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Introduction

The ultimate goal of physics has always been to write down a set of fundamental
laws out of which everything we observe could be built. While tempting it is well
known that such an approach breaks down even if we try to describe systems
that are relatively simple compared to the complex structures that surround us.
By breaking down we mean that even numerical simulations of these systems are
not possible since current technology does not provide us with enough computing
power. To overcome this difficulty physicists have developed variety of approxi-
mate descriptions of Nature. This thesis focuses on one such phenomenological
description that revolves around ideas from probability theory.

Noise in dynamical systems

There are two possible ways to introduce randomness into a system. Imagine an
isolated system that moves through its phase space according to certain deter-
ministic law (e.g. a box filled with gas). We are unable to solve for the trajectory
of this system so we make the following simplification. We assign probabilities
that in the next moment the system will be in the state A given that during pre-
vious times it visited states A1, A2, ..., An. For example if n = 1, this transforms
the problem to a continuous-time Markov process that is governed by a system
of linear differential equations whose solution gives the probabilities of occupying
given state at arbitrary time. This kind of randomness is referred to as intrinsic
noise. Obviously this description is valid only if we make a smart choice of the
transition probabilities which must be motivated by either the original determin-
istic law and/or by experiment. Study of such probabilistic description of systems
is the central idea of both equilibrium and non-equilibrium statistical physics.

To illustrate the second possibility of introducing randomness into a system,
consider the DNA molecules in our body that are being exposed to ultraviolet
radiation that can damage them or cause mutations in our genome (see figure
1). Since there is no hope for predicting when a high-energy photon hits a giv-
en DNA molecule, we instead give the probability that at time t a given DNA
molecule is hit by a photon of energy E. We think of this situation as a sys-
tem (the DNA molecule) interacting with a random environment (the ultraviolet
radiation). This random environment gives rise to a randomness in the system
which is referred to as extrinsic noise.

Statistical physics is successful due to its ability to neglect physically uninter-
esting degrees of freedom. This extraction of only interesting information from
a system enabled us to explain the large spectrum of different phases of matter
we know today. It is therefore natural to ask if the replacement of a complex
environment by an approximation using a statistical description offers us a new
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Figure 1: Illustration of the damaging effect UV radiation can have on
DNA molecules. Since we do not know when and where the DNA molecule
is going to be hit, we treat it as a random process. Picture adapt-
ed from the Wikipedia file ”Image:DNA UV mutation.gif”, http://schools-
wikipedia.org/images/788/78870.gif.htm.

insight into the behavior of the system as well. Intuitively we would expect the
following recipe to hold. Replace the random environment by its average state,
then solve for the evolution of the system and in the end add some fluctuations
around this solution to account for the environmental randomness. It turns out
however that this approach holds only in a few special cases.

To be more specific we know that it holds in the situation when we deal with
white environmental fluctuations (i.e. fluctuations uncorrelated in time) that are
coupled additively to the system. Let us concentrate mainly on the stationary
behavior. In this case the probability distribution function corresponding to the
system will have peaks centered exactly at the stable points of the system when
the random environment is replaced by its average. If however we look at the
situation where environmental noise is coupled multiplicatively to the system it is
possible to find that not only the peaks of the distribution are shifted away from
the deterministic stable points but also that the distribution has more peaks than
the number of these stable points. Since stable points of the deterministic system
correspond to different phases, we see that a random environment can essentially
create a new phase. Simple one-dimensional model that exhibits this behavior is
the so-called genetic model described in [1]. It corresponds to the equation

dX (t)

dt
= α− X (t) + λ(t)X (t)(1 − X (t)), X (t) ∈ [0, 1],

where λ(t) = λ + σ2 dW (t)
dt

describes the fluctuating environment (modeled as
Gaussian white noise). In the deterministic case (σ = 0) the system has only one
stable point however if the fluctuations are large enough a new phase appears.
This model can be mapped for example onto a problem in population genetics
or it can be interpreted as a chemical reaction. Remarkably all the theoretical
predictions have been verified experimentally.
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Figure 2: The stationary probability distribution in the genetic model for different
intensities of the environmental noise. We used α = 0.5, λ = 0.1. As the noise
intensity σ2 increases the form of this probability distribution changes from an
unimodal to a bimodal one, i.e. it undergoes a noise-induced phase transition.
The emergence of the bimodal distribution has no deterministic analog, it is a
purely stochastic effect. Picture is a modified version of the one found in [1].

Effects that a fluctuating environment has on the stationary state of a sys-
tem are encoded in the probability distribution that describes it. It is therefore
important to study the dependence of this distribution on parameters of the en-
vironmental noise. The qualitative change of this probability distribution (i.e.
number of maxima or behavior at boundary) with a change in the parameters of
the noise is called a noise-induced transition.

Random environment however does not alter only the stationary state and it is
important to study the transient behavior as well. While restricting to the study
of moments of the random variable describing the state of a system is not always
enough to discover a noise-induced transition in the stationary state, it might be
enough to see non-trivial transient behavior. As will be seen in the problem of
this thesis the asymptotic behavior of moments is sometimes characterized by a
power law with non-trivial dynamical exponents. This is an effect not present in
the deterministic system.

Diffusion in a random potential

Before we move to the problem of a random potential let us review diffusion
under the influence of a deterministic force field. Imagine a particle submerged
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in a liquid that consist of much smaller particles. It is well know that the particle
will follow an unpredictable trajectory. This so-called Brownian motion is caused
by the interactions of the particle with other particles in the liquid. Since it is
impossible to predict these interactions we make an approximation. We consider
the liquid to be a random environment that at each moment of time pushes the
particle with a random force. We assume that the magnitude of this force is
uncorrelated with the magnitude of a push at any other time and we also assume
that it is normally distributed. The first assumption is physically intuitive since
the correlation time of these pushes is much smaller than any other time scale
in the motion of the diffusing particle. The second assumption is a consequence
of the central limit theorem since one push actually consists of hits from many
particles that can be assumed to be independent. Last assumption is that inertial
effects are negligible, i.e. that we can treat the motion of diffusing particle as
overdamped. This leads to the conclusion that we can describe Brownian motion
by the following diffusion process (for formal derivation see [11]).

dX (t)

dt
=

F (X (t), t)

η
+
√
2D

dW (t)

dt
,

where dW (t)
dt

is the Gaussian white noise, F (x, t) an arbitrary deterministic force
field that acts on the diffusing particle, η is the viscosity of the liquid and D is
the diffusion constant. For transparency we assume only one-dimensional motion.
This stochastic differential equation is equivalent to the following partial differ-
ential equation called Fokker-Planck equation for the probability density ρ(x, t)
of X (t)

∂ρ(x, t)

∂t
= − ∂

∂x

[

−D
∂ρ(x, t)

∂x
+

F (x)

η
ρ(x, t)

]

. (1)

This sort of description of Brownian motion is very phenomenological and is
based on our intuition about liquids. We are however also interested for example
in calculating the conductivity of a crystalline material. In that case it is much
more intuitive to imagine diffusion as a motion of an impurity in a periodic
potential. Since the impurity is in thermal equilibrium with the lattice, we know
from statistical physics that the probability of jumping from one site to another
will be proportional to the height of the potential barrier between adjacent sites.
It can be shown (see [2]) that in the limit of small separation of lattice sites this
description leads to the Fokker-Planck equation as well.

Usually when we talk about a crystalline material we imagine its structure as
a precisely periodic lattice. However we know that there are no perfect lattices
in Nature so a question arises how to treat diffusion in such an imperfect media.
Natural approach is to consider the lattice spacing (and therefore also the jump
probabilities from one site onto another) to be random variables. That brings us
to the problem of diffusion in random potential.

Review of the problem of one-dimensional random walk with random jump
probabilities can be found in Alexander et al. ([9]). To mention few applications
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it has been applied to the study of superionic conductors, Anderson tight-binding
model or to magnetic models with random ferromagnetic interactions. The model
considered in this thesis deals with the continuous limit and therefore with the
Fokker-Planck equation where the force field F (x, t) = F (x) is considered to be
random. Since the Fokker-Planck equation is closely related to the Schrödinger
equation, this problem is similar to the study of the dynamics of a quantum
particle in a random potential ([15]).

As a final point of this introduction we would like to elaborate on the connec-
tion between diffusion in a random potential and effects of noise on non-linear
systems. In the nomenclature of the preceding section we are dealing with a
system (the diffusing particle) coupled to a random environment that consists of
two parts. Thermal part responsible for the standard Brownian motion and a
disorder in the form of random potential. These two parts are completely inde-
pendent however what is the form of the coupling to the system is a non-trivial
question. We will see that the problem reduces to the study of the stochastic
Riccati equation

dQ(x)

dx
= −Q2(x)− F (x)Q(x) + z,

from which it is obvious that the coupling is multiplicative.
In this thesis we will be interested in the case where F (x) is given by the

dichotomous random force. This problem has been already approached in [5]
however the presented solution works only if the diffusion takes place on a semi-
infinite line. We will present a completely different approach to this problem that
we believe might be more easily adaptable to the finite interval case.
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1. Diffusion in a piecewise linear
random potential

1.1 From Fokker-Planck to the stochastic Ric-

cati equation

Figure 1.1: Illustration of the piecewise linear potential. The parameters fi rep-
resent the slopes of the potential (i.e. forces) within the corresponding segments.

The problem at hand is pictured in figure 1.1. We assume an interval of
length λ and a deterministic piecewise linear potential. The probability density
describing the position of a Brownian particle moving in the potential U(x) =
∫ x

0
F (x′) dx′ is given by the Fokker-Planck equation (1). We assume the par-

ticle started at point y and we rewrite this equation in terms of dimensionless
parameters as

∂ρ(x, t; y)

∂t
= − ∂

∂x

[

−∂ρ(x, t; y)

∂x
+ f(x)ρ(x, t; y)

]

, ρ(x, 0; y) = δ(x− y). (1.1)

If the variables in the original Fokker-Planck equation are marked with an apos-
trophe, the new dimensionless variables are

x =
F0

Dη
x′, ρ(x, t; y) =

Dη

F0
ρ′(x′, t′; y′), t =

F 2
0

Dη2
t′,

where we defined F (x) ≡ F0f(x), with f(x) dimensionless.
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Since there is only linear dependence on the time derivative, it is natural to
perform a Laplace transform in the variable t. Let us call the Laplace variable
z. We will distinguish the Laplace transform of ρ(x, t; y) from the function itself
only by replacing the variable t with z. The Fokker-Planck equation then reads

(

d2

dx2
− f(x)

d

dx
− z

)

ρ(x, z; y) = −δ(x− y). (1.2)

From now on we will assume that there are reflecting boundaries at x = 0
and at x = λ. Defining the probability current as

j(x, z; y) ≡ −∂ρ(x, z; y)

∂x
+ f(x)ρ(x, z; y), (1.3)

this condition says that j(0, z; y) = j(λ, z; y) = 0.
The form of the Fokker-Planck equation implies that both the density ρ(x, t; y)

and the current j(x, t; y) must be continuous functions. We can therefore solve
the equation (1.2) on each interval of constant force and then glue these solutions
together. It is convenient to combine the density and current on kth interval (let
us call it Ik) into a vector. Solution on this interval then reads

|Gk(x, z; y)〉 ≡
(

ρk(x, z; y)
jk(x, z; y)

)

=

(

eα
+
k
(z)x e−α−

k
(z)x

−α−
k (z)e

α+
k
(z)x α+

k (z)e
−α−

k
(z)x

)

(

c+k (z)
c−k (z)

)

+

{

0 if y /∈ Ik

|σk(x, y; z)〉 if y ∈ Ik
, (1.4)

where the constants c±k are to be determined from the boundary or gluing condi-
tions and

α±
k (z) ≡

√

z +

(

fk
2

)2

± fk
2
, (1.5)

|σk(x, z; y)〉 ≡ − Θ(y − x)

α+
k (z) + α−

k (z)

(

e−α−

k
(z)(x−y) − eα

+
k
(z)(x−y)

α−
k (z)e

α+
k
(z)(x−y) + α+

k (z)e
−α−

k
(z)(x−y)

)

. (1.6)

Now all that is left is to impose the continuity condition at each xk. In order
to do so it is useful to define the following matrix

Wk(l; z) ≡
1

α+
k
(z) + α−

k
(z)





α−

k
(z)eα

−

k
(z)l + α+

k
(z)e−α

−

k
(z)l eα

−

k
(z)l − e−α

+

k
(z)l

z
[

eα
−

k
(z)l − e−α

+

k
(z)l

]

α+
k
(z)eα

−

k
(z)l + α−

k
(z)e−α

+

k
(z)l



 . (1.7)

It is then easy to show that the solutions in two consecutive intervals are
related by

|Gk−1(x, z; y)〉 = Wk−1(xk−1 − x; z) |Gk(xk−1, z; y)〉 . (1.8)
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By iterating this relation and employing the reflecting boundary condition it
is easy to write down a solution of (1.2) at any given point in terms of products
of W matrices. The result is rather tedious and since we will not need it in this
thesis, we omit it. The central quantity that we will work with is the value of the
probability density ρ(x, z; y) at the origin. This can be expressed using a simple
formula provided we set y = 0. This is not a very restricting assumption since we
will be mostly interested in the limit t → ∞ where the initial condition plays no
role. Therefore from now on we will assume y = 0, omitting all the appearances
of y in our equations. The formula for density at the origin reads

ρ(0, z) =
〈1, 0|W1(x1, z)W2(x2 − x1, z) . . .Wn(λ− xn−1, z) |1, 0〉
〈0, 1|W1(x1, z)W2(x2 − x1, z) . . .Wn(λ− xn−1, z) |1, 0〉

. (1.9)

Power of this approach is apparent when we realize that the matrix Wk(l, z)
can be written as an exponential

Wk(l, z) = exp

[(

−fk 1
z 0

)

l

]

. (1.10)

Let us define functions S(l; z) and R(l; z) as a solution to the differential
equation

d

dl

(

S(l; z)
R(l; z)

)

=

(

−f(λ− l) 1
z 0

)(

S(l; z)
R(l; z)

)

,

(

S(0; z)
R(0; z)

)

=

(

1
0

)

. (1.11)

Thanks to the exponential nature of the W matrix, one can easily become con-
vinced using equation (1.9) that a function defined as P (λ; z) ≡ S(λ; z)/R(λ; z)
corresponds to the value ρ(0, z) of the probability density given that the interval
on which diffusion occurs has length λ.

Now we are really interested in the case when the force field is random.
Throughout this thesis, random variables will be typeset as capital letters in
a sans-serif format. We will denote the stochastic process describing the force
field by Φ(x). We make the physically sensible assumption that it is stationary.
Therefore it follows that Φ(λ − x) = Φ(x). Making this substitution in (now
stochastic) equation (1.11), relabeling the variable l by λ to emphasize its mean-
ing as the interval length and taking the derivative of P(λ; z) = S(λ; z)/R(λ; z),
we obtain the following non-linear stochastic differential equation

dP(λ; z)

dλ
= −zP2(λ; z)− Φ(λ)P(λ; z) + 1, P(0; z) = ∞. (1.12)

Solution of this equation is a random variable describing the value of the
density ρ(x, z) at the origin.
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1.2 Stochastic Riccati equation and the dichoto-

mous random force

If we look at the derivation of equation (1.12) we can conclude that it is valid for
any random potential whose realizations can be obtained as a limit of piecewise
linear functions. Therefore this approach to the problem of diffusion in random
potential is very general. Furthermore it turns out that the variable P(λ; z) is
enough to calculate properties like the random variable that corresponds to the
mean position or mean velocity of the Brownian particle. For derivation and
exact statements of these results see [5].

From now on we will assume that Φ(λ) is a stationary dichotomous Markov
process (for an overview see Appendix A). We will denote the two possible forces
φ+ and φ− and the corresponding average times between jumps as 1/n+ and
1/n−. Since we will be mostly interested in the behavior when t → ∞ which, in
the z-domain, corresponds to the limit limz→0 zP(λ; z), we make the substitution
Q(λ; z) = zP(λ; z). This transforms the equation (1.12) to

dQ(λ; z)

dλ
= −Q2(λ; z)− Φ(λ)Q(λ; z) + z, Q(0, z) = ∞, (1.13)

which we will refer to as a stochastic Riccati equation.
To qualitatively study the behavior of this equation we imagine that it de-

scribes an overdamped motion of a particle under the influence of a force field
corresponding to the right hand side. This force field randomly jumps between
two possible forms that we describe in terms of a potential function as

V±(q; z) = −
∫ q

0

(−q′2 − φ±q
′ + z) dq′ =

1

3
q3 +

φ±

2
q2 − zq + V (0; z). (1.14)

The minima resp. maxima lie at the points

qmin
± (z) =

√

z +

(

φ±

2

)2

− φ±

2
, qmax

± (z) = −

√

z +

(

φ±

2

)2

− φ±

2
. (1.15)

For sample values of the noise parameters these functions together with a
sample realization of the Riccati equation are plotted in figure 1.2. The main
advantage of this geometrical interpretation is that it allows us to easily deter-
mine the support of the random variable Q(λ; z). Suppose we are interested in
the behavior λ → ∞. The fictional particle starts to slide down from infinity
towards one of the minima. Then the potentials switch and it moves towards
the other minimum. Sooner or later it has to cross the minimum of V−(q; z) and
when it does it can never move back to the right of qmin

− (z). However it also
cannot move beyond the minimum of V+(q; z) although it can reach it in the
limit λ → ∞. Therefore we see that the support of Q(λ; z) in the limit λ → ∞
is
[

qmin
+ (z), qmin

− (z)
]

.
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Figure 1.2: Visualization of the dynamics based on the stochastic Riccati equation
(1.13). The red lines correspond to the support of the variable Q(λ; z). The green
line is a sample realization that was simulated using the parameters n+ = 2,
n− = 1, φ+ = 3, φ− = −4, and z = 3. The surfaces represent the potentials
corresponding to the two possible forces. Their minima are located at qmin

+ = 0.79
and qmin

− = 4.29.

Similarly it is easy to see that for general λ the boundary of the support will
correspond to the positions of two fictional particles each of which is moving under
the influence of only one of the two potentials. Since a solution to the Riccati
equation with a constant force Φ(λ) = φ is (we defined qmin(z) = qmin

− (z) =
qmin
+ (z) and similarly for maximum)

Q(λ; z) =
qmin(z)− qmax(z)e−(qmin(z)−qmax(z))λ

1− e−(qmin(z)−qmax(z))λ
, (1.16)

we see that the support will be
[

qmin
+ (z)− qmax

+ (z)e−(qmin
+ (z)−qmax

+ (z))λ

1− e−(qmin
+ (z)−qmax

+ (z))λ
,
qmin
− (z)− qmax

− (z)e−(qmin
−

(z)−qmax
−

(z))λ

1− e−(qmin
−

(z)−qmax
−

(z))λ

]

. (1.17)

Because we have the ordering qmax
+ (z) < qmax

− (z) < 0 < qmin
+ (z) < qmin

− (z), the
conclusions we have just made are completely general.

Another property we can see from this visualization is that for finite λ the
probability distribution corresponding to Q(λ; z) will always contain two delta
functions. This is caused by the dichotomous process since no matter in what
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state it starts, the evolution of the system will at first follow a deterministic
trajectory until a jump occurs. We can also immediately predict that these
delta functions will be multiplied by e−n±λ (i.e. by a factor proportional to the
probability of a jump). This is an important point since these delta functions
do not always follow easily from the equation describing the evolution of the
probability density.

1.3 Limit of a semi-infinite interval

Corresponding to the equation (1.13) we can write down a Kolmogorov forward
equation, i.e. a partial differential equation for the joint probability density of the
random variables Q(λ; z) and Φ(λ). This probability density has two components
that we will call κ±(q, λ; z) which are defined as

κ±(q, λ; z)dq = probability that Q(λ; z) ∈ [q, q + dq] and Φ(λ) = φ±. (1.18)

The Kolmogorov forward equation then reads

∂

∂λ

(

κ−(q, λ; z)
κ+(q, λ; z)

)

= − ∂

∂q

(

(−q2 − φ−q + z)κ−(q, λ; z)
(−q2 − φ+q + z)κ+(q, λ; z)

)

−
(

n− −n+

−n− n+

)(

κ−(q, λ; z)
κ+(q, λ; z)

)

,

(

κ−(q, 0; z)
κ+(q, 0; z)

)

= δ(q)
1

n− + n+

(

n+

n−

)

. (1.19)

If interested only in the behavior for λ → ∞ we can set the left hand side of
this equation to zero. This case has been solved in [5]. The physically important
result is that if the forces satisfy φ− < 0 < φ+, non-trivial properties emerge. In
this case non-trivial means that they cannot be obtained by simply replacing the
random potential with its average. More precisely due to the existence of traps
in the potential (see figure 1.3) the particle can be slowed down resulting in an
asymptotic behavior of the mean velocity that scales as a power law with exponent
controlled by the parameter Θ = n−/|φ−| − n+/φ+. As seen from figure 1.3, this
parameter is related to the average depth of traps in the potential. Except of
these dynamical exponents this system also exhibits noise-induced transitions in
the stationary probability density.

While effective for the regime λ → ∞, the equation (1.19) is useless if we are
interested in the behavior for general λ. To this end we approach the stochastic
Riccati equation from a completely different point of view.

1.4 Method of Carleman embedding

The method of Carleman embedding also called Carleman linearization is a sys-
tematic way to transform a finite-dimensional problem with a polynomial non-
linearity to an infinite-dimensional linear system. Usually it is applied to the
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Figure 1.3: Illustration of a possible series of traps in the potential that cause the
slowing down of the Brownian particle. As it moves it can get stuck in a specific
trap and it stays there until it gets enough energy from the thermal reservoir
to penetrate the potential barrier and to jump to a next trap. The parameter
controlling the asymptotic behavior of the Brownian particle is proportional to
the average depth of a trap.

study of deterministic dynamical systems however we will add one more ingre-
dient and we will use it to find an expression for moments of all orders of the
random variable Q(λ; z). We will omit presenting this method in its full general-
ity and we will just illustrate it on the problem of the stochastic Riccati equation
(1.13). For a general overview see [6].

Let us start by defining the infinite-dimensional vector-valued stochastic pro-
cess

|Y ′(λ; z)〉 ≡











Q(λ; z)
Q2(λ; z)
Q3(λ; z)

...











. (1.20)

All vectors and matrices will be assumed to be written in the basis denoted
{|1〉 , |2〉 , . . .}. By using the Riccati equation (1.13) we can write

dQk(λ; z)

dλ
= −kQk+1(λ; z)− Φ(λ)kQk(λ; z) + zkQk−1(λ; z). (1.21)

Using this identity we formulate a stochastic differential equation for |Y ′(λ; z)〉
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as

d |Y ′(λ; z)〉
dλ

= − [B− − zB+ + Φ(λ)N ] |Y ′(λ; z)〉+ z |1〉 , |Y ′(0; z)〉 =











q0
q20
q30
...











≡ |q0〉 , (1.22)

where

N ≡











1 0 0 · · ·
0 2 0 · · ·
0 0 3
.
..

.

..
. . .











, B− ≡ NE− =











0 1 0 0 · · ·
0 0 2 0 · · ·
0 0 0 3 · · ·
.
..

.

..
.
..

. . .











, B+ ≡ NE+ =















0 0 0 · · ·
1 0 0 · · ·
0 2 0 · · ·
0 0 3 · · ·
...

...
. . .















, (1.23)

E− ≡











0 1 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·
..
.

..

.
..
.

. . .











, E+ ≡















0 0 0 · · ·
1 0 0 · · ·
0 1 0 · · ·
0 0 1 · · ·
...

...
. . .















.

Now we see that we transformed the original problem (1.13) to an infinite-
dimensional linear problem (1.22), therefore completing the step of Carleman
embedding. However before we move forward we define the random evolution
matrix U(λ; z) as a solution to the equation

dU(λ; z)

dλ
= − [B− − zB+ + Φ(λ)N ]U(λ; z), U(0; z) = 1. (1.24)

In terms of this matrix the solution to (1.22) can be written as

|Y ′(λ; z)〉 = U(λ; z) |q0〉+ z

∫ λ

0

dλ′U(λ′; z) |1〉 . (1.25)

This allows us to concentrate only on the equation

d |Y (λ; z)〉
dλ

= − [B− − zB+ + Φ(λ)N ] |Y (λ; z)〉 , (1.26)

with initial value either |Y (0; z)〉 = |q0〉 or |1〉.

1.5 Moments as infinite-dimensional matrix el-

ements

As mentioned earlier we will be interested in the moments of the random variable
Q(λ; z). By means of equation (1.25), these can be obtained if we know the
average of the vector |Y (λ; z)〉 which we will denote as

|m(λ; z)〉 ≡ |Y (λ; z)〉. (1.27)
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Next step is to decompose the dichotomous process Φ(λ) into a deterministic
and a random part as

Φ(λ) = φ0 + Φ̃(λ), (1.28)

where φ0 is arbitrary real number and Φ̃(λ) is a dichotomous process with the
same transition rates as Φ(λ) but with amplitudes shifted by φ0. This may seem
rather unintuitive at the moment but it will considerably simplify our results.

Plugging this decomposition into equation (1.26) and taking the average, we
obtain

d |m(λ; z)〉
dλ

= −(φ0N +B− − zB+) |m(λ; z)〉 −N |l(λ; z)〉 , (1.29)

where
|l(λ; z)〉 = Φ̃(λ) |Y (λ; z)〉. (1.30)

In order to solve for |m(λ; z)〉, we need an equation for |l(λ; z)〉. In Appendix
B it is derived that

d |l(λ; z)〉
dλ

= −(φ′
0N + γ +B− − zB+) |l(λ; z)〉+ (φ̃−φ̃+N + γµ′) |m(λ; z)〉 , (1.31)

where
φ̃± ≡ φ± − φ0, (1.32)

φ′
0 ≡ φ+ + φ− − φ0,

γ ≡ n− + n+,

µ′ ≡ Φ̃(λ) =
n−φ̃+ + n+φ̃−

n− + n+

.

Equations (1.30) and (1.31) form a system of two coupled infinite-dimensional
linear equations. Natural approach to solution is taking the Laplace transform
with respect to the variable λ which we know is positive. Let us call the cor-
responding Laplace variable u. Using the fact that |m(0; z)〉 = |Y (0; z)〉 and
|l(0; z)〉 = µ′ |Y (0; z)〉, we can express the vector |m(u; z)〉 as

|m(u; z)〉 = 1

u+ φ0N +B− − zB+ +N 1
u+γ+φ′

0N+B−−zB+

[

φ̃−φ̃+N + γµ̃
] ·

·
(

1−N
1

u+ γ + φ′
0N +B− − zB+

µ̃

)

|Y (0)〉 . (1.33)

Therefore we see that calculating the moments amounts to inverting an infinite-
dimensional matrix. This equation is the starting point of any future calculations.
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1.6 Evaluating the matrix element for t → ∞
1.6.1 Preliminary assumptions

In this thesis we will concentrate only on the case z → 0 which corresponds to
the limit t → ∞. We will also assume that

φ− < φ+ < 0. (1.34)

For clarity we make the following definitions.

P(λ) ≡ lim
z→0

Q(λ; z) = lim
z→0

zP(λ; z), (1.35)

|m(λ)〉 ≡ lim
z→0

|m(λ; z)〉 , (1.36)

p0 = q0. (1.37)

Since in this limit the non-homogeneous term in equation (1.22) drops out,
we can immediately identify 〈k|m(λ)〉 with the kth moment of P(λ).

Now we turn our attention to evaluating (1.33). We set φ0 = φ− which implies

φ̃− = 0, φ̃+ = |φ−| − |φ+|, φ0 = −|φ+|, µ′ =
n−

γ
(|φ−| − |φ+|),

and we rewrite the expression in terms of L matrices which we define as

L(a, b) ≡ 1

a− bN +B−
, b > 0. (1.38)

This leads to

|m(u)〉 = 1

L−1(u, |φ−|) + n−(|φ−| − |φ+|)NL(u+ γ, |φ+|)
·

·
[

1− n−

γ
(|φ−| − |φ+|)NL(u+ γ, |φ+|)

]

|p0〉 . (1.39)

1.6.2 Properties of the L matrix

Evaluation of the expression (1.39) for general u will be based on the following
identity which we prove in Appendix C.

L(a, b) |p0〉 =
1

a
2F1(N,

a

b
,
a

b
+ 1; 1− b

p0
) |b〉 , (1.40)

〈k|b〉 = bk. (1.41)

In this thesis we are however concerned only with the case λ → ∞ and all we
will need is that

lim
u→0

uL(u, b) |p0〉 = |b〉 , (1.42)
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which is a simple consequence of the preceding identity.
Another useful identity is

E− |b〉 = b |b〉 . (1.43)

Now suppose f(x) is an analytic function (i.e. it has a Taylor expansion). Then
it follows immediately from this identity and the fact that B− = NE− that

f(−bN +B−) |b〉 = f(0) |b〉 , in particular L(a, b) |b〉 = 1

a
|b〉 . (1.44)

On the lowest level, the only two matrices that we are dealing with are N and
E−. Fortunately these satisfy the commutation relation

NE− = E−(N − 1), (1.45)

which we can generalize to

NB− = B−(N − 1), f(−bN +B−)B− = B−f(b− bN +B−). (1.46)

Last ingredient we need is the representation of |b〉 using a geometric series
as

|b〉 = b

1− bE+

|1〉 . (1.47)

This can be used to employ the following trick. The matrix in (1.39) consists only
of the N and E− matrices that we know satisfy the relation (1.45). Therefore
there must be a way to write it as a power series in E− with matrix coefficients
that depend only on N . This allows us to write

〈k|m(u)〉 = 〈k|
∞
∑

n=0

an(N)En
− |p0〉

= 〈1|Ek−1
−

∞
∑

n=0

an(N)En
−

p0

1− p0E+
|1〉

= p0 〈1|
∞
∑

n=0

an(N + k − 1)En+k−1
−

∞
∑

l=0

pl0E
l
+

= p0

∞
∑

n=0

∞
∑

l=0

an(k)p
l
0 〈1|En+k−1

− El
+ |1〉

= p0

∞
∑

n=0

∞
∑

l=0

an(k)δn+k−1,l 〈1|En+k−1
− El

+ |1〉 pn+k−1
0

= pk0 〈k|
∞
∑

n=0

an(N)(p0E−)
n |e〉 , (1.48)

where the components of |e〉 are 〈k|e〉 = 1 for all k. In other words every occur-
rence of E− (B−) can be replaced by p0E− (p0B−) provided we change the vector
|p0〉 (or any other vector with the same structure) to |e〉.
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1.6.3 The case λ → ∞
We will denote the kth moment by mk(u) ≡ 〈k|m(u)〉. In the limit λ → ∞ we
just drop the argument so

mk ≡ lim
λ→∞

mk(λ) = lim
u→0

umk(u). (1.49)

Our goal is to express mk in the form (f(x) is some analytic function)

mk = 〈k| 1

1− f(−bN +B−)B−
|b〉

= 〈k|
∞
∑

l=0

[f(−bN +B−)N ]l |b〉

= 〈k|
∞
∑

l=0

N(N + 1) · · · (N + l − 1)El
−f(−bN +B− + b) · · · f(−bN +B− + lb) |b〉

=

∞
∑

l=0

(k)lb
l

l
∏

n=1

f(nb). (1.50)

To this end we divide the formula for mk(u) (1.39) into two parts

m
(1)
k =

(

1− n−

γ

)

〈k| 1

L−1(u, |φ−|) + n−(|φ−| − |φ+|)NL(u+ γ, |φ+|)
|p0〉 , (1.51)

m
(2)
k =

n−

γ
〈k| 1

L−1(u, |φ−|) + n−(|φ−| − |φ+|)NL(u+ γ, |φ+|)
·

· [1− (|φ−| − |φ+|)NL(u + γ, |φ+|)] |p0〉 . (1.52)

Using the matrix identities

1

A +B
=

1

1 + A−1B
A = A

1

1 +BA−1
, (1.53)

and the definition of L(a, b) we can rearrange these expressions to

m
(1)
k =

(

1− n−

γ

)

〈k| 1

1 + n−(|φ−| − |φ+|)L(u, |φ−|)NL(u+ γ, |φ+|)
L(u, |φ−|) |p0〉 , (1.54)

m
(2)
k =

n−

γ
〈k| 1

1 + (|φ−| − |φ+|)L(u, |φ−|)N L(u+γ,|φ−|)
L(u+n−,|φ−|)

L(u, |φ−|) |p0〉 . (1.55)

Now we can finally take the limit limu→0 umk(u). The 1/u pole necessary for
this limit to be non-zero comes from the rightmost matrix L(u, |φ−|) according
to the identity (1.40). Therefore we can use equation (1.42) on this part of the

18



equations and set u = 0 everywhere else. After employing the trick (1.48) and
doing some tedious algebra with the definition of L(a, b), we arrive at the form

m
(1)
k =

1

ν

(

1− n−

γ

)

|φ−|k 〈k| [L−1(ν, 1)− χ(ν− +B−)]
1

1− χB−
L(1,1)L(ν+1,1)

L(ν−+1,1)

|e〉 ,

(1.56)

m
(2)
k =

n−

γ
|φ−|k 〈k| [1− xL(ν, 1)L−1(ν−, 1)]

1

1 − xB−
L(1,1)L(ν,1)

L(ν−,1)

|e〉 , (1.57)

where

ν− =
n−

|φ−|
, ν =

n−

|φ−|
+

n+

|φ+|
, x = 1− |φ−|

|φ+|
. (1.58)

This result resembles the form in equation (1.50). In the same spirit we write
down a series for these functions. This series can be summed giving the result

m
(1)
k =

(

1− n−

γ

)

|φ−|k
[

2F1(k, ν− + 1, ν;x)− x
ν−

ν
2F1(k, ν− + 1, ν + 1;x)]

−x
k

ν
2F1(k + 1, ν− + 1, ν + 1;x)

]

=

(

1− n−

γ

)

|φ−|k2F1(k − 1, ν−, ν;x), (1.59)

m
(2)
k =

n−

γ
|φ−|k

[

2F1(k, ν−, ν;x)− x
ν−

ν
2F1(k, ν− + 1, ν + 1;x)

]

=
n−

γ
|φ−|k2F1(k − 1, ν−, ν;x), (1.60)

where we used the Gauss’ relations for contiguous functions (see [7], page 558).
Therefore we obtain the result

mk = m
(1)
k +m

(2)
k = |φ−|k2F1(k − 1, ν−, ν; x). (1.61)

This however does not agree with the same result obtained by direct integra-
tion of the probability density given in [5]. The correct formula that we checked
using numerical simulations is

mk = |µ||φ−|k−1
2F1(k − 1, ν−, ν; x), (1.62)

where µ is the mean force given by

µ =
n−φ+ + n+φ−

n− + n+

. (1.63)

Unfortunately mainly due to time limitation we were not able to find a flaw
in our calculations. This discrepancy is the first thing that needs to be solved
before we move on to calculate the formula for general u.
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2. Numerical simulations of the
Riccati equation

In order to check theoretical results about the solution of the stochastic Riccati
equation with dichotomous noise (1.13), we developed a numerical simulation of
this equation. All simulations were carried out using Matlab 7.12.0.

2.1 Description of the Monte Carlo algorithm

Let us overview all the parameters that we have available and that will serve as
input for the program that executes the simulation. We have the two possible
forces φ± that act on the Brownian particle and we also have the transition rates
n± that determine the average times the particle is under the influence of the force
φ±. The least intuitive parameter is z which is the Laplace variable corresponding
to time. Although in general it is a complex number, in simulations we will always
assume it is real and positive. Its best interpretation is that small z represents
large times according to the Tauber’s theorem ([3])

lim
z→0

zf(z) = lim
t→∞

f(t). (2.1)

Last parameter is λ which represents the length of the interval on which diffusion
occurs.

Simulation of the riccati equation is considerably simplified by using the di-
chotomous process as an input noise because it allows us to generate its exact
realizations. This is achieved in two steps (although they can be combined into
one loop).

Step 1:
We make a realization of the dichotomous noise. First we have to decide in

what state it starts. The stationary state is described by the probabilities

π+ =
n−

n− + n+
and π− =

n+

n− + n+
. (2.2)

Therefore we draw a uniformly distributed random number and if it is less than
π+ we start in the state φ+, otherwise we start with φ−.

Next we generate an exponentially distributed random variable with mean
1/n± dependent on the initial state of Φ(x). This number λ1 marks the length of
the first interval of constant force. If λ1 > λ, we change λ1 to λ and the generation
of a realization is complete. Otherwise we switch the state and generate another
exponentially distributed random variable with mean corresponding to the new
state. This number λ2 is the length of the second interval on which the force
is constant. If λ1 + λ2 > λ, we change λ2 to λ − λ1, obtaining the sought for
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Figure 2.1: A sample realization of the solution to the stochastic Riccati equation.
We used parameters n+ = 2, n− = 1, φ+ = 1, φ− = −1, and z = 0.1. The green
lines show the boundaries of the support of Q(λ; z).

realization. Otherwise we switch the state again and iterate this process until
we reach the total length λ. The result of this step is a sequence of numbers
λ1, . . . , λn that describe the partition of our interval into segments on which the
realization φ(x) of Φ(x) is constant.

Step 2:
Corresponding to the realization φ(x) of Φ(x) we find a solution of the Riccati

equation (1.13). To that end we need a solution to the Riccati equation with
constant force φ and arbitrary initial value Q(λ0) = Q0. Since in this case the
Riccati equation is separable, it is easy to find that the solution we are looking
for is

Q(λ; z) =
qmin(z)− qmax(z)Q0−qmin(z)

Q0−qmax(z)
e−[q

min(z)−qmax(z)](λ−λ0)

1− Q0−qmin(z)
Q0−qmax(z)

e−[qmin(z)−qmax(z)](λ−λ0)
, (2.3)

where similarly as in section 1.2

qmin(z) =

√

z +

(

φ

2

)2

− φ

2
, qmax(z) = −

√

z +

(

φ

2

)2

− φ

2
. (2.4)

Now it is easy to construct the solution for φ(x). We start with Q0 = ∞
and using equation (2.3), we construct a solution Q1(λ; z) on the interval [0, λ1]
where we know φ(x) is constant. Then we set Q0 = Q1(λ1; z) and using this initial
value we find a solution on the interval [λ1, λ1 + λ2]. We iterate this procedure
constructing a realization of the process Q(λ; z) for the interval [0, λ]. It should
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be noted that we can formulate the solution (2.3) in terms of 1/Q0 instead of Q0

which enables us to treat the case Q0 = ∞ exactly.
A sample realization of the process Q(λ; z) is in figure 2.1. We can iterate this

algorithm large number of times therefore obtaining a collection of realizations of
the random variable Q(λ; z). In order to simulate the corresponding probability
density, we divide the support of Q(λ; z) into small bins and count the number
of realizations that ended up in each one of them. Plot of this histogram is the
result of the simulation. If we are only interested in the moments of Q(λ; z),
we simply calculate it by averaging over the collected realizations without the
necessity of making a histogram first.

2.2 Comparison of analytical results with simu-

lations

In [5] the probability distribution for Q(λ; z) in the case that λ → ∞ was derived
to be

κ(q; z) =
1

C(z)

{

1

[q−(z)− q][q − q′−(z)]
+

1

[q − q′+(z)][q − q+(z)]

}

·

·
[

q−(z)− q

q − q′−(z)

]α−(z) [
q − q+(z)

q − q′+(z)

]α+(z)

Θ(q − q+(z))Θ(q−(z)− q), (2.5)

where the normalization constant is

C(z) =
1

γ

(

n−
√

(4z + φ2
+)

+
n+

√

(4z + φ2
−)

)

[q−(z)− q+(z)]
α−(z)+α+(z)

[q+(z)− q′−(z)]
α−(z)[q−(z)− q′+(z)]

α+(z)
·

· B[α−(z), α+(z)]2F1(α−(z), α+(z), α−(z) + α+(z) + 1;−u(z)), (2.6)

u(z) =
[q−(z)− q+(z)][q

′
−(z)− q′+(z)]

[q−(z)− q′+(z)][q+(z)− q′−(z)]
. (2.7)

B(x,y) denotes the beta function. And the other variables are defined as

q±(z) = qmin
± (z), q′±(z) = qmax

± (z), α± =
n±

√

(4z + φ2
±)

. (2.8)

We compared this exact result with our simulations for the parameters n+ = 3,
n− = 2, φ− = −2, φ+ = −1 and three different values of z. As is clear from
figure 2.2 we found a good match. We also tested the formula (1.62) for k = 2
i.e. for second moment of Q(λ; z). Used parameters and results are displayed in
figure 2.3. We see again that the formula is consistent with simulations therefore
confirming the prediction that our result is flawed.
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Figure 2.2: Comparison of the results of numerical simulations of the stochastic
Riccati equation with the probability density obtained in [5]. Used parameters
of the dichotomous process were n+ = 3, n− = 2, φ− = −2, and φ+ = −1.
Each blue curve is based on a simulation using 300000 realizations of the process
Q(λ; z) and the supports of these functions were divided into 100 bins. For the
interval length we used λ = 10. The arrows mark the boundaries of supports.

2.3 Simulations for the case of finite interval

The value of these simulations is that it confirms the results predicted theoretical-
ly however it does not reveal much about physics. Physically interesting variables
are for example dynamical exponents which are however much harder to obtain
numerically. Therefore it does not make much sense to simulate all possible sce-
narios for finite λ before we actually have some analytical results to compare
with. Nevertheless since our algorithm works for any finite λ we show in figure
2.4 the λ-dependence of first moment of Q(λ; z) for set of parameters specified
in the figure. If we looked at the first moment at even longer times we would
find that the red and green curve in the figure would converge close to zero while
the green curve would have a non-zero limit as expected since it corresponds to
a situation with negative mean force.
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Figure 2.3: Comparison of the analytical results based on equation (1.62) with
numerical simulations. The figure shows the dependence of the second moment
of Q(λ; z) in the limit z → 0, λ → ∞ on the force φ− while keeping the values
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Conclusion

In this thesis we have presented a previously unexplored method of solution of the
stochastic Riccati equation with multiplicative dichotomous noise. The method
is based on the idea of Carleman linearization and it allowed us to express the
Laplace transformed moments of the solution in terms of the matrix elements of
an infinite-dimensional matrix. We have developed a purely algebraic approach
which enables an analytic evaluation of these matrix elements. Unfortunately
we were unable to obtain a result consistent with numerical simulations and
analytical results based on a different theoretical approach. However the results
differ only by a multiplicative factor and we believe that the discrepancy is caused
by our mistake and not by a flaw in the method which has been tested on simpler
systems. Unfortunately time restrictions did not allow us to invest appropriate
amount of time to the resolution of this discrepancy therefore we decided to
postpone it to further work beyond this thesis.

Once we overcome this obstacle we hope to find an exact formula for the
moments even for a finite λ. In fact using the identities and methods we presented
we should be able to write down this answer in terms of a power series. However
the hardest part of this problem is to find an appropriate expansion parameter
and/or a form of the equation (1.33) that will actually allow us to sum this series.

As an important element of this work, we have created a Matlab simulation
that generates realizations of the solution to the stochastic Riccati equation.
We tested its correctness on known theoretical results. This simulation is easily
generalized even to other input noises whose realizations can be approximated
by a piecewise constant functions and it certainly will be useful for future work
on this problem.
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Appendix A - Dichotomous
process

Dichotomous process is a Markov process Φ(x) with state space φ−, φ+. Let us
define the vector of occupation probabilities of these two states as

|π(x)〉 =
(

π−(x)
π+(x)

)

. (2.9)

The dichotomous process then satisfies the Master equation

d |π(x)〉
dx

= −Γ |π(x)〉 , (2.10)

where

Γ =

(

n− −n+

−n− n+

)

. (2.11)

The parameters n± will be referred to as the transition rates. It is easy to find an
exact solution of this equation however it is not essential for the present thesis.
We just note that the intervals between jumps from one state to another are
exponentially distributed with mean lengths 1/n±.

In our calculations we will however deal with the correlation functions

Cn(x1, x2, . . . , xn) ≡ Φ(x1)Φ(x2) · · ·Φ(xn), (2.12)

where it is assumed that x1 < x2 < . . . < xn.
The evolution operator corresponding to equation (2.10) is

R(x− x′) = exp [−Γ(x− x′)] . (2.13)

Using this matrix we can write down the following expression for the correlation
functions

Cn(x1, x2, . . . , xn) = 〈e|DR(xn − xn−1)DR(xn−1 − xn−2) · · ·DR(x1) |π(0)〉 ,
(2.14)

where

D =

(

φ− 0
0 φ+

)

and |e〉 =
(

1
1

)

. (2.15)

Proof of this identity follows immediately if we interpret Rij(x− x′) as the prob-
ability that Φ(x) = i given that Φ(x′) = j and if we rewrite the equation (2.14)
using component notation.

The following result is essential for our calculation.
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Lemma (Derivative of correlation functions). For any n and any x, x1, x2,
. . ., xn such that x1 < x2 < . . . < xn < x, we have

d

dx
Cn+1(x1, . . . , xn, x) = −(n−+n+)Cn+1(x1, . . . , xn, x)+(n+φ−+n−φ+)Cn(x1, . . . , xn).

Proof. From equation (2.14) and (2.13) we have

d

dx
Cn+1(x1, . . . , xn, x) = −〈e|DΓR(x− xn)DR(xn − xn−1) · · ·DR(x1) |π(0)〉 .

Simple algebra shows that

〈e|DΓ = (n− + n+) 〈e|D − (n+φ− + n−φ+) 〈e| .

Combining this result with the preceding equation and using the fact that

〈e|R(y) = 〈e| for all y,

which is true since R(y) conserves total probability, we arrive at the statement
of this lemma.
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Appendix B1

The purpose of this appendix is to derive a differential equation for

|l(λ; z)〉 = Φ̃(λ) |Y (λ; z)〉,
where |Y (λ; z)〉 satisfies the equation

d |Y (λ; z)〉
dλ

= −
[

B− − zB+ + φ0N + Φ̃(λ)N
]

|Y (λ; z)〉 . (2.16)

We assume a general initial value |Y (0; z)〉. First step is to transform this
equation into an ”interaction” picture by defining

|YI(λ; z)〉 = e(φ0N+B−−zB+)λ |Y (λ; z)〉 . (2.17)

After this change of variables, equation (2.16) reads

d |YI(λ; z)〉
dλ

= −Φ̃(λ)N ′(λ; z) |YI(λ; z)〉 , |YI(0; z)〉 = |Y (0; z)〉 , (2.18)

where
N ′(λ; z) = e(φ0N+B−−zB+)λNe−(φ0N+B−−zB+)λ. (2.19)

We can immediately write down a solution to this equation in a form of a
Dyson series as

|YI(λ; z)〉 =
(

1−
∫ λ

0

dλ′
Φ̃(λ′)N ′(λ′; z)+

+

∫ λ

0

dλ′

∫ λ′

0

dλ′′
Φ̃(λ′)Φ̃(λ′′)N ′(λ′; z)N ′(λ′′; z) + . . .

)

|Y (0; z)〉 . (2.20)

Using this formal solution we find

d

dλ
Φ̃(λ) |YI(λ; z)〉 =−N ′(λ; z)φ̃2 (λ) |YI(λ; z)〉+

+

[

dΦ̃(λ)

dλ
−
∫ λ

0

dλ′ d

dλ
Φ̃(λ)Φ̃(λ′)N ′(λ′; z) + . . .

]

|Y ; z(0)〉 . (2.21)

Now we can use the lemma from Appendix A about the derivatives of correlation
functions of Φ̃(λ). Inserting these relations into the last equation gives

dΦ̃(λ) |YI(λ)〉
dλ

= −N ′(λ; z)φ̃2 (λ) |YI(λ; z)〉 − γΦ̃(λ) |YI(λ; z)〉+ γµ′|YI(λ; z)〉. (2.22)

Employing the definition (2.17) of |YI(λ; z)〉 and the simple identity

φ̃2(λ) = (φ̃− + φ̃+)Φ̃(λ)− φ̃−φ̃+, (2.23)

it is now just a matter of algebra to arrive at the sought for result

d |l(λ; z)〉
dλ

= −(φ′
0N + γ +B− − zB+) |l(λ; z)〉+ (φ̃−φ̃+N + γµ′) |m(λ; z)〉 . (2.24)

1For definitions of variables used in this appendix see section 1.5.
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Appendix C

In this appendix we prove the identity

L(a, b) |c〉 = 1

a
2F1(N,

a

b
,
a

b
+ 1; 1− b

c
) |b〉 , (2.25)

where the components of vectors |b〉 and |c〉 are given by

〈k|b〉 = bk, 〈k|c〉 = ck. (2.26)

The proof is based on the same methods that were used in section 1.6.3. First
we employ the trick (1.48) to write

〈k|L(a, b) |c〉 = ck 〈k| 1

a− bN + cB−
|e〉 . (2.27)

Second step is to expand this expression

〈k|L(a, b) |c〉 = ck
1

b
〈k| 1

L−1
(

a
b
, 1
)

−
(

1− c
b

)

B−

= ck
1

a
〈k| 1

1−
(

1− c
b

)

L
(

a
b
, 1
)

B−

= ck
1

a
〈k|

∞
∑

n=0

(

1− c

b

)n

Bn
−

1
(

1 + a
b

)

n

|e〉

= ck
1

a
2F1

(

1, k, 1 +
a

b
; 1− c

b

)

= bk
1

a
2F1

(

k,
a

b
, 1 +

a

b
; 1− b

c

)

, (2.28)

where in the last equality we used a linear transformation formula for Gauss
hypergeometric functions ([7], page 559).

Looking at the last formula we can immediately rewrite it as

〈k|L(a, b) |c〉 = 1

a
〈k| 2F1

(

N,
a

b
,
a

b
+ 1; 1− b

c

)

|b〉 , (2.29)

therefore proving the identity (2.25).
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List of Symbols

General notation

R The set of real numbers.
C The set of complex numbers.
N The set of non-negative integers.
f(s) f(s) ≡

∫∞

0
e−stf(t) dt is the Laplace transform of the real-

valued function f(t), t ∈ R+, s ∈ C.
(a)n Pochhammer symbol, (a)n ≡ a(a+ 1) . . . (a+ n− 1) if n > 0,

(a)0 ≡ 1, n ∈ N.

2F1(a, b, c; z) Gauss hypergeometric function, 2F1(a, b, c; z) is the analytical

continuation of the series
∑∞

n=0
(a)n(b)n

(c)n
zn

n!
, |z| < 1.

|k〉 Orthonormal basis |k〉 = (0 . . . 1 . . . 0) where the 1 is at posi-
tion k, k ∈ {1, 2, . . .}.

X A random variable, x denotes a member of its state space.
X (t) A stochastic process indexed by t, t belongs to some interval,

x(t) denotes a member of the space of all possible realizations
of X (t).

Problem-specific notation

λ Length of the interval on which diffusion occurs.
z Laplace variable corresponding to time in the Fokker-Planck

equation.
Φ(x) Stochastic process describing the force field in which diffusion

takes place. Usually assumed to be dichotomous noise.
P(λ; z) For fixed z and λ, P(λ; z) is a random variable corresponding

to the value of a solution to the Fokker-Planck equation at
the origin when random force field is assumed.

Q(λ; z) Q(λ; z) ≡ zP(λ; z). Solution to the stochastic Riccati equa-
tion.

P(λ) P(λ) ≡ limz→0Q(λ; z).
|Y (λ)〉,|Y ′(λ; z)〉 Vectors with components 〈k|Y (λ)〉 = Pk(λ), 〈k|Y ′(λ; z)〉 =

Qk(λ; z).
|Y (λ; z)〉 Solution to equation (1.26).

|m(λ)〉,|m(λ; z)〉 |m(λ〉 = |Y (λ)〉, |m(λ; z)〉 = |Y (λ; z)〉.

32



|l(λ; z)〉 |l(λ; z)〉 = Φ̃(λ) |Y (λ; z)〉.
mk(λ), mk mk(λ) = 〈k|m(λ)〉, mk = limλ→∞mk(λ).

qmin
± (z), qmax

± (z) qmin
± (z) =

√

z +
(

φ±

2

)2

− φ±

2
, qmax

± (z) = −
√

z +
(

φ±

2

)2

− φ±

2
.

Notation related to the dichotomous noise

Φ(λ) Stationary dichotomous process with state space {φ−, φ+},
φ− < φ+.

n−, n+, γ n−, n+ are transition rates between the two states of the pro-
cess Φ(λ). γ = n− + n+

ν−, ν+, ν ν− ≡ n−

|φ−|
, ν+ ≡ n+

|φ+|
, ν = ν− + ν+.

µ Mean value of Φ(λ), i.e. mean force acting on a diffusing
particle, µ = φ+n−+φ−n+

n−+n+
.

φ0, Φ̃(λ) Decomposition of the process Φ(λ) = φ0 + Φ̃(λ), Φ̃(λ) is di-
chotomous process with transition rates n−, n+.

φ̃± φ̃± = φ± − φ0 are the two states of the process Φ̃(λ).

µ′ µ′ = Φ̃(λ) = n−φ̃++n+φ̃−

n−+n+
.

φ′
0 φ′

0 = φ− + φ+ − φ0.

Matrices that occur in the main text

N =











1 0 0 · · ·
0 2 0 · · ·
0 0 3
...

...
. . .











, B− = NE− =











0 1 0 0 · · ·
0 0 2 0 · · ·
0 0 0 3 · · ·
...

...
...

. . .











, B+ = NE+ =















0 0 0 · · ·
1 0 0 · · ·
0 2 0 · · ·
0 0 3 · · ·
...

...
. . .















,

E− =











0 1 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·
...

...
...

. . .











, E+ =















0 0 0 · · ·
1 0 0 · · ·
0 1 0 · · ·
0 0 1 · · ·
...

...
. . .















.

L(a, b) =
1

a− bN +B−
, b > 0.
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