
Forest.

• GetTree(F ′
n, c

′)
It finds and returns a tree in the PSM schema Forest F ′

n, which contains
the PSM schema class c′.

• Forest.remove(t)
It removes the given tree t from R′

R and all its elements from S ′.

Algorithm 7.19 ProcessTree

Input: PSM schema Forest F ′, new PSM schema Forest F ′
n, tree t, list of used

trees LTi
, PSM schema class c′, Extended PIM-View schema Sve , interpreta-

tion Ipimv , inverse interpretation I−1
pimv

Output: tree
1: create tc copy of t
2: Lk ← GetKeys(F ′

n, tc, c
′)

3: for all PSM schema key k′ ∈ Lk do
4: if CanBeKeyReplaced(k′, tc, F

′, F ′
n) = true then

5: if IsInForest(F ′
n, class

′
key(k

′)) = true then
6: tp ← GetTree(F ′

n, class
′
key(k

′))
7: F ′

n.remove(tp)
8: ReplaceKeyWithForest(tc, F

′
n, k

′, tp,Sve , Ipimv , I
−1
pimv

)
9: else
10: tp ← GetTree(F ′, class′key(k

′))
11: r′ ← key-relation, where child′(kends′(r′)) = k′

12: c′p ← parent′(r′)

13: tn ← ProcessTree(F ′, F ′
n, tp, LTi

, c′p,Sve , Ipimv , I
−1
pimv

)

14: ReplaceKeyWithForest(tc, F
′
n, k

′, tn,Sve , Ipimv , I
−1
pimv

)
15: if Not LTi

.contains(tn) then
16: LTi

.add(tn)
17: end if
18: end if
19: end if
20: end for
21: return tc

At the beginning, the algorithm creates a copy of the tree and finds all keys
in the copied tree. The whole algorithm updates only the copy of the tree. It
tries to replace all found keys. It uses the function CanBeKeyReplaced to check
conditions. After that, it is important, if the given tree is already added into the

64

processing of the PSM schema Forest. If it is added, we have to remove it from
the PSM schema Forest and to replace the given key with this tree. If it is not
added, we have to process this tree by the recursion and to replace the given key
with the processed tree.

7.4 Metrics

In the previous section, we describe algorithms, which create several PSM . We
use metrics to choose the optimal one for exchanged data. We use metrics, which
correspond to wanted features of an XML schema.

In this work, we work with two features of the XML schema. The first one
is data redundancy and the second one is a connectivity or compactness. Data
redundancy means an occurrence of the same data more than once. The com-
pactness means the storing of related data together in hierarchical structure of
the XML schema. We use business rules expressed by OCL for definition of pre-
conditions, post-conditions and invariants. Exchanged data (XML schemas) are
validated against these business rules. This validation is done by some XML
query language like XQuery [18] or XSLT [19]. Therefore, we try to put data,
which are used in business rules, closer to the top of hierarchical structure. This
action simplify an access to data and their validation.

A character ∗, which is used in the function count and in cardinalities, repre-
sents ∞ in metrics.

Example

We explain each metric on some example. We use the PIM-View schema depicted
in Figure 7.19 for these examples. For the given PIM-View schema, we use two
PSM schemas, which are depicted in Figure 7.20. In this figure, child cardinalities
are depicted by a red colour.

Figure 7.19: Example of a PIM-View schema for metrics

65

Figure 7.20: Examples of a PSM schemas for metrics

Two of these metrics work with business rules. Therefore, we need some OCL
expressions. Expressions for our example are written bellow.

Context Item

pre: self.price > 0.2

Context Purchase

inv: self.price = self->Item:collect(a|a.price * a.amount):sum()

7.4.1 Redundancy Metric

The redundancy metric checks measure of redundancy in a given PSM schema.
At first, it assigns a positive number to each PSM schema class and key. Then,
it counts a number, which reflects redundancy for one PSM schema. This metric
is based on paper [7].

Definition 7.1. (PSM Class Redundancy) A PSM Class Redundancy redpsm
is a total function, which assigns a positive integer (including ∞) to each PSM
schema class C ′ and key K ′ in S ′ except C ′S . For a given D′ ∈ C ′∪K′, it is defined
as follows:

• if D′ is a root class and Ipimv(D
′) = C, where C ∈ Cv, then redpsm(D′) =

count(Ipimv(D
′))

• if D′ is a root class and Ipimv(D
′) = {ca1 , ca2 , ..., cak}, where (∀i ∈ {1..k})

cai ∈ CAv, k ≥ 1, then redpsm(D
′) = Max(Ipimv(D

′)). The function Max
returns maximum from count values of given association classes

66

• if D′ is not a root class, then let’s have R′, that R′ ∈ R′ ∪ R′
K ∪ R′

S , s.t.
child′(R′) = D′

– if R′ ∈ R′ ∪ R′
K, then redpsm(D

′) = redpsm(parent
′(R′)) ∗ u, where u

is the upper value of rcard′(R′, parent′(R′))

– if R′ ∈ R′
S , then redpsm(D

′) = redpsm(parent
′(R′))

The PSM Class Redundancy reflects redundancy of one PSM schema class.
If it is a root class, there are x instances of the class in the XML schema, where x
is a value of the function count applied on the class. If it is not a root class, then
a number of instances depends on a PSM schema relation, where the class is a
child. The parent’s redpsm means, that there may be more instances of the parent
of this relation. The parent cardinality (participation in the relation) means, that
the instance of the child of this relation may be repeated for different instances
of the parent.

The number of child’s instances directly depends on the number of instances
of the parent and on the participation of the parent class in the relation (the
cardinality).

We work with specializations in this definition. The specialization is not
translated into an XML document directly. It just specifies semantics between
types of elements in an XML schema. Therefore, a value of the PSM Class
Redundancy of a child in a specialization is taken from a parent.

Definition 7.2. Let D′ ∈ C ′ ∪K′ and R′ ∈ R′ ∪R′
K ∪R′

S , s.t. child
′(R′) = D′ .

We say that a PSM schema class or key inflicts redundancy, if
redpsm(D

′) > 1 and rcard′(R′, D′) > 1 .

As it was mentioned, the PSM Class Redundancy reflects redundancy of one
PSM schema class. Therefore, if a value of the redpsm is greater than one, it means
that the class can represent redundant data in some XML document. This is not
enough, because the parent can be redundant, but its subtree does not have to
contain any redundant data. Therefore, we also check child’s participation in the
relation.

Definition 7.3. (Class Redundancy Metric) A Class Redundancy Metric ωck is
a total function assigning a positive number to each PSM schema class C ′ ∈ C ′
and key K ′ ∈ K′ as follows:

ωck(C
′) = { 0 if C ′ does not inflict redundancy

size(C ′) if C ′ inflicts redundancy

size(C ′) denote the number of PSM schema classes and keys in the subtree of C ′

including C ′. Similarly for the key K ′.

The Class Redundancy Metric tries to represent, how badly redundant can be
one PSM schema class. We count the size of the subtree to represent it.

Definition 7.4. (Redundancy PSM Metric) A Redundancy PSM Metric Ω is a
function, which assigns a positive number or zero to S ′ as follows:

Ω(S ′) =
∑

C′∈(K′∪(C′\{C′
S}))

ωck(C
′)

67

The Redundancy PSM Metric represents measure of data redundancy in the
given PSM schema. It counts the Class Redundancy Metric for each class sepa-
rately and sum values.

The Redundancy PSM Metric can be computed by the depth-first search
traversal of S ′. It is a straightforward approach. Therefore, we omit its explana-
tion.

Example

We use PSM schemas depicted in Figure 7.20 to compute redundancy metric.
These PSM schemas are derived from the PIM-View schema depicted in Fig-
ure 7.19.

We start with the PSM schema a). Only the class Purchase can inflict re-
dundancy. All other child classes participate in the relation with the upper value
of the cardinality equal to 1. The Class Redundancy Metric of its parent Item
is equal to ∞, because the upper value of the Product ’s cardinality is equal to
∞. The size of the subtree is two. Therefore, the value of the Redundancy PSM
Metric for the PSM schema a) is two.

In the PSM schema b), only classes Purchase and Product can inflict re-
dundancy. It is because of the same reason as above. The Class Redundancy
Metric of their parent Item is equal to ∞. Sizes of the subtrees are two and one.
Therefore, the value of the Redundancy PSM Metric for the PSM schema b) is
three.

7.4.2 Context Metric

The context metric checks a position of context classes from business rules. These
context classes are important, because they are the beginning of all expressions
used in business rules. Therefore, we try to put these classes close to the top of
hierarchical structure of an XML schema.

The function classcontext is an auxiliary function used to get a context class
from a business rule. It is a function: business rule → Cv. It gets context a
PIM-View schema class from a business rule.

Definition 7.5. (Function searchto) Let searchto be a function: F → {T ∪O},
where F ∈ F . It returns all Ti ∈ T and Oi ∈ O, which satisfied a condition, that
there exists a flow path (F, F1, . . . , Fn), where (∀j ∈ {0, . . . , n}) Fj ∈ F . For F
holds endsb(F) = (T,X), where T ∈ T . For X and n holds

• n = 0→ X ∈ T

• n = 1→ X ∈ O and endsb(F1) = (O, Ti), where O ∈ O and Ti ∈ T

• n > 1→ X ∈ O. For j < n− 1 holds endsb(Fj) = (O1, O2), where O1 ∈ O
and O2 ∈ O. For j = n holds endsb(Fn) = (O, Ti), where O ∈ O and Ti ∈ T

We allow to connect business rules to tasks, events and gateways. Therefore,
we need this function to find all elements from BPM schema, which can have

68

influence on the given PIM-View schema. The PIM-View schema can be con-
nected only to a flow F , where beginb(F) ∈ T . This function finds all flow paths
from this flow to any other task. Each event, gateway and task, which is a part
of these paths, can be connected to business rules with influence on the given
PIM-View schema. Until reaching of a next task, all elements of the path work
with same exchanged data.

Definition 7.6. (Context Metric) A Context Metric Φ is a total function, which
assigns a positive number to F (F ∈ F) as follows:

Φ(F) =
∑

E∈searchto(F)

(
∑

r∈rules(E)

depth(classcontext(r)))

depth denote the number of PSM schema relations in the PSM root path PPSM
r

for C ′.

The Context Metric finds all elements of the BPM schema, which can have
influence on the PIM-View schema connected to the given sequence flow F . It
takes all business rules for found elements and for each it gets a depth of a context
class. The Context Metric is a sum of these depths.

The Context Metric can be computed by the depth-first search traversal of
S ′. We search only for context classes and their depths. We know a sequence
flow used to compute the Context Metric. Therefore, the function searchto can
be computed by the breadth-first search traversal of B. It is a straightforward
approach. Therefore, we omit its explanation.

Example

We use PSM schemas depicted in Figure 7.20 and OCL expressions written above
in section 7.4. These expressions contain two context classes Item and Purchase.

In the PSM schema a), context classes are in depths two and one. Therefore,
the Context Metric of this schema is three.

In the PSM schema b), context classes are in depths zero and one. Therefore,
the Context Metric of this schema is one.

7.4.3 Path Metric

This metric checks paths in business rules. Business rules contain different paths
from a PIM-View schema. This metric tries to measure a placement of these
paths in a PSM schema. It is similar as in the context metric, we try to place
paths from business rules closer to root classes.

Definition 7.7. (PSM subpath) Let P = (R1, . . . , Rk) be a PIM path in S. A
PSM subpath of P in S ′ is each PSM path P ′ = (R′

1, . . . , R
′
n), where

• R′
i ∈ R′ ∪R′

K ∪R′
S

• 1 ≤ k ≤ n

• (1 ≤ i ≤ n− 1)(child′(R′
i) = parent′(R′

i+1) ∨ parent′(R′
i) = child′(R′

i+1))

69

• (∀i ∈ {1 . . . n})(Ipimv(R
′
i) ∈ {R1, . . . , Rk})

• start(P) = Ipimv(start
′(P ′)) ∧ end(P) = Ipimv(end

′(P ′))

• P ′ is maximal, i.e. adding any PSM relation to P ′ violates previous condi-
tions

Functions start′ and end′ are equivalents to functions start and end from the
definition of PIM path, respectively. We use psmsubpaths(P) to denote the set
of all PSM subpaths of P in S ′. Further, we use length(P) and length′(P ′) to
denote the number of PIM schema relations and generalization and PSM schema
relations, key-relations and specializations in P and P ′, respectively. We count
key-relations twice to reflect referencing by using keys. We also use depthpath(P

′)
to denote minimal depth of the first or the last PSM schema class of the given
path P ′.

A PSM subpath of a PIM path represents a path in a PSM schema, which is
semantically equivalent, when using an interpretation Ipimv between a PIM-View
schema and a PSM schema.

A PSM subpath can be longer than a PIM path, because of our derivation
method of an association classes and because of using key-relations in a PSM
schema.

The function paths is an auxiliary function used to get all PIM paths from
business rules rules(E), where E ∈ T ∪ O. These expressions can contain more
PIM paths for one expression, because they can contain functions working with
collections. This example is shown bellow.

Definition 7.8. (Single Path Metric) Let E be a task from T or event, or gateway
from O. A Single Path Metric is a total function ψpath, which assigns a positive
number to a PIM path P ∈ paths(rules(E)) as follows:

ψpath(P) =
∑

P ′∈psmsubpaths(P)

length′(P ′)

length(P)
∗ depthpath(P ′)

The Single Path Metric computes a positive number for one PIM path. This
number represents a position of a given PIM path in a PSM schema. Since, there
can be more PSM subpaths for one PIM path, we have to compute a value for
each PSM subpath. This value works with a length of a PSM path. If a PSM
path is longer than a PIM path, it computes worse number.

Definition 7.9. (Path Metric) A Path Metric Ψ is a total function, which assigns
a positive number to F (F ∈ F) as follows:

Ψ(F) =
∑

E∈searchto(F)

(
∑

P∈paths(rules(E))

ψpath(P))

The whole process starts with a sequence flow. A PIM-View schema is con-
nected to this sequence flow. From this connected PIM-View schema, we derive
a PSM schema. From the sequence flow, we can find business rules connected to
exchanged data. The Path Metric is computed like a sum of Single Path Metrics

70

for each PIM path contained in business rules.

We have a start and an end of each PIM path. We can use an interpretation
Ipimv to find the start and the end of this path in the given PSM schema S ′. We
can use modified breadth-first search (BFS) to find PSM subpaths. BFS has to
be modified, because of specializations and our derivation method of association
classes. It is a straightforward approach. Therefore, we omit its explanation.

Example

For this example, we need to find PIM paths in OCL expressions written above
in section 7.4. These expressions are defined over the PIM-View schema depicted
in Figure 7.19.

For the first expression, there is no PIM path. The expression uses attributes
of the context class. For the second expression, there is only one PIM path
(Purchase, Item). Other parts of expressions work directly in a place, where
they start. Lengths of a PIM path and a PSM path are the same, both equal to
one. Therefore, we only need to work with the depth of the beginning or the end
of the path.

For the PSM schema a), the end of the path, the class Item is in a lower
depth than the beginning. It is a number one.

For the PSM schema b), the end of the path, the class Item is in a lower
depth than the beginning. It is a number zero.

7.4.4 Final Metric Formula

We have three metric values from a given PSM schema. To use these values
correctly, we need three user-defined positive numbers. Each number is a weight
of one metric. Each communication between tasks can have different requirements
according to a nature of a business process. Therefore, we need a project analyst
to define the weight of each metric.

Definition 7.10. (Final metric) A Final metric consists of metric functions and
three user-defined positive numbers (a, b, c). It is a total function ∆, which
assigns a positive number to S ′ as follows:

∆(S ′, F, a, b, c) = a ∗ Ω(S ′) + b ∗ Φ(F) + c ∗Ψ(F)

The Flow F is a flow with an assigned PIM-View schema by the function model.
A PSM schema S ′ is created from this PIM-View schema.

For computation of the value of the Final metric, we need the sequence flow
F , which is connected to the PIM-View schema of exchanged data. We also
need the PSM schema derived from the given PIM-View schema and weights of
metrics.

Example

We use results of examples discussed for each metric. For this example, we use
these weights:

71

• a - redundancy metric weight = 0.33

• b - context metric weight = 0.34

• c - path metric weight = 0.33

For the PSM schema a), we get equation:

0.33 ∗ 2 + 0.34 ∗ 3 + 0.33 ∗ 1 = 2

For the PSM schema b), we get equation:

0.33 ∗ 3 + 0.34 ∗ 1 + 0.33 ∗ 0 = 1.35

Therefore, the PSM schema b) is more optimal for the given exchanged data
and business rules.

7.5 The Optimal XML Schema

We already described all necessary algorithms to derive an optimal XML sche-
ma for a given conceptual schema of a business process, complemented with a
conceptual schema of exchanged data. This last Algorithm 7.20 puts all things
together.

At the beginning, it derives all PSM schemas by given rules. Then, it only
computes a value of a Final metric for each PSM schema and it chooses the PSM
schema with the lowest value.

Algorithm 7.20 GetOptimalPSMSchema

Input: PIM-View schema Sv, (a, b, c) user-defined weights, F sequence flow
Output: PSM schema
1: create Extended PIM-View schema Sve from Sv
2: (L, Ipimv , I

−1
pimv

)← DerivatePSMSchemas(Sve)
3: if L = null then
4: return null
5: end if
6: Lpsm ← DeriveAllPSMSchemas(Sve , L, Ipimv , I

(− 1)pimv)
7:

8: resPSM ← null
9: bestMetric←∞
10: for all S ′ ∈ Lpsm do
11: u← ∆(S ′, F, a, b, c)
12: if u < bestMetric then
13: bestMetric← u
14: resPSM ← S ′

15: end if
16: end for
17: return resPSM

72

Chapter 8

Evolution of a Data Artefact

In the previous chapter, we describe algorithms for deriving optimal communica-
tion XML schema. In this chapter, we anaylse an influence of user’s changes on a
derived optimal communication XML schema. We use a data artefact to connect
a conceptual model of exchanged data with a business model and business rules.
Therefore, we focus on all user’s changes with influence on our data artefact and
on all parts used to derive the XML schema (PSM schema).

8.1 Analyse of User’s Changes

A described derivation process uses a few inputs. Exactly, it uses a conceptual
model of exchanged data and business rules connected to this conceptual model.
Therefore, only changes made on these two inputs can have some influence on a
derived PSM schema.

• A conceptual model of exchanged data
Any change made in a conceptual model of exchanged data has a direct
influence on a derived PSM schema. For example, a change of a name
of some class has to be propagated into the derived PSM schema. This
example is quite simple, but these changes can be more complex, e.g. adding
a new relation or class. This change can lead to changes of hierarchical
structure of the derived PSM schema.

During derivation, we create connections between a derived PSM schema
and a PIM-View schema. It is a propagation of changes from Platform
Independent Model to Platform Specific Model. And in the same way,
propagation of changes from PIM to a conceptual model of an XML schema.
This problem is already discussed in papers [4] and [5]. The work in these
papers already solve most of the problems of the related topic. Therefore,
for these changes, we can use approach described in these papers.

• Business rules
Any change made in business rules used in a derivation process has also
a direct influence on a derived PSM schema. For example, adding of new
business rules can rapidly change metrics used in the derivation process. If
user adds three business rules with the same context class, then some other
hierarchical structure can be more optimal than the one, which is already
used.

73

During the derivation, we use business rules only in a metric part. We
cannot make a partial propagation of changes made in business rules. There
is no direct connection between the derived PSM schema and business rules.
A user can also make some changes in the derived PSM schema.

8.2 Changes of Business Rules

According to previous discussion about changes of business rules, we propose an
approach described in this section for updating of the derived PSM schema.

We apply a derivation process described in the previous chapter on a data
artefact and we compute metrics for the PSM schema connected to the data
artefact. We display some statistic information about a new PSM schema and
the connected PSM schema to a user. After that, the user has to choose one of
these PSM schemas. The chosen PSM schema will be reconnected to the data
artefact.

8.2.1 Statistic Information

We choose this statistic information to help a domain expert in the selection of
more optimal communication PSM schema.

• A value of the context metric
To compare influence of context classes from business rules on PSM sche-
mas.

• A value of the redundancy metric
To compare measure of redundancy in both PSM schemas.

• A value of the path metric
To compare influence of paths from business rules on PSM schemas.

• A value of the Final metric
To compare all metrics together with user’s weights for both PSM schemas.

• A count of trees
To compare a number of trees in both PSM schemas. In most cases, a less
number of trees signalise better compactness of hierarchical structure.

• A tree statistics
It contains three values for each tree. A name of a root class, a depth of
the tree and a count of nodes in a subtree defined by the root class. Tree’s
information shows main hierarchical structure of both PSM schemas.

• A count of PSM schema keys
It signalises, how compact is a PSM schema. If one PSM schema contains
more keys than another, then it is probably less compact and it also needs
more time to process.

74

8.2.2 Example

In our example, we use the PIM-View schema depicted in Figure 7.19 and business
rules (OCL expressions) written in an example in section 7.4. The derived optimal
PSM schema is depicted in Figure 8.1. Other PSM schemas, for the given PIM-
View schema, are depicted in Figure 7.20

Figure 8.1: Derived optimal PSM schema

We add two more business rules for the data artefact:
Context Item

inv: self.amount < 100

Context Item

inv: self->Purchase.price >= self.price

A statistic information about the derived optimal PSM schema and the new
optimal PSM schema is depicted in Figure 8.2.

Figure 8.2: PSM schemas statistic

The new optimal PSM schema has worse value of the redundancy metric,
but it has better value of the context metric. The value of the context metric
changed, because the context class Item has more occurrences in business rules.
Because of that, the value of the final metric is better for the new optimal PSM
schema. This new optimal PSM schema is depicted in Figure 7.20 in the part b).

75

Chapter 9

Implementation and Experiments

In this chapter, we describe a prototype implementation of algorithms described
in Chapters 7 and 8. The prototype is implemented as an extension of DaemonX,
which is a framework for modelling and evolution processing [23].

9.1 DaemonX

DaemonX is an existing pluginable CASE tool for data and/or process mod-
elling. It was developed as a software project on the Faculty of Mathematics
and Physics, of the Charles University in Prague. The aim of the framework is
to provide functionality for processing evolution between various models. Mod-
els are implemented as modelling plug-ins and evolution is provided by evolution
plug-ins. The functionality of constraint languages and their evolution was added
in the work [9]. All plug-ins use application programmable interface (API) of the
framework. A developer of a new plug-in has to make a definition of a new model
and define rules for a propagation of atomic operations from a source model to a
target model. A detailed description and a documentation of the framework can
be found on websites of the DaemonX project [23].

9.2 Implementation

A prototype implementation uses existing PIM, PSM XML and PIM process
modelling plug-ins, which were developed as a part of the first release of the
DaemonX project. It also uses an extension of DaemonX, which was created
in [9]. There were needed some extensions of mentioned parts. They are discussed
in subsection 9.2.1.

The implementation adds four new plug-ins. The first plug-in is a modelling
plug-in for the PIM-View schema, it is described in detail in section 5.2. The
second plug-in enables creation of mapping between the PIM model and the PIM-
View model. The third plug-in enables creation of mapping between the PIM-
View model and the PSM XML model. The fourth plug-in is used to express
OCL expressions over the PIM-View model. It is an UCL modelling plug-in.

76

9.2.1 Extensions

As it was mentioned above, for the purpose of this thesis, we use the software
tool DaemonX. It was necessary to make some changes of the software tool and
its extension created in [9] to support all features of this thesis.

Extension of PIM process model

We added a new artifact similar to Data Object named Data Artefact. This
new artifact can be connected only with sequence flows, source of which is some
activity. It represents data exchanged in business process model. An example of
the new element is depicted in Figure 9.1

Data Artefact

Figure 9.1: Data Artefact example

During the creation of this element, it is necessary to define a PIM-View
diagram, which represents a conceptual model of this data.

After applying of a proposed algorithm for creation of an optimal XML sche-
ma, it stores a connection on the created PSM XML diagram.

Most of the operations and algorithms presented in this thesis are placed in
a context menu of this element. Their implementation is stored in this plug-in.

Extension of PSM XML

We added two new concepts. The first one is Specialization to express inheritance
in an XML schema. It is visualized like a generalization in the PIM model. An
example of the Specialization is depicted in Figure 9.2

Figure 9.2: Specialization example

77

The second one is Key to express a simple key-ref in an XML schema. It is a
simple key-ref , because it can refer only one other class from the same diagram.
This Key concept does not solve all modelling problems of key and key-ref of an
XML schema, e.g. it does not solve the problem, how key of the referenced class
is specified. Key is visualized as a blue rectangle and it has a blue line, source
of which is Key , and the target is the referenced class. The line has an arrow on
the side of the target. An example of the element Key is depicted in Figure 9.3

Figure 9.3: Key example

Extension of UCL

The work presented in [9] assumed, that UCL expressions are defined over all
diagrams of one model (modelling plug-in) of DaemonX. For the purpose of this
thesis, it is necessary to have a possibility to define UCL expressions for one
diagram of a model.

It is also necessary to have a possibility to connect UCL expressions to ele-
ments of different diagrams. Different diagrams mean not only different diagrams
of the same model, but also different diagrams of different models.

The last extension is associated with expressions themselves. In this thesis,
we use paths created by UCL expressions. It was necessary to add functionality,
which returns parsed paths from expressions.

Figure 9.4 depicts mentioned extension of an UCL part of DaemonX.

Choice of a diagram
Choice of a connected

element

Paths from

expressions

Figure 9.4: Extensions of a UCL part of DaemonX

78

9.3 Experiments

Simple experiments are described in Chapters 7 and 8 as examples. Because,
there is no existing real-world project that provides similar abilities, it is not
possible to compare our solution and results with others. Therefore, we created
own complex example to test abilities of the solution.

Functionalities of important derivation parts have examples above in Chap-
ters 7 and 8. Therefore, this example shows a more complex business process
model. PIM-View schemas and derived PSM schemas are simple. Therefore, we
show only one PIM-View schema and one derived PSM schema. OCL expres-
sions (business rules) are also simple. They are not described in this thesis, but
this example is part of a CD content (see A).

The conceptual model of a problem domain is depicted in Figure 9.5. It is
not a whole model of the problem domain. It contains only a part, which was
necessary for this example.

The business process model is depicted in Figure 9.6. It models booking of
rooms in a hotel and paying by a credit card.

Figure 9.5: PIM schema of an experiment

In this thesis, we show the PIM-View schema named PIMView CustomersIn-
fo. It is connected to the sequence flow, which starts in the task Get Customers
details. This PIM-View schema is depicted in Figure 9.7.

79

Figure 9.6: Business process model of an experiment

80

Figure 9.7: PIM-View schema PIMView CustomersInfo

Figure 9.8: PSM schema derived from PIMView CustomersInfo

81

The PSM schema derived from PIMView CustomersInfo is depicted in Fig-
ure 9.8. It is a single tree, because we can take the class Book as a root class.
In this case, there is no relation, which violates conditions from subsection 7.3.1.
Therefore, it is possible to create a PSM schema with one tree.

This experiment shows a more complex business process model with a simple
conceptual model of a problem domain. The derivation of an optimal XML
schema is straightforward, because there are not complicated conceptual models
of exchanged data.

82

Chapter 10

Conclusion

In this thesis, we presented an approach to derivation of optimal communication
XML schemas for a given conceptual schema of a business process, complemented
with a conceptual schema of exchanged data. We proposed algorithms for deriva-
tion of an optimal communication XML schema. We analysed impact of user’s
changes on a derived optimal communication XML schema. As well, we proposed
an algorithm to update the derived XML schema according to user’s changes of
business rules.

We began with introducing of adaptation of business processes problem in
general. We introduced the problem of generation of an optimal communication
XML schema and the related problem of adaptation of this XML schema to user’s
changes (see Chapter 1).

In Chapter 2, we introduced theoretical background of this thesis. Chapter 3
introduced a base concept of a model driven architecture, which we used to define
roles of proposed models.

Chapter 4 contains analysis of related works dealing with a generation of an
optimal XML schema and of related topics. Chapter 5 describes the architecture
of the work presented in this thesis. Chapter 6 describes theoretical models used
in this work.

In Chapter 7, the main contribution of this thesis was described. In this
chapter, we discussed problems related to the derivation of an optimal commu-
nication XML schema. This chapter contains algorithms used for derivation of
several XML schemas from a given conceptual model. We proposed metrics, which
are used to find an optimal XML schema. The end of this chapter describes an
algorithm for derivation of an optimal communication XML schema.

In Chapter 8, we discussed an impact of user’s changes on a derived XML
schema. We identified a problem, which was not solved yet and we proposed a
solution of this problem.

The implementation of the proposed solution is described in Chapter 9, to-
gether with test experiments. A prototype implementation of the proposed model
and algorithms was implemented as an extension of the DaemonX framework. It
is available on the attached CD.

83

10.1 Main Contribution

The main contribution of our approach is the ability to a create conceptual model
of exchanged data by a view on a part of a conceptual model of a whole problem
domain, automatic derivation of an optimal communication XML schema from
a given conceptual model of exchanged data, complemented with business rules
working with this exchange data. It provides an algorithm for updating already
derived communication XML schema according to user’s changes of business rules.
It enables derivation of an XML schema, which has good features in use with
business processes. This derivation requires minimal cooperation with a user.

10.2 Open Problem

10.2.1 Changes in Business Process Model

In our work, we focus on derivation of an optimal communication XML schema
and on changes of inputs of the derivation process. The data artefact is connect-
ed to a sequence flow in a given business process model and business rules are
connected to elements of this business process model. Any change in the business
process model can have influence on the derived XML schema:

• reconnection of the sequence flow can change business rules, which are used
in the derivation process

• adding of a new gateway or event can change business rules, which are used
in the derivation process

• removing of a task can lead to a change in a conceptual model of exchanged
data, which are used in the derivation process

10.3 Future Work

10.3.1 Richer Derivation Process

In section 7.1, we described some limitations of a derivation process. These
limitations are not very binding, but for many cases, it is not enough. The main
limitation, which is most binding for a domain expert, is an acyclic conceptual
model of exchanged data. The domain expert has to create an acyclic conceptual
model, but this can be in some cases really difficult.

10.3.2 Optimalization of Derivation Process

A derivation process presented in this thesis has better time complexity in some
cases, than a derivation process presented in paper [7]. It still can have an
exponential time complexity in cases, where there are relations with both lower
values of cardinalities equal to ∗. To improve the time complexity, we need
some additional information, which helps us with derivation. This additional
information will probably contain some semantic information about a conceptual
model of exchanged data.

84

Appendix A

CD Contents

The attached CD contains:

• PDF version of the thesis - thesis.pdf.

• The whole implemented application with sample projects in the directory
implementation.

• The source codes of the whole DaemonX framework with implemented com-
ponents for the purposes of this thesis in the directory src.

• The documentation of the whole DaemonX framework in the directory doc.

• The user documentation of the PIM-View modelling plug-in
doc/PIMView plugin user.pdf

The sample projects are in the directory implementation/Save. There are files:

• example 1.dx
Models of this project are shown in Chapter 6.

• example 2.dx , example 2 1.dx
Models of this projects are shown in Chapter 7. The first project does not
contain the derived optimal PSM schema. The second project contains the
derived optimal PSM schema. The second project also have more OCL
expressions.

• example 3.dx , example 3 1.dx
Models of this projects are shown in Chapter 9. The first project does
not contain derived optimal PSM schemas. The second project contains
derived optimal PSM schemas.

85

Bibliography

[1] Routledge N., Bird L. and Goodchild A. UML and XML schema in
ADC ’02: Proceedings of the 13th Australasian database conference ACS,
Melbourne, Australia, 2002

[2] Bird L., Goodchild A. and Halpin T. Object Role Modeling and XML
Schema in Proc. International Conceptual Modeling Conference Salt Lake
City, USA, 2000, p. 309-322, Springer.

[3] Halpin T. Object-Role Modeling (ORM/NIAM), Handbook on Architectures
of Information Systems. Heidelberg, 1998, Chapter 4, Springer

[4] Nečaský M. XSEM - A Conceptual Model for XML in Proc. of the fourth
Asia-Pacific conference on Conceptual Modelling ACS, Inc. Darlinghurst,
Australia, 2007, p. 37-48.

[5] Nečaský M., Mlýnková I., Kĺımek J. Model-Driven Approach to XML
Schema Evolution in OTM’11 Proceedings of the 2011th Confederated inter-
national conference on On the move to meaningful internet systems Heidel-
berg, Berlin, 2011, p. 514-523

[6] Codd E. F. The Relational Model for Database Management: Version 2.
Reading, Mass, Addison-Wesley. 1990.

[7] Macek O., Nečaský M. An Extension of Business Process Model for XML
Schema Modeling in 6th World Congress on Services Miami, Florida, USA,
July 2010, p. 383-390, ACM

[8] NečaskýM.,Mlýnková I. Five-Level Multi-Application Schema Evolution
in DATESO 2009, p. 90–104

[9] Piják P. Universal Constraint Language. Master Thesis Charles University
in Prague, Prague, 2011

[10] Sparx Systems. Enterprise Architect. 2012 http://www.sparxsystems.

com.au

[11] Altova. UModel. 2012 http://www.altova.com/umodel.html

[12] XCase team. Xcase - tool for xml data modeling. http://xcase.

codeplex.com/

[13] Object Management Group. Business Process Model And Notation
(BPMN) Version 2.0. Object Management Group, January 2011, http:

//www.omg.org/spec/BPMN/2.0/PDF.

86

[14] Jordan D. Web Services Business Process Execution Language Version 2.0
Primer 2007, http://www.oasis-open.org/committees/download.php/

23964/wsbpel-v2.0-primer.htm.

[15] Bray T., Paoli J., Sperberg-McQueen C. M., Maler E. andYergeau
F. Extensible Markup Language (XML) 1.0 (Fifth Edition) W3C, November
2008, http://www.w3.org/TR/2008/REC-xml-20081126/

[16] Thompson H. S., Beech D., Maloney M. and Mendelshon N. XML
Schema Part 1: Structures World Wide Web Consortium, 2004, http://
www.w3.org/TR/xmlschema-1/.

[17] International Organization for Standardization. ISO/IEC 19757-
3:2006 Information technology - Document Schema Definition Language
(DSDL) - Part 3: Rule-based validation – Schematron, http://www.

schematron.com/.

[18] Boag S., ChamberlinD., FernándezM. F., FlorescuD., Robie J. and
Siméon J. XQuery 1.0: An XML Query Language (Second Edition) World
Wide Web Consortium, January 2011, http://www.w3.org/TR/xquery/.

[19] Clark J. XSL Transformations (XSLT) Version 1.0 World Wide Web Con-
sortium, November 1999, http://www.w3.org/TR/xslt.

[20] Object Management Group. Unified Modeling LanguageTM

(OMG UML), Superstructure, V2.4.1 Object Management Group, August
2011, http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF.

[21] Miller J., Mukerji J. MDA Guide Version 1.0.1. Object Man-
agement Group, 2003. http://www.omg.org/mda/mda_files/MDA_Guide_
Version1-0.pdf.

[22] Object Management Group. Object Constraint Language (OCL), Ver-
sion 2.3.1 Object Management Group, January 2012, http://www.omg.

org/spec/OCL/2.3.1/PDF.

[23] DaemonX Team. DaemonX. June 2011, http://daemonx.codeplex.

com/.

87

List of figures

4.1 Three level design approach . 14
4.2 Rule example . 16

5.1 Application architecture . 22
5.2 Architecture example . 23

6.1 Platform independent model schema visualization example 28
6.2 Platform independent model view schema visualization example . 29
6.3 Platform specific model schema visualization example 31
6.4 Business process model schema visualization example 36

7.1 Composition example . 40
7.2 Nesting of composition example 41
7.3 Relations with ⟨1, 1⟩ cardinality on one side 41
7.4 Example of nesting ⟨0, x⟩ cardinality into ⟨1, 1⟩ cardinality 42
7.5 Relations with one ⟨0, x⟩ cardinality 42
7.6 Relations with lower values of cardinalities ≥ 1 and one upper

value = ∗ . 43
7.7 Relations with lower values of cardinalities ≥ 1 and upper values

̸= ∗ . 43
7.8 Relations with both upper values of cardinalities = ∗ 43
7.9 Relations with a lower value of cardinality = 0 on both sides . . . 44
7.10 Relation with ⟨1, 1⟩ cardinality on both sides 44
7.11 Example of an association class transformation 45
7.12 Hiding of generalizations in a PIM-View schema 47
7.13 Unhiding of generalizations in a PSM schema 56
7.14 Transformations of a PIM-View schema relation into a PSM schema 57
7.15 Example of an association class transformation in a derivation pro-

cess . 57
7.16 Problem with specializations during a transformation of associa-

tion classes . 58
7.17 Examples of reducing keys in a PSM schema 60
7.18 Examples of ReplaceKeyWithForest operation 61
7.19 Example of a PIM-View schema for metrics 65
7.20 Examples of a PSM schemas for metrics 66

8.1 Derived optimal PSM schema . 75
8.2 PSM schemas statistic . 75

9.1 Data Artefact example . 77

88

9.2 Specialization example . 77
9.3 Key example . 78
9.4 Extensions of a UCL part of DaemonX 78
9.5 PIM schema of an experiment . 79
9.6 Business process model of an experiment 80
9.7 PIM-View schema PIMView CustomersInfo 81
9.8 PSM schema derived from PIMView CustomersInfo 81

89

	1 Introduction
	1.1 Motivation
	1.2 Aim of the Thesis
	1.3 Organization of the Thesis

	2 Business Process Model and Notation
	2.1 Business Process Model and Notation
	2.1.1 Flow Objects
	2.1.2 Connection Objects
	2.1.3 Swimlanes
	2.1.4 Artifacts and Data

	2.2 Unified Markup Language
	2.2.1 Class Diagram
	2.2.2 PIM and PIM-View Class Diagrams

	2.3 Object Constraint Language

	3 Model Driven Architecture
	3.1 Model Driven Architecture
	3.1.1 Computation Independent Model
	3.1.2 Platform Independent Model
	3.1.3 Platform Specific Model
	3.1.4 Model Transformation

	4 Related Works
	4.1 UML and XML Schema
	4.1.1 Three Level Design Approach
	4.1.2 Conceptual to Logical Level Mapping
	4.1.3 Discussion

	4.2 XSEM - A Conceptual Model for XML
	4.2.1 XSEM-H
	4.2.2 Discussion

	4.3 An Extension of Business Process Model for XML Schema Modeling
	4.3.1 Metrics
	4.3.2 Discussion

	4.4 Related Commercial Software Solutions
	4.4.1 Altova UModel
	4.4.2 Enterprise Architect

	4.5 Comparison of the Related Works

	5 Architecture
	5.1 Architecture
	5.1.1 Architecture Example

	5.2 PIM-View Model
	5.2.1 Elements

	6 Models of the System
	6.1 PIM Model
	6.2 PIM-View Model
	6.3 PSM Model
	6.4 Interpretation
	6.5 Bussiness Rules (OCL)
	6.6 PIM Process Model

	7 Derivation of the Optimal Communication XML Schema
	7.1 Limitations
	7.2 Derivation of the First PSM Schemas
	7.2.1 Nesting of Classes
	7.2.2 Transformation of Association Classes
	7.2.3 Algorithms

	7.3 Derivation of Other PSM Schemas
	7.3.1 Conditions
	7.3.2 Algorithms

	7.4 Metrics
	7.4.1 Redundancy Metric
	7.4.2 Context Metric
	7.4.3 Path Metric
	7.4.4 Final Metric Formula

	7.5 The Optimal XML Schema

	8 Evolution of a Data Artefact
	8.1 Analyse of User's Changes
	8.2 Changes of Business Rules
	8.2.1 Statistic Information
	8.2.2 Example

	9 Implementation and Experiments
	9.1 DaemonX
	9.2 Implementation
	9.2.1 Extensions

	9.3 Experiments

	10 Conclusion
	10.1 Main Contribution
	10.2 Open Problem
	10.2.1 Changes in Business Process Model

	10.3 Future Work
	10.3.1 Richer Derivation Process
	10.3.2 Optimalization of Derivation Process

	A CD Contents
	Bibliography
	List of figures

